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Summary

Viscous flow around circular cylinders is a classical research topic in fluid
dynamics with a vast amount of practical applications in the field of offshore
marine technology. In the flow around cylinders of finite length, complex wake
behaviours and coherent structures occur even at relatively low Reynolds
numbers. An understanding of the nature and dynamics behind such behaviour
could form a basis for improved designs and innovative solutions for offshore and
subsea constructions.

In the present study, flow around long finite cylinders at Re = 100 is investigated
numerically using the incompressible Navier-Stokes Equations solver MGLET. To
study the isolated flow near the free end, a cylinder with aspect ratio L/D = 50 is
chosen. The flow over the free end gives rise to a wake consisting of two vortex
shedding cells with different shedding frequencies; one small near the free end and
one larger in the central region of the span. It is found that each vortex shed in
the end cell bends horizontally and connects with the upstream vortex shed from
the opposite side of the cylinder. The horizontal vortex shedding is found to give
rise to a pair of trailing vortices in the time averaged flow.

When a vortex is shed with a large phase difference between the two cells, the
vortex is split and connects with other surrounding vortices. This phenomena is
commonly referred to as vortex dislocations and occurs with the beat frequency,
i.e. the difference between the two vortex shedding frequencies. It is found that
this frequency can be detected in time histories of u in the wake at the spanwise
centre.

A second configuration, consisting of a wall mounted cylinder with aspect ratio
L/D = 25 is simulated in order to study the effect of introducing a no-slip surface.
The effect on the end cell is found to be minimal, while the central cell shedding
frequency is reduced. Comparisons with published data on a cylinder with aspect
ratio L/D = 25 and two free ends shows that both the reduction of aspect ratio
and the introduction of the no-slip boundary condition contributes to the reduced
shedding frequency.



Sammendrag

Viskøs strømning rundt sirkulære sylindre er en klassisk problemstilling i
fluiddynamikken med mange praktiske anvendelser innen offshore teknologi. I
strømning rundt sylindere av endelig lengde oppstår komplekse fenomener og
koherente strukturer i vaken selv ved relativt lave Reynoldstall. En forståelse av
naturen og dynamikken bak disse fenomenene kan danne grunnlag for bedre
design og innovative løsninger for offshore og subsea konstruksjoner.

I den foreliggende studien er strømning rundt lange endelige sylindre med Re =
100 er undersøkt numerisk med den inkompressible Navier-Stokes ligningsløseren
MGLET. For å studere den isolerte strømingen nær den frie enden er en sylinder
med lengdeforhold L/D = 50 valgt. Den frie enden gir opphav til en vake bestående
av to celler med ulik virvelavløsningsfrekvens; en liten celle nær den frie enden og en
større i den sentrale regionen av spennet. Det er vist at virvelen avløst i endecellen
bøyes horisontalt og kobles sammen med oppstrøms virvel avløst fra motsatt side
av sylinderen. Den horisontale virvelavløsningen er funnet å gi opphav til et par
av følgende virvler gjennomsnittstrømmen.

Når virvlen blir avløst med stor faseforskjell mellom de to cellene, oppstår
virvelsplitting hvor hver ende og kobles med andre omkringliggende virvler. Dette
fenomenet er ofte referert til som virveldislokasjoner og oppstår med
beatfrekvensen, det vil si forskjellen mellom de to virvelavløsningsfrekvensene.
Denne frekvensen er observert i en tidsserie av u i vaken ved sylinderens
midtpunkt i lengderetning.

En annen konfigurasjon, bestående av en veggmontert sylinder med sideforhold
L/D = 25 er simulert for å studere effekten av å innføre en no-slip randbetingelse.
Effekten på endecellen er funnet å være minimal, mens virvelavløsningsfrekvensen
i den sentrale cellen reduseres. Sammenligninger med publiserte data på en
sylinder med lengdeforhold L/D = 25 og to frie ender viser at både reduksjon av
lengdeforhold og innføring av en no-slip randbetingelse bidrar til å redusere
virvelavløsningsfrekvensen.
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Chapter 1

Introduction

Viscous flow around a cylinder is a classic research topic in fluid dynamics and has
a vast amount of practical applications. In marine technology, typical applications
consists of the design of risers, pipelines and circular foundations. With the
appearance of the laminar von Karman vortex shedding at Re > 40 (Sumer and
Fredsøe [28]), the cylinder is subject to a harmonic cross flow force commonly
referred to as the lift force. As the Reynolds number increases and the wake
becomes turbulent, this lift force can become a severe challenge in engineering
design.

In the analysis of for example an offshore riser, the cylinder is typically studied as
either 2D or infinite. For many other applications, like industrial chimneys as an
onshore example and circular foundations as an subsea example, the cylinder are
of finite length and the boundary conditions are of interest. The introduction of
these boundary conditions, typically a free end and a no-slip wall, introduces new
flow phenomena which will be outlined in the sections to follow.

1.1 Vortex Dislocations and Oblique Shedding

The choice of boundary condition on the ends of a finite cylinder will affect the
vortex shedding along the cylinder. Williamson [31] did an extensive experimental
study of vortex shedding around finite cylinders and influence from the cylinder
ends. For 64 < Re < 178, he identified a central cell with shedding frequency fL
and a smaller cell near each end with shedding frequency fe < fL. Williamson
further reported that the end cell frequency fe can be detected at the middle of
the cylinder span for aspect ratios L/D < 45. This implies that for longer cylinders
the central region is not directly affected by the vortex shedding at the ends.

Williamson also showed, as shown in Figure 1.1, that vortices in central cell are
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shed with an oblique angle to the spanwise axis of the cylinder. This effect is
caused by the presence of the cylinder ends and influences the central cell even
for cylinder with spans of several hundreds diameters. As a result of the vortices’
obliqueness, the shedding frequency will be altered and Williamson proposes the
following relationship between the oblique shedding Strouhal number (Stθ) and the
parallel shedding Strouhal number (St0):

St0 =
Stθ

cos(θ)
, (1.1)

where θ is the oblique shedding angle.

Figure 1.1: Chevron shaped oblique vortex shedding pattern. Figure from
Williamson [31].

In the transition area between the two cells, Williamson observed a phenomena he
called vortex dislocations: Due to the different shedding frequencies in the cells, the
vortex shedding will at certain points in time be so much out of phase in the two
cells that the vortex will split and merge with other surrounding vortices. These
dislocations occur at the beat frequency between the two cells, i.e. at fD = fL−Fe.

1.2 Coherent Vortices

Much of the previous work on finite length cylinders have focused on identifying
coherent flow structures. These structures can, especially at high Reynolds
numbers, be difficult to identify by analysing instantaneous flow fields. The time
averaged flow field is instead commonly used to identify coherent flow structures.
Kawamura et al. [15] studied the flow around a finite wall mounted cylinder



1.2. Coherent Vortices 3

experimentally and gave an overview of the wake flow features which is shown in
Figure 1.2.

Figure 1.2: Overview of flow around wall mounted cylinder by Kawamura et al.
[15].

1.2.1 Horseshoe Vortices

Some of the early experimental studies of the flow around a wall mounted cylinder
was carried out by Baker [1, 2, 3]. He identified a horseshoe vortex system consisting
of multiple vortices originating from in front of the wall-cylinder junction. These
vortices wrap around the body moving downstream forming a U-shaped vortex
system. In the laminar case Baker [1] identified vortex systems with 2, 4 and 6
individual vortices for increasing Re.

1.2.2 Trailing vortices

Kawamura et al. [15] focused their experimental investigations on the free end of
a wall mounted finite cylinder. They identified two trailing vortices emerging from
the free end of the cylinder. For aspect ratios less than a critical ratio (L/D)cr
these vortices, in conjunction with the horseshoe vortex system, suppress the von
Karman vortex street.

It was suggested by Roh and Park [26] that there actually is four trailing vortices
originating from the free end. From visualisation experiments they drew two pairs
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of counter-rotating vortices, where each vortex pair contains one vortex originating
from the free end edge and one from the focal point at the free end surface.
This proposition has been disputed by Pattenden et al. [23], Palau-Salvador et
al. [21] and Krajnoviä [16] who all show that there is only a single pair of vortices
originating from the free end.

1.2.3 Arch Vortex

Pattenden et al. [23, 24] identified, experimentally and numerically, a pair of tip
vortices and an arch vortex in the near wake of a short wall mounted cylinder. This
is shown in Figure 1.3 as a schematic drawing by Pattenden et al.

Separation

Horseshoe vortex

Arch vortex

z

x

y

d
U∞

Tip vortex

Trailing vortex

Figure 1.3: Schematic overview of flow behind a short wall mounted cylinder from
Pattenden et al. [23].

Fröhlich and Rodi [7] showed that the tip vortices are joined together into the arch
vortex just below the free end. This is not shown in Pattenden’s figure, which
otherwise gives a good summary of the flow features around a low aspect-ratio wall
mounted cylinder.

1.3 Present Study

The present study undertakes the simulation and analysis of two finite cylinder,
one with two free ends and aspect ratio L/D = 50 and one wall mounted cylinder
with aspect ratio L/D = 25. These long aspect ratios are chosen to isolate the effect
of the free end and the wall-cylinder junction. Both cylinders are simulated at a
Reynolds number of 100 which is large enough to trigger vortex shedding, but still
low enough to result in a laminar wake.

The outline of this document is as following:

Chapter 1 (this chapter) gives an introduction to flow around finite cylinders and
the previous findings by other authors.
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Chapter 2 outlines the numerical method used for the simulations as well as post
processing techniques applied to the results.

Chapter 3 presents the setup and grids used for the simulations and the
background for the choices made, including a grid convergence study.

Chapter 4 presents and discusses the results from the simulation of the cylinder
with two free ends and L/D = 50.

Chapter 5 presents and discusses the results from the simulation of the wall
mounted cylinder with L/D = 25. Comparisons to the results for the cylinder
with two free ends and L/D = 50 are also made.

Chapter 6 finally summarises and concludes the findings and give
recommendations for further work.



6 Chapter 1. Introduction



Chapter 2

Theoretical Background

This chapter presents the theory used in the present study. Section 2.1 gives a
brief overview of the underlying theory used when simulating fluid flow in the
present study. Some of the methods used by the chosen code are novel methods
not commonly used in commercial codes and the advantages of these choices will
be discussed. Finally, an overview of the post processing techniques used will be
presented in Section 2.2.

2.1 Numerical Solution of the Navier Stokes
Equations

The three dimensional, time-dependent and incompressible Navier-Stokes equations
are to be solved:

∇ · u = 0 (2.1)
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u (2.2)

In the present study, the Direct Numerical Simulation (DNS) and Large Eddy
Simulation (LES) solver MultiGrid Large Eddy Turbulence (MGLET) (version
03-2011) by Manhart et al. [19] has been used in DNS mode. The following
sections will outline the methods used by MGLET. In the latest version of MGLET,
some of the underlying methods have been changed, which means that it differs
from what presented in the published literature. The changes and its implications
will be made clear at the appropriate place in the following sections.
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2.1.1 Spatial Discretization

For spatial discretization, MGLET uses the Finite Volume Method (FVM) where
Equation (2.1) and (2.2) take the following integral form for a control volume (Day
[5]): ∮

S

u · ndS = 0, (2.3)

∂

∂t

∫
V

udV +

∮
S

u(u · n) dS = −
∮
S

pndS +

∮
S

T̂ · ndS, (2.4)

where T̂ = ν
[
∇u + (∇u)

T
]
, dV denotes integration over the control volume and

dS denotes integration over the control surface.

For computational efficiency, MGLET utilises a non-equidistant Cartesian grid
with a staggered arrangement for the flow variables as shown in Figure 2.1. For
determining the cell face values of the velocities, linear interpolation is used while
for the spatial derivatives (∂u/∂x etc.) the central difference formula is used. This
combination does, according to Manhart [20], provide second order accuracy.

p(i,j) u(i,j)

v(i,j)

u(i+1/2,j)

u(i,j+1/2)

Figure 2.1: Staggered arrangement of flow variables from Manhart [20]. The solid
lines indicate the cell for the pressure and the dashed lines indicate the
velocity cell.

2.1.2 Temporal Discretization

MGLET uses the explicit third order Runge-Kutta scheme proposed by Williamson
[32] to advance the simulation in time with the following procedure (Gallardo
Canabes [10]). First, the pressure at the next timestep is found by solving the
Poisson equation for the pressure change ∆pn+1 = pn+1 − pn:

∇2(∆pn+1) =
ρ

2∆t
∇ · u∗, (2.5)
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where u∗ is the velocity at an intermediate timestep calculated using Equation (2.2)
with a time-lagged diffusion term from timestep n−1. Following Manhart [20], u∗

is given by

u∗ = un−1 + 2∆t

[
un · ∇un + ν∇2un−1 − 1

ρ
∇pn

]
(2.6)

The Poisson equation is solved iteratively with a divergence free velocity field, i.e.
satisfying Equation (2.1), being the goal. A timestep computation is considered
converged if the divergence of the velocity field is below a user set value ∇ ·u < ε.
Using superscript i as an iteration counter, one iteration comprises the following
three steps:

∆pi+1 = Ω
ρ

2∆t
· 1

1/∆x2 + 1/∆y2 + 1/∆z2
(2.7)

ui+1
j = uij + ∆pi+1 2∆t

∆xj
(2.8)

pi+1 = pi + ∆pi+1 (2.9)

Here, uj is the three velocity components at the cell faces and Ω is an overrelaxation
factor which is introduced in the pressure estimate (first step) to improve the
convergence properties.

2.1.3 Immersed Boundary Method

As previously mentioned, MGLET uses a non-equidistant cartesian grid for its
calculations. In order to introduce arbitrarily shaped solid bodies into the
simulation, an Immersed Boundary Method (IBM) is applied: The body’s no-slip
boundary condition is transformed onto the grid by applying internal cell
boundary conditions at the intersecting cells (Peller et al. [25]). For the
intersecting cells, the velocities are prescribed (Dirichlet boundary condition)
using interpolation with the surrounding cells and the intersecting no-slip
condition. Figure 2.2 shows a 1D example where the following formula can be
used to determine one of the velocity components in the intersecting cell, φ0:

φ0 =

N∑
i=1

(αi · φi) + αr · φr (2.10)

Here, α are the interpolation coefficients, N is the number of neighbouring cells
used for the interpolation and subscript r denotes the values at the wall. An
interpolation scheme of high order (i.e. large N), typically third or fourth order,
is used to avoid requirements of an extremely fine grid near the body. Peller et al.
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[25] further demonstrated that the interpolation coefficients (αi and αr) are only
dependent on the geometry, i.e. xr and xi. This is a huge advantage in terms of
efficiency because the coefficients can then be calculated in a pre processing step
before the simulation.

Blocked cell
at interface

part of 
triangle

φ
1

φ
2 φ

3

x
r

φ
r

φ
0

Blocked cell

Fluid cell
X

X

x1 x2 x3x0

triangle intersection point
interpolated boundary condition

Figure 2.2: 1D interpolation near a no-slip boundary condition using the Immersed
Boundary Method (IBM). Figure from Peller et al. [25].

To extend the IBM interpolation scheme into three dimensions, Peller et al. [25] used
Equation (2.10) separately in three directions. The value of φ for each direction
is then weighted according to a formula dependent on each direction’s distance
between the cell centre and the body intersection point.

This method outlined by Peller et al. [25] is the exact method used in older versions
of MGLET. Due to issues with mass conservation, the method has been modified
in the later version of MGLET which has been used in the present study (personal
communication, Gallardo Canabes [8]). The new version does not use the same high
order interpolation schemes described above, and it incorporates a flux correction
to avoid mass imbalance.

The use of IBM makes MGLET able to simulate a vast range of fluid flow cases using
a non-equidistant cartesian grid. Compared to more conventional methods that
use a body-fitted grid, Manhart et al. [19] suggests that using a cartesian grid can
reduce the Central Processing Unit (CPU) and memory usage between 10 and 30
times. This in turn allows for increased resolution and pushes the limits of what
Re is practically possible to simulate on the available hardware.

2.1.4 Parallelization

While the computing power of CPU units are ever increasing, simulating viscous
flow in a large domain using a serial code is generally not feasible. As for any other
computational intensive task, the prevailing strategy is to run the calculations
on multiple units. Thus, an important part of any modern Computational Fluid
Dynamics (CFD) code is the ability to run efficiently in parallel.

MGLET was originally a serial code, but has lately been redesigned to run efficiently
on massively parallel High Performance Computing (HPC) clusters. This is done
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by dividing the computational grid into several smaller grids where each subgrid is
treated in a serial manner (Manhart et al. [19]). This technique is called domain
decomposition and is described by, among others, Winkelmann et al. [33]: Each
subgrid is surrounded by a “halo” of cells corresponding to cells in the neighbouring
subgrids. These have the flow variables from the surrounding subgrids and is
updated at the appropriate times during the computation. A timestep for a single
subgrid can thus be computed independently with the halo cells as boundary
condition.

2.2 Post Processing Techniques

2.2.1 Vortex Identification with the λ2-Criterion

One of the main goals of the present study is to analyse the vortex structures that
form in the wake of a finite cylinder. There are several methods for visualising
vortices in a flow field, one being the λ2-criterion proposed by Jeong and Hussain
[12]. The method divides the velocity gradient tensor ∇u into a symmetric part
(S) and an antisymmetric part (Ω):

S =
1

2

(
∇u +∇uT

)
(2.11)

Ω =
1

2

(
∇u−∇uT

)
(2.12)

The three eigenvectors of S2+Ω2 is then found and named such that λ1 ≥ λ2 ≥ λ3.
Jeong and Hussain show that vortices then can be identified by areas of negative
λ2 and provide several test cases to show the method’s usability. In principle,
anything inside an isosurface of λ2 = 0 is identified as a vortex. To obtain more
descriptive figures it is found more practical to plot an isosurface with a slightly
negative λ2 as this often reveals smaller details.

2.2.2 Analysis of Wake Fluctuations

To estimate the cell vortex shedding frequencies and other fluctuations occurring
in the wake, a line of points can be placed in the wake in order to monitor the
velocities u, v and w as well as the pressure p over time. The time series of a
velocity or pressure signal at each point can then be analysed using Fast Fourier
Transform to identify dominant frequencies. For one or a few points, the peaks
in the frequency spectrum can be identified efficiently by manually inspecting the
graph and extracting the frequencies from the data set. Doing this manually can
indeed in many situations be more precise than using a computer algorithm because
the human brain can see the data in a context that the computer generally cannot
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and thus “filter out” certain peaks as noise. For a large amount of points however,
this quickly becomes an unfeasible manual task in which case some sort of computer
algorithm should be utilised.

The simplest form of peak detection is to search for points in the signal where both
neighbouring points have a smaller value than the point itself. This will however
detect every single peak which includes noise and low power peaks. Instead, the
following method is proposed:

Considering a variable ϕ(x, y, z, t) which is sampled with regular intervals in time
at several points (x0, y0, z) in space. The frequency spectrum for the signal of
ϕi at a single point (x0, y0, zi) can be found using Fast Fourier Transform and
is denoted |Yi(f)|. Instead of finding every single peak as discussed above, the
code made publicly available by Billauer [4] is used. For a point to qualify as a
peak using this algorithm, the height difference between the point and a point in
its neighbourhood must be larger than a prescribed value ∆. This means that
between each detected peak there must be a valley lower than ∆ from the smaller
of the two peaks. This should eliminate noise and less dominant peaks. The peak
detection is then repeated for all zi.

The results of this method will depend on the choice of ∆ which there is no exact
rule for. After some trial and error in conjunction with manual inspection of some
frequency spectra it was found that ∆ = 0.02 seems to detect most of the important
peaks, however, this will vary for different use cases.

2.2.3 Force Coefficients

MGLET calculates the global forces acting on the body flow is simulated around.
From the force history of the stable part of a simulation, the drag coefficient is
calculated from the average of the force in x-direction:

CD =
Fx(t)

1/2ρU2∞LD
(2.13)

The coefficient of the drag force amplitude is the difference between the maximum
and mean drag force:

CD,amp =
maxt Fx(t)− Fx(t)

1/2ρU2∞LD
(2.14)

The lift coefficient is calculated using the maximum value of the force in y-direction:

CL =
maxt Fy(t)
1/2ρU2∞LD

(2.15)



Chapter 3

Computational Setup

This chapter discusses the grid and simulation parameters used in the present study.
First, a set of 2D simulations which have been used to determine an adequate
domain size and grid spacing are presented. Using these simulations as a basis, the
grid is then extended into two 3D grids which have been used for the simulations
presented in the next chapters.

All simulations carried out in the present study is on Re = 100. This is achieved
in MGLET by setting the inflow velocity (U∞), the cylinder diameter (D) and the
fluid density (ρ) to unity. The Reynolds number is then given by

Re =
ρUD

µ
=

1

µ
. (3.1)

Thus, Re = 100 can be achieved by setting the fluid viscosity (µ) to 0.01.

3.1 Domain Size

When simulating external, flow the choice of domain size is important as it should
be large enough not to cause blocking effects. When simulating flow around a
cylinder there are two domain dimensions of particular interest: The distance
from the inlet to the cylinder and the distance between the domain sides and the
cylinder. In Figure 3.1, which presents the domain schematically, these dimensions
are denoted X1 and Y1 respectively.

To determine an adequate domain size in terms of X1 and Y1, simulations were run
on a fine grid (∆x = 0.01 near the cylinder) with different choices of X1 and Y1.
The same fine grid will later be used for the grid dependence study as the case with
the finest grid sizes. While this increases the computation time for the blockage
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X1 X2 X3

Y1

Y2

Y1

D

Figure 3.1: Domain sizes for flow around 2D cylinder. The same domain is
extended in z-direction for the 3D simulations.

study, it does ensure that the grid size does not affect the results significantly.

The following parameters are measured over a period of time after the simulation
has reached a steady state:

• St: The Strouhal frequency is determined using Fast Fourier Transformation
of the lift force signal.

• Stx: The non-dimensionalised drag force frequency is found using Fast Fourier
Transformation.

• CL: The lift calculated as specified in Section 2.2.3.

• CmaxD : The maximum drag coefficient is found using the overall maximum
value of the drag force.

The convergence of a variable φ for a simulation i is then determined by

Convergenceφi
=

∣∣∣∣ φiφn − 1

∣∣∣∣ , (3.2)

where n denotes the assumed best simulation, i.e. the simulation with the finest
grid or the largest domain. This means that the convergence for the assumed best
simulation by definition is zero. For other simulations, a value close to zero will
indicate that the simulation has good accuracy compared to the assumed best.

All the previously mentioned variables which are calculated for each simulation use
the forces acting on the cylinder as a basis. The forces are calculated by integrating
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the pressure and shear stress on the body, which in itself can lead to inaccuracies.
Ideally some non-integrated variables, like the cross flow velocity at a point in the
wake, should also have been analysed in order to give a better overall impression
of the convergence. The velocities at different points in the wake were indeed
measured during the simulations but proved problematic to export afterwards and
had to be omitted.

Table 3.1 and Figure 3.2 show the results for different values of X1. While the
values of the frequency parameters are relatively inaccurate for short X1, they
quickly converge to the same number with larger accuracy than shown in Table 3.1.
On the other hand, the lift and drag coefficients converges slowly and even when
going from X1 = 16 to X1 = 18 there is still some change. Force calculations are
however not the main goal of the present study so X1 = 16 is chosen.

Table 3.1: Effect of distance between inlet and cylinder, X1, on lift and drag.

X1 Y1 St Stx CL Cmax
D

4 7 0.1800 0.3600 0.3553 1.4780
6 7 0.1744 0.3488 0.3575 1.4326
10 7 0.1800 0.3400 0.3392 1.4045
16 7 0.1735 0.3367 0.3392 1.3980
18 7 0.1739 0.3369 0.3402 1.3956
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Figure 3.2: Convergence of 2D cylinder case against distance between inlet and
cylinder, X1.

Using X1 = 16, the value of Y1 was varied as shown in Table 3.2 and Figure 3.3.
Here, all the parameters converge for Y1 = 10 which is thus chosen for use in the
final grid. This corresponds well with Zdravkovich [34, Chapter 23] who states that
the blockage effect for a cylinder near a wall may be ignored if the gap B/D > 10. In
his case, the boundary is a no-slip wall compared to a free-slip wall in the present
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simulations, which means that this choice should be large enough to avoid blockage
effects.

Table 3.2: Effect of distance between domain side and cylinder, Y1, on lift and drag.

X1 Y1 St Stx CL Cmax
D

16 7 0.1735 0.3367 0.3392 1.3980
16 10 0.1714 0.3428 0.3323 1.3747
16 14 0.1714 0.3428 0.3323 1.3747
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Figure 3.3: Convergence of 2D cylinder case against distance between domain side
and cylinder, Y1.

3.2 Grid Dependence Study

With the domain dimensions established, the grid dependence can be studied
to chose a suitable grid spacing for the simulations. The grid spacing on the
boundaries are kept approximately constant while the grid spacing around the
cylinder (∆x) is varied. The cells around the cylinder are made square so that
∆y = ∆x.

All of these simulations are run at the same time step, ∆t = 0.002 which was
necessary for the case with ∆x = 0.01 to converge. This was not necessary on the
coarser grids, but the same time step is used in all simulations to limit the amount
of variables changed between each simulation.

As seen from Table 3.3 and Figure 3.4, all the chosen parameters have converged,
with two digits precision, when ∆x = 0.02. Using such fine grid will however lead
to long computation times since the computation time generally follows O(N3),
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where N is the number of cells. A grid spacing of ∆x = 0.05 was chosen as a trade-
off between computational time and accuracy. Looking at Figure 3.4 however,
choosing ∆x = 0.04 or less would probably be better as the parameters are still
varying with the grid size.

Table 3.3: Effect of grid spacing (∆x) near cylinder on lift and drag.

∆x St Stx CL Cmax
D

0.10 0.1600 0.3200 0.2571 1.3371
0.05 0.1750 0.3250 0.3056 1.3683
0.02 0.1714 0.3428 0.3302 1.3740
0.01 0.1714 0.3428 0.3323 1.3747
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Figure 3.4: Convergence of 2D cylinder case for different grid spacings, ∆x, near
cylinder.

Due to the low time step used in these simulations, the Courant–Friedrichs–Lewy
(CFL) number is generally well within what is necessary for the numerical method
to be stable. For the 3D simulations, the time step is increased to ∆t = 0.01 which
is still found to give sufficient CFL numbers. Table 3.4 compares results for the 2D
cylinder using both time steps and while some change in the measured parameters
are observed, the increased time step seems justifiable.

Kravchenko et al. [17] studied the flow around a 2D cylinder at Re = 100 and
provided an extensive convergence study for several parameters which is compared
to the present study in Table 3.4. The present results show generally larger values
compared to their results, but no major differences are seen.
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Table 3.4: Comparison of 2D cylinder results with different time steps to results
from Kravchenko et al. [17].

Author Case St CL Cmax
D

Kravchenko et al. [17] 0.1640 0.3140 1.3140
Present study ∆t = 0.002 0.1714 0.3323 1.3747

∆t = 0.01 0.1700 0.3056 1.3684

3.3 Three Dimensional Grid

Two different cases are simulated in the present study; the first being a cylinder
with two free ends and L/D = 50 and the second being a wall mounted cylinder with
L/D = 25. By utilising a symmetry boundary condition, which will be discussed
in the next section, the same computational domain is used for both cases. For
the wall mounted cylinder, the grid near the wall has been refined to resolve the
boundary layer.

One of the objectives of the present study is to investigate the isolated effect of
the free end. To achieve this it is necessary that the cylinder is long enough for
the two ends not to interfere. As previously mentioned, Williamson [31] found that
the central areas of a finite cylinder are not directly influenced by the ends when
L/D > 45. If the central area of the cylinder span is not directly influenced by the
ends, it is not unreasonable to apply a symmetry condition at the middle of the
cylinder. This was done by Inoue and Sakuragi [11] for L/D ≥ 50 and the same
setup is chosen here for the cylinder with two free ends and L/D = 50.

The distance between the free end of the cylinder and the top of the simulation
domain is set to be 5.5D long. This is approximately the same as used by Palau-
Salvador et al. [21]. Krajnoviä [16] and Inoue and Sakuragi [11] on the other hand,
used a gap of 16D and 30D respectively so it is likely that this choice will cause
blocking and affect the results.

Figure 3.5 shows every fourth grid line in the xy plane, where the domain
dimensions and grid spacing obtained in the previous sections have been used.
Similarly, Figure 3.6 shows every fourth gridline in the xz plane for the cylinder
with two free ends and L/D = 50. In the central regions of the cylinder span, the
vertical velocities behind the cylinder are expected to be low compared the
velocities in x and y directions. The grid spacing can thus be relaxed in this
region and a spacing of ∆z ≈ 0.1 is chosen at z = 0. Near the free end, where the
vertical velocities are expected to increase due to the flow over the free end, grid
spacing is gradually decreased down to ∆z = 0.05. Figure 3.7 shows every fourth
gridline in the xz plane for the wall mounted cylinder. The grid is the same in
this plane as for the cylinder with two free ends, with the exception of a refined
region of ∆z = 0.05 near the wall boundary at z/D = 0. Above this region, the
grid spacing is gradually relaxed up to ∆z ≈ 0.1 like for the cylinder with two free
ends.
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Figure 3.5: Slice of computational grid in xy plane.
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Figure 3.6: Slice of computational grid for cylinder with two free ends and L/D = 50
in xz plane.

The grids used in the present study are very fine and the performance could
probably have been improved significantly without influencing the accuracy. Both
grids have 388 · 132 · 388 ≈ 19.87× 106 cells, including two layers of extra cells
outside the domain used by MGLET for enforcing boundary conditions. To reduce
the total number of cells, ∆z in the central regions of the cylinder span could be
relaxed further. Also, the grid resolution in the cylinder wake is very fine compared
to the large scale wake structures occurring at Re = 100.
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Figure 3.7: Slice of computational grid for wall mounted cylinder with L/D = 25 in
xz plane.

3.4 Boundary Conditions and Initial Conditions

There are two types boundary conditions used in a CFD simulation; a Dirichlet
condition, where the value of one or more of the flow variables (u, v, w and p)
is prescribed and a Neumann condition, where the derivatives are prescribed. To
be able to solve the governing equations, a boundary condition has to be applied
for each flow variable at the boundaries. Each of the sides in the rectangular
computational domain and their corresponding boundary condition are listed in
Table 3.5.

Table 3.5: Summary of boundary conditions applied at the domain sides. “Case 2”
denotes the simulation with a wall mounted cylinder.

Boundary Type Dirichlet Condition Neumann Condition

Upstream end Inlet u = U∞i ∂p/∂x = 0
Downstream end Outlet p = 0 ∂u/∂x = 0
Vertical sides Free-slip v = 0 ∂u/∂y = ∂w/∂y = ∂p/∂y = 0

Top side, bottom side Free-slip w = 0 ∂u/∂z = ∂v/∂z = ∂p/∂z = 0
Bottom side, case 2 No-slip u = 0 ∂p/∂x = 0

The cylinder with two free ends and L/D = 50 is modelled with a symmetry
condition at z/D = 0. This is done by setting the boundary condition at the
bottom side to a free-slip wall in MGLET. Since a free-slip wall allows no fluid to
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pass through, but allows the fluid to flow along the surface, a free-slip surface and
a symmetry plane is two names for the same boundary condition.

In addition to a set of boundary conditions, it is necessary to define an initial
condition for each cell. This is done automatically by MGLET by setting each
variable to zero in each cell.
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Chapter 4

Results and Discussion:
Cylinder with Two Free Ends

The results presented here were obtained by simulating a cylinder with two free ends
as described in Section 3.3. From the initial conditions, the simulation was first
run until it reached a steady state. After reaching a steady state, the simulation
was run for several shedding periods to obtain the time series and statistics used
in this chapter.

Instantaneous flow field data were sampled every second from a time series of
τ = 30. Unfortunately, MGLET does only support exporting flow field data at the
end of a simulation and not at certain time steps during the run. To obtain a time
series of flow fields MGLET’s restart facility was utilised. A series of τ = 1 (flow
time) long simulations were run and the flow field was exported. The flow field
from the previous simulation was then used to initialise the next simulation. This
procedure was repeated programatically 30 times resulting in a sequence of 30 flow
fields. Scripts, input files and additional visualisations for these simulations can be
found in the electronic appendix (see Appendix A.1 for an overview).

4.1 Vortex Shedding Pattern

To give an overview of the wake structure, an isosurface of λ2 for a time instant is
shown in Figure 4.1. The upper half of the vortex shedding pattern that Williamson
[31] described as a chevron shaped pattern can clearly be observed from the plane
of symmetry and up. Downstream of the cylinder, in the end cell, the vortices are
bent horizontally and through the y = 0-plane. This part of the vortices have a
shape that is similar to one of the halves of a hairpin vortex which for example
Johnson and Patel [13] observed in the flow behind a sphere. The same kind of
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hairpin vortices was also observed by Inoue and Sakuragi [11] behind a cylinder
with L/D < 10 at Re = 100. It is also observed that these vortices propagate
downstream a distance below the free end, which means that the vortex shedding
is suppressed in the part of the span nearest the free end.

Figure 4.2 shows the same λ2-isosurface with a top-down view. From this view,
one can see that each horizontal part of the vortices overlap the tail of the
preceding vortex. In this region, a clockwise rotating vortex is connected with a
counterclockwise vortex as shown more clearly in Figure 4.3. The
counterclockwise vortex also extend backwards and the same pattern occurs again
on the other side of the y = 0 plane. This corresponds well with Helmholtz’s
second theorem for an invicid fluid (see e.g. Kambe [14, Chapter 7]):

A vortex filament cannot end in a fluid; it must extend to the boundaries
of the fluid or form a closed path.

Helmholtz’s second theorem is not strictly true for a real fluid because vortices
many dissipate due to viscosity, but it is useful as an approximate explanation of
phenomenas in low-Re flows (see e.g. Dunn and Tavoularis [6]). In this case, two
oblique vortices extend from the z = 0 plane and connect in the end cell. Due to
the symmetry boundary this essentially means that there is a vortex core forming
a closed loop between the two free ends of the cylinder. Since each vortex connects
with its upstream counterpart, a chain of vortex loops are formed and this is drawn
schematically in Figure 4.4.

Close to the downstream end of the domain in Figure 4.1, it is observed that a
counterclockwise vortex has split in the central cell and connected with a clockwise
vortex. Although not shown here, snapshots from earlier in the sequence show that
the splitting of this vortex was present when it was further upstream as well. This
is the phenomena referred to by Williamson [31] as vortex dislocations and will be
discussed further in Section 4.5.
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z=25

z=0

x=0 x=35.25

Figure 4.1: Isosurface of λ2 = −0.01 for cylinder with two free ends and L/D = 50.
The semitransparent cyan plane is located at y = 0 to give an indication
of the vortex location in y-direction. U∞ flows along positive x-axis and
symmetry plane (z = 0) is at the bottom of the figure.

Figure 4.2: Top view of λ2 = −0.01 isosurface for cylinder with two free ends and
L/D = 50.
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Figure 4.3: Isosurface of λ2 = −0.01 showing closeup of overlapping horizontal
vortex filaments. The black circle shows the connection between the
clockwise and the counterclockwise vortex.

x

y
z

Figure 4.4: Schematic description of vortex shedding from a cylinder with two free
ends. Blue lines indicate clockwise vortices shed from the positive y side
of the cylinder, red lines indicate counterclockwise vortices shed from
the positive y side of the cylinder and black lines indicate the horizontal
parts of the vortices connecting the horizontal vortices together. Note
that the vertical and horizontal lines are not to scale.
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4.2 Flow Over Free End

From simulations on high Re, Pattenden et al. [23], Palau-Salvador et al. [21] and
Krajnoviä [16] all identified a separation bubble above the free end of the cylinder.
As seen in Figure 4.5, which shows in-plane velocity vectors in the y = 0 plane,
this is not the case at Re = 100. Here, the fluid flows in a laminar boundary layer
above the free end, and no separation occurs.

Above the cylinder there is a region where the horizontal velocity rapidly increase
towards a maxima before gradually decreasing toward U∞. This is better seen in
Figure 4.6, which shows the u-velocity profile at the cylinder centre. The shape
of the velocity profile is similar to the profile perpendicular to the cylinder wall
which also reaches a maximum close to the wall before approaching U∞. From
Figure 4.6 it should also be noted that at the domain boundary (the top of the
figure), u 6= U∞ which means that blocking effects could influence the results.
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Figure 4.5: In-plane velocity vectors in the y = 0 plane around the free end.

From Figure 4.7, which shows contours of u in the y = 0 plane near the fee end, it
can be observed that the distance from the cylinder to the u maxima is increasing
along the cylinder diameter. While this is by no means a regular Blasius boundary
layer (see e.g. White [29]), it shares the same basic principle that its height increases
as the distance from the upstream end of the cylinder increases.
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Figure 4.6: Horizontal velocity profile above the centre of the cylinder free end. The
position of the maximum is marked with a circle and its coordinates.
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Figure 4.7: Contour of u near cylinder free end.
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4.3 Arch Vortex

As discussed in Section 1.2.2, other authors have identified an arch vortex in the
mean flow behind the cylinder at higher Re. At Re = 100, this vortex does also
appear clearly in the instantaneous flow. Its centre is at the cylinder centreline,
which is shown in Figure 4.8, from which it extends down in two oblique arms
behind the cylinder. Comparisons between visualisations using the instantaneous
flow field and visualisations using the mean flow field show that the arch vortex
centre is stationary.
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Figure 4.8: Arch Vortex centre

The arch vortex is a fairly weak vortex which makes it difficult to visualise using the
λ2-criterion. Several values of λ2 were tried in order to visualise the vortices near
the free end, but no satisfactory result were obtained. The λ2-criterion performs
well visualising the large and strong vortices, but it seems that these vortices
dominate the results leaving the arch vortex difficult to identify. Streamlines were
found to be the best method to visualise the arch vortex, however care should be
taken when placing the initial points in order to achieve a good result.

Figure 4.9 shows a sequence of approximately one cycle of vortex shedding from the
free end starting with τ ′ = 0. The arch vortex is visualised with blue streamlines
emitted from the sides of the cylinder at (x, y) = (0,±0.5D) and red streamlines
emitted from the back of the cylinder at (x, y) = (0.6D,±0.1D). λ2 is used to
visualise the vortex shedding in the end cell which encapsulates the arch vortex.
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Starting at τ ′ = 0, an end cell vortex is being shed from the negative y side of
the cylinder (the same side as the viewpoint). From τ ′ = 0 to τ ′ = 2, this end
cell vortex moves further downstream and the blue streamlines from the negative y
side as well as all but one red streamline follows the vortex downstream. At τ ′ = 4
the same end cell vortex is about to detach from the cylinder’s free end and the
streamlines have moved back close to the cylinder. All but one red streamline have
now moved to the other side of the cylinder and is about to follow the end cell
vortex shedding from the positive y side of the cylinder. These visualisations show
that both arch vortex arms persist during the whole free end shedding cycle, but
with varying strength depending on which side a vortex is shed from.
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(a) τ ′ = 0 (b) τ ′ = 2

(c) τ ′ = 4 (d) τ ′ = 6

Figure 4.9: Arch vortex visualised by streamlines. Four blue streamlines are
emitted from each side of the cylinder at (x, y) = (0,±0.5D), three
red streamlines are emitted from (x, y) = (0.6D, 0.1D) and three from
(x, y) = (0.6D,−0.1D). All streamlines are emitted within the range of
24.4 ≤ z/D ≤ 24.9. The isosurface of λ2 = −0.01 is shown in yellow and
made semitransparent near the free end to show the streamlines. Some
velocity vectors are rendered above the free end to give an impression
of the flow direction. Non-dimensionalised flow time relative to the
first image is shown below each image.
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4.4 Mean Flow Field

The time averaged flow field, or mean flow field, is helpful to identify coherent
structures in an unsteady flow. Periodic structures like the oblique vortex shedding
identified earlier in this chapter will not appear in these results, but other authors
have identified mean wake structures like a pair of trailing vortices behind the free
end (see Section 1.2) for higher Re.

Using the λ2-criterion, Figure 4.10 shows a pair of trailing vortices emerging in the
near wake at a few diameters below the free end. The trailing vortices appear to
be weak compared to the oblique vortex shedding and a value of λ2 = −0.005 was
necessary to visualise the whole vortex compared to λ2 = −0.01 which was used in
Section 4.1.

The trailing vortices are located in the end cell of the cylinder and are caused by
the nearly horizontal part of the vortices shed from the free end. This is seen
clearly in Figure 4.11 where an isosurface of the mean λ2 is superimposed over
λ2 for the same time instant as in Figure 4.1. Here, the position trailing vortices
can be observed to be in the region where the end cell vortices bend over to being
approximately horizontal.

z=25

z=0

x=0 x=35.25

Figure 4.10: Isosurface of λ2 = −0.005 for cylinder with two free ends and L/D = 50
showing a pair of trailing vortices emerging from a distance below the
free end.
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z=25

z=0

x=0 x=35.25

Figure 4.11: Isosurface of mean λ2 = −0.005 (yellow) superimposed over an
isosurface of instantaneous λ2 (gray) for cylinder with two free ends
and L/D = 50. Note that for consistency in the figure, a value
of λ2 = −0.005 is used for the isosurface of the instantaneous
isosurface and not λ2 = −0.01 which was used in previous figures
of instantaneous λ2.

Below the trailing vortices, another pair of streamwise vortices are identified by the
λ2-criterion with no apparent connection to any other vortices. Comparing with
the instantaneous vortices in Figure 4.11, it is not certain what is causing these
vortices, as no clear horizontal vortices can be seen in this region. Figure 4.12 show
streamlines of the secondary flow, i.e. streamlines using v and w, in the x/D = 12
plane. Investigating these streamlines, the trailing vortices can be observed clearly
inside the region predicted by the λ2-criterion. No clear vortex can however be
identified below the trailing vortices from the secondary flow streamlines. There is a
region of streamwise vorticity where the λ2-criterion identifies vortices, but from the
secondary flow streamlines it appears to be more like a part of the trailing vortices
than a separate pair of vortices. By investigating the secondary flow streamlines
only, it is thus tempting to conclude that there is just one single pair of trailing
vortices slightly larger than predicted by the λ2-criterion and no separate pair of
vortices below these.

The two methods used here for visualising the vortical structures in the mean
wake give results that is to some extent contradicting. While the λ2-criterion is a
very specific and well tested criterion for identifying vortices, plotting streamlines
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is closer to the basic physics of the flow. The results when using streamlines is
however influenced by the choice of initial points and the number of streamlines
which could lead to biased results. From the results in the present study it is neither
certain whether a pair of streamwise vortices do exist under the trailing vortices,
nor if the λ2-criterion performs badly in this case. To give a certain answer to
this, the case should be studied in more detail and other methods for identifying
vortices should be tested.

Below the trailing vortices, near the bottom of Figure 4.12, another pair of
vortices can be observed. Looking at the streamwise vorticity, these vortices are
weak compared to the trailing vortices and when using λ2 = −0.005 they were
not identified using the λ2-criterion. When using even lower values of λ2 some
structures appear in this region, but the results appear very noisy at this point
and is not shown here. From the vertical position of these vortices they appear to
be originating from the vortex dislocations, which are further discussed in
Section 4.5. Since the vortex dislocations occur at a very low frequency, this
corresponds well with the low mean streamwise vorticity.

Figure 4.12: Isosurface of mean λ2 = −0.005 shown behind secondary flow
streamlines at x/D = 12.

Figure 4.13 shows the mean arch vortex, visualised by streamlines, which is
symmetric about the y = 0 plane. Due to the periodic motion of the
instantaneous arch vortex (shown in Figure 4.9), the vortex arms appear with an
angle out from the cylinder.

Behind the cylinder and near the free end, a region of downwash occurs. This can
be seen in Figure 4.14, which show contours of w in the y = 0 plane behind the
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Figure 4.13: Mean arch vortex visualised by streamlines.

cylinder. The appearance and behaviour of the mean trailing vortices is believed
to be heavily influenced by this downwash (see e.g. Krajnoviä [16]). Although
not shown here, the horizontal part of the vortices shed from the end cell, and
thus the mean trailing vortices, appear below the region with minimum w. From
these observations it seems like the downwash behind the free end is causing the
suppression of vortex shedding near the free end.
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Figure 4.14: Contour plot of mean w in the y = 0 plane for a cylinder with two
free ends and L/D = 50. Behind the free end, a downwash area can
be observed.

4.5 Spanwise Variation of Wake Fluctuations

The method for estimating wake fluctuations as described in Section 2.2.2 was used
on a τ = 8200 long data set with several lines placed in the wake. The points were
placed from z/D = 0 to z/D = 26 and with a spacing of 0.25D.

Figure 4.15 shows a part of the time series obtained at a line placed in (x, y) =
(3D, 0.25D) for the four variables. This position in was chosen because it is close to
the cylinder, approximately in the region where the vortices propagate downstream
and should because of this capture the vortex shedding features well. The oblique
vortex shedding is clearly shown as fluctuations in all four variables appearing
bent to the right in the plots. All four plots also clearly show vortex dislocations
appearing regularly at around z/D ≈ 15. The dislocations can be seen most clearly
in the plot of u/U∞ as regions of negative velocity and in the plot of v/U∞ as regions of
velocities close to zero. In the plot of v one can also see that the vortex dislocations
occur because the shedding angle in the region between z/D = 15 and z/D = 20
becomes so large that the vortex splits causing the low v-velocity region. As time
advances the phase difference increases and for the fourth region of positive v-
velocity counting from τ = 0 at z/D = 0, the v-velocity above and below the
dislocation is completely out of phase. After this point in time the phase difference
decreases as the end cell vortices catch up with the central vortices in front which
finally shed as a continuous spanwise vortex.
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The detected frequency peaks for the four variables at (x, y) = (3D, 0.25D) are
shown in Figure 4.16. Each point is coloured by the corresponding power from the
frequency spectrum. For the u- and w-signals, the dislocation frequency is clearly
shown. It is however not detected in the v-signal even though some disturbance
can be seen in the time sequence shown in Figure 4.15.

The central cell shedding frequency can be clearly observed starting at z/D = 0 and
extending up to z/D ≈ 18 in all four variables. This also applies for the end cell
shedding frequency which is detected between z/D ≈ 12 and z/D ≈ 22. More exact
estimates of the area influenced by the cells could be given, but depending on what
powers are regarded as influencing, there are large uncertainties. It is for example
likely that there is a peak at the end cell shedding frequency for z/D < 12 which
has not been detected due to the choice of ∆ (see Section 2.2.2). In the transitional
area between the two vortex shedding cells, a frequency close to each of the cell
frequencies has been detected. The lower one is a beat frequency lower than the
end cell frequency and the higher one is a beat frequency higher than the central
cell frequency. These occur due to interaction between the different fluctuations in
this region.

In addition to the previously discussed frequencies, two higher frequencies are
detected over a significant z-range in more than one of the variables. These
frequencies are, as shown in Figure 4.16, denoted St1 and St2 in
non-dimensionalised form. As seen in the 2D convergence study (see Table 3.3),
the drag force on a cylinder fluctuates with a frequency twice the size of the
vortex shedding frequency. This corresponds well with St1 and St2 which are
found to be very close to twice the end cell frequency and the central central cell
frequency respectively.

Table 4.1 summarises the findings discussed in the previous paragraphs and provide
numerical values for the frequencies. Inoue and Sakuragi [11] and Williamson [31]
measured the central and the end cell shedding frequencies and these are shown in
comparison to the present results in Table 4.2. Williamson measured the shedding
frequencies on cylinders with L/D > 140, but both he and Inoue and Sakuragi
found very small variations in frequency when increasing the aspect ratio. The
present results compare well with these results and is placed in between the previous
findings.

Table 4.1: Summary of wake frequencies for cylinder with two ends. The estimates
of spanwise extent are based on results presented in Figure 4.16.

Parameter Value [-] Connection Spanwise extent

StD 0.0232 = StL − Ste z/D ∈ [10, 18]
Ste 0.1341 z/D ∈ [12, 22]
StL 0.1573 z/D ∈ [0, 18]
St1 0.2683 ≈ 2Ste z/D ∈ [16, 21]
St2 0.3134 ≈ 2StL z/D ∈ [0, 13]
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Figure 4.15: Time series, from the top down, of u, v, w and p at (x, y) = (3, 0.25)
and z ∈ [0, 26].
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Figure 4.16: Detected frequency peaks in u, v, w and p. The detected points are
coloured by the corresponding power.
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Table 4.2: Comparison of central and end cell shedding frequencies from different
studies. Values from other authors are approximate. The results from
Williamson [31] are measured on cylinders with L/D > 140.

Author Method Ste [-] StL

Williamson [31] Experimental 0.142 0.160
Inoue and Sakuragi [11] CFD 0.128 0.150

Present study CFD 0.1341 0.1573

The peaks shown in Figure 4.16 is, as previously discussed, detected algorithmically
and the algorithm might not detect all the peaks. To verify the results, spectra
at selected z/D have been inspected manually. Figure 4.17 shows selected time
series and spectra for v and contrary to Figure 4.16 there are two distinct peaks
at z/D = 24 where the latter is a harmonic of the end cell shedding frequency.
This peak has a relatively low power and are thus not detected as a peak even
though it does appear as distinct in the frequency spectrum. The peaks appear
so clearly because of the logarithmic scale in the frequency spectrum which the
peak detection algorithm does not take into account. Incorporating a logarithmic
scaling into the peak detection could improve the results, but this has not been
considered in the present study. The same issue occur in the frequency spectrum
at z/D = 0 where several harmonics of the central cell shedding frequency occurs,
but only the two first peaks are detected. In the transition between the two cells,
at z/D = 15, the algorithm performs well and detects the dislocation frequency, the
two cell frequencies and just few of the less pronounced peaks.

Figure 4.18 shows parts of the time series and the frequency spectrum for u at
(x, y, z) = (3D, 0, 0). Again, several multiples of StL can be observed whereas the
peak detection algorithm only detected the first two. Additionally, a small peak
can be seen at the dislocation frequency which also has not been detected by the
algorithm. This means that, although with small influence, the vortex dislocations
can be detected in the wake at the centre of the cylinder span for L/D = 50.



4.6. Oblique Vortex Shedding Angle 41

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

v
/U
∞

[-
]

10−6
10−5
10−4
10−3
10−2
10−1

100

z
/D

=
2
4

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

v
/U
∞

[-
]

10−6
10−5
10−4
10−3
10−2
10−1

100

z
/D

=
1
5

0 20 40 60 80 100

τ = tU∞/D [-]

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

v
/U
∞

[-
]

0.0 0.2 0.4 0.6 0.8 1.0

St [-]

10−6
10−5
10−4
10−3
10−2
10−1

100

z
/D

=
0

Figure 4.17: Time series and frequency spectra for v at (x, y) = (3D, 0.25D) for
selected z/D.
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Figure 4.18: Time series and frequency spectrum for u at (x, y, z) = (3D, 0, 0).

4.6 Oblique Vortex Shedding Angle

As previously discussed, the vortices are shed from the cylinder with an oblique
angle. This affects the shedding frequency compared to a 2D or an infinite cylinder,
where vortices are shed parallel to the cylinder at Re = 100. Williamson [31] gives
a transformation between the oblique shedding frequency and the parallel shedding



42 Chapter 4. Results and Discussion: Cylinder with Two Free Ends

frequency as a function of the oblique shedding angle, θ (repeated from Section 1.1):

St0 =
Stθ

cos(θ)
, (4.1)

To compare the 2D parallel shedding frequency to the oblique shedding frequency,
the θ angle has to be found. This is done by investigating the scalar field of v in
the xz-plane at y = 0 at the same time instant as used in Figure 4.1. As shown in
Figure 4.19, the oblique vortices can be observed clearly as areas of positive and
negative v. The black line in Figure 4.19 marks a line of constant v = 0. Although
this line does not represent a vortex core, which is offset to one of the sides in
y-direction, it should correspond well to the slope of the vortex. For this analysis,
the oblique part of the central cell is of interest and this region is marked by two
crosses in Figure 4.19. Between the two crosses, the line is not completely straight
so linear regression is used and theta is found by

θ =
π

2
− arctan(−a), (4.2)

where a is the slope of the regression line. The regression line is shown in
Figure 4.20 and in the present case, the shedding angle was found to be θ ≈ 19°.
For comparison, Williamson [31] reports an angle θ ≈ 12° at Re = 100. The
cylinders used by Williamson were of different aspect ratios, all longer than
L/D = 100, and all giving approximately the same shedding angles. Comparing
with the present result, it appears that the shedding angle starts to increase when
the aspect ratio is reduced towards L/D = 50.

Table 4.3 compares the transformed central cell shedding frequency (StL0) with the
2D shedding frequency. The transformed central cell shedding frequency is 2.3%
below the 2D frequency which is fairly close.

Table 4.3: Transformation to parallel shedding frequencies

Case Variable Value [-]

2D St 0.1700
L/D = 50 StL 0.1573

L/D = 50 (transformed) StL0 0.1661
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Figure 4.19: Contour of v in xz-plane at y = 0.
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Figure 4.20: Regression line for determining vortex shedding angle θ.

4.7 Lift and Drag Forces

Compared with results from Kravchenko et al. [17], Inoue and Sakuragi [11] report
slightly lower CL and CD for a L/D = 50 cylinder than for a 2D cylinder at Re = 100.
Liu et al. [18] simulated a truncated cylinder with L/D = 10 at 100 ≤ Re ≤ 200
and found that the cross-sectional lift coefficient decreases near the free end.

Table 4.4 compares the lift and drag coefficients obtained in the grid dependence
study (see Section 3.2) with data from the finite cylinder. As expected, the drag
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coefficient is lower for the finite cylinder case, in this case with 6%. The lift
coefficient on the other hand, is less than a tenth of the 2D lift coefficient. It seems
very unlikely that the end cell alone has this big an influence on the lift coefficient,
especially when the drag coefficient still is the same order of magnitude as for the
2D case. The introduction of a free end does however, as discussed in Section 4.6,
also introduce oblique vortex shedding in the central cell. Due to this obliqueness,
the vortex shedding is in different phases at different parts of the cylinder. Since
the lift force mainly is a result of the pressure distribution caused by the vortex
shedding, this means the cross-sectional lift force will also be in different phases
along the span. Globally, this will result in cancelation effects and thus a reduction
in the lift force.

Table 4.4: Comparison of lift and drag coefficients for 2D cylinder and finite
cylinder with two free ends and L/D = 50.

Case L/D [-] CL CD CD,amp

Present study, 2D - 0.3056 1.3600 0.0084
Present study 50 0.0294 1.2766 0.0052

Inoue and Sakuragi [11] 50 0.2320 1.0020 0.0060

Investigating the frequency spectrum for the lift force, which is shown in
Figure 4.21, one can observe peaks for the cell shedding frequencies StL and Ste
as found in Section 4.5. Although the central shedding cell is the larger of the two
cells in spanwise extent, the peak with the highest power is at the end cell
frequency. Again, this is due to the cancelation effects in the central cell reducing
its influence on the lift force. In addition to the two cell frequencies another
frequency peak, stronger than the central cell frequency, occurs at StL + StD.
Looking back to the wake fluctuations detected in Figure 4.16, there is only a
small peak detected at this frequency in the transition between the two shedding
cells. While it seems implausible that a wake fluctuation with such short spanwise
extent and low power has a large impact on the lift force, this frequency has not
been detected anywhere else in the wake. Thus, the available data indicate that
this contribution to the lift force origins from the transitional region between the
two cells.

Contrary to the drag force on a 2D cylinder, the drag force on the finite cylinder
with two free ends is not dominated by fluctuations twice the vortex shedding
frequency. As shown from the frequency spectrum in Figure 4.22, the fluctuating
part of the drag force is dominated by the dislocation frequency and two of its
harmonics. As demonstrated in Chapter 3, the drag force fluctuations are
periodic with twice the vortex shedding frequency. The fluctuations of twice the
cell shedding frequencies appear in the frequency spectrum, but are weak
compared to the dislocation frequency. While the vortex dislocations appear to
influence the drag force fluctuations in a strong manner, it should be noted that
the fluctuations in drag force itself is minor compared to constant drag force. For
the cylinder with two free ends, the drag force amplitude is just 0.4% of the mean
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drag force and thus a minor contribution to the total drag force.
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Figure 4.21: Frequency Spectrum of the lift force on a finite cylinder with two free
ends and L/D = 50.
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Figure 4.22: Frequency Spectrum of the fluctuating part of the drag force on a
finite cylinder with two free ends and L/D = 50.
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4.8 Practical Considerations

There are several different offshore constructions which could be modelled as a finite
cylinder, for example parts of a subsea foundation in current. Another example
is a spar platform where the Reynolds number will be very large due to the large
diameter. The results from the present study are for a low Reynolds number
which mostly do not occur in practical engineering situations. As previously
discussed however, the present results share many similarities with results published
for higher Re. On this basis, the following section will discuss some practical
considerations with emphasis on the flow around the free end of a cylinder.

The most obvious similarity between the present low Re simulation and published
results of large Re cases is the existence of a pair of trailing vortices behind the
free end. It is tempting to draw parallels between these trailing vortices and the
trailing vortices behind the wingtips of an airplane. The wingtip vortices of an
airplane causes lift-induced drag and can be a hazard for smaller airplanes coming
behind (Wikipedia [30]). On modern airplanes, it is common to fit the wings with
an wingtip device, commonly called a winglet, to reduce the size of the wingtip
vortex (see Figure 4.23 for an example).

Figure 4.23: Example of a winglet on an airplane. From Wikipedia [30].

Fitting a finite cylinder with similar devices could reduce the strength of the trailing
vortices. One possibility is to add a disk of a larger diameter, say for example 2D,
on the top of the cylinder and investigate whether this will have a similar effect as
a winglet. This has the advantage of that it is direction independent and does not
have to adjusted if the inflow direction changes. It should, of course, be noted that
it is not known whether such a device will have the desired effect and is merely
a theory. Other possibilities include trimming the free end in various ways, for
example by bevelling the edges. This was experimentally investigated by Park and
Lee [22] which found that the downwash reduced due to the trimmed ends they
tested.
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It is however not given that it is desirable to reduce the strength of the trailing
vortices. Although no direct comparisons have been made, the trailing vortices
behind a finite cylinder does not appear to be as strong. While they may have
adverse effects on other structures close to the finite cylinder, for example a mooring
line, it is observed that the trailing vortices suppress the von Karman vortex
shedding. Based on this observation it is theorised that increasing the trailing
vortices’ strength could suppress even more of the vortex shedding. Since it seems
like there is a connection between the downwash behind the cylinder and the trailing
vortices, a possibility is to design a device that increases the downwash behind the
cylinder. With the cost of increased drag, one could for example mount a plate or
foil above the cylinder free end with an angle as shown in Figure 4.24. Again, this
sort of device has not been simulated so it is not certain whether it will have the
effect that it is wished for.

θ

U∞

x

y
z

Figure 4.24: Potential device for increasing downwash behind the free end.
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Chapter 5

Results and Discussion: Wall
Mounted Cylinder

The results presented here were obtained by simulating a wall mounted cylinder
with a free end with as described in Section 3.3. From the initial conditions, the
simulation was first run until it reached a steady state. After reaching a steady
state, the simulation were run for several shedding periods to obtain the time series
and statistics used in this chapter.

Due to issues compiling parts of the post processing utilities on the Ve
supercomputer (previous simulations were run on Njord), the λ2 scalar field was
not successfully computed for this case. As an alternative for identifying vortices,
the aboslute value of the vorticity is used for analysis of the instantaneous flow
field and streamwise vorticity is used for the mean flow.

5.1 Boundary Layer

The boundary layer thickness is an important parameter affecting the flow near the
wall. At low Rex, which is the Reynolds number based on the flow distance across
the wall, the boundary layer is laminar and Blasus’ formula for the boundary layer
thickness (δ) applies (see e.g. White [29]):

δ(x) =

(
νx

U∞

)1/2

, (5.1)

or non-dimensionalised using the cylinder diameter:
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δ(x)

D
=

(
1

ReD
· x
D

)1/2

, (5.2)

where, for clarity, the Reynolds number based on the cylinder is denoted ReD.
Using the distance from the domain inlet to the cylinder centre, this gives a
theoretical, undisturbed boundary layer thickness of δ/D = 0.41 at the cylinder
centre.

For comparison, the mean u velocity is measured as a function of z at y/D = 8
and for different x. At this y-distance from the cylinder the influence from the
cylinder is limited so results should be comparable to the Blasius boundary layer.
As shown in Figure 5.1 however, the boundary layer is much thicker than what
predicted above. The horizontal velocity also precedes U∞ at certain z in all the
velocity profiles shown, contrary to what laminar boundary layer theory shows. For
the velocity profiles at x/D = −4 and x/D = 0 some overshooting of U∞ are to be
expected because the cylinder will block the flow and thus increase the streamwise
velocities in its vicinity.
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Figure 5.1: Boundary Layer evolution over wall. The samples are taken at y/D = 8
and show the boundary layer overshooting U∞. The crosses mark the
position of each velocity profile’s maximum.

The reason for this poor consistency is believed to be due to the grid resolution
in the boundary layer (personal communication, Gallardo Canabes [9]). When the
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boundary layer artificially overshoots U∞ in the far upstream end, this appears to
let the boundary layer grow unrealistically large downstream.

Due to these issues, an estimate of the numerical boundary layer thickness is
not given. Several authors have suggested that the boundary layer thickness
have limited effect on the horseshoe vortex system forming near the wall-cylinder
junction (see Simpson [27]), but the data is sparse. It is thus believed that the
results from this simulation are realistic to some extent, but the results should be
interpreted with these findings in mind.

5.2 Vortex Shedding Pattern

Figure 5.2 shows the isosurface of |ωU∞/D| = 0.15 at a time instant. As for the
cylinder with two free ends, the vortices bend horizontally and through the y = 0
plane and connect to a vortex of opposite rotation near the free end. Just below
these horizontal vortices, the vortices are shed in an oblique pattern. This region is
however dominated by the transition between the end cell and the central cell, and
appears chaotic. Further down in the spanwise direction, a region of parallel vortex
shedding occurs before the vortices once again are shed in an oblique manner when
approaching the wall. Vortices shed from the cylinder close to the wall are bent
horizontally through the y = 0 plane and join vortices of opposite rotation, similar
to the behaviour of the vortices near the free end. A detailed view of this is shown
in Figure 5.3.
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z=25

x=0 x=35.25

Figure 5.2: Isosurface of |ωU∞/D| = 0.25 for wall mounted cylinder with L/D = 25.
The semitransparent cyan plane is located at y = 0 to give an indication
of the vortex location in y-direction. U∞ flows along positive x-axis and
the no-slip boundary (z = 0) is at the bottom of the figure.

Figure 5.3: Detail view of vortex connections near wall using an isosurface of
|ωU∞/D| = 0.15. The semitransparent cyan plane is located at y = 0
to give an indication of the vortex location in y-direction.
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5.3 Mean Flow Field

To visualise the mean trailing vortices for the wall mounted cylinder, isosurfaces of
ωxU∞/D = ±0.25 are shown in Figure 5.4. As for the cylinder with two free ends, a
pair of trailing vortices can be observed near the free end. A pair of similar trailing
vortices can be observed from the wall-cylinder junction, however these appear to
be weaker since the isosurfaces terminate further upstream than those from the free
end. The colouring of the positive and negative ωx isosurfaces also shows that the
free end trailing vortex on the negative y side (in front of the figure) has opposite
rotation to the trailing vortex from wall-cylinder junction.

z=25

z=0

x=0 x=35.25

Figure 5.4: Isosurface of mean ωx = ±0.15 for wall mounted cylinder with L/D =
25.

The horseshoe vortex system forming near a wall-cylinder junction consists of one
or several separate vortices forming in front of the cylinder, wrapping around and
into the wake (see e.g. Baker [1]). At Re = 100, Figure 5.5 shows only a single
vortex forming in front of the cylinders. This vortex propagates downstream and
up in the wake as shown by the secondary flow streamlines in Figure 5.6.

Figure 5.6 also shows streamlines emitted in front of the cylinder. These streamlines
wrap around both the cylinder and the horseshoe vortex before moving up in an
upwash region right behind the cylinder. Although not as strong as the downwash
region behind the free end, the upwash region seem to have a similar effect on the
vortex shedding which are suppressed near the free end.
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Figure 5.5: Velocity vectors in y = 0 plane showing a small vortex in front of the
wall-cylinder junction.

Figure 5.6: Mean horseshoe vortex visualised by secondary flow streamlines. The
secondary flow streamlines are coloured by streamwise vorticity and
emitted at x/D = [0, 3, 5]. Cyan streamlines are emitted from x/D = −2
right above the wall boundary and show an upwash region in the near
wake.
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5.4 Spanwise Variation of Wake Fluctuations

As for the cylinder with two free ends, the method described in Section 2.2.2 was
used to analyse the wake fluctuations from lines of points placed in the wake. The
data set used for the wall mounted cylinder was τ = 108 000 long and u, v, w and
p were recorded at each point.

A part of the time series for the four variables recorded at a line placed in (x, y) =
(3D, 0.25D) is shown in Figure 5.7. Similar to the cylinder with two free ends (see
Figure 4.15 in the previous chapter), the vortex dislocations between the end cell
and the central cell can be observed clearly in the plots for u and v at around
x/D ≈ 15. From observing the vortices between the dislocations it can be seen that
this is the region with parallel vortex shedding discussed in Section 5.2. For the
wall mounted cylinder the vortex dislocations appear for a longer time than for
the cylinder with two free ends, which means that the dislocation frequency must
be lower. In the time history of w, a region of periodically large negative flow
appears near the free end and a region of large positive flow appears near the wall.
These are the horizontally bent vortices which were found near the cylinder ends
in Section 5.2.

Figure 5.8 shows the frequency peaks detected from the time series. Due to the no-
slip condition at z/D = 0, the vortex shedding does not occur until some diameters
above the wall. Compared to the cylinder with two free ends (see Figure ?? in the
previous chapter), the harmonic frequencies St1 and St2 appear less pronounced
and the spanwise extent of the dislocation frequency (StD) is smaller.

Contrary to the free end vortex shedding, the vortices near the wall do not shed in
a separate cell and thus, no vortex dislocations occur near the wall. As observed
in Section 5.2, the wall boundary does however cause oblique vortex shedding as
this can be observed both above and below the region with parallel shedding in
Figure 5.2. This implies that relative to a free end, the wall-cylinder boundary is
weaker and influences the wake structure to a lesser extent.

The change in boundary condition at the bottom of the domain has also altered
the vortex shedding frequencies, which are shown in Table 5.1. Compared to
the cylinder with two free ends (see Table 4.1 in the previous chapter), the end
cell shedding frequency of the wall mounted cylinder has been reduced with only
0.8% which means that it is essentially unaffected by the introduction of the wall
boundary condition. The central cell shedding frequency has been affected by the
change is reduced by approximately 6%. Due to the change in the central cell
shedding frequency, the dislocation frequency is reduced accordingly.

It should be noted that while these results show that changing the boundary
condition from a symmetry condition to a wall condition affects the flow behaviour
in the wake, the physical interpretation of this change as following: Firstly, the
cylinder aspect ratio is reduced from L/D = 50 to L/D = 25 and secondly, one of
cylinder ends is mounted to a wall. Ideally, a third case with two free ends and
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Figure 5.7: Time series, from the top down, of u, v, w and p at (x, y) = (3D, 0.25D)
and z ∈ [0, 26] for wall mounted cylinder with L/D = 25.
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Table 5.1: Summary of wake frequencies for wall mounted cylinder. The estimates
of spanwise extent are based on results from Figure 5.8.

Parameter Value [-] Connection Spanwise extent

StD 0.0120 = StL − Ste z/D ∈ [13, 17]
Ste 0.1352 z/D ∈ [12, 23]
StL 0.1472 z/D ∈ [1, 18]
St1 0.2694 ≈ 2Ste z/D ∈ [18, 22]
St2 0.2944 ≈ 2StL z/D ∈ [2, 12]

L/D = 25 should also have been simulated, but this has not been possible due
to time constraints. Inoue and Sakuragi [11] do however give results for both an
L/D = 50 and an L/D = 25 cylinder with two free ends. Table 5.2 compares these
results to the two cases in the present study. In both cases the end cell shedding
frequency remains approximately the same for both configurations. With Inoue
and Sakuragi’s data, a 3% reduction in central cell shedding frequency is found
when going from an L/D = 50 to and L/D = 25 cylinder. Using data of the present
study a reduction of 6.4% is found between a L/D = 50 cylinder with two free ends
and a wall mounted cylinder with L/D = 25. This indicates that the central cell
shedding frequency is reduced due to the reduction of aspect ratio as well as the
introduction of a wall boundary condition at its base.

Table 5.2: Comparison of cell vortex shedding frequencies between present study
and Inoue and Sakuragi [11]. The values from Inoue and Sakuragi are
approximate values read from a graph.

Source Configuration L/D [-] Ste [-] StL [-]

Present study Two free ends 50 0.1341 0.1573
Wall mounted 25 0.1352 0.1472

Inoue and Sakuragi [11] Two free ends 50 0.128 0.150
Two free ends 25 0.128 0.145

5.5 Lift and Drag Forces

No data on lift and drag forces have been found published for a wall mounted
cylinder with L/D = 25 at Re = 100, so these results can only be compared with
the other simulations in the present study. Table 5.3 shows the lift and drag
coefficient from the 2D simulation as well as the two finite cylinders. The effect
of the wall condition on the drag and the drag amplitude is small compared to
the cylinder with two free ends. This small reduction is due to the suppression
of vortex shedding near the wall-cylinder junction which leads to higher pressure
behind the cylinder. Compared to the 2D cylinder, both finite cylinders have a
smaller drag coefficient and this has been discussed in Section 4.7.
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The lift coefficient for the wall mounted cylinder is larger than for the one with two
free ends, but smaller than for the 2D cylinder. As for the cylinder with two free
ends, the obliqueness of the vortex shedding causes cancelation effects as discussed
in Section 4.7. The increase in lift compared to the cylinder with two free ends is
explained by the increased spanwise region with parallel vortex shedding seen for
the wall mounted cylinder.

Table 5.3: Comparison of lift and drag coefficients for the 2D cylinder and two
finite cylinders simulated.

Configuration L/D [-] CL CD CD,amp

2D - 0.3056 1.3600 0.0084
Two free ends 50 0.0294 1.2766 0.0052
Wall mounted 25 0.0450 1.2639 0.0060

Figure 5.9 shows the lift force frequency spectrum which, similar to the lift force
spectrum for the cylinder with two free ends, has peaks at Ste, StL and StL + StD.
Additionally, peaks of various power appear at harmonics between the cell shedding
frequencies and half the dislocation frequency which did not appear for the cylinder
with two free ends (see Figure 4.21 in the previous chapter). These frequencies do
also appear in the cell transition region of the v spectra in Figure ??, but it is
unclear why this only appear in this case and not for the cylinder with two free
ends.

The frequency spectrum for the fluctuating part of the drag force, shown in
Figure 5.10, does also have very similar features to that of the cylinder with two
free ends: It is dominated by a peak at the dislocation frequency with its
subsequent harmonics and two lower peaks appearing at 2Ste and 2StL.
Additionally, peaks occur at half the dislocation frequency and its harmonics as
well.
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Figure 5.9: Frequency Spectrum of lift the force on a wall mounted cylinder with
L/D = 25.
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Figure 5.10: Frequency Spectrum of the fluctuating part of the drag force on a wall
mounted cylinder with L/D = 25.



Chapter 6

Conclusions and
Recommendations for Further
Work

6.1 Conclusions

In the present study, the flow around finite cylinders at Re = 100 has been studied.
The main goal of this study has been to isolate and investigate the flow features
occurring behind the free end and the wall-cylinder junction. Two simulation cases
were chosen, the first being a long (L/D = 50) cylinder with two free ends and the
second being a wall mounted cylinder with L/D = 25. To reduce computation time,
a symmetry condition was utilised at the spanwise centre of the cylinder with two
free ends and L/D = 50.

Several authors have studied the flow around wall mounted cylinders (see e.g.
Krajnoviä [16]) and studied the coherent flow structures in time averaged wake.
The main flow features identified around a finite cylinder are the following:

Separation Bubble: At high Re, a separation bubble occurs above the free end.
The present study shows that the flow remains attached over the free end at
Re = 100.

Arch Vortex: Previous studies have identified an arch vortex forming behind
the free end with arms extending downwards through the near wake of the
cylinder. In the present study, this vortex was identified in the instantaneous
as well as the mean flow. It was further found that in the instantaneous flow,
the arms of the arch vortex follow the vortex shedding from below the free
end.
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Trailing Vortices: It has previously been shown that a pair of trailing vortices
emerges behind the free end. These vortices have been identified in the mean
flow. At Re = 100, their source has been found to be vortices shed from the
cylinder which are bent horizontally near the free end.

Horseshoe Vortex System: At the wall-cylinder junction, other authors have
identified a system of several vortices forming upstream and wrapping around
the cylinder, both in laminar flow and in turbulent flow. In the present study
a single horseshoe vortex were identified forming in front of the wall-cylinder
junction, wrapping around the cylinder downstream.

The vortices behind long finite cylinders at Re = 100 are shed in two cells, one
central cell and one smaller cell near each free end (Williamson [31]). Comparing
the two simulated cases, it was found that the change in geometry did not affect the
end cell vortex shedding frequency significantly. The central cell vortex shedding
frequency, on the other hand, was reduced when the wall boundary condition was
introduced and the aspect ratio was reduced. Comparing with data for an L/D = 25
cylinder with two free ends from Inoue and Sakuragi [11] it was found that the
central cell vortex shedding frequency is influenced by both the introduction of a
wall boundary condition and by the reduction of aspect ratio.

Investigating the vortex shedding in the wake of the cylinders it was shown that
the vortices near the free end are bent horizontally through the y = 0 plane
and connected to a vortex shed from the opposite side of the cylinder. Thus,
vortices form a chain of vortex loops between the free ends. The same pattern of
horizontally bent vortices connecting with their counterparts are also found near
the wall boundary condition.

In the transition between the two cells, vortex dislocations occurs when the phase
between the end cell vortex shedding and the central cell vortex shedding becomes
large. Williamson [31] showed that this occurs with the beat frequency, i.e. the
difference between the central cell and the end cell shedding frequencies, and this
was confirmed in the present study. It was further shown that the dislocation
frequency was present in a time signal of u in the wake at the spanwise centre of
the cylinder with L/D = 50. Vortices near the wall boundary are not shed with a
separate shedding frequency like the vortices near a free end and thus, no vortex
dislocations occur near the wall boundary.

Comparing to the forces acting on a 2D cylinder, it was found that the lift force
acting on the finite cylinders was reduced to approximately a tenth. This large
reduction in lift force is due to the oblique vortex shedding causing cancelation
effects on the global lift force. In contrast to the lift force, the reduction in drag
compared to the 2D cylinder is found to be minor. The lift force was found to
fluctuate with mainly three frequencies: One for each cell shedding frequency and
a frequency which is one dislocation frequency larger than the central cell frequency.

A simple method, using a peak detection algorithm, for analysing large sets of time
histories from measurement points in the wake has been outlined and tested. It
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was found that the method detected the most important frequencies occurring in
the measurements, but harmonics and low powered peaks of interest were often
missed. The method proved to be a useful tool for getting an overview of the main
flow features, but manual inspection of important regions are also necessary.

6.2 Recommendations for Further Work

Comparisons with other published results show that the results present here are
similar to those obtained by other authors. There are however certain points where
the quality of the simulations are questioned and further investigation could be
appropriate:

Spatial and temporal refinements: The 2D grid convergence study in
Section 3.2 shows that refining the grid and reducing the time step could
affect the results. Additionally, the boundary layer in the case of the wall
mounted cylinder is badly resolved. Refined simulations could be carried
out to compare the vortex shedding frequencies and force coefficients found
in the present study. At the same time, the grid spacing away from the
cylinder and in the central region of the span could probably be relaxed.

Investigation of blockage above free end: There is some uncertainty whether
the distance between the cylinder free end and the domain boundary is large
enough not to affect the results. Figure 4.6 in Section 4.2 suggests that
there is some blockage taking place, but its effect on the presented results is
unknown.

The results of the present study shows promising insights into the basic flow features
around finite cylinders. There are many opportunities for building upon these
results, some possibilities are:

Spanwise distribution of lift and drag: The lift and drag forces analysed in
the present study are the global forces acting on the cylinder. An investigation
of how the different parts of the cylinder span contributes to the total force
could reveal interesting details about the flow in the transitional region and
the end cell. With the version of MGLET used in the present study it is not
possible to obtain these results directly. A possible solution is to use the
point measurement feature to measure the pressure at multiple points on the
cylinder, but this will exclude the shear forces. Implementing this feature
into MGLET would be a better, but probably a more difficult solution.

Increased Reynolds number: Many interesting phenomena occur during the
transition to turbulence and in the turbulent wake of a cylinder and studying
this with emphasis on the free end would be of interest. A particularly
interesting case would be to determine when the separation bubble occurs
above the free end and whether this influences the downwash and the trailing
vortices.
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Influence of free end geometry: As discussed briefly in Section 4.8, the free
end could be shaped or fitted with a device that potentially modify the flow
in an advantageous manner. Simulations of such such shapes and devices
in various configurations could be and interesting extension to the currently
published results on finite cylinders.
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Appendix

A.1 Overview of Electronic Appendix

The electronic appendix (found on the NTNU DAIM web pages), consists of the
following folders:

animation-finite2free contains additional image sequences made from the data
set of the finite cylinder with two free ends and L/D = 50.

bin contains various scripts used during the work, including scripts for extracting
vector and scalar fields to VTK format. These scripts assumes the existence
of the graph4 executable and the graph4old executable as mglet_nolrz and
mglet_nolrzOld in the PATH.

inputFiles contains folders with input files and job scripts for the simulations
presented in the present study. Some of the 2D simulation input files are
unfortunately missing.
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