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Abstract—The problem is considered for the output control of a linear, parametrically indeter-
minate object subjected to the effect of an external unknown, sinusoidal disturbing influence.
The solution of this problem is found in the class of iterative adaptive algorithms involving the
channels of stabilization and identification of the frequency of a disturbing influence.
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1. INTRODUCTION

The problem of compensation for a sinusoidal or a multisinusoidal disturbing influence is not
knew (see, for example, [1]), but so far it attracts interest (see, for example, [2–5]) because it
is not solved for a number of mathematical tolerances both on the disturbance itself and on the
object to which it is applied. At present most of the investigations, which are devoted to the
development of the methods of compensation for harmonic disturbances, consider the case when
amplitudes, phases, and frequencies are unknown constant parameters (see, for example, [1–11]).
Further, variations begin to appear, which are associated with tolerances relative to the object
itself, namely, the linearity or nonlinearity of dynamics, the parametric definiteness or its absence,
the availability of measurements of all variables of the state or only their portion, etc. We will give
a few examples of this kind of investigations.

The algorithm is suggested in [2] for the control of a linear stable object with known parameters
and with the unitary relative degree defined for a linear system as a difference of the higher degrees
of polynomials in the denominator and the numerator of the transfer function, the object being
subjected to the effect of a biased harmonic disturbance. In contrast to [2], in [5] the algorithm of
compensation for a disturbing influence is considered for the case of a nonminimum-phase linear
object with known parameters, but of any relative degree. In [9, 10] this problem was extended
to linear objects with known parameters, but with a delay in the control channel. The articles
[6, 7, 11] are devoted to the counteraction of a sinusoidal disturbance under the conditions of the
complete parametric indefiniteness of a controllable object. The adaptive controller was built up,
which was based only on measurements of the output variable. The articles [6, 7] dealt with a linear
object, and the article [11] with a nonlinear object; in this case it was assumed in [6, 7] and [11]
that the relative degree was equal to unity.

This article is concerned with a new algorithm of the output control of a parametrically indefinite
linear object subjected to the effect of the harmonic disturbance δ(t) = A sin(ωt + φ) with the
unknown amplitude, frequency, and phase. In the authors’ opinion, the problem solved in this
work significantly develops and supplements the approaches published in [1–11] because in contrast
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to the analogs [6, 7] that are the closest ones as to the problem statement, here it is assumed that
the relative degree of an object can be higher than unity.

2. STATEMENT OF THE PROBLEM

We will consider a controllable object of the form

a(p)y(t) = b(p)[u(t) + δ(t)], (1)

where y(t) is the object output, u(t) is the control signal, p = d
dt is the differentiation operator,

the parameters of polynomials a(p) = pn + an−1p
n−1 + an−2p

n−2 + . . . + a0 and b(p) = bmpm +
bm−1p

m−1 + bm−2p
m−2 + . . .+ b0 are unknown numbers, and δ(t) = A sin(ωt+ φ) is the disturbing

influence with the unknown amplitude A, frequency ω, and phase φ.

The aim of control: it is necessary to find such a signal u(t) that the following objective
condition be fulfilled:

lim
t→∞ y(t) = 0. (2)

We will solve this problem under the following assumptions.

Assumption 1. The polynomial b(p) is the Hurwitz one and the coefficient b0 > 0.

Assumption 2. The relative degree r = n −m is known, but the dimensions of the polynomials
a(p) and b(p) are not known.

Assumption 3. The lower bound ωmin of the frequency ω is known.

3. BASIC RESULT

3.1. The Simplified Case of Controller Design

We will consider an auxiliary result, assuming that the frequency ω of the disturbing influence
is known. We will present the Eq. (1) in the form

Y (s) =
b(s)

a(s)
U(s) +

b(s)

a(s)
Ψ(s) +

D(s)

a(s)
, (3)

where s is a complex variable, Y (s) = L{y(t)}, U(s) = L{u(t)} and Ψ(s) = L{δ(t)} = Aδ1s+Aδ2
s2+ω2

is the Laplace transform of appropriate signals, Aδ1 = A sinφ and Aδ2 = Aω cosφ are constant
numbers, the polynomial D(s) denotes the sum of all terms containing nonzero initial conditions.

Let us temporarily assume that r − 1 derivatives of the variable y(t) are known and also the
frequency ω is known of the disturbing influence δ(t) = A sin(ω t + φ). We will select the control
law u(t) in the form

u(t) = −k
α(p)(p + 1)2

p2 + ω2
y(t), (4)

where the Hurwitz polynomial α(p) of the degree r−1 and the constant coefficient k > 0 are chosen
in such a way that all eigenvalues of the polynomial γ(s) = a(s)(s2 + ω2) + kb(s)α(s)(s + 1)2 lie
in the left half-plane (a more detailed description of the existence of the polynomial α(p) and the
coefficient k > 0, which afford the Hurwitz property γ(s), can be found, for example, in [12, 13]).

Then, performing the direct Laplace transformation with respect to (4) and substituting the
obtained expression into the Eq. (3), we have

Y (s) = −k
b(s)α(s)(s + 1)2

a(s)(s2 + ω2)
Y (s) +

b(s)

a(s)

Aδ1s+Aδ2

s2 + ω2
+

D(s)

a(s)
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and

Y (s) = (Aδ1s+Aδ2)
b(s)

γ(s)
+

D(s)(s2 + ω2)

γ(s)
.

Because the polynomial γ(s) = a(s)(s2+ω2)+kb(s)α(s)(s+1)2 is the Hurwitz one, then carrying
out the inverse Laplace transformation, we find

lim
t→∞ y(t) = 0.

It is evident that at the known value of the frequency ω and the measurability of r−1 derivatives
of the variable y(t), it is possible to use the control algorithm of the form (4). However, the problem
considered in the article does not provide for similar assumptions, and, hence, r − 1 derivatives
of y(t) and the frequency ω must be restored in a certain way. Namely, the restoration procedure
of unknown functions and the parameter ω will be dealt with in the next subsection.

3.2. The Iterative Algorithm of Adaptive Control

Let us assume that the derivatives of the output signal y(t) are not measured, while the coef-
ficients of the polynomials a(p), b(p), and the parameter ω are unknown. In this case we will use
the results published in [13–16] and select such a control law

u(t) = −k
α(p)(p + 1)2

p2 + ω̂2
ξ1(t), (5)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̇1 = σξ2
ξ̇2 = σξ3
. . .

ξ̇r−1 = σ(−k1ξ1 − k2ξ2 − . . .− kr−1ξr−1 + k1y),

(6)

where the number k > 0 and the polynomial α(p) are chosen in much the same way as (4), the
number σ > k, and the coefficients ki are estimated on the basis of requirements of the asymptotic
stability of the system (6) at the zero input of y(t), ω̂ is the estimate of the frequency of the
disturbing influence δ(t).

Remark. At the relative degree r = 1, the control law is shaped up in the simplified form when in
the expression (5) the polynomial α(p) = 1, ξ1(t) = y(t), and the use of the system (6) is excluded.

Substituting (5) into (1) we obtain

y(t) =
kb(p)α(p)(p + 1)2

a(p)(p2 + ω̂2) + kb(p)α(p)(p + 1)2
ε(t) +

b(p)(p2 + ω̂2)

a(p)(p2 + ω̂2) + kb(p)α(p)(p + 1)2
δ(t), (7)

where ε(t) = y(t)− ξ1(t).

We will write (7) in the form

y(t) =
kb(p)α(p)(p + 1)2

a(p)(p2 + ω̂2) + kb(p)α(p)(p + 1)2
[ε(t) + w(t)], (8)

where the signal w(t) = (p2+ω̂2)
kα(p)(p+1)2 δ(t).

The model close to (8) was considered in [14–16], therefore we will use the results from [14–16]
and pass on to the input-state-output form:

ẋ = Ax+ kb(ε +w), (9)

y = cTx, (10)
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where x ∈ Rn is the vector of variables of the state of the model (9); A, b and c are the matrices of
transition from the input-output model to the input-state-output model; in this case in view of the
known Yakubovich–Kalman lemma (see, for example, [12]), we can indicate the symmetric positive
definite matrix P satisfying the two matrix equations

ATP + PA = −Q1, P b = c, (11)

where Q1 = QT
1 is a certain positive definite matrix.

We will rewrite (6) in the vector-matrix form

ξ̇ = σ(Γξ + dk1y), (12)

ξ1 = hT ξ, (13)

where ξ ∈ Rr−1 us the vector of variables of the state of the model (12), the matrix Γ =
⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

−k1 −k2 −k3 . . . −kr−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is the Hurwitz one in view of the calculation of the coefficients ki

of the model (6), d =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, h =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
0
0
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

We will introduce for consideration the deviation vector

η = hy − ξ. (14)

Differentiating (14), we obtain

η̇ = hẏ − σ(Γ(hy − η) + dk1y) = hẏ + σΓη − σ(dk1 + Γh)y = hẏ + σΓη, (15)

ε = y − ξ1 = hTη, (16)

where dk1 = −Γh.

Thus we have the system of differential equations

ẋ = Ax+ kb(ε+ w), y = cTx, (17)

η̇ = hẏ + σΓη, ε = hTη. (18)

In view of the Hurwitz property Γ there exists a matrix N = NT satisfying the Lyapunov
equation

ΓTN +NΓ = −Q2, (19)

where Q2 = QT
2 is the positive definite matrix.

Assertion. Let us consider the system of the form (1) closed with the use of the controller (5)
and (6). Then the output variable y(t) will be brought to a certain domain ε0 and will not go out
of it in the time interval t1.

Proof. As in [13–16], we will set up the Lyapunov function of the form

V = xTPx+ ηTNη. (20)
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Differentiating (20), we obtain

V̇ = xT(ATP +PA)x+2kxTPbhTη+2kxTPbw+ηTσ(ΓTN +NΓ)η

+2ηTNhcTAx+ 2kηTNhcTbw + 2kηTNhcTbhTη.

As in [13–16], we will consider the inequalities:

2kxTPbhTη ≤ k−1 xTPbbTPx+ k3ηThhTη,

2kxTPbw ≤ k−1 xTPbbTPx+ k3 w2,

2kηTNhcTbhTη ≤ kηTNhcTbbTchTNη + kηThhTη,

2ηTNhcTAx ≤ kηTNhcTAATchTNη + k−1 xTx,

2kηTNhcTbw ≤ kηTNhcTbbTchTNη + k w2,

then

V̇ ≤ −xTQ1x− σηTQ2η + k−1 xTPbbTPx+ k3ηThhTη

+ k−1 xTPbbTPx+ k3 w2 + kηTNhcTbbTchTNη + kηThhTη

+ kηTNhcTAATchTNη + k−1 xTx+ kηTNhcTbbTchTNη + k w2.

Let the numbers k > 0 and σ > 0 be such that

−xTQ1x+ k−1 xTPbbTPx+ k−1 xTPbbTPx+ k−1 xTx ≤ −xTQ′x < 0,

−σηTQ2η + k3ηThhTη + kηTNhcTbbTchTNη + kηThhTη

+ kηTNhcTAATchTNη + kηTNhcTbbTchTNη ≤ −ηTQ′′η < 0,

then the derivative of the function (20) will take the form V̇ ≤ −xTQ′x − ηTQ′′η + (k3 + k)w2.
Whence, using the Rayleigh relation (see, for example, [13–16]) for the quadratic forms −xTQ′x
and −ηTQ′′η, it is easy to obtain the inequality

V̇ ≤ −λV + (k3 + k)w2, (21)

where the number λ > 0.

It follows from (21) that the closer the estimate ω̂ converges to the true value of the frequency ω,
the less in amplitude is the function (20), while at ω̂ = ω the signal w(t) exponentially converges
to zero, and, hence, the function (20) tends to zero, and the objective condition (2) is fulfilled.

Thus it is necessary to set up the identification scheme of the unknown parameter ω of the
disturbing influence δ(t) and to substitute the obtained value into the control algorithm of the
form (5). We will carry out the identification of the unknown parameter ω in a few stages. First,
we will substitute ω̂ = ωmin into (5) and fix it. Since the system under consideration is linear and
the matrix A is the Hurwitz one, the output variable y(t) will be the sinusoidal function with the
frequency ω, i.e., y(t) = A1 sin(ωt + φ1) (see, for example, [17]). Hence for the identification of
the parameter ω, recourse can be made to various identification schemes, for example, algorithms
published in [18–26]. As a basis, we will resort to the approach used in [26].

We will introduce a linear second-order filter of the form

ς(s) =
γ20

(s+ γ0)2
,

where γ0 > 0.
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To identify the disturbing influence frequency, we will use the following algorithm:

θ̂(t) = χ(t) + kaγ
2
0 ς̇(t)y(t), (22)

χ̇(t) = −kaς̇(t)(2γ0 ς̈(t) + γ20 ς̇(t) + ς̇(t)θ̂(t))− kaγ
2
0 ς̈(t)y(t), (23)

ω̂(t) =

√∣
∣
∣θ̂(t)

∣
∣
∣. (24)

On finding the true value of the parameter ω, we substitute it into the control law (5) for ωmin.
However, the question arises as to the choice of the instant of time for the substitution of a value ω̂
from the identification algorithm (22)–(24) into the Eq. (5) because lim

t→∞(ω − ω̂) = 0. It is obvious

that the instant of time t = ∞ for actual systems is unacceptable. As a solution of this problem,
the iterative identification procedure is suggested.

The essence of this procedure reduces to the following. At the first step the value ω̂0 = ωmin,
which corresponds to the lower bound for a possible disturbance frequency, is substituted into the
Eq. (5). The system operates with the given value for a certain time interval up to a definite
instant of time t1. Further, at the instant t1 the renewed value ω̂1 = ω̂(t1) is taken from the
identification algorithm (22)–(24) and is substituted into the Eq. (5). Now in the control law, up
to the next instant of time t2, use is made of the estimate of the frequency ω̂1. At the instant of
time t2 the renewed value ω̂2 = ω̂(t2) is again taken from the identification algorithm (22)–(24)
and is substituted into the Eq. (5). Thus the analytically iterative renewal can be described by the
system

ω̄(t) =

{
ωmin, t ≤ t1

ω̂(ti), t ∈ [ti, ti+1), i = 2, N,

where ω̂(ti) denotes the frequency value obtained at the instant of renewal directly from the iden-
tification algorithm (22)–(24), while ω̄(t) represents a value used at each fixed interval of time in
the control law (5) and (6).

In the general case, the renewal moments may limit unequal time intervals. In particular, it is
expedient to select the time period, up to the first renewal, of a larger dimension in comparison
with successive intervals. This time interval can be taken to be the initialization time necessary
that the residual in the estimate of the disturbance frequency at the identifier output should reach
an acceptable value, which will occur faster if undesirable switchings in the system are avoided.

It is necessary to note that the theoretical verification of the rules for selecting the time inter-
vals ti of the iterative renewal of frequency estimates in the control law (5) and (6) represents an
independent nontrivial problem that the authors intend to solve with the aim of a progression of
the obtained results. In this work a simplified approach is presented, the effectiveness of which is
confirmed empirically.

4. ILLUSTRATING EXAMPLES

For the illustration of the effectiveness and special features of the developed iterative control
algorithm, the simulation modeling of a closed system was carried out. As an example, it is possible
to consider the stabilization problem of a linear unstable object with a relative degree r = 3, which
is described by the equation

y(t) =
p+ 1

p(p− 1)(p + 2)(p + 3)
[u(t) + δ(t)]

with the simultaneous counteraction of the sinusoidal disturbance of the unknown amplitude, fre-
quency, and initial phase, and under the assumption that the object parameters are also unknown.
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Fig. 1. Transient processes in the closed system for the signal y(t) at δ(t) = 7 sin(5t + 0.1), t1 = 25, τ = 10,
ωmin = 1, α(p) = (p+ 4)(p+ 5), k1 = k2 = 1, k = 12, σ = 30, ka = 15, γ0 = 20.
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Fig. 2. Transient processes in the closed system for the signals ω̂(t) (solid line) and ω̄(t) (dashed line at
δ(t) = 7 sin(5t+ 0.1), t1 = 25, τ = 10, ωmin = 1, α(p) = (p+ 4)(p+ 5), k1 = k2 = 1, k = 12, σ = 30, ka = 15,
γ0 = 20.
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Fig. 3. Transient processes in the closed system for the signal u(t) at δ(t) = 7 sin(5t + 0.1), t1 = 25, τ = 10,
ωmin = 1, α(p) = (p+ 4)(p+ 5), k1 = k2 = 1, k = 12, σ = 30, ka = 15, γ0 = 20.

Figures 1–6 present the graphs of transient processes in the modeling of a closed system for two
various sinusoidal disturbances and in the variation of parameters of the iterative procedure.

In the course of the modeling the time t1 of the first renewal was chosen in the independent
way, and the further intervals between the iterative substitutions of estimates of the disturbance
frequency into the controller were set up for an equal length of τ .
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Fig. 4. Transient processes in the closed system for the signal y(t) at δ(t) = 10 sin(3t + 0.1), t1 = 15, τ = 10,
ωmin = 1, α(p) = (p+ 4)(p+ 5), k1 = k2 = 1, k = 14, σ = 30, ka = 20, γ0 = 10.
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Fig. 6. Transient processes in the closed system for the signal u(t) at δ(t) = 10 sin(3t + 0.1), t1 = 15, τ = 10,
ωmin = 1, α(p) = (p+ 4)(p+ 5), k1 = k2 = 1, k = 14, σ = 30, ka = 20, γ0 = 10.

The modeling results show that the suggested adaptive algorithm of control with the iterative
renewal of frequency estimates of the unknown sinusoidal disturbance does not give way in the
accuracy and stabilization speed to the algorithms in [6, 7] and involves expenditures for control
comparable to those in [6, 7]; at the same time it can be used for objects with an arbitrary relative
degree. It is also evident that the transient processes in the system essentially depend not only on
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the parameters of the frequency indicator and the controller but also on the choice of intervals of
the iterative renewal.

5. CONCLUSIONS

This work suggests a new iterative algorithm of adaptive output control that counteracts the
sinusoidal disturbing influence acting on a linear parametrically indefinite object. The control
algorithm envisages two channels: the stabilization channel represented by the expressions (5), (6)
and the identification channel (Eqs. (22)–(24)). The suggestion is made of the iterative procedure
involving the fact that at every instant of time ti the value ω̂i obtained by the identification
algorithm was substituted into the control algorithm (5). In contrast to the analogs [1–11], the
suggested approach makes it possible to counteract the sinusoidal disturbing influence with the
unknown amplitude, phase, and frequency, which can be performed under the conditions of the
complete parametric indefiniteness of a controllable object and at any relative degree.

The authors reason that relying on this article and also on the works [13–16], the obtained result
can be extended to nonlinear systems with parametric and functional uncertainties.
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