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Sammendrag

Langtidsstatistikk for bølgekraft beskriver forekomsten av bølger over år og deres
energi. Dette blir funnet ved å sette sammen korttidsstatistikk for individuelle
bølger og statistikk for sjøtilstander. Alle beregningene er gjort både ved bruk av
bølgescatter diagrammer og analytiske uttrykk. De to uttrykkene gir jevnt over
ganske like resultater.

For langtidsstatistikk er kvaliteten av resultatene avhengig av både oppløsningen på
beregningene og størrelsen av området som beregningene spenner over. De fleste av
bølgene har lave verdier for bølgeenergi, bølgehøyde og bølgeperiode. Det er sett at
bølgekraft varierer med kvadratet av bølgehøyden, noe som er forventet. Langtids
marginal pdf av bølgekraft er svært bratt og ligner en eksponentiell kurve, men den
er ikke helt lik. CDF av bølgeenergi er også svært bratt, og her blir forskjellene
mellom de to utregningsmetodene synlige.

For å optimalisere bevegelsene til en WEC i bølger er det nødvendig med et kontroll
system. Målet med dette er å endre WEC-parametere slik at det øker bevegelse av
de bevegelige delene. Den viktigste kontroll variabelen, maskineri kraften, kan deles
i tre kategorier: resistiv last, reaktive last og ikke-lineær last. Ulike konsepter som
bruker reaktiv last er omtrentlig kompleks konjugert kontroll, sporing av omtrentlig
optimal hastighet og modell prediktiv kontroll. Disse gir den høyeste effekten, men
de bruker litt energi for å kontrollere bevegelse. Disse metodene bruker en form
for prediksjon fordi maskineristyrken er avhengig av fremtidige verdier. Resistiv
belastning, dvs. ingen maskinkraft, blir presentert av fase kontroll ved hjelp av
latching og clutching. Latching er en metode for å holde WEC’en fast i deler
av syklusen, og clutching er en metode som omfatter kobling og frakobling av
maskineriet i intervaller. Disse metodene gir mindre energiproduksjon, men de
bruker ikke energi for å kontrollere fasen.

En god bølgeenergi konverterer er en enhet som har lave kostnader for elektrisitet
per kilowatt time. Dette kriteriet er avhengig av prisen på enheten, som generelt er
ukjent, og mengden absorbert kraft, som kan beregnes. Den absorberte kraften er
beregnet for fire forskjellige konsepter: en bøye utsatt for hivbevegelse, en todelers
enhet utsatt for hivbevegelse, en enhet med stamp bevegelse og en flytende OWC.
Energiabsorberingen varierer for ulike sjøtilstander og øker generelt med bølgeen-
ergien, men WEC’ene har ulike optimale verdier som gir best energiabsorpsjon og
best effektivitet. Effektiviteten kan for enkelte områder være svært store, til og
med større enn 100 % hovedsakelig på grunn av fokuserings teknikker og begrenset
nøyaktighet på rådata som er benyttet i beregningene. Men de fleste av effektivitet-
sresultatene er mye lavere enn det. Effektiviteten av WEC’ene har blitt kombinert
med langtids bølgekraftstatistikk for å komme fram til langtids energiabsorpsjon.
Forskjellene mellom konseptene her er store, de har effektiviteter mellom 11% og
47%.
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Summary

Long-term statistics for wave power describes the waves that will occur over years
and their energy. This can be found by putting together short-term statistics for
individual waves and statistics from sea states. All the calculations are done both
by the use of wave scatter diagrams and analytical expressions. It is generally seen
that the two different methods gives similar results.

For the long-term statistics the quality of the results is dependent on both the
resolution of the calculations, and the size of which the calculations span over.
Most of the waves have low values for wave energy, wave height and wave period.
It is seen that the wave power varies with the square of the wave height which is
expected. The long-term marginal pdf of wave power is very steep and resembles
an exponential curve, but it is not an exact match. The CDF of wave energy is
also very steep, and here the differences between the two methods become visible.

To optimize the motion of a WEC in waves a control system is necessary. The
goal of the control system is to change the WEC’s parameters so that it increases
the motion of the moving parts. The key control variable, the machinery force,
can be divided in three categories: resistive loading, reactive loading and non-
linear loading. Different concepts that uses reactive loading is approximate complex
conjugate control, tracking of approximate optimal velocity and model predictive
control. These give the highest power output, but they use some energy in order to
control the motion. These methods use prediction because the machinery force is
dependent on future values. Resistive loading, i.e. no machinery force, is presented
by phase control by latching and clutching. Latching is a method keeping the
absorber fixed during parts of the cycle, and clutching is a method which is coupling
and decoupling the machinery at intervals. These methods give smaller energy
output, but do not use energy in order to control the phase.

A good wave energy converter is a device that has low cost of electricity per kilowatt
hour. This criterion is dependent on the cost of the device, which is generally not
known, and the power absorption that can be estimated. The power absorption
has been estimated for four different concepts: a heaving buoy, a heaving two
bodies system, a pitching device and a floating OWC. The power absorption varies
for different sea states and is generally increasing as the total present wave power
increases, but the WEC’s have different optimal values that give the best power
absorption and best efficiency. The efficiency can for some areas be very large,
even larger than 100% mainly because of focusing techniques and limited accuracy
on the raw data used in the calculations. However most of the efficiency results
are much lower than that. The efficiency of the WEC’s is combined with the long-
term wave power statistics to obtain long-term power absorption. The differences
between the concepts are large, as they have efficiency between 11% and 47%.
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Tp Spectral peak period [s]

Trms Root mean square-value of the wave period [s]

Tz Mean zero crossing wave period [s]

w(Hs, Tz) Ratio between number of waves in a sea state and average number
of waves in the sea state

X Either wave power or wave height



Chapter 1

Introduction

As the sun heats up the planet, it induces movement in the air that subsequently
moves the water in the large oceans in the world. This continuous process will build
up the waves, and by that transfer energy from the sun and wind to the water. In
physics it is known that this transition will lead to an energy loss, and therefore the
total wave energy capacity is less than the capacity for wind and solar energy. But
the conversion will also increase the power density, and greater forces will occur in
water than from wind or the sun. This energy can be exploited by converting it
to useful energy that can be stored. This is done by devices that use the energy
and movement in the waves to move pumps and turbines or other mechanisms, to
transfer the energy. Thus they go by the name wave energy converters (WEC’s).

For designing a WEC in the sea, the type of waves that it is exposed to is very
important to take into account. The types of waves vary in a wide range of wave
height and period and are affected by many parameters such as weather, season,
wind and geographical location. Because of that the WEC cannot be designed for
one specific wave. It has to be optimized to the wide range of waves present at an
area. In order to do that, knowledge of both short-term statistics, describing vari-
ations within an individual sea state, and long-term statistics, describing variations
over many sea states during many years, is necessary.

In order to optimize a WEC for a wide range of waves, the properties for specific
waves have to be known. This introduces the need for short-term statistics. These
statistics will give information for each single wave, and will therefore describe
what a WEC experiences and gives as a power output when one wave passes by.
And the power extracted is taken from each single wave passing by, and not an
average value.

On the other hand the WEC are exposed to a wide range of waves over a lifetime,

1
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and needs to be versatile to exploit the total potential in the waves. In order to
take the lifetime into account and compare the total amount of extracted energy,
long-term statistics is needed. Long-term statistics describes results over a longer
period, and will include the results for a wide range of waves, thus describing the
reality in a more complete way and give favourable results for concepts that can
keep a high efficiency in a range of different wave heights and periods.

In order to get a best possible long-term description of the waves it should not only
be made out of known sea states, put also for known individual waves. To obtain
a perfect long-term distribution of waves individual waves have to be measured
over a very long period. This is in most practical situations not doable. A way
of solving this is to find a set of individual waves made dimensionless for the sea
state they are collected in, and use them for every sea state that occur, to make a
long-term statistics of the waves.

In the following text both equations for short-term statistics for individual waves
and statistics for sea states shall be presented in order to find equations for long-
term statistics for wave energy. Further the text shall look at control systems of
WEC’s that will increase the power absorption and efficiency by exploiting more
of the potential in the waves. And finally the power absorption for some specific
WEC concepts is presented and their efficiency in a long-term perspective is found.
All the calculations are done in the matlab-program that is attached in appendix
B.



Chapter 2

Background for Long-term
statistics

In this chapter the background for what shall be used to find the long-term statistics
is presented.

2.1 Basic equations

First some basic equations need to be presented in order to do the following cal-
culations. These are commonly used formulas presented in many publications, for
example by Myrhaug et al. [9]. The power in a wave is given as the transport of
wave energy per unit crest length. For deep water this gives

J = γg2

32πH
2T (2.1)

where γ = 1025kg/m3 is the density of water, g = 9.81m/s2 is the gravitational
acceleration, H is the wave height and T is the wave period.

Sea states can be described by many different parameters. A common way of de-
scribing it is with significant wave height and mean zero crossing period or spectral
peak period. Another way is by using the root mean square-value (rms), which is
an average value for the sea state. The rms-value for the wave height has a relation
to the significant wave height Hs given as

3
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Hrms = 0.714Hs (2.2)

and the rms-value for the wave period has a relation to the mean zero crossing
wave period Tz and the spectral peak period Tp given as

Trms = 1.2416Tz = 0.97Tp (2.3)

This fixed relationship between the mean zero crossing wave period and the spectral
peak period is an approximation, and in reality this relationship will depend on
the sea state.

2.2 Short-term wave power statistics for individual
waves

In order to look at long-term statistics for individual waves, short-term statistics
for individual waves are described first. This will in a later stage be used as a part
of the calculations for the long-term statistics.

2.2.1 Dimensionless values

When looking at short-term statistics for individual waves it is preferable that
they are independent from the sea state that they are measured in. This makes
it possible to use the same individual waves for different sea states. The following
formulas are also from Myrhaug et al. [9]. By dividing on the rms-value for the
wave height and wave period, the values become dimensionless and independent
on the sea state. Dimensionless wave height h is given by

h = H

Hrms
(2.4)

where H is the wave height in meters, and Hrms is the rms-value of the wave height
from the sea state. Dimensionless wave period t is given by

t = T

Trms
(2.5)
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where T is the wave period in seconds, and Trms is the rms-value of the wave period
from the sea state. In order to get dimensionless wave energy a characteristic wave
energy parameter is introduced given as

Jchar = γg2

32πH
2
rmsTrms (2.6)

where γ is the density of water, g is the gravitational acceleration, Hrms is the rms
wave height and Trms is the rms wave period. This is used to get the dimensionless
wave energy

j = J

Jchar
(2.7)

By inserting equation 2.1, 2.4, 2.5 and 2.6 into 2.7, the dimensionless relationship
between wave energy, wave height and wave period will be obtained as

j = h2t (2.8)

This will connect each wave, with its wave height and wave period, to a wave power.

2.2.2 Using wave scatter diagram

To find the statistical properties of individual waves a wave scatter diagram can
be used. The wave scatter diagram, given in appendix A.2, are made out of meas-
urements at sea on the Norwegian continental shelf including 6353 individual zero-
down cross waves. The data is sampled with three Waverider buoys in deep water.
The scale of the wave height and period is made dimensionless by the rms-value as
described in section 2.2.1.

2.2.3 Rearranging the scatter diagram

The wave scatter diagram shows all the waves in a table where they are placed in
intervals based on the h (rows) and t (columns) values. However the main interest
is to look at the wave energy. And as described the wave energy for dimensionless
values is given by j = h2t. In this way all the waves that already have a h and t
value gets a j value and the scatter diagram can be re-arranged to be sorted for j
and h or j and t. This way of writing the scatter diagram is beneficial in a later
stage.
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To re-arrange the scatter diagram the j-values need to be divided in intervals of a
suitable size. But it is difficult to find a size that does not introduce problems with
the resulting wave scatter diagram. Because the resulting graphs are very steep at
some areas it is preferable to keep the intervals small. But that will introduce some
problems for some values. One thing is that the scatter diagram is put together
by a finite number of waves, so if the intervals become too small there would not
be enough waves to fill the intervals. Another similar example of ∆j not being
large enough is for larger values of both j and t, when the jumps of the values for
h2t is larger than ∆j. If ∆j = 0.5 this will occur for the intervals t = 0.85 and
j = 2.75 which will include values between j = 2.5 and j = 3.0. The possible
outcome of j-values will jump from 2.45 to 3.06 because of j being a function of
h. In other words, there will be some places in the scatter diagram where there is
no possibility for a wave to occur even though it is many waves in that area, and
this will be problematic and lead to errors. Another problem with making new
scatter diagrams varying with j is that these scatter diagrams are supposed to be
used for different sea states. That means that sea state parameters like Hrms and
Trms have to be included, introducing dimensions again. This again will change
the interval sizes based on the sea state, and make unique scatter diagrams for each
sea state. So it has to be created as many scatter diagrams as there are sea states
which seem unnecessary.

These problems have been solved by distributing all the waves in each interval
over the area of the interval. In other words, each wave gets individual values
for wave height and period. Ideally each wave should have its unique value for
h and t measured from real life, but in the scatter diagram the waves are added
up in discrete values of a given interval size. By assuming that all the waves are
distributed and have exact values for h and t, each wave can easily be put inside
different intervals at a later stage, and the problem is solved.

The goal of how the waves are distributed is to evenly place each wave over the
whole interval, but because the numbers seldom adds up to a square it has to be
solved a little differently. The method that is used is taking the square root of the
wave number in the interval and round it down to the closest integer. This integer
is the number of waves in each direction, and they are uniformly distributed. The
remaining waves are again taken the square root of, and the procedure is repeated
until there are no more waves. How the different waves are distributed is figuratively
described in figure 2.1.
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Figure 2.1: How the waves in the scatter diagram is distributed. The figure shows
an example of an interval containing 30 waves.

This would simulate how waves are in reality, but with some problems. The as-
sumption that all the waves should be evenly distributed is not perfect. Ideally
the data telling the wave height and period for each wave should have been known,
and in order to simulate that, and get something similar to continuous wave meas-
urements, it is assumed that they are evenly distributed. A improvement of that
would maybe be to adjust the distribution to how many waves there are in the
neighbouring h and t intervals, distribute them randomly, or in another way in-
troducing a more complete distribution, but in this case a uniform distribution is
assumed to be sufficient, and maybe also best suited when the goal is to fill up the
intervals with j-values. The result of this is presented in figure 2.2.

Figure 2.2: left: The original scatter diagram. right: The uniformly distributed
scatter diagram.

2.2.4 Calculating the probabilities by scatter diagram

Then the probability of some event to occur can be calculated. This is easily done
by taking the number of waves at a given interval and divide it on the total number
of waves and the size of the interval. This gives the equations
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p(j, h) = bjh
Nb∆j∆h

(2.9)

where bjh is the number of waves in the interval, Nb is the total number of individual
waves, and ∆j and ∆h is the size of the interval, and

p(j, t) = bjt
Nb∆j∆t

(2.10)

where bjt is the number of waves in the interval, Nb is the total number of individual
waves, and ∆j and ∆t is the size of the interval.

2.2.5 Using analytical expressions

The probability distribution described by the scatter diagram can also be described
by analytical expressions made of known distributions such as the Weibull distri-
bution. This is done by Myrhaug et al. (2009) [9]. Here a joint probability density
function (pdf) of h and t are used to provide the statistical properties of j. This
distribution is based on the same wave scatter diagram which is described in section
2.2.2.

The joint pdf of wave power and wave height is given as

p(j, h) = p(j|h)p(h) (2.11)

where the marginal pdf of h is given by the 2-parameter Weibull pdf

p(h) = 2.39h1.39

1.052.39 exp

[
−
(

h

1.05

)2.39
]

;h ≥ 0 (2.12)

and the conditional pdf of j given h is given by the 3-parameter Weibull pdf

p(j|h) = β

ρh2

(
j − αh2

ρh2

)β−1

exp

[
−
(
j − αh2

ρh2

)β]
; j ≥ αh2 (2.13)

with the parameters
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α = 0.12
√
h (2.14)

ρ =
{

0.78h+ 0.26 ;h ≤ 0.9
0.962 ;h > 0.9 (2.15)

β = 2arctg[2(h− 1.2)] + 5 (2.16)

The joint pdf of wave power and wave period is given as

p(j, t) = p(t|j)p(j; t) (2.17)

where the pdf of j, which is dependent on t, is given by the 2-parameter Weibull
pdf

p(j; t) = s

r

(
j

r

)s−1
exp

[
−
(
j

r

)s]
; j ≥ 0 (2.18)

where

r = 1.052t (2.19)

s = 2.39/2 (2.20)

and the conditional pdf of t given h =
√
j/
√
t is given by the 3-parameter Weibull

pdf

p(t|h =
√
j√
t
) = β

ρ

(
t− α
ρ

)β−1
exp

[
−
(
t− α
ρ

)β]
; t ≥ α (2.21)

where α, ρ and β is given in the equations 2.14, 2.15 and 2.16 by substituting for
h =
√
j/
√
t.
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2.2.6 Comparing analytical expressions and scatter diagram

Comparing the analytical formulas to the values in the wave scatter diagram is of
interest because it would give an indication of how good the analytical expressions
match the results from the scatter diagram that they are based on. The biggest
difference between them is that the analytical expressions are made as a continuous
function from the scatter diagram which is discrete. This could lead to some
problems when comparing them. However it is important to acknowledge that the
scatter diagram is not completely true either. The waves that are of continuous
height and period in reality are simplified into discrete values, and then theoretically
put back into "true" values by evenly distributing them as described in chapter 2.2.3.

One problem is the resolution of the calculations. For analytical expressions it is
preferable to calculate values in very small intervals. An example of this being
important is when both the wave power and the wave height is very small. Here
the distribution curves are very steep, and if the intervals is not small enough the
calculations will miss many of the maximum values. On the other hand there is
the scatter diagram which have limitations of how small the intervals can be. The
scatter diagram have a limited number of waves, and if they are distributed over
a very large number of intervals the representation will become very fragmented,
simply because there are not enough waves.

Another thing to think about is the total span of the calculations. It is preferable
that integration over the total area sums up to the value of 1, but this would
often need a very large area of calculations, where most of the parts is not very
interesting. For discrete values this area is of a finite size and it can be tested if
the value equals 1, but for the formulas the integration have to be done to infinity,
so anything that is close to 1 would be satisfying. When presenting the results it
would be better to find a size of the area that represents the total distribution well,
but still is so small that the interesting parts is in focus.

2.2.7 Deviation between scatter diagram and analytical ex-
pressions

To compare the different curves a method for analysing the deviation between
scatter diagram and analytical expressions have to be applied. This can be done in
many different ways with both different complexity and different type of output.
The most important is that the deviation can give an understandable value that
somehow shows the actual magnitude of the deviation. These have been the main
considerations when estimating the deviation and has led to the use of two different
ways of presenting the deviation.

The first way of presenting the deviation is looking at the total integrated area of
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the graph for the analytical expressions and the scatter diagram values. Because
the values are probabilities it is obvious that the true value should be one, and
the deviation from the true value is therefore easy to compare. However it doesn’t
say anything of where the deviation occur, and even though the total difference
might be very small, there still can be large local differences, which for the whole
set evens out.

To find the location of the deviation a second method is introduced. The second
method to present the deviation is a plot that shows the local deviation for each
point value. The deviation is given by taking the square of the difference between
the analytical value and the scatter diagram value. Therefore it is quite difficult to
actually imagine the magnitude of the deviation. But it gives a great overview of
where the largest differences occur. A problem with this method is that the point
value is taken at values matching the discrete intervals for the analytical solution.
This is a bit course for the analytical formulas and may give errors where the curves
are steep.

Together these two methods can give a good total impression of the deviation
because they as a whole fulfill the need for estimating the deviation.

2.2.8 Results

When looking at table 2.1 the integrated total area of the graph for different plots
are presented. As they are probabilities the area preferably should be 1. But
because this is not exact calculations anything close to 1 is satisfying. For the
scatter diagram values the number is decided based on how many of the waves
from the scatter diagram that are included in the calculations. So they will be 1
when the area covered is as large as the scatter diagram. When taking a smaller
area some of the extreme waves will disappear, but the number is still close to
1. When looking at analytical values it is seen that the number is mostly based
on the resolution of the calculation. This is because if the resolution is to low the
calculations will miss out on peaks and give a too low value. It is also interesting to
see that the formula values have almost the same reduction as the scatter diagram
values when going from a large area to a small area.

Short-term low res large low res small high res
Int. area of p(j, h) from scatter diagram 1.0000 0.9830 0.9830
Int. area of p(j, h) from formulas 0.8819 0.8665 0.9679
Int. area of p(j, t) from scatter diagram 1.0000 0.9830 0.9830
Int. area of p(j, t) from formulas 0.9918 0.9765 0.9849

Table 2.1: Integrated total area for different individual wave graphs with different
sizes and resolutions
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In the following calculations where the scatter diagram and formula values are
compared they are plotted with the same size, so that they can be compared, but
the resolution is higher for the plot from analytical expressions than for the plots
form the wave scatter diagrams. In the plots it is not necessary to include the
large area because the extreme values would not be visible. Preferably the high
resolution calculations should be used also for the scatter diagram values, but a
high resolution would be a problem because of the limited amount of waves. This
will lead to a very fragmented picture. So therefore the low resolution are used in
the plots.

Figure 2.3: Plot of p(j,h) for analytical expressions, scatter diagram and the devi-
ation. The levels of the outer contours are 0.1 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 and 0.9 for the two to the left. For the deviation the outer
contours are 0.01, 0.1, 0.2, 0.3, 0.4 and 0.5.

In figure 2.3 the joint pdf of dimensionless wave power and wave height p(j, h) is
plotted. From the shape of the contours it is seen that the curves are very step,
especially for low values. It is also seen that the shape fits with the fact that j
increases with the square of h. It is seen that the values from the formulas and
scatter diagram look quite similar. And from the deviation it is seen that the main
part of the differences are for low values of h and j. This is where the curves are
very steep, and the deviation could be expected to be of some size. When the
total area of the graph is integrated the scatter diagram plot gives the value 1 as
expected. In theory the formula plot should also give the value 1, but it gives the
value 0.97. However it is seen that it would go to 1 as the interval sizes decreases.
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Figure 2.4: Plot of p(j,t) for analytical expressions, scatter diagram and the devi-
ation. The levels of the outer contours are 0.1, 0.25, 0.5, 0.75, 1.0, 1.25,
1.5, 1.75 and 2.0 for the two to the left. For the deviation the outer
contours are 0.01, 0.02, 0.03, 0.04, 0.05 and 0.1.

In figure 2.4 the joint pdf of wave power and wave period p(j, t) is plotted. The
shape of the plot is not as steep as in figure 2.3, except at the peak. It seems
that the fit between the scatter diagram values and the analytical values is good.
Most of the deviation are located for small values of j where the curves are steep.
For integration of the total area of the graph the scatter diagram gives the value
of 1 and the formula gives the value of 0.99. Also here it is seen that decreasing
interval size is necessary to get a satisfying result, but it is not as sensitive for
larger intervals as p(j, h).

2.3 Wave statistics for sea states

In long-term statistics also statistics for which sea states that occur is necessary.
This will be described here, and in a later stage be used as a part of the calculations
for the long-term statistics.

2.3.1 Using wave scatter diagram for sea states

The sea state scatter diagram, given in appendix A.1, are made out measurements
from Haltenbanken between 1980 and 1985. When using this scatter diagram there
is no need to rearrange it similarly as was done for the individual waves scatter
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diagram. This is because the original form is used as it is in a later stage. The only
change that is done is that the end intervals for this scatter diagram is changed
in order to be able to do the calculations. In the scatter diagram this is done in
such way that they sum up all the waves less than or larger than a value, thus the
interval size will be of larger size than all the others. This is changed so that they
are assumed to have the same interval size as the other intervals, and values less
than this interval is neglected because they are assumed to not have any waves.

2.3.2 Calculating the probabilities from scatter diagram

The probability is found directly by taking the number of waves in an interval and
divide it on the total number of waves in the scatter diagram and the interval size.
The joint pdf of Hs and Tp is given as

p(Hs, Tp) =
BHs,Tp

NB∆Hs∆Tp
(2.22)

where BHs,Tp is the number of sea states in the interval, NB is the total number
of sea states, and ∆Hs and ∆Tp is the size of the interval.

2.3.3 Using analytical expressions

Similarly as for the individual waves, the sea states can also be described as ana-
lytical expressions. This is done by Myrhaug et al. (2011) [7]. The joint pdf of Hs

and Tp is given as

p(Hs, Tp) = p(Tp | Hs)p(Hs) (2.23)

where the marginal pdf of Hs is given as

p(Hs) =


1√

2πκHs
exp

[
− (lnHs−θ)2

2κ2

]
;Hs ≤ 3.25m

β̃
Hβ̃−1
s

ζβ̃
exp

[
−
(
Hs
ζ

)β̃]
;Hs > 3.25m

(2.24)

with the mean value θ = 0.801, variance κ2 = 0.371 of lnHs, and the Weibull
parameters ζ = 2.713 and β̃ = 1.531. The conditional pdf of Tp given Hs is given
by
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p(Tp | Hs) = 1√
2πσTp

exp

[
− (lnTp − µ)2

2σ2

]
(2.25)

with the parameters

µ = a1 + a2H
a3
s ; (a1, a2, a3) = (1.780, 0.288, 0.474) (2.26)

σ2 = b1 + b2e
b3Hs ; (b1, b2, b3) = (0.001, 0.097,−0.255) (2.27)

2.3.4 Results

In figure 2.5 the joint pdf of significant wave height and spectral peak period
p(hs, Tp) is plotted. It distributes revolving the peak at Hs = 2m and Tp = 8s.
Contrary to the scatter diagram for the individual waves, this scatter diagram is
not rewritten to vary with j, thus it would be expected that the local deviation
is small. For the integrated total area of the graph the scatter diagram gives the
value of 1 and the formula gives the value of 0.999. It can also be seen on the
magnitude of the contour lines of the deviation compared to the contour lines of
the distribution that the deviation is small. For these calculations the area of the
size of the scatter diagram is used as it gives satisfying results, and the resolution
is similar to the scatter diagram.
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Figure 2.5: Plot of p(hs, Tp) from analytical expressions, scatter diagram and the
deviation. The levels of the outer contours are 0.005, 0.01, 0.02, 0.03,
0.04, 0.05 and 0.06 for the two to the left. For the deviation distribution
the outer contours are 0.00001, 0.00002, 0.00004, 0.00005 and 0.0001.



Chapter 3

Long-term wave power
statistics

Long-term wave power statistics describes the variations in wave power over a long-
term collection of sea states, for example with the duration of 20 years. This can
be used for finding the extracted wave power for a WEC in a lifetime, and it will
describe which waves giving the largest contribution.

3.1 Simplified long-term distribution

One way of finding the long-term wave power statistics is the way presented by
Izadparast and Niedzwecki [5]. By assuming that the waves have a narrow-banded
energy spectrum, the probability distribution for the waves in a given sea state
would follow an exponential distribution. So the narrow banded probability distri-
bution would be

fNB(j | S) = exp(−j) (3.1)

where j is the dimensionless wave power and S is the given sea state. From that
the long-term estimate is obtained from the summation taken over all the possible
sea states of the product obtained from multiplying the mean wave power with the
long-term averaged probability of occurrence of the corresponding sea state,

17
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fNB(J) =
∑
i

fNB(J | Si)Fr(Si) (3.2)

where J is the wave power with dimensions, Si is the sea state together giving the
probability density function for the wave power for a given sea state fNB(J | Si)
and Fr(Si) is the probability of occurrence for the sea state. This will suggest
exponential behaviour of the long-term distribution

This method introduces the basic thoughts of how to find long-term statistics.
However it is a simplified representation of how to find it. For example waves in
the ocean is not narrow banded which is assumed by this approach, and this does
not take individual waves into account.

3.2 Long-term distribution based on individual waves

Another way of finding long-term statistics is to use a method closer to the reality
and by not doing the simplifications described in section 3.1, is done by Myrhaug
et al. [8]. Here the long-term statistics is derived by combining the statistics for
individual waves and sea states. This is done with a large amount of real waves and
will therefore be more certain to describe a correct long-term distribution of wave
power. The problem with this approach is that it will lead to a larger equation
which demands more computation time, and it also needs more information.

The long-term joint pdfs of wave power and wave height and for wave power and
wave period are obtained by integration of the joint pdf of wave energy and either
wave height or wave period over the significant wave height and spectral peak
period, both given by the sea state. This gives the equation

pL(J,X) =
∫ ∞

0

∫ ∞
0

p(J,X | Hs, Tp)p(Hs, Tp)w(Hs, Tz)dHsdTp (3.3)

where p(J,X | Hs, Tp) is the joint pdf of wave energy and either wave height or
wave period for a given sea state, p(Hs, Tp) is the joint pdf of the significant wave
height and the spectral peak period given in equation 2.23, and w(Hs, Tz) is the
ratio between the number of waves in a sea state and the average number of waves
in the sea states.

The joint pdf of wave energy and either wave height or wave period for a given sea
state is found by using the Jacobian |∂j/∂J, ∂h/∂H| and |∂j/∂J, ∂t/∂T |, to get
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p(J,H | Hs, Tp) = p(j, h)
Jchar ×Hrms

(3.4)

and

p(J, T | Hs, Tp) = p(j, t)
Jchar × Trms

(3.5)

where p(j, h) is given in equation 2.11 and p(j, t) is given in equation 2.17. The
ratio between the number of waves in a sea state and the average number of waves
in the sea states can be given as

w(Hs, Tz) = Tz
Tz

(3.6)

where Tz is the average mean zero crossing period of all the sea states and Tz is
the mean zero-crossing wave period. This average mean zero crossing period can
be found by the equation

Tz =
∫ ∞

0
exp(µ+ 1

2σ
2)p(Hs)dHs (3.7)

where µ is given in equation 2.26 and σ is given in equation 2.27.

3.2.1 Using scatter diagram on the long-term statistics

Instead of using analytical expressions, scatter diagrams for the waves can be used
to calculate the probability distributions. The use of scatter diagrams will give
discrete values and equation 3.3 have to be changed into

pL(J,X) =
∞∑
i=1

∞∑
j=1

p(J,X | Hs,i, Tp,j)p(Hs,i, Tp,j)w(Hs,i, Tz,j)∆Hs∆Tp (3.8)

where the different parts have the same meaning as before. All of these probabilities
are given by the use of scatter diagrams. The joint pdf of wave energy and either
wave height or wave period for a given sea state with a specified significant wave
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height and spectral peak period is found by combining equation 2.11 and 3.4, and
equation 2.17 and 3.5 to

p(J,H | Hs, Tp) = bjh
Nb∆Hs∆Tp

(3.9)

p(J, T | Hs, Tp) = bjt
Nb∆Hs∆Tp

(3.10)

where bjh and bjt is the number of waves in the interval, Nb is the total number of
individual waves, and ∆Hs and ∆Tp is the size of the interval. The expressions for
the joint pdf of the significant wave height and the spectral peak period is given
in equation 2.22. w(Hs, Tz) is the ratio between the number of waves in a given
sea state and the average number of waves in all the sea states. Because the same
scatter diagram for individual waves is used for every sea state, all the sea states
have the same number of waves, so

w(Hsi, Tzj) = 1 (3.11)

3.3 Results for long-term statistics

Before the calculations can start some decisions need to be done. The size of the
plotted area have to be decided based on which J-values and H- and T -values
occurs. And the resolution of the calculations have to be decided based on how
small intervals that is necessary to represent the equations properly. Another thing
that has been done is that the wave energy is changed from Watt to Mega Watt.
This means that the interval size of the wave energy will become in the size range
of 100 instead of 106, and that the pdf-values in the graphs is in the size range of
100 instead of 10−6. This will make the numbers a bit easier to understand.

3.3.1 Size of the calculations

In order to decide the size of the plotted area it is made a simple figure which spans
over a large area, including all the waves from the scatter diagram, showing how
they are distributed. This is given in figure 3.1. As can be seen, if all the waves are
to be included the calculations have to span over a rather large area with values
up to wave power of 12MW , wave height up to almost 30m and wave period up to
40s. However there are very few waves that have such large values, so those parts
are not very interesting to include.
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The yellow part in the graph includes values up to wave power around 3MW , wave
height up to 15m and wave period up to 30s. This includes 99.9% of the waves,
and would be better choice than the eight times larger alternative which includes
all the waves.

The red part in the graph only includes very low values of wave power, wave height
and wave period, but it still includes 94.5% and 92.9% of the waves. However the
problem with these waves are that most of them contains very little energy, and
by only looking at that part the waves with more energy are excluded. Also the
pattern of how the waves are distributed will be interesting, and that will not be
included in the red part of the graph.

Because this is probabilities the area under the curves should sum up to the value
of 1. To get this the calculations have to include all the waves, and because some
waves represents rather extreme values this means that the calculations have to
span over large areas. However most of the waves are located in a much more
limited area, which is the area of interest. So it is better to concentrate the plots
on the areas with large probabilities even though it does not include all the waves.
Therefore the plots are made with the goal of including most of the waves in a
reasonable size, thus they are plotted over the yellow area.

Figure 3.1: Plot showing long-term distribution of all the waves over a large span,
where the cyan coloured part contains all of the waves, the yellow part
contains 99.98% of the waves when plotted for H and 99.96% when
plotted for T , and the red part contains 94.47% of the waves when
plotted for H and 92.86% when plotted for T .
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3.3.2 Resolution of the calculations

Before the calculations are done some tests of the resolution needs to be done. This
is tested with a low resolution, and a high resolution that is ten times finer than
the low resolution for both wave energy and wave height/period. The choice of
resolutions are based the results from table 2.1.

Long-term low res high res
Integrated area of pL(J,H) from scatter diagram 0.9999 0.9999
Integrated area of pL(J, T ) from scatter diagram 0.9999 0.9999
Integrated area of pL(J,H) from analytical expressions 0.4518 0.9505
Integrated area of pL(J, T ) from analytical expressions 0.4517 0.9505
Computation time 31 min 2482 min

Table 3.1: Integrated total area for different long-term graphs for high and low
resolution

In table 3.1 different values for the integrated total area of the graph are presented
for both high and low resolution calculation. For the scatter diagram values it
is seen that it gives very good results for both low and high resolution, but the
problem is that for high resolution the plots gets very fragmented because of the
limited number of waves. For the analytical calculations the difference between
high and low resolution is very large. For the low resolution the integrated total
area is only 45%. This is very low, and is not acceptable. It is however seen
that most of the missing volume is for very low values of J and that the analytical
expressions gives satisfying results for high J-values, so the problem is mainly when
the curves are steep. Because the intervals are too large they does not include the
high concentration of waves that have very small values of J . When the resolution
is increased the value become 95%, which is a more acceptable value. Then the
intervals are small enough to include the waves with close to zero in wave energy.
So to sum up the scatter diagram calculations need to have low resolution, so that
they does not become too fragmented, and the formula calculations need to have
high resolution, so that they include a large enough percentage.

Another thing to notice is the calculation time. In order to do the high resolution
calculations the computer needs 2482 minutes (very slow computer), but for the low
resolution calculations it only takes 31 minutes. This is very large difference, and
it demands very much time to get a satisfying result for the analytical calculations.
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3.3.3 Long-term pdf of wave energy

Figure 3.2: Plot showing pL(J, H) and pL(J, T ) calculated from the scatter dia-
gram, where the contours are 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.05,
0.1 and 0.2.

Figure 3.3: Plot showing pL(J, H) and pL(J, T ) calculated from analytical expres-
sions, where the contours are 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.05,
0.1 and 0.2.
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In figure 3.2 the probability distribution pL(J,H) and pL(J, T ) from scatter dia-
gram calculations are presented. In figure 3.3 the probability distribution pL(J,H)
and pL(J, T ) from formulas are presented. When comparing them it is seen that
they have the same shape and varies similarly as the energy increases. It is seen
that the formula plot gives better visualization at the small values for wave energy
and wave height/period because of the limited resolution of the scatter diagram
plots. The scatter diagram plots also gets a bit fragmented for large values, so
the resolution could not be any higher. As all the plots are made with the same
contours it is seen that the scatter diagram values are generally a bit higher than
the formula values. This can easily be seen for the outermost contours. This is the
consequence of the formula plot only covering 95% of the area that it is supposed
to cover.

When looking at the trends in the plot it is seen that the most occurring waves are
in areas of low energy, and the occurrence for waves with larger energy decreases
rapidly. It is also seen on the plot for pL(J,H) that the wave energy increases with
what looks like the square of the wave height, as would be expected by theory.

When comparing with the plots for the individual waves presented in figure 2.3 and
2.4, which shows dimensionless values where the sea state is isolated, it shows some
similarities. The variation of the wave energy with wave height follows a similar
shape and the variation of wave energy with waver period is only a bit different
for large wave periods and small wave energy. However the largest difference for
both is that the long-term distribution is much more concentrated around low wave
energy, and are much steeper.

3.3.4 Long-term pdf of wave energy weighted for wave en-
ergy

The probability distribution of the waves are important information and very inter-
esting, but it does not directly take into account the actual wave energy produced
at given parameters. In order to find the energy output distribution the probability
of a wave should be weighted for the wave power, by multiplying with the wave
power. That will give a more interesting figure if the goal is to find out what kind
of waves gives most energy over a long-term perspective. The values are multiplied
with the wave energy in mega watt so that the same contours can be used.
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Figure 3.4: Plot showing J × pL(J, H) and J × pL(J, T ) from the scatter diagram,
where the contours are 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1
and 0.2.

Figure 3.4 presents J × pL(J,H) and J × pL(J, T ) from the scatter diagram. The
difference between this and the results shown in figure 3.2 is not very large. However
the important difference is that waves with higher energy will give more energy
output per wave and therefore be more important than waves with less power. The
contours are not so steep when the wave power is taken into account, as the largest
values becomes smaller and the smallest values becomes larger. Even though the
wave power is taken into account it is still the smallest waves that gives the largest
contribution in the long-term perspective. When looking at the plot from the
analytical calculations in figure 3.5 and comparing to figure 3.3 the same trends
can be seen. A thing that becomes more clear in that plot is the variation of
J × pL(J, T ) for low wave energy. As the wave period increases the contours will
bend inwards because of the low wave energy, and not follow the symmetric shape
seen for pL(J, T ).
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Figure 3.5: Plot showing J × P LJH and J × P LJT calculated from analytical
expressions, where the contours are 0.00001, 0.0001, 0.001, 0.005, 0.01,
0.05, 0.1 and 0.2.

3.3.5 Long-term marginal pdf of wave power

It would be interesting to see how the wave energy is distributed when isolating
the wave height and wave period. The long-term probability density function of
only J can be found out of the long-term distribution PL(J,X). By integrating
over the wave height or wave period this is found by

pL(J) =
∫ ∞

0
pL(J,X)dX (3.12)

where X is either the wave height H or the wave period T and pL(J,X) is the long-
term distribution of J and X. As the long-term distribution pL(J,X) is found both
from scatter diagram and analytical calculations, and is also calculated both with
integrating over wave height and wave period, the long-term distribution of J can
be found by four different methods. This can be used to compare and ensure the
results already found.
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Figure 3.6: Long-term distribution of J , calculated in four different ways.

In figure 3.6 the long-term distribution of the wave power is plotted. It shows,
as expected, a very steep curve, with large probabilities for low values of J . This
is comparable with the exponential behaviour suggested with the assumption of
narrow banded waves in chapter 3.1.
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Figure 3.7: Long-term distribution of J , calculated in four different ways, presented
with a close-up caption on the left and with a logarithmic vertical axis
on the right

When comparing the different methods to calculate the distribution of J it is very
difficult to see any differences. In order to maximize the differences pL(J) have
been plotted both with an close up view and with an logarithmic axis, as presented
in figure 3.7.

In the close-up figure it is seen that the analytical solution gives a little lower
value than the scatter diagram calculations. But that is expected because there
have been differences also in previous calculations. It is seen that the distribution
found from the scatter diagram is the same if it is integrated from pL(J,H) as
if it is integrated from pL(J, T ). This suggests that the method used for finding
the distribution is correct. The same is seen for the results that is found from the
distribution made based on formulas.

The shape of the curve appear to resemble a exponential curve when looking at
the close-up figure, but that would mean that the curve plotted with the natural
logarithmic axis would be linear, and it is not. So it seems that the wave energy is
not distributed exponentially.

In figure 3.8 the distribution of J found from the scatter diagram values is plotted
with two analytical expressions. The first is a exponential distribution, with the
shape pL(J) = keνJ where ν and k is shape parameters, which is attempted to
fit. However, as already seen, it does not have the same shape as the actual
distribution. The exponential distribution gives higher probabilities for low values
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of J , and lower probabilities for higher values of J . Another attempt of looking
at the distribution is looking at the fact the graph looks very symmetric. By that
a inversely proportional behaviour of the shape pL(J) = 1

kJ where k is a shape
parameter, is assumed. As can be seen this fits much better, especially for low
values of J , but it gives a bit high values for increasing wave energy. To sum
up none of these simple analytical expressions fits perfectly, so it cannot be said
that the distribution of J varies either exponentially or inversely proportional, even
though it have some similarities.

Figure 3.8: Plot of pL(J) compared to the analytical expressions 55e−50J and 1
5×J .

3.3.6 Long-term marginal pdf of wave height and wave period

The same that is done to find pL(J) can be done to find the long-term distribution
of H and T separated from J . Then the equation will be
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pL(X) =
∫ ∞

0
pL(J,X)dJ (3.13)

where X is either the wave height H or the wave period T . This is visualized in
figure 3.9. When comparing the distribution of wave height from scatter diagram
and analytical calculations it is seen that they follow each other good for large values
of wave height. The main difference is however at the peak where the analytical
calculations gives a much larger value, and for very small values where the analytical
calculations goes to zero, and the scatter diagram calculations decreases from the
peak more slowly. When comparing the distribution of wave period from the scatter
diagram and analytical calculations it fits better. But also here it is seen that the
formulas give a higher peak, but a little less values for the other areas.

Figure 3.9: Long-term distribution of H (left), and long-term distribution of T
(right), calculated from scatter diagram and from analytical expressions

3.3.7 Long-term CDF of wave power

When the long-term probability density function of J is found, it can be used to
find the cumulative distribution function of J . This is found by

FJ(Ĵ) = pL(J ≤ Ĵ) =
∫ Ĵ

0
pL(J)dJ =

Ĵ∑
0
pL(J) (3.14)
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where PL(J ≤ Ĵ) represents the probability that the random variable J takes on a
value less than or equal to Ĵ . The plot of these calculations is given in figure 3.10.
Also here it is calculated in four different ways. As before there are no differences
based on if the values are integrated for wave height or wave period. The difference
between calculations from scatter diagram and formulas is still present and is as
expected the same as the difference for the integrated total area described in table
3.1. In other words the scatter diagram values goes up to 0.99 and the formula
values goes up to 0.95. It is seen that the graphs increase very rapidly in the start.
This is, as mentioned before, because most of the waves have very low energy.

Figure 3.10: Long-term cumulative distribution of J calculated both from scatter
diagram and analytical expressions.
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Chapter 4

Control systems and power
absorption

In the sea, it will over time be many different waves and sea states. The response
of a WEC in the sea depends on the motion of these waves. It is therefore benefi-
cial to have a WEC with response characteristics that takes advantage of the full
potential in the waves, i.e. have its maximum output for the present waves. But
because the characteristics of the waves change, this also means that the response
characteristics of the WEC need to change. This leads to the idea of device tuning,
i.e. the response properties of a WEC are changed to match the present waves by
controlling different parameters in the WEC.

Device tuning can roughly be put into three categories [10]: Fixed tuning, slow
tuning and fast tuning. Fixed tuning is that the device is designed with constant
properties that give an overall good match for the range of waves in the area.
Slow tuning is to change the WEC’s parameters in minutes or hours to match the
different sea states. Fast tuning, or wave-by-wave tuning, is to change the WEC’s
characteristics for each wave or small sequences of waves.

Tuning the device to each individual wave could give an significant increase in
extracted power. There is many ways of doing this, but in general it demands
complex software algorithms, sensors and controllers, and could therefore be diffi-
cult. It has to be considered how to get maximum power but still have a usable,
not to complex device. Tuning for each wave will theoretically give more power,
but also introduce technical difficulties to make it possible because of the rapid
changes and calculations that are needed to be done. The best solution might be
to tune the device to a range of waves, to get a satisfying power extraction level,
but without having a to complex system.

33
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The main reason for device tuning is as mentioned to get as much power out of the
waves as possible. Hals [3] describes this a little more thoroughly by introducing
some criteria. He divides into two main control aims. The first is to maximise the
average power output under the limitations set by the equipment. The second is
to maximize the average power output set by the capacity of the energy converter.
Hals [3] also introduces some other criteria for device control. The control system
should protect the device and its machinery under severe storm conditions and it
should help to give safe operation under failure situations, and safe shut-down if
necessary. In order to utilize the capacity of a device it also needs to be designed
in a appropriate size. Increased control of the device will result in an increase in
average oscillation amplitude, and preferably the device should be designed to work
at a full stroke for a substantial part of the operational time, so that the volume
of the structure is exploited.

4.1 How to control the motion of a device

The are many ways of doing this control of motion. In general a typical goal
would be to change the natural frequency of the WEC to match the waves, by
changing such things as the size, shape, weight, stiffness or damping depending on
what is possible for the specific device. Hals [3] defines the key control variable for
controlling the motion as the machinery force. There are many different ways of
define the behaviour of this force. One way is to assume that it has linear behaviour,
but if the force should include some effects to describe different abilities, non-linear
behaviour has to be introduced. Hals [3] describes three different categories for the
machinery force.

The first is resistive loading, which means that the machinery force only are able
to extract power from the system, which means it cannot do work to the system
as a motor. By having a constant resistance of the system the machinery force
becomes linearly dependent on the velocity. By introducing a time-dependent
resistance effects such as latching and clutching (which will be explained later) can
be introduced.

The second category is Reactive loading, which means that the machinery forces
can be proportional to for example position and acceleration, which means that
the machinery force can work partly as a motor.

The third category is Non-linear loading, which means that no initial restrictions
are put on how to represent the machinery force. This would typically include
machinery forces with non-linear feed-back terms, switching controllers or online
numerical optimisation. This will give the possibility of constraint handling.

Another control mechanism that is necessary is restriction for maximum stroke.
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Because most WEC’s needs a restriction on the maximum stroke of moving parts
they have physical end stop mechanisms. Similarly virtual end stops can be incor-
porated in the controller. This is known as constraint handling. The main goal of
this is to avoid that the moving parts reach the physical end stops, or to reduce
the impact when the limits are reached.

4.2 Different control systems

Hals et al. [4] describes many different concepts for control systems. The question
is, as described, how to control the machinery force. The different concepts and the
main principles of how they work are described in the following. All of the control
concepts use different strategies of control, thus they might not work on every type
of WEC because the application of the control mechanism can be difficult or it has
to be done in a slightly different way. The basic concept is however the same, and
that is way it is described here.

4.2.1 Resistive loading (RL)

A simple way of modelling the machinery force is to assume that it depends linearly
on the velocity, thus having ha constant resistance. As described earlier this is
called resistive loading. This is not very much used in real life, but often useful as a
starting point in modelling and simulation studies as well as laboratory experiments
and prototyping. This would also be a good reference when comparing to more
advanced methods. In this case the machinery never has to work as a motor.

4.2.2 Approximate complex-conjugate control (ACC)

Maximum useful absorbed energy for a body oscillating in one mode is achieved
provided that the intrinsic reactants are cancelled and that the load resistance
equals the intrinsic resistance. The word intrinsic is used to signify the systems own
impedance terms, including friction and viscous losses, but excluding machinery
forces. One way of achieving this is complex conjugate control. The name comes
from the way of calculating this, but the details are beyond the scope of this thesis.
However this condition may equivalently be expressed by two requirements that
are easier to understand figuratively:

• Optimum phase: The body must oscillate with its velocity in phase with the
excitation force.
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• Optimum amplitude: The oscillation amplitude must be adjusted such that
the radiated power equals half the excitation power.

This is called phase and amplitude control, and is an easier way of explaining the
same goals as complex-conjugate control.

Complex conjugate control corresponds to providing a direct feedback from the
velocity of the buoy. But there is a problem with this way of finding the op-
timum, because the optimal control force becomes dependent on future values for
the excited force. This is impossible to implement in practice, because the velocity
is dependent on the future choice for the machinery force. This can however be
solved by predicting the future based on local measurements or computing it from
remote measurements. Another solution would be to assume some of the values to
be constant and in that way find a simple approximation. This is called approx-
imate complex-conjugate control. In this method the machinery has to handle a
reactive power flow so it falls into the category of reactive control.

4.2.3 Tracking of approximate optimal velocity (AVT)

Phase and amplitude control can be seen as a velocity tracking problem. Then the
problem will be how to approximate the optimal velocity function. One way would
be to assume a constant resistance, and in that way achieve an approximation.
This is the basic thoughts of the control mechanism called tracking of approximate
optimal velocity.

4.2.4 Model-predictive control (MPC)

A way of control the machinery force based on prediction of the future is described
by model-predictive control. The idea is to optimise a short future expected re-
sponse of the system. This is done by using a discrete-time model of the WEC
together with a prediction of the input force. As the time is running the time
window for the predictions is moved along, and the optimisation may be solved at
predefined intervals. This will give the best control force at each instant given the
instantaneous states and conditions.

4.2.5 Phase control by latching (PML and TUL)

Latching is a control strategy to achieve optimum phase without having to supply
reactive power. The idea is that the motion is stopped during parts of the cycle,
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with a latching mechanism, and power is taken out during motion. The typical way
of doing this is to latch the motion when the velocity becomes zero, in other words,
when the device is at the extreme position, and unlatch at the right moment for the
velocity to fall into phase with the excitation force. The power is then harvested
during the transition between outer steady positions.

However the challenge is to determine the instant of unlatching, as it depends
on future values for velocity and excitation forces. Different attempts have been
proposed to get a good enough accuracy. One of them is the peak-matching latching
control (PML) where the aim is to match the peaks of the force and the velocity
signals. This is achieved by releasing the WEC approximately T0/4 before the next
predicted peak for the wave force. Another attempt, called threshold unlatching
control (TUL), releases the WEC once the force passes a chosen threshold value.
This does not rely on predicted values for the excitation, but of an estimation of
the instantaneous excitation force. A challenge to get this to work in real life is to
design a durable method or mechanism that can successfully do the latching and
unlatching.

4.2.6 Phase control by clutching (PMC and TUC)

A very similar control mechanism to latching is clutching. The idea is that the
machinery is engaged only during parts of the cycle, and the device is oscillating
freely otherwise. The typical way of doing that is to engage the machinery at zero
velocity, and disengage it in time for the velocity to have the same phase as the
excitation force. So the difference between this and latching is that instead of the
motion being locked, the WEC is moving freely during parts of the oscillation cycle.
The power is harvested during a slow sliding motion from the outer positions.

Similarly as for latching, it is also for clutching difficult to determine the instant of
coupling the machinery. The two different attempts to solve this for latching can
also be used for clutching, namely called peak-matching clutching control (PMC)
and threshold unclutching control (TUC). Also for clutching is the design of a
durable method or mechanism to do the coupling and uncoupling considered a
challenge.

4.3 Comparing the different control systems

For the comparison between the different control systems it have been done with
a heaving sphere with a power take-off system, where the energy is extracted,
connected between the sphere and a fixed reference, as shown in figure 4.1. The
comparison is done both in regular and irregular waves.
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Figure 4.1: Illustration of the heaving sphere energy absorber used by to compare
control concepts by Hals et al. [4]

In regular waves the differences between the methods are very small. All methods
will perform relatively well because the future is known. However it is worth
noticing that the RL case performs poorly at regular waves. But the results in
regular waves are not that important, as irregular waves are the conditions that
these control systems is supposed to handle.

Figure 4.2: Absorption width da = Pu/J [m] (based on absorbed useful energy) in
irregular waves for different control strategies. Horizontal dashed lines
are drawn at da = 5m and da = 10m. Copied from Hals et al. [4].
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The comparison results for irregular waves from Hals et al. [4] is given in figure 4.2,
where the absorption width, based on the absorbed useful energy, is presented. All
controllers give significantly more power than the RL case. As expected the MPC
controllers gives the superior performance in terms of converted power. ACC is the
second best, slightly better than AVT. Latching and clutching generally have sim-
ilar results. For smaller waves the latching and clutching strategies are significantly
weaker than the reactive control algorithms. But when wave height increase, the
difference reduces, or even vanishes. It is seen that for the threshold strategies of
latching and clutching the TUL gives a little higher values than the TUC. Clutch-
ing gives larger power dissipation in the end stops than the other controls, if that
maybe could be converted to useful energy the differences between latching and
clutching would be reduced, but not cancelled. Hals et al. [4] also observes that
the absorption width is decreasing width increasing wave amplitudes/heights. The
reason for this is that the amplitude restriction for the device as the wave height
increases will have increased influence.

Figure 4.3: Peak-to-average ratio for the power flowing through the machinery of
incident irregular waves, corresponding to figure 4.2. Horizontal dashed
lines are drawn at the values -25, 25 and 50. Some bars go outside the
scale, their sizes are given with the white numbers. Copied from Hals
et al. [4]

Hals et al. [4] also compares the peak-to-average ratios for the absorbed power
for the different control systems. The peak-to-average ratios are given as the ratio
between maximum or minimum value divided by the average value for the absorbed
power. In other words it is used to describe the variations of absorbed power within
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a sea state. The negative ratios describe a control system when the machinery does
work as a motor. High ratios will be demanding for the machinery in the control
system, because it needs to handle large variation in power, and it will need a good
design to meet this challenge.

It is interesting to see the large peaks for the MPC. For the ACC it is interesting
to see that the negative ratios is of same magnitude as the MPC, but the positive
ratios is much smaller, and the reduction in converted power (from figure 4.2 ) is
very modest. This means that the ACC could be very attractive when comparing
to MPC when the design of the machinery is also considered. But the MPC have an
advantage in the possibility of including constraint handling, thus the large peak-
to-average ratios can be reduced. However this will off course lead to a reduction
in absorbed power for the MPC.

The clutching strategies have very low ratios. As clutching does not have reactive
power flow (negative ratios) clutching seems like a very good alternative if a good
machinery design is used. Latching generally gives ratios comparable to the ACC
and AVT controllers. When looking at latching and clutching, it is seen that the
threshold strategies give lower ratios than the peak matching algorithms.

If the results are summed up some interesting conclusions appear. It is seen that to
supply the computed machinery force a large reactive power through the machinery
is needed. this can be challenging because this means that the machinery have to
be designed for a much larger instantaneous power than the average power that
the WEC is able to deliver. This means that if the intention is to apply reactive
control an energy storage would be needed.

Although latching and clutching is inferior to the best control systems when it
comes to absorbed power, they have some interesting advantages. They do not
require reactive power flow through the machinery, and due to the low peak-to-
average power ratio the total results is able to compete with the best.

To make a definitive conclusion of which of the control systems that is the best is
difficult because they perform different for different comparisons, and each system
has its advantages and disadvantages. What is the best system will therefore
probably be different depending on what WEC it is used with and the waves that
will occur. However the knowledge presented here would be helpful when comparing
different methods.



Chapter 5

Power Absorption for energy
converters

When a WEC is placed in water its task is to absorb energy from the waves. That is
why it is put there, and that is what it is designed to do. In other words, how good
it absorbs energy, and for what range of waves it is effective should be thoroughly
studied. This would reveal advantages and disadvantages for different WEC’s in
different types of waves, and it would give important knowledge when developing
and improving a WEC.

There exists WEC’s of many different shapes and sizes. Different concepts is de-
scribed by Hagerman [2] and McCormick [6]. The WEC’s take advantage of differ-
ent properties of the waves and they are optimized for different locations and wave
patterns. All of this makes it difficult to compare different concepts with each other
in a objective way. And it does not help that most of the needed information, like
energy absorption, dimensions and costs, is unavailable from the manufacturers.
An attempt has been done in Babarit et. al [1]. By taking the information that
are available and assume the dimensions of the WEC based on pictures, Babarit et
al [1] are able to estimate some quantities. They are used to define four different
criteria for comparing different WEC’s:

• Energy absorption

• Energy absorption / tons of displacement

• Energy absorption / square meter of wetted surface

• Energy absorption / unit of significant power take off force
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The energy absorption has been analysed numerically, using dimensions that have
been assumed. These criteria could give a overview of the different WEC’s advant-
ages and disadvantages, and an indication of which is the better one.

However Babarit et al. [1] acknowledges that the ultimate criterion is the cost of
electricity per kilowatt hour. This depends on two main criteria which is the output
power and the total cost of the system including everything. The cost of the WEC
is difficult to find because manufacturers keep it secret, and it is also generally not
known because no one have ever produced WEC’s in a large scale and experienced
what it would have cost. Because no data of cost exists it is also very difficult to
assume something and make an estimate.

The output power, on the other hand, can be estimated analytically by known
theory of hydrodynamic forces. This is what Babarit et al. [1] has done with
four different WEC’s. This has been done by using linear potential theory with
mono-directional waves, a power take off system which is assumed to have a linear
behaviour and the WEC’s are optimized for each sea state (slow tuning).

5.1 Different concepts

The four different WEC’s is all different in how they exploit the energy in the
waves. Comparing them could give an indication of what kind of concept that is
best, or at least some differences in what conditions they perform best.

5.1.1 Heaving buoy

The first WEC is a heaving buoy, presented in figure 5.1. The buoy is following
the surface, and is connected to the sea bed in the other end via a pump. The
pump is capturing the relative movement between the buoy and the sea bed, and
the energy is absorbed. The buoy should be small and have a natural frequency
much lower than the waves, so that it follows the waves as much as possible.

5.1.2 Heaving two bodies system

The heaving two bodies system, presented in figure 5.1, consists of two bodies
moving relative to each other because they follow the waves differently. The two
bodies consist of a bigger and deeper body referred to as the float, and a shallower
circular body referred to as the torus. Compared to the heaving buoy, this device
is much larger.
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Figure 5.1: left: Sketch of the heaving buoy [1]. right: Sketch of the heaving two
bodies system [1].

5.1.3 Pitching device

The forces in a wave have sinusoidal changes, and therefore half a wavelength apart
there is velocities in different directions. These counteracting forces in different
phases of the wave are possible to use for energy conversion. An example of that
is the pitching device Langlee, as shown in figure 5.2. The device is a floating
structure with two sets of flaps at a distance of half a wave length (optimally),
thereby counteracting. As they move in opposite directions they move a hydraulic
system connected to electric generators.

5.1.4 Floating OWC

There exist numerous attempts of wave energy converters that exploit a moving
water column as a piston in a cavity. The floating OWC, presented in figure 5.2, is
known as the backward bent duct buoy. The idea is that a cylinder with openings
in both ends is placed in the water. Incoming waves will lead to different pressures,
and an oscillating water column inside the cylinder. The opening in the top is
closed by a valve connected to a turbine. When the water column moves up and
down as a piston in a motor, it would pressure the air pocket through the valve to
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Figure 5.2: left: Sketch of the pitching device [1]. right: Sketch of the pitching
OWC [1].

run the turbine.

5.2 Computation of efficiency

The energy absorption for different WEC’s could be presented as how much energy
they can absorb for different sea states. For increasing Hs and Tp the absorbed
energy will increase, but the percentage which is absorbed of the total available
energy will vary differently. This would be individual for each WEC. Then it
would be interesting to see how the differences between the WEC’s are, and which
is better. A good ability for a WEC would be the ability to absorb a large portion
of the wave power present for a given sea state. In other words it is beneficial for the
WEC to have high efficiency. This could be found by comparing the absorbed power
for the WEC with the theoretically wave power for a sea state. The theoretically
power in a sea state is given by [7] as

J = γg2

64πH
2
sTj (5.1)

where γ = 1025kg/m3, g = 9.81m/s2, Hs is the significant wave height and the
wave energy period is given as Tj = 0.91Tp where Tp is the spectral peak period.
From the formula it is seen the energy will increase with the square of the wave
height and linearly with the wave period. So the energy will increase rapidly and
have much more energy in the sea states with larger waves.

The energy absorption, given as a function of Hs and Tp, for the different WEC’s
is found by Babarit et al. [1], and are approximately redrawn to be able to do
calculation with them. This means that the numbers would not be exact, but they
will describe the general trend. However for smaller waves, where the energy could
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be close to zero it is difficult to assume the value, because a large part is plotted
with the same color. This could for some values give very wrong results if the value
is redrawn with a too large value, and the efficiency could be calculated to be very
high, when there in reality is no energy absorption for that sea state. This could
even lead to efficiencies larger than one.

Efficiencies large than one is however not impossible. This is because the power
absorption is dependent on the width of the area of waves that is absorbed from.
This width could be smaller than the width of the WEC, but it can also be larger.
This is due to focusing techniques as described by McCormick [6]. Wave focusing
techniques is in general the use of techniques to focus the wave energy into a smaller
area in order to increase the power density in the waves. This could be divided
into three main concepts [6]; the antenna, island focusing and lens focusing. The
concept of the antenna, as shown in figure 5.3 for a heaving buoy, is similar to
what happens to radio signals. The theory of 2D waves says that a heaving buoy
only can extract half of the wave energy. But when looking at a 3-dimensional
situation the width of influence also have to be taken into account. If the buoy is
in resonance with the waves, a wave crest of width λ/2π will focus its power into
the buoy. This width could be significantly larger than the diameter of the buoy,
and the possible power output could therefore theoretically be larger than 100%
of the wave power available in the area covered. The other focusing concepts have
practically the same goals as antenna focusing but use other methods to achieve
focusing of the wave power.

Figure 5.3: Sketch of the concept of antenna focusing from [6]

In the following calculations the width of influence is assumed constant as the
width of the WEC. This would not be exactly true because the width of influence
will vary with the sea states, and different types of WEC’s might have individual
differences which make the assumption that the width of the WEC is the same as
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the width of influence not correct. However it is still a reasonable assumption to
make.

5.3 Results

For the heaving buoy the width of influence is assumed as the width of the buoy
which is 1.5m. The power matrix and efficiency is shown in figure 5.4. It can be
seen that the power absorption increases very rapidly for increasing wave height.
The heaving buoy absorbs most power for wave periods of seven to eight seconds.
However as the wave absorption increases for increasing wave height and in some
extent for increasing wave period it is for low values of these that the heaving buoy
is most effective. This is not surprising because it will be very difficult to absorb
a large portion of the power when it is as large as it is for increasing wave height
and wave power. This is a general trend seen on all the WEC’s.

Figure 5.4: Power absorption of the heaving buoy and efficiency of the total avail-
able power.

For the heaving two bodies system the width of influence is assumed as the width
of the torus which is 20m. The power matrix and efficiency is shown in figure 5.5.
It can be seen that the power absorption is increasing to its max potential around
T = 10s and for increasing wave height. When focusing on the efficiency it is seen
that it is largest for the same wave periods but at lower wave heights of one to two
meters.
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Figure 5.5: Power absorption of the heaving two bodies system and efficiency of
the total available power.

For the pitching device the width of influence is assumed as the width of the whole
frame which is 25m. The power matrix and efficiency is shown in figure 5.6. It can
be seen that the power absorption varies similarly to the heaving buoy except that
is it more dependent on the wave period. The efficiency is largest for wave period
of around eight seconds, and low wave heights.
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Figure 5.6: Power absorption of the pitching device and efficiency of the total avail-
able power.

For the floating OWC the width of influence is assumed as the width of the device
which is 24m. The power matrix and efficiency is shown in figure 5.7. The power
absorption increases for increasing wave height, and it has quite small variations
of power absorption for changing wave periods. Compared to the other WEC’s the
area giving high energy output is larger. The efficiency is largest for wave period of
seven seconds, and is almost independent on the wave height until they get large.
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Figure 5.7: Power absorption of the floating OWC and efficiency of the total avail-
able power.

When looking at all the WEC’s it is seen that most of them are most efficient for
one specific wave period, and that the efficiency is decreasing for increasing wave
height.

When comparing the maximum percentage of absorption it is some differences
between the WEC’s. As the maximum of the heaving buoy is only at 45 % the
pitching device gives up to 120 %. However these differences should not be over-
rated in importance as they come out of some coincidences. It is dependent on the
width of influence which is just assumed, and also on the guesses that are made
when the values are read from the figures in Babarit et al. [1].

In order to decide which one is the better one it should be compared with some
real occurrence of waves, like long-term statistics. Because there is no need to be
effective in a wave that never comes if the overall efficiency is poor. Long-term
statistics will introduce knowledge of occurrence of sea states, thus telling at what
sea states it is preferable to have large efficiency.
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Chapter 6

Computation of long-term
efficiency

In chapter 5 the efficiency of different WEC’s for sea states is presented. By
inserting this efficiency into the long-term equation, presented in section 3.2, long-
term efficiency can be found. This is done by adding a efficiency term in equation
3.8 so that it will yield

pL,η(J,X) =
∞∑
i=1

∞∑
j=1

p(J,X | Hs, Tp)p(Hs, Tp)× ηHs,Tpw(Hs, Tz)∆Hs∆Tp (6.1)

where ηHs,Tp is the efficiency of a WEC for a given Hs and Tp, as presented in
chapter 5. All the other terms are defined as before.

The efficiency is implemented so that the values are assumed to be zero where no
data is available. It is reasonable to assume that the WEC’s could be turned off
when such extreme sea states occur, and they would probably also have a kind
of end-stop device stopping these extreme states. However the calculations for
individual waves still spans over larger wave heights and wave periods. This is
mainly done because the program calculating it is made that way, but also because
turning a device of under extreme conditions does not necessarily include shutting
down for each extreme wave.
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6.1 Long-term efficeincy of wave power, wave height
and wave period

Figure 6.1: Long-term pdf of power absorption for the heaving buoy, where the
contours are 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1 and 0.2.

Figure 6.2: Long-term pdf of power absorption for the heaving two body system
where the contours are 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1
and 0.2.
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Figure 6.3: Long-term pdf of power absorption for the pitching device, where the
contours are 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1 and 0.2.

Figure 6.4: Long-term pdf of power absorption for the floating OWC, where the
contours are 0.00001, 0.0001, 0.001, 0.005, 0.01, 0.05, 0.1 and 0.2.

In figure 6.1, 6.2, 6.3 and 6.4 the long-term pdf of power absorption are given for
the WEC’s presented in chapter 5. These are plotted with the same contours as
in figure 3.2 which they could be compared to. However it is quite difficult to see
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the differences in the plots. By looking at the outer contours it can be assumed
that the heaving buoy gives the lowest power absorption, followed by the pitching
device, and highest values are obtained for the heaving two bodies system and the
floating OWC. But this way of putting it does not take into account which one is
best for small waves, where most of the waves occur. So other ways of comparing
them should be assessed.

Efficiency pL,η(J,H) pL,η(J, T )
Heaving buoy 0.1156 0.1156
Heaving two bodies system 0.3012 0.3012
Pitching device 0.4710 0.4710
Floating OWC 0.4376 0.4376

Table 6.1: Total efficiency for a long-term comparison

In table 6.1 the integrated total area of the power absorption is summed up in
order to compare the different WEC’s. When comparing the integrated total area
of pL,η(J,H) and pL,η(J, T ) it is seen that it gives the same results. This is good as
it confirms the mathematical procedure. When comparing the different WEC’s to
each other it is seen that the pitching device and the floating OWC is the best by
exploiting 47% and 44% of the potential, the heaving two bodies system exploits
30% and the heaving buoy is poorest by only 12%.

6.2 Long-term marginal pdf of power absorption

It would be interesting to compare them in other ways than only the total integrated
area, and see how they vary for different wave power. Therefore the long-term
marginal pdf of power absorption pL,η(J) is found. This is presented in figure 6.5.
It is seen that the WEC’s have very different results for low wave energy. The
pitching device gives best extraction, followed by the floating OWC, the heaving
two bodies system, and last the heaving buoy. However for larger wave energy it is
the floating OWC that is best, and the pitching device goes down to the level the
heaving two bodies system. The heaving buoy seems to be the poorest at every
level of the extraction.
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Figure 6.5: Long-term distribution of extracted wave power, pL,η(J).
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Figure 6.6: Long-term cumulative distribution of wave energy absorption.

6.3 Long-term cdf of wave energy absorption

Another way of compare them is to look at the cumulative distribution function,
presented in figure 6.6. This shows the same overall results as before, with the
pitching device as the best, and the heaving buoy as the poorest. However this
shows that the pitching device is not as good as the floating OWC and the heaving
two bodies system for larger wave energy because it increases less.
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Figure 6.7: Long-term cumulative distribution of wave energy absorption where it
is assumed no extraction for the lower wave energies.

As previously explained, in section 5.2, the power extraction for low values is not
explained very clear in the original source [1]. Therefore it is possible that the low
values are wrong. Therefore there have been made a plot where it is assumed that
the power extraction for the lowest values of J is zero. This is where most of the
waves occur. This is given in figure 6.7. From the figure it is seen that the heaving
buoy is clearly not as good as the others. For the others they are very similar in
the beginning, but the floating OWC stands out as the best.
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Chapter 7

Conclusion

7.1 Results

When comparing the calculations done by use of scatter diagram and analytical
expressions some differences are observed. In order to get correct results for the
analytical expressions the resolution have to be high, so that peaks and values
close to zero is included. But for the scatter diagram calculations the resolution is
limited by the number of waves present in the wave scatter diagrams. If the scatter
diagram results have too high resolution the results will become very fragmented
and impossible to understand.

To include all the waves in the scatter diagram calculations the integration have
to include a large enough span to involve the largest wave in the scatter diagram.
If it does that the probability will sum up to 1. For the analytical expressions the
integration in theory have to go to infinity to sum up to the probability of 1. But
for numerical calculations this is impossible. So a value close to 1 is close enough.
Achieving this is mostly dependent on high resolution compared to calculations
over a large span.

To get a good visualization a high resolution is preferable because it will give
more accurate details in the curves, thus the analytical expressions is best for
visualization. The strength of the scatter diagram results is that it is easy to see
if they are correct or not because it is a limited number of waves, and it is easy
to understand what numbers to expect. Therefore these numbers can be used
to compare and confirm the analytical expressions, which is done in the previous
chapters.
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The joint pdf of wave power and wave height gives an distribution where the wave
power is seen to resemble a quadratic increase with the wave height, as it should
by theory. For the joint pdf of wave power and wave period the shape is not so
clear intuitively. The joint pdf of significant wave height and spectral peak period
varies around the peak at Hs = 2m and Tp = 8s.

For the long-term joint pdf of wave power and either wave height or wave period
it is at first glance seen that the shape resembles what was seen for the short-
term individual waves statistics. However the long-term statistics is much more
concentrated for low wave energy, with much steeper contour lines.

When the long-term statistics is weighted for wave power the contours become
less steep because higher values of wave power become more important. But the
difference is not very big and it is still the waves with the lowest wave energy
that gives the largest contribution. The biggest difference is for higher values of
wave period and low wave energy where the contours will bend inward because the
energy is very small.

For the long-term marginal pdf of wave power it is seen that the graph is very
steep with a shape that resembles an exponential distribution, but it does not fit
perfectly. Two different equations have been tested to find a suggestion in how
the wave power varies, but none of them gives sufficiently good results to conclude
with a analytical expressions for the long-term marginal pdf of wave power.

The cumulative distribution function of wave power is very steep and most of the
waves, as for the marginal pdf of wave power, are located for low wave energy.
However for the cdf it is easier to see the difference between the results calculated
from analytical expressions and results from scatter diagram results.

For the different control systems it is seen that the methods using reactive loading
gives the highest energy output because these methods gives the motion closest to
optimal phase and amplitude. But they also use some energy in order to control the
motion, and need complex calculations in order to predict the future values that
they are dependent on. Therefore the resistive methods represented by latching
and clutching still can be competitive even though they generally gives less power
output, because they does not use energy in the controlling. Another advantage
is that they give less peak-to-average ratios, so that the dimensions of the control
mechanisms do not need to be as large.

When looking at the power absorption for different WEC’s is it seen that the res-
ults is very dependent on the width of influence that are chosen. Preferably more
information about this parameter should have been known, but it was not avail-
able. Another thing that will influence the results significantly is the values that
are approximately redrawn from the original source, which have a lot of uncer-
tainties. As mentioned it is especially at low values for power absorption that the
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uncertainties are large. When that is put together with the knowledge that most of
the waves in a long-term perspective have very low wave energy it is obvious that
these large uncertainties also will apply for the long-term statistics. This will give
the differences between the WEC’s and the actual results limited interest, but the
general trends are worth some attention.

The results show that most of the WEC’s have an optimal value for the wave
period where both the power absorption and the efficiency are at its largest. For
the wave height the WEC’s give largest power absorption for large values, but are
most efficient for small wave heights.

When looking at the long-term results for power absorption it is difficult to see any
clear differences for different wave heights and wave periods. But the differences
in total integrated area are large. As the heaving buoy only absorbs 11% of the
energy in the waves, the heaving two bodies system absorbs 30% and the pitching
device and the floating OWC absorbs 45%. From the long-term marginal pdf
of wave power and the long-term cdf of wave power it is seen that most of the
difference in absorption is for low values of wave power. Because of the large
assumed uncertainties of low values for wave power also the variation when those
values are isolated are of interest. This give very similar results, with the heaving
buoy as the poorest, but the floating OWC seems to be more efficient than the
competitors when the wave energy becomes large.

7.2 Recommendations for further work

One thing that could be given more attention is the area where most of the waves
occur where the wave energy is very low, by doing the calculations over only this
area with a large resolution. Because so large portion of the waves occur in this
area it would be interesting to investigate if there are any differences to notice.

Analytical expressions was attempted to be determined for the long-term pdf of
wave power with lack of success. This could be investigated further in a more
thoroughly way. Also analytical expressions for the long-term cdf of wave power
would be interesting to find.

When looking at power absorption it would be interesting to implement the men-
tioned control mechanisms in the statistics, to see how they would influence the
results in the long-term statistics.
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Appendix A

Wave scatter diagram

A.1 For sea states
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IV Ch. A. Wave scatter diagram

A.2 For individual waves



Appendix B

Matlab script used for the
calculations

B.1 mainprog.m

Puts together the calculations for the long-term distributions. Three pre
calculated examples are available for this run, because of the long calculation

times (lowreslargespan.mat, lowres.mat and highres.mat).

1 clear all
2 tttt = cputime; %calculates calculation time
3

4 %% inputvalues
5 listsandvalues; % makes alle the necessary lists, and some basic values
6 [B Hss Tps delHss delTps]=haltenbanken(); %put in wave scatter ...

values for seastates
7 blist=individualwaves(); %put in wave scatter values for individual ...

waves
8 [Hsb delHsb Tpb delTpb totpow hb effhb htbs effhtbs pd effpd fowc ...

efffowc]=barbar(); %put in wave absorption matrices
9

10 %% Calculation of PL(J,X)
11 for i=1:length(J)
12 for j=1:Xl
13 %% PL(J,X)=int int p(J,X|Hs,Tp)p(Hs,Tp)w(Hs,Tz)dHsdTp
14 % Long−term pdf from scatter
15 [SL_JH(i,j) SL_JT(i,j)]=scatter(J(i), delJ, H(j), delH, ...

T(j), delT, Hss, delHss, Tps, delTps, blist, B, gamma, g);
16 J_SL_JH(i,j)=SL_JH(i,j)*J(i);
17 J_SL_JT(i,j)=SL_JT(i,j)*J(i);
18

V
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19 % Long−term pdf from analytical expressions
20 [PL_JH(i,j) PL_JT(i,j)]=formel(J(i), H(j), T(j), Hs, delHs, ...

Tp, delTp, gamma, g);
21 J_PL_JH(i,j)=PL_JH(i,j)*J(i);
22 J_PL_JT(i,j)=PL_JT(i,j)*J(i);
23

24 % Long−term efficiency from scatter
25 [effhbL_JH(i,j) effhbL_JT(i,j)]= sceff(effhb, J(i), delJ, ...

H(j), delH, T(j), delT, Hsb+0.25, delHsb, Tpb+0.5, ...
delTpb, blist, B, gamma, g);

26 [effhtbsL_JH(i,j) effhtbsL_JT(i,j)]= sceff(effhtbs, J(i), ...
delJ, H(j), delH, T(j), delT, Hsb+0.25, delHsb, ...
Tpb+0.5, delTpb, blist, B, gamma ,g);

27 [effpdL_JH(i,j) effpdL_JT(i,j)]= sceff(effpd, J(i), delJ, ...
H(j), delH, T(j), delT, Hsb+0.25, delHsb, Tpb, ...
delTpb+0.5, blist, B, gamma, g);

28 [efffowcL_JH(i,j) efffowcL_JT(i,j)]= sceff(efffowc, J(i), ...
delJ, H(j), delH, T(j), delT, Hsb+0.25, delHsb, ...
Tpb+0.5, delTpb, blist, B, gamma, g);

29

30 end
31 home
32 disp(['cputime: ' num2str(floor(cputime−tttt)) 's']) ;
33 disp(['progress: ' num2str(floor(100* (i/length(J)))) ' %']);
34 end
35

36 % Long−term pdf from scatter
37 SLJH=SL_JH*(10^6);
38 SLJT=SL_JT*(10^6);
39 J_SLJH=J_SL_JH*(10^6);
40 J_SLJT=J_SL_JT*(10^6);
41

42 % Long−term pdf from analytical expressions
43 PLJH=PL_JH*(10^6);
44 PLJT=PL_JT*(10^6);
45 J_PLJH=J_PL_JH*(10^6);
46 J_PLJT=J_PL_JT*(10^6);
47

48 % Long−term efficiency from scatter
49 effhbL_JH = effhbL_JH *(10^6);
50 effhbL_JT = effhbL_JT *(10^6);
51 effhtbsL_JH = effhtbsL_JH *(10^6);
52 effhtbsL_JT = effhtbsL_JT *(10^6);
53 effpdL_JH = effpdL_JH *(10^6);
54 effpdL_JT = effpdL_JT *(10^6);
55 efffowcL_JH = efffowcL_JH *(10^6);
56 efffowcL_JT = efffowcL_JT *(10^6);
57

58 results; %presents some results
59 plotfunc; % plot
60 %cumulative; % plot and cdf calculations
61 %fittedcurve; % must run cumulative for this to work
62

63 disp(['total cputime: ' num2str((cputime−tttt)/60) 'min']); %total ...
calculation times
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B.1.1 listsandvalues.m

Defines neccessary lists and values.

1

2 %% General values
3 gamma= 1025; %[kg/m^3] fluid density
4 g=9.81; %[m/s^2] acceleration due to gravity
5

6 %% Lists for J, H and T
7

8 % % To include all the waves
9 % delJ= 400000;

10 % J=0+delJ/2:delJ:16000000;
11 % delH=0.5;
12 % H=0+delH/2:delH:40;
13 % delT=1.0;
14 % T=0+delT/2:delT:80;
15

16 % % Include only the important areas
17 % delJ= 100000;
18 % J=0+delJ/2:delJ:3000000;
19 % delH=0.25;
20 % H=0+delH/2:delH:20;
21 % delT=0.5;
22 % T=0+delT/2:delT:40;
23

24 % Very fine mesh
25 delJ= 10000;
26 J=0+delJ/2:delJ:3000000;
27 delH=0.025;
28 H=0+delH/2:delH:20;
29 delT=0.05;
30 T=0+delT/2:delT:40;
31

32 if length(H) ~= length(T) %makes sure H and T have equal lenghts
33 error('H and T must have equal lengths')
34 end
35

36 %% Lists for formula calculations
37 delHs=0.5;
38 Hs=0+delHs/2:delHs:12.5+delHs/2;
39

40 delTp=1.0;
41 Tp= 4+delTp/2:delTp:22+delTp/2;
42

43 %% Size of J,X matrix, output matrix
44 Xl=length(H); % length of the H and T table
45 %for scatter
46 SL_JH=zeros(length(J),Xl);
47 SL_JT=zeros(length(J),Xl);
48 J_SL_JH=zeros(length(J),Xl);
49 J_SL_JT=zeros(length(J),Xl);
50

51 %for smoothed curves
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52 PL_JH=zeros(length(J),Xl);
53 PL_JT=zeros(length(J),Xl);
54 J_PL_JH=zeros(length(J),Xl);
55 J_PL_JT=zeros(length(J),Xl);
56

57 %for efficiency results
58 effhbL_JH = zeros(length(J),Xl);
59 effhbL_JT = zeros(length(J),Xl);
60 effhtbsL_JH = zeros(length(J),Xl);
61 effhtbsL_JT = zeros(length(J),Xl);
62 effpdL_JH = zeros(length(J),Xl);
63 effpdL_JT = zeros(length(J),Xl);
64 efffowcL_JH = zeros(length(J),Xl);
65 efffowcL_JT = zeros(length(J),Xl);

B.1.2 haltenbanken.m

Defines the values for the Haltenbanken wave scatter diagram given in appendix
A.1.

1 function [B Hss Tps delHss delTps]=haltenbanken()
2

3 % The wave scatter
4 B=[
5 0 0 3 1 1 1 2 3 1 0 0 0 0 0 0 0 0 0 0 0;
6 32 54 106 159 153 139 90 60 34 11 11 3 2 2 0 1 1 0 0 0;
7 7 128 219 270 374 302 203 152 94 44 25 13 7 3 3 1 0 0 1 0;
8 0 20 182 268 307 378 261 184 94 85 46 18 8 9 2 0 1 1 1 2;
9 0 0 71 212 283 314 272 204 114 88 50 55 30 7 2 1 1 1 1 1;

10 0 0 10 105 183 221 191 155 146 95 64 45 14 7 1 2 2 2 0 0;
11 0 0 0 33 112 160 156 141 123 75 47 30 25 19 10 1 1 0 0 0;
12 0 0 0 9 60 109 101 121 107 88 45 24 20 9 7 4 0 0 0 0;
13 0 0 0 4 19 74 103 101 99 82 46 43 13 4 3 3 0 0 1 0;
14 0 0 0 0 8 28 65 73 69 50 42 19 16 14 8 3 0 0 0 0;
15 0 0 0 0 1 18 38 71 63 50 29 16 14 10 6 5 0 0 0 0;
16 0 0 0 0 0 4 14 33 48 40 28 16 14 7 2 2 0 0 0 0;
17 0 0 0 0 0 3 8 26 43 33 34 10 6 2 2 0 0 0 0 0;
18 0 0 0 0 0 0 0 10 22 29 25 12 7 4 2 0 0 0 0 0;
19 0 0 0 0 0 0 0 5 19 29 15 15 6 2 1 2 0 0 0 0;
20 0 0 0 0 0 0 0 1 9 28 7 6 3 1 0 0 0 0 0 0;
21 0 0 0 0 0 0 0 1 8 15 11 6 7 1 1 0 0 0 0 0;
22 0 0 0 0 0 0 0 0 4 8 6 8 2 2 0 2 0 0 0 0;
23 0 0 0 0 0 0 0 0 1 1 10 3 2 1 0 0 0 0 0 0;
24 0 0 0 0 0 0 0 0 0 1 1 1 3 1 2 1 0 0 0 0;
25 0 0 0 0 0 0 0 0 0 0 0 2 4 0 1 0 0 0 0 0;
26 0 0 0 0 0 0 0 0 0 1 0 0 3 1 1 0 1 0 0 0;
27 0 0 0 0 0 0 0 0 0 0 0 1 2 0 1 0 0 0 0 0;
28 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0;
29 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0];
30

31 % Signigicant wave heights
32 Hss=[



B.1. mainprog.m IX

33 0.00000001 0.5 0.25;
34 0.5 1.0 0.75;
35 1.0 1.5 1.25;
36 1.5 2.0 1.75;
37 2.0 2.5 2.25;
38 2.5 3.0 2.75;
39 3.0 3.5 3.25;
40 3.5 4.0 3.75;
41 4.0 4.5 4.25;
42 4.5 5.0 4.75;
43 5.0 5.5 5.25;
44 5.5 6.0 5.75;
45 6.0 6.5 6.25;
46 6.5 7.0 6.75;
47 7.0 7.5 7.25;
48 7.5 8.0 7.75;
49 8.0 8.5 8.25;
50 8.5 9.0 8.75;
51 9.0 9.5 9.25;
52 9.5 10.0 9.75;
53 10.0 10.5 10.25;
54 10.5 11.0 10.75;
55 11.0 11.5 11.25;
56 11.5 12.0 11.75;
57 12.0 12.5 12.25];
58

59 % Spectral peak periods
60 Tps=[
61 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 ...

14.0 15.0 16.0 17.0 18.0 19.0 20.0 ...
21.0 22.0;

62 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 ...
15.0 16.0 17.0 18.0 19.0 20.0 21.0 ...
22.0 23.0;

63 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5 13.5 ...
14.5 15.5 16.5 17.5 18.5 19.5 20.5 ...
21.5 22.5];

64

65 %% Lists for scatter calculations
66 delHss=Hss(1,2)−Hss(1,1);
67

68 delTps=Tps(2,1)−Tps(1,1);
69

70 end %function

B.1.3 individualwaves.m

Defines the values for the Individual wave scatter diagram given in appendix A.2.

1 function blist=individualwaves()
2

3 % reads in necessary values to do the calculations
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4

5 %% Wave scatter (MK84)
6 b=[
7 0 6 23 20 13 3 2 0 0 0 0 0 0 0 0 0 0 ...

0 0;
8 0 1 42 114 132 98 48 33 11 3 3 2 0 1 0 0 0 ...

0 0;
9 0 2 4 53 142 198 169 135 97 67 43 16 14 8 2 2 0 ...

0 0;
10 0 0 1 12 54 127 171 159 170 132 121 67 56 29 17 5 3 ...

2 0;
11 0 0 0 0 12 57 107 121 162 192 149 143 97 62 24 8 2 ...

0 1;
12 0 0 0 0 1 21 49 79 135 173 194 172 96 33 28 7 3 ...

1 2;
13 0 0 0 0 0 7 15 42 93 133 182 152 73 40 14 4 3 ...

0 0;
14 0 0 0 0 0 0 11 26 46 86 108 85 47 20 9 1 1 ...

0 1;
15 0 0 0 0 0 1 5 7 18 52 61 40 17 5 2 0 0 ...

0 0;
16 0 0 0 0 0 0 1 4 13 23 30 27 9 6 0 0 0 ...

0 0;
17 0 0 0 0 0 0 0 3 3 7 20 7 4 0 1 0 0 ...

0 0;
18 0 0 0 0 0 0 0 1 5 1 3 4 2 0 0 0 0 ...

0 0;
19 0 0 0 0 0 0 0 0 0 1 2 4 0 0 0 0 0 ...

0 0;
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

0 0;
21 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ...

0 0];
22

23 % t=T/Trms
24 t=[0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 ...

0.85 0.95 1.05 1.15 1.25 1.35 1.45 ...
1.55 1.65 1.75 1.85];

25 delt= t(2)−t(1);
26

27 % h=H/Hrms
28 h=[0.1;0.3;0.5;0.7;0.9;1.1;1.3;1.5;1.7;1.9;2.1;2.3;2.5;2.7;2.9];
29 delh=h(2)−h(1);
30

31 % Rewrite the scatter to a list
32 blist=zeros(sum(sum(b)),4);
33 bnum=0;
34

35 for i=1:length(h)
36 for j=1:length(t)
37 n=b(i,j);
38

39 while n>0
40 nr=floor(sqrt(n)); % n root value
41 dh=delh/nr; % h step
42 dt=delt/nr; % t step
43 for k = 1:nr
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44 for m=1:nr
45 bnum=bnum+1;
46 hi=h(i)−(delh/2)+(k−0.5)*dh; % h value
47 ti=t(j)−(delt/2)+(m−0.5)*dt; % t value
48 ji=(hi^2)*ti; % j value
49 blist(bnum,:)=[bnum hi ti ji]; % put it in the list
50 end
51 end
52 n=n−(nr^2);
53 end
54 end
55 end
56 end %function

B.1.4 barbar.m

Defines the power matrices from [1], and calculates the efficiency.

1 function [Hsb delHsb Tpb delTpb totpow hb effhb htbs effhtbs pd ...
effpd fowc efffowc]=barbar()

2

3 % Hs values
4 Hsb =[ 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5];
5

6 % Tp values
7 Tpb = [3 4 5 6 7 8 9 10 11 12 13 14 15 16 17];
8

9 % Interval sizes
10 delHsb=Hsb(2)−Hsb(1);
11 delTpb=Tpb(2)−Tpb(1);
12

13 %% Total available power
14 gamma=1025;
15 g=9.81;
16 alpha=0.91; %for Tp
17 fak=gamma*(g^2)/(64*pi*1000)*alpha; %factor
18

19 totpow=zeros(length(Hsb),length(Tpb));
20

21 for i=1:length(Hsb)
22 for j=1:length(Tpb)
23 totpow(i,j)=(Hsb(i)^2)*Tpb(j)*fak;
24 end
25 end
26

27 %% Power matrix of the heaving buoy [kW]
28 hb=[
29 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0;
30 1 1.2 1.2 1.2 1.2 1.1 1 1 0.9 0.8 0.8 0.6 0.6 0.6 0.5;
31 0.5 2.5 2.5 2.3 2.2 2.2 2 1.9 1.7 1.5 1.5 1.3 1.2 1.2 1;
32 0.8 4 4 3.8 3.5 3.5 3.1 2.8 2.7 2.3 2.2 2 1.9 1.8 1.7;
33 0 0.8 6 5.1 4.7 4.6 4.2 3.9 3.5 3 2.8 2.6 2.7 2.6 2.4;



XII Ch. B. Matlab script used for the calculations

34 0 0.9 7.2 6.8 6.2 5.8 5.3 4.8 4.2 4.1 3.6 3.2 3.3 3.1 2.9;
35 0 0.9 9.2 8.3 7.3 6.8 5.9 5.4 4.9 4.6 4.2 3.8 3.7 3.6 3.3;
36 0 0.2 0.9 8.9 8.5 7.7 6.7 6.2 5.6 5 4.8 4.5 4.2 3.9 3.7;
37 0 0.2 0.9 10 9.6 8.6 7.8 7 6.2 5.8 5.3 5.1 4.9 4.4 4.1;
38 0 0.2 0.9 10.2 10.3 9.3 8.4 7.6 7.1 6.4 5.8 5.6 5.4 5 5;
39 0 0.2 0.9 10.1 10.5 10.1 8.9 8.1 7.5 6.8 6.4 6.1 5.7 5.5 5.3;
40 0 0 0.2 0.9 10.2 10.6 10 9.1 8.3 7.5 6.8 6.9 6.3 5.8 5.6;
41 0 0 0.2 0.9 10.2 10.8 10.5 9.7 9 7.8 7.5 7.3 6.7 6.3 5.8;
42 0 0 0.2 0.9 10.3 10.9 10.8 10 8.9 8.3 8.1 7.6 7.2 6.8 6.2;
43 0 0 0.2 0.9 10.4 10.9 10.9 10.5 10 8.8 8.4 7.8 7.5 7.1 6.5];
44

45 dhb=1.5; %[m] width of influence
46 effhb=hb./(totpow*dhb);
47

48 %% Power matrix of the heaving two bodies system [kW]
49 htbs=[
50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
51 0 0 0 0 0 20 50 50 20 0 0 0 0 0 0;
52 0 0 0 20 50 80 90 110 110 90 80 50 20 0 0;
53 0 0 20 60 90 120 140 190 170 140 120 100 60 50 0;
54 0 20 60 110 150 170 190 270 240 210 180 150 110 90 50;
55 0 40 90 150 200 230 290 370 310 310 250 180 160 130 100;
56 0 50 110 190 280 340 420 480 410 370 330 260 210 170 140;
57 0 40 80 240 350 420 520 600 480 430 390 290 240 180 170;
58 0 20 90 300 420 570 630 590 650 610 480 370 290 250 210;
59 0 20 90 360 500 710 760 790 730 590 570 420 360 310 250;
60 0 20 90 400 620 770 900 900 790 760 700 500 380 400 280;
61 0 0 30 90 720 870 930 930 920 910 730 570 470 420 350;
62 0 0 30 90 810 920 950 960 950 920 780 640 490 470 430;
63 0 0 30 90 840 940 960 970 960 950 920 770 680 570 470;
64 0 0 30 90 900 950 970 980 960 920 790 900 730 620 530];
65

66 dhtbs=20; %[m] width of influence
67 effhtbs=htbs./(totpow*dhtbs);
68

69 %% Power matrix of the pitching device [kW]
70

71 pd=[
72 0 0 0 10 20 30 20 10 0 0 0 0 0 0 0;
73 0 0 40 60 80 90 70 40 0 0 0 0 0 0 0;
74 0 50 80 120 180 170 130 90 60 20 0 0 0 0 0;
75 0 80 130 190 290 270 190 150 100 70 20 0 0 0 0;
76 0 60 190 290 420 390 310 200 160 120 70 50 20 0 0;
77 0 80 260 390 480 500 390 280 210 170 110 110 70 40 0;
78 0 90 340 560 760 740 490 380 280 220 160 140 120 70 20;
79 0 30 90 730 920 850 620 470 350 270 190 170 140 90 60;
80 0 20 90 900 1020 1010 780 600 390 320 200 220 180 130 110;
81 0 20 90 1010 1030 1020 880 660 460 370 310 260 220 170 130;
82 0 20 90 1010 1040 1040 1010 780 580 440 370 280 240 180 160;
83 0 0 40 90 1020 1050 1030 1000 670 530 420 330 270 210 180;
84 0 0 20 90 1020 1060 1040 1000 700 610 470 370 280 240 210;
85 0 0 20 90 1020 1070 1060 1020 880 680 490 420 300 310 250;
86 0 0 20 90 1030 1080 1070 1040 970 600 520 440 350 300 270];
87

88 dpd=25; %[m] width of influence
89 effpd=pd./(totpow*dpd);
90
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91 %% Power matrix of the floating OWC
92

93 fowc=[
94 0 0 0 0 0 10 10 10 0 0 0 0 0 0 0;
95 0 0 0 20 50 70 70 60 50 40 40 40 30 10 0;
96 0 0 20 60 100 130 140 120 100 90 90 90 90 70 40;
97 0 20 60 110 180 230 240 210 180 170 160 170 160 130 90;
98 10 60 110 180 280 360 380 320 280 260 250 250 230 190 150;
99 30 80 160 260 380 500 510 480 400 370 360 370 350 280 200;

100 50 90 210 340 530 680 720 640 540 490 480 490 470 370 280;
101 70 130 280 430 680 890 940 830 700 640 620 640 600 480 370;
102 80 180 370 570 850 1010 1020 1010 900 800 780 790 760 600 470;
103 90 200 430 680 1010 1030 1030 1020 1010 990 970 990 950 760 580;
104 100 250 510 830 1020 1040 1040 1040 1030 1020 1020 1020 1010 800 690;
105 110 290 620 990 1020 1050 1050 1050 1040 1030 1030 1030 1020 1010 810;
106 150 320 750 1010 1030 1050 1060 1060 1050 1040 1040 1040 1030 1020 960;
107 170 390 840 1020 1040 1060 1070 1070 1060 1050 1050 1050 1040 1030 ...

1020;
108 190 420 960 1030 1050 1070 1080 1080 1070 1060 1060 1060 1050 1040 ...

1030];
109

110 dfowc=24; %[m] width of influence
111 efffowc=fowc./(totpow*dfowc);

B.1.5 scatter.m

Calculates the long-term distribution from equation 3.8 by using the wave scatter
diagram values.

1 function [SL_JH SL_JT]=scatter(J,delJ,H,delH,T,delT,Hss,delHss,Tps, ...
delTps,blist,B,gamma,g)

2

3 s_JH=zeros(length(Hss),length(Tps));
4 s_JT=zeros(length(Hss),length(Tps));
5 s_HssTps=zeros(length(Hss),length(Tps));
6

7 J1=J−delJ/2;
8 J2=J+delJ/2;
9 H1=H−delH/2;

10 H2=H+delH/2;
11 T1=T−delT/2;
12 T2=T+delT/2;
13

14 for m=1:length(Hss)
15

16 Hrms = 0.714 * Hss(m,3);
17

18 for n=1:length(Tps)
19 if B(m,n)>0 %for increasing speed
20 Trms = 0.97 * Tps(3,n);
21

22 Jch = gamma *(g^2) * (Hrms^2) * Trms/(32*pi); % Jchar
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23

24 bjh=0;
25 bjt=0;
26 for o=1:length(blist)
27 bH = blist(o,2)*Hrms;
28 bT = blist(o,3)*Trms;
29 bJ = blist(o,4)*Jch;
30

31 if bJ >= J1 && bJ < J2 % if j−value is in the interval
32 if bH >= H1 && bH < H2 % if h−value is in the ...

interval
33 bjh=bjh+1;
34 end
35 if bT >= T1 && bT < T2 % if t−value is in the ...

interval
36 bjt=bjt+1;
37 end
38 end
39 end
40

41 %% J and H
42 s_jh=bjh/length(blist);
43 s_JH(m,n) = s_jh / (delH * delJ);
44

45 %% J and T
46 s_jt=bjt/length(blist);
47 s_JT(m,n) = s_jt / (delT * delJ);
48

49 %% Hs and Tp
50 s_HssTps(m,n) = B(m,n)/sum(sum(B))/(delHss*delTps);
51 end
52 end
53 end
54

55 %% w(Hs,Tchar)
56 w_HssTzs=1;
57

58 %% Return values
59 int_JHs = s_JH .* s_HssTps .* w_HssTzs;
60 int_JTs = s_JT .* s_HssTps .* w_HssTzs;
61

62 SL_JH = sum(sum(int_JHs)) * delHss * delTps;
63 SL_JT = sum(sum(int_JTs)) * delHss * delTps;
64

65 end %function

B.1.6 formel.m

Calculates the long-term distribution from equation 3.3 by using the analytical
values given in appendix B.1.7, B.1.8, B.1.9, B.1.10, B.1.11 and B.1.12.

1 function [PL_JH PL_JT]=formel(J,H,T,Hs,delHs,Tp,delTp,gamma,g)
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2

3 p_JH=zeros(length(Hs),length(Tp));
4 p_JT=zeros(length(Hs),length(Tp));
5 p_HsTp=zeros(length(Hs),length(Tp));
6 Tplist=zeros(length(Hs),length(Tp));
7

8 for m=1:length(Hs)
9

10 Hrms=0.714 * Hs(m);
11 h=H/Hrms; % Dimentionless wave height
12

13 for n=1:length(Tp)
14

15 Trms=0.97 * Tp(n);
16 t=T/Trms; % Dimentionless wave period
17

18 Jch= gamma *(g^2) * (Hrms^2) * Trms/(32*pi); % Jchar
19 jj=J/Jch; % Dimentionless wave energy
20

21 %% J and H
22 p_jgh= fp_jgh(h,jj);
23 p_h = fp_h(h);
24 p_jh = p_jgh * p_h;
25

26 p_JH(m,n) = p_jh *32*pi/(gamma *(g^2) * (Hrms^3) * Trms);
27

28 %% J and T
29 p_jkt = fp_jkt (t,jj );
30 p_tgj = fp_tgj (t,jj );
31 p_jt = p_tgj*p_jkt;
32

33 p_JT(m,n) = p_jt *32*pi/(gamma *(g^2) * (Hrms^2) * (Trms^2));
34

35 %% Hs and Tp
36 p_TpgHs = fp_TpgHs (Hs(m), Tp(n));
37 p_Hs = fp_Hs (Hs(m));
38 p_HsTp(m,n) = p_TpgHs * p_Hs;
39

40 %% Table of Tp−values
41 Tplist(m,n)=Tp(n);
42 end
43 end
44

45 %% w(Hs,Tchar)
46 meanTch=fmeanTch(Hs,delHs);
47 w_HsTz=meanTch ./ Tplist;
48

49 int_JH = p_JH .* p_HsTp .* w_HsTz;
50 int_JT = p_JT .* p_HsTp .* w_HsTz;
51

52 PL_JH = sum(sum(int_JH)) * delHs * delTp;
53 PL_JT = sum(sum(int_JT)) * delHs * delTp;
54

55 end %function
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B.1.7 fp_ h.m

Calculates the marginal pdf of h given in equation 2.12.

1 function p_h=fp_h(h)
2 % calculates p(h)
3 p_h= ((2.39*h^1.39)/(1.05^2.39))*exp(−(h/1.05)^2.39);
4 end

B.1.8 fp_ jgh.m

Calculates the conditional pdf of j given h, given in equation 2.13.

1 function p_jgh = fp_jgh(h,jj )
2 % calculates p(j|h)
3

4 alfa=0.12* sqrt(h);
5

6 if h<=0.9
7 rho=0.78*h+0.26;
8 else
9 rho=0.962;

10 end
11

12 beta= 2*atan(2*(h−1.2))+5;
13

14 if jj>=alfa*h^2 && h>0
15 p_jgh=(beta/(rho*h^2)) *(((jj−alfa*h^2)/(rho*h^2))^(beta−1)) ...

*exp(−(((jj−alfa*h^2)/(rho*h^2))^(beta)));
16 else
17 p_jgh=0;
18 end
19

20 end %function

B.1.9 fp_ jkt.m

Calculates the marginal pdf of j which is dependent on t, given in equation 2.18.

1 function p_jkt = fp_jkt(t,jj )
2 % calculates p(j;t) with averaging to discrete values
3

4 r=(1.05^2)*t;
5 s=2.39/2;



B.1. mainprog.m XVII

6

7 %p(j;t) , for j>=0
8 if jj>=0 && r>0
9 p_jkt=(s/r)*((jj/r)^(s−1))*exp(−(jj/r)^s);

10 else
11 p_jkt=0;
12 end
13

14 end %function

B.1.10 fp_ tgj.m.m

Calculates the conditional pdf of t given j, given in equation 2.21.

1 function p_tgj = fp_tgj(t,jj )
2 % calculates p(t|j)
3

4 h=sqrt(jj/t);
5

6 alfa=0.12* sqrt(h);
7

8 if h<=0.9
9 rho=0.78*h+0.26;

10 else
11 rho=0.962;
12 end
13

14 beta= 2*atan(2*(h−1.2))+5;
15

16 % p(t|h=sqrt(j/t))
17 if t>=alfa
18 p_tgj= (beta/rho) *(((t−alfa)/(rho))^(beta−1)) ...

*exp(−(((t−alfa)/(rho))^(beta)));
19 else
20 p_tgj=0;
21 end
22

23 end %function

B.1.11 fp_ Hs.m

Calculating the marginal pdf of Hs, given in equation 2.24.

1 function p_Hs = fp_Hs (Hs)
2

3 if Hs <= 3.25 && Hs>0 % [m]
4 teta=0.801;
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5 kap=sqrt(0.371);
6 p_Hs = (1/(sqrt(2*pi)*kap*Hs)) * ...

exp(−((log(Hs)−teta)^2)/(2*kap^2));
7 else
8 zeta=2.713;
9 beta=1.531;

10 p_Hs = (beta*(Hs^(beta−1))/(zeta^beta)) * exp(−(Hs/zeta)^beta);
11 end
12

13 end %function

B.1.12 fp_ TpgHs.m

Calculating the conditional pdf of Tp given Hs, given in equation 2.25.

1 function p_TpgHs = fp_TpgHs (Hs, Tp)
2

3 a1=1.780;
4 a2=0.288;
5 a3=0.474;
6

7 b1=0.001;
8 b2=0.097;
9 b3=−0.255;

10

11 mu=a1 + a2*Hs^a3;
12 sigma=sqrt(b1 + b2*exp(b3*Hs));
13

14 if Tp>0 && Hs>0
15 p_TpgHs= (1/(sqrt(2*pi)*sigma*Tp)) * ...

exp(−((log(Tp)−mu)^2)/(2*sigma^2));
16 else
17 p_TpgHs=0;
18 end
19

20 end %function

B.1.13 fmeanTch.m

Calculates the average wave period.

1 function meanTch=fmeanTch(Hs,delHs)
2

3 meanTch=0;
4

5 a1=1.780;
6 a2=0.288;
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7 a3=0.474;
8

9 b1=0.001;
10 b2=0.097;
11 b3=−0.255;
12

13 for i = 1:length(Hs)
14 mu=a1 + a2*Hs(i)^a3;
15 sigma=sqrt(b1 + b2*exp(b3*Hs(i)));
16

17 p_Hs= fp_Hs (Hs(i));
18

19 meanTchint=exp(mu+0.5*sigma^2)*p_Hs;
20

21 meanTch = meanTch + meanTchint*delHs;
22 end
23

24 end %function

B.1.14 sceff.m

Calculates the long-term distribution off power absorption from equation 6.1 by
using the power matrices from barbar.m.

1 function [SL_JH ...
SL_JT]=sceff(effmat,J,delJ,H,delH,T,delT,Hss,delHss,Tps, ...
delTps,blist,B,gamma,g)

2

3 s_JH=zeros(length(Hss),length(Tps));
4 s_JT=zeros(length(Hss),length(Tps));
5 s_HssTps=zeros(length(Hss),length(Tps));
6

7 J1=J−delJ/2;
8 J2=J+delJ/2;
9 H1=H−delH/2;

10 H2=H+delH/2;
11 T1=T−delT/2;
12 T2=T+delT/2;
13

14 for m=1:length(Hss)
15

16 Hrms = 0.714 * Hss(m);
17

18 for n=1:length(Tps)
19 if B(m,n)>0 %for increasing speed
20 Trms = 0.97 * Tps(n);
21

22 Jch = gamma *(g^2) * (Hrms^2) * Trms/(32*pi); % Jchar
23

24 bjh=0;
25 bjt=0;
26 for o=1:length(blist)
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27 bH = blist(o,2)*Hrms;
28 bT = blist(o,3)*Trms;
29 bJ = blist(o,4)*Jch;
30

31 if bJ >= J1 && bJ < J2 % if j−value is in the interval
32 if bH >= H1 && bH < H2 % if h−value is in the ...

interval
33 bjh=bjh+1;
34 end
35 if bT >= T1 && bT < T2 % if t−value is in the ...

interval
36 bjt=bjt+1;
37 end
38 end
39 end
40

41 %% J and H
42 s_jh=bjh/length(blist);
43 s_JH(m,n) = s_jh / (delH * delJ);
44

45 %% J and T
46 s_jt=bjt/length(blist);
47 s_JT(m,n) = s_jt / (delT * delJ);
48

49 %% Hs and Tp
50 s_HssTps(m,n) = B(m+1,n)/sum(sum(B))/(delHss*delTps);
51

52 %% adding in the efficiency
53 mp1=m+1;
54 np1=n+1;
55 if m+1>length(Hss)
56 mp1=m;
57 end
58 if n+1>length(Tps)
59 np1=n;
60 end
61 effvalue= (effmat(m,n) +effmat(mp1,n) + effmat(m,np1) + ...

effmat(mp1,np1) )/4;
62 s_HssTps(m,n)=s_HssTps(m,n) * effvalue;
63 end
64 end
65 end
66

67 %% w(Hs,Tchar)
68 w_HssTzs=1;
69

70 %% Return values
71 int_JHs = s_JH .* s_HssTps .* w_HssTzs;
72 int_JTs = s_JT .* s_HssTps .* w_HssTzs;
73

74 SL_JH = sum(sum(int_JHs)) * delHss * delTps;
75 SL_JT = sum(sum(int_JTs)) * delHss * delTps;
76

77 end %function
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B.1.15 results.m

Presents some of the results from the calculations.

1

2 disp(['sum(SLJH)= ' num2str(sum(sum(SL_JH*delJ*delH)))]);
3 disp(['sum(SLJT)= ' num2str(sum(sum(SL_JT*delJ*delT)))]);
4 disp(['sum(PLJH)= ' num2str(sum(sum(PL_JH*delJ*delH)))]);
5 disp(['sum(PLJT)= ' num2str(sum(sum(PL_JT*delJ*delT)))]);
6

7 disp(['sum(SLJH) without start= ' ...
num2str(sum(sum(SL_JH(:,7:80)*delJ*delH )))]);

8 disp(['sum(PLJH) without start= ' ...
num2str(sum(sum(PL_JH(:,7:80)*delJ*delH )))]);

9

10 disp(['sum(effhbL_JH)= ' ...
num2str(sum(sum(effhbL_JH*delJ*(10^−6)*delH)))]);

11 disp(['sum(effhbL_JT)= ' ...
num2str(sum(sum(effhbL_JT*delJ*(10^−6)*delT)))]);

12 disp(['sum(effhtbsL_JH)= ' ...
num2str(sum(sum(effhtbsL_JH*delJ*(10^−6)*delH)))]);

13 disp(['sum(effhtbsL_JT)= ' ...
num2str(sum(sum(effhtbsL_JT*delJ*(10^−6)*delT)))]);

14 disp(['sum(effpdL_JH)= ' ...
num2str(sum(sum(effpdL_JH*delJ*(10^−6)*delH)))]);

15 disp(['sum(effpdL_JT)= ' ...
num2str(sum(sum(effpdL_JT*delJ*(10^−6)*delT)))]);

16 disp(['sum(efffowcL_JH)= ' ...
num2str(sum(sum(efffowcL_JH*delJ*(10^−6)*delH)))]);

17 disp(['sum(efffowcL_JT)= ' ...
num2str(sum(sum(efffowcL_JT*delJ*(10^−6)*delT)))]);

B.1.16 plotfunc.m

Makes the plots for the long-term distribution results.

1

2 %% scatter individual waves
3 figure
4 plot(blist(:,3),blist(:,2),'b.')
5 set(gca,'YDir','reverse')
6 xlabel('t')
7 ylabel('h')
8

9 %% −−−−−−−−−−−−−−−− Scatter −−−−−−−−−−−−−−−−−−−−−
10 %% Plot SLJH and SLJT
11 % SLJH
12 figure
13 subplot(1,2,1)
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14 contour(H,J*(10^−6),SLJH,[0.00001 0.0001 0.001 0.005 0.01 0.05 0.1 ...
0.2])

15 title('P_L(J,H)')
16 xlabel('H[m]')
17 ylabel('J[MW]')
18

19 % SLJT
20 subplot(1,2,2)
21 contour(T,J*(10^−6),SLJT,[0.00001 0.0001 0.001 0.005 0.01 0.05 0.1 ...

0.2])
22 title('P_L(J,T)')
23 xlabel('T[s]')
24 ylabel('J[MW]')
25

26 set(gcf, 'PaperType', 'B5')
27 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
28 print(figure(2),'−dpsc','figure/ch1/sljx.eps')
29

30 %% Plot J_SLJH and J_SLJT
31 % J_SLJH
32 figure
33 subplot(1,2,1)
34 contour(H,J*(10^−6),J_SLJH*(10^−6),[0.00001 0.0001 0.001 0.005 0.01 ...

0.05 0.1 0.2])
35 title('J \times P_L(J,H)')
36 xlabel('H[m]')
37 ylabel('J[MW]')
38

39 % J_SLJT
40 subplot(1,2,2)
41 contour(T,J*(10^−6),J_SLJT*(10^−6),[0.00001 0.0001 0.001 0.005 0.01 ...

0.05 0.1 0.2])
42 title('J \times P_L(J,T)')
43 xlabel('T[s]')
44 ylabel('J[MW]')
45

46 set(gcf, 'PaperType', 'B5')
47 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
48 print(figure(3),'−dpsc','figure/ch1/jsljx.eps')
49

50 %% −−−−−−−−−−−−− Smoothed curves −−−−−−−−−−−−
51 %% Plot PLJH and PLJT
52 % PLJH
53 figure
54 subplot(1,2,1)
55 contour(H,J*(10^−6),PLJH,[0.00001 0.0001 0.001 0.005 0.01 0.05 0.1 ...

0.2])
56 title('P_L(J,H)')
57 xlabel('H[m]')
58 ylabel('J[MW]')
59

60 % PLJT
61 subplot(1,2,2)
62 contour(T,J*(10^−6),PLJT,[0.00001 0.0001 0.001 0.005 0.01 0.05 0.1 ...

0.2])
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63 title('P_L(J,T)')
64 xlabel('T[s]')
65 ylabel('J[MW]')
66

67 set(gcf, 'PaperType', 'B5')
68 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
69 print(figure(4),'−dpsc','figure/ch1/pljx.eps')
70

71 %% Plot J_PLJH and J_PLJT
72 % J_PLJH
73 figure
74 subplot(1,2,1)
75 contour(H,J*(10^−6),J_PLJH*(10^−6),[0.00001 0.0001 0.001 0.005 0.01 ...

0.05 0.1 0.2])
76 title('J \times P_L(J,H)')
77 xlabel('H[m]')
78 ylabel('J[MW]')
79

80 % J_PLJT
81 subplot(1,2,2)
82 contour(T,J*(10^−6),J_PLJT*(10^−6),[0.00001 0.0001 0.001 0.005 0.01 ...

0.05 0.1 0.2])
83 title('J \times P_L(J,T)')
84 xlabel('T[s]')
85 ylabel('J[MW]')
86

87 set(gcf, 'PaperType', 'B5')
88 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
89 print(figure(5),'−dpsc','figure/ch1/jpljx.eps')
90

91

92 %% −−−−−−−−−−− Efficiency −−−−−−−−−−−−−−−
93

94 %% Power matrix of the heaving buoy [kW]
95 figure
96 subplot(1,2,1)
97 contourf(Tpb,Hsb,hb)
98 title('Power absorption [kW]')
99 xlabel('T_p[s]')

100 ylabel('H_s[m]')
101 colorbar
102

103 subplot(1,2,2)
104 contourf(Tpb,Hsb,effhb)
105 title('Efficiency [%]')
106 xlabel('T_p[s]')
107 ylabel('H_s[m]')
108 colorbar
109

110 set(gcf, 'PaperType', 'B5')
111 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
112 print(figure(6),'−dpsc','figure/ch3/hb.eps')
113

114 %% Power matrix of the heaving two bodies system [kW]
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115 figure
116 subplot(1,2,1)
117 contourf(Tpb,Hsb,htbs)
118 title('Power absorption [kW]')
119 xlabel('T_p[s]')
120 ylabel('H_s[m]')
121 colorbar
122

123 subplot(1,2,2)
124 contourf(Tpb,Hsb,effhtbs)
125 title('Efficiency [%]')
126 xlabel('T_p[s]')
127 ylabel('H_s[m]')
128 colorbar
129

130 set(gcf, 'PaperType', 'B5')
131 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
132 print(figure(7),'−dpsc','figure/ch3/htbs.eps')
133

134 %% Power matrix of the pitching device [kW]
135 figure
136 subplot(1,2,1)
137 contourf(Tpb,Hsb,pd)
138 title('Power absorption [kW]')
139 xlabel('T_p[s]')
140 ylabel('H_s[m]')
141 colorbar
142

143 subplot(1,2,2)
144 contourf(Tpb,Hsb,effpd)
145 title('Efficiency [%]')
146 xlabel('T_p[s]')
147 ylabel('H_s[m]')
148 colorbar
149

150 set(gcf, 'PaperType', 'B5')
151 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
152 print(figure(8),'−dpsc','figure/ch3/pd.eps')
153

154 %% Power matrix of the floating OWC
155 figure
156 subplot(1,2,1)
157 contourf(Tpb,Hsb,fowc)
158 title('Power absorption [kW]')
159 xlabel('T_p[s]')
160 ylabel('H_s[m]')
161 colorbar
162

163 subplot(1,2,2)
164 contourf(Tpb,Hsb,efffowc)
165 title('Efficiency [%]')
166 xlabel('T_p[s]')
167 ylabel('H_s[m]')
168 colorbar
169
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170 set(gcf, 'PaperType', 'B5')
171 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
172 print(figure(9),'−dpsc','figure/ch3/fowc.eps')
173

174 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175 %% Efficiency matrix of the heaving buoy [kW]
176 figure
177 subplot(1,2,1)
178 contour(H,J*(10^−6),effhbL_JH,[0.00001 0.0001 0.001 0.005 0.01 0.05 ...

0.1 0.2])
179 title('p_{L,\eta_{hb}}(J,H)')
180 xlabel('H[m]')
181 ylabel('J[MW]')
182

183 subplot(1,2,2)
184 contour(T,J*(10^−6),effhbL_JT,[0.00001 0.0001 0.001 0.005 0.01 0.05 ...

0.1 0.2])
185 title('p_{L,\eta_{hb}}(J,T)')
186 xlabel('T[s]')
187 ylabel('J[MW]')
188

189 set(gcf, 'PaperType', 'B5')
190 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
191 print(figure(10),'−dpsc','figure/ch4/LEhb.eps')
192

193 %% Efficiency matrix of the heaving two bodies system [kW]
194 figure
195 subplot(1,2,1)
196 contour(H,J*(10^−6),effhtbsL_JH,[0.00001 0.0001 0.001 0.005 0.01 ...

0.05 0.1 0.2])
197 title('p_{L,\eta_{htbs}}(J,H)')
198 xlabel('H[m]')
199 ylabel('J[MW]')
200

201 subplot(1,2,2)
202 contour(T,J*(10^−6),effhtbsL_JT,[0.00001 0.0001 0.001 0.005 0.01 ...

0.05 0.1 0.2])
203 title('p_{L,\eta_{htbs}}(J,T)')
204 xlabel('T[s]')
205 ylabel('J[MW]')
206

207 set(gcf, 'PaperType', 'B5')
208 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
209 print(figure(11),'−dpsc','figure/ch4/LEhtbs.eps')
210

211 %% Efficiency matrix of the pitching device [kW]
212 figure
213 subplot(1,2,1)
214 contour(H,J*(10^−6),effpdL_JH,[0.00001 0.0001 0.001 0.005 0.01 0.05 ...

0.1 0.2])
215 title('p_{L,\eta_{pd}}(J,H)')
216 xlabel('H[m]')
217 ylabel('J[MW]')
218



XXVI Ch. B. Matlab script used for the calculations

219 subplot(1,2,2)
220 contour(T,J*(10^−6),effpdL_JT,[0.00001 0.0001 0.001 0.005 0.01 0.05 ...

0.1 0.2])
221 title('p_{L,\eta_{pd}}(J,T)')
222 xlabel('T[s]')
223 ylabel('J[MW]')
224

225 set(gcf, 'PaperType', 'B5')
226 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
227 print(figure(12),'−dpsc','figure/ch4/LEpd.eps')
228

229 %% Efficiency matrix of the floating OWC
230 figure
231 subplot(1,2,1)
232 contour(H,J*(10^−6),efffowcL_JH,[0.00001 0.0001 0.001 0.005 0.01 ...

0.05 0.1 0.2])
233 title('p_{L,\eta_{fowc}}(J,H)')
234 xlabel('H[m]')
235 ylabel('J[MW]')
236

237 subplot(1,2,2)
238 contour(T,J*(10^−6),efffowcL_JT,[0.00001 0.0001 0.001 0.005 0.01 ...

0.05 0.1 0.2])
239 title('p_{L,\eta_{fowc}}(J,T)')
240 xlabel('T[s]')
241 ylabel('J[MW]')
242

243 set(gcf, 'PaperType', 'B5')
244 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
245 print(figure(13),'−dpsc','figure/ch4/LEfowc.eps')

B.1.17 cumulative.m

Calculates the marginal long-term distribution of J , H and T , and the
cumulative distribution function.

1

2 %% Distribution og J
3

4 SL_J1=sum(SLJH,2)*delH;
5 SL_J2=sum(SLJT,2)*delT;
6

7 PL_J1=sum(PLJH,2)*delH;
8 PL_J2=sum(PLJT,2)*delT;
9

10 figure
11 hold on
12 plot(J*(10^−6),SL_J1,'b−')
13 plot(J*(10^−6),SL_J2,'r−−')
14 plot(J*(10^−6),PL_J1,'k−')
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15 plot(J*(10^−6),PL_J2,'g−−')
16 legend('Scatter diagram (H)','Scatter diagram (T)','Analytical ...

(H)','Analytical (T)','Location','NorthEast')
17 %title('Distribution of J')
18 xlabel('J[MW]')
19 ylabel('p_L(J)')
20 hold off
21

22 set(gcf, 'PaperType', 'B5')
23 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 12.0]);
24 print(figure(1),'−dpsc','figure/ch1/pj.eps')
25

26 %% Logharthmic distribution of J
27

28 figure
29 subplot(1,2,1)
30 hold on
31 plot(J(5:32)*(10^−6),SL_J1(5:32),'b−')
32 plot(J(5:32)*(10^−6),SL_J2(5:32),'r−−')
33 plot(J(5:32)*(10^−6),PL_J1(5:32),'k−')
34 plot(J(5:32)*(10^−6),PL_J2(5:32),'g−−')
35 legend('Sd (H)','Sd (T)','An (H)','An (T)','Location','NorthEast')
36 title('Close−up')
37 xlabel('J[MW]')
38 ylabel('p_L(J)')
39 set(gca, 'xlim', [0.04 0.30001], 'ylim', [0 4.2]);
40 hold off
41

42 subplot(1,2,2)
43 hold on
44 plot(J*(10^−6),log(SL_J1),'b−')
45 plot(J*(10^−6),log(SL_J2),'r−−')
46 plot(J*(10^−6),log(PL_J1),'k−')
47 plot(J*(10^−6),log(PL_J2),'g−−')
48 legend('Sd (H)','Sd (T)','An (H)','An (T)','Location','NorthEast')
49 title('Logarithmic axis')
50 xlabel('J[MW]')
51 ylabel('ln(p_L(J))')
52 hold off
53

54 set(gcf, 'PaperType', 'B5')
55 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
56 print(figure(2),'−dpsc','figure/ch1/logpj.eps')
57

58 %% Distribution of H and distribution of T
59 SL_H=sum(SLJH)*delJ*(10^−6);
60 PL_H=sum(PLJH)*delJ*(10^−6);
61

62 SL_T=sum(SLJT)*delJ*(10^−6);
63 PL_T=sum(PLJT)*delJ*(10^−6);
64

65 figure
66 subplot(1,2,1)
67 hold on
68 plot(H,SL_H,'b−')
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69 plot(H,PL_H,'r−')
70 legend('Scatter diagram','Analytical','Location','NorthEast')
71 title('Distribution of H')
72 xlabel('H[m]')
73 ylabel('p_L(H)')
74 hold off
75

76 subplot(1,2,2)
77 hold on
78 plot(T,SL_T,'b−')
79 plot(T,PL_T,'r−')
80 legend('Scatter diagram','Analytical','Location','NorthEast')
81 title('Distribution of T')
82 xlabel('T[s]')
83 ylabel('p_L(T)')
84 hold off
85

86 set(gcf, 'PaperType', 'B5')
87 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
88 print(figure(3),'−dpsc','figure/ch1/phpt.eps')
89

90 %% Cumulative distribution fucntion
91

92 SLJ1_CDF=zeros(length(J),1);
93 SLJ2_CDF=zeros(length(J),1);
94 PLJ1_CDF=zeros(length(J),1);
95 PLJ2_CDF=zeros(length(J),1);
96

97 for i=1:length(J)
98 SLJ1_CDF(i)=sum(SL_J1(1:i))*delJ*(10^−6);
99 SLJ2_CDF(i)=sum(SL_J2(1:i))*delJ*(10^−6);

100 PLJ1_CDF(i)=sum(PL_J1(1:i))*delJ*(10^−6);
101 PLJ2_CDF(i)=sum(PL_J2(1:i))*delJ*(10^−6);
102 end
103

104 figure
105 hold on
106 plot(J*(10^−6),SLJ1_CDF,'b−')
107 plot(J*(10^−6),SLJ2_CDF,'r−−')
108 plot(J*(10^−6),PLJ1_CDF,'k−')
109 plot(J*(10^−6),PLJ2_CDF,'g−−')
110 legend('Scatter diagram (H)','Scatter diagram (T)','Analytical ...

(H)','Analytical (T)','Location','East')
111

112 xlabel('J[MW]')
113 ylabel('$F_{J}(\hat{J})$','Interpreter','latex')
114 hold off
115

116 set(gcf, 'PaperType', 'B5')
117 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 12.0]);
118 print(figure(4),'−dpsc','figure/ch1/cdfj.eps')
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B.1.18 fittedcurve.m

Plots the cumulative distribution of J with an exponential distribution and an
inverse proportional distribution.

1

2 PLJ=SL_J1(1:30);
3 JJJ=J(1:30)*(10^−6);
4

5 PLJ2=55*exp(−50.*JJJ);
6

7 % Plot the curves
8 hold on
9 plot(JJJ,PLJ,'b−')

10 plot(JJJ,PLJ2,'r−')
11 plot(JJJ,1./(5*JJJ),'k−')
12

13 legend('p_L(J)','55*exp(−50*J)','1/(5*J)','Location','NorthEast')
14 xlabel('J[MW]')
15 ylabel('p_L(J)')
16 set(gca, 'xlim', [0 0.30001]);
17

18 set(gcf, 'PaperType', 'B5')
19 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 12.0]);
20 print(figure(1),'−dpsc','figure/expj.eps')

B.1.19 cumuleff.m

Calculates the marginal long-term distribution of power absorption, and the
cumulative distribution function for the power absorption.

1

2 SLE_Jhb=sum(effhbL_JH,2)*delH;
3 SLE_Jhtbs=sum(effhtbsL_JH,2)*delH;
4 SLE_Jpd=sum(effpdL_JH,2)*delH;
5 SLE_Jfowc=sum(efffowcL_JH,2)*delH;
6

7 figure
8 hold on
9 plot(J(1:20)*(10^−6),SLE_Jhb(1:20),'b−')

10 plot(J(1:20)*(10^−6),SLE_Jhtbs(1:20),'r−')
11 plot(J(1:20)*(10^−6),SLE_Jpd(1:20),'k−')
12 plot(J(1:20)*(10^−6),SLE_Jfowc(1:20),'g−')
13 legend('Heaving buoy','Heaving two bodies system','Pitching ...

device','Floating OWC','Location','NorthEast')
14 xlabel('J[MW]')
15 ylabel('p_{L,\eta}(J)')
16 hold off
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17

18 set(gcf, 'PaperType', 'B5')
19 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 12.0]);
20 print(figure(1),'−dpsc','figure/ch4eff/pjeff.eps')
21

22 %% CDF
23 SLE_CDFhb=zeros(length(J),1);
24 SLE_CDFhtbs=zeros(length(J),1);
25 SLE_CDFpd=zeros(length(J),1);
26 SLE_CDFfowc=zeros(length(J),1);
27

28 for i=1:length(J)
29 SLE_CDFhb(i)= sum(SLE_Jhb(1:i))*delJ*(10^−6);
30 SLE_CDFhtbs(i)= sum(SLE_Jhtbs(1:i))*delJ*(10^−6);
31 SLE_CDFpd(i)= sum(SLE_Jpd(1:i))*delJ*(10^−6);
32 SLE_CDFfowc(i)= sum(SLE_Jfowc(1:i))*delJ*(10^−6);
33 end
34

35 figure
36 hold on
37 plot(J(1:20)*(10^−6),SLE_CDFhb(1:20),'b−')
38 plot(J(1:20)*(10^−6),SLE_CDFhtbs(1:20),'r−')
39 plot(J(1:20)*(10^−6),SLE_CDFpd(1:20),'k−')
40 plot(J(1:20)*(10^−6),SLE_CDFfowc(1:20),'g−')
41 legend('Heaving buoy','Heaving two bodies system','Pitching ...

device','Floating OWC','Location','SouthEast')
42 xlabel('J[MW]')
43 ylabel('$F_{J \eta}(\hat{J \eta})$','Interpreter','latex')
44 hold off
45

46 set(gcf, 'PaperType', 'B5')
47 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 12.0]);
48 print(figure(2),'−dpsc','figure/ch4eff/cdfjeff.eps')
49

50 %% CDF 2
51

52 SLE_CDFhb2=zeros(length(J),1);
53 SLE_CDFhtbs2=zeros(length(J),1);
54 SLE_CDFpd2=zeros(length(J),1);
55 SLE_CDFfowc2=zeros(length(J),1);
56

57 for i=3:length(J)
58

59 SLE_CDFhb2(i)= sum(SLE_Jhb(3:i))*delJ*(10^−6);
60 SLE_CDFhtbs2(i)= sum(SLE_Jhtbs(3:i))*delJ*(10^−6);
61 SLE_CDFpd2(i)= sum(SLE_Jpd(3:i))*delJ*(10^−6);
62 SLE_CDFfowc2(i)= sum(SLE_Jfowc(3:i))*delJ*(10^−6);
63 end
64

65 figure
66 hold on
67 plot(J(3:22)*(10^−6),SLE_CDFhb2(1:20),'b−')
68 plot(J(3:22)*(10^−6),SLE_CDFhtbs2(1:20),'r−')
69 plot(J(3:22)*(10^−6),SLE_CDFpd2(1:20),'k−')
70 plot(J(3:22)*(10^−6),SLE_CDFfowc2(1:20),'g−')
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71 legend('Heaving buoy','Heaving two bodies system','Pitching ...
device','Floating OWC','Location','SouthEast')

72 xlabel('J[MW]')
73 ylabel('$F_{J \eta}(\hat{J \eta})$','Interpreter','latex')
74 hold off
75

76 set(gcf, 'PaperType', 'B5')
77 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 12.0]);
78 print(figure(3),'−dpsc','figure/ch4eff/cdfjeff2.eps')

B.1.20 sizetest.m

Does the size test which is given in chapter 3.3.1 and figure 3.1.

1

2 %% Test the size of the calculations
3 tSLJH=zeros(length(J),Xl);
4 sum1=0;
5 sum2=0;
6 sum3=0;
7

8 for i=1:length(J)
9 for j=1:Xl

10 if SLJH(i,j) > 0.08
11 tSLJH(i,j)=3;
12 sum3 = sum3 + SLJH(i,j);
13 elseif SLJH(i,j) > 0.00005
14 tSLJH(i,j)=2;
15 sum2 = sum2 + SLJH(i,j);
16 elseif SLJH(i,j) > 0
17 tSLJH(i,j)=1;
18 sum1 = sum1 + SLJH(i,j);
19 end
20 end
21 end
22

23 sum1=sum1+sum2+sum3;
24 sum2=sum2+sum3;
25

26 tSLJT=zeros(length(J),Xl);
27 tsum1=0;
28 tsum2=0;
29 tsum3=0;
30

31 for i=1:length(J)
32 for j=1:Xl
33 if SLJT(i,j) > 0.05
34 tSLJT(i,j)=3;
35 tsum3 = tsum3 + SLJT(i,j);
36 elseif SLJT(i,j) > 0.00003
37 tSLJT(i,j)=2;
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38 tsum2 = tsum2 + SLJT(i,j);
39 elseif SLJT(i,j) > 0
40 tSLJT(i,j)=1;
41 tsum1 = tsum1 + SLJT(i,j);
42 end
43 end
44 end
45

46 tsum1=tsum1+tsum2+tsum3;
47 tsum2=tsum2+tsum3;
48

49 %% Plot SLJH and SLJT
50 % SLJH
51 figure
52 subplot(1,2,1)
53 h=pcolor(H,J*(10^−6),tSLJH);
54 set(h,'edgecolor','none')
55 title('P_L(J,H)')
56 xlabel('H [m]')
57 ylabel('J [MW]')
58

59 % SLJT
60 subplot(1,2,2)
61 h=pcolor(T,J*(10^−6),tSLJT);
62 set(h,'edgecolor','none')
63 title('P_L(J,T)')
64 xlabel('T [s]')
65 ylabel('J [MW]')
66

67 set(gcf, 'PaperType', 'B5')
68 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 7.0]);
69 print(figure(1),'−dpsc','figure/allebolger.eps')
70

71 disp(['SLJH, cyan: ' num2str(sum1*delJ*(10^−6)*delH)]);
72 disp(['SLJH, yellow:' num2str(sum2*delJ*(10^−6)*delH)]);
73 disp(['SLJH, red: ' num2str(sum3*delJ*(10^−6)*delH)]);
74

75 disp(['SLJT, cyan: ' num2str(tsum1*delJ*(10^−6)*delT)]);
76 disp(['SLJT, yellow: ' num2str(tsum2*delJ*(10^−6)*delT)]);
77 disp(['SLJT, red: ' num2str(tsum3*delJ*(10^−6)*delT)]);

B.2 compare.m

Compares the values obtained from wave scatter diagram and analytical formulas.
This script uses the scripts given in appendix B.1.2 and B.1.3.

1

2 % Calculates the values analytically
3 analytical;
4



B.2. compare.m XXXIII

5 % Input values for scatter diagram
6 [blist h t delh delt]=individualwaves;
7 haltenbanken;
8

9 % Calculates the values from the scatter diagram
10 scattdev;
11

12 % Ploting the data
13 plotfu;
14

15 % Results
16 disp(['area of s_jh: ' num2str(sum(sum(s_jh*delj*delh)))]);
17 disp(['area of p_jh: ' num2str(sum(sum(p_jh*delj*delh)))]);
18

19 disp(['area of s_jt: ' num2str(sum(sum(s_jt*delj*delt)))]);
20 disp(['area of p_jt: ' num2str(sum(sum(p_jt*delj*delt)))]);
21

22 disp(['area of s_HsTp: ' num2str(sum(sum(s_HssTps*delHss*delTps)))]);
23 disp(['area of p_HsTp: ' num2str(sum(sum(p_HsTp*delHss*delTps)))]);
24

25 disp(['area of p_jh: ' num2str(sum(sum(hp_jh*hdelj*hdelh)))]);
26 disp(['area of p_jt: ' num2str(sum(sum(hp_jt*hdelj*hdelt)))]);
27 disp(['area of p_HsTp: ' num2str(sum(sum(hp_HsTp*hdelHs*hdelTp)))]);

B.2.1 analytical.m

Calculates the analytical formula results with high resolution by also using the
scripts given in appendix B.1.7, B.1.8, B.1.9, B.1.10, B.1.11 and B.1.12.

1

2 %% make highdef graphs
3 hdelj=0.01;
4 hjj=hdelj/2:hdelj:4;
5

6 hdelh=0.01;
7 hh=hdelh/2:hdelh:2.9;
8

9 hdelt=0.01;
10 ht=hdelt/2:hdelt:1.85;
11

12 hdelHs=0.1;
13 hHs=hdelHs/2:hdelHs:12.25;
14

15 hdelTp=0.1;
16 hTp=hdelTp/2:hdelTp:22.5;
17

18 hp_jh=zeros(length(hjj),length(hh));
19 hp_jt=zeros(length(hjj),length(ht));
20 hp_HsTp=zeros(length(hHs),length(hTp));
21

22 for m=1:length(hjj)
23 for n=1:length(hh)
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24 p_jgh= fp_jgh(hh(n),hjj(m));
25 p_h = fp_h(hh(n));
26 hp_jh(m,n) = p_jgh * p_h;
27

28 end
29 end
30

31 for m=1:length(hjj)
32 for n=1:length(ht)
33 p_jkt = fp_jkt (ht(n),hjj(m) );
34 p_tgj = fp_tgj (ht(n),hjj(m) );
35 hp_jt(m,n) = p_tgj*p_jkt;
36

37 end
38 end
39

40 for m=1:length(hHs)
41 for n=1:length(hTp)
42 p_TpgHs = fp_TpgHs (hHs(m), hTp(n));
43 p_Hs = fp_Hs (hHs(m));
44 hp_HsTp(m,n) = p_TpgHs * p_Hs;
45 end
46 end

B.2.2 scattdev.m

Calculates the scatter diagram results, the analytical formula results for the
values corresponding to the scatter diagram values, and the deviation between

scatter diagram calculations and analytical calculations.

1

2

3 %small matrices
4 delj=0.2;
5 jj=delj/2:delj:4;
6 Hs=Hss(:,3);
7 Tp=Tps(3,:);
8

9 %Large matrices
10 % delj=0.2;
11 % jj=delj/2:delj:16;
12 % Hs=Hss(:,3);
13 % Tp=Tps(3,:);
14

15 %% −−−−−−−−−−−−−−−−−−−−−−−−
16 s_jh=zeros(length(jj),length(h));
17 s_jt=zeros(length(jj),length(t));
18 p_jh=zeros(length(jj),length(h));
19 p_jt=zeros(length(jj),length(t));
20 s_HssTps=zeros(length(Hss),length(Tps));
21 p_HsTp=zeros(length(Hss),length(Tps));
22
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23 %% p_jh
24 for m=1:length(jj)
25 for n=1:length(h)
26 bjh=0;
27

28 h1=h(n)−delh/2;
29 h2=h(n)+delh/2;
30 j1=jj(m)−delj/2;
31 j2=jj(m)+delj/2;
32

33 for o=1:length(blist)
34 bh = blist(o,2);
35 bt = blist(o,3);
36 bj = blist(o,4);
37

38 if bj >= j1 && bj < j2 % if j−value is in the interval
39 if bh >= h1 && bh < h2 % if h−value is in the interval
40 bjh=bjh+1;
41 end
42 end
43 end
44

45 s_jh(m,n)=bjh/length(blist)/(delj*delh);
46

47 p_jgh= fp_jgh(h(n),jj(m));
48 p_h = fp_h(h(n));
49 p_jh(m,n) = p_jgh * p_h;
50

51 end
52 end
53

54 %% p_jt
55 for m=1:length(jj)
56 for n=1:length(t)
57 bjt=0;
58

59 t1=t(n)−delt/2;
60 t2=t(n)+delt/2;
61 j1=jj(m)−delj/2;
62 j2=jj(m)+delj/2;
63

64 for o=1:length(blist)
65 bh = blist(o,2);
66 bt = blist(o,3);
67 bj = blist(o,4);
68

69 if bj >= j1 && bj < j2 % if j−value is in the interval
70 if bt >= t1 && bt < t2 % if t−value is in the interval
71 bjt=bjt+1;
72 end
73 end
74 end
75

76 s_jt(m,n)=bjt/length(blist)/(delt*delj);
77

78 p_jkt = fp_jkt (t(n),jj(m) );
79 p_tgj = fp_tgj (t(n),jj(m) );
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80 p_jt(m,n) = p_tgj*p_jkt;
81

82 end
83 end
84

85 %% Sea state
86 for m=1:length(Hss)
87 for n=1:length(Tps)
88 s_HssTps(m,n) = B(m,n)/sum(sum(B))/(delHss*delTps);
89

90 p_TpgHs = fp_TpgHs (Hs(m), Tp(n));
91 p_Hs = fp_Hs (Hs(m));
92 p_HsTp(m,n) = p_TpgHs * p_Hs;
93 end
94 end
95

96 err2pjh=(p_jh − s_jh).^2;
97 err2pjt=(p_jt − s_jt).^2;
98 err2pHsTp = (p_HsTp − s_HssTps).^2;

B.2.3 plotfu.m

Plots the results calculated by compare.m.

1

2 %% Plot
3

4 %% j and h
5 figure
6 subplot(1,3,1)
7 contour(hh,hjj,hp_jh,[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9])
8 title('p(j,h), analytical')
9 xlabel('h')

10 ylabel('j')
11

12 % j and h from scatter
13 subplot(1,3,2)
14 contour(h,jj,s_jh,[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9])
15 title('p(j,h), scatter diagram')
16 xlabel('h')
17 ylabel('j')
18

19 % deviation
20 subplot(1,3,3)
21 contour(h,jj,err2pjh,[0.01 0.1 0.2 0.3 0.4 0.5])
22 title('Deviation')
23 xlabel('h')
24 ylabel('j')
25

26 set(gcf, 'PaperType', 'B5')
27 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 6.0]);
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28 print(figure(1),'−dpsc','figure/p_jh.eps')
29

30 %% j and t
31 figure
32 subplot(1,3,1)
33 contour(ht,hjj,hp_jt,[0.1 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2])
34 title('p(j,t), analytical')
35 xlabel('t')
36 ylabel('j')
37

38 % j and t from scatter
39 subplot(1,3,2)
40 contour(t,jj,s_jt,[0.1 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2])
41 title('p(j,t), scatter diagram')
42 xlabel('t')
43 ylabel('j')
44

45 % deviation
46 subplot(1,3,3)
47 contour(t,jj,err2pjt,[0.01 0.02 0.03 0.04 0.05 0.1])
48 title('Deviation')
49 xlabel('t')
50 ylabel('j')
51

52 set(gcf, 'PaperType', 'B5')
53 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 6.0]);
54 print(figure(2),'−dpsc','figure/p_jt.eps')
55

56 %% Hs and Tp
57 figure
58 subplot(1,3,1)
59 contour(hTp,hHs,hp_HsTp,[0.005 0.01 0.02 0.03 0.04 0.05 0.06])
60 title('p(H_s,T_p), analytical')
61 xlabel('Tp')
62 ylabel('Hs')
63

64 % j and t from scatter
65 subplot(1,3,2)
66 contour(Tp,Hs,s_HssTps,[0.005 0.01 0.02 0.03 0.04 0.05 0.06])
67 title('p(H_s,T_p), scatter diagram')
68 xlabel('Tp')
69 ylabel('Hs')
70

71 % deviation
72 subplot(1,3,3)
73 contour(Tp,Hs,err2pHsTp,[0.00001 0.00002 0.00004 0.00005 0.0001])
74 title('Deviation')
75 xlabel('T_p')
76 ylabel('H_s')
77

78 set(gcf, 'PaperType', 'B5')
79 set(gcf,'PaperUnits','centimeters','PaperPosition', [0.63, 0.63, ...

15.0, 6.0]);
80 print(figure(3),'−dpsc','figure/p_HsTp.eps')
81 % 17 years of education ends with these words that may never be ...

read and a ring that I hardly gonna use. It was worth it.
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