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Summary

Diesel electric propulsion has become the industry standard for e.g., oil and
gass vessels, cruise vessels, ferries, and vessels with dynamic positioning
(DP) systems. Diesel engines are paired with generators to produce electric
energy, which is used by electric motors for propulsion of the vessel, and also
by other consumers, such as hotel loads, drilling drives, cranes, and heave
compensators. This system is reliable and efficient due to the flexibility of
the electric grid. DP is often used as a motivating example in this thesis.
The thrusters of a vessel using DP is used to fix the position and heading of
the vessel. The power plant is operated with redundancy, as a single fault
should not lead to loss of position. However, this redundancy decreases the
efficiency of the power plant. This thesis presents new ideas and results on
how to increase the efficiency of a hybrid power plant with diesel generator
sets and batteries while maintaining the required safety level.

A model of a marine vessel is presented in Chapter 2. This model in-
cludes the power plant, a hydrodynamic model, and control systems. The
power plant includes generator sets, batteries, switchboards, thrusters, and
hotel loads. Environmental loads are included in the hydrodynamic model,
such as first and second order wave loads, mean and gusting wind, and
ocean current, along with the hydrodynamic model of the vessel and the
thrusters. The included control systems are a power management system, a
DP-controller, thrust allocation, and low level controllers of producers and
consumers. Earlier marine vessel simulators mainly focused on the hydrody-
namic model or the power plant. However, the present model combines the
three models, to investigate the complex integration and interaction effects
between the models. These interaction effects are especially important when
investigating the DP performance after faults in the power plant. Chapter 2
presents the models needed for this integration. Three simulation cases are
presented, to shows that the simulator can capture the interaction effects.

A simulation-based dynamic consequence analysis is presented in Chap-
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ter 3. The tool uses the simulator from Chapter 2 to simulate several possi-
ble worst case scenarios. This tool can be used by the operator to optimize
the electric power plant configuration, and to show that no single failure
lead to loss of position. The dynamic consequence analysis is necessary
when stand-by generators are considered, as the vessel may lose position
during the time from when the fault occurs until the plant fully recovers,
even if the vessel maintains its position after recover.

A scenario-based model predictive controller (MPC) is presented in
Chapter 4. This controller uses fault scenarios, internally, to constrain the
nominal trajectory, which is an alternative to conventional static safety con-
straints. The control of generator set speed of a marine power plant is used
as a case study. Simulations show that fault scenarios can replace static
safety constraints by using this controller.

Chapter 5 presents a method to control peak-shaving. Peak-shaving by
batteries is used to cancel out power fluctuations, which cause variations
in the electric grid’s frequency. However, the batteries may get too hot
if power demand is too large. The proposed controller, based on a power
spectrum analysis and MPC, reduces the power fluctuations as much as
possible without letting the battery get too hot. Simulations using data
generated by the simulator in Chapter 2 showed that the controller can
achieve these objectives as long as the characteristics of the load does not
change too rapidly.

Use of the vessel itself as energy storage during DP operation is ex-
plored in Chapter 6. A vessel oscillates about its mean position by reducing
the thruster power when the total power demand of the vessel is high and
increasing it during periods of low power consumption. An analytical for-
mula for motion amplitude given by power amplitude is calculated in this
chapter. The formula is compared with simulations, and the simulation re-
sults agreed with the formula. It is also shown that the resulting deviations
in position from variations of several megawatts are no larger than typical
position deviations from the dynamics of ocean waves and wind.

The proposed models and controllers are demonstrated through simula-
tions using MATLAB/SIMULINK. The MPC-based controllers are imple-
mented in ACADO.
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Chapter 1

Introduction

1.1 Background

The main motivation for this thesis is to reduce the environmental foot-
print of vessels with diesel electric propulsion. Global climate change may
be one of the most important and challenging environmental problems of
today (Pachauri et al.; 2014). It is estimated that total CO2 emissions from
the maritime sector in 2012 was 800 million tons (Marine Environment Pro-
tection Committee, IMO; 2014). No statistics are available on the emissions
of diesel electric vessels, but the combined CO2 emission of roll-on/roll-off
vessels, ferries, and cruise vessels were 117 million tons in 2012. Therefore,
reducing emissions from these vessels would be significant for the global en-
vironment. Reducing CO2 emitted from marine vessels can be achieved by
reducing the fuel consumption, which in addition lowers vessel operational
cost. This is a good incentive for the vessel owner and renters to implement
methods that reduce emissions.

The International Maritime Organization (IMO) sets limits on NOX
emissions through MARPOL Annex VI (Figure 1.1) (IMO; 2011). The
Tier III requirements are now enforced within the emission control areas on
all new vessels in operation and Tier II applies to all new vessels outside of
these areas (Figure 1.2). Reducing NOX can be achieved by better control
of diesel engines; including new air paths, such as exhaust gas recirculation;
or by adding exhaust gas treatment systems, such as selective catalytic
reduction (SCR). As NOX form at high temperatures, NOX emissions often
increase with a higher engine load. In contrast, SCR requires a minimum
temperature to work and therefore, requires a medium or high engine load.
For vessels operating between Norwegian harbors, the Business Sector’s

1
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Figure 1.1: NOX limits given by the IMO Tier requirements. The Tier I,
II, and III rules apply for all vessels constructed in 2000, 2011, and 2016
or later, respectively. However, the Tier III rules apply to vessels while
operating in Emission Control Areas.

NOX Fund provides financial support to project reducing NOX emissions,
such as installing an SCR or for consumption of urea used in SCRs.

MARPOL Annex VI also adds limits on SOX and particulate matter
(PM). This sets limits on the sulfur content in the fuel. The exhaust gas
treatment systems, such as scrubbers, can be used to reduce the SOX and
PM emissions, and the sulfur content limits on the fuel can then be by-
passed. The formation of PM increases when the air-to-fuel ratio is low (rich
combustion), which may occur during torque load changes in the diesel en-
gines (Guzzella and Onder; 2010). Therefore, smoother power consumption
may reduce PM emissions. MARPOL Annex VI also sets emission limits
for ozone-depleting substances and volatile organic compounds.

The Energy Efficiency Design Index (EEDI) is included in MARPOL
Annex VI, which sets maximum CO2 emission of a vessel based on average
of emission of similar existing vessels. However, vessels with diesel electric
propulsion are excluded from this requirement (Bazari and Longva; 2011).
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Figure 1.2: Emission control areas (ECA) for Tier III and possible future
ECA as indicated by DNV GL. Note that the ECA in the North Sea and
Baltic Sea are only regulating SOX emissions. Courtesy: DNV GL.

1.1.1 Dynamic Positioning

In this study, vessels with dynamic positioning (DP) systems are used as
an example, although many of the results are useful for other cases. The
thrusters maintain the vessel’s position and heading fixed during DP opera-
tion. The subsystems of a DP system are shown in Figure 1.3. The position
measurement of the vessel is measured by e.g., GPS, taut-wire, or acoustics.
An observer filter out the wave induced motion components and estimates
a low frequency position and velocity from these measurements. The DP
controller uses this estimate to determine the desired force and moments
to control the vessel position. Thrust allocation converts this global force
to local forces for each thruster. Then, the propulsion unit controls the
thrusters to provide the desired thrust (Sørensen; 2011).

1.1.2 Diesel Electric Propulsion

Diesel electric propulsion has become the industry standard for e.g., oil and
gass vessels, cruise vessels, ferries, and vessels with DP system. An example
of a diesel electric power plant is given in Figure 1.4. The power plant
consists of multiple pairs of diesel engines and electric generators (generator
set). The generator sets deliver power to the propulsion units as well as other
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Figure 1.3: Systems included in dynamic positioning

consumers, such as hotel loads, drilling equipment, cranes, and auxiliary
systems. One of the advantages of diesel electric propulsion is flexibility,
because the power plant is easily reconfigured. This can be utilized to
increase efficiency by running the optimal number of engines. Safety can be
increased by increasing the redundancy and segregating the electric grid
into independent grids where each grid can independently maintain the
operation (Radan; 2008; Ådnanes; 2003).

Diesel electric propulsion is mainly used on vessels with changing power
and/or redundancy requirement, because the additional equipment between
the diesel engine and the propeller shaft decreases the efficiency during high-
load conditions. Vandal was the first vessel with diesel electric propulsion,
launched in 1903. The technology evolved further for submarines during
World War I. However, for commercial vessels, the technology got traction
with the demand from dynamic positioning of thrusters that are more re-
sponsive and the development of power electronics in the 1980s (Hansen and
Wendt; 2015; Skjong, Rødskar, Molinas, Johansen and Cunningham; 2015).

For vessels with DP class 2 and 3, it is required that any single fault
should not lead to loss of position (IMO; 1994). Redundancy in the power
plant is used to fulfill this requirement. Figure 1.4 shows a single line di-
agram for a drilling vessel. In typical DP operations, the power plant is
configured so that one switchboard could fail and the remaining switch-
boards are still able to keep the position of the vessel until the operation is
terminated.
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Figure 1.6: Hierarchy of control systems and networks for a typical marine
power system. Courtesy: Sørensen (2013).

1.1.3 Marine Automation

One of the first examples of automation of marine engine room was the
Haugvik-project. In this project the Norsk Hydro owned ammonia tanker
M/T Haugvik was retrofitted with measurement and monitoring systems,
so that the engine room could be monitored from the bridge. This was per-
formed by Norges Skipsforskningsinstitutt (later MARINTEK) and Norsk
Hydro. The motivation behind the project was to reduce the need of com-
petent personnel, due to the lack of competent personnel in the industry
and to lower the operational cost. The success of this project later led to
the establishment of Norcontrol and the engine room zero notation (E0) by
Veritas (later DNV GL) (Overbye; 1989).

A typical hierarchy in a marine automation system is presented in Fig-
ure 1.6. The local controllers are at the bottom level, which control the
equipment, such as thrusters, drilling equipment, and HVAC. These low-
level controllers communicate with high-level controllers via a redundant
fieldbus network. The high-level controllers coordinates the low-level con-
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trollers and may include dynamic positioning controllers and the power
management system. Furthermore, these high-level control systems com-
municate with operation stations around the vessel through redundant Eth-
ernet networks, often called A and B networks. A third Ethernet network,
network C, is used for non-essential communications, such as administration
and printing. This network may also have an onshore connection through
satellite communication, so that the vessel can be optimized from onshore.
This hierarchy is useful for several reasons. One reason is the segregation
of more critical communication from less critical communication. This hier-
archy also separates the time scales, as the fastest control actions are done
by the local controllers, while high-level controller do the slower coordina-
tion (Sørensen; 2013).

A power management system (PMS) is used for coordinated control of
the electric grid. Its main tasks are to make sure that sufficient power is
available and to prevent blackouts in case of faults. The PMS is often the
most interconnected system on a marine vessel, because it must communi-
cate with all main power consumers, producers, and distributors. The two
layer architecture is also used for control of marine power plants, with the
low-level controllers, such as switchboards, governors, and breakers, and a
high-level controller, PMS. The low-level controllers protect the equipments,
while the PMS takes charge of the coordination, to prevent blackouts and
optimization of the plant (Ådnanes; 2003).

The switchboards control the power plant at the lowest level. It includes
protection systems, such as under/over frequency protection, reverse power
of generators, and short circuit relays. In addition, the switchboards cal-
culate active and reactive power, frequency, and voltage, and these signals
are then sent to the PMS field station. The breakers includes protection
relays with varying delays depending on their position in the power plant.
This is timed carefully such that faulty equipment is disconnected and no
other equipment is affected. Frequency drives may implement fast phase
back system (FPBS), also known as frequency guard (May; 2003). This
reduces power consumption of the frequency drives if the frequency is too
low, and eventually cuts the power if the frequency decreases low enough.
Governors on the generator sets controls the generator sets throttle, to con-
trol the electrical frequency and load sharing among the generator set. An
automatic voltage regulator in the generator is used to control voltage and
reactive load sharing; this is accomplished by changing the field current.
These systems are implemented such that an operator can control the plant
locally and turn off the PMS to control the plant manually. For example,
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new generators can be connected by activating the synchronizer, and the
generator can be manually connected when it is in sync (Ådnanes; 2003).

The PMS is implemented through field stations to control the plant
and operating stations for human machine interface. As the loss of a field
station should not be the worst case failure on a DP vessel, there is one field
station per switchboard or one per generator set. Their physical location in
a DP 3 vessel is also important, because they should be segregated in case of
fire and flooding. The field stations communicate with low-level controllers
through the field bus network, or directly over hard-wired signals. Hard-
wired signals are often used when frequent data updates are needed, such
as to determine breaker status, as an opening of a breaker may require
immediate coordinated control by the PMS. Two CPUs and a master/slave
architecture is typical used in field stations, where the slave is ready to
immediately take over control if the master CPU fails (May; 2003).

The operator station is used as the human-machine interface. Multiple
operator stations are placed around the vessel, such as one to monitor the
power plant from the DP control station, and another for control of the
power plant by the engineer. They communicate with the field station
through the A and B network.

These are functions typically implemented on a PMS (May and Foss;
2000):

Power available: The vessel should have sufficient available power at all
times. However, sometimes there are not enough power, this may oc-
cur due to the connection of large loads or disconnection of producers.
The frequency will begin to drop if this situation is not handled cor-
rectly, which will give blackout. Thus, a power available signal is used.
The available power of the producers is summed and allocated to the
main consumers by priority. The reaction time is typically within
tenths of a second. In addition, the PMS accepts or rejects connec-
tions from large power consumers when required, based on available
power.

Fast load reduction: FLR is used in addition to power available. The
FLR sets power limitations on the frequency drives of propulsion mo-
tors or other motors with frequency drives. These frequency drives
react within milliseconds due to the fast power electronics. Therefore,
FLR is often used for fault events, such as the loss of generator set
or opening of bus-tie breakers. The FLR is triggered by hard-wired
signals and reduces power consumption within tens of milliseconds.
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Load shedding: Load shedding is used in extreme cases, when FLR and
power available are insufficient. Consumers are disconnected com-
pletely from the grid to reduce power consumption. However, this is a
drastic method, because it often takes much effort and time to restart
systems.

Ramp control: Ramps are often used to constrain power increases of con-
sumers, so that large load steps on the generators are avoided. In
some cases, these ramps are dynamically set by the PMS depending
on operation and configuration of the vessel.

Automatic start and stop of generator set: Generator sets may be au-
tomatically started and connected by the PMS when power demand
increases. This is often performed using start tables. A new generator
set is connected if the power demand increases above a threshold for
a certain length of time. Similarly, generators can be disconnected
if the power demand decreases below a threshold for a certain time.
Generators are often automatically started and connected in cases of
severe faults.

Automatic monitoring: The PMS can check health of the system and
react if the system is unhealthy. This is needed as some faults escalate
very quickly. An example is a fault in the governor. If the governor
gives full power, the corresponding generator set will take additional
load. The other generator sets may then go into reverse power and
trip. Then, the bus is left with only the unhealthy generator set, and
the future of the plant is uncertain. This may happen within tens of
seconds, which is faster than a human can detect, identify, and react
to the fault. In this case, the PMS should detect and identify the fault
and disconnect the generator set before the other generator sets trip
on reverse power.

Blackout Recovery: The worst case scenario occurs sometimes, and the
power system blacks out. In such cases, the power system must be
recovered carefully. This is often performed by a preprogrammed se-
quence, so that the most important equipment is connected first.

Logging: The PMS is also used for logging; the operator uses this option
to optimize the configuration and fault diagnostics.

The PMS is usually operated by the machine room operator who com-
municates with the bridge, so that the power plant is correctly configured.
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For example, the bridge may tell the machine room operator that a new op-
eration requiring more power will be started soon. Then, the PMS operator
may start and connect additional generator sets and give their acceptance
for the operation to start. The maintenance of diesel engines is typically
scheduled by the running hour of the engine, which is the number of hours
the engine has been running. Therefore, the operator select engines for
stand-by so that the desired share of running hours is achieved. Although
a load-dependent start is often activated, load-dependent stop is typically
disabled. The operators often prefer to control this function themselves,
so that the engines are not shut down at wrong time and to optimize the
individual share of running hours. However, this can be performed auto-
matically, and is often implemented with mode control. The configuration
is achieved automatically by selecting the vessel mode (e.g., transit, stand-
by, or drilling). The power available is presented for the operator at some
operation station, such as DP and drilling operation station, to indicate the
general status of the power plant.

1.1.4 Model Predictive Control

Several methods based on model predictive control (MPC) will be described
in this study. MPC includes a model of the controlled plant. The future
trajectory of the controlled states is predicted and optimized with respect
to a cost function and constraints. This optimization gives an optimal
control sequence. The first input in this sequence is applied, at the next
update time instant the trajectory and control sequence are optimized, and
the first input of this control sequence is applied. This process is repeated
continuously (Maciejowski; 2002).

MPC is in use for DP in Kongsberg Maritimes greenDP system (Kongs-
berg Maritime; n.d.). The advertisement for this system claims that the
fuel consumption is reduced by approximately 20%, and power fluctuations
are reduced by 50–80%. In this case, the vessel is controlled to move within
a region, instead of being controlled to a set point. This approach gives a
smoother thrust and small disturbances can be neglected.

MPC has had the largest impact in refining, petrochemical, and other
chemical factories, with more than 2,500 applications in these sectors and
in total more than 4,500 applications were collected by Qin and Badgwell
(2003). MPC is most attractive for plants with multiple coupled inputs
and outputs. The hierarchy typically used to control a plant with MPCs
consist of three levels, a plant controller, high-level MPC controllers, and
low-level controllers. A static plant level optimizer calculates set-points for
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the MPC. The MPC is then used for the transition between the set-points,
and to keep the plant at the set-points. The MPC provides the set-points for
local controllers of low-level equipment, such as pumps, valves, and motor
drives. It is also common for the plant optimizer to produce a range instead
of set-points for the output variables of the plant, such as in the greenDP.
The disadvantage of MPC is the need of a good model of the plant, which
are needed for accurate predictions, and computational complexity, which
challenges reliable real-time implementations.

MPC has already been proposed for marine power systems and can be
used to control power generation, e.g., Hansen et al. (1998); Paran et al.
(2015); Veksler et al. (2013). It has also been suggested to use MPC for the
coordinated control of producers and consumers, e.g., Park et al. (2015);
Stone et al. (2015); Veksler et al. (2012b). MPC can control active filters
to reduce harmonic distortion, e.g., Skjong, Molinas and Johansen (2015);
Skjong, Molinas, Johansen and Volden (2015); Skjong, Ochoa-Gimenez,
Molinas and Johansen (2015).

1.2 Current Trends

Many initiatives have been implemented in the last few years to reduce
marine power plants emissions, e.g., Hansen et al. (2011); Mathiesen et al.
(2012); Myklebust and Ådnanes (n.d.); Veksler et al. (2013). New classifi-
cation rules allows startup of stand-by diesel engines and thrusters after a
failure e.g., DNV (2015, Part 6 Chapter 26 Section 2) and ABS (2014, Sec-
tion 8), and to operate with closed bus-ties; however, this challenges redun-
dancy (DNV GL; 2015a). Moreover, the number of diesel engines running
can be reduced, which will increase efficiency and reduce maintenance.

The combination of diesel electric and diesel mechanic propulsion has
also been suggested (Myklebust and Ådnanes; n.d.). Methods for reducing
load variations have been presented, such as batteries (Kim et al.; 2015),
super-capacitors (Chen et al.; 2010), feed-forward control of generators, and
load compensation using thrusters (Mathiesen et al.; 2012).

Battery and power electronics have been developed rapidly and several
vendors invests in the development of batteries for marine vessels (ABB;
n.d.; Martini; 2015; Valmot; 2014) and DNV GL allow the use of batteries
during DP operation from January 1, 2016 (DNV GL; 2015b, Part 6 Chap-
ter 3). Batteries are being used as the main power supply for a ferry (Mar-
tini; 2015). The maritime battery forum (Norwegian forum by DNV GL)
reported that 26 vessels are using batteries among their member organiza-
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tions (Opsand; 2015). Some advantages of batteries include:

• Peak-shaving, using the batteries (or super-capacitors) to reduce power
fluctuations. This may reduce wear and tear on the diesel engines,
increase efficiency, and batteries make it easier to synchronize new
generators into the grid.

• Stand-by emergency power/uninterruptible power supply. Today the
number of diesel engines has been set such that there is sufficient
power available if a fault occurs, which gives a low utilization of the
diesel engines. Currently, two generator sets are used in cases when
only one is required during fault-free operation. Thus, if one generator
fails, the other can maintain power production. However, if batteries
are being used, one generator set can run, and the battery can take
the full load until a new generator set is connected to the grid or the
operation is terminated.

• A battery can be used to run the diesel engines at optimal load. First,
the diesel engines can run at the optimal utilization and charge a bat-
tery with the excess power. Then, when the battery is fully charged,
the diesel engine can be turned off. The battery will then supply the
needed power, until the diesel engine is turned on again when the
battery charge is depleted. This requires many charging/discharging
cycles, which destroys the battery in the end. Therefore, the eco-
nomics of this method should be studied to check if the reduction in
fuel consumption pays off the extra wear and tear on the battery.

Direct current (DC) distribution should not be ignored when evaluating
the future of diesel electric propulsion (Hansen andWendt; 2015). DC allows
the use of variable speed engines, which can increase efficiency. Figure 1.7
shows the specific fuel consumption for a variable speed engine. Note that
the optimal speed of the engine varies with power. Other advantages of
DC include simplified connection of DC power sources, no frequency limits
on the generators (or electric grid), and no reactive power. However, some
challenges exist considering high power use cases and short circuits.

Many new combinations of systems (or so-called hybrid concepts,) will
soon be available in which the best of several systems are combined, such as
diesel electric and batteries, AC and DC, and diesel-electric and mechanic.
Even more complex systems will be developed than those available today.
The needs for better verification (e.g., HIL (Johansen and Sørensen; 2009)),
decision support, and autonomous control systems will increase.
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Use of energy storage to optimize a power system was commercialized
by the automotive industry in 1996 with the Toyota Prius (Ehsani et al.;
2009). A marine power plant has many similar challenges as a hybrid electric
vehicle (HEV).

• Power demand varies, in the short-term, e.g., urban driving or load
fluctuations from thrusters in harsh weather, and in the long-term, in
slow traffic vs. highway or stand-by operation vs. transit.

• Future perspective of zero-emission zones for cars in cities and for
marine vessels in harbor.

• The control of charging and discharging of energy storage is challeng-
ing for a hybrid car and a marine vessel, as future power demand is
highly uncertain.

However, more flexibility and higher safety and reliability are required on-
board a marine vessel than a HEV. A marine vessel has multiple power
producers that can be turned on or off. In addition, a marine power plant
controls its power consumers by constraining their demand; however, this
may be a possible for autonomous cars in the future as well.

There is an increasing trend towards plug-in hybrid electric vehicles
(PHEV) (Wirasingha and Emadi; 2011). With the increase of the bat-
tery size, the similarities between energy management for marine vehicles
and those for automotive vehicles have become stronger. Different control
strategies have been suggested to manage energy in a PHEV, including rule-
based, fuzzy logic, and optimization-based control (Wirasingha and Emadi;
2011).

On-shore power grids are often considered stiff, which means that a
change in power for a typically sized consumer or producer in the grid
will result in a small or no change in the voltage and frequency of the
grid. In contrast, marine power grids are considered weak. As consumers
and producers can be the same size, a change in the consumed power can
result in large changes in voltage and frequency. However, the increased
renewable energy penetration in on-shore grids has produced some of the
challenges of marine power plants for onshore power grids. Weisser and
Garcia (2005) noted that a wind penetration level of ≥40% is not recorded
in autonomous medium-scale power grids, as higher penetration decreases
power quality below the desired level. Holttinen et al. (2011) and Eriksen
and Orths (2008) presented some challenges regarding increased penetration
of wind power. These problems typically arise when the level of penetration
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increases above 10–20%. The reserve requirement increases with increased
wind penetration. The grid is also dependent on the interconnection among
grids to balance power. This is the case in Denmark, which is dependent
on balancing power from neighboring countries. Hydropower plants can be
used for energy storage, which is much cheaper than batteries using today’s
technology. Improved wind forecast would improve scheduling, which would
provide better predictions of future power production. The domestic grid
must also be reinforced so that geographical imbalances can be handled.
Power consumers can also be used to balance power, by controlling electric
water boilers, charging electric vehicles, and cooling houses (Hovgaard et al.;
2013). These methods are strongly related to methods suggested for marine
power plants. The interconnection among grids and reinforced grids are
related to closed bus-tie operations, using hydropower for energy storage
is equivalent to using batteries, and better control of consumers is also
implemented on marine vessels.

1.3 Motivation

The flexibility of a vessel with DP and diesel electric propulsion gives a large
opportunity to optimize the plant for reduction of environmental emissions.
However, the system is highly complex, interconnected, and dynamic, due
to the interactions between the environment and the propulsion, power and
control systems. In addition, many operational objectives are conflicting,
such as safety requirements and minimization of fuel consumption. As a
greater number of diesel engines typically gives a safer vessel, but also in-
creased fuel consumption.

Therefore, a large effort was put into the establishment of the system
simulator. The simulator was needed for the further development and test-
ing of new high-level control strategies. A large portion of the time spent
on the PhD was used on this development, due to the complexity caused
by the number of components, where appropriate models was selected and
implemented to achieve the desired compatibility, fidelity, and computation
performance.

Optimization-based control techniques are ideal for control of these sys-
tems. Control objectives can be reformulated to constraints and cost func-
tions, and be handled explicitly. One of the constraints is that any single
fault should not lead to loss of position. Scenarios can be used to model
such constraints. The vessel can optimize its nominal performance using one
or several predicted scenarios. Then, multiple scenarios modeling multiple
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different faults can be used to ensure the plant’s safety.
There are many ways to reduce greenhouse gas emissions from vessels

including:

optimize the operation e.g., better tuning of controllers, new control
strategies, and coordinated control,

optimize the configuration e.g., turning on or off generator sets, con-
necting switchboards,

optimize equipment e.g., proper dimension of needed power ratings, in-
creasing the efficiency of thruster drives, and adding

new equipment e.g., batteries, capacitors, active filters, and DC distribu-
tion systems.

All of these methods above will be utilized in this thesis, except optimizing
the equipment. The focus is to reduce the number of running generator
sets. Marine diesel engines are typically operated at 20–50% of rated power;
however, their optimum is about 80% (Figure 1.5). In addition, some NOX
reduction systems do not operate if the exhaust gas is too cold; therefore,
a high engine utilization is required to achieve a high enough exhaust gas
temperature. There are many reasons to run at low power, including:

Unclear situation: The operator of the vessel must be sure that the vessel
is safe. However, the operator may not know the current safety status
of the vessel. A situation in which the vessel is running with an un-
necessary high safety level can be avoided by providing more relevant
information about the vessel’s safety status to the operator. Some
operators override the automatic control system that starts and stops
the generators because they do not trust or understand the control
system.

Frequency variations: The varying electric power demands of a marine
vessel may be a reason to increase the number of diesel engines. Al-
though the mean power consumption is low, the power variations may
cause undesirable large frequency variations. The resulting varying
frequency makes it difficult to synchronize and connect additional gen-
erator sets, and increase the wear and tear on the diesel engines from
thermal and mechanical stress. Consequently, the rotational inertia of
the plant increases by committing additional generator sets, which re-
duces frequency fluctuations. Moreover, the fuel consumption curves
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for diesel engines are given under static load conditions and underes-
timate fuel consumption during fluctuating load conditions.

Economy: It is common for some types of vessels for the renter to pay
for the fuel of the vessel. Therefore, the vessel owner and operator
of the vessel do not have an incentive to reduce fuel consumption.
However, the vessel owner pays for maintenance of the engine, which
often follows the running hours of the engines. Therefore, mainte-
nance is reduced by reducing the number of running engines, which
reduces costs for the vessel owner. However, the cost of interrupting
or aborting an operation due to a fault in the power plant is typically
much higher than the possible cost reduction by optimizing the plant.
Therefore, it may be a large economic risk to reduce redundancy for
a more efficient but less robust power plant.

The topics of this thesis are investigating methods for better configura-
tions and safer control. Better configurations can be achieved by modeling
(Chapter 2), which can be used to design better vessels, and a better decision
support system (Chapter 3) so that the operator can make better decisions.
The power fluctuations problem can be handled with better control of the
generator sets (Chapter 4), and use of batteries or thrusters for peak shaving
(Chapters 5 and 6). The performance of a given power plant configuration
will increase using these methods (less fuel consumption, less wear and tear,
and easier synchronization). In addition, these control methods may make
previously unsafe configurations safe.

1.4 Publications
The following publication are the basis of the thesis:

• Bø, T. I. and Johansen, T. A. (2013). Scenario-based fault-tolerant
model predictive control for diesel-electric marine power plant, MTS/
IEEE Oceans, Bergen, Norway.

• Bø, T. I., Johansen, T. A. and Mathiesen, E. (2013). Unit Commit-
ment of Generator Sets During Dynamic Positioning Operation Based
on Consequence Simulation, Proc. 9th IFAC Conf. Control Applica-
tions in Marine Systems.

• Bø, T. I. and Johansen, T. A. (2014). Dynamic safety constraints by
scenario based economic model predictive control, Proc. IFAC World
Congress, Cape Town, South Africa, pp. 9412–9418.
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• Bø, T. I., Johansen, T. A., Dahl, A. R., Miyazaki, M. R., Pedersen, E.,
Rokseth, B., Skjetne, R., Sørensen, A. J., Thorat, L., Utne, I. B.
et al. (2015). Real-time marine vessel and power plant simulation,
Proceedings of the ASME 34th International Conference on Ocean,
Offshore and Engineering, OMAE 2015.

• Bø, T. I., Johansen, T. A., Sørensen, A. J. and Mathiesen, E. Dynamic
Consequence Analysis of Marine Electric Power Plant in Dynamic
Positioning. Submitted for publication

• Bø, T. I. and Johansen, T. A. Dynamic safety constraints by scenario-
based economic model predictive control. Submitted for publication.

• Bø, T. I. and Johansen, T. A. Battery Peak-Shaving Control in Elec-
tric Marine Power Plant using Nonlinear Model Predictive Control.
Submitted for publication.

• Bø, T. I., Dahl, A. R., Johansen, T. A., Mathiesen, E., Miyazaki, M. R.,
Pedersen, E., Skjetne, R., Sørensen, A. J., Thorat, L. and Yum, K. K.
(2015). Marine vessel and power plant system simulator. Access,
IEEE 3: 2065–2079

• Johansen, T. A., Bø, T. I., Mathiesen, E., Veksler, A. and Sørensen,
A. J. (2014). Dynamic positioning system as dynamic energy storage
on dieselelectric. doi: 10.1109/ACCESS.2015.2496122 ships, Power
Systems, IEEE Transactions on 29(6): 3086–3091.

1.5 Structure of the Thesis and Main Contribu-
tions

The thesis is a collection of papers, which makes the chapters self-contained.
However, the model used in Chapter 2 was used for the simulations in several
other chapters.

Chapter 2: This chapter presents a marine vessel system simulator. The
simulator includes marine power, DP, and control systems. The main
contribution is the presentation of the models required for the sys-
tem simulator. The motivation behind the simulator was the need
for a simulator that could model the interaction effects between the
DP system and the electrical system under nominal conditions and
when faults occur. More knowledge of the current safety margin can
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be found by using a simulator which can simulate faults in the electric
system, how they are handled, and how they affect the stationkeeping
performance. The simulator allows new methods to be tested and ver-
ified including interaction effects. In addition, the simulator includes
interaction effects between the DP system and the electric system,
such as power fluctuations generated by wave induced motion. This
can be used to optimize power producers with load time series from
the simulator.

Chapter 3: The simulator was used for development of the simulation-
based consequence analysis. The main contribution of this chapter
is the analysis method. The analysis was performed by establishing
all possible worst case scenarios, and simulating them to verify that
the vessel could maintain its position during the worst case scenario.
The method was compared with the conventional static method. A
drilling rig was used in the simulation study with several fault scenar-
ios and grid configurations. Different recovery methods were used in
the simulation study to show different transient performance.

Chapter 4: A scenario-based MPC was presented in this chapter. The
controller used fault and nominal scenarios internally. The fault sce-
narios are used to constrain the nominal scenario, so that the plant
can be maintained within the constraints after a fault scenario occurs.
This transfers the safety requirements, given by the fault scenarios,
from safety constraints on a nominal trajectory to safety constraints
on fault trajectories, which is the main contribution of the chapter. As
it may be difficult to find static constraints for the nominal trajectory,
this increases the room for optimization, which may make increase the
plant’s performance.
The MPC controller is applied on a marine power plant. One of the
reasons to use many diesel engines is to provide sufficient rotating iner-
tia to withstand a loss of a generator. Lossing a generator increases the
load on the remaining generator sets and the frequency will decrease
due to rate constraints on the diesel engine’s torque. This scenario
will lead to a blackout due to under-frequency if the safety margin is
too small or the load is not sufficiently reduced. Therefore, loss of a
generator set was used as the fault scenario in the case study, where
the set-point of the governor is adjusted by the MPC.
The safety margin is dynamic, which allows the electric frequency to
vary within a safe range, instead of fixing it to a nominal frequency.
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This may increase the safety margin in some cases, so that the con-
figuration is safe in cases where it is unsafe with conventional control
methods.

Chapter 5: Batteries are useful for peak shaving to reduce load fluctua-
tions. The diesel engines will produce a slowly varying load, and the
batteries will handle load fluctuations. Batteries get hot if the electric
power is too high; therefore, power is constrained by the battery tem-
perature. This chapter presents a controller that uses a combination
of spectrum and statistical analyses with MPC to control the peak
shaving, so that the load fluctuations are canceled by the batteries.
However, when the batteries get hot, the most important frequencies
in the load fluctuation are canceled.

Chapter 6: A formula for calculating the position variation given by the
power fluctuation was presented in this chapter. As inertia of a marine
vessel is large, kinetic energy is also large, even at low velocities. Large
power fluctuations are canceled out by the thrusters if the vessel is
allowed to oscillate around the desired position. The loss is also small
when a sufficiently large mean force (e.g., wind or current) is applied to
the vessel. This method allows the vessel to use extra thrust when the
electric power demand is small, and the vessel will then move toward
the mean force. The thrust can be decreased during periods of high
power demand, and the mean force will move the vessel back to its
original position. The mass of the vessel is used as an energy storage
device to reduce variations in electric power, which is an alternative
to using batteries, flywheels, or a super-capacitor for peak shaving.

Chapter 7: Concluding remarks and future perspectives are presented in
the last chapter.



Chapter 2

Marine Vessel and Power
Plant System Simulator

This chapter is based on Bø et al. (2015).

2.1 Introduction

2.1.1 Shipboard Electrical System

The onboard electric power system is crucial for most modern marine ves-
sels conducting advanced operations. Diesel-electric propulsion is common
in offshore oil and gas vessels and cruise/passenger ships with dynamic po-
sitioning (DP).

The ability to conduct stationkeeping and maneuvering subject to cur-
rent, waves, and wind loads depends on the power plant capacity. Insuffi-
cient power may result in decreased DP performance and loss of position.
More severely, a total loss of electric power, known as a blackout, results in
loss of control of the vessel.

Redundancy in power capacity, distribution, and in the number of gen-
erating units is one possible alleviation of the risk of power system faults.
However, redundancy is costly. Economical expenses are significant, both
in terms of investment in equipment, which most of the time is not strictly
necessary, and in terms of machine running hours leading to more frequent
maintenance, and increased emissions and fuel consumption.

The mentioned concerns motive the development of new power plant
control strategies and the introduction of new power sources. Such steps
are not trivial, due to the complex and strongly interconnected nature of

21
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onboard marine power plants, and the weak grid, i.e., sensitive to changes
both in produced and consumed power. Numerical simulation is a valuable
tool for investigating such effects at all stages of design, implementation,
and operation.

2.1.2 Previous Work

A number of marine power plant simulation solutions exist. The intended
use ranges from commercial to academic, and the content from a few state
equations to complete software suites. A selection follows:

Marine Cybernetics’ CyberSea technology platform encompasses mod-
els of hydrodynamics, electro-mechanics, and sensors (Marine Cyber-
netics; n.d.). It is used for independent hardware-in-the-loop (HIL)
testing (Johansen and Sørensen; 2009) and dynamic capability analy-
sis (DynCap) (Pivano et al.; 2014).

U.S. Office of Naval Research’s Electric Ship Research and Develop-
ment Consortium studies include both real-time HIL simulators (Ren
et al.; 2005), models of higher fidelity (Steurer et al.; 2007), and ex-
tension to hybrid plants (Xie et al.; 2009).

Marine Systems Simulator (MSS) (MSS; 2010) library and simulator
for MATLAB/Simulink is a 2004 merge of (Perez et al.; 2006, Section
1): marine GNC toolbox (Fossen; 2002), MCSim (Sørensen et al.;
2003), and DCMV (Perez and Blanke; 2003). It has vessel dynamics,
environmental (wave, surface current, and wind) loads, and advanced
thruster models.

DNV GL’s Sesame Marine DNV GL (n.d.) risk management software
includes Marintek’s SImulation of Marine Operations (SIMO) motion
and stationkeeping simulator. The system is capable of modeling
multibody systems and flexible systems.

Italian Integrated Power Plant Ship Simulator includes an integrated
power system model implemented in the Simulink environment (Bosich
et al.; 2012).

NTNU models include thruster power consumption (Hansen et al.; 2001)
and power management system functions (Radan; 2008).
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NTNU bond graph model library Pedersen and Pedersen (2012) includes
a vessel model. The library is also verified through full-scale experi-
ments.

Some solutions mainly focus on the electrical system without concern
for the actual DP performance and related consumption, while others do
the opposite.

2.1.3 Design of System Simulators

The simulator presented in this chapter is a system simulator. This means
that the purpose is to model interactions between each of the subsystems of
the complete system, and it should be flexible, so that many different cases
can be studied. A modular design achieves this.

The use cases of the simulator will determine the dynamics that we need
to model and parameterize. The difference in magnitude of the smallest and
the largest timescale of the dynamics in such a multi-physics simulator may
be in order of decades. It is therefore essential to decide the important
timescales for the particular study.

The smallest timescale of the vessel is, in the electric system, in the order
of milliseconds. In the other end, quasistatic studies such as effects of wear
and tear, are in the order of months and years. For simulating short-circuit,
the fast dynamics must be modeled, while the effects of the environment,
and wear and tear, can be assumed constant. On the other hand, the
electric system can be assumed to be in steady state when simulating DP
operation, as the timescales of the electric system are much smaller than
the timescale of the vessel motion. Figure 2.1 lists the time scale of the
simulator components. For certain components model reductions should
not take place, as discussed in respective sections later.

The complexity of a system simulator grows with the number of compo-
nents and the fidelity level. By increasing the fidelity level, more parameters
with higher order model structure, and a more thorough verification and val-
idation are required. In addition the computational speed will typically be
reduced. For studies where high fidelity level is required, not all the sub-
models need to be of high fidelity, as long as the model reduction is done
properly and with care. By using a modular design, it is easy to use low
fidelity models to identify where higher fidelity is required. These models
can then be replaced with high fidelity models.

Verification and validation is challenging for system simulators due to
the high complexity. Each submodel can be verified by itself, but this
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Figure 2.1: List of components in the simulator and their time scales.
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does not verify their integration. Small scale or full scale tests can be
used for verification, but this is costly and time consuming. In many cases
experiences from a set of trained operators are the most practical way of
verifying expected system-level performance.

2.1.4 Use Cases

The simulator has been used in several studies considering DP with diesel-
electric propulsion and consumers such as hotel loads and motors for drilling,
compressors, and pumps.

A selection of typical use cases follows:

Realistic power consumption profile: Since the DP controller and thrus-
ter models are interconnected with the power plant, the power load
fluctuations are represented in a realistic way. The interaction be-
tween the many control subsystems, such as PMS, thrust allocation,
thruster torque, or speed control, is included (Bø and Johansen; 2013).
The simulator can therefore be used to generate time series for later
use in isolated subsystem simulation (e.g., diesel engine simulation).

Fault consequence analysis: The plant behavior in the event of an elec-
trical fault, such as the loss of a genset, can be simulated (Bø et al.;
2013). The resulting DP performance is then also available. This
may improve the conventional capability analysis, which is calculated
assuming that the propulsion system is in steady-state. Indeed, tran-
sients during plant reconfiguration can be critical (Pivano et al.; 2014).

Operation optimization: The detailed level of modeling includes many
states for each submodule, for instance temperature and power output.
Based on these, operation may be optimized with regards to emissions,
maintenance, or fuel consumption.

Concept evaluation: Submodules representing new subsystems such as
energy storage device (ESD), can be interfaced to the simulator. This
allows investigation of new power sources and their effect on the overall
control and performance of the plant.

It must be stressed that the simulator is not limited to diesel-electric
propulsion, nor DP operations.



26 Marine Vessel and Power Plant System Simulator

2.1.5 Contribution

This chapter focuses on the models and methods needed for an integrated
simulator of the electric power system together with the vessel motion in-
cluding the DP system. Secondly, some new models are established and
verified to achieve the desired fidelity level and performance. Most of the
models are verified models from literature. The scope of the simulator runs
from high-level control systems, such as the positioning system and power
management system (PMS), to high-fidelity models of power generators,
storage, and consumers, such as gensets, batteries, and thrusters, respec-
tively. The accuracy of the simulator is only verified qualitatively due to the
complexity of the system. Quantitative verification of the plant is research
still to be done and is considered outside the scope of this chapter.

2.1.6 Overview of the Chapter

This chapter consists of three sections, the model is presented in Section 2.2,
the new models are verified in Section 2.3, and simulations are shown in
Section 2.4. The modeling section starts with an overview of the simulator,
followed by details of the power management system. The electrical com-
ponents are then presented, with the switchboard and generator. Next, two
models of diesel engines are presented, followed by the thruster models. Last
is a presentation of the hydrodynamic model of the vessel, the environmental
forces and the DP control system. In Section 2.3, verification of the electric
bus model and simplified diesel-engine model are presented. Section 2.4
presents a simulation of a drilling rig in DP operation, then simulation of a
fault is shown, before a simulation with batteries is presented.

2.2 Modeling

2.2.1 Simulator Overview

The main assumptions of the simulator are:

Steady-state electric system: It is assumed that the electrical system is
in steady state, this is done to obtain real-time capabilities. The sim-
ulator captures dynamics with time scale down to 1 second. However,
the dynamics of the electric system are often in milliseconds and are
therefore assumed to be in steady state, as illustrated in Figure 2.1.
This is verified in Section 2.3.1. The simulated electrical variables are
frequency, voltage, active power, and reactive power. It is therefore
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possible to simulate faults, such as under/over-frequency, slowly de-
veloping under/over voltage fault, and reverse power. However, it is
not able to simulate phase imbalance, transient voltage faults, short-
circuit, and harmonic distortion.

Mean-value engine model: The diesel engines are modeled by mean-
value engine models. This means that most of the components in
the diesel engine system are mathematically modeled based on the
physical laws. However, the in-cylinder process is simplified so that
it gives only a cycle average output such as average shaft torque, and
mass and energy flow of the combustion gas.

Power management system: The objective of the PMS is to make sure
that the power plant is safe and efficient. More details are given in
Section 2.2.2.

Protection relays: Protection relays are not modeled, as breakers can be
tripped by a timer. This means that some custom protection relays
need to be implemented to simulate a partial blackout. Alternatively,
post-processing can be used to detect when breakers should be opened.

Fixed pitch, variable speed thrusters: The thrusters are assumed to
be fixed pitch propellers, with the possibility to run with variable
speed. Thrusters that can rotate in any direction, azimuth thrusters,
and fixed direction thrusters (e.g., tunnel thrusters) can be simulated.

An object-oriented modeling structure has been used to model the ma-
rine power plant. This means that each block in the simulator represents
a physical component in the vessel, and further subsystem blocks represent
internal physical components of the larger system.

The top level view of the model is illustrated by an example in Fig-
ure 2.2. This view represents the information flow for motion control of
the vessel. A DP controller has been used in the presented case. Alterna-
tively, the setpoints of the thrusters can be given manually during transit,
maneuvering, or other operations without DP control.

For this case, the view contains:

1. Observer; estimates the position and velocity of the vessel from mea-
surements.

2. DP control system; calculates a desired thrust command.
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Figure 2.2: Example of top level view, including the vessel model, observer,
DP controller, thrust allocation, and the electrical system. The electrical
system is further presented in Figure 2.3. The central block is used for
common calculations.

3. Thrust allocation (TA); converts the desired thrust command for the
vessel to thrust commands for each thruster.

4. Electric system with thruster model; converts the thrust command to
actual thrust, and electric power consumption.

5. Environmental model; generates realistic loads for the environment.

6. Vessel model; calculates the motions of the vessel given the thruster
and environmental loads.

7. Central; this block is used for common calculations.

The electric power plant is modeled inside the electric system block. An
example of a power plant is shown in Figure 2.3 and consists of:

1. Generator set; consisting of a prime mover (e.g., diesel engine), a gen-
erator, a speed governor, and an automatic voltage regulator (AVR).

2. Thruster drives; consisting of a frequency converter, an electric motor,
a propeller, and controller.
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Figure 2.3: Example of power plant view, including the bus-tie breakers,
thrusters, generator sets, and other loads block. This power plant is used
for simulation of drilling rig in Section 2.4.

3. Other components; this can be hotel and drilling loads, which are
modeled as time series of power consumption. However, this block
may also be used for energy storage, such as batteries with a frequency
converter. The load is then negative when the block delivers power
and positive when it consumes power.

4. Switchboards; connecting loads and producers.

5. Breakers; connecting and disconnecting components.

Simulink was chosen in order to extend the MSS toolbox (Perez et al.;
2006) to include better thruster models and an electric power plant. The
downside by choosing Simulink is the modeling of interconnections. The
system is hard to divide into levels as required by the subsystem architecture
of Simulink. We chose to use the top level model view for the vessel control.
The electric power plant is a subsystem in this view and it is made to mimic
a single line diagram. The stiff solver ode15s is used as numerical solver in
the case study, since the local controllers give a stiff model.

Some first order lowpass filters are used to avoid algebraic loops, where
the time constant of the filters are chosen to be smaller than the fastest
dynamics of the relevant models. This is needed since we ignore some fast
dynamics. The filters can therefore be seen as simplified models of the ig-
nored dynamics. One example is the power available signal. An algebraic
loop occurs since the power available is dependent on the power consump-
tion, while the power available also constrains the power consumption. This
is solved by adding a lowpass filter on the power available signal, which is
faster than the time scale of the consumers. Alternatively, one may use dis-
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crete time and a delay for these signals, but this reduces the performance
of the chosen implicit ode solver.

2.2.2 Power Management System

The objective of the PMS is to make sure there is always enough power
available, to prevent blackout. If a blackout occurs, the power should be
restored as fast as possible. The PMS starts additional generators when the
excessive power capacity of the connected producers is too low. In addition,
the PMS allocates power to the different consumers, by first summing the
current power capacity of the producers, and then sharing this among the
consumers based on their desired power consumption and priority. This
signal, called power available, is sent to some consumers, stating the max-
imum power limit for the specific load. Load shedding (disconnection of
consumers) is done in extreme cases, when power reduction must be done
immediately (e.g., close to under-frequency).

Fast load reduction is an alternative method to reduce the power con-
sumption quickly. It reduces the load of the thruster drives, since they
can change the power consumption quickly due to the frequency convert-
ers. Shortly after the fault is cleared or the capacity is increased, the drives
can increase their loads. This is in contrast to load shedding where the
consumers often needs to be restarted after being disconnected.

The PMS can also adjust the droop and isochronous load sharing pa-
rameters to adjust the load sharing. This is done during progressive loading
after connection of generator sets. Progressive loading is implemented to
ensure that the power generation of the new producer is slowly increased
from no load to desired load sharing.

The PMS algorithm is implemented in C++ as an S-function block
and can easily be configured to different power plants. The object-oriented
focus of the simulator is kept in the PMS implementation, so that new
functionalities, such as automatic start and stop, can easily be added.

2.2.3 Bus Voltage Calculation

The voltage of the bus is needed to calculate the load sharing of the genera-
tors. The generators are connected in parallel as shown in Figure 2.4a. The
loads are assumed to be independent of the bus voltage, their active and
reactive power are therefore given. Thévenin equivalent circuit, as shown
in Figure 2.4b, of the connected generator sets is used to calculate the bus
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Figure 2.4: (a) Circuit diagram of bus with one load with the impedance
Zload and n generators. (b) Thevenin equivalent circuit of (a).

voltage. This circuit is closed by the loads, which have a known power
consumption but unknown impedance.

The resulting power on the bus is then given as

Pbus + jQbus = 3Ṽ Ĩ∗ = 3Ṽ Ẽ
∗
T − Ṽ ∗

Z∗T
, (2.1)

where Pbus and Qbus are the active and reactive power of the loads, Ṽ is the
line-to-neutral bus voltage, Ĩ is the current, ẼT is the Thévenin equivalent
voltage, and ZT is the Thévenin equivalent impedance. Equation (2.1) has
either two solutions, one solution, or no solution. For the case where there
exists two solutions, the solution with the largest absolute value for the
bus voltage is used. The largest voltage yields a high resistance of the
load, and a low current, hence low internal loss. The lower voltage solution
gives a resistance smaller than the Thévenin equivalent resistance, which is
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unphysical. This yields a high current, with very high internal loss since
most of the voltage drop occurs over the internal impedance.

During simulations it may occur that there exists no valid solution.
This may happen when the load increases rapidly (a load is connected) or
the Thévenin equivalent voltage of the generator decreases rapidly (fault
in AVR or disconnection of a generator). In such cases, the voltage is set
to a low value. This gives an incorrect load sharing, but the AVR will
increase the voltage quickly. During the verification study in Section 2.3.1,
a valid solution of the bus voltage was regained within 0.1 millisecond. This
is permissible since the time is very short compared to the time scale of
the mechanical system. A lowpass filter must therefore be added when
simulating voltage protection relays.

2.2.4 Generator

In marine power plants, synchronous generators are typically used to pro-
duce power. As mentioned earlier, the generator is assumed to be in steady
state and with balanced phases. The electrical torque is

τe = p+ ploss
ω

= p

ω
+ r(p2 + q2)

ωv2 , (2.2)

where p and ploss are the active power generated and power loss in the
generator, r is the resistance in the stator windings, q is the reactive power,
and v is the terminal voltage. The terminal line-to-neutral voltage is given
as (Krause et al.; 2013):

Ṽa = −ZĨa + Ẽa, (2.3)

where Z is the internal impedance of the generator set, Ĩa is the current
through phase a and Ẽa is the induced line-to-neutral voltage for phase a.

It is assumed that the magnitude of Ẽa is perfectly controlled by the
AVR or at least the dynamics are much faster than the dynamics of the
mechanical system. This is verified in Section 2.3.1. The per phase angle of
Ẽa is

∠Ẽa = θNpoles
2 , (2.4)

where θ is the mechanical angle and Npoles is the number of poles of the
generator. Parameters are found from (Krause et al.; 2013).

The AVR regulates the terminal voltage by manipulating the induced
voltage. In this simulator, we use a droop controller to determine the set-
point, based on the reactive power of the generator set. This takes care of
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the reactive load sharing. The generators deliver equal amount of reactive
power if they have equal voltage droop curves.

2.2.5 Diesel Engine

The dynamics of the diesel engine are the slowest dynamics of a diesel elec-
tric power plant. Most modern diesel engines are turbocharged to provide
increased power density. When a turbocharged diesel engine needs to in-
crease its delivered power, more air is required into the cylinders to avoid
incomplete combustion and visible smoke in the exhaust. However, the
response of the air system is slow, due to the rotating inertia of the tur-
bocharger and the large air and exhaust receiver volumes. This gives rise to
the turbo-lag. In addition, increasing the fuel injection rises the temperature
in the cylinder.

Constraints are, therefore, added to the engine control output by the
engine manufacturer to ensure that the fuel injection is not changed too
quickly. This is done to avoid that the engine is damaged by a rapid change
of temperature, and that the air pressure in the inlet manifold is large
enough to allow for complete combustion. These constraints are in some
cases conservative, and the air dynamics may be neglected since the engine
will always run with complete combustion due to these constraints.

Transients of the diesel engines can be grouped into three categories (Be-
najes et al.; 2002). The first is energy transfer delay which happens due to
signal delay, preset valve closure or injection timing. The time scale of
such phenomena is in milliseconds. In simulation, this can only be seen by
detailed modeling of the cylinder process and the fuel injection system. Sec-
ondly, the already mentioned air dynamics are the most interesting physics
in this kind of application. The typical transient time scale of the air dynam-
ics is in seconds. Lastly, the thermal transients are caused by the thermal
inertia of the system, which may have time scale of tens of minutes.

Mean Value Model

The main purpose of the diesel engine simulation model is to capture the air
dynamics including pressure before the engine cylinder which can be related
to the charge air available for combustion. In the mean value engine model,
most of the physics in the engine system components are captured except
for the in-cylinder process, i.e., the thermodynamic cycle. The main com-
ponents included in the model are an engine cylinder block, a turbocharger,
a charge air cooler, an air receiver, and an exhaust receiver. The imple-
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mented mean value engine model is based on the models presented in Chow
and Wyszynski (1999); Guzzella and Onder (2010); Heywood (1988); Ped-
ersen and Engja (2000); Yum and Pedersen (2013); Zacharias (1967).

The engine system including a turbocharging system is inherently a ther-
modynamic process with gas mixture as medium. Therefore, main variables
of the system are pressure, p; temperature, T ; and fuel-air equivalent ra-
tio, F . Also flow variables, such as mass flow of gas, ṁ; enthalpy flow or
rate of change in internal energy, Ė; and mass flow of burned fuel, ṁb, are
necessary to describe the dynamics of the system.

A filling and emptying method (Chow and Wyszynski; 1999) is used
to construct the thermodynamic process model of the system. In this ap-
proach, the target model is constructed by placing control volumes in a series
as configured in the real system and putting a flow restriction between ad-
jacent control volumes. It is assumed that the thermodynamic states, such
as pressure and temperature, are uniform within a control volume and that
there is no accumulation of mass in the flow restriction. Then, all the com-
ponents fall into two categories: a thermodynamic control volume or a flow
restriction. Generally, pipes, receivers, and cylinders are thermodynamic
control volumes; whereas any valve, port, compressor, turbine, and heat
exchangers are considered as flow restrictions.

Thermal control volumes determine the thermodynamic states of the
system. They consist of two parts. The first one is a flow junction where
mass conservation and the first law of thermodynamics are implemented.
The second part is the flow accumulation where the net rate of change in
mass and energy are integrated. The integrated values are the mass, mcv;
the internal energy, Ucv; and the mass of burned fuel within the control
volume, mf ; which are states of the system. Pressure and temperature are
derived from a table of thermodynamic properties, such as the JANAF ta-
ble (Chase; 1998), and by using the equation of state (i.e. ideal gas law).
In order to achieve faster simulations, a semi-empirical formula for thermo-
dynamic properties found in Zacharias (1967) is used in place of the table.

A flow restriction, placed between two control volumes, determines the
flow rate of mass and energy between them. The flow rate depends on
pressure and temperature of the adjacent control volumes. In many cases,
the equations of the equivalent ideal flow for compressible gas is used for
this purpose. The equation used for the model assumes an isentropic process
across the restriction (Heywood; 1988). Therefore, any forms of energy gain
or loss should be accounted for to satisfy the conservation laws.

In case of a compressor and a turbine, the model requires a performance
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data map from measurement or a manufacturer. The map represents the
relationship between the pressure ratio across the device and rotating speed
of the rotor, ωTC; versus the corrected mass flow, ṁcorr,TC; and the isen-
tropic efficiency of the process, ηTC. Having acquired the mass flow and the
efficiency, the energy flow in and out can be calculated assuming an isen-
tropic process. Then the torque for each turbomachine can be calculated
as

τ = ṁ∆h
ωTC

(2.5)

where, ṁ and ∆h are actual mass flow and change in enthalpy across the
machine. A dynamic equation is used for the mechanical rotation of the
turbocharger.

Jω̇ = τturb − τcomp, (2.6)

where τturb and τcomp are the torque by the turbine and compressor, J is
the rotational inertia of the turbocharger, and ω is the angular velocity of
the turbocharger.

The whole engine block, including intake and exhaust valves, fuel injec-
tion system, cylinders, and pistons is simplified to a single flow restriction
model. In this model, the input is the pressure, pAR; and temperature of
the air receiver, TAR; the engine speed, ωeng; and the fuel rack position, u.
Mass flow through this restriction model can be determined given a known
volumetric efficiency of the process, ηvol.

ṁin = ηvol (pAR) ρARVd
ωeng
nsπ

,

ṁout = ṁin + ṁb,

ṁb = mf,maxu
ωeng
nsπ

,

(2.7)

where ρAR is the density of the gas in the air receiver, Vd is the displacement
volume, ns is the number of stroke of the engine cycle, ṁb is the burned fuel
mass flow, and mf,max is the maximum amount of fuel injected per cycle.
Energy flow in and out of the cylinder is calculated by

Ėin = ṁinhAR (pAR, TAR) ,

Ėout = Ėin + ṁb,outLHV
(

1− CHT −
1

LHV · SFC

)
,

(2.8)

where hAR is the enthalpy of air from the air receiver volume, LHV is low
heating value of the fuel, CHT is the heat transfer ratio, and SFC is the
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Figure 2.5: Mean value engine system model scheme, including a tur-
bocharger, a charge air cooler and incylinder process.

specific fuel consumption. The torque output of the engine is

τe = ṁb,out
ωeng · SFC . (2.9)

The overall mean value engine system model is presented in Figure 2.5.
Both compressor and turbine model require ambient pressure and tempera-
ture as boundary conditions for the system. The input to the overall model
is fuel rack position and engine speed; the output is pressure and temper-
ature of the air receiver, volumetric efficiency, and torque. The first three
outputs are used in order to calculate the mass trapped in the cylinder per
cycle, which is further used to calculate the maximum allowable injected
fuel amount according to given fuel-air equivalent limit. This functionality
is termed as smoke limiter, which ensures that the charge in the cylinder is
lean enough to avoid visible smoke during rapid power output increase.

A short-coming of such a model is that it requires extensive parameter
identification in order to achieve reasonable accuracy. However, a well-
defined engine model can be used for different cases if the main physical
variables are converted into per unit values. This may cause inaccurate
response characteristics since machines at various power range should have
somewhat different time scales. The step load response characteristics of a
genset can be used to calibrate the overall model including the governor to
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match the given characteristics. Such characteristics can be found in the
manufacturer’s documentation, e.g. MAN Engines and Systems (2013).

Rate Constrained Model

A simplified model can be used for engines where the fuel rate is constrained
such that the combustion is complete. In Section 2.3.3, simulations show
that this is the case for maritime engines due to the conservative rate con-
straints set by the engine manufacturers. A simplified model that ignores
the air dynamics and requires only one parameter is

τm = kuu, (2.10)

where τm is the torque output of the diesel engine, and ku is the gain from
fuel rate to mechanical torque.

Shaft Speed Dynamics

The engine shaft speed dynamics is given by

θ̇ = ωωb, (2.11)

ω̇ = 1
2H (−Dfω + τm − τe) , (2.12)

where θ is the mechanical angle, ω is the per unit mechanical angular ve-
locity, ωb is the base mechanical angular velocity, and the windage friction
constant is denoted Df . This is derived by the swing equation and assuming
linear damping. H is defined as

H = 1
2
Jω2

b

Pb
, (2.13)

where J is the rotational inertia of the generator set and Pb is the base
power of the generator set (Krause et al.; 2013).

Governor

The two engine models use the same governor, which is based on droop
control (Woodward; 2004). The commanded fuel index is then calculated
by a PID controller with back calculation to avoid wind-up of the integra-
tor term. The derivative of the frequency is calculated by using the dirty
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derivative.

ωref = ωNL −Kdroopp, (2.14)
u = Kp(ωref − ω) +Kiξ −Kdω̂, (2.15)
ξ̇ = ωref − ω +Kb(usaturated − u), (2.16)
˙̂ω = N(ω − ω̂), (2.17)

where the Kd, Ki, Kp, and Kb are the nonnegative derivative, integration,
proportional, and back-calculation gain. The per unit produced generator
power is denoted p. The symbols ωref , ωNL, and ω̂ are the reference fre-
quency, setpoint no-load frequency, and estimated time derivative of the
frequency.

For the rate constrained model, an additional constraint on the fuel
index is needed to avoid too large temperature variations in the cylinder
and sooting due to too little air for complete combustion. This constraint is
predefined and, therefore, static. In the case study, the engine is allowed to
increase the fuel index with 20% of the rated output and then increase the
fuel index with 8.1%/s. This is found by tuning the engine model response to
fit recovery time and frequency drop in MAN Engines and Systems (2013).

For the mean value model, a smoke limiter constrains the governor’s
command. The amount of air available for a cycle is

mair = ηvol
pARVd

RTAR
, (2.18)

where ηvol is the volumetric efficiency, pAR and TAR are the pressure and
temperature at an air receiver, R is the specific gas constant and Vd is the
displacement volume of a cylinder. Given the maximum fuel-air equivalent
ratio, Fmax, the maximum fuel index, umax, is given by

umax = mair
Fmaxfs

mf,inj
, (2.19)

where fs is the stoichiometric fuel-air ratio and mf,inj is the amount of
maximum fuel injection per cycle. In the case study, Fmax is chosen as 1 in
order to give a reasonable engine response.

2.2.6 Energy Storage Devices

ESDs include batteries, capacitors, fuel cells, or any other device capable
of providing and consuming power on demand. They are accounted for by
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the PMS as available power reserve, and depending on the control strategy
adopted by the PMS, it might substitute a fast load reduction strategy.
The inner dynamics in the energy storage devices are disregarded, since it is
assumed that its dynamics are much faster than the remaining components.

All components included here are simplified, since the losses are modeled
using an efficiency table. This method makes it simple to include and model
more components with data provided by the manufacturers.

2.2.7 Thrusters

The thrusters are modeled as propellers which are driven by electrical mo-
tors. The propellers are assumed to be fixed pitch, while the speed is vari-
able. No thruster-thruster or thruster-hull interaction losses are included.
It is assumed that the torque of the electrical motor is perfectly controlled.
A frequency converter is often used to control the motor. The time scale of
the dynamics of the frequency converter is much faster than the dynamics
of the mechanical part of the thruster drives, and it is therefore neglected.
A speed controller is used to control the thrust. The open water charac-
teristics are used to calculate the desired shaft speed, from the requested
thrust. The thrust is given by (Sørensen; 2013)

Ta = sign(n)KTρD
4n2, (2.20)

where KT is the thrust coefficient found from open water tests, ρ is the
density of water, D is the propeller diameter, and n is the shaft speed. This
gives the desired shaft speed

nd = sign(Td)
√
|Td|

KTρD4 . (2.21)

The desired thrust signal must be smoothed since the desired thrust is
typically calculated at 1 Hz. Large power fluctuation will occur at each
thruster command update instant if this is not done. A second order filter
is therefore used for this task.

The four-quadrant model of the propeller presented in Smogeli (2006), is
used to calculate the actual thrust and torque of the thruster. The benefit
of this model is that it models wind milling (i.e., shaft speed and torque
have different signs). The advance velocity of the propeller is assumed to be
equal to the relative velocity of the vessel. This means that wave-propeller
interaction due to vessel motion is included, but wave-propeller interaction
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due to wave-induced particle motion is not included (Sørensen and Smogeli;
2009).

This model was first presented by Miniovich (1960). The thrust and
torque coefficients are defined as

CT = Ta
1
2πR

2ρV 2
0.7
, (2.22)

CQ = Qa
1
2πR

3ρV 2
0.7
, (2.23)

where Ta is the thrust, R is the radius of the propeller, and Qa is the
propeller torque. V0.7 is the undisturbed incident velocity to the propeller
blade at radius 0.7R and is defined as

V0.7 =
√
Va + (0.7ωR)2, (2.24)

where ω is the angular velocity of the propeller shaft.
The angle of attack of the propeller at 0.7R, β, is defined as

β = arctan
(

Va

0.7ωR

)
. (2.25)

To estimate CT and CQ, a Fourier approximation as a function of β is used,
with parameters from Smogeli (2006).

The power consumption of the thrusters are typically reduced after a
fault by the fast load reduction. This is done by limiting the torque of
the electrical motor driving the propeller. In practice, this is done by the
frequency converter.

The thrust allocation needs an estimate of the power consumption of
the thrusters. The four-quadrant model is not suitable for this purpose, as
the advance velocity is not available for the thrust allocation. The power
consumption by the electric thruster is therefore approximated by

p = k|f |1.5, (2.26)

where f is the thrust amplitude, and k is a constant which can be found from
bollard pull test results or open water tests (Sørensen; 2013, Chapter 9).
Due to the approximation, the actual and approximated power consumption
may be different.
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2.2.8 Other Components

The last model in the electrical power simulator is a block named other loads.
It represents loads that do not directly influence the propulsion system and
are modeled as time series of desired and actual power consumption. The
load is divided into two parts: high and low priority loads. Both send a
desired power consumption to the PMS. The PMS will then allocate power
available back to these loads. The PMS will first allocate power to the high
priority loads, which may be an emergency system. The thrusters will then
get allocated the remaining power, before the low priority loads get the last
remaining available power. The actual consumed power is set equal to the
allocated power available.

2.2.9 Vessel, Environment, Observer, and DP Controller

Models from the MCSim toolbox and MSS toolbox (Perez et al.; 2006) are
used to model the vessel. In the simulation cases we have chosen mod-
els suitable for DP operations. The MSS toolbox contains multiple vessel
models, and the model should be chosen depending on the simulation case.

MCSim is a high fidelity vessel model for low speed simulations, which
includes wave frequency motions and low frequency motions. The low fre-
quency motions includes forces from slowly varying current, second order
wave drift, mean wind, and wind gust, in addition to hydrodynamic and
thruster forces from the vessel. Wave frequency motion is found by motion
transfer functions. MCSim uses transfer functions which can be found from
WAMIT (Lee; 1995).

The state observer is a passive observer based on Fossen and Strand
(1999), and the DP controller is implemented as a PID controller.

The fastest time scales of the vessel motion dynamics is the time scale
of the wind gust, around 1 seconds. The slowest time scale is the change of
the environmental condition, this is in the order of tens of minutes to hours
or days. The environment is set constant, except for a slowly varying ocean
current. Simulations are usually done using a shorter time horizon than
the time scale of the change of environment condition. In such cases, the
environment can be assumed to be constant during the simulation period.

2.3 Verification

Most of the models used in this simulator are well known models, which are
already verified. However, the electric model, the rate constrained diesel
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engine model, and the parameters of the mean value diesel engine model
needs to be verified.

2.3.1 Electric Model

A generator model based on flux linkages is used to verify the electric
model (Krause et al.; 2013, Section 5.11). Parameters for the model are
found in Krause et al. (2013, Table 5.10-1) and the simulations are done
with two generators connected to the same load. The generator sets are
operated with similar diesel engines, AVR, and governors for both models
and generator sets.

For the steady-state model, the load is set to consume a constant power.
The load of the flux-linkage model is set by a resistance, which gives the
desired power consumption when the voltage is at the rated value.

In Figure 2.6, the power, voltage, and frequency of the generators are
plotted for a step increase of the load from 20% to 70%. Note that the
simulated power of the steady-state model fits the power consumption of
the flux-linkage model. A drop in the power of the flux-linkage occurs since
the resistance of the load is suddenly increased, which also gives a voltage
drop. The small difference afterward is mainly due to the different models
of the load. The frequency is perfectly modeled, as expected since the power
response is close for the two models. However, the voltage is not as well
aligned during the first tenth of a second. Both models are able to capture
a drop in voltage. However, while the timescale of the drop is consistent
between the model (few milliseconds), the magnitude is inconsistent (6.3%
for steady-state model and 71% for the flux-linkage model). There are also
some sub-transients which are not captured by the steady-state model.

In order to model the voltage accurately, a high fidelity model of the
load is also needed. This may be difficult for a marine vessel consisting of
many different consumers where each consumer needs to be modeled.

2.3.2 Diesel Engine Model

A good diesel engine model should be able to predict fuel consumption as
well as the engine dynamics in terms of speed under transient loads. It
is crucial to get a correct fuel consumption curve because the model uses
a prescribed cycle efficiency curve rather than actual cycle calculation in
the cylinders. Such a curve can be obtained by fitting to the given fuel
consumption data available for the engine.
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Figure 2.6: Simulation of a step increase of the load from 20% to 70% of
the rated values. The simulations are done with the models described in
Section 2.2.4 (steady-state) and models presented in Krause et al. (2013,
Section 5.11) (flux-linkage). Upper: power of generators. Middle: terminal
voltage of generators. Lower: electric frequency of generators, note the
difference in the time scale.
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Figure 2.7: Dynamic response fitting of diesel engine.

However, the dynamic response of the engine arises from a combination
of effects from multiple submodels of the system. The mean value model
used in the simulator alone has about 50 parameters, of which some are
arrays. Finding proper parameters and tuning the model can be a cumber-
some process, even if the performance data of the engine is available. In
order to ease the configuration process, one can use a well verified simula-
tion model and normalize the output. However, the timescale of the engine
dynamics may differ. Therefore, such a model should be re-tuned to match
the dynamics of the engine of interest.

This can be done by tuning a limited number of parameters which have
major influence on the engine response to the load changes. In this chapter,
the gains for the governor controller, the inertia of turbocharger, the iner-
tia of generator set, and the maximum fuel-air ratio are chosen as tuning
parameters. The response curve from the load acceptance test of a specific
engine was used as reference. Then, simulation and optimization are used
to curve-fit the simulated response with the reference data.

The mean value model used in this chapter is a generic model for a
medium speed four-stroke engine with a reasonable set of parameters. The
reference engine is MAN 16V32/44CR which has power rating of 9.6 MW.
The reference response curve for frequency recovery time and the frequency
recovery time vs. step load amplitude plot are used to fit the engine response
of the model to the measured value (MAN Engines and Systems; 2013).
Frequency recovery time is defined as the time interval from the frequency
deviates from the steady state band until it again enters the band according
to ISO 8528-5. Such a band is assumed to be 1%, and the result of fitting
is shown in the Figure 2.7.
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Figure 2.8: Throttle response of a load step, with and without constraints.
The dotted lines represent the rate constraint of the manufacturer and the
throttle constraint of the smoke limiter.

2.3.3 Rate Constrained Diesel Engine Model

As mentioned in Section 2.2.5, diesel engine manufacturers constrain the
rate of change of the throttle position. However, a smoke limiter will assure
that the throttle position is limited such that complete combustion and
maximum torque is achieved.

In Figure 2.8, the earlier presented generator set is subjected to a load
step from 20% active power to 60%. The figure shows the responses of the
throttle position with and without the smoke limiter and the rate constraint
of the manufacturer activated. The constraints are also included, showing
the smoke limiter level and the rate constraint. It is clear that the rate
constraint from the manufacture are always lower than the smoke limiter.
The smoke limiter can therefore be neglected. It should be noted that this
result is only valid for this engine.

2.4 Case Study
Three cases are analyzed, where the objective is to illustrate simulations
that are only possible through a multi-domain simulator. It is noteworthy
that the focus is in the qualitative analysis, but not on quantitative analysis,
since the overall simulator is not quantitatively verified.

A drilling rig is used to illustrate the simulator capabilities, not only for
fault scenarios but normal operations as well. The electrical system is shown
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Figure 2.9: Power plant view of hybrid supply vessel used in simulations.

in Figure 2.3. The rig has three switchboards, which are connected in a ring
configuration. Two generator sets are connected to each switchboard. The
rated outputs of the diesel engines are 9.1 MW. In addition, two thrusters
are connected to each switchboard with a rated output of 4.2 MW and a
rated thrust of 506 kN. The thrusters’ position are shown in Table 2.1. The
rig pontoon length is 84.6 m, with total mass of 27× 106 kg. The dynamic
model is assuming low speed, as well as current is considered as a component
of the vessel total speed, instead of a force. More details about the vessel
can be found in MSS (2010).

Table 2.1: Thruster position on the drilling rig hull

Thruster Thruster type X Position [m] Y position [m]
1 Azimuth -35 -27
2 Azimuth -35 27
3 Azimuth 0 -27
4 Azimuth 0 27
5 Azimuth 35 -27
6 Azimuth 35 27

Besides the drilling rig, a hybrid supply vessel was modeled to verify
the influence of energy storage devices on the vessel electrical stability. The
electrical system is shown in Figure 2.9, where a battery pack, a 2.2 MW
generator, and a 3.3 MW generator are connected to each power bus. The
thruster characteristics are described in Table 2.2. The vessel length is 80 m,
with total mass of 6.2× 106 kg.

A summary of the simulated environmental conditions is shown in Ta-
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Table 2.2: Thruster position and size on the supply vessel

Thruster Type X Position [m] Y position [m] Max Power
[MW]

1 Azimuth -30 -5 2.7
2 Azimuth -30 5 2.7
3 Tunnel 24 0 1.5
4 Tunnel 27 0 0.85
5 Tunnel 30 0 1.5

ble 2.3. Wind, wave, and current direction in all simulation cases are always
from north to south, the JONSWAP wave spectrum (Hasselmann et al.;
1973) and the NORSOK wind spectrum are used (Sørensen; 2013).

Table 2.3: Environmental condition summary for the simulation cases

Simulation case Hs [m] Tp [s] Vw [m/s] Vc [m/s]
2.4.1 5 8.5 14 1
2.4.2 5 7 14 .3
2.4.3 4 7.7 12 1

2.4.1 DP Operation Scenario

The first case study shows a typical DP operation. The goal is to demon-
strate the load fluctuation due to the DP system’s reaction to environmental
forces and the power generated by the power producers. The position and
heading setpoints are fixed at the origin. The buses are connected in a ring
configuration, with all bus-tie breakers closed.

Figure 2.10 shows the vessel surge position and electric bus frequency
for the simulated case. Notice that the simulator is able to capture different
time scales and time constants in the vessel positioning and the generator
power. A power variation of same time scale as the wave frequency is clearly
visible. In addition, the change of thruster setpoint gives ripples at 1 Hz.
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Figure 2.10: Results from simulation of drilling with DP, presented in Sec-
tion 2.4.1. Upper: surge position of the vessel. Lower: power produced by
generators connected to the main bus in per unit.
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2.4.2 Bus Opening Scenario

During a DP operation, it is possible that one bus is isolated from the
remaining grid due to a pre-fault detection, reverse power flow, etc. In this
case, the interaction between the electrical system and the DP system is
exemplified. Even though the maximum generated capability and thruster
forces are unaltered, there is an instantaneous power surge in the buses due
to the reconfiguration.

In the simulation, the vessel is in DP operation and heading north, with
closed bus-tie and five generator sets running (two connected to each of the
first two switchboards and one to the third switchboard). Switchboard 3 is
separated from the other two switchboards, by opening the breakers con-
nected to Switchboard 3 at t = 200 s. The power consumption is constrained
by the fast load reduction, due to the increased load.

Figure 2.11 shows the power bus reconfiguration effect on the dynamical
positioning system. It is noticeable that when the power plant is reconfig-
ured, the DP system positioning is influenced due to load reduction. This
scenario can only be simulated with an integrated simulator, since the in-
terdependency in the positioning system and electrical system is the factor
leading to the positioning transient.

Both the vessel positioning and the filtered position (estimated by the
state estimator) are presented in Figure 2.11, since the wave frequency mo-
tion makes it harder to observe the mentioned effect.

2.4.3 Energy Storage Devices

The last case demonstrates how the addition of an energy storage device
will increase overall safety, mostly due to the fact that the extra power
injection in the bus will limit the frequency drop by the generator. The sys-
tem presented here uses the supply vessel presented in Section 2.4. All four
generators and five thrusters are initially connected. An ESD is connected
to the power system. After 1 second, one of the generators is abruptly dis-
connected from the power grid, generating a power surge for the remaining
three generators. The ESD is controlled in frequency droop mode, but it
will be connected only when the frequency drops below 98.5%.

The results from this scenario are shown in Figure 2.12. The vessel
position is virtually the same for both simulation cases, the main difference
is that the frequency drop is much smaller in the case with ESD. It is known,
that protection systems like load reduction and shedding will be activated
when the frequency drops below 2% to 3%, possibly deactivating large power
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Figure 2.11: Results of the simulation case presented in Section 2.4.2. The
drilling vessel is in DP operation with closed bus-tie breakers. After 200
seconds the bus-tie breakers connected to Switchboard 3 is opened. Up-
per: Position deviation from the setpoint. The green solid line is the posi-
tion deviation, while the red dashed line is the position deviation without
the wave motion. Lower: power consumption for each bus. The blue solid
line is the generator power at the isolated power grid (Swb. 3). The black
dashed line is the generator power at main power grid (Swb. 1 and 2).
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Figure 2.12: Results from presented in Section 2.4.3. After 1 second one out
of four generator is disconnected. Upper: generator power, with and with-
out battery. Lower: electric frequency of the main bus, with and without
battery.

consumers, such as thrusters, drilling system, etc. If the frequency drops
even further, it could lead to partial or even total blackout.

From the maintenance point of view, with smoother generator load vari-
ation, the wear and tear will be reduced, improving the generator working
conditions and reducing maintenance costs.

This simulation shows that the simulator allows investigating the vessel
and ESD dynamical behavior during a fault, in which the frequency drop is
the main concern. The ESD is able to bound the frequency drop to a safe
margin, potentially preventing a larger scale fault.

Other operation strategies may be implemented for the ESD, such as
peak shaving, on-off operations, etc., if the simulator is properly set up.



52 Marine Vessel and Power Plant System Simulator

2.5 Conclusion
In this chapter, a simulator for marine vessels electric propulsion is pre-
sented. The main contribution is the presentation and verification of the
needed models for the integration of power plant simulation and vessel mo-
tion simulation. In addition to demonstrations of the integrated simulator,
enabling qualitative analysis of cases that cannot be described with sev-
eral decoupled simulators. Detailed models of the vessel, propeller, thruster
drives, generator sets, and controllers are included in the system simulator,
in addition to interaction effects between the components. A module based
platform is presented, where models of different fidelity can be chosen. Due
to the modularity, the simulator can be reconfigured to different vessels with
electric propulsion, and different operations can be simulated. Simulink was
used to implement the simulator. The case studies presented in the chapter
show some capabilities of the simulator. More detailed simulations of, for
instance, fault scenarios contribute to increased knowledge about the be-
havior of the electrical system, control systems, and safety functions. This
may lead to more reliable vessels and safer operations in the future.



Chapter 3

Dynamic Consequence
Analysis of Marine Electric
Power Plant in Dynamic
Positioning

This chapter is based on Bø et al. (n.d.).

Introduction

Dynamic positioning (DP) systems are used for stationkeeping of marine
vessels. The general safety requirement for classes 2 and 3 is that any sin-
gle fault should not propagate into a loss of position (IMO; 1994). This is
enabled by redundancy, which means that if one redundancy group fails,
remaining redundancy-groups have sufficient capacity to maintain station-
keeping.

An online consequence analysis is required for DP vessels of classes 2
and 3 (IMO; 1994, Section 3.2.4.2). The IMO rules state that: “This anal-
ysis should verify that the thrusters remaining in operation after the worst
case failure can generate the same resultant thruster force and moment as
required before the failure.” An alarm should be raised if this verification
is negative. Another tool is DP capability plots, which are used to de-
termine the environmental limits of an operation. These plots show the
maximum static or quasi-static wind, current, and wave loads in which the
vessel can maintain its position, for all headings and different configura-

53
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tions (e.g., worst-case, nominal case). Specifications of this plot are given
in IMCA (2000). Drift-off analysis is used during drilling operations to de-
termine when to initiate the disconnection of the riser from the vessel to
avoid damage to the riser (ISO; 2009). Because, disconnection process of
a riser during a drift-off is time consuming (e.g., in case of a blackout), a
watch circle is set such that there is sufficient time to safely disconnect the
riser if the process is started when the vessel passes the watch circle.

A power management system (PMS) is used for controlling the electrical
power system. The main task of the PMS is to ensure the sufficient availabil-
ity of power. In addition, the PMS coordinates fault recovery and typically
optimizes the efficiency of a power plant. In the case of a major fault, loads
must be quickly reduced to prevent the occurrence of under-frequency, be-
cause it takes time for diesel engines to increase their produced power. The
PMS sends a power available signal to main consumers to ensure that only
available power is used. This is the maximum allowed power for each con-
sumer. It is calculated by acquiring the available power production level
of each generator set and then allocating it to consumers based on their
priority. Fast load reduction may be used when sudden load reduction is
required (e.g., loss of producers), which sends a request to thruster drives
to reduce their power. This proceeds as thruster drives can quickly reduce
power consumption. Later, the available power of thrusters is increased
back to normal.

In Pivano et al. (2014), a simulation-based consequence analysis is pro-
posed. Notably, conventional DP capability analysis is non-conservative
compared with time-domain analysis. Moreover, power constraints and
transient recovery after faults are not considered in their analysis. A tran-
sient study was also performed, which showed that position excursion may
be larger than acceptable during the transient recovery after a fault.

Recently, it has been proposed by the DNV GL DYNPOS-ER class
notation that standby generators can be included in a consequence analy-
sis (DNV; 2015, Part 6 Chapter 26 Section 2). Other class societies have
similar class notations, e.g., ABS (2014, Section 8). Because the connection
of generators can be blocked by hidden faults, it is conservatively assumed
that one of the standby generators cannot connect because of a hidden fault.
This provides the opportunity to run relatively few generator sets, which
increases the efficiency of a plant. Typically, a marine diesel engine is at its
highest efficiency when it delivers about 80% of its rated power. However, it
is reported that during DP operations, diesel engines often deliver less than
50% and even down to 10% of the rated power. Moreover, during low-load
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conditions, other problems occur, such as sooting, increased maintenance
because of extra running hours, and inefficiency of some NOX reduction
systems at low temperatures (Realfsen; 2009).

The analysis proposed in this chapter can also be used as a decision-
support tool for the optimal configuration of a vessel. Several configurations
can be simulated to evaluate the safety and performance of each configura-
tion. Today, an automatic start and stop table is typically used for commit-
ment of generators on marine vessels (Ådnanes; 2003). Generator sets are
started if the power demand is above a threshold for a certain duration of
time, vice versa for disconnection. An optimized load-dependent start table
was derived in Radan et al. (2005), where the table was optimized with re-
spect to fuel consumption and constrained by a safety requirement, so that
disconnection of a generator will not lead to blackout. Algorithms to opti-
mize the load-dependent start and stop tables are also presented in Radan
et al. (2006), based on the probability for each operational mode of the
vessel. One of the problems with a start and stop table is its independence
of operation. For diving and drilling vessels, the safety and redundancy
requirements are much higher during operation than during transit. How-
ever, when using a start and stop table both operations will typically have
the same configuration when the power demand is similar, even though this
is not optimal. Therefore, some vessels have different start/stop tables for
each mode and also a minimum number of generator sets for some modes to
handle changing requirements. It is also common to override the automatic
system by committing generators manually. For onshore and island power
grids, multiple studies have looked into unit commitment, e.g., Contaxis and
Kabouris (1991); Dillon et al. (1978); Dokopoulos and Saramourtsis (1996);
Juste et al. (1999); Lowery (1966); Senjyu and Shimabukuro (2003).

The main contribution of this chapter is the development of a conse-
quence analysis based on dynamic simulation of the transient recovery after
a fault. The analysis is carried out by dynamic time-domain simulation of
the vessel and its DP system for possible worst single failures. The simula-
tions include power constraints and ramp constraints on the thrusters. This
tool can also be used as a decision-support system for configuration of the
power plant and selection of recovery-methods.

The chapter is divided into two sections. The method is presented in
the first section and the second section presents a case study considering a
drilling rig. The first section starts with an overview of the method followed
by a presentation of the simulator. In Section 3.1.3, the fault models are
presented, followed by acceptance criterion and environmental models. The
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Step 1:

Find all potential worst fault cases, including worst case 

environmental loads and power consumptions.

Step 2:

Simulate all fault scenarios, as identified in Step 1.

Step 3:

Raise an alarm if the simulated response of the vessel 

violates the acceptance criteria.

Figure 3.1: Steps in the dynamic consequence analysis.

second section starts with a presentation of the case plant, and results of
the simulations are presented. Two different recovery-methods are used for
this case study, in addition to several configurations of the power plant.
The results of the simulations are discussed further in Section 3.2.3, before
conclusions are drawn.

3.1 Method Overview

3.1.1 Method Overview

The problem to be solved is to verify that the vessel can maintain its posi-
tion during the worst single fault. The analysis should capture the transient
DP performance after the fault occurs and until the vessel is fully recon-
figured, as the vessel may lose position during this period. We suggest the
procedure shown in Figure 3.1 for this analysis. The analysis can be ex-
tended by repeating these steps for a number of alternative power plant
configurations in order to compare and choose an efficient configuration.
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3.1.2 Simulator

A dynamic simulator of the electric power plant and marine vessel is used.
The simulator in this study should be regarded as an example implementa-
tion. Details of the simulator are given in Bø et al. (2015). We are mainly
interested in the response of the DP-system due to faults in the power sys-
tem. Hence, the implemented models are chosen to represent the DP-system
as realistically as possible, with its algorithms, tuning, and constraints. The
power system is included as it constrains the DP-system during fault recov-
ery. The main components of the simulator are:

Vessel: A 6 DOF model is used to describe the motion of the vessel. The
motion is divided into low-frequency motion and first-order wave fre-
quency motion. The low-frequency motion includes non-linear drag,
second-order mean and slowly varying wave, current, wind, and thruster
loads. The first-order wave frequency motion is calculated from the
wave spectrum and response amplitude operator (RAO) of the vessel.

Environmental Load: The wave spectrum used in this study is JON-
SWAP with a narrow banded directional spectrum, although any other
wave spectrum could be used. This is used to generate discrete waves,
which are used to calculate the second-order wave loads. The wind and
current are modeled with constant speed and direction. The choice of
environmental conditions is further discussed in Section 3.1.5.

Dynamic Positioning System: The DP controller is implemented as a
PID-controller. The position and velocity are given directly from the
low-frequency motion of the vessel, assuming an accurate heading and
position reference system. This is discussed further in Section 3.1.5.

Thrust Allocation: The DP controller calculates a total thrust command
for the vessel, the thrust allocation (TA) then allocates a thrust com-
mand for each thruster. This is an optimization problem, constrained
by the available power.

Power Management System: A PMS is included to simulate the con-
trol of power generation and distribution. It includes power available
allocation and fast load reduction.

Thrusters: The thruster model includes models of the motor drive, electric
motor, propeller, and the local thruster controller. A four-quadrant
model is used to calculate the thrust and torque on the propeller. The
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power consumption of the thrusters can be constrained by the PMS
and the thrust allocation, this limits the power of the electric thruster
motor.

Electric System: The electric system is assumed to be in steady state,
as the mechanical systems in a diesel-electric propulsion system are
much slower than the electric system. The modeled variables are fre-
quency, voltage, active power, and reactive power. This allows us to
simulate the power flow and power constraints. However, fast dynam-
ics, such as short-circuit and harmonic distortions, are not included in
the model. Some protection relays are included in the model, such as
under/over-frequency protection and reverse-power protection. How-
ever, as fast dynamics are not modeled, protection relays based on
voltage measurements are not included.

Generator Set: The generator set consists of a diesel engine and a syn-
chronous generator. The fuel injection of the diesel engine is con-
strained by a rate constraint. This engine protection is typically used
to avoid large thermal stress. The fuel consumption is calculated by
a Willans approximation (Guzzella and Onder; 2010). All other fuel
dynamics are ignored in this study, due to the conservative rate con-
straint. A governor is used to control the load sharing and speed of
the engine. Typically, the governors use droop or isochronous control
for the load sharing. An automatic voltage regulator is used to control
the voltage and reactive power sharing.

Electric Loads: Loads other than thrusters and heave compensators are
modeled as a time-series. These may be hotel loads, auxiliary loads,
drilling drives, and cranes. These loads are prioritized, either above
or below thruster loads in the PMS. Low-priority loads are reduced if
the available power is not sufficient. However, high-priority loads will
only be reduced if it is not sufficient to reduce both low-priority loads
and thruster loads.

Heave compensators: Heave compensators are included in the model.
The electric power consumption is proportional to the heave velocity
when the velocity is positive, and zero when the velocity is negative.
They may be assigned high-priority in the PMS.

A marine vessel simulator consists of hundreds of parameters and states
that need to be initialized. These should be found automatically and may
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come directly from the status of the vessel. In addition, some values must
be predicted, such as the electric power consumption and environmental
conditions. As the power constraint on the thrusters is indirectly depen-
dent on the power consumption of the other consumers, it is important that
the predicted mean and variation of the power consumption are not under-
estimated. The power consumption of all electric loads, except thrusters
and heave compensators, can be recorded and used as the load case in the
simulation. However, a safety-factor may be used to include uncertainties
of the future load.

The simulator must be able to run much faster than real-time to be able
to return results that are not outdated before they are completed, because
of this the consequence analysis should be performed online as the operation
and environment may be constantly changing. Several simulations can run
in parallel to increase the performance, since the scenarios are independent
of each other.

The simulations are started with the vessel’s systems in a steady state.
This is to make sure that the controllers, such as the I-term in the DP’s
PID-controller, have settled.

3.1.3 Fault Modeling

The simulated cases should include all potential worst-case scenarios based
on faults in the power plant and thruster system, and may be identified by a
report of the DP system’s failure mode and effects analysis (FMEA) (DNV;
2012) or hardware-in-the-loop testing (Altosole et al.; 2009; Johansen and
Sørensen; 2009). This could, for example, be faults such as loss of switch-
board, loss of bus segment, loss of thruster, loss of generator set, fault in
governor, frozen command signal, or equipment delivering maximum capac-
ity when this is not desired (e.g., full thrust in drive-off). Incidents reports
reveal that other causes, independent of the power plant, are as important,
such as human error, faults in the reference system, and faults in the DP
control systems (IMCA; 1995–2011; Kristiansen; 2014). Subsystem faults,
such as faults in the auxiliary systems, are not considered when selecting
fault scenarios, but the worst-case consequence of such faults should be
considered, for example, shut down of a diesel engines due to faults in the
auxiliary systems.

Only single faults are considered, and it is assumed that all protection
systems are handling the fault as designed. Therefore, common mode and
software faults are ignored in this study, as common mode faults should be
detected by FMEA during the design of the system. HIL-testing can also
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be used to detect common mode and software faults (Altosole et al.; 2009;
Johansen and Sørensen; 2009).

3.1.4 Acceptance Evaluation

The method’s third step is to evaluate the response of the simulated fault
scenarios. An acceptance requirement can be that the vessel’s position and
heading error should be kept within the error tolerance. Other requirements
may be more relevant in some cases, such as the riser angles for drilling
vessels.

To evaluate the fuel consumption of the configurations, the simulation is
carried out using the most recently recorded environmental conditions and
power consumption.

3.1.5 Environment Modeling

The simulation of environmental disturbances is crucial for consequence
analysis. It is hard to find the actual worst-case environment, as there are
many random variables. For example, the wind gust can be strong and the
waves can come in groups.

Therefore, each fault case can be simulated several times using different
realizations of the environmental load. However, this is computationally ex-
pensive. It is assumed that the vessel’s position in DP can be described as
first-order wave frequency motion superimposed onto the low-frequency mo-
tion. Therefore, the consequence analysis considers only the low-frequency
motion and the wave frequency motion is included in the positional error
tolerance. This is done by determining the maximum expected wave fre-
quency motion and subtracting it from the acceptance range. The variance
of the position is (from linear theory and variance of a signal given by its
power spectrum):

σ2
i (θ) =

∞∫
ω=0

S(ω)RAO2
i (ω, θ)dω (3.1)

where i = 1, 2, . . . , 6, θ is the angle between the heading of the vessel and the
direction of the wave, S(·) is the wave spectrum, ω is the wave frequency,
and RAO(·) is the position response amplitude operator for the vessel’s wave
frequency motion. It is assumed that the wave frequency vessel position
is normal distributed, which is given by assuming normal distributed wave
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elevation (Faltinsen; 1990) and the vessel motion response to be linear. This
gives the expected maximum position error:

ηi,max = σiF
−1(1− ε/2) (3.2)

where i = 1, 2, . . . , 6, ε is the probability quantile, F−1(·) is the inverse
normal cumulative probability function. Note that this procedure must be
employed for surge, sway, and yaw, for all headings within the accepted
range. This is an approximation as any correlation between surge, sway,
and yaw is neglected.

The significant wave height, mean wind speed, and current velocity are
increased by a safety-factor to include the uncertainty of the predicted en-
vironmental disturbance. The sea state can be estimated from the motion
of the vessel (e.g., (Pascoal et al.; 2007)) or from weather forecasts, and
can be configured automatically. The wind velocity is measured directly,
so that the time average of the velocity can be used. Some DP algorithms
estimate an ocean current velocity, which can be used for future simulation.
However, the estimated velocity includes other effects, such as thruster loss
and modeling error, and should be used with care.

3.2 Simulation Study

An implementation of the proposed method (Section 3.1) is used in this
section. Several operational philosophies exist for control of marine electric
power plant, and the response of the vessel is highly dependent on these
philosophies. Results for two different fault recovery-methods are presented
in this study. These should be seen as use cases of the dynamic consequence
analysis, and are presented to illustrate the importance of some dynamic
effects that are included in this analysis, but not in static analysis. Several
configurations are also simulated to show that the method can be used to
choose the optimal power plant configuration.

3.2.1 Case Plant

The simulated vessel is a drilling rig. The power and thruster system is
shown in Figure 3.2 and consists of six diesel generator sets of 9.1 MW and
six thrusters of 5 MW. Three 11 kV high-voltage AC switchboards are used
to distribute the power, these are connected together in a ring topology.
Details of the model are given in Bø et al. (2015). A drilling operation in
DP is simulated, with a 2.1 m significant wave height, a mean wind speed



62
Dynamic Consequence Analysis of Marine Electric Power Plant

in Dynamic Positioning

G

M

G

M

G

M

G

OTHER LOADS

M

G

M

G

M

OTHER LOADS OTHER LOADS

Figure 3.2: The propulsion system of the case study plant.

of 7.94 m/s, and a mean current of 0.68 m/s. Further, the equipment is
referred to by their placement in Figure 3.2, the numbering goes from left
to right. An environment safety-factor of 1.1 is used during the fault scenario
simulations. This gives a significant wave height of 2.3 m, an 8.7 m/s mean
wind speed, and a mean current of 0.75 m/s. The wave, wind, and current
forces have the same direction, and the angle between the vessel’s heading
and the environment forces is 10◦ (head sea). The resulting thrust on each
thruster is approximately 43 % of the rated thrust.

Drilling drives are simulated as pulse loads of 1.6 MW on Switchboards 1
and 3 for 1 minute, repeating every 3 minutes. Low-priority loads of 1 MW
on each switchboard represent non-essential drilling equipment, which can
be reduced in the case of a fault. Also, 1 MW high-priority loads are
attached to each switchboard. Heave-compensators connected to Switch-
boards 1 and 3 are included in the model and the gain from the heave
velocity to the power consumption is 1 MW s/m. The acceptance criterion
is that the vessel should not move more than 3 meters or 5◦ away from the
set-point. The safety-factor for the loads is 1.1 and the high pulse of the
drilling drives are simulated to start when the faults occurs.

For this case the wave frequency motion has a standard deviation of
0.51 m; the maximum wave frequency motion is then 1.18 m and 0.01◦
when using a probability threshold of 98%. The small heading change occurs
since the rig is symmetric, the waves are coming close to head-on, and the
directional spectrum of the waves is narrow banded. Consequently, the
low-frequency motion must be within 1.82 m and 4.99◦.
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Table 3.1: Alternative configurations. A dash — and a vertical bar | are used
to denote when switchboards are connected or disconnected via a closed or
open bus tie-breaker, respectively.

# connected
gensets per

swb.
Configuration 1 2 3 Swb. groups

1 1 1 1 1 — 2 — 3
2 2 1 1 1 | 2 — 3
3 2 1 1 1 — 2 — 3
4 2 2 1 1 | 2 — 3
5 2 2 1 1 — 2 — 3
6 2 2 2 1 | 2 | 3
7 2 2 2 1 — 2 — 3

The configurations tested are shown in Table 3.1. Many more configu-
rations are possible, e.g., open bus tie-breakers and one generator set per
switchboard. However, these were chosen as they give sufficient power and
represent a broad spectrum of configurations.

The following fault cases are simulated:

1. Loss of a generator set: a generator set is disconnected. Stand-by
generator sets, if any, are connected after 45 seconds.

2. Loss of a thruster: Thruster 1 (left most) is disconnected.

3. Loss of a switchboard: both generators and all loads connected to
Switchboard 1 (left most) are disconnected. Stand-by generator sets
are connected to the healthy switchboards after 45 seconds.

4. Thruster full thrust: the thrust of Thruster 1 (left most) is fixed at
full thrust. The thruster is disconnected after two minutes.

For Cases 1, 2, and 4 the PMS is configured to only reduce thruster loads.
This is an example of an operational philosophy used to avoid frequent minor
faults influencing the operation. During Case 3, it is simulated that the
bus tie-breakers (directly or indirectly) connected to the faulty switchboard
are opened. This strategy is typically used to avoid propagation of faults
from one switchboard to the others. These faults are considered as possible
worst-case scenarios for this simulated vessel. Note that Cases 1, 2, and 3
are possible drift-off cases, while Case 4 is a possible drive-off case.
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The generators are running in droop mode with equal settings. This
gives equal load sharing among the generators connected in each group.
A fast phase back system (FPBS) is implemented on the thrusters based
on May (2003). The load reduction is initiated when the frequency falls
below 95% of the rated frequency, the power is reduced linearly, and fully
reduced at 92.5%.

Two fault recovery-methods are simulated. In Recovery A, fast load
reduction and power available signal are used to make sure that the vessel
is able to avoid under-frequency due to overload. In Recovery B, these
methods are deactivated. Then, the power plant can use the rotating energy
of the generator set during this recovery, and load reduction is only initiated
through FPBS. This gives less of a safety-margin against under-frequency,
which increases the risk of blackout. Many other fault recovery-methods
exist, such as power limit ramps on consumers instead of available power,
and the selection of bus tie-breakers to open when the switchboards fails.

3.2.2 Simulation Results

Results from nominal and fault simulations are shown in Table 3.2. The
loss of position distance is the maximum distance from the reference point
to the low-frequency position of the vessel during the simulation.

Recovery A: Power Available

For Recovery A, Configurations 2, 4, 6, and 7 are accepted, while the oth-
ers fail due to loss of position during the transient recovery after a fault.
Configuration 2 may be preferred as it gives the lowest fuel consumption.

The position and heading error is shown in Figure 3.3, for Configura-
tions 2 and 3 after the loss of Switchboard 1. For Configuration 2, the bus
tie-breaker between Switchboards 2 and 3 is closed after the fault, while
it opens for Configuration 3 (since it is indirectly connected to the faulty
switchboard). A large transient position error occurs for Configuration 3
after the fault, although both configurations are able to stabilize the vessel
to the reference after the fault. This is a case where a transient simulation
is necessary to determine the safety of the configuration. The reason for the
difference between the configurations is that the available power of a gener-
ator set is dependent on the load of the generator. Therefore, the available
power for the thrusters will differ, as seen in Figure 3.5. When using closed
bus-tie and equal droop settings, all the generators produce equal amounts
of power before the fault. For Configuration 3 (closed bus) this means that
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Table 3.2: Results from scenario simulations.
Configuration 1 2 3 4 5 6 7

Loss of
position
distance,
Recovery A
[m]

Loss of genset 11.4 0.4 2.8 0.4 1.2 0.4 0.6
Loss of
thruster 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Loss of
switchboard 2.0 0.7 4.6 0.7 5.3 0.7 0.7

Thruster, full
thrust 0.5 0.6 0.5 0.6 0.5 0.6 0.6

Loss of
position
distance,
Recovery B
[m]

Loss of genset 2.7 0.0 0.0 0.0 0.0 0.0 0.0
Loss of
thruster 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Loss of
switchboard 0.8 0.7 0.9 0.7 1.3 0.7 0.7

Thruster, full
thrust 0.6 0.6 0.6 0.6 0.6 0.6 0.6

Fuel
consumption
[t/h]

2.45 2.61 2.60 2.76 2.76 2.93 2.93

Fuel
consumption
increase [%]

-6.0 0.0 -0.3 5.9 5.9 12.5 12.4

Frequency
variations
[%]

Maximum
deviation 0.94 1.13 0.96 1.13 0.96 1.13 0.97

Standard
deviation 0.18 0.14 0.13 0.13 0.11 0.13 0.09
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Figure 3.3: Position and heading error after loss of switchboard for Config-
uration 2 and 3, Recovery A. The fault occurs at t = 0.
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Figure 3.4: Available power after loss of switchboard for Configuration 2
and 3, Recovery A. The fault occurs at t = 0. Note that the available
power is similar before the fault for the two configuration, while the load
sharing between the switchboards differ for the configurations. After the
fault, Configuration 3 has much less available power.
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Figure 3.5: Thruster power consumption after loss of switchboard for Con-
figuration 2 and 3, Recovery A. The fault occurs at t = 0. The dotted line
is the available power for DP.
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Figure 3.6: Electric frequency of switchboard after loss of switchboard for
Configuration 2 and 3, Recovery A. The fault occurs at t = 0.

the two generators on Switchboard 1 produce the same amount as the two
others, connected to Switchboards 2 and 3. Hence, the available power
from Switchboard 1 is equal to the available power from Switchboards 2
and 3 combined. This is shown in Figure 3.4. The worst fault is loss of
Switchboard 1, which results in the loss of half the available power. The
load-sharing between the independent switchboards will typically be asym-
metric during an open bus operation (Switchboard 1 is independent of 2
and 3 for Configuration 2). The worst-case is still loss of Switchboard 1;
however, more power is available on Switchboards 2 and 3 after the fault
with Configuration 2, which reduces the loss of position.

The electrical frequency of the switchboard is shown in Figure 3.6. The
frequency drops immediately after the fault occurs. However, the fast load
reduction quickly reduces the excessive load, and a large drop in frequency
is avoided. The slow decrease in frequency is due to the increased power on
each generator and the use of frequency droop.

Recovery B: Fast Phase Back System

The rotational energy of the generator set is utilized for emergency power
when using FPBS. Results from the simulation of loss of a generator set with
Configuration 1 are presented in Figures 3.7 and 3.8. This case shows an-
other example of the need for a dynamic consequence analysis, as the vessel
is not able to maintain position during the transient recovery, but arrives at
a steady state afterwards. The position is plotted in Figure 3.7, where it is
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seen that the vessel drifts off by 2.7 m. The reason for this loss of position is
shown in Figure 3.8. When the generator is lost, the other generators take
its load immediately. This results in a higher load on the generators than
the diesel engines are able to produce, and the frequency decreases. The
thrusters reduce their load when the frequency gets low enough, which leads
to the loss of position. A new generator set is connected after 45 seconds,
the frequency increases again, and the thrusters can produce the necessary
thrust to maintain the position of the vessel. Note that the frequency drop
with Recovery B is much larger than with Recovery A, as seen by comparing
Figures 3.6 and 3.8.

Results of the consequence analysis with Recovery A and B are given
in Table 3.2, which show that these two methods give significantly different
results. This highlights the fact that the performance is highly dependent
on the recovery-methods. Hence, the implemented recovery-methods in the
simulator and the real power plant must be as similar as possible.

Nominal Operation

The choice of configuration is economically important, especially in terms of
fuel consumption and maintenance. The fuel consumption is 12.4% higher
in Configuration 7 than in of 2. The reason is that the diesel engine can
operate close to the optimal working point. In Configuration 2, the en-
gines on Switchboards 2 and 3 are delivering about 35–50% of their rated
power, while on Switchboard 1 and all engines in Configuration 7, the en-
gines run at 20–25%. The last operational point is very low and results in
high fuel consumption; however, it is reported that this does occur within
the industry. It should be noted that Configuration 2 can be optimized fur-
ther by letting the thrust allocation share the load optimally between the
switchboards (Realfsen; 2009).

The frequency variations are presented in Table 3.2. These are the
variations during nominal operation and are therefore independent of the
recovery-method. The variation in the simulations are small and mostly due
to the use of frequency-droop. However, it can be noted that running more
generator sets gives a stiffer grid, as expected.

Maximum wind speed

An estimated maximum wind speed is calculated and presented in Table 3.3.
The calculations are performed with environmental parameters from DNV
(2015, Part 6 Chapter 7 Appendix B). However, the wind velocity is cal-
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Figure 3.7: Position error after loss of generator set for Configuration 1 with
Recovery B. The fault occurs at t = 0.
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Figure 3.8: Generator power of Generator set 1, electric frequency, and
consumed power and power constraints by FPBS, all in per unit, for Con-
figuration 1 and Recovery B after a loss a generator set. Note that the
FPBS in the thruster reduces the power when the frequency drops. This
stabilizes the power of the generator set and the electric frequency. The
fault occurs at t = 0.
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Table 3.3: Maximum wind speed for different configurations and Recov-
ery A.

Configuration 1 2 3 4 5 6 7
Maximum wind
speed [m/s]

2.19 10.01 7.48 10.01 6.21 10.01 10.01

culated without any safety-margin and is only valid for the 10◦ heading.
The accepted wind velocity is underestimated, since only values given from
the environmental regularity-numbers in DNV (2015, Part 6 Chapter 7 Ap-
pendix B) were tested. For example, the velocities 10.01 and 11.39 m/s were
tested for Configuration 2, and the fault scenarios passed for 10.01 m/s, but
not for 11.39 m/s. Therefore, the configuration’s maximum allowed wind
velocity is between 10.01 m/s and 11.39 m/s.

DP-capability plot

A DP-capability plot is shown in Figure 3.9. It is calculated, for vary-
ing headings, both with the standard static method, see for example DNV
(2015, Part 6 Chapter 7 Appendix B), and with the method presented in
this chapter. In this case no safety-margins are used for either method. The
presented method gives a conservative estimate compared with the static
method, since it includes both the transient recovery and the power con-
straint.

3.2.3 Discussion

The results from this case study show that a vessel may be able to withstand
the mean environmental forces after a fault, but during the transient fault
recovery the vessel may temporarily lose position. It is also shown that
different fault recovery-methods result in significantly different responses of
the power plant and the vessel. Therefore, the consequence analysis can be
used to choose the configuration of the power system and recovery functions.

The safety-factor in this simulation study is chosen as 1.1, as an exam-
ple. Since the wave-drift forces are proportional to the square of the wave
height, the force increased by 21% from the nominal to the fault scenario.
Similar consideration can be made for both current and wind forces, as they
are proportional to the square of the velocity. This approach is conservative,
because it assumes that the power plant’s worst fault event coincides with
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Figure 3.9: DP-capability plot, for Configuration 2, worst-case scenario and
Recovery A. This shows the maximum wind speed the vessel can withstand
after the single worst-case scenario. The solid green line shows the results
using the method presented in this chapter. The dashed cyan line shows
results using standard static analysis.
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the worst-case waves, current, wind, and power consumption. Another ap-
proach may be to give a probability-threshold then calculate a safety-factor.
However, this is outside the scope of this chapter. It should be noted that
the safety-factor can be changed with the operation. A high factor can be
used during critical operations, such as diving and drilling, while a lower
factor can be used during non-critical operations, such as standby.

The simulation cases consider a vessel with AC switchboards; however,
more and more vessels are now equipped with DC switchboards and bat-
teries for emergency power (Hansen and Wendt; 2015). This consequence
analysis is well suited to these types of vessel, as a dynamic model is able
to verify the transient performance of such vessels. The method can also
be used to check that the batteries have sufficient power and energy capac-
ity to recover the power plant and terminate the operation, as required by
DNV GL (2015b, Pt. 6 Ch. 3 Sec. 1 4.3.1). A simulation-based approach
may be needed as batteries may get warm during high power demands, and
in such cases the batteries may disconnect due to safety protection systems.

The switchboard voltage will be low during a short circuit of the equip-
ment connected to the switchboard. Hence, equipment with low voltage
protection may disconnect. The simulator is not able to simulate such fast
transients of the electric system. Therefore, fault ride through capability of
the essential equipment should be verified by other methods to avoid that
equipment being disconnected or damaged during the recovery of the power
plant.

Not only is the configuration of the switchboard important, the param-
eter settings of some functions, such as load sharing, load shedding, and
thrust allocation, are also important. Optimization of these parameters is
necessary to obtain optimal power plant operation. However, care should be
taken when optimizing with respect to only a few scenarios. In such cases the
optimum will sometimes result in changing the worst-case scenario from one
scenario to another. For example, if the optimized worst-case is a blackout
of Switchboard 1, the optimum may be to increase the load on the other
switchboards and let Switchboard 1 produce no load. This changes the
worst-case from blackout of Switchboard 1, to blackout of one of the other
switchboards. Therefore, individual blackout scenarios for each switchboard
must be included and not only those for the most critical switchboard. Opti-
mizing the parameters is also a much more computationally expensive task,
since many values of the continuous parameters must be checked to find the
optimum.

The simulation study in Pivano et al. (2014) considers stationkeeping
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performance after the transient fault recovery was complete. They did show
that the vessel may not be able to maintain its position even though the
vessel had sufficiently available thrust for the mean force. The method in
this chapter cannot detect such performance issues as only the low-frequency
motion is simulated. Therefore, a combination of the transient simulation
in this chapter and the “steady-state” wave-frequency simulation in Pivano
et al. (2014) is necessary.

As noted in DNV GL (2015a), more analysis is necessary to verify the
integrity of a power system. Such dynamic analysis may include selectivity,
short-circuits, and earth fault analysis. It is also assumed that each switch-
board is independent of the others, and this must be verified (e.g., with an
FMEA).

Reactive power is not considered in this simulation study; however, a
generator set can trip due to reactive power overload. Consequently, load
reduction and fault analysis with regard to reactive power should be con-
sidered.

During simulations, not shown in this chapter, the transient loss of posi-
tion after a fault was seldom a problem for cases when the standby generator
sets were not accounted for in the consequence analysis.

3.3 Conclusion
A dynamic consequence analysis tool based on time-domain simulation is
shown in this study. Different configurations were simulated during multiple
fault scenarios to evaluate the DP-performance during transient recovery.
It is observed for the chosen cases that the transient recoveries after faults
are the limiting factor when choosing a configuration, as the vessel may
be able to maintain its position before and after the fault, but not during
the transition. This is especially important for configurations where one or
more standby generators are connected after a fault, as recently allowed by
some class notations. It is seen that the result of a reconfiguration can be
unpredictable as the thruster system and power plant are complex systems.
This method allows the power plant to be configured depending on the
required safety level, since more safety-margins can be used during critical
and non-critical operations.
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Chapter 4

Dynamic Safety Constraints
by Scenario-Based Economic
Model Predictive Control

This chapter is based on Bø and Johansen (2014, n.d.b).

4.1 Introduction
There is a need for autonomous handling of faults in many industrial control
systems. These faults can be due to actuator faults, sensor faults, external
faults, or internal faults. There are also often constraints on the system to
make sure that the system is safe. However, it can take some time before
the controller is fully reconfigured and the system recovers after a fault.
Conservative safety limits are therefore sometimes used to make sure that
the system is safe also during the transients after the fault.

Active redundancy is often used when downtime of a system is not ac-
ceptable. This is the case for the electrical power system on board ad-
vanced marine vessels. A typical marine power plant consists of multiple
pairs of generators and diesel engines. The generators are connected to
switchboards which distribute the electrical power to thrusters and other
consumers. However, sudden disconnection of generators does happen, and
then the load from the disconnected generator is shared among the remain-
ing generators. The electric frequency will then decrease due to slow dy-
namics in the diesel engine. Therefore, a safety margin is needed to avoid
under-frequency protection trip after disconnection of a generator. This is
typically handled by regulating a fixed frequency and reducing the loads

77
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when a fault occurs. However, the controller has more freedom for opti-
mization if the frequency is allowed to vary within some dynamic safety
constraints and unnecessary load reduction can be avoided. Therefore, the
plant can be safer and increase the operational performance by explicitly
including the fault scenarios in the controller. Detecting that the system
cannot recover from a fault is as important as recovering the system. We
therefore propose a method for detecting if the faults can or cannot be re-
covered from. Such information can be used for proactive reconfiguration
of the plant, or change of control objective.

Model predictive control (MPC) with scenarios will be used to establish
a fault-tolerant controller. Scenarios in MPCs are mostly used for robust
MPC. An MPC for linear systems is presented in Bernardini and Bemporad
(2009), where the system matrices can switch between a finite number of
scenarios, with a given probability for each scenario. Other combinations
of MPC and scenarios are presented in e.g., Calafiore and Fagiano (2013);
Maiworm et al. (2015); Schildbach et al. (2014). These studies use scenarios
to handle model uncertainties and disturbances. It has been proposed to
use approximate reachable sets to establish a robust MPC (Bravo et al.;
2006). However, this gives conservative estimates, since a common control
input is calculated for all possible sequences of uncertainties and distur-
bances (open-loop control). For linear systems, Scokaert and Mayne (1998)
suggest including feedback in the optimization problem. For non-linear sys-
tems this gives an infinite dimension optimization problem, it is therefore
proposed to use a semi-feedback formulation, see Limon et al. (2009) and the
references therein. Scenario-based model predictive control has also been
suggested used in optimization of hedge options (Bemporad et al.; 2014),
for scheduling of batch processes (Bonfill et al.; 2008), and scheduling of
emergency vehicles (Goodwin and Medioli; 2013).

There have been some studies on transients of the plant after reconfig-
uration of controllers due to faults. An investigation of responses due to
reconfiguration of the controller is presented in Kovâcshâzy et al. (2001),
with different method for initializing the next controller. For faults which
can be predicted, it has been suggests to use MPC to make a smooth ac-
commodation of the fault (Lao et al.; 2013). It is suggested to use back
calculation to set the initial states of the reconfigured controller and use
a progressive accommodation scheme to achieve new LQR-gains (Blanke
et al.; 2006).

Another approach to control a plant to a safe set is to use backward
reachable set to calculate the fault-tolerant set (Gillula et al.; 2011). The
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backward reachable set is a set containing all initial states which can avoid
an unsafe state set, under a specified set of disturbances. A method for vali-
dating that a controller can avoid unsafe sets for linear hybrid systems using
reachability analysis is presented in Torrisi and Bemporad (2001). A similar
study is done for nonlinear hybrid system using barrier certificates (Prajna
et al.; 2007). A method for selecting switching rules for a hybrid system,
such that the state variables avoid an unsafe set, is presented in Coogan
and Arcak (2012).

The method presented in the present chapter is a variant of the method
presented in Bernardini and Bemporad (2009). However, in the present
chapter the models are nonlinear, fault-tolerance and economic objective
emphasized, and a deterministic framework is used.

Control of the speed of generator sets in a marine diesel-electric power
plant are one of the example cases in the present chapter. Currently gener-
ator sets are controlled in speed droop or isochronous using PID or similar
algorithms for speed governors (Ådnanes; 2003). Model predictive control
and nonlinear control by feedback linearization are proposed as alternative
control methods (Hansen et al.; 1998; Hansen and Fossen; 1999; Veksler
et al.; 2013). In Radan (2008), multiple methods for better control of en-
gines are proposed, this includes observer design, for noise-filtering, and
inertia control, to suppress frequency variations.

The present chapter presents a method for establishing dynamic safety
constraints based on fault scenario. The idea of the controller was first
presented in Bø and Johansen (2013), for a marine electric power plant.
It was later formalized in Bø and Johansen (2014), including a linear case
plant. The MPC uses multiple predictions internally for each fault sce-
nario in addition to the nominal scenario. By using this method the safety
constraints are moved from being applied to the nominal scenario to being
applied to the fault scenario, and this is the main contribution of this chap-
ter. Therefore, this method is suited when the constraints are set to avoid
unsafe states, e.g., during the transients after a fault. Typically, this gives
less conservative constraints and the opportunity to operate the plant safer
with increased performance. The controller is applied to two example cases,
a linear plant and a marine electric power plant.

4.2 Problem Statement

Consider a plant where we have safety constraints on the control input and
the states. In particular, there are given some fault scenarios which the
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plant must be able to handle safely. We would like to design a controller
which makes sure that the plant can be recovered after any of these fault
scenarios. This consists of three requirements:

Recoverability: The controller should keep the system in a state set where
it is possible to recover the system if one of the fault scenarios occurs.

Robust Control: The controller should use a control input which is ap-
propriate for the nominal system and the faulty system until the fault
is detected and the fault is accommodated by the controller.

Detection of recoverability: It should be detected if the system cannot
be recovered when one of the fault scenarios occurs.

The fault scenarios considered in this chapter are modeled as change of
the dynamics or constraints of the system.

4.3 Model Description
The plant is described with one model for each scenario. The difference
equation for the states is of the form:

x(tk+1) = f(x(tk),u(tk)) (4.1)

where x ∈ Rn and u ∈ Rm are the state and input vectors. The state and
control input vectors for the control horizon are given by:

X(ti) =
[
x>(ti) . . . x>(ti+N−1)

]>
(4.2)

U(ti) =
[
u>(ti) . . . u>(ti+N−1)

]>
(4.3)

where ti is the time instant at the beginning of the control horizon, and
N denotes the length of the control horizon. Note that we assume no un-
known disturbances, model uncertainties, or measurement noise; however,
these effects can be included as additional scenarios along with faults, or by
tightening the constraints. The state and control input are constrained by:

Gnr(x,u) ≤ 0
Gr(x,u) ≤ s
0 ≤ s

(4.4)

where Gnr(x,u) : Rn × Rm → Rncn and Gr(x,u) : Rn × Rm → Rncr . It is
assumed that all non-relaxable constraints (hard constraints) are stacked in
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Figure 4.1: Possible future trajectories for the linear system in Section 4.7.1.
The solid blue line is the predicted trajectory of the nominal scenario. The
dashed lines are the predicted fault scenarios, starting at tf = t0, t1, t2, t3
respectively. The dotted red line represents the lower limits which all tra-
jectories should be above.

the first constraints, and relaxable constraints (soft constraints) are stacked
in the second. The vector s contains slack variables, s = 0 when the relax-
able constraints are satisfied, and s has positive elements when the relaxable
constraints are relaxed.

4.4 Fault-Tolerant MPC

4.4.1 Predicted Trajectories

Multiple predicted trajectories are used in the MPC to achieve the control
objectives. A snapshot of some trajectories are shown in Figure 4.1. The
nominal trajectory (solid blue) is the prediction for the nominal scenarios.
The fault trajectories (dashed lines) are the prediction for the fault scenarios.
These trajectories starts from the points on the nominal trajectory, where
the fault events may occur. A fault trajectory is started at each point in
the nominal trajectory, except the end point, for each fault scenario. The
red dotted line is the lower constraint on all trajectories.

The optimization problem is to find the optimal control sequences such
that all predicted trajectories satisfy the constraints. When this problem
is feasible, the controller can recover the plant if any of the fault scenarios
occurs. The controller will remove the relaxable constraints in the beginning
of the trajectories when the optimization problem is infeasible. This may
give some trajectories that do not satisfy all the constraints; however, after
some time the controller is able to satisfy all constraints for all scenarios.
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Figure 4.2: Nominal and fault prediction when the relaxable constraints
are relaxed during the first three steps, and during the three first fault
predictions. Note that the three first fault predictions can violate the state
constraint x1 ≥ 5 for the entire horizon and terminal constraint. The system
is presented in Section 4.7.1.

In Figure 4.2, the plant is in a state where the problem is infeasible. The
constraints are then relaxed during the three first time steps, and constraints
in the fault scenarios starting from these points in the nominal trajectory
are also relaxed.

Superscript (n) and (fj) are used to distinguish between the different
models and constraints for each scenario, where n denotes nominal sce-
nario and fj denotes fault scenario number j. The following notation is
used to distinguish the different predictions at different times for the fault:
x(fj)(t|tf = tk) where tk is the time when the fault occurs. Further, we will
use the word event for predictions starting from different times, and scenar-
ios for predictions with different faults. This means that x(f1)(t3|tf = t2) is
the predicted state at time instant t3, for the fault scenario number 1, and
corresponding to the event starting at t2.

It is assumed that the state and input variables of the fault trajectory
is set by the state and input variables of the nominal trajectory at the time
of the fault:

x(fj)(tf ) = Ejx(n)(tf )
u(fj)(tf ) = Fju(n)(tf )

(4.5)

where Ej and Fj are matrices of proper size.
The stage cost of each point in the trajectory, l(x,u), is assumed to be

smooth.
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4.4.2 State Constraints

The trajectories are always constrained by the non-relaxable constraints:
For the nominal scenario, during t0 ≤ tk < tN :

G(n)
nr (x(n)(tk),u(n)(tk)) ≤ 0 (4.6)

For the fault scenarios, during t0 ≤ tf < tN and tf ≤ tk < tN,f :

G(fj)
nr (x(fj)(tk|tf ),u(fj)(tk|tf )) ≤ 0 (4.7)

where tN,f := tf + tN − t0 is the end time of the fault trajectory.
During the relaxed period, slack variables, s, are used to relax the re-

laxable constraints, t0 ≤ tk < tNrelaxed :

G(n)
r (x(n)(tk),u(n)(tk)) ≤ s(n)(tk)

0 ≤ s(n)(tk)
(4.8)

Similarly for the entire fault trajectories starting within the relaxed period.
That is t0 ≤ tf < tNrelaxed and tf ≤ tk < tN,f :

G(fj)
r (x(fj)(tk|tf ),u(fj)(tk)) ≤ s(fj)(tk|tf )

0 ≤ s(fj)(tk|tf )
(4.9)

For the rest of the trajectories, all the constraints should be satisfied for
the nominal scenario, tNrelaxed ≤ tk < tN :

G(n)
r (x(n)(tk),u(n)(tk)) ≤ 0 (4.10)

Similarly for the remaining fault scenarios, tNrelaxed ≤ tf < tN and tf ≤ tk <
tN,f :

G(fj)
r (x(fj)(tk|tf ),u(fj)(tk|tf )) ≤ 0 (4.11)

The predicted states are constrained to the dynamics of the system in
the given scenario:

x(n)(tk+1) = f(n)
(
x(n)(tk),u(n)(tk)

)
x(fj)(tk+1|tf ) = f(fj)

(
x(fj)(tk|tf ),u(fj)(tk|tf )

) (4.12)

The initial condition of the nominal scenario is x(t0) and the initial condition
of the fault scenario is the value of the nominal scenario at the initial time
of the event:

x(n)(t0) = x(t0)
x(fj)(tk|tf = tk) = Ejx(n)(tk)

(4.13)
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4.4.3 Robust Control Input

Fault detection, identification, and fault accommodation will often take
some time. It is therefore important that the control input is appropri-
ate in the time between the fault occurs and the fault is accommodated
in the controller. The fault trajectories are therefore restricted to use the
same control input as the nominal trajectory during the first time steps
of the fault trajectory. We define τrobust as the maximum number of time
units between a fault occur and the controller is reconfigured. This gives
the following additional constraints, for k ≤ i < min(k + τrobust, N):

u(fj)(ti|tf = tk) = Fju(n) (4.14)

For tf + τrobust ≥ tN the inputs are constrained to be equal to u(n)s, since
we can prolong the nominal trajectory with the pairs (x(n)s,u(n)s):

u(fj)(ti|tf = tk) = Fju(n)s (4.15)

where x(n)s and u(n)s are later defined in Definition 2.

4.4.4 Terminal Constraints

Terminal constraints are used to achieve recursive feasibility. This is done
by finding the optimal equilibrium of each scenario and constraining the
end of the predicted state trajectories to this state.

Remark 1 In the MPC literature it is known that equilibrium terminal
constraints often lead to numerical challenges and may suffer from small
region of attraction. For this reason a terminal set constraint rather than
a terminal point constraint has benefits. However, for the case plants in
Section 4.7, the constraints are active and the stage cost may be non-zero
on the optimal safe equilibrium (defined later in this section). For such
system, the authors are only aware of results on recursive feasibility when
terminal equilibrium constraint is used (Angeli et al.; 2012). One exception
is Grüne (2013), but this approach requires other strong assumptions.

The fault trajectories are constrained by the optimal equilibrium termi-
nal constraints. It is defined as:

Definition 1 An optimal equilibrium for fault scenario j, (x(fj)o,u(fj)o) is
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any solution to:

(x(fj)o,u(fj)o) = arg min
x(fj),u(fj)

l(fj)(x(fj),u(fj))

such that
x(fj) = f(fj)(x(fj),u(fj))
G(fj)

r (x(fj),u(fj)) ≤ 0
G(fj)

nr (x(fj),u(fj)) ≤ 0

(4.16)

The optimal steady state cost is l(fj)o = l(fj)(x(fj)o,u(fj)o).

For convenience we assume an optimal equilibrium exists and is unique.
The terminal value of the non-relaxed fault trajectories is constrained

to the optimal equilibrium:

x(fj)(tN,f |tf ) = x(fj)o (4.17)

The constraint is relaxed for t0 ≤ tf < tNrelaxed :

x(fj)(tN,f |tf ) = x(fj)o − s−(fj)
N (tf ) + s+(fj)

N (tf )

0 ≤ s−(fj)
N (tf )

0 ≤ s+(fj)
N (tf )

(4.18)

where s−N and s+
N are slack variables and x(fj)o is found by solving (4.16).

A terminal stability constraint is used for the nominal scenario, both to
make sure that the limit of the closed loop average cost is upper bounded
and to make sure that the control problem is recursively feasible. We start
by defining an optimal safe equilibrium.

Definition 2 An optimal safe equilibrium for the nominal scenario, (x(n)s,u(n)s),
is any solution to:

(x(n)s,u(n)s) = arg min
x(n),u(n)

l(n)(x(n),u(n))

such that
(x(n),u(n)) ∈ Zsafe,eq

G(n)
r (x(n),u(n)) ≤ 0

G(n)
nr (x(n),u(n)) ≤ 0

(4.19)
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where Zsafe,eq is the set of equilibrium points satisfying x(n) = f(n)(x(n),u(n))
such that for each fault scenario j there exist a feasible trajectory with the
length N :

• starting at Ejx(n),

• the control input of the fault scenario is Fju(n) during the first τrobust
samples of the trajectory,

• the constraints (4.7) and (4.11) are satisfied at every point on the
trajectory and (4.17) at the end point of the trajectory.

The optimal safe equilibrium cost is l(n)s = l(n)(x(n)s,u(n)s).

For convenience we assume that there exists an unique optimal safe
equilibrium. The terminal constraint for the nominal trajectory is:

x(n)(tN ) = x(n)s (4.20)

where x(n)s is found by solving (4.19).

4.4.5 Optimization Problem

All optimization variables can be stacked in a vector U , containing con-
trol inputs and slack variables for all scenarios. Penalty functions gi(s)
and gN (s+, s−) are added to the cost function to limit the violation of the
constraints. The objective function is:

φ(x(t0),U) =
N−1∑
i=0

l(x(n)(ti),u(n)(ti))

+
N−1∑
i=0

g
(n)
i (s(n)(ti))

+
M∑

j=1

N−1∑
i=0

w
(fj)
i

[
N−1∑
k=0

g
(fj)
k (s(fj)(tk|tf = ti))

+ g
(fj)
N (s−(fj)(tf = ti), s+(fj)(tf = ti))

]
(4.21)

where the first term is the sum of the stage costs of the nominal scenario,
the second term is the penalty cost of the nominal trajectory, and the last
term is the penalty of the fault scenarios. M is the number of fault scenarios
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and w
(fj)
i are positive weights for fault scenario j. For example, the con-

troller may optimize the input for feasibility of the most probable scenario
by using the probability of each scenario as weights. Other choices can be
to use the risk of each scenario or a priority of scenarios. Note that the
stage costs of the fault scenarios are not included, since we often only want
the fault scenarios to be feasible and it is not important that their trajec-
tories are optimal. We assume all functions (models, cost, and constraints)
are smooth, so that the optimization problem is well defined with global
solutions.

A minimal time approach will be used to make sure that the plant gets
safe as quickly as possible (Rawlings and Muske; 1993). This means that
before solving for the optimal trajectory we solve this problem:

(N∗relaxed, Ũ) = arg min
Nrelaxed,U

Nrelaxed

subject to
(4.6) – (4.15), (4.17), (4.18), and (4.20)

(4.22)

This is the smallest Nrelaxed needed to make the optimization problem fea-
sible. Then, the optimal control sequence is found by solving:

U∗ = arg min
U

φ(x(t0),U)

subject to
Nrelaxed = N∗relaxed

(4.6) – (4.15), (4.17), (4.18), and (4.20)

(4.23)

The controller will then apply κ(x(t0)) = u(n)∗(t0) from U∗, and in the
nominal scenario the closed loop system is:

x(n)(tk+1) = f(n)(x(n)(tk), κ(n)(x(n)(tk)) (4.24)

The algorithm can be summarized in one offline step and two online
steps:

Offline: Find the optimal equilibrium for the fault scenarios and the opti-
mal safe equilibrium for the nominal scenario by solving (4.16) and (4.19).

1. Online: Find N∗relaxed by solving (4.22).

2. Online: Find the optimal control sequence by solving (4.23).
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Challenges related to the computation of global solution of nonlinear
programs in real time are well known and important. However, they are
considered out of scope of this study.

Remark 2 Vada et al. (2001) have shown that for linear systems with
quadratic cost, a linear penalty function can be designed to ensure that the
problem is feasible as early as possible in the prediction horizon. Hence, the
online steps can be merged into one step by using such penalty function.

4.5 Feasibility and Stability
To investigate the stability of the fault tolerant MPC we first present an
equivalent optimization problem. We will utilize the fact that there exist
a time-invariant set which can be used as a fixed constraint set, since the
scenarios and system are time-invariant.

Definition 3 The safe state set, Xsafe, is the largest forward invariant set
containing all x(t0) such that the optimization problem (4.23) is feasible with
zero slack variables (i.e., s = 0). Let XN denote the set where there exist a
solution to (4.23) with horizon length N .

Lemma 1 Assuming the states have converged to Xsafe (i.e., Nrelaxed = 0)
the optimization problem (4.23) can be simplified to the following:

U∗ = arg min
U

N−1∑
i=0

l(n)(x(n)(ti),u(n)(ti))

such that
x(n)(ti) ∈ Xsafe

x(n)(ti+1) = f(n)(x(n)(ti),u(n)(ti))

}
t0 ≤ ti < tN

x(n)(tN ) = x(n)s

(4.25)

This optimization problem gives the controller and the nominal closed
loop system:

κ
(n)
l (x(n)(tk)) = u(n)∗(tk) (4.26)

x(tk+1)(n) = f(n)(x(n)(tk), κ(n)
l (x(tk))) (4.27)

The optimal nominal trajectory of optimization problem (4.23) is also
the optimal trajectory of (4.25).
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Proof The optimization problem (4.23) can be reformulated to (4.25) by
the steps below. All constraints are satisfied in Xsafe, including the relaxable
constraints. Consequently, slack variables and penalty functions can be
removed. The fault scenarios does only make sure that x(n) ∈ Xsafe and
does not alter the cost. Hence, they can be removed from the optimization
problem when x(n) ∈ Xsafe and x(n) is constrained to be within Xsafe. It
follows, that the optimal nominal trajectory of these equivalent optimization
problems will be equal, since the optimization problems are equivalent. �

Lemma 2 For all closed loop trajectories starting from x(n)(t0) ∈ Xsafe the
trajectory of the nominal system system (4.24) will not leave Xsafe and the
average cost,

l̄ = lim sup
N→∞

N∑
k=0

l(x(tk), u(tk)
N + 1 , (4.28)

will be lower or equal to the optimal safe steady state cost.

Proof This results follows directly from Theorem 1 in Angeli et al. (2012)
by using the equivalent optimization problem (4.25). �

Theorem 1 The following holds for the nominal scenario:

1. The optimization problem (4.23) will stay feasible if it is initially fea-
sible.

2. It will take a maximum of N steps to reach Xsafe from the time (4.23)
is feasible, and from that time it will stay in Xsafe.

3. The closed loop system has an average cost which is less than or equal
to the optimal safe steady state cost for all initial conditions in XN .

Proof The recursive feasibility can be assured by a proof similar to Mayne
et al. (2000). If we have a feasible input sequence at the previous step, we can
always shift this sequence one step and extended the tail with u(n)(tN−1) =
u(n)s, denote this trajectory U′ and the corresponding state trajectory X′.
This will make x(n)(tN ) = x(n)s ∈ Xsafe, and the nominal scenario feasible.
We know that the shifted part of this trajectory will make all fault scenarios
feasible, since they were feasible at the previous step. For the prolonged part(
x(n)(tN−1),u(n)(tN−1)

)
=
(
x(n)s,u(n)s

)
, we know that this is not only

feasible, but it does also satisfy the relaxable and non-relaxable constraints.
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Hence, this input sequence is feasible; therefore, the problem is recursive
feasible, and part (1) is proven.

Next, we prove that the closed loop system will enter Xsafe within N
steps by induction. The trajectory U′ will make sure that the relaxable
constraints are feasible one time step earlier in the horizon than at the
previous iteration. We know that the solution will honor the constraints
as early as possible due to the minimization of Nrelaxed. The prediction of
x(tN ) ends up in Xsafe if the problem is feasible at t0. At each following
step the length of the tail which honor the relaxable constraints is increased
with at least one step. Therefore, it will not take longer than the length of
the prediction horizon N to reach Xsafe. This proves result (2).

The third result follows from the fact that the states will reach Xsafe

in finite time. Further, from Lemma 2, we know that inside Xsafe the cost
is lower than or equal to l(n)s. Let tke be the time when the closed loop
system enters Xsafe. The cost from t0 to tke is bounded, since l(·) is smooth
on XN . The average cost will then be:

lim sup
N→∞

N∑
i=0

l(x(ti),u(ti))
N + 1

= lim sup
N→∞

ke∑
i=0

l(x(ti),u(ti))
N + 1 +

N∑
i=ke

l(x(ti),u(ti))
N + 1

= lim sup
N→∞

C1
N + 1 +

N∑
i=ke

l(x(ti),u(ti))
N + 1

= lim sup
N→∞

N∑
i=ke

l(x(ti),u(ti))
N + 1 ≤ ls

(4.29)

�

Corollary 1 From the time x enters Xsafe the plant can be recovered from
any of the fault scenarios, without violating the constraints.

Proof This result follows directly from the definition of Xsafe and the fact
that the state will stay in Xsafe after it has entered it. �

4.6 Reconfigurable Control
The controller may be reconfigured in the event that one of the fault sce-
narios occurs. In this case, we are only interested in recovering the plant;
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therefore, the MPC will only consider this fault. Slack variables are used to
relax the constraints, since we cannot know in advance if the system is re-
coverable (unless N∗relaxed = 0). The constraints during the relaxed period,
t0 ≤ ti < tNrelaxed , are:

G(fj)
r (x(fj)(ti),u(fj)(ti)) ≤ s(ti)

G(fj)
nr (x(fj)(ti),u(fj)(ti)) ≤ 0

0 ≤ s(ti)
(4.30)

and after the relaxed period, tNrelaxed ≤ ti < tN :

G(fj)
r (x(fj)(ti),u(fj)(ti)) ≤ 0

G(fj)
nr (x(fj)(ti),u(fj)(ti)) ≤ 0

(4.31)

The system is also constrained to the dynamics of the system:

x(fj)(ti+1) = f(fj)(x(fj)(ti),u(fj)(ti)) (4.32)

Terminal constraints are used to guarantee recursive feasibility:

x(fj)(tN ) = x(fj)o (4.33)

where x(fj)o is found by solving (4.16). To minimize the time before all
constraints are feasible, a minimal time approach will be used:

(N∗relaxed,U) = arg min
Nrelaxed,U

Nrelaxed

subject to (4.30)− (4.33)
(4.34)

The optimal trajectory is found by solving the following optimization prob-
lem:

U∗ = arg min
U

N−1∑
i=0

l(fj)
(
x(fj)(tk),u(fj)(tk)

)

+
N−1∑
k=0

g(fj)(s(fj)(tk))

subject to (4.30)− (4.33), Nrelaxed = N∗relaxed

(4.35)

which gives the control law and closed loop system:

κ(fj)(x(fj)(t0)) = u(fj)∗(t0) (4.36)
x(fj)(tk+1) = f(fj)(x(tk), κ(fj)(x(tk))) (4.37)
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Theorem 2 Assume fault scenario j occurs and the controller is switched
from κ(n) to κ(fj). Then the following holds for the fault scenario:

1. The optimization problem (4.35) will stay feasible if it is initially fea-
sible.

2. It will take a maximum of N steps to make N∗relaxed = 0, and from
that time it will be 0.

3. The average cost will be less than or equal to l(fj)o.

In addition, assume that the switch of controller is done within τrobust time
units after the fault occurred and N∗relaxed = 0 at the time instant when the
fault occurred. Then the following holds in addition for the fault scenario:

4. The optimization problem (4.35) is feasible with N∗relaxed = 0.

The proof is omitted, since it is similar to the proof of Theorem 1.

4.7 Case Study

4.7.1 Linear Plant with Nonlinear Cost

We present simulation results from a closed loop simulation of a linear plant
with nonlinear cost in this section. The discrete-time system equations are:

x(tk+1) =

1 5 5
0 1 0
0 0 1

x(tk) +

12.5 12.5
5 0
0 5

u(tk)−

1
0
0

 b (4.38)

where x =
[
x1 x2 x3

]>
is the states, u =

[
u1 u2

]>
is the control inputs,

and b is a known constant. The non-relaxable constraints (superscript is
omitted as the constraints are valid for all scenarios):

0 ≤ x2 ≤ 1 −0.1 ≤ u1 ≤ 0.1
0 ≤ x3 ≤ 1 −0.1 ≤ u2 ≤ 0.1

(4.39)

The relaxable constraint is:

5 ≤ x1 (4.40)

This system can model a buffer tank with two slow pumps, where the pumps
have both saturation limits and rate constraints.
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The fault scenarios are that x2 or x3 is suddenly set to zero (e.g., a
failure of one of two pumps). This gives:

x
(f1)
1 (tk+1) = x

(f1)
1 (tk) + 5x(f1)

3 (tk) + 12.5u(f1)
2 (tk)− b

x
(f1)
3 (tk+1) = x

(f1)
3 (tk) + 5u(f1)

2 (tk)

x
(f2)
1 (tk+1) = x

(f2)
1 (tk) + 5x(f2)

2 (tk) + 12.5u(f2)
1 (tk)− b

x
(f2)
2 (tk+1) = x

(f2)
2 (tk) + 5u(f2)

1 (tk)

(4.41)

The stage costs are:

l(n)(x(n)) = 10−4
(
x

(n)
1

)4
+
(
x

(n)
2

)2
+
(
x

(n)
3

)2
(4.42)

l(f1)(x(f1)) = 10−4
(
x

(f1)
1

)4
+
(
x

(f1)
3

)2
(4.43)

l(f2)(x(f2)) = 10−4
(
x

(f2)
1

)4
+
(
x

(f2)
2

)2
(4.44)

The penalty cost functions are (sub- and superscript is omitted as the func-
tion is used for all scenarios and slack variables):

g(s) = (s− 100 · 1)2, (4.45)

for appropriate dimension of the vector 1.
The controller is implemented in ACADO (Houska et al.; 2011), with

τrobust = 1. The constant b is set to 2.5, and the initial values are x1 = 10,
x2 = 0.5, and x3 = 0. This gives the optimal safe equilibrium at x1 = 6.25,
x2 = .25, x3 = .25, with the stage cost ls ≈ 0.2776. The horizon length is 4,
which gives 40 optimization variables and 264 constraints. The computation
time is around 0.4 seconds per updating period. Results from closed-loop
simulation are shown in Figure 4.3, with and without fault. The total cost
of the fault free trajectory is 3.479.

A comparative controller with static constraints is designed to compare
the static safety constraint with scenario-based constraints. For this case
we let the safety constraints be:

x1 ≥ 8.75 (4.46)

This is the least conservative state constraint which ensure that the control
objectives stated in Section 4.2 are fulfilled. The optimal equilibrium of the
controller is x1 = 8.75 and x2 = x3 = 0.25, with the stage cost of 0.7112.
In Figure 4.4, a similar simulation is shown as in Figure 4.3, but with
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Figure 4.3: Closed loop simulation of the linear plant. Results from a fault
free simulation are plotted with solid blue lines. The dashed green lines
present the trajectory of a simulation where Fault 2 occurs at t2, the con-
troller is reconfigured at t3. The dotted red lines are the lower constraints.
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Figure 4.4: Closed loop simulation of the linear plant with the static safety
constraints.

this controller. The cost of the closed loop trajectory is 6.321 and the
computation time is around 0.02 seconds per updating period. This shows
the advantage of using scenario-based constraints as the cost is lower due
to the less conservative safety constraints.

4.7.2 Marine Electric Power Plant

An example of the use of this controller is shown for a more complex case
in this section. The task is to control three equally sized generator sets of
5 MW in a marine diesel-electric power plant. For this case it is important
that a single failure should not lead to a blackout. In contrast to onshore
power grids, the numbers of generator sets are few, which gives a weak power
grid. One fault scenario is that one generator is suddenly disconnected. This
may occur due to failure in the generator, diesel engine, or auxiliary sys-
tems. The load produced by the previously connected generator is then
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distributed to the remaining generators. However, rate constraints on the
diesel engines’ torque prohibit the diesel engine to produce the necessary
power immediately. These constraints are used to avoid incomplete com-
bustion and large thermal stress on the diesel engine. Hence, the frequency
decreases, which can lead to a blackout as protection relays can trip due to
under-frequency. The electric frequency can be raised to increase the safety
margin, since the frequency can be changed by up to 5% from the nominal
value (DNV; 2015, Part 4, Chapter 8, Section 2-A206). The control objec-
tive for this case is to control the marine power grid’s electrical frequency,
by adjusting the set-points of the local controller, such that disconnection
of one generator set does not lead to under-frequency.

In the power plant, governors are used to control the frequency of the
generator set, which indirectly sets the electric frequency. The governor uses
droop control to control the speed. A reference speed is calculated from the
generated power by:

ωref = ωNL(1−Droop p), (4.47)
where ωref is the reference frequency, ωNL is the no-load frequency, Droop is
a positive constant, and p is the per-unit active power delivered by the gen-
erator. This reference frequency is given to a PID-controller which controls
the frequency of the diesel engine to the reference frequency. In this case,
the no-load frequency is adjusted online by the MPC controller to obtain
optimal fault-tolerant load sharing and to change the frequency of the en-
gines, this is called compensated droop. The control hierarchy of the plant
is shown in Figure 4.5.

The dynamics of a generator set can be found by the swing equation
and assuming linear damping (Skjetne; 2010):

ω̇ = 1
2H

[
kṁṁ−

p

ω
−Dfwω

]
, (4.48)

where ω is the per-unit electrical frequency, H is the inertia constant of
generator set, kṁ is the gain from fuel rate input to per unit torque, ṁ is
the fuel rate, and Dfw is the mechanical damping constant.

A strong synchronization torque will keep generator sets at the same
frequency when multiple synchronous generators are connected together.
By using an energy balance and assuming that the difference in frequency
is small, the equation of the frequency can be found as a function of the
total consumed power and the total amount of fuel injected:

ω̇ = 1
2HT

[∑
i

sb,ikṁ,iṁi −
pbus

ω
−
∑

i

sb,iDfw,iω

]
, (4.49)
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Figure 4.5: Control architecture of the power plant. The designed controller
(MPC) gives a no-load frequency to the governor. The governor uses this
signal to control the frequency of the generator set, by adjusting the desired
torque (fuel command) to the generator set. The generator sets produces
power which is fed to the switchboard.
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where HT is the combined inertia constant of all generator sets; sb,i, is the
ratio between base power of Generator set i and total base power; and pbus,
is the per-unit consumed power. Note that this equation cannot detect if
the frequency of two generator sets oscillates in opposite phase. However,
this stability issue is neglected as the governor should take care of it.

As mentioned, rate constraints are used to avoid large thermal stress and
incomplete combustion. Hence, the fuel rate is constrained to 5%/s. The
controller is implemented in ACADO (Houska et al.; 2011) and simulated
in Simulink. The terminal constraints and relaxable constraints are relaxed
by using slack variables, due to infeasibility by numerical problems. It is
assumed that the fault is immediately detected, so that τrobust = 0. This
is needed in this setup, since we are controlling the no-load frequency and
have rate limitations on the fuel rate. The fuel index will increase after a
fault if the no-load-frequency is kept constant. This increase may be, in
this case, faster than the rate constraint. Consequently, it is not possible to
find a no-load-frequency which can honor the rate constraints both for the
nominal scenario and the fault scenario. In typical plants, rate constraints
are implemented in the governor, these constraints will be reach both when
the fault is detected and undetected. Since, the MPC will try to use the
maximum power of the generator, and the governor will typically give max-
imum fuel-index as a reaction to the decreasing frequency. Therefore, the
extra robustness is not needed as it is already inherent in the governor.
Moreover, such faults are directly detected and identified using common
measurements.

Results from a closed loop simulation are shown in Figure 4.6. The load
is set to 40 % of connected capacity, the sampling time is 3 seconds, and the
prediction horizon is 15 seconds. The sampling time and prediction horizon
was chosen such that the controller is able to achieve real-time performance.
The prediction horizon should be long enough to achieve a sufficiently large
region of feasibility XN . The sampling time should be short enough to
capture all dynamics. However, the computational complexity increases
with the number of points in the prediction.

The plant is simulated both without a fault and with a fault occurring
after 21 seconds. Note that the frequency for the closed-loop simulation with
fault violate the under-frequency constraint during an inter sample. This
occurs since the constraints are only checked at the discretization points. A
small safety margin can be added to avoid this. In addition, the sampling
time could be decreased to decrease the inter-sample constraint violation.
This margin can be small compared with conventional static safety con-
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Figure 4.6: Closed-loop simulation of the case plant. The solid blue line
shows the closed-loop trajectory during nominal (fault free) operation. The
dashed green line shows the closed-loop trajectory when simulating that a
fault occurs after 21 seconds. The dotted red line shows the under-frequency
limit. Note that the frequency of the faulty system violates the under-
frequency constraint during an inter sample, this occurs since the constraints
are only checked at the discretization points in the trajectory (dots in the
trajectory).

straints, since it should only take care of numerical and model errors, and
not the fault dynamics. The frequency is often controlled close to the rated
value when controlling the frequency of marine diesel-electric power plant.
The electric load is normally reduced after the fault is detected to avoid
under-frequency. However, in this case this is unnecessary and undesired,
as the fault must be detected and the operation may be interrupted. The
frequency drop can be reduced by adding more diesel engines to the grid;
however, this decreases the efficiency of the power plant. The frequency
after the fault settles down close to the nominal frequency, since the recov-
erable controller is tuned to control the frequency to the nominal frequency.
This is generally considered as the safest frequency after a fault.

Since we have relaxed the constraints in this simulation, N∗relaxed is
equal to N, which means that N∗relaxed is not a good measure for the fault-
preparedness. However, the size of the slack variables will give a good indi-
cation of preparedness for fault in the plant. One method for preparedness
indication could be to set a threshold on the size of the slack variables, such
that the plant is considered as prepared for faults when all slack variables
are less than this threshold. This threshold can be found by system knowl-
edge and should correspond to the size of the safety margin mentioned in
the previous paragraph.

The optimization problem consists of 195 optimization variables and
157 constraints. The computational time is between 0.5 and 2.5 seconds per
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update period, when using ACADOs C++ interface and a 3.4 GHz Intel R©

CoreTM i7 processor. Note that ACADO’s C++ interface is not designed for
constraints that combine constraints at different time instances, such as the
initial constraint of a fault trajectory

(
e.g., x(n)(t1) = Ejx(fj)(t0|tf = t1)

)
.

This is by-passed by adding auxiliary optimization variables. Therefore,
the implemented optimization problem can be substantially condensed. It
is also the authors’ experience that using ACADO’s c-code export function
will give a significant performance improvement (typically 10 to 100 times
faster).

4.8 Conclusion
This chapter proposes a method to introduce safety constraints based on
fault scenarios. The controller uses the fault scenarios internally in the
model predictive controller to make sure that it controls the states to a state
set where the plant is recoverable if faults occur. The advantages of the con-
troller is less conservative safety constraint, and exact safety constraints are
not needed. The disadvantage is a larger and more computational expen-
sive optimization problem, in addition to the need to identify and model
the fault scenarios.

The performance of the controller was tested by closed-loop simulation
of a linear plant and a marine power plant with relaxed constraints. The
simulations show that the controller fulfills the control objectives as long as
a safety margin is used, even when the constraints are relaxed.



Chapter 5

Battery Peak-Shaving
Control in Electric Marine
Power Plant using Nonlinear
Model Predictive Control

This chapter is based on Bø and Johansen (n.d.a).

5.1 Introduction

On some marine vessels the power consumption fluctuates heavily in certain
operational and environmental conditions. This combined with the weak
power grid gives problems such as fluctuating frequencies, excessive wear
and tear of power producers, and synchronization problem when connecting
additional generator sets. Currently this problem is solved by connecting
additional generators, which gives a stiffer grid, but reduces the efficiency
of the plant, and increases the need for maintenance. Recently, it has been
suggested to add batteries to the power plant. The batteries can be used
for peak-shaving, while the generator sets produce slowly varying power to
meet the demand.

The batteries used for this task must be able to charge and discharge
large currents. However, the storage capacity can be small, since the mean
current is zero. One problem with such large charge and discharge current
is the produced heat. This heat production must be controlled, else the bat-
teries will be disconnected due to overheating. For some vessel the batteries

101
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can be used for emergency power, this require a larger battery bank, which
is less exposed to heat challenges.

The power fluctuation on a vessel may come from heave-compensators,
auxiliary systems, hotel loads, and thrusters. Typically, the load periods
vary from 0.1 seconds to hundreds of seconds. The diesel engines would
like to have as constant load as possible, since this reduces the thermal
stress due to temperature transients. Diesel engines have difficulties with
compensating for loads with dynamics faster than about 10 seconds, due
to the turbo-lag. On the other hand, the inertia of the generator set can
compensate for some load fluctuation. Typically, the inertia can handle
dynamics faster than 2 seconds. However, this increases the mechanical
stress on the generator set. On a marine vessel the total produced power
can be measured at the generators. This is often done every 0.1 second.

Therefore, the peak-shaving algorithm should handle fluctuations with
periods from 0.1 seconds to 100 seconds, and most important, take care of
loads fluctuations with periods between 2 seconds and 10 seconds.

A dynamic approach should be chosen, so that most of the load fluc-
tuations are removed. However, only the most important load fluctuations
should be removed when the battery starts to get too warm. The tempera-
ture dynamics of the batteries is slow, and it may take several hours to cool
them down. We therefore suggest a hierarchy of controllers, with a high-
level controller, which selects the periods of the load fluctuations to cancel
out. And, a low-level controller, which takes care of the peak-shaving by
removing the periods given by the high-level controller.

Alternative methods to reduce power fluctuations on marine vessels has
already been proposed. It is proposed to use the thrust allocation and
feedforward in the governor to reduce the power fluctuations (Mathiesen
et al.; 2012; Veksler et al.; 2012b). Another approach is to use the thrusters
directly for peak-shaving by generating a thruster load which counteracts
other load variations (Radan et al.; 2008). Typically, thruster biasing is used
on DP vessels to reduce load variations. Then, thrusters are counteracting
each other to waste power, such that other load variations are canceled
out (Shi et al.; 2011). The mass of the vessel can also be used to reduce the
power fluctuations if a drift force is present (Johansen et al.; 2014). None
of these employ batteries for energy storage.

Batteries are starting to be used in marine vessels. MS Viking Queen
will soon be retrofitted with batteries (Eidsvik; 2015), while MS Ampere
is in operation and is only driven by batteries (Martini; 2015). It is also
suggested to use batteries on naval vessels, which can take care of pulse
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loads from weapon systems (Huhman and Wetz; 2015; Kuznetsov; 2015).
Batteries can also be used for emergency power, as demonstrated in Kim
et al. (2015).

The problem of adapting time constants for the peak-shaving algorithm
has similarities with the power split problem for hybrid electric vehicles,
where the desired torque is generated by a combustion engine and an elec-
tric motor with a battery. Many different strategies are suggested, for the
original Toyota Prius a rule based controller was used (Hermance and Sasaki;
1998). Stochastic model predictive control has been suggested (Moura et al.;
2011), as well as using dynamic programming for design of a rule based con-
troller (Lin et al.; 2003). A controller which optimize fuel consumption and
emissions is presented in Johnson et al. (2000). Battery energy storage
systems (BESS) are also proposed for wind turbine plants. BESS can be
used to smooth the power fluctuations due to the variations of the wind
speed (Hovgaard et al.; 2013; Sebastián and Quesada; 2006; Zeng et al.;
2006). Kottick et al. (1993) demonstrated how BESS can be used in an
isolated power grid to reduce frequency variations.

Model predictive control (MPC) is used in this chapter as a high-level
controller. A model of the plant is used in the MPC to predict the future
state of the system. A cost function is used to evaluate the future per-
formance of the system. The MPC optimizes the cost for the prediction
horizon. At every step the free variables are optimized with respect to the
cost function and constraints, and only the variables for the first step is
applied on the system. There already exists multiple suggestion for use of
MPC in marine power plants, such as Bø and Johansen (2013); Park et al.
(2015); Stone et al. (2015); Veksler et al. (2012b).

We will use probabilistic constraints in this chapter, since future load
prediction is uncertain. These are constraints on the form Prob(X < xmin) < η,
where Prob(·) is the probability, 0 < η � 1 is the probability threshold and
X is a stochastic variable. For a linear system with Gaussian disturbance it
is shown that the constraints can be converted to an explicit second order
cone constraint (Hovgaard et al.; 2011; Oldewurtel et al.; 2010). It is also
suggested to use scenarios and conditional value at risk as an approximation
of the probabilistic constraint (Hanssen et al.; 2015). An approximation
using scenario and mixed integer quadratic programming is presented in
Matusko and Borrelli (2012).

The main contribution of this chapter is a controller which can adap-
tively optimize parameters based on estimates of the power spectrum den-
sity. It is applied to optimal tuning of peak-shaving. This is done with
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batteries to smooth out the power demand of a marine vessel. The battery
is controlled by a band-pass filter, so that only power variations in a given
frequency band are counteracted.

5.2 Control Plant

The control architecture is shown in Figure 5.1. A load consumes the load
PLoad, where PLoad is stochastic with the power spectrum ppp(ω). A battery
is used to smooth the fluctuations in the generated power. The goal is to
keep the temperature and state of charge of the battery within the opera-
tional limits, while reducing the power fluctuations on the generator set as
much as possible.

The charging and discharging power of the battery are given by a band-
pass filter. The input to the band-pass filter is Pload, while the output is the
desired charging power, Pref. The MPC adjusts the time constants of the
band-pass filter to avoid too high battery temperatures. This cancels out
power fluctuations with frequencies between the cut-off frequencies of the
band-pass filter. This will give a zero-mean charging power of the battery.
However, the battery will still be discharged even with zero-mean charging
power, due to losses in the battery. Consequently, the MPC gives a mean
charging power, PMCP, to control the mean state of charge (SoC).

It should be noted that measurements of the generated power may not
be synchronized and may have measurement errors. We assume that the
total consumed and generated power is measured without any measurement
errors, in this study.

A first order high-pass filter and low-pass filter are put in series to im-
plement a band-pass filter. However, any linear band-pass filter could have
been chosen. The transfer function for this filter is:

Hf (s) = Pref(s)
Pload(s) = τ̄ s

(1 +
¯
τs)(1 + τ̄ s)ncells

(5.1)

where τ̄ and
¯
τ are the highest and lowest time constant of the band pass

filter, and ncells is the number of cells in the battery.
A simple model is used for the battery, as shown in Figure 5.2. The

internal resistance, Ri, and open circuit voltage, Vo, are assumed to be
constant. The temperature of the battery is modeled by Newtons law of
cooling:

dT
dt = hA

c
(Tair − T ) + 1

c
Qel (5.2)
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Figure 5.1: Hierarchy of the control system for the peak-shaving control.
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Figure 5.2: Model of battery used internally in the MPC with internal
resistance, Ri, and open circuit voltage, Vo, output voltage and current v
and i.
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where T is the battery temperature, h heat transfer coefficient, A is the
surface area of the battery, c is the heat capacity of the battery, Tair is the
temperature of the cooling air, and Qel is the heat generated in the battery.
The heat is assumed to be equal to the electrical loss

Qel = RiI
2 (5.3)

where I is the current through the battery.
Due to safety requirements the battery has a temperature limit for op-

eration:
T ≤ Tmax (5.4)

The battery must be disconnected when this level is reached.
The charging power is controlled by a bi-directional AC/DC converter,

and it is controlled to the sum of the reference from the band-pass filter and
the MPC:

Pbattery = Pref + PMP C (5.5)

Setting Pbattery = I(Vo +RiI), and solving for the current, we get:

I =
−Vo +

√
V 2

o + 4RiPbattery

2Ri

= Pbattery
Vo

−
P 2

batteryRi

V 3
o

+O(P 3
battery) (5.6)

The SoC of the battery is modeled as an integrator of the current (Moura
et al.; 2011):

dSoC
dt = I

Qnominal
(5.7)

where Qnominal is the rated charge of the battery. Hence, the SoC of the
battery is 0 when depleted and 1 when fully charged. It is assumed that
SoC is measured or estimated, as SoC estimates from Coulomb counting
will drift-off. There exists multiple methods for such estimation, e.g. Kim
(2008); Piller et al. (2001); Plett (2004). The SoC is also constrained:

SoCmin ≤ SoC ≤ SoCmax (5.8)

The minimum and maximum state of charge, can be set by an operator or
a plant optimizer. SoCmin and SoCmax can be used to avoid accelerated
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aging, which for lithium batteries occurs at low and high SoC. Since PLoad

is stochastic we reformulate (5.8) to two probabilistic constraints:

Prob(SoCmin ≤ SoC) ≥ 1− ηSoC

Prob(SoC ≤ SoCmax) ≥ 1− ηSoC
(5.9)

where ηSoC is the chosen probability threshold for violation of the con-
straints.

The temperature of the battery depends on Pbattery. Since Pbattery is
stochastic, T is also stochastic. However, an estimate of the expected tem-
perature is useful for the MPC. From (5.2):

d
dtE[T ] = hA

c
(Tair − E[T ]) + 1

c
E[Qel], (5.10)

where

E [Qel] = E

[
P 2

batteryRi

V 2
o

]
= Ri

P 2
MCP + σ2

p,ref

V 2
o

. (5.11)

The variance of Pref can be estimated by (5.21) and (5.22)

σ2
p,ref =

∞∫
0

ppp(ω)|Hf (jω)|2 dω. (5.12)

Note that the variance of the temperature will be small if the time-
constant of the temperature, (c/hA), is large compared with the largest
period in ppp(ω)|Hf (jω)|2 with significant power. However, we assume that
the filter’s time-constants are small compared with the time-constant of
the temperature dynamics. Therefore, the temperature will be close to
the expected value estimated above, and constraining the expected value is
reasonable.

5.3 Chance Constraint
An example of how to approximate chance constraints is given in this sec-
tion. We would like to convert the chance constraints (5.9) to explicit con-
straints. Assuming Pload is close to normal distributed and nonlinearities
of the SoC dynamics are small, SoC can be approximated to be normal
distributed. Using (5.23), the chance constraints can be approximated to

SoCmin ≤ E[SoC]− F−1(1− ηSoC)σSoC

SoCmax ≥ E[SoC] + F−1(1− ηSoC)σSoC
(5.13)
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where F−1(·) is the inverse cumulative distribution function of the standard
normal distribution.

An estimate of E[SoC] and σ2
SoC is needed. We get:

d
dtE [SoC] = E

[
Pbattery

VoQnominal
−

P 2
batteryRi

V 3
o Qnominal

]

= PMCP
VoQnominal

−
(P 2

MCP + σ2
p,ref)Ri

V 3
o Qnominal

(5.14)

by using (5.5), (5.6), and (5.7), neglecting third and higher order terms, and
utilizing E[Pref] = 0.

The variance of SoC can be estimated by linearizing (5.6). This gives a
linear system from Pload to SoC.

σ2
SoC ≈

∞∫
0

ppp(ω) |Hf (jω)|2

Q2
nominalV

2
o

dω (5.15)

The state of charge can be seen as a slowly varying mean, E[SoC], with
a superimposed noise.

SoC = E[SoC] + v, (5.16)

where v is the measurement noise. E[SoC] is then the initial condition
of (5.14). To estimate E[SoC] a discrete Kalman filter is applied, where
SoC is the measured state. The process is modeled as:

d ˆSoC
dt = PMCP

VoQnominal
−

(P 2
MCP + σ2

p,ref)Ri

V 3
o Qnominal

+ w (5.17)

y = ˆSoC + v (5.18)

where ˆSoC is the estimated E[SoC], w is the process noise, and v is the
measurement noise. The variance of v is assumed to be white noise with
variance σ2

SoC. The variance of w is a tunning parameter for the filter, which
includes model errors. More details about Kalman filters can be found in
e.g., Brown and Hwang (1997, Chapter 5).

Both E[SoC] and σSoC can be controlled to fulfill (5.13). It was ob-
served during the simulation study that when both E[SoC] and σSoC are
controlled the optimal solution is sometime to reduce σSoC by decreasing
the distance between

¯
τ and τ̄ . However, the desired performance is that
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¯
τ and τ̄ are used to control the temperature, while PMCP is used to con-
trol the SoC. Therefore, σSoC is set to max[σSoC(

¯
τ, τ̄)] = σSoC(

¯
τref , τ̄ref ).

This gives a conservative performance of the SoC; however, as long as
SoCmax − SoCmin � 2F−1(1 − ηSoC)σSoC(

¯
τref , τ̄ref ) the E[SoC] can move

within a range.

5.4 Model Predictive Control

To achieve the control objectives mentioned in Section 5.2, a MPC is imple-
mented. The decision variables of the controller are ξ =

[
¯
τ τ̄ PMCP

]>
,

with reference values ξref. Some slack variables will also be used, to make
sure that a feasible solution is always available, s =

[
sSoC sT

]>
, with the

reference sref. The stage cost is:

l(ξ, s) =h1

(
¯
τ

¯
τref
− 1

)2

+ h2

(
τ̄ref

τ̄
− 1

)2
+ h3P

2
MCP

+ (s− sref)>H2(s− sref), (5.19)

where h1, h2, and h3 are positive constants and H2 is a positive definite
weight matrix. The cost function penalize

¯
τ and 1/τ̄ , this is chosen to

penalize an increase of
¯
τ to its double equally as reducing τ̄ to its half.

The optimization problem is:

Ψ∗ = argmin
Ψ

N−1∑
k=0

l(ξ(tk), s(tk))

subject to (5.10), (5.14),
SoCmin ≤ E[SoC]− F−1(1− ηSoC)σSoC + sSoC(tk)
SoCmax ≥ E[SoC] + F−1(1− ηSoC)σSoC − sSoC(tk)

E[T (tk)] ≤ Tmax + sT (tk)
0 ≤ s(tk)

E[T (t0)] = T (t0)
E[SoC(t0)] = ˆSoC(t0)

(5.20)

where

Ψ =
[
ξ(t0) s(t0) . . . ξ(tN−1) s(tN−1)

]>
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+
− Vo(T, SoC)

R0(T, SoC)
R1(T, SoC)

C1(T, SoC)

I

−

+

VT

Figure 5.3: Model of battery used in process plant with internal resistances,
R0 and R1; capacitor, C1; and open circuit voltage, Vo, output voltage and
current v and i. All parameters dependent on SoC and temperature. The
model and parameters are adapted from Huria et al. (2012).

contains all the decision variables and Ψ∗ is the optimal solution. The
first control input ξ∗(t0) is applied and (5.20) is re-optimized at each time
instant.

5.5 Simulation Study

The simulations are done in the simulator presented in Bø et al. (2015).
The vessel is a supply vessel operating in dynamic positioning. The signif-
icant wave height is 4 m. The vessel has five thrusters, two 1.5 MW, two
2.7 MW, and one 850 kW thruster. Four diesel generator set are used to
produce electric power, two 2.2 MW and two 3.3 MW generators. A load
proportional with the heave velocity is included to simulate a heave com-
pensator. The battery model presented in Huria et al. (2012) is used as
process plant model for the simulations (Figure 5.3). This model includes
an RC-circuit in addition to the internal resistance. Additionally, the resis-
tances, capacitance, and internal voltage are dependent on the temperature
and state of charge. The parameters are given for the high power lithium
cell (LiNi-CoMnO2 cathode and graphite-based anode), 31Ah Kokam SLPB
78216216H. The parameters of the control model in the MPC are found by
using the parameters for the process plant model at the minimum state of
charge (50%) and maximum temperature (35 ◦C). The power spectrum den-
sity of Pload is estimated by using a moving window of the last 1000 seconds
of the measurements. ACADO (Houska et al.; 2011) is used to implement
the controller and the simulations are done in MATLAB/SIMULINK. The
MPC is reoptimized every 50 seconds and the Kalman filter is updated every



5.5. Simulation Study 111

0 1000 2000 3000 4000 5000 6000 7000

Time [s]

0.495

0.500

0.505

0.510

0.515

0.520

0.525

0.530
S

ta
te

o
f

C
h

a
rg

e
[p

u
]

0 1000 2000 3000 4000 5000 6000 7000

Time [s]

34.2
34.4
34.6
34.8
35.0
35.2
35.4
35.6
35.8
36.0

T
em

p
er

a
tu

re
[◦

C
]

0 1000 2000 3000 4000 5000 6000 7000

Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

¯τ
[s

]

0 1000 2000 3000 4000 5000 6000 7000

Time [s]

0

20

40

60

80

100

τ̄
[s

]

Figure 5.4: Simulation described in Section 5.5 with Case 1. The red lines
are the SoC and temperature constraint. The reference value for the time
constant is plotted with a green dotted line. The solid green line is the
estimated E[SoC] from the Kalman filter.
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Figure 5.5: Simulation with case plant as described in Section 5.5 with
Case 1. At t = 4000 second the load variations is increased. The time
constant is changed 50 seconds after the change of the load variations, when
the MPC reacts on the increased temperature of the battery.
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Figure 5.6: Simulation described in Section 5.5 with Case 2. The red lines
are the SoC and temperature constraint. The reference value for the time
constant is plotted with a green dotted line. The solid green line is the
estimated E[SoC] from the Kalman filter. The results with the controller
with fixed time constant are shown in cyan. The SoC is not shown for this
controller, since it was not controlled.
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Figure 5.7: Simulation described in Section 5.5 with Case 2. The resulting
electrical frequency and power generated by the generators, with (green)
and without (blue) peak-shaving. The two lower plots are zoom-ins of the
two upper plots.



5.5. Simulation Study 115

10 second, with σ2
w = 4×10−8. The remaining parameters in the simulation

are given in Table 5.1.
Two cases are simulated. In Case 1, the standard deviation of the heave

compensator is 50 kW the first 4000 seconds, thereafter it is increased to
200 kW. A data series of 3000 seconds is generated and repeated three times.
This is done to exemplify the steady-state performance of the controller.
Results are shown in Fig 5.4 and 5.5. In Case 2 the standard deviation
of heave compensator is 50 kW. However, a complete time series is used
to illustrate the adaptiveness when the variance is slowly changing. The
present controller is compared with a peak-shaving controller where

¯
τ = 0.2

seconds and τ̄ = 80 seconds. Results are shown in Figure 5.6.
Results from the simulation with Case 1 are shown in Figure 5.4. It is

clear that the time average of the SoC is controlled to a level above SoCmin.
The variance of the temperature is also small; therefore, it is reasonable to
constrain the expected temperature and not necessary to use probabilistic
constraints. After 4000 seconds the temperature increases rapidly due to
the increase variations in the power demand. However, the controller takes
action at the first update of the MPC after battery temperature starts to
increase. Therefore, a safety margin on the temperature limit is needed to
avoid disconnection of the battery, due to over-temperature. Details on the
transition after 4000 seconds are shown in Figure 5.5. Most of the load
fluctuations are canceled out until 4050 seconds. At this instant the time
constants are changed to reduce the increased temperature. The band-pass
filter is narrowed to time constants of 3 and 7 seconds, which is typically
the most difficult time scales for the diesel engines.

Results from the simulation of Case 2 are shown in Figure 5.6 and 5.7.
During this simulation the variance of Pload is slowly changing. The time
constants of the bandpass filter are changed dynamical, such that it is wide
when the battery temperature is low, and narrow when its high. It maintains
the temperature below the temperature limits when the variance increases.
In contrast, the fixed time constant approach gives too high temperatures,
and the filter does not utilize the full potential of the peak-shaving capability
when the temperature is low. This approach requires either tuning of the
filter often or a very conservative tuning. Between 3500 and 4500 seconds,
when the fluctuations increases again, the SoC constraint (5.8) is violated
11.5% of the time. This is mainly due to the lag of the estimation of the
power spectrum density.

Simulation results with and without peak-shaving are shown in Fig-
ure 5.7, which shows the power demand on the generator sets and electrical
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Table 5.1: Parameters used in simulation. Parameters for the process plant
battery model can be found in Huria et al. (2012).

Parameter Value

¯
τref 0.1 s
τ̄ref 100 s
Vo 3.71 V

Qnominal 27.6 Ah
Ri 0.0096 Ω

c 810 J

K
hA
c 1591 s

ncells 1323
Tmax 35 ◦C

SoCmin 0.50
SoCmax 0.90
ηSoC 5%

h1 = h2 1
h3 0.1
sref

[
−10 −10

]>
H2

[
100 0
0 100

]

frequency. It shows that the peak-shaving reduces the power and frequency
variations during the entire simulations, although more variations are can-
celed when the band-pass filter is wide. The low-frequency variation of the
electric frequency is much smaller than the power variations during the first
1000 seconds, these variations are slow enough to be handled by the diesel
engine. The remaining low frequency variation of the electric frequency is a
result of frequency droop in the governor for load sharing control. The lower
two plots show a zoom-in of the two upper plots, it is clear that most of
the remaining variations in the electrical frequency are high-frequency vari-
ations, which are handled by the inertia of the generator set. This reduced
electric frequency variations makes it easier to synchronize new generator
set to the grid, and reduced power variations decreases wear and tear on
the generator set and possibly decreases the fuel consumption.
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5.6 Conclusion
It is demonstrated in this chapter how the power spectrum density can be
used to estimate expected values and variance of state of charge and ex-
pected temperatures of a battery. This is used in the optimization problem
of the MPC. A peak-shaving example was used to demonstrate the con-
trol scheme. The MPC sets time constants of a band-pass filter, which
controls the peak-shaving done by the battery. The controllers objective
is to maintain a battery temperature below a maximum temperature and
a state of charge within a desired range. It is shown that the controller
achieves its control objective, by controlling the temperature and state of
charge close to the constraint. However, the constraints are violated after a
sudden change of the disturbance. The peak-shaving algorithm cancels out
the variations that are most difficult to handle by the diesel engines, this
gives less variations on the electric frequency.

5.7 Appendix: Mathematical Preliminaries
Given a linear system with stochastic input w, transfer function H(s), and
output x. The power spectrum density of w is pww(ω). For such a system,
the power spectrum density of x is

pxx(ω) = pww(ω)|H(jω)|2. (5.21)

The variance and power of the signal are given as:

σ2
x =

∞∫
0

pxx(ω) dω. (5.22)

Given a normal distributed variable X, with the mean and variance x̄
and σ2. The probability constraint:

Prob(X > xc) ≥ 1− η

is equivalent to

xc < x̄− F−1(1− η)σ (5.23)

where η is the probability threshold, and F−1(·) is the inverse probability
distribution of standard normal distribution.



118
Battery Peak-Shaving Control in Electric Marine Power Plant

using Nonlinear Model Predictive Control



Chapter 6

Dynamic Positioning System
as Dynamic Energy Storage
on Diesel-Electric Ships

This chapter is a reformatted version of Johansen et al. (2014).

6.1 Introduction
Dynamically positioned (DP) vessels with diesel-electric power and propul-
sion systems are commonly used in offshore operations in order to keep
the ship position and heading at their references. While the DP system
is often the main consumer of electric power on the ship, other variable
power consumers are connected on the same power buses as the electric
thrusters. The relatively weak electric grid on a vessel is therefore subject
to significant variations in voltage and frequency caused by the dynamics
of several more or less independent consumers. This causes challenges due
to increased wear and tear, maintenance costs, emissions, and fuel ineffi-
ciency of diesel generators in combination with increased risk for blackout
due to over- or under-frequency condition causing protection relays to trip
generators. Common variable load consumers include drilling drives, heave
compensators, cranes, pumps and winches whose operation are often influ-
enced by wave-induced ship motions and other external disturbances. A
further benefit of dynamic energy storage is increased operational flexibility
as it allows these consumers to have higher priority than DP thrusters with
respect to load reduction and load shedding, without reduced safety or op-
erational performance, for short periods of time. Dynamic energy storage

119
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is currently also much considered for power and energy management in mi-
crogrids and for integration of renewable energy sources, e.g. Levron et al.
(2013); Levron and Shmilovitz (2012).

From a DP ship operator’s point of view, the main goal is to maximize
the operationally useful time of a DP vessel in order to maximize operational
income, hence minimizing inefficient and costly downtime. At the same
time, minimizing running hours on equipment such as power generators and
thrusters will reduce maintenance costs. Historically, these two goals have
been in conflict because the demand to maximize operational uptime has
required a conservative and redundant use of power and thruster equipment,
as required by the International Maritime Organization (IMO) rules for DP
vessels (IMO; 1994). A new and more flexible DP notation called DYNPOS
ER (Enhanced Reliability), (DNV; 2010), has recently been launched. It
is “...developed to allow owners to optimize fuel usage and reduce opera-
tional costs, while maintaining high integrity towards loss of position and
heading” and enables a more “...flexible, redundant and fuel-efficient way of
structuring DP systems”. Such a new development on the classification side,
which is a result of new technological developments, opens up new possibil-
ities for improved and integrated DP and power control functionality, thus
motivating the dynamic energy storage on DP vessels.

Although large resistor banks and thrust allocation with thruster biasing
are sometimes used to waste of power on DP ships in order to reduce the
effects of power transients on the system, e.g. Jenssen and Realfsen (2006),
it is clear that more efficiency and flexibility could be achieved with dynamic
energy storage. While several concepts are currently being investigated,
such as DC grids (e.g. Hansen et al. (2011)), hybrid power systems (e.g.
Zahedi and Norum (2013)), battery banks, capacitive storage and increased
mechanical inertia such as fly-wheels, the purpose of this chapter is to study
a much simpler approach that does not require any new equipment, i.e. the
use of the inertia of the vessel hull itself as dynamic energy storage controlled
by the DP system.

The forces that act on a DP vessel can be assumed to be limited to the en-
vironmental forces and the thruster forces commanded by the DP controller.
Further, assume that the slowly-varying components of the environmental
forces are sufficiently large. The vessel hull itself is an effective dynamic
energy storage due to its inertia. For example, accelerating the vessel for-
ward by an electrical thruster will convert electric energy to mechanical
energy that is at first stored as kinetic energy (due to velocity resulting
from the acceleration caused by the thrust) and later as potential energy
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(a change in position in the presence of the slowly-varying environmental
force field) that can be converted back by returning the vessel back to the
original position. Temporary energy storage can therefore be provided by
the DP system by allowing the vessel to move away from the setpoint within
a given position tolerance. This is not a new idea, and some power control
and thrust allocation methods that exploits this mechanical energy storage
capacity have been studied and implemented in various forms (Mathiesen
et al.; 2012; Radan et al.; 2008; Veksler et al.; 2012a,b).

The main contribution of this chapter is derivation and verification of a
new and simple analytical formula that relates the amplitude of the position
deviations that need to be allowed to achieve a given capacity of the dy-
namic energy storage characterized by the frequency and amplitude of the
stored power. This allows bounds on the dynamic energy storage capacity
provided by methods such as Mathiesen et al. (2012); Radan et al. (2008);
Veksler et al. (2012a,b) to be quantified using a very simple formula. Con-
sequently, the need and benefits of new concepts for dynamic energy storage
can be more easily discussed and compared in a wider perspective, as dy-
namic energy storage capacity can be provided within a reasonable range of
frequencies and amplitudes simply through functions that can be realized in
DP software without the need for any new power system hardware or other
equipment.

6.2 A Conceptual Control Architecture for Dy-
namic Energy Storage in Dynamic Positioning

Figure 6.1 shows a control architecture that intends to illustrate the main
idea. In a DP system there is a positioning controller that commands forces
in surge and sway directions, as well as the yaw moment, in order to keep
position and heading at their specified setpoint, (Fossen; 2011; Sørensen;
2011). Conventionally, a thrust allocation module allocates these forces to
the individual thrusters in order to meet these commands whenever possible,
where exceptions would be when the thrust demands cannot be met due to
the static or dynamic limitations in the thruster system, machinery, or the
electric power system. Those limitations are commonly managed through a
power available signal from the power management system (PMS) that has
the basic function of preventing overloading of the power plant due to equip-
ment failures or protection trips due to under-frequency or under-voltage
that would potentially lead to loss of position and emergency operation.

The architecture in Figure 6.1 deviates from conventional DP architec-
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Figure 6.1: The Power Management System is allowed to request dynamic
energy storage from the DP controller. A supervisory control and monitor-
ing systems may provide advice and control in order to minimize risk for DP
loss of position and other hazards due to electric power shortage resulting
from equipment failure or operational issues.

tures since it allows the PMS to request dynamic energy storage to the DP
controller. Such dynamic energy storage requests would typically either be
issued to compensate for known or predictable load variations in other elec-
tric power consumers, e.g. heave-compensators, or in response to failures
or operational issues such as loss of generator capacity or partial blackout.
Some further discussion on the potential benefits of dynamic energy storage
in provided in Section 6.5. The DP controller can then implement dynamic
energy storage functionality in many different ways, for example

• Modify the position set-point slightly to increase or decrease the power
consumption during the transient.
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• Modify the thrust request to the thruster controllers, (Radan et al.;
2008), without any analysis of consequences for positioning errors.

• Modify the thrust request to the thrust allocation with an amount
that corresponds to the requested dynamic energy storage rate. This
is the approach that will be used in this chapter for demonstration
and analysis, for simplicity.

• Modify the power available and limits to the thrust allocation in order
to implement the dynamic energy storage request in a smooth and
efficient way with minimum impact on the operation of the system,
(Mathiesen et al.; 2012; Veksler et al.; 2012a,b).

Dynamic storage of energy as kinetic and potential energy in a DP ves-
sel has some inherent limitations. First, the energy storage cannot change
faster than the thruster dynamics. While the electric thruster power can be
changed in much less time than one second using frequency converters, it
should be realized that persistent fast changes will cause mechanical stress
on the system and increased tear and wear. Hence, in practice we expect
that energy storage dynamics faster than about 0.5 - 1 Hz cannot normally
be accommodated by the DP system. Note that higher frequencies than
this would be effectively handled by the mechanical inertia of the diesel-
generators, and the capacitances and inductances in the electric system,
(Radan; 2008). On the other hand, the DP system typically has a control
bandwidth corresponding to a response time of 15-60 seconds for a typi-
cal diesel-electric vessel. This bandwidth is chosen due to the dynamics of
thrusters as well as the desire to avoid to act against the first order wave in-
duced motions, which is commonly achieved with wave filtering, (Sørensen;
2011). Hence, energy dynamics slower than about 0.05 rad/sec, or about
0.01 Hz, will be typically counteracted by the DP controller unless special
functionality is implemented to allow certain position deviations. Conse-
quently, the DP dynamic energy storage will typically be mostly effective
for power variations in the range of 0.01 Hz to 0.5 Hz. Although this is a
limited frequency band, it is still very useful since it captures important dy-
namics such as heave compensation systems, some drilling control systems,
and other large consumers. Dynamic energy storage requests of lower fre-
quency can be effectively handled by load changes on the diesel generators,
as they typically will be able to follow frequencies of 0.01 Hz.
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6.3 Dynamic Energy Storage Capacity Analysis
Consider a vessel with mass m that is under DP control. For simplicity of
analysis, we assume the vessel is headed against the weather (i.e. against
the resultant steady-state environmental force vector) and consider only
the surge axis position x. Assume further that a PID controller is used
(Sørensen; 2011), and wind variations and first order forces due to ocean
waves are neglected. It can be simplified as FDP = −(Kpx+FI +Kdẋ) where
a slowly time-varying force FI (due to integral action) is assumed to cancel
the slowly time-varying total environmental force FE such that FI +FE = 0.
Assume further that the DP system allocates a thrust according to FDP

except for a component that is requested as dynamic energy storage to
compensate for electric power variations outside the DP:

Falloc = FDP +K0Preq (6.1)

where Preq is the requested dynamic energy storage (power), and K0 [N/W ]
is the thrust/power factor that is assumed to be constant for a given thruster
configuration near some operating point. The equation of motion for the
ship along the surge axis is

mẍ+Dẋ = Falloc + FE (6.2)

where D is the hydrodynamic damping coefficient. This leads to

mẍ+ (D +Kd)ẋ+Kpx = K0Preq (6.3)

Next, consider the allocated (stored) power that is dervied directly from
(6.1):

Palloc = PDP + Preq (6.4)
= FDP /K0 + Preq (6.5)

= − 1
K0

(Kpx+ FI +Kdẋ) + Preq (6.6)

Disregaring the stationary power FI/K0 needed to compensate for station-
ary environmental forces FE , and transforming eqs. (6.3) and (6.6) to the
Laplace domain gives the following equations:

1
K0

(
ms2 + (Kd +D)s+Kp

)
X(s) = Preq(s) (6.7)

Palloc(s) + 1
K0

(Kp +Kds)X(s) = Preq(s) (6.8)
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Combining with (6.4) leads to the following transfer functions after some
straightforward algebra:

X

Palloc
(s) = K0

ms2 +Ds
(6.9)

Palloc

Preq
(s) = ms2 +Ds

ms2 + (Kd +D)s+Kp
(6.10)

Simulations in Section 6.4 show that for a typical vessel and DP controller,
the hydrodynamic damping force corresponds to less than 1-2 % of the
power, so we get the following approximate transfer functions:

X

Palloc
(s) ≈ K0

ms2 (6.11)

Palloc

Preq
(s) ≈ ms2

ms2 +Kds+Kp
(6.12)

Assuming the dynamic energy storage request is sinusoidal Preq(t) = Pa sin(ω1t),
we get that for ω1 >> ω0 =

√
Kp/m

Palloc(t) ≈ Preq(t) (6.13)

xa ≈ K0
mω2

1
Pa (6.14)

where xa is the amplitude of the resulting sinusoidal motion x(t) = xa sin(ω1t+
φ) of the ship. By also accounting for the hydrodynamic damping, a slightly
more accurate approximation can be made

xa ≈ K0√
m2ω4

1 +D2ω2
1

Pa (6.15)

Based on these simple formulas, some observations can be made.

• The dynamic energy storage capacity Palloc decreases when the dy-
namic power load frequency ω1 decreases, in particular when it be-
comes smaller than the bandwidth ω0 of the DP controller. For ω1
much larger than ω0 we have Palloc ≈ Preq, i.e. full capacity is avail-
able. For ω1 much smaller than ω0 we get Palloc/Preq ≈ 0, cf. (6.12).

• The amplitude xa of the ship motion required to accommodate the
dynamic energy storage decreases rapidly as ω1 increases, cf. (6.14).
This is a natural physical interpretation since high-frequency motions
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require relatively higher force and power than low-frequency motions
of the same amplitude. Conversely, smaller high-frequency motion
amplitudes will be generated using the same power.

• Net power savings are possible only when the environmental force
FE 6= 0, and full dynamic energy storage capacity is available only
when |FE | ≥ K0Pa. This may not be seen as a practical limitation
since large dynamic energy storage capacity may primarily be needed
when there are high waves, which usually result from high winds that
also lead to large |FE |.

The calculations can be easily generalized for dynamic power load variations
that are not sinusoidal by considering power spectra or Fourier series.

6.4 Verification – Case Study

The simulation example considers a case where a sinusoidal electric power
system disturbance, corresponding to a given power amplitude and period, is
added to the thrust commanded by the DP controller to implement dynamic
energy storage according to (6.1). The modification to the thrust command
is allocate to the surge force only, before the command is sent to the thrust
allocation module.

The simulations are conducted using Matlab and the six-degrees-of-
freedom Marine Systems Simulator, (Fossen; 2011). The DP vessel con-
sidered is a typical drillship, m = 43, 7 · 106 kg, where the main need for
dynamic energy storage comes from active heave compensation of the drill-
string or riser. The simulations consider a typical situation with a steady-
state (constant) environmental force resulting from mean wind and current
forces. In order to accurately analyse the dynamic energy storage function-
ality by itself, we have not included dynamic disturbance forces due to ocean
waves and wind variations in the simulations. These forces could be super-
positioned on the simulated forces to give additional dynamic variations
in positon, thrust and power consumption. In addition to the 6-degrees-of-
freedom model of vessel motion with hydrodynamic and aerodynamic loads,
the simulator contains a PID-based DP controller and a thrust allocation
algorithm based on the pseudo-inverse. A simple model of the power plant
dynamics is given by the diesel generators momentum balance, (Veksler
et al.; 2012b), inlet air pressure restrictions, (Radan et al.; 2008) and elec-
tric system power balances, (Bø; 2012). Based on this, other variables such
as voltages and currents can be computed. The DP system is designed with
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Figure 6.2: Power plant of simulated drilling vessel used in case study.

a bandwidth in surge, sway and yaw of ω0 = 0.033 rad/s and critical relative
damping ζ = 1.0.

The power plant with diesel generators, distribution and consumers is
illustrated in Figure 6.2, and is characterized as follows

• There are three main 11 kV buses/switchboards with 2 diesel-generators
having circuit breakers that allows them to be connected or discon-
neted. The generators operates with frequency-control by governors
in droop mode.

• There is a ring bus and bus-tie breakers that allows the bus segments
to be connected in as a single bus, or in 2-split or 3-split modes. In
the simulations we operate with closed bus-ties.

• There are six azimuth thrusters arranged in a standard geometric
layout, two for each power bus segment.

• There are several additional consumers connected through transform-
ers or 440 V switchboards that are fed by the main switchboards. For
simplicity the figure only shows some main other drilling consumers,
i.e. active heave drawworks drive, mud pumps and top drive.
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Palloc[MW ] Preq[MW ] ω1[rad/s] xa [m] xa [m] xa [m]
(sim) (eq. (6.14)) (eq. (6.15))

0.65 1.26 0.033 1.04 1.09 1.04
2.06 3.99 0.033 5.20 5.42 5.18
3.60 3.99 0.100 1.02 1.03 1.03
8.82 9.78 0.100 2.05 2.06 2.05
9.63 9.78 0.330 0.19 0.21 0.21
3.94 3.99 0.500 0.03 0.04 0.04
9.58 9.78 1.000 0.04 0.02 0.02

Table 6.1: Numerical results from case study.

Simulation results are shown in Table 6.1. They consider a number
of cases with different power storage request amplitudes and frequencies,
corresponding to different drilling loads

• Dominating wave amplitudes commonly correpond to the range 0.33
rad/s - 1.0 rad/s, e.g. Fossen (2011); Torsethaugen (1993).

• Power variations with frequencies in the range 0.033 rad/s - 0.1 rad/s
correspond to low-frequent wave motions such as swells or more ex-
ceptional waves that ma occur i some regions.

• Even in rough sea states an active heave drawwork and drilling drives
has power consumption variations with amplitudes of less than 5 MW.
The scenarios simulated are therefore to be considered as conservative
worst cases.

The table reports the simulated and analytic (using (6.14)) position de-
viation amplitudes as well as dynamically stored energy. The simulations
confirm that several megawatts of power variations can be managed by the
power management and DP system by accepting relatively small position
deviations on a typical mobile offshore drilling unit. Note that typical po-
sition deviation for a DP system in normal conditions is about 1 meter. At
ω1 = ω0 = 0.033 rad/s the dynamic energy storage only has about 50%
effect as the allocated (stored) power is only half of the requested dynamic
energy storage, due to interactions resulting from the conflict with the pri-
mary position control objectives of the DP controller.

The simulations confirm the accuracy of the simple analytic formula
(6.14) with accuracy typically better than 5% error. For cases with very
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small surge amplitudes, the deviation between xa predicted by the simple
model and the advanced simulation model is relatively large in percent (up
to 50%) but negligible in absolute position deviations (a couple of cm). The
main reason why higher relative deviations are observed in these cases is the
“higher order” dynamic effects of couplings between surge/pitch (longitudi-
nal) and sway/roll (lateral) ship motions included by variations in thruster
forces and moments.

The simulations also verify that the dynamic energy storage has the
benefit that it makes the variations in electric frequency very small (less
than 1% for all cases) and even less variations in voltage. Moreover, the
dynamic energy storage it balances out the difference between consumed and
produced power that results due to the dynamics of the diesel generators.

It has been verified by simulations that the formulas (6.14)-(6.15) qual-
itatively are in good agreement also with more advanced implementation of
DP dynamic energy storage, (Veksler et al.; 2012a,b).

6.5 DP Decision Support and Dynamic Consequence
Analysis

According to established industry standard system design and operational
procedures for dynamically positioned ships, (IMO; 1994), it is up to the
operator to enable or disable a sufficient amount of thrusters based on the
DP decision support tools such as online consequence analysis, capability
analysis, and motion prediction, while the PMS ensures that a sufficient
amount of generators are running at all times to serve both operational and
positioning power needs. Conventionally, a redundant number of online
generators and thrusters are employed to guarantee safety and operational
availability. However, such a redundancy leads to equipment running at low
and inefficient loads, and increases both fuel and maintenance costs as well
as exhaust gas emissions.

By increasing the information exchange and actively taking advantage
of the dynamic energy storage capacity offered by the DP system, a less con-
servative use of generators and thrusters can be achieved. In particular, the
following enhancements can be envisioned within the framework presented
in Figure 6.1, see Bø et al. (2013); Mathiesen et al. (2012) for further details.
An online simulation-based dynamic consequence analysis can take into ac-
count information about the vessel dynamics, the weather situation (wind,
waves and current), load situation, startup time of standby generators and
thrusters, etc. to realistically calculate an optimal position reference for
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the DP system which minimizes the chance of drift-off or drive-off while
simultaneously maximizing the available operational time after generator
or switchboard failure, i.e., how long it is possible to prioritize the opera-
tional drives in favor of the thruster drives before safety is compromised.
This knowledge can be used to reduce the amount of online generators and
thrusters while still achieving operational availability and safety in case of
a failure, sending the information back to PMS system for consumer load
control.

Such integrated and simulation-based power management functionality
can for instance be employed by drilling vessels, which have flexibility in
positioning depending on the water depth and the corresponding length of
the drill string. For such vessels, the functionality will ensure that safety
will not be compromised if equipment fails even if a minimum power and
thrust configuration is used, because there will be enough time to remedy
the failure situation by enabling/disabling relevant power/thrust equipment.
Examples include:

• If a generator fails and results in insufficient power, the power con-
sumption must be reduced to avoid a blackout. In order to continue
the drilling operation, the thrust consumption must be reduced in-
stead of the drilling consumption. Hence, the vessel will experience a
drift-off. However, using a simulator-calculated position reference, e.g.
Bø et al. (2013), the vessel is already located such that it can safely be
allowed to drift for a certain period of time without having to reduce
the drilling power consumption in favor of the positioning. During
this time frame, the vessel will be able to start the necessary standby
generators in order to restore sufficient power to stop the drift-off and
bring the vessel back into position.

• In the worst case, if the vessel moves close to the safety limit during a
drift-off, the power to the operational drives (e.g. drilling drives and
mud pumps) must be reduced in favor of power to the thruster drives,
in order to maintain the safety of the vessel, equipment and crew.
Hence, the integrated system will automatically prioritize drilling ver-
sus positioning needs depending on the vessel drift pattern, in order
to continue the drilling operation as long as safely possible.
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6.6 Conclusions
Simple formulas are derived in order to related the dynamic energy storage
capacity to the maximum allowed ship position deviation, as a function of
the frequency of the requested dynamic energy storage. The formulas are
verified using a high-fidelity vessel simulator, and show that for dynamic
energy storage requests at wave frequencies (resulting e.g. from an active
heave compensation system) that power variations of several megawatt will
result in position deviations that are no larger than normal position devi-
ations resulting from the dynamics of ocean waves and winds, as well as
inaccuracies in sensors and position reference systems.

The main advantage of this integrated approach is to maintain opera-
tional availability and safety while minimizing power consumption, which
translates into lower fuel costs and exhaust gas emissions, as well as min-
imizing wear and tear of generators and thrusters, which translates into
lower maintenance costs. Relevant applications include marine operations
with positioning flexibility such as drilling.

It could also be mentioned that the method can be directly extended
to other energy storage capacities on-board ships in order to allow more
low-frequency dynamic energy storage requirements, e.g. thermal storage
in cooling, cargo, ventilation, air conditioning and other systems. Such
functionality is enabled by integrated automation systems that allows the
required software functionality to be implemented.
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Chapter 7

Concluding Remarks

7.1 Conclusion

The motivation behind the thesis was to reduce the environmental footprint
of diesel electric propulsion on marine vessels during dynamic positioning.
The focus was to reduce the number of diesel engines needed during the oper-
ation by modeling and control. The methods presented in the thesis achieve
this by either giving support for selection of the optimal configuration, or
increasing the performance of a configuration to fulfill the operational re-
quirements. This was achieved by optimizing the power and propulsion
systems as one complete system, and included interaction among subsys-
tems. This approach produces a synergistic effect, as shown in Chapters 3
and 6, where the inertia of the vessel were used as energy storage during
power plant recovery and to smooth out power fluctuations.

The power plant designer must be sure that the power plant can fulfill
its operational requirements. This means that any single failure on DP
vessels of class 2 and 3 should not lead to loss of position. Consequently, it
is important that the designer have good tools for testing and verification of
the vessel’s systems. Otherwise, conservative solutions may be used, which
often are non-optimal. The simulator in Chapter 2 is a tool for this design
process. The constraining factor when designing power plants for DP vessels
is often the handling of faults. Since the vessel motion dynamics and power
plant were included in the simulator, new equipment and control strategy
for fault handling can be tested with the simulator. For example were fault
recovery methods using batteries tested with the simulator. Power plant
performance is also affected by interactions between different parts of the
vessel, such as the varying power demand due to propeller-wave interactions.

133
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These effects can be studied with the simulator, and new control methods
for the plant can be established.

The operator must also be certain that the power plant is configured to
fulfill its operational requirements. It is reported from the industry that the
operator often chooses conservative, non-optimal configurations by overrid-
ing automatic start/stop of generators and running too many engines. One
of the reasons for this choice may be lack of relevant information. A dy-
namic consequence analysis tool was presented in Chapter 3 to verify DP
performance of the vessel during a fault, so that the operator is certain
that the configuration is safe enough. The operator can check different
configurations, such as the number of engines and recovery methods. The
desired configuration can be selected during or before operations based on
the simulations using this tool.

This thesis also focused on controllers which could make more configu-
ration able to fulfill the operation requirements. For example the electric
frequency can drop after some faults in the electric system. Additional en-
gines can be committed to avoid a too large frequency drop, which could
lead to blackout. However, this may be unnecessary because the frequency
margin could be increased instead. A scenario-based MPC was presented in
Chapter 4, which can be used to configure the generators for higher safety
margins or to configure the system so that additional generator sets are not
needed.

Electric frequency variations on the grid due to power variations in de-
mand are another challenge that requires the number of engines to be in-
creased. These power variations increase fuel consumption and wear and
tear. They also make it difficult to synchronize and connect additional gen-
erator sets when needed. Control of peak-shaving is presented in Chapter 5,
which can be used to reduce these variations in power demand. An MPC
was used in combination with a power spectrum analysis to control peak
shaving so that load fluctuations are canceled out as much as possible, while
avoiding too high battery temperatures.

Another method to reduce power fluctuations is to vary power consump-
tion of the thrusters, which cancels power fluctuations of other loads. The
effects of varying power consumption of the thrusters on the DP position
are demonstrated in Chapter 6. An analytical formula is presented, which
gives the size of the position variation as a function of the power variation.
The formula was verified with the results from a simulation study.

These methods were simulated using the simulator presented in Chap-
ter 2 to verify their performance. The methods presented in this thesis



7.2. Further Work 135

were designed to achieve better control of the vessel’s systems, including
performance of the DP system and the power plant. These methods can
be used in combination to reduce the number of diesel generators running
while maintaining the required safety level or to increase the safety level
through better control and information.

7.2 Further Work

The motivation of the thesis was to lower the environmental footprint of ves-
sels with diesel electric propulsion and DP. Performance of the controllers
was tested and verified through analytical methods and simulation studies.
The next step would be to perform a qualitative study on how much each of
these methods can reduce emissions from these vessels. This could be accom-
plished using the simulator or by full-scale testing. The largest reductions
in emissions are achieved when diesel engine utilization is increased.

The diesel engine model used in this study was a mean value model,
which was designed considering steady-state conditions. However, transient
performance was not fully modeled and exhaust gas emissions were not
modeled at all. These models must be developed and validated with full-
scale measurements to verify reduced emissions by quantifying the reduced
fuel consumption and production of emissions.

This study did not investigate reductions in SOX, NOX, or particulate
matter (PM) emissions. However, most of the potential for reduction of
these emissions is through new equipment and control of the power pro-
ducers. Lower SOX, NOX, and PM emissions may also be achieved by the
controllers described in Chapters 5 and 6, as a smoother power demand may
produce lower emissions.

Batteries were not a large focus in this study; however, the development
of batteries has increased rapidly in the last few years. One particularly
interesting scenario is using batteries as “running stand-by” power supply,
since the stand-by cost of a battery is negligible after installation compared
with diesel engines. Development of such methods would be supported by
the simulator developed in Chapter 2. The dynamic consequence analysis
in Chapter 3 is well fitted for operations with DP and batteries, because
it can be used to estimate plant performance and the minimum battery
charge state. A concept study using batteries as running stand-by should
be conducted to determine the increase in performance. This study should
also include other power plant changes, such as using diesel engines that are
optimized for slowly varying loads.
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The simulator models were tested and verified individually. The next
step is to verify the simulator against full-scale or model-scale measure-
ments. Similarly, the controllers and models for the controllers should be
verified with full- or model-scale tests to get one step closer to implementa-
tion.
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