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ABSTRACT

In the past, testing of lifeboat design has been carried out solely by experimental means.
However, due to the large number of factors which influence the loads on the lifeboat
structure and its occupants, optimization studies by experimental means have become
both time-consuming and expensive. In addition, many effects cannot be studied at
laboratory scale due to the inability to match all similarity requirements.

Recent advances in computational fluid dynamics (CFD) have made it possible to
analyze the lifeboats performance under realistic conditions. By not being dependent
on a physical model, investigation of a larger range of hull shapes at a variety of launch
conditions can be done more easily and cost-efficient.

This thesis explores the possibility of using the CD-adapco’s CFD-software STAR-
CCM+ (STAR) to predict the performance of free-fall lifeboats during the impact
phase. The thesis focuses on verification and validation of the software by studying
water impact of different two and three-dimensional rigid and elastic wedges.

For the two-dimensional case, 2-D rigid wedges with constant vertical velocity and
varying deadrise angles (4 to 81 degrees) are studied with respect to various slamming
parameters presented by Zhao and Faltinsen (1992). In the study, good agreement
is found between the solution predicted in STAR and the presented numerical and
analytical solutions. It is found that the slamming pressures are strongly dependent on
the deadrise angle; from 300 Pa for the 81◦ wedge, to 275 000 Pa for the 4◦ wedge. It
is seen that as the deadrise angle is decreased, better resolution in grid size and time
step is required to capture the peak pressures.

The three-dimensional case includes both rigid and elastic wedges. For the rigid case, a
3-D wedge is modeled so to represent an experimental study conducted by Yettou et al.
(2006). It is found that STAR predicts a lower impact velocity than what is found in
the experimental study. Following, the pressures predicted are too low. The difference
is however moderate, and STAR is able to predict the displacement and velocity-time
histories of the wedge in a satisfactory manner. It is noted that the reason for the
discrepancy lies in the prediction of motion through air - and not in the simulation of
impact and motion in water. It is also noted that refinements in grid size and time step
are not of great importance if only displacements and velocities are to be studied.

For the elastic wedge case, four different elastic wedges are studied to explore
STAR’s possibilities and limitations related to fluid-structure interaction (FSI). No
verification or validation with existing theory or experimental data is performed. A
qualitative assessment of the results is however carried out and it is found that STAR
predicts displacements, velocities, accelerations, pressures, deflections and stresses in a
satisfactory manner.
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SAMMENDRAG

Tidligere har testing av frittfall-livb̊at design blitt utført utelukkende ved bruk av
eksperimentelle metoder. Opitmaliseringsstudier p̊a livb̊at er imidlertidig tidkrevende
og dyrt grunnet de rekke faktorene som p̊avirker livb̊atens prestasjoner. I tillegg er det
mange effekter som ikke lar seg studere i laboratorieskala grunnet manglende evne til
matche de ulike likhetskravene.

Nylige fremskritt innen Computational Fluid Dynamics (CFD) har gjort det mulig å
analysere livb̊atens prestasjoner under realistiske forhold. Ved å ikke være avhengig av
en fysisk modell kan dermed en rekke ulike design av b̊ade livb̊at og sliskesystem testes
enklere og mer kostnadseffektivt.

Denne oppgaven utforsker bruken av CD-adapcos CFD-programvare STAR-CCM+
(STAR) til å forutsi prestasjonen til livb̊ater i fritt fall og ved ”water impact”. Opgaven
fokuserer p̊a verifikasjon av programvaren ved å studere ulike to- og tredimensjonale
stive og elastisk kiler.

I det to-dimensjonale tilfellet studeres 2-D kiler med konstant vertikal hastighet og
varierende angrepsvinkler (4 til 81 grader). Ulike parametere presentert av Zhao and
Faltinsen (1992) benyttes for å verifisere løsningen. I studiet er det funnet godt samsvar
mellom løsningen i STAR og løsningen fra de presenterte numeriske og analytiske
metodene. Det er vist at slammingtrykket er sterkt avhengig av angrepsvinkel; fra
300 Pa for 81◦ kile, til 275 000 Pa for 4◦ kile. Videre er det funnet at man ved
lavere angrepsvinkeler m̊a øke oppløsningen i grid og tidsskritt for å fange de høye
trykktoppene.

Det tredimensjonale studiet omfatter b̊ade stive og elastisk kiler. I det stive tilfellet er
en 3-D kile modellert for å gjenskape det eksperimentelle studiet utført av Yettou et al.
(2006). Det er funnet at STAR gir lavere nedslagshastighet enn det som er funnet i den
eksperimentelle studien, noe som igjen fører til at trykkfordelingen funnet i STAR blir
for lav. Forskjellen er imidlertid moderat, og man kan konkludere med at STAR er i
stand til forutsi bevegelsen og hastigheten til kilen p̊a en tilfredsstillende m̊ate. Det
bemerkes at årsaken til avviket ligger i løsningen av bevegelse gjennom luften, og ikke i
simulering av nedslaget og bevegelsen i vann. Det skal ogs̊a bemerkes at oppløsningen
av grid og tidsskritt er av liten betydning om kun bevegelse og hastighet er av interesse.

I det elastiske tilfellet er fire forskjellige elastiske kiler modellert for utforske STAR
sine muligheter og begrensninger knyttet til fluid-struktur interaksjon (FSI). Ingen
verifikasjon eller validering med eksisterende teori eller eksperimentelle data er utført.
En kvalitativ vurdering av resultatene er imidlertid blitt gjort og det er funnet at
STAR løser bevegelser, hastigheter, akselerasjoner, trykk, utbøyning og spenninger p̊a
en tilfredsstillende m̊ate.
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1

INTRODUCTION AND
MOTIVATION

Free fall lifeboats are important for the safety of the passengers and crew of floating
vessel and offshore platforms. The lifeboat needs to be designed such to efficiently
evacuate the people on board in a safe manner. This implies that the lifeboat is not to
be damaged during water entry and that the lifeboat will move sufficiently far away from
its host structure after launch. It also sets requirements to the accelerations experienced
by the occupants, as these can exert injury upon the occupant if experienced too large.

Offshore installation tests in spring 2005 revealed unacceptable structural deflection of
roof and canopy on one of Umoe Schat-Harding’s (USH) FF1000S at ”Veslefrikkfeltet”
which caused immediate actions to be initiated by the Norwegian Oil Industry
Association (OLF). Their main goal was to study and document main performance
factors for free fall lifeboats and following develop relevant criteria for in depth
classification of performance. From this there were discovered structural weaknesses
in the roof of several of the lifeboats used on the Norwegian shelf. In addition, the
lifeboats ability to move away from the platform after water entry and the accelerations
imposed on the passengers, became questioned. Through 2005-2009 a total of 250
lifeboats (16 different types) went through approval testing and documentation. All
lifeboats which did not meet the requirements set, were re-built with new structural
strength. In addition, implementation of weather dependent operational restrictions
due to acceleration load protection and forward speed/distance limitations were carried
out. In late 2009 OLF, Employee’s Organization, Oil Companies and Authorities agreed
upon the documentation standards and safety levels of the free fall lifeboats. OLF (2010)

From the development of the first free fall lifeboat in 1978, there has been an ongoing
research directed to improvement of the free fall rescue system, both the lifeboat and
the launching method. In the mission to optimize the lifeboat design and functionality,
several new lifeboats have been developed, varying both in hull form and capacity.

For a free fall lifeboat, the most important properties are its structural strength,
accelerations at water impact and forward motion after re-surfacing. These features
are determined by a collection of parameters, such as length, beam, bow and cross-
sectional shape (to mention a few) and will each have their impacts on the qualities
of the free fall lifeboat system. Most of the different parameters are highly dependent
on each other and must, by the designer, be combined with stringent limitations if the
final design is to fulfill the main functional requirements for the lifeboat and launching
system. As a minor change in one parameter may have significant impact on more vital
functional qualities, all main parameters must be systematically dealt with throughout
the whole design process. The launching system also has it requirements, deciding much
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2 INTRODUCTION AND MOTIVATION

of the loads exerted upon the lifeboat. By a proper design, the launching system will
therefore contribute to the optimal motion of the lifeboat. Today, two launching method
exist. One launches the lifeboat in a vertical drop while the other launches the lifeboat
from a skid, causing it to have a forward motion at water impact. Of the two, the latter
is found the most optimal and is therefore also the most used. Werenskiold (2011)

In the past, testing of lifeboat design has been carried out solely by experimental means.
However, due to the large number of factors which influence the loads on the lifeboat
structure and its occupants, optimization studies by experimental means have become
both time-consuming and expensive. In addition, many effects cannot be studied at
laboratory scale due to the inability to match all similarity requirements.

The use of experimental methods is suitable to determine the actual loads on structure
and people inside lifeboat. However, data obtained from such experiments do not
provide enough information necessary to propose new and improved design changes.
For this purpose, the pressure and velocity distribution around the lifeboats hull during
water entry and the following diving and re-surfacing has to be known. Mørch et al.
(2008)

Recent advances in computational fluid dynamics (CFD) have made it possible to
analyze the lifeboats performance under realistic conditions. By not being dependent
on a physical model, investigation of a larger range of hull shapes at a variety of launch
conditions can be done more easily and cost-efficient. Today, different CFD-software as
OpenFoam, STAR-CCM+, Ansys, to mention some, exist. Each has their advantages
and limitations, some being free (open source), others being licensed.

This thesis explores the possibility of using the CD-adapco’s CFD-software STAR-
CCM+ (STAR, v. 7.02.008) to predict the performance of free-fall lifeboats during
the impact phase. The thesis focuses on verification of the software by studying
water impact of different two and three-dimensional wedges. The numerical results
predicted by the software are compared to already known solutions: both analytical
and experimental.

The thesis consist of six more chapters containing, in short, the following:

• An introduction to Computational Fluid Dynamics (CFD) and basic knowledge
for application of numerical methods when dealing with hydrodynamic problems.
A presentation of the CFD-software STAR is also given (Chapter 2).

• Comparison of analytical and numerical solutions (STAR) for two-dimensional
rigid wedges with constant velocity and varying deadrise angles. A refinement
and improvement of the 2-D wedge impact study carried out by Johannessen
(2011) (Chapter 3).

• Comparison of numerical (STAR) and experimental results for a free falling three-
dimensional rigid wedge (Chapter 4).

• A study on the use of STAR when considering fluid-structure interaction (FSI),
i.e. water impact of free falling three-dimensional elastic wedges (Chapter 5).

• Conclusions on the results predicted by STAR (Chapter 6).

• Recommendations on how STAR can be used to evaluate the performance of free-
fall lifeboats (Chapter 7).

It is assumed that the reader possesses some basic understanding related to fluid flow
and mechanics. Some experience in STAR is recommended, though not required.
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COMPUTATIONAL FLUID
DYNAMICS (CFD)

Computational Fluid Dynamics (CFD) is the science of describing fluid flows by
producing numerical solutions to a system of partial differential equations (PDEs). By
discrete methods, this is done with purpose to better understand, both qualitatively
and quantitatively, physical phenomena present in different types of flows. Historically,
the use of CFD was first applied for the airplane industry. However, due to the large
economic advantage that may be obtained from being able to describe fluid flows, many
other industries as the car and the oil industries, quickly followed in using CFD.

The extent to which the scientific and technological development of CFD is being
used in marine applications is rather variable and their adaption by the designers of
conventional merchant vessels has been disappointingly slow. This is due to the fact that
ship construction has a long history of evolutionary design, over many centuries during
which scientific methods were not available. Younger industries, such as the offshore
industry, have been able to benefit rapidly from the application of science to technology
development. This industry had no historical database to rely on and was forced to
adopt a scientific approach. Rapid scientific and technological progress is nevertheless
being made, driven in large measure by the offshore industry, and the recent interest in
non-conventional merchant vessels, such as high-speed vessels (i.e. catamarans).

In marine CFD the main concern are the problems related to hydrodynamics. In most
problems, the endeavor is to calculate global pressures and fluid velocity components
in a three dimensional space surrounding the submerged portion of a marine vessel or
other structure of interest (see Figure 2.1). From this, forces and moments acting on
the marine vessel or offshore structure can be further calculated, whether steady or
unsteady. For CFD in marine applications, the presence of the free surface provides a
major departure from conventional CFD applications and the need to represent this fluid
interface accurately presents a considerable challenge. For the most fundamental part
of marine hydrodynamics, the ship resistance and propulsion, numerical calculations
(CFD) have become increasingly important and have become an indispensable part of
the design process. Today, a model of the final ship design is still tested in a towing
tank, however, the testing sequence and content have changed significantly over the
past years due to the use of CFD. Traditionally, unless the new ship which was to
be designed was close to an experimental series or a known parent ship, the design
process had to incorporate many model tests. Today, this is no longer feasible due to
time-to-market requirements from ship-owners, and also, no longer necessary thanks
to CFD developments. Combining computer-aided design (CAD) to generate new hull
shapes, and following applying CFD to analyze these hull shapes, allows for rapid design
explorations without model testing. By using CFD one can perform a pre-selection of
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4 COMPUTATIONAL FLUID DYNAMICS (CFD)

the most promising design and then hopefully only one or two model tests are needed
to validate the intended performance features in the design. Gorski (2001), Dejhalla
and Prpic-Orsic (2006), Ransau (2011)

Figure 2.1: The pressure distribution that arises along a ship hull caused by forward motion
of the ship in head sea predicted in STAR. CD-adapco (2012)

This chapter will introduce basic knowledge for the application of numerical methods
in marine hydrodynamics. The CFD-software STAR-CCM+, developed by CD-adapco,
will be discussed and brief comments on how to set up a simulation are presented.

2.1 INTRODUCTION TO CFD
This section is to provide the reader with insight in basic methods and physical models
behind CFD. Much of the following presented material are a result of literature provided
by Pettersen (2011) and Ransau (2011). It should be noted that only a brief introduction
is given. Deduction of equations, such as the Navier-Stokes equations, will not be
emphasized. Attention directed to complex flow phenomenas such as turbulence is also
not given here. For this, the reader is encouraged to study Johannessen (2011) and
CD-adapco (2011).

THE CFD PROCESS
The motivation behind use of CFD is due to the fact that extensive studies of fluid
flows using experiments are prohibitively expensive and time consuming. In addition,
CFD allows the study of very small scales and time development (in slow motion)
of phenomena that otherwise would not be visible. Because the equations governing
fluid flows of practical importance are very complicated, computers have to be used to
solve the partial differential equations (PDEs) describing the problem at hand. Also,
analytical solution for these types of problems does not exist, only solutions for very
few and simple physical cases.

In computational techniques the governing PDE’s are replaced with systems of algebraic
equations solvable by a computer. Table 2.1 shows the process of obtaining practical,
useful information about problems involving fluid motion. In most general cases, the
following quantities are needed in order to describe fluid flow phenomena:

• the velocity field: u = [u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)]T

• the pressure field: p(x, y, z, t)

• Density distribution: ρ(x, y, z, t)

• Temperature distribution: T(x, y, z, t)

*Usually, in marine hydrodynamic applications, the density and temperature distribu-
tion are not of interest.
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CFD draws on 4 disciplines:

• Fluid Mechanics

• Mathematics (classical and numerical analysis)

• Computer science

• Geometric modeling and meshing

To perform a good CFD calculation and obtain reasonable result, it is necessary to be
aware of some aspects of each of these 4 disciplines.

Table 2.1: The process of obtaining practical, useful information about problems involving
fluid motion. Ransau (2011)

Conservation of mass ⇒ Continuity equation
Newton’s second law ⇒ Euler/Navier-Stokes equations
Conservation of energy ⇒ Energy equation

solve the equations
⇓ (+ boundary conditions)

using CFD

Velocity distribution : u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)
Pressure distribution : p(x, y, z, t)
Density distribution : ρ(x, y, z, t)
Temperature distribution : T(x, y, z, t)

In CFD, the cornerstone is the fundamental governing equations of fluid dynamics:
continuity, momentum and energy equations, as listed in Table 2.1. These equations
are mathematical statements of physical principles upon which the whole fluid dynamics
is based:

1. mass is conserved

2. Newton’s second law

3. energy is conserved

The equations can be obtained in various forms, but for most hydrodynamics theory,
the particular form of the equations used makes little difference. The equations are
the same whether the flow is around a ship, over a submarine, through a platform,
past a cylinder, past a car or an airplane. What separates the cases, are the flow fields
determined by the boundary conditions. These conditions dictate the particular solution
to be obtained from the governing equations.

When solving a flow problem using CFD it is common to follow a certain ”recipe” or
work flow. This recipe can be seen as ”universal” regardless of the CFD-software at
hand and its steps can be listed as follows (Ransau (2011)):

1. Study the physical flow:
→ identify main flow phenomena.

2. Construct a mathematical model:
→ analyze the partial differential equations.
→ define the (physical) boundary conditions.
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3. Formulate the numerical problem:
→ construct a mesh.
→ choose a time differencing scheme.
→ choose a space differencing scheme.
→ choose initial conditions.
→ choose the (numerical) boundary conditions.
→ solve difference equations ( check stability and consistency).

4. Implement the formulation in a computer code:
→ structured programming, environment.

5. Run code and obtain the solution:
→ computer system.

6. Analyze and interpret the obtained result:
→ flow visualization.

7. Draw conclusions:
→ answer practical hydrodynamic problems.

To obtain a numerical solution, two stages needs to be properly defined: the
discretization and the equation solver (see Figure 2.2). In the first stage, the continuous
PDEs, together with boundary conditions and initial conditions are converted into a
discrete system of algebraic equations. The starting point for the discretization is
the governing equations. Different forms of the equations can be applied: integral
of differential form, conservative or non-conservative form.

Figure 2.2: Stages in CFD. Ransau (2011)

To obtain a solution of the discretized equations an equation solver is needed to provide
the solution for the system of algebraic equations. The system of algebraic equations is
typically of the form:

a11u1 + a12u2 + ...+ a1nun = c1

a21u1 + a22u2 + ...+ a2nun = c2
...

an1u1 + an2u2 + ...+ annun = cn

In a more compact form:

Au = b

where A is a n × n-matrix of know coefficients, u is the column vector containing the
unknowns and b is a column vector of know quantities.

Two general types of solvers exist: direct solvers and iterative solvers. For a direct
solver, the solution of the linear system can be obtained exactly in a ”finite” time. For
an iterative solver, the exact solution cannot be obtained in a finite time. However, as
the number of iterations increases the approximations in an iterative solver will become
closer and closer to the exact solution.
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PRACTICAL ISSUES
In general, numerical methods must demonstrate a number of properties in order to be
successful. Five important properties are:

1. consistency

2. stability

3. convergence

4. conservation

5. accuracy

A description of the various properties are presented in Day (2010). The description is
summarized below.

Consistency
A numerical method is said to be consistent if the discretized equations converge to the
”exact” (continuum) equations in the limit as the grid size tends to zero, i.e. ∆t → 0
and ∆x,∆y,∆z → 0.

There will always almost be a difference between the discretized and the exact equation
and this error is referred to as the truncation error. As ∆t → 0 and ∆x,∆y,∆z → 0
one should expect the truncation error to approach zero.

Even if the approximations is consistent, there is no guarantee that the solution of the
discretized equation system will become the exact solution of the differential equation
in the limit of infinitesimal step size. In order to achieve this, the method applied needs
also to be stable.

Stability
A numerical method is said to be stable if it does not amplify the errors that appear in
the course of numerical solution process. For an unstable method, an error will cause
the disturbance to either grow indefinitely, destroying numerical solution, or cause large-
amplitude oscillations of the numerical results.

Characterization of the stability in a solution is usually described by the Courant-
Friedrichs-Levi condition (CFL number):

CFL = u
∆t

∆x
(2.1)

Here, u is the characterized velocity, ∆t the time step and ∆x the grid size. The higher
the value of the CFL-number, the more likely it is that instability will occur. For an
explicit CFD scheme to be stable, a CFL value less than 1 is desirable, while for implicit
solutions, the methods are more stable and able to tolerate CFL > 11.

Convergence
One say that the solution is convergent if the solution of the discretized equations
tends to the exact solution of the differential equations as the grid spacing tends to
zero (∆x,∆y,∆z → 0). It is noted that a method will only converge if it is both
consistent and stable. Convergence is usually checked by solving the problem on a

1An explicit scheme contra an implicit scheme differs in the number of unknowns when calculating
the flow properties at the present time.
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series of increasingly refined grids (and time steps). If the method is convergent (i.e.
consistent and stable), the solution will converge to a grid-independent solution.

As a solution is always achieved through iterations, the rate which the results improve
from one iteration to another (convergence rate) is important, and it is desirable that
this rate is high.

Conservation
The equations to be solved are conservation laws and hence the discretized equations in
the numerical solution should also obey these laws, throughout the whole computational
domain. This property is usually fulfilled automatically for finite-volume methods up to
the machine error (with some exceptions). If conservation is conserved (i.e. the relevant
fluid properties are conserved), one can expect the errors to consist only of inaccurate
distribution of fluid properties over the computational domain.

Accuracy
A numerical solution is only approximate, and its accuracy is dependent on the errors
which are introduced in the course of the development of the solution algorithm, in
programming the algorithms and in setting up the boundary conditions. In addition, a
numerical solution is said to always include at least four types of systematic errors:

• modeling errors:
the errors caused by the difference between the actual flow and the exact solution
of the mathematical problem.

• discretization errors:
the errors caused by the difference between the exact solution of the original
differential equations and the exact solution of the discretized version of these
equations.

• iteration errors:
ithe errors caused by the difference between the achieved iterative solution and
the exact solution of the discretized equations.

• round-off errors (machine errors):
the errors caused by the limitations of the hardware.

Assumptions made when the transport equations for the variables (mass, momentum
etc.) are derived gives rise to the modeling errors. Modeling errors is often also
introduced when simplification in geometries or boundary conditions are performed.
Such type of errors are not know in advance and can only be evaluated by comparing
solutions in which other errors are known to be negligible (with accurate experiment
data or data obtained from more accurate models).

Due to the limitations of computational elements (control volumes) and computational
domain, discretization errors arises.

The iteration errors are related to the quality of the numerical solution procedure on
the given grid and with the given model. Iteration errors are sometimes also referred
to as convergence errors. However, one should note that the errors are unrelated to
grid convergence, but to the convergence of the iterative schemes for solving systems of
matrix equations.

As of today, round-off errors are much reduced due to increased accuracy resulting
from the ability to store real number with more accuracy (using more memory). A
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poorly written code can, however, accumulate round-off errors rapidly, especially when
numbers of very different sizes are handled.

2.2 STAR-CCM+
STAR-CCM+ (STAR) is a CFD-software developed by CD-Adapco with purpose to
introduce an easy-to-use engineering tool not only reserved for experts within the CFD
discipline. Besides being a CFD solver, STAR is an entire engineering process for solving
problems involving flow, heat transfer and stress. This is made possible by developing a
suite of integrated components, together producing a powerful package that can address
a wide variety of modeling needs. These components include:

• 3D-CAD modeler

• CAD embedding

• Surface preparation tools

• Automatic meshing technology

• Physics modeling

• Turbulence modeling

• Post-processing

• CAE Integration

As for all CFD software, STAR follows a strict workflow when numerically solving a
given CFD problem. Figure 2.3 below gives and overview of the workflow implemented
in the STAR software.

Figure 2.3: Workflow overview in STAR.

The STAR software is based on a finite volume method2. This means, that by utilizing
the divergence theorem, volume integrals in a partial differential equation (that contain
a divergence term) are converted to surface integrals. With appropriate initial and
boundary conditions and by means of a number of discrete approximations, an algebraic
equation system solvable on a computer is obtained.

In the following, a basic description of the solution method, work flow and physics
in STAR will be given. It should be noted that this is only a brief introduction and
that the STAR-software contains a huge amount of additional features than what is
described below. As this thesis is focusing on studying solid (wedge) - fluid (water)
impact and interaction, description will be aimed at the concept of multiphase flow3.

2The finite volume method is a method for representing and evaluating partial differential equations
in the form of algebraic equations.

3Multiphase flow is a term which refers to the flow and interaction of several phases within the same
system where distinct interfaces exist between the phases.
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The given description will therefore, to some extent, follow what is done when setting
up the simulations described the later chapters.

The following is a summary of details found in CD-adapco (2011) (unless otherwise
stated).

SOLUTION METHOD
In section 2.1 an outline of a general CFD process is given. Here, a description of the
solution process in STAR is presented. The following is a summary of Mørch et al.
(2008).

The CFD software STAR is based on a finite-volume (FV) method and starts from
conservation equations in integral form. In the computations, an algebraic equation
system solvable on a computer is obtained by means of discrete approximations with
appropriate initial and boundary conditions. As a first step, the spatial solution domain
is subdivided into a finite number of contiguous control volumes (CVs). These volumes
can be of arbitrary polyhedral shape. The governing equations used contain surface and
volume integrals, as well as time and space derivatives.

For a viscous three-dimensional flow, the flow is assumed to be governed by the
Reynolds-averaged Navier-Stokes equations, in which the turbulence effects are included
via and eddy-viscosity model. In this case, the continuity equation, three momentum
components equations, and two equations for turbulence properties are solved. In
addition, the space-conservation law must be satisfied as the CVs move as the solid
moves. The equations are:

Mass conservation:
d

dt

∫
V

ρ dV+

∫
S

ρ(v − vb) · n dS = 0 (2.2)

Momentum conservation:

d

dt

∫
V

ρv dV+

∫
S

ρv(v − vb) · n dS =

∫
S

(T− pI) · n dS +

∫
V

ρb dV (2.3)

Generic transport equation for scalar quantities:

d

dt

∫
V

ρφ dV+

∫
S

ρφ(v − vb) · n dS =

∫
S

Γ∇φ · n dS +

∫
V

ρbφ dV (2.4)

Space conservation law:
d

dt

∫
V

dV−
∫
S

vb · n dS = 0 (2.5)

In these equations, ρ stands for fluid velocity, v is the fluid velocity vector and vb is the
velocity of the CV surface; n is the unit vector normal to the CV surface with area S
and volume V . T stands for the stress tensor (expressed in terms of velocity gradients
and eddy viscosity), p is the pressure, I is the unit tensor, φ stands for the scalar variable
(k, ε or ω), Γ is the diffusivity coefficient, b is the vector of body forces per unit mass
and bφ represents sources and sinks of φ.



STAR-CCM+ 11

To account for the free surface and allow for its arbitrary deformation, an additional
equation needs to be solved for the volume fraction o of the liquid phase:

d

dt

∫
V

o dV+

∫
S

o(v − vb) · n dS = 0 (2.6)

The liquid (water) and gas (air) are considered as two immiscible components of a single
effective fluid, whose properties are assumed to vary according to the volume fraction
of each component as follows for the density ρ and viscosity µ:

ρ = ρ1c+ ρ2(1− o), µ = µ1c+ µ2(1− o)

Here, both components can be either compressible or incompressible.

The above equations close the mathematical model of fluid flow computed when using
moving grids (as applied in Chapter 4 in this thesis). The grid movement is not
prescribed by initial conditions, but depends on the motion of the solid and needs
to be determined as part of the solution. This requires a coupled solution of the above
mentioned equations and six equations describing the motion of a floating body. These
six equations are in general:

Three component equations for the linear motion:

d(mBvC)

dt
= FB (2.7)

Three component equations for the angular motion:

d(IC · ωB)

dt
= MC (2.8)

Here mB is the body mass, vC is the velocity of the body’s center of mass, IC it its
moment of inertia, ωB is its angular velocity, FB is the force and MC the moment
acting on the body. The force typically consists of flow-induced forces (with shear
stress and pressure contributions) and the body weight; the latter does not contribute
to the moment about the center of mass:

FB =

∫
S

(T− pI) · n dS +mBg (2.9)

MC =

∫
S

(r− rC)× ((T− pI) · n) dS (2.10)

Here g stands for gravity acceleration and r for the position vector relative to a fixed
reference frame; index ”B” denotes body and ”C” the center of body mass.

The integrals presented here are all approximated by midpoint rule, i.e. the value of the
function to be integrated is first evaluated at the center of the integration domain and
then multiplied by the integration range.
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By a segregated iterative method, the solution of the Navier-Stokes equations is
accomplished. Here, the linearized momentum component equations are solved first
using prevailing pressure and mass fluxes through cell faces (inner iterations), followed
by solving the pressure correction equation derived from the continuity equation
(SIMPLE-algorithm; see Ferziger and Peric (2003) for more details). A flow chart
of the iterative solution method is illustrated in Figure 2.4.

Figure 2.4: Flow chart of the iterative solution method for a coupled simulation of fluid flow
and flow induced motion in a floating body. Mørch et al. (2008)

When computing the motion of a floating body, the outer iteration loop within each
time step is extended to allow for an update of the body position. After each update of
fluid velocity and pressure, forces and moments acting on the body are estimated and
used to solve equations of body motion.

It is beyond the scope of this thesis to go further into all the details of the numerical
solution method. The reader is encouraged to study details in Demirdzic and Muzaferija
(1995), Ferziger and Peric (2003), Muzaferija and Peric (1999) and Xing-Kaeding (2006).

MODELING
For most simulations in STAR, a first step is to prepare the geometry for the case to be
studied. The geometry that is to be considered can either be imported from external
CAD-programs (Catia, SolidWorks etc.) or created directly using the 3-D-CAD module
which exist within the STAR-software.

The 3-D-CAD module allows geometries to be built from scratch and can also be used
to make modifications to the imported CAD model. Unique for the 3-D-CAD module
is that the model can be modified outside the 3-D-CAD environment. This allows the
possibility to change size on one or more components, and re-run the analyzes quickly. If
a solution has already been computed it will be mapped across the modified geometry,
thereby decreasing the overall run time. Figure 2.5 shows the geometry of the half-
wedge used in the three-dimensional study in Chapter 4. The wedge is modeled entirely
within STAR.
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Figure 2.5: The modeled half-wedge used in the three-dimensional study in Chapter 4.

BOUNDARY CONDITIONS
To obtain a proper solution of the problem being solved, it is critical that the boundaries
are appropriately separated and demarcated for specific conditions and values to be
assigned. This holds for both meshing and analysis set-up.

In a multiphase flow, boundary conditions are usually set by defining an inlet, an outlet,
a wall (referred to as the solid) and symmetry condition. A wall condition is set so to
make the tangential velocity equal to 0. Physically, this implies that there will be no flow
over the boundary, hence the wall makes out an impermeable surface. The symmetry
condition is used such to simplify the problem and accordingly reduce computational
time. A symmetry plane enforce no flow through the symmetry plane but allows the
fluid to flow along the plane without being disturbed by shear forces. The symmetry
plane boundary therefore represents an imaginary plane of symmetry in the simulation.
The solution obtained with such a boundary plane is identical to the solution that would
be obtained by mirroring the mesh about the symmetry plane.

The inlet and outlet represents ducts at which the flow properties are known. Depending
on the problem being analyzed the inlet and outlet can be of following type:

- Mass Flow Inlet
Represents an inlet for which the mass flow rate is known.

- Stagnation Inlet
Refer to the condition in an imaginary plenum, far upstream, in which the flow is
completely at rest.

- Velocity Inlet
Represents the inlet of a duct at which the flow velocity is known.

- Pressure Outlet
A flow outlet boundary at which the pressure i specified.
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- Flow-Split Outlet
Used when multiple flow split outlets bound a fluid continuum. A fraction of the
total mass flow through each of the outlet boundaries is specified.

MESH
A good mesh forms the basis for good results through the analysis, and a starting point
for generating a mesh is a description of the geometry surface. From this description
two cycles of meshing of the geometry needs to be done: surface meshing and volume
meshing.

Surface mesh
STAR contains tools which can be used to help prepare the starting surface geometry
so that a high-quality volume mesh can be created from it. Most used is the surface
remesher and the surface wrapper.

The surface remesher i used to re-triangulate an existing surface in order to improve the
overall quality of the surface and optimize it for the volume mesh models. Typically,
the surface remesher is used for remeshing surfaces produced by the surface wrapper.

To provide a closed, manifold, non-intersecting surface (a requirement for CFD analysis),
the surface wrapper can be used. This feature is used when the imported geometry
include problems such as surface mismatches, intersecting parts, double and internal
surfaces and overly complex geometry with too much detail. As the resulting surface
quality from the surface wrapper is not always optimal, the surface remehser is often
used afterward to provide a high-quality starting surface for the volume mesh.

Volume mesh
In STAR three different types of meshing models can be used to generate a volume
mesh: tetrahedral, polyhedral, trimmed mesh.

The tetrahedral mesh is used to provide an efficient and simple solution for complex
mesh generation problems. It is the fastest of the provided models and uses least amount
of memory for a given number of cells.

Polyhedral meshes (used in Chapter 5) provide a balanced solution for complex mesh
generation problems. They are relatively easy and efficient to build, requiring no more
surface preparation than the equivalent tetrahedral mesh.

The trimmer meshing model utilize a template mesh constructed from hexahedral cells
from which it cuts or trims the core mesh based on the starting input surface. Of
the mentioned mesh models, the trimmer is expected to produce best results when
working with multiphase flow and free surface (due to its ability to describe the smooth
free surface). This is therefore used in the simulations of the water entry of rigid
wedges (Chapter 3 and 4). Figure 2.6 shows the trimmer meshing model applied in the
simulation domain.
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Figure 2.6: The trimmer meshing model applied on the modeled half-wedge and domain used
in the three-dimensional study in Chapter 4.

PHYSICS
Depending on what is to be analyzed, different physics models needs to be applied. In
STAR the following models exist:

• Space, time and motion
• Materials
• Flow and energy
• Species
• Turbulence and transition
• Radiation
• Aeroacoustics
• Combustion
• Multiphase flow
• Solid stress
• Electromagnetism

As this thesis is aimed at studying solid-fluid impact and interaction, multiphase Volume
Of Fluid (VOF) and VOF wave models, together with motion and time models, will be
further discussed.

Volume Of Fluid (VOF)
VOF is a simple multiphase model that is well suited when simulating flows of several
immiscible fluids on numerical grids capable of resolving the interface between the
mixture’s phases. Due to its numerical efficiency, the model is well suited for simulations
of flows where each phase constitutes a large structure, with a relatively small total
contact area between phases (as for water and air). The spatial distribution of each
phase at a given time is defined in terms of a variable called the volume fraction4. A
method of calculating such distributions is to solve a transport equation for the phase
volume fraction. For this, the method uses the STAR segregated flow model. The

4The volume fraction of a phase is the ratio of the volume occupied by the phase over the
computational cell volume.
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segregated flow model solves the flow equations (one for each component of velocity,
and one for pressure) in a segregated, or uncoupled, manner.

To set up a proper VOF multiphase simulation corresponding physics models has to be
chosen. Figure 2.7 show an example of choice of models when studying water entry of
a rigid wedge. Notice that turbulence in the flow is accounted for.

Figure 2.7: Physics models to be chosen when studying water entry of a rigid wedge in STAR.

VOF wave
To simulate surface gravity waves on a light fluid-heavy fluid interface, VOF Waves,
together with the VOF multiphase model, needs to be applied. These models are
typically used with the 6-DOF DFBI5 motion model for marine applications (this is
done in Chapter 4, though only with vertical translational motion of a three-dimensional
wedge). When created, VOF Waves provide field functions. Field functions provide a
mechanism by which fields (raw data from the simulation stored in the cells and/or on
the boundaries) may be viewed and defined in STAR. The field functions can be used
to initialize the VOF calculations and to provide suitable profiles at boundaries. Figure
2.8 illustrate how the VOF wave model in STAR simulates the water rise-up around the
wedge at water entry.

Motion
In STAR there are three broad categories for defining motion: mesh displacement in real
time (MDRT), moving reference frame in steady-state and harmonic balance flutter6.
The methods that involve actual displacement of the mesh vertices in real time is found
in the first category. These methods must be used in conjunction with a transient
analysis, as is the case for this thesis.

5Dynamic Fluid Body Interaction.
6Harmonic Balance Flutter motion is used in simulations that involve the Harmonic Balance method

with blade vibration.
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Figure 2.8: Water rise-up at the half-wedge used in the three-dimensional study in Chapter 4.

In the MDRT category four main methods are available:

• Dynamic Fluid Body Interaction.
• Rigid Motion.
• Morphing (deforming mesh).
• Solid Displacement.

In this thesis, all of the four methods (with some modification) are applied. Dynamic
Fluid Body Interaction for the constant velocity two-dimensional case in Chapter 3,
Rigid Motion for the free-falling three-dimensional case in Chapter 4 and Morphing
together with Solid Displacement for the FSI study in Chapter 5.

Time
In STAR there exist three ways of modeling time. The function of the time models is
to provide solvers (see next section) that control the iteration and/or unsteady time-
stepping. The three time models are:

• Steady.
• Implicit unsteady.
• Explicit unsteady.

When studying segregated flow (as done in this thesis) only the implicit unsteady model
can be applied. This is due to the fact that the VOF wave model is unable to solve the
pressures and velocity components in a coupled manner.

SOLVERS
The solvers feature is to control the solution. It is activated once per iteration or once
per time-step for implicit unsteady simulations. Usually, when setting up a physics
model, the needed solver will be chosen automatically.

For a multiphase VOF problem, a segregated VOF solver is chosen. The solver controls
the solution update for the phase volume fractions. This means that for each phase
present in the flow, the discretized volume-fraction conservation equation (2.6) is solved.
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In several of the studies in this thesis, the segregated VOF solver is the one used.
This solver controls the solution update for the segregated flow model according
to the SIMPLE algorithm. It also controls the velocity solver and the pressure
solver. The velocity solver solves the discretized momentum equation to obtain the
intermediate velocity field, while the pressure solver solves the discrete equation for
pressure correction, updating the pressure field.

By the SIMPLE algorithm the overall solution is controlled. The algorithm may be
summarized as follows and is done for every time step (ref. Figure 2.4).

1. Set the boundary conditions.

2. Compute the reconstruction gradients of velocity and pressure.

3. Compute the velocity and pressure gradients.

4. Solve the discretized momentum equation to create the intermediate velocity field
v∗.

5. Compute the uncorrected mass fluxes at faces ṁ∗f .

6. Solve the pressure correction equation to produce cell values of the pressure
correction p′b.

7. Update the pressure field:
pn+1 = pn + ωp′

where ω is the under-relaxation factor for pressure.

8. Update the boundary pressure corrections p′b.

9. Correct the face mass fluxes:
ṁn+1
f = ṁ∗f + ṁ′f .

10. Correct the cell velocities:
vn+1 = v∗ − V∇p′

aV
p

where ∇p′ is the gradient of the pressure corrections, aVp is the vector of central
coefficients for the discretized linear system representing the velocity equation and
V is the cell volume.

11. Update density due to the pressure changes.

12. Free all temporary storage.

To ensure convergence in the solution at each time step, a certain number of iterations
is required. The optimal number of iterations can be found by analyzing the residuals7.
The most important residual when studying the free surface is the residual for water
and air. Here it is recommended that the residual drops in the order 102. However,
it is proven that a drop of residual in the order 101 is sufficient (giving a converging
solution), Kopperstad (2011).

7The residual represents the degree to which the discretized solution is not satisfied.
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POST PROCESSING
After the solver (and the initial conditions) are set, the simulation can be run. By the
use of field functions, STAR allows for the possibility to analyze the solution while the
simulation is running, as well as when it completes. The field functions can be analyzed
either/or by creating reports, plotting sets of data and/or by visualizing the solution
data. To sample and save the solution data while the simulation is running, monitors
are used. Usually, the needed monitor is chosen automatically when choosing a solver.

Some of the different representation methods that can be utilized during a simulations
can be studied under ANALYZING AND POST PROCESSING in Chapter 3.





3

WATER ENTRY OF
TWO-DIMENSIONAL

WEDGES

Determination of slamming loads on a body at water impact is considered complex
and difficult to describe with simple expressions or simulations. Computational Fluid
Dynamics (CFD) has become a well-known and suitable tool when analyzing fluid-body
interaction and the physical problems that arises during an impact. By the use of CFD
and the Volume of Fluid (VOF) method, water entry problems can be simulated and
solved, even for complex three-dimensional geometries.

Using CFD-software to simulate complex three-dimensional problems are extremely time
consuming and can take days to perform, depending on the computer cluster at hand.
Two-dimensional problems, on the other hand, are generally much faster and can be
used as a guideline to results one would expect to get in 3-D. This approach is especially
used in situations where the flow is approximately two-dimensional, e.g. for ship stern
slamming in head or following sea. As an aid in understanding planing and slamming
of marine vessels, constant velocity water entry of wedge shaped sections is therefore
important.

This chapter will study the slamming phenomena for a two-dimensional wedge with a
forced downward velocity. Parameters characterizing the slamming loads for such a case
are the position and value of the maximum pressure, the time duration and the spatial
extent of the high slamming pressure. (The definitions of the slamming parameters are
presented in Figure 3.16 in section 3.3.)

In the following study, these parameters, together with the total hydrodynamic force
F3 on the wedge, is used to characterize the slamming problem for wedges with varying
deadrise angles. The parameters are found using the CFD software STAR-CCM+
and comparison of the parameters are made with a similarity solution, an asymptotic
solution and a nonlinear boundary element method.

21
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3.1 SOLUTIONS USED FOR COMPARISON

STAR-CCM+ is used to study the water entry of two-dimensional wedges with deadrise
angles varying from 4◦ to 81◦. To validate the solution, results are compared with
numerical results found in Zhao and Faltinsen (1992). In this paper - Water entry
of two-dimensional bodies, Zhao and Faltinsen presents a numerical boundary method
(BEM) for studying water entry of a two-dimensional body with an arbitrary cross-
section. They also present a similarity and an asymptotic solution. The three solution
methods are summarized in the following.

BOUNDARY ELEMENT METHOD
The boundary element method (BEM) solution by Zhao and Faltinsen is a nonlinear
BEM with a jet flow approximation. A brief introduction to the theory is given here
but the reader is encouraged to study Zhao and Faltinsen (1992) for further details.

A two-dimensional body that is forced with vertical constant velocity through the
initially calm free surface is considered. It is assumed that no air pocket between
the body and the free surface is formed during the impact. Hence the deadrise angle
α is larger than 2-3 degrees. The water is assumed to be incompressible and the flow
irrotational such that a velocity potential φ satisfies the Laplace equation in the fluid
domain:

∂2φ

∂y2
+
∂2φ

∂z2
= 0 (3.1)

Due to the large fluid accelerations that occur on impact the effect of gravity is neglected.
The kinematic free-surface condition is that a fluid particle remains on the free surface.
Hence the motion of the free surface may be found by integrating the fluid velocity.

Figure 3.1: Definitions of coordinate system and control surfaces used in the numerical solution
of water entry of a wedge; α = deadrise angle. Zhao and Faltinsen (1992)

A jet flow is assumed created at the intersection between the free surface and the body
surface. In the upper part of the jet the pressure is set equal to the atmospheric pressure
p0. The solution is simplified by defining an instantaneous fluid domain Ω that does
not contain the whole jet flow. By Green’s second identity the velocity potential φ for
the flow inside the fluid domain is represented:

2πφ(y, z) =

∫
S

[
∂φ(η, ζ)

∂n(η, ζ)
log r − φ(η, ζ)

∂ log r

∂n(η, ζ)

]
ds(η, ζ), (3.2)

where r = [(y − η)2 + (z − ζ)2]
1
2 , S is the surface enclosing the domain, −→n is the normal

vector of the surface enclosing the domain, (y, z) are the coordinates of points inside
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the fluid domain and (η, ζ) are the coordinates of points on the surface domain. Further
deduction of 3.2 used in this BEM solution will not be presented here. Details are found
in Zhao and Faltinsen (1992).

The BEM problem is solved as an initial value problem where the velocity potential φ
and the free-surface elevation are set equal to zero at the initial time. At each time
instant an integral equation resulting from 3.2 is solved. The pressure on the body is
found by Bernoulli’s equation.

In the numerical solution conducted by Zhao and Faltinsen conservation of mass,
momentum and energy are satisfied. The solution has also been checked against the
similarity solution for wedges and asymptotic formula for small deadrise angles. The
latter solutions are described in the following sections.

SIMILARITY SOLUTION
Similarity solutions for flow around symmetric wedges with constant vertical velocity V
through a calm free surface is presented by Dobrovol’skaya (1969). In the flow the fluid
velocity can be written as

∇φ = V F
( y

V t
,
z

V t

)
, (3.3)

where F is a function that Dobrovol’skaya finds by first solving the following integral
equation

f(t) =
1

π

c2
0

c2

t∫
0

(1− t)−1−γ exp

[
t

1∫
0

f(τ)
τ(τ−t)dτ

]
dt

1∫
t

t−
3
2 (1− t)−

1
2

+γ exp

[
−t

1∫
0

f(τ)
τ(τ−t)dτ

]
dt

, (3.4)

where

c2
0

c2
=

1∫
0.5

r−
3
2 (1− r)−

1
2

+γ(2r − 1)−γ exp

{
−

1∫
0

f(τ)dτ
τ [τ{2−(1/r)}−1]

}
dr

1∫
0.5

(1− r)−1−γ(2r − 1)−1+γ exp

{
1∫
0

f(τ)dτ
τ [τ{2−(1/r)}−1]

}
dr

. (3.5)

In the above equation γ = 0.5 − α/π. The unknown function f(t) is defined for t
between 0 and 1. The parameter t does not mean time in this context: f(t) is bounded
and is proportional to the angle of inclination of the free surface along the y-axis. t =
1 corresponds to the intersection point between the free surface and the body surface
and t = 0 to the point of infinity along the free surface.

Dobrovol’skaya (1969) solves (3.4) by iteration for deadrise angles 30◦, 60◦ and higher.
A different approach has been presented by Hughes (1972) for a deadrise angle equal
to 45◦. The accuracy needed in the numerical computations increases with decreasing
deadrise angle and Zhao and Faltinsen presented a different numerical scheme capable
of calculating results for deadrise angles down to 4◦. In the solution proposed, ratios
of mass, energy and force ratios are shown to be within 1.0 ± 0.01, expect for α = 4◦.
Asymptotic results presented by Cointe (1991) are in agreement with those found in the
similarity solution by Zhao and Faltinsen (1992).
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ASYMPTOTIC SOLUTION
For small deadrise angles it is possible to use matched asymptotic expansions to solve
the 2-D wedge flow. In the solution the flow is divided into an inner and outer flow
domain. The inner flow is studied with respect to the jet flow between the free surface
and the body and is shown by Armand and Cointe (1986), Cointe (1991) and Howison
et al. (1991). The matching will not described there. Following, a composite solution
for the pressure distribution on the body will be presented.

The wetted length c(t) is dependent on the cross-sectional geometry of the wedge and
can for a given deadrise angle α be found from Wagner (1932) as

c(t) = 0.5πV tcotanα. (3.6)

In the outer flow region the pressure pout on the body is approximated as

pout − p0 = ρV c
dc

dt
(c2 − y2)−

1
2 for |y| < c(t). (3.7)

The pressure on the body surface in the inner flow region pin around y = c(t) is found
in Wagner (1932) as

pin − po = 2ρ

(
dc

dt

)2

|τ |
1
2 (1 + |τ |

1
2 )−2, (3.8)

where |τ | is related to y by

y − c =
δ

π
(− ln |τ | − 4|τ |

1
2 − |τ |+ 5). (3.9)

Here, δ expresses the jet thickness δ = πV 22c(4dc/dt)−2 and is obtained by matching
the inner and outer solutions. The parameter |τ | varies from 0 to ∞ on the body
surface and the maximum value of pin occurs when |τ | = 1, i.e. y = c. When |τ | → 0,
y → ∞ along the body on the upper side of the jet. When |τ | → ∞, y → −∞ along

the body. For large values of |τ | we can then write pin − pout ∼ 2ρ(dc/dt)2|τ |−
1
2 and

y− c ∼ −(δ/π) |τ |. For large positive values of c− y (3.8) can then be approximated as

pin − pout ∼ ρV c
dc

dt
[2c(c− y)]−

1
2 . (3.10)

By noting that pout has the same asymptotic behavior when y → c as 3.10 , a composite
solution for the pressure distribution on the body surface for positive y values is
obtained. pout and pin are added and the common asymptotic term is subtracted
resulting in the following composite solution for 0 ≤ y ≤ c(t):

p− p0 = ρV c
dc

dt
(c2 − y2)−

1
2 − ρV cdc

dt
[2c(c− y)]−

1
2 + 2ρ

(
dc

dt

)2

|τ |
1
2 (1 + |τ |

1
2 )−2. (3.11)

This solution has no singular behavior at y = c(t). For y > c(t) equation 3.8 is used.

Another solution based on matched asymptotic expansions and local jet flow analysis
is provided by Watanabe (1986). However, the analysis of the jet flow and the final
results provided by Watanabe (1986) are not the same as presented here by Zhao and
Faltinsen (1992).
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3.2 SOLUTION IN STAR-CCM+

The water entry of two-dimensional rigid wedges with constant velocity is simulated
and studied in STAR. Eleven (11) different wedges with deadrise angles ranging from 4
to 81 degrees are modeled. The wedges are forced with a constant vertical velocity of 1
m/s through a calm free surface where the effect of gravity is neglected (as in Zhao and
Faltinsen (1992)). A laminar flow model is considered sufficient as the water entry of
a two-dimensional wedge is characterized by high local slamming pressures1. Because
the water entry is symmetric, one can assume that the fluid velocities, and thus the
pressure on one side of the wedge, will be the same whether the half or the whole wedge
is modeled. A half-wedge is therefore considered. Further, a body-fixed mesh is used
and the vertical motion of the body is achieved by altering the level of the free surface.
This is done by defining the lower boundary of the computational domain as a water
inlet where the velocity inflow is set as the instantaneous wedge vertical velocity, 1 m/s.
This method of simulating wedge impact has the advantage of requiring only one mesh,
which can be refined in areas of interest, such as the apex of the wedge and the wall
water jets expected as the wedge penetrates the water level. A high density mesh is also
required at the wall region just below the water jet as this region experiences the highest
slamming pressures during impact. To ensure stability in the solution a time step is
chosen such that the maximum Courant number at critical regions are approximately
equal to 0.5.

All simulations, with exception of the 4◦ wedge, are run on 2 Intel(R) Core(TM) i5
processors at 2.30 GHz. The water entry is studied for 0.06 seconds (real time), and
time of each simulation varies from 20 minutes to 1 hour (depending on grid refinements
and time step). The 4◦ wedge is run on an AMD computer cluster with a total of 12
cores, each at 2.40 Ghz. Extra computational power is needed for the 4◦ wedge due to
the high requirements to grid size and time step. Computational time for this wedge is
at 5 hours.

DISCRETIZATION OF TIME AND SPACE
When modeling the wedge water entry in STAR one needs to make some approximations.
The solutions mentioned in Section 3.1 assume infinitely deep and wide fluid domain.
In STAR the domain has the shape of a box, hence the effect of domain size on the
results needs to be considered. Another important aspect is the effect of grid size and
time step on the solution.

Domain size
Three different domain sizes are studied. The grids used are dense in the vicinity of the
wedge, and stretched out farther away from the wedge (see Figure 3.5). All of the three
grids have the same local refinement at the wedge apex and wall similar to that of Grid
1 in Table 3.3. The three different domain are shown in Table 3.1 below. Figure 3.2
shows the wedge in the medium size domain at the start of the simulation. For each
domain the simulation is run for 0.06 s with a constant water entry velocity of 1 m/s.
A wedge with deadrise angle α = 20◦ is used in each simulation.

As seen from the Figure 3.3 there is minimal change in the vertical force on the wedge
for the medium and large domain. For the small domain however, the vertical deviates
from the other two - the deviation increasing in time. When comparing the results with

1A turbulent versus a laminar analysis is shown later in this section.
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Table 3.1: The three different domains used in the domain size analysis. The coordinates are
seen in connection with Figure 3.2.

xmin xmax zmin zmax Cells

Small domain 0.0 1.2 -0.3 0.7 12 994
Medium domain 0.0 3.0 -2.0 1.5 15 093
Large domain 0.0 6.0 -4.0 3.0 17 478

Figure 3.2: The medium size domain.

the similarity solution it is found that the small domain gives a too high value of the
pressure coefficient all along the wedge bottom, as seen in Figure 3.4. The medium and
large domain gives acceptable results compared to the similarity solution. A comparison
of slamming parameters, the Courant number and computational time is shown in Table
3.2.
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Table 3.2: The effect of domain size on the different slamming parameters: Cpmax
= pressure

coefficient at maximum pressure; zmax/V t = z-coordinate of maximum pressure;
∆Ss/c = spatial extent of slamming pressure; c = 0.5πV tcotanα; F3 = total
vertical hydrodynamic force on the wedge. The Courant number (CFL) and the
computational time is also tabulated.

Cpmax zmax/V t ∆Ss/c F3/(ρV
3t) CFLmax Time [min]

Small domain 21.35 0.5298 0.6408 55.123 1.0865 7.4
Medium domain 18,37 0.4841 0.3834 41.799 1.0526 8.4
Large domain 18.29 0.4990 0.3738 41.317 1.0435 9.0
Similarity solution 17.77 0.5087 0.4418 42.485 - -

Figure 3.3: The effect of domain size on the total vertical hydrodynamic force on the wedge.



28 WATER ENTRY OF TWO-DIMENSIONAL WEDGES

Figure 3.4: The effect of domain size on the pressure distribution along the wedge.

Grid size
When conducting CFD simulations special care must be shown when choosing the grid
size. In wedge water entry analysis, slamming pressures occur short in time and space.
To capture the peak pressures the grid size therefore needs to be small in the critical
regions. Figure 3.5 shows a section of Grid 3 from Table 3.3. Local refinements are
applied along the wedge bottom and a dense grid is chosen all along the free surface in
the vertical direction.

Figure 3.5: A section of Grid 3 illustrating choice of local refinements and grid size.

Four different grid sizes are studied for the wedge with deadrise angle α = 20◦. The
large domain from Table 3.1 is used in all simulations. For each grid size the simulation



SOLUTION IN STAR-CCM+ 29

is run for 0.06 s with a constant water entry velocity of 1 m/s. Time step is altered such
to achieve stability. The properties of the four different grids are shown in Table 3.3.

Table 3.3: The four different grids used in the grid size analysis. ∆xmin and ∆zmin are
dimensions of the smallest cell.

Cells ∆xmin [m] ∆zmin [m] ∆xmin
∆zmin

Grid 1 4 404 0.00500 0.005000 1.00
Grid 2 7 379 0.00375 0.003750 1.00
Grid 3 17 478 0.00250 0.000540 4.63
Grid 4 61 751 0.00125 0.000274 4.56

As the number of cells in the grid is increased, the accuracy of the prediction of pressure
along the wedge increase. It must be noted that this increase in accuracy is accompanied
by an increase in computational time. By studying Figure 3.7 it is seen that all grids,
with exception of Grid 1, gives reasonable values of the pressure distribution along the
wedge bottom. It is noticed that Grid 2 is only able to capture a few data points at
the peak pressure, and should therefore not be used in further analysis. Grid 3, giving
a smooth pressure distribution including a conservative value of Cpmax , is concluded
sufficient for further studies. By studying Figure 3.6 it is also seen that Grid 3 has
the grid resolution resulting in the most stable force signal. A comparison of slamming
parameters, the Courant number and computational time from the grid size study is
shown in Table 3.4

Table 3.4: The effect of grid size on the different slamming parameters: Cpmax
= pressure

coefficient at maximum pressure; zmax/V t = z-coordinate of maximum pressure;
∆Ss/c = spatial extent of slamming pressure; c = 0.5πV tcotanα; F3 = total
vertical hydrodynamic force on the wedge. The Courant number (CFL) and the
computational time is also tabulated.

Cpmax zmax/V t ∆Ss/c F3/(ρV
3t) CFLmax Time [min]

Grid 1 14.47 0.4865 - 40.426 1.2117 1.0
Grid 2 18.29 0.4786 0.4345 43.485 0.9726 2.3
Grid 3 18.54 0.4841 0.3546 41.933 1.0556 10
Grid 4 17.16 0.4835 0.5824 43.887 0.7496 40
Similarity solution 17.77 0.5087 0.4418 42.485 - -

Time step
When changing the grid size one must also make sure that the time step is chosen such
that stability is conserved. A too high time step will make the solver ”jump” cells,
causing an unstable solution.

For the two-dimensional case, no systematic study on choice of time step is performed.
The time step is in all simulations chosen such that the Courant-condition is satisfied.
A study on the time step’s effect on predicted slamming pressures are shown in section
4.2 in Chapter 4.
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Figure 3.6: The effect of grid size on the total vertical hydrodynamic force on the wedge.

Figure 3.7: The effect of grid size on the pressure distribution along the wedge.
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LAMINAR VERSUS TURBULENT FLOW
When studying fluid-body interaction one needs to determine the type of flow around
the body. For a typical small wedge slam the flow along the wedge will be viscous. The
typical Reynolds number for wedge entry, calculated from data presented by Yettou
et al. (2006), is 6E6. This implies that the effect of turbulence on the wedge has to be
taken into account, hence a suitable turbulence model has to be used when performing
CFD calculations. However, forces imposed on the wedge at impact is mainly due to
the high slamming pressure and it is therefore discussed whether or not a laminar model
can be applied when studying these types of water entry problems.

To investigate the dependence of flow model on the solution two different turbulence
models are chosen to close the Navier-Stokes equations: the k−ε model and the k−ω
model. The two approaches are compared with the similarity solution and the laminar
solution from Grid 3 in Table 3.4. All three solutions have the same domain size, grid
size and time step, and each simulation is run for 0.06 s with a constant water entry
velocity of 1 m/s. A wedge with deadrise angle α = 20◦ is used. A comparison of
slamming parameters, the Courant number, the Wall y+ value and computational time
from flow model study is shown in Table 3.5.

Table 3.5: The effect of choice of flow model on the different slamming parameters: Cpmax

= pressure coefficient at maximum pressure; zmax/V t = z-coordinate of maximum
pressure; ∆Ss/c = spatial extent of slamming pressure; c = 0.5πV tcotanα; F3 =
total vertical hydrodynamic force on the wedge. The Courant number (CFL), the
Wall y+ value and the computational time is also tabulated.

Cpmax zmax/V t ∆Ss/c F3/(ρV
3t) CFLmax Wall y+ T ime [min]

k−ε model 18.50 0.4990 0.3547 41.3698 1.0384 109.85 12.5
k−ω model 18.74 0.4990 0.3451 41.3912 1.1543 109.72 18.5
Laminar model 18.54 0.4841 0.3546 41.933 1.0556 - 10.0
Simil. solution 17.77 0.5087 0.4418 42.485 - - -

Figure 3.8: The effect of choice of flow model on the pressure distribution along the wedge.
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By studying Figure 3.8 it is noticed that for the two-dimensional water entry problem
a laminar or turbulent flow model gives fairly the exact same solution on the pressure
distribution along the wedge. A laminar flow model is therefore applied in all simulation
studied in this chapter.

INFLUENCE OF NUMERICAL PARAMETERS
When setting up a CFD simulation in STAR a number of input parameters needs to
be chosen. The default values are not always the most fitting, and a study has to be
performed to obtain the most satisfactory result. Satisfactory results are in this context
referred to results which coincides as much as possible to those of Zhao and Faltinsen
(1992) presented in section 3.1.

It is difficult to determine the effect of varying the input parameters if several input
parameters are varied at the same time. The study is performed by altering different
parameters, one at a time, and noting the effect on the result. In each simulation the
wedge with deadrise angle α = 20◦ is run for 0.06 s with a constant water entry velocity
of 1 m/s. The large domain together with Grid 3 are applied. The study is ended when
the input parameters which provided the most satisfactory results are found. These
values are then applied to all wedges in all the simulations.

One of the input parameters which is seen to influence the solution is the Under-
Relaxation Factor (URF). This parameter is discussed in further detail for the tree-
dimensional case in Chapter 4. For the two-dimensional case, however, it should be
noted that the under-relaxation for velocities and pressure are set to 0.9 and 0.4,
respectively; the default values are too conservative for steady-state flow. In Table 3.6, a
selection of parameters tested in the convergence study are listed. Further study of the
set-up and simulations can be done on the .sim files found in the folder wedge2D constvel
found in the attached ZIP-file. Peric (2012)

Table 3.6: Parameters tested in the convergence study for the two-dimensional wedge. The
final chosen values are also included.

Parameter Tested Chosen

Physics
Segregated Flow Convection 1st-/2nd-order 2nd-order

Solver
Implicit Unsteady Temporal Discretization 1st-/2nd-order 2nd-order
Segregated Flow Under-Relaxation: Velocity 0.6, 0.7, 0.8, 0.9 0.9
Segregated Flow Under-Relaxation: Pressure 0.1, 0.2, 0.3, 0.4 0.4

Stopping Criteria
Iterations Number of Inner Iterations 5,8,10,15,20 20



SOLUTION IN STAR-CCM+ 33

ANALYZING AND POST PROCESSING
By the use of field functions in STAR-CCM+, raw simulation data can be accessed
making it possible to analyze the solution while the simulation is running. The analysis
is performed by creating reports, plotting sets of data and visualizing the solution data.
This is used to easy confirm that the simulation is set up correct and that values of
interest are within reasonable limits. In the wedge water entry analysis, all of the three
tools were used to monitor the following:

• VOF: used to visualize the fluid-body interaction to confirm that the physical
model is realistic. Figure 3.9.
• Pressure: to confirm that the pressure values are within reasonable limits and

that the pressure distribution is realistic. Figure 3.10.
• Velocity: as with pressure. From equation 2.1 in section 2.1 (Chapter 2),

velocities are also used to calculate the CFL-value. By this, the time step in
the simulation is adjusted. Figure 3.11.
• CFL-value: STAR’s own convective courant number is used to verify the CFL-

value. Figure 3.12.
• Force: to determine the total vertical hydrodynamic force on the wedge. Figure

3.13.
• Residuals: to study the convergence and stability of the solution and to set the

time step and inner iterations accordingly. Figure 3.14.

Figure 3.9 to 3.14 shows plots and visualization for the water entry 0.06 s after wedge
impact for the wedge with deadrise angle α = 20◦ and velocity equal to 1 m/s.

(a) (b)

Figure 3.9: Visualization (a)-(b) of the water rise-up along the wedge section at t = 0.06s.
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(a) (b)

Figure 3.10: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s.

(a) (b)

Figure 3.11: Visualization (a) and plot (b) of the velocity distribution along the wedge at
t = 0.06s.

(a) (b)

Figure 3.12: Visualization (a) and plot (b) of the CFL-values along the wedge at t = 0.06s.
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Figure 3.13: Total vertical hydrodynamic force on the wedge.

Figure 3.14: The residuals of water, continuity and x, y and z-momentum at the end of the
simulation.
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3.3 RESULTS

From the domain size study it is found that both the medium and the large domain
gives steady results for the force signal. The computational time is approximately the
same and the large domain is therefore chosen for all the simulations. Grid 3 proves
to give the most favorable solution for the wedge with deadrise angle α = 20◦ and is
chosen for all simulations with exception of the wedge with deadrise angle α = 4◦. Here
a finer grid is used to capture the pressure peak. As there is found little difference in
the results by use of flow model, a laminar model is applied to simplify the solution. A
time step ranging from 1E−4 to 2E−4 is used depending on the CFL condition. The free
surface at t = 0.06 is inspected to ensure that a reasonable sharp interface is predicted
with a rapid variation of volume fraction across 2-3 cells only (see Figure 3.15).

Figure 3.15: The free surface at t = 0.06 s after wedge impact showing an acceptable prediction
of the volume fraction between water and air.

In the analysis, four different slamming parameters are studied at t = 0.06 s after
impact: the maximum pressure coefficient Cpmax = (pmax−pa)/(0.5ρV 2), describing
the pressure along the wedge; zmax/V t, a dimensionless expression for the position on
the wedge of the maximum pressure; ∆Ss/c, the dimensionless spatial extent of the
slamming pressure; F3/(ρV

3t), dimensionless total hydrodynamic force on the wedge.
The definitions of the slamming parameters are presented in Figure 3.16.

The spatial extent ∆Ss of the slamming pressure peak can only be calculated for small
deadrise angles where there is a significant peak in the pressure. In this case for α ≤ 20◦.
The total hydrodynamic force is calculated for the half-wedge and the result is multiplied
by a factor of 2 to obtain the force on the whole wedge. Results obtained by STAR-
CCM+ are presented in Table 3.7 and 3.8 and Figures 3.18 to 3.27.

By studying Table 3.8 and Figures 3.17 to 3.27 a good agreement is seen between the
STAR results and the results presented by Zhao and Faltinsen. Some deviation in the
STAR solution is seen in the plots in the Figures 3.17 to 3.27 for z/V t ≈ 0.6 (especially
for α = 4◦ seen in Figure 3.17). These deviations are due to the flattering of the jet of
water that moves along the wedge wall. In 2-D, there is no flow in the third direction
so when the jet tends to move away from the wall an under pressure is created. These
oscillations, however, do not affect the rest of the solution and can therefore be ignored.
Further, by studying Figure 3.20 to Figure 3.23, a discrepancy between the asymptotic
solution and the other three solutions are seen.
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This discrepancy follows from the fact that the asymptotic solution assumes small
deadrise angles, α < 10◦. Faltinsen (2012), Peric (2012)

Figure 3.16: Definition of parameters characterizing slamming pressure during water entry of
a blunt two-dimensional body: α = deadrise angle; Cpmax

= pressure coefficient
at maximum pressure; zmax = z-coordinate of maximum pressure; ∆Ss = spatial
extent of slamming pressure exceeding 50% of maximum pressure; t = time; V
= water entry velocity. Zhao and Faltinsen (1992)

Table 3.7: Estimation of slamming parameters by STAR-CCM+ during water entry of a wedge
with constant vertical velocity V : α = deadrise angle; Cpmax

= pressure coefficient at
maximum pressure; zmax/V t = z-coordinate of maximum pressure; ∆Ss/c = spatial
extent of slamming pressure; c = 0.5πV tcotanα; F3 = total vertical hydrodynamic
force on the wedge.

α (deg.) Cpmax zmax/V t ∆Ss/c F3/(ρV
3t)

4 546.300 0.5792 0.0158 1508.33
7.5 137.651 0.5440 0.0524 382.64
10 80.253 0.5378 0.0842 207.12
15 34.831 0.5190 0.1701 83.33
20 18.761 0.4990 0.3451 41.93
25 11.031 0.4735 - 23.88
30 6.842 0.4378 - 13.81
40 3.397 0.2576 - 5.54
45 2.637 -0.9867 - 3.50
60 1.655 -0.9774 - 0.91
81 0.593 -0.9796 - 0.033
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Table 3.8: Estimation of slamming parameters by the similarity solution, the asymptotic
method, the nonlinear boundary element method and STAR-CCM+ during water
entry of a wedge with constant vertical velocity V : α = deadrise angle; Cpmax =
pressure coefficient at maximum pressure; zmax/V t = z-coordinate of maximum
pressure; ∆Ss/c = spatial extent of slamming pressure; c = 0.5πV tcotanα; F3 =
total vertical hydrodynamic force on the wedge.

Cpmax zmax/V t

α (deg.) Simil. Asymp. BEM STAR Simil. Asymp. BEM STAR

4 503.030 504.61 521.4 546.300 0.5695 0.5708 0.571 0.5792
7.5 140.587 142.36 148.3 137.651 0.5623 0.5708 0.558 0.5440
10 77.847 79.36 80.2 80.253 0.5556 0.5708 0.555 0.5378
15 33.271 34.37 32.8 34.831 0.5361 0.5708 0.533 0.5190
20 17.774 18.63 18.2 18.761 0.5087 0.5708 0.488 0.4990
25 10.691 11.35 10.9 11.031 0.4709 0.5708 0.443 0.4735
30 6.927 7.40 6.94 6.842 0.4243 0.5708 0.400 0.4378
40 3.266 3.50 3.26 3.397 0.2866 0.5708 0.245 0.2576

∆Ss/c F3/(ρV
3t)

α (deg.) Simil. Asymp. BEM STAR Simil. Asymp. BEM STAR

4 0.01499 0.01576 0.0156 0.0158 1503.638 1540.506 1491.8 1508.33
7.5 0.05129 0.05586 0.0526 0.0524 399.816 423.735 417.9 382.64
10 0.09088 0.1002 0.0941 0.0842 213.980 231.973 220.8 207.12
15 0.2136 0.2314 0.226 0.1701 85.522 96.879 85.5 83.33
20 0.4418 0.4270 0.434 0.3451 42.485 50.639 43.0 41.93
25 - - - - 23.657 29.765 23.7 23.88
30 - - - - 14.139 18.747 13.9 13.81
40 - - - - 5.477 8.322 5.31 5.54
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(a) (b)

Figure 3.17: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 4◦: V = 1 m/s.

(a) (b)

Figure 3.18: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 7.5◦: V = 1 m/s.

(a) (b)

Figure 3.19: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 10◦: V = 1 m/s.
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(a) (b)

Figure 3.20: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 15◦: V = 1 m/s.

(a) (b)

Figure 3.21: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 20◦: V = 1 m/s.

(a) (b)

Figure 3.22: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 25◦: V = 1 m/s.
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(a) (b)

Figure 3.23: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 30◦: V = 1 m/s.

(a) (b)

Figure 3.24: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 40◦: V = 1 m/s.
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(a) (b)

Figure 3.25: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 45◦: V = 1 m/s.

(a) (b)

Figure 3.26: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 60◦: V = 1 m/s.
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(a) (b)

Figure 3.27: Pressure distribution (a) and normalized pressure distribution (b) along the
wedge at t = 0.06s; deadrise angle α = 81◦: V = 1 m/s.





4

WATER ENTRY OF A
THREE-DIMENSIONAL

WEDGE

Fluid - structure impact problems associated with water entry have important applica-
tions in various aspects of naval architecture and ocean engineering, including slamming
of a ship, green water on deck and wave impact on offshore platforms and coastal
structures. Ships that navigate through rough waters suffer various structural damages
that are generally related to waves rapidly slamming into the ship’s bow, side or/and
stern. Recently, recreational boats and high speed watercrafts have been introduced to
the market and have become extremely popular. When these boats repeatedly jump
waves, the impact loads creates significant pressure on the hull.

As a consequence of the above mentioned scenarios, manufactures all over the world are
searching for simple and accurate approaches to estimate the pressure loading that occur
due to the effect of slamming. Von Karman (1929) was one of the pioneer researchers
in this field. In his study, he developed a theoretical model based on the momentum
theorem and the water-added mass.

Besides Von Karman (1929), several other individuals have spent much time studying
the fluid - structure slamming phenomena. Worth mentioning are Wagner (1932),
Dobrovol’skaya (1969), Payne (1988), Korobkin and Pokhnachov (1988) and Zhao and
Faltinsen (1992). (Dobrovol’skaya (1969) and Zhao and Faltinsen (1992) are described
in section 3.1 in Chapter 3.)

This chapter will focus on the use of STAR-CCM+ to study the water entry of a
free-falling three-dimensional rigid wedge, much resembling the hull cross-section of a
high-speed watercraft. The numerical results produced in STAR are compared with an
experimental study conducted by Yettou et al. (2006), together with constant water
entry velocity models by Wagner (1932), Von Karman (1929), Mei (1998) and Zhao
et al. (1996).

45
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4.1 DESCRIPTION OF THE EXPERIMENT

Yettou et al. (2006) performed experimental studies on free-falling three-dimensional
wedges with deadrise angles α varying from 15◦ to 35◦. Each wedge was dropped from
two different drop heights, 1 m and 1.3 m, and for each deadrise angle four different
masses were applied. For comparison to the numerical solution in STAR, only one of
these configurations is modeled: a wedge dropping from 1.3 m with a total mass of 94
kg and deadrise angle α equal 25◦.

SET-UP
Figure 4.1 illustrates the experimental set-up. A vertical mast is fixed to bottom of a
water channel 1 m deep, 2 m wide and 30 m long. The wedge is attached to a steel
guiding structure that slides downwards along the mast. As seen in Figure 4.1 and 4.2,
the wedge apex is aligned perpendicular to the longitudinal axis of the basin.

The wedge is constructed by 19 mm thick plywood with a square top section of 1.2 m
× 1.2 m, shown in Figure 4.2. The walls are waterproof and assumed rigid.

INSTRUMENTATION AND DATA ACQUISITION
The time-varying pressure distribution on one side of the three-dimensional wedge
is captured by using twelve Wheatstone bridge AB/HP Data Instruments pressure
transducers. Each transducer has a diameter of 19 mm and a pressure range of 0-
3.45E6 Pa. As seen in Figure 4.3, the transducers are distributed along the median of
one side of the wedge and the distance between the center of each transducer is 50 mm.
Their numbers are 1-12, number 1 being located closest to the wedge apex. The first
natural frequency of the transducer is 10 kHz.

To measure the instantaneous position and velocity of the wedge, a potentiometric cable
extension transducer Celesco model PT5A100S47FR1KM6 is used. The transducer
position raw data is low-pass filtered using a cut-off 45 Hz to remove spurious noise
generated by slight vibrations of the cable. The velocity is calculated by a numerical
differentiation of the position signal.

Data acquisition is performed using a 16-channel data acquisition system model
eDAQ manufactured by Somat Inc. Two 8-channel low-level boards dedicated to the
measurement of Wheatstone bridges are used. Full bridge configuration is used and
sampling frequency on every channel is set at 5 kHz. Data collected are the position and
velocity of the wedge, including the time-varying pressure from the different transducers.
Yettou et al. (2006)
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Figure 4.1: Diagram of the experimental set-up. Yettou et al. (2006)
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Figure 4.2: Image of the experimental set-up installed in the water channel. Yettou et al.
(2006)
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Figure 4.3: Position of the twelve transducers along the wedge’s median. Yettou et al. (2006)
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4.2 SOLUTION IN STAR-CCM+

The water entry of a free-falling three-dimensional rigid wedge is simulated and studied
in STAR. The simulation is set up to replicate the experiment described in Section 4.1.
The wedge, with deadrise angle α = 25◦, is dropped from a height 1.3 m into a basin 1
m deep, 2 m wide and 30 m long (see Figure 4.1). Its top square section measures 1.2
m × 1.2 m and the total mass equals 94 kg. As for the water entry of two-dimensional
wedges described in Chapter 3, a laminar flow model is considered sufficient1. Due to
the symmetric water entry and the symmetry along the median of the wedge where the
transducers are located, only one quarter of the wedge is modeled. A body-fixed mesh
is used and the vertical motion of the wedge is achieved by using the DFBI-Rotation
and Translation model in STAR2. Hence, the mesh and wedge falls together influenced
by gravity and air resistance only, whereas the free surface is fixed in a local coordinate
system, not allowed to move. Capturing of the high local slamming pressures is achieved
by grid refinements at the wedge apex and walls, including the transducers surface. To
ensure stability in the solution a time step is chosen such that the maximum Courant
number at critical regions is approximately equal to 0.5.

All simulations of the 3-D rigid wedge are run on an AMD computer cluster with a total
of 32 cores, each at 2.40 Ghz. Where the wedge is studied for 2 seconds (real time), at
highest resolution of grid size and time step, a computational time of 2 days is recorded.

MODELING
The wedge and water basin geometries are created in STAR’s own CAD environment.
As illustrated in Figure 4.4, due to symmetry, only one quarter of the experimental
set-up needs to be modeled.

The basin’s length is not modeled to its full length. This is due to the fact that the
slamming which is to be investigated will be unaffected by the walls at the far end. In
conversations with Peric (2012) a total basin length of 10 m was concluded sufficient.
Due to the symmetry condition a 5 m long domain is therefore modeled. Figure 4.5
and 4.6 shows the quarter wedge and water basin created in STAR, front and top view
respectively. Figure 4.5 is seen in connection with Figure 4.1; Figure 4.6 with Figure
4.4.

As there exist a symmetry plane about the median of the wedge (see Figure 4.4), only one
half of the transducer is modeled. The transducers are modeled as patches on the wedge
bottom boundary, hence there exist no irregularities on the wedge surface caused by the
presence of the transducers3. The pressure is obtained by taking a surface average over
the half-transducer. This will yield the same result as if the whole transducer, together
with half-wedge and water basin geometry, were to be modeled.

1A laminar flow model is considered sufficient as the water entry of the wedge is characterized by
high local slamming pressures. A study on laminar vs. turbulent flow is described later in this chapter.

2The 6-DOF DFBI model in STAR-CCM+ is used to simulate the motion of a rigid body in response
to pressure and shear force exerted by the fluid.

3Information on how the transducers were placed in the experimental work of Yettou et al. (2006)
has not been obtained.
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Figure 4.4: The symmetric conditions applied when modeling the geometry in STAR.

Figure 4.5: Front view of the quarter wedge and water basin modeled in STAR.
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Figure 4.6: Top view of the quarter wedge and water basin modeled in STAR.

DISCRETIZATION OF TIME AND SPACE
When modeling the wedge water entry in STAR, the effect on the result of domain
and grid size, including time step, needs to be considered. All the three parameters
will influence the slamming pressures on the wedge bottom and therefore a systematic
study is performed to obtain a proper solution. In the convergence study only one of
the transducer, the one closest to the wedge apex, is studied. For each simulation the
maximum pressure pmax and the surface averaged pressure over the 19 mm diameter
pave transducer are logged. Figure 4.7 shows the time history for the maximum pressure
pmax and averaged pressure pave at the transducer closest to the wedge apex at impact
to t = 0.05 s after impact.

Figure 4.7: Time history for the maximum pressure pmax and averaged pressure pave at the
transducer closest to the wedge apex at impact to t = 0.05 s after impact.

Domain size
In the case for the three-dimensional water entry, only one domain size is considered.
This follows from the study conducted in Chapter 3 where a minimal change in results
are found from choosing reasonable domain sizes. Reasonable in this context means
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choosing a domain such that the simulation, in a best manner, resembles the experiment
which it is to replicate. The domain size for the simulation has been chosen together
with Peric (2012) and is presented in Table 4.1. A visualization can be seen in Figure
4.5 and Figure 4.6.

Table 4.1: The domain used in the three-dimensional water entry study. The coordinates are
seen in connection with Figure 4.5 and Figure 4.6.

xmin xmax ymin ymax zmin zmax Cells

Domain 0.0 5.0 0.0 1.0 -1.0 2 325 090

Grid size
A sufficient grid resolution is needed to capture the local slamming pressures which
arises during water entry. In the free-fall wedge experiment conducted by Yettou et al.
(2006), slamming pressures are found by using pressure transducers. To make sure
STAR resolves the slamming pressures correctly, the grid size needs to be small in the
critical regions, i.e. the modeled pressure transducers. This implies that refinements
only needs to be done at and in the vicinity of the transducers and not on the whole
wedge bottom surface (resulting in lower computational time). If the grid is chosen
too coarse STAR is not able to recreate the transducers boundaries, and the area over
which the pressure is averaged will be wrong. This effect of grid size on the transducer
geometry can be seen in Figure 4.8, where the bottom left shows a coarse grid with 5
mm wide cells and the bottom right is fine with a width of 1.25 mm.

When changing the grid size one must also make sure that the time step is chosen such
that stability is conserved. A too high time step will make the solver ”jump” cells,
causing an unstable solution. Therefore, a decrease in cell size results in choosing a
smaller time step. As the number of cells is increased, and the time step lowered, the
accuracy of the prediction of the pressure along the transducers increases. However,
such an increase in accuracy also leads to an increase in computational time.

In the grid size study, four different grid sizes are tested. The grids number of cells and
cell width are shown in Table 4.2.

Table 4.2: The four different grids used in the grid size analysis. ∆xmin and ∆zmin denotes
the extent of smallest cells.

Cells ∆xmin [m] ∆zmin [m] ∆xmin
∆zmin

Time step [∆s]

Grid 1 132 811 0.01000 0.01000 1.00 0.00010
Grid 2 154 812 0.00500 0.00500 1.00 0.00010
Grid 3 202 955 0.00250 0.00250 1.00 0.00005
Grid 4 325 090 0.00125 0.00125 1.00 0.00005

Of all the twelve transducers only one, the one closest to the wedge apex, is considered.
The compared values at the transducer’s boundary for each grid are the maximum
pressure pmax, the surface averaged pressure over the 19 mm diameter pave transducer,
the pressure coefficient at maximum pressure Cpmax = (pmax − p0)/(0.5ρV 2) and the
pressure coefficient at the surface averaged pressure Cpave = (pave − p0)/(0.5ρV 2). The
comparison of values is shown in Table 4.3.



54 WATER ENTRY OF A THREE-DIMENSIONAL WEDGE

Figure 4.8: The effect of grid size on the transducer geometry. Bottom left shows a coarse grid
with 5 mm wide cells, while the bottom right is fine with a width of 1.25 mm.

Table 4.3: The effect of grid size at the transducer’s boundary on the maximum pressure pmax,
the surface averaged pressure over the 19 mm diameter pave, the pressure coefficient
at maximum pressure Cpmax = (pmax− p0)/(0.5ρV 2) and the pressure coefficient at
the surface averaged pressure Cpave

= (pave − p0)/(0.5ρV 2).

pmax [Pa] pave [Pa] Cpmax [−] Cpave [−]

Grid 1 88 097 65 964 8.01 6.24
Grid 2 83 447 73 218 7.57 6.84
Grid 3 94 129 87 997 8.50 7.82
Grid 4 102 405 87 936 9.29 7.92

The tabulated data from Table 4.3 are plotted in Figure 4.9 and Figure 4.10. By
studying the two plots it is seen that a grid containing smaller cells have the effect of
predicting higher pressures. The irregularity for ∆xmin = 0.01 m for pmax and Cpmax is
due to pressure spikes caused by numerical errors. This irregularity does not occur for
pave and Cpave (at ∆xmin = 0.01 m), as the pressures are averaged over the surface.
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Figure 4.9: The effect of grid size at the transducer’s boundary on the maximum pressure pmax

and the surface averaged pressure over the 19 mm diameter pave.

Figure 4.10: The effect of grid size at the transducer’s boundary on the pressure coefficient at
maximum pressure Cpmax

= (pmax − p0)/(0.5ρV 2) and the pressure coefficient at
the surface averaged pressure Cpave

= (pave − p0)/(0.5ρV 2).
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Time step
When decreasing the cell size one must also decrease the time step. In this way the
pressure values that occur in the cell can be captured by the solver. Following, the effect
of choice of time step on the maximum pressure pmax and the surface averaged pressure
over the 19 mm diameter pave transducer is studied. The coefficients Cpmax and Cpave
are also included.

In the grid size study the time step is altered from each simulation to achieve stability.
In the time step study only one of the grid is chosen; Grid 2 from Table 4.2. Four
different time steps are studied. Their influence on the different pressure values are
shown in Table 4.4.

Table 4.4: The effect of time step at the transducer’s boundary on the maximum pressure
pmax, the surface averaged pressure over the 19 mm diameter pave, the pressure
coefficient at maximum pressure Cpmax

= (pmax − p0)/(0.5ρV 2) and the pressure
coefficient at the surface averaged pressure Cpave

= (pave − p0)/(0.5ρV 2).

Time step [∆s] pmax [Pa] pave [Pa] Cpmax [−] Cpave [−]

0.00100 58 960 57 471 5.75 5.61
0.00050 66 668 62 931 6.12 6.00
0.00010 83 447 73 218 7.57 6.84
0.00005 95 621 80 783 8.72 7.49

The tabulated data from Table 4.4 are plotted in Figure 4.11 and Figure 4.12. By
studying the two plots it is seen that choosing a smaller time step leads to a prediction
of both higher maximum pressure pmax and average pressure pave on the transducer’s
surface.

Figure 4.11: The effect of time step on the maximum pressure pmax and the surface averaged
pressure over the 19 mm diameter pave.
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Figure 4.12: The effect of time step on the pressure coefficient at maximum pressure Cpmax =
(pmax−p0)/(0.5ρV 2) and the pressure coefficient at the surface averaged pressure
Cpave

= (pave − p0)/(0.5ρV 2).

LAMINAR VERSUS TURBULENT FLOW
As in Chapter 3, it is necessary to decide on which flow model to use when studying
the wedge water entry. For the two-dimensional case it is found that a laminar model
is sufficient to describe the slamming pressures. An equal study is performed for the
three-dimensional case to decide on type of flow model needed.

For the free-falling three-dimensional rigid wedge, the water impact velocity is calculated
to approximately 5 m/s. This implies a Reynolds number at approximately 6E6 (Re =
ρUL/µ). For flow past a flat plate, the transition from laminar to turbulent begins at
Re = 5E5. This implies that the effect of turbulence on the slamming pressure has to
be determined.

To investigate the dependence of flow model on the solution two difference turbulence
models are chosen to close the Navier-Stokes equations: the k−ε model and the k−ω
model. The two approaches are compared with a laminar solution and all three solutions
are run using Grid 4 with time step equal to 0.00005 s (ref. Table 4.2). The values
studied in each simulation are the maximum pressure pmax, the surface averaged pressure
over the 19 mm diameter pave transducer, the pressure coefficient at maximum pressure
Cpmax = (pmax − p0)/(0.5ρV 2) and the pressure coefficient at the surface averaged
pressure Cpave = (pave − p0)/(0.5ρV 2). The Wall y+ value is also included (for details
about Wall y+ see Johannessen (2011)) . Comparison of values is shown in Table 4.5.
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Table 4.5: The effect of choice of flow model on the maximum pressure pmax, the surface
averaged pressure over the 19 mm diameter pave, the pressure coefficient at
maximum pressure Cpmax = (pmax − p0)/(0.5ρV 2) and the pressure coefficient at
the surface averaged pressure Cpave = (pave − p0)/(0.5ρV 2). The Wall y+ value is
also included.

pmax [Pa] pave [Pa] Cpmax [−] Cpave [−] Wall y+

k−ε model 101 667 89 288 9.13 7.95 253.40
k−ω model 101 212 89 353 9.08 7.97 251.91
Laminar model 104 084 88 598 9.21 7.91 -

The tabulated data from Table 4.5 are plotted in Figure 4.13 and Figure 4.14. By
studying the two plots it is seen that choice of turbulence model has close to no influence
on the pressure values. The laminar model gives an increase of about 3% for the
maximum pressure pmax and a decrease of about 1% for the surface average pressure
pave, compared to the two turbulence models.

Figure 4.13: The effect of choice of flow model on the maximum pressure pmax and the surface
averaged pressure over the 19 mm diameter pave transducer.

INFLUENCE OF NUMERICAL PARAMETERS
When setting up a CFD simulation in STAR a number of input parameters needs to
be chosen. A study is performed to decide on which values to apply to obtain the
most satisfactory result. The study is performed systematically by altering the different
parameters, one at a time, and noting the effect on the result. As there exist a rather
large amount of input parameters which can be varied in a simulation, only two are
explained further in this section.

Two input parameters which are seen to influence the solution in the three-dimensional
rigid wedge water entry, are the Under-Relaxation Factor (URF) and the Maximum
Inner Iterations (MII). The URF is a parameter chosen in the Pressure Solver. The
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Figure 4.14: The effect of choice of flow model on the pressure coefficient at maximum pressure
Cpmax

= (pmax−p0)/(0.5ρV 2) and the pressure coefficient at the surface averaged
pressure Cpave

= (pave − p0)/(0.5ρV 2).

pressure solver controls the URF and algebraic multigrid parameters for the pressure
correction equation (the algebraic multigrid methods solves the discrete linear system
iteratively (for details see CD-adapco (2011)). More specifically, it solves the discrete
equation for the pressure correction, and updates the pressure field. The URF property
in the pressure solver governs the extent to which the old solution is supplanted by
the newly computed solution. The parameter is chosen between 0 to 1. If the URF is
chosen close to 0, the value of the next iteration will be governed by the value computed
by previous iteration, and not the current. Likewise, if the URF is chosen close to 1,
the next iteration will be governed by the value computed by current iteration and not
the previous. As an mathematical illustration let the URF for pressure be denoted
ωp. Further, let pnt be the pressure value of the previous iteration, and pnewt be the
value computed during the current iteration. Then the update is controlled as follows:
pn+1
t = ωpp

new
t + (1 − ωp)p

n
t . The URF can be set for pressure and velocity and is

adjusted to control the convergence of the solution. It is a generally accepted rule of
thumb that under-relaxation factors for velocity and pressure should add up to 1. If the
residuals are converging quite well it is acceptable to try to increase the URF (this will
reduce computational time). In the study on choice of URF for the wedge water entry,
the URF for both pressure and velocity are systematically varied: 0.1-0.4 for pressure
and 0.6-0.9 for velocity. The choice of values is done in agreement with Peric (2012)
and Bjelke-Mørch (2012). It is found that as time step and cell size are decreased, a
decrease in URF for pressure is required to obtain a stable solution. A value of 0.1 for
pressure is found sufficient to obtain stability in the pressure field.

The Maximum Inner Iterations (MII) stopping criterion is based on the number of
inner iterations executed by the solver for each time step. Smaller physical time steps
generally mean the solution is changing less from one time step to the next, so that fewer
inner iterations are required to achieve convergence in the solution. The maximum inner
iterations value must be selected carefully: if the value is too low, the solution will not
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converge within a time step; if it is too high the solution will take a long time to complete.
For a given problem there will be an optimal balance of time step, under-relaxations
factors and the inner iteration to achieve the desired convergence level. In the three-
dimensional rigid wedge water entry case a maximum number of 15 inner iterations
is found sufficient to obtain stability and convergence in the solution. In Table 4.6, a
selection of parameters tested in the convergence study is listed. Further study of the
set-up and simulation can be done in wedge3d.sim found in the folder wedge3D rigid in
the attached ZIP-file.

Table 4.6: Parameters tested in the convergence study for the three-dimensional wedge. The
final chosen values are also included.

Parameter Tested Chosen

Physics
Segregated Flow Convection 1st-/2nd-order 2nd-order
Volume of Fluid Convection 1st-/2nd-order 2nd-order

Solver
Implicit Unsteady Temporal Discretization 1st-/2nd-order 1st-order
6-DOF Solver Number of Iterations 6,8,10,15 6
Segregated Flow Under-Relaxation: Velocity 0.6, 0.7, 0.8, 0.9 0.7
Segregated Flow Under-Relaxation: Pressure 0.1, 0.2, 0.3, 0.4 0.1

Stopping Criteria
Iterations Number of Inner Iterations 5,8,10,15,20 15
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4.3 RESULTS

From the grid size study it is found that a decrease in cell size results in an increase
in slamming pressures. Grid 4 (ref. Table 4.2) with a minimum size of 0.00125 m in x
and z-direction is therefore chosen in the final study. A time step equal to 0.00005 s
is applied to achieve a stable solution. Little difference in the result is found by choice
of flow model. A laminar model is therefore applied to reduce the computational time.
Through the input parameters study it is found that convergence and stability in the
solution is found by applying an under-relaxation factor for velocity and pressure of 0.7
and 0.1, respectively. The free surface is inspected to ensure that a reasonably sharp
interface is predicted with a rapid variation of volume fraction across 2 to 3 cells only.
Figure 4.15 illustrates the free surface mid-way through the simulation for Grid 4. The
volume fraction is deemed acceptable with clear identification both of the wedge water
jet and the free surface.

Figure 4.15: The free surface mid-way through the simulation for Grid 4. Notice the volume
fraction between water and air across the cells.

RAW DATA ANALYZES
From its initial position - 1.3 m above the mean water level, the wedge’s displacement
is studied. Figure 4.16 shows displacement curves from the simulation in STAR and
the experimental work conducted by Yettou et al. (2006). A decent agreement is seen
all the way to t ≈ 1.5 s, although the curves reveal an earlier impact at 1.3 m at t =
0.5 s for the wedge in the experimental study. By studying the figure it is noted that
the zone of interest, i.e. the wedge slamming, is limited to a period lasting only about
50 ms. This implies that a good refinement in time step is needed to be able to study
the slamming phenomena. Figure 4.17 shows the velocity of the wedge from its initial
position to 1.5 s after impact. Results from both the simulation in STAR and the work
by Yettou et al. (2006) are included. For the experimental data, the wedge velocity
is obtained from the derivation and low pass filtering of the displacement data. The
small oscillations are related to the vibration of the cord. Again, it is seen that the zone
of interest is limited to small period of time. The velocity-time history plot reveals a
decent agreement between the two results, though a higher impact velocity is seen for
the experimental data (i.e. the reason for the earlier impact of the wedge as seen from
the displacement curves).
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Figure 4.16: The wedge’s displacement recorded by Yettou et al. (2006) together with the
displacement predicted in STAR-CCM+.

Figure 4.17: The wedge’s velocity recorded by Yettou et al. (2006) together with the velocity
predicted in STAR-CCM+.
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Figure 4.18 shows the time history for the pressure measurements for all 12 transducers.
Presented are pressures recorded by Yettou et al. (2006) and the maximum pressure pmax

and the surface averaged pressure over the 19 mm diameter pave transducer predicted in
STAR-CCM+. The vertical axes of each curve are respectively scaled to show maximum
detail. Transducer no. 1 is the first to contact the water and its peak pressure is
located on the time scale at roughly t = 3 ms. Note that at this moment, all the
other transducers are not yet in contact with the water. The peak pressure for each
transducer appears sequentially at a later time during the penetration process of the
wedge. Table 4.7 presents the surface averaged pressure pave, maximum pressure pmax

and peak pressures measured in the experiment for all the 12 transducers. The peak
pressure’s occurrence in time is also included.

Table 4.7: Surface averaged pressure pave, maximum pressure pmax and peak pressures
measured in the experiment for all the 12 transducers. Each peak pressure
occurrence in time is included.

pave − STAR pmax − STAR ppeak − Exp.

Trans. p [Pa] t [ms] p [Pa] t [ms] p [Pa] t [ms]

1 87 940 2.85 102 400 3.05 128 800 2.85
2 85 890 5.90 98 590 5.50 125 100 5.13
3 71 300 9.25 82 520 8.45 99 410 9.33
4 58 320 12.90 64 300 12.20 87 490 13.14
5 44 160 17.20 51 210 16.50 67 980 17.48
6 33 440 22.35 37 070 21.00 50 950 23.24
7 25 860 28.00 28 900 27.10 42 060 28.80
8 19 420 34.35 21 310 32.90 32 610 37.52
9 14 790 42.05 16 180 40.00 27 710 43.90
10 11 440 50.85 12 360 48.40 19 930 51.88
11 8 634 60.30 9 343 58.60 16 890 61.52
12 6 793 70.90 7 330 69.70 13 240 70.76

By studying Figure 4.18 and Table 4.7 it is seen that both the surface averaged pressure
pave and the maximum pressure pmax predicted in STAR are lower than what is found
in the experimental study. This discrepancy can be seen in connection with the wedge
velocity plotted in in Figure 4.17. Here, we note that the wedge velocity predicted
in STAR does not reach the maximum of 5 m/s (as is the case in the experiment).
This causes STAR to predict a lower slamming pressure, as the slamming pressure is
depending on the impact velocity of the wedge. The reason for this under prediction
of wedge velocity in STAR is peculiar. It seems that there may exist a too high air
resistance influencing the wedge’s acceleration. The mass and initial drop height of the
wedge are equal to that of Yettou et al. (2006), hence this discrepancy should not exist.

For a wedge that penetrates the water at a constant velocity (ref. Chapter 3), the
magnitude of the spatial pressure distribution does not change over time. For the case
of a free-falling wedge, a rapid decrease in velocity is experienced. The result in Figure
4.18 show that this deceleration generates spatial pressure distribution that changes
shape with the penetration depth. From a sharp peak seen for transducer 1 at t ≈
3 ms, the peak becomes more and more rounded and the peak amplitude decrease
drastically.
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Figure 4.18: Pressure time variation for all 12 transducers for one drop. Presented are
pressures recorded by Yettou et al. (2006) and the maximum pressure pmax and
the surface averaged pressure over the 19 mm diameter pave transducer predicted
in STAR-CCM+.
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In Figure 4.19, the time variation of the peak pressure for the surface averaged pressure
pave, the maximum pressure pmax and the peak pressure from the experimental study
(left axis) are plotted together with the quadratic velocity v2 (right axis) of the wedge.
For the pressure curves, each marker denotes the transducers 1 to 12, 1 being the one
with the highest pressures. The pressure axis is scaled with a factor A = 6895 to make
comparison easier. It is interesting to note that the pressures behavior is similar to
the quadratic velocity curve, proving that the pressure is proportional to the velocity
squared. By studying the figure, it is also seen here that the velocity and pressure on
each transducer predicted in STAR are underestimated compared to what is found in
the experimental study by Yettou et al. (2006).

The influence on the penetration velocity of the mass, the drop height and the deadrise
angle of the wedge can be estimated by several simplified analytical models all based
on the momentum theorem and the principle of the added mass as developed by
Von Karman (1929). In a single approach Wagner (1936) also included the effect of
the water splash on the wedge walls (Payne (1988) and Korobkin and Pokhnachov
(1988)). Zhao et al. (1996) also added an empirical term to take into account the three-
dimensional effect associated with non-infinitely-long body (Mei (1998)). A comparison
of the mentioned models and the results obtained through STAR and the experimental
study on the deceleration of the wedge shortly after impact is shown in Figure 4.20.
Again, it is seen that the impact velocity predicted in STAR is lower than the velocity
found by Yettou et al. (2006) in the experimental work. The analytical models coincide
quite well with the experimental data, predicting the impact velocity at about 5 m/s.

Figure 4.19: The time variation of the peak pressures for the surface averaged pressure pave,
the maximum pressure pmax and the peak pressure from the experimental study
(left axis) plotted together with the quadratic velocity (right axis) v2 of the
wedge. For the pressure curves, each marker denotes the transducers 1 to 12,
1 being the one with the highest pressures. The pressure axis is scaled with a
factor A = 6895 to make comparison easier.
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Figure 4.20: Comparison of the analytical models of Von Karman (1929), Wagner (1936) and
Zhao et al. (1996), together with the results obtained through STAR and the
experimental study, on the deceleration of the wedge shortly after impact.

NON-DIMENSIONAL STUDY
To better describe and compare the results from the numerical prediction in STAR
and the experimental work conducted by Yettou et al. (2006), a non-dimensional study
is performed. As for the two-dimensional case in Chapter 3, two parameters used to
describe the hydrodynamic behavior of the wedge’s impact are the dimensionless entry
depth Z = h/

∫
V (t)dt and the pressure coefficient Cp = p/(0.5ρV (t)2). Here, ρ is the

mass density of the fluid, V (t) is the wedge velocity, t is the time, p is the fluid pressure
and h is the vertical height, relative to the apex of the wedge, of a point on the wedge
surface as shown in Figure 4.21.

Figure 4.21: The parameters describing the impact of the wedge in water. Yettou et al. (2006)

In the case of a wedge that penetrates the fluid at constant velocity (ref. Chapter 3), it
is demonstrated that Cp depends only upon the shape of the wedge. For the free-falling
case, however, the velocity varies and hence it is interesting to examine the variation of
Cp to analyze the results.
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The pressure coefficient Cp and the dimensionless entry depth Z = h/
∫
V (t)dt for a

free-falling wedge will be time-dependent (hence, integration is needed). Therefore,
for simplicity, only three time frames are calculated: t = 9.4, 17.6 and 22.8 ms. For
each time frame, the pressure coefficient is calculated for each transducer in contact
with water. By studying Figure 4.18 it is seen that for the mentioned time frames the
number of transducers in contact with water are 3, 5 and 6, respectively.

The values Cp and Z for the three time frames are calculated for the surface averaged
pressure pave, the maximum pressure pmax and the peak pressure from the experimental
study. The results are listed in Table 4.8. The tabulated data together with Mei’s model
are illustrated in Figure 4.22 to 4.24. Note that for each plot, the markers denotes the
transducers on the wedge bottom; 1 (at the apex) being the one to the far left and the
last one (not in contact with water) to the far right in the plot. For the experimental
study it is seen that the distribution profile of the pressure coefficient estimated at each
pressure transducer tends to keep the same shape for the three time frames with a Cpmax

in the order of 11. Similarly, the maximum value for the dimensionless entry depth Zmax

is also constant at about 1.5. The quantity Zmax corresponds to the last transducer in
contact with the water during the entry phase. By studying the results obtained through
STAR, it seen that the values of Cp are underestimated at each transducer for both the
surface averaged pressure pave and the maximum pressure pmax. The discrepancy tends
to increase with increasing time frame, i.e. the further the wedge dives through the water.
The dimensionless entry depth Z, however, is in good agreement with the experimental
data.

As mentioned the Mei model prediction is also plotted in Figure 4.22 to 4.24 (Mei
(1998)). It is worthwhile to stress that this model takes into account that the wedge
moves at a constant impact velocity. Despite the important difference compared to
the situation of a free-falling wedge, the Mei model seem to succeed in predicting the
maximum values of the pressure coefficient Cpmax and the dimensionless depth Zmax.
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Table 4.8: The values Cp and Z for the surface averaged pressure pave, the maximum pressure
pmax and the peak pressure from the experimental study for the three time frames
t = 9.4, 17.6 and 22.8 ms.

t = 9.4 ms

pave − STAR pmax − STAR ppeak − Exp.

Trans. Cp [-] Z [-] Cp [-] Z [-] Cp [-] Z [-]

1 4.07 0.49 4.20 0.49 5.33 0.49
2 5.49 0.98 6.04 0.98 6.25 0.98
3 6.29 1.47 9.89 1.47 11.32 1.47
4 -0.07 1.55 0.34 1.55 0.04 1.52

t = 17.6 ms

pave − STAR pmax − STAR ppeak − Exp.

Trans. Cp [-] Z [-] Cp [-] Z [-] Cp [-] Z [-]

1 2.18 0.29 2.21 0.29 5.73 0.30
2 2.54 0.58 2.67 0.58 5.22 0.60
3 3.48 0.87 3.74 0.87 6.18 0.91
4 5.54 1.17 6.14 1.17 7.19 1.22
5 8.08 1.46 9.71 1.46 11.06 1.53
6 -0.09 1.55 0.41 1.55 0.06 1.54

t = 22.8 ms

pave − STAR pmax − STAR ppeak − Exp.

Trans. Cp [-] Z [-] Cp [-] Z [-] Cp [-] Z [-]

1 1.44 0.24 1.45 0.24 5.97 0.25
2 1.62 0.48 1.70 0.48 5.20 0.49
3 2.19 0.72 2.34 0.72 5.25 0.74
4 3.28 0.96 3.55 0.96 5.55 0.98
5 5.41 1.20 5.94 1.20 7.74 1.22
6 8.77 1.44 9.54 1.44 10.67 1.47
7 -0.08 1.48 0.50 1.48 0.08 1.48
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Figure 4.22: Comparison of the pressure coefficient Cp in function of the dimensionless entry
depth Z for the surface averaged pressure pave, the maximum pressure pmax and
the peak pressure from the experimental study at t = 9.8 ms after water impact.
The markers denotes the transducers on the wedge bottom; 1 (at the apex) being
the one to the far left and the last one (not in contact with water) to the far right
in the plot. Mei’s model for constant velocity water entry is also included.

Figure 4.23: Comparison of the pressure coefficient Cp in function of the dimensionless entry
depth Z for the surface averaged pressure pave, the maximum pressure pmax and
the peak pressure from the experimental study at t = 17.6 ms after water impact.
The markers denotes the transducers on the wedge bottom; 1 (at the apex) being
the one to the far left and the last one (not in contact with water) to the far right
in the plot. Mei’s model for constant velocity water entry is also included.
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Figure 4.24: Comparison of the pressure coefficient Cp in function of the dimensionless entry
depth Z for the surface averaged pressure pave, the maximum pressure pmax and
the peak pressure from the experimental study at t = 22.8 ms after water impact.
The markers denotes the transducers on the wedge bottom; 1 (at the apex) being
the one to the far left and the last one (not in contact with water) to the far right
in the plot. Mei’s model for constant velocity water entry is also included.
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HYDROELASTIC IMPACT OF
THREE-DIMENSIONAL

WEDGES

The dynamic interaction between a structure and fluid is referred to as hydroelasticity
(also often called fluid-structure interaction FSI). In general, a dynamic structural
response arises if the duration of the impact load is comparable to, or shorter than,
the relevant natural period of the structure. For instance, for bow flare slamming on
ships, the duration of the slamming load will often be long compared to the short
natural period of the hull plating. In such cases, a quasi-static approach is applicable
when studying the problem at hand. On the other hand, slamming pressures on the
wet deck of a catamaran may give rise to a dynamic structural response in the local
plating since the rise time of the pressure is shorter than the plating natural period.
Cases where the duration of the impact load is much shorter than the natural period of
the structure is referred to as hydroelastic slamming.

In marine applications, hydroelasticity is of major interest. This follows from the mutual
interaction between structural deformation and fluid particle motion which leads to a
”two-way” coupling of the two interfaces (structure and fluid). In these cases the impact-
induced pressure and the impact dynamics can highly differ from a quasi-static solution.
Following, the analysis of these types of scenarios can be challenging for several reasons.
For example, for a wedge during impact, the free-surface is characterized by a thin
water jet with velocities that are much larger than the wedge velocity. This leads to a
stretching of the free surface leading to an extremely advanced topology. Overturning
of the free surface, where it in the end reconnects with itself, makes the task of tracking
the free surface practically impossible. This, together with the relative large change in
loading which occur as the wedge is deformed, gives rise to complex physical problems.

Research on the phenomena of hydroelastic slamming has up to now mainly dealt with
two-dimensional simple problems. Here, solutions combining potential theory for fluids
and traditional solution for structure are usually used. Due to its previous mentioned
complexity, not much research has been dedicated to the hydroelasticity with three-
dimensional impacts. However, recent development in computing technology is making
it possible to study the hydroelastic effect for realistic problems by using numerical
modeling techniques.

This chapter will present the use of the CFD-software STAR-CCM+ to study free-
falling three-dimensional elastic wedges penetrating the free surface. The wedges are of
approximately the same geometry as the one studied in Chapter 4, making it possible
(to some extent) to compare and evaluate the results from the FSI study. It is stressed

71
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that the FSI study performed in this chapter is conducted to test STAR’s possibilities
and limitations when it comes to elastic bodies interacting with a fluid. No verification
or validation with existing theory or experimental data will be performed. A qualitative
assessment of the results will however be carried out. Maki et al. (2010), Panciroli et al.
(2011), Aarsnes (2011), Luo et al. (2011)
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5.1 FLUID-STRUCTURE INTERACTION IN STAR-CCM+

This section is aimed to describe the various techniques and considerations for fluid-
structure interaction (FSI) cases, and how these are dealt with in STAR.

FSI problems in STAR are solved using the finite volume stress capabilities. As an
alternative, FSI problems can also be modeled by coupling between STAR to a third
party code, whereby STAR solves the fluid domain and the third party code solves for
the structure. An example of a third party code which can be used is Abaqus, where
the fluid domain from STAR and the structural domain in Abaqus are interconnected
using SIMULIA Co-Simulation Engine (CSE).

In this thesis, the FSI study is done solely by the use of STAR, i.e. no third party
interaction. In the following, some classifications of the interactions and the capabilities
that are needed to address FSI problems in STAR are given. Much of the presented
material is a result of CD-adapco (2011) and conversations with Mueller (2012) and
Voronkov (2012).

FSI COUPLING
Fluid-structure interaction (FSI), broadly speaking, is the thermo-dynamical interaction
of a fluid and a solid structure. The interactions can be grouped into distinct categories:

• ”One-way” interactions

• ”Two-way” interactions

One-Way Interactions
A case where the fluid may impart some action on the structure but the response of
the structure to the fluid loading does little to affect the fluid motion, is referred to as
a ”one-way” interaction. Take for example a fluid heating a stiff, supported structure.
The heating will produce thermal loads and deformations in the solid material, but these
deformations will most likely not lead to any significant change in the flow patterns of
the fluid. The problem involves a two-way exchange of heat, however, the mechanical
exchange is only one way, making it sufficient to compute the temperature in the fluid
and solid domains in separate simulations, and the compute the stresses in another
simulation using the results of the temperature computed in the previous simulation.

Two-Way Interactions
A case where the fluid motion and pressure affects the displacement and deformation
in the structure is referred to as a ”two-way” interaction. Consequently the response of
the structure has a significant effect on the fluid flow. Traditionally, FSI implies two-
way coupling of a fluid and a deformable structure, such that the deformation and rigid
body DOF are significantly coupled with the fluid. Further, there are classifications of
the degrees of coupling, ranging from ”weak” or ”loose” coupling to ”strong” coupling.

In some FSI problems, the coupling can be regarded as ”weak”, and a ”loose” coupling
algorithm can be employed to find the solution. Consider a wedge penetrating the
surface with a constant velocity. Depending on the wedge plate thickness, there will
be structural deformation or bending of the walls due to the steady-state flow. The
deformation can significantly alter the flow patterns around the structure, which, in
turn, again affect the deformation. If one is searching for a steady-state condition, one
is interested in the shape the structure takes under the steady condition. As time goes,
the structure and fluid domain will reach a steady state, where the structure material
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point velocities are zero. Here, the structure imparts no motion on the fluid, hence the
coupling is ”weak.” One can also state that it is almost ”one-way” since the primary
influence of the structure of the fluid is via its velocity, which in steady state is zero. In
general, weak coupling implies that the response times of the structure to a disturbance
in the fluid are slow, compared to the fluid. Or vice-versa, the response times in the
fluid to a disturbance in the solid are slow, compared to the solid.

For a ”strong” coupling, the physical coupling is two-way and the coupling between
the codes is pronounced. This is often associated with ”dynamic” problems where the
hydrodynamic loads and the structural velocities change dramatically (as is the case for
the water entry of a wedge studied in this chapter). In strong coupling algorithm, the
fluid and structure solvers may be resident in the processor memory at the same time
and data is passed at regular intervals from the memory used by the structure solver
to/from the memory used by the fluid solver. Data between the solvers may be necessary
to exchange more than once per time step, depending on the actual strength of the
coupling. This implies a deeper communication between the structural and fluid codes
and is known by various names: ”implicit”, ”iterative staggered”, ”iterative successive
substitution”, or ”multiple iterative coupling”. When dealing with a light or compliant
structure which interacts with a relatively heavy, almost incompressible fluid, an implicit
coupling is usually necessary. As an example, a steel structure in water may be strongly
coupled if the structure is relatively light compared to the fluid it displaces, again as
the case for the water entry of a wedge.

MESH EVOLUTION
When simulating a FSI case, STAR is required to account for the changes of shape for
the solid structure. This problem can be solved by various strategies, and in this thesis
a morphing of the fluid and structure domain is used.

Morphing is the deformation of the fluid grid by moving the fluid vertices in such a
manner as to conform to the solid structure and maintain a reasonable quality fluid
grid. This is done by altering the cell shape and at the same time ensuring that all cells
maintains the same neighboring cell. To account for the arbitrary motion of the fluid
mesh, STAR uses a ”space conservation law” to conservatively and accurately express
the transport motion.

When dealing with FSI there exist two meshes: one for the fluid domain and one for the
structural domain. One challenge in FSI lays therefore the difference in the resolution
between the fluid and the structure mesh. This difference in mesh is often due to the
difference in physical processes in the fluid and the structure. If the two meshes are
constructed solely in STAR, the meshes can be made conformal at the fluid-structure
interface. This means that the vertex positions on the fluid surface match the vertex
positions on the surface of the structure. In the thesis, this is the method applied.

FINITE VOLUME STRESS
To simulate fluid-structure interaction (FSI) within STAR, the solid stress model (or
”FV stress”) is used. Depending on the case at hand, the displacement of the solid
domain can either be large or small. At small displacement it is assumed that the
displacements are relatively small compared to the cell size, e.g. problems involving
high frequency vibrations. In this thesis, where wedge water entry is studied, one says
that the solid displacement is large, globally but also locally. Therefore, in the study
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involving FSI of the wedge, STAR’s large displacement model is used.

When dealing with FSI within STAR there are two models which are crucial to
activate: the solid stress model (where solid displacement motion is enabled) in the
solid continuum, and the morphing motion for the fluid continuum (in the fluid region
one must make sure that the mesh morpher motion is enabled such that the fluid domain
will morph according to the solid stress displacement).

COMPRESSIBLE FLUID
When modeling water, it may be useful to set the water as compressible by employing
the user-defined density model. This will increase both numerical stability and accuracy,
particularly when the flow is internal to the structure. The compressibility of the fluid is
defined by the earlier explained field functions. A definition of the ones needed is given
in detail in section 5.2. It should be noted that the choice of whether or not to use
compressible water depends on the physics and appropriate time scales. Details will not
be given here, other than to say that if the physical relevant times scales are of the same
order as the sound transit times, then it is necessary to accurately account for the exact
nature of the fluid compressibility. The effect of compressible contra incompressible
fluid is studied later in section 5.2.
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5.2 SOLUTION IN STAR-CCM+

The water entry of free-falling three-dimensional elastic wedges are simulated and
studied in STAR. Four different wedges are modeled. Three of the wedges are of equal
geometry but different in material properties; glass-reinforced plastic (GRP), aluminum
and stainless steel (UNSS30200). The forth wedge is also made by stainless steel but
the wedge walls are thinner compared to the three other wedges. The different material
properties are chosen to study the effect of choice of material on the wedge’s response
as it enters the water. Similarly, the difference in geometry is chosen to study the
effect of plate thickness. The ”outer” geometry of the wedges is all the same, and only
the ”inner” geometry is altered to produce the one thin wedge. Further, the ”outer”
geometry is chosen to replicate the geometry of the three-dimensional wedge studied
in Chapter 4. Also, the thickness of the wedges is chosen such that the weight of the
wedges is approximately the same as the case for the wedge in the previous chapter.
In this way, one is able (to some extent) to compare the results from the FSI study
with the one in Chapter 4, and hence conclude if the behavior of the elastic wedges
are somewhat realistic (and again, conclude if STAR can be used to study problems
concerning hydroelastic slamming).

All wedges are modeled with a deadrise angle α = 25◦. The drop height is set to 1.3 m,
same as for the case in Chapter 4. As for the water entry of two and three-dimensional
wedges described in the previous chapters, a laminar flow model is considered sufficient
(a laminar vs. turbulent flow study is not done for the elastic wedges). To be able
to compare results with those found in Chapter 4, the pressure at transducer 1 (50
mm from the wedge apex, ref. Chapter 4) is recorded. The solid displacement model
together with a morphing mesh as explained in section 5.1 are used to simulate the free-
falling motion of the wedge. To ensure stability in the solution a time step is chosen
such that the maximum Courant number at critical regions is approximately equal to
0.5.

All simulations of the 3-D elastic wedges are run on an AMD computer cluster with a
total of 24 cores, each at 2.40 Ghz. The wedges are studied for 1 second (real time) and
a computational time varying from 8 to 20 hours is recorded.

It should be noted that due to the lack of time, no convergence study on grid size,
time step or influence of numerical parameters is conducted. The set-up of the FSI
simulations are done based on the experience collected through the studies performed
in Chapter 3 and 4, together with conversations with Voronkov (2012) and Mueller
(2012). This section will, however, summarize some of the modeling aspects, including
choice of grid size, time step and numerical parameters. Lastly, a study on compressible
versus incompressible fluid will be presented.

MODELING
The wedge and fluid domain are created in STAR’s own CAD environment. As the
elastic behavior of the whole wedge is of interest, no symmetry conditions are applied
to simplify the wedge geometry (i.e. the wedge is modeled in full). Four wedges are
modeled with width × depth equal to 1.2 m × 0.05 m. The fluid and air domain is
modeled with width × height × depth equal to 6 m × 5 m × 0.05 and a symmetry
condition on the fluid domain’s front and back is applied to obtain a quasi-2-D solution
(an ok simplification as the transducers in the experiment from Chapter 4 are located
at the wedge’s median, resulting in close to no side flow at impact).
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Properties for the four wedges are shown in Table 5.1. In Figure 5.1, the geometry for
the wedge made of GRP is shown. Figure 5.2 shows the front view of the same wedge
together with the fluid and air domain.

Table 5.1: Properties of the four wedges modeled in the FSI study.

Material Thickness [mm] Density [ kg
m3 ] Y oung′s modulus [MPa] Weight [kg]

GRP 10 1800 36 000 2.18
Al 10 2702 68 000 3.27
Steel 10 8055 193 000 9.75
Steel 4 8055 193 000 3.99

Figure 5.1: The geometry for the wedge made of GRP modeled in STAR.

Figure 5.2: Front view of the wedge made of GRP together with the fluid and air domain.
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The boundary conditions are set as follows:

• Symmetry: at the domain’s and wedge’s front and back.

• Velocity inlet: at the domain’s bottom and side walls.

• Pressure outlet: at the domain’s top.

• Contact interface: between the wedge walls and the fluid/air domain.

DISCRETIZATION OF TIME AND SPACE
When modeling the wedge water entry in STAR, the effect of choice of domain and
grid size, including time step, on the results needs to be considered. However, as earlier
mentioned, due to the lack of time, this is not done for the FSI case. The following will
therefore only present the chosen domain and grid size, together with the selected time
step. Some remarks on choice of meshing models are also given.

Domain size
Only one domain size is considered. The choice of size follows from the study performed
in the previous chapters together with guidance given by Voronkov (2012). Dimensions
of the domain are seen in Table 5.2. A visualization is seen in Figure 5.2.

Table 5.2: The domain used in the FSI study. The coordinates are seen in connection with
Figure 5.2.

xmin xmax ymin ymax zmin zmax

Domain -3.0 3.0 -0.025 0.025 -2.0 3.0

Grid size
In Chapter 3 and 4 the trimmer meshing model is used on the whole fluid domain.
When FSI is studied, one is required to use morphing, and hence a trimmer model is
not (always) ideal. Various approaches can be used when generating a mesh for a FSI
case. In this thesis, three meshing models are used: the embedded thin mesher, the
polyhedral mesher and the surface remesher. When dealing with FSI, there exists two
physics continuum: one for the domain and one for the wedge. Following, two mesh
continua can be generated: one for the domain and one for the wedge. As discussed in
section 5.1, one challenge lies in the resolution between the fluid and the wedge mesh.
In this thesis this problem is overcome by the use of the thin meshing model. This
model allows the use of only one mesh, both for the domain and the wedge, by ensuring
a conformal mesh at the fluid-structure interface. The model also performs a meshing
of the wedge with thin layers, such that stresses within the solid can be correctly solved.
An illustration of the grid generated by the three models is shown in Figure 5.3. Notice
how the thin mesher makes the cells on the wedge rectangular. Notice also that the
vertex positions on the fluid surface match the vertex positions on the surface of the
wedge (white circle in the bottom picture).

As opposed to the grids used in the previous chapters, no grid refinements are done for
the FSI study. There are two reasons for this. The first is caused by the limitations
in constructing interfaces between the fluid and wedge domain. The transducers on
the wedge bottom modeled in Chapter 4 requires patches to be created on the wedge
surface. For the FSI study these needs also to be created in the fluid domain, as there
needs to be an interface between the wedge and domain at each transducer surface. This
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Figure 5.3: The grid used in the FSI study. Notice that the vertex positions on the fluid
surface match the vertex positions on the surface of the structure (white circle in
the bottom picture).

operation, of multiple interfaces is seen to confuse STAR and therefore no transducers
are created on the wedge surface. This again implies that no local refinements of the
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type seen in Figure 4.8 in section 4.2 in the previous chapter, is applied1.

To be able to record the pressure at the first transducer, a pressure probe is used. The
probe is placed at the same place as the transducer closest to the wedge apex. The
probe follows the motion of the cell face it was originally located at and records the
maximum pressure at this cell as the simulation moves along. As the main object is
to study slamming pressures at water impact, one would anyway expect the use of grid
refinements in critical areas, such as in the vicinity of the probe. This is however not
done due to reason number two: time. A dramatic increase in computational time is
experienced as the cell number is increased. Hence, the local refinements are left out in
all simulations concerning FSI.

As mentioned, no convergence study is performed by altering the grid size. In short,
two different sizes are used: one for the three wedges with thickness equal to 10 mm
(Grid 1) and one for the wedge with thickness equal to 4 mm (Grid 2). The reason for
the two different grids is due to the automatic refinement created by the mesh models
as the wedge gets thinner. Properties of Grid 1 and 2 are shown in Table 5.3. Note that
the grids are made out of polyhedral cells and rectangular cells (ref. Figure 5.3). Their
spatial extent are denoted ∆xpol and ∆xrec, respectively.

Table 5.3: The four different grids used in the grid size analysis. ∆xmin and ∆zmin denotes
the extent of the smallest cells.

Cells ∆xpolmin
[m] ∆zpolmin

[m] ∆xrecmin [m] ∆zrecmin [m]

Grid 1 86 253 0.0038 0.0034 0.0047 0.0024
Grid 2 87 165 0.0035 0.0030 0.0046 0.0005

Time step
No study on time step is performed. It is chosen based on experience from the previous
chapters and guidance from Voronkov (2012). As a result, the time step in the FSI
study for all simulations is set constant and equal to 0.0002 s.

CHOICE OF NUMERICAL PARAMETERS
When setting up a CFD simulation in STAR a number of input parameters needs to be
chosen. No convergence study is done to decide on which values to apply to obtain the
most satisfactory result. The choice of values are done based on experience and guidance
from Voronkov (2012). Choices are presented in Table 5.4. Further study of the set-up
and simulations can be done on the .sim files found in the folder wedge3D elastic found
in the attached ZIP-file.

COMPRESSIBLE VERSUS INCOMPRESSIBLE FLUID
As earlier stated, when modeling water, it may be useful to set the water as compressible
by employing the user-defined density model. This will increase both numerical stability
and accuracy, particularly when the flow is internal to the structure. The compressibility
of the fluid is defined by use of the field functions. In this case, six field functions are
needed to properly model the compressibility of water and air. The field function are
each used in the material properties as density ρ, density pressure derivate dρ

dp and speed

1It should be noted that the student has limited skills in the use of the software, hence others
approaches may be applied to solve for this mismatch.
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Table 5.4: Parameters chosen in the simulations for the FSI study.

Parameter Tested Chosen

Physics
Segregated Flow Convection - 2nd-order
Segregated Multiphase Temp. Convection - 2nd-order
Volume of Fluid Convection - 2nd-order

Solver
Implicit Unsteady Temporal Discretization - 1st-order
Segregated Flow Under-Relaxation: Velocity - 0.7
Segregated Flow Under-Relaxation: Pressure - 0.1
Segregated VOF Under-Relaxation - 0.4
Segregated Energy Under-Relaxation: Fluid - 0.9
Segregated Energy Under-Relaxation: Solid - 0.99

Stopping Criteria
Iterations Number of Inner Iterations - 10

of sound c. Their definitions are seen in Table 5.5. Note that the ”assembly code” is
the definition required in STAR.

Table 5.5: The different material properties defined in STAR to achieve compressibility in
water and air.

Material property Definition Assembly code in STAR

Speed of sound c
Air cair = 331 331
Water cwater = 1450 1450

Density pressure derivative dρ
dp

Air dρair
dp = 1

c2air
(/ 1 (pow $ { cair} 2))

Water dρwater

dp = 1
c2water

(/ 1 (pow $ { cwater} 2))

Density ρ
Air ρair = ρ′air + pair

c2air
( + 1.18415 (/ $ {pair} ...

(pow $ { cair} 2)))
Water ρwater = ρ′water + pwater

c2water
( + 997.561 (/ $ {pwater} ...

(pow $ { cwater} 2)))

The effect of compressibility is studied with respect to velocity, acceleration, displace-
ment, slamming pressure and deflection of the wedge bottom. Two test cases are
performed: one where the wedge is simulated in a compressible fluid/air environment,
and one where the fluid/air environment is incompressible. In both cases the 10 mm
steel wedge is used, dropped from an initial height of 1.3 m. The study is performed
from the initial height of 1.3 m at t = 0 s and run for a total of 1 s. The wedge’s impact
with water is at t = 0.52 s. The slamming pressure is recorded by the pressure probe 50
mm up the wedge bottom’s right side as seen in Figure 5.4. The deflection is measured
half-way up the wedge bottom’s right side, also seen in Figure 5.4. Notice from the
figure that for the deflection, the coordinate system is defined with its origin half-way
up the wedge side. Results are plotted in Figure 5.5 to 5.9
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By studying the figures 5.5 to 5.9, no significant deviations are seen in the results for the
compressible and incompressible domain. However, some discrepancy exists between the
results obtained in STAR and what one should expect from theory. This is discussed
in the following.

The wedge displacement curves are shown in Figure 5.5. Here, it is noticed that wedge
displacement is slightly higher in the compressible domain. This is as expected, as the
water is compressed as the wedge travels through it (i.e. the wedge is able to dive deeper
into the fluid). The result is consistent when considering the wedge velocity plotted in
Figure 5.6. Here, the velocity for the wedge simulated in the compressible environment
is seen to decrease less after impact (compared to the velocity in the incompressible
environment). Again, this is caused by the water that is ”giving in” as the wedge
travels through it. The difference in velocity is seen at t = 0.55 s all the way to t = 1 s.

What concerns discrepancy, some is seen for the acceleration in Figure 5.7. From Figure
5.6 one should expect that as the decrease in velocity in the compressible fluid is smaller
than for incompressible fluid, this should also apply for the accelerations. However, by
studying Figure 5.7, it is seen that the acceleration of the wedge is higher for the case
with compressible fluid. This should not be the case. From the two latter figures,
oscillating values are seen starting around t = 0.6 s. These oscillations are likely to
originate from the deflection of the wedge bottom as it travels through the water.

The pressure-time history recorded by the pressure probe is seen in Figure 5.8. From
the two graphs it is seen that compressible fluid tends to give slightly larger pressures
than the incompressible fluid. This result is a little peculiar as one would expect higher
pressures when the wedge hits an incompressible fluid. One explanation can be that
large pressures arises inside the fluid as it is compressed, causing higher pressures to act
on the pressure probe.

Figure 5.9 shows the deflection of the wedge bottom measured half-way up the wedge
bottom (ref. Figure 5.4) in both a compressible and incompressible environment. A
negative deflection is seen during the free-falling phase (this is likely due to the weight
of the wedge), and at impact the wedge side is deflected inwards; as expected. For
the compressible environment the wedge is seen to have a larger negative deflection
prior to impact. Further, at and after impact, oscillations with approximately the same
amplitude are seen for the two cases, first in-phase and then a ”lag” for the case of
compressibility.

Figure 5.4: Location of pressure probe and measured deflection in the FSI study.

The discrepancy seen for accelerations and pressures should be examined further as
suggested in section 6.4 in Chapter 6.
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Figure 5.5: The wedge displacement predicted in STAR for the 10 mm elastic steel wedge
simulated in a compressible and incompressible environment.

Figure 5.6: The wedge velocity predicted in STAR for the 10 mm elastic steel wedge simulated
in a compressible and incompressible environment.
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Figure 5.7: The wedge acceleration predicted in STAR for the 10 mm elastic steel wedge
simulated in a compressible and incompressible environment.

Figure 5.8: The pressure predicted in STAR for the 10 mm elastic steel wedge simulated
in a compressible and incompressible environment. Pressure is measured by the
pressure probe, 50 mm from the wedge apex.
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Figure 5.9: The deflection predicted in STAR for the 10 mm elastic steel wedge simulated in
a compressible and incompressible environment. Deflection is measured half-way
up from the wedge apex.



86 HYDROELASTIC IMPACT OF THREE-DIMENSIONAL WEDGES

5.3 RESULTS

From the compressible versus incompressible fluid study, little difference is found in
choice of fluid model. Use of compressible water and air seems to give slighter higher
pressures and is therefore applied for all simulations. The domain is kept constant with
dimensions as shown in Table 5.2 and Figure 5.2. Two different morphing grids are
applied with properties as shown in Table 5.3. The time step for all simulations is set
constant and equal to 0.0002 s. Numerical parameters are chosen as seen in Table 5.4.
The simulation is inspected 0.8 s after impact to ensure a reasonable sharp interface
is predicted with a rapid variation of volume fraction across 2 to 3 cells only. Figure
5.10 shows the solution of the 4 mm thick steel wedge at this time instant. It’s noticed
that the sharp interface requirement is to some extent acceptable. However, one should
do refinements at the free surface and the wedge’s upper corners to obtain a better
resolution of the water jet. Figure 5.10 is also inspected to verify the deflection of the
elastic wedge.

Figure 5.10: The 4 mm thick steel wedge at t = 0.8 s after water impact. Notice the volume
fraction of the free surface and the deflection of the elastic wedge top and sides.

RAW DATA ANALYZES
The behavior of four different elastic wedges is studied. Their properties are shown
in Table 5.1. For each simulation the recorded values are: wedge displacement, wedge
velocity, wedge acceleration, the pressure 50 mm from the wedge apex (ref. Figure 5.4),
the deflection of the wedge bottom (half-way up) and the Von Mises stress within the
wedge. The study is performed from t = 0 s (where the wedge is released) to t = 1 s.
The results are shown in Figure 5.11 to Figure 5.17. The maximum values in the given
time domain is given in Table 5.6. Pressure and deflection is measured at locations seen
in Figure 5.4.

From its initial position, 1.3 m above the mean water level, the displacements of the
four wedges are studied. The displacements curves are plotted in Figure 5.11. From
the curves it is seen that the steel wedge of 10 mm thickness is the one diving deepest
into the water. The second largest is the 4 mm steel wedge, then the aluminum wedge,
and lastly, the wedge constructed by GRP. The results are consistent with what is
seen for the velocity plotted in Figure 5.12, i.e. higher impact velocity result in higher
penetration depth. The difference in velocity is seen in connection with the weight of
the wedges which is seen in Table 5.1. The larger the weight of the wedge is, the less
the wedge will be influenced by the air resistance. From this it follows that the impact
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Table 5.6: Maximum values of displacement, velocity, acceleration, slamming pressure,
deflection and Von Mises stresses for the four different elastic wedges.

GRP 10 mm Al 10 mm Steel 10 mm Steel 4 mm

Displacement [m] 1.55 1.60 1.87 1.77
Velocity [m/s] 4.61 4.75 4.96 4.80
Acceleration [m/s2] 149.4 141.4 110.1 145.6
Pressure [Pa] 46 000 54 700 67 720 66 530
Deflection [mm] 6.16 2.88 3.01 13.91
Von Mises stress [MPa] 4.24 5.93 12.12 19.31

velocity will be highest for the 10 mm steel wedge. Following, this wedge will have a
higher velocity than the other wedges; seen all the way from t = 0.55 s. Notice also the
slight different in time of impact due to the difference in velocity. Some discrepancy is
seen for the 4 mm steel wedge at t = 0.71 s. This is likely caused by numerical errors.
The oscillations seen for all the velocities at t ≥ 0.6 s likely caused by vibrations in the
wedge and instability in the solution.

At water impact the wedges will experience large decelerations caused by the density
of water. The magnitude of the acceleration is, in contrast to the velocity, decreasing
with the increasing weight of the wedge. This is as expected as the larger the weight of
the wedge is, the longer time it will take to slow it down (i.e. a lower deceleration).
Accelerations for the four wedges are seen in Figure 5.13. Here, the difference in
accelerations is clearly seen for the GRP wedge (smallest mass) and the 10 steel wedge
(largest mass). Some discrepancy is seen for the aluminum wedge and the 4 mm
steel wedge; as the weight of the aluminum wedge is smaller, one would expect the
acceleration to be higher than for the 4 mm steel wedge. The difference is however
small and may be caused by the deflection of the thin steel wedge (4 mm compared to
the aluminum’s 10 mm). The oscillations seen for all the accelerations at t ≥ 0.54 s are
likely caused by vibrations in the wedge and instability in the solution.

Figure 5.14 shows a better resolution of the accelerations at t = 0 to t = 0.2 s. As
seen, the initial acceleration for all wedges are equal to 9.81 m/s2. However, as the
wedge starts to fall, the air drag influences the wedge accelerations, causing a decrease
in acceleration determined by the wedge mass. This again affects the impact velocity
of the wedge, as seen in Figure 5.12. (The peak amplitude at t = 0.065 is caused by a
numerical error.)

In the elastic wedge study (FSI), pressure is captured by a pressure probe placed at
the wedge bottom 50 mm from the wedge apex (ref. Figure 5.4). As seen in the
previous chapters for the rigid wedges, the slamming pressure is dependent on the
impact velocity of the wedge. This consistent with what is found in the results for the
elastic wedges presented in Figure 5.15. Here, it is seen that the wedge with highest
velocity (the 10 mm steel wedge, i.e. largest mass), is the one experiencing the highest
impact pressure. Similar, the wedge with the lowest velocity (the GRP wedge, i.e.
lowest mass), experiences the lowest impact pressure. It is noted that although the
impact velocities are approximately the same for the elastic wedges as for the rigid
wedge in Chapter 4, the peak pressures are not. For the rigid wedge a peak pressure of
128 000 Pa is recorded at transducer 1, while the peak pressure at the pressure probe in
the FSI study is found at 68 000 Pa for the 10 mm steel wedge. This difference is caused
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by difference in grid size and time step. As earlier stated, due to lack of time, no grid
refinements around the critical areas are done for the four elastic wedges. Following,
STAR will not be able to capture the slamming pressures, due to their small extent in
space and time. As the grid size and the time step is decreased one would expect an
increase in peak pressure recorded by the probe on the elastic wedge. The oscillations
around zero for all the pressures at t ≥ 0.56 s are due to the variation of pressure (under
and over) in the fluid.

As the elastic wedge penetrates the water, the hydrodynamical forces exerted on the
wedge will cause the wedge sides and top to deflect. In this study, deflection is measured
at the wedge right-hand side as illustrated in Figure 5.4. The results are plotted in
Figure 5.16.

The deflection of the wedge’s sides is dependent on the wedge’s thickness and Young’s
modulus (as given in Table 5.1). From the deflection curves, it is seen that this holds for
the three wedges of thickness 10 mm. Of the three, GRP is the one with lowest Young’s
modulus and hence, its deflection is largest. Of aluminum and steel, aluminum has the
lowest Young’s modulus, and therefore, will deflect the most (some inconsistency is seen
at t > 0.95 s. Further, it is seen that the steel wedge with 4 mm thickness (i.e the
thinnest wedge) is the one experiencing the highest deflection; 14 mm at t = 0.98 s.

Some different behavior of the deflection is seen prior to impact for the four wedges.
Both the 10 mm steel wedge and the GRP wedge seem to have negative deflection as
they travel through the air. The 4 mm steel wedge and the aluminum have, however, a
positive deflection. The reason for this behavior is for the student unknown. Further,
the oscillations seen for all deflections at t ≥ 0.56 s are either caused by the small
vibrations or numerical errors.

The deflection of the wedge gives rise to internal strains and stresses. The stresses
are dependent on the wedge’s Young’s modulus and deflection (strains). The higher
the Young’s modulus, the harder it is to deflect the wedge. It follows that for given
deflection for two materials (equal in geometry), the material which possesses the highest
Young’s modulus will experience the highest stresses. In Figure 5.17, the maximum Von
Mises stresses in each of the four elastic wedges are plotted. The stresses dependence on
Young’s modulus is illustrated when considering the 10 mm aluminum and steel wedge.
From the previous figure, Figure 5.16, the two wedges are seen to have approximately
the same deflection. Their Young’s modulus, however, differs a lot: 68 000 MPa for
aluminum and 193 000 Mpa for steel. This causes higher internal stresses in the steel
wedge, in fact, almost by a factor of 2 compared to the aluminum wedge. The GRP
wedge, which experience a slighter higher deflection, experience the lowest internal
stresses. This is due to the GRP material, which has the lowest Young’s modulus of the
three different materials. The wedge which experience the highest stresses are the 4 mm
steel wedge, caused by the large deflection (14 mm) seen in Figure 5.16 and the high
Young’s modulus (193 000 Mpa). The oscillation of stresses are caused by the dynamic
response of the wedge.

It should be stresses that structural effects caused by deflection of a material are many,
and that the student sees it beyond the scope of this thesis to further investigate such
effects.
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Figure 5.11: The displacement predicted in STAR for the four different elastic wedges.

Figure 5.12: The velocity predicted in STAR for the four different elastic wedges.
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Figure 5.13: The accelerations predicted in STAR for the four different elastic wedges.

Figure 5.14: The effect of air resistance on the acceleration of the four different elastic wedges.
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Figure 5.15: The pressure predicted in STAR for the four different elastic wedges. The pressure
is measured by the probe 50 mm away from the wedge apex (ref. Figure 5.4).

Figure 5.16: The deflection half-way up the wedge bottom predicted in STAR for the four
different elastic wedges. Point of measurement is seen in Figure 5.4.
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Figure 5.17: The von Mises stresses predicted in STAR for the four different elastic wedges.
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CONCLUSIONS

The water entry of two and three-dimensional rigid and elastic wedges is studied
using the CFD-software STAR-CCM+. In the two-dimensional study (Chapter 3),
2-D rigid wedges with constant vertical velocity and varying deadrise angles (4 to 81
degrees) are studied with respect to various slamming parameters presented by Zhao and
Faltinsen (1992). The three-dimensional study is done for free-falling rigid and elastic
wedges. Here, displacements, velocities, slamming pressures, accelerations, deflection
and stresses are analyzed and compared to experimental data and theoretical models
(comparisons are done only for the 3-D rigid wedge).

6.1 WATER ENTRY OF TWO-DIMENSIONAL WEDGES

For the case of 2-D rigid wedge water entry, it is found that STAR is able to solve
the slamming pressures on the wedge bottom in a satisfactory manner. The solution is
compared and verified with a similarity solution, an asymptotic solution and a boundary
element method (BEM) presented in Zhao and Faltinsen (1992). In the comparison,
good agreement is found with respect to the dimensionless slamming parameters Cpmax ,
zmax/V t, ∆Ss/c and F3/(ρV

3t). The consistency in the results applies for all deadrise
angles. It is noticed that the slamming pressures are strongly dependent on the deadrise
angle; from 300 Pa for the 81◦ wedge to 275 000 Pa for the 4◦ wedge. In addition, it is
seen that better resolution in grid size and time step is needed as the deadrise angle is
decreased.

6.2 WATER ENTRY OF A THREE-DIMENSIONAL WEDGE

In the three-dimensional case, a 3-D wedge equal to that of the experimental study by
Yettou et al. (2006) is modeled. Same wedge mass and initial drop height is applied, and
recorded data are the wedge displacement, the wedge velocity and pressure on twelve
pressure transducers. It is found that STAR predicts a lower impact velocity than what
is found in the experimental study, and following too low pressures at the pressure
transducers. This discrepancy is most likely caused by some added resistance in air (a
phenomena not studied further). The difference is however moderate, and STAR is able
to predict the displacement- and velocity-time history of the wedge in a satisfactory
manner. A non-dimensional study also reveals too low values of the pressure coefficient
Cp. An odd result as the coefficient takes into account the pressure/velocity-ratio.

It is important to note that the difference in pressure for the twelve transducers is
also caused by the uncertainties connected to the experimental study. It is close to
impossible to get an accurate reading of the pressure in an experimental set-up, and
hence one cannot conclude that the pressures found by Yettou et al. (2006) are the ones
that are correct.
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It is noted that the reason for the discrepancy lies in the prediction of motion through
air - not in the simulation of impact and motion in water. It should also be stressed
that initial conditions in numerical calculations can be tricky when dealing with objects
of large mass falling a relatively small distance (as is the case for the three-dimensional
wedge).

Lastly, one should note that refinements in grid size and time step are not of great
importance if only displacements and velocities are to be studied.

6.3 HYDROELASTIC IMPACT OF THREE-DIMENSIONAL WEDGES
A study on water entry of four different elastic wedges is performed to explore STAR’s
possibilities and limitations related to fluid-structure interaction (FSI). No verification
or validation with existing theory or experimental data is performed. However, a
qualitative assessment of the results with respect to the expected behavior of the wedges
is carried out.

It is seen that the mass of the wedge influences the impact velocities and pressures
as expected, i.e. a wedge with larger mass experiences larger velocity and hence larger
impact pressure. The magnitude of decelerations on impact is found to increase with
decreasing wedge mass; also as expected. Further, deflection of the wedge bottom is
studied and here the results indicate larger deflections for lower values of the Young’s
Modulus and plate thickness (as expected). The Von Mises stresses are also recorded
and found acceptable with respect to wedge deflection and Young’s Modulus.

In the FSI study, some attention is directed to compressible versus incompressible water
and air. Here, some peculiar results are noticed on wedge acceleration and impact
pressures. This should be studied further according to section 6.4.

6.4 SUGGESTIONS FOR FURTHER STUDY
Regarding the verification for the use of STAR-CCM+ to predict performance of free-fall
lifeboats, following improvements in studies for the three-dimensional rigid and elastic
wedges are suggested:

For the 3-D rigid wedge:

• Investigate wedge acceleration and air drag in the free-falling phase.

• Experiment with the effect of different drop heights/impact velocities on slamming
pressures and motion in water.

For the 3-D elastic wedge:

• Perform grid size and time step refinements and study the effect of this on the
wedge’s velocity, displacement, acceleration, slamming pressure, deflection and
stresses.

• Investigate the effect of compressible and incompressible water in more detail by
altering properties in the compressible model.

• Do a non-dimensional derivation of the pressure coefficient Cp and study this
parameter as a function of wedge material (i.e. study the effect of wedge deflection
on the pressure distribution).

• Obtain experimental, numerical and/or analytical studies on elastic wedge water
entry and compare these results with predictions in STAR.
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RECOMMENDATIONS FOR
FURTHER WORK: LIFEBOAT

WATER ENTRY

In the previous chapters studies on water impact of 2-D and 3-D wedges are performed
to verify the CFD-software STAR-CCM+. The software is showing good ability to
predict the wedge’s displacements and velocities, the two most important parameters
characterizing the lifeboats performance. As a conclusion, one can say that STAR is
suitable to predict a free-fall lifeboat water entry.

As of today, several companies in the Norwegian maritime industry are using STAR
to its full, and to a certain degree, basing some/much of their new designs on results
obtained through simulations by the software1. Free-fall lifeboats and their importance
for the offshore industry as mentioned in Chapter 1 has made STAR an important tool
when studying performance of different free-fall lifeboat designs.

As an aim, this chapter is to provide some recommendations for how STAR can be used
when studying the free-fall lifeboat’s water entry. The chapter will mainly focus on the
procedure of the set-up of a lifeboat simulation. The procedure and comments are based
on experience obtained through numerous conversations with Norschau (2012), Larsen
(2012) and Bjelke-Mørch (2012). Details found in Mørch et al. (2008) CD-adapco (2011)
are also included.

7.1 MODELING AND MESHING

As the STAR’s CAD environment it limited to simple modeling, advanced third-party
CAD software has to be applied when modeling the free-fall lifeboat. In such cases,
SolidWorks or Catia are good tools which offer the option to export the geometries
in different formats importable by STAR. A starting point for the meshing process is
therefore to import some kind of surface data. The surface data can be in the form
of either a geometry or a mesh description. During this process, the user can specify
whether to import the data as regions or to import the data as parts. The resulting
imported surface can be checked for errors and fixed by the surface repair tool if required.

When dealing with third-party modeling, communication between the STAR user and
the CAD user is crucial to obtain a good model. Often, when the 3-D model is
imported in STAR, mismatch in geometry surface occur. For instance, this can be
surface mismatches or intersecting parts. This forces the user of STAR to repair the

1DNV, Bergen Group, STX OSV, Norsafe and Schat-Harding are some of the companies which bases
some/much of their new design on STAR-CCM+.
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surface such that the geometry consists of one closed surface. If the guidelines for the
design are not made perfectly clear between the modeler and the analyst, the design of
the model might be changed during this repair process. In addition, working with the
surface repair tool may consume a considerable amount of hours, causing frustration for
both the STAR analyst and the client buying the service.

When the surface import is completed, meshing of the free-fall lifeboat and air/fluid
domain is performed. In STAR, three different approaches are commonly used when
studying launching of lifeboats:

• If there are no waves present and the fluid domain is infinite, a moving grid as
utilized and explained in Chapter 4 can be applied. This type of grid requires
adaption of boundary conditions in each time step since the boundary positions
changes, and the grid needs to be fine in a larger region in order to capture the
free surface properly.

• In some applications were only two linear and one rotational motion is activated
(which is usually the case when studying free-fall lifeboat’s water impact), the
solution domain can be split into two parts with a cylindrical sliding interface.
Here, the lifeboat is located inside a cylindrical region, which rotates with it,
while the rest of the grid is performing only the translation motions.

• A third possibility is to use overlapping or ”overset” grids, where a background
grid is adapted to the free surface and outside boundaries (like sea bed, oil platform
or marine vessel), while the overlapping grid is attached to the lifeboat and moves
with it without deformation. In the case for an overlapping grid, the grid quality
is easier to control and the grid motion is easier to handle. However, a more
complex solution method is required to account for coupling of the background
and overlapping grid solutions.

When setting up the chosen mesh model, one must use local grid refinements to
adequately account for effects of design details at bow, stern and canopy. Refinements
should also be applied at regions where large curvature is encountered. As done in
the studies in the previous chapters, anisotropic refinements should be performed in
selected directions, especially at the free surface where a vertical (and horizontal, to
some extent) refinement is needed to obtain an adequate resolution of the generated
waves.

7.2 PHYSICAL MODELS AND INITIAL CONDITIONS

The regions with their respective boundaries are specified as velocity inlet, pressure
outlet, symmetry plane and wall condition in much the same way as explained in all of
the previous chapters. Note that for a free-fall lifeboat a symmetry condition is often
applied along the center line (only half the lifeboat is modeled).

When the regions are set, a physics continuum must defined. For a free-fall lifeboat
analysis, the simulation will model the behavior of two fluids (water and air) within the
same continuum. This is done by applying the Volume of Fluid (VOF) model (explained
in section 2.2, Chapter 2) and activating the Eulerian Multiphase model. The physics
models which are to be selected include:

• Three-dimensional

• Implicit unsteady
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• Multiphase Mixture

• Volume of Fluid (VOF)

• Laminar

• Gravity

It’s recommended to tic the ”Auto-select recommended models” box. In this way STAR
will choose the additional models that are suitable together with the already chosen
models. Notice that for the lifeboat simulation a laminar flow model is applied. This
assumption is acceptable as only the simulation of water entry and impact forces are of
interest2. Simulation of lifeboat cases over a longer distance would require a turbulence
model.

After choosing the different physic models, initial conditions for the simulation needs
to be set. When a lifeboat is launched from a ramp it undergoes three stages before
it hits the water: a translational acceleration down the ramp, an angular acceleration
as the COG passes the edge of the ramp, and lastly, a downward acceleration before
the lifeboat hits the water. Due to its complexity and costs in computational time, free
fall lifeboat drops are rarely simulated from its initial position on a ramp located at a
host structure. An often used approach is therefore to start the coupled simulation of
fluid flow and flow-induced motion at the last and third stage, i.e. when the lifeboat is
in the free falling phase. By using the 6-DOF DFBI Rotation and Translation model,
the initial conditions for this phase are set. These conditions include position of COG,
together with horizontal, vertical and angular velocities. Each of the initial values can
be obtained by geometrical considerations and the various equations of rigid motion
(details is found in DNV-OS-E (2010)). If the simulation is to include wind, one most
adjust for the effect of wind on the lifeboat’s motion in air. A kinematic model for
rigid body of motions which also includes the effect of head wind has been developed
by Mørch et al. (2008). The method applies Runge-Kutta of 3rd order to solve the
velocities and the trajectory of the moving lifeboat.

7.3 SOLVER PARAMETERS AND SETTINGS

When the needed conditions are applied (both initial and boundary) the solver settings
must be set such to obtain a stable and converging solution. As the simulation is
transient, one must specify the time step, the maximum number of inner iterations that
is permitted in each time step, and the overall physical time for which a solution should
be obtained.

The time step which is to be selected is dependent on the phenomena one wishes to
study. As seen in Chapter 5, a time step of the order E−4 is sufficient when studying
velocities and displacements. However, if slamming pressures are of interest, one must
reduce the time step to the order of E−5, ref. Chapter 4. As the two most important
parameters when deciding upon the lifeboat’s design are the velocities and displacement,
a time step at the order E−4 is therefore recommend. However, as stated in section 2.1
in Chapter 2, the time step must also be chosen in accordance to the grid size such
that the Courant-Friedrichs-Levi condition (2.1) holds, i.e. CFL < 1. If accurate wave
propagation is to be simulated one must choose a 2nd order time discretization in the
Implicit Unsteady solver settings.

2A study on laminar versus turbulent flow model for wedge water entry are seen i both Chapter 3
and Chapter 4.
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A numerical solution is achieved through iterations, and the rate of which the result
improves from one iteration to another is important. To choose the appropriate number
of iterations in the solver one must study the residuals at simulation start-up. For a free
fall lifeboat simulation it is desirable that the drop in residuals for the relevant equations
are of the order E2. However, convergence can also be obtained at E1. Again, this can
be determined by studying the solution. As a rule of thumb, number of iterations for a
lifeboat simulation is set from 10-15.

7.4 MISCELLANEOUS

In STAR, one is able to prepare the post-processing before starting the simulation. This
has the benefit that one can study scenes and plots as the simulation is running, and if
necessary, make changes to grid size, time step and/or numerical parameters (etc.).

As mentioned, parameters as displacement and velocity are important when studying
lifeboat performance. This implies that when setting up a lifeboat simulation in
STAR, one should prepare reports, monitors, plots and scenes for these scalars. When
dealing with different lifeboat designs, one study would be to compare the horizontal
displacement and velocity, at say, midway through the submerged phase. This will
give an indication on which lifeboat has the best change to move away from the host
structure, should an accident occur.

Another aspect when studying free fall lifeboats are the accelerations felt by the
occupants at water impact. There exist regulations on the magnitude of these
accelerations, known as the CAR-value3, and one must make sure that this value is
within a reasonable limit. Accelerations are largest at the lifeboats bow and stern,
and hence reports, monitors and plots should be created at these locations prior to
simulation start.

Details on how the different design parameters influences a free fall lifeboat’s perfor-
mance are found in Johannessen (2011). It is strongly recommended that the reader
study this thesis before a further study on the use of STAR to predict performance of
lifeboat designs is initiated.

3Details concerning the CAR-value is found in Johannessen (2011).
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