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Summary

A stepped cylinder could be a desired design for an offshore buoy or SPAR platform.
The geometry of a stepped cylinder consists of a small diameter cylinder (d) placed on
top of a large diameter cylinder (D). This master thesis has investigated numerically the
flow around a stepped cylinder with different diameter ratios (d/D) for a Reynolds number,
ReD = 150. The commercial software Fluent v13.0 by Ansys was used for the numerical
investigation.

The aim of the study has been exploring the nearby wake flow as well as the region where
the two cylinders are joined. The hydrodynamic forces and vortex shedding frequency
have been analysed and compared for the four different diameter ratios: d/D = 0.3, 0.5, 0.8
and 0.9

The major part of the published papers on the topic is based on experimental studies.
Only two papers are based on numerical studies, having considered d/D = 0.5 exclusively.
Earlier studies have focused mainly on vortex shedding in the wake flow, omitting the
forces acting on the stepped cylinder.

The stepped cylinder has been modelled using the software GAMBIT. A convergence
study investigating the domain size and element density was conducted to ensure a grid
independent solution. Special attention was directed at the step region to fully resolve the
complex flow in this region. The numerical model was verified to be in good agreement
with previous experimental- and numerical studies.

For the stepped cylinders significant spanwise velocity was detected in the step region.
For d/D = 0.3 and 0.5, upflow was detected over the leading edge of the step whereas
downwash characterised the trailing edge of the step. Similarities to the flow around a
finite length cylinder could be drawn for d/D = 0.3 and 0.5, whereas d/D = 0.8 and 0.9
resembled that of a straight cylinder.

The step was found to affect the wake flow ≈ 10D into D independent of diameter ratio.
The wake flow behind the small diameter cylinder was less affected by the step than the
large for d/D < 0.5. In the step region two distinct streamwise vortices were detected.
A pair of edge vortices as well as a junction vortex were readily detected for d/D = 0.3
and 0.5. The junction vortex was not detected for d/D = 0.8 and 0.9 due to the small step
change in diameter.

The drag force on D was found to increase as d/D increased. Similarly, the amplitude
of the lift force was also found to increase as d/D increased. The mean drag-coefficient
varied along the span with peaks in the local drag-coefficient observed in close vicinity of
the step.

Regular spanwise vortex shedding was detected away from the step at a frequency similar
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to that of a straight cylinder. In the step region, located mainly on D, a cell of lower vortex
shedding frequency was detected for d/D = 0.3 and 0.5. As d/D increased this cell seemed
to disappear. Suppression of regular vortex shedding close to the step for d/D = 0.3 was
observed for ReD = 150,300 and 600. For ReD > 150 the large spanwise vortex structures
were still discernible, but the presence of small-scale streamwise vortices complicated the
flow.
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Chapter 1

Introduction

The circular cylinder is a central building component in most marine structures. Almost
all semi-submersibles have circular cylinders as columns, whereas the hull of
SPAR-buoys solely consists of a circular cylinder. Pipes carrying the oil from the sea-bed
to the process plant are all of cylindrical shape although having a smaller cross section.
Further, as onshore windmill parks are moved offshore, circular cylinders are a typical
underwater hull design. In addition to extensive use offshore, the circular cylinder is a
common engineering application onshore; chimneys, television towers and radio masts
all represent utilisation of a circular cylinder shape.

Owing to its many engineering applications, numerous papers have been published
during the last decade regarding the flow around circular cylinders. Indeed, several papers
are entirely devoted to revising the state of the art (see for example Berger and Wille
(1972); Niemann and Hölscher (1990); Roshko (1993)).

The flow around a circular cylinder is characterised with a large and usually unsteady
flow, thus it is in the literature commonly described as a bluff body (Zdravkovich, 1997).
In the wake region, downstream of the separation point, bluff bodies experience
similarities in the development of flow structures. These large flow structures, known as
vortices, are formed in the near wake and shifted downstream and eventually decay due to
viscous dissipation (Zdravkovich, 1997).

The wake region has been the emphasis of most past research. Recent studies have
discovered three-dimensional flow effects in the cylinder wake at low Reynolds numbers
(Re∼ 194−260), which has lead to new insight in opposition to flows believed to be
nominally two-dimensional (Williamson, 1996).

In his study of vortex dislocations, Williamson (1992) passively generated vortex
dislocations by placing a small ring disturbance at the midspan of a circular cylinder.
Asymmetric ’one-sided’ vortex dislocations were created between two adjacent cells of
different vortex shedding frequency as they moved out of phase. Due to a step change in
diameter, one-sided vortex dislocations are assumed to be present for flow around stepped
cylinders.

The geometry of a stepped cylinder consists of a small diameter cylinder (d) placed on
top of a large diameter cylinder (D). One-sided vortex dislocations are thus expected to
occur due to a difference in vortex shedding frequency in the wake of a stepped cylinder.
Contrary to tapered cylinders with multiple vortex interaction zones, the interaction of
vortex filaments are for a stepped cylinder restricted to the step. Lewis and Gharib (1992)
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investigated a series of high aspect ratio stepped cylinders, with diameter ratios (d/D) in
the range 0.87−0.56 for Reynolds numbers, Re∼ 35−200. Two distinct sorts of wake
behaviour, named as mode A and mode B was identified in the wake flow. The different
modes were found to be function of Reynolds number and diameter ratio with different
cells of vortex shedding frequency along the span.

Dunn and Tavoularis (2006) have performed experiments and thorough flow visualisation
on a stepped cylinder with a diameter ratio d/D = 0.51. The Reynolds number based on
D (ReD =UD/ν) was in the range 63−1100. A wake behaviour similar to the indirect
mode detected by Lewis and Gharib (1992) was observed. Away from the step,
two-dimensional vortex shedding detected at vortex shedding frequencies similar to that
of a straight cylinder. Close to the junction between the d and D, a cell of much lower
shedding frequency was detected occurring (Dunn and Tavoularis, 2006; Lewis and
Gharib, 1992; Norberg, 1992).

In addition to regular spanwise vortices, two types of streamwise vortices have been
detected in the stepped cylinder wake. A pair of edge vortices rolled up over the edge of
the D whereas a junction vortex was observed wrapping around the base of d (Dunn and
Tavoularis, 2006). The edge vortex may be the same as found by Kawamura et al. (1984);
Park and Lee (2000); Sumner et al. (2004) in the wake of a finite length cylinder
characterised as two distinct streamwise counter-rotating tip vortices, separating at the
free end.

The combination of both spanwise- and streamwise vortices enriches the wake flow
making an understanding of the flow physics complex. The present thesis will thus
perform a study of the flow around stepped cylinders using a numerical solver. The
strengths of a numerical solver is that velocities and pressure are readily known in the
whole fluid domain at each step in time, thus being a powerful tool in gaining further
understanding of the problem. Stepped cylinders with different diameter ratio (d/D) will
be analysed at low Reynolds numbers, ReD = 150, using the commercial code Fluent
v13.0 by Ansys.

1.1 Motivation

The Reynolds number employed in the present thesis (ReD < 600) represents an idealistic
case and does not represent real conditions. In real life conditions the Reynolds number
on a SPAR buoy (figure 1.1 page, 3) of diameter, say, D = 50m in a current of U = 1 m/s
is in the range of 50×106. The current study will be positioned in the laminar flow
regime whereas real life conditions always include turbulence.

Regardless of difference in Reynolds number, studying the physics of the problem and
the qualitative behaviour of the flow problem is important. The quantitative values of the
drag-coefficient may not be similar as for a full-scale Reynolds number, but the basic
flow physics may be similar.

It is in the author’s interest to conduct a numerical study of the problem. The author
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believes that computational fluid dynamics (CFD) in the future will be a valuable asset to
study flow phenomena connected to marine structures. Gaining knowledge and
experience through using CFD program is thus advantageous and has been a motivation
for selecting a numerical study.

Figure 1.1: Aker Solutions idea of a SPAR platform with a stepped cylinder design producing oil at a record
depth of 1300 meters. To give an impression of its size the platform is compared against high-rise buildings in
Oslo. Reprinted from www.aftenposten.no, PHOTO: Aker Solutions/Giga pix AS

1.2 Scope of thesis

1.2.1 Disposition of thesis

• Chapter 2 starts with a review available literature on the topic of flow around a
circular cylinder. Important fluid mechanic phenomena such as flow separation and
vortex shedding are reviewed. The chapter continues by studying literature
concerning the flow around tapered and finite length cylinders to investigate their
relationship to a stepped cylinder. The chapter concludes by studying published
literature on the flow around a single stepped cylinder and a dual stepped cylinder.

• Chapter 3 is devoted to the modelling process of a stepped cylinder. A sensitivity
study of the model is performed in a grid convergence study. The chapter
concludes on model(s) that are to be used in the numerical simulation.

• Chapter 4 validates the solution against published experimental results, in order to
gain confidence that the physics are correctly represented.

• Chapter 5 presents- and discusses the results from simulations of the flow around
a stepped cylinder with different diameter ratios. The variations in wake flow for
the different diameter ratios, as well as the flow around the step change in diameter
are studied.

• Chapter 6 concludes the findings of the thesis and relates the findings to marine
applications. The thesis ends by a recommending further work related to flow
around stepped cylinders.
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1.2.2 Research questions

• Streamwise vortices. How are the streamwise vortices detected at the step affect
by a change in diameter?

• Forces. How are the hydrodynamic forces (drag-forces and lift-forces) distributed
along the span of the stepped cylinder?

• Vortex shedding. By performing a frequency analysis and visualising vortices
through vortex identification schemes, how is the wake vortex structures affected
by a change in diameter?



Chapter 2

Literature Review

Before embarking the study of flow around a stepped cylinder, it may be beneficial to
study flow around other similar structures. To some extent, vortex dislocations as
observed for stepped cylinders, are also distinguished in the wake of tapered cylinders.
Furthermore, the flow around the free end of a finite length cylinder may resemble the
flow close to the junction between the small- and large cylinder in a stepped cylinder
setup.

However, in understanding the wake flow of any cylindrical body, it is worth revisiting
some fundamental fluid mechanics and flow physics as well. Section 2.1 in the present
chapter thus gives a review of some basic properties of fluid flow. Section 2.1.3 and 2.1.4
focus on flow separation and vortex shedding characteristic for a bluff body1. Section 2.2
describes the flow around a circular cylinder, followed by sections 2.3 and 2.4 describing
the flow around tapered and finite length cylinders, respectively. The flow around a
stepped cylinder is then explored in section 2.5 by studying key references. Lastly, the
flow around a dual stepped cylinder has been investigated in section 2.6 due to its
equivalence to a stepped cylinder.

2.1 Fluid flow

Considered as one of the biggest breakthroughs in fluid mechanics is the paper by
Ludwig Prandtl in 1904 (White, 2006). Prandtl showed that viscous effects were only
confined to a narrow region near the solid body, named boundary layer. Outside the thin
boundary layer the flow can be considered inviscid, and several well-known
mathematical models can be employed (for example Euler’s equation). The discovery
made by Prandtl is valid for fluids with small viscosity, such as air and water.

2.1.1 Potential flow

Previous to Prandtl’s discovery much effort was put in describing viscous flow as
inviscid, thus neglecting the boundary layer. Potential flow theory treats the fluid as
irrotational, incompressible and inviscid. The latter fact results in a non-existing
boundary layer close to the body. Potential flow theory gives reasonable results outside
the boundary layer, as found by Prandtl, but due to zero viscosity the drag force on the

1A bluff body is one in which the length in the flow direction is close to or equal to the length perpendicular
to the flow direction. The wake is characterised by separated and unsteady flow.
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body will be zero. Jean d’Alembert demonstrated this in 1752 (d’Alemberts paradox) that
a body fully submerged in a frictionless fluid would have zero drag force (White, 2006).
The variation of the pressure coefficient, Cp = (p− p∞)/0.5ρU2, along the circumference
of a circular cylinder, calculated by the frictionless Bernoulli equation valid for potential
flow theory, is shown in figure 2.3 , page 8.

2.1.2 Boundary layer

A real fluid does not behave like the inviscid fluid conceptualised in potential flow theory.
At the body surface the fluid velocity must go to zero, due to intermolecular attractions
that causes the fluid to stick to the wall (Schlichting, 1979). A boundary layer is defined
between the body and the free-stream, in which the velocity is gradually increased from
zero (on the body) to the free stream velocity outside the boundary layer. The thickness
of the boundary layer, δ , is therefore defined as the point where the local fluid velocity, u,
is equal to the free stream velocity, U , outside the boundary layer at that point,
u(y) = 0.99U(x). Inside the boundary layer viscous effects are important, as the
tangential shear stress at the wall, τw = µdu/dy, depends on the velocity gradient du/dy.
Additionally the existence of a boundary layer is the reason to why the flow separates and
the wake flow becomes unsteady.

Figure 2.1(a) shows velocity vectors plotted at θ = 10,30,60,90,120,150 on top of the
mean velocity magnitude at Reynolds number, ReD = 150. The boundary layer is
identified in the velocity vectors and the velocity magnitude contour plot, the thickness of
δ increasing downstream. At θ ≈ 120 the fluid separates from the cylinder surface.
Figure 2.1(b) shows details of the velocity profiles close to the cylinder surface, at
θ = 110,120,130,140,150, as well as streamlines showing the fluid particle path in this
region. Backflow is identified at θ = 130 along with a rotating vortex identified by
pathlines.

The thickness of the boundary layer for a circular cylinder can be approximated as the
ratio of the cylinder diameter, D, to the square-root of the Reynolds number.

δ =
D√
Re

(2.1)

2.1.3 Flow separation

Flow separation occurs when the boundary layer separates from the body. Downstream of
the separation point, the fluid particles close to the body flow in the upstream direction so
that vortices are formed and shed into the wake. Due to flow separation, the wake flow is
chaotic and the pressure in the wake is lower than at the front of the cylinder. The net
difference in pressure upstream and downstream of a cylinder (figure 2.3, page 8) creates
a pressure induced drag-force when integrated over the cylinder surface, acting in the
flow direction. A frictional drag-force, due to wall shear stress, exists as well - but is for
bluff bodies at high Re considered being small when compared to the pressure-induced
drag-force.
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(a) Boundary layers at radial positions, θ =
10,30,60,90,120,150 plotted on top of a contour plot
of the mean velocity magnitude.

(b) Details of the boundary layer at radial posi-
tions, θ = 110,120,130,140,150 along with path-
lines showing the fluid particle path.

Figure 2.1: Boundary layer at different radial positions on the cylinder surface, illustrated by velocity vectors.
The flow visualisation is obtained from the two-dimensional simulation. ReD = 150.

The mechanism behind flow separation is associated with the pressure distribution within
the boundary layer. Schlichting (1979) gives the following physical explanation; Outside
the boundary layer potential flow theory is assumed to be valid, so that the pressure
distribution follows that of figure 2.3. One then assumes that the pressure variation over
the width of the boundary layer is small, and that the pressure magnitude is similar to that
outside of the boundary layer. A fluid particle moving in the immediate vicinity of the
wall in the boundary layer thus remains under the same pressure field that exists outside
the boundary layer, predicted by potential flow theory. As the fluid is accelerated towards
a maximum at the top of the cylinder, θ = 90, the pressure is at minimum (figure 2.3), the
pressure is transformed into kinetic energy. As the fluid particle travels from
θ = 90 to 180 they are decelerated to merge with the ambient flow, the pressure
increases, kinetic energy is transformed into pressure. Outside the boundary layer, at
θ = 180, the pressure is fully recovered. However, for the fluid particles in the immediate
vicinity to the body, friction causes a loss in kinetic energy when the fluid particles travels
from θ = 0 to 90. The remainder of kinetic energy is therefore not large enough to
overcome the increase in pressure on the downstream side of the cylinder, as the particles
travels from θ = 90 to 180. As a consequence, the motion of the fluid particles close to
the surface eventually stops before reaching θ = 180, and the pressure will cause a
backward motion; the boundary layer separates and moves sideways from the wall (figure
2.1(b)). The fluid particles behind the point of separation generally follow the pressure
gradient and moves in the direction opposite to the ambient flow. The fact that the
pressure is not fully recovered is seen in figure 2.3 (as plotted in red) and is the reason for
high drag-forces for flow around bluff bodies.

Figure 2.1(b) shows flow separation somewhere between θ = 110 and 120. Downstream
of the separation point, close to the body, backward flow is observed, causing the
formation of a vortex (indicated by pathlines as a circle). Around the separation point the
boundary layer thickness is observed to increase, and the separated flow follows the
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separation streamline (indicated by an arc outside the vortex). Thus, the point of
separation can be defined as the limit between forward and reverse flow in the immediate
vicinity of the body. It may also be thought of as the point where the wall shear stress
(section 2.1.2) is zero. Separation thus occurs if ∂u/∂y = 0. Contrary, the flow sticks to
the body in the opposite case, ∂u/∂y≥ 0. Figure 2.4 depicts both cases for flow around a
cylinder at Re = 150; ∂u/∂y is positive and at a maximum at θ = 60 whereas the flow
separates when ∂u/∂y = 0 at θ = 114.

Velocity profiles at θ = 60,120,130 are illustrated in figure 2.2. For θ < 90 the flow is
accelerating and the pressure is dropping. A favorable pressure gradient exists,
d p/dx < 0, and the flow is not separating (θ = 60 in figure 2.2). For θ > 90 the velocity
is decelerating in order to merge with the ambient flow so that pressure is increasing. An
adverse pressure gradient d p/dx > 0 exist close to the body and the profiles become
more S-shaped (θ = 120,130 in figure 2.2). The adverse pressure gradient eventually
retards the flow causing it to separate and make it go backward as seen close to the
cylinder wall at θ = 130 in figure 2.2. The inflexion point in the velocity-profile curves
mark when the sign of d p/dx changes from positive to negative, due to merging with the
free-stream velocity outside the boundary layer. Thus, if the velocity profile has an
inflexion point flow separation is most likely present.
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a numerical simulation for flow around a cylinder
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Figure 2.4: Velocity gradient, ∂u/∂y, plotted along
the cylinder circumference for ReD = 150.
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2.1.4 Vortex shedding

Most viscous flows separate when exposed to an adverse pressure gradient (Schlichting,
1979). The adverse pressure gradient is caused by the divergent geometry of the
downstream side of the cylinder (Sumer and Fredsøe, 1997). For the flow around a
circular cylinder for Re > 49 vortex shedding occurs as a result of flow separation.
(Sumer and Fredsøe, 1997) give the following physical explanation to the mechanism
behind vortex shedding.

For a viscous flow a typical boundary layer profiles are given in figure 2.2. The velocity
gradient ∂u/∂y, as discussed above, is large in the close vicinity of the body and reduces
into the fluid. Hence, the vorticity is high within the boundary layer (section 3.6.1, page
35). Downstream of the separation point, vorticity is fed into a shear layer that causes the
shear layer to roll up into a vortex, its sign matching the entering vorticity. Similarly,
vorticity of the opposite sign is fed into the shear layer on the other side of the cylinder.

Due to its unstable nature (Re > 49), one of the vortices will grow larger than the other.
The stronger vortex (A) will then be able to draw the opposite vortex (B) across the wake.
As the vortex of opposite sign (B) crosses the wake it will cut the supply of vorticity to
the initial stronger vortex (A). The cut-off in vorticity supply leads to the shedding of
vortex A. Taking the place of vortex A, vortex C is now drawn across the wake in a
similar manner by the increased strength of vortex B. Vortex C cuts the supply of
vorticity to vortex B that leads to the shedding of vortex B.

The above process will now continue in a periodic alternating manner between the upper
and lower side of the cylinder, as shown by contour plots of vorticity magnitude in figure
2.5 page 10.

Vortex shedding frequency

Vortex shedding is a periodic behaviour as discussed in section 2.1.4. The vortex
shedding frequency, fv, is defined as the cycle ([1/second]) between vortices shed from
the same side of the cylinder. The time between two successive vortices shed from the
same side of the cylinder is thus the vortex shedding period, Tv (vortex A and C in figure
2.5). If one considers the alternating shedding of vortices from both sides of the cylinder,
the time between the shedding of two vortices are Tv/2 (vortex A and B in figure 2.5).

The shedding of vortices results in pressure differences between the upper and lower side
of the cylinder resulting in a lift force acting perpendicular to the flow direction. Due to
the alternating manner of the vortex shedding this lift force changes between acting in the
negative and positive direction, perpendicular to the flow-direction. The lift force is seen
oscillating with the vortex shedding frequency in figure 2.6 page 11, where
CL = FL/0.5ρU2A represents the dimensionless lift force. The dimensionless drag force,
CD = FD/0.5ρU2A, is in the same figure seen oscillating with a frequency twice the
shedding frequency, 2Tv. Note that the mean value of the lift force is zero whereas the
mean drag-force is non-zero.
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(a) t/Tv = 0 (b) t/Tv = 0.162

(c) t/Tv = 0.324 (d) t/Tv = 0.486

(e) t/Tv = 0.648 (f) t/Tv = 0.81

(g) t/Tv = 0.972 (h) t/Tv = 1.134

Figure 2.5: Contour plots of vorticity magnitude showing periodic vortex shedding in the
wake of a circular cylinder at Re = 150. Tv represents the vortex shedding period and t,
flow time in seconds.

By normalising the vortex shedding frequency using the inflow velocity U and the
cylinder diameter D, Vincenc Strouhal found in 1878 the following dimensionless
expression for the vortex shedding frequency:

Strouhal number, St =
fvD
U

(2.2)

The Strouhal number, St, is a function of the Reynolds number and the St-Re relationship
for low Reynolds (Williamson, 1996) is shown in figure 2.7. For the whole range of Re
confer figure A.2, page I.
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Figure 2.6: Oscillations of the dimensionless lift
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of time. The vortex shedding peiod is identified as Tv.
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Figure 2.7: Dimensionless vortex shedding fre-
quency, St, as function of the Reynolds number, Re. In
the figure S = St. Reprinted from Williamson (1996)

2.1.5 Reynolds number

The Reynolds (Re) number acts as a controlling parameter for viscous flows.

Re =UD/ν = ρUD/µ (2.3)

The Reynolds number (named after Osborne Reynolds in 1883) gives the ratio between
inertia forces and viscous forces. ρ is fluid density; ν is kinematic viscosity whereas µ is
dynamic viscosity. If the flow velocity, U, is low the forces are dominated by viscous
forces acting as friction forces along the body. In the opposite case when the flow
velocity is high, the force necessary to overcome the inertia of water dominates the forces
acting on the body.

The Reynolds number is also related to hydrodynamic stability of the flow. For low
Reynolds number the flow is generally smooth and predictable (laminar) whereas for
high Reynolds number the flow is highly disordered and unpredictable (turbulent).

2.2 Flow around a circular cylinder

The Reynolds number acts as a controlling parameter for viscous flow around a circular
cylinder. The behaviour of the viscous boundary layer, and the vortex dynamics in the
cylinder wake changes as the Reynolds number is increased. A brief overview based on
Sumer and Fredsøe (1997); Williamson (1996); Zdravkovich (1997) is therefore
convenient to reintroduce. Since the present study will focus on low Reynolds numbers
the literature review for high Re is omitted.

For Re lower than 49 two steady recirculating vortices appear in the cylinder wake. They
are symmetrically placed and their length tends to increase with increased Re
(Williamson, 1996). As the Reynolds number is increased beyond this value the wake
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becomes unsteady and vortex shedding eventually starts. The recirculation region seen
for lower Re develops instabilities that increases in strength and amplitude for increasing
Re. Two-dimensional laminar periodic vortex shedding is thus observed in the range
Re = 49 to 140−194 (Sumer and Fredsøe, 1997; Williamson, 1996). Vortex shedding
occurs in a characteristic von-Karman vortex street downstream of the cylinder, as shown
in figure 2.5, page 10.

In the 3-D wake transition regime, spanning from Re∼ 190 to 260, the flow is associated
with two discontinuities in the St-Re graph (figure 2.7 page 11) as Re is increased.
Described as mode A, the first discontinuity occurs at Re = 180−194 and is the origin of
3-D streamwise vortex loops. Mode B present itself at the other discontinuity,
Re≈ 230−250, and involves finer-scale streamwise vortices (Williamson, 1996).

As Re is increased towards Re = 1000, the fine scale three-dimensionality becomes
increasingly disordered, appearing to reduce the drag-coefficient (cf figure A.1, page I).

Figure 2.8: test

2.3 Flow around a tapered cylinder

Based on the local Reynolds number, Re, it is assumed that the flow around a tapered
cylinder (figure 2.8(c), page 12) follows the same behaviour as flow around an uniform
cylinder based on the local diameter. However, one-sided vortex dislocations are
commonly observed in the wake of such non-uniform flows; as reported by Gaster (1969)
(ReD ∼ 50−200): ”coupling between regions of different characteristic (vortex
shedding) frequency introduces a certain amount of amplitude modulation to the motion.”

In Gaster (1971), vortex shedding from a slightly tapered cylinder was studied and was
found to be regular and periodic within a number of spanwise cells (ReD ≈ 80−120).
Between the cells, a jump in the shedding frequency was present and modulation of the
motion due to this jump was identified at the beat of the vortex shedding frequency,
fcell1− fvcell2, indicating vortex dislocations between the cells.

Recently, similar experimental studies have been performed by Visscher et al. (2011) on
the turbulent wake behind tapered cylinders using particle image velocimetry (PIV)
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(Re∼ 1.15−18.4×103). Three-dimensional flow effects such as oblique vortex
shedding and vortex dislocations were identified in the wake. It was found that for larger
aspect ratios, L/D, and larger Reynolds numbers, Re, the smaller vortex shedding cells
along the span emerged.

Narasimhamurthy et al. (2009) performed similar analysis and found that the streamwise
vorticity increased as vortex dislocation occurred for Reynolds numbers between
102−300. By identifying vortex cores, helical twisting of vortex tubes was observed
close to vortex dislocations. For the selected Reynolds number range, Figure 8 in the
above reference demonstrates that mode A and B (Williamson, 1996), were detected in
the cylinder wake.

2.4 Flow around a finite length cylinder

In addition to tapered cylinders, flow past circular cylinders of finite length (figure 2.8(a),
page 12) shows complicated three-dimensional wake structures. Park and Lee (2000)
have performed experiments on finite length cylinders of different aspect ratios,
L/D = 6,10,13, for a Reynolds number of 20000. Flow visualisation near the free end
uncovered two streamwise, counter rotating vortices, separated from the free end of the
cylinder. Downstream of the cylinder the vortices were observed to expand and shift
slightly downwards in the spanwise direction due to downwash at the free end.

Sumner et al. (2004) produced similar results as Park and Lee (2000) and found that the
tip vortices interacted with the regular vortex shedding from the cylinder, such that the
dimensionless vortex shedding frequency, St, may vary along the cylinder span.
Moreover, for low aspect ratio finite length cylinders (L/D <∼ 3), the tip vortices were
observed to fully suppress regular vortex shedding.

Kawamura et al. (1984) found that the downwash and the trailing tip vortices, control the
regular vortex shedding in the wake of the cylinder. Similarly, they found that for
cylinders attached to a bottom plate, a critical aspect ratio exist for when regular vortex
shedding is suppressed. The critical value varies in the literature between L/D = 1∼ 7
which might be due to varying influence of the boundary layer of the endplate.

2.5 Flow around a stepped cylinder

The flow around stepped cylinders (figure 2.8(b), page 12) incorporates
three-dimensional flow effects from both tapered and finite length cylinders.
Three-dimensional flow effects are strongly dependent on the geometrical body shape
and the viscous flow regime governed by the Reynolds number. The diameter ratio, d/D,
may be the paramount factor determining the wake flow. Lewis and Gharib (1992)
investigations revealed two distinct wake flows governed by the diameter ratio. A direct
mode was observed for d/D > 0.8 and an indirect mode was observed for d/D < 0.8.

For the cylinders having a smaller step in the diameter (d/D > 0.8), a direct mode was
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observed. In this mode, the vortices shed from the small and large cylinder, connected
directly over the step, when they were in phase. The zone in which the vortices connected
over, was of narrow character and was found to be located right behind the step (Lewis
and Gharib, 1992).

Opposite to the direct mode, an indirect mode was observed for diameter ratios smaller
than d/D < 0.64. The indirect mode observed by Lewis and Gharib (1992) was far more
complicated than the direct mode. In the indirect mode, the vortices did not connect
directly over the step any more, but connected through a buffer region - the modulated
zone, positioned in the wake of the large cylinder. In addition to the vortex shedding
frequency measured from the small and large cylinder, fd and fD, a shedding frequency
fN was measured in the modulated zone. Lewis reported that this frequency was always
lower than fd and fD, and was not a sub-harmonic nor a quasi-periodic interaction of the
two (Lewis and Gharib, 1992).

For uniform flow around a stepped cylinder, three-dimensional effects have been detected
in a region extending up to 10D into the large cylinder for laminar and turbulent flows
(Dunn and Tavoularis, 2006; Lewis and Gharib, 1992; Norberg, 1992; Vallés et al.,
2002b; Yagita et al., 1984). Moreover, it is found that the presence of the step, to a larger
extent, deteriorates regular von Karman vortex shedding in the wake behind the large
diameter cylinder, D, than the small diameter cylinder d.

Yagita et al. (1984) argues that factors affecting the non-dimensional vortex shedding
frequency, St, are the Reynolds number, Re, diameter ratio (d/D) and aspect ratio of the
cylinders D and d (L/D and l/d). Numerous combinations of these parameters turns a
complete understanding of the wake flow into a delicate problem.

2.5.1 Spanwise vortex shedding cells

Based on a spectrum analysis of velocity fluctuations three spanwise vortex shedding
cells have been detected in the wake of a stepped cylinder (Dunn and Tavoularis, 2006;
Lewis and Gharib, 1992; Morton and Yarusevych, 2010c; Norberg, 1992). By adapting
the terminology of Dunn and Tavoularis, the L-cell and S-cell shed vortices at frequencies
fL and fS in the wake of the large diameter cylinder, D, and the small diameter cylinder,
d, respectively. In the step region a third cell, named the N-cell, was detected shedding
vortices at a frequency fN , fN being lower than fL and fS. It is instructive to copy a figure
produced in Dunn and Tavoularis (2006) to further illustrate the presence of these
spanwise cells (cf figure 2.9 and 2.10 on page 14).

S-cell and L-cell

Away from the step, regular two-dimensional vortex shedding was detected in the
cylinder wake behind cylinders D and d. The vortex shedding frequencies, fL and fS for
the L-cell and S-cell respectively, were comparable to that of a straight circular cylinder
based on the local spanwise Reynolds number (Dunn and Tavoularis, 2006; Lewis and
Gharib, 1992; Morton and Yarusevych, 2010c; Norberg, 1992).
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Figure 2.9: Sketch illustrating the spanwise and
streamwise vortices shed from a stepped cylinder with
d/D = 0.5, flow coming from left to right. Reprinted
from Dunn and Tavoularis (2006)

Figure 2.10: Visualisation of
the wake flow behind a stepped
cylinder with d/D = 0.5 at ReD =
150. Flow coming from left to
right. Reprinted from Dunn and
Tavoularis (2006)

The flow behind the large cylinder was to a great extent affected by the step, so that
regular vortex shedding was not detected until ≈ 3−4D into D. Due to the periodic
variation in spanwise length of the N-cell, L-cell vortices were at some time-instants not
detected until ≈ 10D into D (Norberg, 1992).

Chua et al. (1998); Dunn and Tavoularis (2006); Lewis and Gharib (1992); Morton and
Yarusevych (2010c); Norberg (1992); Yagita et al. (1984) concludes that the small
diameter cylinder is less affected by the step than the large diameter cylinder. Almost
unaffected, regular vortex shedding takes place behind the small diameter cylinder, d,
until about 1D away from the step. In the vicinity of the step, Norberg (1992) reports of
S-cell vortices extending about 1D into D for diameter ratios d/D = 0.5 and 0.6. For a
larger diameter ratio, d/D=0.8, an extension of 2D into D was present.

For ReD = 304, Dunn and Tavoularis (2006) observed a similar extension of the S-cell
≈ 1D into D for a diameter ratio d/D = 0.5, and explains that a lower base pressure
behind D may draw S-cell vortices into the wake of D were they connect with N-cell
vortices (figure 2.10).

N-cell

In the junction between the cylinders d and D, a cell shedding vortices at a distinct
frequency has been detected for stepped cylinders with d/D < 0.6. Contrasting the
regular vortex shedding behind d and D, the observed shedding frequency around the
step, fN , was lower than both fL and fS (Dunn and Tavoularis, 2006; Lewis and Gharib,
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1992; Morton and Yarusevych, 2010c; Norberg, 1992).

The spanwise extension of the N-cell has been found to vary in a cyclic manner (Morton
and Yarusevych, 2010c). Through their experiment on a stepped cylinder, Dunn and
Tavoularis (2006) similarly identifies a cyclic behaviour of the N-cell, which they in
essence explains as follows; a short spanwise length was observed as the N-cell emerged,
which uninterrupted grew until it instantly disappeared. After a short time the N-cell
reappeared thus representing a new cycle. However, a complete disappearance of the
N-cell prior to a new cycle has been a topic of some discussion in Morton and
Yarusevych (2010c). Contradicting Dunn and Tavoularis (2006), Morton and Yarusevych
(2010c) argues in their CFD-analysis of a stepped cylinder, that the N-cell do not
disappear prior to a new cycle, but is merely reduced to such a spanwise extent difficult to
reveal visually in experiments.

The N-cell was found extending up to 9D into D, thus affecting the large diameter
cylinder wake the most (Dunn and Tavoularis, 2006; Lewis and Gharib, 1992; Morton
and Yarusevych, 2010c; Norberg, 1992). Similarly to the S-cell extending ≈ 1D into the
D, the N-cell has a similar extension of 1D into d (Dunn and Tavoularis, 2006; Norberg,
1992).

By means of spectral analysis Norberg (1992) (Re = 4−11×103, d/D = 0.6) showed that
a frequency modulation of fL starts about 10D into D modulating fL into fN as the step is
approached. Up to 3D away from the step, spectral peaks of fN and fL coexists, but with
fN becoming increasingly dominant closer to the step. 3D away from the step fL is no
longer present, the dominant vortex shedding frequency represented by fN .

Despite a difference of factor 20 in Reynolds number, a similar behaviour of the N-cell
was detected for lower ReD. For d/D = 0.5 and ReD = 304, Dunn and Tavoularis (2006)
identified a small spectral peak of fN 9.1D into D. Similarly to Norberg (1992), N-cell
and L-cell vortices coexisted in the region from 7.6D to 3.5D confirming the periodic
spanwise extension on the N-cell.

2.5.2 Streamwise vortices

In addition to the spanwise vortices, two pair of streamwise vortices were identified at the
step (Dunn and Tavoularis, 2006), and are sketched in figure 2.9, page 14. The junction
vortex was seen wrapping around the small cylinder base, whereas two edge vortices, on
each side of the cylinder, spilled over the side of the large cylinder trailing downstream.
However, shortly downstream, the streamwise vortices were entangled by the much
stronger spanwise vortices and could thus not be observed further downstream in the
wake.

2.5.3 Vortex inclination near the step

By studying videos of flow visualisation, Dunn and Tavoularis (2006) identified a notable
inclination, with respect to the cylinder axis, of the S-cell vortices close to the step. A
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similar, but not as strong, inclination was observed at the border connecting the N-cell
vortices and L-cell vortices. Again, it is instructive to study figure 2.10 on page 14,
copied from the excellent flow visualisation by Dunn and Tavoularis (2006), illustrating
the inclination of vortices.

Dunn and Tavoularis (2006) argues that inclination of S-cell vortices occurs due to
different position of flow separation along the span of d caused by the presence of the
step. Below the step, S-cell vortices were inclined reversely as they connected with the
N-cell due to the frequency difference between the S-cell and N-cell (Dunn and
Tavoularis, 2006).

A similar deceleration of the L-cells is observed when connecting to the N-cells. Due to
smaller frequency difference between the L-cell and N-cell, the inclination is not as
strong as in the S-N-cell boundary.

2.5.4 Vortex dislocations

The difference in vortex shedding frequency between D and d results in vortex
dislocations between vortices shed from the S-cell and N-cell and vortices shed from the
N-cell and L-cell. Vortices from the N-cell connected directly with the vortices from the
L-cell forming a direct connection, when the vortex shedding were in phase. As the
N-cell became out of phase with the L-cell a vortex dislocation occurred, that is, an L-cell
vortex forming a looped connection to a subsequent counter-rotating L-cell vortex, rather
than connecting to an N-cell vortex (Dunn and Tavoularis, 2006; Morton and Yarusevych,
2010c).

Similarly, due to a discrepancy in the number of shed vortices from the S-cell and N-cell,
the S-cell vortices that did not form a direct connection with N-cell vortices, formed
looped connections with a subsequent counter-rotating S-cell vortex (Dunn and
Tavoularis, 2006; Morton and Yarusevych, 2010c).

2.6 Flow around a dual step cylinder

The geometry of a dual step cylinder and a single step cylinder resemble each other
closely (figures 2.11, page 17). However, as found, the wake depends to a great extent on
the aspect ratio of the large diameter cylinder (Morton and Yarusevych, 2010b, 2011).
Morton and Yarusevych (2010b, 2011) varied the aspect ratio, L/D, of the middle
cylinder between 0.2-17 discovering varying wake behaviour; primarily the
disappearance of the N-cells for aspect ratios below a critical value. The diameter ratio,
d/D, was fixed at 0.5 and the Reynolds number, ReD, was set to 1050.

For L/D=17 five shedding cells were observed in the wake. At the middle span of the
large cylinder, the familiar L-cell appeared in addition to two N-cells at the large cylinder
ends. Behind the small cylinders a single cell shedding regular vortices was
distinguished, similar to the S-cell. For the current, and possibly larger aspect ratios, the
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behaviour close to the steps is comparable to that of a single step cylinder (Morton and
Yarusevych, 2010b, 2011).

As the large cylinder aspect ratio was reduced, the N-cell’s close to the steps vanished for
aspect ratios in the range 7-14, resulting in a single vortex shedding cell across the large
cylinder span. As the aspect ratio was reduced from 14 to 7, St reduced in a similar
manner from 0.193 to 0.175 respectively. The shedding cells behind the small cylinders
persisted, hence a total of three shedding cells were identified in the wake (Morton and
Yarusevych, 2010b, 2011).

Similarly, for aspect ratios between 2-7, a single vortex shedding cell across the large
cylinder was identified. Large three-dimensional effects deformed the vortices shed
behind the large cylinder into hairpin-like structures difficult to discern from flow
visualisation. However, a dominant vortex shedding frequency was detected in the L-cell
and found to be decreasing as the aspect ratio decreased (Morton and Yarusevych, 2010b,
2011).

Lastly, when the aspect ratio was reduced to L/D=1, no distinct vortex shedding
frequency was recognised in the large cylinder wake, but rather broad peaks centered
about St = 0.203 are discernable (Morton and Yarusevych, 2010b, 2011).

Figure 2.11: Flow around a dual step cylinder

2.7 Previous numerical studies on flow around a stepped
cylinder

As opposed to the many experimental articles on the topic, only four published articles
have been found concerning CFD analysis of a stepped cylinder. These articles focus
mainly on recreating experimental results, but they also provide new insight into vortex
dynamics. Morton and Yarusevych (2010c), performed laminar incompressible
Navier-Stokes simulations on a stepped cylinder. The diameter ratio and Reynolds
number (Red = 150 and ReD = 300) was selected similar to what Dunn and Tavoularis
(2006). The finite-volume based code, ANSYS CFX was used to solve the equations.

The same authors published in 2009 a similar article (Morton et al., 2009), analysing a
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stepped cylinder with the diameter ratio of 0.5, using a URANS-based numerical solver,
at a Reynolds number of 2000.

The last of the four articles is the one by Vallés et al. (2002a). It concerns a DNS
simulation of a stepped cylinder with a diameter ratio 0.74 and Reynolds numbers of
ReD = 94 and Red = 74. The direct mode, as observed by Lewis and Gharib (1992), was
for the first time reproduced numerically in this article.

The most comprehensive article, is the one by Morton and Yarusevych (2010c), and some
of the results from this articles is given in the following sections. Many of their findings
are similar to those by Dunn and Tavoularis (2006), so they are not repeated here. In
general, the numerical articles report of good representation of the experimental findings.
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Chapter 3

Numerical Method

The set of equations characterising viscous fluid flow are known as the Navier-Stokes
equations. Due to a limited number of known analytical solutions, numerical solvers have
been created to provide approximate solutions for fluid flow described by these equations
(White, 2008).

The strategy in obtaining a solution of the flow field by approximation, usually includes
the following five steps: (i) Development of a mathematical model to describe the flow
(ii) Discretise the continuous flow domain into a finite number of elements (iii) Decide on
an approximate version of the governing equations for each element at any given moment
in time (iv) Reduce the number of unknowns by further approximation to obtain a closed
system of equations (v) Assemble the system of equations, one system for each element,
so that time integration is possible (vi) Solve the equations (vii) Present the results (Day,
2010).

In the present thesis the commercial code Fluent 13.0 by Ansys has been chosen as the
numerical solver. Within Fluent, a laminar model has been selected. The outline of this
chapter can be summarised as follows. In section 3.1, a brief overview of the
mathematical equations to be solved is given, followed by establishing a numerical grid
for flow around a straight cylinder in section 3.2. The choice of boundary conditions is
discussed in section 3.3, along with the choice of settings in Fluent in section 3.4. A grid
convergence study concerning the element distribution in the grid has been conducted in
section 3.5.2 - 3.5.3. The straight cylinder grid tested in sections 3.5.2 - 3.5.3 is then used
as foundation in modelling the stepped cylinder (section 3.5.4). The chapter finishes by
exploring various methods of vortex identification in section 3.6.

3.1 Governing equations

The governing equations for incompressible viscous fluid flow are the
continuity-equation (3.1) and the Navier-Stokes equations (3.2)-(3.4). The solution of
these equations will provide the unknown velocities u,v and w representing the velocities
in the x,y and z direction of a cartesian coordinate system. In addition the unknown
pressure p is computed.

Knowing the velocities u,v,w and pressure p at any given point in the flow domain
provides an unique opportunity of examining the fluid flow, and is thus one of the
strengths using CFD.

21
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Equations (3.1) - (3.4) can be normalised using the cylinder diameter D and free stream
velocity U∞ to be expressed in the following dimensionless form:

u′ =
u
U

v′ =
v
U

w′ =
w
U

x′ =
x
D

y′ =
y
D

z′ =
z
D

t ′ =
t

T0
p′ =

P
P0

T0 =
D
U

and P0 = ρU2

(3.5)

By substituting (3.5) into the equations(3.1) - (3.4), collecting and dividing out
dimensional constants, the equations can be represented on a dimensionless form as
follows:

∂u′

∂x′
+

∂v′

∂y′
+

∂w′

∂ z′
= 0 (3.6)

∂u′

∂ t ′
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=−∂ p′

∂x′
+

1
Re

(
∂ 2u′

∂x′2
+

∂ 2u′

∂y′2
+

∂ 2u′

∂ z′2
) (3.7)

∂v′

∂ t ′
+u′

∂v′

∂x′
+ v′

∂v′
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∂y′
+

1
Re

(
∂ 2v′

∂x′2
+

∂ 2v′

∂y′2
+

∂ 2v′

∂ z′2
) (3.8)

∂w′
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∂w′

∂y′
+w′

∂w′

∂ z′
=− ∂ p′

∂w′
+

1
Re

(
∂ 2w′

∂x′2
+

∂ 2w′

∂y′2
+

∂ 2w′

∂ z′2
) (3.9)

3.2 Computational grid

The following section describes how the continuous flow domain is divided into a finite
number of elements into a grid. The process of creating an efficient grid representing the
physics correctly, is largely based on the creation- and testing of several different grids.
Thus making this a time-consuming part of the CFD-analysis. However, the quality of the
CFD-analysis is largely dependent on the grid quality in the sense that a too coarse grid
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may give erroneous results. A large number of elements throughout the domain is
preferably, but is computational expensive, so that a compromise between accuracy and
number of elements is needed. An understanding of fundamental fluid dynamics of the
problem is necessary so that high-density grids can be used in regions of flow where
complex behaviour is expected.

3.2.1 Geometry

Figure 3.1 shows the geometry of a stepped cylinder. The small diameter cylinder, d, is
joined with the large diameter cylinder, D, at the step. The aspect ratio, AR, is for D
defined as AR = L/D and for d, AR = l/d.

The stepped cylinder is placed in a continuous uniform flow, U , applied upstream and
flowing in the positive x-direction.

Figure 3.1: The geometry of a stepped cylinder with its principal dimensions as depicted in the figure. A
uniform flow, U , is applied upstream of the cylinder and travels in the positive x-direction.

3.2.2 Grid topology

The continuous flow domain has been discretised into a finite number of elements in a
structured multiblock O-H type grid in the x− y-plane (figure 3.2a). A similar layout has
been successfully used by Krajnović (2011); Kravchenko and Moin (2000); Lei et al.
(2000); Morton and Yarusevych (2010c); Nishino et al. (2008), and it is an acceptable
grid topology to be used with Fluent (ANSYS, 2010, Chapter 6). The selected grid
topology offers good control over the element distribution in the different grid-blocks;
coarse gridding can be applied in the blocks far from the cylinder, whereas a fine grid can
be applied close to the cylinder.

There are several drawbacks using a structured grid. A structured grid provides finer grid
resolution in areas of less importance exemplified in figure 3.2c. High grid-density
around the step is seen extending both upstream and downstream of the step, where it is
not needed. Further, strange-shaped cells can appear in some regions (tall and thin, or
distorted) so that inspection of the grid is of importance.

The choice of hexahedral elements permits larger aspect ratio of the elements compared
with triangular elements (ANSYS, 2010). For simple geometries in which the flow
conforms well to the shape of the geometry, ANSYS (2010) recommends the use of
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hexahedral elements. The grid is then likely to have fewer cells than if triangular cells are
used.

The grid has been designed such that a hexahedral box confines the total flow domain. An
inner cylindrical block of diameter 5

√
2D encloses the cylinder with diameter 1D

(figure 3.2a). The size of the domain is discussed in section 3.5.1.

The origin is placed so that the step lies in x = y = z = 0. The span of the cylinder is
aligned along the z-axis, while the flow direction is aligned along the x-axis. To create the
three-dimensional grid, the two-dimensional flow topology (figure 3.2a) has been
extracted in the Z-direction. Special attention has been directed at the step-region where
cylinder d and D meet, to sufficiently resolve the complex flow here (figure 3.2d). Thus,
additional blocks, extending 1D in the spanwise direction into each of the cylinders are
created to account for the intersection of the cylinders D and d.

Figure 3.2: (a): Grid topology in the x-y-plane (Structured O-H block grid), (b): Grid topology in the x-
y-plane for a stepped cylinder (note: every second element is plotted for better visibility), (c): Grid topology
in the x-z-plane showing grid refinement around the cylinders as well in the step-region, (d): 3-D view of the
block-structure around the step, the step being located at the origin. Refinement blocks extend 1D each, in the
spanwise direction.

3.3 Boundary conditions

The computational grid cannot be infinite, so a set of boundaries must be positioned to
enclose the grid. At the boundaries certain conditions for the velocities u,v,w, pressure p
and normal gradients, ∂ui

∂xi
needs to be prescribed so that a solution for the mathematical

equations (section 3.1) is possible. By prescribing the value of a variable at the boundary
a Dirichlet boundary condition is used, and when using a Neumann boundary condition
the gradient normal to the boundary of a variable at the boundary is set. The choice of
boundary conditions is important in the way that they should not affect the solution in a
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Figure 3.3: Overview of boundary conditions illustrated from different viewpoints.

non-physical way. It should also be noted that the choice of boundary conditions
essentially reflects what we want to model.

For viscous flow, the relative velocities between the solid surface and fluid particle on the
surface, is generally accepted to be zero. This is known as the no-slip boundary condition
and prescribes the local fluid velocities as u = v = w = 0 on the surface. A wall no-slip
boundary condition has been employed at the cylinders d and D for every simulation in
the thesis. Upstream of the cylinder, a Dirichlet-type boundary condition has been
employed in the form of a uniform velocity inlet (VI, figure 3.3, page 23), setting
u = 1[m/s] on the boundary. Downstream of the cylinder, a pressure outlet condition is
assigned to the outflow boundary (PO, figure 3.3). Outlet boundary conditions are used to
model flow exits where the details of the flow velocity and pressure are not known prior
to solution of the flow problem. The pressure outlet condition requires the specification of
static (gauge) pressure at the outlet boundary (ANSYS, 2010, Chapter 7.3.8). The
pressure is defined as pabsolute = pgauge/static + poperating. At the boundary
pabsolute = poperating = 101325[Pa] that is equal to the atmospheric pressure.

From a top-down view, the lateral walls were set to a symmetry condition (SY, figure
3.3)) assuming the flow on both sides of the wall is identical and parallel with the x-axis.
A Dirichlet condition have been imposed by setting the velocity component normal to the
boundary to zero as well as a Neumann condition of setting the velocity gradients at the
wall to zero in all directions. The top and bottom boundaries have been assigned as
free-slip walls (FS, figure 3.3), setting the shear stress equal to zero in all directions on
theses surfaces. A summary of how the velocity-components, velocity-gradients and
pressure are treated at the boundaries is given in table 3.1.

Table 3.1: Boundary conditions summarised

Boundary Dirichlet condition Neumann condition

VI (velocity inlet) u = 1[m/s], v = w = 0[m/s]
PO (pressure outlet) p = 101325 Pa d p/dx = d p/dy = d p/dz = 0
SY (symmetry) v = 0[m/s] ∂u/∂y = ∂w/∂y = 0
FS (free-slip wall) w = 0[m/s] ∂u/∂ z = ∂v/∂ z = 0
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3.4 Solver settings

A 3D, single precision, parallel version of Fluent 13.0 has been employed in the
simulations. Single precision, storing data using 32 bits uses less RAM and is adequate
for most cases (ANSYS, 2010). Most stepped cylinder simulations were performed on
the HPC computers ”njord” and ”ve” on the NTNU network, whereas 2D and 3D straight
cylinder simulations have been performed on a medium-performance desktop computer
(IIMTMAL14 at NTNU). A PISO scheme has been used in the pressure-velocity
coupling, recommended in ANSYS (2010). For spatial discretisation, the PRESTO!
interpolation scheme have been applied for pressure whereas the momentum equations
are discretised using a second order scheme (ANSYS, 2010, Chapter 28.2). For temporal
discretisation, a first order implicit method based on the recommendations from
(ANSYS, 2010, Chapter 28.14.1).

A sensitivity study of different discretisation schemes and pressure-velocity schemes
have been outside the scope of this thesis, so that the choices made by the author has been
based on ANSYS (2010), and limited previous experience. Likewise, the
under-relaxation factors have been left at their default values of 1.0 for all equations, as
recommended by ((ANSYS, 2010, Chapter 28.3.1.2)).

A laminar model has been chosen within Fluent due to the Reynolds number due tested
(Re = 75−300) lays within the laminar range, although this might be questionable for
Re > 300. Due to the time-varying vortex shedding the transient option is enabled. Since
ANSYS Fluent is fully implicit there is no stability criterion that needs to be met in
determining ∆t (for instance Courant number < 1) (ANSYS, 2010, Chapter 28.14).
ANSYS (2010) recommends using between 5-10 iterations per time-step and for a stable
and efficient calculation . The Courant number, U∆t/∆x, should not exceed 20-40 in
more sensitive transient regions of the domain.

The inflow velocity was set to 1 m/s and the density to 998 kg/m3 for every simulation
performed, so that the dynamic viscosity (µ) was varied in order to obtain the wanted
Reynolds number. Fully developed flow was in general obtained after a dimensionless
time of 200tU/D. As an attempt to advance the point of fully developed flow, a converged
steady state solution was initially obtained before swithcing to the transient solver. This
proved to be efficient for flow around a two-dimensional cylinder but had no effect of
early trigging of vortex shedding for flow around the three-dimensional cylinders.
Another attempt to trigger vortex shedding, such as patching the domain with different
initial velocities, demonstrated to be of little effect in advancing regular vortex shedding.

3.4.1 Accuracy

When performing a CFD-analysis it is of importance to be aware of the accuracy of the
results. Since the solver iterates to obtain the solution, a convergence criteria may be
defined by the user as to when the solution has converged. The user may monitor the
residuals and other integrated quantities to judge if the solution has converged and is
physically correct. Fluent reports a residual for each of the governing equation (cf section
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3.1, page 19), which is measure of how well the current solution satisfies the discrete
form of each governing equation. A small residual thus yields that the solution satisfies
the discrete equations well.

Additionally the user should also observe key integrated quantities, which for flow
around a cylinder is represented by the mean drag-coefficient, CD, the dimensionless
vortex shedding frequency, St and the root-mean-square value of the lift coefficient,
CL rms. A solution may be judged to be converged if these quantities are within their
expected values. It is thus paramount to compare the solution against similar
experimental data, or similar numerical studies, in order to judge if the obtained solution
is correct and physical sound.

The default globally scaled residual of 0.001 (ANSYS, 2010, Chapter 28.15),
recommended by Fluent have been applied in the grid convergence study. The residual of
the continuity equation and velocities u,v and w at an iteration is compared with the
user-specified value (absolute convergence criteria (ANSYS, 2010, Chapter 28.15.1.7)),
and if the residual is less than the user-specified value, that equation is considered to have
converged at that time-step.

3.4.2 Residual analysis

For different residual values the flow around a 3D cylinder has been analysed for two
different grids1 for two different Reynolds numbers (table 3.2). For the coarse gird (B1)
the Reynolds was set two 150 and for the finer grid (B4) to 300. For a constant residual
value the time-step was varied to monitor the effect this had on the solution.

It should be emphasised that convergence is not guaranteed by solely monitoring the
residuals - a low residual does not mean that the solution is converged. The mean drag
coefficient CD, dimensionless vortex shedding frequency, St, and the root mean square of
the lift coefficient, CL rms, have thus been used as means to judge convergence. Further,
the mass flux in the domain have been measured. According to the continuity equation
(section 3.1, page 19) mass should neither be created nor destroyed within the grid, so
that the net flux of mass should be zero.

For a large residual of 0.01 or 0.001, as the time-step was lowered, the number of
iterations per time-step decreased. It is most interesting to observe that when the solver
uses only one iteration per time-step the solution become non-physical, when comparing
with CD,St,CL rms, and should be avoided. For a smaller residual, say 0.0001, the
time-step could be reduced similarly as above but the results remained physical. The
reason for this effect is probably mainly connected to the grid-resolution and time-step
and how the solution varies between two successive time-steps, but a further study in
numerics of the solver would be beyond the scope of the thesis.

Unfortunately, the residual analysis was conducted as part of troubleshooting some

1In the x-y-plane the grids are similar whereas they have a different spanwise distribution of cells. The grids
are further discussed in section 3.5.3, page 30
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non-physical results obtained in the last part of the thesis. So, for the grid-convergence
study a residual of 0.001 was used due to earlier execution of the convergence study.
Some results presented in this chapter may thus be affected of this. For the main
simulations on stepped cylinders (chapter 5.1) a residual of 0.0001 was applied.

Table 3.2: Analysis of the different combinations of time-step and residual values for flow around a straight
3-D cylinder.

Grid Re Residual ∆t # Iterations Mass flux CD St CL rms

B3 150 0.01 0.01 2-4 8×10−4 1.214 0.137 0.098
B3 150 0.01 0.005 1 8×10−4 1.232 0.108 0.107
B3 150 0.01 0.0025 1 4×10−4 1.274 0.112 0.114
B3 150 0.0001 0.01 20 1×10−5 1.263 0.190 0.061
B3 150 0.0001 0.005 14 2.3×10−6 1.313 0.190 0.099
B3 150 0.0001 0.0025 10 3×10−6 1.342 0.192 0.146
B3 150 0.0001 0.001 6-7 9×10−6 1.360 0.185 0.18

B1 300 0.01 0.01 7 5×10−4 1.231 0.187 0.315
B1 300 0.01 0.005 4 −4×10−4 1.228 0.183 0.328
B1 300 0.01 0.001 1 −1.3×10−4 1.269 0.142 0.333
B1 300 0.001(default) 0.001 4 −9×10−6 1.280 0.190 0.301
B1 300 0.0001 0.001 10 −2.9×10−5 1.338 0.206 0.460
B1 300 0.0001 0.0005 8 −4×10−6 1.314 0.200 0.476
B1 300 0.00005 0.0005 12 −3×10−6 1.324 0.200 0.486

3.5 Grid convergence study

The solution of numerical equations approaches their exact solution as the grid is refined.
Thus, solutions on different grids, with significant different grid-resolutions should be
performed to ensure that the solution is grid-independent. Accordingly, the purpose of the
grid-convergence study is numerical accuracy (Spalart, 2000), solely to check how
sensitive the grid is for changes in resolution.

A study considering the extents of the flow domain and element distribution in the
circumferential- and spanwise direction, is given in sections 3.5.1 - 3.5.3. A
grid-refinement study has also been performed in the step-region of a stepped cylinder
with d/D = 0.5 (section 3.5.4).

To assess grid-convergence, the mean drag coefficient, CD = FD/0.5ρV 2A,
non-dimensional vortex shedding frequency, St = fvD/U and the root-mean-square value
of the lift coefficient, CL r.m.s were compared for the different grids. Grid convergence
were obtained when these values converged. A dimensionless time-step, ∆tU∞/D, of
0.015 were used in testing the 2D-grids.
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3.5.1 Domain size

It is well known that the size of the flow domain influences the numerical solution
(Barkley and Henderson, 1996; Persillon and Braza, 1998). The wall blockage ratio,
D/(2Ly) (depicted in figure 3.4), should preferably be as low as possible to avoid locally
increased velocities at the cylinder surface, due to space confinement.

The domain size used in previous CFD-analysis of flow around various circular cylinders
has been found to vary (Afgan et al., 2007; Krajnović, 2011; Mittal, 2001; Nishino et al.,
2008), but has been used as a starting point in the grid development.

For the same grid-resolution in the x-y-plane, the position of the inflow and lateral
boundaries (Lx and Ly respectively, figure 3.4) was varied to study the effect of wall
blockage and proximity to the velocity inflow boundary. The Reynolds number, Re, was
kept constant at Re = 150.

While keeping the distance to the inflow boundary constant, Lx = 10D, the distance to the
lateral boundary, Ly was altered between 6D - 15D. In a similar manner, the distance to
the inflow boundary was altered between 5D - 15D while keeping the lateral boundaries
fixed at a distance of 10D.

For Ly<8D, the non-dimensional vortex shedding frequency, St, and the mean
drag-coefficient, CD, were found to be larger when compared with experimental values,
due to the blockage effect. The difference in dimensionless vortex shedding frequency,
St, and CD when Ly was equal to 10 and 15D was found to be small, hence a lateral
position of 10D was found adequate. For flow around a circular cylinder at Re = 100,
Behr et al. (1995) found that the lateral boundaries should be placed 8D from the cylinder
center in order to avoid an artificially high value of St (Note: in their study, the inflow
boundary was fixed 8D ahead of cylinder). The results found by in the present thesis is
thus somewhat contradictory to what found by Behr et al. (1995), in that a larger lateral
distance is required, for grid-convergence. The higher values of St may be explained by
increased velocity past the cylinder due to the increased blockage effect, resulting in a
higher local Re, which, for low Reynolds numbers, leads to a higher St (cf. figure 2.7,
page 11).

Similarly, grid independence was obtained when the velocity inflow boundary was placed
more than 10D away the cylinder center. Persillon and Braza (1998) concludes that
varying the upstream distance of the inflow boundary seemed to have a greater influence
on St than varying the lateral boundary. This is in agreement with what presently
observed, though the difference being small.

Based on the results (table 3.3) the inflow boundary has been placed 10D ahead of
the cylinder center, the lateral boundaries 10D and the downstream boundary 20D
from the cylinder center.
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Figure 3.4: Top-down view (x-y-plane). Positions
Lx and Ly represent the distance to the inflow boundary
and lateral boundary respectively. The distances are both
measured from the cylinder center.

Figure 3.5: The two-dimensional circular cylinder
shown extruded in the spanwise direction . The vertical
transparent planes; A in the x-z-plane, and B in the y-
z-plane, show the configuration of visualisation planes
used in the thesis.

Table 3.3: Variation in the mean drag coefficient, CD, r.m.s of the lift coefficient, CL r.m.s and dimensionless
vortex shedding, St, by variation of the distance to the inflow and lateral boundaries. Re = 150

Lateral boundaries, Ly Inflow boundary, Lx CD St CL rms

6D 10D 1.425 0.191 0.330
8D 10D 1.378 0.186 0.320
10D 10D 1.360 0.186 0.324
15D 10D 1.362 0.186 0.312

10D 5D 1.438 0.194 0.290
10D 10D 1.360 0.186 0.324
10D 12D 1.364 0.186 0.276
10D 15D 1.360 0.187 0.284

3.5.2 Element distribution in x-y plane

As discussed in section 3.5.1, the boundaries of the domain has been placed 10D
upstream (Lx), 10D laterally (Ly) and 20D downstream - from the cylinder center - in the
x-y-plane.

In order to decide on a proper element density in the x-y-plane, three grids with different
resolutions were created. The following grid properties were varied: (i) The distance to
the first element normal to the body, ∆y (ii) the number of elements in the circumferential
direction Nθ (iii) The number of elements in the radial direction normal to the cylinder Nr

(table 3.5, page 29). A detailed figure of the element-distribution is given in the appendix
figure B.1 page II.

Compared to previous studies of flow around circular cylinders (table 3.4), ∆y, Nθ and Nr

have been found to be in similar order of magnitude as those used in the literature. It
should be noted that a variety of solvers were used in the papers referred to, so table 3.4
should merely be used as a starting point for conducting a grid-convergence study.

By using 185 elements in the circumferential direction, Kravchenko and Moin (2000)
(Re=3900) obtained good results for flow around a circular cylinder, whereas Lei et al.
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(2000) (Re = 80 - 1000) states that more than 128 grid points are needed to achieve a
grid-independent solution. For the present grid density study 80, 160 and 200 elements
were placed along the circumference for grid A1, A2 and A3 respectively.

CD, St, CL and CL rms are all quantities that are integrated based on u,v,w and p. It is thus
beneficial to consider the quality of the raw-data produced by solving the Navier-Stokes
equations, namely the pressure, p and velocities u,v and w. Figure 3.6, page 29
represents the velocity profile at θ = 90 and 118. Grid points are placed on the curve
representing the grid resolution. Adequate resolution is obtained with each grid, A1, A2
and A3. (ANSYS, 2010, Chapter 6.2.2) recommends using at least five cells in the
boundary layer to adequately resolve the boundary layer. From the figure, the boundary
layer in grid A2 is represented by 9 cells, and overall gives the best compromise between
sufficient resolution and number of grid points.

Based on the Blasius solution for laminar flow over a flat plate at zero angle of incidence,
ANSYS (2010) recommends that equation (3.10) should be obeyed in laminar flows.
Grids A1, A2 and A3 all fulfill this requirement.

yp

√
U∞

νx
where,

U∞ = free-stream velocity ν = µ/ρ = kinematic fluid viscosity
x = distance along the wall from start of boundary layer
yp = distance to the wall from the adjacent cell centroid

(3.10)

The mean pressure coefficient, Cp (Figure 3.8, page 30) reveal no obvious differences
between the grids, but similar to the mean friction coefficient, the discrepancy between
grid A2 and A3 seem to be less than between A1 and A3.

The mean friction coefficient, C f = τwall/0.5ρU2
∞ for grids A1, A2 and A3 are shown in

figure 3.7. Based on the location of the C f -minimum, one may find the separation point.
Based on curve fitting, Wu et al. (2004) showed that the mean separation angle, θs, was
for Re = 150 found to be ≈ 112◦. However a large scatter is reported in both
experimental and numerical data due to differences in experimental and numerical setup
(Wu et al., 2004). Grid A3 is ”closest” to the separation angle found by Wu et al. (2004),
possibly due to an increased number of elements in the circumferential direction.
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Table 3.4: Distance normal to the cylinder surface to first grid element (∆y) and number of elements used in
the circumferential direction (Nθ ) based on previous studies

Reference Re ∆y Nθ

Narasimhamurthy et al. (2009) 100−300 0.01D
Mittal (2001) 100,300,1000 0.001D
Pattenden et al. (2002) 2.9×105 0.0006D
Nishino et al. (2008) 4×103 0.0002D
Kravchenko and Moin (2000) 3900 163,185,291
Lei et al. (2000) 80−1000 64 - 160
Breuer (2000) 1.4×105 165, 325
Travin et al. (1999) 5×104,1.4×105 118, 150, 210, 325

Table 3.5: Distance normal to the cylinder surface to first grid element (∆y) and number of elements used in
the circumferential direction (Nθ ). Re = 150

Grid #elements (x-y) ∆y Nθ Nr CD St CL rms

A1 5200 0.01D 80 30 1.381 0.182 0.382
A2 17600 0.008D 160 60 1.370 0.186 0.345
A3 23200 0.005D 200 70 1.364 0.188 0.335
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Figure 3.6: Velocity profile for grid A1, A2 and A3 (top to bottom) at a line normal to the cylinder surface at
θ = 90◦and118◦. The filled dots points represent grid lines.
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Figure 3.7: Mean friction coefficient, C f , as function
of θ . Re = 150

! "! #! $! %&! %'! %(!
%)'

%)&'

%

!)*'

!)'

!)&'

!

!)&'

!)'

!)*'

%

%)&'

%)'

+
,-
./
0 1

 

 
2345/6%
2345/6&
2345/6"

Figure 3.8: Mean pressure coefficient, Cp, as function
of θ . Re = 150

3.5.3 Spanwise element distribution

An adequate grid-resolution is required in the spanwise direction to capture both small-
and large scale three-dimensional effects for Re > 194 (Williamson, 1996)). For flows
with Reynolds < 194, the flow is mainly two-dimensional so that a coarser
grid-resolution may be used.

In the following, the three-dimensional flow around a straight cylinder is investigated by
means of varying the grid-resolution in the spanwise direction (table 3.6). The spanwise
resolution were kept constant along the cylinder span, and varied the space between each
spanwise element varied between ∆z = 0.1−0.4 (table 3.6). In order to capture the
three-dimensional effects, the spanwise length of the cylinder was set to 4D, similarly to
previous studies. Breuer (2000); Kravchenko and Moin (2000); Travin et al. (1999)
successfully used a spanwise length of 2D, πD, 4.5D respectively, when conducting
studies of flow around a 3D cylinder. The boundary conditions was set as discussed in
section 3.3, page 22.

For Re = 75 small differences is seen when increasing the amount of elements in the
spanwise direction, possibly due to the absence of any three-dimensional flow effects.
Similarly, small differences are seen in CD and St for grid B3 and B4 for Re = 150 and
between B2 and B3 (table 3.6). Three-dimensional flow effects in the cylinder wake may
be the cause for the discrepancy between grid B3 and B4 for Re = 300. To identify any
three-dimensional effects plots of the crossflow velcity, v and both streamwise- and
spanwise vorticity is shown in figures 3.9 - 3.16, page 32 visualised in the x-z-plane2.
The plots show that far more flow details are captured for na increased number of
elements in the spanwise direction. Figure 3.16 show small-scale streamwise vortices
characteristic for mode B as detected by Williamson (1996). From this it may be
concluded that the spanwise resolution should be ∆z/D = 0.1 for Re > 150.

2Visualisation plane A is depicted in figure 3.5 on page 27
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Table 3.6: Different grid resolution in the spanwise direction for flow around a 3-D straight cylinder. ∆z/D
represents the spacing between grid points in the spanwise direction. Re = 75,150,300

Elements Spacing (z)
Grid #Total ∆z/D Re CD St CL rms

B2 228800 0.3 75 1.390 0.149 0.092
B3 352000 0.2 75 1.389 0.149 0.103
B3 352000 0.2 150 1.370 0.187 0.283
B3 352000 0.2 300 1.300 0.201 0.368
B4 704000 0.1 150 1.349 0.183 0.257
B4 704000 0.1 300 1.280 0.189 0.301
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Figure 3.9: Instantaneous plot of velocity component,
v, out of plane for grid B3 plotted in the x-z-plane. Re =
300

Figure 3.10: Instantaneous plot of velocity compo-
nent, v, out of plane for grid B4 plotted in the x-z-plane.
Re = 300

Figure 3.11: Instantaneous plot of streamwise vortic-
ity, ωx, plotted in the x-z-plane for grid B3. Re = 300

Figure 3.12: Instantaneous plot of streamwise vortic-
ity, ωx, plotted in the x-z-plane for grid B4. Re = 300

Figure 3.13: Instantaneous plot of vorticity magni-
tude, plotted in the x-z-plane for grid B3. Re = 300

Figure 3.14: Instantaneous plot of vorticity magni-
tude, plotted in the x-z-plane for grid B4. Re = 300

Figure 3.15: Instantaneous plot of vorticity magnitude, plotted in the x-z-plane for grid B3. Re = 300

Figure 3.16: Instantaneous plot of vorticity magnitude, plotted in the x-z-plane for grid B4. Re = 300
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3.5.4 Grid refinement around the step

Having decided on the element distribution for the flow around a straight circular cylinder
it is appropriate to continue with an investigation of the sensitivity to different grid
resolutions in the step region. The step region represent the zone where cylinder D
attaches cylinder d. Due to the no-slip boundary condition a boundary layer will develop
on D and d. Additionally, for diameter ratios d/D < 1, a boundary layer will be present at
the step.

Refinement regions were created to fully resolve the velocity gradients in the step region,
extending 1D into each of the cylinders D and d. Outside this refinement region, the
two-dimensional grid developed in section 3.5.3 have simply been extruded to create the
remaining span.

The number of cells in each 1D segment was varied between 10,20 and 40 giving a total
of 20, 40 and 80 cells in the step region respectively. The mean pressure coefficient, Cp,
and the mean streamwise velocity, u measured along a spanwise line parallel to the
cylinder axis, have been plotted and compared in figure 3.17, page 34. Additionially the
distribution of the mean pressure coefficient, Cp, along the span for differerent radial
position are given in the appendix figure B.5, page VII.

Throughout, the discrepancy in Cp and u calculated for the 40 and 80 elements grid
(green- and red line, respectively), is small, therefore a total number of 40 cells has
been assumed to sufficiently resolve the grid, and has been employed in the further
studies.

Table 3.7: Step region refinement

#Elements CD St CL rms

Grid Re Total Step D d D d D d

E1 150 856000 20 1.116 1.382 0.099 0.174 0.074 0.029
E2 150 1240000 40 1.126 1.418 0.150 0.307 0.075 0.060
E3 150 2252800 80 1.130 1.420 0.153 0.308 0.078 0.059

E1 300 856000 20 1.091 1.313 0.145 0.298 0.137 0.144
E2 300 1240000 40 1.107 1.322 0.174 0.369 0.157 0.158
E3 300 2252800 80 1.100 1.323 0.172 0.371 0.141 0.155

3.5.5 Time-step analysis

In table 3.8 an analysis of different time-steps have been performed (table 3.8). The
CL rms has shown to be the quantity most affected by a change in time-step. Based on
the small difference between a time-step of tU/D = 0.01 and 0.005, a time-step of
tU/D = 0.01 has been selected for the further studies.
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Figure 3.17: Grid refinement study in the step region. The mean pressure coefficient, Cp, and mean streamwise
velocity u measured along a spanwise line in the wake has been compared for different step resolutions.

Table 3.8: Step region refinement

CD St CL rms

Time-step
Grid Re tU/D D d D d D d

E2 150 0.03 1.114 1.403 0.148 0.303 0.070 0.052
E2 150 0.015 1.126 1.418 0.151 0.309 0.087 0.069
E2 150 0.01 1.130 1.423 0.150 0.310 0.093 0.075
E2 150 0.005 1.134 1.429 0.150 0.311 0.103 0.086

3.6 Vortex identification

Due to flow separation, coherent vortex structures will be formed in the wake of a
cylinder. For a stepped cylinder it is most interesting to study how the vortices shed from
D and d connect over the step and also between the shedding cells along the stepped
cylinder span.

Although the concept of a vortex is known to fluid dynamicists, a precise definition of the
flow features of a vortex is still being researched (Rütten et al., 2008). Thus, a vast variety
of methods have been created in order to detect and visualise vortices, some better than
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others (Jeong and Hussain, 1995).

Characterised as conventional methods, plots of vorticity and pressure, and massless
particles dropped into the fluid, can be used to detect vortices. Two-dimensional plots of
vorticity and pressure show the contours of the vortices whereas isosurfaces show
three-dimensional vortex structures (cf figures 3.12 and 3.16, page 32).

More sophisticated vortex identification methods consists of the Q-criterion (Hunt et al.,
1988), and λ2 (Jeong and Hussain, 1995) which have been developed in order to visualise
vortex cores. The selection of the methods to display vortex structures is case dependent.
(ANSYS, 2010).

3.6.1 Vorticity

A physical characterisation of a vortex may be given in terms of water particles rotating in
the same manner around a vortex core. A vortex axis is defined in the center of the vortex
core in which the vortex rotates about. Within the vortex core the circumferential velocity
is at is highest and decreases at the outer part of the vortex. Hence, a low pressure region
is distinct at the vortex core. Due to viscosity and shear, the water particles close to the
vortex core is angularly deformed. Such deformations are derived in classical fluid
mechanics (White, 2008) by differential analysis, in which the vorticity vector can be
derived as one-half of the velocity vector, or twice the angular velocity of a fluid element.
Thus, vorticity plots in the wake of a cylinder may indicate the existence of vortices.

Using the present coordinate system ωz and ωx represent spanwise vorticity and
streamwise vorticity respectively, whereas ωy represents vorticity in the x-z-plane.
Definition of positive direction is given in figure 3.18, page 35.

ωx = (
∂w
∂y
− ∂v

∂ z
) (3.11)

ωy = (
∂u
∂ z
− ∂w

∂x
) (3.12)

ωz = (
∂v
∂x
− ∂u

∂y
) (3.13)

Figure 3.18: Indication of positive vortic-
ity of a fluid element.
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3.6.2 Q-criterion and λ2 criterion

Common to both the Q-criterion and λ2 is that they have been developed based on
decomposition of the velocity gradient tensor into a rate of rotation (Ωi j) and rate of
strain (Si j).

∇u =
∂ui

∂x j
=

1
2
(

∂u j

∂xi
+

∂ui

∂x j
)+

1
2
(

∂ui

∂x j
−

∂u j

∂xi
) (3.14)

where Ωi j =
1
2
(

∂ui

∂x j
−

∂u j

∂xi
) (3.15)

and Si j =
1
2
(

∂u j

∂xi
+

∂ui

∂x j
) (3.16)

Based on an eigenvalue analysis of the velocity gradient tensor, ∇u, vortical motion can
be detected (Chong et al., 1990). The Q-criterion (Hunt et al., 1988), is based on the
second invariant, Q, of ∇u being positive:

Q =
1
2
(Ωi jΩi j−Si jSi j) (3.17)

A positive Q thus implies that a point in the fluid is dominated by rotation, Ω > S.
Iso-surfaces of positive Q isolate areas where the strength of rotation overcomes the
strain, hence showing vortex structures.

One of the disadvantages of the Q-criterion is its exclusive characteristics, that is, the
threshold value of Q needs to be set. A lower, but positive Q-value tends to include more
coherent structures (figure 3.22, page 37 ) than a larger value (figure 3.20, page 37).

Another disadvantage of the Q-criterion is that it may display non-vortex structures, for
instance shear layers close to the cylinder surface, due to high vorticity in these parts of
the flow. An example of this is shown in figure 3.22 where isosurfaces of Q have been
plotted in the flow around a straight cylinder at Re = 300, identifying streamwise and
spanwise vortices in the wake.

Vortex identification may be case dependent, so a comparison between the Q-criterion
and λ2-criterion have been performed, in figure 3.21 and 3.22, page 37. Despite λ2 being
favoured as a vortex identification method (Jeong and Hussain, 1995), the differences
between the two methods have been found negligible.
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Figure 3.19: Iso-surface of vorticity magnitude. Grid
B4 Re = 300

Figure 3.20: Iso-surface of Q=29 coloured by vortic-
ity magnitude. Grid B4 Re = 300

Figure 3.21: Iso-surface of λ2. Grid B4 Re = 300 Figure 3.22: Iso-surface of Q=0.038 coloured by
vorticity magnitude. Grid B4 Re = 300



Chapter 4

Verification of numerical model

4.1 Verification of model

In order to gain further confidence in the numerical model, the flow around a stepped
cylinder with d/D = 0.5 at ReD = 150 have been compared against similar studies.
Whereas Dunn and Tavoularis (2006) have performed experiments on a stepped cylinder,
Morton and Yarusevych (2010c) conducted numerical studies on a stepped cylinder with
diameter ratio d/D = 0.5 at a similar Reynolds number, ReD = 150.

By means of plotting the Q-criterion in the wake it is possible to discern spanwise vortex
shedding. Figure 4.1 shows isosurfaces of the Q-criterion (discussed in section 3.6, page
33) plotted on contours of the crossflow velocity v, in the x-z-plane. Regular vortex
shedding is observed taking place behind the small cylinder (d) at z/D > 1, and behind
the large cylinder (D) at z/D <−10. In the region −5 > z/D >−10 an inclination of the
spanwise vortices shed behind D is observed, as they are decelerated in order to connect
to the vortices shed in the region −0.5 > z/D >−4. An inclination of the vortices shed
behind the small cylinder, away from the cylinder axis, is observed taking place at z/D =
2 followed by a reverse inclination occurring z/D = 0.25, when the vortices connected
over the step to the adjacent vortex shedding cell. This adjacent vortex shedding cell,
occurring in the step-region, can be identified as the N-cell, whereas the S-cell and L-cell
represents vortex shedding cells behind the small and large cylinder respectively. The
three shedding cells identified are similar to what observed by Dunn and Tavoularis
(2006); Lewis and Gharib (1992); Morton and Yarusevych (2010a,b, 2011); Norberg
(1992) for stepped cylinders.

Figure 4.1 may be compared with the experimental results obtained by Dunn and
Tavoularis (2006), in figure 4.2, for a similar Reynolds number, ReD = 150, and diameter
ratio, d/D = 0.5. Good agreement is observed between the numerical- and the
experimental results.

The presence of the step, located in the junction between cylinder d and D, is the reason
to why complex three-dimensional flow effects exist in the wake of a stepped cylinder.
Close to the step the flow is observed to separate as the flow passes the step, and two
streamwise vortices have been reported to exist (Dunn and Tavoularis, 2006; Morton
et al., 2009). Figures 4.5 - 4.10, page 42 have been devoted to visualise particular flow
phenomena detected at the step.

An attempt to visualise the two streamwise vortices through the use of pathlines are

41
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Figure 4.1: Isosurfaces of the Q-criterion plotted
on contours of the crossflow velocity, v. Q = , depicts
shed vortices in the wake of a stepped cylinder with
d/D = 0.5 at ReD = 150

426 W. Dunn and S. Tavoularis
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Figure 8. The near-step cell at ReD = 152, visualized using the electrolytic precipitation
method. The relative times of the images were (a) 0 s, (b) 5.07 s, (c) 7.71 s, (d) 11.55 s,
(e) 12.78 s and (f ) 15.05 s.

Figure 4.2: Vortices behind a stepped cylinder
of d/D = 0.5, close to the step, visualised in the
experiments by Dunn and Tavoularis (2006) for ReD =
152. Reprinted from Dunn and Tavoularis (2006)

shown in figures 4.7 and 4.8 for the junction- and edge-vortex respectively. These plots is
in good agreement with what observed in the experiments by Dunn and Tavoularis (2006)
(figure 4.9). Similarly to what Dunn and Tavoularis (2006) experienced, both the
streamwise vortices disappeared shortly downstream, as they were entangled with the
spanwise S-cell vortices. Figure 4.10 shows pathlines of the junction- and edge-vortices
together as well as a contour-plot of streamwise vorticity, ωx in the y-z-plane. As they
travel downstream this figure indicate that the two streamwise vortices rotate in the same
manner. Further downstream, both streamwise vortices are seen entangled by the
spanwise vortices and deflected in the spanwise direction.

Furthermore, the mean pressure coefficient distribution have been plotted at different
radial positions along the span to make a comparison to the study of Morton et al. (2009).
Figure 4.3 shows the pressure coefficient from the flow around a stepped cylinder with
d/D = 0.5 at ReD = 150. Although a Reynolds number of ReD = 2000 was used by
Morton et al. (2009) a similar trend close to the step is observed.

The vortex shedding frequency distribution along the span of the stepped cylinder have
been measured and compared against results from figure 6 and 7 in Morton and
Yarusevych (2010c). For a stepped cylinder with d/D = 0.5 at ReD = 150 the
dimensionless vortex shedding frequency, St (figure 4.4), is in good agreement with that
obtained by both Morton and Yarusevych (2010c) and Dunn and Tavoularis (2006).
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Figure 4.3: Spanwise variation of the mean pressure coefficient for different radial positions. θ = 0 represents
the forward stagnation point.
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Figure 4.4: Variation of the dimensionless vortex shedding frequency, St, along the span of a stepped cylinder
with d/D = 0.5 at ReD = 150. The streamwise- and crossflow velocities have been measured at a line perpendicular
to the cylinder axis, positioned in the wake at x/D = 1.8, y/D = -0.15
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Vortices shed from step-cylinders 431

Figure 11. Separation over the leading edge of the step, visualized using hydrogen
bubbles at ReD = 1230.

cylinder, separating from the leading edge of the step and forming a recirculation
bubble at the root of the small cylinder, as shown in figure 11. The recirculating
fluid formed a ‘junction vortex’, the two branches of which became wrapped around
the small cylinder and became oriented with their axes roughly into the streamwise
direction, as depicted in figure 2. When viewed from downstream, the left-hand vortex
branch turned clockwise and the right-hand vortex branch turned counterclockwise.
Blockage by the small cylinder and induced rotation by the junction vortex diverted
the forthcoming fluid sideways, causing it to spill over the edges of the step toward
the low-pressure regions on the sides of the large cylinder, where it rolled up into
two streamwise ‘edge vortices’. These vortices were counter-rotating to the adjacent
branches of the junction vortex; when viewed from downstream, the left-hand edge
vortex turned counterclockwise, while the right-hand edge vortex turned clockwise.
The existence of vortices originating at the step was speculated by Ko et al. (1983),
who referred to them as ‘leading-edge type vortices’, presumably in reference to
vortices generated by delta wings.

While the edge vortex could be clearly seen close to the cylinder in nearly all visua-
lizations, the junction vortex was observed only under carefully controlled conditions.
As this was not a main focus of the study, only limited attempts were made to
visualize the junction vortex. Toward this end, a much larger step-cylinder was used,
with diameters D = 50 mm and d =25 mm, and a Reynolds number of ReD ≈ 1100
(the lowest achievable with this cylinder for stable flow within the present water
channel), and a hydrogen-bubble wire was placed in contact with the step upstream
of the junction between the two cylinders. Samples of the best still images show
the junction and edge vortices together in figure 12. The two images were taken at
different times and do not represent a sequence. Sketches of the relevant patterns are
presented next to each still image to identify the streamwise vortices among irrelevant
patterns, such as disturbances produced by the hydrogen bubble wire supports.

Figure 4.5: The resirculating bub-
ble detected in experiments by Dunn and
Tavoularis (2006). ReD = 1230

Figure 4.6: Velocity vectors plotted onto
contours of instantaneous y-vorticity in the
X-Z-plane at the leading edge of step. ReD =
150

Figure 4.7: Pathlines showing the junction vortex
formed at the leading edge of step, extending down-
stream. ReD = 150.

Figure 4.8: Pathlines showing tip vortices at
the trailing edge of the step rotating in a counter-
clockwise manner when seen from downstream. The
pathlines are coloured by pathline-identity.

Figure 4.9: The ”junction-vortex” as observed in
experiments by Dunn and Tavoularis (2006) ReD =
1100. The vortex is detected above the step, extending
downstream until abrupt bended towards the cylinder
span. Reprinted from Dunn and Tavoularis (2006).

Figure 4.10: Pathlines showing the junction- and
edge-vortices together. In the back, contour plots of
streamwise vorticity, ωx, is shown, positive vorticity
marked red.



Chapter 5

Results and discussion

5.1 Flow around stepped cylinders with d/D = 0.3, 0.5,
0.8 and 0.9

Based on the convergence study performed in the previous chapter the distribution of
elements was decided on. The grid A2 was decided for the x-y-plane whereas a
difference spanwise resolution ∆z/D, based on Reynolds number was suggested. The
time-step for the simulations was set to tU/D = 0.01. In table 5.1 details about the grids
are given, along with the geometry of the different cylinders.

Table 5.1: Grid used in simulations for the different Reynolds numbers.

d/D ReD (Red ) ∆z/D #Elements L l D d

0.3 150 (50) 0.2 2.4×106 14D 4D 1D 0.3D
0.5 150 (75) 0.2 2.3×106 14D 4D 1D 0.5D
0.8 150 (120) 0.2 2.2×106 14D 4D 1D 0.8D
0.9 150 (135) 0.2 2.2×106 14D 4D 1D 0.9D

0.3 300 (100) 0.1 3.8×106 14D 4D 1D 0.3D
0.5 300 (150) 0.1 3.7×106 14D 4D 1D 0.5D
0.8 300 (240) 0.1 3.5×106 14D 4D 1D 0.8D
0.9 300 (270) 0.1 3.5×106 14D 4D 1D 0.9D

0.3 600 (200) 0.1 3.8×106 14D 4D 1D 0.3D
0.8 600 (480) 0.1 3.5×106 14D 4D 1D 0.8D

5.1.1 Instantaneous wake flow

Figure 5.1 shows instantaneous plots of the crossflow velocity, v/U, and spanwise
velocity, w/U, for flow around a stepped cylinder with diameter ratio d/D = 0.3, 0.5, 0.8
and 0.9 at ReD = 150. The velocities have been plotted in the x-z-plane1, the flow coming
from left to right.

From the instantaneous plot of crossflow velocity, v/U , it is possible to discern spanwise
vortex shedding. Positive v is defined into the paper-plane, so that one spanwise ”tube” of
positive- and one of negative velocity represents a vortex. The vortex rotates about the

1cf figure 3.5, page 27 describing the visualisation planes
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spanwise ”tube” of zero crossflow velocity located between positive and negative v. To
further elucidate this, rotating vortex structures depicted by means of the Q-criterion have
been plotted on contours of the crossflow velocity v in figure ?? on page ??.

For all cylinders except for d/D = 0.3, regular vortex shedding occurs in the wake of both
the large and small diameter cylinder. The Reynolds number may be to small (Red = 50)
for regular vortex shedding to occur (cf section 2.2, page 11). However, the difference in
step size have a distinct effect on wake flow. For d/D = 0.8, 0.9 vortices from the L-cell
and S-cell connect directly over step, the connection taking place slightly above the step.
This behaviour is comparable to what observed by Lewis and Gharib (1992) as the direct
mode. For d/D = 0.5, vortices behind the small and large diameter connect right below the
step, and the connection is shifted in the negative z-direction further downstream.

When considering the spanwise velocity, w, distinct differences are observed between the
different diameter ratios. For small d/D, a maximum is observed at the leading edge at
x/D = -0.5 and z/D = 0, clearly indicating an upwards flow over the step. The upward
flow over the step decreases significantly in magnitude as d/D is increased. The contours
of positive and negative w in the wake of the cylinders are observed at positions where the
spanwise vortices are inclined in the streamwise direction.

5.1.2 Velocity distribution in the laminar wake

It is difficult to determine a downwash effect from the instantaneous wake-plots in figure
5.1. The mean streamwise- and spanwise velocity are thus measured along a spanwise
line perpendicular to the cylinder axis, placed downstream at x/D = 3 and shown in figure
5.2. For d/D = 0.8 and 0.9 the variations in the mean streamwise- and spanwise velocity
along the span is less than for d/D = 0.3 and 0.5. Figure 5.2b indicate that the downwash
is significant, and stronger, for the cylinders with smaller d/D. For larger d/D the mean
z-velocity is close to zero. The positive spanwise velocity observed at z/D ≥ 0 may be
related to when vortices connect over the step, due to streamwise twisting of the spanwise
vortices as they are connected over the step. Interestingly, for the largest diameter ratio
positive spanwise velocity is observed as far as 3D away from the step. One may identify
vortex connections at a similar position in figure 5.1 indicating that the vortex
connections, as d/D is increased, move in the positive spanwise direction.

Similarly, the variation in the mean streamwise velocity profile is less for the stepped
cylinders with a larger d/D. It is observed that the streamwise velocity is decelerated as
the step is approached. The deceleration is discerned to be larger for smaller d/D when
comparing d/D = 0.5 and 0.8.

The difference in streamwise- and spanwise velocity between the different stepped
cylinders is small for spanwise positions z/D < -8. This might indicate that the effect of
the step extends about 8D to 9D into the large diameter cylinder. Similar observation has
been done by Dunn and Tavoularis (2006); Norberg (1992).
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Figure 5.1: Instantaneous plots of crossflow velocity, v, and spanwise velocity, w, in the wake of stepped
cylinders with d/D = 0.3, 0.5, 0.8 and 0.9. ReD = 150

5.1.3 Flow in the step region

Figure 5.4 show mean pathlines in the wake of the stepped cylinders in the y-z-plane
(visualisation plane B in figure 3.5, page 27) at a downstream position of 0.6D and 1D.
The streamwise vortices, as found by Dunn and Tavoularis (2006) and Morton et al.
(2009) have readily been located in the wake for flow around the cylinders with d/D = 0.3
and 0.5. For the larger diameter ratios, in particular d/D = 0.9, they have been difficult to
identify.

The junction vortex (figure 4.9, page 42) may be identified in figures 5.4(a) and 5.4(b) at
z/D = 0.5 and 0.75 on the small cylinder at a downstream distance of x/D = 0.6. Further
downstream the junction vortex disappears for d/D = 0.3 but remains visible at z/D = 0.25
for for d/D = 0.5. The junction vortex has not been detected for d/D = 0.8 and 0.9 (figures
5.4(c) and 5.4(d)). Dunn and Tavoularis (2006) reports from their experiments that the
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Figure 5.2: (a) Mean streamwise velocity (b) Mean spanwise velocity. Measured along a spanwise line parallel
to the cylinder axis positioned at y/D = 0 and x/D = 3. ReD = 150

recirculating fluid at the step is the main reason to why the junction vortex exist.
Originating from the recirculating fluid, two branches of the junction vortex was observed
to wrap around the small cylinder base as the fluid was conveyed downstream the step
forming the junction vortex. Hence, a possible reason for the absence of the junction
vortex for d/D = 0.8 and 0.9 may be tracked to the recirculating fluid at the leading edge.
The upflow at the step have thus been investigated and illustrated in figure 5.3 by vectors
of the mean velocity in the x-z-plane. For the smaller d/D the upflow and separation of
fluid over the leading edge is obvious and a region of recirculating fluid is present at the
step. For d/D = 0.9 (figure 5.3(d))) the recirculating bubble is not detected whereas it
starts forming for d/D = 0.8 in figure 5.3(c).

Edge vortices have been detected for all cylinders being located in the step region on each
side of the large cylinder, D. For d/D = 0.3 it is seen developing at z/D = -0.4 for a
downstream position of x/D = 0.6 (figure 5.4(a)). Further downstream it is seen
convecting in the negative spanwise direction, probably due to downwash (figure 5.4(e)).
A similar behaviour is observed for d/D = 0.5 with the edge vortices developing at z/D =
0 (figure 5.4(b)), their position shifting in the negative spanwise direction as they travel
downstream (figure 5.4(f)).

Although not as strong, edge vortices have been detected for d/D = 0.8 and 0.9 at
approximately z/D = -0.5 at a downstream distance x/D = 0.6D (figures 5.4(c) and
5.4(d)). Contrary to d/D = 0.3 and 0.5 the edge vortices are shifted in the positive
spanwise direction for d/D = 0.8 and 0.9. This finding has not been pursued in more
detail but may be due to positive spanwise velocity in the wake as observed in figure 5.2b.
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(a) d/D = 0.3 (b) d/D = 0.5

(c) d/D = 0.8 (d) d/D = 0.9

Figure 5.3: Upflow over the leading edge of the step for a stepped cylinder with d/D = 0.3, 0.5, 0.8 and 0.9.
ReD = 150
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Figure 5.4: Pathlines in the y-z-plane in the wake of a stepped cylinder with d/D = 0.3, 0.5, 0.8 and 0.9 at downstream positions of x/D = 0.6 and 1. ReD = 150.
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5.1.4 Surface pressure distribution

Figure 5.5 shows contour plots of the mean pressure coefficient, Cp, on the cylinder
surface for stepped cylinder with a diameter ratio d/D = 0.3, 0.5, 0.8 and 0.9. The
pressure contour plots show the variation of the mean pressure coefficient along the
circumference along the cylinder span. Nearly constant pressure contours along the span
is observed for d/D = 0.9 being similar to that of a straight cylinder. As d/D is decreased
the pressure contours for θ > 90 in the region 0 > z/D > -5 behaves in a wavy fashion as
the point of pressure recovery is shifted forward. The tendency is more distinct for d/D =
0.3 than the others.

For the small cylinders, the pressure contours for d/D = 0.3 and 0.5 behave in a similar
manner. For the larger diameter ratio, d/D, the pressure contour lines continues in a
straight manner across the step, whereas for lower d/D large variations in Cp are visible
close to the step.

Within 2D of the step on the large diameter cylinder there is a depression in Cp for d/D =
0.3 at θ = 90. One may argue that due to the large step, the additional fluid inflow to the
rear side of the large cylinder D leads to a lower pressure coefficient in this region.
Okamoto and Yagita (1973) have made a similar observation when studying flow over
finite length cylinders. They argue that due to the additional inflow the pressure recovery
at the free end behind is greater compared to that of an infinite cylinder leading to larger
drag-coefficients near the free end. For the stepped cylinders, as d/D increases, the
sudden drop in pressure close to the free end diminishes, and Cp varies less along the
cylinder span.

Figure 5.6(a) show the distribution of the minimum value of Cp on the cylinder surface
along the span. In immediate vicinity of the step a drop in pressure is observed, similar to
what observed by Okamoto and Yagita (1973) at the free end of flow around a finite
length cylinder. In the accompanying figure 5.6(b), the circumferential position the
minimum pressure along the span is given. Again, similarities between finite length
cylinders and stepped cylinders are observed for the lower d/D (Okamoto and Yagita,
1973). If flow separation occurs near the inflexion point in the Cp-θ curve (cf section
2.1.3, page 7), the point of flow separation may be assumed to follow the location of the
minimum pressure (Okamoto and Yagita, 1973). It is thus possible to identify that flow
separation varies in a narrow region within the step. Along the small cylinder span the
separation point moves toward θ = 0 as the step is approached. Earlier shedding of the
vortices close to the step might explain the inclination of the vortices shed behind the
small cylinder as observed in figure 5.1, page 44. The observation of a forward shifting in
the separation point confirms the observation of early separation of S-cell vortices close
to the step (Dunn and Tavoularis, 2006).
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Figure 5.5: Contour plots of the distribution of the mean pressure coefficient, Cp, on the cylinder surface for
stepped cylinders with d/D = 0.3, 0.5, 0.8 and 0.9. ReD = 150.
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Figure 5.6: Variation- and circumferential position of the mean pressure coefficient minimum along the
stepped cylinder span, measured parallel to the cylinder axis at y/D = 0, x/D = 0.3. d/D = 0.3, 0.5, 0.8 and
0.9. ReD = 150.

5.1.5 Drag- and lift forces

The forces acting on the stepped cylinders have been measured as function of time. The
time-series of the drag force measurement on the small and large cylinder (d and D,
respectively) is shown in figure 5.7(a). Similarly, the lift-force due to periodic vortex
shedding is shown in figure 5.7(b). Statistics such as CD, CL r.m.s and St are given in table
5.2. The time-series were sampled when the flow was fully developed for a duration of
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tU/D = 150 dimensionless time units.

The local minima and maxima in the CD-curve have been found to coincide with vortex
dislocations occurring in the wake of the stepped cylinders. A local minimum in the CD

for D is observed prior to the vortex dislocation in the N-L-cell boundary (cf figure 5.8,
page 56). Similarly, a minimum in CD for d is observed as a vortex dislocation occurs in
the N-S-cell boundary.

The occurrence of vortex dislocations may be discerned in the time-series of the
lift-coefficient, CL, as well (figure 5.7(b)). A reduction in CL is observed as vortices
dislocate. For lower d/D the reduction is present for the large diameter cylinder D as
observed for d/D = 0.5. As d/D is increased a reduction is visible for both d and D. In
general CL is reduced for d when a vortex dislocation occurs on the S-N-cell boundary,
whereas a reduction in CL for D is observed as a vortex dislocation occurs on the N-L-cell
boundary.

The mean drag coefficient for D is seen increasing for increasing d/D, becoming equal to
that of a straight cylinder at a similar Reynolds number. A comparison of the drag
coefficient for d between the stepped cylinders is difficult as the local Reynolds number,
Red , varies for different d/D.

The amplitude of CL is also observed to increase for increasing d/D = 0.9. CL r.m.s
remain almost similar for d/D = 0.5 and 0.8 but experiences almost a doubling in
amplitude for d/D = 0.9.

Based on the pressure contours (figure 5.5, page 50) the mean pressure induced drag
coefficient variation along the span is shown in figure 5.7(c). Admittedly, at low
Reynolds numbers viscous forces has a substantial contribution (≈20%) and can be
considered as the residue between the mean values shown in table 5.2 and the pressure
induced CD in figure 5.7(c).

Characteristic for each of the cylinders is a drop in CD ranging from the step and about
5D into the large cylinder D. For d/D = 0.3 and 0.5 the drop is subsequent to a rise in CD

in the immediate vicinity of the step, extending about 0.5D into D. A similar behaviour
has been observed for flow over finite length cylinders (Okamoto and Yagita, 1973) and
may thus be related to the size of the step.

The rise in drag-coefficient may be tracked back to the decrease in minimum pressure
close to the step (figure 5.6(a), page 51).

As the step is approached from the small cylinder side, a significant drop in CD is
observed for d/D = 0.3 and 0.5 in the immediate vicinity of the step. Prior to the drop an
increase in CD is observed, similar as for z/D < 0. This increase is most likely an effect
due to the step size, but the cause has not been pursued any further in the present thesis.
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Table 5.2: Statistics of the hydrodynamic forces acting on stepped cylinder with d/D = 0.3, 0.5, 0.8 and 0.9.
ReD = 150

CD St CL rms

d/D ReD (Red ) D d D d D d

0.3 150 (50) 1.214 1.605 0.173 0.145 0.105 0.001
0.5 150 (75) 1.261 1.456 0.179 0.315 0.147 0.128
0.8 150 (120) 1.290 1.326 0.178 0.214 0.147 0.191
0.9 150 (135) 1.318 1.305 0.188 0.197 0.246 0.195
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Figure 5.7: (a,b): Timeseries of dimensionless drag-force, CD, and dimensionless lift-force CL on a stepped
cylinder with d/D = 0.3, 0.5, 0.8 and 0.9, as function of dimensionless time tU/D. (c) Variation of the mean CD
along the cylinder span for d/D = 0.3, 0.5, 0.8 and 0.9. ReD = 150.
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5.1.6 Crossflow velocity fluctuations

As already indicated by the pressure contours in figure 5.5 page 50, the flow separates at
different radial positions θ along the span for a stepped cylinder. It is expected that the
point of flow separation varies more for lower values of d/D based on the discussion in
section 5.1.4.

The crossflow velocity, v, has been sampled along a line parallel to the cylinder axis and
is shown in figure 5.8. The line has been positioned in the wake at x/D = 1.8, y/D = -0.15
covering the entire span of the stepped cylinder, z/D = -14 to 4. The positioning of the
line is similar to what used by Morton and Yarusevych (2010c) (x/D=2.5, y/D=0.75) in
their numerical analysis of a stepped cylinder. Moreover, Visscher et al. (2011) argues
that strong velocity signals have been detected at downstream positions of 2−3Dmiddle

for flow around on tapered cylinders.

For the stepped cylinders with d/D = 0.5 it is possible to discern the S-cell, N-cell and
L-cell (cf section 2.5.1, page 13) as found in previous studies (Dunn and Tavoularis,
2006; Lewis and Gharib, 1992; Morton and Yarusevych, 2010c; Norberg, 1992). Due to
absent vortex shedding for d/D = 0.3 the S-cell is not identified for this case. For d/D =
0.8 and 0.9 the N-cell is difficult to discern, but regular vortex shedding in the L-cell and
S-cell is present.

The time-series of the stepped cylinder with a diameter ratio d/D = 0.9, resembles that of
a straight cylinder the most, with regular vortex shedding occurring in the wake. As d/D
reduces, vortex dislocations occurred more frequently in the wake. Observation in time
showed that as vortices shed from spanwise cells with different shedding frequency, fv,
became too much out of phase vortices dislocated. Vortex dislocations were for low d/D
observed at the S-N-cell boundary, as well as N-L-cell boundary. Examples of vortex
dislocations are observed along z/D = -8.5 at tU/D = 10, 45, 78, 112 and 142 behind the
large diameter cylinder in figure 5.8(a). Dislocations between the S-cell and N-cell are
depicted along z/D = 0.25 at tU/D = 20, 25, 30, 36 and 42 in figure 5.8(b). Admittedly,
the time-series for d/D = 0.8 and 0.9 may be too brief as only one vortex dislocation is
observed for d/D = 0.8 and two for d/D = 0.9.
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Figure 5.8: Time-series of the crossflow velocity, v, in the wake of a stepped cylinder with d/D = 0.3, 0.5, 0.8 and 0.9. The is line parallel to the cylinder axis and
positioned in the wake at x/D = 1.8, y/D = -0.15. ReD = 150.
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5.1.7 Frequency analysis

The dimensionless vortex shedding frequency along the span, St, has been investigated
based on a frequency-analysis of time-series of the streamwise velocity, u. As discussed
in section 5.1.6 the velocity has been sampled along a line parallel to the cylinder axis
positioned at x/D = 1.8, y/D = -0.15. For the frequency analysis, different data-acquisition
rates were tested and no significant differences were found between the dimensionless
sampling rates of 0.0008 f D/U and 0.0004 f D/U so that 0.0008 f D/U was selected.

Based on a frequency analysis, the dimensionless vortex shedding frequency along the
span is shown in figures 5.10 and 5.11, page 62. The power spectral density has been
calculated based on fluctuations in the streamwise- and crossflow velocity. The spanwise
vortex shedding in the L-cell, N-cell and S-cell were readily found in the frequency
spectrum of v, whereas vortex dislocation frequencies additionally were detected in the
spectrum based on u. Figures 5.10(a), 5.10(b), 5.10(c) and 5.10(d) thus illustrates the
distribution of St along the span based on a frequency analysis of u. The scatter points are
coloured by spectral strength. A perspective view of the variation in St along the span is
given in figure5.11, page 62.

Table 5.3 summarises the vortex shedding frequencies detected along the span of a
stepped cylinder. fLD/U and fSD/U represents the dimensionless vortex shedding
frequencies from the large- and small diameter cylinder respectively. For smaller d/D an
additional cell shedding vortices at fND/U was detected in proximity of the step. Strong
signals were also detected in the power spectrum at the beat frequency ( fL− fN)D/U and
( fS− fN)D/U , representing the frequency of the vortex dislocations.

Table 5.3: Dimensionless vortex shedding frequency, St = fvD/U , detected along the cylinder span. ReD =
150

Dimensionless vortex shedding frequency St = fvD/U

d/D ReD (Red ) fLD/U fND/U fSD/U ( fL− fN)D/U ( fS− fN)D/U

0.3 150 (50) 0.171 0.143 - 0.027 -
0.5 150 (75) 0.173 0.151 0.306 0.022 0.155
0.8 150 (120) 0.172 - 0.213 0.012 -
0.9 150 (135) 0.179 - 0.193 - -

L-cell vortex shedding

Regular spanwise vortex shedding is observed for each of the stepped cylinders. Away
from the step, the dominant dimensionless vortex shedding frequency behind D is found
to be similar and approximately fLD/U = 0.17. In comparison, Morton and Yarusevych
(2010c) reports of fLD/U = 0.179 for a stepped cylinder with d/D = 0.5 at a ReD = 150. It
is observed that for d/D = 0.9, fLD/U is becoming more similar to that of a straight
cylinder (cf section ??).
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Regular vortex shedding in the L-cell is detected at fLD/U = 0.171 in a spanwise region
of -14<z/D<-5 for d/D = 0.3 (figure 5.10(a)). As d/D increases, the spanwise range of
the L-cell increases and is detected closer to the step. For d/D = 0.5 the L-cell is detected
in a spanwise region of -14<z/D<-2 (figure 5.10(b)), whereas it is detected at z/D = 1.2
and 1.8 for d/D = 0.8 and 0.9 respectively (figure 5.10(c) and 5.10(d)). Hence, for the
higher d/D it extends into the small diameter cylinder.

Additionally, energy is detected at several frequencies along the span of D. The small
peaks detected at the higher frequencies have been identified as sums of fL and fN .
Furthermore, the peaks identified at frequencies lower than the dominant ones, are
identified at the beat frequency of fL and fN .

N-cell vortex shedding

As the step is approached from the large diameter cylinder the dominant vortex shedding
frequency, fL, is modulated into a lower shedding frequency, fN . The frequency
modulation is readily observed for d/D = 0.3 and 0.5, whereas it is not explicitly detected
for d/D = 0.8 and 0.9 (figure 5.10).

A modulation of fLD/U into fND/U is observed taking place in the region -10<z/D<-4
for d/D = 0.3. A gradual loss in energy is observed as fvD/U is shifted from fLD/U =
0.171 to fND/U = 0.143. A similar behaviour is identified for the higher diameter ratio,
d/D = 0.5. However, the modulation region is now shifted in the positive spanwise
direction present at -6.8<z/D<-3. The vortex shedding frequency is here modulated from
fLD/U = 0.173 into fND/U = 0.151.

A similar modulation region has been observed by Dunn and Tavoularis (2006) and
Morton and Yarusevych (2010c) for a stepped cylinder with d/D = 0.5 at ReD = 150.
Furthermore, for ReD = 6.5×103 Norberg (1992) detected a similar modulation region
for d/D = 0.6. The ratio fN/ fL, as well as the spanwise extension of the N-cell, has been
calculated for the present results and compared to similar studies in table 5.4. Good
agreement is seen between both the numerical and the experimental studies (Dunn and
Tavoularis, 2006; Morton and Yarusevych, 2010c).

It is difficult to distinct an explicit N-cell for d/D = 0.8 and 0.9. It has, however, been
detected in previous studies as just slightly lower than fL (Norberg, 1992), giving the
ratio fN/ fL = 0.97. The time-series for the higher d/D could preferably have been longer,
but due to limited computing power this was not feasible2.

S-cell vortex shedding

As previously discussed in section 5.1.6, vortex shedding is absent behind the small
cylinder diameter for d/D = 0.3. This may be confirmed in figure 5.11(a). For d/D = 0.5
and 0.8 the S-cell is seen extending 0.3D and 0.4D into the large diameter cylinder

2The HPC at NTNU was shut down in the 11th of the total 20 weeks available for the author to complete the
master thesis.
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Table 5.4: The ratio of fN/ fL and the spanwise extension of the N-cell. The findings in the present thesis is
compared with previous studies.

Study d/D ReD (Red ) fN/ fL Extension of N-cell

Present 0.3 150 (50) 0.836 ∼10D
Present 0.5 150 (75) 0.872 ∼6.5D
Dunn and Tavoularis (2006) 0.5 152 (75) 0.841 ∼13D (visually)
Morton and Yarusevych (2010c) 0.5 150 (75) 0.877 ∼6.5D
Dunn and Tavoularis (2006) 0.5 304 (150) 0.947 ∼7.3D (wavelet)
Morton and Yarusevych (2010c) 0.5 300 (150) 0.884 ∼6.5D
Dunn and Tavoularis (2006) 0.5 627 (150) - ∼5.2D
Morton and Yarusevych (2010b) 0.5 1050 (525) 0.97 ∼3-5D
Norberg (1992) 0.6 6.5 ×103 0.93 ∼ 7-10D

respectively. The extension of the S-cell into D has been difficult to discern for d/D = 0.9;
from figure 5.10(d) the S-cell is detectable 2.8D into D thus differ quite much from d/D =
0.5 and 0.8.

For stepped cylinders with d/D = 0.5 - 1.0 and ReD ∼ 103, Norberg (1992) observed that
the region associated with fSD/U extended 1D into D for d/D = 0.5 and 0.6. For a d/D =
0.8 it extended 2D or more. One might therefore question if the length of the time-series
is adequate as the result deviates from the trend. This matter should be investigated in
further work by longer time-series and possibly better numerical tools.

Vortex dislocation frequency

As discussed in section 5.1.6, vortex dislocations are present in the wake of the stepped
cylinders. Due to different vortex shedding frequencies in the L-cell, N-cell and S-cell the
number of shed vortices in the cells is different. A vortex dislocation thus occurs when a
vortex in a shedding cell does not form a direct connection to a counterpart in an adjacent
cell. By means of the Q-criterion vortex dislocations at the L-N-cell and N-S-cell
boundary are illustrated in figure 5.9.

For d/D < 1 vortex dislocations vortex dislocations are expected to occur at the boundary
of the S-cell and N-cell, and N-cell and L-cell. Due to a larger difference in shedding
frequency between the N-cell and S-cell vortices(table 5.4), vortex dislocations occurs
more frequently at the N-S-cell boundary. This may also be identified from figure 5.8.

Vortex dislocations have been detected at the beating frequencies ( fL− fN)D/U and
( fS− fN)D/U for the stepped cylinders in figure 5.10. Furthermore, nearly all the energy
peaks located at lower fD/U in figure 5.10, are beat frequencies calculated as the
difference between higher frequencies.

The beat frequency is readily detected for d/D = 0.3 and 0.5 as ( fL− fN)D/U = 0.027 and
0.022. In figures 5.10(a) and 5.10(b) energy is located at approximately these frequencies,
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extending 8D and 6.5D respectively, in the spanwise direction. It should be noted that this
frequency is equal to the modulation of the shedding in the L-cell. Further, its spanwise
extension covers the region of modulation. For d/D = 0.8 and 0.9 energy is located at the
beat frequencies but a distinct peak as for d/D = 0.3 and 0.5 is difficult to discern.

For d/D = 0.8 the vortex dislocation frequency between the S-cell and L-cell is located at
( fS− fL)D/U = 0.2137 - 0.1721 = 0.042, ranging from 0.5 < z/D < 1.8. Similarly, for
d/D = 0.9, a vortex dislocation frequency between the S-cell and L-cell is located at
( fS− fL)D/U = 0.1934 - 0.1745 = 0.018, in the range 1.4 < z/D < 1.8. For d/D = 0.5 the
vortex dislocation frequency between the S-cell and N-cell, ( fS− fN)D/U = 0.306 -
0.151 = 0.155 is difficult to discern at it is located at approximately fND/U = 0.151.

However, the vortex dislocation periods, 1/(( fS− fN)D/U), 1/(( fL− fN)D/U),
1/(( fS− fL)D/U) may be investigated visually in figure 5.8. For d/D = 0.3 this means a
dimensionless period of TU/D = 37 between dislocations at the N-L-cell boundary. For
d/D = 0.5 the dimensionless period between dislocation in the N-L-cell boundary is TU/D
= 45.45, whereas TU/D = 6.6 for dislocations in the N-S-cell boundary.

Figure 5.9: The wake flow behind a stepped cylinder with d/D = 0.5 at ReD = 150 depicted by means of the
Q-criterion. S-cell, N-cell and L-cell vortices are marked by the letters S, N and L. Dislocations in the N-S-cell
and N-L-cell are marked by the dotted lines.
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(b) d/D = 0.5
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(c) d/D = 0.8
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Figure 5.10: Scatter plot of the streamwise velocity spectra for a stepped cylinder with d/D = 0.3, 0.5, 0.8 and
0.9. The discrete scatter points represent spectrum energy ranging from low (blue) to high (red). ReD = 150.
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(b) d/D = 0.5
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(c) d/D = 0.8
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Figure 5.11: Perspective view of the streamwise velocity spectrum for a stepped cylinder of d/D = 0.3, 0.5,
0.8 and 0.9. ReD = 150.
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5.1.8 Instantaneous Vortical Structures

Figures 5.12 - 5.15 show vortical structures in the wake by means of iso-surfaces of the
Q-criterion (cf section 3.6, page 33). A perspective view, allowing to observe the
three-dimensionality of the flow is shown for d/D = 0.3, 0.5, 0.8 and 0.9 at ReD = 150.

The Q-criterion iso-surface value was set to ≈ 2.3s−2 in all figures. The stepped cylinders
are placed at the very left in the figures, covered by sheaths of Q-criterion, an effect
discussed in section 3.6. The S-cell, N-cell and L-cell have been depicted to illustrate
their instantaneous spanwise extension.

The present section ends by examining vortical wake structures at higher Reynolds
numbers.

ReD = 150

The S-cell, N-cell and L-cell is readily identified for d/D = 0.3 and 0.5 in figures 5.12(a)
and 5.12(c), respectively. The vortex shedding behind d for d/D = 0.3 is absent as
discussed in section 5.1.1 page 43. In the wake of the stepped cylinder with d/D = 0.5
regular spanwise vortex shedding is observed. Most vortices in the L-cell connected
directly to vortices in the N-cell. The S-cell vortices without a counterpart in the N-cell,
are seen forming a looped connection to a subsequent counter rotating vortex within the
same cell. This event typically occurred at a vortex dislocation.

For low d/D streamwise connections between subsequent N-cell vortices were observed
frequently. For higher d/D such streamwise connections were observed close to vortex
dislocations. Dunn and Tavoularis (2006) argues that connections between subsequent
N-cells are present due to varying strengths of the vortices in the N-cells and S-cells.
When the stronger N-cell vortex connects to the weaker S-cell vortex, the remains of
circulation (vortex strength) in the N-cell vortex requires a connection to a third vortex
for its strength to be constant along its length (Dunn and Tavoularis, 2006). A reason for
streamwise connections not occurring for higher d/D might thus be due to similar
strength in the S-cell vortices and N-cell vortices.

It is interesting to observe the highly three-dimensional character of the streamwise
connection between the N-cells vortices. The streamwise vortices crosses the wake,
overlapping each other, connecting the N-cell vortices. The flow around d/D = 0.3 close
to the step is similar to the flow around the free end of a finite length cylinder (personal
communication with Levold (2012)). One explanation to why the streamwise connection
exist for d/D = 0.3 may be that the N-cell vortices cannot terminate in the fluid (Dunn and
Tavoularis, 2006), instead they form looped connection to a subsequent N-cell vortex.

It is interesting to determine when a typical stepped cylinder behaviour presents itself.
From the limited number of diameter ratios tested, d/D = 0.8 may represent a limit to
when the flow becomes affected by the step size. In the present thesis a limited
time-series of d/D = 0.8 and 0.9 makes a conclusion based on the frequency analysis
difficult. However, figure 5.13(a) might show the presence of an N-cell, making it more
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similar to d/D = 0.3 and 0.5 than previously assumed by the frequency analysis in section
5.1.7. A similar observation has been done by Lewis and Gharib (1992) and they
conclude that for low Reynolds number, d/D = 0.8 marks the limit between a indirect and
direct mode.

For d/D = 0.9, vortex dislocations are observed in a close proximity to the top boundary
(figure 5.13(c)). The top boundary might not be far enough away in the spanwise
direction to not affect the solution, and in further work the spanwise domain should
possibly be extended.

ReD = 300

As the Reynolds number is increased beyond Re > 230∼ 250 small scale streamwise
vortices start developing (Williamson, 1996). This section thus examines, visually, how
the instantaneous wake flow is affected by the streamwise vortices.

The Reynolds number is first increased to ReD = 300. The Q-criterion show the wake
structures for a stepped cylinder with d/D = 0.3, 0.5, 0.8 and 0.9 in figure 5.14. Contrary
to ReD vortex shedding is now present for both d and D in each of the stepped cylinders.
However, due to the increased ReD the wake flow has been increasingly distorted by the
streamwise vortices.

For each of the stepped cylinders, mode B (Williamson, 1996) is observed behind the
large diameter cylinder D. The regular spanwise vortex shedding is still discernible but
identification of streamwise connections between the N-cells, and vortex connections
across the cell boundaries are difficult to determine.

For the small cylinder diameter d, the flow is two-dimensional for d/D = 0.3 and d/D =
0.5 (Red = 100 and 150 respectively) whereas mode A is observed behind d for d/D = 0.8,
characterised by a ”waviness” of the spanwise shed vortices, and large scale streamwise
vortices. For d/D = 0.9 mode B is present behind both d and D.

It is interesting to observe the wake flow behind the stepped cylinder with d/D = 0.3. It is
identified that regular spanwise vortex shedding is suppressed in the vicinity of the step
and is detected until z/D < -2. Further, vortices from the S-cell are not detected
connecting to the N-cell for a Q-criterion of 2.3s−2.

ReD = 600

The instantaneous wake flow have been investigated at a Reynolds number ReD = 600 for
the stepped cylinders with a diameter ratio, d/D = 0.3 and 0.8. It should be noted that a
laminar model is still employed which might be questionable as the Reynolds number is
increased beyond ReD = 300. However, this fact have not been studied any further.

Although the flow is highly detailed with small scale streamwise vortices the large
spanwise vortex structures are discernible in the stepped cylinder wake for
ReD = 300 and 600. Contrary to ReD = 300 mode B is now detected behind the small
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cylinder d for d/D = 0.8.

Similarly to ReD = 300 a connection between vortices from the S-cell and N-cell was not
detected for ReD = 600, probably because of a too high value of the Q-criterion. The
wake flow behind the small cylinder diameter is still outside the critical Reynolds number
Red for any streamwise vortices to exist.

Regular vortex shedding on the large diameter cylinder is, similarly to ReD = 300 shifted
in the negative spanwise direction on D.

It is interesting to observe the pair streamwise vortices extending from the step until the
end of the domain. The presence of such a pair of streamwise vortices have been solely
detected for ReD = 600. Both edge vortices and a junction vortex were observed to exist
for a d/D = 0.3 (cf section 5.1.3, page 45), but were for lower Reynolds numbers not
detectable at downstream positions of x/D > 1.5. Hence, it may be a Reynolds number
effect. Due to limited time this matter has not been pursued any further.
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(a) d/D = 0.3, sideview. (b) d/D = 0.3, perspective view.

(c) d/D = 0.5, sideview. (d) d/D = 0.5, perspective view.

Figure 5.12: Isosurface of Q-criterion, Q≈ 2.3s−2, for a stepped cylinder with d/D = 0.3, 0.5. (a,c) contains
a sideview of the wake, whereas (b,d) provides a perspective view into the wake to elucidate three-dimensional
effects. ReD = 150.
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(a) d/D = 0.8, sideview. (b) d/D = 0.8, perspective view.

(c) d/D = 0.9, sideview. (d) d/D = 0.9, perspective view.

Figure 5.13: Isosurface of Q-criterion, Q ≈ 2.4s−2, for a stepped cylinder with d/D = 0.8 and 0.9. (a,c)
contains a sideview of the wake, whereas (b,d) provides a perspective view into the wake to elucidate three-
dimensional effects. ReD = 150.
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(a) d/D = 0.3, sideview. (b) d/D = 0.5, sideview.

(c) d/D = 0.8, sideview. (d) d/D = 0.9, sideview.

Figure 5.14: Isosurface of Q-criterion, Q ≈ 2.2s−2, for a stepped cylinder with d/D = 0.3, 0.5, 0.8 and 0.9.
(a:d) contains a sideview of the wake. ReD = 300.
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(a) d/D = 0.3, sideview. (b) d/D = 0.8, sideview.

Figure 5.15: Isosurface of Q-criterion, Q ≈ 2.2− 2.4s−2, for a stepped cylinder with d/D = 0.3, 0.8 (a,b)
contains a sideview of the wake. ReD = 600.
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Chapter 6

Conclusion

6.1 Conclusion

The flow around stepped cylinders with a diameter ratio, d/D = 0.3, 0.5, 0.8 and 0.9 was
investigated numerically for Reynolds number, ReD = 150,300 and 600. From the results
of the study the following conclusion were drawn:

• Agreement with previous studies. The results show good agreement with
previous studies, for similar diameter ratios and Reynolds numbers (Morton and
Yarusevych, 2010c). For d/D = 0.8 the present observations deviate some from
what obtained by Norberg (1992) and may be explained by brief time-sampling.

• Spanwise velocity at the step. For the stepped cylinders with lower diameter
ratios, d/D = 0.3 and 0.5, significant spanwise velocity was detected in the step
region. The change in diameter caused a strong upflow over the leading edge of
step for d/D = 0.3 and 0.5. At the trailing edge of the step strong downwash was
detected for d/D = 0.3 and 0.5, believed to be caused by additional inflow into the
wake of the large diameter cylinder, D.

• Extent of step effects. The step was found to affect the flow ≈ 10D into D
independent of diameter ratio for ReD = 150. •The wake flow behind the small
diameter cylinder was less affected by the step than the large for d/D < 0.5, as most
vortex connections occurred at the step and below. For higher d/D, vortex
connections took place above the step thus affecting the wake flow behind d.

• Streamwise vortices. In the step region two distinct streamwise vortices were
detected. A pair of edge vortices as well as a junction vortex were readily detected
for d/D = 0.3 and 0.5. Due to a small step the junction vortex was not detected for
d/D = 0.8 and 0.9, and the edge vortices were reduced in strength.

• Surface pressure distribution. The surface pressure on the stepped cylinders
showed that the point of flow separation varied along the cylinder span. Larger
variation was found for low d/D. Similarities to the flow around a finite length
cylinder could be drawn for d/D = 0.3 and 0.5, whereas d/D = 0.8 and 0.9
resembled that of a straight cylinder.

• Periodic drag- and lift forces. The drag force on D was found to increase as d/D
increased. The amplitude of the lift force was also found to increase as d/D
increased. The reduction in amplitude for low d/D is believed to be in close relation
to the varying vortex shedding frequency along the cylinder span.

73
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• Local mean drag force. The mean pressure induced drag-coefficient varied along
the span. Peaks in the local drag-coefficient were observed in close vicinity of the
step. The variation in drag-coefficient was larger for smaller d/D.

• Spanwise vortex shedding frequency. Regular spanwise vortex shedding was
detected away from the step at a frequency similar to that of a straight cylinder. In
the step region, located mainly on D, a cell of lower vortex shedding frequency was
detected for d/D = 0.3 and 0.5. As d/D increased this cell seemed to disappear.

• Wake vortex structures. By using a vortex identification scheme vortex structures
in the wake was examined. The vortex structures revealed a possible vortex
shedding cell close to the step - not revealed by the frequency analysis for d/D =
0.8. Suppression of regular vortex shedding close to the step for d/D = 0.3 was
observed for ReD = 150,300 and 600. Due to a difference in vortex strength,
streamwise vortices were observed connecting spanwise vortices close to the step.
For ReD > 150 the large spanwise vortex structures were still discernible, but the
presence of small scale streamwise vortices complicated the flow.

6.2 Relevance to marine applications

The Reynolds number employed in the present thesis (ReD < 600) represent an idealistic
case and does not represent real conditions. In real life conditions the Reynolds number
on a SPAR buoy of diameter, say, D = 50m in a current of U = 1 m/s is in the range of
50×106. Both the drag-coefficient, CL r.m.s and dimensionless vortex shedding
frequency St varies as function of the Reynolds number. Regardless of this, studying the
physics of the problem, and the qualitative behaviour of the flow problem is important.
The quantities may not be correct but the general behaviour may observed in the laminar
be similar for, say, a much higher Reynolds number. Different vortex shedding cells seem
to be a feature of the step size, not the Reynolds number (Norberg, 1992). Similarly an
increase in drag-coefficient is most likely present for a full scale Re as well. The
downwash detected in the wake of the cylinder with a large step will probably be larger
for higher Reynolds number and the streamwise vortices may exist as well.
In the following possible utilisation of the stepped cylinder features are given:

• Vortex shedding depression. For low d/D it is observed (figure 5.14(a) and 5.14(b)
, page 68) that regular vortex shedding is depressed in the spanwise direction. Such
a stepped configuration could be used to avvoid vortex induced vibrations/motions.

• Flow at the step. For low d/D a recirculating bubble of fluid is present at the step
(figure 5.3(b), page 47). Furthermore, high frictional forces is also detected at the
leading edge of the step due to high upflow velocities over the leading edge. The
streamwise vortices (figure 5.4(b), page 48) should also be kept in mind for any
operation taking place at, or around the step. If a mooring system is to be attached
close to the step, one should be aware of the interaction possibly existing between
the streamwise vortices and the system.

• Spanwise variation in drag-coefficient. The mean pressure drag-coefficient varies
along the span a stepped cylinder with low d/D (figure 5.7(c), page 54). Peaks in
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the drag-coefficient exist in close proximity to the step. Moreover, if a free-surface
boundary condition is introduced, this will probably have an additional effect of the
distribution of CD, and should this effect should be pursued in further work.

6.3 Recommendations for further work

This thesis has just scratched the surface of possible studies of a stepped cylinder. A
limited number of studies of flow around stepped cylinders have been published - the
majority studying large aspect ratio cylinders with varying diameter ratio. Only four
published numerical studies exist to this day (Morton and Yarusevych, 2010a,c; Morton
et al., 2009; Vallés et al., 2002a), and they all consider uniform flow around a single
stepped cylinder with d/D = 0.5. Examples of interesting topics concerning the stepped
cylinder could be:

• Study the flow around stepped cylinder with very low d/D. Interesting wake flow
behaviour is observed in figures5.14(a) and 5.15(a). How is the flow affected by an
even smaller diameter d? (This implicates that ReD needs to be increased to have
vortex shedding on both cylinders)

• The higher d/D has in this thesis shown to behave quite differently than the low d/D
with vortex connections between the S-cell and N-cell occurring above the step. A
limit to where the N-cell becomes present is suggested to be for d/D ≤ 0.8.
Furthermore, a proper explanation to why the N-cell exists has not been given in
the literature, but downwash is suggested as the cause (Dunn and Tavoularis, 2006;
Morton and Yarusevych, 2010c; Yagita et al., 1984).

• Study the flow around a stepped cylinder at an angle of attack
• Study the flow around a surface piercing stepped cylinder, and how the

submergence of the step changes the flow. (The reader may find the following
paper interesting: Kawamura et al. (2002))

• Design the large diameter cylinder as a finite length cylinder, and study how the
step and free-end behaves together. (This creates a need for grid refinement at both
the step and free end, which could possibly be computer demanding)

• Varying the aspect ratios of the larger diameter cylinder, L/D, and small diameter
cylinder l/d, and study how this affects the spanwise extents of the vortex shedding
cells.

• Another interesting study would be interaction of buoy to ship interaction. Let the
buoy have a stepped cylinder geometry and simulate how the presence of the ship
affects the vortex shedding in the wake of the buoy.

• There is currently no existing study of a stepped cylinder that is free to oscillate in
a uniform flow. This could possibly be implemented in a numerical solver and
vortex induced motion (VIM) could be studied. An interesting matter would be if
VIM is less for a stepped cylinder compared to a straight one.
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St-Re Cd-Re

A.1 Div.

I
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Mean drag 43  

in which D = 2r0, the cylinder diameter. The right-hand-side of the equation is a 
function of the Re number, since both the pressure term and the wall shear stress 
term are functions of the Re number for a smooth cylinder (Fig. 2.5). Therefore 
Eq. 2.7 may be written in the following simple form 

- CD is called the mean drag coefficient, or in short, the drag coefficient, and is a 
function of Re. 

100 - 
CD 

10 

1 

0.1 

Trans- 
No separation critical 

trlc vor- 
tices 

Figure 2.7 Drag coefficient for a smooth circular cylinder as a function of 
the Reynolds number. Dashed curve: The Oseen-Lamb lam- 
inar theory (Eq. 5.41). Measurements by Wieselsberger for 
40 < Re < 5 x lo5 and Schewe (1983) for Re > lo5. The di- 
agram minus Schewe’s data waa taken from Schlichting (1979). 

Fig. 2.7 presents the experimental data together with the result of the 
laminar theory, illustrating the variation of CD with respect to the Re number, 
while Fig. 2.8 depicts the close-up picture of this variation in the most interesting 

Figure A.1: CD-Re relationship. Reprinted from Sumer and Fredsøe (1997)

10 Chapter 1: Flow around a cylinder in steady current 

ding is suppressed. The effect of close proximity of a wall on the vortex shedding 
will be examined in some detail later in the next section. 

1.2.1 Vortex-shedding frequency 

The vortex-shedding frequency, when normalized with the flow velocity U 
and the cylinder diameter D ,  can on dimensional grounds be seen to be a function 
of the Reynolds number: 

St = St(Re) (1.3) 

in which 
f v D  St = - U 

and fv is the vortex-shedding frequency. The normalized vortex-shedding fre- 
quency, namely St,'is called the Strouhal number. Fig. 1.9 illustrates how the 
Strouhal number varies with Re, while Fig. 1.10 gives the power spectra corre- 
sponding to Schewe's (1983) data shown in Fig. 1.9. 

Critical, 
or lower 
transition 

Figure 1.9 Strouhal number for a smooth circular cylinder. Experimental 
data from: Solid curve: Williamson (1989). Dashed curve: 
Roshko (1961). Dots: Schewe (1983). 

Figure A.2: St-Re relationship. Reprinted from Sumer and Fredsøe (1997)
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Grid convergence study

B.1 Grid topology

Figure B.1 describes the flow topology used. Table. XX shows the element distribution in
the (x− y)-planes for the different grids.

Figure B.1: Grid topology in the (x− y)-plane. The distribution along the edges a-f is shown in table. XX.

III
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Table B.1: Distribution of nodes on edges for the different mesh used in the convergence study. S.R = sucessive
ratio, F.L = first length. The column named: ”factor”, represents the spacing factor used on the specific edges for
the different meshes respectively. In the second last and last row, the distance to the first node normal from the
surface and number of elements in the boundary layer is given.

Edge
Mesh Spacing of Nodes

A1 A2 A3 Function Factor

a 20 20 20 S.R 1.02, 1.08, 1.08
b 20 40 50 1.00
c 40 60 60 S.R 1.02, 1.02, 1.02
d 10 20 20 S.R 1.17, 1.13, 1.13
e 20 40 50 1.00
f 30 60 70 S.R, F.L, F.L 1.1, 0.15, 0.17
g 80 160 200 1.00

1st element 0.01d 0.01d 0.005d

#elements
B.L

4 8 13

Tot.
elements

5200 17600 23200
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B.2 Grid resolution at the step

Figure B.2: Grid 10 cells.
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Figure B.3: Grid 10 cells.
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Figure B.4: Grid 10 cells.
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Figure B.5: Mean pressure coefficient, Cp, in the spanwise direction for different angular positions along the circumference, θ , for different grid resolutions in the step
region. The grid were tested in a ReD = 150 and300. The blue line depicts the more coarse grid having 20 elements in the step region, whereas the green- and red lines
represents distribution of 40 and 80 elements in the step region respectively.



References

Afgan, I., C. Moulinec, R. Prosser, and D. Laurence (2007). Large eddy simulation of
turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10.
International Journal of Heat and Fluid Flow 28, 561–574.

ANSYS (2010, November). ANSYS FLUENT User’s Guide (13.0 ed.). ANSYS Inc.
Barkley, D. and R. D. Henderson (1996). Three-dimensional floquet stability analysis of

the wake of a circular cylinder. Journal of Fluid Mechanics 322, 215–241.
Behr, M., D. Hastreiter, S. Mittal, and T. E. Tezduyar (1995). Incompressible flow past a

circular cylinder: dependence of the computed flow field on the location of the lateral
boundaries. Computer methods in applied mechanics and engineering 123, 309–316.

Berger, E. and R. Wille (1972). Periodic flow phenomena. Annual Review of Fluid
Mechanics 4, 313–340.

Breuer, M. (2000). A challenging test case for large eddy simulation: high reynolds
number circular cylinder flow. International Journal of Heat and Fluid flow 21,
648–654.

Chong, M. S., A. E. Perry, and B. J. Cantwell (1990). A general classification of
threedimensional flow fields. Physics of Fluids 2, 765–777.

Chua, L. P., C. Y. Liu, and W. K. Chan (1998). Measurements of a step cylinder. Int.
Comm. Heat Mass Transfer 25, 205–215.

Day, D. A. H. (2010). ”theory and practice of marine cfd”. Lecture notes.
Dunn, W. and S. Tavoularis (2006). Experimental studies of vortices shed from cylinders

with a step-change in diameter. Journal of Fluid Mechanics 555, 409–437.
Gaster, M. (1969). Vortex shedding from slender cones at low reynolds numbers. Journal

of Fluid Mechanics 38, 565–576.
Gaster, M. (1971). Vortex shedding from circular cylinders at low reynolds numbers.

Journal of Fluid Mechanics 46, 749–756.
Hunt, J. C. R., A. Wray, and P. Moin (1988). Eddies, stream, and convergence zones in

turbulent flows. Center for Turbulence Research., Report CTR–S88.
Jeong, J. and F. Hussain (1995). On the identification of a vortex. Journal of Fluid

Mechanics 285, 69–94.
Kawamura, T., M. Hiwada, T. Hibino, I. Mabuchi, and M. Kumada (1984). Flow around

a finite circular cylinder on a flat plate. Bulletin of JSME 27, 2142–2151.
Kawamura, T., S. Mayer, A. Garapon, and L. Sørensen (2002). Large eddy simulation of

a flow past a free surface piercing cicular cylinder. Journal of Fluids Engineering 124,
91–101.
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