NTNU - Trondheim
Norwegian University of

Science and Technology

A Modular Design Methodology for OSV
Accommodation Areas

Zahid A.S.M. Kawser

Marine Technology

Submission date: June 2012

Supervisor: Stein Ove Erikstad, IMT
Co-supervisor: Veronica Rode, STX OSV Design

Norwegian University of Science and Technology
Department of Marine Technology

@ NTNU

Det skapende universitet

Master Thesis in Marine Systems
Design Stud. techn. Zahid Kawser
“A Modular Design Methodology for OSV Accommodation

Areas” Spring 2012

Background

In most offshore support vessels today, the accommodation area is to a large
extent designed from scratch towards each customer’s individual requirements,
and within the available spaces given by the individual hull form.

STX OSV is currently investigating the possibility of developing pre-defined
accommodation modules that can be re-used across different projects, and the
corresponding templates and processes to support a cost efficient configuration of
these modules towards the specific requirements of each individual project.

Overall aim and focus

The overall aim of the project is to develop and test a modular design methodology for the
accommodation area of offshore support vessels.

Scope and main activities
The candidate should presumably cover the following main points:

1. Provide an in-depth, critical review of existing theory and methodology related to
modularization, focusing on core challenges in developing a design process based on
these principles.

2. Apply different modular methodologies (such as Modular function deployment,
Modularity matrix etc.) to develop a modularization strategy for the different functions
being part of the vessel accommodation.

3. Further develop the framework outlined in the MSc project to determine module size,
type and mix, as well as identifying effective arrangements. Discuss both the designer’s
role in this process, as well as the applicability of optimization models for decision
support in each step
of the process.

4. Describe STX’s current approach of reengineering the accommodation design process,
and
compare this with the method developed in (2)-(3).

5. Develop a mock-up of a tool to support the process.

6. To the extent possible, exemplify and verify the proposed approach with a simple case study
for an OSV design

Modus operandi
At NTNU, Professor Stein Ove Erikstad will be the responsible advisor.

The MSc project is within the topic area of the KMB project SHIP-4C, and is thus eligible for
travelling grants from this project.

The candidate will collaborate with STX OSV. The contact person at STX OSV will be Veronica
Rode. Any insight into sensitive business information, or access to confidential data, resulting
from the collaboration with STX OSV, should not be included in the project report without the
explicit permission from STX OSV.

The wor} shall follow the guidelines given by NTNU for the MSc Thesis work.

Profebsor/Responsible Advisor

Nomenclature

AHP
AHTS
BFS
DBB
DSF
DSS
FIFO
GA
GUI
HVAC
MFD™
MIM
MOM
OPV
oscV
osv
PSV
QFD
SBSD

WC

Analytical Hierarchy Process

Anchor Handling & Tug Supply

Breadth First Search

Design Building Block

Decision Support Framework

Decision Support System

First In First Out

General Arrangement

Graphical User Interface

Heating, Ventilation and Air Conditioning
Modular Function Deployment

Module Indication Matrix

Measures of Merit

Offshore Petrol Vessel

Offshore Support & Construction Vessel
Offshore Support Vessel

Platform Supply Vessel

Quality Function Deployment

System Based Ship Design

Water Closet

Preface

This dissertation is the outcome of a research work conducted in the 4™ semester of my master
studies at the Department of Marine Technology, Norwegian University of Science and
Technology (NTNU). This research work is built upon my pre-master thesis titled “Modularization
and configuration based design of offshore support vessel accommodation areas”. It also relies on
the report of my summer internship in NTNU and STX OSV Design AS in August 2011. The
dissertation along with the pre-master thesis and the summer internship is part of the ‘Ship-4C’
project run by the Department of Marine Technology. STX OSV Design AS is a collaborating

partner in all of these research works.

STX OSV has been at work to develop a modular construction policy for the accommodation
blocks of its offshore vessels. This thesis looks into different methodologies for modular
production and identifies the key spaces that should be modularized for a modern production
strategy. A decision support system for the designers of accommodation of OSVs is another major
outcome of this research work. Although the primary goal was to complement STX’s modular
concept; the course of action was slightly modified along the way. Following the suggestion of my
supervisor, later the goal was set to work independently and come up with some fresh ideas for
modular OSV accommodation. Rather than expanding the current STX approach of modular
construction, this research work has taken a different route starting from the central theories of
modularization and then building up from there to a decision support system for assisting the
designers of OSV.

| would like to thank my research supervisor Professor Stein Ove Erikstad for his outstanding
support throughout the research work. | am also grateful to him for giving me the opportunity to
work in the summer internship and subsequent Ship4C project. | would also like to express my
gratitude to Veronica Rode, Industrial Designer at STX OSV Design AS for her valuable insights in
accommodation block design. Special thanks go to my friend Ayesha Tasnim for helping me with
the decision support framework and corresponding programming for the real case study.

Trondheim, 10™ June 2012

Summary

Offshore shipbuilding industry is known for its highly customized products, which are in most
cases tailor-made for specific missions. Being a traditionally conservative industry, it follows
conventional design practices. Because of the urge to quickly respond to changing market
situations and the need for a structured method to reuse design knowledge across different
projects, modern design methodologies like modularization are of considerable interest in this
industry. To implement modular thinking, it has to overcome many challenges such as non-
functional engineering description of design, scaling, clustering, logistical issues, structural

complexities etc.

Different modular methodologies can be adopted to establish a modular product platform.
Modular Function Deployment (MFD™) is a popular theory of modularization with five distinct
steps to identify the objects that should be modularized and optimize them for the whole
manufacturing system. Application of MFD™ method reveals that among various spaces inside
the accommodation of an OSV, crew single, crew double and officer’s cabins are the most
appropriate ones to be modularized.

Based on the output of MFD™ method and the vessel database from System Based Ship Design
(SBSD) approach for OSVs, a decision support framework has been developed to assist the naval
architect of the vessel to design the accommodation block. Standardized templates are used for
arrangement of the modules. The spaces in the accommodation are categorized into three
module classes. The DSF can calculate the optimum size, type and location of the modules
according to design requirements and system constraints. The vessel database is used here to
determine the required area for the spaces that are not standardized. The DSF is demonstrated
by an illustrative example and later by a simplified real case study. A mock up of a user interface
has also been developed to give an idea of user interaction with a computer tool based on the
DSF. For the real case study, a small program has been developed containing some 1200+ lines of

code, which can process simplified accommodation design cases.

To build an effective DSS for designing the accommodation block of OSVs, standardization of
spaces by modularization must be done with enough room for flexibility of design by designer
intervention. This DSF exhibits the underlying logics and structure of such DSS, which can be very
useful to the designers upon further development.

Table of Contents

oL 43 =T Tl = 1T =TS iii
Preface oottt aes iv
SUIMIMIAIY teuiiuiiiuiieeiraeirenieeiiascrateesiossrsssssssessrsssrsssessssssrsssessssssssssssssssstsssssssssssnssssssssssnsssnssssssnssrnsss v
LIST Of fIZUTES cevueuueereeueeuseeese ittt sttt ss s sssses s b SRR SRR A £ e b bR ix
TS 0 1] U= PP X
I 141 T 10Tt T TN 1
2. MOdUIArIiZationceiiiiiiiiiiiiiiiiiiiiiiiricc e s 3
2.1 TYPES Of MOAUIATIZATION evueteeeriereeuseesseesse e teeessessess e s s see s sss e s bbb bbb R R e bbbt s 4
3. Modular design methodologies.......ccccciieeiiiiiiiiiiiiiiirccrrrcerreeeerreneeeseeaeesennseeseenssssennsassenns 6
3.1 Pahl and BeitZ METNOM ...ceeereereerreesseeseeeseessseessesesseesssess s ssssessssssssssssessssess st sessssessssessassssssssssssssssesssssssessssessanes 6
R I\ U D TT=Ta B 0 (=3 o o (o o PP 7
3.3 FUNCLIONAL flOW NEUTISTICS ovvvueeeereeereeseeesseeeseersssesseeesseesssess s ses s ses s sssess st s ss s s s s sesssssssessssessanes 8
3.4 Modularity MatriX METNOMA. .ottt es s bbb b e ss s s b s 10
3.5 Modular design in view of assembly COMPIEXILY ...vcueuriererrienrirreerneineee e sss s sesssesssesssssssesns 11
3.6 Modular functional dEePIOYIMENT. ...ttt st esseesse st ssss e s ss s bbb st sb s s 12
3.7 QFD-based modular Product @SN cereereeereeuseesseesse e sssessessesssesssesssesssesssessssssssss s s sssssssssesssssssesas 14
3.8 Relevant researches on modular Shipbuilding ... ss s sssesseens 15

3.8.1 DESIGN DUIIAING DIOCK c...cooreeertreeverereserietris s esaseesaseasis s s ssss s sesassssas s s es s s sassssssssesasssses 15

3.8.2 Optimization based space alloCAtiON APPTOACH ...ceuecreerreeorsersserseirssrssesssesssessessassssssesssessssssssssssessssssssasssens 17

3.8.3 INtEllIGENTE SAIP AITANGEOIMCIILS ccoueervrrereererseerserseesssssassesssesssesssssasssassesssessessssssassesssessssssssssssssssesssesssssssssassesssssssesasssens 19
4. Core challenges in developing a design process for OSV.......cciiiciiieeeccrrennirnenecerennncenenneenes 20
4.1, CONVENEIONAL TRINKITIG ...ttt ettt sees bbb s ss s bbb s bbb 20
4.2. Lack of STrUCtUTEd aPPTOACKH .ottt sttt bbb ss s bbbt e b s 21
4.3. Lack of evident success in ShipDhUILAINGouerierremienreenseineeseeiseesseei s seessssssesse s ssss st sesssessssssssssssssesas 21
4.4. Product PlatfOrIN AId MK ci.oceceeeeeceeseeuseesseessessseessessseesse st ssesssasssesssasssessssssse s s e st s ss s s sssesssesas 22
4.5. MOAE Of PIOAUCTION . .ccuieereeriereeseeeseeeeeeseesecssesssesssesssesssessse s e bbb s s RS se£asEa e R e a b 23
4.6, SETUCEUTAL ISSUES cvvrreereruseesseesseessseessseesssesssessssessssess e ssses s s ses s s s a8 £s R RS en R 23
4.7. Limitations on maximum MOAUIE SIZE.....ccrereremreesseessees s sssesssesssesssssssssssses s sssessssssssssssssssssessas 25
ARSI O10) s Lot @ =) o U= ¥ o b 0 =Tc) o oV TP 25
4.9, SCAIINEZ ISSUES ..ccureuieusieuseiaeesseesessseesstsesssessesssessse s s s s £ e E AR RS E R R bbb e bbb R 26
4.10. Different arrangement FAtIONALE ... reueeereereesseeseiseeeeiees e seesesssess s ss bbbt s bbb ss s s e 27
4.11. Limitations on crew Mmodule arTangEIMENT ... eeeueeereeereessessseesesssesssesssessse s sssssssssesssesssesssssssasssssssesas 28
412, ClIUSEETIINE ceeureeureeureeuseessesaseessessesssesssessesssessseessesss s seesse s £ e E AR 1 £ RS EE SRR b s bbb bbb R b 28
4.13. Ship: 2 deeply INtEGIrated SYSLEIM. .. i rieieeereeereesreese e sees s seesssssesssses s sssses bbb s bbb ss s 29

Vi

5. MOdUIArization StrategY....cicciiieiiieiiieiiteiireerereeereeeteeereeteteesennssensesensesenssrenserensersssssnnsssnnes 30

5.1 BACKZIOUINA ...eeieeieeieeeeeeseetectseeseesseesse s bbb s s ss s sesss s £ b8 £ RS £ e bbb bR 30
5.2 Modular Function Deployment (MEDTM)coeeeeeeseissessessssssesssssssssssssssssss s sssssssssssssssssassssssesas 30
5.2.1. Define CUSLOMET T@QUITEIMENLESouceeereveesreesressesassesessasasessisesesssssssssssassssssssssssssssssesassssessssesssssssssssssssssssssssssssssssssnes 32
5.2.2. S5€1ECt tECHNICAL SOIULIONS .ccovurrervercrineserissssesisssessasesesssssessssesesssssessasesesssssessssssssassssssssessssssessssssssssssssssassssssesessseses 34
5.2.3. GENEIALE MOAUIE CONCEPL ..ouoreeereeeeeretrietreesrassesass s asis s s essssessssesassssas s ssss st ses s s s ts s s essssssssssses 34
5.2.4. EVAIUGEE MNOAUIE CONCEPL..couoreeereeeetrsetrisesrisssvasssesassasissasissssisssessssessssesassssassssssssessssesassssassssisssessssssassssssssssnsssssssssssnes 37
5.2.5. OPUIMIZE IMOUUILS..c.c.ceeeeveeretre sttt esass s es s ess s s AR R e S e R RS R 108 38
6. DECiSiON SUPPOIt SYSTEIM ...ccuiieiiieiiireeirenereernirencrenerassencsessenssrsssesssnsssnssssssasssnsssnssasssnsesnsssnnses 39
6.1 MOAUIE RIETATCHY .ottt seeeeeeseeseesseesees et sees s seess s e bbb bR bbb 40
LI S F LY ST o [10 0 o 41
6.3 REQUITEA IMPUL ooeveeieeeeneeeeetectseeseesseesse s s s s eessesssees s s s £ b8 SRR SRR bbb R 42
6.4 TOIMIPIALES c.reurreeeeuseesreenrerseeeseeseesseesseessesssessse s bbb e s b Es SRR £ s £ 4R AR S £ R AR RS ER R bbb b bR 43
6.5 MAJOT ASSUIMIPLIOTIS .euvevueereeeseeeseesseesseesseessesssesssesssessessseesseessesss s sessse £ bR eSS R e ER SRR ER R e bbb b ek s R n et 44
6.6 SUMMATIZEA FlOW ovvvieererrreeeeeerrees s s s s s s RE R 45
6.7 DISS: TIE SEEPS wreureeurieurerseeereetseetseesseesseesseessessse bbb ssees s sesss s Esse £ RS SRR AR R AR bbbt a e 46
6.7.1 USET INMPUL PRIASE ccoveeorreeeerereerseeresssussesssesssesssssasssassesssesssssssssassesssesssssasssassssssesssssssssasssessesssesssesssssasssssesssesssssassssssesssesanes 47
6.7.2 DSS initialization: Grid SYSteIM fOF tRE AECKSoccwweoreerreerssiressserssesssisissssissssssssessssesassssisssssssssssssssasssssssssenss 47
6.7.3 TOMPIALE SCIOCEION.cccouoveerreeeeeeeeereetse s sesessesissas i essss s essss s s Re5bR R RERAREEREREnR 50
6.7.4 MOAUI SPOCIFICALION ...vverrrereeeerereetrireesissseasssesasseseseasissssssssessssessssesassssss s s se iAo R ARt 53
6.7.5 Higher ranked officer’s MOAUIE PIACEMENTcuoveereeereerssrsssersserssesissssisssesssesssasassssisssssssssssssesassssasssanss 54
6.7.6 Determination of the number of single/double CTEW MOAUIESc.cocerreomreronserseersesersssessserssesissssens 57
6.7.7 Common and fixed MOAUIE PIACCINENTceueerereesseirseerseerisesrisssesssesssssessssissssssssessssesassssisssssssssssssssasssssssssenss 59
LI I Yol 111 T SR 61
6.8 RELEVANT tHEOTIES covvvreerereeee s s s s s RS RR R 63
6.8.1. Bl PATTIEE IMALCRHING : cooereeretrersereeresseassesssesssssasssassesssesssssasssassesssesssesasssassssssesssesssssasssassesssesssesssssassessesssesansssssssssesssesanes 63
6.8.2. BreQALR fiTSE SEATCR (BES).ouieeeieeriseiriiseussesissisissasissssssssessssessssssassssassssssssessssssassssesssssssessssssassssssssssssssssssssasssssssssenss 63
6.9 AN FlUSTIATIVE EXAIMIPLE .. ceuieereeeeeeseeueesseesees et beseseessessseesse s esse b bbb s R R b s a e 65
L= A =0 L LU= 1 2] 65
IMOAUIBS.......crvereerireeeriseeerisesessasesesisesesasssessasesesssses st s 5855858455584 0 0 65
O oY ol TR =1 17) 2] Lo L= OO OO 65
FiNding NUMBET Of CTOW INOUUIES...c.u.ceueeerereeereseersetresessassesssesassasissssisssssssssssssesassesasssssssssssssesssssssssssassssissssssssssasesaseses 69
Fixed and cOMmON MOAUIES PIACEINIENTueoeeeeerserseresecrseessesssssssesssesssssasssassesssesssssassssssesssesssssssssassessesssssasssassssssess 70
7. Mock up of a user interface based on the DSS.........c.ccceevviiimnnnnntnniieiiiin 72
7.1 INIPUL PRIASE coureeieeeeereereeeeereeteet st e s bbb s s b es s s s £ £ SRR R R Ea £ bbb R 73
7.1.1. S@IECLION Of VESSOL LYPC..c..evereireretreriseesserirsesisessisssessssessssesasssssssssssssessssesassssassssasssessssssassssassssssssssssssssssssanssssnsssssssessnssses 73
7.1.2. Selection Of ClASS ANA NOCALIONScuvvererereereseeseesssessssssssssssssessssesassssessssesssessssesassssessssssssssssssssssssssssssssssssssessnssses 74
7.1.4. CUSEOMET TOQUITEINCIILS c...coveroeeeraesirasessesasessssasessssasessssssesssessesssessssssessssssessssasessssasessssasessssssessssasessssssesssessssssessssssesssss 76
7.1.5. SPecifiCation fOr fiXEA MOGUIESocoweereeeerreeseerseerssssessssasssesssesassssassssisssessssesassssesssssssssssssessssssassssssssssssessnssses 77

vii

7.1.6. Specification fOr COMIMON MOAUIESccweeeeerseersesreseseasssesssesissssissssisssessssesassasisssssssssssssessssssasssssssssssssesassses 77

7.1.7. Designer SpecifiCation fOr LOMPLALESccweureerreerresresseeessesssesessssisessisssessssesassasessssssssessssessssssasssssssssssssesassses 79

7.1.8. Module specification according to the database and further AdjuStMeNt.........cveecreeesneersssernsenes 80
7.2 PrOCESSING PRASE .ouieuieueeeeeteetseeseesseeseesse e bbb sees s sesss s £ £ E SRR R AR bbbt a e 81
7.3 OULPUL PRASE ccureurieurienetneeeseeteetseeseesseessessse bbb e s s b es s s s x££ e E e R RS ER R bbb R 83
8. Real CaSe StUAYuuuuuuiniiiiiiiiiiiiiiiiiiciiiiierire e a s s s e e e e e 85
TEIMPIATES weueereeeeeeetseeueesseesseesse et bbbt sesss s seess s sse e e E SRR AR AR AR E A SRR E R R ARt b 86
RESULES covererueesersseermeess s ees e s s a8 RS8R R8RSR R8RSR R RS R 87
9. General diSCUSSIONuuuiiiiiiiiiiiiiiiiicirrrere e s s s s ssasasanaae e e e e 90
LS T0 DR s =ID U 10 4T PP 90
9.2 Comparison with SIMilar aPPrOACRES ...ttt ss s 92

9.2.1. VAN QOIS APPIOACH cueeeererersereeresseassersesssssisssassesssesssssssssassesssesssssasssassssssesssssssssasssessesssesssssssssasssssesssesssssassssssesssesanes 92

9.2.2. Design bUildiNG DIOCK APPTOACK ..ueeeeeeereeeesercerseresersscassesssesasssassesssesssesssssasssassesssesssssassssssesssessssssssssssssssessssanes 93
9.3 DSS — KNOWI ISSUES oottt s bbb s bbb bbb bbb bbb e b 94
0.4 FUTTNET AEVEIOPIMENT c.oeevieeieeeeeeeeseeeeeeseetectseesessseessesssessse s bbb s s e bbb b bR 97
L0 0o T ol [T T N 98
T & 11 T = ' TN 99
21X o] o 1= e [RN 103
A. System Based Ship Design (SBSD)ereseeseisesssesessesssessssssessssssssssss s st sssss s sssasssssssssssssasssssesas 103
B. COde fOr the T€A1 CASE STUAY ..cuveuueeeeueeeseeureesseesseiseeseisssssess et seessesssess bbbt s b s s s s bbbt 105

viii

List of figures

Figure 1: Different types of modularity [UITICRH, 2003] ... eoernseeriossessssssssssesssssssssssssssssssasssssssssessssssssssssssssssassssanssesssssessssssses 4
Figure 2: An example of a cluStered INEETACEION MALTTX....couucceurreeeseereseerissessasssssssssesssssssssesssssssssasssssssssesssssssssesssssssssissassanssessnssessssssses 8
Figure 3: Dominant flow heuristics..... Rt ARt AR AR R R £ RCE R R AR AR AR AR 9
Figure 4: Flow branching heuristics applied t0 Q ENEIIC SETUCTUIC.........cccureeeuesereesesreseersssssssssesasssesssssesssesssasssssisssssasssessssessssseses 9
Figure 5: Modularity matrix [a. interaction matrix, b. transformed modularity matrix]............ .11
Figure 6: Design building block approach applied to surface ship design [Andrews, 2006]16
Figure 7: Design for production study to move the main machinery plant aft in an offshore support vessel to

facilitate modular construction............ ceereraesesaenenes w17
Figure 8: Positioning space with filled and empty cells. .18
Figure 9: Feasible Ship deSigMN USING POLYJONS....c.wwuoreerioreerissiessssesssesssssssssasssssasssssssssesssssssssssssssssssisssssssssssanssssasssssassssesessennes .18
Figure 10: Ship inboard profile (ZONe-AeCK SYSEOIM)..........cccouieuerireeoe st ceiire e secssinr st ses s e saeenssnen sessesssssessssssessnsse 19
Figure 11: ATrangement Of SPACES..........cccuureeeeis e oesee s aue e seases nesasassseeses st sas s aessssnseasssssesssssessnssessssssssessnesssssssssssssnesssess 19
Figure 12: DeSIGN SPITQL.......ccccecos ettt ettt ettt et s s e sea s s enssns es e sassn annnsseneassanensnsssensnssesanssessnssned O
Figure 13: Unrealized potential of modularity (KUSIAK, 2002) ... oeeoreerisnserosssessssesisssssisssesisssesssssssssssssassssessessennes .21
Figure 14: Structural elements iN CADIN ATOAweuereoreerroseiersssersssessssesisssssisssesasssesssssssasssssssssssisssssasssssnssssens .24
Figure 15: MOAUIES ANA SAIP SETUCEUT @coueeevereeeeresresseessassessasssssssssesssesssssssssssssssasssssasssessssssssssssssnssssisssssesssesssssssanssssessosss .24
Figure 16: Sequential Development Method vs. Integrated Development Method............... w26
Figure 17: Scaling possibilities.... Rt AR RS R R R R R SRR AR R .27
Figure 18: Module driver profile for accommodation block deSigN..........ceercssrerssesrenseens .36
Figure 19: A possible arrangement template for an officer’s deck..........eourercrsseenseens .43
Figure 20: A possible arrangement template for @ CreW AECK..........ceoneercsreercsssersesessesesisssesisssesisssesssssssens .44
Figure 21: TRE DSS..ereeersrerresirirnenns Rt AR ARt AR R R R .45
Figure 22: USEE INPUL PRASE......couoevvereereseerisserissssassesssssssssssssssasssssasssesssssesssssssssssssssssssasssssassssssnssssasssssasassessassesnes .47
Figure 23: DSS INTEIALIZATION ..cceueeeeereerereerisserissesussssasesssssssssassessasssesasssesssesesssssssssssssasssssassssssnssssasssssssassesassansssssnsssssns .50
Figure 24: Template selection phase.. Rt AR ARk £ R RS2 EER SRR RS E RS SRR R AR AR R0 51
Figure 25: Template suggestion ceerertesesaenenes Rt AR AR R AR AR AR AR w52
Figure 26: Template............... Rt AR R R R RS R AR .53
Figure 27: Module specification............ ceereraesesaenenes Rt AR AR AR R R AR w54
Figure 28: Flow chart for placing officer class MOAUIEScweoreerormeersssersnsersssesisssesisssssisssssane .56
Figure 29: Determination of mix and placement of crew MOUIEScccowercemrernnrernsesrinsenns .58
Figure 30: Flow chart for placement Of CM QI FMoeeeoeeeeeoseeeseeessssesisssesasssesssssesssssesssssssissssssssessssssssnssssassesss .. 60
Figure 31: Scaling process......ernn Rt AR RS R R A R AR R0 .62
Figure 32: Bi-Partite matching... Rt AR AR R8£3R RS S R A LR R AR AR RS AR R R 63
Figure 33: BFS method.........eecneerrseerenne. .64
Figure 34: Checking reachability by BFS method .. 64
Figure 35: Selected template for MOAUIE PIACEIMENTcoueeceerereeoseereseerssneesisssesasssesssssesssesesasssssisssessssessssssssssssassesss .. 66
Figure 36: The deck consisting of sub grids......... Rt AR AR AR AR AR AR .66
Figure 37: Cumulative sum grid ceerertesesaenenes Rt AR AR AR R AR AR w67
Figure 38: Grid/Cumulative sum grid after placing the StAirCASES.......merismrerssesrirseens . 68
Figure 39: Crew modules are being placed Rt AR ARt R AR RS0 .69
Figure 40: Cumulative sum grid after PlACING thE FIMSoreoreeeoseerrosseessssessssesssssesasssesisssssisssessssesssssssasssssasesss .70
Figure 41: POSSIDIE MOAUIE PIACEIMENTcoueeeeeereeeereseersesearssesessssesssesssssssssasssssasssesasssesssssesssssssssssssisssssansssssnssssanssssassesss .71
Figure 42: User interface................ ceereraesesaenenes R a AR AR AR R SRR .72

Figure 43: SeleCtiON Of VESSEL LYPC....cucruoreeruseeeusssssessssssssssisssssasssesssssesssssssssssssssssssissssasssesssssssssssssssesss

Figure 44: Selection of class and notations Rt AR ARt R AR RS0

Figure 45: Vessel specification..... N
Figure 46: Customer reqUITEMENES ON CTOWcccovenerrsermsessmssissessssessmssssssssssessassasssssssesssssissesssssssssssssessses

Figure 47: Specification for FM... R a AR AR R R AR R

Figure 48: Specification for cOMMmMON MOAUIESccoweecrmeercnmeersmserissrerissserisseens

Figure 49: Template suggestion by the SYSEOIM ... wweoreeronmserismserisesessssesisssesisssesesssesanns
Figure 50: Template selection by the deSIGNer ... ercnmeersnserisssesisssesisseens

Figure 51: CM specification by the system . Rt AR AR AR AR SRR

Figure 52: Vessel database (sample).. . cerrer e s s r e r e

Figure 53: Processing window..... N
Figure 55: System output Rt AR AR AR AR AR R

Figure 56: INPUL file fOI CASE SEUAY ...couerureerrreeresssrisesrssssssisssssasssesssssesssssesssssssssssssisssssasssesssssssssssssssesss

Figure 57: Template for arrangement for the uppermost deck (Deck-D)........oeoreercreeresseeriane

Figure 58: Template for arrangement fOr IOWET AECKSoucomreosmeesosmeesissserisssesssssesasssssasssssisssssess
Figure 59: Output DEcKk D (UDPOTIMOSLE) c.uuerueeeeuereesesrisesssisssssasssesssssesssssesssssssssssssesssssansssssnssssssssssassassisessssnes

Figure 60: Output Deck C Rt AR AR AR AR AR R R R

Figure 61: Output Deck B Rt AR AR AR AR AR R R R

Figure 62: QUtPUL DECK A (IOWETTNOSE) cou.crureeresereesesrisesrsisssssasssesssssesssssesssssssssssssisssssasssessnssssssssssasssssissssssnes
Figure 63: Design rationale for the fraAmMeWOrK ... oecronserisssessssessssesisssesesssesanns

Figure 64: 3D output from Van Oers approach compared with the output from DSS....

List of tables
Table 1: Modularity drivers

Table 2: List of spaces in accommodation block

Table 3: QFD matrix for accommodation block

Table 4: Module Indication Matrix (MIM) for module candidates for accommodation block

Table 5: Module hierarchy.

Table 6: Notations used in the decision support system

Table 7: Template information table

Table 8: Possible module dimensions

Table 9: Template grid specification

w73
.74
.75
.76

77

.78
.79
.80
.81
.82
.82
.84
.. 86

.87
.87
.88
.88
.89
.89

90

. 96

14
32
34
35
40
46
52
65
67

1. Introduction

Offshore shipbuilding is a part of the broad arena of shipping industry which caters vessels
specifically to the offshore oil and gas industry, offshore exploration and seismic study groups,
offshore wind mill etc. These industries need vessels that are highly customized and can meet
special requirements on design and construction for serving in challenging conditions. The
vessels produced by this industry include platform supply vessels (PSV), offshore
support/construction vessels (OSCV), anchor handling and tug supply vessel (AHTS) and

multipurpose vessels to name a few.

The accommodation block for offshore vessels normally holds a high standard, and the areas are
to a large degree dependent on the number of persons onboard. The block is fitted at the stern
or the bow of the vessel in order to have the much-needed open deck area/cargo area for
offshore operations without any obstruction. The accommodation is therefore not adding much
to the length of the vessel; the designer would rather add decks to make the necessary area
[Vestbgstad, 2011]. Unlike cruise vessels, standardization of the accommodation areas of OSVs is
not a straightforward task to accomplish. Because of the relatively small size of the block and
highly variable design requirements depending on the mission, these accommodation blocks are

custom-made in most of the cases.

Like other manufacturing industries, offshore shipbuilding industry has also been facing the
challenge of transforming the vision from traditional design and production methods to agile
manufacturing. A modern industry should be able to rapidly respond to all changes in the market
environment. At the same time there is the growing urge to develop products that are of high
quality but at a lower cost. Due to changing market situation and varying customer demands,
modern shipbuilders are forced to reevaluate their design and production strategy and look for

newer and more adaptable ones.

Different production strategies have been identified and examined for application in shipbuilding
such as lean manufacturing, series production, modular production etc. The focus of this research
work is modular production methodology. Modular production technique is nothing new to
shipbuilding as naval and cruise shipbuilding industries have been using it for quite some time
with varying success. Equipment and machinery suppliers for offshore shipbuilders such as Rolls-

Royce Marine and Wartsila have also been working hard to implement modular thinking in their
product portfolios.

STX OSV is one of the prominent players in offshore shipbuilding involved in design and
construction of a wide variety of offshore vessels. They are currently investigating the possibility
of developing pre-defined accommodation modules that can be re-used across different projects,
and the corresponding templates and processes to support a cost efficient configuration of these
modules towards the specific requirements of each individual project.

In this paper, an in-depth look will be exerted into different modular methodologies. Chapter 2
will introduce the theme of modularization with definitions and types from various perspectives.
Chapter 3 contains detailed discussions on several modular methodologies relevant to this
research work. It will also summarize some modern approaches of modular thinking that are
similar to this research. Based on available literature and discussions with designers of offshore
vessels, the major hurdles that have to be overcome to successfully adopt modular product
platform will be discussed in Chapter 4.

In chapter 5, Modular Function Deployment (MFD™) method will be applied to identify the
spaces, which should be modularized for a fitting production policy. Next, a decision support
framework will be developed to assist the designer of the vessel on designing the
accommodation block of offshore vessels with pre-defined modules in Chapter 6. This framework
will also be explained with an illustrative example for easier interpretation. Chapter 7 will present
a mock-up of a user interface for the aforementioned DSS. In Chapter 8, a computer program
based on the DSS will perform a real case study. The framework will be compared with similar
approaches for modular shipbuilding and its strength and weaknesses will be outlined in chapter
9. This will be followed by a revision of the decision support system and possible ways to improve
it for developing a full-fledged computer tool for assisting the designers. Based on the DSS and

subsequent discussions, some conclusions will be drawn in Chapter 10.

2. Modularization

Modularization is a term that goes back several decades and has been defined in various
contexts. The term modularity in products is used to describe the use of common units to create
product variants. It arises from the division of a product (part) into independent components,

thus allowing one to standardize components and to create a variety of products [Huang, 1999].

Modular products and reconfigurable processes are crucial to agile manufacturing [Kidd, 1994].
Modular approach promises the benefits of high volume production (that arises from producing
standard modules) and at the same time, the ability to produce a wide variety of products that
are customized for individual customers [Huang, 1999]. By dividing the product into several parts,
sharing of risk and investment can also be streamlined between suppliers and manufacturers.
According to Baldwin and Clark (2000), “modularization is a strategy for organizing complex
products and process efficiently”.

From Ulrich and Tung (1991), modularity is viewed as,
(i) similarity between the physical and the functional architecture, and

(ii) minimization of incidental interactions between physical components.

Another definition dating back to 1968 is also important in this context; “Constructed of modules
or unit packaging schemes, usually having all major dimensions in accordance with a prescribed
series of dimensions; capable of being easily joined to or detached, as an entity, from other
components, units, or next higher assemblies” [Booz-Allen, 1968]

A modern definition from Schilling is, “A general systems concept: it is a continuum describing
the degree to which a system’s components can be separated and recombined.” [Schilling, 2000]

From these definitions, modularization can be thought of as, “the division of a large system into
independent individual parts/components which can be recombined into multiple end products”
[Kawser, 2011]

In modular construction, the products are itemized into certain product modules that, when
combined will generate different end products as a whole. Nilles (2001) points out that a product

module is characterized by the following properties:

e a product module is a subsystem with lower complexity than the overall system of which the
module is a part.

* a module is a closed functional unit.

* a module is a spatially closed unit.

* a module has well-defined and obvious interfaces.

2.1 Types of modularization

Modularization can be of different types. Depending on the mapping between the functional and

physical elements of the product, Ulrich classified modularization in these three types:

1. Slot modularity
2. Bus modularity
3. Sectional modularity

A brief description for each type is given below:

Slot modularity: each of the interfaces between the components is of a different type from the
others, which makes it impossible to interchange the various components of the product (e.g. the
radio module in a car). Hence, there is only one possibility to connect the modules with each
other.

Bus modularity: It is characterized by a common bus to which physical components are
connected via the same type of interface. A typical example is personal computers where various
components are attached to the common bus. Non-electronic products can also be built around a
bus-modular architecture. Track lighting, shelving systems with rails and adjustable roof racks for

automobiles all embody a bus-modular architecture.

e

— —

Slot-Modular Bus-Modular Sectional-Modular
Architecture

Architecture Architecture

Figure 1: Different types of modularity [Ulrich, 2003]

Sectional modularity: The sectional architecture does not involve a single module to which the
components can attach. The assembly is realized by connecting the components to each other via
identical interfaces. This type is characterized by chained interconnection of modules. Many
piping systems, office partitions, and kitchen furniture adhere to sectional-modular architecture
[Ulrich et al, 2000].

Depending on the product and scope of construction, different type of modular architecture can
be employed. In the development of a modular concept the objective is to find modules in which
the contained technical solutions have similar properties regarding development, variety,
processes, etc. [Kenger, 2006]. There is also another class of modularization, which basically
shares features from the three aforementioned types. Mixed Modularity combines several
standard components together through webs of modules rather than a simple chain, as with
sectional modularity. The modules must be equipped with at least two complementary interfaces
to create a new device [Kawser, 2011].

Again, Pahl and Beitz classified function modules into four categories: basic, auxiliary, adaptive
and non-module [Pahl and Beitz, 1988].

* A basic module is a module implementing basic functions. The basic functions are not
variable in principle and are fundamental to a product or system.

* An auxiliary module corresponds to auxiliary functions that are used in conjunction with
the basic modules to create various products.

* An adaptive module is a module in which adaptive functions are implemented. Adaptive
functions adapt a part or a system to other products or systems. Adaptive modules handle
unpredictable constraints.

* A non-module implements customer-specific functions that do occur even in the most
careful design development. Non-modules have to be designed individually for specific
tasks to satisfy the customer needs [Huang, 1999].

3. Modular design methodologies

Research from different perspectives has been carried out to implement modular product
architecture in overall product platform. Depending on the approach used, modular design
methodologies fall into the following classes:

. Pahl and Beitz method

. Matrix based methods

. Functional flow heuristics

. Group technology based approach

. Consideration of technology complexity

. Modular functional deployment (MFD™)
. Modularity matrix method

. Quantitative functional modeling method

O 00 N oo L D W N B

. Product modularization for life cycle engineering

10. Developing modular products for testability

11. Modularity operation of systems based on maintenance consideration
12. QFD-based modular product design

[Nepal, 2005]

Not all of these approaches are relevant to shipbuilding industry. In this section, the
methodologies that are important with regards to modular shipbuilding will be discussed in
details.

3.1 Pahl and Beitz method

Pahl and Beitz refer to modular products as machines, assemblies, and components that fulfill
various functions through the combination of distinct building blocks or modules. The overall
design of the product is broken down into designs for separate functional modules. Each module
can then be considered independently with the interactions between them being kept to a
minimum [Pahl et al, 1988]. From a functional structure diagram, components of a product are
selected to cluster based on their cost effectiveness in relation to the assembly cost of the entire
product.

The essence of developing modular products can be summarized as follows:

Clarify the task: Generate specifications.

2. Establish a functional structure: Subdivide the main functions into a minimum number of
similar and recurring sub-functions.

3. Determine the methodology to be used to implement the sub-functions. Also identify
solution principles for implementation of the variant sub-functions.

4. Explore the feasibility between interfaces of modules and basic components (geometric,
kinematics, and non-motion machine primitives).

5. Review the constraints.

The major advantage of this approach is the simplification of the subsequent design process for
the individual modules. The major disadvantage of this method is that by reducing the scope for
functional sharing, an increase in overall complexity of the product often follows. This can result
in manufacturing problems, such as a higher parts count. Another shortcoming is that there is no

clear optimization rules/techniques for module selection.

3.2 Matrix based methods

Pimmler and Eppinger, 1994 proposed an integration methodology for product design
decompositions. The method involves three steps:

1) Decomposition of the system into elements,
2) Documentation of the interactions between the elements, and

3) Clustering the elements into architectural and team chunks.

This method helps to better understand the complex interactions of the constituting components
of a product. By the help of the system integration matrix and clustered integration matrix, one
can analyze given design decompositions [Pimmler et al, 1994].

Here, the researchers used a heuristic swapping algorithm facilitated by computer spreadsheet
software and specialized macros for identifying the team chunks. The shortcomings of this

method are the need of specialized algorithm for different types of product design and a lack of
focus into architectural issues that should be considered in the clustering process [Nepal, 2005].

K J L D E A B E F I H C P 0] G N
Air Controls K Lgoou 1“ 00 0 0 00
02 0 B a2 | " | W[2g0 ™ 240
Refrigeration Controls J 0 10 0 0|10
0] m|00 " m |2 0(0go] [}]
Sensors L P © 10
of 4 % no o4 Controls/ |m| _| m| _| ®m/| _ | ® |
Heater Hoses D Connections 10 10
™ Chunk 00 00
Command Distribution M 0-1 0|1 0“ 10 10 10/11 0 10
ofo oMo o 00 00 0 0/0 O 0
————
i 2 0|2 -2
Radiator AI - s 200 o Front End
Engine Fan B .) 10fz 0 2 of | Alr Chunk
n oofo 2 02
Condenser E 2 -2(20 0 2 22
L) 00 0 2 0 2 Refrigerant
Compressor F Ogo 0 1) 10 1 00 2 Chunk
o2 o 00 0 2 0 2[0 2
Accumulator | 10 0 10 10
0 E 00 0 2 0 2
Evaporator Core H] . 1) 22|0 2|1 0 1 0|0 0O 20
0 2|0 2|0 2 0 0|0 2 00
Heater Core C - 10 H 0 00 20
00 po 02 00
ek i s T [0 Interlor Alr t oo 0 Zae zne
00 Chunk 2[00 2 0 2[00 2
Blower Controller O 0| w 10 20 20
0 00 0 2 00
Evaporator Case G » T 2 0|2 0|2 0(2 O 0
o ojo oo 2|0 0O 0
Actuators N 0] 10 20
0 00 00
Legend:

Spatial: | S E |:Energy
Information: | 1 M |:Materials

Figure 2: An example of a clustered interaction matrix

3.3 Functional flow heuristics

When considering a single product, Stone et al. (2000) identified a set of three heuristics that can
be used to identify product modules on a function structure. The heuristic methods applied to
modularize product function structures are divided into three types: dominant flow, branching

flows, and conversion—transmission.

The dominant flow heuristic examines flows through a function structure, following flows until

they either exit from the system or are transformed into another flow. The sub-functions through

which a flow can be traced, define a module. In other words, a set of sub-functions through
which a flow passes, from initial entry or formation of the flow in the system, through final exit or
conversion of the flow within the system, define a module.

r S A N A G T GG ENES S AR dom]"[antﬂou? "l()dule -

material |
“— pre—
e o e g |
S |
energy |
{
l——l—--—_——ﬂ--;
interaction
interface

Figure 3: Dominant flow heuristics

The branching flow heuristic examines flows that branch into or converge from parallel function
chains. Each branch of a flow can become a module. Each of these modules interfaces with the
product through the point at which the flow branches or converges.

I
|

— — — — flow branching moduie 1 -

- S
i

— — — —— — . —— — — —

——

| —-— o s (T0W branching module 2 .

—L+ e | ——a

. — — — — — —

{ - - - e flOW branching module 3 . o
18

2~ > _— -

W W e W e wm— m——— —— — — —— — — — —— ——

Figure 4: Flow branching heuristics applied to a generic structure

The conversion—transmission module examines flows, which are converted from one type of flow
to another. A conversion—transmission module converts an energy or material into another form,
and then transmits that new form of energy or material. In many instances, this conversion—

transmission module is already housed as a module [Eggen, 2003].

Dahmus et. al. presented two additional heuristics to find common modules across products in a
product family. They find shared functions across products, and unique functions that are found
only in one product within the product family and separate them as modules [Dahmus et. al.
2001].

3.4 Modularity matrix method

An extension of Stone et al.'s (2000) functional flow heuristics is the modularity matrix method
by Dahmus et al. (2001). They presented an approach to architecting a product family that shares
inter-changeable modules. Rather than a fixed product platform upon which derivative products
are created through substitution of add-on modules, the approach here permits the platform
itself to be one of several possible options.

The architecture process begins with what underlying technologies should be utilized, and by
establishing the limits of the product family that must share common modules. In the next step,
function structures for each of the product concepts are developed. These individual product
function structures are then combined into a large family function structure. The next step is to

construct a modularity matrix.

The modularity matrix is a tool designed to aid the application of modularity rules both for
products and portfolios. It lists the possible functions from a family function structure as rows in
the matrix, then the possible products from that family as columns. Each matrix element contains

a value that represents the required function specification level [Dahmus et al, 2001].
Once the family function and individual product structures are developed along with the

modularity matrix, various architectures are developed by changing the target within the matrix
according to modularity rules. There are, however, two aspects to this: developing the individual

10

product architecture for each product, and developing any shared modules within the portfolio
architectures. First, individual architecture is developed by grouping the functions using the
modularity rules on the function structure. These groupings are then displayed in the modularity

matrix.
a) b)
1 2 3 4 5 6 7 8 9 10 I 12 13 14 136 11 12 41 137 2 9 103 4 5 8
1 w 1’ o
“ + 1 6 + 1 1
3 + 1 np o1 o+
K + 1 1 12 1 1
s 1 + 11 14 + 1
6 1 + 1
; + 1 1 1 1 +
o 7 1 + 1
g 1 + 1 2 +
9 1 + 9 +
10 1 + 10 1
1 1 + 1 3 +
12 1 1 + 1 4 1 R
3 - 5 11 1
3 1 1 : .
]] + : ! I 5

Figure 5: Modularity matrix [a. interaction matrix, b. transformed modularity matrix]

Next, the portfolio architecture is explored by identifying the shared functions across the
portfolio. Such sharing can be found by examining similarities across columns for a single function
in the modularity matrix. To establish shared modules, one has to determine whether different
products have similar specification targets. One major shortcoming of this method is, apart from
the similarity factor, no other performance metrics are considered here [Nepal, 2005].

3.5 Modular design in view of assembly complexity

The researchers, Tsai and Wang (1998), presented a methodology of modular-based design in the
conceptual stage of systems to support concurrent engineering.

It consists of three steps:
1. The functions are classified into different types of modules according to the correlation
in design by using fuzzy cluster identification.
2. The optimal module type is selected based on the considerations of the manufacture
and assembly complexities of the system.
3. The design priority of functions within a module is scheduled by measuring the
information content of functions.

11

While assessing the correlation of functions with each other in designing, four I/O parameters are
used in order to check the similarity in I/O. The parameters used are geometric constraints,
mechanical strength, energy flow, and signal flow. The functions are classified into different
modules by using fuzzy clustering [Tsai et al, 1998].

Although the authors have presented the methodology to measure the level of manufacturing
and assembly complexity and select the optimum modules, the paper does not consider other
aspects of product architecture such as reliability, quality, and cost. Moreover, this methodology

may be too complex for application in real cases.

3.6 Modular functional deployment

Modular function deployment (MFD™) is a systematic method and procedure for company-
supportive product modularization [Erixon and Ericsson, 1999]. The whole process consists of five
steps.

1. From the analysis of competition and customer requirements, properties those must be
possessed by the product are identified. Design requirements are derived from customer

demands.

2. Functions that fulfill the demands and their corresponding technical solutions are
identified. As there might be several technical solutions to fulfill a specific function, the
method chooses only the most appropriate solutions based on certain evaluation criteria

such as production goals, part number count, and future development potential.

3. In this step, the technical solutions selected in step two are analyzed regarding their
reasons for forming modules using module drivers. This step is carried out with the help
of a module indication matrix (MIM) wherein each technical solution is assessed against
the module drivers. This step is the core of the MFD™. Every technical solution is
weighted on a scale of 1 to 9 where nine corresponds to a strong driver, three to a
medium driver, and one to a weak driver in accordance with the importance of its
respective reason for being module. The high weight or uniqueness in module driver

patterns indicates that the technical solution under question has a complicated

12

requirement pattern and is likely to form a module by itself, or at least the basis for a
module. On the other hand, few or low-weighted module drivers indicate that the
technical solution under question might be easy to group together to form a module,

provided there is a match in the module driver pattern or at least no contradictions.

4. Step four deals with the post-evaluation of the selected modules for the complete
product based on the various performance metrics with respect to the interfaces between
modules and the flexibility within the assortment. The suggested criteria for evaluating
the effects of modularity in MFD™ include lead-time in development, development cost,
development capacity, product cost, system costs, lead-time, quality, variant flexibility,
service flexibility, service upgrading, and recyclability. Some of these criteria are just the
rules that have to be followed during design; others are metrics, which can be measured
and used for optimization of the modules.

5. Here, a specification is written for each module containing technical information, cost
targets, planned development, descriptions of variants, and so on. The module

specification constitutes the backbone of the product platform.

In essence, the process starts with quality function deployment (QFD) analysis to establish
customer requirements and to identify important design requirements with a special emphasis
on modularity. The functional requirements on the product are analyzed and technical solutions
are selected. This is followed by systematic generation and selection of modular concepts in
which the module indication matrix (MIM) is used to identify possible modules by examining the
inter-relationships between ”"module drivers” and technical solutions. MIM also provides a
mechanism for investigating opportunities of integrating multiple functions into single modules.
The expected effects of the redesign can be estimated and an evaluation can be carried out for
each modular concept. The MIM is then re-used to identify opportunities for further

improvements to the single modules.
Erixon and Ericsson have identified a number of driving forces for modularization within a

product. These are called module drivers. These drivers cover the entire life cycle of a product
and may be linked to different functions of the company.

13

Module drivers

Product development and design

Carryover

Technology evolution

Planned product changes

Variance Different specification
Styling
Production Common unit
Process and/or organization
Quality Separate testing
Purchase Supplier availability
After sales Service and maintenance
Upgrading
Recycling

Table 1: Modularity drivers

3.7 QFD-based modular product design

Kreng and Lee (2004) has consolidated the work of Ulrich and Eppinger (1995), Gu and Sosale
(1999), and Erixon and Ericsson (1999) and extended it to a QFD-based modular design. Based on
available literature, the researchers identified 14 modular drivers. Then Quality Function

Deployment (QFD) is deployed to accomplish modular product design with two major phases.

Phase one is the exploration of design requirements, which combines customer needs, company

development strategies, and designers’ preference to select proper modular drivers through

competitive analysis. In phase two, modular product analysis and linear integer programming are

used to establish final configuration [Kreng et al, 2004].

The 14 modular drivers are listed below:

Carryover

Technology evolution

Planned product changes
Standardization of common modules

Product variety

I S o

Customization

14

Flexibility in use
Product development management
Styling
10. Purchasing modularity components
11. Manufacturability refinement and quality assurance
12. Quick services and maintenance
13. Product upgrading
14. Recycling, reusing and disposal

They used a QFD framework to select the key modular drivers and to accomplish that they
mapped the drivers with the specified design requirements. Analytical Hierarchy Process (AHP) is
used to compare the different design requirements and assign weights to them. This would
reveal the primary modular drivers. These modular drivers are ranked based on platform
strategies and customer requirements. Next, they analyze the functional and physical
relationship between each component pair. A linear integer-programming model is employed for
the modularization process.

Although the authors demonstrated the application of this method on an electrical consumer
product, this method may be too complex to apply in real cases.

3.8 Relevant researches on modular shipbuilding

3.8.1 Design building block

The building block design methodology developed by Andrews (1998) is quite relevant to develop
modular offshore shipbuilding. Although this methodology was primarily intended only for naval
vessels and submarines, the basis for this is established on functional attributes (float, move,
infrastructure, fight etc.) that can be updated for specific sectors like offshore support vessels.

The UCL Design Building Block approach has been incorporated in the established PARAMARINE
ship design system through a module entitled SURFCON. UCL’s approach aimed to modernize the
traditional ship design spiral sequence: initial sizing, parametric survey, layout, and performance
analysis. Concurrent engineering principles supported a more integrated decision making process
[Andrews, 2006].

15

The essence of the building block approach is first to select or define a series of design building
blocks containing geometric and tentative ship size, which then are located as required within a
prospective or speculative configurational space. A building block is identified by physical and
functional attributes. According to Andrews, “The design building block should be thought of as a
placeholder or folder in the design space containing all information needed to describe a
particular function.” Overall weight and space balance and performance (e.g. stability, powering)
of the design are assessed and the configuration is then manipulated until the designer is
satisfied with both the configuration and the naval architectural balance [Andrews, 1997]. In
three-dimensional space, the building blocks are controlled by drag and drop, and their
properties dynamically update as their position is edited.

/’“’ radical functional
ideas hierarchy
balance decomposition
/—' indication model
v

space defimtion
- cost
weight model weapons
mventory data- |
bases
® topside &
major feature
hydrostatics | «—__| hullform 1 | f implications
model functional volume sPa.ce, tachnology|
efficiency | |dismibution| | oo he changes
space mnventory

weight module (required v achieved)

date- || [ystem|weizht| VOG | 1LCG knopi g aoeessl &

bases margin

policy

I
[| k geometric definition general

arrangement
S| e 4 :
= detailed
]))) / layout
completeness space! Tesistance
weight vulnerability/ $
check - 1
— pro:Jsion — survivability | buliform model |

Figure 6: Design building block approach applied to surface ship design [Andrews, 2006]

Various case studies have been performed to assess the applicability of this approach for
example novel designs of warships, SWATH, aircraft carrier etc. A relevant study has been
undertaken on a North Sea offshore support vessel in which the main machinery space,
previously under the forward deckhouse, has been moved to aft of the main drill supply tankage.

16

This change eliminated the twin shaft lines in the central region of the vessel, where they not
only complicated the design of the main cargo space but also inhibited modular build off the slip,

which would be a more efficient outfitting arrangement [Andrews, 2005].

Figure 7: Design for production study to move the main machinery plant aft in an offshore support

vessel to facilitate modular construction

This approach is focused on novel designs where the development period is large and the scope
is broad. As Brathaug et al. 2008 suggested, the design space for offshore ships can be said to be
a more closed design space. And in the case of accommodation block design for offshore vessels,
the design scope is even more limited and the focus is given to efficient and timely solution for
given customer requirements. But the emphasis on functions of the components can be seen as
the first step towards modularization. The building blocks are distinguished based on functions,
which can very well be treated as different modules for modular construction.

3.8.2 Optimization based space allocation approach

An optimization based space allocation method has been developed by Van Oers et al. 2007. The
design is divided into objects, which have to be arranged. All objects have information regarding
space demand, weight and center of gravity. These objects are then placed inside a total border.
These borders can either by defined by interior or exterior demands.

To arrange the objects, the ship is presented as shown in Figure 7 with 0 for empty positions and
non - zero for full cells. A deterministic approach is then used to position the objects. This is
done by searching a vector for spots with the required number of zeros. If the object covers
multiple cells in height, a vertical summation over rows covering the height of the object yields
the required vector with cells.

17

Functional space allocation is done on a two-dimensional x-z plane inboard profile grid, with x
positive towards the bow and z positive up from the keel. Spaces are all rectangular with fixed
dimensions. Space height may exceed one deck. Location may also be fixed at the beginning of
the algorithm. Available space is enclosed by a generic hull form that could be adjusted slightly to
satisfy requirements; the upper envelope is unbounded [Brathaug, 2008].

1 I 0 0 0 0 [1 1 1] 0 E]

o 0 I'T‘ 1170 0 0 0 0 0

‘l 0 ‘ 0 0 0 [1 1 'Il 0 E 0

0 . 0.11 1 I 0 0 0 0 o 0 E

&% l o o o O‘IT 1 1 I 0 [3 0

0 A 0 I'l ‘l 0 0 o o 0 0 E

1lo 0 0 0 [+ 1 1 l) D)
'1 1,‘.J»ov 0 0 0) 0 II,

Figure 8: Positioning space with filled and empty cells

Four objective functions are used to optimize the designs based on genetic algorithm. These
objective functions are: minimize total overlap, minimize center of gravity, minimize total void

space and minimize onboard logistics.

Parameter space (side—view arrangement)

Objective space

500 -

20 40 60 80 100 120
Total internal void space (—)

Objective space

Total horfzontal logisticd effort (-)

o

Deck number(-)

Total vertical bogbtical effort (-
|
|

20 40 60 80 100 120
Total internal void space (—)

Objective space

o

40 50 &0 70 80 90 100 o S00 1000 1500
Longitudinal position (m) Total horizontal logistical effort (—)

Totalvertical logistical effort (-)
|
o

Figure 9: Feasible ship design using polygons

18

The primary criticism for this method is the representation of the design in 2D space where the
objects are assumed to stretch through the whole breadth of the vessel.

3.8.3 Intelligent ship arrangements

Nick [2008] presented a research work that focused on arranging spaces such as galley, storage
rooms, crew accommodation etc. onboard a frigate. This project was intended for naval
application only. A fixed envelope, which is subdivided by decks and bulkheads, is created
beforehand and arrangement takes place inside it. Some part of the ship that contains weapons

and sensors as well as propulsion and auxiliary systems are excluded from the arrangement

process.
Subadivision
. -
A “zone-deck” system is used where spaces G 6 - 2 - 1
o . 9| 5 4
are arranged inside these in a coherent
" o 131 10| 6 2 o
layout to ensure sufficient space is available E 7
and access to a network of passageways 16] 14] 11 S| 1z =
and staircases is provided. Fuzzy 1715012 8] 4 '
stem bow

optimization method is employed as the
. . Figure 10: Ship inboard profile (zone-deck system)
search algorithm to find out the best
design, which satisfies design and cost

constraints.

The key criticism of this approach is the limited scope of application that excludes other types of
vessels except naval vessels. The strict size
and shape of envelope that cannot be
varied for different cases is another
disadvantage of it. The use of largely pre-
defined passageways and staircases and the
neglect of changes in center of gravity
resulting from a different arrangement of
spaces are also arguable characteristics of
this approach [van Qers, 2011].

Figure 11: Arrangement of spaces (adjacencies and

separation)

19

4. Core challenges in developing a design
process for 0SV

Designing accommodation areas in the modular way is a complex task. It has many issues to be
resolved. Based on literature review and discussions with experienced designers in this field, a list
of possible hurdles is summarized here.

4.1. Conventional thinking

Like other sectors of shipbuilding industry, offshore shipbuilding is a conventional one as well.
Here, people tend to stick to the old norms and techniques of designing and buildings vessels.
Since this approach has been working for them for ages, they do not want to change the proven
formula and try a completely new approach. Another facade of the same problem is the practice
of expressing the design requirements in engineering description rather than functional
attributes. To adopt modular thinking, most of the approaches use some kind of functional
structure where the constituent parts of the product are characterized by the functions
performed. Here, various functions are identified and grouped to derive the necessary modules
which can be functionally independent. In offshore shipbuilding this approach has not been used
much. The traditional design spiral for satisfying the design requirements is the widely followed
method in this industry. Despite clear unease about the descriptive adequacy (e.g. should it spiral
inward or outward, the implied fixed sequence, how are feedback and new inputs or processes
shown), naval architects have found it useful, if only to indicate the iterative nature of the design
process and the consequent dependence of each downstream ‘spoke' on its predecessors
[Andrews et al., 1998].

mission : . Qhi H :
requirements Figure 12: Ship design spiral
a4 cost

proportions and C
estimates

preliminary powering |

[Image: Larsson et al.
Principles of yacht design,
3rd edition]

lines and

body plan ™ damaged

~ stability

hull |
form)
hydrostatics . gpaclti:s '
and bon- _ntr:.:n
| jean curves ls':al;:ility
light shi
floodable length _ - vl\gight P
and freedboard estimate

arrangements
(hull and
machinery)

structure

Key:
concept design phase contract design phase 20

4.2. Lack of structured approach

There is currently no precise assessment of arrangements. They are typically generated by naval
architects with years of experience dictating what works. Rules and criteria for these ad-hoc
methods are documented, but they do not include all of the consideration needed for a strong
arrangements solution. General arrangements remain very much an art [Nick, 2008].
Implementing a structured approach with modular product platform will radically change this
long practiced way of thinking and substitute it with a modern and holistic process for designing

vessels.

4.3. Lack of evident success in shipbuilding
One of the main criticisms of the modularity practice to date is the narrowness of the domain.
According to Kusiak, this can be largely attributed to,
* Poor understanding of the modularity issue;
* Lack of theory and tools for the definition of modules from a broad perspective; and
* Some designers’ skepticism of modularity’s advantages because nobody has been able to
demonstrate its benefits to them.

Product
UNREALIZED Variety
POTENTIAL OF)
MODULARITY

industry

Product life cycle

Time

Current
modularity
ractice
P Technology
Variety

Figure 13: Unrealized potential of modularity (Kusiak, 2002)

21

The author has also demonstrated the potential of modularity by the above illustration. Here, the
four white quadrants spreading across the product life-cycle axis and the product
variety/technology axis represent the unrealized potential of modularity. To fully realize its
potential, modularity must be redefined by enlarging the domain of products, encompassing
different processes and technologies, incorporating the product life cycle cost, and increasing
corporate products by improving the quality of the modules formed [Kusiak 2002].

As modular building is new to offshore shipbuilding, there are no generally accepted standards
on module size, dimensions and build method. Offshore vessels are being built in different
nations now a day such as Norway, Brazil, Vietham, China, and Korea to name a few. It is difficult
to reach specific standards when the design is being developed in a country whereas the actual

vessel is being built in another.

4.4. Product platform and mix

Modular product platform consists of standardized modules that can be grouped together to
derive different end products. Today’s offshore shipbuilding industry follows the integral product
platform approach. Introducing a modular platform will have some serious hurdles to overcome

here.

Firstly, the level of standardization is an important issue. Since offshore shipbuilding is more of a
customized practice than a rule-based standard affair, standardized components are a rarity in
most cases. In order to implement modular architecture, whole product platform has to be
reevaluated and products have to be identified which can be standardized based on system
constraints and management decisions. Modular construction enables ‘standardized diversity’ by

using different combinations of standard components [Stoll, 1986].

Secondly, introducing some standardized modules would be just part of the solution. Potential
customers will always have some particular choices regarding the design in their mind and the
product platform must have the flexibility to accommodate these extra specifications. The
modules have to be routinely customized adding more custom features, components or finishes
and other technological advancements. So, there are two opposing forces here; one to
standardize everything and the other to limit the standardization and make room for

22

modifications according to customer choice. This is a very important issue when developing
modular product platform and a fine balance has to be reached which will result in a sound

modular architecture with enough room for designer modification.

4.5. Mode of production

Typically in the integral approach of vessel design and construction, the accommodation block
including the cabins and other constituent parts are erected and assembled in the shipyard (on-
site production). On the contrary, if modular building approach is followed, the cabins will be
built in the dedicated factory/yard for module building (factory production). The workflow for
production will be different according to the mode or place for production.

Factory production might require new material, equipment or system that are engineered
specifically for production inside a factory/yard. Instead of the fixed position layout used on the
construction site, modular manufacturers use product layouts - typically progressive assembly
flow lines [Mullens, 2004]. Manpower requirements vary widely from module to module due to
process randomness and product mix. For example, a module with no bathroom will require no
cabinet installation, while a double crew module may have added requirements of office

cabinets/cloth cabinets to install.

4.6. Structural issues

Modules are functionally independent entities that are placed onboard the vessel on designated
areas to perform specific functions. To build the accommodation block in modular way, the
vessel must have special structural arrangement that can support these modules. Many of the
internal functions a module performs have to be connected to external support system or main
line transmissions or piping systems for proper functioning. To facilitate these connections, steel

structure of the vessel might have to be redesigned and special features be added.

23

=

==

| I i R —

I

DECK TRANSVER
TRIPPING BRACKET PILLAR

DECK LONGITUDINAL
SIDE LONGITUDINAL ; I

Figure 14: Structural elements in cabin area

CABLING AND PIPING
SERVICE TRIANGLE

Figure 15: Modules and ship structure

[Image courtesy: Kai Levander, STX Europe]

24

In this picture, it can be noticed that the transverse girders are located along the edges of the
modules and the cabling and piping arrangement is done in a special separate system. This kind

of arrangement can demand special features on vessel structure.

4.7. Limitations on maximum module size

When a factory production system is followed for modular construction, the modules have to be
transported from the factory to the assembly shipyard. Usually these are transported on
trailers/lorries by roads. Available land connection is an important factor here to be taken into
account when designing the modules. Getting finished modules to the assembly site without
snagging power lines or having to negotiate too many hairpin curves are all crucial here to have

an efficient transportation policy.

If the roads are narrow or there is strict limitation on cargo weights carried by the vehicles, then
the maximum size of the modules have to be restricted. Typically the modules for cruise ships are
dimensioned at 20 m? or below because of these considerations [Kai Levander]. The size of a
module is often compromised due to several factors, e.g., the panel size, performance

requirements, cost, or testability [Huang, 2000].

Size is important from testing purposes as well (testability). If the module is so large that it
cannot be properly tested before assembly, then it is not very practical to have them constructed
without performing necessary testing. Depending on the available testing facilities in the factory,
the optimum size of the module has to be adjusted.

4.8. Concurrent engineering

Decomposition, standardization, and exchangeability are the attributes of a modular product.
One of the vital advantages of adopting modular thinking is that if necessary, the modules can be
updated or replaced when the vessel is in service. Life cycle of a module is a cardinal issue when

designing the whole product portfolio.

Since every module is a separate independent entity, the development process for them can run
in parallel; and hence comes the idea of concurrent engineering. Concurrent engineering is a
work methodology based on the parallelization of tasks (i.e. performing tasks concurrently). It

refers to an approach used in product development in which functions of design engineering,

25

manufacturing engineering and other functions are integrated to reduce the elapsed time
required to bring a new product to the market.

It ensures that all elements of a product’s life-cycle, from functionality, producibility, assembly,
testability, maintenance issues, environmental impact and finally disposal and recycling are taken
into careful consideration in the early design phases. This includes establishing user
requirements, propagating early conceptual designs, running computational models, creating
physical prototypes and eventually manufacturing the product [Kusiak, 1992].

Requirements : g
/.2 - Requirements Analysis & Design
Design ‘ Implementation
)
/ % Planning
Implementation VS o . Deployment
j ' Initial .
v Planning .
Verification —
\
j Evaluation <4l
esting
Maintenance

Figure 16: Sequential Development Method vs. Integrated Development Method

Since the offshore shipbuilding industry is a traditional one, this type of unconventional thinking
could prove as difficult to implement. Concurrent engineering not only decreases the time for
development of the modules, but it also ensures that quality, usability and other aspects of the
product are getting the required attention in the development phase.

4.9. Scaling issues

Scaling is an essential factor when it comes to modularization. The modules have to be scaled
depending on the ship type and space constraints. Scaling can be linear or ratio based where the
ratio satisfies some length-width dimensional relation.

It can also be single directional or multi-directional. A multi directional scaling will

increase/decrease the dimensions on both sides of the module (i.e. rectangular module). But a
one directional scaling policy will scale the module in one specified direction only. This is

26

particularly important due to the curvature of the hull of the vessel. In most of the cases, the
sideline of the vessel is curved and modules to be placed alongside this curved line will have to
be scaled gradually to use the extra space, otherwise the space on sides will be of no use. This
means the modules can be no longer rectangular; rather they would have one curved edge. Then
again, the modules on the middle of the deck do not have this kind of restriction and can be
scaled on both sides. So, modules on different areas may have to be scaled in different ways
[Kawser, 2011].

:l-_im”m.’__'fD‘llj:“ u \['-

==

I

PR

1 CREW || 1k
. !

|

f

Figure 17: Scaling possibilities

4.10. Different arrangement rationale

Modules can be arranged based on different design perspectives. The choice on arrangement can
pose restrictions to the overall design scope of the accommodation block. Some of them are
discussed below:

¢ Standard arrangement: The floor plan for each floor can be standardized so that the crew
and passengers have the sense of familiarity and ease when moving around the vessel
performing their tasks. This is particularly important for larger construction vessels with
crew of more than 100 people. Same setup on every deck level will make the crew feel

comfortable offshore [Veronica Rode].

27

Ease of evacuation: The arrangement can also be designed to aid quick evacuation in case
of emergency like fire breakout etc. For this, the arrangement should be straightforward
with ample space for corridors. The corridors should directly lead to exits without any
bends or dead end.

Space hierarchy: Usually higher ranked officers’ cabins are placed on the topmost deck
(one level below the bridge deck). Different types of modules can be developed for
different ranks of crew and they can be grouped together according to the deck plan. If
the vessel is large, then this method can reduce the complexity of dealing with so many
modules by lowering the effective number of individual modules.

4.11. Limitations on crew module arrangement

Since crew comfort is one of the key issues when designing offshore vessels, the arrangement for

their accommodation deserves more attention these days. Owners are demanding more and

more features for the accommodation block where safety and comfort go hand in hand.

Crew modules should be arranged such that each crewmember has own window view
from his/her cabin [Veronica Rode]. This can only be possible if all the modules are placed
along the sides of the vessel. But in many cases, offshore vessels have a large number of
crew and some of the crew cabins have to be placed in the center of the vessel with no
window view to outside. This is particularly true for larger construction vessels and anchor
handlers. Solving this issue is difficult because of space limitation of vessels and the
presence of other modules around the crew modules.

The layout of decks is not standardized for offshore vessels. Fitting modules of the same
fixed size on each deck is difficult when the layout differs on different deck levels. The

varying shape of the superstructure also plays a role here in this regard.

4.12. Clustering

Modules of similar nature can be clustered to form a ‘grand module block’ that can be placed

directly on designated areas of the deck. When designing a large vessel with lots of crew cabins,

clustering can come particularly handy to limit the design variables to a minimum. This will make

28

the arrangement easier for the system. To implement this, the modules have to be designed such
that they can be joined together in the factory or the yard before fitting them onboard.

4.13. Ship: a deeply integrated system

Unlike other industrial applications of modularization, modular shipbuilding has to overcome a
rather herculean obstacle of dividing a system which is too integrated as a whole. An offshore
vessel has numerous systems that are tightly integrated to one another so that the vessel
performs as intended. To implement modularization, these systems have to be distinguished and
separated based on their underlying functions. Here comes the problem of defining the
boundaries of these systems and adequately separate them so that they can function individually
without much interaction with adjacent systems [Erikstad, 2010].

For example, an offshore construction vessel can have an offshore crane module onboard to
perform lifting and hauling operation offshore. This crane module can be thought of as a
separate system that can be replaced or updated without interfering with other modules. But in
reality, any alteration of this crane module would make huge impact to other modules. It would
alter the total stability and structural balance of the vessel. It would necessitate changes in crane
foundation module, power module, other connected support modules and most importantly the
steel structure (hull grand modules). Changing the parameters of a module on a vessel can cause
ripple effect to the design and many other modules would have to be redesigned to

accommodate this change.

29

5. Modularization strategy

5.1 Background

In order to develop a product platform with modular products, key product architecture
decisions have to be made at the very early stages of product development. These decisions are
linked to specific R&D issues, including the ease of the product change, division between internal
and external development resources, ability to achieve certain types of technical product
performance, and the way product development is managed and organized [Ulrich, 1995].

One-to-one mapping from functional elements in function structure to physical components is
what makes modular architecture different from integral product architecture. Suitability of
product architecture to different products depends upon many factors where type of product
plays a vital role. There is no perfectly suitable architecture for products because design and
manufacturing of a product can be done in different ways with varied scope of performance
goals. According to Ulrich (1995), “In most cases the choice will not be a completely modular or
completely integral architecture, but rather will be focused on which functional elements should
be treated in a modular way and which should be treated in an integral way”.

To examine the suitability of these product platforms for OSV accommodation block design, the
elements of design have to be identified and the function structures for these elements have to
be mapped. It can be done in a lot of ways as described by the different modular design
methodologies that have been listed and discussed in the previous chapter. Here, one of the
major modular methodologies, the Modular Function Deployment (MFD™) method will be
applied to offshore vessel’s accommodation block design.

5.2 Modular Function Deployment (MFD™)

Modular Function Deployment developed by Ericsson and Erixon is based on quality function
deployment (QFD) analogy for finding the optimal modular product design considering the
company’s specific needs. Applications of MFD™ are found in a wide range of manufacturing
companies in widely differing industries. It has been applied in modularization projects for cars,
trucks, vacuum cleaners, staplers, grinding machines, servo drives, washing machines and many

other products.

30

This is a 5-step procedure namely:

1. Define customer requirements
2. Select technical solutions

3. Generate module concept

4. Evaluate module concept

5. Optimize modules

These steps are already discussed in chapter 3. Here, these will be applied for determining the

optimum modules for accommodation block design.

There can be different types of cabins/rooms in an offshore vessel depending on the type of
service it is intended to perform. Hence, the accommodation block of a construction vessel will
differ quite substantially than that of a platform supply vessel. The following table categorically
shows the typical cabins/spaces of the accommodation block of an offshore vessel. The
categorization here follows the System Based Ship Design (SBSD) approach developed by Kai
Levander [Kawser, 2011].

e Crew single
Crew e Crew double

accommodation e Captain class suite
e Officer class suite

e Dayroom
e Ship lounge
e Internet room

Common areas * Mess

e Gymnasium

e Wardrobe

e Public WC
aterlng J Maln' galley

¢ Provision stores
Spaces e Incinerator room

31

Client e Client/Owner’s suite (Officer class)

accommodation e Client/Owner’s office

¢ Conference rooms

Ship service « Ship offices

areas ¢ [SPC office
» Hospital

e Linen store
e Ship laundry

Hotel service « Storage spaces

¢ Cleaning lockers
e Unpacking area

Construction e Technical room
related spaces in

e Duty mess
e Reception office

accommodation « Various management offices

* Project coordination offices

Table 2: List of spaces in accommodation block

The five steps of MFD™ system will be discussed with regards to the accommodation block.

5.2.1. Define customer requirements

In any design practice, it is vital to derive the appropriate design requirements from the customer

needs. For accommodation block, typical customer (designer) requirements can be summarized

as follows:

High quality

Easy to set up

Flexible in terms of ship types

Easy maintenance

Adaptable to satisfy owner’s requirements
Transportable

Long service life

Low price

32

From these customer requirements, the corresponding product attributes or properties are
derived. Product properties for the accommodation block might be:

* Size
* Weight
e Material

* Connector requirements (interfaces)

* Maintenance interval

* Comfort level

* Flexibility
The relations between customer demands and product properties are analyzed in the following
QFD matrix. The relation is graded with a point system where a strong relation is equal to 9
points, a medium relation 3 points and a weak relation 1 point. The grade is then multiplied with
the customer demand weight before it is summarized vertically. The analysis of different
customer segments (in this case designers/firms with different business goals) will yield varying
design requirements. This will consequently lead to differing target values for the corresponding
product properties [Ericsson et al. 1999].

Product
attributes
£ . | E
2 o g]
S = < a
= —) 1] - >
- © = © 5] 5 g E
Customer) 3) § 2 c < 2
, v |8 @ | & S s E |3 E
requirements | = S n | 3 S] S] T a
High quality 5 3 1 3 7
Easy to setup 4 1 1 5
Flexible 5 9 9 18
Easy 3 3 9 12
maintenance
Adaptable 5 3 1 4
Transportable | 3 9 9 3 1 22
Long service| 3 3 3
life
Low price 2 3 1 4
Sum | X 33 40 | 13 17 60 41 15 65

33

Table 3: QFD matrix for accommodation block

5.2.2. Select technical solutions

Here, the functional analysis of the system has to be carried out. The main objective is to map all
functions, explain them and put them in their context. The MFD™ approach is suitable for
mechanical systems whereas the accommodation block is a complex web of various systems such
as electrical, mechanical, thermal and so on. Another important fact here is that the
cabins/spaces are the utmost focus for modularization; not the internal systems themselves.
Moreover, all these systems are largely separated from each other so drawing a functional
mapping diagram is not going to be too helpful for this process.

Since the unit of design here can be identified as various cabins/rooms/spaces in the
accommodation block of offshore vessels, the technical solutions (module candidates) can be
thought of comprised of these cabins only. In other words, the preliminary technical solutions are
crew single module, crew double module, officer’s module, captain class module, office module,
store module and so on. Although different types of office spaces and stores can have diverse
sizes and dimensions; for a modular product platform, it will be beneficial to have a standard
office module (or a store module in case of stores) which is scalable to comply with customer
requirements. This assumption is reflected in the following step where all the office spaces and

storage spaces are considered as a single technical solution.

5.2.3. Generate module concept

Module indication matrix (MIM) is used here to assess each technical solution against the
modularity drivers. The modularity drivers are already shown in chapter 1. Here they will be used
to evaluate which technical solutions are the most suitable ones for further investigation. Like
the QFD in step 1, module candidates will be scored on a scale of 1 to 9 where 9 denotes strong

module driver, 3 being medium modular driver and 1 being weak module driver.

34

Technical
Solutions w8
g12|s | .
Q 2 é (.:/’) o (2]) E. &
25222 |%(5|z 2182 2|8 <
e S © 0 = © e i) 3 17 r:“s L |e S
= 2 o © q6 e} S | © s c | © & | o 5
o s | £ b7 o | O ()] al o ‘B [t
5 o 8 8 g 0w | O 5 = I |
o M f- =~ &
(@) © sl
Module S5
drivers
Carryover @ @ O O O R O . -
Develop- Technology :
ment and | €velution
design Planned
design O Ol e o
changes
Different
O® 1
Variance | specification
Styling olo -
Common unit
Manufac- ® ®0 000 o 33
turing Process/Org. 0
Separate
Quality P - O 0 0l o o
testability
Purchase | Supplier avail. »
Service/main. | ®| ®| ®| ®| O| O . p
After Upgrading o]Ke) -
sales
Recycling el ol o | o p
Total 3
9l6|0|0|0|7|1|0]0
71612

®-= strong module driver (9 points); O-=medium module driver (3 points); ®*=weak module

driver (1 point)

Table 4: Module Indication Matrix (MIM) for module candidates for accommodation block

35

One thing to be noted here is that Ericsson and Erixon established the module drivers for this
procedure with mechanical systems in mind. A machine or an engine has smaller constituent
parts for which these module drivers can be easily applied and investigated for possible modular
solutions. In this case for offshore accommodation, some of the module drivers such as supplier
availability, process/organization and technology evolution do not hold much relevance because
of the proprietary nature of this modularization project. Another reason is that the module
candidates are an almost homogeneous mixture of cabins that are not so different unlike the

different parts in a machine.

Recycling |

Upgrading o

Service/maintenance : | | | | . . .

Supplier availability
Separate testability : :

Process/org.

Common unit : : : : : :

Styling o

Different specification : :

Planned design changes [
Technology evolution

Carryover : : : : : :

0 5 10 15 20 25 30 35 40 45 50

Figure 18: Module driver profile for accommodation block design

From the MIM, the module driver profile for the accommodation block has been derived. The
figure shows large totals for service/maintenance, common unit and carryover. This signifies a
product that will not experience much technical development or drastic changes in specification;
rather emphasizes prolonged service life and a sense of maturity in terms of an industrial

product.

Depending on the ship type, the number of parts (cabins) to be assembled for the
accommodation block is estimated to be around 20~30. This implies the total different types of
cabins, not the total number of cabins in an offshore vessel. According to the MFD™ approach,
the ideal number of module can be determined by taking the nearest square root of the total

36

number of parts. So, in this case, the ideal number can be in a range of 4-5. The five technical
solutions having the highest module driver scores are:

* Single crew

* Double crew

* Captain class suite

* Officer class suite

¢ Office spaces

Next, grouping of technical solutions with module candidates is performed. Grouping is an
essential part of the MFD™ approach since it dictates which constituent parts will be put
together so that sufficient autonomy is maintained for individual modules. Unlike a mechanical
system, these technical solutions are completely separate entities and cannot be grouped to
form a larger module. However, it might be possible to cluster similar type of modules to form a
grand block of modules; which will in essence decrease design variables and facilitate easier
installation of the modules. But MFD™ approach does not specify any guideline for this kind of
clustering. Nevertheless clustering of similar modules can be a way of thinking especially for
larger offshore vessels where there are too many modules to keep track of.

5.2.4. Evaluate module concept

Once a modular concept has been generated, it is most important to determine the interfaces
between the modules since fixed interfaces are a condition for successful parallel activities
[Ericsson et al. 1999]. For the accommodation block, interfaces can be easily standardized across
the platform since the modules are homogeneous in nature. Some interfaces can be standardized
as:

* Geometric interface: This will dictate how the module can be placed on the decks of
offshore vessels. Special structures may be required for supporting the modules. Having a
standardized geometric interface will make it easier to apply the same module over a
range of vessels.

* Energy-transmission interface: The modules have to be powered by central generator-
switchboard system to provide electricity to inside facilities. This can be standardized for
all modules of different types, as transmission lines are usually the same for a vessel.

* HVAC interface: To connect the module with central HVAC system, an interface is

required.

37

* Water and sewage: For supplying/withdrawing water to/from the wash cabinets of the

modules, a water and sewage interface have to be placed.

5.2.5. Optimize modules

Here, module specification is created. After completing the module specification form, detailed
design work for each module can begin. This basically implies internal design of the modules.
Since the focus of this thesis is the modules themselves, not the internal design/arrangement of
them and the fact that some of the modules are already fixed to STX specifications (will be
clarified in the next chapter), this step will be left out in this regard.

Nevertheless, from this procedure the outcome is that the following spaces should be
strategically modularized:

* Single crew

* Double crew

* Captain class suite

e Officer class suite

The MIM also implies that other cabins/spaces (candidates for modularization) should not be
modularized apart from the aforementioned four categories of spaces because of the nearest
square root rule. For a fitting production strategy, not all the spaces have to be modularized;
rather there should be a balance of modular and non-modular scope of construction. The idea
here is to identify those, which are the most appropriate for modular building. Since the weights
assigned to different criteria for evaluating the technical solutions are subjective, the method can
generate different results according to the design rationale/perspective of managerial body. For
the next phase of this thesis, said spaces will be treated as pre-defined modules for subsequent

application on different types of vessels.

38

6. Decision support system

The term “Decision Support” seems rather intuitive and simple; it is in fact very loosely defined. It
means different things to different people and in different contexts. Also, its meaning has shifted
during the recent history [Bohanec, 2003].

In simple words,” DS means helping you to make good decisions by understanding the effects of
all the alternatives. It allows you to answer the question, ‘What will happen if...?", for a whole
range of scenarios.” [SRI-Online]

Decision support frameworks are developed to aid the decision making process for business or
organizational activities. These frameworks serve the management, operations, and planning
levels of an organization and help to make decisions, which may be rapidly changing and not
easily specified in advance. Usually, support systems are computer based information systems
which gathers information from previous projects and/or other inputs and this information is
presented in models visualized in a user interface so that the user can adjust the input data to
reflect the current needs and develop a suitable solution for the problem. DSS support, rather
than replace, managerial judgment. This kind of support system is intended to improve the
design process through the use of computers having direct access to databases and reduction of
repetitive work on the designer's part. Design can be captured as a decision-making activity
where the principal role of the designer is to make decisions based on multilevel information,
hard and soft information, multiple measures of merit, non-singular solutions, and "satisficing"
but not necessarily optimum choices [McClure, 1990]. According to Mistree, “design involves a
series of decisions some of which may be made sequentially and others that must be made
concurrently “[Mistree et al. 1990].

Designing ships involves processing a lot of design requirements while considering an overflow of
guidelines, regulations, restrictions and so on. The owner has to make a lot of design choices
when building a new vessel. How to bring all these factors together and to make informed
decisions on them is where the designer comes in. By developing a framework to tackle all these
issues, the designer can provide the owner with a logical step-by-step breakdown of every
decision in such a way that each effect can be quantified, thus affording the owner the resource
of being able to quickly compare alternatives that would have not been readily available to
him/her in the past [Katsoufis, 2006].

39

In essence, a decision support system has three components:
1. Knowledge-base
2. Model
3. User interface

There are different kinds of knowledge bases available for different applications such as rule-,
model- or case-based system. Particularly for this discussion, the most suitable knowledge base
would be the rule-based one and to some extent the model-based systems. Rule based approach
follows the notion of “if condition then consequence”. At each iteration/step, the system
examines the entire set of rules and considers only the set of rules that can be executed next
[Blecker et al. 2004]. In accommodation block designing, rules can incorporate important
knowledge of constraints like compatibilities between different types of spaces (such as crew
accommodation and galley), strategic decision (such as hierarchy of space allocation, captain’s
cabin should be close to the bridge), classification regulations (such as minimum amount of space
for different cabins) etc. These factors can also be associated with model-based approach
specially the logic based configuration system. Here, logics are tools for representation and
reasoning with knowledge. These logics will bridge the underlying rules and constraints to
complex concepts or alternative ideas for solution [Kawser, 2011].

6.1 Module hierarchy

Common modules
(C™m)

Fixed modules
(FM)

Accommodation modules
(AM)

Mess

Conference room
Ship offices
Gymnasium
Wardrobe

Stores

Dayroom

Galley

Provision spaces

Public WC
Cleaning locker
Storage space
Staircase

Engine casing

Single crew

Double crew
Officer’s cabin
Captain’s cabin
Other ranked cabins

Table 5: Module hierarchy
In this research work, the spaces onboard offshore vessels are classified into three classes,

namely common, fixed and accommodation modules.

40

From the MFD™ approach (Chapter 5), it has been seen that crew cabins (single and double) and
captain/officer class cabins should be modularized for a fitting modularization strategy for
offshore vessels. Here, these cabins are labeled as accommodation modules, which will be
treated as fixed dimensioned modules by the system. Next, the fixed modules denote the spaces,
which are more or less locked in terms of inside area. For example, areas for public WCs or
cleaning lockers do not generally depend on the number of crew or the size of the vessel. Rather
they are placed on individual decks as common facilities. From the data gathered in SBSD Ship-4C
project (summer internship) [Kawser, 2011], it is apparent that these cabins contain almost the
same amount of space in a broad range of vessel. Hence they can be pre-fabricated as complete
modules ready to be placed onboard vessels without the need of scaling.

Lastly, the common modules are not modules per se. Since these spaces depend on the number
of crew and many other factors such as location (deck, level), mission requirements etc., they
cannot be modularized like the accommodation or fixed modules. The fact that these spaces can
be too large to modularize them is another argument to keep them non-standardized. The
output of MFD™ method also suggests that these spaces should be left as-is. Although, data
from SBSD project suggests some possible trend for designing these spaces, they are better
suited for designer intervention. Nevertheless, the following DSS will calculate the required area
for these spaces based on crew size and available data from the vessel database established in
the SBSD project. It will interpolate/extrapolate relevant data of previously built vessels and scale

it as necessary.

6.2 Base structure
The software will itself be of modular nature (software modules can be added as per users
preference).

* Class regulations (different modules /libraries for different classification society)

* Vessel database module or Fixed value chart (the system can consult the vessel database
if added to the platform or it can obtain values from a fixed chart for space allocation just
like fixed modules)

* Visualization module

* Arrangement template module (arrangement of the modules will be done based on some

specific templates. Extra templates can be added for different types of vessels)

STX specification for crew modules:

41

* Single crew module: 9 m? (ballpark figure)
* Double crew module: 13 m? (ballpark figure)

Officers cabin specification:
Officers’ cabin spaces are fixed based on their ranks.

* Module size for Captain’s cabin (rank 1): Single crew x 3
* Module size for Officers cabin (rank 2): Single crew x 2
* Module size for other ranked cabin (rank 3): Double crew x 1

It means that these modules will be manufactured as standardized double/triple sized

single/double crew module. Here, the size of the module will be kept open as long as the user

opts for any integer derivative of a single/double crew module for the officer class modules

(more on this in Chapter 7). The argument behind this kind of arrangement is that it will be easier

to handle sizing and scaling of the larger modules if they are sourced from the same baseline

dimensions (in this case the single/double crew module).

6.3 Required input
High-level user input:
* Type of vessel (AHTS, OSCV, PSV, Seismic etc.)

* Selection of classification rules (DNV, BV, LR, GL etc.)

Vessel specification:

* Total available area for accommodation block

* Number of deck

* Maximum allowable size of the modules
Accommodation specification:

* Number of crew

* Number of different ranks other than crew

* Number of personnel in each rank
Arrangement options:

* Selection of common modules

* Number and type of fixed modules

* Special arrangement requirements by the owner

* Selection of arrangement template

42

6.4 Templates

Arrangement of modules will be done according to standard templates. These templates will be
implemented in the system as library. There will be different types of templates depending on
the deck level. For example, higher deck levels will have templates specifically designed for
accommodating rank officers. On the other hand, lower deck levels will have templates designed
mostly for crew accommodation. The designer is free to pick different templates for different
deck levels, or he/she can also use the same template for all deck levels. For designing PSVs, this
can come in handy because of lack of space and the standardized setup for almost all the decks.

The three major types of modules will have their designated location in each of these templates.
Some of the templates may not contain modules from three major categories. For instance, a
template for officer’'s deck may not contain any common module at all. The templates will be
based on standard grid system to facilitate the application on different sizes of decks. These can
also be updated or modified by the designer if the need arises. Since this will be accomplished in

a library format, more templates can be added later by the designer’s choice.

Some example templates can be:

Sub grid 1 (Officers modules)

Sub grid 3 (common modules)

Sub grid 2 (Officers modules)

Figure 19: A possible arrangement template for an officer’s deck

43

T

Sub grid 1 (cre

-

-
P

Figure 20: A possible arrangement template for a crew deck

6.5 Major assumptions

Total available area for accommodation block is known which will be used as an input for
this DSF. This number can be derived from data of previous projects or similar type of
vessel. It can also be an expert opinion of the designer of the vessel or an educated guess
that can be modified later on the DSF if necessary.

The crew modules are pre-defined and pre-fabricated. They can be scaled in one direction
only (STX specification). Apart from the crew modules, every other module can be freely
scalable.

Fixed modules are totally fixed in dimensions and area. Although these modules can be
treated as common modules, the initial setup of the system dictates that the dimensions
of these modules will be locked to specific values.

Decks are rectangular and so are the modules. Since, the system will use rectangular grids
for calculation and allocation of area for modules, the decks and the modules have to be
rectangular in design to complement this system.

Space allocation is based on minimum space requirement criteria, which can be different
for different classification societies or in special cases dependent on owner’s
specifications.

Templates are available for overall arrangement of modules on decks. These templates
can be modified/updated by the designer. Additional templates can be incorporated into
the system if necessary for example when designing a novel vessel.

44

6.6 Summarized flow

Rulesand

Sart

Vessel
Define Base Sructure

regulations

> database

v

Take owner’sinput

Ceneral and specificrequirements

v
v v

No

Suggest suitable Take owner’stemplate
template for the decks selection from library i
| I
v
Superimpose the template on the grid
like deck

v

Determine regionsin the deck for
module placement

Il

Set dimensions for the modules

v

Race the staircase in each deck

v

Place high ranks officer’s
modules according to hierarchy

v

Find the number of single and double
crew module and place them

v

Race common and fixed modules
following the constraints.

v

Visualize the layout of the
decks

Are all the

modules placed?

Scale the modules

{Get owner'sfeedback)

Figure 21: The DSS

45

6.7 DSS: The steps

The notations used in the system are summarized in the following table:

Number of decks NDK
Number of different rank NR
Number of personnel in a rank NP
Number of crew NC

Length of a deck in meter L

Width of a deck in meter w

Length of a deck in the grid M
N
D
C

Width of a deck in the grid
Deck [M][N]
Cumulative Sum [M][N]

Single crew module SC
Double crew module DC
Officer’s module oM
Common module CM
Fixed module FM
Staircase ST
Current deck Cd
Number of modules placed in a deck Mp
Number of unplaced modules Mu
Number of single crew module NS
Number of double crew module ND

Table 6: Notations used in the decision support system

For the sake of simplicity and consistency, these notations will be used replacing the textual
expression of variables throughout the decision support framework as well as the examples and

case studies in the following sections of this thesis.

Different steps in the DSS will be elaborated in the next pages with necessary mathematical
formulations. Major actions in each of these steps will be summarized in separate flow charts for
specific steps. The whole system will then be exemplified with an illustrative example at the end
of the chapter.

46

6.7.1 User input phase

(Take owner's input>

= T

oV PSV
Biles andd No. of different ranks
regulations
y
No. of personnel in each rank
A
Selection of common and/ or
Vessel fixed modules
database

y

Soedial space requirement for the
module

y
Module placement options

!

No. of crew

Figure 22: User input phase

6.7.2 DSS initialization: Grid system for the decks

Assume every deck is a MXN grid, D where area of each cell = 0.25 m”. This is used for placing the
modules according to the template, user specification, and class regulations. The template is
logically superimposed on this. The areas that are already allocated can easily be identified in this
grid. Cell area can also be affixed to other values such as 0.5 m® or 1 m For this DSS, 0.25 m?
seems to be a good enough limit that should give acceptable results.

47

The following mathematical expressions can be used here:

* M=2xL, N=2xW

DeckN
Deck 2
Deck 1
1sqm
2X
Width
2 X Length
* D[m][n] = {0’ the cell is available for placing a module
M=, the cell is occupied by a module

* A module can be represented as a PXQ sub grid in D if P<M, Q<N.

* Cis used for checking availability of space before placing a module in a deck. This is
another grid similar to the grid D. For each deck, there is a C grid. In this grid the
cumulative sum of the values in D are stored. From the C values of upper left corner and
lower right corner, the current state of a sub grid can be checked; whether or not the sub
grid is available for placing a new module. C is updated each time a module is placed in or
removed from a Deck.

Clmln] = i Z DIxIy]

x=1y=1

48

For example, the availability of the sub grid (5, 4), (8, 7) can be checked as following:

0 N O U1l A W N RO
0 N O U1l A W N R, O

A4 x3anda 2 x 2 module is placed
in the deck Cumulative Sum for the deck

Let P = C[8][7] — C[4][7] — C[8][3] + C[4][3] = 16-11-8+6 = 3

So the sub grid is not available, it has 3 cells occupied. If P were 0, it would be available.
For any sub grid where (p, q) is upper left corner and (x, y) is lower right corner, x>=p, y>=q:
P=Clx]ly] = Clp — 11yl = Clx]lg — 1] + C[p — 1][q — 1]
0, the sub grid is available for placing a module of
= length(x —p + 1) and width (y —q + 1)
otherwise, the sub grid is occupied by a module

49

@itidizethe system)

h 4

e Define each deck asarectangular grid where its length and
width are proportional to the length and width of the dedk

e Assumethe modulesare sub grids (i.e. smaller rectangles) in
the deck grid

e Deck[X][y] =1 meansthat the (x, y) cell isoccupied by a
module, free otherwise.

v

Superimpose the template on the grid i.e. divide the deck grid in
to some regions where the modules can be placed

!

Initialize another deck like grid Cumulative Sum for tracgng how many
cells are occupied in any sub grid (p,), (X, y) in run time.

Figure 23: DSS initialization

6.7.3 Template selection
The designer can pick any suitable template from the template library for each deck. The system
can also suggest templates for decks based on user input.

For system supported template selection machine learning can be used. For this purpose, some
optimality criteria should be set like optimal space usage, symmetry etc. The vessel database can
be used to specify these criteria for existing ships. An artificial neural network can be designed
and trained with the ships’ design. For each template there is a scoring function by which the
best template can be determined. When the designer gives some input to the system, it will try
to find the best matching template from the database. It will generate more accurate results in

real time.

50

Template selection for
the dedks

‘ —ﬁ_ﬁ———hﬁ——& n
Quggest suitable template Let owner choose
according to input data from library

/\

- Use machine Rough estimation of
learning optimal template

v \
Define some criteria for Estimate total area
» optimality like efficient needed for placing the
space usage, symmetry etc modules

b

Train an artificial neural Estimate total usable
network with the existing areain the templates
vessel database.

et

Qutput the best fit template
from the library

/ Temtlate /

Figure 24: Template selection phase

Template
library »

oo

A 4

Another simple and straightforward solution can also be used for the selection. The system
calculates the area needed for all the modules. Then it estimates the usable area in each
template in the library for the given deck size. One easy and approximate way is to divide the
required area for each deck. Then the system will suggest the template whose area is slightly
greater than the needed area for each deck.

51

Template Suggestion

Calculate total area (TA) needed for all the modules

A 4

Distribute TAinto the decks according to deck size

A 4
In each deck, superimpose each template
and calculate usable area

!

For each deck find the template T which usable
areaisnearly equal to the required area.

v

SQuggest T

Figure 25: Template suggestion

Different decks can have different types of templates. Total area of D is divided into some smaller
grids according to this template. A template is basically a list of rectangles (sub grids) and
associated module names.

In this step possible sub grids for each module is determined according to the template, database
and other rules (Machine learning can be used for learning from database).

Sub grid Index of upper left corner | Index of lower right corner | Modules

1 (P1,q1) (x1,y1) SC,DC

2 (P2,92) (x2,y2) M1, M2

3 (p3, q3) (x3,y3) M3, M4, Ms
4

5 (P, ak) (Xk, Yi):

Table 7: Template information table

52

l.e. single and double crew modules can be placed inside the sub grid between (p1, 1) and (x4, y1),
modules M1, Mz can be placed between (p, g2) and (xz, y2) and so on.

There will be additional information like the corridor width, staircase position etc. as well.

Area for placing cabins . Cabin Width
[tairCase Area for common modules StairCasd/
/Entran\aw [| |Entrancc
Area for placing cabins
e J
L rrrrrrrrrrrrr e
HEEENEN HEEEEEEEN

Corridor

Figure 26: Template

In a template, a specific type of module can appear in more than one sub grid. If there is any
special owner’s specification or rules dictated by class regulations, then the presence of a module
can be restricted to one sub grid only.

6.7.4 Modaule specification
Attributes have to be defined for each module in terms of grid. In this step the placement of the
modules will be determined. Here, the limiting values for that module (dimensions) will also be
measured.
* Calculate area/dimension of the common and fixed modules from the database (using
machine learning, interpolation etc.) as per user input and rules.
* (Calculate length and width of the module

53

* Set maximum possible length and width
* Set minimum possible length and width

* Generate the list of possible dimensions for the module. Depending on overall size, a
module can be placed in different manner. For example: a 30 m> module can be placed as
5m x 6m that is as a 10 x 12 sub grid. Or it can also be placed as 3m x 10m, which will
result in a 6 x 20 sub grid. Again, it is also possible to make it like 2m x 15m i.e. 4 x 30 sub

grid.
Gat module saecifiwtiona

h 4
Set which modules are to be placed in which region in
the deck grid.

A 4
St dimension for the modulesi.e. minimum and
maximum limit of length, width, area etc.

Figure 27: Module specification

Next, the staircases are placed on each deck.
* Mark the area as occupied in D for the decks.
* Update CS for all decks.

6.7.5 Higher ranked officer’s module placement
The cabin modules will be placed in this phase. Since there are different types of modules

depending on ranks; the system will follow a rank-based order to allocate spaces for these
modules.

From the top most deck, it will start placing the modules according to the space hierarchy.
* SetCd=1,i.e. start from the top most deck.
* ForeachrankR, ISR <NR do
i. Set Mp=0. At the beginning no cabin module is placed in the deck.

54

ii. Set Mu = NP because for each officer in rank R, a module is needed.

iii. Select the sub grid S defined in the template for placing officers’ modules. There
can be multiple sub grids in a deck for placing the modules. We divide the sub grid
length to find how many modules can be placed in that sub grid. For simplicity we

assume that the width of the sub grid is equal to the width of the module.
| Length(S)/Length(OMg)|
Mu
It is possible to place k modules in sub grid S. Then place them consecutively and update

k= minimum{

D and C for the corresponding deck.
After placing k modules find the number of remaining modules and/or amount of
available space in sub grid S.
Length (S) = Length (S) — k x Length(OMg)
Update the number of placed and unplaced modules.
Mp =Mp +k
Mu = Mu - k
If there are some modules yet to be placed, i.e. Mu > 0 then select another sub grid
repeat the above steps.
If there is no more space in the current deck then select the next deck and repeat the

process.

55

Module placement
Staircase and officers’ modules

!

e Place the staircase first in each dedk according to
template spedification

e Markthe cells as occupied in deck grid

e Update cumulative sum for each deck

v

Sart placing high rank officers’ modules maintaining hierarchy

e St current deck =top most deck
e Setcurrent rank =rank 1

. e Divide the sub grid length by module length. Say the

e Select aregion (sub grid) in the deck.

Yes

result isk.

Place minimum (k, number of modulesleft) modulesin that sub grid

e Marksthe cells as occupied
e Update cumulative sum for future checking

Isany module yet to

be placed for current
rank?

Select next rank

Are all regions

used in current
deck?

Slect next deck

Figure 28: Flow chart for placing officer class modules

56

6.7.6 Determination of the number of single/double crew modules
Here, the system will calculate the number of single and double crew modules necessary to
accommodate the specified crew.

* For simplicity here we also assume that the width of the sub grid is equal to the width of
crew module. So the system adds the lengths of the sub grids available for placing crew
modules in the decks. If there are r sub grids available:

L =X5%=1 Length(Sy)

* Soroughly | L/Length(SC)[single crew module or | L/Length(DC)] double crew modules
can be placed in the sub grids. But it may not be possible to place a module if the space is
divided into different sub grids. So for safety, some area is subtracted from the total. For
r sub grids,

L=L-(r—1) x Length (DC)

* The system tries to place as much single crew module as possible. If it is not possible to
accommodate single modules for all crews, it tries to place double modules. The number
of double modules can be calculated from the following formula:

Length (DC) x ND + Length (SC) x (NC—2 x ND) =L

* If ND<O then it is not possible to allocate crew modules for given number of crews.

After determining the required number of single and double crew modules, they will be placed
on designated decks from top deck; the system will first place the single modules and then the
double modules.
* Update D and C for the corresponding deck.
* [f the crew modules cannot be placed in the sub grids place as much as possible and treat
the remaining modules as common/fixed module for the current deck.[optional]

57

Qrew module placement
Finding number of single and double modules

!

Assume width (sub grid for crew modules) = width (crew module)
Select the sub grids available for placing crew modulesin the lower decks

v

Add length (sub grid) for the selected sub grids

!

For safety, spare some length from the sum because a
module cannot be divided into two sub grids

!

The system triesto allocate single modules as many as possible

e No. of double module =D
e No.of crew=N
e Find Dfrom the following formula:

Available length = Length (Double module) x D + Length (Sngle module) x (N—2 x D)

It isnot possible to place
crew modules with
current constraints.
Change the template or Vi
owner's specifications
7 No

e No. of double crew module =D
e No. of single crew module =N—-2xD

!

Race single crew modules starting from higher decks

e Update deck grid
e Update cumulative sum grid

v

Hace double crew modulesin the remaining regions

e Update deck grid
e Update cumulative sum grid

Figure 29: Determination of mix and placement of crew modules

58

6.7.7 Common and fixed module placement
In this phase a relation between the sub grids and common/fixed modules are established. The
relation is defined as a bipartite graph. Finding maximum matching in this graph can be the

solution of module placement.

* Make Set A = {All common and fixed modules}
* Make Set B = {All possible sub grids according to previously calculated dimensions for
each module in Set A}
* Define a relation A, 2By if Module A, can be placed in sub grid B,
* Find maximum bipartite matching between Set A and B maintaining the following
constraints:
i. If amodule Ais placed in sub grid B,, no other module can be placed in B,

ii. Atleast one side of the module has to be available for corridor.

iii. Check if each module is reachable from the staircases. This can be by breadth first
search. If all modules are not reachable then try to place the current module to
next possible place.

iv. Update D and C for the corresponding deck for each placement.

If any module is yet to be placed on board the vessel, but the system do not seem to allocate

spaces for those, then the template might have to be altered or additional user input might be
required.

59

Gmmon and fixed module plaoemeD

v
Make Set A ={All common and fixed modules}

v

Make Set B = {All possible sub grids according to the template and
previously calculated dimensions for each module in Set A}

v

Define arelation A >By if Module A, can be placed in sub grid By

¥

Check possibility of placement for current module, A, .
(using maximum bipartite matching algorithm)

v
Select asub grid B,

Is sub grid By empty?

Yes

Is any one side of the module
available for corridor?

No

Is every module reachable from all the
staircasesin the deck?
(Using standard search method)

Race the Aimodule in sub grid B,

e Update deck grid
e Update cumulative sum

v

Slect next module

It isnot possible to place
the modules with
current constraints.
(Change the template or
owner’s pecifications

Are all modules
placed?

Figure 30: Flow chart for placement of CM and FM

60

6.7.8 Scaling

* Set maximum possible module size after scaling, MPS = MaxModuleSize
* Set minimum length which can be added, MinL = 20 cm (or according to designer choice)
* Set current rank, CR = highest rank
* Set maximum possible module length after scaling,
ML= MaxModuleSize/Module width of rank CR
* Select the regions one by one where at least a rank CR accommodation module is placed.
* For each region, find unused space US (i.e. unoccupied length of that region)
* Divide US by number of modules of same or lower ranks (k) placed in that region:
Extra space per module, ES = US/k
* If ES >= ML then increase the size of each rank CR module:
If current module length + ES > ML, set module length = ML
Else increase the module length by ES.
* When finished, find the minimum module size, MS of rank CR from all regions.
Set MPS = MS -1 (assuming different rank modules differ by at least 1sq. m in size)
SetCR=CR+1
Repeat the total process for next rank
* Scaling of fixed and common modules will be done by the designer from a graphical view.
e After manual scaling, a standard BFS method will check whether all the modules are
reachable from all the staircases. If it is not, then the designer will be asked to correct the
problem or the manual change will be discarded.

61

S)

St MPS= Maximum module size(30 sq.m)
St MinL =20 cm (designer choice)
Set current rank, CR= highest rank

v

e St maximum possible module length after scaling,

ML= MaxModuleSze/Module width of rank CR

!

e Slect all regionswhere arank CRaccommodation module is placed.
e For each region, find unused space US

A

e Divide USby number of modules of same or lower ranks (k) placed
in that region:

Extra space per module, ES= USk

Select another
region

Qurrent module length + ES> ML

Increase the module
length by ES

Set module length =ML

—

Find the minimum module size, MSof rank CRfrom all regions.
St MPS=MS-1 and Set CR=CR+ 1

¥

Manual scaling of common and fixed module

v
Check validity of manual scaling by BFS

C D:ne)

Figure 31: Scaling process

62

6.8 Relevant theories

6.8.1. Bi partite matching:

A bipartite graph (or bi-graph) is a graph whose vertices can be divided into two disjoint sets U
and V such that every edge connects a vertex in U to one in V; that is, U and V are independent
sets. Bi partite graphs are often used in real cases where it is required to model relations
between two different classes of objects.

Figure 32: Bi-Partite matching

Bipartite graphs are useful for modeling matching problems. An example of bipartite graph is a
job-matching problem. Suppose we have a set P of people and a set J of jobs, with not all people
suitable for all jobs. We can model this as a bipartite graph (P, J, E). If a person py is suitable for a
certain job j, there is an edge between pyand j, in the graph.

Allocating spaces for common and fixed modules in accommodation block design can also be
thought of as a bi partite matching problem. Here, not all available sub grids (spaces) are suitable
for every common module. For example, certain common modules may have to be placed on
upper decks (conference room, owner’s office etc.) whereas the others are more suitable for
placing on lower deck levels (mess, dayroom etc.). Matching can be done in different ways. A
maximum matching is a matching with the largest possible number of edges; it is globally
optimal. By reducing the problem to maximum flow in a network, the solution for maximum

matching can be achieved [CS787 lecture notes].

6.8.2. Breadth first search (BFS)

BFS is an uninformed search method that aims to expand and examine all nodes of a graph or
combination of sequences by systematically searching through every solution. It begins at the
root node and explores all the neighboring nodes. Then for each of those nearest nodes, it
explores their unexplored neighbor nodes, and so on, until it finds the goal.

63

All child nodes obtained by expanding a node are added to a FIFO (i.e., first in first out) queue. In
typical implementations nodes that have not yet been examined for their neighbors are placed in
some container like queue or linked list. After visiting the node, it is moved to another container.

° The numbers reveal the order
by which they are explored.

Figure 33: BFS method

In this system, BFS is used for checking reachability of all modules from the entrance after placing
a new module. Here a module is a node. If there is any module, which cannot be explored from
all the staircases, the newly placed module should be removed.

7 8 9 10 11 12 13 14 15 16 17 18

1
1
1
0

o |lo |k |~ |~ [

o |lo |k |k |~k |~

[T [e N [SO e 13

O 0 N O O s W N = O

Figure 34: Checking reachability by BFS method

64

6.9 An illustrative example

The DSS will now be exemplified with a simple case study of allotting space for select modules on
a deck of a vessel. Here, the goal is to show how the DSS works with user input and what
happens in each underlying steps.

User requirements

Number of crew = 20 Fixed module 1=2 X 1.5 m?
Deck length =9 m Fixed module 2=1X 1 m?
Deck width = 6.5 m Common module 1=1.5 X 2.5 m?

Common module 2=2X1.5m?
Staircase 1=1X1.5m’
Staircase 2=1X 1.5m’

Stair case location = center

Single crew module =1 X 1.5 m?
Double crew module = 1.5 X 1.5 m?
Corridor width =0.5m

[These numbers are for illustration purposes only; they may not necessarily represent real life
values for offshore vessels]

Modules

Here the dimensions of the modules are set according to the grid. In this case we assume each
cell of the grid is equivalent to 0.25 m”. So 1.5 meter is equivalent to the length of 3 consecutive
cells in the grid.

Module | Name Possible dimensions in the grid
1 Single crew module 2X3

2 Double crew module | 3X3

3 Fixed module 1 4X3

4 Fixed module 2 2X2

5 Common module 1 3X5

6 Common module 2 4X3,6X2

7 Staircase 1 2X3

8 Staircase 2 2X3

Table 8: Possible module dimensions

Graphical template
The designer can select a template from the library of pre-defined templates. It represents the
ratio for dividing the grid into some smaller regions for placing modules according to owner’s

specifications and rules.

65

Area for placing cabins

. Area for .
Staircase fixed Area for common modules Staircase/
/Entrance modules Entrance

Area for placing cabins

Figure 35: Selected template for module placement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 36: The deck consisting of sub grids

In the above figure the deck is divided into sub grids. Here the blue region is for placing crew
modaules and its width is equal to the width of a crew module, i.e. 1.5 meter or 3 cells.

The green region is for placing the staircases in the middle. The white region is used for corridors.
And the rest of the space in the middle portion is divided into two sub grids by 2:3 ratios for

placing fixed and common modules respectively.

66

Then a list is generated as template T. It has the index of upper left and lower right corners of
each sub grid and an associated list of modules that can be placed within the sub grid.

Sub grid Upper left and lower right corners Modules
1 (1,1),(3,18) 1,2

2 (6,1),(8,2) 7

3 (5,4),(9,7) 3,4

4 (5,8),(9,15) 56

5 (6,17),(8,18) 8

6 (11,1),(13,18) 1,2

Table 9: Template grid specification

Each deck has its corresponding cumulative sum grid, C. Initially all cells in this grid are set to

zero.
10 11 12 13 14 15 16 17 18

O 00 N O U1 » W N - O

Uy
(=)

—_
(SN

Uy
\S}

| OO OO O OO0 OO0 0| O OO O
| OO OO O OO OO0 ||| Of -
| OO OO O OO OO ||| N
| OO OO O OO OO0 ||| O W
OO OO OO O CC|OC| OO OO O >
| O OO OO OO OO ||| O U1
(=) Nele]lle} el ol el leolleoll-lNelNello) Nl o
| O OO OO OO OO0 0|0 OO
| OO OO O OO OO0 ||| O @
(=) Nelellel e} ol el Helloll-lNel el o) Nl o)
| OO O OO OO0 OO0 0| O O O
| OO O OO OO0 OO0 | O O O
O| O OO OO OO0 OO0 | O O O
| O OO OO OO0 OO0 OO O O
| O OO OO OO0 OO0 0| O O O
O| OO O OO OO0 OO0 | O O O
| OO O OO OO0 OO0 0| O O O
| O OO OO OO0 OO0 | O O O
O| O OO OO OO0 OO | O O O

Uy
w

Figure 37: Cumulative sum grid

67

At the very first step, the staircases are placed in each deck. This is done to ensure accessibility

for each module from the staircases. After placing the staircases, the deck and cumulative sum

grid looks like:

18

17

12 13 14 15 16

11

123 456 7 89 10

12 13 14 15 16 17

11

10

9
0
0
0
0
0
2
4
6
6
6
6
6
6
6

0123 45 6 7 8
0/0/0{0|0|0(0O|O]|O
0/0/0{0|0|0(0O|O|O
0/0/0{0|0|0(0O|O|O
0/0/0{0|0|0(0O|O|O
0/0/0{0|0|0(0O|O|O
112121222222

12
12
12
12
12
12
12

0
0
0
2
4
6
6
6
6
6
6
6

0
0
0
2
4
6
6
6
6
6
6
6

2141444444 |4
3/6/6/6|6|6[6|6|6
3/6/6/6|6|6[6|6|6
3/6/6/6|6|6[6|6|6

0
1
2
3
4
5

6
7
8
9

10 |3|/6|/6|6|6|6|6|6|6

11 |3/6|/6|6|6|6|6|6|6

12 |3/6|/6|6|6|6|6|6|6

13 |3/6/6|6|6|6|6|6|6

Figure 38: Grid/Cumulative sum grid after placing the staircases

68

Finding number of crew modules

Available sub grids for placing crew modules are sub grid 1 ((1, 1), (3, 18)) and sub grid

6((11,1), (13,18)). ThenL=(18—-1+1) + (18— 1+ 1) = 36.

For safety we subtract a length equal to length (DC) = 3. Then L=36 -3 = 33.

0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
t41}1},1}{1(1}1}11(1{1}1/1|1]1[1]1 1 1
2/11}j1}1y1}14112 (1111|111} 1 1 1
3|/1y1yj1*}j12y1}1,11(1}11}1}1]11]1 1 1
4,0/0,0(0}]O0O]jJO(O]O0O]O|O0O|O0O]O|JO0O|O]O]O 0 0
500000, 0(0;0}{0J0] 00| 0|0|O0) O 0 0
6/2,1,0}0}0}0}]O0O|O|O0OJ0]O]j]O]O0O]O0]O0]O 1 1
71271, 0;0;0(0|O0O|O]O|O}O0O}O0O]O0O|O0(0]|0O0 1 1
g8/2,12,0}0}0}0}]O0O|O0O|O0OJ0]O|JO]O0O]O0]O0]O 1 1
90/{0,0}j0}j0}0}|0fO0OO0OfO0O|J0|0]0|0}0 O 0 0
i0o,06,0;0;0,0(0}]O0O|]O0O|0}]O0O}]O|O0O|O0O]O]|O0]|O 0 0
11y1{1}1};,1,1({1}1}1,1}1}1f1/1|1,10 0 0
izy¢(y1}1},1,1({1}1}1,1}1}1f1/1|110 0 0
3/¢7y1}1},1,1(1}1}|1,1}1}1f1/1|1,10 0 0
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
o000 0;j0}]0O|,0|0O|O0O]O|0O0]O0O|O]O(O0]O0 0 0

0(1,2|3|4|5|6|7|8|9|10|11|12|13|14|15|16| 17 | 18
02| 4|6 |8 (101214 |16|18|20|22|24|26|28|30|32| 34 | 36
0 |3/6 |9 (1215|1821 (24|27 |30|33|36|39|42|45|48| 51 | 54
0 |3/6 |9 (1215|1821 (24|27 |30|33|36|39|42|45|48| 51 | 54
0 |3/6 |9 (1215|1821 (24|27 |30|33|36|39|42|45|48| 51 | 54
0 |48 |11|14|17 20|23 |26|29|32|35|38|41|44|47|50| 54 | 58
0 |5/10|13 16|19 |22 |25 |28|31|34|37|40|43 |46 |49 52| 57 | 62
0 |6/12|15|18 (21|24 |27 |30|33|36|39|42|45|48|51|54| 60 | 66
0 |6/12|15|18 (21|24 |27 |30|33|36|39|42|45|48|51|54| 60 | 66
0 |6/12|15|18 (21|24 |27 |30|33|36|39|42|45|48|51|54| 60 | 66
0 |7/14|18|22|26|30|34|38|42|46|50|54|58|62|66|69| 75 | 81
0 |8/16|21|26|31|36|41 |46 |51 |56|61|66|71|76|81|84| 90 | 96
0 |9/18|24|30|36|42 |48 |54|6066|72|78|84]90|96 |99 |105]|111

Figure 39: Crew modules are being placed

69

Applying the formula: Length (DC) x ND + Length (SC) x (NC—2 x ND) =L
=> 3xND+2x(20-2xND)=33
= ND=7 So we find number of double modules =7

Fixed and common modules placement

ol ol Rr| R R K

R R R ol R R R0

O 00 N O U1 » W DN = O

Figure 40: Cumulative sum grid after placing the FMs

In this step, set A: set of modules and set B: set of all sub grids are defined.
A relation A, 2B, is defined if module A can be placed in sub grid B,
In the following figure a sub set of B is shown. B has all possible sub grids according to the
template whose dimensions are equal to the dimensions of the modules.
The matching sub grids are highlighted. Before placing a module, the system checks the feasibility
by 3 steps.
1. Isthe sub grid empty?
This can be done by checking cumulative sum grid C.
For example, to check if the fixed module 1 can be placed inside (5, 4), (7, 7), it calculates:
P=C[7][7] — CS[4][7] — CS[7][3] + CS[4][3]
=25-21-13+9
=0
Now, this sub grid is empty as it has 0 cells occupied.

70

2. Is any side is empty for corridor?
For this the lower, upper, left and right sides are checked using the above formula in
cumulative sum gird.
In this example, 4 sides are available.
3. If this module is placed, are all the modules reachable from the staircases?
To check this, the standard Breadth First Search algorithm is used.

StA

Fixed module 1

Fixed module 2

Common mod 1

Common mod 2

St B

(5.4).(7.7)

(6.4).(8.7) l

(7.4).(9.7)

(6,5),(9.7) |

(6,4),(7,9) |

(6.5), (7, 6)
(6.6),(7.7)

(8.4).(9.5)

Figure 41: Possible module placement

In similar approach, the fixed module 2 is placed in the sub grid (8, 4), (9, 5). The maximum
bipartite matching systematically checks every option of placement for finding the optimal

solution.

71

7. Mock up of a user interface based on
the DSS

In this section a mock up of a user interface based on the DSS explained in the previous chapter
will be illustrated. Since, the whole system has not been elaborated to a sufficient level of details;
a working prototype is not feasible in this stage, hence the mock up will demonstrate how the
process can be utilized in real cases. Various input and output phases will be shown following the
workflow of the DSS.

The software will have a simple user interface that is uncluttered and easy to use. Step by step
windows will appear as the designer proceeds and categorically ask for information regarding the

vessel, class, decks, crew, various modules etc.

Accommodation design E]

File Edit Class Module Database Help
New project

Open project
Save AN

Export

Print

Exit |

Figure 42: User interface

72

7.1 Input phase

7.1.1. Selection of vessel type

Select vessel type Q@@

[] Ice Breaker [J Multi-purpose OCV [] Other specialized vessels

Next

Figure 43: Selection of vessel type

The first step of the DSS is to select the type of vessel. As the research work revolves around
offshore support vessels only, the major choices in this area are shown in the window. The vessel
database is structured as data-per-vessel-type approach, so depending on the choice; the system
will look into the relevant vessel type only. This will speed up the process. When the designer
picks one of the options here, the next window will appear with options for class, class notations
and database selection.

73

7.1.2. Selection of class and notations

Select class and class notations M=
DNV Class notations
Compulsory Optional
= 1A1 DynPos AUTRO
R [OILREC
Standard by design ICE 1A*
ABS EO
[DK(+)
v| SF
NKK Clean design

[Supply HelDK

Database Option

[[] Vessel database

Fixed value

[Back | [Next |

Figure 44: Selection of class and notations

In this window, the user can choose a class from a list of classification society. In this figure, five
class modules are depicted namely DNV, GL, LR, ABS and NKK. The entire software is itself a
modular one, so it is possible to add class modules containing information from other
classification societies later. Based on user input, the class notations section will comprise of the
notations specifically from that society. Here, the user can further clarify the notations to be used
for this particular vessel. Since, offshore support vessels can have various class notations
depending on mission requirements, the rules related to these notations can very much dictate
the class requirements for designing the accommodation block.

Another option here in this window is the selection of database type. The user can either choose

the vessel database (like the database developed in SBSD program) or s/he can also opt for fixed
value approach where he has to provide the necessary information for the system. In this case,

74

the system won’t consult the vessel database, rather use the data provided by the designer. This
can be particularly useful for designing novel vessels where an established vessel database is out

of question.

7.1.3. Vessel specification

Vessel specification Q@@

Number of decks |3 [C] Same area for each deck
Deck specification
Length(m) Width(m) Usable area(sq. m) No. of staircases
Deck A
Deck B
Deck C

Maximum allowable size of the modules(sq. m) |30

Single crew module size(sgq. m) 9 ‘ Length(m) |3
Double crew module size 13 , Length(m) |3
Template usage

[] System suggestion

Manual selection

[Back | [Next |

Figure 45: Vessel specification

In this window, the user will provide high-level information on the decks of the vessel and some
limiting values for module design. When the field for number of decks is filled with some number
(1~15), corresponding deck specification section will show rows for data input for specified
number of decks. Here, the base module sizes have to be specified along with maximum module
size. Since manual and automated selection of template is possible, an option is given here for
the designer to choose between them. Although this can be overridden later in the software.

75

7.1.4. Customer requirements

Customer Requirements Q@@

Number of different officer ranks |3

Module specification

Number of officer in rank 1 1 | Module size 2 x Double crew module v/
Number of officer in rank 2 |4 | Module size 2 x Single crew module v/
Number of officer in rank 3 |6 | Module size |3 x Single crew module v,

1 x Single crew module
2 x Single crew module
3 x Single crew module
Crew module specification 1 x Double crew module
»2 x Double crew module

Number of crew :50

[] Required number of single crew module

[Back | [Next |

Figure 46: Customer requirements on crew

Owner requirements for the crew of the vessel will be taken care of in this step. Total number of
crew, different ranks of officers and number of officers in each rank will be specified here. The
customer will also have option for module sizes for different officer ranks. There are currently
five options in the system regarding the size of officers” modules. If the owner wants a specific
number of single crew modules for the vessel, then it can be accommodated by filling up the field
in this section.

76

7.1.5. Specification for fixed modules

Number and location of fixed modules will be specified in the following window. These modules
are totally fixed in terms of area and dimension, so no options for adjustment will be available
here. The designer can use the options ‘in each deck’ and ‘in any deck’ for convenience.

Fixed module specifications E]@

Public WC
[] Deck A A Deck B 1 | [DeckC
In any deck |1 [In each deck| | Total 2

Cleaning locker
[] Deck A » [] DeckB i | [0 DeckC
] In any deck In each deck:1 Total :3

Storage space
Deck A 2 ‘ [[] DeckB » | [] DeckC
] In any deck [] Ineach deck: Total i2

Staircase
[] Deck A | [] DeckB | [] DeckC
[In any deck | In each deck|2 | Total 6 |

Engine casing
[[] Deck A » , Deck B 1 ‘ [] DeckC
[J In any deck [] In each deck: Total t1 ‘

[Back | [Next |

Figure 47: Specification for FM

7.1.6. Specification for common modules

Common modules required for the vessel will be selected here from a list. After selecting them, a
new window will appear just like the ‘fixed module specification” window to place the modules
on the decks. Each deck/any deck options are available in this window as well.

77

Customer requirements for common modules H=1[E3

Selection of common modules

O

Mess

[l Conference room

&

Ship offices

O

Gymnasium

&

Wardrobe

Stores

0 &

Dayroom

&

Galley

ad

Provision spaces

[Back | [Next |

Common module specifications E]

Ship offices

[0 DeckA | | Deck B [0 DeckC | |
In any deck O Ineachdeck| | Total
Wardrobe
[0 DeckA [| [J DeckB] 0O peckc | |
O Inanydeck | | In each deck Total
Stores
Deck A [J DeckB || 0O peckc | |
O Inanydeck | | [Ineachdeck| | Total
Galley
[J DeckA [| [J DeckB | 0O peckc | |
In any deck O Ineachdeck| | Total

[Back | [Next |

Figure 48: Specification for common modules

78

7.1.7. Designer specification for templates

Designer Specification E]@”ZJ
Corridor width (m)

Template selection

Deck A: Template T1

Support for modules
AM CM FM

L ‘

Deck B: Template T2

Support for modules
AM CcM FM

Deck C: Template T3

Support for modules
AM CM FM

[Back || Next |

Figure 49: Template suggestion by the system

As previously stated, the system will suggest templates for each deck depending on the input
information and vessel database. In this step the designer can override this selection if s/he
thinks otherwise. A press on the ‘change’ button will introduce another window with a list of
templates applicable for that deck and the designer is free to choose any one of them for the said
deck. The window will also include relevant information for the template such as type of modules
that can be placed on the deck, percentage of area for different types of modules and so on.

79

Templates E\@”X|
o]

>

{111}

OTm ¥ T2 T3

T4 R [Te
Template details: T2

Available region (5 |
Staircase AM CMm FM

Placeable modules

Figure 50: Template selection by the designer

7.1.8. Module specification according to the database and further adjustment

Required space for common modules will be calculated from the vessel database automatically
by the system. It will suggest length, width and area of different common modules by
interpolating and extrapolating the data from database and present them in the following
window. The designer can modify these suggestions and enter different numbers if s/he likes.
The suggested location can also be altered.

If the owner wishes for specific common modules to be placed in a certain deck, this can be
accomplished in this step. The designer can enter these specifications here so that the system
will allocate space for these modules according to owner’s choice, and not follow the database. If
the designer opted for “Fixed value” in “Database option” in figure (), then all of the fields in this
window will be left blank so that the designer can enter suitable numbers here by choice.

80

Module specification according to vessel database

Module
Office 1
Office 2

Store 1
Store 2

Galley

Wardrobe

Min L/W(m)

Length(m) Width(m) Area(sq. m)
4 | |2 8 2
4 3 12 3
3 3 9 3
5 | 2 10 2
4 | |2 8 2
2 1 2 1
[Back | [Customize | [Next

Figure 51: CM specification by the system

7.2 Processing phase

After entering all the required information, the DSS will process the data and consult the vessel
database for relevant information on common modules. An example screenshot of the vessel
database is given below where the information is stored in a systematic manner according to the
type of vessel and type of accommodation area [Kawser, 2011]. Noise is introduced in the
information on the example vessel database with a range of +10% due to their proprietary

nature. Nonetheless, these numbers are a good indication of accommodation cabin specification

for already built vessels.

Location

B
A/BIC
A
A
A

AB.C

8=e

81

Based on crew number and special requirements, the system will calculate the area required for

common modules and at the same time, it will come up with suitable L/W ratio for proper

OSV Areas & Volumes

AHTS 02
October 2011

MAIN DATA Area [m2]

ACCOMMODATION 2,130

1,141

Crew accommodation
Captain Class Suite
Senior Officer Suite
Crew Single
Crew Double
Corridors

Client accommodation
Client{officer class)
Client(crew class)

Corridors

Common areas
Dayrcom
Mess
Gymnesium
Wardrobe
Public WC

Space behind vertical walls
Corridors

Main & service stairs

Figure 52: Vessel database (sample)

Processing.... g@@

Officer's module placement

Crew module placement

Common and fixed module placement

Figure 53: Processing window

82

orientation of the module. During (\5_‘9 Error Q@@
processing, a screen will show the

progress. The user can cancel and
It is not possible to place the crew modules with

go back to the input phase any current specification.Please change the template

time s/he wants. and try again.

If the selected template is not

suitable for proper allocation of

space for the vessel, then the Figure 54: Error message

system might show some error
messages. In this case the designer might have to change the template or alter some
specifications for the relevant modules.

7.3 Output phase

The DSS will provide output in two steps. First it will show a graphical illustration of the decks
containing all the modules at their designated areas. It is an effective way to show the owner
how the decks will look like after placing the modules. Although the output will be in 2D format,
it will demonstrate the space allocation with color-coded modules for easy interpretation.

Additionally a window will show the details of the decks in text. It will provide the information in
tabular format according to the type of modules. Area, dimensions and location of individual
module can be readily extracted from this window.

In the following figure, the white area denotes corridors on that deck. The violet area indicates
the unused space of the template, which can be utilized by further scaling of the modules in that
region by the designer. For common modules, it is also possible to manually drag the borders of
the module to decrease/increase their size. Here, the modules CM1 and CM2 can be freely
adjusted because of the availability of space around them. If there was no extra space, then this

option won’t be available at this step.

83

Output

Deck A |Deck B |Dcek C |

[Back | [Scale | [Viewdetails] [Save |
Module details: Deck A Q@[@
Accommodation module |Common module |Fixed module |
Module ILocation |Area(sq. m) |Length(m) [Width(m)
Ship office 2 Deck A 12 4 3
Store 1 Deck A 9 3 3
Store 2 Deck A 10 5 2
Galley Deck A 12 4 3
Wardrobe 1 Deck A 2 1 2

[Back | [Sae |

Figure 55: System output

84

8. Real case study

In order to check the feasibility of the DSS, a real case study is performed in this chapter. This
case study is built upon the specification of an AHTS built by STX, AH-11. Since a full-fledged
program is not in the scope of this research work, a stripped down program has been written in
Java, which covers the bare essentials of the DSS. The numbers used here do not directly reflect
the dimensions of the cabins of AH-11. They can be thought of as representative values for a
typical AHTS accommodation.

For this DSS, the most versatile object oriented programming language Java (JDK 1.6) is used. It is
a suitable choice for developing any Graphical User Interface (GUI) as well as for programming.
By using Java it is possible to read input from an Excel file, to process the data efficiently and
draw the output as 2D graphics. For 2D graphical output, java swing component JFrame is used
which gives the window view. A canvas of java abstract window toolkit is used to draw the actual

output in the window.

As a simplified study, not all of the characteristics of the DSS have been implemented here. Major
limitations are:

* Complete Bi-Partite matching is not implemented here for placing the common/fixed
modules. It performs a deck-wise partial/approximate matching.

* In the lower decks the space for CM/FM is not fully utilized because the modules are
placed only in a single row. So even if there is plenty of remaining space along the deck
width, it will not be used properly and some modules might not get placed.

* The modules are placed from top left side of each template, and gradually goes down
from there. Placement of ranks is performed according to rank. It means sometimes the
modules might not be placed optimally in order to comply with the rank based
arrangement system employed in the system.

* No scaling is implemented, which requires much more expertise and time to program.

* For accommodation modules the dimension close to square size is chosen and placed.

* Because of these lacking, the outputs from the program would not be always optimal.

The programming code can be found in the Appendix. It contains more than 1200 lines of code.
The program has been included in a .ZIP file with the thesis submission package. The input file is
prepared in Microsoft Excel. The rows are fixed and should not be changed. The (*) sign implies
that the module can be placed on any deck as long as there is space available. It reflects the

85

option ‘on any deck’ of the DSS when placing modules on decks. If a module has to be placed on
a specific deck, it can be done by inserting the deck label on designated row and the size of the
module on the right hand side cell.

- A e T e e e e G S|

~ 1 |No.ofdeck 4
~ 2 | Deck area, length, width 375 25 15

3 |No.of rank 4
I No. of personnel in each rank (1 -> 2 -> ...} 2 3 2 4
~ 5 |No.ofcrew 38

6 |Single crew module size 9
I Double crew module size 20
~ 8 | Officer module size(rankl, rank2, ..) 20 18 16 15
~ 9 | Fixed module specification
10 |Staircase(per deck, size) 2 5
11 |Cleaning locker(per deck, size) 1 5
12 | Public WC A 5 B 5

13 |Storage space
Z Engine casing A 6 B 6 C 6
15 |Common module specification
16 |Mess A 30
17 |Conference room . 20
18 |Ship office . 12 B 20
19 Gymnasium . 10
20 |Wardrobe
21 |Stores
22 |Dayroom * 20
23 |Galley A 36

24 | Provision spaces . 12
25

Figure 56: Input file for case study

Templates

For this case study, two templates have been used. Since this case is for demonstration purposes
only, it does not contain any more templates to choose from. These two templates are fixed in
the code by default and the system will try to place modules according to these.

86

Figure 57: Template for arrangement for the uppermost deck (Deck-D)

Figure 58: Template for arrangement for lower decks

Results

The results are shown deck-by-deck basis below. The modules are shown in different colors
separated by thick black lines. They are not scaled, that is why the arrangement seems
asymmetric. Decks are showed in different tabs from upper to lower deck. If it is not possible to
place the modules according to the template, then the tool will show an error message,
“Placement is not possible for current template. Please change the template and try again”.

87

@ Deck C = Deck B Deck A |

Figure 59: Output Deck D (uppermost)

[[[[T]
[[[[[[]P]
[[([[[]]]
[[[[[[]T]
ANEEEEER
[T
[[[[[]]
[[[[[]]
[[[[[[]T]
INENEEER

Figure 60: Output Deck C

88

| Deck D | Deck C [3l249:0 Deck A |

Figure 61: Output Deck B

| Deck D Deck C Deck B | ialaa @t

Figure 62: Output Deck A (lowermost)

89

9. General discussion

9.1 DSS - the rationale

The framework developed in the earlier chapters of this thesis is designed to assist the designer
to come up with a fitting accommodation model for an offshore support vessel meeting all the
special requirements of the owner and those of the class. The system accomplishes this by
optimizing the usage of available space onboard the vessel. It starts with minimum space
requirement criteria and goes on from that by allotting space for the required number of
modules and places them according to some pre-defined templates. The basic rationale behind
this approach can be depicted as follows:

Vessel
database

Modularized
accommodation

Standardization Flexiblity

Figure 63: Design rationale for the framework

Standardization is a key feature in modular building methodology. To achieve a modular
architecture from a functional one, some characteristics of the problem area must be
standardized [Kawser, 2011]. In this case, the fixed modules, crew single and crew double
modules are examples of standardized options for the system. These modules will have fixed
dimensions so that they can be applied to a range of vessels without much scaling. Though the
system will have scaling capabilities for the aforementioned modules just like the others, but the
user, depending on the type/scope of design task can restrict that.

90

One of the most important aspects of the framework is the standardized template library for
arrangement of the modules. Arranging the modules over a number of deck levels can be a
cumbersome process for any system as there are endless possibilities for arrangement. This is
particularly true for large OSCVs or AHTSs where the number of modules can be very high (150 -
250). These templates put boundaries to this voluminous design problem. The system will place
the modules according to the selected template for different deck levels, which can be specified
by the designer or the system itself. This in essence, lessens the burden of searching for solutions
in a vast solution space for possible arrangement. It also helps to speed up the whole process so
that the results can be obtained in minimum possible time, which is beneficial for both the
designer and the owner/client. Since this framework will act as a preliminary design tool for the
organization, timely communication with the stakeholders is vital and this standardized approach
helps to achieve that in a pragmatic manner. It is arguable that the templates can limit the design
possibilities to some extent and thus eliminate the opportunities for novel vessel design, but this
issue can be tackled by introducing more templates from time to time, thus enlarging the design
scope of the system.

This framework has its roots partially in another framework for accommodation block design
done by the candidate in a pre-thesis project. System based ship design (SBSD) was an integral
part of that project. This SBSD approach has an established vessel database containing design
information from a plethora of vessels. This database has the potential to be used in design tools
for future offshore vessels as it contains useful information regarding area, volume and location
of different spaces of the vessel in a structured manner. In this framework, SBSD database is used
to derive the necessary area requirement for different common modules. This can also be helpful
to design templates for vessels since it provides information on deck-by-deck basis. Another
important aspect of this implementation is that it will introduce some common features and

general trend in newer designs based on empirical information of already built vessels.

The last criterion of the framework is flexibility, which is a prerequisite characteristic for any
design tool for designing offshore vessels. This particular market segment is notorious for the
requirement of highly customized vessels. So, standardizing everything would not be a fitting
idea in this regard. There should be enough flexibility in the system that it could satisfy a diverse
array of customer needs and do it in @ modern and systematic way [Kawser, 2011]. Flexibility is
implemented in the system in various ways:

* The template library can be upgraded with new templates that will enable the system to

stay up to date.

91

* When designing a vessel, the designer is free to choose any template from the library
where the option for choosing different templates for different deck levels is also
supported. More over, the existing templates can also be modified by the designer for
particular vessels if the need be.

* The designer can accommodate special design requirements of the owner in each design
step. For example, if the owner needs certain modules to be placed on some preferred
location of certain deck level, and then this can be accomplished by simply specifying the
need in the template selection step of the system.

* The system is designed to deliver results in real time. If the owner or the designer is not
satisfied with the outcome, then they can simply modify the input data or some
parameters of design to get a different result. All this can be performed in a simple
window based user interface that ensures adequate flexibility for the user.

9.2 Comparison with similar approaches

Because of the nature of the framework, a direct comparison with other similar type of
approaches namely Van Oers’ optimization based space allocation method (2007) and Andrews’
building block design (2003) can be useful. Both of these approaches were built upon different
strategies of arranging modules (spaces) for sea-going vessels. These methods are already
outlined in chapter 3 of this thesis. Here, comparisons with the developed framework will be

made in details.

9.2.1. Van Oers approach
This approach is a completely automated one that can be applicable for not only the
accommodation block, rather the whole vessel. Although the author has developed this method

with naval vessels in mind, nevertheless it is suitable for other types of vessels as well.

One major difference of this approach from the framework is that the scope of positioning of the
modules. As the positions of the modules are more limited in this framework because of the
templates, the solution space gets restricted and results can be achieved much faster. The choice
of programming language dictates the time required for generating outputs as well. Matlab is
currently used by Van Oers for his packing approach which is a slower alternative compared to
Java used in this DSS. Van Oers used NSGA-II genetic algorithm for locating the feasible solutions,
whereas this DSS employs simple optimization algorithm for best solution. One advantage of

92

such an advanced algorithm used by van Oers is that it can be helpful to compare among
different feasible solutions with varying system choices, configurations and performance levels
[Van Oers, 2011]. So essentially it is easy to identify the trade-offs and the consequences of
design choices and filter down the alternatives to be settled on a final design. The DSS developed
here is primitive in the sense that it will give single output depending on the user input according
to the system constraints and rules. Comparing the results in this DSS is not as straightforward as
it is in Van Oers method since there are no performance levels/MOMs or other criteria based on
which one can distinguish among alternatives. Nevertheless, the user can generate as many as
outputs as s/he wants by altering the input parameters to get an idea of impact of design choices

on the vessel.

One advantage of the DSS over Van Oers method is the simplicity the templates and the smaller
sized modules provide for arrangement of spaces. Van Oers had to implement algorithms for
detecting overlapping of spaces and effective ways to manage these overlaps. Sometimes the
objects/spaces that has to be located at a certain deck level can be very large and splitting of
objects is necessary for arrangement. But splitting requires additional algorithm [Van Oers,
2011], which is not quite developed yet. Because of the smaller size of the modules and the fact
that size of the crew single/double and officers modules are fixed, it is easy to allocate space for
them in this DSS without the need for splitting. The templates play an important role here to

minimize overlapping.

9.2.2. Design building block approach

Focusing on the basic functions that a ship has to perform, David Andrews and his colleagues
have published a number of papers on ‘design building block approach’, which is described in
chapter 3. This University College London (UCL) approach combines numerical and spatial
descriptions in a single integrated approach to create ship designs that are feasible. In this sense,
the developed DSS is similar to the design building block approach since it also contains
numerical and spatial descriptions in a unified manner. Although the systems by which this
information is stored are completely different for these two approaches, the design rationale is
almost the same, which emphasizes human responsibility for design generation to create
satisfying results at the cost of significantly reducing the number of alternatives considered. The
templates used in the DSS constrict the feasible solution space to a much narrower scope, which

also involves greater designer intervention in different steps.

93

One major difference between these methods is the implementation of optimization. In
Andrews’ building block method, ship concepts are validated and not necessarily optimized for
real world application. The user makes improvements by studying the effect of each block on the
design’s performance by moving the block and re-evaluating the analysis. Andrews proposed that
the goal of preliminary design was specification development, rather than development of the
design itself [Nick, 2008]. On the other hand, the DSS developed in this research work starts with
the specifications as input and builds the design from there. It utilizes optimization techniques for
solving real world issues and can be readily implemented in new vessel designs. Although, the
primary goal of the DSS is to assist the designer and at the same time demonstrate the overall
arrangement in a visually simple and illustrative manner to the client, nonetheless it has the

potential to be applied in future vessel designs, not only preliminary but also in detailed phase.

Another noteworthy difference between these two approaches is the notion of novel design. In
Andrews’ building block method, innovation and exploration of design space are unrestricted in
most of the cases. The design procedure commences with a very broad outline of the new
warship. The building blocks are packed first, before an envelope is wrapped around the set of
objects. It can be thought of as a way of considering the possible solution as lying in a solution
space, which, at the simplest level, could have three 'dimensions' of packaging, technology and
capability. The approach is capable of being both exploratory and divergent, so that the design
team would be able to explore and be informed by possible good ideas [Andrews 1998]. On the
contrary, the DSS in this research work does not incorporate innovation as a basis of design.
Rather it is more like a routine procedure, which depends on empirical data and searches in a
restricted design space dictated by templates and rules from class. New technology or
investigation of new concepts is not the prime application for the DSS.

Overall, Andrews’ building block approach is suitable for more challenging and open conceptual
design problem where innovation can play a vital role. Again, the DSS developed here will

produce its best results when the specification is pre-defined and the design space is well

formulated with structured information.

9.3 DSS - Known issues

Despite the fair amount of efforts spent on the development of the DSS, there are apparent
shortcomings of the system. This DSS has been developed at a relatively high level of detailing,

94

where not all of the lower level details are addressed. Here, these imperfections will be discussed

in the following list.

The system starts with an assumption that the area of each deck of the vessel under
design is known. In some cases, these values can be unknown to the designer. When
designing a novel vessel or a vessel with unusual proportions, it may pose as a challenge
to predict the area available on each deck. The vessel database would not be of much
help at these cases. Hence, the DSS may not be much useful to the designer under these
circumstances.

The system is unable to handle modules that are not rectangular. It is @ major drawback
of the DSS. Most vessels have curvilinear shape at the front where the accommodation
block is usually placed. As a result, the modules located on the curvilinear portion of the
hull may have sides that are not straight lines. Hence, the need of non-rectangular
modules comes into play. Managing modules of different shapes will be a considerable
hurdle for any DSS of this nature.

Templates are used in the DSS to facilitate easier allocation of space for the modules. As
with everything in this earth, this simple method has its flipside as well. Employing
templates will make it relatively easy to establish a computer tool based on the DSS, but
at the same time it will limit the scope of design by the system. Since the system will only
look into the available template library that might not be sufficient for all kinds of vessels;
it may come up with a solution that can be shortsighted or impractical. Although this issue
can be largely addressed by adding more templates from time and time and/or update
the existing ones whenever necessary. The fact that the system can be upgraded by
adding more template modules in future can be thought of as a compromise between
easier implementation and design flexibility.

The lack of measures of merit (MOM) is another issue of this DSS. MOMs are general
terms for all measures that characterize a system under analysis. Technical measurement
is important and MOMs are the criteria by which a system can be evaluated whether it is
going to meet the objective set by the user. For a system like this, MOMs can be the
maximum distance of exit from modules, accessibility to modules from different sides and
so on. These can be very useful to compare different alternatives and choose the one
which best fits the designer’s intentions.

In some instances, there may be too much space available for the modules. The system
will try to scale the modules to utilize this extra space. But such scaling may result in

different sizes of the same module in different deck levels, which may not be desirable by

95

the designer. Scaling is done in pre-defined steps; which may not be an efficient way to
utilize space at all times.

The output of the DSS is in 2D format. The designer/owner will get a color-coded 2D
layout of the allocation and placement of modules on different decks. The output is
informative but may not be the most eye-catching one in this regard. Now a day, more
and more design tools are developed to generate results in 3D format that is more
visually attractive and easier to interpret. Since, this tool will work as a sales pitch for the
potential owner/client as well, 3D should be the way to go.

Output B@@

Deck A |Deck B |Dcek C

[Back] [Scale] [View details] [Sae]

Figure 64: 3D output from Van Oers approach compared with the output from DSS

The current computer program, which is developed for the real case study is a bit slow for
rapid generation of results based on changing input data. In real world, the processing
time should be faster for effective communication with the client.

Nothing has been done here with regard to cost or production-friendliness. Cost can be a
determining factor when evaluating modular concepts. After all, implementation of
modularization would not be feasible if the price/cost of production does not go down
because of it. Although most of the studies regarding modularization indicate that lower
price is an advantageous outcome of modular production, for a complex industry like
0OSVs, things can turn out to be different.

This research has been totally focused on the accommodation block only. It might be a
good idea to evaluate the impact of modular accommodation to other parts of the vessel.
If a combined production strategy is used where only the accommodation is built by

modules and the other sections in the conventional way, integration issues may arise.

96

9.4 Further development

The algorithm developed in this DSS is intended to outline a more detailed approach for

compiling a tool for OSV accommodation design. Hence, much work is needed to make it a full-

fledged computer tool. It is also important to note that tools like this that are designed to assist

the designer at an early stage of development must be fast enough to provide rapid output for

active communication with the owner/client. The algorithm needs more structuring and

articulation in this regard. Based on the aforementioned issues regarding the DSS, the following

steps can be taken to rectify the shortcomings.

The ability to handle modules of different shapes (non-rectangular) and sizes should be
introduced in the system. This may seem as a far-fetched vision for the current system.
But small steps can be taken at a time to continually improve the flexibility of the system
in future. For instance, some of the modules being designed by STX OSV are hexagonal. So
for the next logical step, it may be a good idea to try to implement modules with five
sides and so on.

The output from the system should be in 3D, which will make the visualization of the
results more effective. For this, the tool can be linked to third party visualization software
like Google Sketchup. @yvind Vestbgstad (2011) has already shown a way to do this by
some clever scripting mechanism in Java and Visual Basic. This kind of design sketching
has been used in the early stages of ship design, both as an aid to the development of the
design itself and as a communications medium [Pawling et al, 2011].

MOMs should be implemented in the system for evaluation. Without them, it is not easy
to say whether an arrangement is optimal or not. It may very well satisfy the
requirements laid out by the client, but there might be better ways to solve the design
issues. Quantification of MOM can be a difficult task to accomplish.

The algorithm should be streamlined to minimize the processing time. As said earlier,
effective communication with the stakeholders needs brisk software that can take inputs
and generate results in real time. Long processing time would hinder the usability of this
DSS as an assisting tool.

Automated data mining from web sources can be introduced which will complement the
vessel database from SBSD. Classification societies like DNV, LR store data from a plethora
of vessels in their database that can be valuable for a DSS like this. The only pitfall is that
the data in these databases may not be properly structured for direct application in this
system. Gathering data from various sources that are stored in different formats is not an
easy task to accomplish. It will need considerably powerful data mining tool.
Nevertheless, it will be worthwhile when the design tool is working properly.

97

10. Conclusion

Offshore shipbuilding industry is traditionally a conservative one where new ideas or modern
methods of designing are difficult to implement. But the need of standardization is not an issue
that can be overlooked anymore. Accommodation block of offshore vessels is a good starting
point for practicing modular building methodology in this industry. Not all of the spaces in the
accommodation block should be modularized to strike a fine balance between standardization
and customizability. Application of MFD™ method suggests that crew single, crew double and

officer’s cabins are the prime candidates for a modular product platform.

A DSS has been developed to assist the designers to design the accommodation block in a
systematic manner. Based on standardized modules and vessel database, it will come up with a
layout for accommodation spaces satisfying the customer requirements. A mock-up of a user
interface of a computer tool built on the DSS has also been realized. The feasibility of the DSS has
been tested with an illustrative example and later with a real case study. The results from the
case study are promising for further development of the tool. By refining the algorithm and
implementing a 3D output method for the DSS, it has the potential to be used in real world
designing challenges.

Establishing modular product architecture in offshore shipbuilding industry is by no means an
easy task to accomplish. Application of modular thinking for designing the accommodation block
can lead the way to a wholly modularized shipbuilding method. The methodology developed here
has showed that modularization can be implemented which will introduce standardization in the
product platform and at the same time has room for flexibility to accommodate diverse customer

requirements.

98

11. Bibliography
Andrews, D.J., “An integrated approach to ship synthesis”, Transactions of the Royal Institution
of Naval Architects, 1986
Andrews, D.J., “A comprehensive methodology for the design of ships”, Proceedings of the Royal
Society, vol. 454, 1997
Andrews, D.J., “Simulation and the design building block approach in the design of ships and
other complex systems”, Proceedings of the Royal Society, vol. 462, 2006
Andrews, D. J., Burger, D. & Zhang, J., “Design for production using the design building block
approach”, RINA International Journal of Maritime Engineering, 2005
Blecker, T., Abdelkafi, N., Kreuter, G., Friedrich, G., “Product configuration systems: state-of-the-
art, conceptualization and extensions”, MCSEAI Tunisia, 2004
Bohanec, M., “What is decision support?”, Proceedings from Information Society IS-2001: Data
Mining and Decision Support in Action!, 2001
Brathaug, T., “Product configuration in ship design”, Master thesis, Department of Marine
Technology, NTNU, 2008
Brathaug, T., Holan, J. O., Erikstad S. O., “Representing design knowledge in configuration-based
conceptual ship design” COMPIT, Liege, 2008.
Chandrasekaran, B., Stone, R.B., McAdams, D.A., “Developing design templates for product
platform focused design”, Journal of Engineering Design, vol. 15, 2004
Christiansen, K., Tvenge, K., “Shaping product portfolios for the future”, Valcon management
consultants, [Report], 2003
CS787: Advanced algorithm lecture notes, University of Wisconsin, [Online],
[http://pages.cs.wisc.edu/~shuchi/courses/787-F09/scribe-notes/lec5.pdf], Accessed March 27,
2012
Dahmus, J.B., Otto, K.N., Gonzalez-Zugasti, J.P., “Modular product architecture”, Design Studies,
vol. 22, issue 5, 2001

Eggen, O., “Modular product development: a review of modularization objectives as well as

techniques for identifying modular product architectures, presented in a unified model”,
Department of Product Design, NTNU, 2003

enge.vt.edu website, [Online],
[http://www.enge.vt.edu/terpenny/Smart/Virtual_econ/Module2/pahl_and beitz_method.htm],
Accessed February 20, 2012

Ericsson, A., Erixon G., “Controlling design variants: modular product platforms”, Society of
Manufacturing Engineers, ISBN 978-0872635142, 1999

99

Erikstad, S.0., “Modularization in shipbuilding and modular production”, Innovation in Global
Maritime Production — 2020 [Working paper], NTNU, 2009

Erikstad, S.O., Lecture notes on TMR 4115 [Design methods], Department of Marine Technology,
NTNU, Fall 2010

Erikstad, S.0., Hagen, A., “Applying product platform technologies in ship specification
development”, International Marine Design Conference [IMDC], Ml, 2006

Erixon, G., Kenger, P., “Development of modular products”, Proceedings of 4™ student
conference on modular products, Dalarna University, Sweden, 2006

Gockowski K., “Modularization in ship equipment”, Intermodul s/03/G, [Report], October 2005
Holtta-Otto, K., “Modular product platform design”, Doctoral dissertation, Department of
Mechanical Engineering, Helsinki University of Technology, 2005

Huang, C.C., “Overview of modular product development”, Proceedings of the National Science
Council, Republic of China, Part A (Physical Science and Engineering), 24(3), 2000

Katsoufis, G.P., “A decision making framework for cruise ship design”, Master thesis, Department
of Mechanical Engineering, MIT, 2006

Kawser, Z., Report on summer internship on Ship4C project, [Report], August 2011

Kawser, Z., “Modularization and configuration based design of offshore support vessel
accommodation areas”, Department of Marine Technology, NTNU, [Report], 2011

Kenger, P., Lecture notes on “Development of Modular Products”, Dalarna University, Sweden,
2006

Kidd, P.T., “Agile manufacturing: a strategy for the 21° century”, [Report]

Kreng, V.B., Lee, T.P., “QFD-based modular product design with linear integer programming—a
case study”, Journal of engineering design, June 2004

Kusiak, A.; “Concurrent engineering: automation, tools and techniques”, Wiley-Interscience, ISBN
978-0471554929, 1992

Kusiak, A., “Integrated product and process design: a modularity perspective”, Journal of
engineering design, 13(3): 223-231, 2002

Lean management instituut, “Volvo learns to use Modular Function Deployment”, [Report]
Levander, K., STX Europe company presentations, STX Europe, Finland

Levander, K., “System based ship design”, NTNU, 2009

Liker, J.K., Lamb, T., “What is lean ship construction and repair?”, Journal of ship production, vol.
18, issue 3, August 2002

Lu, N., Korman, T., “Implementation of Building Information Modeling (BIM) in modular
construction: benefits and challenges”, Construction research congress, American Society of Civil

Engineers, 2010

100

Mistree, F., Smith, W.F., Muster, D., Allen, J.K., “Decision-based design: a contemporary
paradigm for ship design”, Proceedings of SNAME, 1990

Moyst, H., Das, B., “Factors affecting ship design and construction lead-time and cost”, Journal of
ship production, vol. 21, issue 3, August 2005

Mullens, M.A., “Production flow and shop floor control: structuring the modular factory for
custom homebuilding”, Proceedings of National Housing Research Agenda for Construction and
Production, ASCE, 2004

Nepal, B.P., “An integrated framework for modular product architecture”, Doctoral dissertation,
Wayne State University, 2005

Nick, E.K., “Fuzzy optimal allocation and arrangement of spaces in naval surface ship design”,
Doctoral dissertation, University of Michigan, 2008

Pahl, G., Beitz, W., “Engineering design: a systematic approach”, Springer, ISBN 9781846283185,
1999

Pawling, R., Andrews D., “Design sketching — the next advance in computer aided preliminary
ship design?”, COMPIT, Berlin, Germany, 2011

Pimmler, T.U., Eppinger, S.D., “Integration analysis of product decompositions”, ASME Design
Theory and Methodology Conference, Minneapolis, 1994

Rode, V., Industrial designer, STX OSV Design AS

Simpson, T.W., “Product platform design and customization: status and promise”, DETC, Ai
Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing, 18(1): 3-20., 2004
SmartMarket Report: “Prefabrication and modularization: increasing productivity in construction
industry”, McGraw Hill Construction, [Report], 2011

SRl online, Maths & Decision Systems Group, Silsoe Research Institute, [Online],
[http://www.sri.bbsrc.ac.uk/scigrps/sg9.htm], Accessed February 22, 2012

Stone, R.B., Wood, K.L., “Development of a functional basis for design”, Journal of mechanical
design, 2000

STX OSV official website, [Online], [http://www.stxosv.com/Pages/default.aspx], Accessed March
14, 2012

Tsai, Y.T., Wang, K.S., “The development of modular-based design in considering technology

complexity”, European journal of operational research, vol. 119, 1999

Ulrich, K., Eppinger, S. “Product design and development” 4th ed., McGraw-Hill, 2007

Ulrich, K., Tung, K., “Fundamentals of Product Modularity,” Issues in Design
Manufacture/Integration, ASME, 1991

van Oers, B., “A packing approach for the early stage design of service vessels”, VSSD, ISBN 978-
90-6562-283-9, 2011

101

van Oers, B., Stapersma D., Hopman J., “Issues when selecting naval ship configurations from a
Pareto-optimal set”, AIAA, Victoria, Canada, September 2008

van Oers, B., Stapersma, D., Hopman, J., “A 3d packing approach for the early stage
configuration design of ships”, INEC, UK, May 2010

Vestbgstad, @., Master thesis on system based ship design, Department of Marine Technology,
NTNU, 2011

102

12. Appendix

A. System Based Ship Design (SBSD)'

The SBSD approach was developed for ships by Kai Levander. It has similarities to both expert
systems and case based design approaches, with focus on experience data and decision support
and can probably best be described as a variant of an expert system.

The model has been developed for container vessels, RORO vessels and cruise vessels giving
estimates of new builds based on earlier designed vessels. These vessels are to a large extent
generic, and follow a pattern in the design with small differences thus the design task is more of a
scaling issue. To estimate the need for displacement the method uses a bottom up strategy to
determine the needed area, space and weight for each sub function of the new build, and
thereby estimates the displacement, main dimensions and building costs.

A functional breakdown is used to be able to utilize the outcome for statistical purposes for new
vessel projects. Andrews, Pawling, Casarosa, Galea, Deere, Lawrence, Gwynne and Boxall
distinguish the main functions of naval vessels in “Float”, “Move”, “Fight” and “Infrastructure”
while Levander (2009) firstly split the vessel into the categories “Ship functions” and “Payload
functions” where the “Ship Functions” are functions that are needed to operate the ship,
independent of the cargo on board. The Payload Functions are functions and requirements that
generate cash flow for the vessel. For instance it is a requirement for chemical tankers to have
the ability to heat their cargo while the main function of the payload is the cargo space. For
transport vessels with limited variations of products, it is normally easy to distinguish between
Ship Functions and Payload Functions since the systems are more or less split. For offshore
vessels this is a lot more challenging.

Currently, through the Ship4C project Kai Levander, NTNU and STX OSV are exploring how the
approach could be deployed for offshore vessels such as PSV, AHTS and OSCVs. Levander has
developed a new function hierarchy designed specifically for OSVs. Instead of the term Payload
Functions, he uses Task Related Functions, which is more wide-ranging and fits specialized vessels
better. In this category all cargo related functions are added, as well as service related functions

such as anchor handling winch, offshore crane and so on.

! This excerpt is taken from the master thesis of @yvind Vestbgstad (2011)

103

By calculating without drawing, the SBSD approach does not lock assumptions in the concept
phase and will thereby support a more creative process in the start of the project. Levander
describes SBSD as:

“System Based Ship Design is like a checklist that reminds the designer of all the factors that
affect the design and record his choices. It gives the possibility to compare the selections with
statistical data derived from existing, successful designs.” (Levander, 2009)

The SBSD method is suitable for early design decisions, and more of a tool to find the best
assumptions before starting designing the vessel. The use of SBSD would secure that the new
design is based on the most fitted basis ship, and thereby save iterations in the design spiral later

on.

104

B. Code for the real case study

Main class
package dssupd;

import javax.swing.*;

import org.apache.poi.hssf.usermodel.HSSFCell;
import org.apache.poi.hssf.usermodel.HSSFRow;
import org.apache.poi.hssf.usermodel.HSSFSheet;
import org.apache.poi.hssf.usermodel.HSSFWorkbook;
import java.io.FileInputStream;

import java.io.lOException;

import java.util.ArrayList;

import java.util.lterator;

import java.util.List;

/* @author Choudhury */
public class Main{
public static String moduleNames[] = new String[200];

public static boolean flag = false;

public static deckTabs drawDecks;

public static boolean impossible = false;

public static int noOfDeck, noOfRank, noOfCrew, deckArea, singleCrewModuleSize,
doubleCrewModuleSize, corridor, noOfSingleCrewModule, noOfdoubleCrewModule,
noOfStaircase, areaOfStaircase, noOfModules, deckLen, deckWidth,
noOfOfficerModules, unplaced, placed, currentDeck, currentRank, rest,
startX, startY, subGridBreadth, currentPart;

public static int[] noOfPersoninEachRank = new int[20];

public static int[] officerModuleSizes = new int[20];

public static int[][][] decks = new int[10][80][80];

public static int[][][] c = new int[10][80][80];

public static module[] allModules = new module[100];

public static fixedModule staircase, singleCrew, doubleCrew;

public static fixedModule[] officerModules = new fixedModule[20];

public static subGrids grid[] = new subGrids[20];

public static rect[][] rectX = new rect[10][200];
public static rect[][] rectY = new rect[10][200];
public static int[] noOfRX = new int[10];
public static int[] noOfRY = new int[10];

public static int[][] deckVsMod = new int[10][100];

public static int[] counts = new int[10];
public static boolean[] placedMod = new boolean[200];

105

public static int modL, modW, minLen;

public static module tm;

public static int extra = 0;

public static String un[] = {"P.WC", "St.s", "E.c","", "Ms", "C.r","OF", "Gym", "W", "Sto","Dayr","Gly",
"P.s"}

public static void main(String[] args) throws Exception

{

try{

String filename = "dss_input.xIs";

List sheetData = new ArrayList();

FileInputStream fis = null;

try {
fis = new FilelnputStream(filename);
HSSFWorkbook workbook = new HSSFWorkbook(fis);
HSSFSheet sheet = workbook.getSheetAt(0);

Iterator rows = sheet.rowlterator();
while (rows.hasNext())
{
HSSFRow row = (HSSFRow) rows.next();
Iterator cells = row.celllterator();
List data = new ArrayList();
while (cells.hasNext())
{
HSSFCell cell = (HSSFCell) cells.next();
data.add(cell);
}
sheetData.add(data);
}
}
catch (IOException e)
{
e.printStackTrace();
JOptionPane.showMessageDialog(null, "Input file dss_input.xls is not found");
}
finally
{
if (fis I= null) fis.close();
}
for(int i=0; i<200; i++) placedMod][i] = false;
for(int i=0; ixnoOfDeck; i++) counts[i] = 0;
readExcelData(sheetData);

corridor = 3; //1.5 meter
for(int i = 0; ixnoOfDeck; i++)
for(int j=0; j<deckWidth; j++)
for (int k=0; k< deckLen; k++)

106

{
decksl[i][jl[k] = 0;
clil(i](k] = 0;

}

placeStairs();

for(int pp = 0; pp < noOfDeck; pp++)
{

noOfRX[pp] = 0;

noOfRY[pp] = 0;
}

unplaced = noOfOfficerModules; // total officer module
placed = 0; // current rank officer module
currentDeck = 0; // topmost deck
currentRank = 0; // higest rank
currentPart=1;
rest = (deckWidth - staircase.width - 2*corridor)/2;
startX = startY = 0;
int kk = 0;
while (unplaced > 0 && kk < 2 && kk < noOfDeck)
{
subGridBreadth = staircase.length; // for left/right portion
placeAM1();
if(unplaced > O)currentDeck++;
kk++;
}
while (unplaced > 0 && kk < noOfDeck)
{
placeAM2();
if(unplaced > O)currentDeck++;
kk++;
}
//printDecks(); //debug purpose
System.out.printin("before..........cccuuveee. cd =" + currentDeck + " cp = " + currentPart + " cr =" +
currentRank + " rest ="+ rest + " dl =" + deckLen);
System.out.printin("before...........cccuueee. up =" + unplaced);

extra += unplaced;
//crewmodule processing
int count = 0; //no of subparts
intL=0;
int w = (deckWidth - staircase.width - 2*corridor) / 2;
int usableL;
if(w >= singleCrew.width)
usablel = deckLen;
else usableL = deckLen - 2 * (staircase.length + corridor);

107

L =2 * usableL * (noOfDeck - currentDeck -1);
count += 2*(noOfDeck - currentDeck -1);
System.out.printin("1............. >>>>>,....>>>>>> L= "+L);
if(currentPart == 1) //upper left
{
if(rest >= singleCrew.width)
{
L +=rest;
count++;
System.out.printin("2............. >>>>>,....>>>>>> L= "+L);

}

else if(w >= singleCrew.width)
{
currentPart = 2;
startX = deckLen - w;
startY =0;
rest=w;
L+=w;
L += 2*(deckLen - max(max(staircase.length, singleCrew.length)+corridor, grid[currentDeck].left));
System.out.printin("3............. >>>>>,....>>>>>> L = "+L);
count +=3;
ki
else
{
currentPart = 3;
startX =0;
startY = grid[currentDeck].left;
L += 2 * (deckLen - grid[currentDeck].left - staircase.length - corridor);
count +=2;
rest = deckLen - grid[currentDeck].left - staircase.length - corridor ;
subGridBreadth = 0;

System.out.printin("4............. >>>>>,....>>>>>> L = "+L);
ki
}
else if(currentPart == 2) //lower left
{
if(rest >= max(singleCrew.width, doubleCrew.width))
{
L +=rest;
L += 2*(deckLen - max(max(staircase.length, singleCrew.length)+corridor, grid[currentDeck].left));
count++;
System.out.printin("5............. >>>>>,....>>>>>> L= "+L);
ki
else
{

currentPart = 3;
startX = startY = 0;
int pl = deckLen - grid[currentDeck].left;

108

if(w < max(singleCrew.width, doubleCrew.width))
{
pl -= (staircase.width + corridor);
startY = grid[currentDeck].left;
}
L+=2*pl;
rest = pl;
subGridBreadth = 0;
System.out.printin("6............. >>>>>,....>>>>>> L= "+L);
ki
count += 2;
}
else if(currentPart == 3) //upper
{
if(rest >= singleCrew.length)
{
L +=rest;
count++;
System.out.printIn("7............. >>>>>,....>>>>>> L = "+L);

}

else
{
currentPart = 4;
startY =0;
rest = decklLen;
if(w < singleCrew.width)
{
rest -= (staircase.length + corridor);
if(currentDeck < 2)
{
startY = grid[currentDeck].left;
rest -= grid[currentDeck].left;
!
else
{
startY = (staircase.length + corridor);
rest -= (staircase.length + corridor);
!
}
subGridBreadth = 0;
1
L += deckLen;
if(w < singleCrew.width) L -= 2*(staircase.length + corridor);

System.out.printIn("8............. >S>>>>,....>>>>>> L= "+L);
count++;

}

else if(currentPart == 4) //lower

{

109

if(rest >= singleCrew.length)

{
L +=rest;
count++;
System.out.printIn("9............. >>>>>,....>>>>>> L = "+L);
}
}
L -= ((count-1) * max(singleCrew.length, doubleCrew.length));
System.out.printIn("10............. >S>>>>.....>>>>>> L= "+L);

System.out.printin("available length =" + L+ " sl =" + singleCrew.length + " dl =" + doubleCrew.length +
"count =" + count);

int temp =L/ noOfCrew;
System.out.printin("temp =" + temp);

if(temp >= singleCrew.length)

{
noOfSingleCrewModule = noOfCrew;
noOfdoubleCrewModule = 0;

officerModules[noOfRank] = singleCrew;
noOfPersoninEachRank[noOfRank] = noOfSingleCrewModule;
currentRank = noOfRank;

noOfRank++;

moduleNames[noOfRank] = "SM";

unplaced = noOfSingleCrewModule;

placed = 0;
}
else
{
double ttmp = (L - (double)singleCrew.length*noOfCrew)/((double)doubleCrew.length - 2 *

singleCrew.length);
noOfdoubleCrewModule = (int)Math.ceil(ttmp);
noOfdoubleCrewModule = min(noOfCrew/2, noOfdoubleCrewModule);
System.out.printIn("here......... "+ ttmp + + singleCrew.length +
doubleCrew.length);
if(noOfdoubleCrewModule >= 0)
{
noOfSingleCrewModule = noOfCrew - 2* noOfdoubleCrewModule;
officerModules[noOfRank] = singleCrew;
noOfPersoninEachRank[noOfRank++] = noOfSingleCrewModule;
moduleNames[noOfRank] = "SM";
officerModules[noOfRank] = doubleCrew;
noOfPersonlinEachRank[noOfRank++] = noOfdoubleCrewModule;
moduleNames[noOfRank] = "DM";
currentRank = noOfRank - 2;
unplaced = noOfSingleCrewModule + noOfdoubleCrewModule;
placed = 0;

+ noOfCrew +

110

}

else

{
flag = true;
System.out.printIn("It is not possible to place the crew modules.");
impossible = true;

}
}
System.out.printIn("......cccccee i, s =" + noOfSingleCrewModule);
System.out.printIn(".......cccceee i d =" + noOfdoubleCrewModule);
System.out.printin(".......c..cccoeeennnnnnn. cd = " + currentDeck + " cp = " + currentPart + " cr =
currentRank + " rest ="+ rest + " dl =" + deckLen);
System.out.printIn("........ccccccerrrnniis up =" + unplaced);

if(noOfSingleCrewModule*singleCrew.length + noOfdoubleCrewModule*doubleCrew.length >
impossible = true;
if(limpossible)
{
if(unplaced > 0)
{
placeCrewMod();
currentDeck++;
System.out.printIn("ki hoilo");
ki
int tmw = (deckWidth - staircase.width - 2*corridor)/2;
while(unplaced > 0 && currentDeck<noOfDeck)
{
startX =0;
if((currentDeck==0 | | currentDeck==1) && tmw >= singleCrew.width)
{
currentPart = 1;
startY = 0;
rest = tmw;
subGridBreadth = staircase.width;
}

else

{

currentPart = 3;
if(tmw >= singleCrew.width)

{
startY =0;
rest = decklLen;
!
else
{

startY = staircase.length + corridor;
rest = deckLen - 2*startY;

}

L)

111

subGridBreadth = staircase.width;
}
placeCrewMod();
currentDeck++;
ki
printDecks(); //debug purpose
if(unplaced >0) flag = true;
//System.out.printin("still unplaced " + unplaced);
1
else flag = true;
//System.out.printIn("It is not possible to place the modules in this template");
testCM();
for(int pg=0; pg<noOfDeck; pg++) updateCSumAll(pq);
printDecks();

int pn = noOfRank+1;
for(int i =0; iknoOfModules; i++)
{

moduleNames[pn++] = allModules[i].sName;

}

//processCMFM();

unplaced = noOfModules;
System.out.printIn("nomod " + unplaced);
for(currentDeck=0; unplaced>0 && currentDeck<noOfDeck; currentDeck++)
{
startX = grid[currentDeck].up;
startY = grid[currentDeck].left;

rest = deckLen - grid[currentDeck].right-grid[currentDeck].left;
placeCMFM();
}
extra += unplaced;
if(lunplaced > 0) flag = true;
drawDecks = new deckTabs();
if(flag)
JOptionPane.showMessageDialog(null, "Placement is not possible for current template. Change the
template and try again.");
1
catch(Exception e){JOptionPane.showMessageDialog(null, "Error in processing.");}
//printDecks();
}
public static void testCM()
{
int t = staircase.length + corridor;
for(int i=0; ixnoOfDeck; i++)

{

112

if(grid[i].left <= t) grid[i].left = t;
if(grid[i].right <=t) grid[i].right = t;

if(grid[i].up <= corridor) grid[i].up = 0;
if(grid[i].down <= corridor) grid[i].down = 0;

startX = grid[i].up;
startY = grid[i].left;

System.out.printIn("l =" + grid[i].left +" r = "+ grid[i].right +" u = "+ grid[i].up +" d= "+ grid[i].down);
//color(i, deckWidth - grid[i].down-grid[i].up, deckLen - grid[i].right-grid[i].left , 10);

}
}
public static void processCMFM()
{

inti, j,k;

for(i=0; ixnoOfDeck; i++)
for(j=0; j<noOfModules; j++)

if(allModules[jl.npDecks ==1 && allModules[j].pDeck[0] == i)

{

System.out.printIn("......ccceeeeeiiiiec e,

deckVsMod][i][counts[i]++] = j;
}

for(i=0; ixnoOfDeck; i++)
for(j=0; j<noOfModules; j++)
if(allModules[jl.npDecks > 1)
{
for(k=0; k<allModules[jl.npDecks; k++)
if(allModules[jl.pDeck[k] == i)
deckVsMod][i][counts[i]++] = j;

}
}
public static void placeStairs()
{
if(staircase.width % 2 ==1))
{

staircase.width++;
staircase.size = staircase.length * staircase.width;
}
int wl = (deckWidth - staircase.width) / 2;
int w2 = wl + staircase.width;
int x2 = deckLen - staircase.length;

for(int k=0; k<noOfDeck; k++)

113

grid[k] = new subGrids(0, 0, 0, 0);
for(int i= wl; i<w2; i++)
for(int j=0; j<staircase.length; j++)
{
decks[k][i][j] = 100;
decks[k][i][x2+j] = 100;

}
}
}
public static void placeAM1()
{
startX = 0;
startY =0;

rest = (deckWidth - staircase.width - 2*corridor) / 2;

int wl = rest;

currentPart=1;

while(unplaced > 0 && rest >=officerModules[currentRank].width)
findModulePlaceX(rest);

if(unplaced > 0)

{
startX = deckWidth - wi;
startY = 0;
rest =wil;
currentPart = 2;
while(unplaced > 0 && rest >=officerModules[currentRank].width)
{
System.out.printin("wl =" + wl + " %%%%%%here ");
findModulePlaceX(rest);
ki
}

grid[currentDeck].left = subGridBreadth + corridor;
grid[currentDeck].right = staircase.length + corridor;

subGridBreadth = 0O;

startX = 0;

startY = grid[currentDeck].left;

int 11 = deckLen - grid[currentDeck].left;

rest=11;

currentPart = 3;

if(wl < officerModules[currentRank].width) rest -= (staircase.length + corridor);

while(unplaced > 0 && rest >=officerModules[currentRank].length)
findModulePlaceY(rest,0); // uppper portion

grid[currentDeck].up= subGridBreadth + corridor;
subGridBreadth = 0;

114

}

if(unplaced > 0)
{
startY = grid[currentDeck].left; //startx variable
rest =11;
currentPart = 4;
if(wl < officerModules[currentRank].width) rest -= (staircase.length + corridor);
while(unplaced > 0 && rest >=officerModules[currentRank].length)
findModulePlaceY(rest,1);
}

grid[currentDeck].down = subGridBreadth + corridor;

public static void placeAM2()

{

grid[currentDeck].left = staircase.length + corridor;
grid[currentDeck].right = staircase.length + corridor;

System_out_println("::" + grid[currentDeck]_left);
subGridBreadth = 0;

startX = 0;

startY = grid[currentDeck].left;

int 11 = deckLen - grid[currentDeck].left - grid[currentDeck].right;
rest=11;

int wl = (deckWidth - staircase.width - 2*corridor) / 2;

if(wl >= officerModules[currentRank].width)

{
startY = 0;

rest += 2*(staircase.length + corridor);

}

currentPart = 3;
while(unplaced > 0 && rest >=officerModules[currentRank].length)
findModulePlaceY(rest,0);

grid[currentDeck].up= max(grid[currentDeck].up, subGridBreadth + corridor);
subGridBreadth = 0;

if(unplaced > 0)
{
startX = deckWidth - officerModules[currentRank].width;
startY = grid[currentDeck].left;
rest =11;
if(wl >= officerModules[currentRank].width)

{
startY =0;
rest += 2*(staircase.length + corridor);

}

115

currentPart = 4;
while(unplaced > 0 && rest >=officerModules[currentRank].length)
findModulePlaceY(rest,1);

}

grid[currentDeck].down = max(grid[currentDeck].down, subGridBreadth + corridor);
}
public static void findModulePlaceX(int w1)

{

int k = min(w1/officerModules[currentRank].width, noOfPersoninEachRank[currentRank]-placed);
System.out.printIn(">>>>>>>>>>>>>5>>55555>5555555>5>55555>>5>5>5>>>>>>> k= "+ k+ " " + wl +

officerModules[currentRank].width);

+

int tl = k*officerModules[currentRank].width;

color(currentDeck, tl, officerModules[currentRank].length, currentRank+1);

rectX[currentDeck][noOfRX[currentDeck]++] = new rect(startX, starty, tl,
officerModules[currentRank].length, k);

if(officerModules[currentRank].length > subGridBreadth)
subGridBreadth = officerModules[currentRank].length;

rest = wl - k*officerModules[currentRank].width;
startX += k*officerModules[currentRank].width;
placed +=k;

unplaced -=k;

if(placed == noOfPersonIinEachRank[currentRank])
{
currentRank++;
placed = 0;
}
}
public static void findModulePlaceY(int |1, int upDown)
{
int k = min(l1/officerModules[currentRank].length, noOfPersoninEachRank[currentRank]-placed);
iflupDown == 1) startX = deckWidth - officerModules[currentRank].width;
else startX = 0;

int tl = k*officerModules[currentRank].length;
color(currentDeck, officerModules[currentRank].width, tl,currentRank+1);
rectY[currentDeck][noOfRY[currentDeck]++] = new rect(startX, starty, tl,
officerModules[currentRank].width, k);
if(officerModules[currentRank].width > subGridBreadth)
subGridBreadth = officerModules[currentRank].width;

rest = |11 - k*officerModules[currentRank].length;
startY += k*officerModules[currentRank].length;
placed +=k;

unplaced -=k;

116

System.out.printIn(">>>>>>>>>5>5555555555555555555555555555>5>>5>5>>>> k=" + k + " "

officerModules[currentRank].width);

if(placed == noOfPersonIinEachRank[currentRank])
{
currentRank++;
placed = 0;
}
}
public static void findCMFFMPlaceY(int color)
{
System.out.printIn("in findcmplc");
color(currentDeck, modW, minLen, color);
rectY[currentDeck][noOfRY[currentDeck]++] = new rect(startX, startY, minLen, modW, 1);

rest-= minlLen;
startY += minlLen;

unplaced--;

System.out.printin("............... "+startX +" " + startY +" "+ minLen +" "+ modW);
}
public static void placeCrewMod()
{

int wl =(deckWidth - staircase.width - 2*corridor)/2;
switch(currentPart)

{

case 1:

while(unplaced > 0 && rest >=officerModules[currentRank].width)
findModulePlaceX(rest);

rest = wil;
startX = deckWidth - wi;

startY = 0;//grid[currentDeck].left = max(grid[currentDeck].left, subGridBreadth + corridor);

case 2:

while(unplaced > 0 && rest >=officerModules[currentRank].width)
findModulePlaceX(rest);

grid[currentDeck].left = max(grid[currentDeck].left, subGridBreadth + corridor);
grid[currentDeck].right = staircase.length + corridor;

subGridBreadth = 0;

startX = 0;
if(currentDeck < noOfDeck)
{

startY = grid[currentDeck].left;
rest = deckLen - grid[currentDeck].left;

}
if(currentRank < noOfRank && w1 < officerModules[currentRank].width)

+

117

rest -= (staircase.length+corridor);

case 3:
while(unplaced > 0 && rest >=officerModules[currentRank].length)
findModulePlaceY(rest,0); // uppper portion

if(currentDeck < noOfDeck)
grid[currentDeck].up= max(grid[currentDeck].up, subGridBreadth + corridor);

subGridBreadth = 0;
if(currentDeck < noOfDeck && currentDeck < 2 && currentRank < noOfRank)
{

startY = grid[currentDeck].left;

rest = decklLen - startY;

if(wl < officerModules[currentRank].width)
rest -= (staircase.length + corridor);

}
else if(currentDeck < noOfDeck && currentRank < noOfRank)
{

startY = 0;

rest = decklLen;

if(wl < officerModules[currentRank].width)
{

startY = staircase.length + corridor;

rest -= 2*(staircase.length + corridor);

}

}
if(currentRank < noOfRank)

startX = deckWidth - officerModules[currentRank].width;

case 4:
while(unplaced > 0 && rest >=officerModules[currentRank].length)
findModulePlaceY(rest,1);
if(currentDeck < noOfDeck)
grid[currentDeck].down = max(grid[currentDeck].down, subGridBreadth + corridor);
subGridBreadth = 0;

}
}
public static void placeCMFM()
{

System.out.printIn("in placeCMFM " + unplaced + " " + " "+currentDeck+ " " +counts[currentDeck]);

int kk = 0;
boolean yes = false;

while(unplaced > 0 && kk<counts[currentDeck])

{

118

}

}

if(placedMod[deckVsMod[currentDeck][kk]])
{
kk++;
continue;
1
tm = allModules[deckVsMod[currentDeck][kk]];
minLen = 10000;
yes = decideDim();
if(yes)
{
int cl = deckVsMod[currentDeck][kk]+ noOfRank+1;
placedMod[deckVsMod[currentDeck][kk]] = true;
findCMFFMPlaceY(cl);

}
kk++;

public static boolean decideDim()

{

System.out.printIn("in dec");
intp,q,XY;

boolean tag = true;

for(int i=0; i<tm.clw; i++)

{

}

p = startX;
q = starty;

x = tm.width[i] + corridor;
if(startX+x > deckWidth+corridor) continue;
else if(startX+x == deckWidth+corridor) x-= corridor;

y = tm.len[i] +corridor;
if(startY +y > deckLen-staircase.length) continue;

System.out.printIn("in decision " + p +
if(isEmpty(currentDeck, p, q, X, y))
{
System.out.printIn(" yes");
tag = false;
if(tm.len[i] < minLen)
{
minLen = tm.len[i];
modW = tm.width[i];
}
ki

+g+""H+x+""+y);

if(tag) return false;
return true;

119

}
public static void color(int d, int x2, int y2, int c)
{

try{
System.out.printn("##¥ sk sk sk xxkxk k¥ *%in color =" + ¢ + " deck =" + currentDeck + " startX

="+startX + "startY =" +startY + "x2="+x2+"y2 =" +y2);
for(int i=startX; i<startX + x2; i++)
for(int j=startY; j<startY + y2; j++)
{
if(decks[d][i][j] != 0)
flag = true;
decks[d][i]l[j] = c;
ki
}
catch(Exception e){ flag = true;
}
}
public static boolean isEmpty(int d, int p, int g, int x, int y)
{
inti,j;
/1tryd
System.out.printin("BBBBBBBBBBBBBBBB " + d);
boolean t = true;
for(i=p; i<p+x; i++)
for(j=q; j<q+x; j++)
{
if(i>=deckWidth || j >=deckLen) return false;
if(decks[d][i][j] != 0) {t = false; break; }
ki

//}catch(Exceptione) { //System.out.printin(i+""+j); }

return t;

}

public static boolean isEmptyl(int d, int p, int g, int x, inty)
{

int sum = c[d][x][y];

if(p > 0) sum-= c[d][p-1][y];

if(q > 0) sum-= c[d][x][q-1];

if(p>0 && g>0) sum+= c[d][p - 1][q - 1];

if (sum == 0) return true;

return false;

}
public static void updateCSumAll(int d)

{
for(int i=0; ixdeckWidth; i++)c[d][i][0] = decks[d][i][0];
for(int i=0; ixdeckLen; i++)c[d][0][i] = decks[d][O][i];

120

for(int i=1; ixdeckWidth; i++)
for(int j=1; j<deckLen; j++)
c[d][il[j] = decks[d][i][j] + c[d][i-1][j] + c[d][i][j-1] - c[d][i-1][j-1];

}
public static void updateCSumPart(int d, int stx, int sty)

{
if(stx == 0)
for(int i=sty; i<deckWidth; i++)c[d][i][0] = decks[d][i][0];
if(sty == 0)
for(int i=stx; i<deckLen; i++)c[d][0][i] = decks[d][0][1];

for(int i=stx; ixdeckWidth; i++)
for(int j=sty; j<deckLen; j++)
if(i-1 >=0 && j-1 >=0)
c[d][il(j] = decks[d][i](j] + c[d][i-1][j] + c[d][i]{j-1] - c[d][i-1][j-1];
}

private static void readExcelData(List sheetData) {

String t1,t2;

HSSFCell cell;

List list;

module tempMod;
inti=0,j, k, modSize;
noOfModules = 0;

//No. of deck

list = (List) sheetData.get(i++);

cell = (HSSFCell) list.get(1);

noOfDeck = (int)Float.parseFloat(cell.toString().trim());
System.out.printIn("noOfDeck = " + noOfDeck);

//Deck area

list = (List) sheetData.get(i++);

cell = (HSSFCell) list.get(1);

deckArea = (int)Float.parseFloat(cell.toString().trim());

cell = (HSSFCell) list.get(2);

deckLen = 2* (int)Float.parseFloat(cell.toString().trim());

cell = (HSSFCell) list.get(3);

deckWidth = 2*(int)Float.parseFloat(cell.toString().trim());
System.out.printin("deckArea =" + deckArea + deckLen + deckWidth);

//No. of rank

list = (List) sheetData.get(i++);

cell = (HSSFCell) list.get(1);

noOfRank = (int)Float.parseFloat(cell.toString().trim());
System.out.printIn("noOfRank =" + noOfRank);

121

//No. of personnel in each rank (1->2->...)
noOfOfficerModules = 0;
moduleNames[0] = "ST";

list = (List) sheetData.get(i++);

for (j = 1; j < list.size(); j++)

{
cell = (HSSFCell) list.get(j);
noOfPersoninEachRank[j-1] = (int)Float.parseFloat(cell.toString().trim());
moduleNames[j] = "AM Rank " + j;
System.out.print(" np =" + noOfPersoninEachRank[j-1]);
noOfOfficerModules += noOfPersoninEachRank([j-1];

}

System.out.printIn("noofofficermodule =" + noOfOfficerModules);

//No. of crew

list = (List) sheetData.get(i++);

cell = (HSSFCell) list.get(1);

noOfCrew = (int)Float.parseFloat(cell.toString().trim());
System.out.printIn("noOfCrew =" + noOfCrew);

//Single crew module size

list = (List) sheetData.get(i++);

cell = (HSSFCell) list.get(1);

singleCrewModuleSize = (int)Float.parseFloat(cell.toString().trim());
System.out.printIn("singleCrewModuleSize =" + singleCrewModuleSize);
singleCrew = new fixedModule(singleCrewModuleSize);

//Double crew module size

list = (List) sheetData.get(i++);

cell = (HSSFCell) list.get(1);

doubleCrewModuleSize = (int)Float.parseFloat(cell.toString());
System.out.printIn("doubleCrewModuleSize =" + doubleCrewModuleSize);
doubleCrew = new fixedModule(doubleCrewModuleSize);

//Officer module size

list = (List) sheetData.get(i++);

for (j = 1; j < list.size(); j++)

{
cell = (HSSFCell) list.get(j);
officerModuleSizes[j-1] = (int)Float.parseFloat(cell.toString().trim());
System.out.print(" om =" + officerModuleSizes[j-1]);
officerModules[j-1] = new fixedModule(officerModuleSizes([j-1]);

}

System.out.printin("");

//Fixed module specification

122

list = (List) sheetData.get(i++);

//Staircase

//not included in module list

list = (List) sheetData.get(i++);

cell = (HSSFCell) list.get(1);

noOfStaircase = (int)Float.parseFloat(cell.toString().trim());
System.out.print(" noOfStaircase =" + noOfStaircase);

cell = (HSSFCell) list.get(2);

areaOfStaircase = (int)Float.parseFloat(cell.toString().trim());
System.out.printIn(" areaOfStaircase = " + areaOfStaircase);
staircase = new fixedModule(areaOfStaircase);

int trnk = noOfRank + 3;

//Cleaning locker, in all deck
list = (List) sheetData.get(i++);
cell = (HSSFCell) list.get(1);
t1 = cell.toString();
cell = (HSSFCell) list.get(1);
int cln = (int)Float.parseFloat(cell.toString().trim());
System.out.print("cln =" + cln);
cell = (HSSFCell) list.get(2);
int clarea = (int)Float.parseFloat(cell.toString().trim());
System.out.print(" clarea =" + clarea);
tempMod = new module(clarea);
tempMod.npDecks = 1;
tempMod.moduleName = t1;
for(k = 0; k<noOfDeck; k++)
for(j=0; j<cln; j++)
{
tempMod.sName = "CL" + (j+1);
tempMod.pDeck[0] = noOfDeck - k - 1; // k = deck no
System.out.printIn("AMAAAAAAAANANANAA > > > > > > " + tempMod.pDeck[0]);
deckVsMod[tempMod.pDeck[0]][counts[tempMod.pDeck[0]]++] = noOfModules;
allModules[noOfModules++] = tempMod;

}

for(; i < sheetData.size(); i++)
{
list = (List) sheetData.get(i);
for (j=1; j < list.size();)
{
cell = (HSSFCell) list.get(0);
t1 = cell.toString(); // module name
cell = (HSSFCell) list.get(j++);
t2 = cell.toString().trim(); // deck where it can be placed
cell = (HSSFCell) list.get(j++);

123

modSize = (int)Float.parseFloat(cell.toString().trim());

System.out.printin("module name =" +t1 + " deck =" + t2 + " ModSizes = " + modSize);
if(i<=14)tempMod = new module(modSize); //fm

else tempMod = new module(modSize); //cm

tempMod.moduleName = t1;

tempMod.sName = un[i-11];

if(t2.equals("*"))
{
tempMod.npDecks = noOfDeck;
for(int ts = 0; ts<noOfDeck; ts++){
tempMod.pDeck|[ts] = ts; // ts = deck no
deckVsMod([ts][counts[ts]++] = noOfModules;

System.out.print(ts +" ");}
}
else
{
tempMod.npDecks = 1;
int nn = t2.charAt(0) - 'A’;
int nnd = noOfDeck - nn - 1;
tempMod.pDeck[0] = nnd;
System.out.print(t2.charAt(0) + " nn" + nn + " " + nnd);
deckVsMod[nnd][counts[nnd]++] = noOfModules;

}
allModules[noOfModules++] = tempMod;

}System.out.printin("");

}
System.out.printin(noOfModules);

}

public static int min(int a, int b)

{
if (b < a) return b;
return a;

}

public static int max(int a, int b)

{
if (b > a) return b;
return a;

}
public static void printDecks()

{
for(int i=0; ixnoOfDeck; i++)
{
for(int j=0; j<deckWidth; j++)
{
for(int k = 0; k<deckLen; k++)

124

System.out.print(decks[il[j1[k]);
System.out.printin();
ki
System.out.printIn(); System.out.printin();
}
}
}

Module class
package dssupd;
/*@author Choudhury */

public class module {

String moduleName = new String();

String sName = new String();

int size;

int len[] = new int[50];

int width[] = new int[50];

int mindim;

int pDeck[] = new int[20]; // possible decks where the module can be placed
int npDecks;

int clw;

module(){}
module(int s)

{
size=s*4;
mindim = (int)(Math.sqrt(size) * 9 / 13);
int sq = (int)(Math.sqrt(size));
clw = npDecks = 0;

for (int i = mindim; i <= sq; i++)

{
if (size % i == 0 && (size/i) >= mindim)
{
len[clw] =;
width[clw] = size / i;
if (len[clw] != width[clw])
{
clw++;
len[clw] = size / i;
width[clw++] = i;
!
else clw++;
}
1

125

if(clw == 0)

{
int | = (int)Math.floor(Math.sqrt(size));
int u = (int)Math.ceil(Math.sqrt(size));

intll =size-1*1;
intuu =u * u - size;

if (Il<uu)
{
len[clw] =;
width[clw] = 1;
size = |*1;
}
else
{
len[clw] = u;
width[clw] = u;
size = u*u;
}
clw++;
1
for (intj = 0; j< clw; j++)
System.out.printin("len =" + len[j] + " wid =" + width[j]);

126

	Title Page
	

