
Doctoral theses at NTNU, 2016:39

Doctoral theses at N
TN

U, 2016:39

Anders Nordby Gullhav

Anders N
ordby Gullhav

Optimization-based Resource
Allocation in Cloud Computing

ISBN 978-82-326-1418-9 (printed version)
ISBN 978-82-326-1419-6 (electronic version)

ISSN 1503-8181

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f S
oc

ia
l S

ci
en

ce
s

an
d

Te
ch

no
lo

gy
 M

an
ag

em
en

t
De

pa
rt

m
en

t o
f I

nd
us

tr
ia

l E
co

no
m

ic
s

an
d

Te
ch

no
lo

gy
M

an
ag

em
en

t

Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Anders Nordby Gullhav

Optimization-based Resource
Allocation in Cloud Computing

Trondheim, March 2016

Faculty of Social Sciences and Technology Management
Department of Industrial Economics and Technology Management

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

ISBN 978-82-326-1418-9 (printed version)
ISBN 978-82-326-1419-6 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2016:39

© Anders Nordby Gullhav

Faculty of Social Sciences and Technology Management
Department of Industrial Economics and Technology Management

Printed by Skipnes Kommunikasjon as

Summary
This thesis considers the resource allocation problem of a cloud service provider
(SP), which provides at set of services delivered through the software-as-a-service
model. The SP owns and operates a private cloud, but in periods of high demand,
the SP also relies on infrastructure resources provided by a public cloud in the
service provisioning. Even though the market for cloud computing services has
been growing and is expected to grow further in the future, low quality of service
(QoS) is seen as an important issue to be resolved by the cloud computing industry.

The focused resource allocation problem translates to the problem of allocating
appropriate resources to the services of the SP in a cost-efficient manner, and
so that the QoS is in accordance with the requirements specified in the service
level agreements (SLAs) between the provider and the users. This problem is
represented as an optimization problem. However, analytic and simulation-based
models are used to describe the relationship between a given allocation or resources
to a service and the resulting QoS.

This thesis consists of five research papers, and in short, these papers try to
answer the following two interrelated questions:

1. Given a certain resource allocation to a service, does this service satisfy the
QoS guarantees of the SLA?

2. How can the set of services offered by the SP be deployed in a cost-efficient
manner, while ensuring the appropriate QoS?

The two first papers of the thesis concern the former, which is answered by de-
veloping both analytic and simulation-based models. Whether the analytic or
simulated-based approach should be preferred is dependent on the underlying
properties of the services. The second question is considered in the three re-
maining papers, where optimization models are formulated and solved by both
exact and inexact algorithms. Specifically, we provide exact algorithms based on
branch and price (B&P) and metaheuristics based on the adaptive large neigh-
borhood search (ALNS) framework. While the B&P approach can provide opti-
mal solutions for small and medium-sized providers, the ALNS approach provides
high-quality solutions more quickly.

iii

Acknowledgements
During the last four years, I have done research and duty work, including teach-
ing and supervision, at the Department of Industrial Economics and Technology
Management at the Norwegian University of Science and Technology. This thesis
is the result of the research done in this period. However, during these years,
numerous people have contributed to the work presented herein.

First and foremost, I would like to thank my supervisor, Professor Bjørn Ny-
green. Thanks for your valuable comments, your sincere advice and for always
having an open door whenever I had concerns to discuss. Moreover, thanks for
introducing me to some of the greatest researchers within the area of optimization.
I would also like to honor your PhD course in mathematical programming. The
details of the simplex algorithm, the basic algorithm of our field, becomes much
more evident when you have to code it yourself.

I also owe thanks to my co-supervisors, Professor Poul E. Heegaard and Profes-
sor Lars Magnus Hvattum. Thanks to Poul for sharing your insight and knowl-
edge of analytic methods and simulation within the field of telecommunications
and computer science. Moreover, thanks to Lars Magnus for overlooking and sug-
gesting improvements to some of my code, and particularly for introducing me
to Professor Jean-François Cordeau at the Centre interuniversitaire de recherche
sur les réseaux d’entreprise, la logistique et le transport (CIRRELT) in Montréal,
Canada. Furthermore, thanks to Jean-François for inviting me as a visitor at
CIRRELT, and for all the help with the ALNS.

I’m also indebted to all of my co-authors, Bjørn, Jean-François, Poul, and Lars
Magnus, for reading and improving the drafts of the papers. During these years,
I have learned a lot about scientific writing.

I also want to thank Telenor’s Research and Future Studies Department for
the collaboration with fruitful discussions, valuable input and economical support
during my first years as a PhD student.

Lastly, I would like to thank my beloved girlfriend, Berit, for being there for
me in difficult times, and for cheering me towards the finish line. Thanks to my
mother and father for teaching me and giving me the inspiration to be persistent
and work hard.

Trondheim, December 2015

Anders N. Gullhav

v

Contents
Summary iii

Acknowledgements v

Contents vii

1 Introduction 1
1.1. Background . 3
1.2. Purpose and Outline . 13
1.3. Contributions . 19
1.4. Concluding Remarks and Future Research 21

2 Approximating the Response Time Distribution of Fault-tolerant Multi-
tier Cloud Services 35
2.1. Introduction . 35
2.2. Failure Model . 37
2.3. Approximation of the Response Time Distribution 38
2.4. Decision Support for Providers . 42
2.5. Conclusions . 44

3 Simulation of the Response Time Distribution of Fault-tolerant Multi-tier
Cloud Services 49
3.1. Introduction . 49
3.2. Problem Description . 51
3.3. Simulation Approach . 52
3.4. Experimental Study . 56
3.5. Conclusion . 66

4 Deployment of Replicated Multi–tier Services in Cloud Data Centres 71
4.1. Introduction . 71
4.2. Related Work . 73
4.3. QoS-aware Deployment of Multi-tier Services 76
4.4. Models of the Service Deployment Problem 80
4.5. Numerical Results . 86

vii

Contents

4.6. Conclusions . 90

5 A Branch and Price Approach for Deployment of Multi-tier Software
Services in Clouds 99
5.1. Introduction . 99
5.2. Related Work . 102
5.3. Problem Description . 103
5.4. Mathematical Formulations . 105
5.5. The Branch and Price Approach 107
5.6. Numerical Results and Discussion 117
5.7. Conclusions . 127
5.A. SPPRC Details . 132

6 Adaptive Large Neighborhood Search Heuristics for Multi-tier Service
Deployment Problems in Clouds 141
6.1. Introduction . 141
6.2. Problem Description . 143
6.3. Direct MIP Formulation . 145
6.4. The Adaptive Large Neighborhood Search 147
6.5. Computational Study . 162
6.6. Conclusions . 171

viii

Introduction
The market for cloud computing services has grown tremendously over the last
decade. After cloud computing was popularized by Amazon’s Elastic Compute
Cloud in 2006 (Sotomayor et al., 2009), the size of the global public cloud market
is expected to reach 97 billion US dollars in 2015 and further grow to 159 billion
US dollars in 2020, with the software-as-a-service (SaaS) delivery model being the
biggest driver (Columbus, 2015). Compared to previous computing paradigms
and technologies, Armbrust et al. (2010) identify three new, somewhat related,
aspects that are introduced with the advent of cloud computing. Firstly, cloud
computing brings the idea of an infinite pool of resources that is available on-
demand, and secondly, it eliminates the need for the up-front commitment of
hardware resources by service providers. In addition, cloud computing introduces
the possibility to pay for the usage of hardware resources on a short-term basis, i.e.,
by an hourly rate. These three aspects mean that providers of services accessed
over the Internet, i.e., SaaS providers (SPs), might provide services without owning
any hardware. For SPs that decide to own and operate hardware themselves,
these aspects imply that they can start offering new services without investing in
hardware until they see the market’s response for the new services. Moreover, it
also implies that they don’t have to scale their hardware to handle the peaks in
the service demand.

While the popularity of cloud computing is increasing, Armbrust et al. (2010)
rank service availability as the leading obstacle to cloud adoption and growth.
Marston et al. (2011) perform a SWOT (strengths, weaknesses, opportunities and
threats) analysis of cloud computing, and name low quality of service (QoS) and
availability guarantees as one of the prominent weaknesses and important concerns
to be dealt with if large organizations should use mission-critical applications
provided by the cloud. In addition, they see data security as a critical threat to
the adoption of cloud computing in companies. However, security concerns are
not discussed in this thesis.

There are several types of decision problems faced by the cloud computing in-
dustry where operations research can be used as decisions support. Still, there
seems to be no agreed classification of cloud decision problems. Heilig and Voß
(2014) differentiate between four classes of problems: cloud migration, service
selection, cloud pricing and resource allocation problems; and three main stake-
holders: consumers, cloud service providers and cloud infrastructure providers.

1

Introduction

In this view, a cloud service provider, which offers services to consumers, might
also be a consumer of a cloud infrastructure provider. In short, cloud migration
decisions, faced by the consumers, relate to whether the consumer should buy
IT resources or lease them from the cloud. Service selection includes decisions
concerning the combination of basic services to form a composite service, and
must take into account the QoS and price of the basic services. This problem
is faced by both consumers and cloud service providers. Furthermore, pricing
decisions are a concern for both cloud service providers and cloud infrastructure
providers. Lastly, resource allocation concerns the problem of allocating appropri-
ate resources to different service requests and tasks, and is typically represented
as an optimization problem. A common target is to optimize the server utilization
to reduce the cost or energy consumption, while maintaining a satisfactory QoS.
Heilig and Voß (2014) note that the implementation of mechanisms to improve
the fault tolerance by appropriate redundancy allocation is an integral part of the
provider’s resource allocation problem.

In this thesis, the focus is on the resource allocation problem of a cloud service
provider (SP) that is offering at set of cloud services, based on the SaaS delivery
model, to its users. The SP owns and operates some hardware itself, but relies
on resources provided by a cloud infrastructure provider in periods of high de-
mand. The service delivery is legally handled by contracts, termed service level
agreements (SLAs), between the provider and the users. The SLAs include speci-
fications and requirements on the QoS (performance, dependability and security)
of the provided services that the provider needs to fulfill.

To further narrow the scope of this thesis, we are considering two interrelated
problems within the class of resource allocation problems: the assignment of ap-
propriate resources, including redundancy allocation, to a single service such that
the requirements of the SLA is satisfied, and the placement of the set of services
delivered by the SP on the infrastructure, either provided by the SP itself or leased
from a public cloud infrastructure provider. This decision problem can be solved
both statically and dynamically. With a demand that varies over time, but that
remains stationary in a stochastic sense for sufficiently long periods, it is possible
to obtain stationary resource allocations for each demand period. On the other
hand, a dynamic approach will seek to find a solution that adapts continuously to
the demand.

This thesis is composed of five research papers. The first two papers (Chapters
2 and 3) propose analytic and simulation-based methods to analyze the perfor-
mance of cloud services under the existence of failures. Since cloud services often
run in multiple virtual machines and might have some redundancy incorporated,
a failure does not necessary bring the services down, but rather degrades their
performance. This makes it valuable to consider failures while analyzing the per-
formance of such services. The three last papers (Chapters 4, 5 and 6) model the
problem of placing the virtual machines of the services on the infrastructure as

2

1.1. Background

an optimization problem. This optimization problem is solved by both exact and
heuristic methods in the papers.

The outline of the rest of the introduction is as follows. Section 1.1 gives a
short presentation of the concepts of cloud computing, and thereafter, provides
an overview of the resource allocation problem and the literature related to the
content of this thesis. Moreover, Section 1.2 delimits the thesis by presenting its
purpose and the outline of the papers. Section 1.3 discusses the contributions of
the thesis to the research community and industry, and finally, some concluding
remarks and directions for future research are given in Section 1.4.

1.1. Background
This section aims at describing the research scope and background of this thesis,
by setting the context and the resource allocation problem in focus. We also give
a review of some related literature.

1.1.1. Cloud Computing Terminology
Cloud computing is the most recent computing paradigm that promises to deliver
computing as the fifth utility, after water, electricity, gas and telephony, over the
Internet (Buyya et al., 2009). The term cloud computing encompasses both the
applications delivered as services over the Internet and the hardware and software
systems composing the infrastructure running the applications (Armbrust et al.,
2010). The National Institute of Standards and Technology (NIST) defines cloud
computing as a model for enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with min-
imal management effort or service provider interaction (Mell and Grance, 2011).
The service provider is in this context the provider of a service that potentially
uses the infrastructure provided by the cloud to provide its service.

The NIST further defines three service (delivery) models for Cloud computing:
software-as-a-service (SaaS), platform-as-a-service (PaaS) and infrastructure-as-
a-service (IaaS). In the SaaS service model, the cloud user is delivered software
applications over the Internet. This eliminates the need for the users to install
and run applications on their own computers, facilitating management and main-
tenance. Examples of this service model are document management systems like
Google Docs, customer relationship management systems like Salesforce.com, and
webmails like Gmail. In the IaaS service model, the user is provided fundamental
computing resources like processing power, storage and network, onto which the
user can deploy and run own software, including operating systems and applica-
tions. The cloud user in this model is often service providers offering SaaS services

3

Introduction

to their own users. In the IaaS model, the user does not manage or control the un-
derlying infrastructure, and the service model thereby simplifies the management
of the cloud user’s service provisioning. Examples of this service model include
Amazon Web Services and Rackspace. The PaaS model lies between the SaaS and
IaaS service models, as it provides the cloud-user not only computing resources
but also software servers and application environments, which can assist the cloud-
user to deploy own applications. Examples of PaaS are Google AppEngine and
Force.com.

Furthermore, the NIST distinguishes between four different types of cloud de-
ployment models: private clouds, community clouds, public clouds and hybrid
clouds. Private clouds are clouds where the cloud infrastructure is operated solely
for a single organization, by the organization itself or a third party. In a commu-
nity cloud, the infrastructure is shared by several organizations. Organizations
that in common employ this cloud model often have a shared mission or shared
requirements related to security. On the other hand, public clouds are clouds
where the infrastructure is available to the general public and is owned by an or-
ganization selling cloud services, denoted a (public) cloud provider. Lastly, hybrid
clouds are a composition of two or more clouds, which are bound together by some
sort of technology that enables data and application portability.

Virtualization is one of the key enablers of cloud computing, as virtual machines
(VMs) give the possibility to run several virtual servers on a physical server, and
thereby letting several software applications utilize the same hardware (Wang
et al., 2008). In this respect, the number of physical servers, also referred to as
nodes throughout this thesis, can be reduced, and the economies of scale become
more prominent. Besides, VMs isolate the software running on a VM from other
VMs running on the same node and the node itself. This is advantageous, in that
if a VM on a node fails because of a fault in its running software, the fault is not
affecting other VM instances on that node (Rosenblum, 2004).

1.1.2. Resource Allocation in Cloud Computing
In the literature, there exist descriptions and specifications of different variants
of the resource allocation problem. While some works focus on the dynamic
problem of continuously adapting the resource allocation according to an assumed
non-stationary demand, other works focuses on a static problem variant. For
some services, the demand can be assumed to be constantly fluctuating, and
hence, solution approaches that consider the dynamic problem seem appropriate.
However, other services have stationary demand periods, such as working hours,
evenings and weekends, which might justify a static approach.

A lot of research on resource allocation takes the perspective of an IaaS provider,
which is natural since the infrastructure operated by an IaaS provider is often
enormous with great possibilities for resource optimization. Nevertheless, resource

4

1.1. Background

optimization is also relevant for SPs that own some hardware themselves. The
SaaS applications provided by the SP can be represented as multi-tier services,
composed of several components, and a much cited example of a multi-tier service,
is the three-tier web service composed of a web server component, an application
logic component and a database server component. Figure 1.1 illustrates the
structure of a three-tier web service. In this context, the resource allocation
problem can be modeled as an optimization problem that seeks to find the most
cost-efficient allocation of resource to the components, while ensuring a QoS in
correspondence with the SLA. An SLA is a contract between a service provider
and a user, which specifies the services delivered to the user, the metrics used
to quantify the QoS, the bounds on the QoS metrics, the amount of traffic the
user can transmit, and the penalties that incur if the provider fails to provide a
service within the bounds (Wu and Buyya, 2012). The QoS metrics in an SLA for
a cloud service might relate to the performance, e.g., the response time, and the
dependability, e.g., the uptime or availability, but also consider the security. In the
papers of this thesis, we consider the response time as the total time required by
the multi-tier service to process the request of a user. We refer to Wu and Buyya
(2012) for an overview and discussion of SLAs in the context of cloud computing.

Figure 1.1.: Illustration of the components of three-tier web service

The allocation of resources to services is done by running the components in
VMs, one component per VM, which in turn are run on the (physical) nodes in a
private or public cloud. Each VM has a given resource specification, for instance,
1 CPU core, 2 Gigabytes (GB) of memory and 100 GB of storage, and all VMs
on a node share the node’s limited resources. The resource scaling of the service
components can be done in two principal ways, either by horizontal or vertical
scaling. Horizontal scaling refers to the process of changing the resource allocation
by decreasing or increasing the number of VMs of a predefined size, while vertical
scaling refers to the process of decreasing or increasing the size of the already
deployed VMs. Horizontal scaling results in a more coarse-grained resource scaling

5

Introduction

compared to vertical scaling, and might results in sub-optimal resource allocation
(Sedaghat et al., 2013). Nevertheless, the typical scaling mechanism implemented
in the cloud management systems today is the horizontal scaling.

Simulation models and analytic queuing models are the typical tools used to
quantify the performance of multi-tier services in the literature (Ardagna et al.,
2014). If the basic assumptions of the stochastic behavior of the services are
"easy", e.g., the inter-arrival and service times are exponentially distributed, an-
alytic queuing models can be used to describe the performance of the services.
Otherwise, simulation might be a viable modeling tool. Section 1.1.3 presents dif-
ferent approaches, described in the literature, to performance modeling of multi-
tier services by using simulation and analytic modeling techniques.

When one is to provide a service run on a failure-prone infrastructure, such
as the hardware composing private and public clouds, one should consider the
effects of the faults on the services. No matter how well-designed a system is
there is always a risk of failure if faults are too frequent, and a key to be able to
tolerate faults is to introduce redundancy (Gärtner, 1999). An overview of the field
of dependability in computing systems, including the dependability metrics, the
different types of faults and means to achieve dependability is given by Avižienis
et al. (2004).

In the context of cloud computing, there exists some literature that consid-
ers fault tolerance management. Undheim et al. (2011) present different ways
to implement fault tolerance in cloud services through standby redundancy by
replication of VMs. Standby redundancy refers to the principle and techniques of
allocating standby resources that can be activated in case of a failure. In this case,
the standby resources correspond to VMs. The standby redundancy classification
of Undheim et al. (2011) is depicted in Figure 1.2. At the top level, they distin-
guish between hot and cold standbys, which are powered and non-powered VMs
placed on the nodes, respectively. For hot standbys, one distinguishes between dif-
ferent levels of synchronization, which reflect how updated the state of the standby
can be expected to be when a failure occurs. For some services, named stateful
services, a standby VM requires an updated state to be activated. On the other
hand, stateless services don’t have this requirement. Typically, a higher level of
synchronization requires more usage of resources. The highest level of synchro-
nization is the one with a fully updated and synchronized state, and this technique
requires the allocation of dedicated resources to the standby VMs. An example of
this hot standby techniques is VMware Fault Tolerance (VMware White Paper,
2009), where also the standby VMs process all requests to ensure a fully updated
state. This means that a standby can take over service delivery without a no-
ticeable interruption. An example with a lower level of synchronization is Remus
(Cully et al., 2008), where only information about the state is transferred to the
standby VMs at specific points in time. In this case, the state of the standby
is not fully updated, and the standby needs a short amount of time to process

6

1.1. Background

the last update before being activated. In the latter approach, the standby VMs
consume fewer resources than the active VMs, and it allows the standbys to share
backup resources. Compared to the two reviewed techniques, cold standbys are
still loaded on the nodes, but are not updated and, thus, more ideal for stateless
services. In addition, they require some time to be powered before they can start
serving demand, and hence, the services applying this technique should tolerate
a short downtime. The redundancy scheme applied in the models of this thesis
is a form of standby replication with hot, updated standby replicas with shared
backup resources, like Remus. Other works that present conceptual frameworks
and software systems utilizing replicated VMs include Distler et al. (2011), where
a standby VM can be put into a paused state on a node, from where they can be
unpaused and activated rapidly.

Figure 1.2.: Standby redundancy classification (Undheim et al., 2011)

In the context of implementing fault tolerance by redundancy, a related resource
allocation problem is the redundancy allocation problem (Kuo and Wan, 2007).
This problem consists of allocating parallel components to different subsystems
in series with an objective of minimizing the cost, while maintaining a reliability
greater than a threshold. This type of problem is found in many contexts, in-
cluding design of software systems, which is considered in Belli and Jedrzejowicz
(1991) and Ashrafi et al. (1994).

The traditional way to allocate standby resources in a non-virtualized comput-
ing system is to dedicate M backup nodes to tolerate M failures in the N active
nodes (Sun et al., 2001). However, likewise virtualization enables resource savings
by consolidating several active VMs on a single node, virtualization enables the
opportunity to place standby VMs across the nodes running active VMs (Loveland
et al., 2008). In this situation, one should ensure that VMs of the same software

7

Introduction

component never run on the same node.
There seems to be little research done on a combined analysis of the perfor-

mance and dependability of cloud services. Such a combined analysis is sometimes
denoted performability analysis (Trivedi et al., 1993; Al-Kuwaiti et al., 2009). Per-
formability is a concept that is applicable for degradable systems, which have the
property that during a period of time, the system can exhibit different perfor-
mance levels as a result of faults. For fault-tolerant systems, a fault does not
necessary lead to a failed system, but to a system with degraded performance.
For SaaS applications that are composed of replicated tiers, the performability
concept is of interest since a fault in one of the VMs of a tier, will not necessarily
bring the service down, but rather reduce the service performance.

In addition to the allocation of server resources, such as CPU power and mem-
ory, and allocation of redundancy, the underlying network is also affecting the
performance and dependability of cloud services. The network latency between
data centers is typically significant, and the access network of the users is also
affecting the user’s perceived QoS. Moreover, the network topology is an impor-
tant factor of the dependability of cloud services (Jennings and Stadler, 2015).
However, the effects of the underlying network are not modeled and discussed in
the papers of this thesis.

We have already reviewed some related literature on concepts related to resource
allocation in cloud computing, including research on redundancy allocation prob-
lems. In the two next sections, we will firstly review research on performance and
dependability modeling, and then some of the literature on placement problems
in clouds.

1.1.3. Related Work on Performance and Dependability
Modeling of Cloud Services

Ardagna et al. (2014) present a survey on workload modeling, system model-
ing, and their applications to resource allocation in the area of QoS management
in cloud computing. While workload modeling, e.g., demand predication and
measurement-based techniques, is out of the scope of this thesis, much of the
reviewed literature on system modeling is relevant here.

Analytic models of SaaS and web service performance are often based on queu-
ing theory. In the following review of related performance modeling literature,
the focus is on the modeling of multi-tier services, which typically is based on
some form of queuing network. In this relation, Ramesh and Perros (2001) model
a client-server system as a multi-layered queuing network, where the servers are
organized in a tiered structure. The network is analyzed by an approximate al-
gorithm to obtain the mean response time of the requests, and the results are
validated by a simulation model. Urgaonkar et al. (2005) design a closed queuing
network to analyze a multi-tier Internet service, where each of the tiers might be

8

1.1. Background

replicated into a number of parallel load-balanced servers. They derive the mean
response time of the requests by mean-value analysis. Another queuing model is
given in Xiong and Perros (2009). Therein, a cloud service is modeled as an open
queuing network composed of two M/M/1 queues in series with feedback from the
second to the first queue and exits after each queue. The focused performance
metric is not the mean response time, but rather the high percentiles, e.g., the
90th and 95th, of the response time distribution. They develop an approximate
method for deriving the Laplace-Stieltjes transform of the response time distribu-
tion in the queuing network model, and numerically compare the results of their
approximation with the results of a simulation model. Moreover, Singh et al.
(2011) propose a tool to analyze the average response time of complex applica-
tions spanning hundreds of nodes in a data center, by modeling the application as
a queuing network. There also exist approaches that use layered queuing networks
(Franks et al., 2009) to model multi-tier services. Jung et al. (2008) extract the
mean response time of such network models, while more recently, Perez and Casale
(2013) compute an approximate response time distribution to obtain values for
the higher percentiles.

There exists several approaches to obtain response time distributions of queuing
networks, and a review, now fairly dated, is given by Boxma and Daduna (1990).
In cases where the network is not overtake-free, the determination of the response
time distribution is generally hard, and the usual approach in such cases is to
obtain an approximate distribution. A type of approximation is based on decom-
posing the network and studying the individual queues separately (Woolet, 1993).
Woolet’s approximation method for M/M/c/b queues is extended to phase-type
service times in Grottke et al. (2011).

Other related literature is works that study queues or queuing networks with
failing servers. Queuing networks with server breakdowns and repairs are consid-
ered in Chakka and Mitrani (1996) and Sauer and Daduna (2003). However, these
works do not try to obtain the full response time distribution of the networks.

Pure dependability models for cloud services, without performance considera-
tions, are studied in Undheim et al. (2011) and Dantas et al. (2012). Undheim
et al. (2011) present a cloud availability model that accounts for different types of
failures in data centers, such as failures with the power supply, network failures
and server failures. They use reliability block diagrams to model power supply
and network failures, and model the service failures for a fault-tolerant single tier
service by using continuous time Markov chains (CTMCs) (Trivedi, 2002). They
suggest development of failure models for multi-tier services as future work. Dan-
tas et al. (2012) present an availability model for the Eucalyptus platform (Hewlett
Packard Enterprise, 2015) for building private, public and hybrid clouds, now ac-
quired by HP. They only consider and model the inclusion of redundancy in the
cloud architecture, and do not model the services running in the cloud.

There exist a few works on a combined performance and dependability analysis

9

Introduction

in a cloud computing context. Ghosh et al. (2010) study the performability of the
service provisioning process of an IaaS provider, that is, the process of providing
VM instances on request. They analyze the process by modeling the performance
and dependability of the provisioning as interacting CTMCs. The focused QoS
metrics are the effective probability of not provisioning a VM and the effective
delay from a VM instance is requested to it is ready for service provisioning,
under the existence of failures. Another use case for performability analysis in
cloud computing systems is given by Qian et al. (2011). Therein, they perform
a combined performance and dependability analysis of the provisioning of online
services, such as voice or IP, streaming and search, through an IaaS provider.
They consider replication of the service VMs, and construct a cloud performance
(response time) and dependability model, in addition to a network latency model.
They argue that for the users, the interesting QoS metric is the probability of
observing a latency less than a specified threshold.

In cases where the properties of the system make analytic modeling difficult or
inaccurate, simulation is often a viable tool. Alam et al. (2012) present a discrete
event simulation tool designed to support services providers in the performance
management of their services. A more extensive tool named CloudSim (Calheiros
et al., 2011) supports modeling and simulation of other cloud elements, such as
data centers, virtual machines and networks, in addition to the services. There
also exist several extensions to CloudSim. An example is CloudAnalyst (Wickre-
masinghe et al., 2010), which allows one to model and evaluate service behavior in
situations with geographically distributed demand. However, to our knowledge,
there does not exist adequate simulation models or tools that allow one to analyze
cloud service performance under the existence of failures.

There also exist approaches in the literature that include analytic queuing
theory-based relations within optimization models to model the behavior of multi-
tier services e.g., Goudarzi and Pedram (2011) and Ardagna et al. (2012). These
approaches are reviewed in Section 1.1.4.

1.1.4. Related Work on Placement Problems in Clouds
In the literature on placement problems, most of the research focuses on the place-
ment or scheduling problem of an IaaS provider. However, since the SP considered
in this thesis also owns and operates a private infrastructure, the research focusing
on IaaS providers is relevant herein. Moreover, in this limited literature survey,
we do not review scheduling problems for batch type workloads, e.g., scientific
computations and analysis and other workloads with infrequent requests, each
with a relative high resource demand, but rather problems with web service-like
workload patterns.

Many models and algorithms referred in the literature consider the placement
of a set of independent VMs on a common infrastructure, and model this VM

10

1.1. Background

placement problem as a kind of bin packing problem. Hermenier et al. (2009)
present a constraint programming model that dynamically assign VMs to nodes
in clusters. The aim of this model is to minimize the number of (physical) nodes
used, in order to reduce the energy consumption, while ensuring that the VMs
are allocated enough resources, in this case, CPU power and memory. Further-
more, the approach also provides reconfiguration plans for migration of the VMs
as a response to demand changes. A related approach is provided by Ferreto
et al. (2011), in which another bin packing-like model is studied and solved using
heuristic methods.

In addition to minimizing the number of nodes used and putting the unused
nodes in a power-saving state, another technique to reduce the energy usage of
data centers is a strategy named dynamic voltage and frequency scaling (DVFS).
DVFS is a power optimization technique where the frequency and voltage of the
CPU is varied according to the demand. Kramer et al. (2012) consider this tech-
nique when modeling their static VM placement problem as a one-dimensional
variable-sized bin-packing problem, where the node capacities are variable and
dependent on the CPU frequency. They decompose the problem, and design a
column generation algorithm and column generation-based heuristics to solve the
problem. Static and dynamic optimization models that include frequency scaling
decisions are given by Petrucci et al. (2010). They start by modeling the problem
as an one-dimensional variable-sized bin-packing problem, and extend their mod-
els by introducing dynamicity by modeling costs for switching nodes on and off
between two time periods, and costs for migrating VMs from a node to another.
An additional variant of the bin-packing problem in a VM placement context is
studied in Cambazard et al. (2013), where the cost of using a bin is dependent on
its utilization.

Compared to the previously reviewed problems, placement problems that in-
clude structural relations between the VMs share more features with the problem
studied in this thesis. Such structural relations might be constraints specify-
ing that a set of VMs should run on different nodes, run on the same nodes,
be placed in different geographical regions, or run on a specific subset of the
nodes. Google proposed a dynamic placement problem of an IaaS provider in the
ROADEF/EURO challenge 2012 (ROADEF, 2012). In this problem, named the
machine reassignment problem, a set of processes, i.e., VMs, is to be assigned
to a set of machines with the goal to improve the machine usage. The prob-
lem includes constraints ensuring a geographical distribution of the identical VMs
and constraints related to the migration of VMs from a machine to another. For
this problem, the winning approach was presented by Gavranović and Buljubašić
(2014), which solution method is based on a local search heuristic with multiple
starts and a noising strategy to escape local optima.

A static VM placement problem with multiple time periods with different de-
mand is considered in Speitkamp and Bichler (2010). Moreover, they present

11

Introduction

model extensions, which include constraints requiring that a set of VMs should
be placed on different nodes, and they solve their MIP models by using both
a general-purpose solver and an LP-relaxation-based heuristic. Another static
placement problem is regarded in Goudarzi and Pedram (2012), where VMs can
be split in a variable number of smaller VMs that fit better on the nodes in the
data center. The authors argue that this might increase the utilization and reduce
the energy consumption of the data center. Breitgand and Epstein (2011) concern
a placement problem of an IaaS provider in which multiple VM copies of a service
should be placed on different nodes. Due to computational difficulties, they refor-
mulate the problem and use column generation to solve the reformulated model.
They consider both a static version of the problem and an extension that is based
on an initial placement.

None of the reviewed placement literature above, considers that VMs might
be part of multi-tier services. However, such regards are modeled by Goudarzi
and Pedram (2011) and Ardagna et al. (2012). Goudarzi and Pedram (2011) in-
clude performance requirements specified in the SLAs which the provider has to
comply with. The multi-tier services are modeled as queuing networks and the
considered performance metric is the average response time of the requests. The
authors present a non-linear model for optimizing the static placement and service
scaling in a stationary time period. To solve the model, they propose a heuristic
based on local search. Ardagna et al. (2012) also consider a resource allocation
problem with QoS constraints, for which they propose a solution framework that
includes service scaling, VM placement and means to reduce the energy consump-
tion. Their framework iterates between solving an overall placement model and a
capacity allocation model at each server. Both models contain non-linearities due
to the relations of the performance model that is based on queuing networks, and
the models are solved by local search-based heuristics.

An earlier model of a placement problem considering multi-tier services is given
in Urgaonkar et al. (2007). In this problem, an infrastructure provider seeks to
maximize the number of multi-tier services deployed on a set of nodes, and de-
ploying a service implies that all of its tiers need to be placed on the nodes. The
authors propose solution methods for both a static variant of the problem and a
dynamic variant, where services is placed one by one as they are requested de-
ployed on the infrastructure. The solution method for the static problem variant
is based on the classical first fit heuristic, while the aim of the dynamic variant
is to find a feasible deployment, or show that one does not exist. Another ap-
proach that combines a queuing model with an optimization model is given by
Jung et al. (2008). The optimization model is a bin packing-like model with the
objective to maximize a utility function, which is based on the performance of the
multi-tier services running in the data center of an infrastructure provider. The
proposed algorithm selects the replication level at each tier, and places the result-
ing components by the first fit heuristic. In the search for the best replication

12

1.2. Purpose and Outline

levels, according to the utility function, the algorithm starts with the maximum
replication levels (i.e., maximum performance and utility) and gradually reduce
them until the algorithm stops when finding a feasible packing of the components.

There are also works that consider placement in multiple clouds. Csorba et al.
(2010) propose a solution method based on ant colony optimization to place repli-
cated VMs in a hybrid cloud environment. They impose requirements specifying
that replicas of the same components should run on different nodes, and possibly
in different node clusters. Tordsson et al. (2012) model a decision problem of a
cloud broker, which is an entity optimizing the placement of VMs among multiple
IaaS providers on behalf on an SP. They model the problem statically as a binary
IP, and maximize the amount of resources assigned to the SP’s VMs under a given
budget. The model is solved by a general-purpose MIP solver.

As discussed in Section 1.1.2, a studied method to achieve fault tolerance is
to dedicate a number of backup nodes to tolerate failures. However, a more
resource efficient fault tolerance strategy is to place a number of redundant VMs on
different nodes (Machida et al., 2010). Machida et al. (2010) compute the number
of replicated VMs of an application by a performance model based on analyzing
an M/M/1 queue. To achieve fault tolerance, a number of extra, redundant VMs
are deployed, one per failure that should be tolerated. All VMs placed on the
infrastructure have identical size, so the resulting static placement problem is
easily solved by a greedy algorithm. Bin et al. (2011) consider a VM placement
problem of an IaaS provider where each VM should be reserved a number backup
locations on other nodes, where this number is equal to the number of node failures
that should be tolerated. The motivation of the backup locations is to ensure that
a VM can be relocated on a new node in case of a number of node failures. The
authors propose to solve the problem using constraint programming.

1.2. Purpose and Outline
The purpose of this thesis is discussed in Section 1.2.1. Afterwards, we outline
and present the purpose and contributions of each of the five included papers in
Sections 1.2.2 to 1.2.6.

1.2.1. Purpose of Thesis
The purpose of this thesis is to present new optimization models and algorithms
that should support SaaS providers (SPs) in their service provision. In addition,
the presented optimization models are supported by analytic and simulation-based
models used to evaluate the performance and dependability of multi-tier SaaS
services.

13

Introduction

The different components, i.e., tiers, of SaaS services are typically run in a
load-balanced configuration with many VMs serving the requests in parallel. If
a failure brings down a VM in such a setting, the service might still be able to
operate, however, at a lower performance level. To increase the fault tolerance of
the service, we argue for the placement of additional standby VMs that are run in
a passive state, but activated when a failure occurs. We denote these two types
of VM replicas as active and passive replicas. However in general, modeling of
performance relations, e.g., based on queuing models, explicitly in optimization
models introduces non-linearities. To formulate the resource allocation problem
with linear optimization models, we introduce a modeling structure referred to
as replication patterns in the optimization models. A replication pattern specifies
the number of active and passive replicas allocated to each tier of a single service,
i.e., the resource and redundancy allocation of the service, and it is assumed to
indicate the QoS of the service. By this, we also assume that the placement of the
VMs, and the underlying network, does not affect the service performance, which
is a simplification of the reality.

Since the services run on the same infrastructure, it is not trivial to decide
which out of possibly several different replication patterns with satisfactory QoS
that is the most cost or resource-efficient. Therefore, the decision variables of the
optimization models include the selection of replication patterns in addition to
the placement.

The introduction of replication patterns can be seen as a way to decompose the
problem into two: the problem of finding replication patterns for each service, and
the problem of optimizing the selection of replication patterns and the placement
of the replicated VMs. The problem of finding replication patterns is not discussed
explicitly in the papers, but can potentially be done by enumeration. However, we
provide methods to check whether a replication pattern satisfy the QoS guarantees.

This thesis consists of five papers. The two first papers focus on analytic and
simulation-based models, while the three last papers focus on optimization models
and algorithms. In short, the papers provide decision support to answer the
following two related questions:

1. Given a certain allocation of resources and redundancy to a multi-tier ser-
vice, does this service satisfy the QoS requirements guaranteed in the SLA?

2. How can the set of services offered by the SP be deployed in a cost-efficient
manner, while ensuring the guaranteed QoS through selection of replication
patterns?

Papers I and II study the problem of assessing the response time distribution
of a fault-tolerant multi-tier service. The papers assume slightly different de-
pendability models (also termed failure models), but differs fundamentally in the
tools they use to obtain the response time distribution. In Paper I, we make the

14

1.2. Purpose and Outline

assumption of exponentially distributed inter-arrival and services times of the ser-
vice requests, and obtain an approximate response time distribution by developing
an analytic model. In Paper II, we compare the approximations of Paper I with
estimated response time distributions obtained by simulation, and see that there
is a close match between the two. In addition, we show the applicability of the
simulation approach for non-exponential service times.

Papers III, IV and V consider the combined optimization problem of selecting
replication patterns and placing a set of services in either a private or hybrid
cloud environment. This problem is referred to as the service deployment problem,
and is studied in a context where there exist sufficiently long stationary demand
periods, for which it is appropriate to find and implement a static deployment
of the services. In Paper III, the problem is formalized and modeled as MIPs.
These models illustrate the hardness of the problem. In the subsequent papers, we
propose both exact and heuristic solution methods. The exact approach, proposed
in Paper IV, is based on the decomposition of the problem into a master problem
and a subproblem that is solved by branch and price (B&P). Paper V presents
adaptive large neighborhood search (ALNS) heuristics that utilize local search
(LS) operators on top of the standard ALNS framework.

1.2.2. Paper I: Approximating the Response Time Distribution
of Fault-tolerant Multi-tier Cloud Services

In this paper, we propose a method for approximating the response time distri-
bution of a multi-tier service, which also accounts for failures. The tiers of the
service are realized by several VMs that share the load of the users. The VMs of
the service fail according to an exponential failure time distribution, however, we
assume that the VMs fail independently. When failed, the time to repair a VM
is exponentially distributed according to a repair time distribution. In case of a
failure, unless all VMs of tier has failed or a tier becomes completely saturated,
e.g., due to higher demand than service capacity, the users will not perceive the
service as unavailable, but the response time might be increased. Moreover, to
improve the fault tolerance of the service, we allow the SP to deploy additional
passive VMs, i.e., passive replicas. A way to attain the QoS of such fault-tolerant
services is by a combined performance and dependability analysis.

Without regarding the passive replicas, a multi-tier service can be modeled as a
queuing network composed of parallel queues in series. In this paper, we assume
exponentially distributed inter-arrival and service times. Obtaining the response
time distribution, sometimes also denoted sojourn time distribution, of a queuing
network is in general difficult (Boxma and Daduna, 1990). Another difficulty of
the problem is the inclusion of failures in the queuing model, as this would lead to a
large number of states in the underlying CTMC. In addition, since failure rates are
in the order of hours, while arrival rates and service times are in the range of tens

15

Introduction

of milliseconds to seconds, solving a monolithic CTMC would lead to numerical
problems (Trivedi et al., 1993). However, because of the two very distinct time
scales, it is possible to decompose the total problem into a dependability submodel
and a performance submodel.

The main contribution of this paper is a method for assessing the combined per-
formance and dependability of a fault-tolerant multi-tier service, which returns an
approximated response time distribution. The dependability submodel, denoted
the failure model in the paper, is based on a Markov reward model assuming
exponential failure and repair times. The performance submodel is based on the
response time block method of Grottke et al. (2011).

The paper is co-authored with Professor Bjørn Nygreen and Professor Poul E.
Heegaard, and published in the proceedings of the IEEE/ACM 6th International
Conference on Utility and Cloud Computing, 2013, pp. 287-291.

1.2.3. Paper II: Simulation of the Response Time Distribution
of Fault-tolerant Multi-tier Cloud Services

This paper considers the same problem as in Paper I, but the proposed approach
offers greater flexibility in the underlying assumptions about exponentially dis-
tributed inter-arrival and service times. The methodological distinction between
the two papers lies in the performance model, which in this paper is designed as
a discrete event simulation model. However, the issue of the two very dissimilar
time scales is still present in the problem, and we discuss the difficulties of sim-
ulating a complete model that includes both the failure/repair processes and the
arrival/service processes. Due to these difficulties, we utilize stratified sampling
(Lewis and Orav, 1989) to simulate the response times by decomposing the prob-
lem into separate dependability and performance submodels. The strata of the
simulation correspond to failure scenarios, which are analyzed and quantified by
the dependability model.

The main contribution is a framework for obtaining an estimated response time
distribution of a fault-tolerant multi-tier service by simulation. In addition, the
paper demonstrate that the approximation method presented in Paper I performs
well for exponential inter-arrival and service time distributions, but that for other
distributions, the simulation model is valuable.

The paper is co-authored with Professor Bjørn Nygreen and Professor Poul E.
Heegaard, and is submitted to an international journal.

1.2.4. Paper III: Deployment of Replicated Multi-tier Services
in Cloud Data Centres

This paper considers an optimization problem of an SP that seeks to find the least
cost deployment of a set of fault-tolerant multi-tier service on an infrastructure

16

1.2. Purpose and Outline

consisting of a private and public cloud. The SaaS provider owns and operates a
private cloud that is composed of several servers, denoted nodes. In some periods,
the private cloud is large enough to run all of the services provided by the SP, but
in other periods, the SP has to utilize the public cloud offerings of IaaS providers in
his service provisioning. In this problem, the motivation of using the public cloud
is limited to be that the private cloud is fully utilized, and thus, we don’t include
explicit requirements that call for usage of multiple clouds, e.g., requirements for
geographical distribution of replicas.

The main contribution of this paper is linear MIP models of the problem, both
for the case where all services are run in the private cloud and for the case where
using a public cloud is necessary. The MIP models include decisions both regarding
the replication levels of the services and the placement of the VMs of the service,
which is modeled using binary variables. The cost of placement in the private
cloud is modeled to reduce the energy usage in times where the demand is low,
and counts the number of nodes turned on. On the other hand, when the demand
is high and the private cloud is fully utilized, the concerned cost component is the
cost of running VMs in the public cloud. The placement of replicas is modeled
by including technical constraints such as the resource capacity constraints of the
nodes and constraints ensuring that the replicas of the same tier is placed on
different nodes. In addition to placement of load-balanced active replicas, the
model allows placement of passive replicas, which are assigned fewer resources in
a failure-free situation. However, each node running at least one passive replica,
will maintain a pool of shared backup resources, so that the passive replicas are
able to be activated. A set of replication patterns for each service is given to the
model as input, and the model forces the selection of one replication pattern for
each service. All included replication patterns are by the model assumed to give
a satisfactory QoS, as specified in the SLAs.

Our models contain some novelties in comparison to works that model place-
ment of multi-tier services in the literature. While Goudarzi and Pedram (2011)
and Ardagna et al. (2012) propose placement and resource allocation models that
include explicit response time requirements, they don’t consider placement of re-
dundant, passive VMs and the allocation of shared backup resources. In addition,
although Csorba et al. (2010) model placement of replicated VMs in private and
public clouds, they don’t include decisions related to performance or dependability
in their models.

The paper shows that to solve a direct MIP model of the problem with a general-
purpose MIP solver is very time-consuming and unpractical for problems of rea-
sonable size. Another contribution of the paper is a reformulated model, which
is based on node patterns. A node pattern corresponds to a set of replicas that
can be placed on the same node while respecting the node-specific placement con-
straints. The reformulation couples the selection of replication patterns, which
decides the number of replicas to place, with the selection of node patterns, which

17

Introduction

decides where to place the replicas. However, the number of feasible node pat-
terns grow exponentially with the problem size, and including all feasible patterns
in the model is feasible only for very small cases. Nevertheless, we compare the
efficiency of solving the direct MIP formulation and solving the reformulation, by
optimizing over a small subset of the node patterns. The results show that the
reformulation performs better.

This paper is co-authored with Professor Bjørn Nygreen, and published in In-
ternational Journal of Cloud Computing, Vol. 4, No. 2, 2015, pp. 130 - 149.

1.2.5. Paper IV: A Branch and Price Approach for Deployment
of Multi-tier Software Services in Clouds

This paper consider the same problem as in Paper III, but instead of generating
the node patterns in advance of calling the solver on the reformulation, we propose
to generate the node patterns dynamically, in a column generation fashion. The
column generation is implemented in a branch and bound (B&B) framework, to
form a B&P. The master problem corresponds to the reformulation of Paper III,
while the subproblem has similarities with a knapsack problem. The subproblem
is formulated both as a MIP and as a shortest path problem with resource con-
straint (SPPRC). The underlying network of the SPPRC utilizes the properties
of the problem, and is to our knowledge novel. The subproblem formulations are
respectively solved by both a MIP solver and a label-setting algorithm (LSA). The
branching on the node pattern variables is done by a problem specific branching
rule, which imposes new constraints and variables in the subproblem MIP, and
has implications for the LSA.

A contribution of the paper is a heuristic label-setting algorithm, which based
on a reduced network and simplified dominance rule, produces new node patterns
quicker than the MIP solver. To maintain an exact and complete solution method,
the heuristic LSA is complemented with the exact MIP solver. However, in some
nodes of the enumeration tree, no improving node patterns can be found, and
hence, using the heuristic algorithm is inefficient. Another contribution of this
paper is a simple rule to decide whether the heuristic algorithm should be used in a
node, or if the exact MIP solver should be called directly. The computational study
of the paper shows the benefits of using a heuristic subproblem solver in addition
to the exact MIP, and also demonstrates that the B&P approach outperforms the
solution approach used in Paper III.

This paper is co-authored with Professor Bjørn Nygreen, and is submitted to
an international journal.

18

1.3. Contributions

1.2.6. Paper V: Adaptive Large Neighborhood Search Heuristics
for Multi-tier Service Deployment Problems in Clouds

The purpose of this paper is to present a heuristic solution approach that pro-
duces solutions quicker than the B&P of Paper IV. While we in Paper III and
IV emphasize that we are considering a static problem with sufficiently long and
stationary demand periods, there might also be situations where a new solution is
needed more quickly. In this paper, we propose two adaptive large neighborhood
search (ALNS) heuristics, one for the case where only a private cloud is used for
deployment and one for the hybrid cloud setting. The neighborhood operators of
the two algorithms differ to some degree.

The main contribution of the paper is an adaption of the standard ALNS frame-
work to include LS operators on top of the repair operators. That is, after a
solution is destroyed and subsequently repaired, an LS operator is called to find
the local minimum with respect to the operator. A set of swap operators are
included, and in each iteration, one operator is selected and used. The selec-
tion is based on the standard adaptive operator selection principle applied for the
destroy and repair operators in the literature. Moreover, another feature of the
proposed heuristics is the usage of a general-purpose MIP solver in one of the
repair operators. This operator solves a reduced version of the direct MIP model
presented in Paper III, where parts of the variables are fixed. The fixed variables
correspond to the non-destroyed part of the solutions. Since the MIP-based re-
pair operator is used side by side with faster, but simpler insertion-based repair
operators, we modify the scoring mechanism of the repair operators to consider
the time consumption.

The numerical results presented in the paper show that the inclusion of the LS
operators is beneficial. Furthermore, the results show that the ALNS performs
better than the B&P on the larger test cases, also with a longer run time. However,
on small and medium-sized cases in the hybrid cloud setting, the B&P is clearly
better than the ALNS when given enough run time.

This paper is co-authored with Professor Jean-François Cordeau, Professor Lars
Magnus Hvattum and Professor Bjørn Nygreen, and is submitted to an interna-
tional journal.

1.3. Contributions

This section presents the contribution of this thesis to the research community
and the industry. Lastly, a note on the author’s contributions to the papers is
given.

19

Introduction

1.3.1. Thesis Contribution to the Research Community
The contribution of each paper to the research community is already discussed
in Sections 1.2.2 through 1.2.6. The papers are presented at several operations
research conferences, including INFORMS 2011 and 2013, ISMP 2012, Optimiza-
tion Days 2014, IFORS 2014, and EURO 2015. In addition, Paper I is presented
at the IEEE/ACM 6th International Conference on Utility and Cloud Computing
in 2013.

Papers I and II conduct a combined performance and dependability analysis of
fault-tolerant SaaS services. In addition to the contribution of the methods, we
believe that studying the performance and dependability of cloud service simul-
taneously has a value, and deserves more attention in the research community.
While there exists several works that either analyze the performance or the de-
pendability of cloud services, there seems to be little work done on a combined
analysis.

Papers III, IV, and V consider the same service deployment problem. In addi-
tion to the proposed methods, a contribution of these papers is the description of
an optimization model that regards placement and resource reservation for pas-
sive standby replicas, such that when a failure occurs, a passive replica is ready
to take over the service delivery. This consideration is novel compared with the
related works in the literature. Regarding the generality of the B&P and ALNS
approaches, they are definitely tailored to the problem, but they also utilize some
ideas that can be useful in other applications. The subproblem of the B&P is
formulated as an SPPRC and solved by an LSA. Furthermore, the formulation
is heuristically reduced and the dominance rule of the LSA is thereby simplified.
Even though problem-specific features are used in the formulation and the follow-
ing simplification, we feel that the formulation might be used as inspiration in
other applications. The main contribution of ALNS algorithms, with respect to
generality, is the inclusion of LS operators. Although the operators are designed
for the problem at hand, they are in principle general swap operators. In addition,
the idea of using LS operators on top the repair operators are entirely general,
and can be used in every application.

1.3.2. Thesis Contribution to the Industry
Many of the guarantees promised in the SLAs of IaaS and SaaS providers are
sometimes so imprecise that even major outages do not violate them (Undheim
et al., 2011). If the SLA guarantees by purpose are designed to be imprecise, and
perhaps worthless, is not discussed in this thesis. However, it might be the case
that providers lack the tools to be able to guarantee a reasonable QoS. If this is the
case, some of the models incorporating fault tolerance considerations in this thesis
might be of use. In many applications, fault tolerance is an important issue, and

20

1.4. Concluding Remarks and Future Research

in many real-world use cases, the users do not tolerate severe service downtimes.
As already pointed out in the literature, to increase the adoption of cloud services
for business applications, a shift towards higher dependability is needed.

1.3.3. The Author’s Contributions to the Papers in the Thesis
All papers included in this thesis has two or more authors, and the aim of this
section is to describe the contribution of the first author (the candidate) of these
papers. The first author is named the Author in this section. For all five papers,
the Author has been responsible for the writing. Nonetheless, all co-authors have
given valuable feedback on the writing of the various papers.

The ideas and problems studied in this thesis were established and developed
during and after the master’s thesis of the Author (Gullhav, 2011). Both Bjørn
Nygreen and Poul E. Heegaard took part in this process. Additionally, during
the work with Paper III, we had a cooperation with Telenor’s Research and Fu-
ture Studies Department (a Norwegian Telecommunications company), which also
provided us with ideas.

The ideas for the solution methods in Papers I and II were proposed by Poul
E. Heegaard, but were implemented and refined by the Author with input from
Poul E. Heegaard and Bjørn Nygreen. The ideas for the solution methods in
Paper III and IV were proposed by Bjørn Nygreen, and the final algorithm was
developed as a collaboration between the Author and Bjørn Nygreen. However,
the Author did the implementation. Paper V is based on research done at the
Centre interuniversitaire de recherche sur les réseaux d’entreprise, la logistique et
le transport (CIRRELT) in Montréal, Canada. The ideas of the solution method
came from both Lars Magnus Hvattum and Jean-François Cordeau, with whom
I had to the pleasure to collaborate with at CIRRELT. The development of the
algorithm was done in cooperation with Jean-François Cordeau, Lars Magnus
Hvattum, and Bjørn Nygreen. The implementation was done by the Author, but
with valuable input from Lars Magnus Hvattum, which helped speed up the code.

1.4. Concluding Remarks and Future Research
Operations research can assist the cloud computing industry in solving different
types of decision problems. This thesis studies some problems related to resource
allocation, and provides models and methods to aid cloud services providers when
confronting these problems. Even though the market for cloud services has been
growing and is expected to continue to grow in the coming years, there are still
obstacles that may hinder further growth. Low service availability and low QoS
guarantees are mentioned among the largest obstacles and weaknesses of cloud
computing. We argue that due to the faulty nature of the underlying infrastruc-

21

Introduction

ture of clouds today, there is a need to account for failures in the QoS assessment
of the provided services. This type of analysis is a combined performance and
dependability analysis, also denoted performability analysis. Previous research
names redundancy as the key to be able to tolerate faults, and a way to imple-
ment redundancy in a cloud context is to replicate the VMs of the services. In
this view, optimization-based resource allocation methods that regard redundancy
techniques should be important for service providers.

Papers I and II consider the problem of obtaining the response time distribution
of a multi-tier cloud service by means of a combined performance and dependabil-
ity analysis. The papers differ in the type of assumptions made; while Paper I
assumes exponentially distributed inter-arrival and service times of the requests,
and proposes pure analytic methods, Paper II assumes a non-exponential service
time distribution, and propose a hybrid approach with an analytic dependability
model and a simulation-based performance model. Papers III, IV and V present
optimization models with associated solution methods for an SP’s resource alloca-
tion problem, where the aim is to find a cost-efficient static deployment of a set of
services while maintaining a satisfactory QoS. Papers III and IV propose column
generation-based algorithms to solve the optimization problem, while the solution
method of Paper V is based on the ALNS framework.

Even though the models and methods proposed in the papers of this thesis
are ultimately tailored to the problem at hand, there are definitely some general
concepts that can be used in other applications. To name a few: the decomposition
applied in the analysis in Papers I and II are applicable to many problems, the
heuristic simplification of the SPPRC and the corresponding LSA might contain
ideas that are useful in other applications, and the concept of using local search
operators on top of the standard ALNS framework, as done in Paper V, is still
unexplored for different types of problems.

Every research project has its scope and limitations. In this thesis, we are
considering some problems with associated features and simplifications within the
domain of resource allocation problems. The resources provided by the network
that connects users and clouds are often overlooked in the literature on resource
allocation problems. In this introduction, we have briefly touched this issue, but
it remains out of scope of this thesis. However, Papagianni et al. (2013) present
a work in this direction, by providing a unified resource allocation framework for
both computing and networking resources.

Moreover, the optimization models and methods of this thesis are based around
the assumption of the existence of stationary demand periods of a certain length,
and the provided solutions are a static deployment for a given period. This work
should be complemented with models and methods that, on the contrary, aim at
obtaining solutions for cases where the demand is non-stationary. Such dynamic
models could take into account migration of VMs from a node to another, and
also provide strategies to recover from severe failures.

22

1.4. Concluding Remarks and Future Research

Another possible extension of this work is the construction of more complex
service models. Within the framework provided in Papers I and II, it is possible to
adapt the performance and dependability models to consider more complex service
types. Furthermore, the inclusion of requirements for geographical distribution of
the VM replicas in the models could be valuable. Geographical distribution of
replicas fulfill at least two purposes. Firstly, it makes the services more resilient
to data center outages, and secondly in cases where the users are in different
geographical regions, the users might get serviced from a nearby VM.

23

Bibliography
M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein. A comparative analysis of

network dependability, fault-tolerance, reliability, security, and survivability.
IEEE Communications Surveys Tutorials, 11(2):106–124, 2009.

F. Alam, S. Mohan, J. W. Fowler, and M. Gopalakrishnan. A discrete event
simulation tool for performance management of web-based application systems.
Journal of Simulation, 6(1):21–32, 2012.

D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. Energy-aware autonomic
resource allocation in multitier virtualized environments. IEEE Transactions
on Services Computing, 5(1):2–19, 2012.

D. Ardagna, G. Casale, M. Ciavotta, J. Pérez, and W. Wang. Quality-of-service
in cloud computing: modeling techniques and their applications. Journal of
Internet Services and Applications, 5(1):11, 2014.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G.
Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010.

N. Ashrafi, O. Berman, and M. Cutler. Optimal design of large software-systems
using n-version programming. IEEE Transactions on Reliability, 43(2):344–350,
1994.

A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

F. Belli and P. Jedrzejowicz. An approach to the reliability optimization of soft-
ware with redundancy. IEEE Transactions on Software Engineering, 17(3):
310–312, 1991.

E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner, Y. Moatti, and D. Lorenz.
Guaranteeing high availability goals for virtual machine placement. In 2011
31st International Conference on Distributed Computing Systems, pages 700–
709, 2011.

25

Bibliography

O. Boxma and H. Daduna. Sojourn times in queueing networks. Stochastic Anal-
ysis of Computer and Communication Systems, pages 401–450, 1990.

D. Breitgand and A. Epstein. SLA-aware placement of multi-virtual machine
elastic services in compute clouds. In N. Agoulmine, C. Bartolini, T. Pfeifer,
and D. O’Sullivan, editors, Integrated Network Management, pages 161–168.
IEEE, 2011.

R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Generation Computer Systems, 25(6):599 – 616, 2009.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya.
Cloudsim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Software: Practice
and Experience, 41(1):23–50, 2011.

H. Cambazard, D. Mehta, B. O’Sullivan, and H. Simonis. Bin packing with lin-
ear usage costs – an application to energy management in data centres. In
C. Schulte, editor, Principles and Practice of Constraint Programming, volume
8124 of Lecture Notes in Computer Science, pages 47–62. Springer Berlin Hei-
delberg, 2013.

R. Chakka and I. Mitrani. Approximate solutions for open networks with break-
downs and repairs. Stochastic Networks, Theory and Applications. Royal Sta-
tistical Society Lecture Notes Series, 4:267–280, 1996.

L. Columbus. Roundup of cloud computing forecasts and market estimates, 2015,
2015. URL http://www.forbes.com/sites/louiscolumbus/2015/01/24/
roundup-of-cloud-computing-forecasts-and-market-estimates-2015/.
Last visited 2015-11-29.

M. J. Csorba, H. Meling, and P. E. Heegaard. Ant system for service deployment
in private and public clouds. In Proceedings of the 2nd Workshop on Bio-inspired
Algorithms for Distributed Systems, pages 19–28, New York, NY, USA, 2010.
ACM.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield.
Remus: High availability via asynchronous virtual machine replication. In Pro-
ceedings of the 5th USENIX Symposium on Networked Systems Design and Im-
plementation, pages 161–174, Berkeley, CA, USA, 2008. USENIX.

J. Dantas, R. Matos, J. Araujo, and P. Maciel. An availability model for eucalyptus
platform: An analysis of warm-standy replication mechanism. In 2012 IEEE
International Conference on Systems, Man, and Cybernetics, pages 1664–1669.
IEEE, 2012.

26

Bibliography

T. Distler, R. Kapitza, I. Popov, H. P. Reiser, and W. Schröder-Preikschat.
SPARE: Replicas on hold. In Proceedings of the 18th Network and Distributed
System Security Symposium, Geneva, Switzerland, 2011. The Internet Society.

T. C. Ferreto, M. A. Netto, R. N. Calheiros, and C. A. D. Rose. Server consol-
idation with migration control for virtualized data centers. Future Generation
Computer Systems, 27(8):1027 – 1034, 2011.

G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. Enhanced model-
ing and solution of layered queueing networks. IEEE Transactions on Software
Engineering, 35(2):148–161, 2009.

F. C. Gärtner. Fundamentals of fault-tolerant distributed computing in asyn-
chronous environments. ACM Computing Surveys, 31(1):1–26, 1999.

H. Gavranović and M. Buljubašić. An efficient local search with noising strategy
for google machine reassignment problem. Annals of Operations Research, pages
1–13, 2014.

R. Ghosh, K. Trivedi, V. Naik, and D. S. Kim. End-to-end performability analysis
for infrastructure-as-a-service cloud: An interacting stochastic models approach.
In 2010 IEEE 16th Pacific Rim International Symposium on Dependable Com-
puting, pages 125–132, Los Alamitos, CA, USA, 2010. IEEE Computer Society.

H. Goudarzi and M. Pedram. Multi-dimensional SLA-based resource allocation for
multi-tier cloud computing systems. In 2011 IEEE 4th International Conference
on Cloud Computing, pages 324–331, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

H. Goudarzi and M. Pedram. Energy-efficient virtual machine replication and
placement in a cloud computing system. In 2012 IEEE 5th International Con-
ference on Cloud Computing, pages 750–757, Los Alamitos, CA, USA, 2012.
IEEE Computer Society.

M. Grottke, V. Apte, K. Trivedi, and S. Woolet. Response time distributions in
networks of queues. In R. J. Boucherie and N. M. van Dijk, editors, Queueing
Networks, volume 154 of International Series in Operations Research & Man-
agement Science, pages 587–641. Springer US, New York, USA, 2011.

A. N. Gullhav. Service deployment in heterogeneous cloud-like environments.
Master’s thesis, Norwegian University of Science and Technology (NTNU), 2011.

L. Heilig and S. Voß. Decision analytics for cloud computing: A classification and
literature review. In A. Newman and J. Leung, editors, Tutorials in Operations
Research–Bridging Data and Decisions, pages 1–26. INFORMS, Cantonsville,
2014.

27

Bibliography

F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. L. Lawall. Entropy:
a consolidation manager for clusters. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
pages 41–50, New York, NY, USA, 2009. ACM.

Hewlett Packard Enterprise. HPE Helion Eucalyptus, 2015. URL http://www8.
hp.com/us/en/cloud/helion-eucalyptus.html. Last visited 2015/12/09.

B. Jennings and R. Stadler. Resource management in clouds: Survey and research
challenges. Journal of Network and Systems Management, 23(3):567–619, 2015.

G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu. Generating adap-
tation policies for multi-tier applications in consolidated server environments.
In International Conference on Autonomic Computing, 2008, pages 23–32, Los
Alamitos, CA, USA, 2008. IEEE Computer Society.

H. H. Kramer, V. Petrucci, A. Subramanian, and E. Uchoa. A column genera-
tion approach for power-aware optimization of virtualized heterogeneous server
clusters. Computers & Industrial Engineering, 63(3):652 – 662, 2012.

W. Kuo and R. Wan. Recent advances in optimal reliability allocation. In G. Lev-
itin, editor, Computational Intelligence in Reliability Engineering, volume 39 of
Studies in Computational Intelligence, pages 1–36. Springer Berlin Heidelberg,
2007.

P. A. Lewis and E. J. Orav. Simulation methodology for statisticians, operations
analysts, and engineers, volume 1. Wadsworth & Brooks/Cole, Pacific Grove,
CA, USA, 1989.

S. Loveland, E. Dow, F. LeFevre, D. Beyer, and P. Chan. Leveraging virtualization
to optimize high-availability system configurations. IBM Systems Journal, 47
(4):591–604, 2008.

F. Machida, M. Kawato, and Y. Maeno. Redundant virtual machine placement for
fault-tolerant consolidated server clusters. In 2010 IEEE Network Operations
and Management Symposium, pages 32–39. IEEE, 2010.

S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi. Cloud computing
— the business perspective. Decision Support Systems, 51(1):176 – 189, 2011.

P. Mell and T. Grance. The NIST definition of cloud computing, 2011. NIST SP
800-145.

C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-Pastor,
and A. Monje. On the optimal allocation of virtual resources in cloud computing
networks. IEEE Transactions on Computers, 62(6):1060–1071, 2013.

28

Bibliography

J. Perez and G. Casale. Assessing sla compliance from palladio component models.
In 2013 15th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, pages 409–416. IEEE, 2013.

V. Petrucci, O. Loques, and D. Mossé. A dynamic optimization model for power
and performance management of virtualized clusters. In Proceedings of the 1st
International Conference on Energy-Efficient Computing and Networking, pages
225–233, New York, NY, USA, 2010. ACM.

H. Qian, D. Medhi, and T. Trivedi. A hierarchical model to evaluate quality of
experience of online services hosted by cloud computing. In 2011 IFIP/IEEE
International Symposium on Integrated Network Management, pages 105–112.
IEEE, 2011.

S. Ramesh and H. G. Perros. A multi-layer client–server queueing network model
with non-hierarchical synchronous and asynchronous messages. Performance
Evaluation, 45(4):223–256, 2001.

ROADEF. ROADEF/EURO challenge 2012: Machine reassignment, 2012. URL
http://challenge.roadef.org/2012/en/. Last visited 2015/10/01.

M. Rosenblum. The reincarnation of virtual machines. ACM Queue, 2(5):34–40,
2004.

C. Sauer and H. Daduna. Availability formulas and performance measures for
separable degradable networks. Economic Quality Control, 18(2):165–194, 2003.

M. Sedaghat, F. Hernandez-Rodriguez, and E. Elmroth. A virtual machine re-
packing approach to the horizontal vs. vertical elasticity trade-off for cloud
autoscaling. In Proceedings of the 2013 ACM Cloud and Autonomic Computing
Conference, pages 6:1–6:10, New York, NY, USA, 2013. ACM.

R. Singh, P. Shenoy, M. Natu, V. Sadaphal, and H. Vin. Predico: A system
for what-if analysis in complex data center applications. In Proceedings of the
12th International Middleware Conference, pages 120–139, Laxenburg, Austria,
2011. International Federation for Information Processing.

B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. Virtual infrastructure
management in private and hybrid clouds. IEEE Internet Computing, 13:14–22,
2009.

B. Speitkamp and M. Bichler. A mathematical programming approach for server
consolidation problems in virtualized data centers. IEEE Transactions on Ser-
vices Computing, 3(4):266–278, 2010.

29

Bibliography

H. Sun, J. Han, and H. Levendel. A generic availability model for clustered
computing systems. In Proceedings of the 2001 Pacific Rim International Sym-
posium on Dependable Computing, pages 241–248. IEEE, 2001.

J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente. Cloud
brokering mechanisms for optimized placement of virtual machines across mul-
tiple providers. Future Generation Computer Systems, 28(2):358 – 367, 2012.

K. S. Trivedi. Probability & statistics with reliability, queuing and computer science
applications. John Wiley & Sons, New York, USA, 2002.

K. S. Trivedi, G. Ciardo, M. Malhotra, and R. A. Sahner. Dependability and
performability analysis. In L. Donatiello and R. Nelson, editors, Performance
Evaluation of Computer and Communication Systems, volume 729 of Lecture
Notes in Computer Science, pages 587–612. Springer Berlin Heidelberg, 1993.

A. Undheim, A. Chilwan, and P. E. Heegaard. Differentiated availability in cloud
computing slas. In 2011 12th IEEE/ACM International Conference on Grid
Computing, pages 129–136, Los Alamitos, CA, USA, 2011. IEEE Computer
Society.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi. An analyt-
ical model for multi-tier internet services and its applications. SIGMETRICS
Performance Evaluation Review, 33(1):291–302, 2005.

B. Urgaonkar, A. L. Rosenberg, and P. Shenoy. Application placement on a cluster
of servers. International Journal of Foundations of Computer Science, 18(05):
1023–1041, 2007.

VMware White Paper. Protecting mission-critical workloads with vmware fault
tolerance, 2009. URL https://www.vmware.com/files/pdf/resources/ft_
virtualization_wp.pdf.

L. Wang, J. Tao, M. Kunze, A. C. Castellanos, D. Kramer, and W. Karl. Scientific
cloud computing: Early definition and experience. In Proceedings of the 10th In-
ternational Conference on High-Performance Computing and Communications,
pages 825–830. IEEE, 2008.

B. Wickremasinghe, R. Calheiros, and R. Buyya. Cloudanalyst: A cloudsim-based
visual modeller for analysing cloud computing environments and applications.
In 2010 24th IEEE International Conference on Advanced Information Net-
working and Applications, pages 446–452, Los Alamitos, CA, USA, 2010. IEEE
Computer Society.

S. P. Woolet. Performance analysis of computer networks. PhD thesis, Duke
University, Durham, NC, USA, 1993.

30

Bibliography

L. Wu and R. Buyya. Service level agreement (SLA) in utility computing systems.
In Grid and Cloud Computing: Concepts, Methodologies, Tools and Applica-
tions, pages 286–310. Information Resources Management Association, 2012.

K. Xiong and H. Perros. Service performance and analysis in cloud computing.
In 2009 World Conference on Services - I, pages 693–700, Los Alamitos, CA,
USA, 2009. IEEE Computer Society.

31

Paper I
Anders N. Gullhav, Bjørn Nygreen and Poul E. Heegaard:

Approximating the
Response Time
Distribution of
Fault-tolerant Multi-tier
Cloud Services

Proceedings of the 2013 IEEE/ACM 6th International Conference

on Utility and Cloud Computing, pp. 287-291

Approximating the Response Time
Distribution of Fault-tolerant
Multi-tier Cloud Services

Abstract:
Cloud services with a multi-tiered architecture are often difficult to evaluate
in terms of performance and dependability. The tiered architecture compli-
cates the resource capacity decisions of the service provider, and makes it
more demanding to maintain a good balance between capacity and quality
of service. In this work we present an approximation of the response time
distribution of a multi-tier service, which should help the providers in their
planning and operation. The approximation also takes into account failures
in the virtual machines in which the service runs, and acknowledges repli-
cation of the tiers. We demonstrate that the approximation can be used as
decision support for service providers.

2.1. Introduction
In the resource planning and operation of cloud services, providers need tools
which express a relation between resource capacity and quality of service (QoS) of
their services (Iyoob et al., 2013). Many cloud services can be modeled as being
composed of different functional components running in several virtual machines
(VMs), where the components belong to different tiers in the service. When a
customer requests the service, the request will be processed at possibly each of
the tiers before the response is returned. Hence, one can abstract such a service
as an open queuing network where each queue corresponds to a tier. These types
of services are often denoted multi-tier services, and a typical three-tier service is
composed of a web server tier, an application logic tier and a database tier.

In multi-tier services the response time is an important statistic which quantifies
the QoS. Typically the mean response time is used as the QoS-metric, but we argue
that the percentiles (e.g. 90th or 95th percentiles), or more generally the response
time distribution, are of higher importance to the end-users.

In addition to low response time, end-users require that the services they use
are reliable. Even if failures happens rarely, a multi-tier service which relies on
several VMs might be severely affected by a single failure if proper measures are

35

Approximating the Response Time Distribution of Multi-tier Cloud Services

not taken. The result might be high response times or even downtime. A means
to achieve a reliable service on an unreliable infrastructure, like the cloud data
centers, is utilization of fault-tolerance techniques such as redundancy (Avižienis
et al., 2004). Remus (Cully et al., 2008) is a technique for hot standby replication
of VMs where the standby replicas share the backup resources.

For the multi-tier services considered herein we assume that each tier can be
replicated into a number of copies, where each run in a separate VM. Henceforth,
we denote these VMs running the same service component simply as replicas and
assume that all replicas of a tier have equal service capabilities. We distinguish
between active and passive replicas, where active replicas serve demand and pas-
sive replicas are hot standbys sharing their resources with other passive replicas.
We assume that there can be more than one active replica of a given tier, and
apply a static load-balancing scheme with equal probability of selecting an active
replica at that tier.

There have been much research on the problem of computing the response time
distribution of queuing networks, and a review, now fairly dated, is given by
Boxma and Daduna (1990). Determination of the response time distribution in
a network is generally difficult, especially when the network is not overtake-free
(Boxma and Daduna, 1990). In such cases one usually approaches the problem
by making an approximation. One type of approximation is based on an idea to
decompose the network into single queues and analyze each queue in isolation.
Woolet (1993) presented a method for M/M/c/b queues based on this principle,
which again builds on an approach presented in Harrison (1981). Woolet’s method
is in Grottke et al. (2011) revisited and extended to queues which have phase-
type service time distribution. This method is used by Heegaard and Trivedi
(2009) in order to model the survivability of a telecommunication network. Our
approximation is based the method presented in Woolet (1993) and Grottke et al.
(2011), but we also take into account failures in the servers. There also exist
research deriving approximate solutions for queuing networks with failures, like
Chakka and Mitrani (1996) and Sauer and Daduna (2003). But to our knowledge
there are not much work done on computing response time distributions in queuing
networks with replicated servers.

The main contribution of this work is to provide a model of a multi-tier cloud
service deployed on an unreliable infrastructure, from which one can extract an
approximate response time distribution. This approximation takes into account
performance degradation as an effect of failures. In addition the approximation
gives us the possibility to evaluate and compare the performance of different op-
erational configurations for a given service.

In the next section we present a failure model used to extract the failure prob-
abilities of the tiers, while Section 2.3 details our approximation of the response
time distribution. In Section 2.4 we demonstrate how the approximation could
be used as decision support for providers, and finally, Section 2.5 concludes the

36

2.2. Failure Model

paper.

2.2. Failure Model
Dependability can be defined as the ability of a system to deliver a service which
can justifiably be trusted (Laprie, 1992). Moreover, performability is typically
defined as a measure of the likelihood that some subset of functions of a system
is performed correctly (Al-Kuwaiti et al., 2009), for example that the response
time of a service should be less than T seconds with probability P . Performability
couples performance and dependability, and is an attribute of fault-tolerance which
can be defined as the ability of a system to continue normal operation despite the
presence of hardware or software faults (Al-Kuwaiti et al., 2009). Fault-tolerance
if often used as a means to achieve a dependable system, and a typical approach
is to introduce redundancy via replication of system components, like software
and hardware, but also replication of information. For software replication, which
is considered herein, there exist different types of approaches, generally classified
according to whether the passive replicas are hot or cold, and have dedicated or
shared access to resources.

A service failure, or failure, can be seen as a transition from correct service
to incorrect service (Avižienis et al., 2004). We only consider failures from the
physical servers, the software and operation, but exclude the application software
failures which take down more than one replica. We assume that the replicas of
a service run in different VMs on different physical machines, and thus make the
assumption of independent failures, both between replicas of the same tier and
between tiers.

When a tier operates correctly, a request from the end-user is transmitted to
one of the active replicas of that tier and the selected active replica processes the
request. At regular time intervals the state information in the active replicas is
transmitted to the passive replicas, such that the passive replicas are ready to take
over service delivery in case of a failure. So, when a failure occurs in one of the
active replicas, a passive replica is made active and starts to serve the end-users,
and the failed replica is being repaired.

Mathematically, we denote the failure rate of active and passive replicas as γ and
β, respectively, and assume that the failures occur according to a Poisson process.
Furthermore, we let the repair time be exponentially distributed with parameter δ,
and assume that the replicas are repaired independently. When an active replica
fails, we assume that the time until the passive replica is ready to serve demand
is negligible. Thus the passive replica is activated instantly. Moreover, we let k
and m be the number of active and passive replicas of a tier, and n = k + m.

We represent the failure model described above as a Continuous Time Markov
Chain (CTMC). The CTMC is depicted in Figure 2.1, where the state is rep-

37

Approximating the Response Time Distribution of Multi-tier Cloud Services

resented by the tuple (# active not failed, # passive not failed). Note that we
assume to have enough "repair men" to repair all replicas simultaneously.

k
m

k
m − 1 · · · 1

0
0
0

kγ +

mβ

kγ +

(m − 1)β 2γ γ

nδ(n − 1)δ2δδ

Figure 2.1.: Failure model of a tier represented as a CTMC

Denote the transition rate matrix of the CTMC in Figure 2.1 as G and let π
denote the vector of stationary probabilities of the CTMC. π is found by solving
the linear system of equations Gπ = 0 with the additional normalizing constraint�

i∈I πi = 1, where I is the set of states of the CTMC and 0 is a column vector
of only zeros. Generally, vectors are columns indicated with bold font, i.e. x, and
we denote rows as x�.

2.3. Approximation of the Response Time
Distribution

Our approximation of the response time distribution of a multi-tier service is
based on the response time block method (Woolet, 1993; Grottke et al., 2011) for
finding response time distributions in open queuing networks. The method makes
the assumption that successive response times of the queues in a path through
the network are independent, which is true for some special cases (Boxma and
Daduna, 1990). If this is not the case, an approximate distribution is returned.
We give an overview of the method below.

2.3.1. The Response Time Block Method
The main idea of the method is to assume that the response time distribution at
each queue in the network can be represented by the distribution of time to reach
an absorbing state of a CTMC. The CTMCs representing the individual queues
are denoted response time blocks, and from these one constructs a total CTMC
by "gluing" the CTMCs of the queues together. The response time distribution of
the network is then given by the absorption time distribution of the total CTMC.

For an M/M/1/FIFO queue with arrival rate λ and service rate µ, the response
time distribution is an exponential distribution given as 1 − e−(µ−λ)t (Trivedi,
2002, Sect. 8.2). If the queue is stable, i.e. λ < µ, the response time block can

38

2.3. Approximation of the Response Time Distribution

be depicted as in Figure 2.2. The "In" state is the starting state of this CTMC
model, while the "Out" state is either an "In" state for another response time block
or the absorbing state in the total CTMC. Similarly one can construct response
time blocks for other types of queues. However as we will come to, we model the
replicas as M/M/1 queues, and refer to Grottke et al. (2011) for description of
response time blocks of more complex queues.

In Out

µ − λ

Figure 2.2.: Response time block for an M/M/1 queue

Now, considering a network of Q M/M/1 queues in series, one could construct
a response time block for each of the queues, and glue them together by modeling
the "Out" states of a given queue as the "In" state of the next. The "Out" state
of the Qth queue corresponds to the absorbing state representing the departure
from the network. Figure 2.3 shows the CTMC of this queuing network, where
λq and µq, q ∈ Q = {1, . . . , Q} are the respective arrival and service rates of the
queues, and "Abs" is the absorbing state.

1 2 · · · Q Abs

µ1 − λ1 µ2 − λ2 µQ−1 − λQ−1 µQ − λQ

Figure 2.3.: CTMC of Q M/M/1 queues in series

To be able to find the distribution of time to reach the absorbing state of the
queuing network in Figure 2.3, i.e. the response time distribution, define H as
the transition rate matrix on the set of states Q� = {1, . . . , Q, Q + 1}, where the
last state is the absorbing state. Let p(t) = [p1(t), . . . , pQ+1(t)]� be the vector
of probabilities of being in state q� ∈ Q� at time t. pQ+1(t) will then correspond
to the response time distribution and is found by solving (2.1) with initial state
probabilities p(0) = [1, 0, . . . , 0]�.

d

dt
p(t) = Hp(t) (2.1)

2.3.2. Including Failures in the Response Time Block Method
Before we begin to elaborate on how to include failures in the response time
blocks, we should first consider our case with one or more active replicas in parallel
at each tier under the assumption that no failures occur. We generally assume

39

Approximating the Response Time Distribution of Multi-tier Cloud Services

that a request is processed exactly once at each of the tiers and that the arrival
and service rates are Poisson. Thus the multi-tier service can be modeled as a
tandem-like queuing network with one or more M/M/1 queues at each tier and
only feed-forward arcs. Figure 2.4 visualizes a three-tier service with three active
replicas at tier 1, two active replicas at tier 2 and two active replicas at tier 3
as a queuing network. Note that the passive replicas do not serve demand in a
failure-free situation and hence are not shown in the figure. We assume that the
active replicas of the same tier have equal service time distribution and that the
arrivals are split uniformly between the active replicas at each tier. Considering the
example service in Figure 2.4, the latter means that if the total service demand is
λ requests per time unit, the arrival rate at an active replica of tier 1 is λ/3 and the
arrival rate at an active replica of tier 2 and 3 is λ/2. Assuming that the demand
arrives according to a Poisson process and the service times are exponentially
distributed with parameter µ1, µ2 and µ3 at each active replica of the three
tiers, respectively, the response time of a request at tier 1 will be exponentially
distributed with parameter µ1 − λ/3. Likewise, the response time of a request
at tier 2 and 3 will be exponentially distributed with parameter µ2 − λ/2 and
µ3 − λ/2. Since the active replicas at each tier are equal and the requests to a
tier are split equally between the active replicas, the network in Figure 2.4 can be
modeled as the CTMC in Figure 2.5.

µ1

µ1

µ1

µ2

µ2

µ3

µ3

Tier 1 Tier 2 Tier 3

Figure 2.4.: A multi-tier service depicted as a queuing network

1 2 3 Abs

µ1 − λ/3 µ2 − λ/2 µ3 − λ/2

Figure 2.5.: CTMC of the example three-tier service (in Figure 2.4)

Now, let us introduce some more mathematical notation. Let Q = {1, . . . , Q}
be the set of tiers in our Q-tier service, and for each tier q ∈ Q let Iq denote
the set of states in the CTMC failure model of that specific tier (cf. Section 2.2).

40

2.3. Approximation of the Response Time Distribution

Then, denote the stationary probability vector of the failure model of tier q as πq,
and let aqi be the number of active replicas in failure state i of the failure model
of tier q.

To include failure in the CTMC of the response time block we recognize that
a failure state i in the failure model of tier q results in aqi active replicas at that
tier. So if we treat the CTMC of the failure model of the individual tiers as a
Markov reward model (Trivedi, 2002), where the rewards, λqi, are given by (2.2),
we could interpret these rewards as the arrival rate to a queue at tier q when the
tier is in failure state i. Based on these rewards we define IS

q = {i ∈ Iq : λqi < µq}
as the set of states where the resulting M/M/1 queue at tier q with arrival rate
λqi would be stable. We also define IB

q = Iq \ IS
q as the set of non-stable states,

and let the blocking probability of a tier be defined as πBq =
�

i∈IB
q

πqi. Then we
scale the stationary probabilities of the failure model according to (2.3), so that
the stationary probabilities of the failure states resulting in a stable tier sum to 1,
and compute the expected arrival rate to an active replica in tier q, λ̄q as in (2.4).

λqi =
�

λ
aqi

if aiq > 0
∞ otherwise

(2.2)

π�
qi = πqi

1 − πBq
(2.3)

λ̄q =
�

i∈IS
q

π�
qiλqi (2.4)

When we build the CTMC based on the response time block method, the tran-
sition rates from state q ∈ Q to q + 1 will be µq − λ̄q, and the response time
distribution of the queuing network, given by pQ+1(t), is found by solving (2.1).

In this presentation of our approximation three matters should be noted. Firstly,
we return to the assumptions made by the response time method regarding in-
dependent response times in successive queues in a path through the network.
One of the conditions for this assumption to hold is that the network should be
overtake-free (see Boxma and Daduna (1990) for a discussion). The described
service in this work can be visualized as the network in Figure 2.4, and hence
a request may overtake another by taking a different path through one of the
tiers. This means that the queuing network characterizing the multi-tier service
violates the assumption about independent response times, and therefore the re-
sponse time block method will provide an approximate distribution. Secondly,
since we assume independent failures and repairs between replicas of different
tiers, we can consider the tiers independently in the failure model and hence also
compute λ̄q independently. Lastly, the calculation of the approximate response
time distribution only reflects the response time of the failure states resulting in

41

Approximating the Response Time Distribution of Multi-tier Cloud Services

stable queues. The reason behind this modeling decision is the fact that even if
a tier is not completely down, i.e. all replicas are failed, the resulting response
time would probably be too high to be within the tolerance level of the end-users.
Therefore we treat all failure states which result in non-stable queues as blocked,
which in turn means that the distribution will be a defective distribution (Trivedi,
2002), specifically the response time distribution given that all tiers are stable.
Let πSB = 1 − �

q∈Q
�

i∈IS
q

πqi be the probability that the service is blocked,
then the defective response time distribution, FT (t), is given by (2.5).

FT (t) = (1 − πSB)pQ+1(t) (2.5)

In order to test the correctness of the approximation, we have compared the
approximation with an empirical response time distribution acquired by simula-
tion of several test cases. Because of the page limitation of this paper, we omit
the results of these tests, but the tests show that the deviation between the ap-
proximation and the simulated response time distributions is small.

2.4. Decision Support for Providers
Having presented our approximation of the response time distribution we will in
this section consider an example of a three-tier service, and assume that the service
provider presents its end-users a service level agreement (SLA) specifying that the
service should provide a response time below T seconds with probability P . Table
2.1a displays the service data, where the service rate vector µ = [µ1, µ2, µ3]� gives
the service rate for each active replica of each tier. Note that we assume that all
active and passive replicas have the same failure rate, γ and β, respectively, and
equal repair rate, δ. We should mention that the service data are guesstimates
but considered to be realistic.

Table 2.1.: Data and replication patterns for the example service

Parameter Value
γ 0.041667 hr−1

β 0.020833 hr−1

δ 2.0 hr−1

λ 100 sec−1

µ [60, 70, 80]�

(a) Service data

RP k� m�

1 [3, 3, 2] [0, 0, 0]
2 [3, 3, 2] [0, 0, 1]
3 [4, 3, 2] [0, 0, 0]
4 [4, 3, 2] [0, 0, 1]
5 [3, 3, 3] [0, 0, 1]

(b) Replication patterns
(RP)

To show how a service provider could utilize the approximation as decision

42

2.4. Decision Support for Providers

support, we will assess the response time distribution of the example service with
varying numbers of active and passive replicas at each tier, while keeping the
demand, service rates and failure characteristics fixed. We name a combination of
the number of active and passive replicas at each tier of the service a replication
pattern. The number of active replicas of the tiers is given by the vector k =
[k1, k2, k3]�, and the number of passive replicas is correspondingly given by m,
so a replication pattern is defined by the tuple (k, m). Table 2.1b presents five
replication patterns (labeled RP 1 to RP 5), which we will analyze below.

A plot of the five resulting response time distributions is depicted in Figure
2.6, and Table 2.2 summarizes some important statistics about the distributions.
Now, we consider an SLA specifying that the response time should be below 0.2
seconds with probability 0.95, and examine the five replication patterns in order.

• If we start by inspecting RP 1, we see that the resulting blocking probability
is too high for it to satisfy the SLA requirement. A simple inspection show
that tier three is the weak link, and hence if we add a passive replica to this
tier, one should expect the blocking probability to reduce significantly. This
is seen in RP 2.

• If we instead of adding a passive replica to tier 3 add another active replica
to tier 1, we obtain RP 3. We can see that the blocking probability of RP 2
is much lower than that of RP 3, but regarding the mean response time, we
observe the opposite. Nevertheless, considering the SLA requirement, RP 2
is better than RP 3 as the value of the 95th percentile is lower.

• Now combining RP 2 and 3 to obtain the replication pattern denoted RP 4,
we now see that the SLA requirement is satisfied, and one might conclude
that we should stop investigating more replication patterns.

• However on the basis of RP 4, what if we add one active replica to the third
tier and jointly remove one at the first. Now, we end up with RP 5, and we
see that they are almost equal performance-wise.

In order to identify if RP 4 is better than RP 5, one could try to compute the
cost of both replication patterns and compare them. This might not be straight
forward. A service provider might offer several services which interrelate in some
way, such that the cost of a replication pattern of one service is dependent on
other services. In this case, it might be possible to use an optimization model to
simultaneously select the optimal replication pattern for each service in the service
portfolio of the provider.

43

Approximating the Response Time Distribution of Multi-tier Cloud Services

Table 2.2.: Statistics of the replication patterns (times in seconds)

Case
Mean

response
time

Percentiles
πSB

90th 95th
RP 1 0.095998 0.20316 0.29586 0.042767
RP 2 0.099936 0.18002 0.21475 0.0034988
RP 3 0.086743 0.18200 0.25957 0.041618
RP 4 0.090301 0.16164 0.19211 0.0023024
RP 5 0.088178 0.15939 0.19076 0.0024933

0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.7

0.8

0.9

1.

t � sec.�

F
T
�t� RP 1

RP 2
RP 3
RP 4
RP 5

Figure 2.6.: Graphical comparison of the response time distribution of the repli-
cation patterns. Note that the origin of the plot is in (0.1, 0.7).

2.5. Conclusions
We have presented a method for finding an approximation of the response time
distribution of multi-tiered cloud services. In addition we demonstrated how the
approximation could be used as decision support for service providers in their
planning process. We also noted that it is not necessarily straight forward to
decide which of two or more replication patterns that is the best if all satisfy the
SLA requirement. Thus, this approximation might be used in conjunction with
an optimization model to find the optimal configuration of a set of services.

44

Bibliography
M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein. A comparative analysis of

network dependability, fault-tolerance, reliability, security, and survivability.
IEEE Communications Surveys Tutorials, 11(2):106–124, 2009.

A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

O. Boxma and H. Daduna. Sojourn times in queueing networks. Stochastic Anal-
ysis of Computer and Communication Systems, pages 401–450, 1990.

R. Chakka and I. Mitrani. Approximate solutions for open networks with break-
downs and repairs. Stochastic Networks, Theory and Applications. Royal Sta-
tistical Society Lecture Notes Series, 4:267–280, 1996.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield.
Remus: High availability via asynchronous virtual machine replication. In Pro-
ceedings of the 5th USENIX Symposium on Networked Systems Design and Im-
plementation, pages 161–174, Berkeley, CA, USA, 2008. USENIX.

M. Grottke, V. Apte, K. Trivedi, and S. Woolet. Response time distributions in
networks of queues. In R. J. Boucherie and N. M. van Dijk, editors, Queueing
Networks, volume 154 of International Series in Operations Research & Man-
agement Science, pages 587–641. Springer US, New York, USA, 2011.

P. G. Harrison. Approximate analysis and prediction of time delay distributions
in networks of queues. In Int. CMG Conference, pages 70–80, 1981.

P. E. Heegaard and K. S. Trivedi. Network survivability modeling. Computer
Networks, 53(8):1215–1234, 2009.

I. Iyoob, E. Zarifoglu, and A. B. Dieker. Cloud computing operations research.
Service Science, 5(2):88–101, 2013.

J.-C. Laprie, editor. Dependability: Basic Concepts and Terminology. Springer-
Verlag, New York, 1992.

45

Bibliography

C. Sauer and H. Daduna. Availability formulas and performance measures for
separable degradable networks. Economic Quality Control, 18(2):165–194, 2003.

K. S. Trivedi. Probability & statistics with reliability, queuing and computer science
applications. John Wiley & Sons, New York, USA, 2002.

S. P. Woolet. Performance analysis of computer networks. PhD thesis, Duke
University, Durham, NC, USA, 1993.

46

Paper II
Anders N. Gullhav, Bjørn Nygreen and Poul E. Heegaard:

Simulation of the Response
Time Distribution of
Fault-tolerant Multi-tier
Cloud Services

submitted to an international journal

Is not included due to copyright

Paper III
Anders N. Gullhav and Bjørn Nygreen:

Deployment of Replicated
Multi–tier Services in
Cloud Data Centres

International Journal of Cloud Computing 4 (2), 2015, pp. 130-149

Deployment of Replicated Multi–tier
Services in Cloud Data Centres

Abstract:
A provider of cloud software services is faced with different decisions related
to the operation of his services. Firstly, he needs to configure the services such
that the quality of service is in accordance with the specified requirements,
and secondly, the services need to be deployed in the provider’s private cloud
in a cost and energy-efficient manner. We argue that these two sets of deci-
sions need to be taken simultaneously in order to make an optimal decision,
and we present mixed integer linear programming models optimising these
decisions. One of our models also allows the provider to deploy services in
a public cloud. We are testing a direct formulation against a reformulation
utilising pre-generated node patterns, and observe that the reformulation pro-
duces solutions of better quality within a fixed runtime. Furthermore, the
effects of bursting services into a public cloud are investigated.

4.1. Introduction
The providers of cloud software services, like web services and business appli-
cations, are on a short-term basis faced with different decision problems. In the
service delivery, the provider faces the requirements of the end-users towards qual-
ity of service (QoS), and such requirements are typically specified in the service
level agreements (SLAs). Typical QoS requirements include maximum average
response time, maximum downtime or more complex requirements such as an
upper bound on the 95th percentile of the response time distribution. In order
to satisfy the end-users’ requirements for a given service, the provider needs to
allocate enough resources to the service. In addition, for business critical appli-
cations which are sensitive to downtime or high response times, one also needs
to consider the consequences of failures. A means to achieve a service tolerant
to failures is to introduce software redundancy through replication of the virtual
machines (VMs) involved in the service. In this paper, the services in focus are
a collection of collaborating software components, where each component has dif-
ferent functionality and all components are required in the service delivery. This
is commonly known as a multi-tier service, and a typical service is a three-tier
web service composed of a web server, an application logic and a database server.
To increase the fault-tolerance of a multi-tier service, we introduce the option to

71

Deployment of Replicated Multi–tier Services in Cloud Data Centres

use passive backup replicas of the different components, i.e. tiers, which are ready
to serve the end-users whenever a failure occurs. However, because of the com-
plex nature of multi-tier services, deciding on the appropriate replication level of
each component in a multi-tier service and the amount of resources allocated to
the replicas to satisfy the QoS requirements while being cost-efficient is generally
difficult.

Service providers which operate their own data centre, a private cloud say, also
seek to minimize the operational costs of their hardware servers. We denote the
servers as nodes in the following. A crucial cost component in the operation of
data centres in a short-term perspective is the costs of energy usage needed for
running and cooling down the nodes. Although the idle power consumption of
CPUs is decreasing, other components in the nodes are still power-inefficient in
an idle state, and thus, an idle node might still consume more than 70 per cent of
the peak power (Beloglazov et al., 2011). This implies that a means to reduce the
power consumption of data centres is to turn off unused nodes or let these enter
a low-power mode. In turn, this leads to a strategy where the VMs composing a
service are deployed on a minimal subset of the nodes.

We see that we have two different types of decision problems, namely the prob-
lem of selecting replication levels of the service components such that the QoS
requirements are fulfilled, and the problem of deploying the resulting replicas (i.e.
VMs). These two problems are interrelated as the cost of deployment is depen-
dent on the replication levels chosen for the different components of all the services
offered by the provider. Therefore, decisions in both problems should be taken si-
multaneously, and furthermore, in order to make the optimal decisions, all services
should be treated together when deciding on the deployment.

The overall problem can be modelled and solved in a static or dynamic way.
When solving the problem statically, one sees the demand as stochastic and sta-
tionary, and the resulting solution would be a stationary deployment and configu-
ration of the services and the nodes. When the demand is periodic and the periods
are sufficiently long, one can find a stationary solution for each demand period
and apply a solution when one enters the corresponding period. Such periods
might be working hours, evenings, weekends, etc. with different characteristics.
On the other hand, a dynamic version of the problem would be solved whenever
it is necessary. A condition which will make it necessary to dynamically solve the
problem is that the demand leaves its stationary state, e.g. there are non-periodic
spikes in the demand, and hence, a new solution is needed quickly. Another dy-
namic problem is to decide the temporary migration of VMs enforced by failure
situations. In this work, we are focusing on modelling and solving the problem
statically. However, we take also into account failures in the VMs in the services,
although in a static manner. Since we are focusing on finding a stationary solu-
tion, the time to find the optimal or near-optimal solution is of less importance
than the quality of the solution. Therefore, we emphasise obtaining a solution

72

4.2. Related Work

with high quality above constructing fast algorithms, and we develop mixed in-
teger linear programming (MILP) models considering both the replication of the
multi-tier services and the deployment of the replicas. To maintain linearity while
including generally non-linear QoS requirements in the models, we utilise pre-
generated configurations for each of the multi-tier services, denoted replication
patterns, which specify replication levels of the different components resulting in
satisfactory QoS. In the formulation of the MILPs, we have taken two approaches.
Firstly, we present a direct formulation, and secondly, we give a reformulation util-
ising pre-generated node patterns. A node pattern is here a feasible combination
of different VMs deployed on a node, e.g. respecting the node capacity and other
constraints. In a third model, we also allow the service provider to burst replicas,
i.e. VMs, into a public cloud.

In the next section, we present other research related to our work and show how
this paper fits into the literature. Then, in Section 4.3, we give a detailed spec-
ification of the problem, before we present our mathematical models, in Section
4.4. Section 4.5 contains our results and discussion of these, and lastly, Section
4.6 concludes this paper.

4.2. Related Work
There exist research on several different decision problems in cloud computing sys-
tems, and an overview of operations research problems with associated references
categorised according to whether the perspective is from a provider, consumer
or broker is presented by Iyoob et al. (2013). In this section, we will review
some literature on the deployment problems faced by a service provider in a cloud
computing context. In addition, we will introduce some work which utilises pre-
generated columns, e.g. routes or packing patterns, in mathematical programming
models.

4.2.1. Related Work on Deployment Problems
Hermenier et al. (2009) present solution procedures for dynamically allocating
VMs to nodes in clusters and creating reconfiguration plans for migration of the
VMs, using constraint programming. The objective is to minimise the number of
nodes used, in order to save energy, while ensuring that each VM has access to
sufficient memory and CPU power. Ferreto et al. (2011) propose heuristic solution
methods for a multidimensional bin-packing problem (map VMs to nodes) with
migration control. Speitkamp and Bichler (2010) present an algorithm for a static
server allocation problem, which consists of finding mappings between services
and capacitated servers and minimize the cost of the servers needed. The authors
state that the problem is strongly NP-hard, even when only one type of resource

73

Deployment of Replicated Multi–tier Services in Cloud Data Centres

is considered and all servers have the same cost and capacity. Another approach
looking at the allocation problem statically is presented by Goudarzi and Pedram
(2012). They model a problem consisting of decisions related to both the repli-
cation and placement of VMs. The objective of their heuristic algorithm used to
solve the model is to minimize the cost of energy usage. Petrucci et al. (2010)
have taken an approach to dynamically manage the cluster power consumption
through a MILP model, where one is to take decisions about which servers that
are active, their respective CPU frequencies, and find a mapping between a set of
software applications and the server. The objective of the approach is to minimise
power consumption while meeting the performance requirements of the applica-
tions. The problem is modelled as a variant of the one dimensional variable sized
bin-packing problem. Rao et al. (2010) propose a joint load balancing and power
control scheme for distributed cloud data centres, where load balancing is con-
ducted on the data centre level and power control is conducted on the individual
servers.

There has also been done some work on developing column generation methods
for service deployment problems. Breitgand and Epstein (2011) use a combinato-
rial auctions approach to solve a problem where the objective is to maximize profit
by placing VMs on a fixed number of capacitated nodes. On small test instances,
the results show that the column generation approach is significantly faster than
the direct integer programming (IP) formulation when setting a target optimality
gap of 10 per cent. On the larger test instances, the direct IP formulation is not
capable of finding a solution within the time limit, but the column generation
approach is still able to find reasonably good solutions. Cambazard et al. (2013)
develop a column generation method to compute dual bounds of a multi-period
bin packing problem with linear usage costs of the bins, reflecting the energy costs
of nodes. Their approach computes tight bounds on test instances provided by
the industry.

While the literature reviewed above contains models mainly focusing on data
centres operated by a single entity, Van den Bossche et al. (2010) introduce a
binary integer programming (BIP) model that is used to deploy a set of appli-
cations in a hybrid cloud environment. The objective is to minimise the costs of
the service provider for executing the applications. The private clouds are capaci-
tated in terms of CPU power and memory, and hence, tasks must be outsourced if
there is no free capacity in the private clouds. Tordsson et al. (2012) take the role
of a cloud broker and optimise the deployment of VMs among multiple clouds.
The authors describe a cloud deployment BIP model minimising the total cost of
deployment, while ensuring that the requirements of the customers are fulfilled.
They include simple constraints for modelling the customers’ requirements, such
as a minimum and maximum size of the VMs and a minimum and maximum load
to be placed in each cloud.

The work mentioned above do not consider the facts that VMs might be struc-

74

4.2. Related Work

turally dependent and that the services consist of multiple tiers. When ensuring
satisfactory QoS for a multi-tier service, one needs to take into account the total
QoS over all tiers, and not treat the VMs individually. Such considerations are
included in the resource allocation models of Goudarzi and Pedram (2011) and
Ardagna et al. (2012). Both works consider the cost of power usage and models
penalties for not satisfying the agreed requirements on the mean response time.
Their resulting models are mixed-integer non-linear programs, and they develop
heuristic algorithms for solving the problem. Like our work, these two papers
model the services as composed of several tiers and consider QoS metrics involv-
ing the performance of all VMs of a service. However, while our objective is to
provide a stationary solution, Goudarzi and Pedram (2011) and Ardagna et al.
(2012) takes a dynamic perspective when modelling and solving the deployment
and resource allocation problem.

None of the works reviewed in this section and none to our knowledge considers
failures or fault-tolerance techniques together with deployment and resource allo-
cation decisions. In our models, we include passive back-up replicas to improve the
fault-tolerance of the services. Another novelty of our work is the introduction of
replication patterns which makes it possible to include complex QoS requirements
for multi-tier services in linear optimisation models.

4.2.2. Related Work on Pre-generation of Columns

Pre-generation of columns in optimisation models have been utilised in several
applications, such as routing, scheduling and bin-packing problems. Fagerholt
and Christiansen (2000) and Fagerholt (2001) consider ship scheduling problems,
and pre-generate candidate ship schedules for each ship. After the generation
of candidate schedules, the optimisation model select one schedule out of the
candidates for each ship. They acknowledge that a full enumeration of all feasible
candidate schedules may require large computational times, and therefore they
reduce the number of schedules heuristically by only allowing schedules with a
ship capacity utilisation over a certain threshold. Another application of column
pre-generation in a ship routing and scheduling problem is presented by Hennig
et al. (2012). Therein, only a subset of the feasible routes are generated, and the
candidate routes are selected based on capacity utilisation and sailing cost.

In a bin packing-like problem formulation considering multiple container load-
ing, Eley (2003) uses a greedy heuristic to pre-generate candidate packing patterns.
The resulting patterns are all maximal, i.e. there is not capacity for adding more
items to the packing patterns.

75

Deployment of Replicated Multi–tier Services in Cloud Data Centres

4.3. QoS-aware Deployment of Multi-tier Services
Generally, the problem discussed in this work consists of finding cost-effective
deployments of the cloud software services of a single service provider on a given
infrastructure, while ensuring satisfactory QoS. The infrastructure is either self-
owned, in the following denoted a private cloud, or leased from an infrastructure-
as-a-service (IaaS) provider, i.e. a public cloud. The service provider provides a set
S of multi-tier services, and each service i ∈ S consists of a set Qi of components
(tiers). SLAs specify QoS requirements for each service i, and to comply with the
requirements the service components might be replicated. The modelling of the
decisions concerning replication is explained in Section 4.3.2.

4.3.1. Service Deployment and Resource Consumption
Firstly, considering the deployment in the private cloud of the service provider, we
let N be the set of nodes, indexed by n, which can be used for deployment, and G
be the set of resources provided by the nodes, indexed by g. In this work, we treat
all nodes as identical. In the replication of the service components, we distinguish
between two types of replicas: replicas which serve demand and backup replicas
which do not serve demand unless a failure has occurred. We denote the former
type of replica an active replica and the latter a passive replica. When deploying
the replicas, we forbid replicas of the same component to be deployed on the same
node, and we denote this as node-disjoint deployment. This rule is employed to
ensure that in case a node fails, no more than one replica of a given component is
brought down.

We use the binary variables wiqn and viqn to indicate the deployment of an active
and passive replica of component q of service i on node n, respectively. From now
on, we will denote the component q of service i as the pair (i, q) for simplicity. In
a virtualised data centre, the nodes run a Virtual Machine Monitor (VMM) which
is handling the resource management and guaranteeing each replica a minimum
amount of the resources, e.g. CPU and memory. The amount of the resources
each replica is guaranteed might be modelled as a variable or a fixed parameter. In
this work, we have chosen to fix the amount of resources before the optimisation,
and in addition, we have let the amount of a given resource guaranteed to a
replica be independent of which node the replica runs on. Mathematically, we
denote GAiqg the amount of resource type g ∈ G guaranteed to an active replica
of the pair (i, q) on the node where the replica is deployed. Considering passive
replicas, these should be able to quickly take over service delivery after a failure
affecting a corresponding active replica. In order to do so, the passive replicas
might need to maintain some state information. This is done by synchronisation
with the active replicas, and thus, the passive replicas need to be guaranteed an
amount of resources for management purposes. We denote the amount of resource

76

4.3. QoS-aware Deployment of Multi-tier Services

g guaranteed to a passive replica of the pair (i, q) by GP iqg.
As mentioned, we will also present a model allowing for deployment in a public

cloud. This type of deployment, often referred to as cloud bursting, is modelled
differently as the service provider has no control over the underlying infrastruc-
ture in the public cloud. Specifically, this means that the service provider cannot
decide which node in the public cloud should run a given replica. From the service
provider’s point of view the public cloud is viewed as an infinitely large pool of
resources which can be used to run replicas at a cost. This large pool can be
provided by several IaaS providers, and can be composed of data centres in differ-
ent geographical locations. For the purpose of this work, we do not differentiate
between different providers or locations, and hence, we treat the public cloud as
a generic infinite pool of resources. The cost of deploying a replica of the pair
(i, q) in the public cloud is symbolized as CCiq, and this cost is dependent on the
resource usage of the various service components.

4.3.2. QoS and Replication
As stated, there exists SLAs specifying QoS requirements for each service. A
typical QoS requirement related to performance may be to define an upper bound
on the average response time or an upper bound on given percentile, e.g. the
95th, of the response time distribution. When discussing the response time of a
service, we assume it to be the time from a service receives a service request to the
time when the service is ready to provide the response, while ignoring the network
latency.

Replication of the service components is performed as a means to achieve a
QoS according to the requirements specified in the SLA. Increasing the number
of active replicas of a component will increase the amount of resources accessible,
and thus, the response time of a service request is assumed to decrease. However,
the components are assumed to have a probability of failing, and if a failure
occurs, fewer VMs will service the end-user’s requests, and hence, the response
time might increase. To prevent failures from degrading the performance to a
non-satisfactory level, one might deploy passive replicas as they will help reducing
the performance degradation stemming from failures and consume fewer resources
than active replicas.

Since the amount of resources guaranteed to the active replicas, GAiqg, is fixed,
the response time of a service is only dependent on the number of active and
passive replicas of each component in the service. The main motivation behind
the fixing of the resources guaranteed to the active replicas is that it reduces
the complexity of the decisions related to the replication. When the resource
amounts of the replicas are fixed, it is possible to derive a finite set of different
ways to replicate a given service outside of the optimisation model. We denote
the items in this set as replication patterns, which basically are combinations of

77

Deployment of Replicated Multi–tier Services in Cloud Data Centres

active and passive replicas for each component of a given service satisfying the
QoS requirement. The number of replicas of a component required for satisfying
the QoS requirement is of course depending on what value GAiqg is fixed to, and
at the same time the value chosen also influences the average number of replicas
deployed on a node. For operational and failure handling purposes, it might be
desirable to not run too many replicas on a single node since a node failure will
take down many replicas. On the other hand, having fewer and larger replicas will
probably make it harder to utilise the capacity efficiently, and hence, reduce the
consolidation effect related to energy-efficiency. So, in the models presented in this
paper, we let the user decide on the size of the replicas based on his preferences,
and the selected size might vary between components.

An approach for approximating the response time distribution of replicated
multi-tier services under the existence of failures is presented by Gullhav et al.
(2013). Therein the services are modelled as open queuing networks with failing
servers, and these queuing networks are mapped to a continuous time Markov
chain (CTMC) using a method called the response time block method (Grottke
et al., 2011). The approximation of the service response time corresponds to the
absorption time distribution in the CTMC. As such, this approach can be used to
analyse whether a given replication pattern satisfy the QoS requirement specified
in the SLA, or not.

In this paper, we do not go into detail on how to derive feasible replication
patterns, but assume that such patterns are given as input to the models, and
in the optimisation process, we select one replication pattern for each service
i. Note that the derivation of replication patterns for a given service can be
done independently of other services. So for now, we consider a case where there
exists a set of replication patterns, Ri, for each service i, and we use the binary
variables yir to indicate if replication pattern r is chosen for service i. Each
replication pattern r specifies a number of active and passive replicas, RAiqr and
RP iqr, respectively, for each pair (i, q). Figure 4.1 illustrates a replication pattern
for a three-tier service consisting of a web server component, an application logic
component and a database component, where the number of active replicas of each
component is 2, 1 and 1, respectively; and the number of passive replicas is 1, 1 and
2. At first sight, the number of different replication patterns is vast, but one might
be able to say something about dominance. Consider a replication pattern, say r1,
specifying a number of active and passive replicas of each component in a service
which is satisfactory in terms of the QoS requirement. Then it is not necessary
to include a replication pattern of the same service, say r2, with more active or
passive replicas of a given component without removing active or passive replicas
from another component since this would lead to a more expensive solution.

Generally, GP iqg ≤ GAiqg since the passive replicas are not supposed to serve
demand in a failure-free situation. Provided that a passive replica is to quickly
take over service delivery, it will need to have access to GAiqg resources if a failure

78

4.3. QoS-aware Deployment of Multi-tier Services

Web
Server

Web
Server

Web
Server

Application
Logic

Application
Logic

2/3 Database
Server

Database
Server

Database
Server

1/2 1/3

Figure 4.1.: A replication pattern for a three-tier service. The shaded boxes repre-
sent active replicas, while the white boxes represent passive replicas.

occurs. If a node is fully loaded with replicas and the passive replicas on the
node are only guaranteed access to GP iqg resources, no passive replicas at the
node will be able to become active and collaborate in the service delivery when
a failure occurs. On the other hand, given that a node is fully loaded and the
passive replicas are guaranteed access to GAiqg resources, all passive replicas on
the node can become active at the same time. The second case will be more
expensive as more nodes are needed to run the replicas. The first case is less
meaningful in our viewpoint since in case of a failure, one must with a high
probability migrate a passive replica to a lightly loaded node or possibly start up
a new node before letting it become active and serve demand. Our approach takes
a direction between these two mentioned cases by ensuring that any passive replica
at each node can be activated at a given instant. This is done by guaranteeing
that each node running a passive replica has enough free resources such that the
passive replica requiring the most resources of type g is able to serve demand if a
corresponding active replica fails. Thus, we assume that it is possible to scale up
the VMs running on the nodes in the private cloud momentarily. The VMM from
Xen, for example, features a mechanism to pause and unpause VMs, which can
be used for managing passive replicas in our work. Distler et al. (2011) uses this
mechanism in their approach to a cloud-aware fault-tolerant system using passive
replicas. However, we acknowledge the occurrence of situations where there are
necessary to let more than one passive replica on a given node serve demand. As
a means to reduce the probability of such an event, we set an upper bound on the
number of passive replicas each node can run, NP .

Although we are not considering the network latency, we set a bound on the
number of different services which can be run from a single node, NS . By doing
this we are implicitly driving different components from the same service to be run
on the same node, and thus, the amount of inter-node communication stemming,
from the collaboration between components of the same service, is expected to
decrease.

79

Deployment of Replicated Multi–tier Services in Cloud Data Centres

4.3.3. Objectives
In the models only considering deployment in the private cloud, the chosen ob-
jective is to minimise the number of nodes turned on and running VMs because
the nodes consume as much as 70 per cent of the peak power usage in an idle
state. Hence, these models have similarities with models of cutting-stock and bin-
packing problems. When allowing for deployment in a public cloud as well, the
cost of deploying replicas in the public cloud needs to be taken into account. In a
model with a long-term perspective, one could have included decisions about in-
frastructure investments in the private cloud, and weighted the costs of investment
and long-term operation to the costs of using public clouds. As our models take
a short-term viewpoint, we instead assume that a service provider would utilise
the public cloud if and only if there is not enough capacity in the private cloud to
run the services. Thus, the objective in the last model consists of minimising the
cost of deployment in the public cloud.

4.4. Models of the Service Deployment Problem
This section presents mathematical models of the problem described in Section
4.3, and to ease the understanding of the models all mathematical symbols are
summarised in Table 4.1 with a note on where they first appear in Section 4.4. We
start by presenting a direct formulation of the deployment problem, and then show
how the problem can be formulated in terms of node patterns. Lastly, we extend
the reformulated model to allow for deployment in a public cloud in addition to
the service provider’s private cloud.

4.4.1. Direct Formulation of the Deployment Problem
The direct formulation uses the binary variables wiqn and viqn to indicate deploy-
ment of an active replica and a passive replica of component q ∈ Qi of service
i ∈ S on node n ∈ N , respectively. By using these variables, we can formulate
the following model.

min z =
�

n∈N
un (4.1)

�

r∈Ri

yir = 1, ∀i ∈ S (4.2)

�

n∈N
wiqn −

�

r∈Ri

RAiqryir = 0, ∀i ∈ S, q ∈ Qi (4.3)

80

4.4. Models of the Service Deployment Problem

�

n∈N
viqn −

�

r∈Ri

RP iqryir = 0, ∀i ∈ S, q ∈ Qi (4.4)

wiqn + viqn − sin ≤ 0, ∀i ∈ S, q ∈ Qi, n ∈ N (4.5)
�

i∈S
sin ≤ NS , ∀n ∈ N (4.6)

�

i∈S

�

q∈Qi

viqn ≤ NP , ∀n ∈ N (4.7)

mng − (GAiqg − GP iqg)viqn ≥ 0, ∀i ∈ S, q ∈ Qi, n ∈ N , g ∈ G (4.8)

�

i∈S

�

q∈Qi

GAiqgwiqn+

�

i∈S

�

q∈Qi

GP iqgviqn + mng − NCngun ≤ 0, ∀n ∈ N , g ∈ G (4.9)

mng ≥ 0, ∀n ∈ N , g ∈ G (4.10)

wiqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (4.11)

viqn ∈ {0, 1}, ∀i ∈ S, q ∈ Qi, n ∈ N (4.12)

sin ∈ {0, 1}, ∀i ∈ S, n ∈ N (4.13)

un ∈ {0, 1}, ∀n ∈ N (4.14)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (4.15)

The objective function (4.1) minimises the number of nodes used for deployment.
The equations (4.2) ensure that one replication pattern is selected for each service,
and equations (4.3) and (4.4) establish the relation that RAiqr active and RP iqr

passive replicas of the pair (i, q) should be deployed when replication pattern r is
selected for service i. The binary variables sin equal 1 if a least one replica of any
component of service i is deployed on node n, and so the constraints (4.5) restrict
deployment of both an active and a passive replica of the same component on the
same node. The inequalities (4.6) and (4.7) set upper bounds, NS and NP , on the
number of different services and passive replicas deployed on each node. Moreover,
the continuous variables mng denote the amount of resource g ∈ G reserved to let
any passive replica become active and serve demand at node n. (4.8) sets these
variables to be greater than or equal to (GAiqg −GP iqg), i.e. the additional amount
of resources required to become active, for the passive replica requiring the most
additional resources. The constraints (4.9) define the resource capacities of the
nodes, where the first term and second term represents the resources guaranteed to
active replicas and passive replicas, respectively, and the third term is the amount

81

Deployment of Replicated Multi–tier Services in Cloud Data Centres

Table 4.1.: Overview of the mathematical symbols in the models and the section
where they are used in model for the first time

Sets First used

S Set of services

Sect. 4.4.1
Qi Set of components of service i
N Set of nodes
G Set of resource types

Ri Set of replication patterns for service i

B Set of node patterns Sect. 4.4.2

Parameters First used

RAiqr The number of active replicas of component q of service i in replication pattern r

Sect. 4.4.1

RP iqr The number of passive replicas of component q of service i in replication pattern r
GAiqg The amount of resources of type g guaranteed to an active replica of component q

of service i
GP iqg The amount of resources of type g guaranteed to a passive replica of component q

of service i
NCng Capacity of resource type g at node n

NP Upper bound on the number of passive replicas deployed on a node
NS Upper bound on the number of different services deployed on a node

Wbiq 1, if an active replica of component q of service i is included in node pattern b; 0,
otherwise Sect. 4.4.2

Wbiq 1, if a passive replica of component q of service i is included in node pattern b; 0,
otherwise

CCiq Cost of deploying an active or passive replica of component q of service i in the
public cloud Sect. 4.4.3

NN The number of nodes in the private cloud (only binding in the hybrid cloud model)

Decision variables First used

wiqn 1, if an active replica of component q of service i is deployed on node n; 0, otherwise

Sect. 4.4.1
viqn 1, if a passive replica of component q of service i is deployed on node n; 0, otherwise
sin 1, if at least one replica of service i is deployed on node n; 0, otherwise
un 1, if node n is turned on; 0, otherwise
yir 1, if replication pattern r is chosen for service i; 0, otherwise

mng The amount of resources of type g reserved on node n to allow for activation of a
passive replica

xb The number of node patterns of type b selected for deployment Sect. 4.4.2

wCiq The number of active replicas of component q of service i deployed in the public
cloud Sect. 4.4.3

vCiq The number of passive replicas of component q of service i deployed in the public
cloud

of resources required for activating at least one passive replica. NCng denotes
node n’s capacity of resource g and these constants is multiplied with the variable
un, so that the node cannot be used for deployment in case it is turned off. Lastly,
(4.10) - (4.15) define the variables as continuous or binary.

Since we consider a case where the nodes have identical capacity, a way to
reduce the solution space, without deteriorating the objective value, would be to
sort the nodes according to whether they are used or not. We have included the
constraints (4.16), which force the used nodes to have smaller indices than the

82

4.4. Models of the Service Deployment Problem

unused nodes, when solving the model.

un − un+1 ≥ 0, ∀n ∈ N (4.16)

4.4.2. Reformulation Based on Node Patterns
Instead of modelling the deployment decisions using the binary variables wiqn and
viqn, one could model these decisions by selection of node patterns. A node pattern
is in the context of this work a feasible combination of active and passive replicas
of different pairs (i, q) deployed on the same node. A combination of active and
passive replicas is feasible if it respects the constraints (4.5) - (4.14) above. In this
work, we have chosen to pre-generate feasible node patterns by enumeration, and
the enumeration strategy used is elaborated in Section 4.4.4.

We let xb be integer variables denoting the number of node patterns of type
b ∈ B selected in the deployment. Note that these variables are general, non-
negative integers, and not binary, as there might be optimal to deploy the replicas
so that two nodes are identical. Moreover, the parameters Wbiq indicate whether
an active replica of the pair (i, q) is contained in node pattern b. Vbiq is analogous
to Wbiq, but regards passive replicas instead. When applying a node pattern-based
approach the deployment problem can be formulated as follows.

min z =
�

b∈B
xb (4.17)

�

r∈Ri

yir = 1, ∀i ∈ S (4.18)

�

b∈B
Wbiqxb −

�

r∈Ri

RAiqryir = 0, ∀i ∈ S, q ∈ Qi (4.19)

�

b∈B
Vbiqxb −

�

r∈Ri

RP iqryir = 0, ∀i ∈ S, q ∈ Qi (4.20)

xb ∈ Z+, ∀b ∈ B (4.21)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (4.22)

The objective function, (4.17), is still minimising the number of nodes used, but
now expressed in terms of the xb variables. The constraints (4.18) are identical to
(4.2), and the equations (4.19) and (4.20) correspond to (4.3) and (4.4). Finally,
(4.21) and (4.22) define the xb and yir variables as non-negative integers and
binary, respectively.

Since each node pattern respects the node-specific constraints (4.5) - (4.14) in
the direct formulation, the two formulations are equivalent. If all feasible node

83

Deployment of Replicated Multi–tier Services in Cloud Data Centres

patterns, or all maximal node patterns (see Section 4.4.4), are included in B, the
formulations will have equal optimal objective function values.

4.4.3. Extending the Reformulated Model to Public Clouds

We are now extending the node pattern-based formulation in order to model a
situation where the service provider is allowed to deploy his services in a hybrid
cloud, composed of his own private cloud and a public cloud. Deployment in the
public cloud is done by leasing VMs from an IaaS provider, and we assume that
there exist several different types of VMs with different resource capacities and
price. We are only considering a generic public cloud, and only model the decision
of how many replicas of (i, q) to deploy in the public cloud, that is, the service
provider does not choose between different IaaS providers.

For each replica one can determine which VM type that will be used for de-
ployment in the public cloud, and this is the VM type with the lowest cost and
a resource capacity size that guarantees the required resources GAiqg, i.e. the
amount of resources needed for deploying an active replica. This means that both
an active and a passive replica of the pair (i, q) will be deployed using the same
VM type, and the cost of deploying a replica of (i, q) in the public cloud is denoted
CCiq. The reason for not distinguishing between active and passive replicas in the
public cloud is that we assume that the public cloud provider does not support
instantaneous scaling of VMs, i.e. the pause/unpause mechanism present in the
VMMs in the private cloud.

In the following formulation, we let wCiq and vCiq be non-negative integer vari-
ables denoting the number of active and passive replicas of (i, q) deployed in the
public cloud. In this work, the motivation behind deployment in the public cloud
is the occurrence of a situation where the service provider’s private cloud does not
have enough resources to run the services, that is, the number of nodes available
is limited. We use NN (= |N |) to symbolise the number of nodes in the private
cloud.

min z =
�

i∈S

�

q∈Qi

CCiqwCiq +
�

i∈S

�

q∈Qi

CCiqvCiq (4.23)

�

r∈Ri

yir = 1, ∀i ∈ S (4.24)

�

b∈B
Wbiqxb + wCiq −

�

r∈Ri

RAiqryir = 0, ∀i ∈ S, q ∈ Qi (4.25)

�

b∈B
Vbiqxb + vCiq −

�

r∈Ri

RP iqryir = 0, ∀i ∈ S, q ∈ Qi (4.26)

84

4.4. Models of the Service Deployment Problem

�

b∈B
xb ≤ NN (4.27)

xb ∈ Z+, ∀b ∈ B (4.28)

wCiq ∈ Z+, ∀i ∈ S, q ∈ Qi (4.29)

vCiq ∈ Z+, ∀i ∈ S, q ∈ Qi (4.30)

yir ∈ {0, 1}, ∀i ∈ S, r ∈ Ri (4.31)

As explained in Section 4.3.3, when considering deployment in a hybrid cloud,
we are minimising the cost of deployment in the public cloud. This is done in
(4.23). Again (4.24) is identical to (4.2). In the two sets of constraints (4.25) and
(4.26) we have added two terms, wCiq and vCiq, in order to allow for deploying
active and passive replicas in the public cloud. The inequality (4.27) ensures
that the service provider cannot select more node patterns than there are nodes
available in the private cloud, and lastly, (4.28) - (4.31) define the variables as
either non-negative general integer or binary.

4.4.4. Pre-generation of Node Patterns

Even for relatively small problem sizes, the total number of feasible node patterns
is too large for the optimisation software to handle. However, as presented in
Section 4.2.2, a typical approach would be to only optimise over a subset of the
feasible node patterns. In this work we have applied two measures to limit the
number of candidate patterns. Firstly, only maximal node patterns will be selected
as candidates. We say that a node pattern is maximal if no further replicas,
either passive or active, can be included in the pattern without breaking feasibility
according to the constraints (4.5) - (4.9). The number of maximal node patterns
will like the total number of node patterns grow exponentially with the problem
size, so we also need to reduce the number of candidates in another way. Hence
secondly, we include some randomness in the candidate selection, where each
maximal node pattern is assigned a score based on a random number and the slack
in the constraints (4.9). The number of candidates selected is then controlled by a
threshold value. The candidate node patterns are written to disk, and thereafter
used as input and read by the optimisation software.

Note that when we do not include all feasible node patterns in the optimisation
model, the equalities (4.19) - (4.20) and (4.25) - (4.26) need to be turned into
≥-constraints.

85

Deployment of Replicated Multi–tier Services in Cloud Data Centres

4.5. Numerical Results
In this section we present a comparison of the direct formulation and the refor-
mulation based on node patterns. We also investigate the effect of the size of the
private cloud, i.e. the number of nodes (NN), in the hybrid cloud model. Firstly,
we will give a brief overview on the setup of the experiments.

4.5.1. Setup of Experiments
In the testing of the models allowing for deployment in the private cloud only, we
have used 6 test instances. These test instances vary with respect to the number
of different services and the total number of component types, but for all tests
presented in this paper, we have only considered one resource type, namely the
CPU power. The number of components per service, |Qi|, is varied between 3
and 5 with an average of 4 for the different services, and we have set NP to 4 and
NS to 3. In Section 4.5.3, when solving the model allowing for deployment in a
public cloud, we have considered 6 different types of VMs, differing in size and
price, which can be used for deployment in the public cloud. Table 4.2 gives an
overview of the characteristics of the test instances.

Table 4.2.: Overview of the private cloud test instances. The Mini-
mum/maximum number of active replicas on a node refers to the
number of active replicas in the maximal packing of a node with the
smallest/highest number of active replicas.

Test
instance

services Total
components

types

Minimum/maximum
number of active

replicas on a node

Avg. # replication
patterns per service

Total # maximal
node patterns

(in 106)

P5 5 20 3/6 5.8 0.1
P10 10 40 2/7 7.7 1.7
P20 20 80 2/7 7.7 17.2
P30 30 120 2/7 7.7 54.9
P40 40 160 2/8 7.8 144.3
P50 50 200 2/8 7.7 292.8

It is seen in Table 4.2 that the number of maximal node patterns grows expo-
nentially with the number of services and components, and even for rather small
test instances it would not be possible to use all maximal patterns. So, in the
models with the node pattern formulation we only optimise over a small fraction
of the total number of node patterns, but perform tests with different fractions for
each test instance. All node patterns for a given test instance are generated based
on the same seed in the random number generation, but with different acceptance
thresholds. Since every feasible pattern is found in the same order between dif-
ferent runs of the pre-generation, an increase in the threshold value will generate

86

4.5. Numerical Results

the same node patterns as with a lower threshold in addition to some new node
patterns.

Regarding the distribution of the size of the active replicas, we have expressed
this in Table 4.2 as the minimum and maximum numbers of active replicas one
can have in a maximal packing of a node. In the largest test instances, one can see
that it is possible to have up to eight active replicas on a node. However, the size
of the active replicas is also so that it is possible to construct a maximal packing of
a node with only one active replica and four passive replicas, which is counted as
two active replicas since there is reserved enough capacity to immediately activate
a passive replica.

All models are solved using the optimisation software XpressMP 7.4.0, and the
tests are run on a CentOS 5.8 machine with a dual core 3.0GHz Intel E5472 Xeon
processor and 16 GB of memory. The optimisation software is able to utilise eight
threads, and all optimisation runs have a runtime limit of 5 hours.

4.5.2. The Direct Formulation Versus the Reformulation
The uppermost part of Table 4.3 shows the performance of the direct formulation
on the six test instances. We can see that we are not able to prove optimality in
any of the test instances within the runtime limit, and the gap between the best
solution and best bound is quite large. The results of the reformulation, shown
in the lower part of the table, list the results of the test instances three times
(except for P5), using different fractions of node patterns. For readability we have
added an ’a’, ’b’ and ’c’ to the test instance name, with increasing fraction of node
patterns included. Because of the large amount of maximal node patterns in the
larger test instances, the number of node patterns used in the optimisation is a
small fraction of the total number.

For the P5 instance we are able to optimise using all maximal node patterns,
and hence, the solution found is optimal. We also notice that the direct formu-
lation is capable of finding this solution, although not being able to prove the
optimum. For all the other test instances, we see that the reformulated model
produces better solutions than the direct model, even when using a small fraction
of the node patterns. In fact, optimising over a small amount of node patterns
produces equally good or better solutions than optimising over a large amount.
Even though we are not able to prove optimality or find the optimal solution
within the maximum run time of 5 hours, it is seen that the reformulation pro-
duces fairly good solutions early. The column showing the time to find the first
solution proven to be within 10 per cent of the best bound displays that good
solutions are found during the first 2 to 3 minutes of optimisation.

It is difficult to compare the best bounds of the direct formulation and the
reformulation since the reformulation is based on a heuristic sample of the maximal
node patterns. Keep in mind that the best bound is dependent on the node

87

Deployment of Replicated Multi–tier Services in Cloud Data Centres

Table 4.3.: Direct formulation vs. reformulation. The solution times (in seconds)
only accounts for the time spent optimising, i.e. not pre-generating
columns in the reformulated model. For the reformulation the right-
most column indicates the number of node patterns included in per-
centage of the number of maximal node patterns for each test instance
(cf. Table 4.2).

Test
Instance

Best
objective

value

Best
bound

Best sol.
found in

root node?

Time to first
sol. within
10% of best

bound**

Solution
time

Node
patterns
included

Direct
Formulation

P5 15 14 No 7 7*

N/A
P10 37 29 Yes N/A 2*
P20 74 56 Yes N/A 25*
P30 116 85 Yes N/A 207*
P40 156 114 Yes N/A 1234*
P50 193 141 Yes N/A 2730*

Reformulation

P5 15 15 Yes 30 30 100%
P10a 33 33 No 10 382 9.34%
P10b 33 33 No 22 500 18.70%
P10c 33 33 No 60 1611 37.37%
P20a 66 65 No 20 2110* 0.933%
P20b 66 65 No 38 5677* 1.87%
P20c 66 65 No 142 10401* 4.68%
P30a 103 101 No 47 5384* 0.466%
P30b 103 101 No 109 10742* 0.935%
P30c 106 100 Yes 262 262* 1.87%
P40a 139 136 No 69 12950* 0.187%
P40b 143 136 Yes 161 1861* 0.374%
P40c 143 135 Yes 499 499* 0.936%
P50a 173 168 No 88 15396* 0.0938%
P50b 179 168 Yes 202 202* 0.187%
P50c 177 167 Yes 596 1066* 0.468%

* Optimal solution not found within 5 hours. Time until best solution found is reported
** This is the time when the particular solution was found, not when it was proved to be within

10 % of the best bound. Note that in the reformulation the best bound depends on the node
patterns included

patterns included in the optimisation. But, when optimising over all maximal node
patterns in P10, we are able to prove, after about 1000 branches (380 seconds),
that the best bound is still 33. So, we can conclude that 33 is the optimal objective
value in the P10 case.

Regarding the hardness of solving the test instances, the direct formulation finds
the best solution (not optimal) in the root node of the branch and bound tree,
except for the smallest instance. That is, the direct formulation is not capable of
finding better solutions during the branching. For the reformulation, we observe
the same for P30c, P40b, P40c, P50b and P50c, which is due to the large amount
of node patterns included. This helps us explaining why optimising over less node
patterns gives better solutions.

88

4.5. Numerical Results

4.5.3. The Effect of the Size of the Private Cloud
Now, studying the results of the hybrid cloud model, we are focusing on the
relation between the size of the private cloud and the amount of capacity required
to run the services. We are first considering the test instance with 10 services, and
set a limit on the number of nodes in private cloud. In Table 4.3, we saw that the
minimum number of nodes required to run the services was 33, and hence, if we
set NN to 33, all service would be run in the private cloud. However, if NN lies
in the interval [1, . . . , 32], we need to distribute the replicas between the private
cloud and the public cloud.

Table 4.4 shows what effect the value of NN has on the objective value and the
hardness of the problem for a case corresponding to P10a (now labelled H10a).
In the table, we have also included the trivial case without a private cloud (i.e. 0
nodes), where all replicas need to be deployed in the public cloud. Naturally, the
objective value will decrease with an increase in NN since the objective function
only accounts for the cost of deployment in the public cloud, and the objective
value reaches a value of 0 when we have 33 nodes in the private cloud.

Table 4.4.: H10a: The effect of the number of nodes in the private cloud on the
cost and solution time

Nodes in
private cloud

(NN)

Cost of active
replicas in

public cloud

Cost of passive
replicas in

public cloud

Objective
value

Best
bound

Solution
time (sec)

0 7230 7485 14715 14715 1
10 4365 1725 6090 6090 17
15 3375 795 4170 4170 45
20 2415 195 2610 2610 213
25 1410 0 1410 1410 1752
30 405 0 405 405 2018
33 0 0 0 0 484

However, we also observe that the cost of passive replicas decrease more rapidly
than the cost of active replicas, and when NN = 25, no passive replicas run in the
public cloud. This effect can be explained by the difference in resources guaranteed
to passive replicas in the private and public cloud. As explained in Section 4.4.3,
when deployed in the public cloud, a passive replica is deployed in the same VM
type as a corresponding active replica, even though it requires fewer resources in a
failure-free situation. So, when increasing NN , we would like to move the passive
replicas to the private cloud first, until the upper bound on the number of passive
replicas on a node is reached or there are no more passive replicas deployed in the
public cloud.

Concerning the difficulty of solving the problem, we see that as long as the
number of nodes in the private cloud is relatively low, the model is solved in
relatively short time. When the number of nodes is increased the model is harder

89

Deployment of Replicated Multi–tier Services in Cloud Data Centres

to solve, that is, the solution time increases. However, note that if we set the
number of nodes in the private cloud to 33, the problem is seemingly a bit easier
to solve.

When studying H50a, corresponding to P50a, we also observe that the problem
gets harder as NN approaches the value where no replicas are deployed in the
public cloud. This is seen in Table 4.5. When NN increases from 50 to 100, we
are not able to prove the optimum within 5 hours of runtime, and when increasing
NN further to 150, the optimality gap gets quite large. Moreover, the same effect
on the cost of passive replicas as in Table 4.4 is seen; the cost of passive replicas
decreases faster than the cost of active replicas.

Table 4.5.: H50a: The effect of the number of nodes in the private cloud on the
cost and solution time

Nodes in
private cloud

(NN)

Cost of active
replicas in

public cloud

Cost of passive
replicas in

public cloud

Objective
value

Best
bound

Solution
time (sec)

0 37545 38565 76110 76110 1
25 28215 15765 43980 43980 176
50 22635 9465 32100 32100 1938

100 13125 1680 14805 14540 14507*
150 3675 90 3765 2960 13614*

* Optimal solution not found within 5 hours. Time until best solution found is reported

4.6. Conclusions
In this paper, we have developed three different MILP models considering a ser-
vice provider’s decisions related to the deployment and QoS management of his
services. To our knowledge, including fault-tolerance techniques in resource al-
location and deployment models is new and a novel feature of our work. The
two first models considered only deployment in the private cloud of the service
provider, while the last model allowed for deployment in a public cloud as well.
We utilised pre-generated node patterns in the construction of our reformulated
models. Since the number of feasible node patterns grows exponentially with the
problem size, we heuristically selected a small sample of the node patterns as
candidates in the optimisation models.

The performance of the models where tested on several test instances of different
size. We compared the two models concerning deployment only in a private cloud.
In all test instances, expect for the smallest instance, the reformulated model pro-
duced solutions of higher quality despite that we only considered a small fraction
of the total number of feasible node patterns. For the larger test instances we

90

4.6. Conclusions

were not able to prove or find the optimal solution using the reformulation, but
we noted that high-quality solutions are found early in the optimisation process.

Regarding the model allowing for deployment in a public cloud, we observed
that the hardness of the problem grew with the size of the private cloud relative to
the capacity required for running all the services, until the size of the private cloud
was large enough to run all services. Furthermore, it is shown to be preferable to
run all passive replicas in the private cloud if possible.

Acknowledgements
The authors want to thank Telenor’s Research and Future Studies Department
(Norway) for fruitful discussions and validation of the models, in addition to eco-
nomical support.

91

Bibliography
D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. Energy-aware autonomic

resource allocation in multitier virtualized environments. IEEE Transactions
on Services Computing, 5(1):2–19, 2012.

A. Beloglazov, R. Buyya, Y. C. Lee, and A. Y. Zomaya. A taxonomy and sur-
vey of energy-efficient data centers and cloud computing systems. Advances in
Computers, 82(2):47–111, 2011.

D. Breitgand and A. Epstein. SLA-aware placement of multi-virtual machine
elastic services in compute clouds. In N. Agoulmine, C. Bartolini, T. Pfeifer,
and D. O’Sullivan, editors, Integrated Network Management, pages 161–168.
IEEE, 2011.

H. Cambazard, D. Mehta, B. O’Sullivan, and H. Simonis. Bin packing with lin-
ear usage costs – an application to energy management in data centres. In
C. Schulte, editor, Principles and Practice of Constraint Programming, volume
8124 of Lecture Notes in Computer Science, pages 47–62. Springer Berlin Hei-
delberg, 2013.

T. Distler, R. Kapitza, I. Popov, H. P. Reiser, and W. Schröder-Preikschat.
SPARE: Replicas on hold. In Proceedings of the 18th Network and Distributed
System Security Symposium, Geneva, Switzerland, 2011. The Internet Society.

M. Eley. A bottleneck assignment approach to the multiple container loading
problem. OR Spectrum, 25(1):45–60, 2003.

K. Fagerholt. Ship scheduling with soft time windows: An optimisation based
approach. European Journal of Operational Research, 131(3):559–571, 2001.

K. Fagerholt and M. Christiansen. A combined ship scheduling and allocation
problem. The Journal of the Operational Research Society, 51(7):834–842, 2000.

T. C. Ferreto, M. A. Netto, R. N. Calheiros, and C. A. D. Rose. Server consol-
idation with migration control for virtualized data centers. Future Generation
Computer Systems, 27(8):1027 – 1034, 2011.

93

Bibliography

H. Goudarzi and M. Pedram. Multi-dimensional SLA-based resource allocation for
multi-tier cloud computing systems. In 2011 IEEE 4th International Conference
on Cloud Computing, pages 324–331, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

H. Goudarzi and M. Pedram. Energy-efficient virtual machine replication and
placement in a cloud computing system. In 2012 IEEE 5th International Con-
ference on Cloud Computing, pages 750–757, Los Alamitos, CA, USA, 2012.
IEEE Computer Society.

M. Grottke, V. Apte, K. Trivedi, and S. Woolet. Response time distributions in
networks of queues. In R. J. Boucherie and N. M. van Dijk, editors, Queueing
Networks, volume 154 of International Series in Operations Research & Man-
agement Science, pages 587–641. Springer US, New York, USA, 2011.

A. N. Gullhav, B. Nygreen, and P. E. Heegaard. Approximating the response time
distribution of fault-tolerant multi-tier cloud services. In 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing, pages 287–291, Los
Alamitos, CA, USA, 2013. IEEE Computer Society.

F. Hennig, B. Nygreen, M. Christiansen, K. Fagerholt, K. C. Furman, J. Song,
G. R. Kocis, and P. H. Warrick. Maritime crude oil transportation - a split
pickup and split delivery problem. European Journal of Operational Research,
218(3):764 – 774, 2012.

F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller, and J. L. Lawall. Entropy:
a consolidation manager for clusters. In Proceedings of the 2009 ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
pages 41–50, New York, NY, USA, 2009. ACM.

I. Iyoob, E. Zarifoglu, and A. B. Dieker. Cloud computing operations research.
Service Science, 5(2):88–101, 2013.

V. Petrucci, O. Loques, and D. Mossé. A dynamic optimization model for power
and performance management of virtualized clusters. In Proceedings of the 1st
International Conference on Energy-Efficient Computing and Networking, pages
225–233, New York, NY, USA, 2010. ACM.

L. Rao, X. Liu, M. Ilic, and J. Liu. MEC-IDC: joint load balancing and power con-
trol for distributed Internet Data Centers. In Proceedings of the 1st ACM/IEEE
International Conference on Cyber-Physical Systems, pages 188–197, New York,
NY, USA, 2010. ACM.

B. Speitkamp and M. Bichler. A mathematical programming approach for server
consolidation problems in virtualized data centers. IEEE Transactions on Ser-
vices Computing, 3(4):266–278, 2010.

94

Bibliography

J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente. Cloud
brokering mechanisms for optimized placement of virtual machines across mul-
tiple providers. Future Generation Computer Systems, 28(2):358 – 367, 2012.

R. Van den Bossche, K. Vanmechelen, and J. Broeckhove. Cost-optimal scheduling
in hybrid IaaS clouds for deadline constrained workloads. In 2010 IEEE 3rd
International Conference on Cloud Computing, pages 228–235, Los Alamitos,
CA, USA, 2010. IEEE Computer Society.

95

Paper IV
Anders N. Gullhav and Bjørn Nygreen:

A Branch and Price
Approach for Deployment
of Multi-tier Software
Services in Clouds

submitted to an international journal

A Branch and Price Approach for
Deployment of Multi-tier Software
Services in Clouds

Abstract:
This paper considers a combined service placement and replication decision
problem in a cloud computing context. The services are composed of multi-
ple tiers which are to be placed on nodes in the private cloud of the service
provider or, if the private cloud has limited capacity, partly in a public cloud.
In the service delivery, the provider has to take into account the quality of
service guarantees offered to his end-users. To solve the problem, we develop
a branch and price algorithm, where the subproblems both are formulated as
a linear mixed integer program and a shortest path problem with resource
constraints (SPPRC), which underlying network has a special structure. The
SPPRC can solved by an exact label-setting algorithm, but to speed up the
solution process, we develop a heuristic label-setting algorithm based a re-
duced network and simplified dominance rule. Our results show that using
the heuristic subproblem solver is efficient. Furthermore, the branch and
price algorithm performs better than a previously developed pre-generation
algorithm for the same problem. Furthermore, we analyze and discuss the
differences in solutions that utilize resources in a public cloud to different
degrees. By conducting this analysis, we are able to identify some essential
characteristics of good solutions.

5.1. Introduction
In this work, we are considering a service deployment problem of a software-
as-a-service (SaaS) provider that provides a set of services to his end-users. In
the provisioning, the SaaS provider (SP) must scale his services according to the
performance and availability guarantees specified in the service level agreements
(SLAs), contracts that define the services in terms of functionality and quality.
Furthermore, the SP also has to decide where to run the services. A typical
objective in this problem is to minimize the cost of provision, while fulfilling the
service quality guarantees.

In principle, this decision problem can be solved statically or dynamically.
Herein, we consider the demand to vary over time, but within certain periods,
the demand is stationary in a stochastic sense. When these periods are suffi-

99

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

ciently long, that is, they might reflect working hours, evenings, etc., it is possible
to compute a stationary deployment solution for each period, and apply the ap-
propriate solution when one enters a new period. If the infrastructure running the
services are failure-prone, it is necessary to complement the stationary solution
with a strategy to return from a failed state back to the stationary solution. This
strategy is found by solving a dynamic problem of another type, which is out of
the scope of this paper. However, in cases were the demand is constantly fluctu-
ating and not in a stationary state, it is necessary to solve the former problem
dynamically, but such cases are not considered here.

The SaaS services offered by the SP are modeled as multi-tier services, which
are services composed of several components collaborating to provide the service
to the end-users. An example of a multi-tier service is a three-tier web service
composed of a web server tier, an application tier and a database tier. Each of
these tiers are often run in several virtual machines (VMs), which in turn run
on servers. The SP in focus own and operate a limited set of servers, forming
a private cloud, which are capable of running the VMs of the service tiers. An
important operational cost component in a data center is the cost of energy, and
a strategy used to minimize the cost of energy usage in the VM scheduling is
to turn off servers that are not required with the current demand (Iyoob et al.,
2013). For the SP, there might be periods were the service demand is too high
to be able to provide the services from the private cloud alone. In such cases
the SP has the option to lease resources from a public infrastructure-as-a-service
(IaaS) provider (e.g. Amazon (Amazon Web Services, 2015)), denoted a public
cloud provider. When the infrastructure used by the SP to provide his services is
composed of both a private and a public cloud, this infrastructure is referred to
as a hybrid cloud (Mell and Grance, 2011). Using a public cloud for permanent
service provisioning is costly, and it is often desirable to utilize its own servers
fully before leasing capacity from an IaaS provider.

The private and public clouds typically consists of a large amount of cheap
servers, hard disks, routers, etc., which make the services prone to failures, and
hence make fault tolerance an important consideration in the service deployment.
Considering fault tolerance management in cloud systems, there exists several
works that present conceptual frameworks and software systems utilizing redun-
dant VMs (Cully et al., 2008; Distler et al., 2011; Jhawar et al., 2013). Cully et al.
(2008) describe an approach where a replication engine at each host propagates
the state of active VMs to another host, which holds backup VMs ready to exe-
cute if an active VM fails. In Distler et al. (2011), an active-passive replication
scheme is used to achieve fault tolerance. Therein backup VMs, denoted passive
replicas, are put into a paused state, from where they can be unpaused and ac-
tivated rapidly. Jhawar et al. (2013) propose a framework that aims to facilitate
the offering of fault-tolerance as a service to existing applications. The framework
supports both active-active and active-passive replication.

100

5.1. Introduction

In Gullhav and Nygreen (2015), we present a novel optimization model of the
service deployment problem of the SP that models decisions both related to the
replication of the tiers of multi-tier services and related to the placement of the
replicas. In the model, each tier of a service could be replicated into a number
of load-balanced replicas, referred to as active replicas, and in addition, passive
replicas are used to improve the fault tolerance of the tier. However, since we are
interested in the performance and fault tolerance of the whole service, not only
the tiers, the selection of replication levels of the different tiers of a service are
linked. Moreover, we argue that in cases where different services interact through
their placement (e.g. by running on the same servers), the most cost-efficient way
to replicate the tiers of a given service is dependent of the replication of the tiers
of other services. This is reflected in the model.

This service deployment problem was modeled as a linear mixed-integer program
(MIP), and solved using a commercial MIP solver in Gullhav and Nygreen (2015).
We also reformulated the problem and obtained a pattern-based formulation. The
linear relaxation of the reformulation was shown to be much stronger than that of
the former, direct MIP formulation. Nevertheless, the number of variables in the
reformulation grew exponentially with the size of the problem, and we could only
optimize over a small number of the variables. Since we seek to find a stationary
solution, we argue that one can spend some time searching for a near-optimal or
optimal solution. If the solution quality is of more importance than the time to find
a solution, we suggest using an exact solution method. Here, we propose a branch
and price (B&P) algorithm, which master problem is based on the mentioned
pattern-based formulation. The subproblem of the B&P is solved using a MIP
solver and a label-setting algorithm. The latter seeks to find the shortest path in
a network, which to our knowledge has a novel structure. While we develop an
exact label-setting algorithm, we early observe that this algorithm has deficiencies
related to its dominance rule. A contribution of this paper is an efficient heuristic
label-setting algorithm based on a reduced network and simplified dominance rule.
Using this heuristic in conjunction with an exact MIP solver speeds up the B&P
algorithm. However, in some nodes of the enumeration tree, no improving columns
can be found, and hence, using the heuristic algorithm is ineffective. Another
contribution of this paper is a simple rule to decide whether the heuristic algorithm
should be used in a node, or the exact MIP solver should be called directly. A
major question we seek to answer in our computational study is by which methods
the subproblem should be solved. The paper also provides a discussion on how
the size of the private cloud relative to the service’s resource requirements affect
the solution structure.

The outline of the paper is as follows. Next, in Section 5.2, we present some
works related to the service deployment problem, and in Section 5.3, we describe
the problem in more detail. Two variants of the problem are formulated in Section
5.4, before the B&P algorithm is explained in Section 5.5. More details of the

101

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

algorithm are found in 5.7. The numerical results of our experiments with the
algorithm, along with a discussion of the results, are presented in Section 5.6.
Finally, we conclude the paper in Section 5.7.

5.2. Related Work

The part of the problem that regards the replication level decisions is related to the
redundancy allocation problem (Kuo and Wan, 2007). The redundancy allocation
problem consists of allocating parallel components to different subsystems in series
with an objective of minimizing the cost, such that the reliability is better than a
threshold. Ashrafi et al. (1994) present an application of the redundancy allocation
problem where the goal is to optimize the reliability of a software system. More
recently, Meedeniya et al. (2010) use multi-objective optimization to explore the
trade-off between reliability and energy consumption when building redundancy
into an embedded system.

Regarding the part of the problem that relates to the placement of the VMs,
there exists a lot of literature on scheduling and placement of VMs in clouds. A
recent survey on resource management in clouds is found in Jennings and Stadler
(2015). We also review some literature in Gullhav and Nygreen (2015). Neverthe-
less, a short review follows. Speitkamp and Bichler (2010) presents static optimiza-
tion models for the problem of placing VMs on servers in enterprise data centers.
In contrast to our work, they do not model services as consisting of multiple tiers,
and neither do they treat replication of VMs. Dynamic optimization models which
investigate the trade-off between energy usage and performance can be found in
several works (Petrucci et al., 2010; Ferreto et al., 2011; Ardagna et al., 2012).
Google proposed another dynamic optimization model in the ROADEF/EURO
challenge 2012 (ROADEF, 2012). Breitgand and Epstein (2011) use column gen-
eration to solve a static service placement problem, both with and without con-
sidering the cost of migrating VMs. Like us, they require the provider to comply
with requirements specified in SLAs, but while we consider the service deployment
problem of a SaaS provider, they regard the decision problem of an IaaS provider.
Furthermore, Goudarzi and Pedram (2011) and Ardagna et al. (2012) regard a
dynamic placement problem for multi-tier services with decisions related to the
load balancing and bounds on the performance. However, except our previous
work, none of the reviewed placement literature so far models the placement of
passive backup replicas. On the other hand, Bin et al. (2011) consider a related
placement problem of an IaaS provider where some VMs require one or more
backup locations to which they can be migrated in case of a failure.

102

5.3. Problem Description

5.3. Problem Description
We let S be the set of multi-tier services offered by the SP, and let Qi, i ∈ S,
be the set of components, i.e., tiers, of service i. A component q ∈ Qi runs in a
VM, which in turn should run on a server, denoted a node in the following. A
private cloud placement is an assignment of component q of service i to a node
in the private cloud of the SP. The nodes provide resources like CPU power,
memory and storage to the VMs, and we let the set G contain the different types
of resources. We assume the nodes to be identical with equal resource capacities
NCg of resource type g ∈ G. The VMs running in the private cloud are of given
sizes, and we let GAiqg be the resources of type g assigned to component q of
service i when running on a node. For simplicity, we will denote component q of
service i as the pair (i, q) in the following.

5.3.1. Quality of Service
The QoS levels of the services are stated in SLAs, and common QoS measures for
web services include response time, either average or a percentile of the distribu-
tion, throughput and downtime (Menasce, 2002). Replication is used to obtain
the required QoS, and the SP might choose to replicate a service component into
multiple active load-balanced replicas to increase the performance, which means
that identical service components can be run in several identical VMs. To make
the services fault-tolerant, the SP might also place additional passive back-up
replicas on the nodes. The replicas of the same service component should not be
placed on the same node, a requirement referred to as node-disjoint placement.
This is to prevent that multiple replicas of a single component go down due to
a single node failure. The passive replicas does not service demand in a failure-
free situation, and consume fewer resources than active replicas (Distler et al.,
2011). Therefore, instead of being assigned GAiqg resources, a passive replica of
the pair (i, q) is assigned GP iqg(< GAiqg) resource of type g when placed on a
node. Each node that runs at least one passive replica needs to maintain a pool
of shared backup resources for activation of passive replicas. The size of this pool
is a trade-off between fault tolerance and resource utilization since a small pool
size will make it difficult to provide enough resources to a passive replica when it
is activated; and a large pool means that a large amount of resources are unused
in a failure-free situation. Herein, the pool size is set such that the passive replica
requiring the largest increase in resource when being activated can be activated.
This means that a node can only guarantee the activation of one passive replica
at a time, and thus we will limit the number of passive replicas on a node to NP ,
so that the passive replicas are spread on the infrastructure.

Herein, we will not consider a specific QoS measure, but instead assume that
there exists a method to check if a service, with given replication levels of its

103

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

components, satisfies the QoS guarantees. Gullhav et al. (2013) present a method
that takes the number of active and passive replicas of each tier and the assigned
resources of the replicas as input, and outputs an approximation of the response
time distribution of the service. In Gullhav and Nygreen (2015), we introduced
replication patterns in order to express the relationship between the number of
replicas of each component and the QoS guarantees in a linear MIP. Thus, a
replication pattern r ∈ Ri of service i is a combination of the number of active
and passive replicas of each component in the service. We let these numbers be
denoted by RAiqr and RP iqr, which means that if replication pattern r is chosen
for service i, one has to deploy RAiqr active replicas and RP iqr passive replicas of
each component q ∈ Qi. We assume that the sets of replication patterns Ri for
each service i are given as input, and that all the replication patterns in these sets
satisfy the QoS guarantees.

The performance of the underlying network is neglected in our models. Within
a single data center, neglecting the network latency might be fair, but between
clouds of different geographical locations, one might argue that the network la-
tency plays a role. On the other hand, this negligence simplifies the models con-
siderably. However, there is put a bound on the number of different services that
can be run from a single node, NS . With this constraint, the model will implicitly
drive different components from the same service to be run on the same nodes,
and so, the amount of inter-node communication, stemming from the collaboration
between components of the same service, is expected to decrease.

5.3.2. Placement in Public Clouds
So far, we have taken for granted that the private cloud has enough resources
to run all the services, and only discussed the placement of the replicas in the
private cloud of the SP. Now, we consider the case that the private cloud does not
have enough nodes to run all services, and the SP gets the option, or are rather
forced, to lease some extra resources from a public cloud provider. We let NN

denote the number of nodes in the private cloud. In this case, leasing means to
run a replica of a pair (i, q) in a VM of an appropriate size in the data centers
of the public cloud provider at a cost. We do not assume that the public cloud
provider supports the activation of passive replicas, so passive replicas are always
run in the private cloud. Since we do not consider network effects explicitly in
this work, we can consider the public cloud resources as a generic resource pool,
possibly consisting of offers from several public cloud providers. We can also in
advance of the optimization determine the cheapest way (at which provider, and
in what geographical location, etc.) to place an active replica of the pair (i, q) in
the public cloud. The cost of this placement is denoted CCiq, and it is dependent
on the resource requirement of the active replica. Generally, the public cloud
providers offer predetermined, fixed types of VMs differing by resource capacity

104

5.4. Mathematical Formulations

and cost, and typically the resource capacities of the VM types are coarse grained.
For example, Amazon (Amazon Web Services, 2015) offers seven general-purpose
VM types, where the resource capacities doubles from one VM type to the next.
The amount of resource assigned to an active replica of pair (i, q), GAiqg, is fixed
without considering the available VM types offered in the public cloud. When
selecting the VM type that is going to be used for placement of an active replica
in the public cloud, one has to select a VM type that provides enough resources
for each g ∈ G, and will of course select the cheapest VM type providing this. This
means that two pairs (i1, q1) and (i2, q2) with GAi1q1g �= GAi2q2g for all g ∈ G,
might have to run in the same type of VM in the public cloud at an identical cost.

5.3.3. Cost Minimization
When only considering deployment in the private cloud of the SP, we consider the
cost of energy usage as the sole cost component. Like, several other optimization
models for VM placement, we minimize the number of nodes that are turned
on. A reason for this choice is that a node that is turned on, but in an idle
state, consume as much as 70 per cent of its peak power (Beloglazov et al., 2011),
and hence, running the services on as few nodes as possible will reduce the cost
substantially. Another situation arises when a hybrid cloud is used for placement.
The motivation behind this scenario is that the private cloud does not have enough
resources for running all services, and thus the SP has to use a public cloud. In
this scenario, the meaningful cost-minimizing objective is to minimize the cost
of placing VMs in the public cloud, while fully utilizing the nodes in the private
cloud.

5.4. Mathematical Formulations
Two formulations of the service deployment problem are presented next. The first
formulates the private cloud model, where only placement in the private cloud is
considered, while the second formulates the hybrid cloud model that also allows
for placement in a public cloud. Both formulations were proposed in Gullhav
and Nygreen (2015), but are repeated here as they form the master problem of
our B&P algorithm. To model the placement of replicas, they use node patterns,
which represent a feasible assignment of replicas to a node, that is, the assign-
ment must respect the resource capacities of the node, the requirement for shared
backup resources, the requirement for node-disjoint placement of replicas, and
upper bounds on the number of passive replicas and the number of services on a
node. Since the nodes are considered identical, any node pattern can represent
any node in the private cloud. In this section, we take the set of node patterns as
granted, but in Section 5.5, we will formulate a subproblem for the B&P, which

105

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

is used to generate node patterns dynamically.

5.4.1. Private Cloud Model

In the formulation below, the integer variables xb denote the number of times each
node pattern b ∈ B is used in the solution, where B represents the set of node
patterns. The parameters Wbiq ∈ {0, 1} and Vbiq ∈ {0, 1} indicate the placement
of an active replica (Wbiq = 1) and a passive replica (Vbiq = 1) of the pair (i, q) in
node pattern b. Furthermore, the binary variables yir indicate the selection of a
replication pattern r ∈ Ri for service i.

min zP =
�

b∈B
xb (5.1)

�

r∈Ri

yir = 1 ∀i ∈ S (5.2)

�

b∈B
Wbiqxb −

�

r∈Ri

RAiqryir = 0 ∀i ∈ S, ∀q ∈ Qi (5.3)

�

b∈B
Vbiqxb −

�

r∈Ri

RP iqryir = 0 ∀i ∈ S, ∀q ∈ Qi (5.4)

xb ∈ Z+ ∀b ∈ B (5.5)

yir ∈ {0, 1} ∀i ∈ S, ∀r ∈ Ri (5.6)

The objective function (5.1) minimizes the number of used node patterns, and
thereby also nodes. The equalities (5.2) ensure that one replication pattern is
selected for each service. Furthermore, the equalities (5.3) and (5.4) establish the
relation between the node pattern variables and the replication pattern variables,
and so provide that the correct number of active and passive replicas of each pair
(i, q) are placed on the nodes, according the chosen replication pattern. Finally,
(5.5) and (5.6) define the node pattern and replication pattern variables as non-
negative integer and binary, respectively.

5.4.2. Hybrid Cloud Model

The motivational case of placing replicas in a public cloud is that there exist time
periods where the SP does not have enough capacity to run all services in his
private cloud. We let wCiq be integer variables denoting the number of active
replicas of (i, q) placed in the public cloud. The mathematical formulation of the

106

5.5. The Branch and Price Approach

hybrid cloud model is given below.

min zH =
�

i∈S

�

q∈Qi

CCiqwCiq (5.7)

�

r∈Ri

yir = 1 ∀i ∈ S (5.8)

�

b∈B
Wbiqxb + wCiq −

�

r∈Ri

RAiqryir = 0 ∀i ∈ S, ∀q ∈ Qi (5.9)

�

b∈B
Vbiqxb −

�

r∈Ri

RP iqryir = 0 ∀i ∈ S, ∀q ∈ Qi (5.10)

�

b∈B
xb ≤ NN (5.11)

wCiq ∈ Z+ ∀i ∈ S, ∀q ∈ Qi (5.12)

xb ∈ Z+ ∀b ∈ B (5.13)

yir ∈ {0, 1} ∀i ∈ S, ∀r ∈ Ri (5.14)

The objective, (5.7), minimizes the cost of placing active replicas in the public
cloud. The equalities (5.8) correspond to (5.2) in the private cloud model. The
balance equalities (5.9) now include a term for the public cloud placements of ac-
tive replicas, while (5.10) remains identical to (5.4). The inequality (5.11) reflects
that the number of nodes are limited by seting an upper bound on the sum of
node patterns. At optimum (5.11) will be satisfied as an equality. At last, (5.12)
- (5.14) define the decision variables as integer or binary. It should be noted that
the wCiq variables are naturally integer as long as all xb and yir variables are
non-fractional.

5.5. The Branch and Price Approach
In this section, we will describe the algorithmic features of our B&P approach, and
especially concentrate on the solution methods used for solving the subproblem.
In short, B&P is a solution method that uses column generation in a branch and
bound (B&B) framework. For the models of Section 5.4, it would be possible in
small cases to include all feasible node patterns and solve the models as integer
programs (IPs) using B&B. However, for realistic cases, this is not practical,
and we propose to solve the model using B&P. In B&P, one generates new node
patterns in each B&B node until no further profitable node patterns exist. This
is done by alternating between solving the master problem, i.e., the formulations

107

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

in Section 5.4, as a linear program (LP), and a subproblem for generating new
node patterns, until no node patterns with negative reduced cost exists. The
subproblem minimizes the reduced cost of a new node pattern by using the dual
variables of the master problem as coefficients in the objective function. When no
node patterns with negative reduced cost is found, one finishes the current B&B
node and uses the same criteria for branching or pruning as in the traditional
B&B. However, the branching rules used in B&P applications often differ from
the typical branching rule in the B&B framework. The branching rule used herein
is discussed in Section 5.5.3. Since the master problem LP only contains a subset
of the feasible node patterns, this problem is referred to as the restricted master
problem (RMP), and this is solved using a commercial LP solver. To obtain
integer solutions by other means than branching, one can solve the RMP as an
IP at different points in time. The results of the experiments presented in Section
5.6 show that we find all our best integer solutions this way. This strategy is also
used in the literature, e.g., by Gunnerud et al. (2012), which find all their integer
solutions by solving an IP.

Algorithm 5.1 Pseudocode of the branch and price algorithm
Require: an initial set of node patterns, B, such that feasibility is assured.
1: Initialize tree by creating a root node
2: zI ← ∞ // Initialize the objective value of the current incumbent to ∞
3: while there exists unsolved nodes do
4: Get next unsolved B&B node accoring to the best first strategy
5: repeat
6: (z, x, y, α, β, γ, η) ← solveRMP(B)
7: (ζ, w, v) ← solveSubproblem(α, β, γ, η)
8: if ζ < 0 then
9: B ← B ∪ {(w, v)} //add the new node pattern, represented by (w, v), to B

10: end if
11: until ζ ≥ 0 //implemented as check against a small positive number
12: if z < zI then
13: if solution (x, y) is fractional then
14: Branch and add new nodes with parent objective value z to the set of unsolved nodes
15: else
16: zI ← z, (xI , yI) ← (x, y) // store the new best solution
17: Remove all unsolved nodes with parent objective value worse than zI (prune)
18: end if
19: end if
20: if /*any condition*/ then {// specified in Section 5.6.1}
21: (z, x, y) ← solveMasterIP(B) //Solve the RMP as an IP
22: if z < zI then
23: zI ← z, (xI , yI) ← (x, y) // store the new best solution
24: Remove all unsolved nodes with parent objective value worse than zI (prune)
25: end if
26: end if
27: end while
28: return (xI , yI)

108

5.5. The Branch and Price Approach

An overview of the B&P algorithm is shown in Algorithm 5.1. To keep the
pseudocode compact we let z, x, and y, with vectors in bold font, denote the
RMP’s LP objective value, the node pattern solution vector, and the replication
pattern solution vector; and α, β, γ, and η be the dual variables of the RMP. α
and β refer to dual variables of the balance equations (5.3) and (5.4) (resp. (5.9)
and (5.10)), γ stems from the branching constraints introduced in Section 5.5.3,
while η represent the dual variable of (5.11), and is only present in the hybrid
cloud model. Moreover, ζ, w, and v denote the reduced cost of the new node
pattern, the binary vector indicating the active replicas deployed in the new node
pattern, and the binary vector indicating the passive replicas, corresponding to
the node pattern coefficients Wbiq and Vbiq. In addition, letters with superscript
I refer to the current incumbent solution.

In the B&P implementation, we have done two small changes to the master
problem formulations. The equalities (5.3)-(5.4) and (5.9)-(5.10) are changed to ≥
constraints. This has at least two advantages. Firstly, it makes the dual variables
of these constraints non-negative instead of free, which might help to reduce the
instability of the dual solutions (Vanderbeck, 2005). Secondly, the feasible region
is enlarged which should make it easier to find a feasible solution. However,
this also means that one could obtain solutions that deploy more replicas than
required. Especially, the passive replicas, which require relatively small amounts
of resources, are susceptible to this.

The subproblem that is used to generate new node patterns can be formulated
and solved in various ways. In general, subproblems can often be solved as MIPs,
and in many applications, the subproblem can be formulated as a shortest path
problem with resource constraints (SPPRC), which is solved using a label-setting
algorithm (Irnich and Desaulniers, 2005). In addition, heuristic solution methods
based on label-setting algorithms have been utilized successfully to solve different
types of subproblems (Irnich and Desaulniers, 2005). Solving the subproblem
by a label-setting algorithm has an advantage over a MIP solver in that it is
relatively easy to extract more than one node pattern in each column generating
iteration. Herein, we have formulated the subproblem as a MIP and an SPPRC.
For the SPPRC, we develop both an exact and a heuristic label-setting algorithm,
outlined in Section 5.5.2. However, when using a heuristic subproblem solver, one
must complement the heuristic solver with an exact to maintain an exact B&P
algorithm.

5.5.1. Formulating the Subproblem as a MIP
The subproblem can be formulated as the following MIP, where the αiq and βiq

are the dual variables of the constraints (5.3) and (5.4) (resp. (5.9) and (5.10))
of the private cloud (resp. hybrid cloud) model. Furthermore, the formulation
uses binary placement variables wiq and viq, corresponding to the node pattern

109

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

coefficients Wbiq and Vbiq; and binary variables si to indicate whether at least one
replica of service i is placed on the node, or not. The amount of shared backup
resources for activation of passive replicas are represented by the variables mg.

min ζ = 1 −
� �

i∈S

�

q∈Qi

αiqwiq +
�

i∈S

�

q∈Qi

βiqviq

�
(5.15)

wiq + viq ≤ si ∀i ∈ S, ∀q ∈ Qi (5.16)
�

i∈S
si ≤ NS (5.17)

�

i∈S

�

q∈Qi

viq ≤ NP (5.18)

mg − (GAiqg − GP iqg)viq ≥ 0 ∀i ∈ S, ∀q ∈ Qi, ∀g ∈ G (5.19)
�

i∈S

�

q∈Qi

GAiqgwiq +
�

i∈S

�

q∈Qi

GP iqgviq + mg ≤ NCg ∀g ∈ G (5.20)

mg ≥ 0 ∀g ∈ G (5.21)

wiq ∈ {0, 1} ∀i ∈ S, ∀q ∈ Qi (5.22)

viq ∈ {0, 1} ∀i ∈ S, ∀q ∈ Qi (5.23)

si ∈ {0, 1} ∀i ∈ S (5.24)

The objective function (5.15) to be minimized corresponds to the reduced cost of
a node pattern in the private cloud model. The expression for the reduced cost
in the hybrid cloud model is discussed in Section 5.5.4. The constraints (5.16)
ensure node-disjoint placement, and at the same time force si to take value 1, as
long as there is at least one replica from service i selected in the node pattern.
Moreover, (5.17) and (5.18) put upper bounds on the number of different services,
and the number of passive replicas that can run on a node, respectively. The
resource capacity of the nodes are handled by (5.20), where the first and second
term account for the resources assigned to the active and passive replicas, and the
third term accounts for the shared backup resources. This term is in turn lower-
bounded by the inequalities (5.19). At last, (5.21) - (5.24) define the variables as
non-negative or binary, respectively.

5.5.2. Formulating the Subproblem as an SPPRC
The underlying idea of the SPPRC formulation is to let the service components
represent the vertices of a graph (two vertices per component, corresponding to
an active and a passive replica), and then appropriately connect the vertices with

110

5.5. The Branch and Price Approach

directed arcs, such that the resulting graph is acyclic. The resources of the SPPRC
include the reduced cost, the amount of a node’s resource assigned to replicas, the
amount of a node’s resource reserved to let passive replicas to be activated, in
addition to the number of passive replicas and the number of different services
placed on the node. The goal is to find the minimum reduced cost path from a
dummy source vertex to a dummy sink vertex, which is feasible with respect to
the other resources. Such a feasible path correspond to a feasible node pattern,
and a label-setting algorithm is used to obtain these paths.

The label-setting algorithm runs on a directed acyclic graph (V, A) which can
be viewed as a two-layered network. The upper layer network is illustrated in
Figure 5.1, and is composed of the dummy source and sink vertices, σ0 and τ0,
and several service blocks, one for each service in S. From σ0, there is an arc
to every service block; and from each service block, there are arcs to all other
service blocks of higher order, in addition to an arc to τ0. The service blocks can
be ordered in different ways, and the ordering can change between separate calls
to the label-setting algorithm. Designing the network with the service blocks as
central elements is beneficial because of the restricted number of different services
that can be visited, cf. constraint (5.17). That is, no more than NS service blocks
can be visited by a path.

σ0
Service
block 1

Service
block 2

· · · Service
block i

· · · Service
block |S| τ0

· · ·
· · · · · ·

· · · · · ·
· · ·
· · ·

Figure 5.1.: The upper layer network of the SPPRC formulation

Each service block is a network in itself, and the structure of these subnets is
depicted in Figure 5.2. The service block is composed of four types of vertices:
one σ-vertex, one τ -vertex, one or more a-vertices and one or more p-vertices.
The σ-vertex, labelled σi in Figure 5.2, is the entrance of the service block and
every arc into the service block is directed to this vertex. Similarly, the τ -vertex,
labelled τi in Figure 5.2, is the exit of the service block, and all arcs from a service
block to another service block or to τ0 are directed out from the τ -vertex. Each
a-vertex in the service subnet represents an active replica, i.e. the vertex ai1 in

111

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

σi

ai1

pi1

ai2

pi2

· · ·

· · ·

ai|Qi|

pi|Qi|

τi

· · ·

· · ·

· · ·

· · ·

Figure 5.2.: The subnet of a service block in the SPPRC formulation

Figure 5.2 represents an active replica of the first component of service i; and
a path visiting this vertex is interpreted as a placement of such a replica in the
node pattern corresponding to the path. Analogously, each p-vertex in the service
subnet represents a passive replica. Again, the ordering of the components can
change between separate calls to the label-setting algorithm. From the σ-vertex,
there is an arc to all a-vertices and p-vertices; and from an a-vertex or p-vertex,
there are arcs to all a-vertices and p-vertices of higher order, in addition to the τ -
vertex. Note that, there are no arcs between a-vertices and p-vertices representing
active and passive replicas of the same component, and no arc directly from the
σ-vertex to the τ -vertex.

Algorithm 5.2 outlines the basic structure of the label-setting algorithm. The
pseudocode is kept compact and general, and thus does not show the special
properties of the network. Each vertex ν maintains a set of labels, Lν , and the
algorithm is initialized by letting the label set of the dummy source vertex σ0 have
one label, with reduced cost 1, representing a path containing only the source
vertex σ0. Then, all vertices are considered in topological order; that is, if A
contain an arc from ν to ω, vertex ν is considered before ω. Before the labels of
a vertex ν is extended, all dominated labels in Lν are removed. At the end, when
the dummy sink vertex τ0 is considered, all labels in Lτ0 with negative reduced
cost are returned. The extension and domination of labels is detailed in Appendix
5.A.1 and Appendix 5.A.2, respectively.

Since a label-setting algorithm without a dominance rule essentially is a full
enumeration algorithm, a critical algorithmic element is the efficiency of this rule.
When conducting experiments with the label-setting algorithm on the SPPRC
formulation, it became clear that the interaction between the shared backup re-

112

5.5. The Branch and Price Approach

Algorithm 5.2 Pseudocode of the label-setting algorithm
Require: a directed acyclic graph (V, A)
1: Lσ0 ← {�0}
2: for all vertices ν ∈ V in topological order do
3: if domination should be conducted then
4: Domination: find and remove all dominated labels in Lν

5: end if
6: for all labels � ∈ Lν do
7: for all feasible extensions of label � do
8: Extension: extend label � to obtain label k
9: ω ← vertex of k

10: Lω ← Lω ∪ {k}
11: end for
12: end for
13: end for
14: return all labels (paths) in Lτ0 with negative reduced cost

sources, corresponding to mg in the subproblem MIP, and the total amount of
resources assigned to replicas on the node, made the dominance quite weak. How-
ever, fixing mg before calling the label-setting algorithm would lead to much
faster, but heuristic, solution method. There are two implications of this fixing
that will increase the speed of the algorithm: the domination becomes more effi-
cient, and one can reduce network size by disregarding the vertices representing
passive replicas with GAiqg − GP iqg > mg for at least one g. We consider two
cases of fixings: mg fixed to zero for all g, and mg fixed to positive values. When
using this heuristic label-setting algorithm in the B&P, we will in each call to the
subproblem solver (Line 7 in Algorithm 5.1) run the label-setting algorithm twice,
one with a zero-valued mg and one with at least one positive mg. More details
on this heuristic dominance and network reduction, in addition to details on how
the positive values of the mg’s are set, are found in Appendix 5.A.4.

5.5.3. Branching
In B&P, it is well known that branching directly on the variables generated by
the subproblem results in an unbalanced tree. Such a branching rule would also
be difficult to implement in the subproblem, and could destroy its structure (Van-
derbeck, 2000). While it is not efficient to branch directly on the xb variables, one
can use the traditional branching rules for the binary variables yir. However, in
our B&P algorithm, we prioritize branching on the node patterns as long as there
exist fractional xb variables, and we only describe the branching rule for the node
patterns here. Regarding branching on the wCiq variables of the hybrid cloud
model, we pointed out in Section 5.4.2 that these variables are naturally integer.

Several works discuss branching rules which ideas can be applied in our prob-

113

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

lem (Vanderbeck and Wolsey, 1996; Vance, 1998; Vanderbeck, 2000). Generally,
these rules select a subset of the generated columns, such that the sum of the
corresponding column variables are fractional. Based on this subset, one adds a
constraint to the master problem that either bounds this sum to be less than or
equal to the fractional value rounded down, or oppositely, bound this sum to be
greater than or equal to the fractional value rounded up. However, the rule to
select the subset of columns has to be designed such that it can be handled by
the subproblem. For a cutting stock problem, Vance (1998) uses a branching rule
that selects a set of rows, denoted a branching set, in the master problem, and
choose the subset of columns to branch on as the columns that has coefficients
greater a certain value in each selected row. We base our rule on this idea, but
limit ourselves to consider pairs of rows.

First, we define J as the set of all branching sets of cardinality two, i.e., an
element j ∈ J corresponds to a pair of rows in (5.3)-(5.4) (analogously (5.9)-
(5.10)), which means that j can either represent two active replicas, two passive
replicas, or one active and one passive replica. Because of the node-disjoint place-
ment of replicas of the same component, it is only meaningful that the two rows
of a branching set corresponds to two different service components, e.g., (i, q) and
(i�, q�). We use the symbols HAjiq ∈ {0, 1} to indicate if the row corresponding to
the row (i, q) in (5.3) is included in the branching set j (HAjiq = 1); and likewise
HP jiq ∈ {0, 1} to indicate if the row (i, q) in (5.4) is included in the branching
set j (HP jiq = 1). Moreover, let us define the set Bj as the current set of node
patterns that have coefficients one in the two rows represented by the branching
set j, cf. (5.25).

Bj = {b ∈ B | ∀i ∈ S, ∀q ∈ Qi (Wbiq ≥ HAjiq ∧ Vbiq ≥ HP jiq)} ∀j ∈ J (5.25)

Using the above definitions, branching is done by selecting a branching set j ∈ J ,
such that �

b∈Bj

xb = φ /∈ Z

is fractional in the current solution; and then use the following inequalities as
branching constraints in the master problem.

�

b∈Bj

xb ≤ �φ� and
�

b∈Bj

xb ≥ �φ�

Therefore, at a given B&B node t in the tree, one would have a set J̄t of ac-
tive branching sets representing down branches (upper bounds), and a set J t of
active branching sets representing up branches (lower bounds). The branching
constraints are written as (5.26) and (5.27), where Utj and Ltj are set to the

114

5.5. The Branch and Price Approach

fractional value rounded down and up, respectively.
�

b∈Bj

xb ≤ Utj ∀j ∈ J̄t (5.26)

�

b∈Bj

xb ≥ Ltj ∀j ∈ J t (5.27)

We need to point out that it could happen that an active branching set ̂ ∈ J̄t

(or J t) is used again when a new branching decision is made. In such a situation,
the first child of B&B node t, say t1 will have its current bound Ut1 ̂ < Ut̂ (or
Lt1 ̂ > Lt̂), i.e. tightened, while the other child, say t2 will have ̂ as element in
both sets of active branching sets, that is, ̂ ∈ J̄t2 ∩ J t2 .

Furthermore, the branching rule will not make a node pattern invalid in any
B&B node, which means that we do not need to keep track of a set of valid node
patterns for each B&B node. In addition, when we solve the RMP as an IP, we
disregard all branching constraints and optimize over all node patterns found so
far.

A question that is not yet addressed is if this branching rule leads to a complete
algorithm, that is, can we guarantee that one could always eliminate fractional xb

variables using this rule? Proposition 5 in Vanderbeck and Wolsey (1996) states
that for the cutting stock problem with columns as binary vectors, one might
have to use branching sets with cardinality greater than the maximum value of
the right hand sides in the master problem. If we had fixed all the replication
pattern variables yir in the enumeration tree to obtain fixed right hand sides in
(5.3) - (5.4), we can calculate the maximum right hand side, which could possibly
be observed in a B&B node, to

R̄ = max{ max
i∈S,q∈Qi,r∈Ri

{RAiqr}, max
i∈S,q∈Qi,r∈Ri

{RP iqr}}.

In the test instances used in Section 5.6, this number would be much larger than
two. Nevertheless, when setting upper bounds on the run time, as done in Section
5.6, we have not encountered situations where using branching sets with larger
cardinality than two have been necessary to eliminate a fractional solution. Yet,
we cannot be certain that if the maximum run time is increased, we will still be
able to branch successfully on branching sets of cardinality two only.

5.5.3.1. Modifications of the Subproblem Formulations

The dual variables of the branching constraints (5.26) and (5.27), γ̄j for all j ∈ J̄t

and γj for all j ∈ J t, need to be considered in the computation of the reduced
cost of a new node pattern. In the MIP formulation of the subproblem this is

115

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

done by introducing new binary variables, p̄j for all j ∈ J̄t, and pj for all j ∈ J t,
which take value 1 if the branching set j is included in the new node pattern.
With this definition the modified objective function is given in (5.28). Moreover,
the inequalities (5.29)-(5.30) ensure that the p̄j and pj variables take the correct
value. Note that since γ̄j ≤ 0 and γj ≥ 0, the objective function will try to make
p̄j , j ∈ J̄t, equal to zero, and hence we only have to force it to take value one in
case new node pattern will include the branching set j. For pj , j ∈ J̄t, we have
the opposite situation as the objective will try to make the variable equal to one,
and therefore we have to force the variable to zero as long as the new node pattern
will not include the branching set. Hence, each new branching constraint in the
master problem will lead to one new binary variable and one new constraint in
the MIP formulation of the subproblem.

min ζt = 1 −
� �

i∈S

�

q∈Qi

αiqwiq +
�

i∈S

�

q∈Qi

βiqviq +
�

j∈J̄t

γ̄j p̄j +
�

j∈J t

γjpj

�
(5.28)

�

i∈S

�

q∈Qi

HAjiqwiq +
�

i∈S

�

q∈Qi

HP jiqviq − p̄j ≤ 1 ∀j ∈ J̄t (5.29)

�

i∈S

�

q∈Qi

HAjiqwiq +
�

i∈S

�

q∈Qi

HP jiqviq − 2pj ≥ 0 ∀j ∈ J t (5.30)

We emphasize that adding branching constraints to the master problem and
implementing the branching decisions in the subproblem formulations make the
problems harder to solve. Therefore, it might be desirable to select B&B nodes
high up in the tree when selecting new nodes in the B&P algorithm (cf. line 4
of Algorithm 5.1). Hence, we have implemented best first as the node selection
strategy of our algorithm.

It is also necessary to modify the SPPRC formulation and label-setting algo-
rithm to account for the branching decisions. Details on this is found in Appendix
5.A.3.

5.5.4. Generating Node Patterns in the Hybrid Cloud Model

In order to generate new improving node patterns in the hybrid cloud model (5.7)
- (5.14), we have to make some small modifications to the subproblem. When
computing the reduced cost of a new node pattern, we now have to take into
account the dual variable η of constraint (5.11). Moreover, the objective coefficient
of a new node pattern in the master problem objective (5.7) is zero, not one as in
the private cloud model. The modified objective function of the MIP formulation
is given in (5.31) below. Note that η ≤ 0, and that the first term of the modified

116

5.6. Numerical Results and Discussion

objective function is constant.

min ζt = −η −
� �

i∈S

�

q∈Qi

αiqwiq +
�

i∈S

�

q∈Qi

βiqviq +
�

j∈J̄t

γ̄jpj +
�

j∈J t

γjpj

�
(5.31)

Likewise the modifications in the MIP formulation, the modifications in SPPRC
formulation and the label-setting algorithm are only minor. Instead of initializing
the label-setting algorithm with a label with reduced cost 1, one initializes the
algorithm with a label with reduced cost −η. Otherwise, the algorithm remain
the same.

5.6. Numerical Results and Discussion
The main goal of our experimental study is to evaluate the different solvers for
the subproblem. In addition, we are comparing the proposed B&P algorithm with
the solution method presented in our earlier work (Gullhav and Nygreen, 2015).
The comparisons are done on both the private cloud and hybrid cloud model. At
the end of the section, we will also investigate and present some characteristics
of the solutions of the hybrid cloud model. Before the results are presented and
discussed, we will give a description of the setup of the experiments.

5.6.1. Experimental Setup
We have implemented the B&P and label-setting algorithms in C++, and com-
piled the code with GCC version 4.8.2 with option -O3. The experiments have
been run on a CentOS 5.8 machine with a dual core 3.0GHz Intel E5472 Xeon
processor and 16 GB of memory. The Xpress-Optimizer version 27.01.02 of the
FICO Xpress Optimization Suite version 7.8 is used for solving the master prob-
lem and the MIP formulation of the subproblem. The MIP solver has been able
to utilize eight threads in the B&B. All experiments have been given a maximum
run time of five hours.

In the experiments, we have not used real data. Even so, we believe that the data
we have used realistically represent real world cases. The test instances used are of
six different sizes, ranging from 5 services to 50 services, and for each instance size,
we have five cases. The cases are generated based on ten different dummy services
with between three and five components each and different resource requirement
characteristics. On average each service consists of four components, and hence,
the total number of components in the largest case with 50 services amounts to 200.
Each of the dummy services specifies distributions from which the GAiqg and GP iqg

parameters are drawn, and these distributions varies between the components of
the same service to imitate real SaaS services. The case generation is controlled

117

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

by a seed. In all cases, NS = 3 and NP = 4; and we consider the CPU as the
only resource type in the experiments. The average value of GAiqg and GP iqg are
23.0% and 1.60%, given in percent of the CPU capacity. Furthermore, the median
of the maximum (minimum) GAiqg and GP iqg over all cases are 45.0% and 3.00%
(8.00% and 0.333%). The replication pattern data are also different among the
cases, and the average number of replication patterns per service is 7.51.

Regarding the experiments on the hybrid cloud model, we also have to set a
bound on the number of nodes in the private cloud, NN . For each of the test
cases described above, we can construct different cases for the hybrid cloud model
by changing the NN parameter, and we have chosen to give this parameter values
based on the best bound obtained on the corresponding test case in the private
cloud experiments. Specifically, we have set NN to 75% or 90% of the best bound,
rounded up to the nearest integer. For simplicity, we will refer to these percentages
as the private cloud coverage. When placed in the public cloud, an active replica,
say (i, q), is run in a VM which capacity is at least as large as GAiqg. Typically,
the public cloud providers offer predetermined VM types of different cost and
capacity, and most often the cost per resource unit are constant over all VM
types. Herein, we have used the hypothetical VM types listed in Table 5.1, and
as seen we assume that there exists in total six VM types offered by two different
public cloud providers. Since we in our mathematical model do not distinguish
between providers, we can in advance of the optimization compute the cost of
placing an active replica of each component (i, q) in the public cloud. That is,
CCiq equals the cost of cheapest VM that has larger capacity than GAiqg. Note
that, the cost values in the table are not given units. Since we are not comparing
the cost of running services in the private cloud with the cost of placement in the
public cloud, the units are not important. However, the relative differences in cost
and capacity of the VM types are reflecting the reality.

Table 5.1.: Data of the public cloud VM types used in the hybrid cloud experi-
ments. The capacity is given in percentage of the private cloud node
capacity.

Provider 1 Provider 2
Cost Capacity Cost Capacity

10 10% 15 15%
20 20% 30 30%
40 40% 60 60%

The test cases are primarily labelled based on the number of services, but also
given a suffix a to e distinguishing the five different cases with an equal number of
services. E.g., the five private cloud test cases with 20 services are labelled from
P20-a to P20-e. When all cases with 20 services are referred as a whole, we ignore
the suffix. Similarly, the hybrid cloud cases with 20 services are labelled H20-a to

118

5.6. Numerical Results and Discussion

H20-e.
In the B&P algorithm, one has the option of calling an IP solver (the MIP solver

of Xpress) on the RMP (cf. line 20 of Algorithm 5.1). In the implementation used
in the experiments, we have chosen to call the IP solver directly after the root node
is solved, and then after every 100th solved B&B node. In order not to spend too
much time on solving the IPs, we have set the maximum run time of the IP solver
to 600 seconds. Another parameter, which has to be set, is the maximum number
of node patterns that is added to the RMP when the label-setting algorithms are
used as solution method for the subproblem. For the exact label-setting algorithm
(E-LSA) we have set the maximum number of node patterns to 20. Since the
heuristic label-setting algorithm (H-LSA) solves two different networks in each
iteration, one with mg = 0 and one with mg > 0, we will add at most 10 node
patterns from each of the two runs to the RMP.

5.6.2. Evaluation of the Solution Methods
As we want to maintain an exact solution approach, we have to complement
the heuristic solution method with an exact solution method for the subproblem.
Therefore, we are interested in assessing the relative performance of the exact
solution methods. To do this, we are using two different setups of the B&P algo-
rithm in the tests: one where the subproblem is solved by using the Xpress MIP
solver on the MIP formulation in Section 5.5.1; and one where the subproblem is
solved using the E-LSA of Section 5.5.2. Table 5.2 displays the results of experi-
ments on the cases with 5 and 10 services. We can see that we are able to solve
all of the ten smallest cases to optimality before we reach the maximum run time.
Moreover, E-LSA uses fewer iterations but adds more node patterns to master
problem. Since we add up to 20 node patterns to the master problem every time
the subproblem is solved, we should expect to solve the subproblem fewer times.
While the solution times of the E-LSA is on par with the solution times of the
MIP in the P5 cases, we can see that the solution times increase dramatically when
studying the P10 cases. For these cases, the MIP is clearly faster; and, not shown
in the table, the differences in solution time continue to increase for the larger
cases. By this, we conclude that we prefer to use the MIP as the exact solution
method for the subproblem. Moreover, the results disclose that the LP relaxation
of the node pattern formulation is very tight. In all of the cases displayed in Table
5.2, the objective value of the optimal solution is equal to the rounded up value of
the objective of the RMP when finishing the root node. When using the E-LSA
as the subproblem solver, we are able to find the optimal solution by solving the
RMP as an IP after finishing the root node. When the MIP is used as the sub-
problem solver, there are two cases, P5-a and P10-a, where the IP of the RMP
does not give the optimal solution after the root node. Nevertheless, the next time
the RMP is solved as an IP, after 100 more B&B nodes, the optimal solutions are

119

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

found.

Table 5.2.: Comparison of the exact solution methods for the subproblem: MIP
vs. Exact label-setting algorithm (E-LSA). The column np lists the
number of generated node patterns, while the column iter. lists the
total number of times the subproblem is solved. Solution times are
given in seconds.

MIP E-LSA

Best
sol.

Best
bound

Sol.
time

B&B
nodes

np iter. Best
sol.

Best
bound

Sol.
time

B&B
nodes

np iter.

P5-a 14 14 121 101 299 400 14 14 47 1 500 34
P5-b 17 17 22 1 133 134 17 17 18 1 434 29
P5-c 15 15 30 1 169 170 15 15 29 1 525 35
P5-d 14 14 28 1 155 156 14 14 50 1 519 38
P5-e 18 18 28 1 146 147 18 18 53 1 507 41
P10-a 32 32 329 101 516 617 32 32 4582 1 955 55
P10-b 32 32 103 1 352 353 32 32 838 1 823 50
P10-c 35 35 134 1 363 364 35 35 2182 1 930 61
P10-d 32 32 112 1 363 364 32 32 752 1 854 50
P10-e 37 37 106 1 357 358 37 37 922 1 808 45

In the experiments on the larger cases, where many B&B nodes are explored, we
experience B&B nodes where neither the heuristic nor the exact subproblem solver
manages to find new improving node patterns. Consequently, in many B&B nodes
only one iteration with an exact solution method is necessary to finish the node.
On average in the cases with 20, 30, 40 and 50 services, a new improving node
pattern is generated by the subproblem in only 25% of the B&B nodes. In a B&B
node that does not produce a single node pattern, using the heuristic subproblem
solver, which has to be followed by an exact, is clearly a wasted iteration. Ideally,
we would like to know in advance if it is possible to generate an improving node
pattern in a B&B node; and if so, we want to use the heuristic subproblem solver;
otherwise, we will call the exact subproblem solver directly. However, we do not
have this type of information; but we try to make a prediction of the possibility
of generating an improving node pattern in a B&B node by comparing the final
LP objective value of the node’s parent and the current LP objective value of the
node itself. In a minimization problem, the objective value of a B&B node t, say
zt, can never be less than the final objective value of the parent node, say zP AR

t ,
i.e., zt ≥ zP AR

t ; and when node patterns with negative reduced cost are added
to the RMP, zt decreases monotonically. Thus, if the relative difference between
these values is small, we suggest that there is less probable to find an improving
node pattern in this B&B node. Specifically, we say that if the relative difference
is less than a threshold, denoted by Δ, we call the exact subproblem solver next.

120

5.6. Numerical Results and Discussion

This condition is shown in inequality (5.32).

zt − zP AR
t

zP AR
t

≤ Δ (5.32)

Table 5.3 shows some results of the experiments with the B&P with the H-LSA
as the primary subproblem solver, where the Δ is given different values between
zero and one. In the extreme case where Δ = 1, the B&P will never use the
H-LSA in other B&B nodes than the root node, and if Δ = 0, the B&P will use
the H-LSA in every B&B node until it cannot find an improving node pattern,
and then switch to the exact solution method. Moreover, for each of the instance
sizes with 30, 40 and 50 services, the table lists the number of solved cases (out of
5 for each size), the average relative gap1 between the objective value of the best
found solution and the best bound after reaching the run time limit, the average
percentage of subproblem iterations conducted with the H-LSA, and the average
number of B&B nodes. At the bottom of the table, there are also averages over
all cases with 30 services or more. Generally, we can see that when Δ is given a
large value, the B&P algorithm explores a larger amount of B&B nodes compared
to the cases when Δ is given a small value. This result might be explained by,
as already discussed, the high amount of B&B nodes where no improving node
patterns can be found, and thus smaller values on Δ, implies more wasted calls
to the H-LSA. Overall, the results show that using the H-LSA in the B&P tree
is valuable, at least if we manage to control when to use the H-LSA and when
to call the exact solution method directly. We see that the smallest average gap
is achieved when Δ = 1 · 10−5. For this value, we observe that on average the
H-LSA is used as the solution method in about 20% of the subproblem iterations,
as opposed to about 40% when Δ = 0.

In Gullhav and Nygreen (2015), we compared the performance and solution
quality of the direct MIP formulation and a heuristic algorithm that pre-generates
a subset of all maximal node patterns, gives this as input to the pattern-based
models, and subsequently solves the formulations of Section 5.4 as an IP. The
results showed that the pre-generation algorithm outperformed the direct MIP
formulation, both in terms of speed and solution quality. Here, we will concentrate
on comparing the B&P algorithm with the pre-generation algorithm. Specifically,
we will consider two versions of the B&P algorithm: one which only solves the
subproblem with the exact MIP model of Section 5.5.1; and one which used the
H-LSA as the primary subproblem solver whenever the relative difference between
the parent objective and the current objective is less than 1 · 10−5. If the H-LSA
fails to find an improving node pattern, the exact MIP model is used as the solver.
We denote these two alternative B&P algorithms for B&P MIP and B&P H-LSA

1 obj. val. of best solution - final best bound
final best bound

121

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

Table 5.3.: H-LSA results with different thresholds, Δ. Avg. H-LSA iter. refers
to the percentage of calls to the H-LSA subproblem solver out of the
total number of times the subproblem is solved. Run time limit: 5
hours.

Threshold on relative difference, Δ

1 1 · 10−4 5 · 10−5 1 · 10−5 5 · 10−6 0

P30

Solved cases 1 0 1 1 1 1
Avg. gap 1.359% 1.347% 1.158% 0.9559% 1.157% 0.9580%
Avg. H-LSA iter. 4.468% 5.004% 7.811% 18.17% 23.35% 42.26%
Avg. B&B nodes 1522 1747 1572 1450 1335 1175

P40

Solved cases 0 0 0 0 0 0
Avg. gap 3.225% 3.070% 3.216% 2.788% 2.936% 2.935%
Avg. H-LSA iter. 5.107% 5.845% 9.188% 23.00% 26.46% 40.26%
Avg. B&B nodes 1535 1507 1500 1230 1204 1099

P50

Solved cases 0 0 0 0 0 0
Avg. gap 4.013% 3.901% 3.783% 3.554% 3.783% 4.267%
Avg. H-LSA iter. 7.503% 9.376% 9.579% 18.62% 22.54% 40.02%
Avg. B&B nodes 1192 1152 1109 955.8 912.0 832.0

P30, P40 &
P50

Avg. gap 2.866% 2.772% 2.719% 2.433% 2.625% 2.720%
Avg. H-LSA iter. 5.692% 6.742% 8.859% 19.93% 24.12% 40.85%
Avg. B&B nodes 1416 1469 1394 1212 1150 1035

in the following. Regarding the pre-generation algorithm, we have generated node
patterns similarly to how it was done in our earlier paper, and for each of the
cases in the subsequently presented results we have included a subset of between
250 000 and 300 000 maximal node patterns (out of millions) in the optimization
runs. For the P50 cases, this corresponds to about 0.1% of the total number of
maximal node patterns. Our experience is that if one includes more node patterns
than this, it will not improve the solutions significantly, but instead slow down
the MIP solver.

Table 5.4 compares the average gaps of the pre-generation and the B&P algo-
rithms at different time steps for the cases with 20 or more services. The results
of the pre-generation is reported without accounting for the time it takes to pre-
generate the node patterns, and the gaps are calculated based on the final best
bound of the B&P H-LSA, which in all cases equals the final best bound of the
B&P MIP. One can see from the columns of Table 5.4 labelled Final, that after
a maximum of five hours of run time, the B&P H-LSA has the smallest average
gaps in all cases. Generally, at a given time step the B&P H-LSA has found better
solutions than both the pre-generation and the B&P MIP. Also, the B&P MIP
outperforms pre-generation in most cases. For the P50 case we can see that the
average gap after 3600 seconds for the B&P MIP is not given. The explanation of
this is that the B&P MIP has not yet solved the root node, and subsequently the
master problem as an IP, after 3600 seconds in any of the P50 cases. Therefore, no

122

5.6. Numerical Results and Discussion

integer solutions are found at this point. Not shown in the table, the magnitude
of the final gaps of B&P H-LSA vary from 1 for the unsolved P20 cases to between
4 and 7 for the P50 cases. In the latter cases, the best bounds are in the interval
[162, 174]. Furthermore, both B&P MIP and B&P H-LSA solves three of the five
P20 cases, and B&P H-LSA solves one of the five P30 cases. The pre-generation
cannot find the optimal solution in any case.

Table 5.4.: Average relative gap (in %) at different time steps (seconds): compar-
ison of the pre-generation algorithm and the branch and price algo-
rithms. Run time limit: 5 hours.

Pre-generation B&P MIP B&P H-LSA
3600 7200 10800 14400 Final 3600 7200 10800 14400 Final 3600 7200 10800 14400 Final

P20 3.895 3.895 3.592 3.002 3.002 1.824 1.553 1.553 1.553 1.241 1.553 0.924 0.620 0.620 0.620
P30 8.196 5.423 4.663 4.663 4.663 2.909 2.320 2.320 1.916 1.732 2.522 1.729 1.343 1.139 0.956
P40 7.903 6.566 5.552 5.251 4.674 5.098 3.804 3.509 3.070 3.070 3.958 3.081 2.938 2.788 2.788
P50 9.119 9.119 7.224 6.258 5.798 N/A 5.677 4.844 4.614 4.493 5.144 4.494 4.137 3.789 3.554

Now, we are concentrating on experiments with the hybrid cloud model of
Section 5.4.2. The B&P H-LSA and pre-generation algorithms is set up equivalent
to when it was run on the private cloud cases. That is, Δ is still 1 · 10−5, and
the pre-generation algorithm optimizes a hybrid cloud case over the same node
patterns that were used for the corresponding private cloud case.

Table 5.5 compares the gaps at different points in time of the pre-generation
algorithm and the B&P H-LSA algorithm for the hybrid cloud cases with 90% pri-
vate cloud coverage. Again, the gaps of the pre-generation algorithm is computed
based on the final best bound of the B&P H-LSA algorithm. Our tests show that
the B&P H-LSA produces better results than the B&P MIP, but for presentation
purposes, we exclude these results from the tables regarding hybrid cloud cases.
However, the table displays that the branch and price algorithm is clearly better
than pre-generation for all cases. The gaps of the B&P H-LSA are smaller than
those of the pre-generation algorithm. Table 5.5 also shows that the average gaps
are larger compared to the private cloud results in all cases. Moreover, the time
to solve the root node is longer for both solution methods, and the B&P H-LSA is
able to find a solution within 3600 seconds in only one of the five H50 cases. On the
other hand, the pre-generation algorithm finds a solution within 3600 seconds in
four of the five H50 cases, but the gap in one of these cases is as much as 98.40%.
When considering the hybrid cloud cases with 75% private cloud coverage, we
obtain similar results. As seen in Table 5.6, the B&P H-LSA produce solutions
with smaller gaps in all cases. However, the relative gaps are smaller than in the
cases with 90% private cloud coverage, and so these cases are seemingly easier to
solve. This observation is consistent with the results in (Gullhav and Nygreen,

123

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

2015), where we showed that the hybrid cloud model became harder to solve as
the number of nodes in the private cloud approached the best found solution of
the private cloud model.

Table 5.5.: Average relative gap (in %) at different time steps (seconds): compar-
ison of the pre-generation algorithm and the branch and price algo-
rithm using H-LSA on the hybrid cloud cases with 90% private cloud
coverage. Run time limit: 5 hours.

Pre-generation B&P H-LSA
3600 7200 10800 14400 Final 3600 7200 10800 14400 Final

H20 28.99 27.20 25.63 23.58 23.41 8.044 6.775 5.146 5.146 5.146
H30 41.43 39.13 37.28 36.84 34.97 17.64 14.85 12.08 11.49 11.38
H40 107.9 45.14 44.30 43.71 42.45 23.49 18.39 17.64 17.26 16.88
H50 62.38 48.44 46.00 43.54 43.54 25.74 22.39 22.33 20.74 18.66

Table 5.6.: Average relative gap (in %) at different time steps (seconds): compar-
ison of the pre-generation algorithm and the branch and price algo-
rithm using H-LSA on the hybrid cloud cases with 75% private cloud
coverage. Run time limit: 5 hours.

Pre-generation B&P H-LSA
3600 7200 10800 14400 Final 3600 7200 10800 14400 Final

H20 10.89 10.17 9.410 9.180 9.180 2.007 1.769 1.709 1.304 1.196
H30 14.34 13.05 12.51 12.47 12.47 4.126 3.933 3.576 3.497 3.497
H40 16.74 14.84 14.73 14.67 14.15 7.208 5.847 5.489 5.899 5.092
H50 37.53 16.13 15.99 17.24 17.24 N/A 7.641 6.738 5.606 5.454

5.6.3. Comparison of the Private Cloud and Hybrid Cloud
Solutions

The private cloud and hybrid cloud models are in many ways quite similar, but
the different objective functions and the upper bound on the number of nodes in
the private cloud of the hybrid cloud model give their respective solutions distinct
features. In the private cloud model, the focus is on finding efficient ways to
pack a node, while in the hybrid cloud model, one also have to decide which
active replicas should be placed in the public cloud. At first, one could think that
obtaining efficient packings of the nodes still was the primary success factor for
obtaining good solutions in the hybrid cloud model, and that the active replicas
which did not fit in the selected efficient packings were moved to the public cloud.

124

5.6. Numerical Results and Discussion

Nevertheless, the solutions of the hybrid cloud model show that there are more
aspects than this factor that are important in a good solution.

With the node capacity normalized to 100, Table 5.1 shows that the cost per
unit of resource is equal 1 for all VM types. But since the public cloud VM
types are offered in pre-defined discrete sizes which might not fit exactly with
the resource requirement of an active replica of (i, q), GAiqg, the cost per unit
of resource might be higher. E.g., if GAiqg = 32, this active replica would fit
in the largest VM of provider 1 in Table 5.1 and cost 40. The cost per unit of
resource is then 40/32 = 1.25, which is considerable higher than 1. In the private
cloud model, this unit cost is of no importance for the solution quality, but in
the hybrid cloud model it is a meaningful factor. To compare the solutions of the
private cloud cases and the hybrid cloud cases we have computed a cost-resource-
ratio (CRR) by dividing the total cost of placing a set of active replicas in the
public cloud by the sum of resources (GAiqg) required by the same active replicas.
The second column of Table 5.7 gives the CRR of the best solutions of the private
cloud cases, i.e., the CRR is computed by dividing the (potential) cost of placing
all the active replicas required in the public cloud by the total amount of resource
required by the active replicas. The columns labelled tot give the same numbers
for the hybrid cloud cases with 90% and 75% private cloud coverage. Note that,
these numbers are not influenced directly by the placement, but computed based
on the replication patterns selected in the solution. The table shows that the
CRR computed over all active replicas are often identical. In the cases where they
are differing, this must mean that the solutions use different replication patterns.
What is more interesting is the CRR computed over all active replicas placed in
the public cloud (columns labelled puc). These ratios are much smaller than the
ratio of the private cloud cases and the ratios over all active replicas in the hybrid
cloud cases. This observation is important as it tells us that the optimization
process selects the active replicas with relatively low cost per resource unit to be
placed in the public cloud. Just for comparison, Table 5.7 also presents the CRR
computed over all active replicas placed in the private cloud (cf. column prc) and
it shows that these ratios are higher than the ratio of the private cloud cases. This
is naturally because the active replicas with low cost per resource unit are placed
in the public cloud, and so the relatively "expensive" active replicas remain in the
private cloud. Furthermore, if one compares the CRR computed over the active
replicas in the public cloud one can see that the CRRs for the cases with 90%
private cloud coverage are always smaller than the ones with 75% private cloud
coverage. This finding supports the interpretation above as it means that if the
private cloud coverage is increased, the optimization process will move the active
replicas in the public cloud with relatively high cost per resource unit back to the
private cloud.

Lastly, Table 5.8 compares the objective values of the best found solutions of the
hybrid cloud cases divided by the reduction in the number of nodes compared to

125

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

Table 5.7.: The cost-resource-ratio (CRR) of the private cloud solution, and the
hybrid cloud solutions with 90% and 75% private cloud coverage (pcc).
For the latter, the CRR is computed over all active replicas (tot), over
the active replicas placed in the private cloud (prc), and over the active
replicas placed in the public cloud (puc).

Private
cloud

Hybrid cloud: 90%
pcc

Hybrid cloud: 75%
pcc

prc tot puc prc tot puc

H20-a 1.2124 1.2338 1.2123 1.0491 1.2753 1.2123 1.0750
H20-b 1.2234 1.2459 1.2234 1.0680 1.2888 1.2234 1.0810
H20-c 1.2218 1.2444 1.2211 1.0355 1.2825 1.2211 1.0811
H20-d 1.1986 1.2177 1.1986 1.0489 1.2589 1.1983 1.0604
H20-e 1.2197 1.2393 1.2202 1.0676 1.2795 1.2202 1.0788
H30-a 1.2098 1.2336 1.2114 1.0516 1.2725 1.2113 1.0816
H30-b 1.2269 1.2448 1.2269 1.0758 1.2920 1.2269 1.0848
H30-c 1.2240 1.2451 1.2239 1.0647 1.2840 1.2237 1.0848
H30-d 1.1876 1.2059 1.1876 1.0531 1.2459 1.1876 1.0595
H30-e 1.2078 1.2293 1.2091 1.0603 1.2720 1.2091 1.0705
H40-a 1.2023 1.2251 1.2021 1.0603 1.2617 1.2020 1.0796
H40-b 1.2166 1.2403 1.2166 1.0709 1.2801 1.2165 1.0862
H40-c 1.2234 1.2487 1.2234 1.0577 1.2878 1.2234 1.0824
H40-d 1.1966 1.2172 1.1966 1.0535 1.2581 1.1961 1.0646
H40-e 1.2112 1.2322 1.2111 1.0651 1.2706 1.2110 1.0822
H50-a 1.2036 1.2272 1.2036 1.0596 1.2676 1.2034 1.0770
H50-b 1.2150 1.2388 1.2150 1.0668 1.2802 1.2150 1.0736
H50-c 1.2230 1.2494 1.2232 1.0571 1.2892 1.2231 1.0823
H50-d 1.1958 1.2173 1.1958 1.0597 1.2575 1.1954 1.0682
H50-e 1.2099 1.2318 1.2099 1.0727 1.2716 1.2098 1.0789

Average 1.2115 1.2334 1.2116 1.0599 1.2738 1.2115 1.0766

the best found solution of the corresponding private cloud case, that is, zH/(zP −
NN). We denote these numbers as the public cloud node cost. By regarding the
costs of the public cloud VM types in Table 5.1, the minimum cost of moving all
active replicas of a fully utilized node to the public cloud is 100. Since the CRR
values of the active replicas in the public cloud are considerably higher than 1 (cf.
Table 5.7), one should expect a higher cost than 100. However, the public cloud
node costs presented in Table 5.8 take (average) values both above and below
100. The latter can be explained by the fact that in many cases the average node
utilization in the private cloud cases is significantly less than 100%. Hence, when
zP −NN nodes are removed from the solution of a private cloud case, one does not
have to compensate by leasing resources from a public cloud provider equivalent
to zP − NN fully utilized nodes. Furthermore, Table 5.8 also illustrates that the
public cloud node cost is consistently less when the private cloud coverage is 90%
compared to 75%, which is natural because the average utilization of the N least

126

5.7. Conclusions

utilized nodes is reduced as NN is increased, and thus fewer resources per node has
to be compensated for by using the public cloud. Another feature of the numbers
in the table is that the public cloud node costs seems to decrease with the size
of the test cases, with the H30 cases being exceptions. This can be explained by
the fact that the gaps between the best found solution and the best bound in
the private cloud cases increase with the problem size, and as a consequence, the
average node utilization is lower in the larger cases.

Table 5.8.: Public cloud node cost. Comparison between the best solutions of the
hybrid cloud cases with 90% and 75% private cloud coverage (pcc).

90% pcc 75% pcc

H20 96.24 104.1
H30 98.15 104.7
H40 90.73 100.1
H50 87.75 98.12

5.7. Conclusions
We have studied two versions of the service deployment problem proposed in
Gullhav and Nygreen (2015): one for periods where the private cloud of the service
provider has enough resource capacity to run all services, and one for periods
where a public cloud is used for placement as well, forming a hybrid cloud. A
B&P algorithm was proposed to solve the problems. The subproblem of the B&P
was solved by a MIP solver and a label-setting algorithm, which was run on a
network designed to exploit the special problem structure. Firstly, we developed
an exact label-setting algorithm, but due to a weak dominance rule, the run time
of the algorithm did not scale well to larger problems. One contribution of this
paper is a heuristic label-setting algorithm (H-LSA), which based on the problem
structure, heuristically reduce the underlying network and simplify the dominance
rule. The H-LSA was complemented with the exact MIP solver to obtain an exact
and complete B&P algorithm. Our experiments showed that using the H-LSA sped
up the solution process. However, we also observed that in many B&B nodes, no
node patterns with negative reduced cost did exist, and calling the H-LSA in such
a case results in a wasted iteration. Another contribution of this paper is a novel
strategy to predict the likeliness of finding node patterns with negative reduced
cost in a B&B node, and in nodes where this seems unlikely, we directly call the
MIP solver.

We also compared the B&P algorithm with the pre-generation algorithm pre-
sented in Gullhav and Nygreen (2015), and the results showed that the B&P

127

A B&P Approach for Deployment of Multi-tier Software Services in Clouds

outperformed the other algorithm. Moreover, the B&P managed to solve all test
cases with 10 services or less, but as the problem size grew the relative gap be-
tween the objective value of the best-found solution and the best bound increased
when a maximum run time was set. For the cases with 50 services, the gap was
over five percent on average after five hours of run time. The results of the experi-
ments on the hybrid cloud model indicate that this model is more difficult to solve
than the private cloud model; the relative gaps were larger and it took longer time
to solve the root node. We also obtained results showing that the hybrid cloud
model becomes harder to solve when the private cloud coverage approaches 100%.
Since the hybrid cloud case with equally many services and service components
as a private cloud case, but with fewer nodes, are more difficult to solve than the
private cloud case, this must mean that it is not necessarily easy to select the
active replicas for placement in the public cloud.

By analyzing the solutions of the hybrid cloud model, we found as expected that
the active replicas placed in the public cloud fit better in the VM types offered
in the public cloud, i.e., they have less cost per unit of resource required, than
the active replicas placed in the private cloud. This is a critical factor in a good
solution.

128

Bibliography
Amazon Web Services. Amazon Web Services (AWS) - Cloud Computing Services,

2015. URL http://aws.amazon.com/. Last visited 2015/03/04.

D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. Energy-aware autonomic
resource allocation in multitier virtualized environments. IEEE Transactions
on Services Computing, 5(1):2–19, 2012.

N. Ashrafi, O. Berman, and M. Cutler. Optimal design of large software-systems
using n-version programming. IEEE Transactions on Reliability, 43(2):344–350,
1994.

A. Beloglazov, R. Buyya, Y. C. Lee, and A. Y. Zomaya. A taxonomy and sur-
vey of energy-efficient data centers and cloud computing systems. Advances in
Computers, 82(2):47–111, 2011.

E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner, Y. Moatti, and D. Lorenz.
Guaranteeing high availability goals for virtual machine placement. In 2011
31st International Conference on Distributed Computing Systems, pages 700–
709, 2011.

D. Breitgand and A. Epstein. SLA-aware placement of multi-virtual machine
elastic services in compute clouds. In N. Agoulmine, C. Bartolini, T. Pfeifer,
and D. O’Sullivan, editors, Integrated Network Management, pages 161–168.
IEEE, 2011.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield.
Remus: High availability via asynchronous virtual machine replication. In Pro-
ceedings of the 5th USENIX Symposium on Networked Systems Design and Im-
plementation, pages 161–174, Berkeley, CA, USA, 2008. USENIX.

T. Distler, R. Kapitza, I. Popov, H. P. Reiser, and W. Schröder-Preikschat.
SPARE: Replicas on hold. In Proceedings of the 18th Network and Distributed
System Security Symposium, Geneva, Switzerland, 2011. The Internet Society.

T. C. Ferreto, M. A. Netto, R. N. Calheiros, and C. A. D. Rose. Server consol-
idation with migration control for virtualized data centers. Future Generation
Computer Systems, 27(8):1027 – 1034, 2011.

129

Bibliography

H. Goudarzi and M. Pedram. Multi-dimensional SLA-based resource allocation for
multi-tier cloud computing systems. In 2011 IEEE 4th International Conference
on Cloud Computing, pages 324–331, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

A. N. Gullhav and B. Nygreen. Deployment of replicated multi–tier services in
cloud data centres. International Journal of Cloud Computing, 4(2):130–149,
2015.

A. N. Gullhav, B. Nygreen, and P. E. Heegaard. Approximating the response time
distribution of fault-tolerant multi-tier cloud services. In 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing, pages 287–291, Los
Alamitos, CA, USA, 2013. IEEE Computer Society.

V. Gunnerud, B. A. Foss, K. I. M. McKinnon, and B. Nygreen. Oil production
optimization solved by piecewise linearization in a branch & price framework.
Computers & Operations Research, 39(11):2469 – 2477, 2012.

S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors, Column Generation,
pages 33 – 65. Springer, New York, USA, 2005.

I. Iyoob, E. Zarifoglu, and A. B. Dieker. Cloud computing operations research.
Service Science, 5(2):88–101, 2013.

B. Jennings and R. Stadler. Resource management in clouds: Survey and research
challenges. Journal of Network and Systems Management, 23(3):567–619, 2015.

M. Jepsen, B. Petersen, S. Spoorendonk, and D. Pisinger. Subset-row inequalities
applied to the vehicle-routing problem with time windows. Operations Research,
56(2):497–511, 2008.

R. Jhawar, V. Piuri, and M. Santambrogio. Fault tolerance management in cloud
computing: A system-level perspective. IEEE Systems Journal, 7(2):288–297,
2013.

W. Kuo and R. Wan. Recent advances in optimal reliability allocation. In G. Lev-
itin, editor, Computational Intelligence in Reliability Engineering, volume 39 of
Studies in Computational Intelligence, pages 1–36. Springer Berlin Heidelberg,
2007.

I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Architecture-driven reliabil-
ity and energy optimization for complex embedded systems. In G. T. Heineman,
J. Kofron, and F. Plasil, editors, Research into Practice – Reality and Gaps, vol-
ume 6093 of Lecture Notes in Computer Science, pages 52–67. Springer Berlin
Heidelberg, 2010.

130

Bibliography

P. Mell and T. Grance. The NIST definition of cloud computing, 2011. NIST SP
800-145.

D. Menasce. QoS issues in web services. Internet Computing, IEEE, 6(6):72–75,
2002.

V. Petrucci, O. Loques, and D. Mossé. A dynamic optimization model for power
and performance management of virtualized clusters. In Proceedings of the 1st
International Conference on Energy-Efficient Computing and Networking, pages
225–233, New York, NY, USA, 2010. ACM.

ROADEF. ROADEF/EURO challenge 2012: Machine reassignment, 2012. URL
http://challenge.roadef.org/2012/en/. Last visited 2015/10/01.

B. Speitkamp and M. Bichler. A mathematical programming approach for server
consolidation problems in virtualized data centers. IEEE Transactions on Ser-
vices Computing, 3(4):266–278, 2010.

P. H. Vance. Branch-and-price algorithms for the one-dimensional cutting stock
problem. Computational Optimization and Applications, 9:211–228, 1998.

F. Vanderbeck. On dantzig-wolfe decomposition in integer programming and ways
to perform branching in a branch-and-price algorithm. Operations Research, 48
(1):111–128, 2000.

F. Vanderbeck and L. A. Wolsey. An exact algorithm for ip column generation.
Operations Research Letters, 19(4):151 – 159, 1996.

F. Vanderbeck. Implementing mixed integer column generation. In G. Desaulniers,
J. Desrosiers, and M. Solomon, editors, Column Generation, pages 331–358.
Springer US, 2005.

131

Bibliography

Appendix 5.A. SPPRC Details
Appendix 5.A.1. Labels and Label Extension
Based on the network description in Section 5.5.2, we let VA (VP) be the set of
all a-vertices (p-vertices) in all service subnets; and Vσ and Vτ be the sets of all
σ-vertices and τ -vertices, respectively. Note that σ0 and τ0 of the upper layer net-
work (Figure 5.1) are not contained in the latter sets. Moreover, since a visit to
an a-vertex or p-vertex is analogous to a placement of an active or passive replica,
we have to assign the dual variables, which are used in the mathematical formu-
lation of the subproblem in Section 5.5.1, to the respective vertices. Therefore, a
vertex ν ∈ VA is assigned a dual variable αν corresponding to the dual variable
αiq of the service-component pair (i, q) that the vertex represents. Likewise, each
vertex ν ∈ VP is assigned a dual variable βν corresponding to the dual variable
βiq. Lastly, we also keep track of the resource usage of a node pattern by assign-
ing each ν ∈ VA resource consumption values GAνg for all resource types g ∈ G,
resembling the resource consumption GAiqg of (i, q) which ν represents. Similarly,
each ν ∈ VP is assigned the resource consumption values GP νg for all g ∈ G.

To conduct the label-setting algorithm, each label stores data according to Table
5.9. We use the notation ψ(�) to refer to the vertex of label ν, and similarly λ(�),
ζ(�), fg(�), mg(�), π(�) and ξ(�) to refer to the rest of the data listed in the table.

Table 5.9.: The data stored for each label
Symbol Description

ψ pointer to the vertex of the label
λ pointer the predecessor label
ζ the reduced cost of the label

mg the amount of resource of type g ∈ G reserved for activation of passive replicas
fg the accumulated resource of type g ∈ G (i.e. CPU, memory, etc.), including mg

π the accumulated number of passive replicas
ξ the accumulated number of different services

The path represented by a label � is feasible if all of the following conditions
hold:

fg ≤ NCg, ∀g ∈ G (5.33)

π ≤ NP (5.34)

ξ ≤ NS (5.35)

These conditions are equivalent to the constraints (5.20), (5.18) and (5.17), re-
spectively.

132

Appendix 5.A. SPPRC Details

When a label � is extended to a vertex ν to form a new label k, the data stored
for the new label is constructed as shown below. (5.38) - (5.42) are denoted
resource extension functions.

ψ(k) = ν (5.36)

λ(k) = � (5.37)

ζ(k) =

ζ(�) − αν if ν ∈ VA

ζ(�) − βν if ν ∈ VP

ζ(�) otherwise
(5.38)

mg(k) =

mg(�)+
max{GAνg − GP νg − mg(�), 0} if ν ∈ VP

mg(�) otherwise
∀g ∈ G (5.39)

fg(k) =

fg(�) + GAνg if ν ∈ VA

fg(�) + GP νg+
max{GAνg − GP νg − mg(�), 0} if ν ∈ VP

fg(�) otherwise

∀g ∈ G (5.40)

π(k) =
�

π(�) + 1 if ν ∈ VP

π(�) otherwise
(5.41)

ξ(k) =
�

ξ(�) + 1 if ν ∈ Vσ

ξ(�) otherwise
(5.42)

Functions (5.36) and (5.37) set the vertex and predecessor, respectively, and (5.38)
computes and stores the accumulated reduced cost, based on to which vertex set
ν belongs. Note that the label constructed in the initialization in Algorithm 5.2
has an accumulated reduced cost of 1, corresponding to the constant term in the
objective function (5.15) in the MIP formulation (−η in the hybrid cloud model).
Furthermore, (5.39) computes the amount of resources reserved for activation of
passive replicas. If the vertex ν represents a passive replica and GAν − GP ν >
mg(�), mg(k) is increased from mg(�), otherwise mg(k) remains at the level of
mg(�). (5.40) computes the accumulated resources. If vertex ν represents an active
replica, the extension comprises adding the resource usage of ν to the accumulated
resources of �. On the other hand, if ν represents a passive replica, one also have
to account from a possible increase in the resources reserved for activation of
passive replicas, likewise done in (5.39). If ν neither represents an active nor
passive replica, fg(k) takes the same value as fg(�). Lastly, (5.41) and (5.42)

133

Bibliography

increment the number of passive replicas and different services if ν represents a
passive replica or is an entrance of a service block, respectively.

Appendix 5.A.2. Dominance Criteria
The goal of implementing the dominance step of Algorithm 5.2 is to reduce the
number of extended labels, and thereby speed up the solution procedure. It should
be noted that without the dominance step, Algorithm 5.2 would have been a
procedure enumerating all feasible paths.

In order to describe our dominance criteria, we define the set of path extensions
for �, E(�), as the partial paths, starting in vertex ψ(�) and ending in the sink
vertex τ0, that can be concatenated with the partial path represented by �, and
result in a resource-feasible path from σ0 to τ0. Then, domination is defined as
follows; label �1 dominates label �2 if:

ψ(�1) = ψ(�2) (5.43)

ζ(�1) ≤ ζ(�2) (5.44)

E(�1) ⊇ E(�2) (5.45)

If conditions (5.43) - (5.45) hold, it is certain that any path being constructed by
concatenating the partial path represented by �1 and any partial path e ∈ E(�2)
cannot have a worse reduced cost than the path constructed from the partial path
represented by �2 and the same e. Therefore, �1 dominates �2, and the label �2
can be removed from the set of labels at vertex ψ(�2), i.e. Lψ(�2).

Unfortunately, in most cases, ours including, it is not practical to check con-
dition (5.45) directly. Nevertheless, since the resource extension functions (5.39)
- (5.42) of the SPPRC are non-decreasing, the conditions (5.46) - (5.49) below
imply condition (5.45) (Irnich and Desaulniers, 2005).

mg(�1) ≥ mg(�2) ∀g ∈ G (5.46)

fg(�1) ≤ fg(�2) ∀g ∈ G (5.47)

π(�1) ≤ π(�2) (5.48)

ξ(�1) ≤ ξ(�2) (5.49)

The domination is performed in line 4 of Algorithm 5.2, and it consists of check-
ing if labels dominate each other, and if so remove the dominated label. If the
domination is implemented naïvely, one has to compare every label with all other
labels, in total |Lν |2 comparisons at vertex ν. However, if one maintain the set of
labels at a node ordered according to the reduced cost ζ, one only has to compare
every label with other labels with worse (i.e., higher) reduced cost (cf. domination

134

Appendix 5.A. SPPRC Details

criterion (5.44)).
In line 3 of Algorithm 5.2, we have the option to decide whether the domina-

tion step should be conducted in a given vertex or not. We have conducted the
domination step in every vertex, except the dummy source and sink, σ0 and τ0;
and at the source vertex σ1 of the first service.

Appendix 5.A.3. Implementing the Branching in the SPPRC
The basic idea on how to deal with the branching decisions is to keep track of
which branching sets a label has visited, and if visited for a second time, i.e., both
replicas corresponding to a branching set are included in the label, we have to
correct the reduced cost of the label with the dual variable of the branching set.
First define VCj ⊂ (VA ∪VP) for each j ∈ J̄t ∪J t as the set of vertices representing
the service component pairs (i, q) with HAjiq = 1 or HP jiq = 1. Note that, the
cardinality of VCj is always two. In addition to the data in Table 5.9, every label
� has to keep track of the number of times the vertices related to branching set
j ∈ J̄t (j ∈ J t) is visited. We denote these counters as θ̄j (θj). When extending
a label � to label k at vertex ν, these counters are updated according to (5.50)-
(5.51). At every extension, we also need to monitor if the label visits a branching
set for the second time, and if so subtract the corresponding dual variable from
the accumulated reduced cost. To do this, we build the sets F̄ and F as the set of
branching sets that are visited for the second time at the current vertex, ν. After
updating θ̄j and θj , the sets are built as shown in (5.52) and (5.53) for each label
k. By using these sets, the resource extension function for updating the reduced
costs, (5.38), are updated to (5.54).

θ̄j(k) =
�

θ̄j(�) + 1 if ν ∈ VCj

θ̄j(�) otherwise
∀j ∈ J̄t (5.50)

θj(k) =
�

θj(�) + 1 if ν ∈ VCj

θj(�) otherwise
∀j ∈ J t (5.51)

F̄(k) = {j ∈ J̄t | ν ∈ VCj ∧ θ̄j(k) = 2} (5.52)

F(k) = {j ∈ J t | ν ∈ VCj ∧ θj(k) = 2} (5.53)

ζ(k) =

ζ(�) − αν − �
j∈F̄(k) γ̄j − �

j∈F(k) γj if ν ∈ VA

ζ(�) − βν − �
j∈F̄(k) γ̄j − �

j∈F(k) γj if ν ∈ VP

ζ(�) otherwise
(5.54)

The introduction of branching constraints in the master problem also influences
how the domination can be conducted. When comparing the reduced costs of two

135

Bibliography

labels to check if �1 dominates �2, one can have that label �1 has visited one vertex
in a branching set ̄, while �2 has not. If ̄ is an element in J̄t, another visit by an
extension of �1 to this branching set will incur a penalty of γ̄̄, while an extension
of �2 to the same vertex will not incur a penalty. Moreover, if �2 has visited one
vertex, not visited by �1, in a branching set j ∈ J t, the extension of label �2 will
receive a bonus of γj if the partial path, represented by �2, is extended to the
second vertex of the branching set, while an extension of �1 to this vertex will not
get this bonus. A way to overcome this issue is to compensate the reduced cost
of �1 by the potential penalties which can be observed by an extension of �1, but
not by an extension of �2; and compensate the reduced cost of �2 by the potential
bonuses which can be observed by an extension of �2, but not by an extension of
�1. Jepsen et al. (2008) uses this idea in order to account for the dual variables
stemming from subset-row (SR) inequalities in the master problem of a vehicle-
routing problem. Since the SR inequalities are ≤-type of constraints, they only
have to compensate the reduced cost with potential penalties in their dominance
criteria. Now we define P̄ (and P) as the set of branching sets j ∈ J̄t (and J t)
that are already visited once and has the potential to be visited once more. After
extension from label � to label k at vertex ν, the sets are built according to (5.55)
and (5.56), where ω � ν reads as ω succeeds ν in the topological order of the
acyclic network, i.e., ω can potentially be visited after the current vertex ν. Using
these definitions, we rewrite the dominance criterion (5.44) to (5.57). That is,
label �1 dominates label �2 if (5.43), (5.46)-(5.49) and (5.57) holds.

P̄(k) = {j ∈ J̄t | θ̄j(k) = 1 ∧ ∃ω ∈ VCj (ω � ν)} (5.55)

P(k) = {j ∈ J t | θj(k) = 1 ∧ ∃ω ∈ VCj (ω � ν)} (5.56)

ζ(�1) −
�

j∈(P̄(�1)\P̄(�2))

γ̄j ≤ ζ(�2) −
�

j∈(P(�2)\P(�1))

γj (5.57)

Appendix 5.A.4. Details of the Heuristic Label-setting
Algorithm

The idea of the heuristic label-setting algorithm is to fix the mg’s in advance of
calling Algorithm 5.2. We consider two cases: mg = 0 for all g ∈ G, in which
no passive replicas can be placed in the current node pattern; and mg > 0 for at
least one resource type g, which means that passive replicas with GAiqg −GP iqg >
mg cannot be placed in the node pattern. It is very easy to adapt the SPPRC
formulation and the label-setting algorithm to the former case. All vertices ν ∈ VP ,
i.e., vertices representing passive replicas, together with all arcs connected to ν are
removed from the SPPRC graph, and the dominance criteria (5.46) and (5.48) are
disregarded. Otherwise, the algorithm works as before. Certainly, this network

136

Appendix 5.A. SPPRC Details

reduction and simplification of the dominance rule will have considerable impact
on the run time of one pass of the algorithm. In the latter case, with non-zero mg,
we choose to pre-select |G| passive replicas for placement, assuming that |G| ≤ NP

holds in the following. Each of these replicas will function as a benchmark for
the mg (for different resources g). That is, mg = (GAı̂g q̂gg − GP ı̂g q̂gg) for all
g ∈ G where the service components (̂ı1, q̂1), . . . , (̂ıg, q̂g), . . . , (̂ı|G|, q̂|G|) are the
pre-selected passive replicas. To implement this pre-selection and fixing in the
SPPRC formulation and label-setting algorithm, more changes has to be done,
but the changes are still simple. Firstly, we remove the vertices representing
the active replicas of service components (̂ıg, q̂g) for all g ∈ G in addition to the
connected arcs. Furthermore, all vertices ν ∈ VP with (GAνg − GP νg) > mg for
at least one g, and the arcs connected to these vertices, are removed. Then, the
order of the services is slightly changed to facilitate the forced placement of the
pre-selected passive replicas. Firstly, the service blocks of the pre-selected replicas,
denoted pre-selection blocks, are ordered as the first service blocks (cf. Figure 5.1),
and the arcs from σ0 to all service blocks except the first are removed. From all
the pre-selection blocks, except the last one in the ordering, there are only arcs
from the τ -vertex to the σ-vertex of the next pre-selection block. From the last
pre-selection block, there are arcs to all forward service blocks and the τ0 vertex.
Moreover, the subnet of the pre-selection blocks (cf. Figure 5.2) is rearranged by
letting the pı̂g q̂g

vertices be ordered as the first. All arcs out of the σ-vertices are
removed except the one arc to the first of possibly |G| pre-selected passive replicas
of the service. In case there are several pre-selected replicas in a subnet, each
pre-selected replica is linked by an arc, while the last pre-selected replica has arcs
to every other a-vertex and p-vertex of higher order. Lastly, the dominance rule
will disregard criterion (5.46).

A fundamental observation about good solutions of the problem is that node
patterns typically contain either zero or NP passive replicas, and in the latter
case, the passive replicas have quite similar resource requirements for activation
(GAiqg − GP iqg). We use this observation when deciding the pre-selected passive
replicas, that is, we try to pick |G| passive replicas which together with NP − |G|
other passive replicas make up a set of passive replicas with large dual variables
compared to their total resource usage if placed together on a node. For presen-
tation purposes, we have omitted the details of the procedure used to pre-select
passive replicas.

137

Paper V
Anders N. Gullhav, Jean-François Cordeau, Lars Magnus Hvattum
and Bjørn Nygreen:

Adaptive Large
Neighborhood Search
Heuristics for Multi-tier
Service Deployment
Problems in Clouds

submitted to an international journal

Adaptive Large Neighborhood
Search Heuristics for Multi-tier
Service Deployment Problems in
Clouds

Abstract:
This paper proposes adaptive large neighborhood search (ALNS) heuristics
for two service deployment problems in a cloud computing context. The prob-
lems under study consider the deployment problem of a provider of software-
as-a-service applications, and include decisions related to the replication and
placement of the provided services. A novel feature of the proposed algo-
rithms is a local search layer on top of the destroy and repair operators. In
addition, we use a mixed integer programming-based repair operator in con-
junction with other faster heuristic operators. Thus, the proposed algorithms
can be classified as matheuristics. Because of the different time consumption
of the repair operators, we need to account for the time usage in the scoring
mechanism of the adaptive operator selection. The computational study in-
vestigates the benefits of implementing a local search operator on top of the
standard ALNS framework. Moreover, we also compare the proposed algo-
rithms with a branch and price (B&P) approach previously developed for the
same problems. The results of our experiments show that the benefits of the
local search operators increase with the problem size. We also observe that
the ALNS with the local search operators outperforms the B&P on larger
problems, but it is also comparable with the B&P on smaller problems with
a short run time.

6.1. Introduction
An increasing proportion of enterprise and business software, such as customer
management systems, email systems and time management applications, are run
as web services in clouds through the software-as-a-service (SaaS) model. How-
ever, Marston et al. (2011) identify the lack of quality of service and availability
guarantees as one of the major weaknesses of adopting cloud software services.
Even though frameworks and software systems offering fault tolerance manage-
ment in clouds have been proposed (Cully et al., 2008; Distler et al., 2011; Jhawar
et al., 2013), there exist very few optimization models considering fault tolerance

141

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

by introduction of redundancy (Avižienis et al., 2004) in the literature. Distler
et al. (2011) present a fault tolerance approach based on active-passive replica-
tion, where passive backup replicas are run in a paused state, from which they
can be activated rapidly. The passive replicas do not serve demand while being
paused, and the replicas consume considerably less resources than corresponding
demand-serving active replicas. We take these ideas into account when regard-
ing the service deployment problem of a SaaS provider (SP). In this problem we
consider decisions related to the replication of the SaaS services simultaneously
with placement decisions. In previous work (Gullhav and Nygreen, 2015a), we
presented two mathematical models for the problem: one that considers service
placement in a hybrid cloud, and another one that only considers placement in
the private cloud of the service provider. We refer to Mell and Grance (2011) for
definitions of the different types of clouds.

The SP offers a set of SaaS services, modeled as multi-tier services, to its clients.
A typical example of a multi-tier service is a three-tier web service composed of
a web server, an application server and a database server. When deployed in a
cloud environment, each of the tiers, referred to as components of the service,
run in separate virtual machines (VMs). In turn, the VMs are placed on physical
machines, which we refer to as nodes. In our work, we assume that the service
provider owns and operates one or more data centers forming a private cloud,
and can lease additional VMs in a public cloud when needed. Furthermore, the
services of the SP are required to have a certain level of quality of service (QoS),
as specified in service level agreements (SLAs), i.e., contracts between the SP and
its clients. The QoS might be specified in terms of bounds on the performance,
e.g., the response time, and bounds on the dependability, e.g., the availability
or downtime. To achieve the guaranteed QoS, each service component can be
replicated into a number of load-balanced replicas, and additional backup replicas
of the components might be deployed to achieve an appropriate fault tolerance.
We denote the former type of replicas as active and the latter as passive. The
overall objective of the problem is to find the minimum cost deployment while
respecting the QoS requirements of the SLA and other technical requirements,
such as node resource capacities. When a service provider offers multiple services,
and these services interact through their placement (i.e., run on the same nodes),
we argue that the cheapest way to replicate the tiers of a service is dependent of
how other services are replicated. Therefore, it is valuable for the SP to consider
the replication and placement of the services simultaneously.

The literature proposing related placement problems is discussed in our previous
paper (Gullhav and Nygreen, 2015a) and a recent survey on resource management
in clouds is given by Jennings and Stadler (2015). Goudarzi and Pedram (2011)
and Ardagna et al. (2012) propose resource allocation models for deployment of
QoS-constrained multi-tier services. Their models do not concern backup replica-
tion and placement of backup replicas as very few models in the service placement

142

6.2. Problem Description

literature do. However, Bin et al. (2011) propose a solution method for a place-
ment problem of an infrastructure-as-a-service (IaaS) provider, where some VMs
require one or more backup locations to which they can be migrated in case of a
failure. Another problem related to ours is the redundancy allocation problem,
where the goal is to find the minimum cost allocation of parallel components to
different subsystems in series, while maintaining a reliability higher than a given
level (Kuo and Wan, 2007).

In Gullhav and Nygreen (2015a), we modeled the problem as a direct mixed-
integer program (MIP). In addition, the problem was reformulated as a stronger
pattern-based model. The latter formulation was solved by an a priori column
generation algorithm, also called pre-generation, where a subset of the feasible
patterns were given to the master problem in advance of the optimization. Fur-
thermore, in Gullhav and Nygreen (2015b), we proposed a branch and price (B&P)
algorithm, where patterns were generated dynamically instead of a priori. The
B&P algorithm outperformed the pre-generation algorithm.

The contribution of this paper is to introduce two novel adaptive large neigh-
borhood search (ALNS) algorithms for two variants of the service deployment
problem. In addition to destroy and repair operators, which are part of the stan-
dard ALNS framework, a novel feature of the algorithms is a local search layer on
top of the repair operators. A key question we seek to answer in the computa-
tional study of this paper is what benefits the local search operators could bring
to the ALNS. Another special feature of the proposed algorithms is a MIP-based
repair operator, in addition to other heuristic insertion operators. Since the re-
pair operators vary with respect to their time-performance trade-off, we score the
operators according to both their performance and time consumption in the adap-
tive operator selection. Furthermore, the computational study also compares the
speed and solution quality of the ALNS algorithms and the previously proposed
B&P algorithm for the two versions of the service deployment problem.

The outline of the paper is as follows. In the next section, we present a de-
scription of the service deployment problem, and in Section 6.3, we repeat the
direct MIP formulation of Gullhav and Nygreen (2015a). In Section 6.4, we give a
description of the components of the proposed ALNS algorithms. The computa-
tional study is presented and discussed in Section 6.5, before Section 6.6 concludes
the paper.

6.2. Problem Description
Let S be the set of multi-tier services, and let Qi denote the set of components
of service i ∈ S. For brevity, we will denote component q ∈ Qi of service i as the
pair (i, q). The VMs running the service components might run in a public cloud
or on the set of nodes, N , in the private cloud of the service provider, and each

143

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

node has a set of limited resources, G, e.g, CPU, memory, and storage. The nodes
are assumed to be identical, and have resource capacities NCg for all resources
g ∈ G. When placed on a node, an active replica of the pair (i, q) consumes GAiqg

resources of type g. The public cloud IaaS providers offer different VM types of a
fixed capacity and cost to run the service components in the public cloud. As an
example, Amazon Web Services (2015) offers several general purpose VM types,
ranging from micro to 10xlarge, with stepwise increases in capacity and cost.
When placing an active replica of the pair (i, q) in the public cloud, this replica
is run in the VM type that offers at least GAiqg resources for all g, and the cost
of this VM type is denoted by CCiq. However, while active replicas can be run
in the public cloud, we assume that support for passive replicas are only present
on the nodes in the private cloud, and when run on the nodes in a passive state,
the passive replicas require GP iqg (< GAiqg) resources. To ensure that passive
replicas can be activated, each node that runs one or more passive replicas must
maintain an unassigned pool of resources. One has to make a trade-off between
cost and fault tolerance when setting the size of this pool since a small pool might
make it impossible to activate a passive replica on the node, while a large pool will
result in a large amount of unused resources in a failure-free situation. Here, the
size of the pool of shared backup resources is set to be larger than the resources
required to activate any of the passive replicas running on the node. In addition,
the number of passive replicas run on a node is limited to NP . Moreover, the
replicas of the same service component are required to be run on different nodes.
This policy is referred to as node-disjoint placement. Otherwise, a single node
failure could bring down several replicas of the same component. In the following,
NCg is assumed to be normalized to 1 for all resources and, hence, GAiqg and
GP iqg are fractions of the node resource capacities.

The replication of the service components is done to obtain a certain level of
performance and make the service fault tolerant. We do not consider a specific
QoS measure, but instead assume that there exists a method to check whether
given replication levels of all the components of a service result in a tolerable
QoS according to the SLA. Gullhav et al. (2013) propose a method that takes
the number of active and passive replicas of each component of a service and the
component’s assigned resources as input, and outputs an approximate response
time distribution. The method also assumes that the VMs fail according to a
Poisson process, and takes this into account when computing the approximation.
This method can in principle be used here if the SLA specifies bounds on the mean
or a percentile of the response time distribution of a service. Moreover, Gullhav
and Nygreen (2015a) have introduced a modeling structure, called replication
patterns, that specifies the number of active and passive replicas of all components
of a service. With this structure, we manage to maintain a linear MIP model of
the problem. We let Ri be the set of replication patterns of service i, and let
RAiqr and RP iqr denote the number of active and passive replicas of the pair (i, q)

144

6.3. Direct MIP Formulation

in replication pattern r ∈ Ri.
In the QoS guarantees, we do not account for the network latency. When the

VMs of a service are placed in the same data center, or the private cloud, this
latency can be neglected. When VMs placed in different data centers or clouds
communicate, the latency should ideally be accounted for. However, doing this
simplification makes our models much less complex. Nevertheless, we set an upper
bound on the number of different services on a node to NS , which drives different
components of the same service to be run on the same nodes. In turn, this will
reduce the amount of inter-node communication in the private cloud.

6.3. Direct MIP Formulation

The direct MIP formulation (Gullhav and Nygreen, 2015a) uses binary variables
wiqn and viqn to indicate the placement of an active replica and a passive replica
of component q ∈ Qi of service i ∈ S on node n ∈ N in the private cloud,
respectively. Furthermore, the integer variables wCiq are used to keep track of
the number of active replicas placed in the public cloud. The binary variables yir

indicate the selection of a replication pattern r ∈ Ri for service i, and we use the
variables mng to represent the amount of resource of type g that is reserved for
activation of passive replicas on node n. Lastly, the binary variables sin indicate
whether a replica belonging to service i is placed on node n, or not. With these
definitions, the service deployment problem can be formulated as follows:

min z =
�

i∈S

�

q∈Qi

CCiqwCiq (6.1)

subject to:
�

r∈Ri

yir = 1 ∀i ∈ S (6.2)

�

n∈N
wiqn + wCiq −

�

r∈Ri

RAiqryir = 0 ∀i ∈ S, ∀q ∈ Qi (6.3)

�

n∈N
viqn −

�

r∈Ri

RP iqryir = 0 ∀i ∈ S, ∀q ∈ Qi (6.4)

wiqn + viqn − sin ≤ 0 ∀i ∈ S, ∀q ∈ Qi, ∀n ∈ N (6.5)
�

i∈S
sin ≤ NS ∀n ∈ N (6.6)

145

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

�

i∈S

�

q∈Qi

viqn ≤ NP ∀n ∈ N (6.7)

mng − (GAiqg − GP iqg)viqn ≥ 0 ∀i ∈ S, ∀q ∈ Qi, ∀n ∈ N , ∀g ∈ G (6.8)
�

i∈S

�

q∈Qi

GAiqgwiqn +
�

i∈S

�

q∈Qi

GP iqgviqn + mng ≤ 1 ∀n ∈ N , ∀g ∈ G (6.9)

mng ≥ 0 ∀n ∈ N , ∀g ∈ G (6.10)

wiqn ∈ {0, 1} ∀i ∈ S, ∀q ∈ Qi, ∀n ∈ N (6.11)

viqn ∈ {0, 1} ∀i ∈ S, ∀q ∈ Qi, ∀n ∈ N (6.12)

sin ∈ {0, 1} ∀i ∈ S, ∀n ∈ N (6.13)

yir ∈ {0, 1} ∀i ∈ S, ∀r ∈ Ri (6.14)

wCiq ∈ Z+ ∀i ∈ S, ∀q ∈ Qi (6.15)

The objective function (6.1) minimizes the total cost of placing replicas in the
public cloud, and the equalities (6.2) ensure that one replication pattern is se-
lected for each service. The two sets of equalities (6.3) and (6.4) establish the
relation between the placement variables, wiqn, wCiq and viqn, and the replication
pattern variables yir, and so ensure that the correct number of active and passive
replicas of each pair (i, q), according the chosen replication pattern, are placed on
the nodes or in the public cloud. The rest of the constraints model the techni-
cal requirements related to the placement in the private cloud. Specifically, the
inequalities (6.5) take care of the requirement specifying that the replicas of the
same pair (i, q) should be placed on different nodes, and at the same time force
sin to take value 1, as long as there is at least one replica from service i deployed
on n. Moreover, constraints (6.6) and (6.7) put upper bounds on the number of
different services, and the number of passive replicas on each node, respectively.
The resource capacities of the nodes are handled by constraints (6.9), where the
first and second terms account for the resources assigned to the active and pas-
sive replicas deployed on the node, and the third term accounts for the resources
reserved for activation of passive replicas, which is set by the inequalities (6.8).

We now want to consider the special case where the number of nodes in the
private cloud is large enough to run all replicas privately. As opposed to the hybrid
cloud model (6.1) - (6.15) above, we refer to this model as the private cloud model.
The objective function for this case might consist of several cost components, but
we have chosen to focus on the power consumption of the nodes in the private
cloud. In data centers, the power consumption of a node in an idle state is
significant and can be as large as 70 % of the peak power consumption (Beloglazov
et al., 2011). Hence, a common strategy, also applied in VM placement models in
the literature, is to minimize the number of nodes used for placement. Herein, we

146

6.4. The Adaptive Large Neighborhood Search

also implement this objective, and introduce the binary variables un indicating
whether node n is turned on and used for placement, or not. The hybrid cloud
model (6.1)-(6.15) is then modified by replacing the objective function by (6.16).
In addition, the active deployment equalities (6.3) are reduced to the equalities
(6.17). We also need to prevent nodes that are turned off from being used, which is
achieved by replacing constraints (6.9) by constraints (6.18). Finally, the variable
definitions (6.19) are also added to the private cloud model, such that the private
cloud model is formulated as the problem of minimizing (6.16) subject to (6.2),
(6.17), (6.4)-(6.8), (6.18), (6.10)-(6.14), and (6.19).

min z =
�

n∈N
un (6.16)

�

n∈N
wiqn −

�

r∈Ri

RAiqryir = 0 ∀i ∈ S, ∀q ∈ Qi (6.17)

�

i∈S

�

q∈Qi

GAiqgwiqn+

�

i∈S

�

q∈Qi

GP iqgviqn + mng − un ≤ 0 ∀n ∈ N , ∀g ∈ G (6.18)

un ∈ {0, 1} ∀n ∈ N (6.19)

6.4. The Adaptive Large Neighborhood Search
The Adaptive Large Neighborhood Search (ALNS) is an extension of the Large
Neighborhood Search (LNS) metaheuristic framework presented by Shaw (1997),
and is also related to the ruin and recreate principle of Schrimpf et al. (2000).
The ALNS was first proposed by Ropke and Pisinger (2006), and has been used
in many applications since then. Pisinger and Ropke (2010) give an overview of
the LNS and ALNS algorithms, and review some of the literature on applications
of the algorithms.

The basic principle of the ALNS and LNS is to iteratively destroy and repair a
solution, and accept the new solution as the incumbent if some criterion is met. A
simple acceptance criterion is to only accept improving solutions, while a criterion
commonly used in the literature is the simulated annealing (SA) acceptance crite-
rion. The ALNS extends and deviates from the LNS by including several destroy
operators and repair operators in the search for improving solutions. That is,
in each iteration one destroy operator and one repair operator are chosen as the
neighborhood operators. The algorithms proposed in this paper also adopt the
ideas of the Iterated Local Search (ILS) paradigm (Lourenço et al., 2010). The

147

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

search process of ILS is based on iteratively improving a solution by local search
until a local optimum is found, and then perturbing the solution before continuing
with local search from the modified solution. The perturbation works as the diver-
sification mechanism, and should be designed so that the search process manages
to escape local optima. The local search works as the intensification mechanism.
To increase the intensification of the ALNS, we have implemented different local
search operators that are called after the solution is repaired.

Algorithm 6.1 shows a pseudocode that gives an overview of the proposed ALNS
metaheuristics. The sets of destroy, repair and local search operators are denoted
OD, OR, and OL, respectively. In Line 3, the destroy operator θ, repair operator
ρ, and local search operator λ to be used in the current iteration are biasedly
selected using the vectors of weights ΨD, ΨR, and ΨL. In Line 12, the weights
of the operators are updated based on quality of the new solution, σ. Lines 3
and 12 are discussed in more detail in Section 6.4.5, while the different destroy,
repair and local search operators are described in Sections 6.4.2, 6.4.3, and 6.4.4,
respectively.

Algorithm 6.1 Pseudocode of the ALNS metaheuristic
Require: a feasible solution σ // σ̄ is the incumbent solution and σ̂ is the best

found solution
1: η = 0; σ̄ = σ; σ̂ = σ; ΨD = [1, . . . , 1]�; ΨR = [1, . . . , 1]�; ΨL = [1, . . . , 1]�
2: repeat
3: select destroy and repair operators θ ∈ OD and ρ ∈ OR, and local search

operator λ ∈ OL using scores ΨD, ΨR and ΨL

4: η = η + 1 //increment iteration counter
5: σ = λ(ρ(θ(σ̄)))
6: if accept(σ,σ̄) then
7: σ̄ = σ
8: if σ is better than σ̂ then
9: σ̂ = σ

10: end if
11: end if
12: update(ΨD,ΨR,ΨL)
13: until η = I //stop when reaching the maximum number of iterations, I
14: return σ̂

6.4.1. Cost Functions and Acceptance Criteria
The acceptance criterion used in Line 6 of Algorithm 6.1 is based on the classical
SA criterion: with a temperature τ and cost function c(σ), a new solution σ is

148

6.4. The Adaptive Large Neighborhood Search

accepted with probability min{1, e
−(c(σ̄)−c(σ))

τ }, where σ̄ is the current solution.
Starting from an initial temperature τ0, the temperature is gradually reduced
every iteration by multiplying τ by a factor α ∈ (0, 1). Thus, the probability of
accepting a new solution that is worse than the incumbent is gradually reduced.

In the ALNS for the hybrid cloud model, the objective function (6.1) is a natural
choice as a cost function. However, the objective function of the private cloud
model (6.16) leads to a fitness landscape consisting of large plateaus, and it would
not be effective to use this function to drive the heuristic search. This problem
is also observed in vehicle routing problems that minimize the number of vehicles
as the primary objective. Pisinger and Ropke (2007) allow their ALNS for vehicle
routing problems to work with infeasible solutions when minimizing the number of
vehicles. Specifically, they allow some requests not to be served and penalize the
unserved requests in the cost function. If a new solution with no unserved requests
is found, the number of vehicles used in the future solutions is reduced by one.
Similarly, we allow the ALNS to examine infeasible solutions by relaxing the node
resource constraints (6.18), and penalize the surplus resource usage as the only
term in the cost function. Thus, the set of nodes that can be used for placement
is gradually reduced, and we denote the set of nodes available for placement for
a solution σ as N (σ). Formally, with eng defined as the surplus usage of resource
type g ∈ G on node n ∈ N (σ), the cost function of the ALNS in the private cloud
case is given by:

c(σ) =
�

n∈N (σ)

�

g∈G
eng (6.20)

If a solution with c(σ) = 0 is found, the number of nodes allowed in the next
solution is reduced by one. We denote solutions of the private cloud model that
violate only the node resource constraints (6.18) as over-utilized, and include them
in the set of feasible solutions.

6.4.2. Destroy Operators
We describe seven methods to destroy a solution. The first five consider only
destruction of parts of the private cloud, the sixth method considers destruction
of parts of both the private and public cloud, while the last method only removes
replicas from the public cloud. The destruction of the private cloud is done in
several ways, either by removal of all replicas on a subset of the nodes, removal
of all active replicas on a subset of the nodes, removal of all passive replicas
on a subset of the nodes, or removal of all replicas of a subset of the services.
All methods take the current solution σ and a parameter δ ∈ (0, 1], the degree
of destruction, as input. In addition, all but the first method (Random Node
Removal) have a parameter γ ∈ R+ that controls the degree of randomization in

149

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

the destruction. For brevity, we define QA(n), respectively QP (n), as the set of
pairs (i, q) which have an active replica, respectively a passive replica, placed on
node n ∈ N (σ) in the current solution σ.

To ease the exposition, we use the terms displace and displacement with the
meaning of moving a replica either from a node in the private cloud or the public
cloud to a set of unplaced active replicas or unplaced passive replicas.

6.4.2.1. Random Node Removal

This method randomly selects h nodes for removal, that is, all active and passive
replicas at these h nodes are displaced. The number of nodes h to destroy is
randomly drawn according to a uniform distribution among the integers in the
interval [2, �δ|N (σ)|�].

6.4.2.2. Active Replica Removal

The idea of this operator is to select h nodes and displace all active replicas on
these nodes, while preserving the passive replicas. Instead of selecting the h nodes
randomly, we want to bias the selection towards nodes having a specific feature,
denoted by φ. The feature can either be low resource utilization as defined in
equation (6.21) below, or low average public cloud cost of the active replicas
running on the node as defined in equation (6.22). Only the first of these features
is used in the ALNS for the private cloud model. Feature φA only considers the
active part of the resource utilization of the nodes, that is, keeping all else fixed,
it measures how well the node is utilized by active replicas.

φA(n) = |G|−1
�

g∈G

�
(i,q)∈QA(n) GAiqg

1 − �
(i,q)∈QP (n) GP iqg − mng

(6.21)

φC(n) = |QA(n)|−1
�

(i,q)∈QA(n)

CCiq (6.22)

The pseudocode of the Active Replica Removal, where the node selection is
biased towards nodes with feature φ, is shown in Algorithm 6.2. The randomness
of the algorithm is controlled by γ, and setting γ = 1 makes the node selection
in Line 4 completely random. The parameter h is randomly and uniformly drawn
among the integers in [2, �2δ|N (σ)|�].

6.4.2.3. Passive Replica Removal

The Passive Replica Removal operator only differs from the Active Replica Re-
moval in Algorithm 6.2 at Line 5 where it displaces all passive replicas of node n,
instead of all active replicas. In addition, the node vector is sorted in ascending

150

6.4. The Adaptive Large Neighborhood Search

Algorithm 6.2 Pseudocode of the Active Replica Removal operator
Require: a solution σ, h ∈ N, γ ∈ R+

1: Let N be a vector of the nodes in solution σ, sorted in ascending order of
feature φ

2: while h > 0 do
3: π = random number ∈ [0, 1)
4: Select an element n at position �πγ |N |� of N
5: displace all active replicas of node n, and remove n from N
6: h = h − 1
7: end while
8: return σ

order of the feature represented by φP , as defined in equation (6.23) below. Nodes
running passive replicas with diverging requirements for the amount of the shared
backup resource mng, and nodes running few passive replicas get a low value on
φP . The rationale of this destroy operator is that it is beneficial that as many
passive replicas as possible (bounded by NP) share the reserved backup resources,
and that the passive replicas running on the same node have quite similar resource
requirements when being activated. The number of nodes, h, is drawn in the same
way as in the active replica removal method.

φP (n) = |G|−1
�

g∈G

�
(i,q)∈QP (n)(GAiqg − GP iqg)

mngNP
(6.23)

6.4.2.4. Worst Node Removal

Like Random Node Removal, the Worst Node Removal operator selects h nodes
and displaces all replicas running on the nodes. Thus, Algorithm 6.2 is adapted by
changing Line 5 such that all replicas on the selected node are displaced. In this
operator, the vector of nodes is ordered according to the feature φW as defined in
(6.24) below. As long as there are passive replicas on the node, φW is a weighted
combination of φA and φP , using weight parameter βW ∈ (0, 1). In the private
cloud model, for a node n with over-utilized resources, i.e., eng > 0 for at least
one g, φA takes a value larger than 1. In order not to favor this, we put an upper
bound of 1 on φA.

φW (n) =
�

(1 − βW) min{1, φA(n)} + βW φP (n) if QP (n) �= ∅
φA(n) otherwise

(6.24)

151

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

6.4.2.5. Over-utilized Node Removal

This operator is quite similar to Worst Node Removal, but is specifically de-
signed for use in the private cloud model. It biases the node selection primarily
towards nodes with large over-utilization, and secondarily towards nodes with
large under-utilization. This is achieved by sorting the node vector according
to feature φO, given in (6.25), where we define Gg(n) =

�
(i,q)∈QA(n) GAiqg +�

(i,q)∈QP (n) GP iqg + mng, that is, the current usage of resource g at node n. Ob-
serve that the expression is negated, and that the first term, the over-utilization,
is given a large weight ΩO, such that a node, say n1, with the smallest possible
over-utilization is ordered before a node, say n2, with the largest possible under-
utilization, i.e., φO(n1) < φO(n2).

φO(n) = −
�

g∈G

�
ΩO max{0, Gg(n) − 1} + max{0, 1 − Gg(n)}

�
(6.25)

6.4.2.6. Related Service Removal

All the destroy operators considered so far select nodes, randomly or according
to some feature, and displace all or some of the replicas on the selected nodes.
The idea of the related service removal is to look for similarities among the worst
nodes, specifically by considering the services that are present on the worst nodes.
The operator is illustrated in Algorithm 6.3. Similar to the worst node removal,
the vector of nodes is sorted according to feature φW , and hN nodes are selected
and added to a set of the worst nodes. However, instead of displacing the replicas
of these nodes, the operator finds the hS services that are represented with the
most replicas at the worst nodes. Then all replicas of the hS services are displaced.
The parameters hN and hS are randomly and uniformly drawn among the integers
in the intervals [2, �δ|N (σ)|�] and [1, �δ|S|�], respectively.

Since this operator displaces complete services, it is simple for the subsequent
repair operator to change the replication pattern of the services involved. While
this might be possible for repair operators following other destroy operators as
well, we have not considered this. Therefore, the replication patterns can only
change after calling the Related Service Removal.

6.4.2.7. Public Cloud Destruction

This operator, outlined in Algorithm 6.4, is the sole operator that only consid-
ers destruction of the public cloud placement. The parameter h, the number of
active replicas to displace, is uniformly drawn among the integers in the interval
[5, �δC |QC(σ)|�], where δC is the degree of destruction, and QC(σ) is a vector of
the active replicas currently placed in the public cloud. The displacement of repli-

152

6.4. The Adaptive Large Neighborhood Search

Algorithm 6.3 Pseudocode of the Related Service Removal operator
Require: a solution σ, hN ∈ N, hS ∈ N, γ ∈ R+

1: Let N be a vector of the nodes in solution σ, sorted in ascending order of
feature φW

2: Let NW = ∅ be the set of the worst nodes
3: while hN > 0 do
4: π = random number ∈ [0, 1)
5: Select an element n at position �πγ |N |� of N
6: remove n from N , and add n to NW

7: hN = hN − 1
8: end while
9: Let SW be the set of services with cardinality hS that are represented with

most active and passive replicas on the nodes in NW

10: Displace all replicas of the services in SW , from both the private cloud and
the public cloud

11: return σ

cas is biased towards replicas with high cost, CCiq, and the bias is still controlled
by the parameter γ.

Algorithm 6.4 Pseudocode of the Public Cloud Destruction operator
Require: a solution σ, h ∈ N, γ ∈ R+

1: Let QC be a vector of the active replicas (i, q) currently placed in the public
cloud in solution σ, sorted in descending order of public cloud cost CCiq

2: while h > 0 do
3: π = random number ∈ [0, 1)
4: Select an element (i, q) at position �πγ |QC |� of QC

5: displace active replica (i, q) from the public cloud
6: h = h − 1
7: end while
8: return σ

This operator is only used in the ALNS for the hybrid cloud model, and it is
used in combination with one of the other operators that consider destruction of
the private cloud, except from the Related Service Removal. When this operator
is called in combination with the Random Node Removal, γ = 1, that is, the
displacement of replicas from the public cloud is completely random; otherwise γ
takes the same value as the other destroy operators.

153

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

6.4.3. Repair Operators
We use three types of repair operators. The first two are fast and insert unplaced
replicas one at a time, based on simple measures. They do not concentrate on
rebuilding the nodes individually, like a strategy that solves several knapsack
problems in sequence, but consider every node as a potential point of placement, as
long as the insertion of a replica at the node is feasible. The last repair operator is
based on solving a reduced version of the direct MIP models, where a large number
of the variables is fixed to integer values. Even though the MIP is greatly reduced,
the operator is more time-consuming than the insertion operators. However, if one
gives the operator enough time, it will find the optimal way to repair the destroyed
solution.

6.4.3.1. Greedy Insertion

The Greedy Insertion operator is a fast and simple constructive heuristic, which
iteratively places the unplaced replicas on the nodes guided by a cost measure.
Specifically, for the ALNS of the hybrid cloud model, if no more active replicas
can be placed on the nodes, the rest of the unplaced active replicas are placed
in the public cloud. However, if there are remaining unplaced passive replicas,
the operator returns without any feasible solution. Even though the ALNS of the
private cloud model allows over-utilized nodes in the solutions, it is possible that
the greedy insertion cannot find a feasible placement for all unplaced active or
passive replicas, and thus, returns without any feasible solution.

The cost measures used to guide the greedy insertion heuristic in the ALNS for
the hybrid cloud model and the private cloud model differ. This is natural since the
objective functions in the mathematical formulations also differ. Furthermore, the
cost measures used to guide the insertion of active replicas and passive replicas
differ, and they are not directly comparable. Therefore, the Greedy Insertion
heuristic first tries to insert all passive replicas, and then focuses on inserting all
active replicas.

In the hybrid cloud model, we let ξP (i, q, n), defined in (6.26), denote the cost
of inserting a passive replica of service component pair (i, q) at node n. The
cost accounts for the absolute deviation between the current reserved backup
resources, mng, at the node and the replica’s requirement for backup resources.
However, if the insertion is infeasible, we set ξP (i, q, n) = ∞. Analogously, we
define ξA(i, q, n), according to (6.27), as the cost of inserting an active replica of
pair (i, q) at node n. The first term of (6.27), which is given a large weight ΩC ,
accounts for the public cloud cost that would incur if the replica is not placed in
the public cloud, while the second term accounts for the residual resource slack
at the node after insertion (less is better). Since active replicas with large public
cloud cost should have a smaller insertion cost ξA(i, q, n), we subtract CCiq from

154

6.4. The Adaptive Large Neighborhood Search

a constant C̄C which is greater than max(i,q) CCiq.

ξP (i, q, n) =
�

g∈G
|mng − (GAiqg − GP iqg)| (6.26)

ξA(i, q, n) = ΩC(C̄C − CCiq) +
�

g∈G

�
1 − Gg(n) − GAiqg

�
(6.27)

The cost measures are adapted to (6.28) and (6.29) in the ALNS for the pri-
vate cloud model. Since the overall cost function used by the acceptance criteria
(see Section 6.4.1) concerns the amount of over-utilized resources, both cost mea-
sures below take this into account. We let ΔeP g(i, q, n), respectively ΔeAg(i, q, n),
denote the increase in over-utilization (of resource type g) when a passive, re-
spectively an active, replica of pair (i, q) is inserted on node n; this increase in
over-utilization is given a large weight ΩI in the cost measures.

ξP (i, q, n) = ΩI

�

g∈G
ΔeP g(i, q, n) +

�

g∈G
|mng − (GAiqg − GP iqg)| (6.28)

ξA(i, q, n) = ΩI

�

g∈G
ΔeAg(i, q, n) +

�

g∈G

�
1 − Gg(n) − GAiqg

�
(6.29)

In a greedy fashion the operator first selects the passive replica among all un-
placed replicas with minimum cost, and inserts this replica on its minimum cost
node. This insertion process repeats until all passive replicas are inserted, or there
are no more feasible insertions to do. In the latter case, the operator would return
without a feasible solution. Assuming that all passive replicas were placed, the
operator considers the unplaced active replicas in the same way. In the ALNS for
the hybrid cloud model, if there are unplaced active replicas left after the insertion
process, these replicas are placed in the public cloud. On the other hand, in the
private cloud model the operator would return without a feasible solution unless
all active replicas are inserted.

6.4.3.2. Regret Insertion

The Regret Insertion is designed to be less myopic than the Greedy Insertion in
the insertion strategy. The operator extends the Greedy Insertion by being guided
by a regret value, or look-ahead value, instead of the cost measure directly. For
a passive (active) replica of pair (i, q), let niqk be the node with kth lowest cost
according to cost measure ξP (i, q, n) (ξA(i, q, n)). Moreover, the regret-k value
ζiq(k) for a passive replica is defined as in (6.30). The regret-k value for active

155

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

replicas is defined analogously using the cost measures ξA(i, q, n) instead.

ζiq(k) =
k�

j=2

�
ξP (i, q, niqj) − ξP (i, q, niq1)

�
(6.30)

The insertion procedure of the Regret Insertion is similar to that of the Greedy
Insertion, except that instead of selecting the replica with lowest cost of insertion
in each iteration, the replica with the maximum regret value is selected. If a
replica has fewer than k nodes where an insertion is feasible, the regret value of
the replica will be ∞. Hence, the replica is selected for insertion early in the
process. This means that regret insertion operators with high k have greater
probability of finding a feasible solution than both regret insertion operators with
low k and the Greedy Insertion.

6.4.3.3. MIP Insertion

The MIP Insertion is based on the idea of calling a general-purpose solver on the
MIP models presented in Section 6.2, where a part of the variables is fixed. In a
given iteration of the ALNS, the fixed variables correspond to the non-destroyed
part of the solution. Thus, when the MIP Insertion is used to repair the solution,
one optimizes the MIP model over the variables of the replicas in the sets of
unplaced active and passive replicas. If the Related Service Removal is used for
destroying the solution prior to calling the MIP Insertion, the latter also optimizes
over the replication pattern variables, yir, of the displaced services.

For the hybrid cloud MIP model of Section 6.2, the objective function of the
MIP Insertion is changed to (6.31) by adding a second term considering the shared
resources reserved for activation of passive replicas, mng. This is done to ensure
that the repair operator inserts passive replicas wisely, even if the insertion does
not affect the public cloud cost. However, the public cloud cost term is given a
large weight, ΩC , such that it dominates the expression.

min z = ΩC

�

i∈S

�

q∈Qi

CCiqwCiq +
�

n∈N (σ)

�

g∈G
mng (6.31)

The MIP Insertion used in the ALNS for the private cloud model has to consider
that the resource constraints of the nodes are relaxed. Therefore, the original node
resource constraints (6.18) are rewritten as (6.33), where eng accounts for the
resource usage surplus at the nodes, and defined in (6.34). Similar to the overall
objective of the ALNS, the MIP model seeks to minimize the total resource usage

156

6.4. The Adaptive Large Neighborhood Search

surplus of the nodes, hence the objective of the MIP Insertion is written as (6.32).

min z =
�

n∈N (σ)

�

g∈G
eng (6.32)

�

i∈S

�

q∈Qi

GAiqgwiqn+

�

i∈S

�

q∈Qi

GP iqgviqn + mng − eng ≤ 1 ∀n ∈ N (σ), ∀g ∈ G (6.33)

eng ≥ 0 ∀n ∈ N (σ), ∀g ∈ G (6.34)

6.4.4. Local Search Operators
Two classes of local search operators are used in the ALNS: a swap of H1 replicas
from node n1 with H2 replicas from node n2, denoted as the inter-node swap;
and a swap of H1 replicas from node n with H2 replicas currently placed in the
public cloud, denoted as the inter-cloud swap. By using different values for the
operator parameters H1 and H2, several different swap operators are considered
by the ALNS.

6.4.4.1. Inter-node Swap

The Inter-node Swap operator either swaps H1 active replicas and H2 active repli-
cas between two nodes, or swaps two sets of H passive replicas between two nodes.
An inter-node swap is defined by the tuple (Q̄1, Q̄2, n1, n2), where Q̄1 and Q̄2 are
sets of replicas and n1 and n2 are the nodes where the replicas Q̄1 and Q̄2, respec-
tively, currently are placed. After performing the swap, the replicas in Q̄2 run on
n1, while the replicas in Q̄1 run on n2.

The operator iteratively searches for swaps that directly or indirectly improve
the solution quality. In each iteration, the operator performs an improving swap,
and then continues the search. The improvement of a swap is measured by a cost
function, ψ. Searching through all feasible swaps in each iteration would make
the operator computationally expensive. Therefore, in each iteration, the operator
stops the search if an improving swap is found after having searched through all
feasible swaps between a given node and any other node. At the end of each
iteration, the operator performs the most improving swap found in this iteration.
Algorithm 6.5 outlines the operation of the inter-node swap operator. In Line 8,
all swaps between nodes n1 and n2 that lead to a feasible solution are evaluated
by a cost function, and in Line 10, the most improving swap is saved. When
H1 = H2, we exploit the symmetry by letting n2 iterate over the nodes that are
ordered after n1 in a fixed ordering (see Line 7). However, when H1 �= H2, we

157

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

also need to consider swaps of H2 replicas from lower-ordered nodes with H1 from
higher-ordered nodes.

Algorithm 6.5 Pseudocode of the inter-node swap operator
Require: a solution σ, H1 ∈ N, H2 ∈ N

1: //let (Q̂1, Q̂2, n1, n2) denote the most improving swap in an iteration, and let
ψ̂ denote the minimum cost

2: let the set Ñ contain all nodes in the solution σ, N (σ)
3: while true do
4: ψ̂ = 0 // set the minimum cost to zero
5: while Ñ �= ∅ do
6: remove a random element n1 from Ñ
7: for all n2 ∈ N (σ) : n2 ordered higher than n1 do
8: find the most improving swap (Q̄1, Q̄2, n1, n2) of H1 replicas from n1

with H2 replicas from n2
9: if ψ(Q̄1, Q̄2, n1, n2) < ψ̂ then

10: ψ̂ = ψ(Q̄1, Q̄2, n1, n2) and (Q̂1, Q̂2, n1, n2) = (Q̄1, Q̄2, n1, n2)
11: end if
12: end for
13: if ψ̂ < 0 then break //improving swap found
14: end while
15: if ψ̂ = 0 then break //no improving swap found
16: perform swap (Q̂1, Q̂2, n1, n2) //update n1, n2 ∈ N (σ)
17: add nodes n1 and n2 to Ñ //update n2 if n2 already exists in Ñ
18: end while
19: return σ

We use different cost functions based on whether the operator swaps active or
passive replicas, and on whether the ALNS considers the hybrid or the private
cloud model. In the ALNS for the hybrid cloud model, we only consider inter-
node swaps of passive replicas, and use the cost function ψP defined in (6.35).
The functions Δmg(Q̄1, Q̄2, n1) account for the increase or decrease in the shared
backup resources reserved for passive replicas (of resource type g) at node n1,
when the set Q̄1 of passive replicas are removed from the node and the set Q̄2 are
placed on the node. Thus, ψP in (6.35) computes the total change in the resources
reserved for passive replicas. In the ALNS for the private cloud model, it is more
natural to look at the increase or decrease in over-utilization of the resources
incurred by the swap. Thus, the cost functions measuring the improvement of a
swap is simply the difference in the cost function of the ALNS, given in (6.20),

158

6.4. The Adaptive Large Neighborhood Search

before and after the swap.

ψP (Q̄1, Q̄2, n1, n2) =
�

g∈G

�
Δmg(Q̄1, Q̄2, n1) + Δmg(Q̄2, Q̄1, n2)

�
(6.35)

6.4.4.2. Inter-cloud Swap

The behavior of the Inter-cloud Swap operator is similar to the Inter-node Swap
operator, but it considers swaps of replicas between a node in the private and
the public cloud, instead of swaps between two nodes. Therefore, this operator is
solely used in the ALNS for the hybrid cloud model. Moreover, since only active
replicas run in the public cloud, this operator considers exclusively swaps of H1
active replicas with H2 active replicas. Like the Inter-node Swap, the Inter-cloud
Swap tries to limit the search in each iteration by stopping after all feasible swaps
between a given node n and the public cloud have been evaluated, as long as one
or more improving swaps are found, and then performs the most improving swap.
The cost function ψA for evaluating the quality of a swap is defined in (6.36). The
function computes the change in public cloud cost when a set Q̄1 of active replicas
at a node n is swapped with a set Q̄2 of active replicas currently placed in the
public cloud. An improving swap is identified by a negative cost.

ψA(Q̄1, Q̄2) =
�

(i,q)∈Q̄1

CCiq −
�

(i,q)∈Q̄2

CCiq (6.36)

6.4.5. Adaptive Operator Selection
In the previous sections, we have defined several destroy operators, repair oper-
ators and local search operators. In a given iteration of the ALNS, we only use
one operator of each type, and we need a way to decide which operators to use in
each iteration (see Line 3 of Algorithm 6.1). The traditional way of selecting the
operators in an ALNS is to select the destroy and repair operators independently
by using a roulette wheel selection strategy where each of the operators is assigned
weights.

In applications where the repair operators are similar in complexity and time
consumption, independent selection of the operators seems to be unproblematic.
However, in our ALNS where a relatively expensive repair operator, i.e., the MIP
insertion, and other less accurate, but faster, repair operators are used side by side,
there might be something to gain by coupling the selection of destroy and repair
operators. We first select the destroy operator based on the traditional method in
ALNS, i.e., a destroy operator θ̂ is selected with a probability according to (6.37),
where ΨDθ represents the weight of the destroy operator θ ∈ OD. Moreover, each
destroy operator, θ, is associated with a set of repair operators that may be called

159

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

successively; we denote this set by ORθ ⊆ OR. The idea is to couple the selection
of destroy and repair operators, so that some destroy operators have to be followed
by a call to the MIP insertion operator, while other operators have to be followed
by a less accurate greedy or regret insertion operator. The probability of selecting
a repair operator ρ̂ ∈ ORθ̂ to follow the destroy operator θ̂ is given in (6.38). At
last, the local search operator is chosen in the same way as the destroy operator,
that is, operator λ̂ is selected with a probability according to (6.39).

ΨDθ̂�
θ∈OD

ΨDθ
(6.37)

ΨRρ̂�
ρ∈ORθ̂

ΨRρ
(6.38)

ΨLλ̂�
λ∈OL

ΨLλ
(6.39)

Generally, the underlying adaptiveness of the ALNS is provided by the adaptive
weight adjustment principle (Ropke and Pisinger, 2006). The intent is that one
could include several destroy and repair operators that function well for different
problem instances and different problem structures in the sets of operators, and
adjust their weights dynamically based on their past performance. In each iter-
ation of the ALNS, the quality of the solution found and the time spent in the
iteration, that is essentially the time spent in Line 5 of Algorithm 6.1, are used to
score the operators used in that iteration. The new solution is classified according
to whether it is a new best solution, better than the incumbent solution, accepted
as a new incumbent, or not accepted; based on this, the operators get a basic score
ν1, ν2, ν3, or ν4, where ν1 > ν2 > ν3 > ν4. The lowest score, ν4, is defined as 1.
Since the different repair operators might use a significantly different amount of
time to repair the destroyed solution, we have chosen to consider the time spent
in each iteration in the scoring of the operators. Especially, we are interested in
reducing the scores in iterations which are time-consuming. Therefore, we com-
pute a time-normalized score shown in (6.40), where j ∈ {1, 2, 3, 4} according to
the classification of the new solution, Tσ denotes the time spent in the iteration,
and T̄ refers to the average time spent in an iteration since the beginning of the
search. Moreover, the normalization can be controlled by the parameter ω. The
outer max-term in the normalization ensures that no operators are given a score
worse than ν4, while the inner min-term makes the scoring only penalize long
iterations, and not iterations that are shorter than the average. Moreover, if the
repair method is not capable of finding a feasible solution, the operator gets score
ν4.

max{ν4, νj min{1, T̄ /(ωTσ})} (6.40)

160

6.4. The Adaptive Large Neighborhood Search

The search is divided into segments that correspond to 100 iterations. At the
beginning of each segment, the scores of all operators are set to one, and through-
out the segment, the operators accumulate the time-normalized scores from the
iterations where they were used. At the end of a segment, the weights of all
operators are updated based on their accumulated scores (Line 12 of Algorithm
6.1). The destroy operator’s weights are updated as shown in (6.41), where ςDθ

represents the accumulated scores of destroy operator θ, and ΦDθ is a count of
the number of times operator θ was called in the last segment. The parameter
βR determines how quickly the past performance is reset in the adaptive weight
adjustment method. The repair and local search operators are updated in the
same manner.

ΨDθ = (1 − βR)ΨDθ + βR
ςDθ

ΦDθ
(6.41)

6.4.6. Initial Solution
The construction of the initial solution is done in two steps. First, a replication
pattern is selected for each service. Then, the Regret Insertion with k = 3 is called
to insert all active and passive replicas. Several heuristic rules can potentially be
used to select the replication patterns. In the implementation, we have selected
the replication patterns that minimize the total resource assigned to all the active
replicas in each service. Moreover, for the private cloud model, unless a strict
natural upper bound on the number of nodes exists, one has to set a bound.
Setting this bound too low might result in a situation where the regret insertion
cannot find a feasible solution. If this is the case, one can increase the number of
nodes and call the regret insertion until a feasible solution is found.

6.4.7. Summary of the Operators
Several destroy and repair operators were presented in Sections 6.4.2 and 6.4.3,
respectively. However, not all of them can be or are used in both the ALNS for
the hybrid cloud model and the ALNS for the private cloud model. Moreover,
the selection of a repair operator is presented as coupled to the selected destroy
method. To achieve the coupled selection, we have grouped destroy and repair
operators together, in two groups. The groups for both the hybrid cloud and
private cloud cases are shown in Table 6.1. Keep in mind that the ALNS for
the hybrid cloud model also calls the Public Cloud Destruction operator in each
iteration, except when the Related Service Removal is used. These groups imply
that if Related Service Removal is selected as the destroy operator, the MIP In-
sertion will be selected as the repair operator. In method group (ii), there is the
Greedy Insertion operator and one or more Regret Insertion operators with differ-
ent k. The different values of k used are decided in the tuning of the algorithm,

161

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

which is discussed in Section 6.5.1. Moreover, in the private cloud case, we use
two instances of the Over-utilized Node Removal, one for the MIP Insertion and
one for the other methods. The two instances might consider different degrees of
destruction δ.

Table 6.1.: Grouping of destroy and repair operators
Hybrid Cloud Private Cloud

Method
Group

Repair
Operators

Destroy Operators Repair
Operators

Destroy Operators

(i) MIP
Insertion

Related Service Removal MIP
Insertion

Related Service Removal
Worst Node Removal Over-utilized Node Removal

(ii)

Greedy
Insertion

Random Node Removal Greedy
Insertion

Random Node Removal
Passive Replica Removal Passive Replica Removal

Regret
Insertion

Active Replica Removal-φA Regret
Insertion

Active Replica Removal-φA

Active Replica Removal-φC Over-utilized Node Removal

Regarding the local search operators, the ALNS for the hybrid cloud model uses
one or more Inter-node Swap operators for passive replicas, and one or more Inter-
cloud Swap operators for active replicas, where the values of H1 and H2 vary. The
ALNS for the private cloud model uses Inter-node Swap operators for both active
and passive replicas with different values of H1 and H2. The combinations of H1
and H2 used in the swaps are decided in the tuning process, which is described in
Section 6.5.1.

6.5. Computational Study
The purpose of the computational study is twofold. We present the results of an
evaluation of the ALNS with and without local search (LS) operators. In addition,
we perform a comparison of the ALNS with the branch and price (B&P) algorithm
proposed by Gullhav and Nygreen (2015b). Before presenting the results, we give
some details on the setup of the experiments.

6.5.1. Setup of the Experiments and Tuning
The ALNS was implemented in C++, and compiled with GCC 4.8.2 with opti-
mization option -O3. We have run all our experiments on a CentOS 5.8 machine
with a dual core 3.0 Ghz Intel E5472 Xeon processor and 16 GB of memory. The
MIP Insertion operator calls the Xpress-Optimizer version 27.01.02 of the FICO

162

6.5. Computational Study

Xpress Optimization Suite 7.8. The MIP solver of Xpress has utilized up to eight
threads in the tree search.

We have designed an instance generator which constructs test cases that aim to
be as realistic as possible. The test cases used range from 20 to 70 services, and
each service is composed of four components on average, which implies that the
largest cases contain a total of 280 components. The instance generator is based
on ten different dummy services composed of between three and five components
each. The different services have a structure reflecting real-world services with
different resource requirements for the different components. In short, each com-
ponent of the ten services is given a resource requirement distribution, and the
case generation is based on drawing resource requirements from these distribu-
tions using different seeds. For each instance size, we have generated five cases for
testing, and for the instances with 40 and 50 services, we have generated another
five for tuning purposes. In all cases, NS = 3 and NP = 4, and we consider CPU
resources only. The minimum, average, and maximum values on the GAiqg pa-
rameters are 8.0%, 23.0%, and 45.0%, respectively, while the same values for the
GP iqg parameters are 0.33%, 1.6%, and 3.0%. Over all cases, the average number
of replication patterns per service is 7.5.

A difference between the test cases for the private cloud model and hybrid cloud
model is that the latter have an (effective) upper bound on the number of nodes
in the private cloud, NN . This upper bound is based on a lower bound (LB) on
the number of nodes needed to place all services in the private cloud. This lower
bound is computed as the best bound provided by the B&P algorithm (Gullhav
and Nygreen, 2015b). Using this LB, we constructed two types of test cases for
the hybrid cloud: one with NN = �0.75LB�, and one with NN = �0.9LB�. We
say that these two types of test cases have 75% and 90% private cloud coverage.
Furthermore, the placement of active replicas in the public cloud is done at a cost,
and the offered VM types used are presented in Table 6.2. In the table, we list
two providers. Since we model the public cloud as a generic pool of resources, we
select the VM types for the different components as the cheapest one with enough
capacity. The costs are synthetic and not given units. However, the relative cost
and size between the VM types reflect the real world.

Table 6.2.: Data of the public cloud VM types used in the hybrid cloud experi-
ments. The capacity is given in percentage of the private cloud node
capacity.

Provider 1 Provider 2
Cost Capacity Cost Capacity

10 10% 15 15%
20 20% 30 30%
40 40% 60 60%

163

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

The test cases are named based on the number of services they contain. The
hybrid cloud test cases with 20 services are referred to as H20, while the corre-
sponding test cases with no restriction on the number of nodes are labeled P20
and, hence, used for testing the private cloud model. Whenever it is necessary to
identify the five different test cases with a given number of services, the cases are
appended a letter from ’a’ to ’e’, i.e., H20-a to H20-e.

The ALNS has several parameters that can be tuned for the problem structure.
We used SMAC (Hutter et al., 2011) to tune the parameters listed in Table 6.3.
The tuning was done on separate test cases with 40 and 50 services, and we set
the parameters of the ALNS for the hybrid cloud model and the ALNS for the
private cloud model independently. Thus, for the hybrid cloud model we tuned
the parameters over 20 cases: ten with 40 services and ten with 50 services. For
each size, five of the cases had a private cloud coverage of 75%, while the other
five had a private cloud coverage of 90%. The tuning was set up to evaluate the
relative gap between the best LB produced by the B&P on the respective test
case and the objective value of ALNS after 900 seconds. Moreover, SMAC was
run with eight processes in parallel. The processes shared data during the run,
but outputted eight different parameter combinations.

Most of the parameters in Table 6.3 are defined in Section 6.4. However, the
parameters of the acceptance criteria, τ0 and α, are not tuned directly. These two
parameters are set based on the tuned parameters τC and PE , in addition to the
maximum number of iterations I and the initial solution σ0 of a given run. In
the ALNS for the hybrid cloud model, the initial temperature τ0 is set so that a
solution with τC% higher cost than σ0 would be accepted with 50% probability.
The cooling rate α is set so that after cooling the temperature I times, a solution
with τC% higher cost than σ0 would be accepted with probability PE . For the
private cloud model, the temperature and cooling rate is reset in every iteration
following a new best solution, since a new best solution has zero cost, i.e., no
over-utilization. The reset procedure is similar to the procedure setting the initial
temperature and cooling rate for the hybrid cloud model, but when called, it uses
the cost of the current solution and the remaining number of iterations.

Regarding the tuning of the Regret Insertion operators, Table 6.3 shows that the
maximum k of the operators is 4. This means that we use three Regret Insertion
operators with k equal to 2, 3 and 4. The tuning of the swap operators is not
shown in the table. However, for both the hybrid cloud and private cloud model,
the best combination of Inter-node Swaps of passive replicas were (H1, H2) ∈
{(1, 1), (2, 2)}, i.e., swap of one replica with another and swap of two replicas
with two other replicas. For the Inter-cloud Swap of active replicas in the hybrid
cloud case, the best swap types were (H1, H2) ∈ {(1, 1), (1, 2), (2, 1), (2, 2)}. In the
private cloud case, the best Inter-node Swaps of active replicas were (H1, H2) ∈
{(1, 1), (1, 2), (2, 2)}. In this case, the swaps (1, 2) and (2, 1) are identical.

164

6.5. Computational Study

Table 6.3.: Overview of the tuned parameters and their respective values in the
algorithm for the private cloud model (PCM) and hybrid cloud model
(HCM).

P
aram

eter
dom

ain
V

alue
in

P
aram

eter
D

escription
P

C
M

H
C

M

δ
M

D
eg.

of
destruction

before
calling

M
IP

Insertion
{0

.05
,0

.10
,0

.15
,
.
.
.
,0

.5}
0.05

0.05
δ

D
eg.

of
destruction

before
calling

other
repair

operators
{0

.05
,0

.10
,0

.15
,
.
.
.
,0

.5}
0.05

0.1
δ

MC
D

eg.
of

destr.
(public

cloud)
before

calling
M

IP
Insertion

{0
.1

,0
.2

,
.
.
.
,1}

N
/A

0.5
δ

C
D

eg.
of

destr.
(public

cloud)
before

calling
other

repair
ops.

{0
.1

,0
.2

,
.
.
.
,1}

N
/A

1.0
γ

R
andom

ness
in

destroy
operators

{2
,3

,
.
.
.
,8}

3
4

β
W

W
eight

param
eter

in
the

W
orst

N
ode

R
em

oval
{0

.1
,0

.2
,
.
.
.
,0

.9}
0.4

0.1
K

M
axim

um
value

of
k

in
the

R
egret

Insertion
operators

{2
,3

,4
,5}

4
4

(ν
1
,
ν

2
,
ν

3)
B

asic
scores

in
the

adaptive
operator

selection
{1

,2
,
.
.
.
,50}

(37,32,9)
(42,31,22)

ω
T

im
e

norm
alization

param
eter

in
the

adaptive
op.

selection
{0

.5
,0

.6
,
.
.
.
,1

.5}
0.6

1.1
β

R
W

eight
put

on
the

past
perform

ance
in

the
scoring

{0
.05

,0
.10

,0
.15

,
.
.
.
,0

.5}
0.15

0.5
τ

C
P

aram
eter

controlling
the

tem
perature

initialization
{0

.1
,0

.5
,1

,2
.5

,5
,10

,20}
1

0.1
P

E
P

rob.
(in

%
)

of
accepting

a
sol.

τ
C

%
w

orse
than

the
initial

sol.{0
.01

,0
.05

,0
.1

,0
.25

,0
.5}

0.1
0.1

165

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

6.5.2. Results
First, we are interested in evaluating the effect of using an LS operator on top of
the repair operators in the ALNS. In the evaluation, we use the best LB obtained
by the B&P algorithm to compute relative gaps between the LB and the objective
value of the best solution obtained by the ALNS with and without LS operators.
The LBs for the private cloud cases have been shown to be very tight in the cases
that are solved to optimality. The private cloud model has structural similarities
with the cutting stock problem, for which column generation provides very tight
bounds (Vanderbeck, 1999). However, we cannot be certain about the quality of
the LBs in the hybrid cloud cases. Table 6.4 gives the average relative gaps at
different points in time, after 5, 10 and 15 minutes, for the hybrid cloud cases
with 75% and 90% private cloud coverage. We see that on the smaller cases, the
performance of the two versions of the ALNS is quite similar. However, when
the problem size grows, there seems to be a benefit in using the LS on top of the
repair operators. In addition, the benefit is more pronounced for the cases with
90% private cloud coverage, than for the cases with 75% private cloud coverage.
As previous studies have shown, the cases with higher private cloud coverage are
more difficult to solve and have larger gaps (Gullhav and Nygreen, 2015a,b). This
might imply that the LS becomes more valuable as the difficulty of the problem
increases. Table 6.5 displays the gaps for the private cloud cases at 5, 10 and 15
minutes of run time. We can see that the relative gaps are smaller than in the
hybrid cloud cases, but the ALNS with the LS operators still gives the best results.
Furthermore, we also see that when the problem size grows, the LS becomes more
beneficial.

Table 6.4.: Average relative gap (in %) between best solution found and best
bound at different points in time (seconds): comparison of the ALNS
with and without local search (LS) operators on the hybrid cloud
cases.

75% private cloud coverage 90% private cloud coverage

ALNS w/o LS ALNS with LS ALNS w/o LS ALNS with LS
300 600 900 300 600 900 300 600 900 300 600 900

H20 7.940 6.672 5.938 8.001 6.448 5.639 20.62 18.03 16.42 20.47 17.53 16.41
H30 10.79 8.998 8.013 10.02 8.632 7.859 28.35 24.69 22.41 26.32 22.24 21.07
H40 12.75 11.11 9.781 11.75 10.26 9.397 36.23 29.58 26.92 27.97 24.24 22.49
H50 17.33 14.59 13.27 15.82 12.95 12.17 45.09 36.99 33.53 38.05 31.73 29.20
H60 19.12 15.91 14.63 17.63 14.56 13.52 55.93 43.37 38.11 47.62 37.40 32.86
H70 22.68 19.64 17.29 21.47 17.93 15.66 60.51 49.82 44.31 55.53 42.92 37.26

While Tables 6.4 and 6.5 present average values for each instance size, Table 6.6
presents the p-values of the Wilcoxon signed-rank test (Hollander et al., 2013).

166

6.5. Computational Study

Table 6.5.: Average relative gap (in %) between best solution found and best
bound at different points in time (seconds): comparison of the ALNS
with and without local search (LS) operators on the private cloud
cases.

ALNS w/o LS ALNS with LS
300 600 900 300 600 900

P20 2.102 2.102 2.102 2.111 1.798 1.528
P30 3.113 2.339 2.339 2.339 1.953 1.953
P40 4.395 3.662 3.074 2.784 2.341 2.341
P50 5.913 5.085 4.260 3.551 3.197 2.959
P60 6.932 5.841 5.349 4.260 3.468 3.266
P70 8.142 6.954 6.277 5.092 4.243 3.987

This non-parametric statistical hypothesis test is used to compare the relative
gaps of the ALNS with and without the LS operators, with the aim to reject
the null hypothesis. The null hypothesis states that the difference between the
algorithms follows a symmetric distribution around zero, and we test this against
the two-sided alternative hypothesis. Moreover, in the test, we have grouped the
H20 and H30 cases, the H40 and H50 cases, and the H60 and H70 cases together
(analogously for the private cloud cases) to obtain larger test samples. For the
hybrid cloud cases, we have jointly performed the test over the cases with 75%
and 90% private cloud coverage. With a significance level of 5%, we can reject
the null hypothesis in all cases in Table 6.6 where the p-value is less than 0.05.
From these results, we can see that we cannot reject the null hypothesis with a
significance level of 5% for the H20 and H30 cases. However, when the instance
size increases, the differences between the two algorithms are significant and in
favor of the ALNS with the LS operators. For the private cloud cases, we can
see that the difference between the algorithms is significant at a level of 1%, also
for the smaller cases. These results are consistent with the averages presented in
Table 6.4 and 6.5.

When comparing the ALNS with the previously developed B&P algorithm,
we need to perform the comparison on a different time scale. Except for the
small cases, the B&P use more than 15 minutes to obtain a first feasible integer
solution. However, in situations where the service demand has sufficiently long
periods of stationarity, one can spend more than 15 minutes optimizing the service
deployment, and therefore it is interesting to see the performance of the ALNS
heuristic in comparison with the exact B&P on a longer time scale. We are
now only presenting a comparison between the B&P and the ALNS with the LS
operators, but the results of our experiments show that the ALNS with the LS
operators still produces better solutions than the ALNS without the LS. In the
following comparisons, we need to underline that the B&P algorithm is designed

167

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

Table 6.6.: P-values of Wilcoxon signed-rank test: comparison of the relative
gaps of the ALNS with and without local search operators at different
points in time (seconds).

Cases 300 600 900

Hybrid
cloud
cases

H20-H30 0.067 0.222 0.266
H40-H50 < 0.001 < 0.001 < 0.001
H60-H70 < 0.001 < 0.001 < 0.001

Private
cloud
cases

P20-P30 0.002 0.009 0.002
P40-P50 0.002 0.002 0.002
P60-P70 0.002 0.006 0.002

with the main focus on finding solutions of high quality, not on finding solutions
quickly. Therefore, the root node is solved to LP optimality, before a MIP solver
is called to optimize over the columns found up to this point, and then branching
is performed. To reduce the time to obtain the first integer solution, it would be
possible to call a MIP solver before the root node is finished. Nevertheless, this
was not considered in the design of the B&P.

Table 6.7 presents the comparison on the hybrid cloud cases with 75% and 90%
private cloud coverage for run times up to three hours. For the cases with 50
services or less and with 75% private cloud coverage, the B&P algorithm performs
better than the ALNS on a long time scale. However, in all of the cases with 50
services or more, the B&P spends longer than an hour to solve the root node of
the B&B tree. For all H70 cases, the B&P spends over three hours solving the
root node, and does not find a solution within the maximum run time. Moreover,
it manages to find a solution in only two of the five H60 cases within three hours.
With a private cloud coverage of 90%, the right part of Table 6.7 shows that the
ALNS performs better than the B&P in all cases with 30 services or more. Still,
the B&P spends longer than three hours to solve the root node in all of the H70
cases. Nevertheless, it finds a solution in one of the H50 cases within one hour, in
two of the H60 cases within two hours, and another two of the H60 cases within
three hours.

Table 6.8 presents a comparison between the B&P and the ALNS with the
LS operators on the private cloud cases. Except for the P20 cases, the ALNS
produces the best solutions after one, two and three hours of run time. For the
P20 cases, the B&P beats the ALNS when given three hours. While none of the
solution approaches managed to solve any of the hybrid cloud cases to optimality,
the B&P finds and proves the optimal solution in three of the P20 cases and two
of the P30 cases. In comparison, the ALNS manages to find the optimal solution
in two of the P20 cases. Even though the private cloud cases are easier, in terms
of lower gaps and more cases solved to optimality, the B&P uses more than an

168

6.5. Computational Study

Table 6.7.: Average relative gap (in %) between best solution found and best
bound at different points in time (seconds): comparison of the B&P
and the ALNS with local search (LS) operators on the hybrid cloud
cases.

75% private cloud coverage 90% private cloud coverage

B&P ALNS with LS B&P ALNS with LS
1800 3600 7200 10800 1800 3600 7200 10800 1800 3600 7200 10800 1800 3600 7200 10800

H20 2.875 2.007 1.769 1.709 5.066 4.579 3.765 3.380 11.16 8.044 6.775 5.607 14.02 11.93 10.81 10.01
H30 5.349 4.508 3.933 3.854 6.933 5.718 5.030 4.385 20.09 17.74 14.85 12.08 18.28 16.04 13.42 11.63
H40 N/A 6.733 5.902 5.489 7.942 6.832 6.246 5.270 24.24* 23.44 18.39 17.64 20.28 17.85 14.87 13.36
H50 N/A N/A 7.663 6.738 10.33 9.247 8.444 7.588 N/A 25.74* 22.45 22.39 25.12 21.90 18.79 17.05
H60 N/A N/A N/A 8.151* 11.78 10.53 9.156 8.379 N/A N/A 32.53* 28.04* 27.41 24.17 20.51 18.58
H70 N/A N/A N/A N/A 13.85 12.14 10.96 10.28 N/A N/A N/A N/A 30.33 26.26 22.73 20.87

* The algorithm has found the first integer solution in only some of cases within the specified amount of time

hour to find its first solution in all of the P70 cases. If one compares the results
in Table 6.8 with Table 6.5 for the test cases with 40 services or more, one can
observe that the ALNS with LS operators produces, on average, solutions with
smaller gaps within five minutes than the B&P within three hours. Thus, the
ALNS can be said to be much more scalable than the B&P algorithm.

Table 6.8.: Average relative gap (in %) between best solution found and best
bound at different points in time (seconds): comparison of the B&P
and the ALNS with local search (LS) operators on the private cloud
cases.

B&P ALNS with LS
1800 3600 7200 10800 1800 3600 7200 10800

P20 1.831 1.553 0.924 0.620 0.933 0.933 0.933 0.933
P30 3.113 2.522 1.916 1.343 1.362 1.160 1.160 0.977
P40 4.377* 3.958 3.081 2.938 2.054 1.760 1.465 1.465
P50 N/A 5.144* 4.494 4.137 2.482 2.130 1.777 1.653
P60 N/A 5.335 4.546 4.352 2.772 2.479 2.081 1.782
P70 N/A N/A 5.183 5.183 3.395 2.799 2.546 2.204

* The algorithm has found the first integer solution in only some of
cases within the specified amount of time

Similar to the statistical tests performed for the ALNS with and without LS
operators, we have performed the Wilcoxon signed-rank test in order to compare
the B&P and the ALNS with LS operators on a longer time scale. The null
hypothesis is still that the differences between the algorithms are symmetrically
distributed around zero. The most interesting comparisons are on the cases where

169

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

the B&P is able to find an integer solution within a given time limit. However, to
make the comparison complete, we have assigned a high cost to the cases where
the B&P did not manage to find the first integer solution within the specified
time. The tests are performed with the same grouping of the test cases as before,
and the results are shown in Table 6.9. With a significance level of 5%, we cannot
reject the null hypothesis for the H20 and H30 cases at time 1800 and 3600 seconds.
For two and three hours of run time, there is a significant difference in favor of
the B&P algorithm. For the group H40-H50, the difference is significant at 5% and
in favor of the ALNS for all run times, except for after 2 hours. Considering the
private cloud cases, the difference is significant in most cases, even at a level of
1% for the larger cases. However, after two and three hours of run time for the
group P20-P30, the difference is not significant.

Table 6.9.: P-values of Wilcoxon signed-rank test: comparison of the relative gaps
of the B&P and the ALNS with local search operators at different
points in time (seconds).

Cases 1800 3600 7200 10800

Hybrid
cloud
cases

H20-H30 0.053 0.053 0.012 0.015
H40-H50 < 0.001 < 0.001 0.073 0.014
H60-H70 < 0.001 < 0.001 < 0.001 < 0.001

Private
cloud
cases

P20-P30 0.014 0.023 0.419 1
P40-P50 0.002 0.002 0.006 0.002
P60-P70 0.002 0.002 0.006 0.002

Lastly, to illustrate the evolution of the objective function values in the search
process, Figure 6.1 compares the progress of these values of the B&P and the two
ALNS versions on the H40-a case with 75% private cloud coverage. We can see
that the objective function value of the ALNS with LS operators drops quicker
than the ALNS without LS operators. This effect is observed in almost all cases,
and can be explained by the intensifying effect of the LS operators. Moreover, the
figure shows that B&P finds a solution after about 40 minutes, and this solution is,
in this case, better than the best solution found by the ALNS. While the objective
function value of the ALNS algorithm drops gradually, and in small steps, this
value drops only two times for the B&P. The B&P finds its best solutions by
regularly solving an IP over all columns found up to certain points in time, and
this explains the few and distinct drops in the objective function value. Similarly,
Figure 6.2 shows the progress of the cost on the P50-d case. We still see that the
ALNS with LS operators drops faster in the beginning of the search, compared
to the ALNS without LS operators. The ALNS algorithm produces solutions of
higher quality than the B&P in this case, even after three hours. Furthermore, we
also observe that the objective function value of the ALNS algorithm now drops

170

6.6. Conclusions

fewer times compared to the values in Figure 6.1. Since the objective function
corresponds to the number of nodes required in the solution, one should expect to
obtain larger plateaus in the evolution of the cost and, typically, the time spent
on a given level increases as the objective function value approaches the optimal
solution.

0 1800 3600 5400 7200 9000 10800

36
00

38
00

40
00

42
00

44
00 B&P

ALNS with LS
ALNS w/o LS

Time (sec)

C
os

t

Figure 6.1.: Evolution of objective function value: comparison of the B&P algo-
rithm and the ALNS with and without local search (LS) operators
on the H40-a case with 75% private cloud coverage

6.6. Conclusions
In this paper, we have presented a novel ALNS for the service deployment problem
proposed by Gullhav and Nygreen (2015a). The ALNS implements a LS layer on
top of the repair operators, and the different LS operators are selected dynamically
based on their past performance. Furthermore, the ALNS includes a MIP-based
repair operator, in addition to faster heuristic insertion operators. Since the MIP
Insertion is slow, but produces solutions of better quality compared to the fast
heuristic insertion operators, it is necessary to take the time consumption into
account in the operator scoring mechanism.

The results of our experiments show that the ALNS benefits from the LS oper-
ators on the larger hybrid cloud cases and on all private cloud cases. The results
also show that the impact of the LS operators are especially prominent in the

171

ALNS Heuristics for Multi-tier Service Deployment Problems in Clouds

0 1800 3600 5400 7200 9000 10800

17
0

17
2

17
4

17
6

17
8

18
0

18
2

18
4 B&P

ALNS with LS
ALNS w/o LS

Time (sec)

N
um

be
r o

f n
od

es

Figure 6.2.: Evolution of objective function value: comparison of the B&P algo-
rithm and the ALNS with and without local search (LS) operators
on the P50-d case

first minutes of the search, which can be explained by the operators’ intensifying
effect.

On a longer time scale, we see that the ALNS with LS operators performs
significantly better than a previously proposed B&P algorithm on the larger test
cases. However, on the smaller cases, the differences between the algorithms are
not significant or in favor of the B&P. On the larger private cloud cases, the ALNS
with LS operators produces after five minutes of run time as good solutions as the
B&P manages to produce after three hours.

172

Bibliography
Amazon Web Services. Amazon Web Services (AWS) - Cloud Computing Services,

2015. URL http://aws.amazon.com/. Last visited 2015/03/04.

D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. Energy-aware autonomic
resource allocation in multitier virtualized environments. IEEE Transactions
on Services Computing, 5(1):2–19, 2012.

A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and tax-
onomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, 1(1):11–33, 2004.

A. Beloglazov, R. Buyya, Y. C. Lee, and A. Y. Zomaya. A taxonomy and sur-
vey of energy-efficient data centers and cloud computing systems. Advances in
Computers, 82(2):47–111, 2011.

E. Bin, O. Biran, O. Boni, E. Hadad, E. Kolodner, Y. Moatti, and D. Lorenz.
Guaranteeing high availability goals for virtual machine placement. In 2011
31st International Conference on Distributed Computing Systems, pages 700–
709, 2011.

B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield.
Remus: High availability via asynchronous virtual machine replication. In Pro-
ceedings of the 5th USENIX Symposium on Networked Systems Design and Im-
plementation, pages 161–174, Berkeley, CA, USA, 2008. USENIX.

T. Distler, R. Kapitza, I. Popov, H. P. Reiser, and W. Schröder-Preikschat.
SPARE: Replicas on hold. In Proceedings of the 18th Network and Distributed
System Security Symposium, Geneva, Switzerland, 2011. The Internet Society.

H. Goudarzi and M. Pedram. Multi-dimensional SLA-based resource allocation for
multi-tier cloud computing systems. In 2011 IEEE 4th International Conference
on Cloud Computing, pages 324–331, Los Alamitos, CA, USA, 2011. IEEE
Computer Society.

A. N. Gullhav and B. Nygreen. Deployment of replicated multi–tier services in
cloud data centres. International Journal of Cloud Computing, 4(2):130–149,
2015a.

173

Bibliography

A. N. Gullhav and B. Nygreen. A branch and price approach for deployment of
multi-tier software services in clouds. Technical Report IOT-B-15-02, Depart-
ment of Industrial Economics and Technology Management, Norwegian Univer-
sity of Science and Technology, NO-7491, Trondheim, Norway, 2015b.

A. N. Gullhav, B. Nygreen, and P. E. Heegaard. Approximating the response time
distribution of fault-tolerant multi-tier cloud services. In 2013 IEEE/ACM 6th
International Conference on Utility and Cloud Computing, pages 287–291, Los
Alamitos, CA, USA, 2013. IEEE Computer Society.

M. Hollander, D. A. Wolfe, and E. Chicken. Nonparametric statistical methods.
John Wiley & Sons, Somerset, NJ, USA, 3rd edition, 2013.

F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In C. A. C. Coello, editor, Learning and
Intelligent Optimization, volume 6683 of Lecture Notes in Computer Science,
pages 507–523. Springer Berlin Heidelberg, 2011.

B. Jennings and R. Stadler. Resource management in clouds: Survey and research
challenges. Journal of Network and Systems Management, 23(3):567–619, 2015.

R. Jhawar, V. Piuri, and M. Santambrogio. Fault tolerance management in cloud
computing: A system-level perspective. IEEE Systems Journal, 7(2):288–297,
2013.

W. Kuo and R. Wan. Recent advances in optimal reliability allocation. In G. Lev-
itin, editor, Computational Intelligence in Reliability Engineering, volume 39 of
Studies in Computational Intelligence, pages 1–36. Springer Berlin Heidelberg,
2007.

H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search: Frame-
work and applications. In M. Gendreau and J.-Y. Potvin, editors, Handbook of
Metaheuristics, pages 363–397. Springer, Boston, 2010.

S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi. Cloud computing
— the business perspective. Decision Support Systems, 51(1):176 – 189, 2011.

P. Mell and T. Grance. The NIST definition of cloud computing, 2011. NIST SP
800-145.

D. Pisinger and S. Ropke. A general heuristic for vehicle routing problems. Com-
puters & Operations Research, 34(8):2403 – 2435, 2007.

D. Pisinger and S. Ropke. Large neighborhood search. In M. Gendreau and J.-Y.
Potvin, editors, Handbook of Metaheuristics, pages 399–419. Springer, Boston,
2010.

174

Bibliography

S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science,
40(4):455–472, 2006.

G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record breaking
optimization results using the ruin and recreate principle. Journal of Compu-
tational Physics, 159(2):139–171, 2000.

P. Shaw. A new local search algorithm providing high quality solutions to ve-
hicle routing problems. Technical report, Department of Computer Science,
University of Strathclyde, Glasgow, Scotland, UK, 1997.

F. Vanderbeck. Computational study of a column generation algorithm for bin
packing and cutting stock problems. Mathematical Programming, 86(3):565–
594, 1999.

175

