
ISBN 978-82-326-1458-5 (printed ver.) 
ISBN 978-82-326-1459-2 (electronic ver.)

ISSN 1503-8181

Doctoral theses at NTNU, 2016:60

Jonas Wäfler

Modeling and Analysis of
Dependability and
Interdependency Failures in
Smart Grids

Study on how the wide usage of ICT changes 
the Dependability in the future Power Grid

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2016:60
Jonas W

äfler

N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

Th
es

is
 fo

r 
th

e 
D

eg
re

e 
of

P
hi

lo
so

ph
ia

e 
D

oc
to

r
Fa

cu
lt

y 
of

 In
fo

rm
at

io
n 

Te
ch

no
lo

gy
,

M
at

he
m

at
ic

s 
an

d 
El

ec
tr

ic
al

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f T
el

em
at

ic
s



Thesis for the Degree of Philosophiae Doctor

Trondheim, March 2016

Norwegian University of Science and Technology
Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Telematics

Jonas Wäfler

Modeling and Analysis of
Dependability and
Interdependency Failures in
Smart Grids

Study on how the wide usage of ICT changes 
the Dependability in the future Power Grid



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Telematics

© Jonas Wäfler

ISBN 978-82-326-1458-5 (printed ver.)
ISBN 978-82-326-1459-2 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2016:60

Printed by NTNU Grafisk senter



To Debora,
Anouk and Moritz





Abstract

The transition from the current electrical power grid towards a smart grid is driven

by new technologies and services. Traditional dedicated power grid components

are exchanged with more powerful and highly configurable devices that are inter-

connected and help monitoring and controlling the power grid. The power grid is

a critical infrastructure with high dependability requirements. The pervasive use

of information and communication technology (ICT) to support the operation in

the smart grid creates a complex interdependent system in which the dependability

of the ICT systems plays an important role for the overall dependability. Addi-

tionally, interdependent system-of-systems feature new failure modes not found in

simple systems. Therefore, it becomes crucial to understand and address the de-

pendability issues in the smart grid in order not to risk a decreasing dependability

with the introduction of new technology.

The objective of this thesis has been to analyze how the dependability of the

power grid changes with the introduction of smart grid technologies, to propose

new dependability models and propose operational support mechanisms for the

control center to detect and master the expected dependability issues in the smart

grid. The first step of the research was to conduct literature studies to find new de-

pendability challenges in the smart grid. Based on that, the consequences of these

new challenges are assessed with the help of analytical models and simulations.

My findings show that there are several challenges such as cascading and es-

calating failures, latent errors and a risk of automation waiting when transitioning

towards a smart grid. The qualitative and quantitative analysis show that these

effects can have a strong impact on the total dependability of the smart grid and

need to be considered. The analysis also shows that smart services like demand

response or automatic detection and isolation of failures can help improving the

dependability if implemented with the right supporting measures. As a conclu-

sion from the analysis, I give a list of guidelines for the control center on how to

address the future challenges. One of the central advices from this thesis to the

electrical utilities is, that they should try to thoroughly understand their specific
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interdependencies by analyzing their systems, processes and organizational struc-

ture. The next step is then to create awareness inside the company and invest in

preparedness and mitigation strategies.

Overall, this thesis contributes to the discussion on new dependability chal-

lenges in the smart grid, the definition of realistic use cases illustrating how they

might affect the system, the quantification of their consequences, and the discus-

sion on how the utilities might address these new challenges.
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PART I

THESIS INTRODUCTION





CHAPTER 1

Introduction

The industrialization and the emergence of the information age has put the elec-

trical power system into a central position in our society. Our daily life depends

strongly on a reliable electrical power supply; a large blackout may lead to prob-

lems in communication networks, in the transportation sector, in the financial sec-

tor and basically in any field with machinery or equipment relying on supply from

the power grid.

Everything indicates that the electrical power system has to undergo major

changes over the course of the next decades to adapt to new challenges both on

the supply and demand side. On the supply side, we see an increasing use of re-

newable energy sources around the world because of a desire of either reducing

CO2 emissions, stepping down the usage of nuclear energy, reducing energy im-

ports, or a combination of it. The power production with renewable energy sources

is in many cases less predictable than with traditional energy sources making the

operation of the grid more challenging. At the same time, the demand side is also

bound to change in the future. Electrical vehicles are on the rise and increase

both the energy and power consumption of household customers, which change

the load pattern and might push the distribution grid, the low voltage part of the

power grid, to the margins of its capacity. Additionally, it is expected that some

consumers become prosumers, i.e. they possess a small power production facility

in the form of for example photovoltaic cells. A prosumer may choose to supply

or demand power from the grid depending on its needs, its production, and the

current energy price and is changing thereby the load pattern, too.

The mentioned challenges differ between countries but there is unanimity that

they should be addressed by making the power grid smarter, thereby creating

the smart grid. The added smartness refers to an increased use of monitoring and

controlling devices in the power grid, especially in the lower voltage part, allowing

for a more accurate state estimation of the grid and a more detailed control of it.

This opens up for automation of processes and for new services like for example

remote controlling certain loads.
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We can loosely split the smart grid into the power grid and the supporting in-

formation and communication technology (ICT) system. Both depend strongly

on each other’s reliable service: one relies on power supply, the other on monitor-

ing data and a channel to control devices. Together they build an interdependent

system-of-systems. These kind of interconnected systems are not only more com-

plex than more independent systems but because of the mutual interdependencies,

they have additional failure modes as described in Rinaldi et al. (2001).

Already today relies the power grid strongly on ICT for operation. The anal-

ysis of past incidents by Kirschen & Bouffard (2009) shows that these interde-

pendency effects had an important role in several large outages, either they were

partly caused by a failure in the ICT system or a power grid failure was made

more severe because the ICT system ceased to work. Xie et al. (2002) analyzed

disturbances in the US power grid from 1979 to 1995 and state that "problems in
real-time monitoring and operating control system, communication system, and
delayed restoration contribute to a very high percentage of large failures". Be-

cause of the nature of the smart grid, the interdependencies between the two sys-

tems is going to further increase and the question becomes: how can this challenge

be addressed?

1.1 Motivation

Reliability, the term used for dependability in power engineering, has always

played a central role in the power grid. In the future grid, the smart grid, it has

at least the same importance. This is reflected by the mentioning of the term reli-
ability in most smart grid reports, for example the European Commission (2006)

states in there vision that smart grids need to be “flexible, accessible, reliable and
economical”. The Electric Power Research Institute (EPRI) in the US defines a

smart grid as follows: “A Smart Grid is one that incorporates information and
communications technology into every aspect of electricity generation, delivery
and consumption in order to minimize environmental impact, enhance markets,
improve reliability and service, and reduce costs and improve efficiency” (EPRI,

WEB). I.e. the use of ICT shall improve reliability by means of process automa-

tion, and an increased amount monitoring and controlling infrastructure.

The National Energy Technology Laboratory (NETL) (2010) analyzes the

benefits of implementing smart grid technologies in a qualitative way and they

find positive effects in various areas such as dependability and safety. However, it

is assumed that the technologies function flawlessly when needed or that failures

in the ICT infrastructure have no major impact on the total smart grid dependabil-

ity. But is this true?
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It is difficult to say if the assumption is justified or overconfident; it needs

further investigation. Experience shows that ICT systems indeed fail and it can be

assumed that they will also do so in the future. In the best case, a failure in the

ICT system/service just negates its positive effects and brings the system to the

same state as before the introduction of that specific ICT system/service and the

dependability may drop at most to that past level. However, ICT can potentially

fail in more ways than that, for example by sending faulty commands which may

lead to catastrophic consequences. Additionally, the increased interdependencies

introduce new failures as well, as mentioned above. The question is if all this

still leaves a positive dependability contribution of ICT or not? This question

cannot be answered directly because there are many parameters that have to be

taken into account such as properties of the specific power grid, the ICT system,

their interconnections and interdependencies etc. The North American Electric

Reliability Corporation (NERC) is aware of this and states: “The main challenge
for the envisioned smart grid infrastructure is to integrate smart grid devices and
systems while maintaining reliability” (NERC Report, 2010).

What we can state after this introduction is, that a smart grid is more complex

than a traditional power grid and may possess different failure modes. Faulty

ICT systems and interdependency effects between ICT and the power grid have to

be carefully analyzed and they have to be included in the dependability analysis,

otherwise the results may be inaccurate and could lead to false conclusions about

the system.

And as a final note: It is probable that the total dependability is increased

by the introduction of some new smart grid technologies based on ICT, but there

is more to dependability than just average values like steady-state availability.

Depending on the specific scenario, other properties are more important such as

the shape of the distribution, extreme values or the specific date or time of an

outage. For example, Norwegians heat their households primarily with electricity.

One long outage may have a more adverse effect for the customer than several

shorter outages.

1.2 Note on Terminology

New terms are usually defined whenever they are used the first time. The follow-

ing terms take a very central role in the thesis and also the introduction, therefore,

I give some clarification about them already now.
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1.2.1 Dependability, Reliability, Availability and more

The terms dependability, reliability and availability are used differently in the

ICT domain and in power engineering. In the former, the definitions of Avizienis

et al. (2004) are widely accepted, which uses dependability as an umbrella term

defined as "the ability to avoid service failures that are more frequent and more
severe than is acceptable". It comprises several quantifiable attributes among oth-

ers availability and reliability, which are defined as "readiness for correct service"

and "continuity of correct service", respectively.

In power engineering the definitions from IEEE/CIGRE Joint Task Force on

Stability Terms and Definitions (2004) are widely employed. Reliabilty is used as

umbrella term or similar to availability as defined above. It is expressed through

Adequacy and Security, defined as “ability of the power system to supply the ag-
gregate electric power” and “ability of the power system to withstand sudden dis-
turbances”, respectively. Additionally, the term stability refers to the continuance

of intact operation following a disturbance.

The terms are well defined within their field but it can get ambiguous when

the two fields meet. To avoid confusion, I use whenever possible the former def-

initions by Avizienis et al. (2004), which are used in ICT, even if referring to the

power grid.

1.2.2 Smart Grid

The term Smart Grid is widely used in research, governmental commissions and

newspapers and while there exist various definitions, most of them resemble each

other. The european technology platform defines a smart grid for example as “an
electricity network that can intelligently integrate the actions of all users con-
nected to it – generators, consumers and those that do both – in order to efficiently
deliver sustainable, economic and secure electricity supplies.” (European Com-

mission, 2010). EPRI’s definition, given in Section 1.1, is very similar and has a

similar high abstraction level.

In literature, the term smart grid is generally used in two different ways. First,

it is used to describe a vision for the future power grid. This vision is charac-

terized not by specific technologies but rather by certain functionalities, such as

active consumer participation, and accommodation of a wide range of different

power generation and storage options (National Energy Technology Laboratory

(NETL), 2009). Visions are usually used to set a direction but it is not expected

to achieve them. Second, the term smart grid is used in a more pragmatic way

to denote the next generation power grid, i.e. the power grid that is going to be

implemented in about 10-20 years, which incorporates certain aspects of the smart

grid vision. Certain authors use two different terms to distinguish between the two
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cases (Vadlamudi et al., 2014), but more often than not the term smart grid is used

without an explicit definition, often implying the latter definition. In this thesis,

the term smart grid is mostly used in the latter way, i.e. standing for the future
power grid or the next generation power grid; these terms are used synonymously

with smart grid throughout the thesis.

It is important to note that power grid challenges vary strongly between coun-

tries and continents. The challenges depend on factors such as distribution of

consumer types, consumption patterns, the type of power production, age of in-

frastructure and its reliability, and governmental policies. Therefore, smart grids

may look very differently throughout the world.

1.3 Research Questions
The objective of my research is to understand how the dependability of the power

grid changes with the introduction of the smart grid technologies in order to pro-

pose guidelines for the grid operators, on how to address these new issues and to

be prepared for the future challenges in the smart grid.

This can be broken down into the following research questions leading towards

an answer of the objective:

RQ1 Challenges and Models: What are the new dependability chal-
lenges in the interdependent smart grid and how can they be modeled?

The aim of RQ1 is to describe how the dependability analysis differs between the

current power grid and the smart grid. The focus lies on new dependability threats

and new potential faults that are introduced by the new add-ons to the current

power grid and how they may manifest in the future. The second step is to define

dependability models, which allow to analyze the smart grid including the new

potential threats. The aim is not to make one big model, but rather to concentrate

on particular threats and model them. The outcome are several models, which can

be used to analyze specific scenarios.

RQ2 Impact Analysis: What impact do the future challenges have on
the dependability of the smart grid?

The aim of RQ2 is to quantify the impact the new threats and failures have on

the dependability of the smart grid. For this, scenarios depicting relevant future

scenarios are created and analyzed. Additionally, it includes the assessment of

how future smart grid services can contribute to face the future challenges.

The research questions build on each other as shown in Figure 1.1. The out-

come of RQ1 is a number of threats specific to the smart grid and models. RQ2
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Guidelines 
for Grid 
Operators 

RQ1:
Challenges 
and Models

RQ2:
Impact 
Analysis

Figure 1.1: Relation of the research questions and the overall objective.

can be answered with the help of the new models from RQ1 and based on the re-

sults and their discussion, guidelines can be formulated, thus answering the overall

objective.

1.4 Scope
In this thesis I focus on dependability challenges caused by the interdependency

and interaction of the power grid and the supporting ICT system. Both systems

come from different domains and there is a lot of research about various aspects of

both of them. For the thesis I have to limit myself on a certain aspect and choose

a certain abstraction of the systems. I primarily limit myself to the dependen-

cies between the systems because I am most interested in the superordinate new

challenges of the systems. Related topics such as performance analysis and ICT

security are outside the scope of this work.

I use abstraction to hide details that are not of major importance to the study.

For example, the power grid is either considered as a black box supplying power

or only its structure is considered. The dynamics in the power grid such as volt-

age fluctuations are not considered because they are not central for answering the

research questions. In the same way, the ICT system is only considered in as

much details as necessary in the different studies. Details such as protocols are

not included when not needed to analyze the functional dependencies.

The objective is not to develop an all-purpose smart grid dependability model

but rather to concentrate on specific aspects and services and analyze what changes

they may bring and how the control center may prepare for them.

1.5 Research Method
In order to answer RQ1 I have conducted a broad literature study yielding a list of

potential future challenges, which are then evaluated for their relevance in smart

grid. Subsequently, I have created use cases for the future smart grid based on the

criteria that they both depict an important part of the future grid and illustrate the

effect future challenges can have on systems.
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Depending on the objective and the complexity of the system, I have chosen

different modeling approaches. One of the main problems in modeling is the right

choice of abstraction. The motto as few details as possible but as many as needed
is a good but rather vague guide. I tried to solve this in various ways: modeling

bottom-up or top-down, and also modeling the structure or a specific process. I

started out with a bottom-up approach, which allows to create a detailed model of

the system and it allows to use state-based and structural models to qualitatively

assess interdependencies in the system. The approach is based on the concept

of errors that are in the system but do not manifest themselves as failures. This

is defined in Avizienis et al. (2004); Laprie et al. (2007) uses it in a smart grid

model under the name latent error. In the context I have used them, these models

remain comprehensible and provide a good basis for discussion. They are only

used to model single components or the whole system in a very high abstraction

level. Thus, the complexity of the model is limited. When using this approach

for modeling a larger system in a quantitative way, issues such as state explosion

occur and have to be solved.

For Paper C and Paper D, I used a top-down approach with focus on the struc-

tural dependability of the systems, considering only the topology and some special

properties of the system. The dynamics in the power grid are ignored, which is a

strong abstraction but it shows what the system can achieve if all the power en-

gineering challenges are successfully met. The structural analysis is conducted

on a real-world regional power grid in Norway. I was provided with the topology

from a utility in our project and digitized it by hand. Information about the power

grid are very sensitive, therefore, I only received the topology without informa-

tion about customer types or consumption and production facilities. In Paper D, I

additionally use random networks with node degree distribution following an ex-

ponential distribution, because it has been indicated by Rosas-Casals et al. (2007)

that the European transmission networks possess this property. I used information

from the Norwegian regulator to make educated guesses as described in the pa-

pers. The analysis itself is then conducted in the form of a Monte Carlo simulation

in Mathematica (Wolfram Research, 2012).

Another high abstraction level is used for modeling the mobile networks in

Paper E. Each network is treated as a black box and is either working or not

working. The reason for this modeling approach is that this is how a subscriber

sees the network, it has no information about the detailed state of the network.

The measurement data from the study by Kvalbein (2013) serve as a starting point.

The dependency between the two mobile networks is given implicitly in the study,

however, its nature is unspecified as the networks are considered as black boxes

and no details about the networks are known. The relation between the networks

could be modeled as a common cause failure or with load sharing, i.e. in case of a

failure in the first network the second network is subject to increased stress due to
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load sharing. I have chosen the former, because statistics on incidents in mobile

network indicate that at least half of the incidents, in remote areas even up to 90 %,

are caused by power failures or failures in a leased line (Følstad & Helvik, 2011).

Those failures can potentially cause a simultaneous failure in another network and

thereby a common cause failure.

Paper F and Paper G analyze each a specific process in the power grid and for

the modeling I use SAN (stochastic activity network (Sanders & Meyer, 2001))

and a Markov model, respectively. SAN is an extension of stochastic petri nets

and has the advantage, that it can prevent state explosion issues by hiding details

in a comprehensible visual model. It remains readable even when considering

multiple failures like in my study. The model cannot be solved directly, though. I

use the Möbius tool (Clark et al., 2001) to simulate the model and get the results.

Theoretically, it would have been possible to model and solve it with a Markov

model, but that had been very complex with that many states. I used the Markov

model in Paper G where there is only one failure. That way, I got analytical results

and did not need to use SAN and simulation.

1.6 Included Papers
The following papers have been produced during the PhD study period and aim

to answer the listed research questions. These papers are included as Part II in

this thesis. Note that some of the papers may have been subject to minor editorial

changes since their publications.

• Paper A:

Interdependency Modeling in Smart Grid and the Influence of ICT on
Dependability
Jonas Wäfler and Poul E. Heegaard

In Thomas Bauschert (Ed.), Lecture Notes in Computer Science: Vol. 8115.
Advances in Communication Networking (pp. 185-196), Springer, 2013

This paper discusses the interactions between power grid and ICT com-

ponents on a high level and serves as a common foundation for the other

papers. We start bottom-up with the components constituting the smart grid

and give a categorization based on their use of ICT. We then give state ma-

chines for the components and services and explain their interactions from

a dependability perspective. Further, we discuss the positive and negative

effects ICT can have on the dependability of the system. Finally, we intro-

duce a meta-model which incorporates the information about the states of

the components and services to create a state estimator for the smart grid

considering ICT and power components.
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• Paper B:

A Combined Structural and Dynamic Modelling Approach for Depend-
ability Analysis in Smart Grid
Jonas Wäfler and Poul E. Heegaard

Proc. 28th ACM Symposium on Applied Computing (SAC), Coimbra, Por-

tugal, March 2013

In this paper, we show how reliability block diagrams, pivotal decompo-

sition and Markov models can be combined to exploit the complementary

advantages of structural and dynamic models. In particular, we show how a

Markov model can be used during the pivotal decomposition to include de-

pendencies between entities, limited repair facilities, and other system dy-

namics in reliability block diagrams. This permits the qualitative and quan-

titative analysis of some classes of problems which are commonly solved

only by simulation because the analytical solution is not feasible with the

traditional models or are too complex. Further, we show how our approach

can be used to assess the dependability in smart grids.

• Paper C:

Structural Dependability Analysis in Smart Grid under Simultaneous
Failures
Jonas Wäfler and Poul E. Heegaard

Proc. IEEE Smart Grid Communications (SmartGridComm), Vancouver,

Canada, October 2013

In this paper, we consider simultaneous failures in the network and explore

how network percolation can be used for structural dependability analysis

of the future power grid. We introduce new measures taking fundamental

properties of the power grid into account, i.e. the connectivity between con-

suming nodes and power sources on the one hand and balancing the con-

sumption and production in connected network components on the other.

The measures are used in scenarios with random failures and intentional

failures. The results are compared with the Largest Component measure

and analyzed for their suitability for dependability and survivability analy-

sis. Further, we show how to use these new measures to quantify the poten-

tial increase in dependability by using Demand Response and Distributed

Energy Resources for the mitigation of the studied simultaneous failures.

• Paper D:

Quantifying Influence of Strategies and Network Properties in Repair-
ing Simultaneous Failures in Smart Grid
Jonas Wäfler and Poul E. Heegaard

Proc. Norsk Informatikkonferanse (NIK), Fredrikstad, Norway, Nov. 2014
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In this paper, we continue the work from Paper C and analyze and compare

several repair strategies to recover from simultaneous failures and quantify

their performance during the repair time. In order to evaluate the different

repair strategies we introduce a quantification method based on the accumu-

lated cost of energy not delivered (CENS) during the repair. We consider

the scenario in which the failure only affects the power grid and leaves the

ICT system completely unaffected, i.e. the control center has the full infor-

mation about the state of the whole network. We study how changes in the

network, namely increasing the average node degree or increasing the num-

ber of power sources affect the repair costs. Further, we interpret our results

in the advent of the smart grid services Demand Response and Distributed

Energy Resources. And finally, we show how the results can be used for a

survivability analysis.

• Paper E:

How to Use Mobile Communication in Critical Infrastructures: A De-
pendability Analysis
Jonas Wäfler and Poul E. Heegaard

In Floor Koornneef, Coen van Gulijk (Eds.), Lecture Notes in Computer
Science: Vol. 9338. Computer Safety, Reliability, and Security,

Springer, 2015

In this paper, we suggest several alternatives on how a power utility may use

mobile communication; we single out the four main future challenges and

analyze how the alternatives are influenced by them. After this qualitative

analysis we analyze the availability of the alternatives quantitatively based

on measurement data from a Norwegian study. And finally, we analyze the

availability improvement when equipping the base stations in the mobile

network with more battery capacity.

• Paper F:

Interdependency in Smart Grid Recovery
Jonas Wäfler and Poul E. Heegaard

Proc. 7th International Workshop on Reliable Networks Design and Mod-
eling (RNDM), Munich, Germany, Oct. 2015

In this paper, we focus on the interdependency between the power grid and

the supporting ICT systems during the recovery process. We take a sur-

vivability approach in which the study starts the moment the system fails

and ends with its full recovery. The recovery process is split into several

phases and the interdependencies between power grid and ICT systems are

analyzed step-wise for all of them. Based on this, we propose an analytical

model for the recovery phase. First, it is used to investigate the potential of
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automation and additional battery supply in the communication network to

delay the interdependency effects between the systems. Second, it is used to

analyze scenarios with different degrees of battery support, automation and

number of repair crews, under high, medium and low frequency incidents.

Finally, we discuss the impact of automation on the needed skill set for the

repair crews and its implications for the recovery time.

• Paper G:

Managed Dependability in Interacting Systems
Poul E. Heegaard, Bjarne E. Helvik, Gianfranco Nencioni, Jonas Wäfler

In Lance Fiondella, Antonio Puliafito (Eds.), Principles of Performance and
Reliability Modeling and Evaluation. Springer, to be published in 2016

In this chapter, we address the dependability challenges related to complex

system of systems. We discuss how adding automation in critical infras-

tructure influences the risks both with respect to the consequences and the

probabilities. In order to increase the insight, a dependability modeling

approach is taken, where the goal is to combine and extend the existing

modeling approaches in a novel way. The objective is to quantify differ-

ent strategies for management of dependability in interacting systems. Two

comprehensive system examples are used to illustrate the approach. For this

thesis only the second example is relevant. It builds loosely on paper F and

demonstrates and discusses the consequences of adding more functionality

to a smart grid, both in the distributed entities serving the primary function,

and centralized in the control centre.

1.7 Thesis Structure
The thesis is structured in two parts. Part I contains four chapters, including this

one that motivates the thesis and gives the research questions. Chapter 2 presents

the state of the art, Chapter 3 describes the contributions and discusses them and

Chapter 4 contains concluding remarks and thoughts about future research direc-

tions. Part II provides the included papers. The appendix contains explanations

for the formulas used in Paper G. I have chosen to include the papers in the same

template as they were originally published. This results in a better recognition

effect for readers having read the papers previously.
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CHAPTER 2

State of the Art

In each of the included papers there is a section about the relevant related work

for that specific study. In this chapter, I give an aggregated overview over the state

of the art for the whole thesis. It is structured in two main parts: challenges and
modeling and analysis.

2.1 Challenges and Modeling
The last years have seen an increase in research in complex systems. Several

authors stress that when a system becomes more complex, the failures do not

only increase linearly with the size but rather, systemic risks are increased. Hel-

bing (2013) notes that “complex systems have additional problems” caused by

their interdependencies. He adds that protection measures are not implemented

because of “insufficient theoretical understanding and, consequently, wrong pol-
icy decisions”. Little (2002) looks at critical systems in general and notes that

“many problems will occur simply due to the complexity of these systems” and

Amin (2000) notes that “conventional mathematical methodologies that underpin
today’s modeling, simulation, and control paradigm are unable to handle their
complexity and interconnectedness”. These papers discuss the matter on a high

level, and conclude that the challenges of complex systems lie in the different

behavior of these systems and that a thorough analysis is crucial to prepare for

the future challenges. They also state the problem that current models do not in-

clude these interdependencies; for the analysis they either have to be created from

scratch or existing models need to be adapted.

2.1.1 Modeling Complex System

The power grid, and even stronger the smart grid, is an instance of a complex

system. However, the dependability and reliability analysis of power grids has

traditionally not included the state of supporting ICT infrastructure (Bose, 2010;
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Kirschen & Bouffard, 2009; Singh & Sprintson, 2010) and thereby ignored the

influence the interdependencies between systems can have. Kirschen & Bouffard

(2009) present an interdependency model for the power grid that illustrates how

ICT and the power grid influence each other. In this model, depicted in Figure 2.1,

both ICT and power grid have a binary state variable and can either be in a normal

or abnormal state leading to a four-state model. It illustrates that, in addition to the

traditional failure paths, the power grid can also fail as a consequence of an ICT

failure. Being in the Informationally Abnormal State the failure probability for

the power grid is different than in the Normal State. If the state of the ICT system

is not considered, then this is ignored. In the paper they also give a list of past

incidents, where the interdependency played a role. The model is very conceptual

but can illustrates the main challenges.
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Figure 2.1: Four-state model showing the interdependency between ICT and

power grid (based on model from Kirschen & Bouffard (2009)). The transitions

marked with 1 , 2 and 3 represent a cascading, escalating and common cause

failure, respectively.

A classification of particular types of failures which are caused by the interde-

pendency of systems is put forward by Rinaldi et al. (2001). Failures are classified

as cascading, escalating and common cause failures depending on the interaction

of the systems. A cascading failure is defined as a failure in one system that

causes an undesired event or failure in another system. An escalating failure is

when an existing failure in one system escalates an independent failure in another

system. And a common cause failure is a simultaneous failure in several systems

caused by an external event or a failure of a shared resource or service. Figure 2.1

shows possible transitions of these failures in the four-state model. The transition

marked with 1 is an example of a cascading failure, a failure in the power grid
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that leads to a failure in the ICT system. This could be a power outage, the ICT

system is not provided with power anymore and stops working. The transition
2 is an example of an escalating failure. In this case the ICT system was in the

abnormal state, i.e. not working properly when an independent power grid failure

happened. The latter failure is escalated by the failure in the ICT system. An ex-

ample for that is a configuration error in a control system. When an independent

power failure happens, the control system may react in the wrong way because of

the error and escalate the already existing failure even more. The transition 3 is

a common cause failure, for example caused by a storm affecting both the power

grid and ICT infrastructure at the same time.

These three failure types are specific to interdependent systems and do not ex-

ist in simple systems. They are important causes for the additional challenges in

the smart grid. Rinaldi et al. (2001) present in total six different dimensions for

describing infrastructure dependencies. Another dimension that is worth mention-

ing is the dimension labeled as Coupling and Response Behaviour. It describes

how tight or loose and how linear or complex the coupling is. This is an important

point as the dependencies are often loose and complex, meaning a failure in one

system leads only sometimes to a failure in the dependent system and the inter-

action is not always understood that well. The study presents a formal system

for defining dependencies and is written in a way that fits various systems. This

means it can be applied in many different domains such as transportation systems,

agriculture and of course the power system. It leaves the investigator with the task

of studying how these interdependencies manifest in a specific system.

The discussion of the three failure types in the four-state model shows also the

limitations of the model. While it allows to demonstrate the interdependencies, it

cannot be used for more detailed analysis. There are many more abnormal states

in both systems with very different consequences, in an analysis they have to be

differentiated. Other effects such as a back-and-forth cascading chain cannot be

illustrated with the model.

Some of these problems are addressed by Laprie et al. (2007) presenting a

model including the three above mentioned interdependency failures. They dis-

cuss in some details the interactions and create a model in which both systems

have four to five different states. The model contains interesting features such as

passive and active latent errors. Passive latent errors in a system are characterized

by a passive malfunction, i.e. the system is not working when needed. Active la-

tent errors lead to undesired actions such as execution of an action without having

received a command. Both are latent errors that reside in a system until they pro-

voke a failure, during this latent phase they might remain unnoticed by the control

center for a long time. Latent errors, sometimes also just called errors (Avizienis

et al., 2004), also exist in power grids, but ICT systems are more prone to such

errors because of additional complexity due to their software components. There-
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fore, these errors are instances of arising challenges brought by the increased use

of ICT. In fact, Rahman et al. (2009) studied critical infrastructures in the US and

came to the conclusion that more than 65% of all reported failures were software

related, including software design, implementation, configuration, malicious logic

fault inserted by an attacker, and authorization violation based on a faulty access

control. These might be originating from a latent error. The model in Laprie et al.

(2007) can be seen as an extension to the four-state model of Kirschen & Bouffard

(2009), where the additional states allow a more detailed description of the system

state. Its strengths lie in the inclusion of the new interdependency effects and the

latent errors. It is still very high-level and the focus is mainly on the failing pro-

cess, the repair process is not covered in the same level of detail. An example for

that is the restoration of a power grid failure caused by a latent error, it is assumed

that the next state is the state in which both systems are completely repaired, how-

ever, errors in the ICT system may be very hard to fix if they concern for example

software bugs or faulty configurations.

A different way of extending the four-state model was chosen by Panteli et al.

(2013). Their focus lies on the situational awareness, i.e. the potential discrepancy

between the monitored state and the actual state of the system. The model they use

duplicates all the states in the four-state model and adds the awareness information

to the states. This addresses an important issue, which was partially addressed in

Laprie et al. (2007) with the latent states, but it does not significantly extend the

way the model can be used. The models have in common, that they describe

some of the future challenges on a high level and they are meant to be used in a

qualitative analysis.

A more practical approach is taken by Utne et al. (2011). They propose a

method for assessing interdependencies of critical infrastructure, focusing on a

step-wise process including both qualitative and quantitative analysis. After defin-

ing an initial event the steps identify interdependencies and perform quantitative

and qualitative analysis. Their method works with cascading diagrams defining

different consequences of the initial event. Kjølle et al. (2012) shows a variation

of this approach and gives a case study in an emergency preparedness context.

Both studies focus on risk analysis, the concrete models used to get a quantitative

result are not specified or are based on power flow and dependability analysis of

power systems, respectively.

2.1.2 Network Robustness

Research in network robustness has seen a lot of activity in the past years. Studies

include various networks including the internet (Albert et al., 2000; Cohen et al.,

2000) but also the power grids (Albert et al., 2004; Solé et al., 2008; Wang et al.,

2010b). These studies model the simultaneous failure based on percolation theory
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which describes the behavior of the size of the largest connected network compo-

nent after the removal of a fraction of 1− p of the n nodes of a network. A network

component is a part of the whole network in which any two nodes are connected

with a path and which is not connected to other nodes from the network. If a criti-

cal fraction of nodes 1− pc is removed, the largest component collapses for a high

number of nodes. The percolation point pc and the size of the largest component

after a failure of a fraction of 1− p nodes are used as indicators for the structural

vulnerability or robustness. The latter is called Largest Component measure and

p uses usually the whole range from 0 to 1.

In Albert et al. (2004) an additional measure is defined, which takes connec-

tions between consumers and power sources into account. The number of power

sources reachable from each node is counted before and after the incident and the

averaged difference is then called connectivity loss. This measure yields less the-

oretic results as the Largest Component measure, however, it measures only the

change and gives no indication about the absolute number of disconnected nodes

after the incident.

Several previous studies stress the importance of adapting purely topological

measures to the specific needs of the power grid and extend centrality measures

with electrical parameters such as impedance (Wang et al., 2010a), impedance and

power flow (Arianos et al., 2009), electrical distance, power transfer distribution

and line flow limits (Bompard et al., 2012). They have in common, that they

analyze the relative importance of nodes and lines with the aim to find vulnerable

parts of the system.

The study of Buldyrev et al. (2010) goes one step further: Here the authors

include the interdependencies between the power grid and the supporting ICT

network in their model. Both networks are represented as a graph and the mutual

dependencies are modeled as an additional type of link connecting the two net-

works. A failure of a node leads directly to a failure of all dependent nodes, i.e.

they assume a tight coupling between the systems. Their model is based on a cas-

cading failure that goes back-and-forth between the two systems until it reaches a

steady state. They explicitly note the smart grid and a major outage in the past as

a motivation for their model.

All the studies have in common, that they work on a very high abstraction

level and the details of the events stay unclear. The results give information about

some properties of the network but the implications for a power grid are open.

2.2 Analysis
There are a couple of studies about past power grid incidents, which show that

some of the proclaimed future challenges in the smart grid already exist to a cer-
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tain extent in the current power grid (Andersson et al., 2005; Buldyrev et al., 2010;

Kirschen & Bouffard, 2009; Xie et al., 2002). A chain of cascading failures, i.e.

failures in one system that trigger failures in another system, was a major reason

for the large blackout in Italy in 2003 (Buldyrev et al., 2010). An escalating fail-

ure, i.e. independent failures in systems that amplify each other, was an important

reason why the blackout in the US in 2003 could become so large (Andersson

et al., 2005). The analysis of disturbances in the US power grid from 1979 to

1995, to which I have already referred to in the introduction, finds that problems

in ICT related systems like monitoring and communication systems “contribute to
a very high percentage of large failures” (Xie et al., 2002). Kirschen & Bouffard

(2009) cite more examples in which ICT systems caused or escalated a failure in

the power grid.

ICT will play a bigger role in the smart grid and the control centers have to

include the state of it in their system state. Line (2015) studied how well power

utilities are prepared to handle ICT incidents and found that the risks are often

not addressed well, partly because of a different understanding of the challenges

and different priorities among business managers, IT and control personal. The

study is limited to information security incidents, but the gap between the ICT and

power personal might be similar when looking at ICT dependability incidents.

Bae & Thorp (1999) use a rare event technique to model and analyze a power

system to find weak links. The study analyzes latent errors in the protection sys-

tem, which consists of relays throughout the system and is responsible to protect

the system from damage. Each relay has a small controller deciding on its own

if the relay should be opened or not. False operation by the controller can either

lead to damage in the system, if the controller does not open the relay in time or

to additional outages, if the tripping was not necessary. Latent errors, or hidden

failures as they are referred to in this study, are made responsible for escalating

power grid failures in two major outages in 1996.

2.2.1 Structural Analysis

In Solé et al. (2008) the relation of the percolation point pc of 19 european trans-

mission grids is investigated to non-topological dependability measures such as

average interruption time, power loss and energy not delivered. Dividing the grids

into two groups based on their node degree distribution, the authors find a corre-

lation between this grouping and the empirical dependability indices.

Wang et al. (2010b) study the percolation point in american power grids and

on IEEE model systems. The study is done for both random and selective node

break down. Using the Largest Component measure they find that selective node

breakdowns have a much higher effect on the robustness of the system than ran-

dom node breakdown.
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However, it is not clear yet how to use these results for a dependability anal-

ysis as this Largest Component measure and its percolation point is agnostic to

characteristics of the underlying network.

2.2.2 Cascading Failures

There are several studies analyzing the behavior of interdependent networks on

a structural level. Buldyrev et al. (2010) create a model of two interdependent

networks and study their behavior when removing nodes, i.e. inspired by percola-

tion theory as explained above. They analyze simple networks and interdependent

networks and find that the behavior of networks changes when introducing inter-

dependency. In a follow up study Parshani et al. (2011) show that increasing the

number of interconnections and thereby increasing the interdependency between

the systems, leads to a higher vulnerability to random failures. While interesting

on a theoretic level, there is no information about the details causing the cascad-

ing steps and hence, it is not clear if such a scenario is realistic at all. In addition,

the authors use the largest component measure, which gives in my opinion very

limited information about the state of a network.

A similar approach is taken by Svendsen & Wolthusen (2007), the networks

are chosen in a way to match the topologies of the power grid and the telephony

network. The power devices rely on information from the telephony system and

the telephony system relies on power supply from the power grid; a failure of any

node leads to a failure of all dependent nodes. The analysis contains information

about how the power grid and the telephony network react on single and multiple

failures in the power grid. This is done once for a one-way dependency of the

telephony network on the power grid and once for a two-way dependency, i.e.

interdependency. Their results show that the interdependency has a very strong

effect on both networks. Even though this study goes into some details such as

the different topologies and models the interactions between the system nicely,

they fail to motivate why a node in the power grid is disconnected from the grid if

no information is available. Only this tight dependency between the ICT system

and the power grid allows the devastating effect of cascading failures as shown by

them and the two studies mentioned above.

Morris & Barthelemy (2013) also model the power grid as two networks, the

power grid itself and a control network covering parts of the power grid. A prop-

agating failure is modeled by an initial failure that leads to a load redistribution

in the power grid. If the load on a line rises over the maximum capacity, the con-

trol node in an adjacent substation tries to dissipate the excess power and thereby

avoid an overload failure. If it is not successful, the line fails and loads are redis-

tributed in the system, which may lead to a propagation of failures in the system.

The failure is not defined in more details, it could be a latent error, i.e. the system
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is not performing as it should, or simply a situation in which it is not possible to

dissipate the excess power. The cascading failure is then given by power outages

resulting in unpowered control devices and control devices not managing to stop

the overloaded situation.

2.2.3 Adding New Services

According to European Commission (2006) one of the objectives of the smart grid

is to improve the dependability of the power grid with the help of new services

supported by ICT systems. Vadlamudi et al. (2014) analyze 10 smart grid tech-

nologies for their potential dependability contribution. The qualitative analysis

yields for all technologies a reduction of either the frequency of failure events, the

duration of failure events, or both. The improvement comes from, among oth-

ers, additional power generators throughout the network, load control and more

monitoring devices to increase the situational awareness. These technologies rely

heavily on a working and reliable ICT system. Faulty ICT support is not consid-

ered in this study.

Strbac (2008) analyzes the benefits and challenges of demand response (DR),

which is a technology for adjusting the load dynamically depending on the grid

state and is either locally or remotely controlled. He sees benefits for the depend-

ability by using DR to reduce the load in case of a power shortage caused by an

outage in the grid and thereby mitigate the outage temporarily. As a challenge he

notes that the additional ICT systems “increase the complexity of the system op-
eration when compared with traditional solutions”. The challenge is the reliable

operation of this complex system.

The risks are clearly underlined by NERC (NERC Report, 2010). In their re-

port they discuss dependability challenges that arise with the introduction of new

technology. They issue the following warning statement as one of their conclu-

sions: “While the promise of smart grid is, in part, to enhance reliability, if it is
poorly deployed the reliability of the bulk power system could suffer. Therefore, it
is vitally important to ensure the evolution of smart grid does not increase the bulk
power system’s vulnerability, but rather supports industry’s bulk power system re-
liability goals.”. The report does not contain analysis but gives recommendations

on how to proceed. It includes creating new models taking the interdependency

between power and ICT systems into account; which is the aim of this thesis.

22



CHAPTER 3

Contribution and Discussion

In this chapter, I first give the contributions to the research questions, followed by

the discussion and the implications for the power utilities.

3.1 Contribution

Figure 3.1 gives an overview over the papers, their relevance to the research ques-

tions, their direct implications on the overall objective and how they relate to each

other.
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Figure 3.1: Overview over the included papers.
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Table 3.1: Dependencies considered in the papers.
Paper Failure Chain Details

ICT →PG PG →ICT

Paper A X X cascading and escalating failures be-

tween PG and ICT

Paper B (x) (x) models could be used for both

Paper C X new failure patterns in PG due to cascad-

ing effect from ICT

Paper D X new failure patterns in PG due to cascad-

ing effect from ICT

Paper E X cascading failure from PG to ICT, plus

common cause failures between mobile

networks

Paper F X X cascading failure from PG to ICT, esca-

lating failure from ICT to PG

Paper G X X cascading failure from PG to ICT, esca-

lating failure from ICT to PG

3.1.1 Contribution to RQ1: Challenges and Models

The contributed papers show how the transition towards a smart grid increases

the interdependencies between the power grid and the supporting ICT systems.

Additionally, they illustrate and discuss how some of these interdependencies look

like in more detail than previously studied and what the resulting challenges are.

Table 3.1 gives an overview of the covered dependencies in the papers.

The thesis identifies the following future challenges: cascading, escalating and

common cause failures, higher possibility for simultaneous failures caused by a

cascading failure from the ICT system, passive and active latent errors, and the

risks of automation. They have all been mentioned in the literature before, the

contribution of this thesis is to give concrete examples and investigating them

in more detail including giving use cases with models and then analysing the

implications of them.

Paper A explains on a component level how a failure can cascade or escalate

from the power grid to the ICT system, and vice versa. It shows that the system can

fail in new ways because new interdependencies are introduced in the smart grid,

which create new types and patterns of faults and failures, specifically: cascading

and escalating failures, and latent and passive errors. The paper presents a way

how to model smart grid entities. The resulting challenge is to recognize the

interdependencies in a given system and create a large model. The paper also

discusses techniques and models for the quantitative analysis, but only on a high
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level as this has to be chosen depending on the specific use case. The proposed

meta-model is supposed to be used primarily as a condensed state visualization or

for the incident analysis.

Paper B is purely concerned about the use of structural and dynamic models.

Its contribution to RQ1 is the discussion of combination of modeling techniques

to solve some typical issues encountered when using reliability block diagrams.

The remaining papers address specific use cases. Their main contributions to

RQ1 lie in the description of threats, their manifestation and the modeling part.

The first use case is based on a cascading failure from the ICT system to the power

grid. A simultaneous failure in several ICT nodes cascades to the power grid and

creates there a simultaneous failure, thereby increasing the frequency of this type

of failure and changing the failure pattern in the power grid. This use case is the

starting point for both Paper C and Paper D. The modeling and especially the new

measures are the main contribution to RQ1 from these papers.

Paper E focuses on a cascading failure from the power grid to an ICT system,

namely a mobile communication system. Its contributions are, first, the discussion

of primary challenges in mobile communication, which a power grid operator

has to consider. And second, the models for the common cause failure in the

mobile networks and the models including battery support for temporary failure

mitigation.

The use case for Paper F and Paper G is based on the recovery process in smart

grids. Part of the contribution here is the process itself, which has an interesting

interdependency with cascading and escalating failures. The main contribution

for RQ1, however, is the modeling of failures in the supporting ICT systems and

the risk curve method to visualize and analyze the change of risks when increasing

the automation of processes.

3.1.2 Contribution to RQ2: Impact Analysis

Paper A analysis the interaction between smart grid components in a qualitative

way. For each state a component can be in, its implication on other components is

analyzed. In addition, it is discussed passive and active latent errors can lead to a

divergence of the perception and the actual state of components.

Paper C analyzes the impact of a simultaneous failure in a typical Norwegian

power grid. It is a purely structural analysis and its contributions to RQ2 are: First,

showing that the network topology and the placements of power plants therein in-

fluences the dependability. As a consequence, the chosen dependability measure

is crucial to assess the state of the system in a detailed enough way. Second, dis-

cussing the very different behavior of the system when changing from random

failures to intentional failures, i.e. deliberate attack on the most crucial parts in

the network. And third, the quantitative discussion of how much the smart grid
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services demand response, distributed energy resources or micro grid may poten-

tially improve the dependability in this context.

Paper D focuses on the performance of repair strategies after a simultaneous

failure. Its main contribution to RQ2 is to show how to select the optimal next

node to repair and that the strategy of choosing this next node has a large im-

pact on the performance and total costs of an outage. The performance depends

strongly on the network topology and network properties such as number of power

grids. An additional contribution is like in Paper C the quantitative discussion on

the improvements potentially achievable with the smart grid services demand re-

sponse, distributed energy resources or micro grid.

Paper E discusses mobile communication as an option for the communication

layer for parts of the power grid. Its contributions are the different alternatives

of how to use mobile communication and how they face the primary future chal-

lenges. Additionally, the availability of all the alternatives are computed based

on Norwegian measurement data. The final contribution is the analysis of how

the availability changes when the cascading failure in the mobile network is tem-

porarily mitigated by a limited battery support.

Paper F describes a use case in which a failure not only cascades from one

system to the other, but also comes back to the original system. Its fundamental

contribution is the illustration of a back and forth cascading and escalating fail-

ure in a real system and the discussion of ICT dependency for each phase and

step of the power grid recovery process. Additionally, it analyzes the availability

increase by adding an automatic detection and battery support in the supporting

communication system. Its main contribution, however, is the quantification and

discussion of the changing consequences for high and low frequency failures due

to automation and its impact on the role of the repair crews.

The contribution of Paper G for RQ2 is that it puts the potential change of risks

of system due to automation in a bigger context. Additionally, the included smart

grid example discusses the interdependencies during the first stage of the recovery

process of the power grid in more details. Its contribution is to discuss how the

introduction of automation reduces the down time per outage but increases the

frequencies of outages, because of malfunctioning ICT. Further, it shows how the

malfunctioning ICT system can partly negate the positive effect of its introduction.

3.2 Discussion

In the following the implications and limitations of the thesis contributions are dis-

cussed. The discussion follows the structure of the two major research questions

and is then completed by implications and guidelines for grid operators.
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3.2.1 Discussion of RQ1: Challenges and Models

The new challenges increase the complexity of the system, which in turn can lead

to even more failures. A study by Norros et al. (2012) discusses that complexity

in systems is a strong driver for human errors, which constitutes the biggest error

type in certain systems (Kuhn, 1997). Paper A can be seen as an introductory

paper describing most of these challenges. It describes the interdependencies on

a component level. I present models for all of the challenges. However, models

always depend strongly on the objective of the study and have to be adjusted for

other studies.

My model in Paper A allows modeling software errors that are difficult to de-

tect and remove, because the removal of a failure does not necessary mean the

removal of an error (Avizienis et al., 2004). This is not covered in the model

presented by Laprie et al. (2007). However, the model is only given for com-

ponents and not for a larger system. The meta-model also presented in Paper A
extends the model from Kirschen & Bouffard (2009) and allows to model pas-

sive and active latent errors. ICT components are more complex than common

power grid components because of the complexity in the software. Therefore, the

concept of errors is important. In general it has a similar application as the four-

state model in Kirschen & Bouffard (2009) but suffers also the same drawbacks,

i.e. longer back-and-forth cascading chains cannot be modeled and it hides a lot

of information. I believe that it can be very useful for situational awareness and

in qualitative analysis especially when supplemented with information about the

individual steps as shown in Paper A and in Paper F.

As a next step, I use a top-down approach to model a simultaneous failure in

a power grid, focusing purely on the structural dependability. The proposed mea-

sure extends the biggest component measure used in many studies such as Solé

et al. (2008) and Buldyrev et al. (2010) and thereby yields more relevant infor-

mation about the robustness of a power grid. This is discussed in more details in

Paper C and to some degree in Paper D. However, it still stays on a high abstrac-

tion level and it gives only a limited view of the grid, but it can be interpreted as

the best case scenario in case of an incident, i.e. when all the other challenges

are met. I choose to work with node failures in the network and do not consider

link failures. This corresponds to the usage in literature. The main reason for me

to use node failures was that statistics from the Norwegian power grid shows that

failures in the substation are more frequent than link failures (ENTSO-E, 2010).

This varies strongly between different countries and it has to be noted that the fail-

ures in the substation usually do not affect the whole substation but only one part.

The assumed node failures are therefore not that frequent. I did analysis with link

failures and the results were similar, however, there is a looser coupling between

link failures and power outages as there are usually alternative routes available.
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The probability of such a simultaneous failure is difficult to quantify. In the

literature the increasing failure is used primarily to assess the robustness of the

structure in a theoretic way and not that much to compute the risk of the failure.

However, there is a certain probability that a simultaneous failure may happen and

it is increasing in the smart grid. In Paper C and Paper D, I give a motivation for

this failure, although it is unlikely that it affects a large number of nodes.

In the last two papers I focus not on the structure but on a process. The in-

spiration comes from other studies that use cascading chains between the power

grid and the ICT system (Buldyrev et al., 2010; Parshani et al., 2011; Svendsen

& Wolthusen, 2007). The coupling used in these studies is very tight and not ex-

plained in details. It is not clear why and how these back-and-forth cascadings

work in detail. In Paper F, I give a specific example on how a power grid failure

cascades to a part of the ICT system and how this in turn escalates the failure in

the power grid. The cascading chain stops after two steps. It would be interesting

to find a realistic longer chain, but it is difficult to do that without introducing

too many assumptions. Assuming a power grid component to fail or stop work-

ing when an ICT component is not working seems to be a very strong assumption.

Utility personal I talked to say that in the current power grid this is highly unlikely,

as the power grid can run blindly for a certain time period. But it is probably pos-

sible to construct a case with future technology or services where the dependency

is higher. The most realistic example of a failure chain is presented in Morris &

Barthelemy (2013). Although, strictly speaking it is mainly a propagating over-

load failure inside the power grid, which the control system tries to stop. It is not

a classical back-and-forth cascading chain as assumed in the papers above.

3.2.2 Discussion of RQ2: Impact Analysis

The qualitative and quantitative analysis of cascading and escalating failures shows

that the risks outlined in Kirschen & Bouffard (2009) are realistic and have a

strong impact on dependability. The different analyses are done for specific use

cases and it remains unclear what the overall impact would be. The advantage of

use cases is that they are more concrete and utilities can relate to them.

The analysis of the structural dependability in Paper C and Paper D shows

how important it is to include topology in the analysis. If the topology is not

included, the effect of a failure is assessed to be lower than when including the

topological effect. Additionally, when repairing a system, the knowledge about

the topology can reduce the consequences of an outage. The measures play also

an important role. There are many more measures, like for example various cen-

trality measures that are compared in Wang et al. (2010a). The choice depends on

the objective of the study and there is no single best measure. The analysis also

shows that future smart grid technologies and concepts such as demand response,
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distributed energy resources and micro grids may have a strong impact on the de-

pendability of the system. In Paper C and Paper D, I quantify this improvement,

which was proclaimed in Vadlamudi et al. (2014). However, in these examples, I

do not consider a malfunctioning of the new technologies. Passive latent failures

may reduce some of the improvement and active latent failures may even have a

negative effect, as explained in Paper A and Paper G. I did not conduct the anal-

ysis with faulty ICT systems because the focus of these studies was primarily on

the simultaneous failure and in a second step on the potential of new technologies

to improve the dependability. It assumes a best-case scenario in order to show the

possible potential.

The analysis results depend strongly on the input data, this is especially true

for the study on mobile networks in Paper E. I build on the data from Kvalbein

(2013). The two mobile operators from that study have very different up and down

times. One has many failures that are short and in total a low unavailability and

the other has fewer failures with much longer downtimes resulting in a higher un-

availability. These properties guide the recommendations about when to utilize

the different usage alternatives. When considering different operators, these rec-

ommendations will be different. However, the usage alternatives and the models

are still valid.

Introducing new technologies may not only bring advantages but may also

have negative consequences as stated in Heller (2001). My two studies analyzing

the power grid restoration process quantified this effect. Working with rare events

is difficult as they, by nature, are not happening that often. I chose to use the

survivability approach as explained in Heegaard & Trivedi (2009), in which the

rare events do not need to be estimated, only the consequences are analyzed, i.e.

the system behavior immediately after a failure is quantified. In Paper F I give

some rough estimate about how often such an event may happen. The aim of

this study is not to get a correct numerical estimate, but to show that such events

indeed exist. In case of the rare events I had to make assumptions about the

reduction of repair crews and the change of repair rates due to missing training

and practice. Those are partly educated guesses. But from the results it can be

seen, that changing the parameters changes the amplitude but not the conclusion.

3.2.3 Implications and Guidelines for Grid Operators

The contributions to RQ1 and RQ2 indicate that the new challenges have the po-

tential to both negatively and positively influence the dependability of the smart

grid. What are the implications for the grid operators and how can they address

these issues? In the following I list the most important guidelines implied by the

contributions, together with a short discussion. In parentheses I indicate from

which paper the contribution is coming from.
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Create awareness: Be aware of interdependencies and the new failures
and failure patterns

The most important message for grid operators is to understand that the smart grid

has an increased interdependency between the power grid and the ICT system.

Creating awareness for this is of utter importance. All papers address this issue. A

meta-model (Paper A) may be useful to visualize the interdependencies. Different

failure patterns may emerge because of cascading failures from another system,

like for example a higher frequency of simultaneous failures (Paper C, Paper D).

The smart grid is also more susceptible to directed attacks, while this is not the

focus of this thesis, it is worth noting that the impact of a directed attack is much

more severe than random failures (Paper C). Failures may be escalated because

of a failure in a dependent system (Paper A, Paper F and Paper G).

Automation: Be aware of malfunctioning ICT

It might be obvious, but ICT can and will fail at some point. Therefore, it is im-

portant to investigate the effects of a malfunctioning ICT system whenever a new

ICT system is added or a step is automated. Automation may lead to a shorter

down time but at the same time to a higher frequency of failures as there are more

components that can fail (Paper G). The automation may give a higher availability

and lower consequences of frequent failures but it may lead at the same time to

more catastrophic failures in rare events as both more components and more pow-

erful components are involved. Automation has, therefore, to be accompanied by

a careful analysis and additional preparedness measures (Paper F and Paper G).

Modeling: Inclusion of interdependency in dependability model

From the analysis it follows, that it is crucial to include the state of both the power

grid and the ICT system in the dependability analysis (Paper A, Paper B, Paper F
and Paper G).

System analysis: Understand your system and their interdependencies

For a grid operator it is important to know their systems and understand were the

interdependencies lie and how they can manifest. Structural analysis can give im-

portant information about the structural dependability of a network (Paper C and

Paper D). The system also relies on external services such as mobile communica-

tion (Paper E and Paper F). And it is important to analyze interdependencies in

processes, e.g. the recovery process (Paper F and Paper G). There are many more

interdependencies that are sometimes difficult to discover, e.g. the dependency

between different mobile networks (Paper E).
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Preparedness: Be prepared for new failures

The knowledge about the system and its properties can be used to increase the

preparedness. Having the right processes and enough trained people for the in-

cidents is crucial. This is even more important for failures in automated systems

as the personal usually relies on support from the system, which might be down,

and failures are potentially more complex (Paper F and Paper G). Repair strate-

gies should be evaluated and chosen beforehand based on the system properties

(Paper D).

Mitigation: Mitigate a failure that cannot be prevented

If a failure cannot be prevented, it might be mitigated. New smart grid services

such as demand response, distributed energy resources and micro grid might have

a great potential helping to mitigate the impact of a failure (Paper C and Paper D).

In interdependent systems it might also be possible to temporarily prevent the in-

terdependency failure by some means, e.g. installed battery support can allow

to use the communication network for a certain time even without power sup-

ply from the grid (Paper F). Shortening the downtime might prevent the further

cascading or escalation of a failure. The shortening can be achieved by techni-

cal means (Paper F) or by preparedness as discussed above and involves defining

good processes and the right training for the responsible people.
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CHAPTER 4

Concluding Remarks

Properties of the power grid vary strongly between countries and with that the

focus in the smart grid is certainly very different. However, the challenges listed

here should concern all of them because they are based on the increasing use of

ICT.

In my opinion, the most important part is to create awareness about the future

challenges. I believe that easy understandable models like the one presented in

this thesis (Paper A) or from Kirschen & Bouffard (2009) can help to illustrate the

risks to a broader audience. It remains then a matter of taste to choose a model.

The model from Laprie et al. (2007) for example, includes more information, but

in my opinion it is more difficult to grasp than the meta-model I presented in

Paper A. the latter can also be extended by duplicating it and using one to indicate

the actual system state and the other the state as perceived by the control system.

This allows to explain the problem of state awareness. The risk curve figure used

in Paper F and Paper G is another example that can be used to talk about the risks

on a easy understandable level.

Another good option is to create use cases, which explain step by step how

interdependent systems affect each other and create situations and failures that are

new or more frequent than without the dependencies. Paper F and Paper G do

exactly that but of course there are many more.

An important step is to convince the decision makers about the problem and

get their attention for this topic.An alternative route is via the regulator that could

oblige utilities to assess the system for the future challenges. It is also crucial that

international bodies discuss the risks of the extension of smart grids like it is done

by NERC (NERC Report, 2010).

There are several interesting directions for future research, I am presenting

here the two that are most intriguing to me. The liberalization of the electricity

market and the partial outsourcing of services, e.g. support or operation of ICT

systems, have created new interdependencies. In both cases, the number of actors

increases and with that raises the complexity of the system. Business processes
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are spread across several organizations and companies, which leads to new chal-

lenges. Line (2015) notes for example, that some power utilities seem to rely

almost blindly on ICT contractors to handle possible information security inci-

dents. This is especially true for smaller utilities, which might lack the resources

and the knowledge to operate their ICT systems in-house. Responsibilities might

not be defined clearly enough, particularly in cases of emergency. The level of

preparedness may differ significantly between the different parties and affect the

consequences of an outage. A good starting point for the dependability conse-

quences of the liberalization of the electricity market is the article by Antonsen

et al. (2010).

Another relevant topic for the future, which I only briefly touched upon, is

how the knowledge about the system and the usage of new technologies can be

used to minimize the effect of unavoidable failures, i.e. increase the systems sur-

vivability. Nobody can control blizzards or hurricanes, but operators can prepare

themselves for it. One way is by conducting survivability analysis to find more

robust working states in which the system can transition once a certain event is

predicted. With modern smart grid technologies there are even more options. For

example, demand response might be used to shift loads away from the predicted

event time and geographical region, and micro grids could be prepared to switch

to independent operation. This leads to less load during the predicted time period

an event occurs and thereby the consequences of the event are reduced. A starting

point for this is the work by Dikbiyik et al. (2014) on proactive disaster protection

in optical backbone networks.

This thesis is a small step towards reliable smart grids; the field remains inter-

esting and challenging, not least because the power grid has a central role in our

society and at the same time high dependability requirements.
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Abstract. The smart grid is a complex system consisting of interdepen-
dent power grid and information and communication (ICT) components.
Complex systems have different properties than simple networks and give
raise to new risks and failure types. In this paper, we study the dependen-
cies in smart grid and the influence ICT may have on the dependability.
We start with giving a categorization of the smart grid components and
define state machines for these categories and for smart grid services.
Then we investigate their interactions and interdependencies from a de-
pendability perspective. Further, we investigate the positive and nega-
tive effects ICT can have on the dependability of the system. Finally, we
introduce a meta-model which incorporates the information about the
states of the components and services to create a state estimator for the
smart grid considering ICT and power components.

1 Introduction

The reliability analysis of power grids has traditionally not included the state
of supporting information and communication technology (ICT) infrastructure
[1–3]. However, in the last ten years several authors pointed out the need of
studying the power grid as complex network by including the cyber or ICT part
in the analysis [1, 4, 5]. This complex network is called cyber-physical system or
more general system of systems.

Theoretical results indicate the importance of analyzing the power grid (PG)
and its supporting ICT together in one common model as a system of systems. It
has been shown for interdependent random graphs that system of systems have
different properties than simple systems [6]. Additionally, with an increasing
number of interconnections and therefore a higher interdependency between the
systems the vulnerability to random failures increases also [7].

A classification of particular types of failures which are caused by the in-
terdependency of systems is put forward by [8]. Failures are classified as cas-
cading, escalating and common cause failures depending on the interaction of
the systems. Studies of major power grid incidents show that these interdepen-
dency effects between the PG and the ICT already exist in the current power
grid [6,9,10]. A chain of cascading failures, i.e. failures in one system that trigger
failures in another system, was a major reason for the large blackout in Italy in
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2003 [6]. And an escalating failure, i.e. independent failures in the systems that
amplify each other, was an important reason why the blackout in the US in 2003
could become so large [9]. Another analysis of the disturbances in the US power
grid from 1979 to 1995 found that ”problems in real-time monitoring and oper-
ating control system, communication system, and delayed restoration contribute
to a very high percentage of large failures” [10]. The smart grid will rely even
stronger on ICT than the legacy power grid, therefore, it can be expected that
these effects will become even stronger.

The smart grid has the potential to increase the reliability of the power sup-
ply with new services like self-healing and demand response, which may reduce
downtime and increase dependability [11]. However, misbehaving ICT and in-
terdependency effects between ICT and PG have to be analyzed carefully and
included into the dependability analysis, otherwise the results may be inaccurate
and could lead to false conclusions about the system.

An interdependency model for the electricity and information infrastructure
was presented in [12]. Using four to five different states for both infrastructures
the model accommodates the three new failure types of system of systems as
described in [8]. The model contains interesting features like passive and active
latent errors; however, it is very high-level and the repair is not covered in details.
Both power grid and ICT components are repaired in one step at the same time.

In 2009 an interdependency model for the power grid was put forward to
illustrate the effect ICT can have on the reliability of the whole power grid [1].
In this model, both ICT and PG have a binary state variable and can either
be in a normal or abnormal state leading to a four state model. The model is
very conceptual and concentrates mostly on the transitions. Because of the high
abstraction level most details are hidden within the states.

A more detailed approach is taken by [13] by introducing a three-level assess-
ment hierarchical architecture consisting of a device, network and service level.
Each level has its own properties and is modeled individually.

In this paper, we start bottom-up with the components constituting the smart
grid and give a categorization based on their use of ICT. We then give state
machines for the components and services and explain their interactions from a
dependability perspective. Further, we discuss the positive and negative effects
ICT can have on the dependability of the system. Finally, we introduce a meta-
model which incorporates the information about the states of the components
and services to create a state estimator for the smart grid considering ICT and
power components.

2 Components and Services in the Smart Grid

The power grid consists of the power infrastructure on the one hand and of
intelligent devices and a communication infrastructure to control and monitor
it on the other hand. We categorize all components of the power grid into five
categories as shown in Fig. 1. Category A contains power components with no
communication means and no software like power lines and mechanical power
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Fig. 1: Services and components of smart grids.

devices. Category B contains power components that are configurable but run
autonomous and have no communication means like certain distributed energy
resources. Category C contains software controlled power components with com-
munication means like intelligent electronic devices used for monitoring and con-
trolling the power grid. Category D contains software controlled communication
components like routers. Category E contains communication components with
no software like communication cables. It is important to note that some devices
can be in several categories like a power cable which is also used as carrier of
a PLC (power line communication) signal. Such structural dependencies can be
the cause for common cause failures.

Devices in the categories B, C and D are in the following called intelligent
devices. Components in A and E are called hardware (HW) components. Power
HW components like power lines and transformers build the physical connections
in the power grid between production sites and loads. The intelligent devices and
the communication HW components are needed to operate the whole grid.

Smart grid services run on top of these components and they need a cer-
tain subset of components and other smart grid services to work. This partial
dependency is called in the following structural dependency. The services are
used to operate the power grid and include power delivery, monitoring, control,
protection and more advanced services like demand response.

The biggest change in the transition from the legacy power grid to the smart
grid will lie in the increase of software capabilities of B and C components and the
quantitative increase of C components. In other words, the components become
more intelligent and there will be more intelligent electronic devices to increase
the system awareness and control, especially in the distribution grid. The latter
will also lead to an increase of D and E devices in the smart grid. Additionally,
the transition to the smart grid will change the power grid services. On the
one hand, they are extensions to existing services like an increased monitoring
and controlling in the distribution grid. On the other hand, they introduce new
functionalities like smart metering or demand response.
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2.1 State Machines for Components and Services

In the following we present state machines for components and services. The
states are on a high level and different failure modes are not differentiated. For
a quantitative analysis separate states for the considered failure modes have to
be created and transition rates or probabilities assigned to the transitions.

Hardware components are modeled with two states as seen in Fig. 2. They
can either be in a working state ok or a failed state F. Repair can happen after
the monitoring system detected a failure or it can happen before when the failure
is only temporary and disappears on its own.

Intelligent devices on the other hand, have a more complex failure behavior.
First, we differentiate between errors and failures, as described in [14]. A fault
can trigger an error in a device but only when the provided service is incorrect it
becomes a failure. Differentiating errors and failures allows for example to model
intermittent failures. While the failure disappears for some time, the responsible
error does not. Second, a failure may be either passive (Fp) or active (Fa),
depending on their behavior. We use the following definition similar to [12]:

passive failure: The device works incorrectly in a passive way, i.e. it does not
respond when needed (e.g. not sending monitoring data, not responding to
a control signal, not triggering a breaker when needed).

active failure: The device works incorrectly in an active way, i.e. it functions
but not as intended (e.g. sending wrong monitoring data, executing the
wrong control command, triggering self-healing when not necessary).

The corresponding errors are accordingly termed passive errors (Ep) and
active errors (Ea). A device may also directly change its state from ok to Fp for
example if parts of the hardware fail.

The devices are controlled by highly capable software which may cause harm
to the system if working incorrectly. Due to the potential complexity of designing,
configuring and updating such devices, faults are likely and errors may reside
undiscovered in a device for a long time. Faults can be unintentional like de-
sign and configuration faults but also intentional like viruses/worms, intrusions
and sabotage. Design, configuration or maintenance errors like software bugs,
erroneous configuration/reconfiguration or the distribution of a faulty software
update will affect potentially many devices at the same time. Failures may prop-
agate on their own like in the case of a virus or a worm. The degree of the
spreading depends on the detection and repair time.

The state of smart grid services may depend on the working and operational
state of certain components, their structural dependencies, other services and on
the input or the situation the system is in. The working states of a component are
the states described above, the operational states are states in normal operation
which can have an influence on a service. For example an open breaker which
was opened by an undetected failure in an IED may cause the disconnection
of parts of the grid and a state change for a service. The reason for the state
change is the operational state of the breaker and only indirectly a failure. A
service is said to be in the failed state F if the service produces incorrect output.
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Fig. 2: State machines for components and services and the perception of their state
in the monitoring system.

If components fail which are necessary to create correct output but the output
itself is not yet incorrect, then the service is in the error state E. For example,
consider a protection service which is responsible for opening breakers in a high
overload situation. This service relies on protection devices installed throughout
the power grid. The failure of one of these devices is already critical if there are
no redundant devices. However, as long as there is no overload in which this
specific device is needed to operate the service does not produce wrong output,
hence the service is in the error state E while the device itself is in a failed state.
In the error state the failure probability is much higher than in the working
state. It is not the same as a failed state because for dependability analysis this
state is considered as not failed. The monitoring system may detect the device
failure and initiate the repair before the service fails.

2.2 Interactions

The components and services are highly depending on each other. The transitions
between the states depend theoretically on the state of all the other components
and services at a given time. For practical analysis of large systems the states
may be modeled as depending only on the state of a subset of all components
and services which are either geographically or logically close. In the following,
we discuss the influence components can have on other components or services
depending on their states.

Influence of HW Components

F A failure may increase the load on other HW components and the probabil-
ity for them to fail. This is especially the case for power HW components.
Intelligent components may fail if a power HW component fails and there is
no other power source (transition into Fp).
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Influence of Intelligent Devices

Ea and Ep Errors have by definition no effect on other components.
Fa An active failure may cause a change in the operational status in another

component, e.g. opening a breaker, increasing power production instead of
decreasing. This may lead to a critical situation and eventually even to a
hardware failure or a service failure. An active failure may also cause errors
and failures in other ICT components, e.g. by spreading harmful configura-
tion or virus. It can also cause a smart grid service to not function properly.

Fp A passive failure may cause a smart grid service to not function properly
because for example necessary information is not delivered or information is
not received and processed by the component. A passive failure may also lead
to a failure in a power grid HW component, e.g. by not alarming the control
center about a critical situation which could lead to an overload failure.

Influence of Services

E An error has by definition no effect on other components or services.
F A failure can cause problems for the components or services relying on the

output of this service. It may provoke a critical situation end eventually even
to a failure in a component. For example, if the service demand response is
increasing the loads instead of decreasing. If this happens in a distribution
grid with a high number of charging electrical vehicles it could lead to an
overload in that particular area and eventually even to a blackout, i.e. a
failure of the power delivery service.

2.3 Perception of Components and Services

The monitoring system has its own perception of the system which is not the
same as the actual state of the system. This is because the monitoring system
is also just a service which can fail. The monitoring system can either indicate
failure or no failure. The error states are considered as no failure as the delivered
service is per definition still correct. As shown in Fig. 2 the indication can be
wrong, i.e. be a false positive if a failure is indicated when there is none or be a
false negative if no failure is indicated when there is indeed one.

The deviation of the indication in the monitoring system from the actual
state is critical. If false positives are frequent it may cause high costs for the
clarification of the cause and eventually to a loss of trust. False negatives may
prolong the time a component or service stays in the failed state which decreases
the dependability of the system. The longer a component is in the failed state
the longer the negative interactions described above take place and more state
changes in other components may happen.

2.4 Techniques for Quantitative Analysis

A difficulty when modeling the smart grid for quantitative analysis is that it
consists of dynamic parts, i.e. the components with their state machines, and
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structural parts, i.e. the structural dependencies between services and compo-
nents. This becomes clearer when considering the smart grid services. The work-
ing and failed state of a given service may be described by a fault tree, where the
events are failures of components or other services. This fault tree represents the
structural dependency of the given service. The dynamic parts are the different
failure modes leading to the events, i.e. failure of components or services.

A straight forward way of quantitatively analyzing a service is by creating
markov models for each individual component and computing with them the
dependability parameters needed for the fault tree. In this way, both availability
and reliability of a service can be computed. However, this method assumes all
events or state changes to be independent which is a very strong assumption and
usually not true in real systems.

A way of including dependencies between components in an analytical model
has been proposed in [15]. It starts with a reliability block diagram, i.e. a struc-
tural model which is equivalent to a fault tree and has the same independence
assumption. The dependencies are then included by either isolating them or by
using a combination of pivotal decomposition and markov chain. This method
is most useful if the number of dependent components is small.

Another solution is to use a stochastic reward net (SRN) [16] which is an
extension of a stochastic Petri net. The state machines from Fig. 2 can be used as
a basis for the SRN in which the individual components and services are modeled
as tokens. The transitions in SRN may be enabled by boolean functions on the
markings of states and the transition rates may also depend on the marking of
states. This allows to create a small model for a complex problem. However,
this holds only if the components or services are treated as anonymous. If the
identity of the different components and services become important, the model
becomes more complex as well.

If the two mentioned methods are unpractical then a simulation may also be
used for quantitative analysis.

3 Role of ICT in the Smart Grid

ICT components and services have a large potential for supporting the opera-
tion of a smart grid and increasing its dependability. The software part allows
for smarter decision making processes and the communication allows for sharing
information. Both are important for the most fundamental services: monitoring
and controlling. An optimal monitoring system shows the actual state of the
system with as little delay as possible and minimizes the discrepancy between
perceived and real state. Precise data can help to operate the system in an op-
timal state and reduce errors and failures in the first place. For example, exact
monitoring data in the distribution grid may optimize its use, maintenance and
replacement, i.e. not wasting capacity or wearing the infrastructure unnecessarily
out and preventively initiate repair or replacement before an incident happens.
In case of a failure the monitoring service helps to detect and localize the failure.
The reparation time may also be shortened by finding an optimal repair strat-
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egy, by self-healing or by enabling the repair or mitigation by remote control,
e.g. by isolating a line failure and possibly reconnect disconnected loads by an
alternative route to reduce the impact of the failure.

By aggregating the data from the components new insights can be gained.
For example, by finding patterns for failures which might improve error and
failure prevention or failure detection. With a wide-area monitoring and control,
enabled by communication, the optimal strategy for operation can be found for a
certain area or the whole grid and not only for the local component. In case of an
incident a coordinated protection or isolation scheme may prevent a propagation
of the failure in the system.

While ICT can help to improve dependability, it can also have a negative
effect. Passive failures in monitoring lead to a mismatch between perception and
reality. A critical situation or failure may not be detected due to the missing data.
In a controlling service a passive failure in a component leads to the disregard of
the control signal. If no acknowledgment message is used this stays undetected
and a mismatch between the assumed state of the component and the real state
arises.

Passive failures reduce the potential improvement of ICT. The total failure of
an ICT service nullifies its effect and intuitively one may conclude that additional
ICT services will either improve the dependability of the whole system or at
least keep the status quo. However, this is a dangerous conclusion because of
two reasons. First, if services or controllers blindly rely on the service a passive
failure may have a worse effect as not having the service at all. In the former
case there is a strong assumption that the service works correct, in the latter
case there is no correctness assumption and nobody is left with a false sense of
security. Second, active failures may trigger new failures which would not exist
without the specific service or ICT component.

Active failures in monitoring lead to a mismatch between perception and
actual state and eventually even to undesired decisions and actions. For example,
wrong information about the status of a breaker or the load of a line can trigger
the isolation of a power grid part and lead to an unnecessary outage. Active
failures in controlling lead also to a mismatch of perception and actual state but
have in addition a direct effect on some components. Examples are protection
devices initiating a protection process, breakers opening or closing, or the sending
of wrong control signals. Frequent active failures of ICT components may negate
the positive effect ICT can have and lead to an overall negative effect.

Last but not least, ICT plays a big enough role in the smart grid to qualify it
as system of systems, which have particular interdependency effects and failure
types, i.e.Cascading Failure, Escalating Failure, and Common Cause Failure [8].

4 Aggregated view for the Control Center

In the legacy power grid the control centers for the power grid and the commu-
nication system are usually separated. However, as new failure paths emerge in
the smart grid which originate in or include ICT components, it becomes crucial
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Fig. 3: Meta-model for smart grid.

to incorporate the information of both into the state estimation of the whole
smart grid. This allows an early detection of possible failures coming from the
ICT components.

In the following, we propose a meta-model to describe the state of the whole
system for the control center. The meta-model is an aggregation and interpreta-
tion of the information from the monitoring system to determine the criticality
level of the system. It has two axis using the states of the power grid (PG) and
the ICT, see Fig. 3. The most important service in the power grid is the power
delivery to the customers. The state of this service plus the state of supporting
components are used to determine the power grid (PG) state. On the other hand,
the states of ICT components and services are used together with a logic which
indicates which services are critical to determine the state of the ICT system.

The model follows a service-centric approach. Failure means a service is not
delivered correctly and action has to be taken immediately. Excited means that
the service may run soon into a critical situation. More detailed, the states of
the two axis are defined as:

PG ok: The system operates normally.
PG Excited: All customers are powered but the system is excited (N-1 redun-

dancy is harmed, the load is critical, etc.)
PG Failure: At least one customer is disconnected from the power supply.
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ICT ok: The ICT system operates normally.
ICT Excited: All critical ICT services are delivered correctly but the system

is excited (non-critical components failed, congestion in the system)
ICT Failure: Some critical ICT services are incorrectly delivered.

The nine states are then created by the intersections of this two axis. Both
excited states denote states of the system where the corresponding system is still
working correctly but the stability and robustness is decreased. They are a key
factor in the meta-model because the system may be much weaker than in the
failure-free state and failures may propagate.

The states are as perceived by the control center and can be wrong as dis-
cussed above. These monitored states should be as close to the real states as
possible. The fast detection of failures reduces the risk that the failure can prop-
agate or cascade to other components. Monitoring should also be reliable to
reduce the risk of having false positives and false negatives.

The meta-model is a highly condensed view of the whole grid to create a
clear and easy understandable warning system. Due to the aggregation it is
highly scalable. In large systems or in presence of autonomous structures like
micro grids it may be useful to use several meta-models.

4.1 Applications

The primary application for the proposed meta-model is the state indication
of the smart grid for the control center as explained above. However, there are
additional applications.

In ex post incident analysis the meta-model can be used to show the basic
cause and effect chains in a clear way and study alternative scenarios. In Fig. 4
we give an example of such an analysis by showing the events of an escalating
failure in the US in 2003 [9]. In short, several generators had an outage, which
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led to a tripping of several lines. When that happened, the energy management
systems (EMS) of the two responsible network operators were not fully functional
and the failure could propagate in the PG and ended in a voltage collapse and a
blackout spanning several federal states. In the figure, the black disks indicate the
information the control center had during the events. The control center knew
about the reduced functionality of the EMS but did not learn about the outage
in the power grid until it was too late. The white disks indicate the information
the control center would have had if the monitoring system had worked. The first
outage could have been detected and the failure perhaps isolated which could
have stopped the chain of events.

As an extension of the ex post incident analysis the meta-model can also
serve as a tool to visualize and illustrate interdependencies in two systems. The
new failure types propagation, escalation and common cause failures can be
explained in an intuitive way and new failure paths are revealed.

5 Conclusion

The wide introduction of ICT changes the way the smart grid may fail. It is
necessary to consider the states of both the ICT and the PG in the dependability
analysis due to the following reasons:

– Dependability analysis for smart grid services yield inaccurate results if the
possible non-functioning or malfunctioning of ICT is not included. ICT can
have special dynamics like failure propagation within the system and active
latent errors, which can have a strong effect on the smart grid.

– ICT plays a big enough role in the smart grid to qualify it as system of sys-
tems, which introduces particular interdependency effects and failure types.
In individual models it is difficult to include those.

In this paper we categorized the smart grid components and services and
showed the interactions between them. We motivated that their state and espe-
cially the state of the ICT components and services will play an important role
in the dependability analysis of smart grids. We proposed a meta-model which
takes this into account and combines the states of ICT and power grid compo-
nents and services. It can be used as a tool for the control center to estimate the
state of the smart grid. The proposed meta-model facilitates the understand-
ing of the mechanisms of previous incidents by tracing their trajectories in the
model. The simple structure creates an intuitive model that allows explaining the
interdependencies and new failure types that are created by connecting systems.
Understanding the risks is the first step to make a system more dependable and
secure.

This work is meant to generally describe dependencies in the smart grid
and to create a basis for future work. Future work will focus on specific inter-
actions and interdependencies of components and services. We are especially
interested in studying the new failure modes and evaluating and quantifying the
dependability effects of new smart grid services.
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15. J. Wäfler and P. E. Heegaard, “A combined structural and dynamic modelling ap-
proach for dependability analysis in smart grid,” in Proceedings 28th ACM Sympo-
sium on Applied Computing (SAC), Coimbra, Portugal, March 2013, pp. 660–665.

16. J. K. Muppala, G. Ciardo, and K. S. Trivedi, “Stochastic reward nets for reliability
prediction,” in Communications in Reliability, Maintainability and Serviceability,
1994, pp. 9—20.

56



PAPER B

A Combined Structural and
Dynamic Modelling Approach

for Dependability Analysis
in Smart Grid

Jonas Wäfler and Poul E. Heegaard

Proc. 28th ACM Symposium on Applied Computing (SAC), Coimbra, Portugal,

March 2013

c© 2013, Association for Computing Machinery, Inc. Reprinted with permission.



 
Is not included due to copyright 





PAPER C

Structural Dependability Analysis
in Smart Grid under Simultaneous

Failures

Jonas Wäfler and Poul E. Heegaard

Proc. IEEE Smart Grid Communications (SmartGridComm), Vancouver, Canada,

October 2013

c© 2013 IEEE. Reprinted with permission.





Structural Dependability Analysis in Smart Grid
under Simultaneous Failures
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Abstract—The pervasive use of information and communi-
cation technology (ICT) in the future power grid introduces
new dependencies and new failure patterns. The simultaneous
failure of several nodes may become more likely as devices get
more complex and increasingly interconnected. Several studies
investigated the behavior of power grids under simultaneous
failures. However, the commonly used measure to quantify the
outcome is agnostic to important characteristics of the power
grid and its interpretation for dependability analysis remains
unclear. We introduce two new measures which take the most
fundamental characteristics of the power grid into account: the
connectivity to power sources and the balancing of load and
production. We analyze the two measures in scenarios with
random and intentional node failures and conclude, that they are
suitable for structural dependability and survivability analysis
of power grids. Further, we use the new measures to quantify
the potential dependability increase when using the smart grid
services Demand Response (DR) and Distributed Energy Resources
for failure mitigation. We find that a load reduction with DR
by 20% may already achieve a large part of the possible
dependability increase with Demand Response.

I. INTRODUCTION

The future power grid will rely strongly on information

and communication technology (ICT). Most proposed smart

grid services build on a high density of intelligent electronic

devices (IED) throughout the power grid and on a flexible

communication platform [1]. This increasingly pervasive use

of ICT enables new services and may increase the depend-

ability of the future power grid [2], but it also increases the

dependency on ICT and changes the way how dependability

of power grids has to be assessed [3]. Failures in the future

power grid may have their origin in failed ICT services. This

chain of cause and effect is not new [4], [5] but it will have

an even stronger impact in the future power grid.

IEDs contain embedded systems which may be highly con-

figurable and together with the communication infrastructure

it builds a system not unlike already deployed ICT systems.

Highly configurable ICT systems are prone to human failures

as indicated in the study of the US public switched telephone

network where more than 50% of the failures were caused

by humans by wrong maintenance, configuration or accidents

[6]. Human made failures may be caused among others by the

complexity of large networks with its various technical con-

cepts, historically grown solutions, and its continuous renewal

of technology [7]. Another study of critical infrastructures

in the US comes to the conclusion that more than 65% of

all reported failures were software related, including software

design, implementation, configuration, malicious logic fault

inserted by an attacker, and authorization violation based on

a faulty access control [8]. If these failures happen in IEDs it

may lead to a failure in the power grid. Moreover, it is likely

that several elements in the power grid are affected as they

may have the same configuration or software implementation.

Studies on ICT networks indicate indeed that failures are not

independent but rather correlated [9]–[11]. The reason may be:

• structural: subsystems share a common service or infras-

tructure (e.g. same configuration, sharing software update

mechanism or using identical hardware)

• dynamic: a failure of one subsystem increases the stress

on other subsystems

• epistemic: failures remain unobserved until a certain

threshold is reached.

Correlated or simultaneous failures have been studied in

various networks including the internet [12], [13] and power

grids [14]–[17]. These studies model the simultaneous failure

based on percolation theory which describes the behavior of

the size of the largest connected network component after the

removal of a fraction of 1− p of the n nodes of a network. A

network component is a part of the whole network in which

any two nodes are connected with a path and which is not

connected to other nodes from the network. If a critical fraction

of nodes 1−pc is removed, the largest component collapses for

a high number of nodes. The percolation point pc and the size

of the largest component after a failure of a fraction of 1− p
nodes are used as indicators for the structural vulnerability

or robustness. The latter is called in the following Largest
Component measure and p goes usually from 0 to 1.

In [16] the relation of the percolation point pc of 19

european transmission grids is investigated to non-topological

reliability measures like average interruption time, power loss

and energy not delivered. Dividing the grids into two groups

based on the node degree distribution, they find a correlation

between this grouping and the empirical reliability indices.

However, it is not clear yet how to use this results for a classic

dependability analysis as this Largest Component measure

and its percolation point is agnostic to characteristics of the

underlying network.

67



In [14] an additional measure is defined which takes connec-

tions between consumers and power sources into account. The

number of power sources reachable from each node is counted

before and after the incident and the averaged difference

is then called connectivity loss. This measure yields less

theoretic results as the Largest Component measure, however,

it measures only the change and gives no indication about the

number of disconnected nodes after the incident.

Several previous studies stressed the importance of adapting

purely topological measures to the specifics of power grids and

extended centrality measures with electrical parameters like

impedance [18], impedance and power flow [19], electrical

distance, power transfer distribution and line flow limits [20].

They have in common that they analyze the relative importance

of nodes and lines with the aim to find vulnerable parts of the

system.

In this work, we explore how network percolation can

be used for structural dependability analysis of the future

power grid. We introduce new measures taking fundamental

properties of the power grid into account, i.e. the connectivity

between consuming nodes and power sources on the one hand

and balancing the consumption and production in connected

network components on the other. The measures are used in

scenarios with random failures and intentional failures. The

results are compared with the Largest Component measure

and analyzed for their suitability for dependability and sur-

vivability analysis. Further, we show how these new measures

can be used to quantify the potential increase in dependability

by using Demand Response and Distributed Energy Resources
for the mitigation of the studied simultaneous failures.

II. MEASURES

The quantification of the outcome of a failure in f of the n
nodes can be done in different ways. The mentioned Largest
Component measure is used widely. However, it relies entirely

on the abstract indicator largest component and it is not

immediately clear how to relate this to realistic dependability

analysis. One may argue, that a power grid operator will

not worry about the size of the largest component after an

incident but rather about the number of customers experiencing

a blackout.

We introduce two new measures which can be seen as an

adaptation of network percolation to the needs of power grid

dependability analysis. The main difference is, that all nodes of

the network are considered, no matter how many components

there are. All nodes are categorized as alive or not alive and the

sum of all alive nodes gives then a dependability measure for

the power grid. The definition of alive is done on power grid

specific properties as explained in the next two subsections.

After an incident the network may be split into several

network components. In the best case, all of the network

components manage to pursue its operation independently in

an island mode. In order to do that, several requirements have

to be fulfilled. In the following we concentrate on the most

fundamental ones: the structural requirements.

A. Connectivity to power sources

The most fundamental requirement for a grid component to

run as an island is, that it contains power sources, otherwise

all its nodes experience a black-out. Using this key property

of power grids a measure called Connectivity can be defined.

Definition 1 (Connectivity). Connectivity counts the number
of alive nodes, i.e. nodes for which:

1) There is a path between the node and a power source.

The measure indicates the number of nodes which could

potentially be supplied with energy without repairing any parts

of the network.

B. Balancing production and load

The next requirement for a network component to survive

as an island is, that the production capacity is high enough

for the load of the connected nodes. It is assumed, that if the

total load of a specific component is smaller than its maximal

production capacity, the component may stabilize and continue

operation as an island. If the load is higher than the maximal

production capacity, it is assumed that breakers will open and

disconnect loads until the total load of this network component

is small enough.

In other words, the Connectivity measure is extended to

consider also the production capacity of grid components.

Definition 2 (Balancing). Balancing counts the number of
alive nodes, i.e. nodes for which:

1) There is a path between the node and a power source.
2) There is enough power production capacity for that

specific node in the component. If the total production
capacity of a component is too small for all the nodes,
the number of alive nodes is continuously decreased by
one until the load of the alive nodes is smaller or equal
to the production capacity of the network component.

The reduction of alive nodes can be done according to

different strategies. We use a strategy that maximizes the

number of supplied nodes. Other strategies could minimize the

load not delivered or include priorities for critical customers

like hospitals.

The measure indicates the number of nodes in the whole

network which could be supplied with power in their respec-

tive component. The steps and the time used to increase the

production to its potential and, if need be, to reduce the number

of alive nodes, is outside of the scope of structural analysis.

III. ANALYSIS AND DISCUSSION

A. System Description and Modeling

The network used in this paper is based on a typical

medium-sized regional grid from Norway with voltage lev-

els 66 kV and 132 kV. It consists of transformer stations

connecting to both the distribution grid and the transmission

grid, power plants and interconnection points to other regional

grids. We model it as a network with 104 nodes and 124

links, as depicted in Fig. 1. It is assumed that there exist
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Fig. 1: Network based on typical medium-sized regional grid

in Norway with an example simultaneous failure in 2 nodes

(marked with grey disks). The resulting network is split into

5 network components after the failure (marked with red).

no other connections between the nodes than those depicted.

Power sources are modeled by adding a production capacity

to some nodes. For simplicity reasons, those nodes are in the

following called power sources, even though several smaller

power sources in the distribution grid could constitute the

production capacity.

The modeled network has an average node degree of 2.38
which is higher than the node degrees of all 19 european

transmission grids studied in [16]. The reason appears to be

the higher node degrees of transformer stations in urban areas.

The considered incidents are simultaneous failures of f of

the n nodes in the power grid. The nodes are modeled with

a binary state, either the whole node is alive or it failed.

Link failures are not included in our model because the main

contributor for simultaneous failures is assumed to lie in the

intelligent electronic devices (IED) in the nodes and not the

links itself. Already today are failures in substations more

frequent in the Norwegian power grid [21], however, the ratio

failures of links/failures in substation varies strongly between

different nations. It is important to note that the measures that

will be discussed are agnostic to the failure cause. Test runs

including link failures indicate similar results as for pure node

failures.

The aim is to conduct a structural analysis of the power grid,

i.e. an analysis of the structure ignoring power engineering

challenges like stabilizing the frequency. Two different sce-

narios are considered. First, failure of f random nodes which

models failures caused by unintentional faults like software

faults, configuration faults or maintenance faults. Second,

failure of f nodes chosen with a strategy to maximize the

harm which models failures caused by intentional faults like

a cyber attack. Repair is not considered in neither scenario.

B. Simulation Setup

For this analysis, a snapshot of the system is considered in

which the load is maximal and close to the maximal production

of the power plants. All consuming nodes have the same power

consumption and the consumption is assumed to be static.

All the producing nodes have the same production capacity.

The total production capacity is 10% higher than the total

load at this peak moment in the year. These assumptions are

strong, but justifiable as the focus of this discussion lies on the

measures. Moreover, this assumptions can easily be changed

for a more realistic analysis of a given power grid.

Production capacity is assigned randomly to existing nodes

in the network. The number of power sources in a power grid

can vary widely depending on the topography but also strongly

on the strategy of the utility and the government. To cover

grids based on larger and smaller power plants, the simulation

is run twice: for a power grid with 10 and for a power grid

with 40 power sources.

A Monte Carlo simulation is used in which the number f
of failed nodes goes from 1 to the total number of nodes in

the network. The stochastic elements in the simulation are the

location of power sources in the network and the location of

failed nodes in the network.

C. Random Faults

An incident is assumed that leads to the failure of f random

nodes and their connected links in the network. The results in

Fig. 2 shows the number of nodes which are considered alive

according to the different measures.

The two newly introduced measures are closely related.

The value for Balancing can never be higher than the value

for Connectivity because the former is based on the lat-

ter and extends it by the requirement for enough capacity.

The difference between the values depends on the ratio

total production/total consumption which is set to 1.1 in this

study. If this value increases, then the difference between the

two curves will decrease and for very high values, which

corresponds to almost no restriction from the production

capacity, Balancing and Connectivity values will coincide.

The number of power sources in the system has a strong

impact on the Connectivity and Balancing measures. If the

number of power sources increases, the curve for the Connec-
tivity measure tends to the diagonal, i.e. to a situation where

the measure decreases linearly by the number of failed nodes.

The Balancing curve will converge also to the diagonal if in

addition the production capacity of the power source is at least

as high as the consumption of the node it is attached to. The

Largest Component measure does not consider this parameter.

For Connectivity and Balancing the 95% confidence interval

shrinks when the number of power sources is increased. The

difference between removing the most and least vulnerable

nodes becomes less. This can also be seen in the next section

when trying to remove the most vulnerable nodes first.

The measure Largest Component appears at first sight to

be a conservative measure. However, this is not true because

depending on the structure of the network the results can be

higher than for the other two measures. For example, if there is

only one power source in the network because in Connectivity
and Balancing the power source may also be part of a minor

network component. Another more realistic example is a grid

which has all power sources clustered in a remote area and
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Fig. 2: Comparision of measures when performing random deletion of nodes. Results are mean values of 100 repetitions of

a Monte Carlo simulation with randomly positioned power sources and random node failures. Whiskers indicate the 95%
confidence interval for every second value. The dotted diagonal indicates the theoretic maximum for all measures.

25 50 75 100
failed nodes ���0

25

50

75

100
surviving nodes ���

(a) 10 power sources

25 50 75 100
failed nodes ���0

25

50

75

100
surviving nodes ���

Diagonal
Connectivity, model A
Connectivity, model B
Balancing, model A
Balancing, model B
Largest Component, model A

(b) 40 power sources

Fig. 3: Comparision of measures with intentional node failures. Results are mean values of 100 repetitions of a Monte Carlo

simulation with randomly positioned power sources. The dotted diagonal indicates the theoretic maximum for all measures.

The confidence interval is omitted to increase the readability.

they are connected only with few lines to the rest of the

network with the consumers. If in addition the network part

of the consumers is highly meshed then the results from the

Largest Component measure will be higher than for the other

two measures.

D. Intentional Faults

The previous experiment is repeated but now it is assumed

that an attacker chooses which nodes should fail. Two different

attacker models are used: In model A, the attacker chooses

the f nodes with the highest node degrees in the network. In

model B, the attacker chooses the f power producing nodes

with the highest node degrees. Fig. 3 shows the results for

the three discussed measures with the two attacker models.

For the Largest Component, the data for model B is omitted

because it is the same as for random faults, just stopping after

x failures, where x is the number of power sources in the

network. Using model A, there is no stochastic variance for

the Largest Component because it is independent of power

sources and the order for node failures is given by the strategy.

The results will only change when the topology changes.

Considering only the Connectivity measure, the most harm-

ful attacker model depends on the number of nodes which will

fail and on the number of power sources in the network. If

both numbers are small then the attacker model A has a higher

impact than attacker model B as can be seen from the results

with 10 power sources. The consequences for the grid are

higher when few nodes with a high node degrees are attacked

than when the same number of nodes with power sources are

attacked. In a highly connected network model B would yield

a Connectivity result which decreases only by one until all

power sources are deleted and the measure drops to 0.

For the Balancing measure it is slightly more complex

because the ratio total production/total consumption has to be

considered as well. As mentioned for the random failures, if

this ratio grows, the results for Balancing tend to the results for

Connectivity as the additional restriction from Balancing loses

its importance for the result. For a larger number of failures

model B is more harmful. If the number of power sources

approaches the number of total nodes, as it is the case in a

network with a high density of distributed energy resources,

the results of the two strategies will converge. In general, the

observation made for random failures are also valid here.
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Fig. 4: Dependability increase by using different degrees of Demand Response (DR) to mitigate a simultaneous failure. Results

are mean values of 100 repetitions of a Monte Carlo simulation with randomly positioned power sources and node failures

IV. SUITABILITY FOR DEPENDABILITY ANALYSIS

Dependability and Reliability terms are defined differently

in power engineering and in ICT. Dependability in the ICT

context is a general concept defined as “ability to avoid
service failures that are more frequent and more severe than
is acceptable” and it contains metrics like availability and

reliability [22]. The former refers to the readiness for correct
service and the latter to the continuity of correct service.

The service in a power grid is the power supply and correct
service for a customer stands for no outage. Availability is then

the probability that the customers experience no outage. In this

context, the introduced Connectivity and Balancing measures

quantify the instantaneous availability of the service after a

simultaneous failure. If the failure and repair rates are known,

then this can be used for the classic availability calculation

for both dependability and security, dependent on the chosen

failure model.

The measures can also be used for survivability analysis

of a system. Survivability, closely related to dependability,

is defined as the “system‘s ability to continuously deliver
services (. . . ) in the presence of failures” [23]. The presented

model corresponds to survivability without repair.

How to use the Largest Component measure for dependabil-

ity analysis with the above definitions stays unclear because

of the difficulty of defining correct service in a way that the

results from this measure become meaningful. It is used as an

indicator for topological robustness of a grid and even though

[16] showed a correlation to statistical reliability measures

it is easy to construct realistic scenarios where the results

of Largest Component are misleading in the dependability

analysis, as shown above.

In power engineering, reliability is defined as “degree to
which the performance of the elements of that system results
in power being delivered to consumers (. . . )”, this definition

from NERC is also used by IEEE and CIGRE Working Groups

[24]. If this degree of reliability is defined as percentage of cus-
tomers receiving correct service, then this metric corresponds

directly to the previous mentioned ICT availability.

V. ANALYSIS OF CONTRIBUTION OF SMART GRID

SERVICES TO DEPENDABILITY

In the following, the measures are used to study the potential

of two future smart grid services to mitigate the impact of

the modeled simultaneous failure and increase thereby the

dependability and survivability of the system.

A. Demand Response

Demand Response (DR) is a mechanism by which con-

sumers change their consumption based on the price, the load

or another signal [1]. In contrast to load shedding, an already

existing method to reduce the load, DR reduces the loads

without disconnecting customers. To study the potential of DR

for failure mitigation it is important to consider the reason for

a power loss in a node. According the Balancing measure, a

node can be non-functional because a) it was affected directly

by the failure, b) it is part of a component without power

source, or c) it is part of a component with too little power.

The first two cases require repair. In the latter case, assuming

a network-wide instantaneous and failure-free DR scheme, the

load of the alive nodes can be reduced to supply non-functional

nodes and turn them into alive nodes.

The two introduced measures may be considered as the

two extreme cases of using DR, i.e. Balancing corresponds

to no DR and Connectivity corresponds to 100% DR with

no restriction on a minimal load per node. The difference

between the measures is then the potential of DR. In Fig. 4

this potential is plotted together with the results when the load

in each node is reduced by 20% and 40%. The y-axis shows

the increase of the number of surviving nodes if DR is used.

The results show that a DR scheme with 20% load reduction

may achieve already around 50% of the total potential for

DR under the taken assumptions. In countries with a high

percentage of non-time critical loads like air conditioning or

space and water heating, 20% or even 40% load reduction over

a short period of time are realistic. The results depend on the

ratio total production/total consumption. If this ratio is ≈ 1
or ≤ 1, the potential for DR is large. If the ratio increases, the

results of the two measures will get closer and the potential

for DR will decrease.
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B. Distributed Energy Resources and Microgrids

Distributed energy resources (DER) are medium and small

scale power sources located in any level of the power grid.

The coordinated operation of DERs requires either a centrally

located controller or a more local micro grid controller. The

latter having the advantage of being able to run this part of

the power grid in an island mode, speak as a decoupled micro

grid [25], [26]. Micro grids are a mean to make parts of the

grid independent from the functioning of the rest of the grid.

Assuming a high density of DER in the underlying distribu-

tion grid which are controlled by local micro grid controllers

yields a scenario where the number of nodes with power

sources is close to the number of total nodes. As seen in

Fig. 2 and Fig. 3 increasing the number of power sources

increases also the dependability of the network for both ran-

dom and intentional node failures. The Connectivity measure

approaches the diagonal because the probability that a network

component ends up without a power source after the failure

becomes smaller. The same holds to a lesser extent also for

the Balancing measure. Assuming a failure-free operation of

the micro grid controller, it can be concluded that DER and

micro grids contribute to the mitigation of both random and

intentional simultaneous failures.

VI. CONCLUSION

Abstract measures from network science have been widely

used for the analysis of power grids. They have the strong

advantage of facilitating large scale studies and as they are

agnostic to the underlying network they enable a compari-

son with other real-life or random networks. However, their

meaning in the context of dependability and survivability

analysis can be unclear and, therefore, have to be checked

critically. In this paper, we introduced two measures based

on fundamental properties of the power grid: connectivity to

power sources and balancing of load and production. The

analysis showed, that both new measures are well suited for a

structural dependability and survivability analysis. In contrast

to the widely used Largest Component measure which results

can be misleading in this context.

Further, we showed how to use the measures to quantify

the potential of Demand Response and Distributed Energy Re-
sources to mitigate the consequences of simultaneous failures.

Under the given assumptions, we found that a load reduction

with DR by 20% can already achieve around half of the

possible dependability increase with DR.

The structural analysis conducted in this study ignores

dynamics in the system, however, the results give valuable

information to power engineers about the upper limit of

what can be achieved if all power engineering challenges are

successfully met.

Future work will include the analysis of larger structures and

possible failure mitigation strategies. Further, we will look into

relaxing the assumptions to make the model more versatile.
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Abstract

The behavior of networks under simultaneous failures has been
subject to various studies in the field of network science. However, the
measures used do usually not take into account the peculiarities of the
studied network. In this paper, we introduce a new measure for power
grids based on the balancing of power and on the accumulated cost of
energy not supplied (CENS) during an outage. With the help of this
measure we quantify the performance of seven repair strategies. We find
that both the choice of the right strategy and the topology of the power
grid has a major influence on the outage cost and the survivability of
the power grid. Additionally, we appraise the potential of smart grid
services and conclude that both distributed energy resources (DER) and
demand response (DR) has a large potential to reduce the cost of an
outage.

1 Introduction
Studies in information and communication technology (ICT) systems show the
vulnerability of complex systems to human and software errors [1, 2] which may
be caused, among others, by the complexity of large networks [3]. These errors
affect potentially many devices as they run the same software, same configuration
and are operated by the same humans. Studies indicate indeed that failures in ICT
networks are not independent but rather correlated [4–6].

As the power grid relies more and more on the use of ICT [7], the dependency
increases [8]. Failures in the power grid caused by failed ICT services are not
new [9, 10] but they may become more frequent and exhibit a different pattern.

Correlated or simultaneous failures have been studied in various networks
including power grids [11, 12].These studies model the simultaneous failure based
on percolation theory which describes the behavior of the network when removing

This paper was presented at the NIK-2014 conference; see http://www.nik.no/.
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a fraction of 1− p nodes in a network. The most common measure to quantify the
outcome of a simultaneous failure is to count the nodes in the largest connected
component of the network, however, it is not clear how to use this results for
a classic dependability analysis as this measure is agnostic to characteristics of
the underlying network. Therefore, some measures were put forward considering
connections between consumers and power sources [11, 13].

In this work, we analyze and compare several repair strategies to recover from
simultaneous failures and quantify their performance during the repair time. In
order to evaluate the different repair strategies we introduce a quantification method
based on the accumulated cost of energy not delivered (CENS) during the repair. We
consider the scenario in which the failure only affects the power grid and leaves the
ICT system completely unaffected, i.e. the control center has the full information
about the state of the whole network. We study how changes in the network, namely
increasing the average node degree or increasing the number of power sources affect
the repair costs. Further, we interpret our results in the advent of the smart grid
services Demand Response and Distributed Energy Resources. And finally, we show
how the results can be used for a survivability analysis.

Our analysis covers the repair of the physical structure of the power grid. We
do not consider the restoration of the service, i.e. power delivery. The results give
valuable information about the upper limit of what can be achieved if all power
engineering challenges are successfully met.

2 Modeling
Our analysis takes place in regional grids with typical voltage levels of 66 kV and
132 kV. A regional grid consists of power plants, interconnection points to other
regional grids, transformer stations connecting to both the distribution grid and the
transmission grid, and lines and cables connecting all these entities. The network is
modeled as an undirected graph in which all the mentioned entities are modeled as
nodes and the lines and cables are modeled as links between the nodes. The lower
voltage levels with the consumers are not included in the model. However, the nodes
have a load and power production corresponding to the sum of all the loads or power
production connected to them. All nodes have a load, some nodes have additionally
an attached power production, these nodes are called power producing nodes or
power sources. We do not differentiate whether the power production is the sum
of several smaller power sources in the distribution grid or one large power plant.
Neither differentiate we between power plants, connections to the transmission grid
and interconnections to regional grid. Important is only the sum of the power
production. It is assumed that there exist no other connections between the nodes
than those in this voltage level, i.e. in the network.

Cost of Energy Not Supplied (CENS)
In regulated networks, the regulator gives incentives for efficient and reliable
operation of the grid. In the following we use the Norwegian regulation framework
based on a yardstick regulation where the performance of a utility is measured in
comparison with the others. Cost of Energy Not Supplied (CENS) is one parameter
used for the efficiency and cost calculations for the revenue cap [14]. CENS is
calculated by a function taking as input the power not supplied to a customer and
the time of the outage. There exists a function for each customer group as listed
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Table 1: Cost functions and groups used for the CENS calculation (Unit: Norwegian
Krone /kW).

Customer original cost function avgerage cost share
group depending on outage time r function of

r ≤ 4h r > 4h used in sim. customer
Agriculture 10.6r + 4 62.3 4%
Residential 8.8r + 1 49.4 75%
Industry 55.6r + 17 18.4r + 166 244.8 1%
Commercial 97.5r + 20 33.1r + 280 422.45 10%
Public 14.6r + 1 4.1r + 44 59.85 10%

in Table 1. In the simulation we do not consider outage times, therefore, we use a
time independent cost function, which depends only on the customer group and on
the power not supplied. The value used in our cost function is the expected value of
the time-depending cost function under the assumption that the outage times are
uniformly distributed and take integer values between 1 and 10 hours. More details
about CENS can be found in [14].

The nodes in the network have no CENS values themselves because they are
substations and not customers. However, the sum of the CENS values of all
customers connected to a node is taken as the CENS value for that node. It is
assumed that all nodes have the same load and each node has only customers of the
same group attached. To calculate the cumulative CENS for a network node we can
use its cumulative load and use the cost function with the CENS parameter for the
corresponding group.

Failure and Repair
The nodes are modeled with a binary state, either the whole node is alive
or it has failed. Link failures are not included in our model. The ratio
(link failures)/(substation failures) varies strongly between different nations [15].

The considered failure is a simultaneous failure of a fraction of f nodes. The
set of failed nodes is denoted as Vfailed, A failure can lead to a supply shortage or
disconnection of additional nodes leaving the network with a total of s% of nodes
non-alive. The set of non-alive nodes is in the following denoted Vnon-alive. The sets
have the properties: |Vfailed| = fn, |Vnon-alive| = sn and Vfailed ⊆ Vnon-alive where n is
the total number of nodes in the network.

The considered repair mode is a one-by-one repair, i.e. only one failed node at a
time can get repaired. In each repair step one node is chosen according to a strategy
and repaired. It is assumed that the repair is successful and that no additional
failures happen during the repair. All repair strategies start with |Vnon-alive| non-
alive nodes and end after |Vfailed| repair steps because only the failed nodes need to
be repaired. However, the order of repairing the nodes has an impact on how many
nodes of the network are alive as repairing the right node may bring back the power
supply to many other nodes as well.

3 Simulation Setup
The simulation covers only the repair process. A snapshot of the system is considered
in which the load is maximal and close to the maximal production of the power
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plants. All consuming nodes have the same power consumption and the consumption
is assumed to be static. All the producing nodes have the same production capacity.
The total production capacity is 10% higher than the total load at this peak moment
in the year. These assumptions are strong, but justifiable as the focus of this
discussion lies on the strategies. Moreover, these assumptions can easily be changed
for a more realistic analysis of a given power grid.

This Monte Carlo simulation has as stochastic variables the location of power
sources, the location of failed nodes and the assignment of CENS customer groups
to the nodes. The first two use a uniform distribution, the last a distribution with
the expected values from Table 1. All stochastic variables change in each repetition.

During the analysis two different networks are used. First, a network based on a
typical medium-sized regional grid from Norway with voltage levels 66 kV and 132
kV. It consists of 104 nodes and 124 links. Second, a network randomly generated
with a node degree distribution that follows an exponential distribution. It has been
shown in a study that the European transmission networks possess this property [12].

To cover grids based on larger centralized and smaller decentralized power plants,
the simulation is run for two parameters: for a power grid with 10 and for a power
grid with 40 power sources.

The ICT network is completely independent from the power grid and it is
assumed to work flawlessly also after the failure in the power grid happened. The
control center has therefore a full and correct overview over the system and knows
which nodes belong to the set of non-alive nodes Vnon-alive and also which nodes
belong to the set of nodes with a failure Vfailed. The former gives information about
the extent of the outage, the latter the valuable information about which nodes
need to be repaired. As all the information is available only the order of repairing
the nodes has to be determined by a chosen strategy. We consider the following
strategies to choose the next node to repair:

1. Baseline for comparison:

(a) Random Repair: Choose a random node from Vfailed.

2. Strategies based on properties of single nodes:

(a) Highest Node Degree: Choose the node with the highest node degree, i.e.
the most links, in Vfailed.

(b) Highest CENS: Choose the node with highest CENS value in Vfailed.

3. Strategies optimizing outcome of next step:

(a) Maximize Node Count: Choose the node from Vfailed which maximizes the
number of alive nodes. The algorithm simulates all possibilities for the
next step and takes the one giving the highest result.

(b) Minimize CENS: Choose the node from Vfailed which minimizes the CENS
costs for the next step. The algorithm simulates all possibilities for the
next step and takes the one giving the lowest result.

4. Strategies based on properties of connected component:
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(a) Biggest Failed Component: Consider the graph formed by the nodes in
Vnon-alive and choose the biggest connected network component. Consider
all nodes from that component which are in Vfailed and take the one with
the highest node degree.

(b) Failed Component with Highest CENS sum: Consider the graph formed
by the nodes in Vnon-alive and choose the one with the highest sum of the
CENS values of its nodes. Consider all nodes from that component which
are in Vfailed and take the one with the highest node degree.

The strategies are chosen in a way to study the influence of considering single
nodes versus connected components, and node or degree count versus CENS values.
After the random strategy, which is used for comparison, there are three pairs of
strategies. The strategies from the first pair consider only properties of single nodes
for their decision, the strategies from the second pair consider the outcome of all
possible repair steps and take the optimal solution and the strategies of the last
pair base their decision on connected components of nodes in Vnon-alive, i.e. they
consider also the non-alive nodes that have no failure. In each pair there is one
strategy considering only topological aspects like node degree or node count and
one strategy considering CENS.

Measures
In the following, we use the two measures proposed in our previous work [13] to
quantify Vnon-alive: Connectivity counts the number of nodes still connected to any
power source, Balancing requires in addition that the sum of loads in a surviving
connected network component is at maximum equal to the sum of power production
in that component. If the load is too high, loads are shut down.

When considering the financial impact of an outage for the responsible utility it
becomes important which nodes are non-alive and not only how many. Therefore,
we extend the measures to include the financial impact of the whole outage.

Definition 1 (CENS outage cost). The CENS outage cost is the sum of the CENS
values of all the non-alive nodes, summed up over all repair steps. The non-alive
nodes are determined with either the Connectivity or Balancing measure.

4 Simulations and Results
Performance of Strategies
We first investigate the performance of the previously introduced strategies. The
simulation is run with the network based on the described Norwegian regional grid.
The results of 100 simulation runs are given in the lower row of Fig. 1. The best
performing strategy, i.e. the strategy that leads to the lowest CENS outage costs is
the Minimize CENS strategy. This is not surprising, as it optimizes the outcome
for the next step. The Maximize Node Count strategy performs reasonably well
considering that it is agnostic of the CENS values of the nodes. Although, for a
higher number of power sources (40) the difference becomes bigger. The other five
strategies are more than 50% more expensive than the best one. For a low number
of power sources the difference is even slightly higher.

The strategies Highest Node Degree and Biggest Failed Component consider
only topological aspects. They both have a similar performance. Taking into
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Figure 1: CENS outage costs in the regional grid model when 10% of the nodes fail.
In the left column 10 nodes have attached power sources, in the right column 40
nodes have attached power sources. The upper row shows the sum of non-alive nodes
over the whole repair process and the lower row shows the sum of CENS values of all
non-alive nodes over the whole repair process (CENS outage cost) for the different
strategies. The non-alive nodes are determined with the Balancing measure. The
results are mean values of 100 repetitions of a Monte Carlo simulation with randomly
positioned power sources and random failures. Whiskers indicate the standard error
of mean.

account groups of nodes from Vnon−alive like in Biggest Failed Component brings
no advantage against considering only single nodes from Vfailed like in Highest Node
Degree, it yields even a slightly worse performance. The opposite is true for the two
strategies considering only the CENS values. Here the strategy taking into account
components of nodes from Vnon−alive, i.e. trying to reconnect the component with
the highest CENS sum (Failed Component with Highest CENS Sum) performs better
than the strategy Highest CENS Value which considers only single nodes from Vfailed.

Comparing CENS outage cost with Node count
A simple measure to quantify a repair strategy could be to count the number of non-
alive nodes per repair step and then sum it up. The proposed measure CENS outage
cost takes the additional information about the CENS values into account, which is
not directly topology related. Using this new measure we try to find a strategy that
minimizes this CENS outage cost. It may seem wrong to use a financial parameter
to measure the performance of repair strategies, but the CENS values can also be
understood as a criticality indication of the nodes. In order to check the implications
on the availability of the nodes, we run the same simulations with all strategies and
measure it with the purely topological measure sum of non-alive nodes and also
with the measure CENS outage cost. The results are presented in Fig. 1. The
strategy Maximize Node Count optimizes the first measure, the strategy Minimize
CENS optimizes the second measure. The results show, that those two strategies
perform very similar when using the first, topological measure, i.e. optimizing for
CENS values optimizes also the sum of non-alive nodes. However, this is not the
case for the second measure. The difference between the two strategies becomes
bigger with a higher number of power sources. The same is true for the two last
strategies focusing on components on either the topological level or the CENS level.
The statistical relevant differences are smaller here. Interestingly this is not true
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Figure 2: Remaining costs before repairing, after having repaired 10% of the
failed nodes, after having repaired 30% of the failed nodes in the regional grid
model. The upper row gives the absolute value for CENS, the lower row gives the
remaining outage costs after in percentage of the total costs. The non-alive nodes
are determined with the Balancing measure. The results are mean values of 100
repetitions of a Monte Carlo simulation with randomly positioned power sources
and random failures.

for the first pair of strategies after the random strategy. Using the Highest Node
Degree strategy is for both measures better than using the Highest CENS Value. The
difference to the other two strategies using CENS is, that the two latter consider the
CENS-sum of a group of nodes which includes also a topological aspect, therefore,
they also perform well compared to their topological counterparts using the sum of
non-alive nodes measure.

As conclusion we can state that using the best strategy Minimize CENS reduces
the costs without increasing the number of non-alive nodes compared to the strategy
Maximize Node Count. This can be done because optimizing for a minimal CENS
implicitly also favors a small number of non-alive nodes. The utility can here reduce
costs without sacrificing the availability of its nodes.

Cost Development of Strategies
In our model the repair takes always the same amount of steps, each strategy needs to
repair |Vfailed| nodes. But depending on the strategy the degree to which the service
is back will be different. In Fig. 2 we have plotted the remaining CENS outage cost
after having repaired 0%, 10% and 30% of the failed nodes. The strategy with the
lowest absolute CENS outage cost also has the property of reducing the cost faster.
In the scenario with 10 power sources, the best strategy Minimize CENS reduces
the CENS outage cost by 30% by repairing 10% of the failed nodes, i.e. by repairing
one single node. After repairing 2 additional nodes (in total 30% of the nodes) only
1/3 of the total CENS outage cost remain. The results illustrate that repairing with
the right strategy can reduce the costs drastically.

Influence of Node Degree and Number of Power Sources
In the following we study the effect of increasing the number of power sources.
As before the regional grid is used with randomly positioned power sources and
a random node failure of 10% of the nodes. The number of power sources takes
the values 10, 25, 40 and 55. Only the best strategy Minimize CENS is considered.
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(a) CENS outage cost in the regional
grid and in random networks whose node
degrees follow an exponential distribution
exp(λ) with λ ∈ {1.6, 2.0, 2.4}. The repair
strategy Minimize CENS is used after 10%
of the nodes failed. The non-alive nodes are
determined with the Balancing measure.
Whiskers indicate the standard error of
mean.
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(b) DR potential to reduce CENS outage
cost in the regional grid and in random
networks whose node degrees follow an
exponential distribution exp(λ) with λ ∈
{1.6, 2.0, 2.4}. The repair strategy Minimize
CENS is used after 10% of the nodes failed.

Figure 3: The results are mean values of 100 repetitions of a Monte Carlo simulation.

Additionally we use random networks whose node degrees follow an exponential
distribution exp(λ) with λ ∈ {1.6, 2.0, 2.4}. The simulation results are shown in
Fig. 3a. For all four networks the CENS outage cost goes down when the number
of power sources increases. Increasing λ, which increases the average node degree,
reduces the CENS outage cost as well. However, this effect is stronger for a small
number of power sources in the network. If the number of power sources increases
even more the difference disappears completely as can be seen when considering the
case when all nodes have a power source. Then, the node degree of the nodes has
no influence anymore as each node is self-contained.

Utilities have two ways of reducing CENS outage cost : First, by increasing the
average node degree. Second, by increasing the number of power sources. The
former is very expensive, usually not practical because of restrictions for building
new links and as shown in the results less effective than the latter.

5 Discussion
The results show that choosing the right strategy can reduce the costs of an outage
drastically. The best strategy is the one finding the optimal solution for the next

82



step, i.e. it simulates all possibilities for the next step and chooses the one with
the best outcome. The computational complexity is higher than with the other
strategies, but this is not an issue as the number of possibilities is only as large as
the number of failed nodes. In our examples, the simulation runs could be executed
very quickly, the simulation finished in a matter of milliseconds on a normal desktop
computer and is several orders of magnitude smaller than the actual repair time.
The network type, the average node degree and the number of power sources has
an influence on the total CENS outage cost. Usually those parameters cannot be
changed in a power grid. However, with the advent of smart grid with its new
services two things may change:

1. The number of power sources may change drastically as small and distributed
power sources (DER) are promoted.

2. A Demand Response (DR) scheme may reduce the load.

The results can be used to appraise the potential to reduce the cost of outages
by using these two smart grid concepts.

Impact of Distributed Energy Resources on Outage Costs
Distributed energy resources (DER) are medium and small scale power sources
located in any level of the power grid. The coordinated operation of DERs requires
either a centrally located controller or a more local micro grid controller. The latter
having the advantage of being able to run this part of the power grid in an island
mode, i.e. a decoupled micro grid [16, 17]. Micro grids are a mean to make parts
of the grid independent from the functioning of the rest of the grid. Assuming a
high density of DER in the underlying distribution grid which are controlled by
local micro grid controllers yields a scenario where the number of nodes with power
sources is high. As seen in Fig. 3a increasing the number of power sources reduces
the CENS outage cost. We can, therefore, conclude that DER reduces the CENS
outage cost and it can even be quantified by using the introduced measure.

Impact of Demand Response on Outage Costs
Changing topological parameters or the number of power plants is in reality
either unrealistic or connected with potentially high costs. Instead, the existing
infrastructure may be used more efficiently; one solution is to use Demand Response
(DR). DR is a mechanism by which consumers change their consumption based
on the price, the load or another signal [7]. In contrast to load shedding, i.e.
disconnecting loads to achieve the power balance, DR reduces the loads without
disconnecting nodes. In a scenario with a high density of distributed power
production and energy storage, DR may also control the distributed production
or feeding of power from the storages to the grid. However, we do not consider the
control of production by DR in this paper. A DR scheme has the advantage of using
the existing infrastructure in a more efficient way by regulating the load. This is also
linked with costs to install the DR infrastructure like devices and a communication
platform. But as the new infrastructure is also used by other smart grid services
like monitoring and controlling the costs can be split.

To study the potential of DR for reducing outage costs it is important to consider
the reason for a power loss in a node. According to the Balancing measure, a node
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can be non-functional because a) it was affected directly by the failure, b) it is part
of a component without power source, or c) it is part of a component with too little
power. The first two cases require repair. In the latter case, assuming a network-
wide instantaneous and failure-free DR scheme, the load of the alive nodes can be
reduced to supply non-functional nodes and turn them into alive nodes.

The measures Balancing and Connectivity may be considered as the two
extreme cases of using DR, i.e. Balancing corresponds to no DR and Connectivity
corresponds to 100% DR with no restriction on a minimal load per node. The
difference between the measures is then the potential of DR. In Fig. 3b this potential
is plotted, i.e. the reduction of CENS outage cost when the whole DR potential could
be used compared to no DR.

The results show that the DR potential is highest for a low number of power
sources in the network. Increasing the node degree leads to a decrease in DR
potential as the probability that a network component is without a power source
becomes smaller. In the extreme case of a complete graph the potential disappears
completely as the nodes are not dependent on the load of other nodes anymore. The
same holds for the case when the number of powered nodes goes to 100%.

The results depend on the ratio (total production capacity)/(total consumption).
If this ratio is close to 1 or even smaller than 1, the potential for DR is large. If the
ratio increases, the results of the two measures will get closer and the potential for
DR will decrease.

Survivability Contribution of Strategies
Dependability is defined as “ability to avoid service failures that are more frequent
and more severe than is acceptable” and it contains metrics like availability and
reliability [18]. A related measure is survivability which is defined as “system‘s
ability to continuously deliver services (. . . ) in the presence of failures” [19]. It can
also be understood as how fast and to what degree the service is still delivered or
restored after a failure. The CENS value has been introduced with the objective “to
achieve the most optimal level of continuity of supply for the society as a whole” [14].
Therefore, it can be understood as a criticality indicator of the node. The CENS
outage cost is then a measure for how well the continuity of supply has been provided
during the repair, or in other words it measures the survivability. The lower the
value, the higher its survivability. To get more details for the survivability analysis it
is necessary to investigate the development of service restoration; a highly survivable
system should restore the most critical parts first. These information can be found
in Fig. 2, which shows the development of the CENS outage cost for the different
strategies. The results can be directly applied to survivability analysis, i.e. using
the right strategy increases the survivability drastically.

Assuming we include time as a factor, we can also state that it is most crucial
to have short repair times for the first nodes. For the second half or even for the
second 2/3 of nodes time is not so crucial anymore, as the most critical nodes are
already repaired.

6 Conclusion
Simultaneous failures have been studied in various networks in the field of network
science. These abstract results can be used for power grids, however, it is crucial to
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tailor them to the specific peculiarities of the system. In this paper, we introduced a
measure based on CENS values of power grid nodes and on the Balancing measure.
The new measure allowed us to quantify and compare the performance of different
repair strategies and networks. As CENS has a direct impact on the regulated
tariffs of a utility it is an important parameter to consider in the event of an
outage but especially also for determining the order of repairing the nodes. CENS
was introduced specifically as a sort of criticality value for each node and to give
incentives to prioritize certain customer groups.

The results show that using the strategy minimizing the CENS costs for the
next step has various advantages. First, it performs comparably to the strategy
Maximize Node Count when using the node count measure. Second, it reduces the
CENS outage cost considerably compared to the CENS-agnostic strategies. Third,
it improves the survivability by restoring critical nodes faster.

We could also show that increasing the average node degree of a network reduces
the CENS outage cost. However, increasing the number of power sources leads to an
even stronger improvement and reduces the difference between networks of different
average node degrees. Thus, increasing the number of power sources is the less
expensive way of reducing the CENS outage cost. In smart grid terminology this
indicates that DER reduces the CENS outage cost. And finally, we showed that a
DR scheme has the potential of reducing the CENS outage cost by up to 24%.

The structural analysis conducted in this study concentrates on the structure of
the power grid and its repair. We do not consider the service, i.e. power delivery
and, therefore, dynamics in the system are not included. The results give valuable
information to power engineers about the upper limit of what can be achieved if all
power engineering challenges are successfully met.
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Abstract. Critical infrastructures, like the future power grid, rely strongly
on a reliable communication infrastructure. Mobile communication seems
an attractive candidate, as the entry costs are low and, provided the cov-
erage, the new devices have immediate communication access upon in-
stallation. However, considering the long time-frame of this investment,
it is important to think about the constraints in mobile networks and
also potential challenges waiting in the future. In this study, which is
based on the situation in Norway, we discuss four important future chal-
lenges: policy change, contract change, change of Quality of Service and
network failure. We show that a clever use of mobile communication like
multihoming or using a mobile virtual network operator may meet the
challenges. In the second part, we quantify the availability of the differ-
ent mobile communication usages with the help of analytical models and
show that already a small increase of additional battery capacity in the
mobile network improves the availability significantly.

1 Introduction

Like other critical infrastructures, the future power grid is going to rely strongly
on a reliable communication infrastructure. Intelligent electronic devices (IED)
are going to be deployed throughout the power grid and are in need of a flexible
communication platform [1]. The requirements concerning latency, availability
and security [2, 3] are very diverse and might be covered by either a flexible
middleware framework for data communication like GridStat [4] or a mixture
of different technologies. Among the considered technologies, mobile communi-
cation is regarded as a pragmatic choice for services like smart metering and
monitoring in remote locations. It is a tempting candidate, because the entry
costs are relatively low and, provided adequate coverage, the device has imme-
diate communication access upon installation. However, there are many pitfalls
to avoid, not least because of the long term nature of the investment.

The mobile networks conduct an access control based on the mobile device’s
subscription. A device is usually only allowed to use the network of the operator,
which issued the subscription. National roaming, i.e. the communication over
networks of other operators, is technically possible but commonly not permitted.
There are exceptions for special numbers like police and fire department and
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for special groups of customers, e.g. in Norway the regulator stipulated national
roaming for a limited set of prioritized customers from rescue organizations [5]. If
a utility wants to use a different operator because the reception has deteriorated
or it changed the contract, it has to manually exchange the SIM card in the
device, which may be very costly as the potential number of devices for smart
metering and monitoring is very large.

An important property for the suitability of a communication infrastructure
is its dependability. Only few public studies exist [6–8] as the access to data is
usually restricted. The first two studies focus on operator internal incidents, the
third one [8], however, takes a different approach: it is based on measurements
done by mobile devices distributed over 300 different places in whole Norway.
The logged connectivity to the different UMTS networks show the distribution
of time between failures, down time and unavailability. This study measures the
Quality of Service exactly how a user would perceive it.

In this paper we suggest several alternatives on how a power utility may use
mobile communication; we single out the four main future challenges and analyze
how the alternatives react to those. After this qualitative analysis we analyze the
availability of the alternatives quantitatively based on measurement data from
the study from [8]. And finally, we analyze the availability improvement when
equipping the base stations in the mobile network with more battery capacity.

2 System Description

We consider the case, in which a company wants to roll-out a large number
of mobile devices. These devices could be smart meters or monitoring devices
inside the power grid. The study focuses on the implication of using mobile
communication for these smart devices, this is done by concentrating on the
communication between a single smart device and the company. The mobile
communication is provided by two mobile network operators (MNO): MNO A
and MNO B. It is assumed, that there is no national roaming agreement between
MNO A and MNO B, i.e. subscribers of one network have no access to the
other network. As in real networks, the two infrastructures are not completely
independent and thus their failures manifest some dependencies. The reason is
twofold. First, shared infrastructure or geographical collocation of infrastructure
in certain parts of the network, e.g. A leases a communication line from B in
rural and sparsely populated areas or A and B have their cables in the same
ditch. Second, dependence on the same service like for example power supply. In
both cases one failure can cause a failure in the two MNOs.

The MNOs are considered as black boxes, no internal state is known, the
mobile device only knows whether a connection to an MNO is possible and, on
a higher network level, if it has a connection to the power utility. It is assumed,
that only the MNOs can fail, as they are the main focus of the study.

In order to connect to the mobile network any device needs a SIM card. On
each SIM card there is a number (IMSI) which uniquely identifies each device.
Part of this number is the mobile network code (MNC), which identifies the

90



mobile company that issued the SIM card. Access control is based on the MNC,
an MNO allows only connections from devices with its own MNC or with an
MNC belonging to an MNO with a roaming agreement. In Norway, these roaming
agreements are scarce and limited to foreign MNOs or mobile companies owning
no or only a very limited network on their own.

2.1 Challenges

Any mobile solution faces challenges over its lifetime. In the following we list the
challenges, which are in our opinion the most important once.

Challenge 1: Policy Change Mobile communication depends on policies
from the national regulator and also on policies from the MNO. The national
regulator may for example forbid international roaming fees or impose national
roaming; the MNO may change national and international roaming agreements.

Challenge 2: Contract Change The contract between the subscriber and
the MNO is subject to changes over time. Examples are an increase of the sub-
scription fee above an acceptable price level, required services that are discon-
tinued, bankruptcy of the MNO or its acquisition.

Challenge 3: Change of QoS The Quality of Service (QoS) at a device may
change over time. Examples are a reduced signal strength or increased blocking
probability because of structural changes between the mobile device and the
base station (e.g. new walls, new buildings) or changes in the usage pattern of
the base station (e.g. increased number of subscribers).

Challenge 4: Network failure A network failure in this context is defined
as service outage, i.e. communication from sender to receiver over this specific
network is not possible. The mobile device always tries to connect to a base sta-
tion of its prioritized MNO. If no base station of its prioritized MNO is available,
it may try to connect to a base station of another MNO, but a connection is
only established if a roaming agreement with that MNO exists.

The time granularity is very different and decreases from the first to the
last challenge, i.e. the reaction time for the operator is getting shorter. Policy
and contract changes have to be announced with a certain lead time and the
operator can look for a solution well in advance. A change of QoS, however, may
happen without notice and network failures usually come without warning and
the system has to immediately react to mitigate the failure.

3 Usage Alternatives

The ordinary way is to buy regular SIM cards from an existing MNO, denoted
in the following as ordinary subscription. This comes with a carrier lock-in: a
change of MNO can only be achieved by replacing the SIM card in each and
every device. This is costly, as the number of devices is likely to be high and
some of the devices may be located in remote areas or in places difficult to reach.
Also a network failure has a strong impact, as a national roaming is usually not
allowed, i.e. only the network of your own MNO can be used.
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MVNO The utility takes the role of amobile virtual network operator (MVNO),
buying a certain amount of services from an MNO. Utilities may collaborate
nationally to reduce the operational costs.

The MNO can be changed by changing roaming agreements. There are al-
ready many MVNOs, so this is a proven solution and it can be implemented
quickly by out-sourcing almost everything if desired. A precondition for this so-
lution is that existing MNOs allow roaming by MVNOs. A policy change by the
national regulator or the MNOs may therefore have an impact on this solution.
An MVNO has usually only an agreement with one MNO and it may happen
that no MNO can provide a satisfactory QoS for all the devices. In this case,
changing the MNO does not help. This threat is higher for geographically wide
spread utilities. In case of a network failure, this solution has the same weakness
as the Ordinary Subscription, because the network cannot be changed on short
notification but needs longer negotiations.

The MVNO may issue several series of SIM cards with different MNCs. It
can then make individual roaming agreements for each MNC. This way some of
the discussed problems can be mitigated.

Multihoming Certain devices allow the use of multiple SIM cards. Using a
SIM card from each MNO implements a national roaming without dependencies
on policy changes by the regulator or the MNOs. An application on the device
probes the different networks and chooses the one with the most favorable QoS.
There is a carrier lock-in, however, by using several SIM cards the risk is mini-
mized. Using a SIM card from an MVNO especially for utilities may increase the
flexibility of this solution even more. A new MNO can only be used by inserting
their SIM card. The cost per device is higher, as it needs multiple SIM card slots
and multiple subscriptions per device.

International Subscription Interestingly, users with a foreign subscription
can have an advantage over those with a national subscription when the foreign
MNO has roaming agreements with several national MNOs. In this case, the
foreign subscription implements a national roaming.

The advantages are that it is very easy to implement and several mobile
networks can be used, depending on the roaming agreements. The switchover to
another network may be fast, depending on the network failure. International
roaming depends strongly on the policies of the regulator and the MNOs that
are in place. If the roaming costs are abolished for good, the MNOs may restrict
roaming agreements or make international coalitions with roaming agreements.
But all depends strongly on what is de fined as legal by the European and the
national regulator. Additionally, this solution leads again to a carrier lock-in.

4 Unavailability

The availability of the alternatives can be grouped in three classes.
Asingle: only one single network is used, if it fails the connection fails as well;
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Astandby: there is a standby network, which is used in the case of a failure in
the primary one, the switchover time varies between the solutions;
ADMR (DMR: dual modular redundancy): two networks are used at the same
time and a failure in one does not interrupt the connection.

The ordinary subscription andMVNO (with one MNC) are in the classAsingle

because they can only use the network of a single MNC, namely the one having
issued the SIM card or the one having a roaming agreement, respectively. The
solution MVNO (with multiple MNCs) is either in the class Asingle or Astandby,
depending on whether the MNC is fix or whether it can be changed dynamically
in case of a network failure.Multihoming is in the class ADMR if the SIM cards are
used in parallel and in class Astandby if one is in a standby state. The international
subscription is in the class Astandby because the device can only be connected to
one network at a time and needs to reconnect in the case of a network failure.

We compute the unavailability U of the classes, given by U = 1 − A, where
A is the availability defined as “readiness for correct service” [9].

4.1 Quantification of Asingle and ADMR

Table 1. Used parameters from study [8].

unavailability failure rate restoration rate
U λi,total [s

−1] μi [s
−1]

Asingle 3.3× 10−4 1.11× 10−5 3.33× 10−2

Asingle 5.0× 10−3 2.01× 10−6 4× 10−4

ADMR 2.0× 10−5 – –

The mentioned study [8],
contains data for our
classes Asingle and ADMR.
Additionally, it also con-
tains the distributions for
time between failure and
down time when using a
single network. Assuming the distributions to be negative exponential, the fail-
ure and restoration rates are computed with the approximated mean time be-
tween failure (MTBF) and mean down time (MDT) by λ = 1/(MTBF-MDT)
and μ = 1/MDT. The parameters are given in Table 1. The two networks have
very different properties: MNO A has more failures than MNO B, but due to its
short restoration time it has a lower overall unavailability.

4.2 Quantification of Astandby

ok:ok

ok:d

d:ok

d:d cf:cf
λB

μB

λA

μA

λB

μB

λA

μA

λcf

μcf

Fig. 1. Model for class ADMR

There are no numbers for Astandby, however, we
show how it can be computed with a Markov
model and the given parameters. But first, we
note, that the measurements in Table 1 indicate,
that MNO A and MNO B are not independent,
they are subject to common cause failures. In or-
der to compute this common cause failure rate the
Markov model in Fig. 1 is used. The round states
are system up states and the square states sys-
tem down states. The state of the whole system
is defined by the states of the two MNOs (iA : iB) with iA, iB ∈ {ok,d,cf}. The
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states for each MNO are working (ok), down (d) or down because of a com-
mon cause failure (cf). Common cause failures from states other than (ok:ok)
are omitted for the sake of readability; the introduced error is negligible, as the
ok:ok state has by far the highest state probability. The λis are computed by
λi = λi,total − λcf in order to keep the total failure rates λi,total constant when
varying λcf . Setting λcf = 0, i.e. making the networks independent, we get an
unavailability of 1.67 × 10−6, i.e. around 12 times smaller than the measured
unavailability in Table 1, showing that the networks are in fact dependent as
mentioned above.

Table 2. Common cause rates
after parameter fitting.

λcf [s−1] μcf [s−1]
6.34× 10−7 4× 10−4

Details about shared infrastructures and ser-
vices inMNO A andMNO B are not known. How-
ever, leased line and power incidents are possibly
large contributors to failures [6], therefore, we as-
sume a restoration time of 1/μcf = 2500s, which
is in the order of a longer mobile restoration time and a power outage restora-
tion [10]. Solving the model with the unavailability and rates given in Table 1
yields a common cause failure rate λcf as listed in Table 2. The failure rate λcf

makes around 5% of the total failure rate of MNO A λA,total and around 30% of
MNO B λB,total.
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D:okOk:d

D:d CF:cf

ok:D

d:D
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ok:OK cf:CF
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λcf

μcf
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λAμA

λB
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λcf

μcf

μA

λswitch
λswitch

Fig. 2. Model for class Astandby

Finally, the unavailability for Astandby is
computed by extending the state definitions to
(jA : jB) with jA, jB ∈ {ok,OK, d,D, cf,CF},
which yields the model depicted in Fig. 2. Up-
percase letters indicate that the mobile device is
currently using that network. E.g, state (ok : D)
means network B is used, but down and network
A is ok. It is a down state (square), only after
switching the network, leading to state (Ok : d)
is the system up and running again.

In a business oriented setting it can be ad-
vantageous to prefer one MNO over the other
because of special price models based for ex-
ample on data volume. The other MNO is only
used if the preferred one is down. For that, the
model in Fig. 2 is adjusted to always switch over
to the preferred network if it is working. i.e. if MNO A is preferred, adding a
new transition from (ok:OK) to (OK:ok) and marking the former state as down
state because of the unavailability during the switchover.

4.3 Discussion

The results of a steady-state analysis are given in Fig. 3. They show clearly
the large difference in unavailability of the different solutions. Class Asingle has
two results depending on which MNO is chosen. The difference between the two
MNOs is big because of the large difference in restoration time.
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In the classAstandby,
the unavailability is
linearly increasing with
the mean switching
time. The unavail-
ability is lower than
the unavailability of
Asingle if the mean
switching time is lower
than 95 seconds or
1485 seconds forMNO A
and MNO B, respec-
tively. The first num-
ber is surprisingly small,
it is explained by
the very short aver-
age restoration time
in MNO A of 1/μA =
30s. The switching
time itself depends
strongly on the used
alternative and im-
plementation. Two alternatives belonging to the class Astandby may, therefore,
not necessarily have the same unavailability.

Preferring one MNO leads to a higher unavailability. MNO B is here the
better choice of the two, as this solution benefits from the longer uptime of MNO
B and the shorter restoration time of MNO A. Preferring one MNO creates
additional interruptions, i.e. a lower mean time between failure (MTBF) and
should be avoided. However, as stated above there might be other considerations
that need to be taken into account. We consider the system as down during the
switchover, if it is performed without downtime, then preferring MNO B has a
lower unavailability than the standard standby class.

5 Improving Availability with Batteries

okbd

(1− p)λi

μi

pλi

μi

λbat

Fig. 4. Model for class
Asingle with limited bat-
tery capacity.

Today, batteries are available in some base stations.
Depending on the MNO the number of equipped base
stations as well as capacity varies strongly. In Norway
there are discussions between the national regulator
and MNOs about stipulating a required battery in-
stallation in base stations in mobile networks [11]. So
far, installed batteries in the power grid were already
included implicitly, because we used measurements of
actual networks. In the following we study the effect of installing additional
battery capacity.
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Batteries allow the communication system to keep on working in case of a
power failure, if it is bridgeable by battery. We assume that this is the case for
p% of all failures, valid for both individual failures and common cause failures.
The battery capacity is assumed to be negative exponentially distributed with
mean 1/λbat. This assumption is justified by the variation of capacity due to
different battery types, battery ages, working conditions and charging states.
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Fig. 5. Model for the class ADMR with limited battery ca-
pacity.

The extended mod-
els for the classes
Asingle and ADMR are
depicted in Fig. 4
and Fig. 5. The state
definition is extended
by the network state
b, indicating that the
network suffered a
power failure and parts
of it is running on
battery. The dashed
arrows indicate a tran-
sition caused by bat-
tery depletion. The
model for Astandby is
not depicted but is
constructed as before
by duplicating the model for ADMR, adding an indication for which MNO is
active and adding two new transitions with rate λswitch between ok:D to OK:d
and D:ok to d:OK.

5.1 Discussion

Fig. 6(a) shows the results for the class Asingle when using MNO A. The un-
availability is most sensitive to a mean battery capacity in the order of the mean
down time, i.e. 1/μA = 30 seconds. For the MNO B the plot would look similar,
but shifted towards its mean down time of 1/μB = 2500 seconds.

Fig. 6(b) shows the results for the class ADMR. The two parameters λcf and
μcf are set to the values used previously, noted in Table 2, which equals to
a mean common cause restoration time of 2500 seconds. As expected are the
absolute values lower than in the class Asingle; the plot is in fact almost the same
as for MNO B, except the y values are much lower. The reason being, that of
the two down states in the model, the state cf:cf is responsible for the highest
fraction of the down time. The mean sojourn time for this state is given by 1/λcf

and is equal to the restoration time in MNO B.
Fig. 7 shows the results for the class Astandby. The simulation is done for two

scenarios with different pairs for λcf and μcf . In scenario 1, 1/μcf is chosen to
be very short, i.e. 30 seconds, which corresponds to the restoration rate of MNO
A. As before, λcf is given indirectly by the model in Fig. 1 by solving the steady
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state equations for it. In scenario 2, the two parameters λcf and μcf are set to
the values used previously , i.e. 1/μcf of 2500 seconds. Additionally, it is done
for two different switching times. For a switching time of 1 second the difference
between the two scenarios is big, i.e. the downtime caused by the common cause
failure is dominant. When increasing the switching time to 60 seconds, however,
the downtime caused by the switching itself becomes dominant and the difference
between the two scenarios is minimal.

The numbers show that the availability gain can already be large for a small
battery capacity bridging a time of 1-3 minutes. However, it depends strongly
on the restoration times and switching times between the networks.
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6 Conclusion

We list different alternatives of how to use mobile communication in this paper.
By combining them, more are possible, but they are not fundamentally different
to the presented ones. As the machine-to-machine communication (M2M) is
likely to increase in the future, new technologies and especially new regulations
may change the way mobile communication is used. For example, a decoupling
of the SIM card and the operator by issuing carrier-free SIM cards would allow
the switching between different networks and subscription contracts with only a
short switching delay. This would inexpensively implement a virtual multihoming
belonging to the availability class Astandby as discussed above.

This study is based on the regulation status and availability statistics in Nor-
way. Details might be different in other countries. If and how mobile communica-
tion should be used depends on what service is run over it and its requirements
concerning availability, performance and costs. In this paper we only focused on
future challenges, usage alternatives and the availability; performance and costs
are important factors but were outside the scope.
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Abstract—The pervasive use of information and communi-
cation technology (ICT) in the future power grid creates an
interdependent system: ICT systems depend on power supply
and the power grid depends on information channels and systems
for monitoring and controlling. The automation of processes
with ICT can reduce the most frequent failures and decrease
their consequences. However, the added complexity and the tight
integration comes with new failure sources and increased mutual
dependencies between the systems and opens the possibility for
more catastrophic failures. In this paper we focus on these
interdependencies between the power grid and ICT in different
phases of the recovery process of a power failure. We model the
dependencies and quantify the effect of using smart monitoring
devices in the detection phase. The analysis shows that adding
battery backup into the communication network is a good
measure to delay the interdependency effect encountered. The
study of scenarios with different degrees of battery support,
number of repair crews and fault detection mechanisms indicates
that while automation can reduce the human effort needed for
the most frequent failures, it can lead to longer down times in less
frequent incidents, if no prevention measures are taken. Finally,
we show that the skill sets and training level of the repair crews
play a crucial role and can be used to prevent the negative effect
in low frequency incidents.

I. INTRODUCTION

The todays power grid depends on functioning information

and communication technology (ICT) services for various

aspects like monitoring, controlling and protection. In the

future power grid, the smart grid, this dependency is expected

to increase even more [1]. What makes the relation between

the power grid and the supporting ICT complex, is that on

one side the power grid relies on the ICT to get data and

to control the system, but on the other side, the ICT system

needs the power grid for power supply. Hence, we have an

interdependent system [2], [3]. In order to understand such a

system, it is crucial to investigate both of the systems and their

interactions [4]–[6].

Studies of major power grid incidents show the importance

of these interdependency effects in the past [7]–[9]. A formal-

ism to classify the different types of interdependencies and

failures is put forward in [2] and there are theoretic results

focusing on a long chain of failures cascading back and forth

between the power grid and the ICT system [7].

The introduction of new services based on ICT comes also

with the potential to increase the dependability of the power

grid [10]. The promise is that the automation of processes

can reduce the most frequent failures, which can be called

the primary effect. However, the new systems contain more
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Fig. 1: Schematic example how the introduction of automation

may influence the risk curve of a system.

sophisticated software and more configuration possibilities.

This makes the development, configuration and maintenance

more critical and complex. Lets call this the secondary effect.

Two large studies on the public switched network and critical

infrastructures showed that the majority of failures are either

human made due to wrong maintenance, configuration or

accidents [11]; or software related [12]. Human made failures

may be caused among others by the complexity of large net-

works with its various technical concepts, historically grown

solutions, and its continuous renewal of technology [13].

The mentioned primary and secondary effects of the intro-

duction of ICT can be visualised in a simple plot as shown in

Fig. 1. The hyperbola represents the risk curve of a specific

system. The focus is usually on the primary effect of the

ICT support, which is supposed to reduce the frequency and

the consequences of high frequency incidents, denoted by the

arrow on the right side. The automation reduces human effort

for these incidents. However, there is also a change on the

other end of the scale, caused by the secondary effect. Without

any prevention this can lead to larger consequences in low

frequency incidents.

A situation where the interdependency between power grid

and ICT becomes apparent is during the recovery of a power

grid incident. The repair crews have a need to communicate

with the control centre but the prevailing failure in the power

grid has an influence on the power supply of the commu-
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nication system and its availability. Norway, a country with

remote regions and harsh weather conditions, suffered several

large winter storms in the last years. The power outages were

followed by the outage of the mobile network, which then

slowed down and impeded the recovery process. Triggered

by this events, the national regulator and the mobile network

operators (MNOs) started the discussion about stipulating

a required minimal battery supply in parts of the mobile

networks [14], which would delay the dependency effect on

the communication system.

In this paper, we focus on the interdependency in the smart

grid during the recovery process. We take a survivability

approach in which the study starts the moment the system fails

and ends with its full recovery [15]. The recovery process is

split into several phases and the interdependencies between

power grid and ICT systems are analysed step-wise for all

of them. Based on this, we propose an analytical model for

the recovery phase. First, it is used to investigate the potential

of automation and additional battery supply in the communi-

cation network to delay the interdependency effects between

the systems. Second, it is used to analyse scenarios with

different degrees of battery support, automation and number of

repair crews, under high, medium and low frequency incidents.

Finally, we discuss the impact of automation on the needed

skill set for the repair crews and its implications for the

recovery time.

II. PROBLEM DESCRIPTION

The objective is to model the interdependency between the

power grid and the communication network during recovery.

More precisely, we are interested in the case, in which the

power grid suffers an outage that needs a repair crew to go

on location to conduct a repair. The repair crew is using

mobile handsets to coordinate among each others and with

the operator at the control centre. For operation, however,

the mobile network relies on the power supply by the power

network. The most critical components in the access network

of the mobile network are the base stations. While on place

for the repairing activity, the handsets of the repair crews

are connected to the base stations in the area affected by the

outage. Most important, the base stations, to which the mobile

handsets connect to, are in the same region as the power

incident and are likely to be affected by the power outage. The

base station may have an uninterruptible power supply (UPS)

in form of a battery pack, which allows staying operable for

a certain time after the power went out. As soon as the base

station becomes unpowered, the mobile communication in that

specific region is not possible anymore and the repair crew is

slowed down because it has to work without communication.

Note, in highly populated areas there are usually several base

stations within reach. For this paper, we consider a sparsely

populated area with a low density of base stations as it is found

in large parts of Norway.
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Fig. 2: State diagram showing the cascading and escalating

interdependency failures during a power failure and its restora-

tion, with μR > μR2.

A. Dependencies between Power Grid and ICT

The dependencies in this system are two-fold. First, the

communication system depends on the power grid for power

supply. Second, the length of the recovery process depends on

the correct operation of the communication system.

The high-level state diagram in Fig. 2 shows the depen-

dencies in the failure case in more details. The model is

drawn along the two axes showing the state of the power

grid (PG) and the communication system (ICT) as described

in [6]. The failure in the power grid leads to a power outage

in the base station, which transitions into an excited state,

because it is now running on a finite battery supply. If no

battery was available, it would go straight into a failed state.

This is categorized as a cascading failure according to [2],

meaning the power failure is the single cause why the ICT

system transitions into an excited or failed state . The power

grid is now being restored, however, if the battery supply runs

out before its completion, the loss of communication leads to

a slower restoration rate. This mechanism is categorized as

escalating failure according to [2], meaning the power grid is

already in a critical or failed state but is additionally negatively

affected by the state change of another system, i.e. the failure

in the communication system.

B. Dependencies inside the Power Grid

There are additional dependencies, which concern only one

system. In a hurricane situation the probability is high that

several lines or stations in the power grid suffer a failure

at the same time. This leads to a state in which the repair

staff becomes a scarce resource and the repair of a failure

needs to be delayed until the necessary resources are available.

The recovery time for a failure depends, therefore, on the

availability of resources or more general on the state of the rest

of the power grid. This dependency can be seen as a failure

escalation as the failure in part of the system is escalated, i.e.

the recovery time is increased, if the repair crews are already

busy repairing other failures.
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Fig. 3: Recovery stages of the phased recovery from a power grid incident (phases are based on ITU-T E.800 (1994) [16]).

III. RECOVERY

The recovery process is split into the different phases based

on the partitioning of the down time as described in ITU-T

E.800 (1994) [16]. The phases are depicted in Fig. 3.

A. Recovery Stages

There are five phases in the recovery process:

• Detection phase: This phase comprises the detection

delay between the moment a failure happens until it is

actually noticed in the monitoring system and the time to

gather information about the incident. The power grid is

equipped with a protection system and fuses, which work

independently. Without monitoring devices installed, the

incident is not reported directly to the control centre.

Depending on the size of the incident, the control centre

may indirectly notice it by a load drop or other indi-

cations. Monitoring devices throughout the system can

detect failures close to real-time and thereby reduce the

detection time drastically. The level of details known

about the incident can vary from knowing the location,

affected components and exact fault type to basically

nothing. However, the system relies on a communication

channel between the devices and the control centre and

on power for the devices. The devices need only a short

time span in the order of seconds to collect data about

the incident and inform the control centre.

• Administrative phase: The recovery is planned and the re-

pair crew has to be assigned and instructed. This includes

using a communication system to reach the repair crew,

which might be located in a different region or might be

on duty in the field. The used network is either a fixed

network or a mobile network, depending on the location

of the crew.

• Logistics phase: The repair crew is gathering the needed

material and equipment and drives to the location of the

incident.

• Fault localisation: This phase includes the precise geo-

graphical location and finding the cause of the failure.

This may include communication with the control centre

to get additional information about the system or the

failed devices. This is especially important for less trained

or inexperienced workforce.

• Repair phase: The system is repaired and brought back

to normal operation.

B. Role of Communication

The used communication devices and communication net-

works change over the phases. In the detection phase smart

monitoring devices are used, which are distributed over the

whole network. They use a communication network that can

either be the utilities own network or a public network. All the

following phases use only mobile handsets as field devices.

The used network is the mobile network but the region in

which it is used changes. In the administrative phase the

mobile handsets are used quite probably outside of the region

where the incident happened. In the logistics phase the repair

crew is relocating itself towards that region and for the last

two phases they are in the exact location of the incident. The

base stations in the access network of the mobile network in

this specific location depends on power supply and is suspect

to a failure if no battery power backup is available.

As explained above, the importance of information from

the field devices and a working communication channel is

different in the recovery phases and influence the sojourn time

for the phases. This is illustrated in Fig. 3 with the boxes inside

the phases.

• Detection phase: The sojourn time depends on the exis-

tence of monitoring devices and an available communi-

cation channel to the control centre. If both are provided,

the sojourn time is in the order of seconds, if not, it is in

the order of several minutes and up to hours.

• Administrative phase: The sojourn times in the admin-

istrative phase is in the order of several minutes if the
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communication system is working and in the order of

hours if it is not working.

• Logistics phase: This phase is dominated by the trans-

portation time and is modelled as independent from the

availability of a communication system. Any communi-

cation activity is moved to the administrative phase. Its

sojourn time is in the order of tens of minutes to hours.

• Fault Localisation phase: The sojourn time depends on

the availability of the communication system to get addi-

tional information about the system or the failed device.

Additionally, it depends on the detection phase. If the

detection came from a smart monitoring device, then the

precise location and problem is known and the needed

time is short, i.e. in the order of tens of minutes. There is a

third case in this phase, namely when the communication

dies while the phase is ongoing. The repair crew may

have received already certain information from the con-

trol centre and the sojourn time is shortened compared to

the case without communication from the beginning but

is longer than the case with communication. The sojourn

times are in the order of tens of minutes.

• Repair phase: The sojourn time depends also on com-

munication as the recovery of the system can happen

smoother when communicating with the control centre.

The times are in the order of tens of minutes.

C. Model

The system is modelled with a stochastic activity network

(SAN) [18]. The cases detection with communication and

detection without communication are not in the model, but

are distinguished by using a different set of intensities in

the model. We assume that the fixed network is used for

communication in the administrative phase and, for the sake

of simplicity, we assume that this does not fail.

The model is depicted in Fig. 4. The places are mirrored into

a second row representing the state in which the batteries in the

base stations in the incident regions are depleted. Therefore,

the fault localisation and the repair phase cannot use mobile

communication. It is important to note, that this gives no

information about the availability of the communication in

the other phases. This modelling decision is taken to allow

analysing multiple failures in the same model by simply

increasing the number of tokens in the initial marking.

Stage I of the recovery, i.e. the detection phase, runs

independent of repair crews, but as soon as Stage II is entered,

the recovery process is stopped until a repair crew is available.

This is modelled with a place representing the pool of available

repair crews, the consumption of one token from that place at

the start of Stage II and setting back a token after finishing

the recovery.

The initial marking is N tokens in the place det and R
tokens on R idle, where N is the number of failures in the

system and R the number of repair crews. The timed activities,

represented by a thick bar, follow all exponential distributions

and are multiplied by the number of tokens in the respective

input place to allow modelling multiple failures. The thinner

bars (wait, wait2, tidy_up) represent instantaneous

activities firing as soon as all input places contain a token.

These transitions are introduced to make the model easier to

read.

D. Numerical analysis

We first analyse the model numerically for a single failure,

i.e. N = 1, using the rates as given in the first two columns

of Table I for the activities. The numbers are based on data

for longer outages from the Norwegian regulator [19]. In 2013

the mean down time (called CAIDI in power engineering) was

1.36 hours.
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TABLE I: Rates used in the numerical analysis.

detection mechanism
automatic manual (1) manual (2)

activities [min−1] [min−1] [min−1]
aDet, aDet2 1/1 1/20 1/20

aA, aA2 1/5 1/5
aLog, aLog2 1/15 1/15

aFL 1/10 1/20 1/30
aFL to no 1/15 1/30 1/45

aFL no 1/22 1/45 1/90
aRep 1/10 1/15

aRep no 1/15 1/30
aBatx, x ∈ {1, 2, 3, 4, 5, 6} 1/(battery supply)

A
(t

)

battery supply

time [min]

manual detection

automatic detection

Fig. 5: Instantaneous availability A(t) during the recovery

process.

The quantitative analysis of the SAN is done by simulation

runs with the Möbius tool [17]. The results are mean values

of 10’000 simulation runs for each parameter set.

For the first analysis, an impulse reward is added to the

very last transition in the SAN model called tidy_up.

Whenever this transition fires, a reward of 1 is given. The

time distribution of this reward gives the distribution of the

recovery time. The cumulative distribution function (CDF) is

then equal to the instantaneous availability during recovery:

A(t) = P (Trecovery ≤ t), which also denotes the probability

that the recovery time Trecovery is less than t.

The result is given in Fig. 5. The lower four curves show the

results for manual detection, the upper four curves the result

for automatic detection. Both, having an automatic detection

and having a battery supply at the base stations have a positive

effect on the recovery speed.

In order to break down the effect on the different recovery

phases, we repeat the simulation with a different reward

function. A reward of 1 is given after leaving any of the five

recovery phases. The rewards are then summed up over time

and the results are plotted in Fig. 6. The plot shows how the

battery supply influences the availability only after entering

the later recovery phases. The automatic detection has the

strongest impact in the first phase and in the fault localisation

phase.

Detection Phase

Admin Phase

Logistics Phase

Fault Localisation Phase

Repair Phase

re
st

or
at

io
n 

ph
as

es

cu
m

ul
at

ed
 r

ew
ar

d

battery supply

time [min]

manual detection

automatic detection

Fig. 6: Expected recovery phase at a given time t.

E. Costs

The installation of additional battery has a clear effect on the

recovery process, however, it comes with an installation and

maintenance cost. In Norway there are discussions between

the regulator and the mobile network providers to increase the

battery supply in the network [14]. On the other side, there

are costs for the power utility during the recovery process

for the smart monitoring devices, material, equipment and

the repair crews. Increasing battery supply increases both the

dependability of the network and the costs for the society.

For a utility under pressure it might be tempting to reduce

recovery costs by profiting from the battery supply in the

mobile network by reducing the number of repair crews. The

impact of this reduction is analysed in the next section.

In our analysis we do not consider cost in more details, it

is outside the scope of this paper. But the main point is, that

the expenses are on the mobile operators, while the potential

savings are for the power utilities.

IV. RISK CURVE

A. Consequence of Incident

The risks of a system are analysed by studying the proba-

bility or frequency of an incident and its consequences. The

analysis yields a characteristic risk curve for a system. As

a measure for the consequence we use the mean down time

(MDT) of a system. It is computed by getting the recovery dis-

tribution, i.e. the instantaneous unavailability U(t) = 1−A(t)
beginning immediately after a failure, where A(t) denotes the

availability. The MDT is now computed by integrating U(t)
over time

MDT =

∫ ∞

0

U(t)dt =

∫ ∞

0

1−A(t)dt

.

Another option for the measure is the cost of energy not

supplied (CENS), which is used in the Norwegian regulation

framework [20]. It also uses the down time for the calculations

but includes more information like the estimated costs of

an outage for a specific customer group. For the sake of

simplicity, we only concentrate on the down time as a measure

because it is the dominating factor.

A power utility may profit from battery supply in the mobile

network by decreasing the number of repair crews, which
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Fig. 7: Mean Down Time (MDT) for the scenarios under the

three incidents.

leads to a cost cut. Table II shows a simple comparison of

a system having no battery, and a system having an average

of 180 minutes battery supply and a decreasing number of

repair crews. There are 5 failures in each of the systems.

The MDTs show clearly the effect of the battery supply.

When having no battery supply, the MDT with 5 repair crews

is slightly longer than the MDT with 180 minutes battery

supply but only two repair crews. However, these results are

only valid for 5 failures in the system. A system needs to be

analysed over a range of different incidents before a decision

about a reduction of repair crews can be taken.

B. Considered Incidents

We compute the risk curve for our system for the following

three different incidents:

• high frequency incident: Incident happing several times a

year. We use a single power grid failure.

• medium frequency incident: Incident happening every

other year, like a smaller storm leading to several power

grid failures. In the numerical example we use 5 failures.

• low frequency incident: Incident happening once in 10

years, like a hurricane that causes a larger number of

power grid failures. In the numerical example we use 10

failures.

C. Numerical analysis

We consider several scenarios for the system and start

with the top three rows in Table III. Scenario 1 is the old

system. There are no monitoring devices in the network and

the detection phase is, therefore, manual. There is no battery

supply for the base stations. The used parameters are listed in

TABLE II: Influence of reducing repair crews when having

battery supply.

Failures Repair Battery MDT
Crews [min] [min]

5 5 0 106
5 5 180 76
5 2 180 101
5 1 180 144
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Fig. 8: Mean Down Time (MDT) for the scenarios under the

three incidents.

Table I, in the column manual (1). Scenarios 2 and 3 both

have some battery supply but a reduced number of repair

crews. They also have smart devices that provide an automatic

detection in the high and medium frequency incident case. In

the low frequency incident, i.e. the rare event, it is assumed

that the communication to this devices is cut and that the

detection has to happen manual as well. The used parameters

are listed in Table I, in the columns manual (1) and automatic.

D. Missing Training and Practise

In the previous case it is implicitly assumed that the repair

crews in Scenario 2 and 3 manage the recovery phases in

the low frequency incidents with the same efficiency as the

repair crews in scenario 1. However, this might be unrealistic

as they most often operate with information sent to them from

the smart devices during the automatic detection. Only seldom

do they perform a recovery starting with a manual detection.

Therefore, there might be less operational knowledge, less

training and missing skills for the recovery phases without

the information from the smart devices. In addition, a repair

crew in the automatic detection case does not need the same

knowledge and background as one in scenario 1, which might

have an effect on the staffing. The combination of these

reasons, leads to the conclusion, that the repair crews might

perform worse in the low frequency incident than the repair

crews in scenario 1, and the results are probably too optimistic.

Therefore, we create the scenarios 4 and 5, which are replicas

of scenarios 2 and 3, but with adjusted rates. The scenarios are

given in Table III and the parameters in Table I in the columns

manual (2) and automatic. For the parameters in manual (2),
the expected activity time in manual (1) are multiplied by 1.5

TABLE III: Scenarios (parameters are given in Table I).

Battery Repair Detection in incident case:
[min] Crews Low Medium High

Scenario 1 0 5 manual (1)
Scenario 2 30 3 manual (1) automatic
Scenario 3 180 3 manual (1) automatic
Scenario 4 30 3 manual (2) automatic
Scenario 5 180 3 manual (2) automatic
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if the communication to the control centre still is available and

by 2.0 if the communication is not available.

E. Discussion
The results are shown in Fig. 7 and Fig. 8. They show,

that the scenarios 2, 3, 4 and 5 have a significant lower MDT

than scenario 1 for high and medium frequency incidents, even

though they use less repair crews. The reason is two-fold.

First, the battery supply, which delays the power outage in the

communication network allows the repair crews to communi-

cate with the control centre and reduces the recovery time.

Second, the automatic detection with the smart monitoring

devices gives valuable information about the exact place and

nature of the failure. In other words, the advantage of the

introduction of monitoring devices, and strengthening of the

communication platform, is so strong that it is even possible

to downsize the number of repair crews and still have a better

performance, i.e. a lower MDT, than without.
However, in incidents with lower frequency, the improve-

ments have the opposite effect. The scenario 2 and 3 perform

here similar to scenario 1, which has no battery supply at all.

The scenarios 4 and 5 have a more pronounced risk curve and

the MDT is actually higher than in scenario 1.
The results indicate, that decreasing the consequences of

the most common incidents by increasing the automation

and using less trained employees can have the inverse effect

in rare events. This can be circumvented by the following

endeavours. First, by not downsizing the repair staff. Second,

by keeping the repair staff on a high training standard and

having efficient and well-established processes for the rare

events. However, the utilities are under a certain economical

pressure and the incidents in which the additional repair staff

or the additional skills are needed are seldom. Therefore, this

might be overlooked or ignored to save money. As both the

MNOs and the power utilities are regulated, the pressure might

also come from the regulators to counterbalance the investment

costs for the battery supply on a macro-economic level. Hiring

repair staff on demand might help, but there the risk of missing

training and practise is even more noticeable and in a critical

situation the skilled repair staff might be a scarce resource.
An additional option is to compensate the reduction of repair

crews and the change of skill sets by employing additional

specialist that can cover the rare events as indicated in Fig. 1.

V. CONCLUDING REMARKS

One of the characteristics of the smart grid is the wide use

of ICT to operate the power grid more efficient and in a more

reliable way. The automation of processes reduces the most

common failures and makes them less severe. However, the

added complexity and the tight integration comes with new

failure sources and increased mutual dependencies between

the systems. We focused on modelling and analysing these

interdependencies between the power grid and the communi-

cation system in the different phases of the recovery process.
As shown in this paper, it is possible to reduce or delay the

dependency by adding battery supply to the most critical part

of the mobile network and adjust the skill sets of the repair

staff to cover not only the most frequent failures, but also

the rare events in which deep knowledge about the system is

necessary.

There are costs for minimising and preventing failures, but

also for the recovery of failures. They have to be balanced

by either the market or legislations from the regulator. We

touched upon it very briefly but in general, it is outside the

scope of this paper.
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[17] “Möbius tool.” [Online]. Available: https://www.mobius.illinois.edu/
[18] W. H. Sanders and J. F. Meyer, “Stochastic activity networks: Formal

definitions and concepts,” in Lectures on Formal Methods and Perfor-
mances Analysis. Springer, 2001, vol. 2090.

[19] “Avbrotsstatistikk 2013,” [Outage statistics 2013], NVE, Norwegian
Water Resources and Energy Directorate, November 2014.

[20] G. Kjølle et al., “Incorporating short interruptions and time dependency
of interruption costs in continuity of supply regulation,” in CIRED,
Prague, Czech Republic, 2009, pp. 1–4.

107



108



PAPER G

Managed Dependability in
Interacting Systems

Poul E. Heegaard, Bjarne E. Helvik, Gianfranco Nencioni, and Jonas Wäfler

In Lance Fiondella, Antonio Puliafito (Eds.), Principles of Performance and Reli-
ability Modeling and Evaluation. Springer.

This book chapter is accepted for publication and is going to be published in 2016





Managed dependability in interacting systems

Poul E Heegaard, Bjarne E Helvik, Gianfranco Nencioni, Jonas Wäfler

Abstract A digital ICT infrastructure must be considered as a system of systems in

itself, but also in interaction with other critical infrastructures such as water distri-

butions, transportation (e.g. Intelligent Transport Systems), and Smart Power Grid

control. These systems are characterised by self-organisation, autonomous subsys-

tems, continuous evolution, scalability and sustainability, providing both economic

and social value. Services delivered involve a chain of stakeholders that share the re-

sponsibility, providing robust and secure services with stable and good performance.

One crucial challenge for the different operation/control centers of the stakeholders

is to manage dependability during normal operation, which may be characterised

by many failures of minor consequence. In seeking to optimise the utilisation of the

available resources with respect to dependability, new functionality is added with

the intension to help assist in obtaining situational awareness, and for some parts

enable autonomous operation. This new functionality adds complexity, such that the

complexity of the (sub)systems and their operation will increase. As a consequence

of adding a complex system to handle complexity, the frequency and severity of

the consequences of such events may increase. Furthermore, as a side-effect of this,

the preparedness will be reduced for restoration of services after a major event (that

might involves several stakeholders), such as common software breakdown, security

attacks, or natural disaster.

This chapter addresses the dependability challenges related to the above mentioned

system changes. It is important to understand how adding complexity to handle com-
plexity will influence the risks, both with respect to the consequences and the prob-

abilities. In order to increase insight, a dependability modelling approach is taken,

where the goal is to combine and extend the existing modelling approaches in a

novel way. The objective is to quantify different strategies for management of de-

Poul E Heegaard, Bjarne E. Helvik, Gianfranco Nencioni, Jonas Wäfler
Norwegian University of Science and Technology, Department of Telematics, Trondheim, Norway,
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pendability in interacting systems. Two comprehensive system examples are used to

illustrate the approach. A Software Defined Networking example addresses the ef-

fect of moving control functionality from being distributed and embedded with the

primary function, to be separated and (virtually) centralised. To demonstrate and

discuss the consequences of adding more functionality both in the distributed enti-

ties serving the primary function, and centralised in the control centre, a Smart Grid

system example is studied.

1 Introduction

The private and public ICT service-provisioning infrastructure has developed over

many years into a complex system and its interactions with other critical infrastruc-

ture systems such as water distributions, transportation (e.g. Intelligent Transport

Systems), and Smart Power Grid control have created diverse digital ecosystems.

Digital ecosystems are characterised by self-organisation, autonomous subsystems,

continuous evolution, scalability, and sustainability, providing both economic and

social value. Services delivered involve a chain of stakeholders that share the re-

sponsibility, providing robust and secure services with stable and good performance.

This evolution has been evident for some time. In spite of this, and the crucial role

of such systems, not much research is directed toward ensuring the dependability of

the services provided by such ecosystem of systems. The objective of this chapter

is to address some of the issues that arise when we seek to mange the dependability

of systems.

1.1 Challenges

One crucial challenge for the different operation and control centres of the different

systems is to manage the dependability in normal operation with many failures of

minor consequence. In seeking to optimise the utilisation of the available resources

with respect to dependability [1], the complexity of the (sub)systems and their op-

eration will increase due to increased interconnectedness and complexity.

Some issues to take into consideration include:

• The public ICT services are the result of the cooperation between a huge number

of markets actors. The overall system providing these services are not engineered,

and there is no aggregate insight into their design and operation.

• There is no coordinated management to deal with issues involving several au-

tonomous systems, in spite of such issues being a likely cause of extensive prob-

lems and outages.

• It is necessary to prepare for restoration of service after a major event such as

common software breakdown, security attacks, or natural disasters. This prepa-
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ration must include technical and operational as well as organisational and soci-

etal aspects.

An additional challenge is the management of dependability over multiple net-

work domains, with uncoordinated operations in each of the different domains.

As a potential side-effect of this, the preparedness for restoration of services

after a major event (that might involve several stakeholders) such as common

software breakdown, security attacks, or a natural disaster will be reduced. In ad-

dition, the frequency and consequences of such events may increase. More focus

on exercises and use of the improved situational awareness provided by the new

operational functionality, will to some extent reduce the negative side effect.

Ensuring the dependability of services based on an interacting relationship be-

tween independent stakeholders in the provision is typically agreed upon through

Service Level Agreements (SLAs), which give guarantees on the non-functional

properties of the services, including dependability aspects such as interval avail-

ability. These are important means to ensure the dependability of the services, but

are insufficient to prevent and handle dependability problems across providers, as

outlined above.

New functionality is added to enhance and improve operation and management

of complex digital ecosystems. This is done to rationalise the operation, save money,

simplify resource management, and maximise utilisation. It also enables more

timely and precise knowledge and information about system state, facilitating timely

(proactive) maintenance, and reducing the frequency and consequences of failures.

The operational cost is reduced by reduction in manual labour through better and

quicker detection and diagnostic mechanisms, and more autonomous self-repair.

The objective is to shorten the recovery time and to reduce the failure frequency

through better proactive maintenance. It should be kept in mind that this function-

ality targets the frequent (everyday) failures which are anticipated in the system

design and normally of low consequence. However, this increased maintainability

is achieved by the introduction of new, and partly centralised functionality, that in-

creases the total complexity and creates an interdependent system [8]. These sys-

tems not only have additional failures and failure modes [12, 22], but they may also

manifest a more fragile behaviour in critical situations [2, 18].

Figure 1 illustrates a risk curve, where the events with high “probability” have

low consequence and the events with low “probability” have high consequence. The

introduction of ICT-based support system, to operate an ICT system, or a critical

infrastructure such as Smart Grid, is expected to reduce the consequences and prob-

ability of daily events. Less human resources are needed for the daily operations.

However, due to the introduction of another ICT-based system, the complexity and

interdependency in a system will increase, with the potential consequence of in-

creased probability of critical events with extensive and long lasting consequences.

Such events affect large parts of the system and a take long time to recover from

because of lack of understanding of the complexity (“we have not seen this failure

before”), or the lack of maintenance support and coordination between the different

subsystems and domains in the digital ecosystem (“who should do what?”). As in-

dicated in the figure, it is not only necessary to increase the focus and manpower
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on the events with larger consequences, but also increase the competence of the

operation personnel.

Critical events

Frequent events

 Introduction of ICT support 

More advanced human effort needed 
(to prepare for the unknown)   

Move personnel 
Increase competence 

Focus is here
Move personnel

Increase competence 

"Probability"

Consequenses

Before

After

Fig. 1 Introducing ICT support to assist daily operations may increase the overall risk

There is a lack of theoretical foundation to control the societal and per service

dependability of ICT infrastructure in the digital ecosystem. No foundation is estab-

lished for optimisation, consolidated management, and provision of this infrastruc-

ture, neither from a public regulatory perspective, nor from the perspective of groups

of autonomous (commercially) co-operating providers. A model of an ICT infras-

tructure must describe the structure and behaviour of the physical and logical infor-

mation and network infrastructure, and include the services provided. Furthermore,

through the modelling phases, it should be described how resilience engineering [9]

can be applied to manage the robustness and survivability of the ICT infrastructure

ecosystem.

1.2 Outline

This chapter describes the above mentioned challenges and outlines potential ap-

proaches to gain more insight into the risks. To increase the understanding and as-

sess the risk (both consequences and probabilities), a holistic modelling approach is

taken of service in systems of systems. The goal is to quantify different strategies

for management of dependability in interacting systems. This should be addressed

by different approaches:
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• System modelling: Modelling of the functional interaction between embedded

technical sub-systems in an ecosystem with multiple actors coordinated via busi-

ness models only.

• Management strategies: Management and provisioning of (digital) ecosystems in

a cost-efficient way, considering the trade-off between cost and quality.

• Quantitative assessment: Resource allocation optimisation (modelling, measure-

ments, simulations) of robustness/dependability and performance in digital ecosys-

tems.

Figure 2 illustrates that to improve the operation and management (O&M) of

complex systems (e.g. in the Smart Grids), new control logic and functionality must

be added and in some cases also be centralised (e.g. in Software Defined Network-

ing (SDN), and by the introduction of network function virtualisation NFV in next

generation communication networks). This needs to be modelled, and the system

models parametrised to quantify the effect on the dependability and to identify po-

tential changes and improvements that can be made in O&M. The reason is that the

new and/or moved functionality poses new risks and threats to the systems, and may

have potential undesired side-effects that need to be qualitatively assessed to again

identify potential changes and improvements that can be made during O&M, and to

the O&M systems.

Improve O&M in 
complex systems

Add and move 
functionality

Potential side effects
(Increased complexity)

Systems model
Parameterized

Effect on dependability? 
Changes in O&M?

implies

modelling

qualitative

quantitativerisks/threats

Fig. 2 Understanding the complexity

As a step towards gaining this understanding, Section 2 discusses how the com-

plexity is changing by adding and moving control logic from being embedded and

closely integrated with the functionality to be controlled to being separated and

to some extents also centralised. Being able to deal with these issues, the ability

to build representative, yet understandable and tractable dependability models are

crucial. Seeking to build an entirely new theoretical approach does not seem feasi-

ble. Our approach is to extend and combine current approaches in novel manners

to reach our objective. Hence, to illustrate this and to exemplify the effect of the

changes in complexity, Section 2 includes two simple models with numerical exam-
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ples. To demonstrate how the complexity might be modelled and assessed, Section 3

gives an example of modelling of the increase complexity in SDN, and Section 4

provides the same for a Smart Grid example. Finally, our concluding remarks are

found in Section 5.

2 Complex digital ecosystems

As discussed in the previous section, digital ecosystems are complex systems, which

are challenging to operate and control. This is due both to their tight integration with

other technical systems and the necessity to perform management over multiple

system domains where each domain has (partly) uncoordinated operations.

To enhance and improve the operation and maintainability of the complex

digital ecosystems, new functionality is added and/or moved and centralised. As

an example, in Software Defined Networking, the functionality of the control logic

is separated from the forwarding functionality in the data plane and moved from the

distributed control plane residing on the components to be controlled to a virtually

centralised control plane. Another example is Smart Grid, where the ICT and power

grids are tightly integrated and interdependent. New functionality is added both in a

distributed manner to enable observability and controllability of the components in

the power grid, and centralised in the control centres to implement the control and

management.

Adding and moving functionality will contribute to changes in the complexity.

The goal is to simplify, or assist handling of complexity. However, adding new hard-

ware and software, or moving the existing, will change the interrelations between

functional and logical “entities”/“components”. This means that, even though the

total complexity is the same or reduced, the system is less well understood and po-

tentially contains new vulnerabilities and poses new management challenges.

Later in this chapter, two comprehensive system examples are introduced to

demonstrate the modelling of this change in complexity. In Section 3, a model of

Software Defined Networking is given and in Section 4 a Smart Grid example.

2.1 Centralising distributed functionality

IP networks are comprised of distributed, coordinated, but autonomous network

nodes, where the control logic is embedded and closely integrated with the same

forwarding functionality that is to be controlled, as illustrated in Figure 3(a).

In emerging networking technology, the trend is to separate the control and for-

warding1 and to move the control logic from the network nodes to a (virtually) cen-

tralised controller. The reduction in the distributed (control logic) functionality and

1 This is similar to how it was done in telephony systems (PSTN) with separate data traffic and
signalling traffic using Signalling System 7 (SS7) [10] and in B-ISDN [11]
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a corresponding increase in the centralised functionality will potentially reduce the

complexity in the (partly) autonomous network nodes and increase the complexity

of the centralised systems, as illustrated in Figure 3(b).

logic

hw

logic

hw

logic

hw

(a) Distributed logic embedded on
the forwarding engine of the network
nodes

logic

hw

logic

hw

logic

hw

logic

hw

move logic

(b) Logically centralised control logic
with simple distributed network nodes

Fig. 3 Moving control logic to enhance the resource utilisation and improve QoS

It is reasonable to assume that a simplification in the functionality will reduce

the complexity of the network nodes. If the properties of the hardware platform is

unchanged the network node will then be less error prone. However, if at the same

time commodity hardware is used to reduce the node cost then there is a potential

risk of decreasing the hardware availability. Then, it is not obvious whether the node

availability will improve or not.

The centralisation of the complex functionality should increase the system avail-

ability, due to better global overview and coordination. The control logic has com-

parable (or the same) functionality to the functionality that is moved from the dis-

tributed nodes, but additional functionality is needed to coordinate and mitigate the

central controllers. Furthermore, centralisation invites new more advanced function-

ality, for instance consult the motivation for SDN, [6, 20, 24]. It is therefore not

known what effect the central controllers have on the system availability.

A separation of the forwarding and control functionality does not necessarily

mean a separation of the hardware platform and its functionality. A common mis-

take is to forget that the underlying resources, such as the routing and switching

hardware, are typically utilised not only by the primary information handled by the

system, such as user packets, but also for the signalling of information exchange

necessary to control and manage the very same resources. Such an interdependency

has a negative effect on the overall system availability [4].

Whether the system availability is improved or not when centralising complex

functionality depends on to what extent the reduced complexity of the functionality

will have a positive effect and improve resource utilisation (due to the global system

state being availability, which eases resource coordination) compared to the added

complexity in the overhead associated with managing the centralised functionality.

117



Example 1: Availability requirement of the controller. To demonstrate the ef-

fect of moving the complexity on availability a very simple example can be consid-

ered. Assume that the conventional network in Figure 3(a) is modelled as a serial

structure with three network nodes with availability ANo. The serial structure of the

network nodes is assumed for simplicity and is not regarded as realistic. The new

network is a serial structure consisting of the central controller with availability AC
and the three networks nodes with availability ANn. Since moving the complexity

should improve the availability then ANo < ANn. The availability requirement of the

controller is given by

AC > (
ANo

ANn
)3 (1)

If ANo = 0.98 and ANn = 0.99, then AC > 0.97.

If we have some inherent redundancy in the distributed system the effect becomes

radical. Assuming the elements in the network in Figure 3(a) operate in a ideal

load-shared mode where on them can take the entire load. They will then constitute

a parallel system and we get A∗
C · 1− (1− ANn)

3 > 1− (1− ANo)
3, where A∗

C >
0.999992.

Later, in Section 3, a system model of Software Defined Networking is intro-

duced to address in more detail the effect of moving control functionality from being

distributed and embedded with the primary function to be separated and (virtually)

centralised.

2.2 Add distributed and increase centralised functionality

The need for enhanced operation and control in the power grid is an excellent ex-

ample where new ICT based control logic is added to the distributed power grid

components. In power distribution grids, the grid components typically contain lit-

tle or no automated control logic. This means that manual detection and recovery

is required, which must be coordinated by the control centre, as illustrated in Fig-

ure 4(a).

Figure 4(b) shows that new functionality must be added to the centralised con-

troller to be able to utilise the new distributed functionality (remote control logic).

Centralising functionality to achieve better decisions will provide a single point of

failure, performance bottleneck, and expose targeted attacks.

The ICT based control functionality is not only supporting the operations, but

needs to be operated in addition to the primary functionality. The technology and

functionality will in many cases be new to the organisation and might change the

workflows and result in a need for enhanced knowledge and competence in opera-

tion.

From a dependability perspective, adding ICT based control seems to be a bad

idea since all the negative side-effects pointed out in the previous subsection apply,

with functionality added both in the distributed nodes and in the centralised con-

trollers. This produces less positive effects compared to moving and centralising
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Fig. 4 Adding control logic to enhance the maintainability and improve service reliability

functionality. However, the new ICT based control functionality will increase the

maintainability through more timely and precise knowledge and information about

system state, so timely (proactive) maintenance can be carried out, and hence, the

frequency and consequences of the most frequent faults (failures) are reduced. The

operational cost is reduced by reduction in manual labour through better and quicker

detection mechanisms and more autonomous (self-)repair. The results are reduced

recovery times and better proactive maintenance.

It is not guaranteed that the system availability will increase from added (ICT-

based) functionality or not. Even though the maintainability is significantly im-

proved, which makes both proactive and reactive maintenance more effective, it

is an uncertainty in that the control functionality itself adds complexity that might

affect the system availability.

Example 2: Mean component down time. Adding more logic to the components is

assumed to reduce the components recovery time, but at the same time increase the

component failure intensity. The hardware failure intensity is assumed unchanged,

but the added logic might also fail.

To compare the two systems we should consider the requirements of mean down

time (MDT), mean time to failures (MTTF), and availability. In this example, we

say that the new system should have the same availability requirement and will then

determine the maximum MDT requirement of the component for a given set of

failure intensities for the hardware, λH , and software, λS.

The availability of the original system is:

ANo = ASo ·A3
H =

μS

λS +μS
·
(

μH

λH +μH

)3

(2)

while for the modified system with added functionality it is:
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ANo = ASn · (AHS ·AH)
3 =

μS

μS +λSS
· ( μSμSS

(λS +μS)(λH +μSH)
)3 (3)

To retain the same availability level in the new system, the maximum mean down

time MDT = 1/μHS is determined by ANo < ANn. Let the software failure intensity

[in minutes−1] for the centralised control logic be λSS = 0.5λS, and λH = 1/24,

μS = 60, λH = 1/168, μH = 1 then μHS > 1.18529, which means that MDT < 50.6
minutes.

In Section 4, a Smart Grid example is introduced to demonstrate and discuss the

consequences of adding more functionality, both in the distributed entities serving

the primary function and centralised in the control centre.

3 Example: Availability in Software Defined Networking

The purpose of this section is to present a case study that highlights how the com-

plexity changes by moving the control logic of a system from distributed to cen-

tralised. To illustrate this, we extend and combine current approaches in order to

model and assess the availability of a new network paradigm. The results show how

the management of complex systems is critical from a dependability perspective.

In the following, we introduce some details about Software Defined Networking

(SDN) and describe the problem addressed, then we present a two-level hierarchi-

cal model for to evaluate the availability of SDN. Finally, we perform a simple

sensitivity analysis on a selected set of parameters that will potentially affect the

dependability of SDN.

3.1 Software Defined Networking

During the recent years, the SDN has emerged as a new network paradigm, which

mainly consists of a programmable network approach where the forwarding plane

is decoupled from the control plane [6, 14]. Despite programmable networks hav-

ing been studied for decades, SDN is experiencing a growing success because it is

expected that the ease of changing protocols and provide support for adding new

services and applications will foster future network innovation, which is limited and

expensive in todays legacy systems.

A simplified sketch of the SDN architecture from IRFT RFC 7426 [6] without

the management plane is depicted in Figure 5. The control plane and data plane are

separated. Here the control plane is logically centralised in a software-based con-

troller (“network brain”), while the data plane is composed of the network devices

(“network arms”) that conduct the packet forwarding.

The control plane has a northbound and a southbound interface. The northbound

interface provides an network abstraction to the network applications (e.g. routing

protocol, firewall, load balancer, anomaly detection, etc...), while the southbound
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Fig. 5 SDN architecture (exclusive the management plane)

interface (e.g. OpenFlow) standardises the information exchange between control

and data planes.

In [20], the following set of potential advantages of SDN were pointed out:

• centralised control;

• simplified algorithms;

• commoditising network hardware;

• eliminating middle-boxes;

• enabling the design and deployment of third-party applications.

However, from a dependability perspective, the SDN poses a set of new vulnera-

bilities and challenges compared with traditional networking, as discussed in [7]:

• consistency of network information (user plane state information) and controller

decisions;

• consistency between the distributed SDN controllers in the control plane;

• increased failure intensities of (commodity) network elements;

• compatibility and interoperability between general purpose, non-standard net-

work elements

• interdependency between path setup in network elements and monitoring of the

data plane in the control plane;

• load sharing (to avoid performance bottleneck) and fault tolerance in the control

plane have conflicting requirements;
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3.2 Problem description

Traditional IP networks consist of a set of interconnected nodes that include both

the data and control planes. Each network node is a complex device that has the

functionality of both data forwarding and networking control. To increase the avail-

ability and performance of such devices, manufacturers have focused on specialised

hardware and software over the past few decades.

As discussed in Section 2, SDN has the potential to change the principles of net-

working and to enhance network flexibility. This implies moving the control logic

from the network nodes to a (virtual) centralised controller, and to open up the con-

trollers to a third party via an API (northbound interface), as illustrated in Figure 6.

The transition from a distributed network with a focus on establishing and maintain-

ing the connectivity between peering points, to a centralised network with a focus on

QoS and resource utilisation, will potentially lead to much simpler network nodes

with less control logic. The centralised control logic, such as the routing decisions,

might be simpler and can even be made more advanced, without making it more

complex compared to the distributed solution. The controller has the potential to set

up data flows based on a richer set of QoS attributes than in traditional IP networks.

However, the coordination and handling of the consistency between the SND con-

trollers, will require new, and complicated logic that will be a critical element to

also make SDN a good solution from a dependability perspective.

In the example in this section, we study how the SDN paradigm modifies the

overall availability of the network relative to the traditional distributed IP network

and analyse which factors dominate in this new scenario.

logic

hw

logic

hw

logic

hw

(a) Current IP networks: Distributed
logic embedded on the forwarding en-
gine of the network nodes

Control plane

Data plane

logic

hw

logic

hw

logic

hw

logic

hw

SOUTHBOUND
INTERFACE

(b) SDN: Logically centralised con-
trol logic combined with simplified net-
work elements

Fig. 6 Software Defined Networking is an example where the control logic is moved from dis-
tributed to virtually centralised (see Fig. 3)

Although dependability must be regarded as an important issue to make SDN

a success, to the best of our knowledge, very limited work on modelling the de-

pendability in SDN availability has been performed. In [17], a model of SDN con-

trollers is developed, while [7] discusses potential dependability challenges with

SDN, which is partially illustrated by a small case study with a structural analysis
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of SDN enabled network. In this section, we study a comprehensive system model

of SDN with respect to dependability.

3.3 Modelling

A two-level hierarchical model is introduced to evaluate the dependability of SDN

in a global network. In this example, the dependability is measured in terms of

steady state availability, in the following referred to as availability. The two-level

hierarchical modelling approach consists of

• upper level: a structural model of the topology of network elements and con-

trollers

• lower level: dynamic models (some) of network elements

The approach seeks to avoid the potential uncontrolled growth in model size, by

compromising the need for modelling details and at the same time modelling a

(very) large scale network. The detailed modelling is necessary to capture the de-

pendencies that exists between network elements and to described multiple failure

modes that might be found in some of the network elements and in the controllers.

The structural model disregards this and assumes independence between the com-

ponents considered, where a component can be either a single network elements

with one failure mode or a set of elements that are interdependent and/or experience

several failure modes and an advanced recovery strategy. For the former we need to

use dynamic models such as a Markov model or Stochastic Petrinet (e.g., Stochastic

Reward Network [3]), and for the latter structural models such as reliability block

diagram, fault trees, or structure functions based on minimal cut or path sets.

In the following section, we will demonstrate the use of this approach.

3.3.1 Model case

In this example, we analyse the availability of a nation-wide backbone network

that consists of 10 nodes across 4 cities, and two dual-homed SDN controllers. See

Figure 7 for an illustration of the topology. The nodes are located in the four major

cities in Norway, Bergen (BRG), Trondheim (TRD), Stavanger (STV), and Oslo

(OSL). Each town has duplicated nodes, except Oslo which has four nodes (OSL1

and OSL2). The duplicated nodes are labelled, X1 and X2, where X=OSL1, OSL2,

BRG, STV, and TRD. In addition to the forwarding nodes, there are two dual-homed

SDN controllers (SC1 and SC2), which are connected to TRD and OSL1.

The objective of the study is to compare the availability of SDN with a traditional

IP network with the same topology of network elements (SDN forwarding switched

and IP routers). We assume that nodes, links, and controllers in the system may fail.

The peering traffic in a city is routed through an access and metro network with a

connection to both (all four) nodes in the city. The system is working (up), when
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Fig. 7 Case study: nation-wide backbone network

all the access and metro networks are connected. Note that for SDN, at least one

controller must be reachable from all nodes along a working path.

3.3.2 Structural analysis

The critical parts of the connection between the traffic origins and destinations can

be determined using structural analysis based on either minimal cut sets, S, or mini-
mal path sets. The sets are defined as follows.

Definition 1. Minimal cut set: The system is failed if and only if all the subsystems

in a minimal cut set are failed, given that all the other subsystems that are not in the

set are working.

Definition 2. Minimal path set: The system is working if and only if all the subsys-

tems in a minimal path set are working, and given that all the subsystems that are

not in the set are failed.

We use the minimum cut sets, S, to form the basis for a structure function, Φ
(minimum path sets can also be applied).

Definition 3. Structure function: Each max-term of the structure function expressed

in a minimal product-of-sums form corresponds to a minimal cut set.
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The following connections in SDN must be considered:

• flow triggering: a path for the trigger message that should be sent from the source

node (at least one node of each city) to at least one SDN controller on arrival of

a new flow;

• network state update and route directives: a path from the SDN controller to each

node;

• forwarding: forwarding path from/to each city (6 combinations).

The structural analysis for all the possible connections in the SDN example,

shows that the cardinality of the set of minimal cut set S is ‖S‖ = 2916. The car-

dinality c j = ‖s j‖ of each of the minimal cut sets, j = 1, · · · ,2916 is given in Ta-

ble 1. Each column contains the number of sets that is Ck = ‖{s j ∈ S|c j = k}‖,

k = 1, · · · ,13. The table compares the minimal cut sets of SDN with a conventional

IP network where the control plane is embedded in the nodes, and hence, no con-

trollers are needed.

Table 1 Distribution of cardinality of the minimum cut sets for the IP network and SDN

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 sum

IP network 0 3 8 91 304 360 356 189 70 13 1394

SDN 0 4 15 107 340 520 780 584 302 170 59 31 4 2916

The number of minimal cut sets with cardinality one is equal to zero because

traffic sources are at least dual-homed and there are two dual-homed control sites.

The number of minimal cut sets C2 increases from 3 to 4 due to the control nodes.

Note also that the number of minimal cut sets C3 almost doubles. This indicates that

in this example, a significant increase in vulnerability is observed for the SDN case

that is not explained solely by the introduction of a control node, but the fact that a

controller must be reachable from every node across the backbone in order for the

network to work.

3.3.3 Markov model of networks elements

In order to evaluate the availability of each network element, we develop Markov

models of each of the links, traditional routers/switches, SDN routers/switches, and

the SDN controllers.

Links

The network model of a link is assumed to be dominated by hardware failures.

Therefore, a simple two-state Markov model is used. The links are either up or down

due to hardware failure. We use the same model for both traditional networks and
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SDN. Given failure rate λL and repair rate μL, the availability of a link is AL =
μL

λL+μL
.

This model is assumed for each of the components in the structural model.

Routers

The model of a traditional router/switch is depicted in Figure 8(a), where the states

are defined in Table 2.

Table 2 State variables for traditional IP router

state up/down description

OK up System is fault free
OM down Operation and Maintenance state
CHW1 up Hardware failure of one controller
CHW2 down Hardware failure both controllers
COV down Coverage state, unsuccessful activation of the stand-by

hardware after a failure; manual recovery
FHW down Permanent hardware failure in forwarding plane
FHWt down Transient hardware failure in forwarding plane
SW down Software failure

Multiple failures are not included in the model since they are rare and will have

an impact significantly smaller than the expected accuracy of the approach.

OKFHWt

O&MSW

CHW1 CHW2

FWH COV

μdSλdS

λdO

μdO

μdFt

λdFt

λdFμdF

2Cλdc

2(1− C)λdc
μdc

μdc

λdc

μdc

(a) Traditional network

OK

FHWt

SW

FWH

μdSλdS

μdFt λdFt

μdFλdFt

(b) SDN

Fig. 8 Markov model of a router/switch
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SDN forwarding nodes

Figure 8(b) shows the model of the forwarding node, i.e., router or switch in an

SDN, which corresponds to the traditional IP router. It is significantly simpler. The

states related to the control hardware and O&M failures are not contained in this

model, since all the control logic is located in the controller. The software is still

present but its failure rate will be very low since the functionality is much simpler.

SDN controller

The model of the SDN controller is composed of two sets of states. One set captures

the software and hardware failures. The second set captures the O&M failures in

combination with the hardware states of the system. We have assumed that the SDN

controller is a cluster of M processors and the system is working, i.e., posesses

sufficient capacity if K out of the M processors are active, which means that both

software and hardware are working. To represent this scenario, each state is labelled

by four numbers {n, i, j,k}, where n is the number of active processors, i the number

of processors down due to hardware failures, j the number of processors down due to

software failures, and k the state of the O&M functionality (k = 1 if O&M mistake,

k = 0, if not). Figure 9 shows the outgoing transitions from a generic state {n, i, j,k}.

The main characteristics of the model are:

• single repairman for a hardware failure;

• load dependency of software failure when the system is working, λS(n) = λS/n,

where the meaning of λS is explained in more detail in Section 3.4;

• load independence of software failure when the system has failed, λS(n) = λS;

• when the entire system fails, only processors failed due to hardware failures will

will be down until the system recovers.

3.3.4 Using inclusion-exclusion principle to evaluate the system availability

The inclusion-exclusion principle is a technique to obtain the elements in the union

of finite sets. Using the inclusion-exclusion principle on the structure function, we

can write the system availability as the probability of the union of all minimal paths:

AS = P

(
n⋃

i=1

Qi

)
=

n

∑
k=1

(−1)k−1 ∑
/0
=I⊆[n]
|I|=k

P

(⋂
i∈I

Qi

)
, (4)

where {Q1,Q2, . . . ,Qn} is the set of all minimal paths, and P(Qi) is the probability

of set Qi.
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Fig. 9 Generic states of the model of SDN controller

To compute the probability of the intersection of minimal paths, we need to know

the availability of each network element. To this emd, we can calculate the element

availability by using the proposed Markov models.

3.4 Numerical evaluation

To evaluate the availability of traditional networks, we consider the typical parame-

ters in Table 3, which are inspired by and taken from several studies [5, 15, 23].

All SDN parameters are expressed relative to the parameters for the traditional

network (Table 3). The parameters for the SDN switch you find in Table 4 and for

the SDN controller in Table 5. The parameters αH , αS, and αO are proportionality

factors that are studied in this example.

Using these parameters in the models described in this section, we can com-

pare the (un)availability of traditional IP and SDN networks. Failures with the same

cause, have the same intensities in both models. However, we assume that the soft-

ware on an SDN switch/router will be much less complicated than on a traditional

IP router, and we have set the failure rate to zero, for the sake of simplicity. In

an SDN controller, all failure rates are N-times larger than in the traditional net-

work, where N is the number of network nodes. This is because we assume that the

centralised system needs roughly the same processing capacity and amount of hard-

ware. Therefore, the failure intensity is assumed to be proportional to N, and of the
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Table 3 Model parameters for the IP network

intensity [time] description

1/λL = 4 [months] expected time to next link failure
1/μL = 15 [minutes] expected time to link repair
1/λdF = 6 [months] expected time to next permanent forwarding hardware failure
1/μdF = 12 [hours] expected time to repair permanent forwarding hardware
1/λdFt = 1 [week] expected time to next transient forwarding hardware failure
1/μdFt = 3 [minutes] expected time to repair transient forwarding hardware
1/λdC = 6 [months] expected time to next control hardware failure
1/μdC = 12 [hours] expected time to repair control hardware
1/λdS = 1 [week] expected time to next software failure
1/μdS = 3 [minutes] expected time to software repair
1/λdO = 1 [month] expected time to next O&M failure
1/μdO = 3 [hours] expected time to O&M repair
C = 0.97 coverage factor

Table 4 Model parameters for SDN switch/router

intensity description

λF = λdF intensity of permanent hardware failures
μF = μdF repair intensity of permanent hardware failures
λFt = λdFt intensity of transient hardware failures
μFt = μdFt restoration intensity after transient hardware failures
λsS = 0 intensity of software failure

Table 5 Model parameters for SDN controller

intensity description

λH = αH λdC N/K intensity of hardware failures
μH = μdC hardware repair intensity
λS = αS λdS N intensity of software failures
μS = μdS restoration intensity after software failure
λO = αO λdO N intensity of O&M failures
μO = μO rectification intensity after O&M failures

same order of magnitude as the total failure intensity of the traditional distributed

IP router system.

The results of a numerical example are given in the plot in Figure 10. The overall

unavailability, i.e., the probability that not all cities in Section 3.2 are connected

(for SDN this requires also a connection to a controller) is given for different values

of αO. The figure shows that the unavailability increases with about one order of

magnitude when αO changes in the range from 0.1 to 1. The sensitivity of αH and

αS are far less significant. This indicates that O&M failures are dominant and most

critical to the dependability of SDN.

As a preliminary conclusion from this study, it seems as the use of commod-

ity hardware and centralised control has a moderate effect on the availability of

the overall network. However, the O&M failures and software/logical failures that
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Fig. 10 Unavailability of SDN (solid line) and of traditional network (dashed line) by varying αO
(αH = 1 αS = 1)

causes a control cluster to fail are very important in order to improve the depend-

ability when changing from the traditional distributed IP network to SDN.

4 Example: Restoration in Smart Grid

The purpose of this example is to show how the automation of process steps changes

the dependability of a system. The system under consideration is a power grid and

we focus on the restoration process after a physical failure.

A power grid is a critical infrastructure and its reliability is critical to the smooth

operation of a resilient society. Power grids are due to undergo modernisation in the

coming years. This next generation power grid is commonly called the smart grid.

One of the biggest differences compared to the current grid is additional monitoring

information about the current state of the grid and new control abilities throughout

the grid. These improvements allow the introduction of more automated processes

with the goal of increasing the overall dependability of the system.

This is the starting point of our example. We model the restoration process with

and without automation and conduct a dependability analysis. Our results show that

the introduction of automation yields benefits like a reduction of down time, but it

also extends the system into a compound and more complex system. This system

has new failure modes as the automation may malfunction and thus, without taking

the appropriate measures, may partially negate benefits.
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4.1 Problem Description

The power grid (PG) has traditionally contained only a few monitoring and control-

ling devices distributed throughout the grid. Mostly they are deployed in the higher

voltage levels. In the lower voltage levels monitoring and controlling devices are,

depending on the country, virtually absent. In case of a failure a distributed and

autonomously working protection system automatically disconnects a whole pro-

tection zone by opening a circuit breaker, causing a power outage to all customers

inside this protection zone.

The future power grid, the so called smart grid, will possess monitoring and

control systems widely deployed throughout the power grid. These devices detect

failures automatically and send failure diagnostics to a central control, operation,

and management system. The central system then attempts to isolate the failure by

opening other circuit breakers closer to the failure and connecting the rest of the

protection zone again to the grid. It is assumed that the power grid at this voltage

level has an open ring topology that allows reconnection to the non-isolated parts

after a single failure. Figure 11 shows a protection zone in the current PG and in

the smart grid, consisting of three PG nodes and two protection devices represented

by large squares. The small squares represent new circuit breakers controlled by the

centralised control system.

In the following, we study how the introduction of detection and isolation au-

tomation changes the characteristics of the restoration process. More precisely, we

study the downtime and the energy not supplied (ENS), which is the accumulated

energy that could not be delivered due to outages, i.e., down time weighted with the

load during the outages. Both the lines and the PG nodes can fail, but only larger

outages that require a repair crew to go on cite are considered.

logic
PG 

node
PG 

node
PG 

node

(a) Current power grid: no automated
detection and controlling.

add automation logic

logic
PG 

node

logic

PG 
node

PG 
node

logiclogiclogic
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mated detection and controlling (dis-
tributed and centralised).

Fig. 11 Schematic view of a protection zone in the current power grid and smart grid.
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4.2 Modelling

The restoration process of a power grid failure consists of two stages containing a

total of six phases, as shown in Figure 12. The phases are:

Detection Time period between a failure and its detection in the monitoring sys-

tem. It is assumed that the protection system disconnects the protection zone

containing the failure immediately after the incident. In reality, there is a short

delay of several milliseconds. The disconnection leads to a black out in the whole

protection zone.

Remote Isolation The failed element is isolated more precisely, either automati-

cally by the central system or manually by a controller at the control centre. The

rest of the protection zone is powered up again.

Administrative Failure diagnostics from the monitoring devices are evaluated,

the recovery is planned, and a repair crew is assigned.

Logistic Repair crew is equipped with the necessary material and moves to the

incident location.

Fault Localization Precise localisation of the failure, both geographically and in

the system.
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Repair Actual repair, all isolated network elements are restored to normal opera-

tion.

The difference between the current power grid and the smart grid lies mainly

in Stage I. In the current power grid, detection occurs manually, i.e., the failure

is detected by a controller or through a call by a consumer. There are no remote

isolation capabilities, so this phase is skipped. Throughout the entire restoration

phase, the whole protection zone is without power in the model in Figure 12. This

is denoted by pentagonal states.

In the smart grid, the distributed devices detect the failure automatically and send

an alarm together with fault diagnostics to the central system. Now, the failure is

isolated automatically and remotely from the central system and Stage II begins. If

a PG node is affected by the failure, and now isolated, then the system proceeds

to state 8. If only a line is isolated then it proceeds to state 4. In the first case,

there are still consumers without power. In the latter case, the power supply has

been reinstated to all consumers. This difference is indicated in the model by the

different shapes of the states. In both cases, the number of consumers affected is

smaller than in the current system. An additional difference is the sojourn time of

the fault localisation phase. It is shorter for the smart grid, as the detection devices

provide fault diagnostics that accelerate this phase.

So far, we have described the process during operation without any failures in the

new system. In the following, we consider failures in the information and commu-

nication technology (ICT) subsystem used for the automation. It is assumed that all

the other systems, e.g., the protection system, work perfectly. The following failures

in the detection system are considered:

• false positive detection failure: there is no failure, but the detection system re-

ports one.

• false negative detection failure: there is a failure but the detection system does

not notice it.

A false positive detection failure is modelled with a new transition out of state 1

with an additional failure intensity leading to state 19. The failure is detected by the

system as before. If the system discovers the false positive failure the restoration

process is interrupted and the system goes back to state 1, otherwise it continues.

A false negative detection failure is modelled by splitting the transition from

state 1 to 2 into two, pointing one to state 18 and weighting the rate by the

false negative probability pFN. The new state 18 indicates a manual detection be-

cause of the non-detection in the system. The isolation is then done manually by an

operator. If the isolation is successful it proceeds as before either in state 4 or 8 de-

pending on whether a line or a node is affected. If the isolation is not successful the

entire protection zone remains without power for Stage II of the restoration process.

In the isolation system, the following failures are considered:

• isolation failure: there is a failure, but isolation is unsuccessful because of prob-

lems with communication or systems. The whole protection zone remains un-

powered.
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• spontaneous isolation failure: there is no failure, but a network element is

falsely isolated by the system.

An isolation failure is modelled in the system by splitting the transitions from

the isolation states 3, 12, 13, 20, and 22 into two, and weighting the rate by the

probability of an isolation failure pIF, except for the transitions from 13, which uses

a higher probability pIFC, because the system already suffered one ICT failure and

is in a critical state.

A spontaneous isolation failure is modelled with a new transition out of state 1

with an additional failure intensity leading to state 21. The failure is detected by the

system as before. If the system discovers that the failure originates from the isolation

system and not the power grid it restores the system (state 23) and goes back to the

up state, otherwise it continues.

4.3 Numerical Example

All event times in the system are assumed to be exponentially distributed with the

following expected values. The event times are based on data for longer outages

from the Norwegian regulator [21].

Table 6 Model parameters for the IP network

intensity [time] description

1/λ = 4 [months] expected time to next PG failure inside this protection zone
1/λFP = 6 [months] expected time to next false positive detection failure
1/λSIF = 12 [months] expected time to next spontaneous isolation failure
1/μD,M = 20 [minutes] expected manual detection time
1/μD,A = 1 [minutes] expected automatic detection time
1/μI,M = 5 [minutes] expected manual isolation time
1/μI,A = 1 [minutes] expected automatic isolation time
1/μA = 5 [minutes] expected time in administrative state
1/μL = 15 [minutes] expected time in logistics state
1/μFL,M = 20 [minutes] expected manual fault localisation time, i.e. without fault diag-

nostics from the detection devices.
1/μFL,A = 10 [minutes] expected automatic fault localisation time
1/μR = 10 [minutes] expected repair time
1/μrestore = 10 [minutes] expected restoration time for discovered spontaneous isolation

failure
pnode = 0.1 probability of failure affecting a node
pFN = 0.01 probability of false negative detection failure
pD,FP = 0.2 probability of discovering a false positive in isolation phase
pD,SIF = 0.2 probability of discovering a spontaneous isolation failure in iso-

lation phase
pIF = 0.1 probability of unsuccessful isolation
pIFC = 0.5 probability of unsuccessful isolation (ICT failure)
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Fig. 13 Mean values per outage

First, we compute MDT and the mean time between failure (MTBF) for the

model in Figure 12. All states in which there is a power outage are considered as

down states, i.e. all states but the round states. MTBF is computed with

MTBF = 1/( ∑
i∈ΩUp

∑
j∈ΩDown

λi j pi)

where pi is the steady state probability of being in state i, λi j is the transition rate

from state i to j, and ΩUp and ΩDown are the sets of up and down states respectively.

MDT is computed by MDT = U ·MTBF, where the unavailability U is computed

with U = ∑i∈ΩDown
pi.

The results are presented in Figure 13(a). Four scenarios are computed:

1. current system, which is today’s power grid system

2. new system,

3. new system with perfect ICT, i.e. pFN = 0, pIF = 0, λFP = 0, λSIF = 0, and

4. new system with a permanent isolation failure, i.e. pIF = 1.

The MDT of the new system is smaller than the current system, due to the reduced

event times. However, when considering the new system with imperfect ICT, the

MTBF is reduced as well. Hence, the reduction in MDT comes at the expence of

more frequent failures. In case of a permanent isolation failure, the MDT increases

significantly but is still shorter than the current system, as the time in the detection

phase is reduced.

MDT gives a one-sided picture of the situation, as the down states have dif-

ferent consequences for the system. The consequences are marked in the model

with three different shapes. To incorporate this information, we use the concept of

Energy Not Supplied (ENS). ENS is used in outage reports in power engineering and

plays a central role in the Norwegian regulation framework [13]. As the name sug-

gests, it indicates the amount of energy that could not be supplied due to an outage.

For our example, we assume that each PG node has a constant energy consumption

of 1 kWh per minute. In the pentagonal states, three nodes are down. Therefore, the
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ENS is 3 kWh per minute. The octagonal states have an ENS of 1 kWh per minute

and the round states 0 kWh per minute.

We use a Markov reward model to obtain the instantaneous ENS e(t), i.e., the

energy that cannot be delivered at time instance t. First, state 1 is defined to be ab-

sorbing. When the system is in steady state, a down period starts in state j ∈ ΩDown

with probability p j(0) = MTBF ·∑i∈ΩUp, j∈ΩDown
λi j pi. Now the instantaneous ENS

is computed with e(t) = ∑i∈ΩDown
pi(t) · ei, where pi(t) and ei are the instantaneous

state probability and the energy consumption per minute of state i respectively.

Integrating e(t) over time yields Mean ENS per outage =
∫ ∞

0 e(t), which is plot-

ted in Figure 13(b). The MTBF is the same as in Figure 13(a). Compared to MDT,

the improvement achieved by automation is even larger in this metric because ENS
weighs the downtime according to the consequences. However, this is not true for

the case with a permanent isolation failure because the down states are all pentago-

nal like in the current system.

Finally, we extend downtime-frequency curves [19] to characterise how the total

ENS per year of all failures in this protection zone depends on the down time. Let us

denote the total ENS per year with ENStotal. Counting only the ENS of those outages

that are longer than time t0, it becomes time dependent and is computed by:

ENStotal(t0) =
d(t0)

MTBF
(
∫ ∞

t0

e(t)
d(t0)

dt + e∗(t0))

where (MTBF)−1 is the number of failures per year, d(t) the probability that the

system is down at time t, computed by d(t) = ∑ j=ΩDown
p j(t), and e∗(t0) is the
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energy not supplied up to time t0 given that the system has not yet been restored.

In order to compute e∗(t0), the Markov model is modified so there is no transition

out of the subspace formed by ΩDown because no complete restoration takes place

before t0 by definition. The transition rates are defined as

λ ∗
i j =

{
λi j if i, j ∈ ΩDown

0 otherwise

The initial state vector of the system is p∗(0) = p(0), as before. Thus, p∗(t) and

e∗(t) are computed in the same way as explained above.

The results for ENStotal(t0) are shown in Figure 14. In the current system, the

relation between downtimes and ENStotal is approximately linear during the first 50

minutes. In the new system, however, there is a drop in the beginning, indicating that

short down times contribute disproportionately to ENStotal. The drop corresponds

to Stage I of the model. After that, there are either no consumers without power

or the system is in the restoration process with the octagonal or pentagonal states

and behaves similarly to the current system but at a reduced level. In the case of a

permanent isolation failure, ENStotal(t0) is larger than in the current system for t0 <
55 minutes, mainly because of the shorter MTBF. For larger t0, this is compensated

for by the effect of shorter MDT due to automatic detection. The results show that

the automation possesses significant potential to reduce ENStotal. However, in case

of longer failures, this may become a disadvantage.

4.4 Observations from the example

The automation of the detection and isolation phase is introduced with the goal of

reducing MDT and mean ENS per failure. However, as the new supporting ICT sys-

tems may fail as well, the failure characteristics of the system are changed. First, the

MTBF decreases significantly, i.e. the number of failures per year increases. Second,

outages are on average shorter, and short outages become an important factor when

the total ENS per year is considered. Third, in case of a longer permanent failure

in the ICT system, the consequences increase temporarily and, thereby, adversely

affect of the benefit of automation.

The introduction of automation should, therefore, be accompanied by two cru-

cial steps. First, additional training is necessary for the staff covering the new fail-

ure characteristics and failures, including the scenario of a malfunctioning ICT sys-

tem [16]. Second, it is necessary to acquire the skills to maintain and quickly restore

the new ICT system to assure a high dependability and thus achieve the positive ef-

fects for which the automation was originally introduced.
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5 Concluding remarks

The focus of this chapter has been the increasing complexity in digital ecosystems,

which are system-of-systems of ICT infrastructures or interact with other critical

infrastructures such as water distribution, transportation (e.g. Intelligent Transport

Systems), and Smart Power Grid control. There is a lack of theoretical foundation

to control the societal and per service dependability of ICT infrastructure in the dig-

ital ecosystem. No foundation has been established for optimisation, consolidated

management, and provision of this infrastructure, neither from a public regulatory

perspective, nor from the perspective of groups of autonomous (commercially) co-

operating providers.

More ICT based operation support and control functions are included to manage

digital ecosystems, with the objective to reduce the frequency and consequences of

daily events. However, it is important to be aware of the potential side-effects that

might increase the frequency and consequences of critical and catastrophic failure

events. The reason is that the added support enables interaction and integration of

even more complex and heterogeneous systems, changes workflows in organisa-

tions, and ICT based support systems may fail.

To enhance and improve the operation and maintainability of complex digital

ecosystems, new functionality is added and/or moved and centralised. Two exam-

ples are considered in this chapter: (i) Software Defined Networking, which sepa-

rates the control logic from the forwarding functionality and moves the logic from

the distributed network elements to a virtual centralised controller, (ii) Smart Grid

integrates ICT and power grids which make them more interdependent. Here, new

functionality is added both in a distributed manner to enable observability and con-

trollability of the components in the power grid and centralised in the control centres

to implement the control.

How the changes in complexity affect the overall system dependability is less

understood, contains potential vulnerabilities, and poses new managements chal-

lenges. This chapter emphazises the importance of being able to model ICT infras-

tructures. A model must describe both the structure and behaviour of the physi-

cal and logical information and network infrastructure, including the services pro-

vided. Furthermore, through the modelling phases, it should be explained how

resilience engineering can be applied to manage the robustness and survivabil-

ity of the ICT infrastructure. This is the research focus of the research lab on

Quantitative modelling of dependability and performance, NTNU QUAM Lab

(www.item.ntnu.no/research/quam/start).
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APPENDIX A

Details on Downtime-Frequency
Curve and ENS Extension

This appendix gives more information about the formulas and calculations of the

downtime frequency curves and its extension used in Paper E. First, I explain the

formula for the downtime frequency curve, then I explain how it can be adjusted

to include the energy not supplied.

A.1 Downtime Frequency Curve
We assume a stationary system with finite downtimes. The downtime distribution

is defined as

d(t) = P(DT ≥ t) (A.1)

i.e. it gives the probability that the downtime (DT) is longer than time t. As a

side note, if we assume that no additional failures happen during the downtime,

than this is the same as the instantaneous unavailability u(t) after an outage, which

starts with u(0) = 1 and gives the probability that the system is not yet repaired at

time t. The mean downtime (MDT) is computed by

MDT =
∫ ∞

0
d(t)dt (A.2)

Additionally it is known that

U = Λ ·MDT =
1

MTBF
·MDT (A.3)

where U denotes the steady state unavailability of the system, Λ the failure inten-

sity of the system and MTBF the mean time between failure.

The downtime frequency curve shows how much outages longer than t0 con-

tribute to the unavailability. In other words, it also computes the unavailability,
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Figure A.1: Calculation of MDTt0 .

but includes only outages lasting longer than t0. In order to compute it, we first

compute the MDTt0 , i.e. the MDT for outages lasting longer than t0, and then we

compute Ut0 , the unavailability of the system, when only outages lasting longer

than t0 are considered.

As seen in equation A.2 the MDT is computed by integrating d(t) from 0 to ∞,

i.e. we integrate all downtimes. To compute MDTt0 we take only those downtimes

lasting longer than t0. In order to do that, we have to remove the short downtimes

and then scale the distribution up, so that the new distribution dt0(t) starts with 1,

i.e. dt0(0) = 1. dt0(t) becomes:

dt0(t) =

{
d(t)/d(t0) if t > t0
1 else

Figure A.1 illustrates the function. The solid line shows d(t) and the dashed

line dt0(t). The colored areas show the unscaled integral of dt0(t). Integrating the

function yields:

MDTt0 = t0 +
∫ ∞

t0

d(t)
d(t0)

dt (A.4)

If we consider only a subset of all failures, in this case only failures last-

ing longer than t0, then the frequency of failures is lower than when considering

all failures. The downtime distribution gives us the probability that failures last

longer than t0 so we can compute the new frequency by

Λt0 = Λ ·d(t0)
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And with that we can compute Ut0 , the unavailability of the system, when only

outages longer than t0 are considered:

Ut0 = Λ ·d(t0)(t0 +
∫ ∞

t0

d(t)
d(t0)

dt) (A.5)

A.2 ENS Frequency Curve
The extension with the energy not supplied (ENS) follows the same reasoning as

above. We start with the formula to compute the mean ENS per outage which is

done by

MeanENS =
∫ ∞

0
e(t)dt

and extend it to get the formula for mean ENS per outages longer than t0:

MeanENSt0 = e∗(t0)+
∫ ∞

t0

e(t)
d(t0)

dt

As in equation A.4 d(t0) is the scaling factor from the downtime distribution.

e∗(t0) is the energy not supplied up to t0 caused by only the failures that last

longer than t0. To calculate it, we need to use the Markov model as explained in

the paper, i.e. remove all links from the down states to the up states and compute

the accumulated cost until t0 by

The total ENS costs are then computed by multiplying it with the frequency

of these failures as in equation A.5:

ENStotal(t0) =
d(t0)

MTBF
(e∗(t0)+

∫ ∞

t0

e(t)
d(t0)

dt)
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