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Abstract

This thesis is centred around a form of resonance analysis for power systems known

as Harmonic Resonance Mode Analysis (HRMA). It is a form of eigenvalue analysis

and has some parallels to the modal analysis commonly associated with small signal

stability. Modes in small signal stability analysis characterise the transient response

of the system to a small disturbance, and are identified from the state matrix of the

linearised state space description. Modes in HRMA characterise the parallel resonances

of a power system, and are identified from the admittance matrix. Participation factors,

which are derived from eigenvectors of the admittance matrix at resonance frequencies,

indicate the observability of modes in the impedance measured at individual buses. In

addition, sensitivity indices quantify the change in amplitude and frequency of modes

when parameters are adjusted in the admittance matrix.

A part of this thesis is dedicated to replicating HRMA results found in published papers.

By validating published results for two different test cases, the computer implementation

for carrying out the analysis is verified. Obtained results are generally consistent with

those in published papers. Some critical considerations in implementation of HRMA

are identified and discussed, perhaps the most important of which is the issue of modal

switching.

HRMA is also used to investigate resonances in a system modelled on the real offshore

wind power plant of Anholt in Denmark. HRMA is based on the nodal admittance

matrix, and power system components are modelled as equivalent admittances. Non-

linearities and frequency dependencies can be included more easily than in a state space

representation. Examining the impact of non-linear components in the admittance ma-

trix on HRMA results is a central contribution from this thesis. The sensitivity of results

with respect to degree of aggregation of the wind power plant model is also investigated.

Modern wind turbines are connected to power systems via full-scale frequency convert-

ers. Such converters can be modelled for harmonic analyses as equivalent impedances

which are determined primarily from the converter current control loops. An equivalent

impedance representing the grid-side converter of a wind turbine generator as seen from

the grid is derived, and later such impedances are incorporated in the HRMA.
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The resonance modes in the investigated large offshore wind power plant are sensitive to

modelling of wind turbine main circuit components such as shunt harmonic filters, step-

up transformers and main reactors. Suitable modelling of these electrical components is

therefore important for obtaining reliable result from HRMA. Moreover, the resonance

modes are highly dependent on the number of turbines in operation.



Sammendrag

Denne oppgaven omhandler en metode for analyse av resonanser i kraftsystemer kjent

som HRMA (eng. Harmonic Resonance Mode Analysis). Innen kraftsystemanalyse er

det velkjent at egenverdiene til den lineariserte tilstandsrombeskrivelsen, ogs̊a kjent som

systemets modi, bestemmer systemets transiente respons til sm̊a forstyrrelser. HRMA

har visse paralleller til denne formen for analyse. Det har vist seg at egenverdiene til

admittansmatrisen blir svært sm̊a ved frekvenser som er knyttet til parallelle resonanser.

Mininum i egenverdienes frekvensresponser kan derfor defineres som systemets resonans-

modi (eng. resonance modes). Impedansen målt fra de ulike nodene i kretsen kan knyttes

til de ulike resonans-modi gjennom admittansmatrisens egenvektorer. I tillegg er det

definert indekser som indikerer hvordan frekvensen og amplituden til resonans-modiene

endres ved ved å justere parametere i admittansmatrisen.

Ett kapittel i denne oppgaven er avsatt til å gjenskape HRMA-resultater for to ulike

testsystemer som av andre har blitt presentert i publiserte artikler. P̊a den m̊aten

verifiseres implementering av metoden i MATLAB. Resultater som presenteres fra de to

testsystemene i denne oppgaven er i overensstemmelse med de resultatene som finnes

i tidligere publiserte artikler. Noen viktige betraktninger rundt implementeringen av

HRMA som ikke finnes i de nevnte artikler blir identifisert og diskutert.

HRMA benyttes videre til å analysere parallelle resonanser i ett system modellert etter

den reelle hav-vindparken ved øyen Anholt i Danmark. HRMA baserer seg p̊a admittans-

matrisen til systemet som analyseres, og hver komponent modelleres som en ekvivalent

admittans. Det er enklere å inkludere ulineære komponenter i en slik admittansmodell

enn i en tilstandsrombeskrivelse. Undersøkelser av hvordan HRMA-resultatene p̊avirkes

n̊ar ulineære komponenter inkluderes i admittansbeskrivelsen er ett sentralt bidrag fra

denne oppgaven. Det undersøkes ogs̊a hvordan resultatene p̊avirkes av ulike grader av

aggregering av vindparkmodellen.

Moderne vindturbiner knyttes til nettet via fullskala frekvensomformere. For harmonisk

analyse fremst̊ar slike omformere som frekvensavhengige impedanser som særlig p̊avirkes

av omformerens strømregulator. Fra ett teoretisk perspektiv vises det i denne oppgaven
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hvordan en slik ekvivalent impedans kan utledes, og videre inkluderes disse impedansene

i HRMA av vindparkmodellen.

Analyse av vindparken viser at resonans-modiene er sensitive med hensyn til modellering

av komponentene som finnes i nær tilknytning til hver enkelt turbin, slik som harmoniske

filtre og transformatorer. Det er derfor viktig å modellere slike komponenter med omhu

for harmonisk analyse. Videre er vindparkens modi svært avhengig av antall turbiner

som til en hver tid produserer.
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1 Introduction

In the context of worldwide commitments on curbing greenhouse gas emissions and

transitioning to low carbon economies, governing bodies such as the EU, and inter-

governmental agencies such as IEA (International Energy Agency), envision electricity

generation in future power systems will be predominantly from renewable sources [1].

Offshore wind represents one of the most stable sources of renewable energy in many

parts of the world. In comparison to onshore wind, there are benefits like reduced ”Not

In My Back Yard”-opposition, stronger and more consistent winds, and fewer constraints

with respect to structure size and noise. Though harnessing the offshore wind energy is

technically challenging and more expensive compared to onshore wind in today’s mar-

ket, offshore wind technology is rapidly emerging and arguably has important long-term

potential. Realising the full potential of offshore wind will require support from pol-

icy makers in facilitating continued cost reduction through research and development

of turbine and transmission technology, supply chain optimisation, and operation &

maintenance [2].

1.1 Problem Background and Motivation

Power system voltage and current waveforms are ideally sinusoidal, continuous and of

constant frequency. Power quality can be defined as the combination of voltage quality

and current quality, and is concerned with the deviation of voltage and current waveforms

from the ideal. Harmonics are one of the major types of disturbances to the ideal

waveforms covered by the broader term of power quality disturbances [3].

State of the art offshore Wind Power Plants (WPP) are large and complex structures

including Wind Turbine Generators (WTG), array cable systems and HVAC or HVDC

export systems. Such WPPs represent new challenges with respect to prediction and

mitigation of harmonic emission and propagation [4]. Harmonic resonances in power

systems have the potential to amplify harmonic distortion. In offshore WPPs this is-

sue is exacerbated by the heavily armoured submarine cables required for collection

1



Chapter 1. Introduction 2

and transmission of power. The capacitance of such cables can introduce problematic

resonances at relatively low frequencies.

Although the cause of harmonic resonance is well understood, the tools and techniques

available for analysis of such phenomena are arguably quite limited. Harmonic Reso-

nance Mode Analysis (HRMA) is a relatively new application of eigenvalue analysis,

and is also known as Resonance Mode Analysis (RMA) or simply modal analysis. It has

been suggested that this method can be used in conjunction with traditional harmonic

analysis to gain better understanding of harmonic resonances and solve harmonic prob-

lems more effectively [5–8]. However, the benefits and limitations of this method are not

entirely clear from the handful of published papers which are related to it.

1.2 Limitations of Scope

The objective of this thesis is to investigate the potential of HRMA as a tool for harmonic

resonance analysis. It aims to provide a comprehensive review of the HRMA concept,

including verification of previous works on the topic. Application of the HRMA method

to a large offshore wind power plant facilitates independent contributions. Examination

of the sensitivity of HRMA results with respect to non-linearities and degree of model

simplification constitutes the main independent contribution of the thesis.

The HRMA method is usually associated to the nodal admittance matrix, also known

as Y-bus matrix, of the system under study, and only this kind of system description is

considered in the thesis. As a consequence, HRMA is limited to the study of parallel

resonances. An alternative system description, known as the loop impedance matrix, in

principle allows for equivalent investigation of series resonances. HRMA based on loop

impedance description has however received little attention in published papers, and is

considered outside the scope of this thesis.

Quantifying actual waveform distortion due to harmonic emission and propagation is

considered outside the scope of the thesis.

1.3 Relation to Specialisation Project

The author wrote a specialisation project in the autumn of 2014, titled ”Wind Turbine

and Offshore Wind Power Plant Modelling for System Level Harmonic Studies” [9]. Some

findings from the specialisation project were presented in a paper [10]. The project’s

objective was to create a foundation for system level time-domain harmonic studies of

offshore WPPs. It consisted of the following main components:
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• A literature study covering topics such as offshore WPP layout, power electron-

ics for variable-speed wind turbines, harmonic waveforms, harmonic resonance,

harmonic indices, passive filters, standards and grid codes related to harmonic

distortion.

• Design of emission filter (LCL filter) for the grid connection of wind turbines with

full-scale converters.

• Current control in a synchronously rotating dq-reference frame for representation

of wind turbine grid-side converter harmonic interaction.

Simulation of harmonics in an offshore WPP and subsequent Fourier analysis of the time-

dependent results turned out to be a challenging task. Certain studies suggest accurate

results from time-domain simulation of harmonics requires massive parallel processing

and efficient modelling of converters [11]. It was decided to work within the frequency

domain for this thesis.

Some content from the project’s literature study, although mostly rewritten and restruc-

tured, is included to ensure the thesis can be regarded a complete and independent work.

As will be shown, the specialisation project’s findings related to emission filter design

and converter control also have relevance to the resonance analysis carried out in this

thesis.

1.4 Structure

The thesis is organised as follows: Chapter 2 presents fundamental theory on harmonics,

harmonic resonance and available techniques for harmonic resonance analysis, including

HRMA. Chapter 3 covers the modelling of power system components for harmonic res-

onance analysis. Chapter 4 is dedicated to verifying HRMA results which can be found

in published papers, hence also validating the implementation of HRMA which has been

done from scratch in MATLAB. Important considerations and limitations identified in

this process are discussed. In Chapter 5, HRMA is applied to a model of a large offshore

WPP, based on the Anholt WPP in Denmark. Discussion and Conclusions follow in

Chapter 6 and Chapter 7 respectively.



2 Harmonic Analysis Theory

This chapter presents fundamental concepts and definitions related to harmonics and

harmonic analysis. Available methods for harmonic resonance analysis are presented

and compared. Theory behind HRMA is presented in detail.

2.1 Harmonics

Any periodic waveform of period T can be expressed as a Fourier Series. This means a

function g(t) = g(t+ T ) with fundamental frequency f1 can be expressed as

g(t) = C0 +
∞∑
h=1

Ch cos(hf1 + φh) (2.1)

where coefficient C0 is the DC component, Ch is the magnitude and φh is the phase

angle of the h-th order integer harmonic component [12].

Waveform distortion can in general be quantified by considering the waveform as a sum

of frequency components which are superimposed on the ideal fundamental frequency

waveform. In power systems, the dominant distortion components usually appear at

frequencies which are integer multiples of the fundamental frequency. Hence, the term

harmonic distortion is commonly used as a synonym for waveform distortion, even if

the frequency of some components are not integer multiples of the fundamental. The

non-integer multiple frequency components are often referred to as inter-harmonics,

while non-integer harmonics below the fundamental frequency can be categorized as

sub-harmonics [13].

Interest in power quality has surged in recent decades. Increased sensitivity of equipment

to voltage quality, and proliferation of power electronic devices in generation, transmis-

sion and consumption, are often credited as the main drivers for this. In addition,

companies have become less tolerant to equipment malfunction and production process

stoppages. Restructuring and deregulation of power markets has also led to an increased

need for power quality indicators [3].

4
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Distorted voltage and current waveforms may result in reduced lifetime or failure of

sensitive power system components. Voltage distortion affects primarily shunt connected

components, ranging from capacitor banks and industrial drives to fluorescent lamps and

computer equipment. Current distortion affect primarily the series connected elements,

such as transformers [3]. Harmonics can also interfere with control, communication and

protective equipment [14].

In relation to offshore WPPs, harmonic distortion is of concern both to the network

system operators (i.e. TSO or DSO depending on voltage level at PCC) and to the

WPP operators. A system operator is concerned with adhering to regulations on power

quality, and therefore may specify connection requirements for WPPs in the form of grid

codes. A WPP operator is concerned with grid code compliance, as well as potential

damage to equipment and WPP malfunction due to harmonic distortion [9, 13].

There are two main categories of harmonic sources in power systems. The first type of

devices are those with non-linear voltage-current relationships, such as iron core reac-

tors and transformers. The second category consists of power electronic devices. In a

balanced three-phase system, where voltages and current are of equal magnitude with

120 degrees phase shift between phases, only so-called characteristic harmonics are pro-

duced by power electronic converters. The characteristic harmonics are defined from

converter topology. Because the switching of such devices in steady state is usually

synchronised to the fundamental frequency, the characteristic harmonics are also inte-

ger harmonics. In reality there is always some degree of asymmetry between phases,

causing non-characteristic harmonics to be present as well. These are not related to the

converter topology, but are determined by the operating point and control scenario of

power electronic converters [12, 14].

Under balanced operating conditions, integer harmonics can be associated to either

positive, negative, or zero sequence. Assuming power is supplied in positive sequence,

this relationship can be explained by considering the phase shift between phases of

harmonics of order h:

Phase a : h · 0◦

Phase b : h · −120◦

Phase c : h ·+120◦ (= h · −240◦)

Taking the third harmonic as an example, there is no phase shift between phases, thus

the third harmonics are ideally only in the zero sequence. The existence of third order

harmonics in the line current is then governed by zero-sequence impedance, which implies

the third harmonic current does not flow in the lines of delta or ungrounded systems.
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Similarly, it can be verified that in a balanced power system the fifth harmonics are in

the negative sequence, the seventh harmonics are in the positive sequence and so on [15].

2.2 Harmonic Resonance

Harmonic resonances influence on harmonic propagation and distortion levels in power

systems. Resonances are characterised by energy exchange between capacitive and in-

ductive elements in a circuit, hence at least one capacitive and one inductive element

must be present in a circuit for resonance to occur. Reactances of capacitors and induc-

tors can be expressed respectively as

XC =
−1

ωC

XL = ωL

where ω has a unit of rad/s and is equal to 2πf where f is frequency in Hz. Hence it is

immediately clear that reactances vary with frequency.

Two types of harmonic resonance can occur in electrical circuits: parallel resonance and

series resonance. A parallel resonance is exemplified by the circuit in Figure 2.1. The

equivalent reactance of the parallel connected capacitor and inductor is given by

Xeq,parallel = XC ||XL =
− 1
ωC · ωL

− 1
ωC + ωL

=
ωL

1− ω2LC
(2.2)

At the resonance frequency the denominator of (2.2) approaches zero. Hence the equiva-

lent reactance becomes infinitely high, forcing any harmonic current to flow through the

resistor. A parallel resonance thus presents a high impedance to harmonic current close

to the resonance frequency. Presence of harmonic current close to the parallel resonance

frequency can excite the resonance and cause substantial voltage distortion.

C LIh R

IR IC IL

IC+IL

Figure 2.1: Parallel resonant circuit. The current (IC + IL) is forced to zero near
the resonance frequency, hence any harmonic current Ih must flow through resistor R,

which causes voltage distortion.
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CVh

L
R

Ih

Figure 2.2: Series resonant circuit. At the resonance frequency the equivlaent reac-
tance is zero and the flow of current is only a opposed by the resistor. Hence a small

harmonic voltage can cause large current distortion.

A series resonance is illustrated by Figure 2.2. The equivalent reactance is given by

Xeq,series = XL +XC = ωL− 1

ωC
=
ω2LC − 1

ωC
(2.3)

At the resonance frequency the nominator of (2.3) approaches zero. Hence the equivalent

reactance goes to zero, and the flow of harmonic current is opposed only by the resistor.

A series resonance thus presents a low impedance path for harmonic currents, and can

be excited by a small harmonic voltage of frequency close to the resonance.

Comparing (2.2) and (2.3), it is clear that the resonance frequency is the same regardless

of the type of resonance,

fres =
1

2π
√
LC

[Hz] (2.4)

In the per unit system, inductive reactance can be expressed as XL = hX1 where X1

is the fundamental frequency per unit reactance, and h is harmonic number. Similarly,

capacitive reactance can be expressed as 1/(hB1), where B1 is the fundamental frequency

capacitive susceptance. The per unit resonance frequency, i.e. the harmonic number of

the resonance, can then be expressed as,

fres,pu =

√
1

X1B1
[pu] (2.5)

A resonance frequency is also the frequency where the inductive reactance and capacitive

reactance are equal in magnitude and opposite in sign.

2.3 Methods of Harmonic Analysis

A variety of techniques are available for harmonic analysis in power systems. This

thesis focuses primarily on resonance analysis. Because such analysis is usually con-

ducted as part of a broader harmonic study, its relation to techniques such as harmonic
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power flow and time variant (EMT) analysis is also given some consideration. A general

overview of harmonic analysis methods is given in Figure 2.3, dividing them into four

main categories. Descriptions of all these forms of harmonic analysis are available in

literature [12, 14, 16, 17].

Resonance Analysis Frequency Domain Time Domain Hybrid Techniques

1. Frequency scan
2. State space analysis
3. HRMA 

1. Harmonic power 
flow (current source) 
2. Iterative (voltage 
dependent) harmonic 
power flow 

1. Time variant 
analysis (EMT)

1. Norton
2. Transfer fuction
3. Harmonic 
admittance matrix
4. Forward/backward

Figure 2.3: Classification of harmonic analysis methods [16]

Both the frequency scan method and the HRMA are forms of resonance analysis which

are strongly related to the admittance matrix and its variation with frequency for the

power system of interest. The nodal admittance matrix of a power system at frequency

f is of the form

[Yf ] =



Y11 Y12 · · · Y1i · · · Y1j · · · Y1n

Y21 Y22 · · · Y2i · · · Y2j · · · Y2n

...
...

. . .
... · · ·

...
. . .

...

Yi1 Yi2 · · · Yii · · · Yij · · · Yin
...

...
. . .

...
. . .

...
. . .

...

Yj1 Yj2 · · · Yji · · · Yjj · · · Yjn
...

...
. . .

...
. . .

...
. . .

...

Yn1 Yn2 · · · Yni · · · Ynj · · · Ynn



(2.6)

where yji is the mutual admittance between buses j and i, and Yii is the self-admittance

of bus i [12]. The admittance matrix defines the relation between bus voltages and

currents at any frequency f :

[Vf ] = [Yf ]−1[If ] (2.7)

[If ] = [Yf ][Vf ] (2.8)

A parallel resonance corresponds to some elements of [Vf ] being large when a per unit

current of frequency f is applied at any busbar. A series resonance corresponds to some



Chapter 2. Harmonic Analysis Theory 9

elements of [If ] being large when applying a voltage with frequency f at any busbar.

Frequency Scan

The first step in a harmonic study often involves carrying out frequency scans. This

method, which is also called frequency sweep or impedance/admittance frequency re-

sponse, requires a minimum of input data. It is effective for detection of harmonic

resonance, and is also widely used for filter design [14].

By injecting a one per unit current, the measured voltage magnitude and phase angle

at bus i corresponds to the driving point impedance at frequency f ,

Zii(f) =
Vi(f)

Ii(f)

This process can be can be repeated at discrete frequencies throughout the range of

interest in order to obtain the impedance frequency response. Mathematically, this cor-

responds to calculating the the diagonal elements of the impedance matrix, i.e. diagonal

elements of [Y ]−1. For example, the driving point impedance at bus i corresponds to

the diagonal element at position ii of the impedance matrix [18]. The admittance fre-

quency response can be obtained by sweeping the frequency of a one per unit voltage

and measuring the current, i.e.

Yii(f) =
Ii(f)

Vi(f)

Impedance and admittance frequency responses are presented as plots showing the mag-

nitude and phase angle as functions of frequency. Sharp peaks in impedance magnitude

(or valleys in admittance) are indicative of parallel resonance, while sharp valleys in

impedance (or peaks in admittance) are indicative of series resonance.

Frequency scans can be performed with phase or sequence components. If all three

phases are represented, a set of positive or zero sequence currents may be injected into

three phases of a bus to obtain the positive or zero-sequence driving point impedance

respectively [12].

Frequency scans are qualitative in nature as they say little about the actual distortion

in the power network in the presence of harmonic sources. Moreover they consider

only driving impedance, not transfer impedances. For example, consider the circuit of

Figure 2.4. It may be verified that equivalent impedance seen from bus 1 at the fifth

harmonic frequency is zero, which indicates a series resonance. However, the impedance

between bus 1 and bus 2 is equal to −j0.5 at this frequency. Consequently a 5th harmonic

current at bus 1 can cause severe voltage distortion at bus 2, with little voltage distortion
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AC

Bus 1 Bus 2

j0.1 j0.1

-j1.25

Figure 2.4: Impedances are given in per unit at fundamental frequency. At the fifth
harmonic frequency there is a series resonances seen from bus 1. Becuase of the non-
zero transfer impedance between bus 1 and bus 2, a fifth harmonic current at bus 1 can

drive voltage distortion at bus 2 [17].

at bus 1. Frequency scans are therefore used for quick screening and as a supplement,

not as substitute, to more formal harmonic power flow studies. The latter quantify the

actual harmonic distortion under given operating conditions [17].

Harmonic Power Flow

The simplest form of harmonic power flow, sometimes referred to as Current Source

Method, can be considered an extension of the frequency sweep. For frequency scan,

current is injected and voltage measured at one bus at the time. A current source

harmonic power flow is carried out at some harmonic frequency by specifying all the

injected currents at that frequency in the vector [If ] of (2.7), and then solving for the

resulting harmonic voltage vector [Vf ]. This concept can be expanded to include multiple

harmonic sources modelled as either current or voltage source. However, this kind of

power flow analysis requires the harmonic injections to be predetermined, i.e. given as

input to the simulation. More advanced forms of the power flow uses iterative methods

and are able to capture the voltage dependency of many harmonic sources [14, 17]. The

harmonic power flow is typically repeated at all frequencies of interest, hence estimating

the actual harmonic distortion in the presence of harmonic sources. The requirements in

terms of input data can be quite extensive. Quantifying actual distortion in this manner

is outside the scope of the thesis.

State Space Modal Analysis

In the field of power system analysis, modal analysis is best recognized as a technique

for dynamic small signal stability analysis. The state space representation of a linear



Chapter 2. Harmonic Analysis Theory 11

system is written as

ẋ = Ax+Bu (2.9)

where x is a vector of state variables referred to as state vector, A is the state matrix,

B is the input matrix, and u is the external excitation input vector. The state space

model of a linear electrical circuit can be formulated by selecting inductor currents and

capacitor voltages as state variables. Solving the differential equations yields a time

domain transient response given by

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (2.10)

where eA must be determined using eigendecomposition.

Eigenvalues of the state matrix A are the system modes. The number of modes is equal

to the rank of the state matrix. Complex eigenvalues can only exist as complex conjugate

pairs, and such a pair is often referred to as an oscillatory mode. The complex modes

are of the form

λA = σA ± jωA (2.11)

where σA is a mode damping coefficient with unit 1/s, and ωA describes the mode

damped frequency with unit rad/s. A 2nd order system has 2 eigenvalues, and assuming

they are a complex conjugate pair as given by (2.11), a small disturbance will lead to

oscillation of the state variables with a frequency determined by ωA and a damping

time-constant of 1/σA,

x(t) = K1e
−σAt cos(ωAt− φ) (2.12)

where K1 is a constant and φ represents a phase lag. For a higher order system with more

than one oscillatory mode, the small disturbance response will be a linear combination

of oscillatory responses determined by the modes [6].

As seen, the modes of the state matrix characterise the transient response of the system.

The modes also indicate the stability margin of a system when subject to a small distur-

bance. This kind of modal analysis forms the basis for small signal stability analysis [19].

If there is a disturbance with a frequency close the ωA of an oscillatory mode, the system

transient response tends to be strong. From this perspective, the oscillatory modes can

also be used to characterise resonance frequencies. However, the natural frequency ωA

is the same as impedance resonance frequency only for small values of σA [6].
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2.4 Harmonic Resonance Mode Analysis (HRMA)

There are many applications of modal decomposition and eigenvalue analysis in the

field of power system analysis. Eigenvalue analysis can be applied when the system

description is based on linear differential equations as well as when the system descrip-

tion is based on algebraic equations. The application in state space analysis has already

been mentioned (linear differential equations). Another well-known application of modal

decomposition is in the representation of three-phase systems using symmetrical com-

ponents (algebraic equations). Application is also found in voltage stability analysis,

where eigenvalues of the Jacobian matrix (algebraic equations) can be used to quantify

the voltage stability margin [5, 19]. HRMA is a form of eigenvalue analysis applied to a

system description based on algebraic equations.

It has been found that parallel resonance phenomena is associated to frequencies at which

the nodal admittance matrix approaches singularity, which is equivalent to an eigenvalue

of the matrix approaching zero. Hence it has been suggested that eigenvalues and

associated eigenvectors at such critical frequencies contain information about parallel

resonances which can enhance understanding of resonance phenomena and assist in

resonance mitigation. The idea of using a modal decomposition of the Y-bus matrix

for harmonic resonance analysis was introduced by Xu et al. [5]. The concept was

expanded upon by Huang et al. [6], Cui et al. [7, 20], and Hu et al. [8]. Theory and

notation regarding HRMA presented in this thesis originates primarily from these papers.

Application examples of HRMA can be found in the aforementioned papers, as well

as in papers dedicated to exploring particular types of networks, such as distribution

networks [21], offshore collection and transmission networks for wind power plants [22–

24] and wave power plants [25].

Eigendecomposition

The term right eigenvector refers to a column vector t which is placed to the right of

matrix A in the defining equation

At = λt (2.13)

where λ is the eigenvalue associated with the eigenvector. The term left eigenvector

refers to a row vector l which must be placed to the left of the matrix A in the defining

equation

lA = lλ (2.14)

An admittance matrix is symmetric as long as the phase shifting effect of transformers

is neglected. The non-conjugate transpose og an admittance matrix Y is therefore equal
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to itself. It is therefore easily shown that the (non-conjugate) transpose of any right

eigenvector t is equal to a left eigenvector l:

(Y t)T = (tλ)T ⇒ tTY = tTλ (2.15)

Eigendecomposition of an admittance matrix can thus be written as

[Y ] = [L][Λ][T ] (2.16)

where [Λ] is the diagonal eigenvalue matrix, [L] consists of columns of eigenvectors, and

[T ] consists of rows of eigenvectors, i.e

[L] = [T ]T =


...

... · · ·
...

l1 l2 · · · ln
...

... · · ·
...

 (2.17)

One can conclude that [L] = [T ]−1 = [T ]T and vice versa.

The symmetric admittance matrix used in power system analysis is defined by

[Vf ] = [Yf ]−1[If ] (2.7 revisited)

where [Vf ] and [If ] are the nodal voltage and current vectors respectively at frequency

f . The subscript f is dropped for simplicity in the following. Substituting (2.16) into

(2.7) yields,

[V ] = [T ]−1[Λ]−1[L]−1[I] = [L][Λ]−1[T ][I]

or

[T ][V ] = [Λ]−1[T ][I] (2.18)

Defining the modal voltage vector [U ] = [T ][V ] and modal current vector [J ] = [T ][I],

(2.18) can be simplified to

[U ] = [Λ]−1[J ]

which in expanded form is given by
U1

U2

...

Un

 =


λ−1

1 0 0 0

0 λ−1
2 0 0

0 0
. . . 0

0 0 0 λ−1
n




J1

J2

...

Jn

 (2.19)
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The kth modal impedance is defined as

Zm,k =
1

λk
(2.20)

A small eigenvalue λk will result in a large modal impedance Zm,k, in which case a

small modal current Jk at will lead to a large modal voltage Uk. This defines a parallel

resonance in the modal domain. If the system has no damping, the admittance matrix

becomes singular at resonance frequencies, which is equivalent to having an eigenvalue of

zero, or an infinite modal impedance. There is no cross-coupling between the n equations

given by (2.19), hence the excitation of one mode only affects a single modal voltage.

One important consideration is that the modal problem formulation of (2.19) is only

suitable for detection and analysis of parallel resonances. There is no direct link between

the eigenvalues of the admittance matrix and series resonances. Im many cases the

behaviour of harmonic sources closely resemble that of a current sources, hence parallel

resonances are most critical. However, there is an alternative system description which

can be used to analyse series resonances. Such a description is given by

[E] = [Zloop][Iloop] (2.21)

where [E] is the loop voltage vector, [Zloop] is the loop impedance matrix, and [Iloop] is

the loop current vector. The eigendecomposition of [Zloop] can be obtained in a similar

manner to the Y -bus matrix for analysis of series resonance [5]. However, HRMA for

parallel resonance analysis has been developed much further than for series resonance

analysis. Only the formulation suitable for analysis of parallel resonances is considered

further in this thesis.

Modal Participation Factors

Let us assume the eigenvalue λ1 of (2.19) to be very small at some frequency associated

to a parallel resonance. The modal current vector is related to the current vector [I] by

[J ] = [T ][I]. The modal current J1 is therefore given by

J1 = T11I1 + T12I2 + T13I3 + · · ·+ T1nIn (2.22)

where T1,n is the n-th element of the eigenvector associated with λ1. This means the

eigenvector associated with λ1 determines controllability, i.e. contribution of each nodal

current to the modal current J1. The nodal bus voltages are related to the modal
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voltages by [V ] = [L][U ], or
V1

V2

...

Vn

 =


L11

L21

...

Ln1

U1 +


L12

L22

...

Ln2

U2 + · · ·+


L1n

L2n

...

Lnn

Un ≈

L11

L21

...

Ln1

U1 (2.23)

where Ln,1 is the n-th element of the eigenvector associated to λ1. The approximation

of (2.23) holds because U1 has a much larger value than the other modal voltages at

the resonance associated to the small value of λ1. The eigenvector associated to λ1 thus

also determines observability, i.e. reveals how observable the modal voltage U1 is in each

of the nodal voltages. The left and right eigenvectors associated to an eigenvalue are

non-conjugate transpose of each other, hence the bus that has highest controllability of

a modal resonance also has the highest observability of the same modal resonance.

The index of participation factor combines the observability and controllability of modes.

[V ] = [L][Λ]−1[T ][I] = [L]


λ−1

1 0 0 0

0 λ−1
2 0 0

0 0
. . . 0

0 0 0 λ−1
n

 [T ][I]

≈


L11 L12 · · · L1n

L21 L22 · · · L2n

· · · · · · · · · · · ·
Ln1 Ln2 · · · Lnn




λ−1

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




T11 T12 · · · T1n

T21 T22 · · · T2n

· · · · · · · · · · · ·
Tn1 Tn2 · · · Tnn

 [I]

= λ−1
1


L11T11 L11T12 · · · L11T1n

L21T11 L21T12 · · · L21T1n

· · · · · · · · · · · ·
Ln1T11 Ln1T12 · · · Ln1T1n




I1

I2

· · ·
In

 (2.24)

The approximation is made possible because the critical mode impedance, 1/λ1, is much

larger than the other modal impedances. The diagonal elements of the above matrix

are the nodal participation factors in the critical mode. They can be defined as PFik =

LikTki, where i is the bus number and k is the modal impedance number.

The magnitude of a modal impedance is only meaningful in a physical sense when

considered in conjunction with participation factors. The driving point impedances seen

from bus i at some frequency can be expressed via participation factors and eigenvalues
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at that frequency:

Zii =
1

λ1
PFi1 +

1

λ2
PFi2 +

1

λ3
PFi3 + · · ·+ 1

λn
PFin

= Zm,1PFi1 + Zm,2PFi2 + Zm,3PFi3 + · · ·+ Zm,nPFin (2.25)

Weighted Participation Factor (WPF) can be defined as:

WPFik = Zm,kPFik (2.26)

where i is bus number and k is modal impedance number. Expressing (2.25) in terms

of WPFs yields,

Zii = WPFi1 +WPFi2 +WPFi3 + · · ·+WPFin (2.27)

A resonance detected from driving point impedance scan at bus i can hence be considered

a result of exciting one or more modal resonance modes.

Modal Impedance Sensitivity Index

In addition to participation factors, it has been suggested that the involvement of net-

work components in modal resonances can be quantified using sensitivity indices. These

indices indicate how much a modal resonance moves in the impedance-frequency plane

following a small change in some network parameter α. The movement of a modal

resonance in the three-dimensional f -Z-α domain following a small change of α is illus-

trated in Figure 2.5. The modal impedance sensitivity index quantifies vertical move-

ment, while the frequency sensitivity index quantifies the horizontal movement in the

frequency-impedance plane.

The sensitivity of the k-th eigenvalue of the Y -bus admittance matrix to some parameter

α can be expressed as
∂λk
∂α

= tk
∂Y

∂α
lk (2.28)

where tk is the k-th row eigenvector of [T ] and lk is the k-th column eigenvector of [L].

This equation suggests the sensitivity of an eigenvalue with respect to some parameter

α can be obtained to evaluating the sensitivity of the admittance matrix to the same

parameter.

Let’s initially consider the evaluation of (2.28) with respect to a shunt admittance at

bus i given by ysh,i. The i-th diagonal element of ∂Y
∂α takes on value 1, with all other
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α  [%] 

f [pu]  

Z [pu]

ΔZm 

Δfm

Zm(α)

fm(α)

Δα  

Figure 2.5: The small change ∆α of some network parameter α causes a the modal
resonance peak to move a vertical distance ∆Zm and a horisontal distance ∆fm in the

three dimensional f -Z-α domain [7].

elements being zero. For a shunt admittance at bus 2, this yields

∂Y

∂ysh,2
=


0 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 0 0


Now consider evaluation of (2.28) with respect to a series admittance between bus i and

bus j. Four elements of ∂Y
∂α take in non-zero values, e.g. for a series admittance between

bus 1 and bus 2,

∂Y

∂yse,1−2
=


1 −1 · · · 0

−1 1 · · · 0
...

...
. . .

...

0 0 0 0
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Defining the sensitivity matrix with respect to eigenvalue λk,

Sk = lktk =



...

...

Ljk
...


[
· · · · · · Tki · · ·

]
=


· · · · · · · · · · · ·
...

. . . · · · · · ·
...

... LjkTki = sk,ji · · ·
...

... · · · · · ·

 (2.29)

The eigenvalue sensitivity of mode k to a shunt branch at bus i is given by

∂λk
∂ysh

= tk
∂Y

∂ysh
lk = tk

∂Y

∂Yii

∂Yii
∂ysh,i

lk = sk,ii (2.30)

Hence the sensitivity of eigenvalue k with respect to shunt admittance branches at

defined buses are given by the diagonal elements of the sensitivity matrix Sk. The

diagonal elements of this matrix are in fact the same as bus participation factors. The

eigenvalue sensitivity with respect to a series admittance branch between bus i and bus

j can be expressed as

∂λk
∂yse,ij

= tk
∂Y

∂yse,ij
lk = sk,ii + sk,jj − sk,ij − sk,ji (2.31)

Admittances ysh and yse and eigenvalues λk are complex numbers. However, it is the

sensitivity of |λk|, i.e. the sensitivity of the absolute value which is of primary interest.

Moreover, the derivative with respect to a complex number is somewhat confusing.

Hence it is desirable to obtain the derivative of eigenvalue magnitude with respect to

real and imaginary part of admittance. This can be done by defining

λk = λr + jλi, Sk = Sr + jSi

y = Gbr + jBbr F = |λk|2

where Sk is either given by (2.30) or (2.31) depending on whether the branch in question

is shunt or series connected. A change of ∆Bbr results in a change ∆F which is given

by

∆F = |λk + ∆λk|2 − |λk|2 = |(λr + jλi) + (Sr + jSi)(j∆Bbr)|2 − |(λr + jλi)|2

= (λr − Si∆Bbr)2 + (λi − Sr∆Bbr)2 − (λ2
r + λ2

i )

= 2(Srλi − Siλr)∆Bbr + (S2
r + S2

i )(∆Bbr)
2

Taking only the first order term and letting ∆Bbr → 0,

∂F

∂Bbr
= 2(Srλi − Siλr)
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Similarly
∂F

∂Gbr
= 2(Srλr + Siλi)

Converting back from F to |λk| results in

∂|λk|
∂Gbr

=
Srλr + Siλi√

λ2
r + λ2

i

= µ (2.32)

∂|λk|
∂Bbr

=
Srλi − Siλr√

λ2
r + λ2

i

= ν (2.33)

Lets assume all branches in a harmonic study are fully representable by a series RLC

branch with linear components (i.e. constant value of R, L and C). Any branch is then

fully defined from its fundamental frequency value or resistance R1, inductive reactance

X1 and capacitive susceptance B1. The conductance and susceptance of the branch can

be expressed from these properties.

Gbr =
R1

R2
1 +

(
hX1 − 1

hB1

)2 (2.34)

Bbr =
1

hB1
− hX1

R2
1 +

(
hX1 − 1

hB1

)2 (2.35)

In order to find the modal impedance sensitivity with respect to individual components

of the RLC branch, one can employ the chain derivative rule.

∂|λk|
∂α

=
∂|λk|
∂Gbr

∂Gbr
∂α

+
∂|λk|
∂Bbr

∂Bbr
∂α

= µ
∂Gbr
∂α

+ ν
∂Bbr
∂α

(2.36)

where α can be R1, X1 or B1 [7, 8]. Mathematical expressions for the derivative of

(2.34) and (2.34) with respect to X1 and B1 have been obtained using Maple software

from Maplesoft. These expressions are included in Appendix B.

The modal impedance sensitivity index can be expressed as

∂Zm,k
∂α

=
∂Zm,k
∂|λk|

∂|λk|
∂α

= − 1

|λk|2
∂|λk|
∂α

(2.37)

The modal impedance sensitivity can be normalised for easier comparison of network

components with different units. Dropping the subscript k for generality,

∂Zm
∂α

∣∣∣
norm

=
∂Zm
Zm

∂α
α

= −∂|λ|
∂α
· α
|λ|

[
%

100 %

]
(2.38)
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The unit of the normalised sensitivity index used in this thesis is percent change of

modal impedance per 100 percent change of network parameter.

Modal Frequency Sensitivity Index

An important realisation is that the magnitude of a modal impedance near resonance

is mainly influenced by resistive and not reactive components of participating branches.

For example, in the simple circuit of Figure 2.1, the impedance is purely resistive at the

resonance frequency,

Zm =
1

λ
=

1
1
R + j(ωC − 1

ωL)
= R

i.e. the (modal) impedance magnitude is purely a function of resistance R. On the

contrary the resonance frequency of the circuit in Figure 2.1 is determined exclusively

by the reactive components L and C, as given by (2.4). A frequency sensitivity index,

∂f/∂α which quantifies the change in resonance frequency with respect to a network

component has therefore also been suggested in literature. Such an index is possible to

develop, though its calculation becomes more complicated than the modal impedance

sensitivity index.

Derivation of the frequency sensitivity index begins with defining a resonance peak of

some modal impedance frequency response at frequency fres,1,

∂Zm
∂f

∣∣∣f=fres,1
α=α1

= 0 (2.39)

The linear Taylor expansion of this expression around the modal impedance peak is

given by

∂Zm
∂f

(fres,1 + ∆f, α1 + ∆α) =

(
∂Zm
∂f

+
∂2Zm
∂2f

∆f +
∂2Zm
∂f∂α

∆α

)∣∣∣f=fres,1
α=α1

(2.40)

A small change ∆α in the magnitude of α will cause a shift of the resonance frequency.

This new modal impedance peak can be defined as

∂Zm
∂f

∣∣∣f=fres,1+∆fres
α=α1+∆α

= 0 (2.41)

Expressing (2.41) with the linear Taylor expansion of (2.40) and simplifying with (2.39)

yields

∂fres
∂α

=
∆fres
∆α

= −
∂2Zm
∂f∂α

∂2Zm
∂2f

= −
∂2|λ|
∂f∂α

∂2|λ|
∂2f

(2.42)



Chapter 2. Harmonic Analysis Theory 21

The denominator of (2.42), i.e. the second-order derivative of the eigenvalue with respect

to frequency can be calculated numerically during the modal impedance scan process.

Considering the eigenvalues are calculated at discrete frequencies with step length of

∆f ,
∂2|λ|
∂2f

=
1

4∆f2
(|λ|f+2∆f + |λ|f−2∆f − 2|λ|f ) (2.43)

where subscripts denote at which discrete frequency the eigenvalue is obtained relative

to the current discrete frequency f .

The nominator of (2.42) can be approximated from the derivative with respect to fre-

quency of
∂|λ|
∂α

=
∂|λ|
∂Gbr

∂Gbr
∂α

+
∂|λ|
∂Bbr

∂Bbr
∂α

(2.36 revisited)

which yields
∂2|λ|
∂f∂α

=
∂µ

∂f

∂Gbr
∂α

+ µ
∂2Gbr
∂f∂α

+
∂ν

∂f

∂Bbr
∂α

+ ν
∂2Bbr
∂f∂α

(2.44)

Expressions µ and ν are defined in (2.32) and (2.33) respectively. The terms ∂µ/∂f and

∂ν/∂f can be obtained numerically during the modal impedance scan process,

∂µ

∂f
=

1

2∆f
(µ|f+∆f − µ|f−∆f ) ,

∂ν

∂f
=

1

2∆f
(ν|f+∆f − ν|f−∆f ) (2.45)

The remaining terms in (2.44), i.e. ∂Gbr/∂α, ∂2Gbr/∂α∂f , ∂Bbr/∂α and ∂2Bbr/∂α∂f

must be explicitly calculated depending on α and the kind if branch which is to be

analysed. Again, many branches that are suitable for inclusion in a harmonic study can

be fully represented by an RLC branch, in which case Gbr and Bbr can be expressed

as in (2.34) and (2.35). Expressions for the remaining terms given the RLC branch

assumption have been obtained using Maple, and are included in Appendix B.

The modal frequency sensitivity index can be normalised in order to facilitate comparison

of network components with different units. The normalised modal frequency sensitivity

index utilised in this thesis is defined as the per unit change of resonance frequency to

a 100 percent change in parameter α. It can be expressed as

∂fres
∂α

∣∣∣
norm

=
∂fres
∂α
α

=
∂fres
∂α

· α
[ pu

100 %

]
(2.46)

and is achieved simply by multiplication with the value α of the network component [7, 8].
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2.5 Comparing Modal Analysis Techniques

As seen in the previous sections, both the state A matrix and the Y -bus admittance

matrix can be used to analyse harmonic resonances. The oscillatory modes of A are of

the form

λA = σA ± jωA (2.11 revisited)

The resonance modes in HRMA are each associated to a resonance frequency fres, and a

modal impedance Zm. A comprehensive comparison of resonance analysis using HRMA

and state state space analysis was carried out by Huang et al. [6]. It was shown that

the resonance frequencies obtained from the state matrix A, termed ωA and expressed

in rad/s, coincide with those frequencies obtained from the Y -bus matrix, given by ωY

in rad/s, only if damping index σA is zero or very close to zero. In addition, there is

no simple relationship between the damping index of σA and the modal impedance Zm.

Hence there is no straightforward correspondence between the oscillatory modes of A

and the resonance modes of the admittance matrix Y .

Distinct characteristics which separate the state space modal analysis technique and

HRMA include:

• The modes of the A have a unit of 1/s and characterise the time-domain transient

response of a network. On the contrary, modal variables of the Y -bus matrix have

the unit of impedance (Ω or pu). The resonance modes of the admittance matrix

characterise the electrical circuit in frequency domain.

• The admittance matrix is a nodal system description. This results in eigenvectors

which carry additional information about nodal participation in resonance modes.

A state space model is not a nodal description, hence the eigenvectors of A do not

offer information about nodal participation in a resonance.

• The number of modes given by the state matrix is equal to the rank of A, and the

oscillatory modes appear as discrete points in the frequency domain. The number

of modal variables in HRMA is equal to the rank of the admittance matrix, and

these variables are defined at all frequencies.

• Sensitivity indices for the oscillatory modes of A with respect to network compo-

nents can be calculated as dσA/dα and dωA/dα. The sensitivity indices for modes

of the Y -bus matrix are more elaborate to calculate, though it can be managed as

shown in previous sections, or they can be estimated numerically.

In addition, there are modelling limitations with the state-space approach. In partic-

ular, network elements with distributed and frequency dependent parameters, such as
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transmission lines and cables, are not easily included in the state-space network model,

but can be highly important for accurate assessment of harmonic resonance. The repre-

sentation of such impedances in the state matrix requires synthesizing equivalent RLC

networks using special techniques such as vector fitting [26]. On the contrary, the admit-

tance approach used in HRMA allows for recalculating the parameters of admittances

at each discrete frequency, which makes it much easier to handle non-linearities and

frequency dependency.



3 Modelling for Harmonic Resonance Studies

This chapter presents the modelling of power system components which are later in-

cluded in HRMA of specific cases. The extent and level of detail in modelling of net-

work components for harmonic studies depends on the analysis technique to be used,

problem formulation, frequency range of interest, required accuracy of results and so on.

Most HRMA presented in published papers assume linearity of network parameters, i.e.

constant values of R, L and C over the frequency range of interest. This chapter present

linear models as well as some effects which can cause non-linearities.

3.1 Overhead Lines and Cables

Multiphase cables and transmission lines can be represented with coupled π-equivalent

circuits. Most power system analysis software aimed at harmonic and/or electromag-

netic transient analysis contain modules for calculation of parameters based on physical

arrangements specified by the user [15, 27]. Once the parameters of a line or cable are

known, the admittance or impedance matrix describing phase to ground and mutual ad-

mittances/impedances can be constructed. For balanced studies, coupled π-equivalent

models can be simplified into separate positive, negative and zero sequence π-equivalents

as shown in Figure 3.1.

Two important considerations related to the electrical parameters of lines and cables

are:

• The distribution of parameter along the line/cable length which yields so-called

long line effects

• The frequency dependency of parameters due primarily to skin effect and earth

return

If long line and frequency dependent effects of the electrical parameters are neglected, the

positive sequence model parameters are given by the unit-length parameters multiplied

24
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Y1 Y2

Z

VS VR

IRIS

Figure 3.1: π-equivalent line/cable model. Subscripts S and R denote sending and
receiving end respectively. For steady state analysis in frequency domain, the lumped
parameters Z, Y1 and Y2 can be adjusted with long line correction factors to obtain

exact representation of long line effects at a particular frequency.

by length. The total shunt admittance is simply divided equally between the two lumped

shunt admittances. This is known as the nominal π-equivalent model.

Znominal = R1 + jhX1

Y1,nominal = Y2,nominal = jhB1/2
(3.1)

where R1, X1 and B1 are the fundamental frequency values of total length resistance,

inductive reactance and capacitive susceptance respectively.

The long line effects can be accounted for by including the long line hyperbolic correction

factors.

Zexact = Z0 sinh(γl) = Znominal
sinh(γl)

(γl)

Y1,exact = Y2,exact =
1

Z0
tanh(

γl

2
) = Ynominal

tanh(γl)

(γl/2)

(3.2)

where

γ =
√
zy

Z0 =

√
z

y

and z is the unit-length series impedance, y the unit-length shunt admittance, and l is

the total length. The hyperbolic correction factors yield an exact representation of the

long-line effects from the cable terminals at the frequency they are calculated for [28].

Skin effect forces alternating currents towards a conductors perimeter, resulting in cur-

rent density which tapers off from conductor surface towards its centre. Frequency

dependency of parameters due to skin and proximity effects is typically accounted for
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by using frequency dependent correction factors. All line and cable parameters are fre-

quency dependent, but the effect is most prominent in series resistance. In this thesis,

the formula suggested by the National Grid Company is used for series resistance,

R = R1(0.187 + 0.532
√
h, h > 2.35) (3.3)

where R1 is fundamental frequency resistance, and h is harmonic order [12]. The cor-

rected value of resistance R can then be applied in (3.2).

For calculations at power frequency involving overhead lines, it is often considered ac-

ceptable to neglect the shunt admittance for lines shorter than 80 km. A model consisting

simply of the series impedances is therefore also known as the short line model. Similarly,

the nominal π-equivalent is generally considered acceptable for line lengths up to 250 km

at power frequency, hence it is known as the medium line model. Cables generally have

much larger shunt capacitances than overhead lines, hence long line effects should be

taken into account for much shorter cables. The long line effects are also much more

prominent with higher frequencies, making short and medium length approximations

less suited for harmonic studies [14, 29].

3.2 Transformers

The short circuit impedance, magnetizing characteristics and vector group (winding

connections), are the main characteristics of transformers which impacts on harmonic

flows. Transformers are typically modelled in positive sequence (and negative sequence)

as T-equivalent circuits like the one shown in Figure 3.2.

GB XM

L1=LS/2 L2=LS/2R1=RS/2 R2=RS/2

Figure 3.2: Transformer T model. Phase shifter due to vector group and harmonic
current source for representation of transformer generated harmonics not shown.
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For simplified resonance studies, the magnetizing branch may often be ignored, modelling

the transformer only by its short-circuit impedance. If any kind of harmonic power

flow, current source or iterative, involving more than a single harmonic source is to

be carried out, transformers phase shift must be taken into account. The phase shift

in transformers typically yields a high impedance in zero sequence, ideally resulting in

cancellation of zero-sequence harmonics. Modelling of non-linear effects in transformers

due to saturation can be achieved by having a voltage dependent current source in

parallel with the magnetizing branch, but this is usually only included when transformer-

generated harmonics are the primary concern [14, 29].

3.3 Aggregate Loads

An aggregate load refers to group of buses that are treated as a single network element

for harmonic analysis. Typical aggregate loads are feeders seen from the substation of

a distribution system, or a larger customer seen from the point of coupling. Such loads

may provide the majority of damping component in distribution networks and also affect

resonance conditions at higher frequencies. If there are harmonic sources of concern in

these loads, they should not be treated as an aggregate load.

R=U2/P X=U2/(hQ)

X=0.073hR

R=U2/P

X=(hR)/(6.7(Q/P)-0.74)

Conventional load model CIGRE load model

Figure 3.3: Aggregate load models for harmonic studies. Parameters are estimated
using rated network voltages and stady state power flow.

A load model represents the impedance frequency response of the aggregate loads in a

simplified way. The impedance response depends on the type of loads as well as the line

or cable which feeds the loads. Consequently, the applicability of general aggregate load
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models is quite limited. Nevertheless, suggested representations of aggregate loads are

found in literature [29]. Two typical models found in literature are shown in Figure 3.3.

3.4 VSC Grid-side Harmonic Emission Filters

Voltage Source Converters (VSC) are utilised in full-scale converter wind turbines. When

emissions and grid interaction of such converters are of concern, they need to be modelled

accurately for harmonic studies.

The grid-side terminals of a WTG with full-scale converter is typically connected to

the MV collector system via a coupling reactor with inductance Lmr and a step-up

transformer with short circuit inductance Ltr. In addition there are shunt harmonic

filters between the reactor and transformer as shown in Figure 3.4. The shunt harmonic

filters are capacitive at fundamental frequency, and although the shunt harmonic filter

topology can vary, such a combination of inductor Lmr, inductor Ltr and shunt harmonic

filter can be said to constitute an LCL filter.

Vconv

Harmonic 
Shunt  

Filter(s)

Vgrid

L1=LmrIL1 IL2

L2=Ltr

Figure 3.4: Basic filtering structure commonly used for grid-tied VSCs. The shunt
harmonic filter, generally capcitive at fundametal frequency, can take on different

topologies. Overall layout can be refered to as LCL filter.

There are a number of constraints in designing filtering solutions for grid connected

converters. The filters must be designed not only to ensure compliance with relevant grid

codes, but must also facilitate stable operation of the converter controllers. In the multi-

megawatt power range, the capability of semi-conductor switches can further constrain

parameters such as switching frequency and maximum DC voltage [30]. Moreover it

is desirable to minimize energy losses, volume, weight and cost of the overall filtering

solution. Due to increasing numbers of grid connected VSCs in modern power systems,
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the optimisation of emission filters is a topic which is receiving attention in research [9,

10].

3.5 Harmonic Sources/Full-Scale VSC Wind Turbines

The classic approach for harmonic studies in frequency domain is to model harmonic

sources as fixed ideal current sources. For many harmonic sources, such as line-commutated

HVDC converters, this approximation is fairly accurate. However, the emission from

other harmonic sources can be highly dependent on existing voltage distortion and

controller interaction, in which case the ideal current source method can be insuffi-

cient [14, 17].

State of the art WTG harmonic models consist of a number of Norton or Thevenin

equivalents with Norton or Thevenin impedance specified for every harmonic frequency

of interest. Such models can be derived by the turbine manufacturer, which has full

access to the converter control structure and settings. These models facilitate analysis

of controller impact on resonances as well as analysis of countermeasures such as active

filtering via the converter controller [31, 32].

Converter Control Interaction

In order to investigate the interaction between converter control and harmonic reso-

nances, there is a need to represent the grid-side converter in frequency domain as seen

from elsewhere in the network. A VSC with simplified current control and admittance

as seen from the AC-side terminals of the converter is shown in Figure 3.5.

Ig(s)

Zsf(s)

Ztr(s)

Znet(s)

Shunt 
filter

Grid 
impedance

Vg(s)

Turbine 
transformer

Gi(s)

Ig(s)

Vg(s)

I*(s)

Zmr(s)

Main
reactor

Y(s) Zd(s)

Figure 3.5: Grid-tied VSC (of WTG) with indication of current control loops and
impedance as seen from converter terminals [33].
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Gi(s) Y(s)

Zd(s)

I*(s) Ig(s)
Vg(s)

V*(s)

Ig(s)

Figure 3.6: Current control loops with current feed-back and voltage feed-forward.
The voltage feed-forward enhances disturbance rejection of the converter [33].

A typical current control structure with current feed-back and voltage feed-forward is

shown in Figure 3.6. The open-loop transfer function can be obtained from the block

diagram,

Hol(s) = Gi(s)
Y (s)

1− Y (s)Zd(s)
(3.4)

Gi(s) is the transfer function of the current control, including any harmonic compensa-

tion, filtering and decoupling. The other transfer functions are defined as

Zd(s) = (Ztr(s) + Znet(s))‖Zsf (s) (3.5)

Y (s) =
1

Zmr(s) + Zd(s)
(3.6)

The voltage feed forward can be combined with Y (s) to obtain an equivalent system

transfer function,

Gsys(s) =
Y (s)

1− Zd(s)Y (s)
=

1

Zmr(s)
=

1

Rmr(1 + sτmr)
(3.7)

where τmr = Lmr/Rmr is the time constant of the main reactor.

The stability of the current control loop can be evaluated based on the open loop transfer

function (3.4). For such purposes the delay due to Pulse Width Modulation (PWM)

and discrete sampling should also be represented. The stability can be evaluated using

Nyquist stability criterion, and different operation conditions of the external grid can

be considered by varying the impedance of Znet(s) [33].

From the current control structure it is possible to derive an average harmonic model

which can represent the grid-tied VSC as seen from elsewhere in the network. Deviation

from the ideal sinusoidal voltage waveform due to forcing external to the converter, i.e.

background harmonic voltage, can be considered as a disturbance Vg(s) acting on the

process as shown in Figure 3.7 [33].
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Gi(s) Gsys(s)
I*(s) Ig(s)

Vg(s)

Ig(s)

Figure 3.7: VSC current control loop with background harmonic voltage modelled as
disturbance.

Neglecting PWM and sampling delays, the following relation can be obtained:

[(I∗(s)− Ig(s))Gi(s)− Vg]Gsys(s) = Ig(s) (3.8)

Solving for current Ig(s) yields

Ig(s) = Gc(s)I
∗(s)− Yeq(s)Vg(s) (3.9)

where

Yeq(s) =
Gsys(s)

1 +Gi(s)Gsys(s)
Gc(s) = Gi(s)Yeq(s) =

Gi(s)Gsys(s)

1 +Gi(s)Gsys(s)
(3.10)

Expressing the system transfer function Gsys(s) via the main reactor impedance Zmr(s),

Yeq(s) and Gc(s) can alternatively be written as

Yeq(s) =
1

Zmr(s) +Gi(s)
Gc(s) = Gi(s)Yeq(s) =

Gi(s)

Zmr(s) +Gi(s)
(3.11)

Equation (3.9) can be visualised as the Norton equivalent harmonic model in Fig-

ure 3.8 [34–36]. The Norton equivalent can easily be converted to a Thevenin equivalent

if necessary.

The harmonic model of (3.9) does not represent switching harmonics of the converter

itself, but rather represent the converter as seen from elsewhere in the network. Qual-

itatively, the current controller tends to have high open loop gain within the controller

bandwidth, i.e. |Gc(s)| ≈1 at lower frequencies. Above the controller bandwidth the

current controller tends to have low gain, i.e. |Gc(s)| ≈0, hence the converter acts like

as passive component with admittance Yeq(s) [36].
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Ig(s)

Yeq(s)

Gc(s)I*(s)

Zsf(s)

Ztr(s) Znet(s)

Converter harmonic model WTG filter and transformer Grid equivalent

Vg(s)

Figure 3.8: Norton equivalent harmonic model together with WTG filter, transformer
and grid equivalent.

The current control loops can be implemented in a stationary or a synchronous reference

frame. Regulating currents in stationary abc or αβ reference frames with Proportional

Integral (PI) regulators in theory should be effective. The transfer function of a PI-

regulator is given by

Gi,P I(s) = Kp

(
1 +

1

Tis

)
(3.12)

However, PI control of stationary reference frame currents is hampered by PWM and

sampling delays which limits the maximum controller gain and hence leads to steady

state tracking error. This issue is commonly addressed by transforming the phase cur-

rents into a synchronously rotating dq-reference frame and controlling the d- and q-axis

currents. PI current regulators in synchronous dq-reference frame is essentially equiv-

alent to a Proportional Resonant (PR) regulator in a stationary reference frame. The

PR-regulator transfer function is given by

Gi,PR(s) = Kp

(
1 +

s

Ti(s2 + ω2
0)

)
(3.13)

This (ideal) resonant regulator provides infinite gain at the tuned frequency ω0, which

is set equal to the fundamental frequency. Hence steady state tracking error can be

eliminated. As frequency increases above the fundamental, the transfer function response

of (3.13) approaches that of (3.12) [34]. It therefore seems reasonable to assume PI-

regulator behaviour for harmonic frequencies.

Let’s now approximate the positive sequence current to be regulated by a conventional

PI-regulator. Any specific measures for harmonic rejection, filtering and decoupling in

Gi(s) are neglected. The equivalent impedance of the converter can from (3.11) be
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written as,

Zeq(s) =
1

Yeq(s)
= Zmr(s) +Gi(s)

= Rmr(1 + sτmr) +Kp

(
1 +

1

Tis

)
(3.14)

It should be appreciated that the pole of the PI-regulator gives it a capacitive behaviour

for the lower frequency range (i.e. below the controller knee-point frequency). Replacing

the complex frequency s with jω yields an impedance given by

Zeq(ω) = Rmr + jωLmr +Kp − j
Kp

ωTi

= (Rmr +Kp) + j

ωLmr − 1

ω
(
Ti
Kp

)
 (3.15)

When selecting regulator parameters Kp and Ti a first order approximation for PWM

and sampling delays is often taken into account. Its time constant can be approximated

as

Ta = 1.5Tsw =
1.5

fsw

where fsw is the PWM switching frequency. Delays of Tsw and 0.5Tsw are due to sampling

and PWM respectively. The system pole represented by τmr is much larger than the

one due to delays. The Modulus Optimum Criterion suggests the zero introduced by

the PI-regulator can be set to a value which cancels the slow process pole represented

by τmr. The value of Kp can further be chosen to achieve optimal flatness of the closed

loop second order response [9]. The resulting PI-regulator settings are given by

Kp =
Lmr
2Ta

; Ti = τmr (3.16)

3.6 Wind Power Plant Model Aggregation

There are several techniques for aggregation of WPP array collector systems. Differ-

ent techniques will yield slightly different impedance values. In this thesis a simple

method based on power losses is used for aggregating a certain number of radials into

one equivalent radial.

Consider a WPP with M radials, each with Nm turbines distributed along its radial.
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Each turbine is assumed to inject the same amount of current. The total current con-

tributed from radial m is given by,

Im =

Nm∑
nm=1

Inm , m = 1, 2, ...M (3.17)

where Inm is the current from turbine n along radial m counting from the end of the

radial towards the substation. The series impedance of an equivalent cable representing

radial m can be obtained.

ZeqmI
2
m =

Nm∑
nm=1

Znm

(
nm
Nm

Im

)2

⇒ Zeqm =

Nm∑
nm=1

(
nm
Nm

)2

Znm (3.18)

where Znm the impedance of the cable section connecting the turbines n and (n+ 1) in

the m-th radial. The impedance of the M parallel radials can be further reduced into

one equivalent radial,

ZMV =

(
N1∑M

m=1Nm

)2

Zeq,1 +

(
N2∑M

m=1Nm

)2

Zeq,2 + · · ·

+

(
NM∑M
m=1Nm

)2

Zeq,M (3.19)

The shunt capacitances of all medium voltage radials can be added together, based on

the assumption of uniform voltage in the collector system.

CMV =

N1∑
n1=1

Cn1 +

N2∑
n2=1

Cn2 + · · ·+
Nm∑
nm=1

CnM (3.20)

where Cnm is the cable shunt capacitance of the section located in radial m between

turbine n and (n+ 1) [33].



4 Test Cases and HRMA Implementation

This chapter is dedicated to HRMA of test cases which have been subject to the similar

analysis in published papers. The results obtained thus verify the algorithms which have

been implemented in MATLAB for this thesis. In addition, some important considera-

tions in implementation as well as relevant contributions from this thesis are highlighted.

4.1 Three Bus Case

A three bus test case with fundamental frequency parameters is shown in Figure 4.1.

Reactances and susceptances are scaled in proportion to harmonic order, and resistances

are treated as constant in this simplified example. Calculations for both frequency scan

and HRMA are carried out using MATLAB. This test case has been subject to the same

kind of analysis in several papers [5, 16, 37].

AC

Bus 1 Bus 2 Bus 3XL,12 XL,23XSYS

0.04+j0.3 0.835+j4 0.835+j4

B1

j0.0013
B3

j0.0013

Figure 4.1: Three bus case with component data in per unit. Example system used
to illustrate frequency scan and modal impedance scan. All parameters values apply

at fundamental frequency.

Considering a frequency spectrum from 1 to 60 pu, there are two resonances in this three

bus system. Because the system is so simple, resonances can be identified analytically.

One parallel resonance is associated to the frequency where XB1 is equal in magnitude

to XSY S ||(XL,12 +XL,23) (XB3 is small and can be ignored). This resonance frequency

35



Chapter 4. Test Cases and HRMA Implementation 36

is given approximately by

fres,pu =

√
1

XSY S ||(XL,12 +XL,23) ·B1
=

√√√√ 1(
0.3·8
0.3+8

)
· 0.0013

= 51.58 pu

Another parallel resonance is associated to the frequency where XB3 is equal in magni-

tude to XL,12 + XL,23 + XSY S . (XB1 ≫ XSY S , XB1 can be ignored.) This resonance

frequency is given approximately by

fres,pu =

√
1

(XSY S +XL,12 +XL,23)B3
=

√
1

8.3 · 0.0013
= 9.63 pu

Frequency Scan

The frequency scan, or nodal impedance frequency response, is equivalent to plotting the

diagonal elements of the impedance matrix [Y ]−1 over the frequency range of interest.

The result from such a calculation in the frequency range of 1 to 60 per unit is shown

in Figure 4.2. Both resonance frequencies are identifiable from the frequency scan. The

resonance near 51.6 pu is most visible at bus 1, the resonance near 9.6 pu is most visible

at bus 3, while both resonances can be seen in the driving point impedance at bus 2.

The magnitude of driving point impedance at each bus for the two resonance frequencies

are listed in Table 4.1.
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Figure 4.2: Frequency scan of three bus system. The two resonance frequencies are
detected in the impedance frequency responses.



Chapter 4. Test Cases and HRMA Implementation 37

Table 4.1: Driving point impedance magnitudes at resonance frequencies.

Resonance frequency [pu] 51.61 9.62

Z11 [pu] 5637 9.48
Z22 [pu] 1313 1005
Z33 [pu] 17.5 3733

HRMA

The modal impedance frequency responses are shown in Figure 4.3 for the three bus

test case. Some papers refers to the modal variables themselves as modes, in which

case the modes are defined at every frequency. In other papers the modal impedance

resonance peaks are defined as the modes, a definition which is adapted in this thesis. It

is common practise to number the modes based on the magnitude of modal impedance

at resonance. The modes near 51.61 pu and 9.62 pu are therefore defined as Mode 1

and Mode 2 respectively. The third modal variable has no resonance in the investigated

frequency range.
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Figure 4.3: Modal impedance scan of three bus system. There are two modal reso-
nances, or simply modes, in the investigated frequency range. The modal impedances

are defined at all frequencies and have continous frequency responses.

Comparing the nodal impedance frequency scan of Figure 4.1 and the modal impedance

frequency scan of Figure 4.3, one can see each nodal resonance is linked to the excitation

of a particular resonance mode. Table 4.2 lists the participation factors for the three

defined buses in each of the two resonance modes. Bus 1 has the highest participation

factor in Mode 1, and bus 3 has the highest participation factor in Mode 2. Based

on this result, Xu et al. [5] suggested the participation factors can indicate the center

of resonance, i.e. where the resonating branches are connected. However, it will be
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shown later that participation factors can be misleading when it comes to locating the

resonating branches.

Table 4.2: Participation factors calculated at frequencies of the modal resonance
peaks.

Mode 1 Mode 2

Resonance freq. [pu] 51.61 9.62
Modal impedance peak value Zm [pu] 6951 4743

PF bus 1 0.8103 0.0011
PF bus 2 0.1887 0.2121
PF bus 3 0.0011 0.7868

Previously it was shown how driving point impedance at bus i for any frequency can be

expressed as,

Zii = Zm,1PFi1 + Zm,2PFi2 + Zm,3PFi3 + · · ·+ Zm,nPFin (2.25 revisited)

or in terms of weighted participation factors,

Zii = WPFi1 +WPFi2 +WPFi3 + · · ·+WPFin (2.27 revisited)

In the considered three bus test case, one modal impedance is much larger than the

others at the frequencies of the resonance modes. One term on the right hand side of

(2.25) is thus much larger than the other terms, i.e. one weighted participation factor is

almost equal to the driving point impedance at the resonance frequencies. For example,

the weighted participation factor of bus 1 in Mode 1 is given by

WPF11 = Zm,1PF11 = 6951 · 0.8103 = 5632 pu

It may be confirmed that WPF11 ≈ Z11 by comparing WPF11 with the value of Z11

listed in Table 4.1. This indicates that the resonance observed from bus 1 is linked to

excitation of Mode 1. Similarly the weighted participation factor of bus 3 in Mode 2 is

given by

WPF32 = Zm,2PF32 = 4743 · 0.7868 = 3732 ≈ Z33 (4.1)

It is worth pointing out that the sum of participation factors with respect a mode is

equal to one. This can be confirmed by taking the sum of participation factors in each

column of Table 4.2. This is due to the fact that eigenvectors calculated with MATLAB’s

eig()-function always have a 2-norm equal to one (see Appendix B).

A good indicator of how involved a network element is in a resonance mode is how much

the resonance frequency changes when parameters of the network element are changed.
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This is quantified by the frequency sensitivity index,

∂fres
∂α

∣∣∣
norm

=
∂fres
∂α
α

=
∂fres
∂α

· α
[ pu

100 %

]
(2.46 revisited)

Figures 4.4 and 4.5 show for the two resonance modes the frequency and impedance

sensitivity index of the network parameters in bar chart and table format. The indices are

calculated as outlined in Chapter 2. In the bar diagram the parameters are ranked from

left to right in descending order of frequency sensitivity index magnitude. Increasing the

value of an inductive reactance or capacitive susceptance will generally reduce associated

resonance frequencies, hence the frequency sensitivity index is negative in sign. The

sign of the impedance sensitivity index is positive for some parameters and negative for

others. Parameters with high magnitude of frequency sensitivity index mostly also have

high magnitude of impedance sensitivity index. Sensitivity indices for this three bus

case have not been presented in past papers.

For the modal resonance peak at h=51.61 pu frequency, also known as Mode 1, the

frequency sensitivity is high for B1 and XSY S , and low for every other parameter.

Similarly for Mode 2, the frequency sensitivity index is high for B3, XL,12 and XL,23,

and low for other parameters. The frequency sensitivity index hence effectively identifies

the network branches most involved in the resonance modes.
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Figure 4.4: Frequency sensitivity of resonance mode at h=51.61 pu with respect to
capacitive susceptances and inductive reactances of the three bus test system.

Network branch Freq. sens. [pu/100%] Impedance sens. [%/100%]
Bus 1 shunt B -25.7719 -0.9239
Bus 1 shunt X -24.8060 -2.7704
Branch 1-2 X -0.5006 -0.2712
Branch 2-3 X -0.5000 0.1337
Bus 3 shunt B -0.0361 0.0160

A better understanding of the sensitivity indices can be obtained by considering Fig-

ure 4.6, which shows movement of the modal resonance peak near h=9.62 per unit

frequency following a 5 % increase and decrease of the shunt connected susceptance at
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Figure 4.5: Frequency sensitivity of resonance mode at h=9.62 pu with respect to
capacitive susceptances and inductive reactances of the three bus test system.

Network branch Freq. sens. [pu/100%] Impedance sens. [%/100%]
Bus 3 shunt B -4.8038 -0.9271
Branch 1-2 X -2.3118 0.7041
Branch 2-3 X -2.3118 0.3113
Bus 1 shunt X -0.1866 0.0572
Bus 1 shunt B -0.0067 0.0003
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Figure 4.6: Movement of resonance mode peak near 9.62 pu following change of B3

(bus 3 shunt B), and XL,12 ( branch 1-2 X).

bus 3 and reactance of branch 1-2. The normalised sensitivity indices with respect to

these parameters can be estimated based on the coordinates given in Figure 4.6. The

modal sensitivity indices are approximately given by,

∂Zm
∂B3

∣∣∣
norm

=
∂Zm
∂B3

· B3

Zm
≈ ∆Zm

∆B3
· B3

Zm

=
(4517− 4992)

0.1 ·ZZB3
·

ZZB3

4743
= −1.001 [

%

100%
] (4.2)
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and

∂Zm
∂XL,12

∣∣∣
norm

=
∂Zm
∂XL,12

·
XL,12

Zm
≈ ∆Zm

∆XL,12
·
XL,12

zm

=
(4902− 4584)

0.1 ·@@B
· @@B

4743
= 0.6705 [

%

100%
] (4.3)

The modal frequency sensitivity indices are approximately

∂fres
∂B3

∣∣∣
norm

=
∂fres
∂B3

·B3 ≈
∆fres
∆B3

·B3

=
9.389− 9.870

0.1 ·ZZB3
·ZZB3 = −4.810 [

pu

100%
] (4.4)

and

∂fres
∂XL,12

∣∣∣
norm

=
∂fres
∂XL,12

·XL,12 ≈
∆fres

∆XL,12
·XL,12

=
9.507− 9.738

0.1 ·HHHXL,12
·HHHXL,12 = −2.310 [

pu

100%
] (4.5)

The numerical estimates of frequency sensitivity index shown in (4.4) and (4.5) are

very close to the ones obtained in simulation. The numerical estimates of impedance

sensitivity index shown in (4.2) and (4.3) are relatively close, but with some deviation

compared to simulation results. The discrepancy between numerical estimate and sim-

ulation is likely due to the impedance-parameter relationship not being exactly linear.

Based on this kind of simple calculation one can see the usefulness of sensitivity indices

for predicting movement of the modal resonance peaks in the impedance-frequency plane.

4.2 IEEE 14 Bus Case

The IEEE 14 bus test system is in this section analysed using HRMA. Despite this system

representing a power distribution network, not an offshore WPP, it is chosen for analysis

because results from HRMA of this system are available in published papers [6, 7]. The

details of the IEEE 14 bus test case can be found in [38]. Bus and branch data for the

case is included in Appendix A. The frequency range of interest is from fundamental

frequency up to 30 pu due to this range being considered in the aforementioned papers.

The following key points are considered in construction of the admittance matrix for

frequency scan and HRMA:
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Figure 4.7: Single line diagram of IEEE 14 bus system [38]. G indicates generator

and C indicates synchronous condenser.

• The generators at buses 1 and 2 and the synchronous condenser at bus 6 are all

modelled by their subtransient reactances, which is equal to 0.25 pu at fundamental

frequency.

• Transformers are modelled by their respective short-circuit reactances.

• The loads are modelled using the CIGRE load model, based on the fundamental

frequency load flow included in Appendix A.

• All harmonic filters are of the single tuned type [12].

• The harmonic sources, i.e. the twelve-pulse HVDC converter at bus 3 and SVC

at bus 8, are assumed to behave like current sources and are thus ignored in

construction of the admittance matrix for frequency scan and HRMA.

• Frequency dependency of parameters is ignored.

• The lines which have specified values of charging susceptance are modelled using

the long line corrected π-equivalent, with the correction factors calculated at each

discrete frequency. Lines without specified values of charging susceptance are

modelled using the short-line approximation.

The driving point impedance frequency responses are plotted in Figure 4.8, and the

modal impedance scan is shown in Figure 4.9. The decoupling of the resonances achieved

by the modal analysis approach is evident. However, unlike for the three bus case, some

modal impedances do exhibit more than one local maxima. Hence a modal variable can

not be associated to a single resonance mode.
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Figure 4.8: Frequency scan of all buses in IEEE 14 bus test system.
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Figure 4.9: Modal impedance scan of IEEE 14 bus system. Certain modal variables
have several resoance peaks in the investigated freuqency range. The modal scan is

similar to the one obtained in papers [6, 7].

The envelope of the modal impedance curves has 9 local maxima in the frequency range

up to 30 pu. The participation factors for buses in each if these 9 resonance modes

have been calculated and results are included in Appendix A. Table 4.3 sums up the

resonance modes in terms of mode frequency and magnitude, the most participating bus

and its participation factor.

The weighted participation factor of the most participating bus in each resonance mode
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Table 4.3: IEEE 14 bus system, magnitude and frequency of envelope local maxima,
most participating bus and its participation factor.

Modal resonance Modal impedance Largest Most partici-
freq order h [pu] magnitude [pu] PF pating bus #

1.917 4.4553 0.2705 8
2.869 9.3417 0.2632 3
4.212 7.9056 0.6543 8
5.874 4.5109 0.4359 8
8.627 6.8356 0.1376 9
10.738 12.4556 0.2027 1
14.458 13.1867 0.3618 9
25.261 22.5070 0.4138 5
25.943 18.0491 0.3742 1

can be found by multiplying the modal impedance magnitude with the participation fac-

tor of that bus, i.e. by multiplying elements in the second and third column in Figure 4.3.

Principally the weighted participation factor of the most participating bus approaches

the largest driving point impedance at the resonance frequencies. For example, at the

resonance mode near 14.458 pu frequency,

WPF39 = 13.1867 · 0.3618 = 4.868 ≈ Z99

The actual value of Z99 can be observed in Figure 4.8. Similar results can be obtained

for the other most participating buses listed in Table 4.3. The driving point impedance

resonances can hence predominantly be linked to excitation of individual resonance

mode.

Figure 4.10: Sensitivity indices of the five most participating branches in modal
resonance located at h=4.212 pu frequency.
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Network branch Freq. sens. [pu/100%] Impedance sens. [%/100%]
Bus 8 filter 5th B -1.4578 -1.2826
Bus 8 filter 5th X -1.0477 -0.9098

Branch 7-8 transf. X -0.3477 0.5649
Bus 8 filter 7th B -0.2598 0.1089

Branch 4-7 transf. X -0.1522 0.3382
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The sensitivity indices can also in this case be used to locate the most participating net-

work branches in resonance modes of interest, and to predict movement of the resonance

mode in the frequency-impedance plane following a parameter change. As an example,

the sensitivity indices are shown in Figure 4.10 for the five parameters that have the

largest frequency sensitivity index with respect to the resonance mode at 4.212 pu fre-

quency. The sensitivity indices show that the 5th harmonic filter located at bus 8 is

heavily involved in this resonance mode. In this case the most participating bus is also

the location of the network component with highest sensitivity indices.
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Figure 4.11: Movement h=4.212 pu modal resonance with 5 % variation of 5th har-
monic filter capacitive susceptance B1 at bus 8.

Figure 4.11 shows how the resonance mode around harmonic order h=4.212 pu changes

with a ±5 % parameter change of capacitive susceptance B1 of the 5th harmonic filter

at bus 8. A 5 % parameter increase reduces the magnitude and frequency of the modal

resonance, while a 5 % decrease of the capacitive susceptance has the opposite effect.

The coordinates of the modal impedance peaks are marked in the figure, and allows for

numerical verification of sensitivity indices. The impedance sensitivity is approximately

∂Zm
∂B

∣∣∣
norm

=
∂Zm
∂B

· B
Zm
≈ ∆Zm

∆B
· B
zm

=
(7.404− 8.425)

0.1 ·@@B
· @@B

7.905
= −1.292 [

%

100%
]
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and the frequency sensitivity is approximately

∂fres
∂B

∣∣∣
norm

=
∂fres
∂B

·B ≈ ∆fres
∆B

·B

=
4.138− 4.285

0.1 ·@@B
·@@B = −1.470 [

pu

100%
]

Both of these estimates are very close to the values obtained in simulation which are

listed in the table of Figure 4.10.

Lines and cables often play a crucial role in harmonic resonances in power system. Hence

the importance of accurate line and cable models for harmonic studies must be stressed.

Figure 4.12 shows a comparison of the driving point impedance at bus 3 when the

lines are modelled using short line models, nominal π-equivalent models and long-line

corrected π-equivalent models. The long line effects are prominent from about the 25th

harmonic order and above. A similar figure and associated observations can be found in

the documentation of this 14 bus test system [38].
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Figure 4.12: Frequency scan at bus 3 showing effect of various cable models in fre-
quency range up to 40th harmonic. Long line effects are prominent from about the 25th

harmonic order and higher.

The modal impedance scan obtained using nominal π-equivalent line models is shown in

Figure 4.13. Comparing with Figure 4.9, the two resonance modes of highest frequency

are different. It can be verified that several lines are heavily involved in these resonances.

Long line correction factors hence should not be neglected when analysing resonances

where lines or cables are heavily involved.



Chapter 4. Test Cases and HRMA Implementation 47

Frequency [pu]
5 10 15 20 25 30

M
od

al
 im

pe
da

nc
e 

Z
m

 [p
u]

0

5

10

15

20

25

Figure 4.13: Modal impedance scan of IEEE 14 bus system using nominal π-
equivlaent line models.

4.3 HRMA Implementation

Results obtained from the three and 14 bus test cases are mostly consistent with the

what has been presented in past papers. This inspires confidence in the HRMA al-

gorithms implemented in MATLAB. This section is used to highlight some important

considerations in implementation of HRMA. In the authors opinion some aspects have

not been properly presented in past papers, hence the presentation here is considered a

contribution of this thesis.

Modal Switching

Modal impedances plotted against frequency generally appear as smooth, continuous

curves, exemplified by Figure 4.3 and Figure 4.9. An issue encountered when imple-

menting the algorithms for HRMA is that the standard MATLAB eig()-function, which

returns the eigenvectors and eigenvalues of a matrix, does not sort the eigenvalues and

eigenvectors in a predictable way. As an example consider the Y-bus matrix of a three

bus system. The eigenvalues and eigenvectors at discrete frequency f are returned by

the eig()-function respectively in the diagonal [Λf ]-matrix, and as columns of [Lf ],

[Λf ] =


λ1,f 0 0

0 λ2,f 0

0 0 λ3,f

 , [Lf ] =


...

...
...

l1,f l2,f l3,f
...

...
...

 (4.6)
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where for example l1,f is the eigenvector of λ1,f , the inverse of which is the modal

impedance Zm,1. At the next discrete frequency, separated from f by a small step

∆f , there will be minor changes in eigenvalues and eigenvectors. However, the random

nature in which the eigenvalues are returned by the eig()-function might result in a new

order of the eigenvalues, for example,

[Λf+∆f ] =


λ2,f+∆f 0 0

0 λ3,f+∆f 0

0 0 λ1,f+∆f

 , [Lf+∆f ] =


...

...
...

l2,f+∆f l3,f+∆f l1,f+∆f

...
...

...


(4.7)

In other words the eigenvalue associated to a particular modal impedance can be re-

turned from the eig()-function at a seemingly random position in the diagonal Λ-matrix.

Modal switching refers to such swapping of places in the eigenvalue and eigenvector ma-

trices while obtaining the frequency response. If no countermeasures are taken, the

resulting modal impedance scan might look like the one in Figure 4.14. Such plots are

presented in several papers on the topic of HRMA [21, 24, 25].
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Figure 4.14: Modal switching observed when analysing the 14-bus test system without
countermeasures. The eigenvalues swap places in the diagonal eigenvalue matrix Λ as

the frequency is sweept.

There are several ways to deal with the issue of modal switching. A straightforward way

to approach the problem is to use a combination of the eig()-function and a correlation

technique to reorder the eigenvalues and eigenvectors whenever a switch occurs. Corre-

lation technique is one of three methods covered in a paper by Zlatunić et al. [39]. From

basic matrix algebra it is known that eigenvectors associated with distinct eigenvalues

are orthogonal to each other, i.e. they have a vector-product equal to zero. Moreover,

eigenvectors returned by the eig()-function are normalised so that the 2-norm of each
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eigenvector is equal to one. Hence multiplying an eigenvector with itself gives a product

of one, and multiplying eigenvectors associated with different eigenvalues gives a product

of zero. The correlation technique can be summarized as follows:

• Obtain the eigenvector-matrix Lf−∆f for the previous discrete frequency and

eigenvector-matrix Lf for the current frequency which is increased by ∆f from

the previous step.

• Obtain the matrix product of the transpose eigenvector-matrix from current step

with the eigenvector matrix from previous step, LTf · Lf−∆f .

• In each column of the aforementioned matrix-product, one element will be close to

unity, while the other elements will be close to zero. The row and column number

of the unity-elements define the column numbers of associated eigenvectors at the

current and previous frequency respectively.

• Sort the eigenvectors and eigenvalues at the current frequency according to the

order of the previous frequency.

With this correlation technique, the result at the initial frequency defines the order of the

eigenvalues and eigenvectors. Mode switching is inevitable, but is tracked and corrected

as one moves from one frequency to the next. Because eigenvalues and eigenvectors

change a little as on moves from one discrete frequency to the next, a relatively small

step between discrete frequencies is required for the method to work reliably. In the

authors experience with the test cases, discrete steps of 0.01 pu frequency and smaller

gives reliable correction of modal switching.

An entirely different approach is to ignore the issue of modal switching and only consider

the envelope of the modal impedance curves. At a modal resonance frequency, one

eigenvalue is usually much smaller than the others, hence there is only one large modal

impedance, and this impedance is visible in the envelope of modal impedance scan.

However, if several resonances appear at frequencies close to each other, resonance peaks

may not appear in the envelope. The modal envelope approach is referred to as critcal

mode scan by Xu et al. [5].

Complex vs. Real Number Admittance Matrix

An admittance matrix is usually formulated as a matrix of complex numbers, but can

however also be formulated as a matrix of real numbers. By splitting the real and
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imaginary parts of phasors, the real number Y-matrix for a 2-node network is obtained.
V1x

V2x

V1y

V2y

 =


G11 G12 −B11 −B12

G21 G22 −B21 −B22

B11 B12 G11 G12

B11 B12 G21 G22


−1 

I1x

I2x

I1y

I2y

 (4.8)

where subscripts x and y denote the real and imaginary parts of complex phasors. The

real number Y-matrix has twice the rank and therefore twice the number of eigenvalues

with respect to the complex number Y-matrix. It may be verified that half of the

eigenvalues of the real Y-matrix are identical to those of the complex Y-matrix, and

the other half are complex conjugate of the first half. Consequently, both the real and

complex admittance matrices are suitable for HRMA and will yield the same results [5–

7, 20].

From (4.8) one can see that the conversion from one form to the other is rather straight-

forward. Some power analysis software use the real Y -matrix formulation, hence one

can envision a real matrix approach to be preferable [5]. An argument can also be made

in favour of the real matrix representation due to the eigendecomposition being more

efficient for real matrices [20]. However, the complex matrix has been used in this the-

sis as it allows for avoiding the complex conjugate set of eigenvalues. In addition, the

author perceives the implementation of HRMA sensitivity indices as easier when using

complex matrix formulation.

Real Y-matrix Envelope Using Power Method

If only the modal impedance envelope is of interest, the power method can be used.

This method calculates only the smallest eigenvalue, and is less computer intensive than

algortims which calculate every eigenvalue. Xu et al. [5] suggested using the power

method for calculation of the modal envelope, and found the real admittance matrix to

be preferable. They also found some discrepancy in critical mode scan envelope obtained

with the two different matrix formulations [20].

Calculation of the modal envelope using the real Y-bus matrix and the power method

was carried out to investigate if there really is a difference in the envelope obtained with

the two different Y-bus matrix formulations. Figure 4.15 shows the modal envelope of

the 14 bus test system calculated using the real Y-matrix. The critical eigenvalue was

calculated using the power method algorithm, and the number of iterations required

for an accuracy of 0.005 is shown on the right y-axis. The power method is known to

require a high number of iterations when two eigenvalues are of equal magnitude. The
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Figure 4.15: Modal impedance envelope and number of iterations using real admit-
tance matrix formulation and power method with accuracy of 0.005. Good agreement
with complex admittance formulation is obtained. Notice the high number of iterations

required when two eigenvalues are of similar magnitude.

agreement with the envelope of modal impedance scan of Figure 4.9 is excellent, with

none of the discrepancy seen in aforementioned papers. Hence the discrepancy which

was identified in past papers can most likely be attributed to a poor implementation of

the power method.

Sensitivity Indices and Non-RLC Branch Network Elements

The information provided by the participation factors as well as modal impedance sen-

sitivity index and frequency sensitivity index was demonstrated for the test cases of this

chapter. Among these, participation factors are by far the least burdensome to calculate

in terms of computational effort required. Impedance and frequency sensitivity indices

require far more computational time and/or power. They rely on numerical calculation

of several terms, and experience with the presented test cases suggest discrete steps of

frequency as low as 1× 10−4 pu are required for decent accuracy.

Calculation of sensitivity indices require the explicit calculation of terms such as ∂Gbr/∂α∂h,

where α can be the fundamental frequency parameter R1, X1 or B1. In order to obtain

a general algoritm it was assumed that all relevant network branches of interest are

fully representable by an RLC-branch. This is not the case for cables or lines when

long line correction factors are taken into account. The hyperbolic correction factors

of the long line corrected model makes it difficult to derive straightforward expressions

for sensitivity indices. Hence it is arguably easier to simply calculate the sensitivity

indices numerically. This can be done by recalculating the modal impedance resonance
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magnitude and frequency when α is subject to a small change of value, i.e. ±∆α. Such

an approach is taken in this thesis whenever long line corrected models are used.



5 Offshore WPP Resonance Analysis

In this chapter HRMA is applied for resonance analysis of a WPP model based on the

real 400 MW Anholt offshore WPP.

HRMA has in the past been applied to offshore WPPs [22, 24]. In those papers a num-

ber of simplifying assumptions are used in modelling of the WPPs, such as uniform and

heavily aggregated radials in the array collector system. Moreover they constrain anal-

ysis to below the 25th harmonic frequency, a choice likely motivated by the limitations

of the nominal π-equivalent cable models. Modal switching is not corrected, resulting in

some confusion in terminology and results. Further investigation of the capabilities of

the HRMA method when it comes to resonance analysis of offshore WPPs is therefore

warranted.

The sensitivity of HRMA results with respect to the following aspects and simplifications

in modelling of the WPP will be investigated:

• WPP radial collector system aggregation

• Type of cable models, nominal or long-line corrected π-equivalents

• Uniform collector radials

• Frequency dependent resistance/skin effect

• WTG modelling, emission filters and converter current controller

5.1 Anholt Offshore WPP Layout

The 400 MW Anholt offshore WPP is comprised of 111 turbines, each rated at 3.6 MW

and equipped with a full-scale frequency converter. An overview of the WPP layout

and export system is shown in Figure 5.1. As indicated in the figure, there are three

140 MVA transformers located at the offshore substation, and the points of common

coupling (PCC) are defined on the 33 kV side of these transformers. Downstream of the

53
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PCCs are the collector array cables and wind turbines. This part of the system was

installed and is operated DONG Energy Wind Power. The Danish TSO, Energinet.dk,

is responsible for the part of the system which is upstream of the PCC, i.e. the export

system.
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Submarine 
cable Land cable
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Total array Total capacitance
cable length of array cables

PCC #1 37 4 50km 14uF
PCC #2 37 4 48km 13uF
PCC #3 37 4 54km 15uF

Figure 5.1: Single line diagram of Anholt WPP and export system. Table shows key
data about radial arrays downstream of each point of common coupling [32].

Each 140 MVA transformer connects 37 WTGs across 4 radials to the 220 kV export

system. Hence there are in total 12 radials, each one collecting the power from either 9

or 10 turbines. An overview of the array collector system is given in Appendix C. The

array layout is non-uniform, and each radial uses a combination of 150 mm2, 240 mm2

and 500 mm2 copper cables. There is also a difference in total length and capacitance

of the array cables connected to each PCC, as indicated in the table of Figure 5.1.

The high voltage (220 kV) export system includes one 24.5 km aluminium 3x1600 mm2

submarine cable, and one 58 km aluminium 3x2000 mm2 underground cable. There is
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reactive compensation of 120 MVAr placed in between the cables. The onshore substa-

tion includes 2x450 MVA transformers connecting the underground cables to the central

grid, as well as another 4x60 MVAr of reactive compensation.

Beyond the aforementioned data, little is public knowledge when it comes to parameter

values of the Anholt WPP. Hence it is not an objective to achieve a model with the

exact parameter values of the real system. Cable data is estimated based on ABB’s

user’s guide for submarine and land cable systems [40, 41], and transformer data is

estimated roughly based on rule of thumb.

Wind Power Plant Models

Three different WPP models with varying degree of aggregation are implemented for

HRMA. All models are based on the simplifying assumption that the four radials con-

nected to each PCC are symmetrical. Those four radials are further reduced into one

equivalent radial using the aggregation technique of Section 3.6. Assuming there are

9 turbines in each radial, this aggregation results in a WPP model with 27 turbine

equivalents and 33 buses as shown in Figure 5.2. The total length and capacitance of

radials connected to each PCC is given in Figure 5.1. In obtaining the 33 bus model the

total length of the four aggregated radials at each PCC is set equal to the listed value.

Cross-section and share of total length for each cable section is selected to achieve good

fitting with the listed capacitance values.

The 33 bus WPP model has a relatively high number of buses and branches, and this

might make it unnecessarily complicated for getting an overview of resonances in the

system. Two models with higher degree of radial collector cable aggregation are therefore

also defined. Those models are further reductions of the 33 bus model obtained using the

aggregation technique of Section 3.6. A 15 bus model, shown in Figure 5.3, represents

all collector cable sections with the same cross-section as a single cable and with 3

equivalent WTGs per radial. The 9 bus model, shown in Figure 5.4, represents each

radial with one cable and one WTG equivalent.

Wind turbines, including main reactors, shunt harmonic filter and transformers, are

initially modelled as harmonic current source, hence these components do not appear

in the Y-bus matrix. It can also be regarded as a situation where all turbines are

disconnected and WTG main circuits are de-energised, i.e. transformers, shunt harmonic

filters and main reactors are disconnected.

The modal envelope and participation factors can be obtained for the most compre-

hensive model without much computational burden. However, calculation of the modal
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Figure 5.2: Single line diagram of Anholt offshore WPP model with simplified array
representation. 33 buses are defined as given in the figure.

sensitivity indices becomes burdensome with the large 33 bus model. It is generally

observed that the most critical resonances appear in the simplified 9 and 15 bus models.

Figure 5.5 shows a comparison of the modal impedance envelope obtained with the three

WPP models with long line corrected cables and skin effect included. Because, the main

resonances are reflected in all three models, the 9 bus model is used to gain further

insight about these resonances.
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Figure 5.3: Single line diagram of Anholt offshore WPP model with simplified array
representation. 15 buses are defined as given in the figure.
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representation. 9 buses are defined as given in the figure.
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Figure 5.5: Modal envelope of 9, 15 and 33 bus models with skin effect included.
The same resonances are visible in the evelope of all WPP models. The 9 bus model is

therefore considered adequate for investigating these resonances.
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5.2 9 Bus Model HRMA

Nominal π-equivalent cable models

HRMA is now carried out for the 9 bus WPP model constructed with nominal π-cable

models. The simple structure of this WPP model yields predictable results and al-

lows for calculation of modal sensitivity indices as outlined in Chapter 2. The modal

impedance frequency response is shown in Figure 5.6. There are six resonance modes

in the investigated frequency range, with no modal variable involved in more than one

resonance mode. Bus participation factors associated to the resonance modes are shown

in Table 5.1.
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Figure 5.6: Modal impedance scan of 9 bus WPP model with nominal cable mod-
els. Modes are numbered in descending order of modal impedance at their respective

resonance frequencies.

Table 5.1: Participation factors in resonance modes of 9 bus WPP model with nominal
cable models. The largest participation factor in each resonance mode is underlined.

fres [pu] 4.340 12.920 15.623 16.246 16.841 26.597

Zm [pu] 37.320 48.229 183.986 260.900 323.853 17.150

Bus 1 0.0256 0.1023 0.0024 0.0005 0.0001 0.0003
Bus 2 0.0977 0.0013 0.0033 0.0011 0.0003 0.0151
Bus 3 0.1104 0.0199 0.0002 0.0002 0.0001 0.2879
Bus 4 0.1263 0.1255 0.0153 0.3499 0.0488 0.0670
Bus 5 0.1252 0.1041 0.0061 0.0263 0.3744 0.0909
Bus 6 0.1277 0.1670 0.3976 0.0489 0.0058 0.0450
Bus 7 0.1289 0.1506 0.0201 0.4697 0.0671 0.1640
Bus 8 0.1275 0.1223 0.0077 0.0340 0.4947 0.1957
Bus 9 0.1307 0.2070 0.5474 0.0693 0.0085 0.1342
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The participation factors indicate at which buses the resonance modes are most ob-

servable in the driving point impedance. For example, the resonance mode near the

16.841 pu frequency is most observable at bus 5 and 8. Similarly, the resonance mode

near 16.25 pu is most observable at bus 4 and bus 7, and the the resonance mode near

15.62 pu is most observable at bus 6 and bus 9. The modal sensitivity indices of the

five parameters with highest frequency sensitivity with respect to these three resonance

modes are shown in Figure 5.7, Figure 5.8, and Figure 5.9 respectively. Frequency sen-

sitivity indices reveal that these resonance are due to the collector cables resonating

with the offshore substation transformers. For example, the modal resonance frequency

near 16.84 pu is most sensitive to shunt capacitance of cable section 5-8 and reactance

of transformer 3-5.

In addition to the three resonance modes due to offshore transformers and collector

cables, there is one resonance mode at 4.34 pu, another at 12.92 pu and a third at

26.60 pu frequency. The resonance mode at 4.357 pu frequency stands out due every bus

except for bus 1 having a participation factor of comparable magnitude. This indicates

that, with the exception of bus 1, observability of this mode is similar in the driving point

impedance at all buses. The driving point impedance at every bus near this frequency

is shown in Figure 5.10, and the impedance magnitudes are clearly proportional to the

bus participation factors.

The sensitivity indices of the five parameters with highest frequency sensitivity with

respect to the 4.34 pu resonance mode are shown in Figure 5.11. They reveal this mode

is due to interaction between the grid reactance (i.e. onshore substation transformer),

underground and submarine export cables. Notice the participation factors for this res-

onance mode are smallest close to where the resonating branches are connected. This

illustrates the important distinction between observability, which is quantified by par-

ticipation factors, and branch involvement in the resonance mode, which is quantified

by the frequency sensitivity index.

Similar analysis can be carried out for the other resonance modes. It can be verified

that the resonance mode at 12.92 pu is due to the underground export cable resonating

with the onshore substation transformer. The resonance mode at 26.60 pu frequency is

due to interaction between the shunt capacitance and series reactance of the submarine

export cable. Sensitivity indices for these resonance modes are included in Appendix C.
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Figure 5.7: Sensitivty indices of the five parameters with highest frequency sensitivty
index with respect to the modal resoance at 16.84 pu frequency. The collector cable
of section 5-8 and the transformer of section 3-5 are the network components most

involved in the resonance.
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Figure 5.8: Sensitivty indices of the five parameters with highest frequency sensitivty
index with respect to the modal resoance at 16.25 pu frequency. The collector cable
of section 4-7 and the transformer of section 3-4 are the network components most

involved in the resonance.
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Figure 5.9: Sensitivty indices of the five parameters with highest frequency sensitivty
index with respect to the modal resoance at 15.62 pu frequency. The collector cable
of section 6-9 and the transformer of section 3-6 are the network components most

involved in the resonance.
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Figure 5.10: Driving point impedance around 4.36 pu resonance frequency for every
defined bus. The driving point impedance amplitudes are roughly proprtional to the

participation factors in the resonance mode, listed in the first column of Table 5.1.
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Figure 5.11: Sensitivty indices of the five parameters with highest frequency sensi-
tivty index with respect to the modal resoance at4.36 pu frequency. The export cables
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Radial symmetry

The driving point impedances obtained at buses 7, 8 and 9 are shown in Figure 5.12

in the vicinity of the cable-offshore transformer resonance modes. At each of the three

buses, one mode clearly dominates the impedance response.
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Figure 5.12: Driving point impedance obtained at end of collector radials 9 bus WPP
model with asymmetric radials and nominal cable modes.

Let’s now investigate what happens to the three resonance modes in the 15 pu to 17 pu

frequency range when the three radials of the WPP modal are made symmetrical. The

driving point impedance and modal impedance frequency responses are shown in Fig-

ure 5.13 respectively on the left and right hand side. The driving point impedance

frequency response at buses 7, 8 and 9 become identical. Two of the modal variables

now have the same frequency response, resulting in two resonance modes in the same

location near 16.44 pu frequency. The third modal variable has a different frequency

response, with a resonance mode near the 15.93 pu frequency.

Care must be taken in HRMA when two modal variables have identical frequency re-

sponses, as is the case for two modal variables in Figure 5.13. Two of the resonance

modes are seemingly identical, but the participation of corresponding buses in different

radials, for example buses 7, 8 and 9, are different. as given in Table 5.2. Bus 9 par-

ticipates most in Mode 2, bus 8 participates most in Mode 1, while bus 7 participates

equally in both resonance modes. Notice the sum of participation factors in Mode 1

and Mode 2 for each bus is equal, hence the driving point impedance at each bus is also

equal. Because two modes are identical, analysing only the modal impedance envelope

would obviously be insufficient in this case.
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Figure 5.13: Driving point impedance at buses 7, 8, and 9 (l.h. figure), and modal
scan of three most critical modes (r.h. figure) with symmetric radials. Driving point
impedance is identical for the three buses at the end of the radials. The frequency
response of two modal variables are identical, while the third modal variable has a

differenct frequency response.

Table 5.2: Particpation factors of buses 7, 8, and 9 in two most critical modal re-
soances, i.e. Mode 1 and and Mode 2

Mode 1 Mode 2

Resonance freq. [pu] 16.44 16.44
Modal impedance peak value Zm [pu] 344.0 344.0

PF bus 7 0.1917 0.1916
PF bus 8 0.3576 0.0257
PF bus 9 0.0257 0.3577

Long line corrected cable models

In the WPP models presented this far, there are no capacitances besides those associated

to cables. Any detected resonance must therefore involve one or more cable capacitances.

In the analysis of the 14 bus test case it was suggested that long line corrected cable

models should be used when analysing resonances where cable capacitances are heavily

involved. HMRA is in this section carried out with such cable models.

The modal impedance scan obtained for the 9 bus WPP model with long line cor-

rected cable models is shown in Figure 5.14. The overall characteristics of the modal

impedances are rather similar to the case with nominal cable models, though there are

some differences. Bus participation factors for the 7 detected resonance modes are shown

in Table 5.3.

Investigation of the resonance modes can be carried out in a similar fashion to the

case with nominal cable models. Participation factors quantify the impact of resonance

modes in the impedance characteristic at different buses. Sensitivity indices reveal which
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Figure 5.14: Modal scan of 9 bus Anholt WPP. There are seven resonance modes,
each in a different modal variable.

Table 5.3: Participation factors of modal resonances. The largest PF of each mode is
marked with solid underline.

fres [pu] 4.356 13.460 15.864 16.569 18.296 28.580 41.298

Zm [pu] 36.265 101.126 274.587 304.823 132.144 9.313 8.440

Bus 1 0.0281 0.0130 0.0003 0.0002 0.0145 0.2640 0.3219
Bus 2 0.0973 0.0005 0.0001 0.0001 0.0134 0.0101 0.2720
Bus 3 0.1100 0.0151 0.0004 0.0003 0.0099 0.3195 0.3390
Bus 4 0.1259 0.1324 0.1391 0.1621 0.1073 0.0355 0.0010
Bus 5 0.1249 0.1032 0.0275 0.2514 0.2354 0.0485 0.0020
Bus 6 0.1274 0.1980 0.2545 0.0131 0.0503 0.0235 0.0003
Bus 7 0.1286 0.1625 0.1855 0.2222 0.1583 0.0995 0.0212
Bus 8 0.1272 0.1235 0.0354 0.3316 0.3312 0.1176 0.0231
Bus 9 0.1306 0.2518 0.3572 0.0190 0.0797 0.0818 0.0195

parameters the modes are most sensitive to, and hence which circuit elements are most

involved in the resonance modes.

Though sensitivity indices are not included, it may be verified the resonance modes at

4.36 pu and 13.46 pu frequency are of similar nature to the resonance modes at 4.34 pu

and 12.92 pu frequency for the case with nominal cable models. The resonance modes

at 28.58 pu and 41.30 pu are due to export cables, and are also most observable at buses

1 and 3, close to the resonating branches.

The three most critical resonance modes, i.e. those of highest amplitude in the modal

domain, are located in close proximity between 15 pu and 19 pu frequency. These res-

onances are mainly due to array collector cables resonating with offshore substation

transformers. However, the characteristics of these modes are somewhat different to the

case with nominal cable models. Firstly, two of the modes are most observable at bus 8,
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Figure 5.15: Driving point impedance at buses 7, 8 and 9 near resonance frequecies
due to offshore transformers and collector cables. The three most critical modes are

observable at more than one of these buses.

and one mode is most observable at bus 9. This is evident from the participation factors

as well as the driving point impedances shown in Figure 5.15. Secondly, the modes are

more collaborative in the sense that frequency sensitivity is of comparable magnitude for

more parameters than in the case with nominal cable models. This can be observed in

the frequency sensitivities for these modes which are shown in Figure 5.16. The export

cables are also rather involved in the resonance at 18.31 pu.
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Figure 5.16: Sensitivty indices of network parameters with highest frequency sensi-
tivity index for 15.86 pu, 16.57 pu, and 18.31 pu modes.

Skin effect

Skin effect forces the flow of current towards the perimeter of conductors, hence de-

creasing effective cross-section and increasing resistance. Up to this point, skin effect

has been neglected. The impact of taking skin effect into account via the following

empirical formula will now be investigated.

R = R1(0.187 + 0.532
√
h, h > 2.35) (3.3 revisited)

Figure 5.17 shows the modal impedance envelopes calculated with and without skin

effect taken into account. The increased resistance due to skin causes damping of the
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resonances peaks, but the mode frequencies remain largely unaltered. The two modes

of highest frequency are completely damped when including skin effect.
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Figure 5.17: Modal impedance envelopes of the 9 bus WPP model with long line
corrected cable models, with and without inclusion of skin effect. Skin effect dampens

resonance peaks, but has little effect on mode frequencies.

The participation factors calculated with skin effect included are shown in Table 5.4.

Because participation factors are a relative measure of mode observability at defined

buses, there are only minor changes in the participation factors compared to the case

without skin effect. Moreover, due to the normalisation of sensitivity indices, these are

also virtually unchanged compared to the case without skin effect.

Table 5.4: Participation factors of modal resonances with skin effect included. The
largest participation factor of each mode is marked with solid underline. Only minor
changes is resonance frequencies and participation factors observed due to inclusion of

skin effect.

fres [pu] 4.349 13.442 15.861 16.566 18.319

Zm [pu] 16.016 26.357 65.896 71.649 29.925

Bus 1 0.0279 0.0128 0.0003 0.0002 0.0138
Bus 2 0.0966 0.0005 0.0001 0.0001 0.0128
Bus 3 0.1097 0.0152 0.0004 0.0003 0.0095
Bus 4 0.1260 0.1324 0.1391 0.1615 0.1083
Bus 5 0.1249 0.1034 0.0275 0.2518 0.2352
Bus 6 0.1274 0.1971 0.2543 0.0131 0.0506
Bus 7 0.1290 0.1630 0.1857 0.2216 0.1596
Bus 8 0.1276 0.1242 0.0354 0.3324 0.3304
Bus 9 0.1310 0.2515 0.3571 0.0190 0.0799



Chapter 5. Offshore WPP Resonance Analysis 69

5.3 9 Bus Model with WTG Terminal Filters

The sensitivity of HRMA results with respect to WTG harmonic models is investigated

in this section. As mentioned in Chapter 3, harmonic sources are often modelled as

harmonic current source in frequency domain harmonic studies. It was previously as-

sumed the entire wind turbine circuit, i.e. main reactor, shunt filter and transformer,

can be modelled as harmonic current source. Now the wind turbine circuit components

are modelled separately, as shown in Figure 5.18. A converter in operation is modelled

by short circuiting its terminals. This corresponds to a converter with ideal harmonic

rejection, i.e. ideal voltage source behaviour.

Lmr

Ltr

Rsf

Csf

Converter 
connection

Figure 5.18: WTG main circuit model with main reactor, step-up transformer and
shunt harmonic filter modelled separately. Ideal harmonic rejection, i.e. ideal voltage

source behavior of converter when WTG is connected.

WTG Emission Filter

A set of parameters for the LCL filter of a grid-tied VSC can be determined based on

knowledge of the converter topology and ratings as well as step-up transformer short-

circuit inductance. Suggested parameters in per unit expressed on a power base equal

to Anholt per WTG active power rating of 3.6 MW are given by,

Lmr = Ltr = 0.064 pu; Csf = 0.0892 · Cbase = 11.21 pu; Rsf = 0.220 pu

The calculations leading to selection of these parameters are based on well established

principles. Further details are included in Appendix D.
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HRMA results

The modal impedance envelope is shown in Figure 5.19 for all three WPP models with

WTG main circuits energised and all converters connected. Skin effect is also modelled.

From the figure one can observe that the shape of the envelope curve is preserved in the

aggregated 15 and 9 bus WPP models. The 9 bus model is therefore chosen for further

analysis.
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Figure 5.19: Modal impedance envelope obtained with WTG main circuits included
and all converters connected. The envelope shape is similar for all three WPP models,

hence it is assumed the 9 bus model is sufficient.
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Figure 5.20: Modal impedance scan obtained with 9 WPP model, skin effect included
and all WTGs connected. There are 10 resoance modes, many of which occur at fre-
quencies close to each other. The resistor in the capacitive high-pass branch introduces

significant damping of the resonance modes.
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The modal impedance scan for the 9 bus WPP model with skin effect included and all

converters connected is shown in Figure 5.20. Ten resonance modes can be identified

in the investigated frequency range. Some of the resonance modes are located close

to each other, and several resonance modes do not appear in the modal impedance

envelope. Considering only the modal envelope hence become insufficient in this case.

Participation factors for each resonance mode are listed in Table 5.5, indicating the

observability of each resonance mode in driving point impedances.

Table 5.5: Participation factors of resonance modes obtained with 9 bus WPP model
and all wind turbines connected. The largest PF of each mode is marked with solid

underline.

fres [pu] 5.155 13.375 13.870 13.980 26.435 27.760 28.640 30.050 41.310
Zm [pu] 7.484 4.554 3.586 3.411 6.222 7.982 9.154 8.639 1.281
Bus 1 0.0740 0.0133 0.0002 0.0001 0.0103 0.0029 0.0019 0.0091 0.3209
Bus 2 0.2200 0.0005 0.0000 0.0000 0.0032 0.0003 0.0001 0.0001 0.2706
Bus 3 0.2129 0.0155 0.0002 0.0001 0.0114 0.0037 0.0024 0.0089 0.3388
Bus 4 0.0963 0.1374 0.1729 0.1266 0.0879 0.2626 0.2276 0.0747 0.0085
Bus 5 0.0950 0.1084 0.0311 0.2966 0.0443 0.0446 0.3090 0.4362 0.0101
Bus 6 0.0980 0.2003 0.2271 0.0117 0.4360 0.2530 0.0179 0.0212 0.0065
Bus 7 0.0680 0.1602 0.2236 0.1675 0.0613 0.1988 0.1845 0.0654 0.0150
Bus 8 0.0683 0.1239 0.0391 0.3811 0.0302 0.0327 0.2412 0.3643 0.0156
Bus 9 0.0676 0.2405 0.3056 0.0162 0.3154 0.2014 0.0154 0.0201 0.0141

The algorithms for calculation of sensitivity indices in this thesis are based on modal

envelope analysis. Because resonance modes are so close to each other, with several of

them not appearing in the modal envelope, the algorithms unfortunately do not work

well in this case. It would be possible to overcome this issue by identifying modes

for sensitivity index calculation in each modal variable rather than in the envelope.

However, this is considered outside the scope of the thesis.

Including the WTG main circuits in the WPP model clearly has a large impact on the

modal impedance frequency responses. There are more resonance modes, and the modes

are also much more damped. It can be verified that the reduced magnitude of resonance

modes is due to resistors in the WTG shunt harmonic filters. In Figure 5.20 there a clus-

ter of four resonance modes between 26 pu and 30 pu frequency. Though the sensitivity

indices can not be presented, it has been qualitatively observed that these resonance

modes are primarily due to array cables and offshore substation transformers resonance.

Hence they are similar to the resonance modes which were located between 13 pu and

19 pu before inclusion of the WTG harmonic main circuit, as shown in Figure 5.14. The

resonance modes in the 13-14 pu frequency range appear as a result of including the

WTG main circuits.

Previously, when the entire wind turbine circuit was modelled as a current source, it did

not make a difference whether or not a turbine was considered in operation. Now it is
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assumed the grid-side converter and shunt harmonic filter of an out-of-operation WTG

is disconnected, leaving the low voltage side of the step-up transformer open-circuited.

Hence there is no damping provided by the shunt harmonic filter of an out-of-operation

turbine. The modal impedance envelope as a function of turbines in operation obtained
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Figure 5.21: Three dimensional plot of modal impedance envelope as fuction of num-
ber of turbines in operation.

from the 33 bus WPP model is shown in Figure 5.21. The 27 WTG equivalents in this

model are disconnected in order of bus number, i.e. the turbine closest to PCCs are

disconnected first. The figure illustrates how the modal impedance characteristics of a

WPP changes under varying operating conditions. The magnitude of modal impedances

are increasingly damped with more turbines in operation, due to the damping effect of

the shunt harmonic filters.

The modal impedance scan obtained with the 33 bus WPP model is shown in Figure 5.22.

There are some minor differences, but overall the resonance modes are largely similar to

those seen in the 9 bus WPP model.
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Figure 5.22: Modal impedance scan obtained with 33 bus WPP model, skin effect
included and all WTGs connected. The resonance modes are largely similar to the ones

obtained from the 9 bus model.

Impact of converter control

With the current controllers tuned as indicated in Section 3.5, the following PI-current

control parameters are obtained:

Kp =
Lmr

2Ta,pu
=

0.064

100π ·
(

1.5
2500

) = 0.169 pu

Ti = τmr =
Lmr

(100π) ·Rmr
=

0.064

100π · 0.0064
= 31.8 ms rad−1 = 10 pu

The equivalent impedance representing the main reactor and PI current controller is

given by

Zeq(ω) = Rmr + jωLmr +Kp − j
Kp

ωTi

= (Rmr +Kp) + j

ωLmr − 1

ω
(
Ti
Kp

)
 (3.15 revisited)

The modal impedance frequency response with skin effect and all turbines connected

is shown in Figure 5.23. Compared to the case in Figure 5.20, where the equivalent

impedance of the current controller is neglected, there are some minor changes of modal

frequency responses in the range of 5 pu to 20 pu frequency.
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Figure 5.23: Modal impedance scan obtained with 9 WPP model, skin effect included,
all WTGs connected, and the converter control represented with equivalent impedances.

Some small changes can be seen for the modes in the range of 10-15 pu frequency.



6 Discussion

6.1 General Remarks

Frequency responses of the eigenvalues of an admittance matrix allows for locating fre-

quencies associated to parallel resonances. Modal switching should be corrected when

obtaining the frequency responses. Unlike a traditional impedance or admittance fre-

quency scan, a modal impedance scan is not linked to a particular location in the circuit.

Rather, the modal resonances are linked to the impedance at defined buses via partici-

pation factors.

The weighted participation factor, a term coined by Xu et al. [5], has received little at-

tention in published papers. The driving point impedance at some bus for any frequency

is the sum of weighted participation factors for the bus in all modal variables. It has been

shown in this thesis that when a single WPF approaches the driving point impedance at

a resonance frequency, it indicates excitation of a single mode. However, a driving point

impedance resonance can also be linked to the excitation of more than one mode. In the

WPP analysis, it was shown that it is possible to excite more than one resonance mode

simultaneously, i.e. there can be several WPFs of considerable magnitude in a driving

point impedance resonance.

In addition to participation factors, a modal impedance sensitivity index and modal fre-

quency sensitivity index have been proposed in literature for quantifying the involvement

of different network branches in modal resonances. These sensitivity indices indicate

the horizontal and vertical movement of the modal impedance peaks, or modes, in the

frequency-impedance plane following a small change in some network parameter of in-

terest. If the harmonic analysis is carried out with the simplifying assumption of circuit

element linearity (i.e. constant values of R, L and C), and all branches of interest are

modelled as variation of a series RLC branch, the sensitivity indices can be calculated

in a simplified way using eigenvectors obtained during the modal impedance scan. This

concept was confirmed for the test cases investigated in Chapter 3. It detracts somewhat

from the HRMA method that the simplified calculation of the modal sensitivity indices

75
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breaks down when non-RLC branches and non-linear circuit elements are included in

the admittance matrix. The sensitivity indices can still be calculated numerically, but

with considerable increase of computational time and effort required.

Some papers have suggested buses with high participation factors are good candidates

for placing filters if a particular resonance needs to be mitigated [24, 25]. This is arguably

true in the sense that a location with large participation in a resonance mode is where

the mode is most observable in the driving point impedance. Beyond this simple fact,

the results of this thesis do not imply there is anything extraordinary about buses with

high participation in a resonance mode. As has been shown, the resonating branches

are not necessarily connected at the bus with highest participation factor, Hence it is in

the authors opinion not obvious that a resonance mode can best be mitigated at buses

with high participation factor in the mode.

If the frequency of a resonance mode is away from frequencies of harmonic emissions, it

may not be of concern. If the resonance mode is close to frequencies of existing harmonic

emissions, the frequency sensitivity index can be used to reveal which parameters might

be adjusted to move the resonance mode to either higher or lower frequencies. A pa-

rameter may however affect several resonance modes. Changing a parameter which has

favourable impact on one mode thus might have a negative impact on other modes. Hu

et al. [8] combined the frequency sensitivity index with an iterative Newton-Raphson

based scheme to adjust the size of selected capacitor banks in small industrial power

system, thus placing resonance modes at target frequencies.

There is usually some error tolerance with respect to electrical parameters in production

and delivery of power system components such as capacitor banks and filters. Hence it

may not be possible to predict the exact location of a resonance mode ahead of time.

The frequency sensitivity index might be useful in order to decide what margin there

needs to be between the frequency of a predicted resonance mode and frequencies of

known harmonic emissions. Alternatively the frequency sensitivity index can be used

to determine the error tolerance of electrical components based on the frequency of

resonance modes and harmonic emissions.

There is arguably a certain elegance to the modal sensitivity indices. They work well

with HRMA because the modes are inherent to the system under study, i.e. not linked

to a particular bus. On the contrary, the frequency and magnitude of resonances de-

tected via nodal impedance or admittance frequency responses depend on the location

at which the scan is obtained. Hence a sensitivity index which is applicable on a system

level can not be defined based on traditional methods. However, on a qualitative level
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it is possible to reveal the involvement of different electrical network elements in reso-

nances via sensitivity analysis based on traditional impedance and admittance frequency

responses [42].

The HRMA described in this thesis is conducted on the positive sequence admittance

matrix. Hence it is implicitly assumed the phases are symmetrical, yielding balanced

voltages. In reality there is however always some degree of phase unbalance. In a system

with considerable unbalance, the resonance frequencies can be different in each phase.

Unbalance can occur for a number of reasons. For example, line transpositions can be

ineffective for harmonic frequencies. Another cause of phase unbalance might be cables

laid in flat formation, i.e. without transpositions. In industry the symmetrical analysis

is of limited value due to unbalance being the norm [12]. State of the art software

for harmonic analysis such as DigSilent PowerFactory allows for specifying unbalances,

hence it can be reflected in frequency scans and in harmonic power flow analysis [15]. If

the HRMA method is to find application in industry, it would likely have to be expanded

to cover unbalanced systems. Whether the principles of HRMA can be extended to non-

symmetrical representation remains an open question.

6.2 Wind Power Plant Analysis

In Chapter 5 HRMA was used to analyse a large offshore WPP. The results have not

been validated with any real measurements, and so the accuracy of the WPP model is

uncertain.

The modes in the studied WPP showed a tendency to group together. In other words

several resonance modes are close to each other in terms of resonance frequency and

modal impedance magnitude. Resonances in driving point impedance are therefore

sometimes linked to excitation of more than one mode, i.e. the driving point impedance

can not be estimated by a single WPF. Moreover, in the particular case where there is

perfect radial symmetry in the studied system, it was shown that two modal variables can

have identical frequency response. Clearly taking only the modal impedance envelope

into account is insufficient when studying such large WPPs.

The most critical modes were shown to be associated to resonance between the induc-

tances of offshore substation transformers and array collector cable capacitances. The

inclusion of frequency dependent resistance (i.e. skin effect) did not cause considerable

changes in the frequency of resonance modes, participation factors or sensitivity indices.

On the contrary, inclusion of long line corrected cable models had a quite significant

impact on frequencies of resonance modes, participation factors and sensitivity indices.
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The frequency and magnitude of resonance modes were shown be highly dependent on

the number of turbines in operation. All potential operating conditions must therefore

be considered in resonance analysis of such large offshore WPPs.

The analysis showed that the HRMA results are quite sensitive to modelling of the WTG

circuit components, i.e. step-up transformers, shunt harmonic filters and main reactors.

Hence these components should be included in the resonance analysis. In Section 3.5

it was shown from a theoretical perspective how the current controller of a VSC can

influence the impedance as seen from the grid. In the HRMA analysis only a minor

effect was observed in the resonance modes when including the current controller.
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Figure 6.1: Root locus style presentation of resonance modes observed in 9 bus WPP
model with all WTG connected. A small eigenvalue, associated with a large modal
impedance, places the mode far to the right in the diagram, indicating poor damping

of the resonance.

An alternative presentation of the resonance modes is shown in Figure 6.1. The figure

emulates the left half plane of a root-locus diagram, and thus will be familiar to anyone

with knowledge of small signal stability analysis. The eigenvalue magnitude and fre-

quency of resonance modes are plotted against each other. Resonance modes with little

damping have small eigenvalue magnitudes, and are located far to the right in the dia-

gram. The frequencies of the resonance modes are indicated on the y-axis. Eigenvalues

can not take on negative values, hence modes in the right half plane, which indicate in-

stability in small signal analysis, can not occur here. From the root locus style diagram

one can clearly see the grouping of the resonance modes. It can also be used to illustrate

the movement of the resonance modes following some parameter change in the system.



7 Conclusions

The findings in analysis of test cases were consistent with those presented in published

papers. Certain issues in implementation, particularly the issue of modal switching, has

not received sufficient attention in past papers, but are critical for meaningful presen-

tation and interpretation HRMA results. The combination of resonance modes, partici-

pation factors and sensitivity indices can provide a good overview of parallel resonances

in a power system.

The finding of this thesis indicate HRMA method can potentially give some guidance

for solving problems related to harmonic resonance in offshore WPPs. There is ample

potential for resonances to cause problems in offshore WPPs, particularly because the

resonance points change with number of turbines in operation. The obtained results

were sensitive to modelling of elements within each WTG circuit.

7.1 Further Work

The matrix formulation and methodology suitable for analysis of series resonances has

received little attention in literature, and could be investigated further. Also, there is

a need to define and verify suitable mitigation strategies based on HRMA. Assump-

tions and modelling for HRMA could be verified by comparing results with state of

the art simulation software such as DigSilient PowerFactory and/or real measurements.

Additionally it would be worth investigating if the HRMA method can be applied to

non-symmetrical systems by using a three-phase rather than positive sequence represen-

tation in the admittance matrix.
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A HRMA Test Case Input Data and Results

A.1 Input Data IEEE 14 Bus Test System

Table A.1: IEEE 14 bus test case stedy state load flow [38]

Bus Nominal P Load Q Load LF Voltage LF angle THD
# voltage (kV) (pu) (pu) (pu) (deg) (%)

1 230 0 0 1,0600 0,00 1,767
2 230 0 0 1,0450 5,68 2,177
3 230 0 0 1,0427 15,30 1,516

301 35,4 0,50905 0,03363 1,0417 -16,18 9,169
302 35,4 0,50905 0,03363 1,0417 -16,18 9,169
4 230 0,47790 -0,03900 1,0282 -11,41 0,755
5 230 0,07599 0,01599 1,0337 -9,82 1,462
6 230 0 0 1,0700 -15,87 0,468
7 230 0 0 1,0193 -14,47 0,423
8 13,8 0 0,12900 1,0209 -14,49 0,522
9 115 0,29499 16,59900 1,0147 -16,09 0,482
10 115 0,09000 0,05799 1,0168 -16,33 0,421
11 115 0,03501 0,01800 1,0394 -16,21 0,394
12 115 0,06099 0,01599 1,0528 -16,72 0,391
13 115 0,13500 0,05799 1,0458 -16,73 0,376
14 115 0,14901 0,05001 1,0154 -17,39 0,343

Table A.2: IEEE 14 bus test case generator input data [38]

Bus Bus Voltage P gen. Q gen. Sub-transient
# Type setting (pu) (pu) (pu) X (pu)
1 Slack 1.0600 2.618681 -0.02863 0.25
2 PV 1.0450 0.18300 5.857 0.25
6 PV 1.0700 -0.11200 44.200 0.25
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Table A.3: IEEE 14 bus test case branch parameters [38]

Branch From To R1 X1 B1
Type Bus # Bus # (pu) (pu) (pu)

Transformer (Y-Y) 4 7 0.00000 0.20900
Transformer (Y-Y) 4 9 0.00000 0.55618
Transformer (Y-Y) 5 6 0.00000 0.25020
Transformer (Y-∆) 7 8 0.00000 0.17615
Transformer (Y-Y) 7 9 0.00000 0.11000

OH Line 6 11 0.09495 0.19887
OH Line 6 12 0.12285 0.25575
OH Line 6 13 0.06613 0.13024
OH Line 9 10 0.03181 0.08448
OH Line 9 14 0.01270 0.27033
OH Line 10 11 0.08203 0.19202
OH Line 12 13 0.22087 0.19985
OH Line 13 14 0.17089 0.34795
OH Line 1 2 0.01937 0.05916 0.05279
OH Line 1 5 0.05402 0.22300 0.04920
OH Line 2 3 0.04697 0.19794 0.04380
OH Line 2 4 0.05810 0.17628 0.03740
OH Line 2 5 0.05693 0.17384 0.03386
OH Line 3 4 0.06700 0.17099 0.03460
OH Line 4 5 0.01335 0.04209 0.01280

Capacitor (pf correction) 9 0 0.00000 0.00000 0.06330
Filter order: 2nd 8 0 0.52510 8.31233 0.03015
Filter order: 5th 8 0 0.52510 1.32635 0.03015
Filter order: 7th 8 0 0.52510 0.67307 0.03015
Filter order: 11th 8 0 0.52510 0.27515 0.03015
Filter order: 11th 3 0 0.00136 0.02772 0.24916
Filter order: 11th 3 0 0.00136 0.02772 0.24916

Transformer (Y-Y) 3 301 0.00000 0.02800 0.00000
Transformer (Y-∆) 3 302 0.00000 0.02800 0.00000
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A.2 Test Case Results

Table A.4: Participation factors for all buses and modal resonances in modal scan
envelope. The largest participation factor for each frequency is underlined.

Freq [pu] 1.917 2.869 4.212 5.874 8.627 10.738 14.458 25.261 25.943

Zm [pu] 4.4553 9.3417 7.9056 4.5109 6.8356 12.4556 13.1867 22.5070 18.0491

Bus 1 0.0277 0.0556 0.0005 0.0044 0.0427 0.2027 0.0279 0.0027 0.3742
Bus 2 0.0347 0.0742 0.0012 0.0036 0.0364 0.1699 0.0192 0.4026 0.0029
Bus 3 0.0763 0.2632 0.0469 0.0060 0.0013 0.0003 0.0000 0.0078 0.0097
Bus 4 0.0585 0.0972 0.0006 0.0139 0.0455 0.1096 0.0003 0.0976 0.3682
Bus 5 0.0483 0.0802 0.0003 0.0123 0.0542 0.1592 0.0021 0.4138 0.1926
Bus 6 0.0299 0.0257 0.0055 0.0228 0.0464 0.0336 0.0144 0.0306 0.0111
Bus 7 0.1207 0.0769 0.1258 0.1395 0.1074 0.0460 0.0985 0.0025 0.0128
Bus 8 0.2705 0.1000 0.6543 0.4359 0.1149 0.0040 0.0117 0.0005 0.0026
Bus 9 0.0806 0.0555 0.0575 0.0985 0.1376 0.0800 0.3618 0.0051 0.0112
Bus 10 0.0705 0.0467 0.0426 0.0834 0.1202 0.0598 0.2284 0.0008 0.0040
Bus 11 0.0508 0.0351 0.0202 0.0531 0.0870 0.0420 0.0843 0.0048 0.0004
Bus 12 0.0358 0.0258 0.0073 0.0312 0.0577 0.0270 0.0167 0.0174 0.0056
Bus 13 0.0363 0.0264 0.0087 0.0315 0.0561 0.0277 0.0222 0.0137 0.0041
Bus 14 0.0594 0.0377 0.0285 0.0640 0.0927 0.0382 0.1125 0.0001 0.0007



B Details of HRMA

B.1 2-norm of Eigenvectors

Given an n-dimensional vector

x =


x1

x2

...

xn


The p-norm of a vector is defined as

|x|p =

(∑
i

|xi|p
)(1/p)

(B.1)

The 2-norm is equal to one for all eigenvectors returned by the built-in eig()-function in

MATLAB. An eigenvector x hence fulfils

|x| = x2
1 + x2

2 + · · ·+ x2
n = 1 (B.2)

B.2 Modal Sensitivity Indices Differential Expressions

In order to calculate modal frequency sensitivities of a branch in the power network, it

is necessary to evaluate derivatives ∂Gbr/∂α, ∂2Gbr/∂α∂f , ∂Bbr/∂α and ∂2Bbr/∂α∂f .

Many branches, such as first order filters, shunt capacitors, and shunt reactors, can be

fully represented by a series RLC branch.

Defining

|Z| =

√
R2

1 + h2

(
X1 −

1

h2B1

)2
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and expressing conductance and susceptance of the RLC branch in terms of harmonic

order h, resistance R1, inductive reactance X1, and capacitive susceptance B1:

Gbr =
R1

R2
1 + h2

(
X1 − 1

h2B1

)2 =
R1

|Z|2
(B.3)

Bbr =
h
(

1
h2B1

−X1

)
R2

1 + h2
(
X1 − 1

h2B1

)2 =
h
(

1
h2B1

−X1

)
|Z|2

(B.4)

Expressions for the first order derivatives of Gbr and Bbr with respect to X1 and B1 are

given by

∂Gbr
∂X1

=
2h2R1

(
1

h2B1
−X1

)
|Z|4

∂Bbr
∂X1

=
2h3

(
X1 − 1

h2B1

)2

|Z|4
− h

|Z|2

∂Gbr
∂B1

=
2R1

(
1

h2B1
−X1

)
B2

1 |Z|4

∂Bbr
∂B1

=
2h
(
X1 − 1

h2B1

)2

B2
1 |Z|4

− 1

hB2
1 |Z|2

The expressions for second order partial derivatives of Gbr and Bbr with respect to har-

monic order and either X1 or B1 become highly complex. Expressions for these terms

have been obtained using Maple software from Maplesoft, and the expressions are eval-

uated in MATLAB. Maple-generated expressions are included for sake of completeness.

∂2Gbr
∂X1∂h

=
−4Rh3B3(−B3X3h6 +B3R2Xh4 + 3BXh2 − 2)

(B2X2h4 +B2R2h2 − 2BXh2 + 1)3

∂Gbr
∂B1∂h

=
4R1hB1(2B3

1X
3
1h

6 − 3B2
1X

2
1h

4 −B2
1R

2
1h

2 + 1)

(B2
1X

2
1h

4 +B2
1R

2
1h

2 − 2B1X1h2 + 1)3

∂2Bbr
∂X1∂h

=
−h2B2(B4X4h8 − 6B4R2X2h6 +B4R4h4 − 6B2X2h4 + 6B2R2h2 + 8BXh2 − 3)

(B2X2h4 +B2R2h2 − 2BXh2 + 1)3

∂2Bbr
∂B1∂h

=
(−3B4X4h8 + 6B4R2X2h6 +B4R4h4 + 8B3X3h6 − 6B2X2h4 − 6B2R2h2 + 1)

(B2X2h4 +B2R2h2 − 2BXh2 + 1)3



C Offshore WPP Analysis

C.1 Anholt WPP Collector Array Layout

Substation

WTG

150mm Cu cable

240mm Cu cable

500mm Cu cable

LEGEND:

Array cables:

Figure C.1
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C.2 Input Data

Table C.1: Data for three-core Cu-conductor submarine array cables of nominal volt-
age 33 kV (Um=36 kV) Values taken from ABB user’s guide [40].

Cross section [mm2] 150 240 500

Inductance [mH/km] 0.41 0.38 0.34
Capacitance [µF/km] 0.21 0.24 0.32

Current rating [A] 375 480 655

C.3 Results 9 Bus Model with Nominal Cable Models
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Figure C.2: Sensitivty indices of the five parameters with highest frequency sensitivty
index with respect to the modal resoance at 12.92 pu frequency. The underground

export cable resonates with the grid reactance.

Long line 2-3 B Long line 2-3 X Long line 1-2 B PCC2 transf. 3-5 X PCC1 transf. 3-4 X

F
re

q 
se

ns
iti

vi
ty

 [p
u/

%
 c

ha
ng

e 
of

 α
]

-12

-10

-8

-6

-4

-2

0

2
Modal resonance at h=26.597

Frequency sensitivity [pu/100%]
Modal impedance sensitivity [%/100%]

Figure C.3: Sensitivty indices of the five parameters with highest frequency sensitivty
index with respect to the modal resoance at 26.60 pu frequency. The submarine export

cable reactance and shunt capcitance is most involved in this resonace mode.



D LCL Filter Design Grid-tied VSC

The design criteria and methodology used for determining filter parameters in this thesis

is in accordance with the author’s specialisation project [9] and related paper [10], which

again were predominantly based on pre-existing literature [30, 43–45].

Base values given by WTG rated active power and rated AC side voltage are given in

table D.1.

Table D.1: Per unit base values wind turbine emission filter design

Parameter Symbol Equation Value Unit

Power Sbase = Pn - 3.6 MVA/MW
Voltage Vbase - 0.69 kV

Frequency f1 - 50 Hz

Current Ibase
Sbase√
3Vbase

3012 A

Impedance Zbase
V 2
base
Sbase

0.13225 Ω

Inductance Lbase
Zbase
2πf1

0.4210 mH

Capacitance Cbase
1

2πf1Zbase
24.07 mF

DC voltage Vdc,base
2
√

2Vbase√
3

1.127 kV

L1
C L2

Rd

IL1 Ig

Figure D.1: LCL filter for grid-tied VSC with nomenclature

With reference to Figure D.1, constraints typically imposed on the LCL filter design

include:
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1. The converter side inductor L1 should by itself be large enough to limit the ripple

current to 10 % of the rated converter current amplitude.

2. The total inductance of L1+L2 should be no larger than 10 % to limit the maximum

voltage drop across the filter and subsequent need for high DC side voltage.

3. The reactive power provided by the capacitor should be limited to approximately

5 % of rated power in order to limit reactive power variation seen from the grid.

4. The filter resonance frequency, given by

fres =
1

2π

√
L1 + L2

L1L2C
[Hz] (D.1)

should be placed in the band of 10f1 ≤ fres ≤ 0.5fsw where fsw is the carrier

switching frequency. The is aimed at ensuring the resonance frequency is much

lower than that of the lowest carrier band harmonics, and is high enough to not

cause controller stability issues.

5. The filter resonance frequency must be damped either passively or actively. Passive

damping is the most straightforward solution, but typically results in higher losses

and reduced filtering performance compared to active damping. A resistor of

magnitude

Rd =
1

3

1

ωresC

where ωres is the filter resonance frequency, will ensure damping of the filter reso-

nance.

6. It is generally considered that the LCL filter should attenuate the current ripple

to 2 % of the rated current amplitude of the converter, i.e. 0.02
√

2Ibase, in order

to comply with relevant grid code.

Some assumptions regarding certain elements of the Anholt offshore wind power plant

must be made in order to continue the LCL filter design:

• It is assumed a switching frequency fsw is as high as 2.5 kHz is feasible for the

WTG converters.

• It is assumed the converter is able to deliver rated active power of 3.6 MW at a

power factor of ±0.9 for maximum active power. This implies a converter rating

of 4 MVA.

• An MVA rating of 4.5 MVA with a SC reactance 8 % is assumed for the step up

transformer. On the 3.6 MW base of Table D.1 this corresponds to an inductance

of 6.4 %.
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• It is assumed the semiconductor capacity does not present the binding constraint

on the DC side voltage.

The maximum ripple current as function of the converter side inductance L1 can be

derived from the converter topology using voltage-second balance. For a two-level con-

verter the ripple current as a function of inductor value can be expressed as

∆IL1,max =
Vdc

8fswL1
(D.2)

and for a three-level neutral point clamped topology the voltage-second balance across

inductor L1 yields

∆IL1,max =
Vdc

16fswL1
(D.3)

It may be verified that the current ripple at the grid-side of the LCL filter is approxi-

mately,

∆Ig,max = ∆IL1,max ·
1

|1 + L1
L2

(1− L1C(2πfsw)2) |
(D.4)

Assuming now that the inductance L2 of the step-up transformer is fixed at 6.4 %, the

overall attenuation achieved for different values of inductance L1 and the capacitor C can

be plotted as in figure D.2 an figure D.3 for two- and three-level converters respectively.

The figures show it is not possible to find a solution adhering to all constraints for either

two-level or three-level converter topology. It may also be verified that increasing L2

only makes the situation even worse.
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Figure D.2: Ripple attenuation as function of capacitance C for different sizes of
inductor L1, two-level VSC.

The topology of the converter used in Anholt’s turbines is not known, hence an assump-

tion must be made. It is therefore assumed that the converter has a 3-point neutral point
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Figure D.3: Ripple attenuation as function of capacitance C for different sizes of
inductor L1, three-level VSC.

clamped topology. Moreover, a trade off must be made to find a filtering solution out-

side of the suggested constrained area. Hence it is assumed the grid-side converter can

operate with a total inductance somewhat higher than 10 %. Due to the flexible power

factor operation of the converter, there is arguably some flexibility on the constraint

number three, which limits the size of the capacitor. The desired ripple attenuation of

the ripple to 2 % of the peak rated current can thus be achieved with the following sizing

of the LCL-filter components,

L1 = L2 = 0.064 pu, C = 11.21 pu, or x = 0.0892 where C = xCbase

The resonance frequency with these parameters is located at the 18.72 pu frequency.

A resistor of magnitude

Rd = 0.220 pu

can be installed in series with the shunt capacitor to provide damping of the filter

resonance. A resistor in series with the shunt capacitor is a rather crude way to provide

damping of the LCL filter resonance, in part due to high losses with such a solution.

Better performance can be achieved using active damping or by more sophisticated

passive filter design.

The chosen capacitor produces 0.0892 pu or 0.321 MVA reactive power. For high con-

verter power output the reactive power contribution from the capacitor is largely offset

by filter inductors. The power factor at the grid-side filter terminals can hence be

controlled by adjusting the power factor operation of the converter.
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More sophisticated filter design methods might reveal that better utilisation of the ca-

pacitance can be achieved by specifically targeting the carrier band harmonics which are

characteristic for a grid-tied voltage source converter. For example, an inductor might

be inserter in series with the capacitor to form an LC branch tuned to the first group of

carrier band harmonics, or several LC shunt branches might each be tuned to one group

of carrier band harmonics. Such solutions might allow for reducing the size of L1 and

C, hence finding a solution within the boundary of the constraints. Such considerations

are outside of the scope of this thesis.
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