
Functional Reactive Programming on the
Web
A Practical Evaluation

Christian Strand Young

Master of Science in Informatics

Supervisor: Svein-Olaf Hvasshovd, IDI
Co-supervisor: Kim-Joar Bekkelund, Bekk Consulting AS

Department of Computer and Information Science

Submission date: December 2015

Norwegian University of Science and Technology

Abstract
The web as an application platform is rising rapidly. With more complex
solutions written in Javascript that run client-side, as well as server-side,
challenges related to Javascript’s asynchronous nature arise. This thesis ex-
plores and applies the Functional Reactive Programming paradigm (FRP) on
the web as an alternative to traditional imperative programming. The poten-
tial of FRP in a context of the web is shown through case implementations
of general practical real world problems that web developers may face.

Sammendrag
Webben som en applikasjonsplattform er i stadig vekst. Med flere komplekse
løsninger skrevet i Javascript som kjører p̊a b̊ade klientsiden, i tillegg til
tjenersiden, følger flere utfordringer relatert til Javascripts asynkrone natur.
Denne oppgaven utforsker og anvender paradigmet Functional Reactive Pro-
gramming (FRP) p̊a web-en som et alternativ til den tradisjonelle imperative
måten å programmere p̊a. Potensialet til FRP i kontest av webben er vist
gjennom case-implementasjoner av generelle, praktiske problemer fra den
virkelige verden som webutviklere kan støte p̊a.

i

ii

Preface
This document is the end product of the Master’s Thesis of Christian Strand
Young at the Norwegian University of Science and Technology (NTNU).

Acknowledgements
I would like to thank my supervisor, Svein-Olaf Hvasshovd for his help with
proof reading and academic advice during my writing. I would like to thank
Kim Joar Bekkelund for putting me on the path to an interesting and relevant
subject. I would also like to thank Mikael Brevik for taking the time to
discuss the subject and giving me advice on the code, and Espen Jacobsson
for proof reading my thesis. Finally, I thank my dear girlfriend and family
for their endless support during my time studying.

iii

iv

Contents

Abstract i

Preface iii

Acknowledgements iii

Contents vi

List of code examples vii

List of Figures ix

1 Introduction 1

2 State of the Art 7
2.1 The History of FRP . 7
2.2 FRP on the Web Today . 9

3 Motivation and Methods 11
3.1 Motivation and Problems . 11
3.2 Approach . 12
3.3 Case Overview . 12
3.4 Research Questions . 14

4 Case Implementations 15
4.1 Case 1: Simple Addition . 15
4.2 Case 2: Logic Gates . 21
4.3 Case 3: Real-Time Chat with WebSocket 25
4.4 Case: Complex Client Side Form Validation 33

v

5 Discussion 45

6 Conclusion 49

A Appendix 1: Simple Addition 55
A.1 Simple Addition using Bacon and FRP 55
A.2 Simple Addition with jQuery 56

A Appendix 2: Logic Gates 58

A Appendix 3: Real-Time Chat with WebSocket 61
A.1 Server-side Node . 61
A.2 Client-side Bacon . 62
A.3 Client-side Jade Markup . 63

A Appendix 4: Complex Client Side Form Validation 65
A.1 Form Implementation with Bacon 65
A.2 PHP API Resource . 70

vi

List of code examples
1.1 Function with side effects . 3
1.2 Conventional imperative programming 3
1.3 Reactive approach that cascades with change 4
4.1 Three HTML input fields . 16
4.2 Imperative JavaScript addition 17
4.3 Mapped and filtered Bacon property 18
4.4 Combining and presenting data from two properties 19
4.5 NAND gate implemented as a JavaScript function 22
4.6 Declearing a Bacon property from a input field 22
4.7 Mapping properties together to form new ones through a given

function . 23
4.8 Assign the properties to respective input fields in the DOM . . 24
4.9 Hello World with Express and Node 26
4.10 Using a template engine with Express 28
4.11 Listening and broadcasting through WebSockets 29
4.12 Event stream that emits a message to socket 31
4.13 Event stream that emits a message to socket 31
4.14 One of the validation functions for the FRP form 36
4.15 Creating the properties for the input fields 36
4.16 Example of an AJAX request using HTTP GET 38
4.17 Converting AJAX to a Bacon stream 39
4.18 The chain of validating the username 39
4.19 Validation of matching passwords 41
4.20 Binding feedback to fields to the correct element 42
4.21 Binding feedback on fields to the correct element 43

vii

viii

List of Figures
1 Screenshot of the simple addition user interface 15
2 Screenshot of the logic gates user interface 21
3 Overview of the chat application’s communication flow 27
4 Screenshot of the FRP web chat interface 30
5 Screenshot of the user interface of the form 35

ix

x

1 Introduction
In recent years, the web as an application platform has grown rapidly. From
simple home pages for personal and commercial purposes, the web has evolved
into a rich interactive platform treasured for its availability and possibilities
for the current developer. Web standards, such as HTML5 [27], CSS3 [20]
and ECMAScript 5 and 6 [7], provide platforms that make it easy and ac-
cessible to develop modern applications, libraries and frameworks that form
the web as we know it today.

The web has in later years taken a turn from the traditional way of a
server responding with a block of markup and styles that is rendered by
a client browser and displayed on their screen. Modern browsers imple-
ment ECMAScript standards [7] to what we know as JavaScript [11]. The
JavaScript language can be used as a scripting language to allow dynamic
features included in a web page, but only in recent years with the emerging
standards has the real potential been revealed.

JavaScript runs on an engine in the browser, e.g. on the Chromium
project’s V8 engine created by Google [13]. The V8 engine compiles JavaScript
to native machine code (such as x86-64) before executing it, in contrast to
similar scripting languages like Python [35] that interprets bytecode.

The fast and modern JavaScript engines, in combination with client com-
puters becoming more powerful, give us the possibility to move parts of the
server application code to the client. This provides for a more seamless expe-
rience for the user, as manipulating the interface in the browser can be done
directly without the immediate need for a new request-response cycle.

As the standards emerge, community-created libraries and frameworks
for the web are growing. The largest package manager for JavaScript, npm
(Node.js) [25], lists nearly 200 000 packages at the time of writing, while in
comparison, the similar tool for Java, Maven Central, lists close to 122 000

1

[22].
JavaScript is a multi-paradigm language, and not statically typed and

object-oriented like Java. The result is that libraries, frameworks and appli-
cations induce different coding styles and paradigms when writing code. This
makes JavaScript easy for programmers of different backgrounds to quickly
get started with, but it does not necessarily result in clean and efficient code.

JavaScript’s nature, which includes asynchronicity and first class func-
tions (the ability to pass functions as parameters to other functions), quickly
introduces excessive nesting, non-pure functions (see Code example 1.1) and
a mutable state of the application that the developer must handle manu-
ally. These practices can quickly get out of hand, and make the application
unstructured and hard to maintain as complexity rises [10].

This thesis will focus on a paradigm called Functional Reactive Program-
ming (FRP) that is meant to counter some of the aforementioned problems,
in a context of the web. FRP is not a new concept and stems from a system
developed by Conal Elliot and Paul Hudak in 1997 called FRAN, which was
a collection of functions and data types for composing interactive anima-
tions [8]. Since then FRP has been used in, e.g., robotics, Graphical User
Interfaces (GUI), music, and now web applications.

FRP bases itself on both functional and reactive programming. In func-
tional programming, there are no side-effects, i.e., no mutations of state or
observable interactions with other parts of the program. In a web appli-
cation especially with user input, side-effects are somewhat necessary, e.g.,
when updating the Document Object Model (DOM), which is the tree struc-
ture of nodes that make up the elements of a website, as a result of triggering
a change to an input field.

The following example, Code example 1.1, shows a function with a side
effect instead of doing nothing else but returning a value, as it would be in a
strictly pure function.

2

1 function plusWithSideEffects(x, y) {
2 var element = document.getElementById(’inputField’);
3 element.value = ’This is a side effect’;
4 return x + y;
5 }

Code example 1.1: Function with side effects

To preserve the ideas of functional programming in an environment such
as the web, it combines these ideas with reactive programming. The idea
of reactive programming is to have certain data types that contain dynamic
values over time. Conventional imperative programming captures these dy-
namic values only indirectly, through state and mutations. Consider the
following example: Code example 1.2.

1 var a = 1
2 var b = 3
3 var c = a + b
4 a = 2
5 console.log(c)
6 > 4

Code example 1.2: Conventional imperative programming

The moment ”c” is declared, it holds the value of ”a+b”, but when the
value of ”a” is changed, the value of ”c” does not cascade to the change. Such
is the nature of imperative programming. This is because ”c” is assigned the
result when the expression evaluates, but holds no further reference to the

3

other variables. ”a” and ”b” can be changed later with no impact on ”c”, as
shown in the previous example.

In comparison, reactive programming preserves the link between the ref-
erenced variables. Thus, when ”a” is updated, ”c” will follow up the change,
as illustrated in Code example 1.3 below.

1 var a = 1
2 var b = 3
3 var c = a + b
4 a = 2
5 console.log(c)
6 > 5

Code example 1.3: Reactive approach that cascades with change

The idea in reactive programming is like that of a spreadsheet. For ex-
ample, two data cells with integers (A1,A2), and another cell that holds a
sum function:

A3:=SUM(A1-A2)

In a spreadsheet such as Microsoft Excel or Google Drive Spreadsheet, if
either A1 or A2 is altered, we expect A3 to reflect this change.

Be it cells or variables, these are just instances of the same problem. The
relationship between the cells, or variables, is not implicit or in the mind
of the programmer. It is explicit, unbroken and forever. They are bound.
These variables are referred to in FRP as observable behaviors. They are
values over time. A behavior is the first essential element in FRP along with
events. Events are a finite or infinite sequence of values over time. In various
implementations, this is also known as an event stream.

4

When creating an FRP application, these streams are used to design the
data flow of the application by, e.g., merging and transforming the values
yielded by the streams. In combination with a strict functional paradigm,
FRP thus allows declaring an immutable data-flow that does nothing other
than what the code dictates.

This thesis aims to explore if we can apply the FRP paradigm to modern
web programming in good faith, using existing implementations in JavaScript,
and how well it can solve real world problems developers might face.

5

6

2 State of the Art
2.1 The History of FRP

The FRP paradigm introduced in the late 1990s by Hudak et al. [8], was
initially referred to as Functional Reactive Animations (FRAN). FRAN tar-
geted rich interactive animations, which at that time was a complex and
tedious job to program. They believed the reason for this was the lack of
high-level abstractions and the failure to distinguish between modeling and
presentation. I.e. ”what” an animation is, and how it should present itself.

By letting the programmer express the ”what”, their idea was that the
presentation should come partially automatically based on an explicit model-
ing approach. This is similar to the key point in reactive programming today,
which concerns modeling data-flow as we touched by in the introduction.

Hudak et al. described the modeling process in four steps (see [8]):

1. Define behaviors

The behaviors are the data containers or variables that change over
time. When animating the radius of a circle, the radius value would
be a good candidate to act as a behavior. As the animation progresses
and the size of the circle changes, the radius value is changed over time,
which corresponds to the definition of the behavior.

2. Event modeling

Events, such as real world interactions, like mouse clicks or collisions
in an animation.

7

3. Declare reactivity

When events occur, we react to them and naturally change and update
behaviors based on how we model our program.

4. Polymorphic media

Different types of media have different properties to animate. For ex-
ample image rotation, vectors in a 3D model, or sound mixing. These
types of media are bound in a framework based on behaviors and events,
but must be treated differently due to distinct properties each type of
media has. This is similar to what we might expect in a web application
today, as we have different elements with distinct properties. One must
model the reaction to an event to the respective media or element.

The modeling process draws clear lines to how we interpret and create
FRP applications today, but the concept has taken many turns in its time.
FRAN and many other early adoptions like RealTime-FRP [40] and Ar-
rowized FRP [24] was developed in the Haskell language [14], which caused
problems. Arguably, the main concern is accessibility. In modern application
development, Haskell is not very common. Drawbacks also include that of
a technical nature. Some of the problems in FRAN and other adoptations
are mainly related to space and time leaks, i.e., unexpected memory use that
slows down computation. A reason for this is the lazy nature of Haskell.
Haskell does not execute code before needed.

In recent years, there is one thriving Haskell FRP library, called called
Reactive-banana [29], that is still maintained and used in applications. Reactive-
banana has an efficient implementation that counters the problems from other
types of FRP implementations, and it’s website provides examples and doc-
umentation. However, such a library is not easily integrated with JavaScript

8

applications, as it requires separate compilation.
To conclude this brief history of the FRP paradigm: The ideas of the

classic FRP are still preserved, and very relevant as we leap towards the
modern platforms of the web.

2.2 FRP on the Web Today

The use of FRP on the web is fairly new. Thus, not much academic work
or literature has been written. As with other up and coming technologies on
web platforms, documentation and research are often to be found in articles,
blogs and videos from everyday developers that create and explore in real
life projects and current products.

One of the FRP-related projects that sprung out of academic work is the
language Elm [5]. Elm is a standalone FRP language that compiles to HTML,
CSS and JavaScript and was the result of Evan Czaplicki’s Ph.D. thesis in
2012. Elm has grown to represent a large ecosystem with a package manager
and community-created extensions and libraries. The language features what
we now expect from a language labeled as an FRP library or language. For
example, all data types that Elm uses are immutable. What we have defined
as a behavior in this thesis is called a signal in Elm. Although the name is
different, it represents the same: a value that changes over time. Elm uses
the web as a platform, but will not be utilized in this thesis due to it being
a complete language, and it is thus not suitable to our questions regarding
integration of existing platforms and applications.

A project that is highly relevant for discussion is the Reactive Extensions
(Rx) project by Microsoft [36]. Rx is a collection of libraries that support
languages such as .NET/C#, C++, and JavaScript. The JavaScript library
is named RxJS [30], and is, along with the other libraries in the Rx collection,
open-source. This means that although Microsoft is the lead developer, any-

9

one can view the source code, and anyone can submit contribution requests.
RxJS is one of the most popular FRP libraries for JavaScript with nearly

15 million downloads in 2015 [32], and is used by well-known actors in the
web application world, such as Netflix. Netflix is, by the time of writing,
the world’s leading Internet television network, with over 69 million mem-
bers [23]. At Netflix, Rx is an essential building block to write complex
asynchronous code and is part of their core systems [31].

RxJS could very well be the library used for research in this thesis, but
the choice landed on an alternative called Bacon.js (Bacon) [4]. Despite the
non-conventional, and non-descriptive name, Bacon is a fully-featured FRP
library for JavaScript. Based on RxJS, it features the now familiar concepts
of FRP: behaviors and events, although behaviors in Bacon are known as
properties, and events are referred to as an event stream.

Even though RxJS is more popular and widely used in comparison with
Bacon, which only has 240 000 downloads in 2015 [3], Bacon has documen-
tation written in a more practical manner, which is an appealing factor for
beginners in FRP.

10

3 Motivation and Methods
3.1 Motivation and Problems

The motivation for the research in this thesis builds upon the problems with
conventional imperative programming, described in the introduction. Mod-
ern web applications developed in JavaScript face challenges when applica-
tion complexity and scale increases, e.g., dynamic changes to the user inter-
face triggered by events. Multiple sources for the events, e.g., mouse clicks,
keyboard presses, and external AJAX-requests (see Chapter 4), contribute to
complexity in the form of managing the state of the application, and keeping
a declarative structure in the code.

In addition, the asynchronicity of JavaScript makes it even harder to
achieve simplicity, as nested callbacks are quickly introduced to allow the
asynchronous code to execute in the correct order.

The result is a low level of abstraction, meaning the developer must keep
track of the flow and state of an application manually throughout the code.

FRP as a paradigm means to counter some of these problems with its
reactivity. The reactive approach means that we can achieve a higher level
of abstraction with a clear and precise design of the flow of the application.
Problems we have discussed, such as nested callbacks and manual mutations
of state can thus be handled more elegantly in theory. Combined with in-
fluences from the functional programming paradigm, we introduce functions
such as ”map” and ”filter”, as well as concepts like pure functions. With its
features, FRP might revolutionize how we do dynamic web development in
the future. For now, it is at least worth exploring.

11

3.2 Approach

In this thesis, we aim to explore how the FRP paradigm applies to regular
and everyday projects and problems that web developers in the industry
face. Questions revolve around how simple it is to implement the theory
into practice, the cost of introducing a new paradigm and how an eventual
implementation scales, is maintained, and how it works in comparison with
conventional methods.

To bring such questions to light, we have implemented several cases of well
known and current parts of web applications. A somewhat similar research
method was conducted by Khare et al. in their paper, ”Geospatial event
analytics leveraging reactive programming” [6]. They compared a reactive
approach to an imperative approach in context of doing geospatial analytics.

In our early cases, we will illustrate differences with imperative solutions,
and as this is part of the main motivation for the thesis, discuss our findings
throughout with this in mind. Unfortunately, reactive and imperative im-
plementations side by side on some of the more complex cases will be out of
scope for this thesis.

3.3 Case Overview

Following is an overview of the case implementations. Details and illustra-
tions will be found alongside the implementations later on.

• Simple Addition

An introductory case to illustrate the difference between FRP and im-
perative coding styles. This case is a working implementation of Code
example 1.1 from the introduction.

12

• Logic Gates

Using FRP to program an illustration of logic gates. Logic gates are
some of the primary building blocks of computer components like CPUs
and RAM. In this case, we program gates such as AND, OR, and
NAND, and couple them all together and provide a user interface to
try out different values or signals into the circuit.

• Real-Time Chat using WebSocket

In this case we make use of yet another modern feature of the web,
namely WebSocket [37]. Using a WebSocket library for underlying
communication, we apply FRP on top to manage the application and
delivering messages to users.

• Complex Client Side Form Validation

This is a common tedious task for a web developer. The case imple-
ments a complex instance of form validation done client side, and builds
upon techniques from the previous cases as well as introducing many
new. Several user inputs and internal dependencies, as well as external
communication with other resources, makes this a full blown example
of FRP in practice.

13

3.4 Research Questions

As we illustrate our cases through examples, illustrations, and implemen-
tation snippets, the following research questions are established to measure
each case:

1. Code quality

Although somewhat subjective, the quality of the code is essential. Is
the overall readability and size of the code without serious deviations?
Are we able to apply the nature of FRP that solves many of our dis-
cussed problems in theory without falling back to usual habits?

2. Maintainability

How easy is it to maintain the code? Is it trivial for another developer
to enhance or expand the solution with new features or properties?

3. Limitations

Being limited to the new paradigm, can we achieve our demands for
the application implementation wise according to our specifications?

14

4 Case Implementations
The following sections are implementations of the cases from the previous
chapter in the same order. Each implementation section is structured as
follows: An introduction with an illustration/figure of the problem or speci-
fication of what is to be implemented, the implementation with code snippets
to illustrate the different techniques, and finally a small discussion with re-
gards to our research questions defined in Chapter 3. A discussion of the
results that follow, can be found in Chapter 5.

All cases are implemented in HTML5, CSS2/3, and JavaScript running
in Google Chrome [12] on MAC OSX Yosemite [2]. The jQuery library [18]
is used alongside native JavaScript to simplify some of the code. The FRP-
related code is provided by the Bacon.js library [4], which is used exclusively.
Other technologies, libraries and third party software used is specified in each
case.

4.1 Case 1: Simple Addition

This case illustrates a simple dynamic interface that changes based on what
the user provides as input. The interface consists of three regular HTML
input fields, where the values of the first two are summed, and the result
shown in the third. The user interface is illustrated in Figure 1 below.

Figure 1: Screenshot of the simple addition user interface

15

When either of the first two values changes, the result cascades to the
change. Traditionally, we would add an event listener to each of input fields
that are eligible for change. When a change occurs, we would calculate the
sum and update the third input field with the value.

Note that parts of the skeleton that are needed for the code snippets to
run is omitted (consult Appendix 1 for runnable code regarding this case).

In addition to the JavaScript, the HTML elements that the JavaScript
manipulates must also be defined. In later cases, such HTML-code might be
omitted. Consult the full examples in the appendices for better understand-
ing. For this case, we will show the elements in Code example 4.1 as this is
an introductuary case and the amount of code is small.

1 <input type="text" id="a" value="0"> +
2 <input type="text" id="b" value="0"> =
3 <input type="text" id="c" value="0">

Code example 4.1: Three HTML input fields

These are regular HTML input fields that allows the user to change their
value. Now, consider the JavaScript that makes them dynamic according to
the specification, solved imperatively in Code example 4.2 following.

16

1 $(’#a’).on(’keyup’, function () {
2 var a = parseInt($(’#a’).val());
3 var b = parseInt($(’#b’).val());
4 $(’#c’).val(a + b);
5 });
6

7 $(’#b’).on(’keyup’, function () {
8 var a = parseInt($(’#a’).val());
9 var b = parseInt($(’#b’).val());

10 $(’#c’).val(a + b);
11 });

Code example 4.2: Imperative JavaScript addition

First, we declare two event listeners. The event listener works as follows:

when "some event" triggers from "element" => call function

The first listener on line 4 listens to ”keyup” events, i.e., key strokes,
from input element ”a”. If an event occurs, an anonymous function (i.e., a
lambda function or a nameless function, [39]) is called. Such a function in
this context is also referred to as a callback. The code inside the callback is
then executed, which reads the value from ”a” and ”b”, sums them and sets
the value of the last input field to the result.

There are not many concurrency problems here as there is only one level
of nesting. One might notice that the code around the callbacks could be
rewritten to avoid the redundancy, but that is not important at this point.

Now, let us see how this could be done using FRP and Bacon. Consider
the following Code example, 4.3, which illustrates how one of our input fields
can be programmed.

17

1 var a = $(’#a’)
2 .asEventStream(’keyup’)
3 .map(’.currentTarget.value’)
4 .map(parseInt)
5 .filter(isNumber)
6 .toProperty(0);
7

8 var b = $(’#b’)
9 .asEventStream(’keyup’)

10 .map(’.currentTarget.value’)
11 .map(parseInt)
12 .filter(isNumber)
13 .toProperty(0);

Code example 4.3: Mapped and filtered Bacon property

We declare an event stream for each of the input fields. The streams will
yield the changes made. This looks familiar to what we did in the imperative
solution. The difference is that the ”asEventStream” function comes from
Bacon and renders ”a” and ”b” as event streams that yields values over time.
With the ”map” function, we are saying that every time there occurs an
event on the stream, the value that stream should yield is the value of the
input field. The goal is to combine the values from the two streams and from
there form the result value.

In the imperative solution, data from the input fields were run through the
”parseInt” function as the values on the input fields are strings. They must
be converted to integers to pass through our sum function. With Bacon, we
can achieve the same function by adding another map to the chain as shown
on line 4.

18

Note that this function could return NotaNumber(NaN) that will result
in wrong computation. A way to mitigate this is to introduce a new function
”isNumber”. We can then chain this on, by using the ”filter” function, as
done on line 5. This way, the stream will only yield a result if the value was
a number and passes through our new filter.

For the event stream to hold onto its current value, as we have no sub-
scribers to this stream, we must convert it to a property, or behavior as it
was called in the classic FRP. In Code example 4.3, this is done at the end
on each stream. The streams, now properties, will hold the value 0 (as an
initial value passed as an argument to the function) until the value in the
input field changes.

The complete properties can now be combined into a new property and
presented to the user in the last input field shown in Figure 1. The following
example, Code example 4.4, shows an example of how this can be done.

1 var c = a.combine(b, sum);
2 c.assign($(’#c’), ’val’);

Code example 4.4: Combining and presenting data from two properties

Our result property ”c” is now ”a” and ”b” combined through the function
”sum” (function that sums two numbers) as shown on line 1. Due to the
reactive nature of Bacon, if either ”a” or ”b” changes, ”c” will hold the
updated sum.

We then assign the property to an element to display the result to the
user. Every time ”c” changes, its value is assigned to the ’val’ property of
the input field ”c”. The flow of data is defined from top to bottom: from the
user input, through transformation of the data, and in the end displayed to
the user.

19

As with the imperative example, the FRP apporach may also seem re-
dundant code wise and could also be refactored. An example of this is shown
in Case 4 where stream declarations use a help function.

20

4.2 Case 2: Logic Gates

The task of presenting highly stateful information to a user can be tedious
to program. In this case implementation, we illustrate this by creating a
circuit of logical gates. As the circuit’s values change, the result is presented
to the user in real-time. The circuit has two inputs and consists of the gates
AND, NAND and OR. The coupling between the gates adds another level of
complexity, as the result of one gate may be the input of another.

To simplify, we display the state of inputs, intermediate results and the
end result in HTML input fields under the drawing. If this were to be imple-
mented as a product, e.g., for a customer, one might take the time to make it
so the values are displayed directly on the circuit for a better understanding.

Figure 2: Screenshot of the logic gates user interface

21

As shown in Figure 2, ”A” and ”B” are the user inputs that takes the
binary values of 0 or 1. The results after passing through the various gates
are denoted by the letters ”W”,”X”,”Y” and ”Z”.

To start the implementation, we define pure functions to represent the
gates. For example a NAND gate as shown in Code example 4.5 below.

1 var nand = function (a, b) {
2 if(a == 1 && b == 1)
3 return 0;
4 return 1;
5 };

Code example 4.5: NAND gate implemented as a JavaScript function

These gate functions are pure functions without side-effects and thus we
are so far preserving the functional interests of the implementation.

Next, we start defining the data flow of the application by creating event
streams for the user inputs. As in the former case, we convert these streams
directly to properties after mapping them to the value of the input field. The
following example, Code example 4.6, shows one of these two properties.

1 var a = $(’#a’).asEventStream(’keyup’)
2 .map(’.currentTarget.value’)
3 .toProperty(0);

Code example 4.6: Declearing a Bacon property from a input field

22

With the inputs ready, we can design the data flow through the circuits.
For this, we use the same technique as the former case by using Bacon’s
”combine” function. We combine two properties to a new property through
a function. The functions we use with the combine function are the gate
functions declared before. The result of the data mapping according to Figure
2 is shown below in Code example 4.7.

1 var w = a.combine(b, or);
2 var x = a.combine(w, and);
3 var y = b.combine(w, nand);
4 var z = x.combine(y, and);

Code example 4.7: Mapping properties together to form new ones through a
given function

Note that sending a function as a parameter to the combine function
is possible due to JavaScript’s support of first-class functions. The new
properties now hold the intermediate result values throughout the circuit
as illustrated in Figure 2.

Finally, we can assign the value of these properties to the input fields so
that they are displayed to the user. This can be achieved by the following
code in Code example 4.8.

23

1 w.assign($(’#w’), ’val’);
2 x.assign($(’#x’), ’val’);
3 y.assign($(’#y’), ’val’);
4 z.assign($(’#z’), ’val’);

Code example 4.8: Assign the properties to respective input fields in the
DOM

Nearly all logic behind this implementation is already presented in the
examples. As shown, only a small amount of code is needed to handle the
logic between the gates and displaying the results on screen. Thus, the
developer can implement with a high level of abstraction and does not need
to be aware or handle the actual routing of the data. State manipulations
of the DOM are also excluded, as we bind the results using the ”assign”
function. Altogether, this limits the amount of errors and bugs that may be
introduced, as the developer has less to handle.

During the research, a pattern similar to what we have seen so far was
found useful for doing FRP in a structured way. That is, declaring functions
that are to be used by the program first, then design the data flow. When
designing data flow, we have used a top to bottom approach that starts with
declaring streams/properties, and then transforms, combines, merges, and
manipulates data, and lastly displays relevant results to the user.

24

4.3 Case 3: Real-Time Chat with WebSocket

The goal of this case is to illustrate how FRP works together with a web
application using a third party method of communicating across multiple
instances. For that purpose we present an example of a web chat that uses a
Node.js [25] server to broadcast incoming messages to all other clients using
WebSocket [37]. WebSocket is a protocol for two-way communication that is
supported in modern web browsers [41] and on the Node platform.

Node.js is a popular framework for doing server-side JavaScript develop-
ment and allows asynchronous I/O and an event-driven development model.
Node takes JavaScript as we know it and execute it on the V8 engine [13] so
that it can run on operating systems as a standalone program. That way,
there is no need for a browser to execute the code, and the operating sys-
tem can do this directly through the engine. This means that we can write
server-side applications that for example communicates with a database for
persisting data, or, in our case, broadcast messages to clients with Web-
Socket. To utilize WebSocket with Node, one must either implement the
communication or use an existing library.

The defacto library for using WebSockets on the web today is Socket.IO
(SIO) [33] [34]. SIO features both a server and a client side API to emit and
receive data through WebSocket. For this case, we will use SIO as it has
grown to be the standard of WebSocket communication on the web, and to
implement such functionality from scratch would be tedious (see [34]).

To further make this a practical example, our chat will run on a real web
server using Express [9]. Express is a minimalistic web framework for hosting
websites and provides features like URL routing.

25

Following in Code example 4.9 is an example of how an Express applica-
tion is serving the text ”Hello World!” when visiting http://localhost:3000/
in a browser on your local machine, given that both Node and the Express
module is installed.

1 var express = require(’express’);
2 var app = express();
3

4 app.get(’/’, function (request, result) {
5 res.send(’Hello World!’);
6 });
7

8 var server = app.listen(3000, function () {
9 var host = server.address().address;

10 var port = server.address().port;
11 });

Code example 4.9: Hello World with Express and Node

Notice that Node is module oriented and that including packages like
Express is done elegantly with the ”require” function, in contrast to what
we would do in a native client environment by including files. One can
easily expand the application with more URL endpoints using the ”app.get()”
function as here displayed by the root, ”/”.

With the tools of Node, Express and SIO available, we move on to the
implementation of the chat. A user should be able to visit the URL from
the Express server and get the user interface of the chat. Upon sending a
message, the client’s web browser emits the message using SIO to the server.
The server then broadcasts this message to all active clients as shown in the
following figure, Figure 3.

26

Figure 3: Overview of the chat application’s communication flow

First, we will show how the server side is implemented and later on the
client side. The skeleton for the app is the same as in the Express example,
but instead of returning a text string we render a template. This could be
a regular HTML file, but in this example we use a template engine called
Jade [16]. Jade allows writing HTML without the use of brackets, and uses
indentation for hierarchy. This allows for a less verbose coding style.

To demonstrate some of the difference, consider this example of declaring
a script-tag.

HTML: <script src="js/chat.js"></script>

Jade: script(src="js/chat.js")

In the server-side code, using such a template engine can be achieved
as shown in the next code example, Code example 4.10. In the ”app.get()”
function, the Jade file ”index.jade” will be rendered and sent to the client.

27

1 var app = express();
2 app.set(’view engine’, ’jade’);
3

4 app.get(’/’, function (request, result) {
5 res.render(’index’);
6 });

Code example 4.10: Using a template engine with Express

To summarize our previous steps; our application now runs on a URL
that can respond with a page when requested. The next step is to allow
receiving and emitting messages through the sockets. We import the SIO
module (given that it is already installed).

var io = require(’socket.io’).listen(server);

SIO is now available through the ”io” variable and is also bound to the
server through the ”listen()” function that we passed our running server to
as a parameter.

Finally, we listen to incoming messages from our connected clients and
broadcast them to all of the sockets the server have in its ”io.sockets” pool,
as shown in Code example 4.11.

28

1 io.sockets.on(’connection’, function (socket) {
2 console.log(’Client connected’);
3 socket.on(’message’, function (data) {
4 io.sockets.emit(’message’, data);
5 });
6 });

Code example 4.11: Listening and broadcasting through WebSockets

This concludes everything needed for the server side of this application.
On the client side, we will no longer use Node or Express as they are only
required for the server-side. Our web server is already running. Relevant
now is what the server sends to the client to interpret. This includes the user
interface of the chat, the logic for sending messages to the server, handling
received messages, and displaying them on screen. The following figure,
Figure 4, shows the web chat in a client’s browser with example data from a
chat with another client.

29

Figure 4: Screenshot of the FRP web chat interface

To send messages to the other clients through our server, we use the client
API of the SIO library. This can be achieved in almost the same fashion as
with the module in Node:

var socket = io.connect();

We then apply FRP techniques to capture the data from the user and
send it to the socket. To achieve this, we create an event stream from when
the user clicks ”Send”. We map the data on this stream to be a combination
of the message and username provided through a ”getMessageAndUsername”
function, before declaring, that, when a value is pushed to the stream, we
should emit it to the socket. This is shown in Code example 4.12.

30

1 var messageStream = $(’#sender’)
2 .asEventStream(’click’)
3 .map(getMessageAndUsername)
4 .onValue(function (data) {
5 socket.emit(’message’, data);
6 });

Code example 4.12: Event stream that emits a message to socket

When the message is received by the socket on the web server, it is broad-
casted to the other clients as shown in the server-code example, Code example
4.11. Upon arrival on the client, we must receive the message and display
it on the screen of the client. Consider Code example 4.13 first, and we will
explain how this can be done using Bacon and FRP.

1 var fromServer = Bacon
2 .fromEventTarget(socket, ’message’)
3 .map(constructMessage)
4 .toProperty()
5 .assign($(’#chat’), ’append’);

Code example 4.13: Event stream that emits a message to socket

Familiar functions like ”map”, ”toProperty”, and ”assign” are present,
but a different technique is required to retrieve the message from the socket.
For this we use Bacon’s ”fromEventTarget” function. This function creates a
new event stream from a DOM EventTarget, e.g., a click on an element, or a
Node.js EventEmitter object, such as the socket from Socket.IO. In practice,

31

we can convert the data on the socket to a familiar event stream and from
there apply all FRP techniques and methods we have shown previously as
needed.

From the event stream, we map the data through the ”constructMessage”
method. The data coming from the socket is in the form of a JavaScript
object:

{message: ’Hello’, username: ’Saruman’}

The ”constructMessage” method simply parses this data to a more read-
able format for display to the user. We then convert the message to a property
so that its value can be assigned to an element in the DOM and thus will
appear in the client’s web browser.

An experienced developer might argue that receiving and sending mes-
sages in the manner we illustrate could easily be done in a traditional impera-
tive way with simple event listeners. Although this is true, this case shows an
example of how Bacon and FRP integrate with third-party libraries and tech-
nologies like Node and WebSocket/Socket.IO. Abstracting the socket layer
by transforming the sockets to event streams opens up for adding complexity
while preserving the ideas of the paradigm. An imperative approach might
not handle as well when complexity and features are added.

32

4.4 Case: Complex Client Side Form Validation

The Form is an essential component of the web. Traditionally, a form consists
of some input elements and a submit button. When submitting the form, a
specified action is executed. A common approach is to make the form do an
HTTP POST request [15] to a script, e.g., a PHP script [26] that handles
the data from the form passed on from the request. For example, when
registering a user on a web site. The user fills out his credentials as specified
by the form and presses submit. The form sends a POST request to a script
that persists the user’s data in a database.

Using the built in mechanics of a form like in the above example forces
a page reload and thus a request-response cycle to the server. If something
went wrong and the form is not valid, the server must detect this and pro-
vide feedback to the user. This is inefficient. A better approach is to use
JavaScript to validate the form on the client-side before sending it to the
server and thus relieving the server of load.

Validating and providing the user with intuitive feedback throughout the
form can quickly become complex as the different input fields might depend
on each other and force strict rules. Delivering useful feedback to the user
on each field also means that we have to manipulate the DOM, i.e., insert
messages consecutively on the site in the relevant parts.

A modern form should be able to provide instant feedback throughout
multiple fields with multiple rules attached to them. Fields can even be de-
pendent of each other, and have external communication, such as lookups in
a database. The challenges we have discussed so far implies that an imple-
mentation of such a form will be tough and touch by many of the problems
we may encounter by doing this in an imperative way.

With that in mind, we move forward to the specification of the case. A
seemingly good candidate for FRP, as a form may have complex state and

33

DOM manipulation with several input sources and internal dependencies.
The form in this case is a registration form for users on a website. We

focus on the client side validation, and nothing on the server. Note that it is
important to have both client and server side validation, because the request
with the data that is sent to the server eventually can be forged and thus
bypass our rules. The aim of client-side validation is to relieve the server
of request cycles during the validation process, and giving the user a fluent
experience while filling out the form. Implementing validation on both client
and server-side means more work, but the server validation does not need to
provide thorough feedback like the client-side and is merely an extra security
layer.

The form consists of the following fields, each with their corresponding
rules. Details regarding the rules will be discussed later.

• Username: The username field has an external resource lookup to en-
sure the user that the username is available. In addition, the username
cannot be empty, and only letters and numbers are allowed.

• Full name: The full name of the user, each name must be capitalized,
and the field cannot be empty.

• Password: A password must be at least six characters long.

• Confirm password: This field must contain the exact same characters
as the ”Password” field.

• Register button: This button will only be enabled as clickable if all
the previous fields are valid.

34

The user interface including what we have specified is displayed in Figure
5 below. To ease the design process of scaffolding and styling the elements,
as that is not the focus of this thesis, we use the component based front-end
framework, Twitter Bootstrap [38]. Bootstrap does not have any impact on
the dynamic JavaScript of our implementation and is only used to style the
HTML elements.

Figure 5: Screenshot of the user interface of the form

Using the same approach as in the previous cases, we start with defin-
ing functions that are used when modeling the data flow. For each rule we
have defined, we create a corresponding validation function as shown in the
next example, Code example 4.14. Such a function takes input that comes
from the input fields’ respective streams. This input is then validated, and
if passed, the value itself is returned so that it can pass through our streams
further on. If, however, the validation fails, a ”Bacon.Error” object is re-
turned with an error message attached. We will see later how we can filter
out these errors and display them to the user.

35

1 var passwordLongEnough = function (password) {
2 var errorMessage = ’Password must be atleast six characters long’;
3 if(password.length < 6)
4 return new Bacon.Error(errorMessage);
5 return password;
6 };

Code example 4.14: One of the validation functions for the FRP form

With the logic of our rules ready, we move on to the top of our data flow.
That is, streams for each input field. Our form has four input fields that is
our data foundation for further use. We declare streams that will yield the
value of the field in the form of a property for each of the input fields, as
shown in code example 4.15 below. To avoid code redundancy in the stream
creation, we introduce a help function.

1 var createFieldPropertyStream = function ($element) {
2 return $element
3 .asEventStream(’keyup’)
4 .map(’.currentTarget.value’)
5 .toProperty(’’);
6 };
7

8 var fullname = createFieldPropertyStream($(’#fullname’));

Code example 4.15: Creating the properties for the input fields

The data foundation is now available in related property variables as
the ”fullname” variable declared in the example. Attaching the validation

36

functions to our pipe from the input can be done in the following way as
exemplified in the field ”Full name”.

var validFullname = fullname.flatMap(nonEmpty).flatMap(checkCapitalizedNames);

”validFullname” is now a new property chained by the functions ”nonEmpty”
and ”checkCapitalizedNames” using the flatMap technique from Bacon. FlatMap
is one of the more complex but rewarding concepts to understand in FRP. It
is an operation different from the regular map function we have used so far.
While map will only apply a function to the data yielded by a stream, thus
replacing the original value with a transformed one, flatMap will flatten the
stream as well. To explain the flattening procedure, consider the following
structure with two levels.

[[1,2,3], [4,5,6]]

When flattening, we reduce this to one level.

[1,2,3,4,5,6]

In context, this means we spawn a new stream for the new values of
the given parameter to flatMap and concatenate it with the original stream
forming a result stream. In our case, this result stream is ”validFullname”.
This result stream, which is a property in our case since we declared it as
such in code example 4.14, will hold either the value of the input field or a
Bacon.Error object if the validation failed.

This technique using flatMap for the validation functions can be applied
to solve all such instances in the form, except checking user availability and
confirming password equality.

To perform checking if a username is available or not from an external
resource, we have mocked this with a simple PHP API (Application Pro-
gramming Interface). The API is an endpoint that can be requested by

37

HTTP GET with a set parameter of the username, and will yield a response
that can tell us if it is available or not. To be able to request this API
without manually entering the URL in the browser, or force page reloads,
we introduce AJAX (Asynchronous JavaScript and XML), [1]. AJAX is the
use of the XMLHttpRequest object to communicate with server-side scripts
asynchronously. The jQuery library [18] we utilize in this thesis to simplify
our code includes an elegant implementation of AJAX for easy use. Because
of the asynchronicity, waiting for a response is non-blocking, and we use a
success callback to verify that we are not handling data from the response
before its arrival. Following is an example of an AJAX request in jQuery.

1 $.GET(’http://example.org/someEndpoint/’)
2 .success(function (response) {
3 console.log(response);
4 });

Code example 4.16: Example of an AJAX request using HTTP GET

To use the PHP API with our Form and FRP, we convert it to a stream by
using ”fromPromise” function from Bacon. This function will work on other
promise implementations like jQuery Deferred [17]. A promise object is a
pattern or technique used in asynchronous communication that will deliver
a promise of incoming data, but does not know when the data will arrive.
We can look at it as a temporary object that will be resolved to an object of
meaning once the data arrives. We use this technique to program with the
responses from AJAX.

In our application, we create a function that wraps the stream conversion
from our AJAX request in code example 4.16 below.

38

1 var ajaxUsernameStream = function (query) {
2 return Bacon.fromPromise($.get(’api.php?username=’ + query));
3 };

Code example 4.17: Converting AJAX to a Bacon stream

In the chain of validating a user, we include the AJAX stream and end
up with the following result as shown in code example 4.17.

1 var validUsername = username
2 .flatMap(nonEmpty)
3 .flatMap(checkValidUsernameChars)
4 .combine(
5 username
6 .flatMapLatest(ajaxUsernameStream)
7 .flatMap(usernameNotTaken),
8 function (validity, available) {
9 if (available === true) return validity;

10 return available;
11 }
12);

Code example 4.18: The chain of validating the username

The code shown in the example can be rather hard to grasp, as there is
much going on at once. We start with a similar technique as before with flat
mapping validation functions. These first three lines are so far flattened to
one property. We then take this property and combine it with the stream

39

consisting of the original username stream, flat mapped with the username
availabilty check, through the anonymous function starting at line 8.

As the AJAX request is indeed asynchronous, we must take into account
that an older response might return before a newer one. For that purpose, we
use the ”flatMapLatest” function from Bacon to ensure our data is up to date.
The AJAX stream is flat mapped with the function ”usernameNotTaken”
which is used to handle errors on the stream. Finally, we combine through
the anonymous function, so that if the username is available, we return the
result from the property consisting of the first three lines. Otherwise, the
property will contain the error yielded by the ”usernameNotTaken” function.
We recommend reviewing Appendix 4 for the complete code when trying to
understand the mapping of data here. The combination of observables, i.e.,
streams, and properties, in code example 4.17 was one of the most challenging
tasks to implement in this thesis. It is possible that it could be done more
elegantly.

Our last input field is for confirming the password. Since all the validation
for the password itself is handled by the password field, there is no need to
duplicate this as the form would not be valid if either field contained errors.
For this to be valid, it only has to contain the exact same text as the password
field. The validation is shown in code example 4.18 below.

40

1 var passwordsEqual = password
2 .combine(passwordConfirm,
3 function (pass, confirm) {
4 if(pass === confirm)
5 return pass;
6 return false;
7 }
8)
9 .flatMap(passwordsAreEqual);

Code example 4.19: Validation of matching passwords

As before, we combine the value of both fields and check if their respective
strings are equal. To handle errors, we flat map onto the chain a ”password-
sAreEqual” function that will either return a Bacon.Error or the password.

To summarize, we now have observable properties for each of our fields
that either contains errors or a vaild value. We now move on to display
eventual errors to the user. For this purpose we have implemented a help
function which method signature takes an element and an error message:

var displayError = function ($wrapper, errorMessage)

This function will insert or remove a help-block according to the error
handling component in our Bootstrap framework. Such errors can be viewed
in Figure 5, shown previously in this chapter, and consists of a red border
around the input field and a corresponding red error message below. We also
have a ”removeError” function which does the exact opposite.

The concept is to check the properties for errors. If they occur, display
the error, if not, remove any previous errors. We must also control what

41

feedback belongs to what field. For that purpose we use the ”bindFeedback”
function in Code example 4.19 below.

1 var bindFeedback = function (stream, $wrapper) {
2 stream
3 .onError(displayError.bind(null, $wrapper));
4 stream
5 .skipErrors()
6 .skipDuplicates()
7 .onValue(removeError.bind(null, $wrapper));
8 };
9

10 bindFeedback(validFullname, $fullname);

Code example 4.20: Binding feedback to fields to the correct element

As we see an example of on line 10, we pass the element that wraps
the corresponding input field so that we can use it in the ”onError/onVa-
lue” functions. The technique used is JavaScript’s bind function, [21]. This
function will create a new function, that when called, has the value of the
wrapper already set. The result is that when any of the properties contains
a Bacon.Error, ”displayError” will be called. If a field is valid, existing error
feedback will be removed. Each field is bound like this independantly by the
”bindFeedback” function. The result is a working form that provide real-time
feedback to its respective field depending on of what the user enters.

All our validation properties can also be combined to tell when the whole
form is valid, and thus when we can enable the register button. This is shown
in code example 4.20 below.

42

1 var isValid = validUsername
2 .combine(validFullname, ’.concat’)
3 .combine(validPassword, ’.concat’)
4 .combine(passwordsEqual, ’.concat’)
5 .map(false).mapError(true);
6

7 isValid.assign($(’button’), "attr", "disabled");

Code example 4.21: Binding feedback on fields to the correct element

In this example we create a new property by combining all other prop-
erties through the predefined ”.concat” function. We then map the result to
false if any the chained functions contains an error, or true if not. We can
then assign this property to control the ”disabled” attribute on the button
so that if the form is not valid, the user will not be able to submit the form.

43

44

5 Discussion
This chapter will discuss the findings from the previous chapter containing
the four case implementations with regards to the research questions from
Chapter 3.4. The aim is to shed light on how FRP applies on the web, and
if this change in paradigm is sustainable for the future.

We start with discussing the code quality of our implementations. Al-
though this is arguably a topic of a personal manner, there is research estab-
lished that agrees on what is definitive bad code in the context of JavaScript,
as shown in [10]. For example, excessive nesting of callbacks to ensure con-
currency, or weak implementations of manual state handling. Some of these
concepts are by design difficult to do wrong when using FRP. Some of the mo-
tivation behind reactive programming on the web is to counter these pitfalls
that JavaScript allows so easily.

In Case 1 we compared the reactive approach to an imperative one. Al-
though the reactive version had less code and more functionality, the overall
amount of code needed to achieve the same functionality was roughly the
same. Although this thesis does not include side-by-side comparisons with
imperative, or similar solutions, to show more complex cases, the implemen-
tations shown are fully working with basic functionality. None of our findings
trigger any alarms of serious deviations of code size, but rather a somewhat
equal amount as shown in Case 1.

The pattern in which code is written in our implementations with a top-
down approach might be preferable for developers as readability, i.e., the
ability to follow the code and intuitively understand what it does, increases.
Imperative solutions may have scattered parts of the implementation in var-
ious sections due to the asynchronicity and need for callbacks to handle
application concurrency management.

The implementation we have used (Bacon), makes it fairly easy to stay

45

within the boundaries of the paradigm, at least, when modeling data-flow.
One does not have the need to introduce, e.g., callbacks, because Bacon
provides tools to solve the problems in a reactive manner. With our top-down
approach, it is up to the developer to maintain the ideology of the paradigm
when introducing logic functions or help functions (e.g., Code example 4.4),
as these are not part of the Bacon API. This is where the inexperienced
might be tempted to fall back to old habits, as there is no safety net from
the library. In Case 4, some of our help functions manipulates the DOM to
give the users feedback in the form. This was done because we could not find
any way of doing this with pure Bacon code. In the case, only small pieces
of code are extracted into semantic functions that are controlled by reactive
components. This does not necessarily imply bad design, but as the feature
set increases, the developer must keep these issues in mind to ensure a clean
semantic structure. The findings in the results of this thesis did not uncover
a way to mitigate this problem.

Hand in hand with code quality comes maintainability. It is common
today that multiple people work on the same projects, and thus touch and
enhances each other’s code. There are many costs tied to not being able
to understand what someone else wrote, and from a business perspective,
such costs can bring an organization to its knees. Therefore, developers
today must strive to write clean and maintainable code. This is known as
software craftsmanship, [19]. This is relevant as this thesis is a practical
evaluation. We aim to evaluate how our findings apply to the real world.
When looking back at our cases, we can see promising results even in the first
example, Code example 4.3, regarding simple addition. Further validation of
the input fields is needed to make a solid implementation that ensures that
a result can be calculated. We provide an example of this by mapping on
other functions, like ”isNumber” to verify that the ”parseInt” function did
not return NotaNumber(NaN). This is an example of enhancement. Further

46

on, in Case 4, we can see that expanding validations of an input field can
be done elegantly by implementing more validation functions and chaining
them by using the ”flatMap” function. Even adding another input field
would not have any substantial impact on any of the code already written,
and could easily follow the same pattern: Convert input to event stream,
flatMap validation functions onto stream, bind feedback to user.

This thesis only shows how small enhancements or, how adding similar
features to what already exists in the application can be done. Further work
to measure maintainability would include a major change to the specifications
of our implementations. Unfortunately, this was out of scope of the thesis.

The limitations of FRP in our thesis will be mostly narrowed to the
context of our Bacon library. The API provided by the library has a set of
functions that are already defined and cannot be altered by the developer
(without modifying the library). These functions, such as ”asEventStream”
and ”flatMap”, are documented tools for the developer to wield and combine
to build an application. As previously discussed regarding Case 4, there may
be problems that cannot be solved by using Bacon alone. Assigning values
to existing elements in the DOM work seamlessly, but there may be the need
to alter the DOM itself. There are other libraries and frameworks, like React
by Facebook [28] that operates with a virtual DOM for this purpose, and it is
possible that such techniques could combine with FRP. This is unfortunately
out of scope for this thesis, but can be considered for future work.

The Bacon library illustrates a real promise for integrating with external
resources, as shown both in Case 3 with the chat, and Case 4 with the external
API for username availability. The concept of converting such resources to
the familiar event-stream makes it easy to maintain a level of abstraction
towards other services or resources not directly coupled with the application
in question. This aids the developer in concentrating on relevant parts and
increases the maintainability factor with separation of concerns [19].

47

One aspect that is relevant to discuss in the context of possible multiple
developers in an organization is adoption. As we stand today, the FRP
paradigm might be completely new to a developer. The results, as shown
in the implementation, may show real promise for the future of FRP on
the web, but the way along may be tedious. Some of the concepts we have
shown can be hard to grasp for the first time for a developer schooled in
imperative or object oriented paradigms, either from education or experiences
from previous projects.

Introducing FRP in a new environment comes at a cost. The implemen-
tation of FRP in the form of a library includes code that must be delivered to
the client along with the application itself, for example over the Internet. Al-
though Bacon, in our case, is relatively small, when working with client-side
code, it is good practice to keep transfer sizes as small as possible to ensure
performance in the application as developers do not know the specifications
of the client’s hardware.

Also, when problems arise in an existing application that seem fit for
FRP, inclusion of a new library featuring a whole new paradigm must be
carefully considered. The positive impacts of FRP might not shine through
the cost of introducing a new paradigm for the developers to maintain, as
well as the performance hit by adding another library.

48

6 Conclusion
The web as an application platform is growing rapidly. As JavaScript both on
the server and client side is treasured by developers to build complex solutions
for the web, we face different challenges. The forgiving nature of JavaScript
allows emerging of inadequate coding styles and a lack of discipline when
creating software. Most of today’s JavaScript applications are written in an
imperative manner, that when combined with event-based programming to
handle concurrency management in an asynchronous environment leads to
the introduction of poor practices. The Functional Reactive Programming
(FRP) paradigm is a different approach to doing such asynchronous develop-
ment. Implementations meant for the web, e.g., Bacon as used in this thesis,
counters the problems and challenges from traditional ways reviewed in this
thesis.

In this thesis, we have used a case based practical approach for evaluating
how FRP can apply to the web. Through four different problems and applica-
tions, we have implemented different specifications of such problems using an
FRP implementation of JavaScript, namely Bacon. These cases demonstrate
both the power of reactive programming when e.g., managing state, handling
concurrency and working with internal dependencies in an application. They
also demonstrate how we apply ideas from the functional paradigm and com-
bine these with reactivity to ensure good extraction that leads to readability
for developers. Techniques from the functional paradigm are also utilized by
Bacon to transform data directly on our various observable data types.

The implementations use a pattern when designing code inspired by the
classic FRP from the 90s that feature a top-down approach where functions
used when modeling are declared first. Then the data flow is modeled in a
top-down way, where we go from declaring our sources from inputs to combin-
ing and transforming the data to create a data foundation. Finally, the data

49

foundation is presented to the user using minimal DOM manipulation from
Bacon’s minimalistic DOM-related functions, which e.g., assigns properties
to attributes on elements..

The findings from our results show that a broad selection of common
problems faced in an average organization can be solved with FRP. The im-
plementations do not deviate from standards regarding code size, and read-
ability and maintainability may improve drastically by using FRP. Expan-
sion and enhancement of the applications can be done elegantly as discussed
when they do not involve drastic alterations of the specification. Further
work should include testing and measuring this on a larger scale, as this the-
sis is merely an introduction to applying FRP in practice and has a limited
scope.

Although FRP shows great promise from our findings, a developer inexpe-
rienced in the reactive ways may have a hard time grasping the new concepts.
Organizations and businesses must carefully consider the cost of introducing
a new paradigm for this reason, and others discussed in this thesis such as
performance hits, and maintainability. Our conclusions lean towards promise
when building FRP applications from scratch, and see more challenges with
enforcing FRP in existing environments. Leading organizations such as Net-
flix at the time of writing have had great success with converting their entire
frontend platform using similar techniques that we have used in this thesis.

Thus, we conclude that FRP is a good candidate for consideration when
building complex, stateful applications with several input sources.

50

References
[1] AJAX: W3C XmlHTTPRequest Level 2. url: http://www.w3.org/

TR/2012/WD-XMLHttpRequest-20120117/.

[2] Apple Mac OSX, version Yosemite. url: http://www.apple.com/

osx/.

[3] Bacon.js download count sampled 25-11-2015 from NPM Stat. url:
http://npm-stat.com/charts.html?package=baconjs&author=

&from=2013-11-25&to=2015-11-25.

[4] Bacon.js Functional Reactive Programming library for JavaScript. url:
https://github.com/baconjs/bacon.js.

[5] Evan Czaplicki. “Elm: Concurrent FRP for Functional GUIs”. In: Se-
nior thesis, Harvard University (2012).

[6] Christoph Doblander, Thomas Parsch, and Hans-Arno Jacobsen. “Geospa-
tial event analytics leveraging reactive programming”. In: Proceedings
of the 9th ACM International Conference on Distributed Event-Based
Systems. ACM. 2015, pp. 324–325.

[7] ECMA ECMAScript, European Computer Manufacturers Association,
et al. ECMAScript Language Specification. 2011.

[8] Conal Elliott and Paul Hudak. “Functional reactive animation”. In:
ACM SIGPLAN Notices. Vol. 32. 8. ACM. 1997, pp. 263–273.

[9] Express, Node.js web framework. url: http://expressjs.com/en/

index.html.

[10] Amin Milani Fard and Ali Mesbah. “JSNOSE: Detecting JavaScript
code smells”. In: Source Code Analysis and Manipulation (SCAM),
2013 IEEE 13th International Working Conference on. IEEE. 2013,
pp. 116–125.

51

[11] David Flanagan. JavaScript: the definitive guide. ” O’Reilly Media,
Inc.”, 2006.

[12] Google Chrome web browser. url: https://www.google.com/chrome/.

[13] Google, V8 JavaScript engine version 5. url: https://code.google.

com/p/v8/.

[14] Haskell programming language. url: https://www.haskell.org/.

[15] HTTP Protocol RFC. url: https://tools.ietf.org/html/rfc2616.

[16] Jade Template Engine. url: http://jade-lang.com/.

[17] jQuery Deferred Promise. url: https://api.jquery.com/deferred.

promise/.

[18] jQuery JavaScript library version 2.1.3. url: https://jquery.com/.

[19] Robert C Martin. Clean code: a handbook of agile software craftsman-
ship. Pearson Education, 2009.

[20] D.S. McFarland. CSS3: The Missing Manual. Missing manual. O’Reilly
Media, 2012. isbn: 9781449339494. url: https://books.google.no/

books?id=cqeTt3RhKF0C.

[21] MDN: JavaScript prototype bind. url: https://developer.mozilla.

org/en-US/docs/Web/JavaScript/Reference/Global_Objects/

Function/bind.

[22] Module Counts, sample from 04-11-2015. url: http://www.modulecounts.

com/.

[23] Netflix Q3 2015 letter to shareholders. url: http://files.shareholder.

com/downloads/NFLX/1064918284x0x854558/9B28F30F-BF2F-4C5D-

AAFF-AA9AA8F4779D/FINAL_Q3_15_Letter_to_Shareholders_With_

Tables_.pdf.

52

[24] Henrik Nilsson, Antony Courtney, and John Peterson. “Functional re-
active programming, continued”. In: Proceedings of the 2002 ACM SIG-
PLAN workshop on Haskell. ACM. 2002, pp. 51–64.

[25] Node.js v5.1.0. url: https://nodejs.org/en/.

[26] PHP programming language. url: http://php.net.

[27] Mark Pilgrim. HTML5: up and running. ” O’Reilly Media, Inc.”, 2010.

[28] React JavaScript library for building user interfaces. url: https://

facebook.github.io/react/.

[29] Reactive Banana, Haskell FRP library. url: https://wiki.haskell.

org/Reactive-banana.

[30] Reactive Extensions for JavaScript by Microsoft. url: https://github.

com/Reactive-Extensions/RxJS.

[31] Reactive Programming in Netflix - Netflix Blog. url: http://techblog.

netflix.com/2013/01/reactive-programming-at-netflix.html.

[32] Rx download count sampled 25-11-2015 from NPM Stat. url: http:

//npm-stat.com/charts.html?package=rx&author=&from=&to=.

[33] Socket.IO library for WebSocket. url: http://socket.io/.

[34] Pedro Teixeira. Professional Node. js: Building JavaScript based scal-
able software. John Wiley & Sons, 2012.

[35] The Python Programming Language. url: https://www.python.org/.

[36] The Reactive Exensions project by Microsoft. url: https://msdn.

microsoft.com/en-us/data/gg577609.

[37] The WebSocket Protocol. url: https : / / tools . ietf . org / html /

rfc6455.

[38] Twitter Bootstrap v3. url: http://getbootstrap.com/.

53

[39] W3Schools: Anonyomous functions in JavaScript. url: http://www.

w3schools.com/js/js_function_definition.asp.

[40] Zhanyong Wan, Walid Taha, and Paul Hudak. “Real-time FRP”. In:
ACM SIGPLAN Notices. Vol. 36. 10. ACM. 2001, pp. 146–156.

[41] WebSocket browser support, sampled 01-12-2015. url: http://caniuse.

com/#search=websocket.

54

A Appendix 1: Simple Addition
A.1 Simple Addition using Bacon and FRP

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <script

src="https://code.jquery.com/jquery-2.1.3.min.js"></script>↪→

5 <script src="https://cdnjs.cloudflare.com/ajax/
6 libs/bacon.js/0.7.53/Bacon.min.js">
7 </script>
8 </head>
9 <body>

10 <h3>Simple addition</h3>
11 <input type="text" id="a"> +
12 <input type="text" id="b"> =
13 <input type="text" id="c">
14

15 <script>
16 (function () {
17 var isNumber = function (input) {
18 return input > 0 || input < 0;
19 };
20 var sum = function (x, y) {
21 return x + y;
22 };
23

24 var a = $(’#a’)
25 .asEventStream(’keyup’)
26 .map(’.currentTarget.value’)
27 .map(parseInt)
28 .filter(isNumber)
29 .toProperty(0);
30

31 var b = $(’#b’)

55

32 .asEventStream(’keyup’)
33 .map(’.currentTarget.value’)
34 .map(parseInt)
35 .filter(isNumber)
36 .toProperty(0);
37

38 var c = a.combine(b, sum);
39 c.assign($(’#c’), ’val’);
40 }());
41 </script>
42 </body>
43 </html>

A.2 Simple Addition with jQuery

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <script

src="https://code.jquery.com/jquery-2.1.3.min.js"></script>↪→

5 <script src="https://cdnjs.cloudflare.com/ajax/
6 libs/bacon.js/0.7.53/Bacon.min.js">
7 </script>
8 </head>
9 <body>

10 <input type="text" id="a" value="0"> +
11 <input type="text" id="b"> =
12 <input type="text" id="c">
13

14 <script>
15 $(function () {
16 $(’#a’).on(’keyup’, function () {
17 var a = parseInt($(’#a’).val());
18 var b = parseInt($(’#b’).val());

56

19 $(’#c’).val(a + b);
20 });
21

22 $(’#b’).on(’keyup’, function () {
23 var a = parseInt($(’#a’).val());
24 var b = parseInt($(’#b’).val());
25 $(’#c’).val(a + b);
26 });
27 });
28 </script>
29 </body>
30 </html>

57

A Appendix 2: Logic Gates

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap↪→

5 /3.3.5/css/bootstrap.min.css" type="text/css">
6 <script

src="https://code.jquery.com/jquery-2.1.3.min.js"></script>↪→

7 <script src="https://cdnjs.cloudflare.com/ajax/
8 libs/bacon.js/0.7.53/Bacon.min.js"></script>
9 </head>

10 <body>
11 <div class="container">
12 <div class="col-md-6">
13 <img src="./logic-gates.png" alt=""

width="100%">↪→

14 A: <input type="text" id="a">

15 B: <input type="text" id="b">

16 W: <input type="text" id="w"

disabled="true">
↪→

17 X: <input type="text" id="x"
disabled="true">
↪→

18 Y: <input type="text" id="y"
disabled="true">
↪→

19 Z: <input type="text" id="z"
disabled="true">
↪→

20 </div>
21 </div>
22

23 <script>
24 (function () {
25

26 // Logic gates
27 var or = function (a, b) {

58

28 if(a == 1 || b == 1)
29 return 1;
30 return 0;
31 };
32 var and = function (a, b) {
33 if(a == 1 && b == 1)
34 return 1;
35 return 0;
36 };
37 var nand = function (a, b) {
38 if(a == 1 && b == 1)
39 return 0;
40 return 1;
41 };
42

43 // Data flow
44 var a = $(’#a’)
45 .asEventStream(’keyup’)
46 .map(’.currentTarget.value’)
47 .toProperty(0);
48

49 var b = $(’#b’)
50 .asEventStream(’keyup’)
51 .map(’.currentTarget.value’)
52 .toProperty(0);
53

54 var w = a.combine(b, or);
55 var x = a.combine(w, and);
56 var y = b.combine(w, nand);
57 var z = x.combine(y, and);
58

59 w.assign($(’#w’), ’val’);
60 x.assign($(’#x’), ’val’);
61 y.assign($(’#y’), ’val’);
62 z.assign($(’#z’), ’val’);
63 }());
64 </script>
65 </body>

59

66 </html>

60

A Appendix 3: Real-Time Chat
with WebSocket

A.1 Server-side Node

1 var express = require(’express’);
2

3 // App setup
4 var app = express();
5 app.set(’view engine’, ’jade’);
6 app.use(express.static(__dirname + ’/assets’));
7

8 // Routes
9 app.get(’/’, function (req, res) {

10 res.render(’index’);
11 });
12

13 var server = app.listen(3000);
14 var io = require(’socket.io’).listen(server);
15

16 io.sockets.on(’connection’, function (socket) {
17 console.log(’Client connected’);
18 socket.on(’message’, function (data) {
19 io.sockets.emit(’message’, data);
20 });
21 });

61

A.2 Client-side Bacon

1 (function () {
2 var socket = io.connect();
3

4 var emitMessage = function (data) {
5 socket.emit(’message’, data);
6 }
7

8 var getMessageAndUsername = function (event) {
9 var message =

10 {
11 ’message’: $(’#message’).val(),
12 ’username’: $(’#username’).val()
13 };
14 return message;
15 }
16

17 var constructMessage = function (message) {
18 return "«" + message.username + "»: " +

message.message + "
";↪→

19 }
20

21

22 var messageStream = $(’#sender’)
23 .asEventStream(’click’)
24 .map(getMessageAndUsername)
25 .onValue(function (data) {
26 socket.emit(’message’, data);
27 });
28

29 var fromServer = Bacon
30 .fromEventTarget(socket, ’message’)
31 .map(constructMessage)
32 .toProperty()
33 .assign($(’#chat’), ’append’);

62

34 }());

A.3 Client-side Jade Markup

1 doctype html
2 html
3 head
4 link(rel="stylesheet",

href="http://yui.yahooapis.com/pure/0.6.0/pure-min.css")↪→

5

6 style.
7 .l-box {
8 padding: 1em;
9 }

10

11 #chat {
12 border: 1px solid #CCC;
13 min-height:300px;
14 }
15 body
16 .purge-g
17 .pure-u-1-2
18 .l-box
19 h1 FRP web chat
20 #chat
21 #messagecount(hidden)
22 .pure-u-1
23 .l-box
24 .pure-form
25 label(for="message") Message
26 br
27 textarea#message(type="text", val="Anonymous")
28 br
29 br

63

30 label(for="username") Your username
31 br
32 input#username(type="text",

placeholder="Anonymous")↪→

33 button#sender.pure-button.pure-button-primary
Send↪→

34

35 script(src="https://ajax.googleapis.com/ajax/
36 libs/jquery/2.1.3/jquery.min.js")
37 script(src="https://cdnjs.cloudflare.com/ajax/
38 libs/bacon.js/0.7.65/Bacon.min.js")
39 script(src="https://cdn.socket.io/socket.io-1.3.5.js")
40 script(src="js/chat.js")

64

A Appendix 4: Complex Client
Side Form Validation

A.1 Form Implementation with Bacon

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <link rel="stylesheet"

href="https://maxcdn.bootstrapcdn.com/bootstrap/↪→

5 3.3.5/css/bootstrap.min.css" type="text/css">
6 <script

src="https://code.jquery.com/jquery-2.1.3.min.js"></script>↪→

7 <script src="https://cdnjs.cloudflare.com/ajax/
8 libs/bacon.js/0.7.53/Bacon.min.js"></script>
9 </head>

10 <body>
11 <div class="container">
12 <div class="col-md-12">
13 <form>
14 <div id="frpform-username"

class="form-group">↪→

15 <label
for="username-id">Username</label>↪→

16 <input type="text" class="form-control"
id="username-id"
placeholder="Username">

↪→

↪→

17 </div>
18 <div id="frpform-fullname"

class="form-group has-feedback">↪→

19 <label for="username">Full name</label>
20 <input type="text" class="form-control"

id="fullname" placeholder="Full
name">

↪→

↪→

21 </div>

65

22 <div id="frpform-password"
class="form-group has-feedback">↪→

23 <label for="username">Password</label>
24 <input type="password"

class="form-control" id="password"
placeholder="Password">

↪→

↪→

25 </div>
26 <div id="frpform-password-confirm"

class="form-group has-feedback">↪→

27 <label for="username">Confirm
password</label>↪→

28 <input type="password"
class="form-control"
id="password-confirm"
placeholder="Password">

↪→

↪→

↪→

29 </div>
30 <button class="btn btn-primary"

disabled="true">Register</button>↪→

31 </form>
32 </div>
33 </div>
34

35 <script>
36 (function () {
37 var createFieldPropertyStream = function

($element) {↪→

38 return $element
39 .asEventStream(’keyup’)
40 .map(’.currentTarget.value’)
41 .toProperty(’’);
42 };
43 var displayError = function ($wrapper,

errorMessage) {↪→

44 var $existing = $wrapper.find(’.help-block’);
45 var errorHtml = ’’ +

errorMessage + ’’;↪→

46 if ($existing.length) {
47 $existing.html(errorMessage);

66

48 } else {
49 $wrapper.append(errorHtml);
50 }
51 $wrapper.removeClass(’has-sucess’);
52 $wrapper.addClass(’has-error’);
53 };
54 var removeError = function ($wrapper) {
55 $wrapper.find(’.help-block’).remove();
56 $wrapper.addClass(’has-sucess’);
57 $wrapper.removeClass(’has-error’);
58 };
59 var ajaxUsernameStream = function (query) {
60 return

Bacon.fromPromise($.get(’api.php?username=’
+ query));

↪→

↪→

61 };
62 // Validation functions
63 var nonEmpty = function (value) {
64 return (!value.length > 0) ?
65 new Bacon.Error(’Field cannot be empty’) :
66 value;
67 };
68 var checkCapitalizedNames = function (name) {
69 if (!name.split) return name;
70 var names = name.split(’ ’);
71 for(var i = 0; i < names.length; i++)
72 if(!/ˆ[A-Z]/.test(names[i]))
73 return new Bacon.Error(’All names must

be capitalized’);↪→

74 return name;
75 };
76 var checkValidUsernameChars = function (username)

{↪→

77 if(/ˆ[a-zA-Z0-9]+$/.test(username))
78 return username;
79 return new Bacon.Error(’Username can only

contain letters and numbers’);↪→

80 };

67

81 var usernameNotTaken = function
(usernameFromApiAvailable) {↪→

82 if(usernameFromApiAvailable === ’true’)
83 return true;
84 return new Bacon.Error(’Username already

taken’);↪→

85 };
86 var passwordLongEnough = function (password) {
87 if(password.length < 6)
88 return new Bacon.Error(’Password must be

atleast six characters long’);↪→

89 return password;
90 };
91 var passwordsAreEqual = function (passwordEqual)

{↪→

92 if(passwordEqual == false)
93 return new Bacon.Error(’Passwords does not

match’);↪→

94 return passwordEqual;
95 };
96 var bindFeedback = function (stream, $wrapper) {
97 stream
98 .onError(displayError.bind(null, $wrapper));
99 stream

100 .skipErrors()
101 .skipDuplicates()
102 .onValue(removeError.bind(null, $wrapper));
103 };
104 // Field wrappers
105 var $username = $(’#frpform-username’);
106 var $fullname = $(’#frpform-fullname’);
107 var $password = $(’#frpform-password’);
108 var $passwordConfirm =

$(’#frpform-password-confirm’);↪→

109

110 // Streams
111 var username =

createFieldPropertyStream($(’#username-id’));↪→

68

112 var fullname =
createFieldPropertyStream($(’#fullname’));↪→

113 var password =
createFieldPropertyStream($(’#password’));↪→

114 var passwordConfirm =
createFieldPropertyStream($(’#password-confirm’));↪→

115

116 var validUsername = username
117 .flatMap(nonEmpty)
118 .flatMap(checkValidUsernameChars)
119 .combine(
120 username
121 .flatMapLatest(ajaxUsernameStream)
122 .flatMap(usernameNotTaken),
123 function (validity, available) {
124 if (available === true) return

validity;↪→

125 return available;
126 });
127

128 var validFullname =
fullname.flatMap(nonEmpty).flatMap(checkCapitalizedNames);↪→

129

130 var validPassword =
password.flatMap(passwordLongEnough);↪→

131

132 var passwordsEqual =
password.combine(passwordConfirm, function
(pass, confirm) {

↪→

↪→

133 if(pass === confirm)
134 return pass;
135 return false;
136 }).flatMap(passwordsAreEqual);
137

138 bindFeedback(validUsername, $username);
139 bindFeedback(validFullname, $fullname);
140 bindFeedback(validPassword, $password);
141 bindFeedback(passwordsEqual, $passwordConfirm);

69

142

143

144 var isValid = validUsername
145 .combine(validFullname, ’.concat’)
146 .combine(validPassword, ’.concat’)
147 .combine(passwordsEqual, ’.concat’)
148 .map(false).mapError(true);
149 isValid.assign($(’button’), "attr", "disabled");
150 }());
151 </script>
152 </body>
153 </html>

A.2 PHP API Resource

1 <?php
2 $usernames = array(’bjarne’, ’bja’, ’b’, ’chris’,

’christian’, ’c’);↪→

3 if (in_array($_GET[’username’], $usernames))
4 echo "false";
5 else
6 echo "true";
7 ?>

70

