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Background 

Unmanned Aerial Vehicles (UAVs) are becoming an increasingly popular research subject. The 

reason is the many applications UAVs can perform. Examples of tasks are surveillance, target 

tracking, search and rescue, and communication relay. One application that has become highly 

relevant is iceberg tracking. Icebergs can pose a threat for operations such as oil exploration, 

production, and transport. Surveillance operations often use satellites. However, the coverage of 

the northern area, where icebergs are present, is scarce and it is very expensive to increase the 

coverage. UAVs are cheaper in use, operators can better control them and they are closer to the 

ground. This enables better and faster coverage of areas of interest.  

 

One of the advantages with an UAV is that it is possible to define a path using an optimization 

algorithm based on certain set of criteria, compared to satellites that must follow a predefined 

path. However, to follow a defined path the UAV needs a feedback controller. An optimization 

algorithm may describe a path with waypoints, 2D coordinates or 2D coordinates with heading 

and actuator input. A feedback controller must use the defined path and state of the UAV to 

define the actuator input for the UAV. This project is related to the use of nonlinear model 

predictive control for solving the task of path following. It is proposed that the work is done 

using the CasADi framework in e.g. Python. The project builds on work done in specialization 

project spring 2015. 

 

Tasks: 

1) Give a brief background on control methods for path (waypoint) following 

2) Give a brief introduction to dynamic optimization with emphasis on collocation methods 

3) Extend/improve waypoint path optimization from project work 

4) Use this to design an MPC waypoint following controller 

5) Test and evaluate the controller in various scenarios (nominal, with disturbances (wind), 

model/plant mismatch, etc.) 

6) Discuss, conclude, suggest further work 

 

Supervisor: Professor Lars Imsland,           
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ABSTRACT 

Ice surveillance is motivated by a need to improve the safty for shipping and offshore industries in 

the arctic waters. Unmanned aerial vehicles (UAVs) are considered a cost-efficient way of handling 

ice surveillance. This thesis describes the implementation and simulation results for a model 

predictive controller (MPC) for a iceberg surveillance by UAVs, using an end-time-based 

optimization scheme. The optimization scheme uses a bisection method to find the end-time over 

a series of smaller optimizations. The implementation of the MPC scheme and optimization 

algorithm was done in Python, using the open source sybolic framework Casadi for algorithmic 

differentiation. 

Generally, the MPC performed well when the wind distubance on the UAV was known, since the 

wind then could be coupled foreward by the optimal controller. It was found that the UAV could 

handle wind disturbances of more than half its own speed. However, in cases where the information 

of the wind disturbance was incomplete, the simulated UAV could be blown off course because 

there was no integral effect in the control loop, to correct the error. The bisection method used on 

the end-time in the optimal controller found good solutions as long as the vehicle was not too close 

to the target waypoints.  

Baring these two problems, the whole control system was found to perform adequately although 

not perfect. By including the suggested wind estimator and backup controller, which addresses the 

mentioned problems, the overall performance would probably improve. 
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SAMMENDRAG 

Isovervåkning er viktig for å øke sikkerheten rundt oljevirksomhet og transport in arktiske farvann. 

Ubemannede droner (UAV) er trolig en kostnadseffektiv måte å håndtere denne overvåkninge på. 

Denne avhandlingen beskriver implementeringen og simuleringsresultatene av en modell prediktiv 

kontroller (MPC) for en UAV for isfjellovervåkning. Kontrolleren bruker en tidshorisont-basert 

optimaliseringsalgoritme, der slutttiden for optimaliseringen ble funnet ved hjelp av en bisection-

metode over flere små optimaliseringer. Implementeringen av MPC-en og den optimale 

kontrolleren ble gjort i Python, med det symbolske rammeverket Casadi. 

Den modell prediktive kontrolleren fungerte tilfredsstillende så lenge vindforstyrrelsene på UAV-

en var kjent, siden den optimale kontrolleren foroverkobler forstyrrelsene. Det ble funnet at UAV-

en tålte vindforstyrrelser med hastighet på mer enn halvparten av hastigheten til UAV-en. 

Kontrolleren fikk imidlertid problemer i tilfeller der deler av vindforstyrrelsen var ukjent. UAV-

en kunne blåse ut av kurs, siden det ikke var noen integraleffekt i kontrollsystemet. Den optimale 

kontrolleren og bisection-metoden fungerte tilfredsstillende for å finne optimale løsninger så lenge 

UAV-en ikke var for nær neste navigeringspunkt. 

Bortsett fra disse to problemene fungerte hele kontrollsystemet godt. Ved å inkludere foreslåtte 

forbedringer som en vindestimator og en reservekontroller, vil systemet sannsynligvis bli 

ytterligere forbedret.  
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1 INTRODUCTION 

1.1 BACKGROUND 

Unmanned Aerial Vehicles (UAVs), often called drones, are a type of aircrafts, which are 

controlled without a pilot on board. They are either remotely operated by a pilot on the ground, or 

they are autonomous, which means they are controlled by a guidance system, without the need of 

a human pilot. Since UAVs are operated without a pilot on board, they can be built much smaller 

and lighter than regular aircrafts, and still do the same job. The early history of UAVs consists of 

mostly of military usages, but in recent years more and more civilian purposes for them are 

developed, due to the technology becoming cheaper and more accessible. 

 The history of unmanned aerial vehicles 

The first UAVs were no more than flying bombs, with the earliest being unmanned bomb-filled 

balloons used by the Austrians in an attack on Venice in 1849 [1]. However, the plan was not 

successful, as some of the balloons blew back across the Austrian lines due to change in wind 

direction and no possibility for steering. In the early 19th century some UAVs were developed and 

used as targets for training military personnel. During World War I, various “aerial torpedoes” 

were invented, but never used. The control mechanism for these were quite simple by today’s 

standards. The planes were programmed to fly a certain distance, then suddenly pitch downwards 

with the payload, and hopefully hit the intended target. Later, in World War II, many different 

drones were developed, both for surveillance and combat. The German V-1 [2] rocket was probably 

the most known and feared of them, and was basically a bomb with wings propelled by a primitive 

jet engine.  

It was not before the Vietnam War that UAVs as we know them today began to emerge. Some 

were used for dangerous surveillance missions, mainly to save the lives of pilots. In the seventies, 

the Israeli air force developed the UAV that is regarded as the first modern surveillance UAV. The 

Tadrian Mastiff [3] could stay airborne for more than 7 hours and had a data-link system that made 

it possible to stream a live video feed down to the operators. As the technology improved, so did 

the UAVs, and in 1995, maybe the most well-known UAV of them all was introduced; the Predator 



2 

 

drone, which, together with successor Global Hawk, are still the primary drones used by the United 

States Air Force  [2]. 

In recent years the research on various non-military usages for UAVs has increased. Since UAVs 

are unmanned they are perfect for tasks where the conditions are too harsh for manned vehicles, 

where manned vehicles are too large, or there is simply no need for a human pilot in the plane. 

Today UAVs come in many different sizes and forms, and are used in a great variety of fields. 

These include small multi-copters used for different kinds for photography, the delivery drone the 

webstore Amazon are developing [4], and bigger plane-like drones used to inspect crop health in 

agriculture [5], photographing the receding glaciers on Greenland [6] or the focus of this project: 

ice drift surveillance.  

 

Figure 1-1: The UAV used in flight tests on Svalbard by NTNU (Photo: Pål Kvaløy) 

 

 Ice surveillance 

The need for ice surveillance is motivated by the desire to utilize the artic sea for shipping and oil 

drilling. When operating in the Artic Sea, the drifting ice can be a great danger to installations and 

vessels, therefore it is of vital importance that knowledge of the ice movement is gathered so that 

the appropriate actions can be taken. Due to different challenges, it is common to distinguish 
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between the surveillance of sea-ice and icebergs [7]. With sea-ice, the focus is mainly on coverage 

and thickness, while with icebergs the focus is mainly on size and drift direction.  

Today, ice surveillance is done using either sensors on the ice itself, satellite images or manual 

observations from planes and ships. Many of these methods have some challenges. The main 

disadvantage of satellites is that the satellites have to be in a polar orbit. These orbits are not very 

suited for targeted surveillance since they only pass over the same area once per day due to the 

rotation of the Earth [8]. Sensors on the ice itself, while accurate, have to be placed there manually 

and recovered later when the ice melts.  

All these methods have in common that they are quite expensive. Due to the flexibility, speed and 

low operation cost of UAVs, they could be a useful addition to the methods used today for ice 

surveillance [9].  

 

1.2 EARLIER WORK 

 Arctic dynamic positioning project 

In December 2014,  the research project “Arctic DP: Safe and green dynamic positioning 

operations of offshore vessels in an Arctic environment”[10] was finished. The project was 

coordinated by NTNU, with partners such as the Kongsberg Group and Statoil. As concluded in 

the project, one of the main challenges with dynamic positioning in the Arctic Sea is the ice. In this 

project an Ice Management System is described which includes 1) icebreakers to break up the 

drifting ice into smaller parts which the installations can handle, and 2) an automated ice 

surveillance system which makes it possible to detect and estimate the direction and speed of the 

drifting ice. This surveillance system can acquire data from a number of different sources, such as 

satellites, sensors on the ice and both underwater and aerial drones.  

 Project assignment spring 2015  

This project is built upon the previous project work [11] (TTK4550) done by the author in the 

spring of 2015, in which an optimal controller was developed for an UAV for ice berg surveillance. 
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The icebergs was represented by a set of waypoints, and the optimal controller was designed to 

make the UAV fly through each waypoint with its front turned towards the next waypoint. To 

achieve this, a bisection algorithm, which is an iterative root-finding method, was used on the 

optimization time to find an optimal path. As shown in Figure 1-2, the optimal path found had a 

better performance than a Line of Sight (LOS) control algorithm. However, the path generated was 

not as short as the Dubins path. It was therefore concluded that there was needs for further 

optimization. 

 

Figure 1-2: Optimal Path planner from project assignment spring 2015. 
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Table 1-1: Result from project assignment. Length of the path through the waypoints. 

 Line of sight Optimal controller Dubins Path 

Length (m): 5110 m 5040 m 4565 m 

Difference from Dubin: +545 m 475m - 

 

In early autumn of 2015, some additional work were done on the objective function and end 

constraints for the controller and optimization algorithm. This further improved the performance 

of the optimal controller to match that of the optimal Dubins solution. 

1.3 OBJECTIVE OF THE THESIS 

The main objective of this project was to design and implement a Model Predictive Controller 

(MPC) for an UAV using an improved version of the path optimization algorithm from the author’s 

previous work, and further to  discuss the performance for this control scheme in various scenarios.  

In more detail, the tasks were: 

1. Give a brief background on control methods for path (waypoint following). 

2. Give a brief introduction to dynamic optimisation with emphasis on collocation methods. 

3. Extend/improve waypoint path optimization from project work. 

4. Use this to design a MPC waypoint following controller. 

5. Test and evaluate the controller in various scenarios (nominal, with disturbances, 

model/plant mismatch, etc.) 

In chapter two, the theory behind waypoints following, optimization and model predictive control 

is explained. Furthermore there is a section about the bisection method used by the optimal 

controller and in the end of the chapter, there is a brief description of the software used. Chapter 

three covers the implementation. Here, the implementation of the optimal controller and the model 

predictive controller are explained. Chapter four contains the simulations and results. The test 

scenario is first outlined and then the results from the simulations are shown. The last two chapters 

covers discussion and conclusions. 
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2 THEORY 

This chapter gives background information of the methods later used in the project. Initially there 

is a section about Waypoint following, where the Line of Sight algorithm and the concept of Dubins 

path are explained. Then, nonlinear optimization, optimal control with focus on the direct 

collocation method, and model predictive control are covered. Lastly, there is a section about the 

bisection method and a short overview of the software used in the project.  

2.1 WAYPOINT FOLLOWING 

Waypoint following is the problem of navigating a vehicle through a series of waypoints. The 

methods used to solve this problem differ in how they use the waypoint to set the course. Some 

methods navigate using just the waypoints themselves and calculate a course by simple geometry, 

while other methods divide the problem into a path generation problem and a path following 

problem. In this project, both the generation- and following problems are solved at the same time 

using an optimal controller in an MPC-scheme.  

 Line of sight algorithm 

The line of sight algorithm (LOS) is one of the more common methods used for waypoint following 

[12]. This method finds the target heading by steering towards a point on the straight lines between 

the waypoints, this point is often placed at fixed distance ahead of the perpendicular line from the 

vehicle down onto the lines between the waypoints, as seen in Figure 2-1. This method work well 

in many cases, and with tuning it can perform quite well in comparison with more advanced 

methods. However, the LOS method does not take into account more than the current waypoint 

when calculating the course, and leaves therefore room for improvement. 



8 

 

 

Figure 2-1: Calculation of the desired heading for a vehicle using the Line of sight algorithm. 

 

 Dubins optimal path  

The mathematician Lester Eli Dubin showed in 1957 [13] that the shortest path through a number 

of points in a 2D plane, when a limitation is placed on the turn-rate, will be an combination of 

straight lines and circular arcs with the maximum curvature allowed. Dubins path is commonly 

used in robotics and control theory, but there are also other methods of finding trajectories which 

take into account the acceleration of the turn movement such as splines and 𝜅-trajectories [14]. 
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Figure 2-2: Dubins path, consisting of straight lines and circle segments with the maximum turn rate. 

 

Vehicle models with limited turn rate in a 2D plane is often called Dubins Vehicles since the Dubins 

conditions apply to them. The UAV in this project was simplified into a Dubins Vehicle by 

removing the altitude from the equation, making a system model consisting of just the north- and 

east positions and the heading angle. 

 

Figure 2-3: Dubins vehicle model, x is east position, y north and 𝜓 is the heading. 
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A mathematical model for a Dubins vehicle with constant speed 𝑈 and turn-rate input 𝑢 is: 

 �̇� = 𝑈 cos(𝜓)

�̇� = 𝑈 sin(𝜓)

�̇� = 𝑢

 

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥   

( 2.1 ) 

 

2.2 NONLINEAR OPTIMIZATION  

In mathematics, optimization is the minimization or maximization of a function subject to 

constraints on its variables [15]. The function is called an objective function and measure the 

performance of a certain solution. It consists of parameters such as profit, time, cost, energy or a 

combination of parameters, depending on the problem, as long as it is a scalar function, meaning 

that it can be represented by a number. Together, the objective function, the variables and the 

constraints are called an optimization problem.  

 Formulation 

An optimization problem is often formulated as follows: 

 
 min
𝑥 𝜖 𝑅𝑛

𝑓(𝑥) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑐𝑖(𝑥) = 0

𝑐𝑖(𝑥) ≥ 0
𝑖 𝜖 ℇ
𝑖 𝜖 𝐼

 
( 2.2 ) 

In equation ( 2.2 ), the objective function 𝑓(𝑥) is minimized subject to the constraints 𝑐𝑖, often 

divided into equality constrains 𝑖 𝜖 ℇ and the inequality constraints 𝑖 𝜖 𝐼.  

Once the problem has been formulated, there exist a number of different methods of solving the 

specific problem. These have various pros and cons and it falls to the user to choose a fitting method 

for the problem at hand. The method used in this project is an interior point method. 
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 The Lagrangian function 

The Lagrangian function is central to nonlinear optimization. It introduces a new variable 𝜆, called 

a Lagrange multiplier. The Lagrange function is defined as: 

 𝓛(𝑥, 𝜆𝑖) = 𝑓(𝑥) − 𝜆𝑖𝑐𝑖(𝑥) ( 2.3 ) 

The gradient of the Lagrange function is: 

 ∇𝑥𝓛(𝑥, 𝜆𝑖) =  ∇𝑓(𝑥) − 𝜆𝑖∇𝑐𝑖(𝑥) ( 2.4 ) 

Combined with the fact that at a solution 𝑥∗ the constraint normal ∇𝑐𝑖(𝑥∗) is parallel to ∇𝑓(𝑥), 

there exists a multiplier 𝜆𝑖
∗ such that: 

 ∇𝑓(𝑥∗) = 𝜆𝑖
∗∇𝑐𝑖(𝑥∗) ( 2.5 ) 

An equality constraint can then be found and used later in the Karush-Kuhn-Tucker (KKT) 

conditions. 

 ∇𝑥𝓛(𝑥∗, 𝜆𝑖
∗) = 0 ( 2.6 ) 

 

 The Karush-Kuhn-Tucker conditions 

In optimization theory, the Karush-Kuhn-Tucker (KKT) conditions are the first order necessary 

conditions for a solution to be optimal. Given a local solution 𝑥∗ of the problem, where the linear 

independence constraint qualifications (LICQ) are valid, and that the functions 𝑓  and 𝑐𝑖  are 

continuously differentiable, there exists a Lagrange multiplier vector  𝜆∗ , with 

components 𝜆𝑖
∗, 𝑖 𝜖 ℇ ⋃ ℐ, such that the following conditions are satisfied at (𝑥∗, 𝜆∗). 



12 

 

 ∇𝑥ℒ(𝑥∗, 𝜆∗) = 0  

𝑐𝑖(𝑥∗) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 𝜖 ℇ 

𝑐𝑖(𝑥∗) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝜖 ℐ

𝜆𝑖
∗  ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝜖 ℐ

𝜆𝑖
∗𝑐𝑖(𝑥∗) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖 𝜖 ℇ ⋃ ℐ

 

( 2.7 ) 

 Interior point method 

The method used to solve the optimization problems in this project are of the type known as interior 

point or barrier methods. The interior point method works by traversing the interior of the feasible 

region for the problem. This method is known for its fast calculations on large systems with sparse 

structure, meaning that most of the elements in the matrix are zero. 

Given a general nonlinear optimization problem with 𝑠 as a slack variable: 

 min
𝑥

𝑓(𝑥) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
𝑐𝑒(𝑥) = 0

𝑐𝑖(𝑥) − 𝑠 = 0
𝑠 ≥ 0

 

( 2.8 ) 

An interior point algorithm finds a solution by solving a series of barrier problems [15]. These 

problems are quite similar to the regular optimization problem, but introduces a barrier 

term −𝜇Σ𝑖=0
n log 𝑠𝑖 , which prevents the components of 𝑠 to becoming too close to zero, so the 

inequality in ( 2.8 ) can be removed.   

 
min

𝑥
𝑓(𝑥) − 𝜇 ∑ log 𝑠𝑖

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
𝑐𝑒(𝑥) = 0

𝑐𝑖(𝑥) − 𝑠 = 0
 

( 2.9 ) 

Then a barrier function 𝑃(𝑥; 𝜇) is introduced.  
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 𝑃(𝑥; 𝜇) = 𝑓(𝑥) − 𝜇 ∑ log 𝑠𝑖

𝑖 𝜖 ℐ

 
( 2.10 ) 

This function will keep 𝑥  inside the feasible region since the logarithmic term will increase 

drastically if it comes close to the boundaries. Problems can occur if the solution is close to the 

edge of the feasible region, but most modern algorithms have methods of dealing with this. Over 

the series of iterations of the barrier problems, the parameter 𝜇  is decreased, and when it 

approaches zero the minimal solution to the barrier problem will be equal to the original problem 

( 2.8 ). 

2.3 OPTIMAL CONTROL 

Optimal control is a way to use optimization algorithm for control purposes. As with an 

optimization problem, the control problem includes an objective function which here consists of 

state- and control variables. A solution to an optimal control problem is usually a set of inputs to a 

system which minimizes the objective function.  

 General formulation 

In this project, the solution for the optimal control problem will be a vector consisting of control 

inputs to the UAV which will make the UAV fly through the given waypoints. A general way to 

denote the optimal control problem (OPC) is as follows: 

 
𝐦𝐢𝐧

𝒙,𝒖
𝑱(𝒙, 𝒖, 𝒕) ;      𝑱 = 𝚽[ 𝑥(𝑡𝑜), 𝑡0, 𝑥(𝑡𝑓), 𝑡𝑓] +  ∫ 𝓛

𝑡𝑓

𝑡0

[𝑥(𝑡), 𝑢(𝑡), 𝑡]𝑑𝑡 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

�̇�(𝑡) = 𝒂[𝑥(𝑡), 𝑢(𝑡), 𝑡] 

𝒃[𝑥(𝑡), 𝑢(𝑡), 𝑡] ≤ 0 

𝝓[𝑥(𝑡0), 𝑡0, 𝑥(𝑡𝑓), 𝑡𝑓] = 0 

( 2.11 ) 

In ( 2.11 ), 𝑱 is the cost-function (also called objective function), 𝑥(𝑡) and 𝑢(𝑡) is the state and 

control input respectively. 𝑡 is the continuous time, 𝑡0 is the initial time and 𝑡𝑓 is the terminal time, 
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often called end time. The term 𝚽 is called the end point cost or the Mayer term, 𝓛 is called the 

continuous cost or the Lagrange term.  𝒂 is the system’s state equation, 𝒃  is the inequality 

constraints and 𝝓 is the equality constraints. 

 Direct collocation 

Direct collocation is the most common of the direct transcription methods. In this optimal control 

method, both the state and the controls for the optimal control problem are discretized. The time 

horizon is split into a rather fine grid of 𝑁 so-called collocation intervals {𝑡𝑘}𝑘=0
𝑁 .  On this grid we 

denote the state variables 𝑠𝑘 ≈ 𝑥(𝑡𝑘) and a control parameter 𝑞𝑘 such that 𝑢𝑘(𝑡; 𝑞𝑘). Then, on each 

of these collocation intervals [𝑡𝑘, 𝑡𝑘+1] a set of 𝑑 collocation points are chosen, often as either 

Gauss-Legendre or Gauss-Radau point as shown in Table 2-1.  

Table 2-1: Gauss-Legendre and Gauss-Radau points of orders 1-4 

Order Gauss-Legendre points Gauss-Radau points 

1 0.5 1.0 

2 0.211325, 0.788675 0.333333, 1.0 

3 0.112702, 0.5, 0.887298 0.155051, 0.644949, 1.0 

4 0.069432, 0.330009, 0.669991, 0.930568 0.088588, 0.409467, 0.787659, 1.0 

 

The constraints for the optimal control problem is based on the collocation conditions which are:  

1. The initial condition: 𝑠𝑘 = 𝑝(𝑡𝑘; 𝑣) 

2. The differential condition: 𝑓 (𝑝(𝑡𝑘
𝑖 ; 𝑣), 𝑢𝑘(𝑡𝑘

𝑖 ; 𝑞𝑘)) = 𝑝′(𝑡𝑘
𝑖 ; 𝑣),   𝑖 = 1 … 𝑑 

In addition, it is required that there is continuity between the collocation intervals, meaning that 

the end of one interval is the start of the next one; 𝑝𝑘(𝑡𝑘+1; 𝑣) = 𝑠𝑘+1. The resulting optimal control 

problem becomes [16]: 
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min
𝑠,𝑣,𝑞

                     ∑ 𝑙𝑘(𝑠𝑘, 𝑣𝑘 , 𝑞𝑘) + 𝐸(𝑠𝑛)

𝑁−1

𝑘=0

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
𝑠0 − 𝑥0 = 0  𝑓𝑖𝑥𝑒𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑐𝑘(𝑠𝑘, 𝑣𝑘, 𝑞𝑘) = 0 𝑘 = 0, … , 𝑁 − 1 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑝𝑘(𝑡𝑘+1; 𝑣𝑘) − 𝑠𝑘+1 = 0 𝑘 = 0, … , 𝑁 − 1 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

ℎ(𝑠𝑘, 𝑞𝑘) ≤ 0 𝑘 = 0, … , 𝑁 − 1 𝑝𝑎𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑟(𝑠𝑁) ≤ 0  𝑡𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 

( 2.12 ) 

 

 

2.4 MODEL PREDICTIVE CONTROL 

 MPC overview 

Model predictive control (MPC) is an advanced control method which builds upon optimal control.  

It is mainly used in process industries such as chemical plants, oil refineries and power plants. 

Model predictive controllers use an optimization algorithm based on a model of the plant to find 

the inputs the system needs to follow the optimal trajectory. This optimization is done recursive, 

always with the most recent system state as the initial condition. This means that only the first 

couple of inputs from the optimizations are used, since when a new optimization is ready, the inputs 

from the most recent are used instead. The optimizations are done on a finite time-horizon, to 

reduce computational cost. One of the greatest advantages to MPC is the ability to anticipate future 

events and take action according to these. In MPC theory one usually divides the system into three 

different types of variables; the control inputs, usually denoted as 𝑢, are called the manipulated 

variables (MV), the system states are called the controlled variables (CV), and disturbance 

variables (DV). 
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Figure 2-4: MPC principle. 

 MPC formulation 

Since the MPC is solving an optimal control problem for each iteration, so the formulation of the 

controller problem is identical to the optimal control problem using collocation ( 2.12 ): 

 

min
𝑠,𝑣,𝑞

                     ∑ 𝑙𝑘(𝑠𝑘, 𝑣𝑘 , 𝑞𝑘) + 𝐸(𝑠𝑛)

𝑁−1

𝑘=0

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
𝑠0 − 𝑥0 = 0  𝑓𝑖𝑥𝑒𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑐𝑘(𝑠𝑘, 𝑣𝑘, 𝑞𝑘) = 0 𝑘 = 0, … , 𝑁 − 1 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑝𝑘(𝑡𝑘+1; 𝑣𝑘) − 𝑠𝑘+1 = 0 𝑘 = 0, … , 𝑁 − 1 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

ℎ(𝑠𝑘, 𝑞𝑘) ≤ 0 𝑘 = 0, … , 𝑁 − 1 𝑝𝑎𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑟(𝑠𝑁) ≤ 0  𝑡𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 

( 2.13 ) 

 MPC design  

When designing a model predictive controller, there are a few important design decisions to be 

made. The choice of optimization model is one of these. There is a trade-off between a simple 

model for fast optimization, and thus more regular updates, and a detailed model for more accurate 

results, but slower optimizations and fewer iterations. A general “rule-of-thumb” when choosing 
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an optimization model is that it is must be able to capture the most significant dynamics of the 

system. The remaining un-modelled dynamics of the system are often called plant-model mismatch. 

While the idea behind is the same, MPC controllers can be implemented in a number of different 

ways, depending on where in the so-called control hierarchy they are placed. Usually the MPC 

controller does not control the system directly, but is used to calculate set-points for local 

controllers, such as PID-controllers. A standard MPC hierarchy is shown in Figure 2-5.  

 

Figure 2-5: Standard MPC hierarchy. 

 

When using model predictive controllers for a fast system such as an UAV, MPC is in most cases 

used for guidance purposes instead of directly controlling the vehicle. This is because of the delay 

in the MPC-loop and deviations due to model mismatch, which without low-level regulators or set-

point control can make the system deviate from the optimal solution. However, in this project the 

MPC inputs was used directly. The turn-rate acquired from the optimizations were sent directly to 

the UAV plant model. In this setup the MPC worked as both a guidance and control system for the 

vehicle, in the sense that it both found the optimal path and was used to directly control the actuators 

on the UAV.  
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2.5 BISECTION METHOD 

Bisection, or binary search, is a root-finding method in which an interval is split into two sections. 

These sections are then evaluated to find the section containing the solution, before splitting the 

correct section again. This can, after a few iterations, give a good approximation of where the 

solution can be found. In Figure 2-6, a bisection on a function 𝑓(𝑥) is shown. The first interval is 

found by simply guessing the first two 𝑥 values and checking the function at these. If they have 

opposite signs, the root is known to be in between, and the middle value of these guesses are then 

checked. 

 

Figure 2-6: Bisection root-finding method, narrowing down the interval where the root lies. 

 

In this project, a bisection algorithm was used in the optimal controller to find a good end time for 

the optimization. This will be more thoroughly explained in the Implementation chapter.  
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2.6 SOFTWARE  

 Python 

Python is a high level programming language, which is designed with emphasis on readability and 

simplicity. It supports objective oriented programming and has a large standard library. In contrast 

to languages like C and C++, python code is interpreted instead of compiled, which means that the 

code is run by an interpreter, instead of being translated into machine code, and run directly on the 

system. With additional open source packages such as NumPy, SciPy and Casadi, the Python 

library is vastly expanded and becomes a complete tool for scientific computations, similar to 

premium programs like MATLAB. 

 Casadi 

Casadi [17] is a symbolic framework for C++ and Python. This framework makes it possible for 

the user to do differentiation and numeric optimization using algebraic syntax. The framework can 

be used with both scalar and matrix variables. Casadi uses modern algorithms for the algorithmic 

differentiation, while keeping it relatively simple to use. The use of Casadi in this project is 

motivated by the fact that Casadi is very efficient to calculate derivatives [18], which makes for 

fast computational times for the optimal controller. 

 IPOPT 

The interior point optimizer [19] (IPOPT) is an open source software package for large-scale 

nonlinear optimization. The algorithm used in IPOPT is the Primal-Dual Interior Point algorithm.  

 MA27 solver 

To reduce the frequency of unfeasible solutions during the recovery phase of the IPOPT algorithm, 

the MA27 [20] solver was acquired and used.  
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3 IMPLEMENTATION 

The implementation was done in the programming language Python, with heavy use of the Casadi 

[17] symbolic toolbox. This toolbox is efficient in nonlinear numerical optimization, and supports 

most of the state-of-the-art codebases such as Sundials, WORHP and IPOPT [19] which is used in 

this project. Most of the Casadi code is written in C++ and is just interfaced with use of Python. 

The specific solver used was the HSL MA27 [21] solver.  The plant model was simulated between 

the optimizations using a standard Runge-Kutta integrator. 

3.1 DEFINING THE TEST SCENARIO  

 The icebergs 

The test scenario consists of six icebergs spread out in a pattern. The order in which the icebergs 

is to be visited is predefined. This order could be found solving a version of the traveling salesman 

problem [22], as was done in [23]. 

Table 3-1: The icebergs for the test scenarios 

#Iceberg 0 (init) 1 2 3 4 5 6 

Position (x,y) (0, 0) (0, 750) (1000, 600) (1300, 1500) (350, 1600) (500, 2500) (-1000, 2500) 

 

 UAV model 

For the UAV a kinematic model was used. This means that it just describes the motion the UAV 

and not what causes the motion. It was based on a Dubins vehicle with constant speed and limited 

turn-rate. This is quite realistic in the sense that a plane-like UAV cannot stop, since it will fall 

down and crash, and it has to bank in order to turn. In addition, only two dimensions are of interest 

in this case of waypoints following, thus the altitude dimension was removed from the model, and 

only x- and y-positions and the yaw-angle were left. 
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 �̇� =
�̇� =

�̇� =

𝑈 𝑐𝑜𝑠(𝜓)

𝑈 sin (𝜓)
𝑢

 

( 3.1 ) 

In the Dubins vehicle model for the UAV, shown in equation ( 3.1 ), 𝑈 is the constant speed, 𝑥 is 

the east position, 𝑦 is the north position and 𝜓 is the yaw-angle. The UAV model was implemented 

using Casadi using the code in Code 3-1. 

 

Code 3-1 Initializing the optimization model, using symbolic Casadi variables. 

 

 Wind disturbance 

Winds in the arctic can reach up to 50 m/s in storms, however the average wind is around 5 m/s in 

summer and 9 m/s in winter [20]. The small size of the UAV in this scenario, makes it not viable 

to fly during very strong winds, thus the storm strength winds were not included in this project. 

But both the winter average and summer average wind speeds were tested. 

Since the UAV model is a kinematic model, the wind disturbance can be added as a separate term 

that contributes to the position change for the UAV. The wind terms was modelled with a 

magnitude 𝑊 and direction 𝜔. Other wind models often include a mean strength and a random gust 

applied on top of the mean value. In this project, to keep things simple, only the mean value was 

included, as seen in equation ( 3.3 ). However both the mean magnitude and direction values were 

set to change over time. 

#Optimization model 

x = SX.sym('x', 3)  #states x, y, psi 

u = SX.sym('u')   #control u 

 

#ODE right hand side 

x_dot = ([ U*cos(x[2])+W[0]*cos(W[1]), 

           U*sin(x[2])+W[0]*sin(W[1]),  

           u ] ) 

f_opt = SXFunction([ x, u], [x_dot]) 

f.opt.init() 
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 �̇� =
�̇� =

𝑊 𝑐𝑜𝑠(𝜔)
𝑊 sin (𝜔)

 
( 3.2 ) 

 

The wind is thought to only contribute to the position of the UAV, and thus it is not present in the 

equation for the heading angle. When the wind term is added into the equation ( 3.1 ) of the UAV, 

the UAV dynamics and the wind disturbance together becomes: 

3.2 OPTIMAL CONTROL IMPLEMENTATION 

 Overall optimization design 

The optimal controller was designed to fly the UAV over a series of icebergs, represented here by 

a set of waypoints. It was decided to split the optimization problem into smaller parts, where each 

part is the path from one waypoint to the next. Using this approach, it was possible to keep the 

optimization simple, since it avoids having to do event detection for the icebergs during the 

optimization itself. Another benefit is that the MPC controller does not have to optimize the whole 

time horizon in each iteration. All these smaller paths were then added together to form the final 

solution for the problem.  

 �̇� =
�̇� =

�̇� =

𝑈 𝑐𝑜𝑠(𝜓) + 𝑊 𝑐𝑜𝑠(𝜔)

𝑈 sin(𝜓) + 𝑊 sin(𝜔)
𝑢

 

( 3.3 ) 
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Figure 3-1: Splitting the large problem into multiple smaller problem. 

 

One challenge with this design is that both the start and end-positions are fixed, and the UAV 

model does not allow changes in speed. This makes the time horizon the key parameter for the 

solution, since the UAV must be at the next waypoint at the end of this horizon. An optimization 

scheme with the time horizon as part of the objective function was tried, but the added complexity 

to the problem made it very hard to find a feasible solution. The scheme that eventually was 

implemented, was one where the time horizon is first approximated with geometry, then a bisection 

search was done around this estimation to find an optimal time horizon. In pseudocode the 

optimization was implemented as follows Code 3-2: 
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Code 3-2: Pseudocode of the optimal control problem. 

 

 Fixed end position scheme 

The fixed end position scheme was used to minimize the trajectory by making the UAV to be at a 

certain waypoint and with a set heading angle at the end of the time-horizon. The target angle was 

taken from the geometry behind Dubins path generation, where the optimal path intersects the 

waypoints in the middle of the required turn. This means that the heading angle for each iceberg 

can be calculated by simple geometry, prior to the initialization of the optimization problem. Since 

the larger problem was split into smaller parts, each sub-problem used the solution from the last 

optimization as its initial position. This was also the case when the MPC-functionality was added, 

where the initial position for the optimization was where the UAV was at the end of the previous 

optimization. This keeps the continuity between the solutions of the sub-problems and the resulting 

optimal path, when combining the optimal sub-paths, should be the optimal solution to the larger 

problem.  

 

 Direct collocation implementation 

To solve the optimal control problem, the direct collocation method was used. As described in 

chapter two, the direct collocation method discretizes both the controls and the states of the system. 

The resulting NLP problem when using the collocation method was: 

Calculate collocation matrices  

Calculate the desired target heading angle at each waypoint 

For each waypoint: 

Formulate the current constraints and objective function 

Calculate an approximate time to reach the waypoint 

While not satisfied by the solution: 

Initialize and run the optimization 

Improve the approximated time based on the result 
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min
𝑠,𝑣,𝑞

                     ∑ 𝑙𝑘(𝑠𝑘 , 𝑣𝑘, 𝑞𝑘) + 𝐸(𝑠𝑛)

𝑁−1

𝑘=0

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   
𝑠0 − 𝑥0 = 0  𝑓𝑖𝑥𝑒𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝑐𝑘(𝑠𝑘, 𝑣𝑘 , 𝑞𝑘) = 0 𝑘 = 0, … , 𝑁 − 1 𝑐𝑜𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑝𝑘(𝑡𝑘+1; 𝑣𝑘) − 𝑠𝑘+1 = 0 𝑘 = 0, … , 𝑁 − 1 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

ℎ(𝑠𝑘, 𝑞𝑘) ≤ 0 𝑘 = 0, … , 𝑁 − 1 𝑝𝑎𝑡ℎ 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑟(𝑠𝑁) ≤ 0  𝑡𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

 

( 3.4 ) 

 

The constraints in this problem were calculated with two coefficient matrices 𝑪 and 𝑫, for the 

collocation equation and the continuity equations respectively. Firstly, a Lagrange polynomial of 

the collocation points using Gauss-Legendre points of order 3 was made. A higher order of 

Legendre points would give a more accurate discretization of the system, but with a cost of longer 

calculations. The basis of the Lagrange polynomial is shown in equation ( 3.5 ).  

 

ℓ𝑗(𝜏) = ∏
𝜏 − 𝜏𝑑𝑟

𝜏𝑑𝑗
− 𝜏𝑑𝑟

𝑑+1

𝑟=0≠𝑗

 

𝜏𝑑 = (0, 0.112702, 0.5, 0.887298)  

( 3.5 ) 

To calculate the 𝑫 matrix for the continuity equation the Lagrange basis polynomial is evaluated 

at the end of the collocation interval for each of the polynomials, which is  𝜏 = 1 . Together 

the 𝑫𝒋 parts form the matrix 𝑫. 

 𝑫𝑗 = ℓ𝑗(𝜏 = 1) 

𝑫 = [ 𝐷0, … , 𝐷𝑑+1] 

( 3.6 ) 
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However, to make the 𝑪 matrix, that is the collocation equation, the derivative of the Lagrange 

basis polynomial is needed. This derivative was then evaluated at each of the collocation points to 

get the matrix 𝑪.  

 
  𝑪𝑗,𝑟 =

𝑑ℓ𝑗

𝑑𝜏
 (𝜏𝑑𝑟

)   

𝑪 =  [

𝐶𝑗=0,𝑟=0 ⋯ 𝐶𝑗=0,𝑟=𝑑+1

⋮ ⋱ ⋮
𝐶𝑗=𝑑+1,𝑟=0 ⋯ 𝐶𝑗=𝑑+1,𝑟=𝑑+1

] 

( 3.7 ) 

With the 𝑪 and 𝑫 matrices completed, they can be used to formulate the continuity constraints for 

the optimization problem. 

 The optimal control problem formulation 

As mentioned earlier, the optimization problem was split into multiple parts, each consisting of the 

path from one waypoint to the next. On each of these smaller optimizations, the start and end 

positions for the UAV was fixed. To increase the chance for a feasible solution, the objective was 

given slack in both position and heading at the end point. This slack was implemented by adding 

an accuracy term in the constraints on the end position as shown in Code 3-3 

 

Code 3-3: Constraints for the initial and end position of the UAV. 

  

 

#Sate bounds 

x_min = [-inf, -inf, -inf] #Minimun bounds for the UAV 

x_max = [ inf, inf, inf] #Maximum bounds for the UAV 

xi_min = position #Initial min bound for the UAV 

xi_max = position #Initial max bound for the UAV 

xf_min = x_target[i] - x_accuracy #End position min bounds 

xf_max = x_target[i] + x_accuracy #End position max bounds 
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As mentioned in chapter two, an optimal control problem consists of the objective function, the 

system variables, the constraints based on the dynamic model, and the other constraints set by the 

user.  

Since the problem was so heavily constrained, the chosen objective function kept simple. Its main 

purpose was to prioritize solutions as close to the centre of the error margin as possible. It consists 

of two parts; the end-cost or Mayer term, to minimize the distance to the waypoint at the end 

position, and the Lagrange term, to minimize the amount of turning the UAV has to do over the 

path. The resulting objective function was:  

 
𝐽(𝑥, 𝑢) =  ∑ 𝑞𝑢(𝑡)2

𝑡𝑓

𝑡0

+  ‖𝑥𝑤𝑝 − 𝑥(𝑡𝑓)‖ 
( 3.8 ) 

The variables for the control problem consist of the collocation states and the control inputs over 

the control interval. At each of the 𝑛 control intervals, there are (𝑑 + 1) collocation states, each 

with 𝑛𝑥  variables, and one control input  𝑢 . The total number of states then become:  𝑤 =

 𝑛( 𝑛𝑥(𝑑 + 1) + 𝑢). The variable vector 𝑤 was then initialized and split into a part 𝑋, with all the 

states, and a part 𝑈, with all the inputs. Constraints, such as the limited turn-rate were generated 

and stored in vectors to initialize the system with, the complete code to generate all the states and 

their respectively constraints are shown in Code A-1 in the appendix. 

The collocation- and continuity constraints were generated using the collocation matrices 𝑪 and 𝑫 

found earlier. The 𝑪 matrix, which consists of derivatives of the Lagrangian function was used to 

make the constraints that make up the differential collocation condition; 

 𝑓 (𝑝(𝑡𝑘
𝑖 ; 𝑣), 𝑢𝑘(𝑡𝑘

𝑖 ; 𝑞𝑘)) = 𝑝′(𝑡𝑘
𝑖 ; 𝑣) . The 𝑫 matrix, consisting of the Lagrangian polynomial 

evaluated at the end of each collocation interval was used to make the constraints that result in the 

continuity conditions. The code is shown in Code 3-4 below. 
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Code 3-4: Generating the collocation constraints for the NLP 

 

With all the parts of the optimal control problem complete, these were assembled together to the 

final optimization problem. Code 3-5 shows the initialization of the optimization.   

for k in range(n): #For all finite elements 

for j in range(1,d+1): #For all collocation points 

xp_jk = 0 #state derivative at the collocation point 

for r in range (d+1): 

xp_jk += C[r,j]*X[k,r] 

#Add collocation equations to the NLP 

[fk] = f_opt.call( [ X[k,j], U[k] ] ) 

g.append(DT*fk - xp_jk ) 

#Get an expression for the state at the end 

xf_k = 0 

for r in range(d+1): 

xf_k += D[r]*X[k,r] 

#Add continuity equation to NLP 

g.append(X[k+1,0] - xf_k) 
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Code 3-5: Initializing the NLP and starting the optimization. 

 

The MA27 [21] solver from HSL was acquired with an academic licence form the HSL team to fix 

a problem during the restoration phase of the IPOPT algorithm. Implementation of the time 

Bisection  

As pointed out earlier, the time horizon itself is a key factor in the optimal solution. Therefore, a 

bisection method was implemented to find an optimal end time. First, an approximation of the end 

time, 𝑡𝑓, is calculated. This approximation uses the distance to the waypoint and the total curvature 

of the path the UAV has to follow. In the scenarios with wind disturbance, the wind component 

parallel to the path between the waypoints, was also taken into account. This was done by altering 

the speed for the UAV in that direction when calculating the approximation. 

 
𝑡𝑓 =

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑈𝐴𝑉𝑆𝑝𝑒𝑒𝑑 + 𝑊𝑊||𝑤𝑝
+ 𝑘𝜓|𝜓𝑡𝑎𝑟𝑔𝑒𝑡 − 𝜓𝑖𝑛𝑖𝑡| + 𝑡𝑏𝑖𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

( 3.9 ) 

Starting with the approximated time 𝑡𝑓, the time is then either increased or decreased depending on 

the result from the optimization algorithm.  

#NLP 

nlp = MXFunction(nlpIn(x=w), nlpOut(f=Obj, g=g) ) 

solver = NlpSolver("ipopt", nlp) 

solver.setOption("expand", True) 

solver.setOption("linear_solver", "ma27") 

solver.init() 

solver.setInput(vars_init, 'x0') 

solver.setInput(vars_lb, 'lbx') 

solver.setInput(vars_ub, 'ubx') 

solver.setInput(NP.concatenate(lbg), 'lbg') 

solver.setInput(NP.concatenate(ubg), 'ubg') 

solver.evaluate() 
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Figure 3-2. Bisection on the end time, each S means a success and each F means a failure. Thus, S-F is the 

sequence success - failure. 

 

In Figure 3-2 the bisection method is shown. In the figure, an S means a successful optimization, 

and F a failure. S-F means that the first optimization was a success and the second a failure, and 

so on. Suitable values for the added and subtracted times for the bisection algorithm were found 

after tuning. The code for the bisection logic is found in Code A-2 in the appendix. 

 Compensating for wind disturbance 

The optimization model was expanded to include an estimate of the wind conditions, �̂� for wind 

strength and �̂� for direction. These are set at the start of the each optimization, and are viewed as 

constant for the duration of each optimization. Otherwise, they are implemented in the same way 

as the wind in the plant model. 

 �̇� =
�̇� =

�̇� =

𝑈 𝑐𝑜𝑠(𝜓) + �̂� 𝑐𝑜𝑠(�̂�)

𝑈 sin(𝜓) + �̂� sin(�̂�)
𝑢

 

( 3.10 ) 

Since the wind is viewed as constant during the optimization horizon, the additional terms do not 

add more states or variables to the system, meaning that they do not increase the computational 

time for the optimizations. The additional terms do, however, reduce the feasible region so that an 

optimal solution is harder to find.  
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3.3 MODEL PREDICTIVE CONTROL IMPLEMENTATION 

 MPC structure 

As described in chapter two, model predictive controllers can vary in the way they are constructed. 

In this project, the MPC is used as both a guidance and control system. This means that the inputs 

are taken directly from the optimizations and used on the UAV model. An overview of the system 

is shown in a block diagram in Figure 3-3. Here, the controller is given the waypoints, position 

measurements of the UAV, and an estimation of the wind. In most of the simulations the wind 

information is given at the start of the simulation and held constant over the course of the simulation, 

while the actual wind disturbance is allowed to change.   

 

Figure 3-3: MPC design overview for the system. 

 

The optimization horizon for the controller is a measure of how far into the future the controller 

optimizes. Since only the first couple of inputs of each optimization are used, the controller does 

not need the inputs for the whole path through all the waypoints. The optimization horizon for the 

controller was set to be the next three waypoints. This decreases the computational time for each 

of the iterations of the MPC algorithm. The MPC algorithm is explained in pseudocode in Code 3-6. 
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Code 3-6: Pseudocode for the MPC algorithm. 

 

 Plant model 

A plant model was implemented to act as a substitute for the real UAV. This model takes the control 

inputs from the MPC algorithm and simulates how a UAV would fly with these inputs. The plant 

model, as the optimization model, is based on a Dubins vehicle model with the added wind terms, 

as in ( 3.3 ). In addition, a limitation is placed on the change in turn-rate, so the UAV cannot go 

instantly from full turn (bank) in one direction to full turn in the opposite direction.  

 �̇� =
�̇� =

�̇� =

𝑈 𝑐𝑜𝑠(𝜓) + 𝑊(𝑡) cos (𝜔(𝑡))

𝑈 sin(𝜓) + 𝑊(𝑡) sin (𝜔(𝑡))
𝑢

 

|�̈�|  ≤  𝛿𝑡𝑟 

( 3.11 ) 

In order to simulate the UAV, a regular Runge-Kutta integrator was used. Since this is a discrete 

time integrator, the system must first be discretized. The equations of the discrete system become: 

Generate targets angles from waypoints 

While not visited all waypoints: 

 Select the three next waypoints 

 Run optimization to find the optimal path from current position 

 If successful: 

  Use most recent control inputs on the plant model 

 If infeasible: 

  Use previous successful control inputs on the plant model 

 Update wind disturbance 

 Update position 

 Remove visited waypoints from waypoints list. 
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 𝑥𝑘+1 =
𝑦𝑘+1 =
𝜓𝑘+1 =

𝑥𝑘 + ℎ( 𝑈 𝑐𝑜𝑠(𝜓) + 𝑊𝑐𝑜𝑠(𝜔) )

𝑦𝑘 + ℎ( 𝑈 𝑠𝑖𝑛(𝜓) + 𝑊 sin(𝜔) )
𝜓𝑘 + ℎ 𝑢

 

|𝜓𝑘+1| ≤ 𝛿𝑡𝑟 ℎ 𝜓𝑘 

( 3.12 ) 

The code for the Runge-Kutta integrator used is shown in Code A-3 in the appendix.  

 Handling infeasible solutions 

How well a model predictive controller handles infeasible solutions is an important factor in how 

safe and reliable it is. This problem can be dealt with in a number of different ways. One way is to 

have a backup controller which can take control if no solution is found. This controller could use 

a simple waypoint following algorithm, such as LOS. However, since there already is calculated 

an optimal path, a path following algorithm using the already generated path would be preferable.  

Since the main focus of this project is on the main controller loop, the method chosen in this project 

was to simply use the inputs from the previous solution until a new feasible solution is found. While 

not perfect, this method works in most cases. 

 Simulation time 

The simulation time for each iteration of the model predictive controller was first set to be the same 

length as the computational time used by the optimizations. The optimizations are slower in the 

cases where they do not find a feasible solution, due to how the optimization algorithm works. This 

slowdown can sometimes also be amplified by the bisection method, since a series of optimizations 

are run. This increase in computational time causes the system to wait longer for updated control 

inputs. The delays may cause small course deviations to become a larger problem, since the needed 

inputs to correct the heading might come too late. A fixed simulation time was introduced, and as 

expected, made the controller perform better near the waypoints, where most of the optimization 

failures occurred. The fixed simulation time is not as realistic as the dynamic simulation time. 

However, the computational time is scalable with more powerful computer hardware. Thus, finding 

a simulation time where the update frequency of the inputs is no longer a problem, gives an idea 
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of how powerful the hardware must be to run the model predictive controller. The fixed simulation 

time was, after some testing, set to 5 seconds. 
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4 SIMULATIONS AND RESULTS 

To test the performance for the whole system, a series of simulations were run. In these simulations, 

the complexity of the controller and the difficulty of test scenarios were incrementally increased to 

test the robustness of the controller. The first section of this chapter concerns just the optimal 

controller and the last section concerns the performance of the whole model predictive controller. 

4.1 OPTIMAL CONTROLLER PERFORMANCE 

First in this section, the path generated by the optimal controller is shown, and thereafter, the effect 

of the bisection algorithm. Lastly, the path and heading angle from an optimization which 

compensates for a wind disturbance, is compared to an undisturbed solution. 

 Optimization algorithm 

In Figure 4-1, a path generated by the optimal controller is shown. This optimization was done with 

no wind disturbance, and shows an ideal scenario. As seen in the figure, the UAV intersects the 

waypoints in the middle of each turn. This is the behavior is identical to the Dubins path, and makes 

the shortest path available through the waypoints in the order they are given.  
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Figure 4-1: Ideal path generated by optimization algorithm, with no wind disturbance. 

 

 End time bisection effect  

As mentioned earlier, the bisection algorithm works by adding or subtracting time to/from the time 

horizon for the optimal controller. The bisection time in Table 4-1 is the 𝑡𝑏𝑖𝑠𝑒𝑐𝑖𝑡𝑜𝑛 from equation 

( 3.9 ). This table and Figure 4-2 show that the first two optimizations were failures, and that the 

optimization needed six seconds additional simulation time to find a feasible solution. After the 

first success the next optimization uses the mean of the last success and last failure, in this case 4.5 
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seconds. This optimization is also a success and a new simulation is done with 3.75 seconds 

additional time, which is the last optimization performed on this section. 

Table 4-1: Bisection of the end-time 

Simulation: 1 2 3 4 5 

Result: Infeasible Infeasible Success Success Success 

Bisection time (𝒕𝒃𝒊𝒔𝒆𝒄): 0s 3s 6s 4.5s 3.75s 

 

 

Figure 4-2: Bisection result on the path to the first waypoint. The optimization algorithm finds better 

solutions during each iteration. The two first optimizations were infeasible and are not shown. 
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 Wind compensation in the optimization algorithm 

Figure 4-3 shows a comparison of the optimized path for the UAV for a case with no wind, and a 

case with wind disturbance of  9𝑚/𝑠, which is compensated for in the optimization. 

 

Figure 4-3: Optimized path with and without wind compensation (9m/s wind) 

 

As shown in Figure 4-3, in the case with wind disturbance (green), the wind forces the UAV north-

east. This makes the turns of the UAV appear sharper or wider compared to the undisturbed path, 
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however, it reaches all the waypoints. Consequently, it appears that the controller is able to handle 

winds of this strength. 

 

Figure 4-4: Optimized heading with and without wind compensation (9m/s). 

 

In Figure 4-4, the heading angle for the optimized paths during the same scenario is shown. Here it 

is easy to see that the wind disturbance makes some of the turns faster than in the undisturbed 

scenario.  
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4.2 MPC RESULTS 

For the MPC controller a series of simulations were run. The difficulty, i.e. the wind disturbance, 

was increased over the course of the tests. Starting off with no disturbances at all, to test the MPC 

under ideal condition, to scenarios with strong and changing winds. In the last scenario, the wind 

speed is more than half the speed of the UAV. An overview of the five main scenarios for the MPC 

is shown in Table 4-2. 

Table 4-2: MPC test Scenarios 

#Test \ Modes Wind speed Wind change Wind compensation Shown in: 

Scenario 1 Off Off Off Figure 4-5 

Scenario 2 5 m/s On Off Figure 4-6 

Scenario 3 5 m/s On 5 m/s 

Figure 4-7 

Figure 4-8 

Scenario 4 9 m/s On 9 m/s Figure 4-9 

Scenario 5 10+ m/s Off 10+ m/s Figure 4-10 

 

 Without wind disturbance 

The first test scenario for the MPC controller was under ideal conditions. The main goal of this 

scenario is to test the MPC itself, and to investigate how the mismatch between the plant- and 

optimization model impacts the performance.  
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Figure 4-5: Scenario 1: MPC controller with no wind disturbance. Only the plant-model mismatch affects 

the solution. 

 

As shown in Figure 4-5, the simulated UAV (green) follows the newest optimal path (blue) quite 

closely. At the first waypoint  the UAV turns somewhat slower than the optimal path. This is mainly 

caused by the constraint placed on the bank-rate for the UAV in the simulation model. Close to 

waypoint two, the UAV finds a solution which takes it through the feasible region around the 

waypoint, but still close enough that it can go to the next one. At waypoint four, a non-optimal 
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solution is found near the waypoint, most likely due to a poor time-approximation. This makes the 

UAV take an unnecessary large turn.  

A major weakness of the optimal controller occurs when there is a short distance to the current 

waypoint. Then, the optimization does not find any feasible paths to the nearest waypoint. This 

makes the UAV use the inputs from the previous optimization until it has reached the waypoint 

and the next target is set. Nevertheless, in most cases this works out well, but in the scenarios with 

changing wind disturbance, the UAV might be blown off course while it uses the previous inputs 

and has no way of correcting its course. An example of this is shown later on.  

 With wind disturbance and no compensation 

In the second scenario the wind disturbance is turned on. However, the optimization algorithm has 

no knowledge of this disturbance. The results are as expected, as shown in Figure 4-6. 

 

Figure 4-6: Scenario 2: Simulation with 5m/s wind disturbance and no compensation in the optimization 

model. 
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With no knowledge of the wind disturbance the UAV is blown out of course after reaching the first 

waypoint. The optimal paths (blue trajectories) found between the first and second waypoint try to 

steer the UAV back on course but since it cannot correct for the wind, it misses waypoint number 

two. Since no backup controller was implemented for the UAV in this project, the UAV continues 

to try to find a feasible path back to the waypoint, but finds only infeasible solutions.  

 Constant wind compensation, with changing disturbances 

In this scenario, the wind disturbances on the simulation model and the wind used in the 

optimization algorithm starts out the same. However, the wind used on the simulation model is 

allowed to change from its initial value over the course of the simulation. This will give an error 

that is small in the beginning and grows over time. The net disturbance of the wind will be the 

difference of the compensated wind and the wind on the simulation model. The change in the wind 

was done by either increasing or decreasing the strength and direction randomly at each simulation 

step. Due to the random wind change, a number of different cases could be tested for by changing 

the randomization seed. How much the wind changed from its initial values, greatly impacted the 

solutions as seen in Figure 4-7 and Figure 4-8. 
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Figure 4-7: Scenario 3: Simulation with 5 m/s wind compensation, but the wind changes over time. 

Problems arise after third iceberg. 

 

As seen in Figure 4-7, if the wind changes too much from the initial value, the UAV is unable to 

make the required turns, and therefore will drift off course. However, in this case it finds a new 

solution after going off course after iceberg number three, and manages to steer through the rest of 

the waypoints. Nevertheless, the overall solution is clearly suboptimal. The straight blue lines that 

go from the green path after iceberg three directly to waypoint four are infeasible solutions, and 



47 

 

the optimization algorithm cannot find a solution with the time-horizon given by the bisection 

algorithm.  

 

Figure 4-8: Scenario 3: 5m/s constant wind compensation. A solution where the wind changes are too 

small to impact the solution. 

 

In Figure 4-8, a simulation is shown where the UAV reaches all the waypoints. Here the wind 

change was below ±1 𝑚/𝑠 in magnitude and less than 20𝑜  in direction from its original strength 

of 5 m/s. If the change in wind direction is small, the constant compensation in the optimization 

makes this scenario roughly equivalent to a scenario with just a wind disturbance of  1 m/s . 
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However, if the change in wind direction is large, not only is the constant compensation incorrect. 

It may in the worst case induce an extra disturbance as strong as the wind itself, if the actual wind 

turns 180𝑜 and comes from the opposite direction of the estimate. 

 

Figure 4-9: Scenario 4: 9 m/s with dynamic wind. The UAV is blown off course multiple times. 

 

In Figure 4-9, one successful simulation with 9 m/s dynamic wind is shown. As in scenario 3, several 

simulations had to be completed to find a working solution. It is clear that the optimal controller 

does not work well if the wind information is outdated. 
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 Performance with stronger winds 

While the results may vary substantially when the wind is allowed to change, the MPC controller 

can handle quite strong winds when the actual wind is the same as the estimated wind. This is 

equivalent to a scenario where the actual wind is estimated perfectly during the flight, in which 

case the difference between the compensated wind and the actual wind is zero. With constant wind 

disturbance and the wind change turned off, the model predictive controller was found to handle 

wind strengths up to 12 m/s as shown in Figure 4-10. 

 

Figure 4-10: Scenario 5: Successful simulation with 12 m/s wind. To get this result the wind change had 

to be turned off. 
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5 DISCUSSION 

First in this chapter, the optimal controller with the wind compensation and the model predictive 

controller will be discussed. Then some improvement for both the optimal controller and the MPC 

are suggested.  

5.1 OPTIMAL CONTROLLER 

 The optimal controller 

The optimization scheme used in this project succeeded in calculating a feasible path through all 

the waypoints. The solutions found were similar in both distance and form to the optimal Dubins 

paths.  

The optimal controller had difficulties finding feasible solutions when close to the current waypoint. 

This is a result of how the starting time horizon for the bisection is chosen, and the fact that the 

limited turn-rate for the UAV makes the feasible region for the optimization algorithm smaller on 

shorter distances. A better approximation of the time-horizon and more dynamic time steps for the 

bisection might have resolved this. However, the problem will not disappear completely, due to the 

way the algorithm is built. 

 The bisection algorithm 

The bisection algorithm worked well in finding an optimal time-horizon for the optimization. The 

method may not be the most efficient with respect to computational time, but it was suitable for 

finding an optimal time horizon, while keeping the optimization problem simple. One weakness of 

the bisection algorithm is that it is reliant on a good initial guess of the time horizon, which the 

bisection can operate around. This initial guess was based on an approximation of the time it should 

take to fly to the next waypoint, using geometry, UAV specifications, and weather information. 

Using this approximation method works in most cases, but may cause problems when the UAV is 

close to the target waypoint, or facing the wrong direction. 

To achieve what is called a ‘warm start’ in optimization, a simpler and faster optimization problem 

could have been solved to find a better starting value for the time horizon, before initiating the 



52 

 

main problem. However, the interior point methods are difficult to ‘warm start’. Furthermore, the 

performance of the bisection was deemed sufficient for the scope of the project. 

 Wind compensating 

The addition of wind compensating to the optimization model worked well. It allowed the optimal 

control algorithm to take both wind direction and strength into account, and compensated for these 

when finding the control inputs for the system. However, since the wind compensating is constant 

for the duration of the optimization, any change in the wind after the start of the optimizations is 

not compensated. Including a wind estimator, such as a Kalman filter, that runs in the background, 

and updates the wind information, would be a good addition to the system. In this way, the model 

predictive controller would have updated wind information on each iteration. 

The wind used in this project is modelled as strength and direction values that change over time. 

However, this wind model does not take gusts into account. Wind strength is usually modelled with 

two parts, one mean value part and one randomized part that will act as gusts and fluctuation of the 

disturbance. The simplification of the wind in this project to be just the mean value, is justified by 

the fact that a more complex wind model would not have influenced the optimization model, as the 

random disturbance from the gusts cannot be predicted. It could, however, been included in the 

plant model as additional disturbance, to make it more realistic.   

5.2 MODEL PREDICTIVE CONTROLLER 

Overall, the model predictive controller performed well. It was found that the UAV can handle 

wind with strength up to 12 m/s, which is more than half the speed of the UAV. This is when using 

the control inputs found by the optimal controller directly on the simulation model. The results 

show the strength of the MPC-scheme, where some of the disturbances can be coupled forward and 

compensated for in advance.  

 Wind change 

The controller had, however, a few challenges. While the MPC can handle strong winds if the 

magnitude and direction is known, problems arise when the wind changes from its initially known 

values. The controller was found to cope better with uncertainties in wind strength, than 
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uncertainties in direction. This was especially the case with strong winds, which is logical since an 

error in direction will induce a larger total error if the wind is stronger. In the simulations where 

the starting wind was 5 m/s, the wind direction could change up to 20𝑜 from the initial direction, 

the UAV would still be able to correct the course after each optimization. In the simulations with 

stronger winds, the same change in wind direction would induce an error large enough to blow the 

UAV off course. A solution to the unknown wind components could be to include an estimator, 

such as a Kalman filter, to estimate the wind during the flight. 

 Infeasible solutions near waypoints 

As mentioned in the section about the optimal controller, the optimization algorithm had trouble in 

finding feasible solutions when the UAV is close to the current waypoint. This problem occurred 

at almost all the waypoints, since the simulation time for each optimization was set to just 5 seconds.  

During the time when no current feasible solution was found, the inputs from the previous 

successful solution was used until a new set of inputs was found. However, since the optimization 

model and the simulation model are different, the simulated UAV turns slower, and will need a 

course correction with the next optimization. If multiple infeasible solutions occur in sequence, the 

error would increase. This problem could be solves by implementing a backup path following 

controller, which could take control of the UAV when the optimization algorithm does not find a 

solution.   

 Missed waypoints 

Yet another problem occurred if the UAV flied outside the accuracy margin around of one of the 

waypoints due to one of the two problems mentioned above. Since the speed of the UAV is constant 

and the turn-rate quite limited, the UAV will have to fly a quite large circle to visit the waypoints 

again. And the problem with inaccurate approximations of the time horizon, is even more clear 

when the UAV have to make a complete turn.  
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5.3 SUGGESTED IMPROVEMENTS 

Changing winds was one of the major challenges for the MPC. Introducing a wind estimator such 

as a Kalman filter would most probably solve this problem. A Kalman filter estimates the change 

in the wind between the optimizations, so that each iteration of the MPC has a new estimate of the 

wind. As seen from Figure 4-10, the controller can handle quite strong winds as long as they are 

known, so this addition would probably contribute to a large improvement in performance. 

Another possible improvement is to include a backup controller which takes control of the UAV 

in the cases where the optimization does not find a feasible solution. This controller could be a 

simple line of sight algorithm using the waypoints. However, a path following guidance system, 

using the last feasible solution, would probably be the best, since an optimal path is already 

generated. This backup controller might not be required if the wind estimator works sufficiently 

well. 
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6 CONCLUSION AND FURTHER WORK 

6.1 CONCLUSION 

The model predictive control scheme using end time bisection performs well for traversing a 

number of waypoint with an UAV. The MPC was able to compensate for relatively strong winds, 

as long as it had access to updated wind information. However, the bisection method had trouble 

finding suitable time horizons when the distance to the next waypoint was short. 

6.2 FURTHER WORK 

Further work to improve the controller may include: 

 Improve the bisection method, to better find time horizons for the optimization. 

 Expanding the controller with a Kalman filter to estimate the wind change over the course 

of the surveillance flight. 

 Implement a backup controller that can take control over the UAV is the optimization 

algorithm does not find a feasible solution.  
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APPENDIX 

A. PYTHON CODE 

Constraint generation: 

 

Code A-1: Constraint generation 

#Collocated states and parametrized controls 

for k in range(n): 

#collocated states 

for j in range(d+1): 

# Get the expression for the state vector 

X[k, j] = w[offset:offset+nx] 

vars_init[offset:offset+nx] = position 

if k ==0 and j ==0: 

vars_lb[offset:offset+nx] = xi_min 

vars_ub[offset:offset+nx] = xi_max 

else: 

vars_lb[offset:offset+nx] = x_min 

vars_ub[offset:offset+nx] = x_max 

offset += nx 

#Parametrized controls 

U[k] = w[offset:offset+nu] 

vars_lb[offset:offset+nu] = u_min 

vars_ub[offset:offset+nu] = u_max 

vars_init[offset:offset+nu] = u_init 

offset += nu 

#State at end time 

X[n, 0] = w[offset:offset+nx] 

vars_lb[offset:offset+nx] = xf_min 

vars_ub[offset:offset+nx] = xf_max 

vars_init[offset:offset+nx] = position 

offset += nx 
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Bisection logic: 

 

Code A-2: Bisection logic. 

if exit_msg == "Solve_Succeeded": 

last_succ = t_const 

if last_fail != -inf: 

t_const = (last_fail + t_const) / 2  

else: 

t_const -= 3  

elif exit_msg == "Infeasible_Problem_Detected": 

last_fail = t_const 

if last_succ != inf: 

t_const = (last_succ + t_const) / 2 

else: 

t_const += 3 

elif exit_msg == "Invalid_Number_Detected": 

last_fail = t_const 

if last_succ != inf: 

t_const = (last_succ + t_const) / 2 

else: 

t_const += 3 

elif exit_msg == "Maximum_Iterations_Exceeded": 

last_fail = t_const 

if last_succ != inf: 

t_const = (last_succ + t_const) / 2 

elif last_succ == t_const: 

t_const += 2 

else: 

t_const += 2 

elif exit_msg == "Restoration_Failed": 

t_const -= 1  

if last_msg == "Restoration Failed": 

t_const += 2 
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Runge-kutta integrator: 

 

Code A-3: Runge kutta integrator: 

def rk4(x0, u, w, T, N, f): 

x = x0 

DT = T/N 

for k in range(N): 

k1 = DT*f(x, u, w) 

k2 = DT*f(x + 0.5*k1, u, w ) 

k3 = DT*f(x + 0.5*k2, u, w ) 

k4 = DT*f(x + k3,u, w) 

x = x + (k1 + 2*k2 + 2*k3 +k4)/6 

return [round(x[0], 3), round(x[1], 3), round(x[2], 5) ] 

 

 


