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Abstract 

An environmentally friendly aqueous tape casting process for the fabrication of La2NiO4+δ 

membranes was developed using fine powders synthesised by spray pyrolysis. Green tapes 

with a thickness of 30-300 μm were obtained and dense and homogeneous membranes were 

prepared by lamination of green tapes followed by sintering in the temperature range 1300-

1420 °C. The bi-axial fracture strength of the sintered materials increased from ~ 108 to 

~155 MPa decreasing the average grain size of the membranes from about 9.6 to 4.2 μm. 

The hardness and fracture toughness, measured by the Vickers indentation technique, also 

decreased with increasing grain size. The mechanical properties of La2NiO4+δ ceramics are 

discussed with focus on micro-cracking/residual stresses due to the strong crystallographic 

anisotropy of La2NiO4+δ. 
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1. Introduction 

Gas separation by inorganic membranes is of importance due to their superior mechanical, 

chemical, and thermal resistance compared with organic membranes [1, 2]. Dense mixed ion 

and electron conducting (MIEC) membranes can be used to separate oxygen from air with 

100 % theoretical selectivity and can also be used as membrane reactors in selective 

oxidation of light alkanes, such as partial oxidation of methane to syngas [3,4,5] and 

oxidative dehydrogenation of ethane to ethylene [6]. La2NiO4+δ has attracted a significant 

attention since this material exhibits unique properties, including moderate thermal 

expansion coefficient,  a particularly low chemical expansion and high electrocatalytic 

activity [7]. La2NiO4+δ with the K2NiF4-type crystal structure [8] possess a wide range of 

oxygen hyper-stoichiometry (0 ≤ δ ≤ 0.25) [9], which is associated with the incorporation of 

interstitial oxygen ions. The amount of excess oxygen is strongly reduced with increasing 

temperature and reducing oxygen partial pressure [8]. The low chemical expansion of the 

material is related to the anisotropic crystallographic expansion of La2NiO4+δ which reflects 

the anisotropy of the crystal structure [7].  

The oxygen permeation in La2NiO4+δ is not sufficient for membrane reactor design based on 

thick membranes. To achieve satisfactory oxygen permeation flux it is necessary to decrease 

the membrane thickness, which gives constraints with respect to the mechanical and 

chemical stability. Therefore, the fundamental understanding of the mechanical properties of 

La2NiO4+δ is important. To the authors knowledge only Huang et al. have reported the 4-

point bending strength of porous La2NiO4+δ ceramics [10].  



Here, we report on the ceramic processing of dense La2NiO4+δ membranes by a combination 

of aqueous spray pyrolysis and aqueous tape casting. The environmental concerns and health 

aspects related to the use of organic solvents makes aqueous tape casting attractive. 

However, the use of water as solvent is more challenging relative to using organic solvents 

due to problems related to stresses during drying of the tapes [11, 12].  Moreover, we report 

on the mechanical properties of dense La2NiO4+δ membranes. Particular attention is given to 

the dependence of the grain size since the anisotropic nature of the crystal structure of 

La2NiO4+δ may lead to the development of residual stresses or micro-cracking.   

 

2. Experimental  

Membrane preparation 

Fine powders of La2NiO4+δ (LN) were synthesized by spray pyrolysis of an aqueous 

precursor solution. Aqueous solutions of the precursors La(NO3)3·6H2O (American 

Elements) and Ni(NO3)2·6H2O (Sigma-Aldrich) was prepared, and EDTA (Sigma-Aldrich) 

was added to the mixture of the two solutions as a complexing agent. The cation content of 

the two nitrate solutions was determined by a thermogravimetrical analysis and a 

stoichiometric La:Ni=2:1 ratio were used to in the final precursor solution. The precursor 

solution was atomized and pyrolysed at 850 °C [13]. The as-synthesized powder was 

calcined at 800 °C for 8 h in stagnant air followed by ball milling in 100 % ethanol and 

finally dried and sieved (150 μm) (powder I). Powder I was used for the preparation of the 



membranes. A La2NiO4+δ powder (powder II) with a larger particle size was processed by an 

additional calcination of powder I at 1100 °C for 10 h. Powder II was ball-milled and sieved 

(150 μm) after the second calcination.  

Aqueous slips were developed based on the recipe published by Lein et al. [13] and the 

amount of the different components in the slip recipes are listed in Table 1. Three slips were 

made with the two different LN powders and two different types of PVA. An overview of 

the optimized slip preparation process is presented in Fig. 1. The dispersant (Darvan C, R.T. 

Vanderbilt) was dissolved in distilled water (solution 1) and the LN powder was added to 

solution 1 and the resulting suspension was dispersion milled (ball mill, ZrO2 balls) for 6 h 

forming mixture 1. Solution 2 was prepared by dissolving 15 wt% PVA (PVA-88 (Acros 

Organics, 88 % hydrolysed, average M.W. 88000) or PVA-115 (VWR, 88 % hydrolysed, 

average M.W. 115000) in distilled water at 60 °C. Solution 2, the plasticizer polyethylene 

glycol (PEG) (PEG-10000, Fluka Chemie GmbH), and defoamer polypropylene glycol 

(PPG) (PPG-2000, Acros organics) were then added to mixture 1, and left for milling for 

another 12 h with a slow speed forming mixture 2. Additional PPG-2000 was added to 

mixture 2 and left for further milling for 3 h with a fast speed to remove air bubbles.  

Homogeneous slips (no segregation formed after 2 days aging) were cast on a MylarTM film 

using a Table Top Tape caster TTC-1200 (Richard E. Mistler, Inc.) with a speed of 10 

cm/min and a doctor blade gap of 300 - 750 μm. The tapes were dried on the Mylar film 

overnight at ambient conditions. To make dense membranes with the required thickness 

(500 - 800 m), the green tapes were laminated by pressing a stack of 4 to 6 tapes at 90 – 



150 °C for 3 – 5 min at 3 - 4 MPa. Both slip 1 and 2 recipes in Table 1 were used to make 

the dense membranes. Sheets of approximately 5 × 5 cm2 were cut from the dried tapes and 

stacked on top of each other with water sprayed between each tape to aid lamination. The 

green membranes were heat-treated to remove organic additives for 3 h at 700 °C with a 

heating rate of 60 K/h up to 200 °C and 30 K/min from 200 to 700 °C, and afterwards 

sintered in stagnant air at 1300 (LN-1) and 1420 °C (LN-2), respectively. To be able to 

prepare flat membranes, some of the membranes had to be annealed at 2-300 °C below the 

sintering temperature between two flat alumina plates after sintering. In addition, pellets (ϕ 

20 mm) were also prepared by uniaxial pressing at 25 MPa followed by sintering at 1250, 

1300, 1400, 1500 °C for 3 h. 

Characterization  

The specific surface area of the powders was measured by nitrogen adsorption (Tristar 3000 

Micrometrics). The viscosity of the slips after aging was determined using a Haake Mars 

rheometer (Thermo Scientific). Qualitative X-ray diffraction was carried out with a D8 

Focus X-ray diffractometer (Bruker AXS) to confirm the phase purity of the powder and the 

sintered membranes. The crystallographic density was calculated from the unit cell 

parameters, determined by Pawley fitting to the data using the orthorhombic space group 

Fmmm [14, 15]. Powder morphology and the microstructure of the membranes and pellets 

were examined by scanning electron microscopy (SEM) using a Hitachi S-3400 N electron 

microscope. The cross section of samples were polished to 1 μm and thermally etched at 

1150 °C for 30 min. The grain size was measured by the intercept method measuring ~ 100 



grains for each sample [16]. The density of the samples was measured by the Archimedes 

method (ISO 5017) using isopropanol.  

The room temperature bi-axial fracture strength of the dense membranes was determined by 

a ball on ring test [17,18] with a universal mechanical testing machine (Instron 5543). The 

stress-strain relationship was measured in load control mode until fracture of the specimens, 

and the stress was calculated using the method described by Chae et al. [17] In total 12 

specimens of each membrane type was measured. 

Hardness (Hv) and fracture toughness (KIc) at ambient temperature were measured using 

Vickers micro-indentation (Leica VMHT MOT) on polished surfaces at a load of 1.96 N. 

More than 50 indents were measured for each sample. The surface projected diagonal and 

crack lengths were measured by optical microscopy (a Reickert MeF3 optical microscope 

with a Sony DXC-930P Colour Video Camera). The fracture toughness was calculated from 

the average crack length, modulus of elasticity (155 GPa [10]) and measured hardness using 

the equation described by Malzbender et al. [19]. 

 

3. Results  

The X-ray diffraction patterns of the as-synthesized powder prepared by spray pyrolysis 

correspond to the diffraction pattern of La2NiO4+δ (Fig. 2), however a small quantity of 

La2O3 was present after calcination at 800 °C. The powder became single phase 

orthorhombic La2NiO4+δ after calcination at 1100 °C or sintering at 1300 °C (Fig. 2). 



Powder I calcined at 800 °C had a surface area of 9.4 ± 0.1 m2/g while calcination at 

1100 °C yielded a powder with as surface area of 5.4 ± 0.1 m2/g. Assuming spherical 

particles the surface area corresponds to a particle size of 0.09 and 0.16 μm for powder I and 

II, respectively. Refined lattice parameters for powder I were a = 5.4614(2) Å, b = 5.4656(5) 

Å and c = 12.6716(4) Å, corresponding to a crystallographic density of 7.03 g/cm3.  

Several slips were prepared from powder I and II according to the procedure outlined in Fig. 

1 and all the slips showed pseudoplastic behavior with a viscosity in the range 1800 – 2560 

cP at a shear rate of 50 s-1, which is considered as a similar shear rate as under the doctor 

blade during casting. [20] Slip 1 (2589 cP at 50 s-1) which contained PVA-88 as the binder 

showed higher viscosity than slip 2 and slip 3 (2051 cP for slip 2 and 1847 cP for slip 3 at 50 

s-1), which were made with PVA-115 as the binder. Successful tape casting was performed 

only based on recipe 1 and 3. Fully body curl independent on tape thickness was common 

for the tapes based on recipe 2, indicating that the particle size has a very significant 

influence on the green tape. The green tapes from slip 1 and 3 had smooth surfaces and a 

relatively uniform thickness. The thickness of the tapes was in the range 30 – 300 μm 

depending on the setting of the doctor blade.  

Dense (> 94 %), flat and homogeneous membranes with thickness in the range (500  800 

m) were obtained after lamination, binder burn-out and sintering. No delimitation of the 

laminated tapes was observed. Fig. 3 shows the microstructure of the La2NiO4+δ membranes 

sintered at 1300 °C (LN-1) and 1420 ºC (LN-2) and the average grain size was 4.2 ± 0.3 μm 

and 9.6 ± 1.3 μm, respectively. The average grain size and the relative density as a function 



of the sintering temperature of the membranes formed by tape casting are compared to the 

data for the uniaxial pressed pellets in Fig. 4. The relative density of the membranes made 

by tape casting was lower than that of uniaxial pressed pellets, while the average grain size 

were slightly larger. Both the relative density and the average grain size increased by 

increasing the sintering temperature. The materials became dense (> 94 %) at 1300 °C, and 

the relative density reached a maximum at 1400 °C.  

Typical load-displacement curves obtained using the ball on ring test are shown in Fig. 5 

and the La2NiO4+δ ceramics displayed a close to linear deformation behavior up to fracture. 

The average calculated fracture strength values were 155 ± 20 MPa and 108 ± 8 MPa for 

LN-1 and LN-2, respectively showing that the higher sintering temperature resulted in lower 

fracture strength. Fractography showed a transgranular fracture mode for both membranes 

(Fig. 4 (a1) and (b1)). The Weibull distribution plots of the mechanical strength data for the 

membranes are shown in Fig. 6. LN-1 has a Weibull modulus of m = 9 while LN-2 

represents a Weibull modulus of m = 17. The higher Weibull modulus for LN-2 suggests 

that these membranes are more homogeneous even though the strength is lower than for LN-

1.  

The hardness and the fracture toughness measured by Vickers micro-indentation are plotted 

as a function of grain size in Fig. 7. The initial increase in the hardness is due to the 

increasing density. For the dense materials independent on fabrication route, the hardness 

and estimated fracture toughness decrease with increasing grain size. Optical microscope 

images of selected indents are shown in Fig. 8. Mainly transgranular cracks are visible from 



the corners of the indents independent on grain size in line with the fractography of fracture 

surfaces. The indentation cracks shown in Fig. 8 are nearly straight for the materials with 

small grains, while for materials with large grains crack deflection is evident, which is most 

likely due to the interaction of the cracks with intragranular pores. 

 

4. Discussion  

After ball milling and calcination at 800 °C, powder I was not single phase, but with a 

suitable particle size for excellent tape casting performance, and the final sintered 

membranes based on powder I was phase pure La2NiO4+δ (Fig. 2) according to XRD. 

Powder II calcined at 1100 °C was phase pure La2NiO4+δ, but full body curl was common 

for the green tapes based on this coarser grained powder. Due to the influence of the particle 

size on tape casting performance it can be concluded that it was not necessary to calcine the 

as-synthesized powder at 1100 °C to obtain single phase material prior to sintering. 

Homogeneous slips could be prepared by careful quality control of the aqueous suspensions. 

A relatively high viscosity is beneficial to reduce the binder segregations and solid 

sedimentation [20]. However, the higher the viscosity, the more difficult it is to prepare 

homogeneous slips. Therefore, a strict quality control was required. Slip 1 and 3 prepared 

using powder I, but with different types of binder and amount of dispersant, resulted in 

different slip viscosities. In general, the higher molecular weight of the binder causes higher 

viscosity. Because the molecular weight of PVA-88 is lower than PVA-115, the mol % of 



PVA-88 is higher than for PVA-115 for the same weight %, and the weight % of dispersant 

in slip 3 was twice the amount in slip 1. This might explain why the viscosity of slip 3 was 

lower than for slip 1. Green tapes from slip 2 always showed full body curl independent of 

the thickness (30 – 400 μm) showing that the green tapes are very sensitive to the particle 

size. One possible explanation of this behaviour is related to the significantly higher 

observed evaporation rate of the solvent from these tapes. When the surface evaporation rate 

is faster than the diffusion of solvent in the interior of the green tape, menisci are forced into 

the green tape creating a capillary pressure. This capillary pressure might cause full body 

curl of the tape since the top surface of the green tape will experience lateral shrinkage [21]. 

Tapes from both slip 1 and 3 were used for the fabrication of the dense membranes, yielding 

dense membranes with similar microstructure and mechanical properties if sintered at the 

same conditions. 

The density and the grain size of the sintered materials were shown to depend on the type of 

processing technique used. A higher density and a smaller grain size were obtained by 

uniaxial pressing compared to tape casting. This could be related to two effects: (i) 

difference in the green density (the relative green density obtained was ~ 32 and ~ 30 % for 

uniaxial pressed pellets and tape cast membranes, respectively), and (ii) influence of the 

large aspect ratio of the tape (shrinkage obtained were 36 and 42 % along lateral and vertical 

direction, respectively). The slight decrease in the density with increasing sintering 

temperature is due to grain growth accompanied by pore coalescence. 



Due to crystallographic anisotropy, the thermal expansion along the c-axis is higher than that 

along the a-axis for La2NiO4+δ [14]. Thus micro-cracking might take place during cooling 

from the sintering temperature [22]. A number of experimental investigations and theoretical 

simulations have shown that micro-cracking is significantly related to the grain size for 

materials with anisotropic crystal structure [23-25]. Since the LN-2 membranes have a larger 

grain size compared to LN-1 membranes, micro-cracking due to crystallographic anisotropy 

is more likely to occur in LN-2 samples. However micro-cracking was not evidenced by 

microscopy of any of the samples (Fig. 3) and the grain size is most likely smaller than the 

critical grain size for the occurrence of micro-cracking. Residual stresses developed during 

cooling of the material might however be the reason for the lower hardness, fracture strength 

and fracture toughness of the LN-2 samples. Huang et al. [10] reported a room temperature 

flexural strength of ~ 20 MPa for La2NiO4+δ samples (52 % porosity). Due to the elimination 

of residual stress, a 25 % increase of the fracture strength was observed after an annealing 

process. The importance of small grain size of La2NiO4+δ has also been shown to be of 

importance for enhancing the oxygen flux of membranes [26]. 

 

5. Conclusion 

A water based tape casting process for fabrication of flat, dense (> 94 %) and homogeneous 

La2NiO4+δ membranes was developed. The type of PVA and the powder particle size had 

strong influence on the properties of the slips and the quality of the sintered tapes. The 

biaxial strength was measured to be 155 ± 20 MPa and 108 ± 8 MPa for dense La2NiO4+δ 



membranes with the grain size of 4.2 ± 0.3 μm and 9.6 ± 1.3 μm, respectively. The fracture 

mode was transgranular in both cases. Vickers micro-indentation revealed a maximum in 

hardness of ~ 958 MPa before the hardness decreased with the increasing grain size. The 

estimated fracture toughness, reaching a maximum value of 3.2 ± 0.4 MPa·m0.5, was also 

observed to decrease with increasing grain size. Residual stresses due to crystallographic 

anisotropy developed in the ceramics during cooling is proposed be the main reason for the 

observed decrease in hardness, fracture strength and fracture toughness with increasing grain 

size. 
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Figure captions: 

Figure 1.  Process flow for preparation of homogeneous stable La2NiO4+δ slips. 

Figure 2. X-ray diffractograms of La2NiO4+δ at the different stages of production. 

Figure 3. Representative SEM micrographs of sintered La2NiO4+δ membranes (from slip 1 

and 3). a) LN-1 sintered at 1300 °C and b) LN-2 sintered at 1420 °C. 1) Fracture surface and 

2) polished and thermal etched cross section. 

Figure 4. Grain size (a) and relative density (b) of La2NiO4+δ pellets and tape cast 

membranes as a function of sintering temperature. 

Figure 5. Typical load-displacement curves of La2NiO4+δ membranes tested in ball on ring 

fracture test. Red dotted line and dark solid lines denote tape cast membranes sintered at 

1300 (LN-1) and 1420 °C (LN-2), respectively. 

Figure 6. Weibull plots comparing the strength of tape cast La2NiO4+δ membranes. LN-1 

and LN-2 denote tape cast membrane samples sintered at 1300 and 1420 °C, respectively. 

S.T. and G.S. denote sintering temperature and grain size, respectively. 

Figure 7. Vickers hardness (a) and fracture toughness (b) of La2NiO4+δ pellets and tape cast 

membranes as a function of grain size. 

Figure 8. Optical microscope images of Vickers indents (1.96 N) in La2NiO4+δ samples: a) 

pellet sintered at 1250 °C, b) pellet sintered at 1300 °C, c) pellet sintered at 1400 °C, d) 

pellet sintered at 1500 °C, e) tape cast membrane sintered at 1300 °C (LN-1), and f) tape 

cast membrane sintered at 1420 °C (LN-2). Enlargement of selected cracks are placed on the 

right hand side for the pellet samples and at the bottom for the tape cast membranes. 

  



Table 1. Recipes for the preparation of aqueous La2NiO4+δ- based slips for tape casting.  

 

Slip No. 1 2 3 

LN Powder (wt.%) 28.97 (powder I) 29.12 (powder II) 29.22 (powder I) 

Dispersant (wt.%) 0.08  0.13 0.16 

Distilled water (wt.%) 62.57 61.81 62.28 

Binder (wt.%) 6.33 (PVA-88) 6.83 (PVA-115) 6.36 (PVA-115) 

Plasticizer (wt.%) 1.51  1.57  1.48  

Defoamer (wt.%) 0.54  0.54  0.50  

  



 

 

 

 

 

Figure 1. Process flow for preparation of homogeneous stable La2NiO4+δ slips. 

 

 

 



 

 

 

Figure 2. X-ray diffractograms of La2NiO4+δ at the different stages of production. 

  



 

 

 

Figure 3. Representative SEM micrographs of sintered La2NiO4+δ membranes (from slip 1 

and 3). a) LN-1 sintered at 1300 °C and b) LN-2 sintered at 1420 °C. 1) fracture surface and 

2) polished and thermal etched cross section. 

 

  



 

 

Figure 4. Grain size (a) and relative density (b) of La2NiO4+δ pellets and tape cast 

membranes as a function of sintering temperature. 

  



 

 

 

Figure 5. Typical load-displacement curves of La2NiO4+δ membranes tested in ball on ring 

fracture test. Red dotted line and dark solid lines denote tape cast membranes sintered at 

1300 (LN-1) and 1420 °C (LN-2), respectively. 

  



 

Figure 6. Weibull plots comparing the strength of tape cast La2NiO4+δ membranes. LN-1 and 

LN-2 denote tape cast membrane samples sintered at 1300 and 1420 °C, respectively. S.T. 

and G.S. denote sintering temperature and grain size, respectively and  , 0 and m are the 

average fracture strength, characteristic strength and the Weibull modulus. 

 

  



 

 

Figure 7. Vickers hardness (a) and fracture toughness (b) of La2NiO4+δ pellets and tape cast 

membranes as a function of grain size. 



 

Figure 8. Optical microscope images of Vickers indents (1.96 N) in La2NiO4+δ samples: a) 

pellet sintered at 1250 °C, b) pellet sintered at 1300 °C, c) pellet sintered at 1400 °C, d) 

pellet sintered at 1500 °C, e) tape cast membrane sintered at 1300 °C (LN-1), and f) tape 

cast membrane sintered at 1420 °C (LN-2). Enlargement of selected cracks are placed on the 

right hand side for the pellet samples and at the bottom for the tape cast membranes. 


