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Abstract 

Application of PV systems in distributed generation (DG) and as renewable sources in the 

power grid are gaining wide acceptance being favoured by rapid technology development, crave 

for alternative clean energy, environmental protection awareness, favourable energy policies, 

regulation and incentives. The power conversion stage of PV systems are considered important 

components for interfacing, transforming and adapting power from PV to end users and as such, 

the power quality, efficiency and the reliability of PV inverters are key characteristics to 

prioritize during development. With an assumption that the PV module has almost achieved 

peak reliability, the PV inverter is analyzed with overall goal to improving the reliability of the 

PV system. The technology of PV inverters has thus far mainly focused on improving 

efficiency, power quality, and ensuring safety which has led to emergence of various PV 

inverter topologies today. This thesis studies the current PV inverter topologies and analyzes 

the reliability of two transformerless inverter topologies; Flying capacitor (FC) inverter and the 

modular multilevel converter (MMC) inverter. It aims to assess the reliability performance of 

both PV inverter topologies in comparative reliability analysis. The scope of this thesis is 

limited to transformerless grid-connected PV systems for basic assumptions that simplifies 

reliability analysis.      

Current PV inverter topologies have been studied and a set of transformerless multilevel PV 

inverters was selected based on fundamental market requirements. Suitable reliability analysis 

methods have been performed for the selected inverter topologies to assess reliability 

performance. The reliability performance metrics that have been applied for reliability 

assessment and ranking of the PV inverter topologies are; survival probability of the inverter 

over 10 years operation, failure rate, mean life of the inverter, complexity of design and inverter 

operation and level of redundancy. 

 The study identified the following PV inverter topologies for reliability assessment based on 

inverter efficiency, power quality, minimum leakage current, and galvanic isolation; 5-level 

Flying capacitor transformerless multilevel inverter (topology-1) and 5-level transformerless 

modular multilevel converter (topology-2). The results and performance ranking from 

comparative reliability assessment showed that topology-2 gives the highest system reliability 

performance and rank. The main reasons for the difference between the PV inverter topologies 

are found in the topologies’ number of critical components, fault tolerant ability and ease with 

implementation of reliability positive redundancy.   
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1 Introduction 

The world’s energy demand is very large and it presents huge challenges as to how it can be 

met while growing. Meeting this growing demand requires an energy portfolio that is efficient, 

clean and affordable. This is reason the last decades has experienced growing interests for clean, 

efficient and affordable energy with massive investments within renewable energy especially 

those with low or zero greenhouse gas emissions. These understandable interests are coming 

from governments, several world large companies and the public alike since access to reliable, 

environmentally friendly and affordable energy is vital for economic prosperity and quality of 

life of people.  

Solar photovoltaic and Wind among other renewable energy sources for electricity have 

experienced accelerated growth and development owing mainly to large investment, favourable 

energy policies, and breakthroughs in technology. While the aim is not to compare Solar 

photovoltaic and wind, but PV is seen to be one of the fastest growing renewable energy 

technologies and expected to play major role in the global energy and electricity production in 

future. For electricity production, this is because PV has a tendency to be developed and used 

at several capacities among all energy stakeholders. The global installed capacity of PV systems 

have therefore increased rapidly since 2005, being driven by mostly advances in power 

electronics, attractive policies and incentives. The increasing capacity of installed PV and the 

maturing policy-driven market have ensured declining cost of PV systems. The consequence is 

a competitive PV market which is able to drive the industry and technology for specifications 

and requirements such as higher efficiency, high power quality, and high reliability.  

The most effort of the PV industry has been focused on improving the efficiency and quality of 

output of the PV system with much to be done in reliability. Perhaps to be fair, one could say 

that reliability has not been effectively applied to PV systems since we mostly see development 

of highly efficient and reliable PV module but not the PV system. There is need to develop 

reliability programme for the PV system rather than the subsystem even as they are being 

designed to address efficiency and safety issues. The reliability work today is mostly isolated 

improvement of components and subsystems of the PV system. The reliability of a series system 

is as good as its least reliable component/subsystem, which is the case as seen in the PV System 

today. 

 

1.1 Background 

Most important requirements for PV system may be narrowed to efficiency, reliability and 

safety. The photovoltaic system technology has undergone rapid development over the past 
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decades and today, innovative breakthroughs and improvement are evident. Most of them are 

related to improved efficiency, cost reduction (LCOE), efficient MPPT, effective control 

strategy, and some safety related issues. Reliability of the PV system though taken serious as  

 

the issue of efficiency, has not produced expected result. Wrong application of reliability 

concepts and perhaps the assumption that increasing efficiency automatically improves 

reliability. The PV system ought to be designed for reliability through suitable reliability 

program planned and executed in the PV system development program. Good reliability 

programs are applied majorly for development of PV modules rather than the PV system and 

the consequence is we having a high reliability PV module and low reliability PV system 

despite the achieved high reliability.  This may be one of the reasons we have today PV systems 

offering about 20 -30 years warranty on PV modules with just about 4-6 years warranty on the 

Inverters. There is need to perform a suitable and planned reliability program for the PV system 

with measurable reliability targets defined for performance assessment. Power conversion stage 

of the PV system is very important just as the efficiency. Thanks to advances in power 

electronics, the efficiency of PV converters is improved comparable to what is achieved for the 

PV modules. The reality now is that the PV module has been improved in both reliability and 

efficiency while the PV inverter lags behind in reliability.  

Assuming that a reliability program for the PV system is planned and the PV meets the set 

reliability target, we can now execute a suitable reliability program for the PV Inverter to meet 

the allocated reliability target. The benefit of such assumption (if it was so) would be a much 

higher reliability PV system and a cost effective development program.  The necessity now is 

to perform a reliability assessment of the power conversion stage of the PV system. There are 

several topologies and topology groups of the PV Inverter with each having some advantages 

over others based on an expected requirement or requirements of PV System power conversion 

stage.  

 

1.2 Literature 

A literature survey was carried out as part of this thesis. The main objective is to find the current 

topologies for the power conversion stage of PV systems and the relevant concepts, methods 

for studying the reliability. 

One of the fundamental keys for performing a successful reliability analysis of a system is a 

good understanding of the system’s architecture and functions. Several literatures have studied 

different PV system and inverter topologies. The basic architecture of each topology is normally 

presented in literatures, the main purpose of the topology, the advantages it has over others or 

how it compares to previous topologies. In most cases the drawbacks of such topology is also 

stated. [1], [2] provide insights to emerging PV converter technology for grid-connected PV 

systems. We have seen the emergence of several novel inverter topologies owing to needs to 

improve power factor and increase power efficiency. [3] provides good introduction and 

description of more than 100 topologies of advanced inverters originally developed by their 
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authors. The needs that have created the PV system and Inverter topology groups are mostly 

industry regulations and the hard-to-meet requirements of PV system market. Attention has 

turned to the study and development of transformerless PV inverter topologies because they are 

considered to having greater potential for a most efficient and cost effective PV inverter.  

 

Several articles discussed this category of PV inverter topologies; for example [4], [5], [6] 

among many others listed in the reference. 

 

Reliability analysis and activities are normally planned, executed and managed as a program 

for products in technology qualification, development projects, and for complex systems. And 

in many of such situations, time and the order of activities are important to ensure objectives of 

each planned activity is achieved and most importantly, the reliability goal of the program. [7], 

[8], [9] and [10] give introduction to background and concepts in reliability engineering that 

are relevant for reliability planning, design and management of equipments, systems and events. 

Several Standards give guidelines to reliability concepts and methods that may be relevant for 

analyzing PV System reliability. Reliability of the power conversion stage of PV systems is the 

focus and the reliability of PV system is overall goal in this thesis, therefore concepts and 

methods that are relevant to PV system’s reliability program are discussed. One of the important 

activities in reliability programs is reliability analysis, which must be systematic and structured 

in order to achieve measurable metrics to describe reliability performance. Few articles describe 

reliability analysis of PV inverters. For example; [11] estimates useful life of solar inverters 

using reliability engineering techniques, and [10] provides framework linking reliability 

specifications and product performance in product development that may be tailored towards 

power systems. [12] Predicts reliability of power electronic systems, and [13] estimates 

reliability and availability of fielded PV systems. 

 

1.3 Objectives 

The main objective of this master thesis is to assess the reliability performance of a set of 

topologies of the power conversion stage for grid-connected PV systems. It should present 

reliability analysis steps and method to measure the quantitative reliability performance of PV 

inverters. The assessment should address availability and reliability importance of the various 

topologies. In achieving the main objective, the thesis shall address the following specific 

objectives: 

1. Describe the grid-connected PV system and requirements for interfacing PV systems 

with the grid. 

2. Perform a technical description of converter topologies. Present the recent and 

important topologies. 

3. Describe suitable methods and approaches for studying reliability of PV systems. 

4. Make reliability models of selected PV inverter topologies to be analyzed. 
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5. Perform an analysis of the selected topologies and compare them using suitable 

reliability metrics. 

6. Recommend the most reliable topology based on the results. 

 

1.4 Scope, Limitations and Assumptions 

The scope of this thesis is reliability analysis of the power conversion stage for grid-connected 

PV system. The following limitations and assumption may have effect on the analysis and 

results presented in this master thesis. 

 

 It is assumed that the reader has basic knowledge of PV converter technology. 

 It is assumed that the reader has basic knowledge within the field of RAMS engineering, 

equivalent to NTNU course TPK 4120. 

 ReliaSoft’s BlockSim is used for the reliability analysis. 

 Assumptions for reliability analysis are stated in Sections 1.4 and 4.6. These 

assumptions provide basis for some decisions made in the analysis to simplify 

computation.  

 The circuit for controlling and switching the PV converter switches are assumed similar 

and allocated the same level of reliability. 

 Safety is not given much consideration in this analysis except those as stated in applied 

standards. 

 

1.5 Structure of the Report 

The rest of the report is structured as follows:  

Chapter 2: Gives a basic description of the grid connected PV system. The chapter 

presents an overview of the system configuration and main components. It 

also highlights the requirements of grid-connected PV system inverters and 

briefly discuss their control system.   

Chapter 3: Presents state-of-the-art literature and overview for the PV inverter topologies. 

It gives the basic configuration and general topology groups of grid-connected 

PV inverters with further focus on the transformerless topology group of PV 

inverters. This chapter also discusses the multi-level group of inverters and 

the topologies that have developed from the multi-level concept.   

Chapter 4: Gives introduction and background to reliability engineering concepts and 

methods that are relevant for performing reliability analysis. Most importantly 

the steps to performing a successful reliability analysis as applied to the set of 
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PV inverter topologies are presented in this chapter. These include relevant 

results from the reliability tool  systematically presented for assessing the 

various PV inverter topologies by the estimated reliability performance   

 

Chapter 5:  Presents assessment of the PV inverter topologies and ranking of the set of 

analyzed grid-connected PV inverter topologies according to reliability 

performance.   

Chapter 6: Includes the conclusion and recommendation for further work.  
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2 Overview of Grid-Connected Photovoltaic 
Systems & Requirements 

 

2.1 Brief Introduction to PV System 

PV systems according to [14] are power systems designed to supply usable solar power by 

means of photovoltaics. IEEE describes PV systems as systems that convert sunlight directly 

into electric energy and processes it into a form suitable for use by intended load [15].  

PV systems may be classified according to their application or use, component composition, 

and functional/operational requirements. Modern PV systems for terrestrial applications can be 

divided into two broad categories [16]; off-grid and grid-connected PV systems. Grid-

connected PV systems connect to electric power grids (utility grids) and have capability to feed 

energy directly into the grid. They are not expected to produce 100% of the energy demand of 

end users, as such the utility grid service is available to the end users as well as the opportunity 

to feed excess produced energy into the grid. However such end users are not protected from 

power outages from the utility grid. Off-grid PV systems on the contrary are standalone systems 

that does not connect or feed energy to the public power grids but to isolated users without 

access to public grid electricity. Since an off-grid PV system functions independently of the 

utility grid and expected to supply 100% of electricity demand, it would require a backup source 

of energy or a storage system. Application of off-grid systems are common in remote locations 

without access to service from the utility grid. While the two major categories of PV systems 

can be further classified, focus is given to grid-connected PV systems for terrestrial application 

in this report. Modern grid-connected PV systems have evolved with rapid technology 

development from the previous centralized systems to distributed systems in a decentralized 

architecture application. 

Grid-connected PV systems (without battery storage) are considered more efficient, cost 

effective and less complex than standalone PV systems. Several reasons may be responsible for 

this but it believed to be probably due to the absence of energy storage subsystems in most grid-

connected systems as well as being simple to design, install and cheap to maintain. 
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2.2 PV System Configuration 

All possible design types and applications of PV systems can be classified under the following 

basic system configurations: 

1. Standalone PV system 

 

2. Grid-connected PV system 

3. Hybrid PV system 

 Standalone PV system configuration functions and operates independent of the utility grid and 

other sources of power supply. They are used for small power applications in remote locations 

that do not connect to the utility grid or other sources of power supply. Standalone PV systems 

are required to produce 100% of the energy demand of the load in some cases depending on the 

type of load or load requirement. Thus Standalone PV systems configuration may be further 

classified into direct-coupled PV systems for small electrical non-sensitive loads, and 

standalone PV systems with battery storage for sensitive and non-sensitive loads. The load can 

be DC or AC which means that an inverter would be required for supplying power to AC loads 

Grid-connected PV system configuration on the other hand functions and operates in parallel 

with the utility grid. A unique characteristic of grid-connected PV system that is beneficial to 

utility customers is that excess energy produced can be feed into the utility grid with an energy 

sales agreement. Grid-connected PV systems are popular for large and small power 

applications. They are not required to produce 100% of energy demand of the load, thus energy 

storage is not required but may be included optionally for increasing availability of power 

supply to the load.  

In large power applications (centralized generation) where grid-connected PV systems are only 

required to support the utility grid, energy storage is not required. However in medium and 

small power applications, the choice for a grid-connected PV system with or without energy 

storage is mostly influenced by the load requirements and reliability of the utility grid. Thus, a 

grid-connected PV system configuration may be designed with or without an energy storage.. 

The main components of the grid-connected PV system without energy storage are the PV 

module and the power conditioning unit (inverter). 

Hybrid PV systems configuration differ from the grid-connected and standalone PV systems in 

terms of the source of power supply. Hybrid PV systems have more than one power supply with 

one of the sources being photovoltaic. Therefore a hybrid PV system would have a combination 

of PV energy source along with one or more of the following energy sources; wind energy, 

biomass energy (e.g. diesel), micro-hydro, etc. Hybrid systems require a good energy 

management system to control and optimize the energy flow from the inputs to the output. 

Further details about hybrid PV systems will not be discussed in this report. 
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2.3 Requirements for Grid-Connected PV System 

There are many definitions for what “requirement” stands for. [14] defines requirement as a 

singular documented physical and functional need that a particular design, product or process 

must be able to perform. Some others refer to requirement as a condition or capability that must 

be met or possessed by a system or system component to satisfy a contract, standard, 

specification, or other formally imposed document. In some engineering fields, requirement is 

a specification of what should be implemented. The aim here is not to vote the best definition 

but to understand the term in simple words as it applies to power systems in order to encourage 

compliance. In simple terms, grid-connected PV systems requirements should be perceived as 

conditions or capabilities of the system or system’s processes that must be met and should 

usually be documented.  

Grid-connected PV systems are configured to function and connect in parallel to the utility grid, 

and in order to seamlessly achieve this, it must strive to comply with series of standard 

requirements and guidelines. There are general specification requirements for designing a PV 

system, in addition to specific requirements for grid interaction. These two sets of requirements 

apply in the specification for a grid-connected PV system components’ design. The 

requirements that are specific for the grid interaction are focused as well as the components that 

interface with the grid which must comply with such requirements. 

In grid-connected PV systems, the power conditioning unit is an important component. The 

power conditioning unit (PV inverter) ensures that the PV system seamlessly connect with the 

power grid. Design and functional specifications of PV system inverters are as such impacted 

by the grid requirements. 

 

2.3.1 Grid Requirements & Regulations 

Grid requirements are important for maintaining the safety, power quality and reliability of the 

power grid. It also extends these importance to the grid operators and users alike. Stability of 

the power grid and safe operation are key priorities for any grid operation. With increased 

integration of renewable energy generation into the power system, it becomes even more 

important to formulate excellent grid requirements, guidelines, legislation and regulations.    

Most grid requirements and guidelines are stated in standards and technical reports that are 

further referenced and applied as regulations. Bodies and institutions are saddled with 

responsibilities for writing standards and technical reports that deal with grid requirements 

including design, installation and operation of equipments that interface with the grid. Examples 

of these bodies are IEEE, IEC, and DKE among others. Legislative and regulatory bodies at 

local, state, and national levels reference and applied these standards together with their local  
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laws to ensure high quality, safe, stable and reliable power grid operation. Manufacturers of 

grid-connected systems are required by regulation to apply these standards in the design of their 

equipments including grid operators and users. Governments through their regulatory bodies at 

various levels ensure the implementation, compliance and management of the regulations to 

ensure they are executed effectively.  

Several grid related standards and guidelines have been developed for equipment design, 

manufacture, installation and operation: 

 

 IEEE 1547 Standard for Interconnecting Distributed Resources with Electric 

Power Systems [16]: This standard was approved in 2003 and establishes criteria and 

requirements for interconnection of distributed resources with electric power systems or 

the grid. It provides requirements relating to performance, operation, testing, safety, and 

maintenance of the grid interconnection. Specific requirements in IEEE 1547 (2003) are 

presented. The standard, after its approval in 2003 has been expanded through 

development of complementary standards providing more specific details and 

expansion of the original standard. A first amendment has been started for the original 

standard, IEEE 1547. List of the complementary standards developed from the original 

standards. 

 DIN & VDE German standards for PV power converters and grid connection: 

 VDE 0126-1-1: Automatic disconnection device between a generator and the 

public low-voltage grid. 

 VDE 0126-2: Test procedure of islanding prevention measures for utility-

interconnected photovoltaic inverters. 

 VDE 0126-12: Overall efficiency of grid connected photovoltaic inverters. 

 VDE 0126-13: Data sheet and name plate for photovoltaic inverters 

 IEC 61727 Photovoltaic systems – Characteristics of the utility interface: This 

standard provide requirements for grid connected PV power systems that operate in 

parallel with the utility grid using solid-state non-islanding inverters for DC to AC 

conversion  

 EN 50160 Voltage characteristics of electricity supplied by public networks: This 

is a European standard providing main voltage parameters and corresponding 

permissible deviation ranges at customer points of connection to public networks.  
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2.3.2 PV Inverters Requirements and challenges 

PV inverters are important elements of grid-connected PV systems for interfacing the PV 

modules to the utility grid.  In order to safely and legally connect a PV system to the grid, 

specific grid requirements in codes and standards regulated by utility must be complied with. 

Grid requirements relate to network connection criteria, construction of power generation 

system, system protection and operation. Expected technical requirements that PV inverters 

need to satisfy may compose of the following norms [3], [17], [18], [19], [16], [20], [21] : 

 Level of injected DC current 

 Total harmonic distortion (THD) and individual harmonic current levels. 

 Range for voltage and frequency magnitudes for normal operation 

 Leakage current values and corresponding disconnection times 

 Galvanic isolation 

 Power factor 

 Detection of islanding and anti-islanding operation 

 

 Automatic reconnection and synchronization 

 Grounding of the system 

Details of the above requirements are available in standards/guidelines. Some of the standards 

are international and some are region or country specific in application. 

There are few significant challenges with respect to grid-connected PV system requirements. 

As grid-connected PV systems penetration increases and market continues to mature, customer 

and grid requirements would continue to evolve and change as grid stabilization becomes even 

more important. The PV inverter design to meet such increasing requirements would become 

complex, thus demanding implementation of advanced control system for the inverter or 

inverter group with advanced energy management. As much as they would be difficult to 

implement, they are also costly. For existing designs and installed systems, it would mean 

expensive upgrade if possible or forced decommissioning at worst case. 
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3 State-of-the-Art  
Grid-Connected PV Inverter Topologies 

 

3.1 The Inverter 

An inverter is an electronic device designed with capability of changing DC electrical power to 

AC electrical power. An inverter is therefore a DC/AC converter that gives AC output 

waveform from a DC source. The DC/AC converter have three basic classifications without 

giving consideration to application areas, efficiency, cost, etc. but the type of DC input. They 

are Voltage source DC/AC converters, Current source DC/AC converters.  

In voltage source inverters, the input is a voltage source and the output voltage may be 

controlled independently. A voltage source is one that is able to maintain a fixed voltage 

regardless of current changes or one whose voltage cannot undergo discontinuity due to external 

variations.  

For current source inverters, the input is a current source and the output current may be 

controlled independently. A current source is one that is able to maintain a fixed current flow 

regardless of voltage changes at its terminals or one whose current flow does not undergo 

discontinuity due to external variations.  

Another class of inverters may be realized from a voltage or current source inverters. It is called 

an impedance-source (impedance-fed) inverter. In this type of inverter, a special impedance 

network is used to couple the main converter circuit to the input which may be a current or a 

voltage source.  Inverters may be classified according to criteria such as the number of 

conversion stages, ratings of output voltage or power, waveform of output voltage, circuit 

topology and number of output phases. Ability to control the level of output parameters such as 

frequency, harmonics, voltage, etc. may also form criteria for classification.  

For choice of inverter for connecting to the power utility grid, issues such as efficiency, cost, 

power quality, safety, reliability and compatibility become very important factors for 

consideration. Main chapters of this thesis shall discuss various inverter topologies based on 

these issues or a combination of these issues. 

Grid-connected inverters has two basic functions. One of them is to convert DC to AC, and the 

other is to boost voltage if necessary. Based on these functions, there are two main system 

configurations for DC/AC converters to connect PV array to the power grid. They are; line 

frequency transformer configuration and transformerless configuration. The difference would  
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be the number of power processing stage and presence of isolation. The option for the number 

of power processing stage is dependent on the PV array and other performance requirements. 

 

3.1.1 Line Frequency Transformer Inverter Configuration 

The line frequency transformer inverter configuration is show in Figure 1. In this configuration 

the power processing stage is one and thus usually referred to as the single-stage inverter. This 

configuration includes a line frequency transformer for galvanic isolation and sometimes for 

voltage boosting towards the grid. The inverter topologies for this configuration are usually 

considered efficient and reliable because of few components on condition that required 

performance can be achieved. Performance requirements may be related to MPPT control, grid-

current control, voltage amplification, etc. The application of grid-connected line frequency 

transformer inverters are usually in low voltage applications. 

Galvanic isolation is a safety requirement for some countries but not for others. It is usually 

implemented either using a low frequency transformer or a high frequency transformer. In the 

case of the former, the low frequency transformer is placed between the inverter AC terminals 

and the grid but in the later the high frequency transformer is placed between the inverter DC 

terminals and the PV array.   

 

Figure 1: PV System Showing Line Frequency Transformer Inverter Configuration 

 

3.1.2 The Transformerless Inverter Configuration 

The transformerless inverter configuration with 2-stage power processing is show in Figure 2. 

This inverter configuration may have one or more power processing stages depending on the 

PV array voltage and the required DC-link voltage of the DC-AC converter. In Figure 2 the 

first stage a DC-DC converter and the second stage a DC-AC converter. As the name of this 

inverter suggests, this configuration is without a transformer needed to provide galvanic  
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isolation among others. This implies there exist galvanic connection between the PV array and 

the grid. The consequence is generation of leakage current to ground through the parasitic 

capacitance of the PV array which if not controlled may lead to voltage oscillation in the PV 

array.  

One of the disadvantages with this configuration is that they are usually considered less efficient 

and reliable because of switching losses and increased failure points due to increased number 

of components. Nevertheless considering other advantages offered by this configuration they 

have found wide application today than the line transformer configuration.  

 

Figure 2: PV System for Transformerless Inverter Configuration 

 

3.2 PV Inverter - General Topology Groups 

Inverters that connect PV to the grid normally have unique requirements and to design an 

inverter in this category, the following issues may need to be addressed in any form possible. 

Some of the issues are:  

 Power quality 

 High efficiency 

 EMC 

 Low cost 

 Safety and protection 

 Reliability 

 Availability 

 Environmental conditions 

 Low acoustic noise 

 Maintainability 

Inverters on a generally note have been largely classified according to their application, 

structure of input rather than type of input source, or even presence of line transformer among 

others. One general classification of PV inverter have been done according to arrangement of 

the PV modules of the PV system. 
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PV modules may be arranged into the following structure: 

 Single module 

 A string of modules 

 Multiple strings 

 Array (Multiple strings connected in parallel) 

From the above PV module arrangement, the following classification of inverter configuration 

for PV application may be realized: 

1. AC Module Inverter 

2. String Inverter 

3. Multi-String Inverter 

4. Central Inverter 

 

3.2.1 AC Module Inverter Configuration 

This inverter configuration gets its name from the PV module arrangement which in this case 

is a single PV module. In this configuration, one inverter is assigned to a single PV inverters 

with this configuration are usually called module-integrated inverters. The PV modules having 

low voltage ratings would inevitably require voltage boosting. Usually a DC-DC voltage boost 

stage with capability of providing galvanic isolation is designed into the system topology of 

inverters in this category. It is believed that introducing necessary voltage boost stage reduces 

the converter efficiency but on the other hand this inverter configuration exhibits highest MPPT 

accuracy [1].  

Advantages of using inverters with this configuration is multi-structure roof and partial shading 

for small scale applications. Some of these advantages are possible because of flexible and 

modular features of the inverter configuration. Few inverter topologies can be found with this 

inverter configuration. Example is an interleaved fly-back converter of Figure 3 developed by 

Enphase and commercialized by Siemens [1].  

 

Figure 3: AC Module Inverter Configuration – Interleaved Fly-back Converter [1] 
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3.2.2 String Inverter Configuration 

Similar to AC module inverter that derives its name from arrangement of the PV module, the 

other inverter configurations such string inverter also does same. In String Inverter 

configuration, one inverter is dedicated to a string of PV modules. String inverters are usually 

common with medium scale applications. Depending on the inverter input voltage and PV 

string, voltage boost by addition of DC-DC converter stage with MPPT may be an option. In 

such case, the configuration will be a double-stage power conversion inverter. Galvanic 

isolation may also be introduced through the help of a low frequency or high frequency 

transformer. 

MPPT accuracy of string inverter configuration is considered to be less than AC module 

inverter configuration but with a higher efficiency and lesser cost per watt for the same power 

rating of PV system. There are several inverter topologies with wide applications for string 

inverter configuration. They are; traditional full bridge or H-bridge string inverter, modified 

and enhanced versions of H-bridge string inverter, 3L NPC string inverter, modified and 

enhanced versions of 3L NPC string inverter and T-type (3 level transistor clamped) string 

inverter. An example of a string inverter configuration is shown by Figure 4. 

 

Figure 4: String Inverter Configuration – 3L NPC String Inverter [1] 

 

3.2.3 Multi-String Inverter Configuration 

In multi-string inverter configuration, the same name convention applies just as in AC module 

inverter and string inverter. It is name so because one inverter is dedicated to serving multi-

string connected PV modules. Multi-string PV module arrangement is a parallel connection of 

strings of PV modules to a grid-connected multi-string inverter through DC-DC converters 

dedicated for each string of PV modules. Two or multiple stage power conversion is also 

inevitable in multi-string inverter topologies. 
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What is achieved by this configuration is flexibility, cost effectiveness and increased MPPT 

performance [1]. They are most relevant in medium and large scale PV applications. Multi-

string inverter configuration has capability of partial shading reduction and may be 

implemented with option of galvanic isolation. Several topologies exist in multi-string inverter 

configuration and most topologies listed for string inverter configuration also apply for multi-

string inverter configuration. The low inverter efficiency and reliability because of more than 

one power conversion stage and increased failure points are also present in multi-string inverter 

configuration. An example of multi-string inverter configuration is shown by Figure 5. 

 

Figure 5: Multi-String Inverter Configuration – H-Bridge Multi-string Inverter [1] 

 

3.2.4 Central Inverter Configuration 

This inverter configuration is similar to the other inverter configurations discussed above 

however in this case the central inverter interconnects the whole PV array to the grid. The PV 

array is an interconnection of PV modules to achieve parallel-connected PV strings. In this case, 

a converter is not required for the parallel connection of the PV strings as in the case of 

Multiple-string inverter configuration. The whole PV array is connected to one central inverter 

and for each PV string a blocking diode is connected. The shortcoming with this configuration 

is that it has the lowest MPPT performance and lacks flexibility. On the high side, it is very 

reliable and simple in structure. It also possesses the highest power conversion efficiency 

among the inverter configurations discussed. The central inverter configuration is used for large 

scale applications. One of the central inverter topologies is shown by Figure 6. 
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Figure 6: Central Inverter Configuration – 3L NPC [1] 

 

 

3.3 Transformerless Inverter Topologies 

It is discussed earlier the transformer inverter configuration and the transformerless inverter 

configuration with the structural difference being the presence of a transformer (low frequency 

or high frequency) to ensure safety and galvanic isolation. It is assumed here that galvanic 

isolation is necessary for grid-connected PV systems and a requirement even though it may be 

argued as a safety issue related to what standard is being applied.  

For transformer inverter topologies, the life time of the transformer may also an issue but 

comparison to transformerless configuration would need to be performed to confirm this. Some 

of the disadvantages of transformer inverter topologies to the PV system and inverter because 

of grid isolation transformer are: 

 Reduced overall efficiency due to leakages and losses in transformer 

 Increased cost due to cost of transformer 

 Increase size and weight because of transformer (low frequency transformer) leading 

to installation difficulty 

On the other hand with grid isolation transformer removed from the inverter (transformerless 

inverter topology), the disadvantages listed above would be minimized if not eliminated. When 

this is allowed, galvanic connection between grid and PV array becomes present and leakage 

current to ground path due to solar panel parasitic capacitance is introduced. This is the main 

disadvantage with transformerless inverter topologies but enjoys higher overall efficiency, 

reduced cost and reduced weight and volume. 
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Several transformerless inverter topologies have been proposed for connecting PV to the grid. 

The topologies aim to minimized ground leakage current and DC current injection, improve 

efficiency, increase reliability among others. Two transformerless PV inverter topology groups 

have stood out in the industry today in which several inverter topologies are derived. They are: 

 H – Bridge topology group 

 Neutral point clamped (NPC) topology group  

 

3.3.1 Inverters from H-Bridge Topology 

The transformerless inverters derived from this topology group are based on the basic, modified 

or enhanced structure of H-bridge. Some inverter derivatives in this group are half H-bridge, 

full H-bridge, HERIC, H5, full H-bridge with DC bypass, full H-bridge zero voltage rectifier, 

etc. 

 

3.3.1.1 Full H-bridge Inverter 

This inverter is composed of 4 switches connected as shown by Figure 7. Three main 

modulation methods are possible with this inverter [22]: 

 Bipolar PWM  

 Unipolar PWM 

 Hybrid PWM 

With bipolar modulation, the full H-bridge inverter yields very low leakage current but with 

reduced efficiency [22]. As such it is not suitable for PV transformerless inverter applications.    

With unipolar modulation, there exist high leakage current but a high efficiency and low 

filtering requirements. Thus this inverter with unipolar modulation is also not suitable for PV 

transformerless inverter applications. 

With a hybrid modulation the inverter exhibits high efficiency, but an unfortunately high 

leakage current and filtering requirements. 

 
Figure 7: Full H-bridge Inverter Topology [22] 
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3.3.1.2 Half H-bridge Inverter 

The half H-bridge is a reduced form of full H-bridge inverter with only one leg of the bridge (2 

switches) and a capacitive divider to the PV array. This inverter has the lowest cost and simplest 

structure with constant common mode voltage. However it is still not widely used because of 

high voltage-blocking switch requirement, distorted output requiring high filtering 

requirements [5].    

 

3.3.1.3 High Efficient and Reliable Inverter Concept (HERIC) 

This inverter is patented by Sunways and uses the full H-bridge transformerless inverter 

topology with an additional branch in parallel with the inverter output filter. The branch is 

composed of a back-to-back connected IGBTs that switches at the grid frequency. This inverter 

topology is shown by  Figure 8. The function of the additional branch is for isolating the PV 

array from the grid and provide a third voltage level (0V) at the inverter output [5].   

HERIC inverter exhibits high efficiency, low leakage current but with addition 2 extra switches. 

It is widely used and suitable for PV transformerless inverter applications. 

 

 Figure 8: HERIC Inverter Topology [22]  

 

3.3.1.4 H5 Inverter 

H5 inverter topology is almost same as the full H-bridge transformerless inverter but with an 

additional switch in the positive bus of the DC link. It is shown by Figure 9. H5 inverter has a 

total of 5 switches with S5, S4 and S2 switched at high frequency while S1 and S3 are switched 

at the grid frequency [22]. The fifth switch (DC bypass), S5 helps to isolate the PV array from 

the grid during zero voltage state and prevents reactive power exchange between the DC and 

AC filters. 
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This inverter exhibits high efficiency and low leakage current. Although it has an extra switch 

and some level of conduction losses, it is suitable for PV transformerless inverter applications 

[22]. 

 

Figure 9: H5 Inverter Topology [22] 

     

 

3.3.2 Inverters from Neutral Point-Clamped (NPC) Topology  

These category of inverters are derived from NPC topology proposed by Nabae, Magi and 

Takahashi in 1981 [Remus]. They are also widely applied in single phase and three-phase 

inverter operation. Inverter in this category are; NPC half-bridge inverter, NPC half-bridge with 

capacitive divider, Conergy NPC, Active NPC, Flying capacitor. 

 

3.3.2.1 NPC Half-Bridge Inverter 

This is the version of the diode-clamped half-bridge topology used in low voltage applications. 

They have 4 switches and two diodes for free-wheeling operation and able to achieve a third 

voltage level in addition to the two voltage levels in classical inverters. Two of its switches are 

switched at high frequency and the other two at grid frequency.  

Advantages with this inverter is higher efficiency and reduced switching losses than a classical 

inverter. It also exhibits low leakage current in the PV system. One of the low sides of this 

inverter is increased component count. Figure 10 shows a schematic of this inverter.  
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Figure 10: NPC Half-bridge Inverter [5] 

3.3.2.2 Conergy NPC Inverter 

This inverter is another version of NPC half-bridge with neutral point clamping by a bi-

directional switch. It is patented by Conergy and known for its higher efficiency, low leakage 

current and switching losses. The bi-directional switch is two back-to-back series connected 

IGBTs. The schematic of this inverter is shown by Figure 11.  

 
Figure 11: Conergy NPC Inverter [5] 

 

 

3.4 Multi-level Inverter Topology Group 

Multilevel inverters are sets of power inverters capable of generating desired AC output voltage 

level using several lower level voltages as input. The concept of multilevel inverter horizontally 

accumulate levels to achieve the desired waveform and does not depend on two voltage level 

as the PWM concept. Multilevel inverter concept is relevant for wide medium and high voltage 

applications with several advantages. Some of the advantages derived from multilevel inverter 

are; low switching frequency, low pulse heights ensuring low harmonic distortion, and simple 

inverter control circuit. 
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There are several multilevel inverter topologies which are normally differentiated by the 

sources of input voltage and switching mechanisms. The following are some types of multilevel 

inverters [3]: 

 Diode-clamped multilevel inverters 

 Capacitor-clamped (flying capacitors) multilevel inverters 

 Cascaded multilevel inverters with separate DC sources 

 H-bridge multilevel inverters 

 Generalized multilevel inverters 

 Mixed-level multilevel inverters 

 Multi-level inverters by connection of 3-phase 2-level inverters 

 Soft-switched multilevel inverters 

 Laddered inverters 

 The following sub sections describes few multilevel inverter topologies 

 

3.4.1 Multi-level Inverters Using clamped Diode/Capacitor 
Topologies 

Inverters in this category use the diodes or capacitors to limit voltage stresses. Further 

description are given below. 

3.4.1.1 Diode-clamped Multi-level Inverter 

The diode-clamped multilevel inverter is also called the neutral-point clamped (NPC) inverter 

and was first proposed by Nabae around 1980. In this inverter topology, the switches are 

connected in series to desired voltage rating and output levels with the inner voltage points 

clamped by two extra diodes [Hong]. An n-level diode-clamped inverter to operate, it would 

require (2n-2) switching devices, voltage sources of (n-1) and (n-1)(n-2) diodes. 

There are many variants of this inverter topology commercially available for high voltage 

applications. A diagram of a single phase diode-clamped multilevel inverter is shown in Figure 

12. 

 

 
Figure 12: A Diode-clamped Multilevel Inverter [5] 
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3.4.1.2 Capacitor-clamped Multi-level Inverter 

The capacitor-clamped multilevel inverter is a variant of NPC and also called Flying capacitor 

inverter. Instead of clamping the device voltage by two diodes, a dependent capacitor is used. 

Many have thought this inverter to a little complex than NPC since a precharge circuit may be 

required and the need to maintain the capacitor voltage at a reference. Advantage is however 

gained in the fault-tolerant operation exhibited by the inverter higher levels. A diagram of a 

capacitor-clamped multilevel inverter is shown in Figure 13. 

 

Figure 13: A Capacitor-clamped Multilevel Inverter [5] 

      

3.4.2 Multi-level Inverters Using Cascaded Topologies 

Multilevel inverters derived from cascading similar or identical modules may be in the category 

of those with separate inputs or common input. They are presented in the sub chapters. 

 

3.4.2.1 Cascaded H-bridge Multi-level Inverters 

The basic structure of this inverter is series connection of H-bridge cells at the AC-side. Each 

cell is supplied a different DC source. There are variants of this inverter depending on isolated 

DC link voltage of the cells. A diagram of a cascaded H-bridge multilevel inverter is shown in 

Figure 14. 
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Figure 14: Cascaded H-bridge Multilevel Inverter [5] 

 

 

3.4.2.2 Modular Multilevel Converter (MMC) 

This a one of the recent most attractive multilevel inverters and have received wide attention 

from literature. This inverter uses modularized setup of submodules (SMs) cascaded on two 

arms of an inverter leg. The SM may come in several architectures [23]; half-bridge circuit, 

full-bridge circuit, clamped-double circuit, 3-level converter circuit (NPC or FC), and the 5-

level cross-connected circuit. A diagram of a modular multilevel converter is shown in Figure 

15. 

Some of the reasons why this converter has received attention are [24]: 

 Low harmonic output minimizing filtering requirements 

 Attainable capacitor voltage balancing independent of load 

 Modularized structure allowing easy extension of voltage levels 

 Redundancy ability leading up to high reliability and availability of converter system 
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Figure 15: Modular Multilevel Converter [23] 
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4 Reliability Analysis of PV System Inverter 

 

4.1 Introduction to Reliability Analysis 

Reliability in classical terms refer to the probability of providing a specified performance level 

for a specified duration in a specified environment. In order to better understand and apply 

reliability modelling techniques, it is important to know some basics of reliability analysis. 

Reliability prediction or assessment usually involves application of reliability analysis methods 

through systematic and structured procedure for evaluating reliability of technical systems. 

Even as the method is important is also the product that is being analyzed. This will be 

influential for the type of reliability analysis method or technique to be applied. Reliability 

analysis is usually performed for different and several purposes which may include but not 

limited to the following [25]: 

 

 Setting targets and specification 

 Comparing options 

 Identifying and prioritizing problems 

 Indicating fitness for purpose (as in technology qualification) 

 Optimizing support (e.g. spares) 

 To give input to other analysis (e.g. safety analysis) 

 To prioritize areas for improvement with the greatest cost-effectiveness improvement 

potential 

 

Having a procedure to predict or assess reliability of a system is a welcomed important approach 

in reliability analysis since products have different suitable reliability method for analysis. The 

importance is significant when we are analyzing a complex system and product under 

development or with intention to improve its reliability. At that stage, it will discovered that 

reliability normally surpasses normal modelling of systems and inputting  reliability data to 

activities such as present for improving reliability.  The steps and methods for analyzing 

system’s reliability varies for different systems as there exist many factors to consider during 

the selection of a suitable reliability prediction or assessment method. A basic general 

dependability analysis procedure which also applies for reliability performance is described in 

[26]. The term dependability normally refer to reliability, availability, maintainability, and 

safety but now it is observed that security and resilience are being accommodated in the term.  
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Procedure for reliability analysis may be illustrated by the general dependability analysis 

procedure of Figure 16. 

 

 

Figure 16: Procedure for performing dependability analysis [26] 

 

System Definition 

System definition is very important in performing reliability analysis. It basically involves the 

breakdown and representation of the system structure and function with goal of understanding 

the functional responsibilities of the system elements. This step is achieved in system reliability 

analysis as functional analysis. Relationships that exist between the system and its environment 

are not left out. The function(s) of the system elements and relationships must be known for all 

relevant modes of operation of the system in order that proper reliability analysis can be 

performed. In complex system, representation of the system’s elements and functions in a block 

or functional diagram may be beneficial to the analysis. Boundaries for the system analyzed 

must be defined before commencing modelling. Other system definitions should include the 

system interfaces, outputs, inputs and the boundary conditions. The extent of the system 

definition will solely be dependent on the phase of the product life-cycle and goal of the analysis 

[7].  

System definition are generally achieved from two perspectives [7]: 

1. Structural perspective: The focus here is breakdown according to the physical structure 

of the system. The interfaces between the subsystems or elements of the system in most 

cases become defining boundaries for the system elements.  

2. Functional perspective: The focus here is breakdown according to the system functions 

or how the system functions are realized. This perspective is mostly considered more  
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beneficial from reliability angle in a complex system since it is an important input for 

failure analysis.  

 

Most complex system apply any or both perspectives of the system definition using various 

representative diagrams. Engineering diagrams and schematics such as circuit diagrams, block 

diagrams, UML, process diagrams, etc are applied in functional analysis to illustrate the 

interrelationships within the system structurally and functionally. 

      

Functions and functional analysis: 

A function generally indicating a physical behaviour or action is the intended effect of a 

functional block .System functions may be divided into different classes based on the system’s 

role or use or perceived level of importance of the function. [7] Classified functions in the 

following way: 

1. Essential functions: Functions required to fulfill intended purpose of the functional 

block. Fundamentals to installing the functional block are because of the essential 

functions.   

2. Auxiliary functions: These functions are required for supporting the essential functions. 

Their failures are more safety critical than essential functions in some cases. 

3. Protective functions: These class of functions are required for protection of people, 

equipment and environment from damage and injury. They can be further classified 

into; safety functions, environment functions and hygiene function. 

4. Information functions: These category of functions are mainly condition monitoring and 

warning functions. They are implemented mostly as monitoring and alarm systems.   

5. Interface functions: The functions are required for interfaces of the function block and 

other function blocks. 

6. Superfluous functions: These are unnecessary or needless functions in the function 

block. They are mostly termed “nice to have” functions. 

 

Functional analysis is a tool or systematic process for identifying, describing, and relating the 

functions a system performs. It is referred to as functional decomposition in some fields. 

Functional analysis or decomposition is a top-down approach whether it be performed for and 

existing system or system under development. It is performed for the following objectives [7]: 

a. Identify all functions of a system 

b. Identify functions required in various operational modes of a system 

c. Provide hierarchical decomposition of system functions 

d. Describe how each function is realized 

e. Identify interrelationships between the functions 

f. Identify interfaces with other systems and with the environment 
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For a reliability engineer to adequately identify all potential failures especially for a complex 

system, a good functional analysis needs to be first performed. Functional analysis is therefore 

considered an important step in reliability analysis.  

 

Define analysis goals/requirements and specification 

This is the stage where goals and requirements of the system reliability and availability analysis 

are specified. In product development where reliability program is normally advised, this stage 

would usually be definition of reliability requirements and targets that the system is expected 

to achieve. The responsibility of defining requirements and targets can be of the manufacturer, 

supplier, customer, user or combination of them. Qualitative or quantitative requirements and 

targets may be defined but important for such definitions is their essential elements or 

properties. Quantitative reliability requirements and targets should: 

 Be simple and unambiguous 

 Be measurable 

 Possess time element (hours, years, cycles) related to operation or ageing of the 

product. 

 Have confidence level defined (if applicable) 

 Include the definition of failure as it relates to the product. 

 Include specification of usage and operating environment of the product. 

 

Reliability Allocation 

Reliability allocation (if applicable) involves the process of setting reliability goals for 

individual subsystems and components of a system such that a specified reliability goal can be 

achieved at the system level. This process (reliability allocation) is mainly relevant in product 

development design phase and systems where reliability improvement and growth are desirous.   

When the reliability goals and requirements at the system level are known or stated, the task 

remains translating those system goals and requirements to the subsystems and components. 

This is very challenging because in doing so, the system performance and goal must be achieved 

along balancing important factors such as development cost, design complexities, and other 

project issues. There are methods to perform reliability allocation and software tools designed 

to assist in this task. The following apportionment methods may be applied for reliability 

allocation [10]:  

 Equal apportionment method 

 ARINC apportionment method 

 AGREE apportionment method 

 Feasibility of object method 

 Minimum effort algorithm  

The choice of apportionment method for allocating reliability may largely dependent on the 

type of system being analyzed, the stage of product development (if applicable), available 

product information and complexity. 
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Dependability (Reliability) analysis 

This is a collective term used to describe availability performance and its influencing factors: 

reliability performance, maintainability performance and maintenance support performance 

[27]. In the context of this, we refer to dependability reliability for the places dependability 

procedures and methods have been used. 

This step in the analysis procedure involves analyzing the system on basis of suitable reliability 

analysis method with relevant performance data. It should be noted at this point that system 

analysis may be qualitative or quantitative but their combination in analysis is been considered 

a much better approach. The distinction is mostly seen in the presence or absence of numerical 

reliability data input.    

It is advised to first apply qualitative system analysis method such as the FMECA to analyze 

the components failure modes, mechanism, and effects both at local and system levels. The 

quantitative system analysis then further cumulates the effects numerically along other specific 

reliability computations as necessary. Reliability analysis methods are discussed further in 

Chapter 4.3. 

 

Evaluate, Review, and Recommendation 

This step in the procedure requires that the reliability goals and requirements be analyzed 

against results from the system reliability models. Typical tasks would be to evaluate the results 

against requirements, and on that basis review the system for design weaknesses and reliability 

improvement potentials. A recommendation is then proposed for change in design or an 

alternative design that corrects identified weaknesses or improves the system reliability. 

 

4.2 Reliability Metrics and Terms 

[25] defines reliability as a stochastic or probabilistic parameter that cannot be measured exactly 

or with certainty. Even though it has been stated that reliability cannot be measured with 

exactness, probability or likelihood of occurrence can be introduced to be able to establish some 

form of measurement. Thus reliability may be a likelihood of no fault occurring or the 

probability of survival over time. 

There are various metrics for measuring reliability but suitability of a metric to use may be 

influenced by factors such as the type of equipment analyzed, mode of operation, and type of 

available reliability data. As defined in the scope, main basis for comparing inverter topologies 

is the survival probability, mean life and failure rate. There is a note of caution in using results 

from this comparative analysis. All assumptions must be known as intended before using results 

and the final results does not reflect the reliability of inverter systems since some components 

and events are neglected or generalized for ease of computation. 

The metrics for analysis are defined below.  
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Failure rate  

Conditional probability per unit of time that the item fails between t and (t + dt), provided that 

it works over (0, t) [28]. 

 

Mean time to failure (MTTF)  

Expected time before the item fails. It is used to describe the time to failure for a non-repairable 

item or to the first failure for a repairable item. When the item is as good as new after a repair, 

it is also valid for the further failures [28]. 

Survival Probability (R(t)) 

Likelihood of the continued functioning of an item, as given by “R (t) = Pr (T > t)” Where Pr 

is the probability that T, the time to failure of an item, is greater than t, a time equal to or greater 

than 0. The survival probability is also known as reliability or survival function [29]. This is 

also known as reliability or survivor function. 

Random failure 

Failure occurring in a random way. A random failure may be time or demand dependent. 

Whether it occurs or not is not predictable with certainty but the corresponding failure rate or 

probability of a failure due to demand may be predictable and this allows probabilistic 

calculations [28]. 

 

 

4.3 Reliability Analysis Approach and Method 

Reliability block diagram (RBD), fault trees (FT), and Markov modelling (MM) are common 

techniques for modelling systems reliability and availability. They can be used to compute 

systems expected RAM metrics such as failure rate, survival probability, failure probability, 

availability, mean down time [30]. 

The modelling approach adopted is the dysfunctional reliability modelling. The inverter failure 

behaviour shall therefore be modelled using BlockSim. BlockSim is a reliability and availability 

analysis software developed by ReliaSoft. The fault tree analysis method of the software will 

be used to describe the inverter system and components’ failure behaviour. Fault tree analysis 

allows for easy understanding and representation of components failure modes and causes.  

Fault tree analysis have similar functionality to RBD in modelling but uses a different principle; 

items failure. It is deductive technique capable of handling logical combinations of basic events 

to capture the overall effect at the system level. The logic combinations show interrelationships 

between potential critical event (TOP event) of the system and the causes for this event 

expressed in Boolean operation. Fault trees are mostly suitable for modelling non-repairable 

systems where the sequence of events and dependencies are not critical (traditional fault tree).  
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The dynamic fault trees (DFT) are capable of handling some kinds of dependencies that may 

exist in non-repairable systems. 

 

4.4 System Description of the Selected Transformerless  
PV Inverter Topologies 

It is agreed to evaluate transformerless inverter topologies that are widely used or understudied 

with great potential for PV applications. The inverter topologies selected here for evaluation 

with respect to reliability are based on good performance exhibited and documented in 

literature. 

Multilevel inverter topologies have unique characteristics that are relevant for medium and high 

voltage applications. They have high efficiency with low harmonics and suitable for PV 

applications because of capacity to synthesize sinusoidal AC voltage from different DC voltage 

levels with minimal harmonics. For reliability and availability evaluation, a standard flying 

capacitor multilevel inverter is analyzed and compared with modular multilevel converter 

(MMC). 

A basic functional block diagram for a multilevel inverter design is shown by Figure 17. There 

are several design strategies and architectures possible for implementing a multi-level inverter 

hence there are many possible functional block diagrams for a multi-level inverter and this 

would be one of them.   

 

Figure 17: Functional Block of Transformerless Multi-level Inverter 
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4.4.1 Topology 1 – Flying Capacitor (FC) Multilevel Inverter 

The flying capacitor multilevel inverter is similar to the NPC topology in terms of structure and 

as well as performance. In the NPC topology, diodes are used as clamping components but now 

in the flying capacitor, floating capacitors are used instead. 

In addition to having the NPC topology structure-like, a special circuit is normally included for 

precharging the capacitors against causing overvoltage situations at the switches. Unique 

feature of the FC multilevel inverter is the capacity to continue operation at higher number of 

voltage levels in situations that a switch or capacitor is faulty. It should be noted that this can 

only exist for higher levels FC inverter and other higher levels multilevel inverters such as the 

modular multilevel converter inverter. The dc-link capacitors are also numbered and important 

in the inverter operation. 

Figure 18 shows the selected Topology-1 multilevel inverter for comparative reliability 

analysis. The dc-link capacitors on the PV input are excluded from the analysis but note that 

they would be contributors to unreliability in the inverter and greater in number than an 

equivalent modular multilevel converter. 

 

Figure 18: Flying Capacitor Multilevel Inverter with 5 Voltage Levels [31] 
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4.4.2 Topology 2 - Modular Multilevel Converter 

The second inverter (topology 2) selected for comparative reliability analysis with inverter in 

topology 1 is a modular multi-level converter (MMC) with. This inverter operates 5 voltage 

levels with 4 converter sub-modules and 2 extra sub-modules on each upper and lower arms for 

active redundancy. This brings the total number of sub-modules to 6 per arms (12 sub-modules 

for a phase leg). For a 5-level MMC without redundancy, 2(n-1) sub-modules would give a 

total of 8 sub-modules; 4 sub-modules each in the upper and lower arms respectively for the 

modulation strategy adopted. 

For the selected 5-level MMC with 50% redundancy, 4 additional sub-modules are included for 

active redundancy and increased inverter reliability. The extra sub-modules added to each arm 

do not participate in providing the voltage levels during normal operation bring other added 

advantages such as increased stored energy in the converter sub-modules, improved thermal 

management and loss distribution in sub-modules, and deceased switching frequency [32] [33] 

[34] [23] [35] [36]. However, for improved operational quality and reliability, cost due to 

additional sub-modules is added with increased control complexity as well. This topology is 

given by Figure 19.  

The modulation strategy and internal control is such that 4 sub-modules out of 6 provide 

required 5-level voltage output at any one time for the converter leg. Two extra sub-modules 

are available in case of potential sub-module failure in the converter arm. It is important to note 

that the extra sub-modules operates normally as any other sub-module in the converter arm and 

may be selected to provide output voltage by the control and voltage-balancing algorithm. It 

means that the control and voltage-balancing algorithm has a pool of 6 identical sub-modules 

with bypass ability but only 4 sub-modules are operated at any time. Each sub-module is 

designed with a high-speed bypass switch making it possible for the control and voltage-

balancing algorithm to completely bypass any faulty sub-module. The converter sub-module 

with bypass capability is shown in Figure 20.  

The control and modulation strategy are only explained and not detailed mathematically since 

they will not be included in the comparative reliability analysis for the selected inverter 

topologies. Further details may refer to [37] [32] [33] [34] [23] [35] [36]. 

 

 

 

 

 

 

 



Reliability Analysis of PV System Inverter  

36 

 

 

 

Figure 19: 5-Level Modular Multi-level Converter with 50% Redundancy 

 

The ability of the MMC to continue operation when one or more submodules on the lower or 

upper arms are failed is dependent on the capability of the fault detection and protection 

subsystem in the control system to identify and isolate faulty sub-modules without jeopardizing 

the converter operation. Therefore a robust and fault-tolerant design are required for the control 

system, fault detection and protection system, and driver circuit. Common cause failure for the 

identical sub-modules must be mitigated even though it is assumed not present for this 

comparative reliability analysis. 

 

Figure 20: MMC Sub-Module with High-Speed Bypass Switch (modified from [32]) 
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4.5 Failure Analysis - PV Inverter 

The procedure for performing reliability assessment can be found in several reliability standards 

and references. One important step usually performed before reliability modelling is the failure 

analysis. It is most beneficial to have a type of FMECA carried out or at least a failure analysis 

at a simple level that will give input to the system reliability modelling. The outcome of such 

will be knowledge of likely components to fail, the failure progression in terms of the potential 

failure modes, failure effects, detection method and safeguards. At the most simple level, it may 

just be the component failure mode, effects and say safeguards.  

A sample of how a failure analysis table may be constructed is given by Table 1   

Table 1: Sample of Failure Analysis Table for a power system 

Component 

Name 
Function 

Failure 

Mode 

Failure 

Mechanism 

Failure 

Detection 
Safeguard 

Resistor 
Limit current 

flow 

Short 

circuit 
overcurrent  

Connect two or 

more resistors 

in series 

   
Over 

voltage 
 

xxxxxx 

 

 

4.6 Scope and Assumptions for Transformerless PV 
Inverter Comparative Reliability Analysis 

Boundary and scope of reliability analysis are important benchmark in performing reliability 

analysis. The scope and boundary for the analysis are defined, main assumptions made for 

modelling and analysis and limitations to the analysis are all documented here.  

The scope, boundary, main assumptions and limitations for reliability analysis to compare the 

two multi-level topologies are defined below. 

 

1. The scope of the reliability analysis is the switching architecture of the transformerless 

multi-level PV inverter and being that analysis is comparative, some common functions 

may be neglected as necessary. 

2. The boundary of the analysis is the physical boundary of the multilevel inverter 

described in topologies 1 and 2. It is assumed that functions such as communication 

interface, connections and input DC from PV array are working properly. 

3. Only random failures shall be modelled with the assumption that systematic failures 

have been accounted for in qualification/test and design. Therefore the constant failure 

rate portion of the bathtub curve shall be modelled. 
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4. Reliability analysis shall not include details of the control systems and driver circuits 

for both inverters since it would be difficult to ascertain such design detail at this stage. 

Moreover reliability data would be a challenge also. 

5. Common cause failures are neglected therefore will not be included in the reliability 

models.   

6. Reliability data from previous studies and expert judgement shall be used. Since details 

of design components are not available for modelling and analysis because topology 

design rather than the manufacturing design is assessed. As such other reliability inputs 

as relevant would be assumed across the compared topologies. 

7. Reliability modeling and analysis shall compute the survival probability over 10 years 

of operation, mean life and failure rate for the comparative analysis. These computation 

shall be performed assuming an exponential distribution 

 

 

 

 

4.7 Reliability Model of Selected PV Inverter Topologies 

The reliability models of multi-level PV inverters are presented for comparative reliability 

analysis. The modelling is performed using ReliaSoft’s BlockSim reliability tool.  

 

4.7.1 Reliability Modelling Legend 

The legend for the reliability models in BlockSim are given by Table 2. 
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Table 2: Legend for Reliability Models 

Symbol Name Description 

 
OR gate 

Gate whose output event occurs if any input event occurs. 

 
AND gate 

Gate whose output event occurs only if all input events 

occur. 

 

Voting OR gate/ 

K-out-of-N 

Gate whose output occur if certain numbers of the input 

events occur. 

 
Priority AND (PAND) 

Gate whose output occurs if the inputs occur in a specific 

sequence specified by a conditioning event 

 

Sequence Enforcing 

gate (SEQ) 

Gate whose output occurs if all input events occur only in 

a specific sequence. 

 
Basic event 

Failure or error in a system component or element. 

 
Mirrored block 

One physical component with one failure instance whose 

failure may affect more than one sub system operation or 

scenario for same TOP event. Repeated model event with 

same failure instance. 

 
Sub diagram 

A fault tree diagram or RBD that may be referenced in a 

model. 
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4.7.2 Topology-1 Reliability Model: 5-Level PV Flying Capacitor 
Multilevel Inverter 

The reliability model for the 5-level PV flying capacitor inverter (Topology-1) is shown in 

Figure 21.  

 

Figure 21: Reliability Model for Topology-1 (PV 5-Level FC Multilevel Inverter) 

Submodels “FCMLI_Clamping Capcitors” and “FC Inverter_Switch Modules” are sub trees in 

the reliability model for Topology-1 multilevel inverter. Their corresponding submodel details 

are respectively given in Figure 22 and Figure 23. 

 

Figure 22: Model Details for Subtree “FCMLI_Clamping Capacitors” 
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Figure 23: Model Details for Subtree “FC Inverter_Switch Modules” 
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4.7.3 Topology-2 Reliability Model: 5-Level PV Modular Multilevel 
Converter (MMC) Inverter 

The reliability model for Topology-2 is given in Figure 24. Topology-2 is a PV modular 

multilevel inverter with 5 voltage levels. The inverter is capable of redundant switching 

operation at both arms of the converter through its specialized sub-module with integrated high 

speed bypass switch. 

 

 

Figure 24: Reliability Model for Topology-2 (PV 5-Level MMC Inverter) 

 

Subtree “Arm Submodules” is a sub model in Topology-2 reliability model. Details of the sub 

model are depicted in Figure 25. 
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Figure 25: Model Details for Subtree “Arm Submodules 

 

 

 

 

 

4.8 Reliability Analysis Inputs 

Reliability inputs for the comparative reliability analysis are component reliability data, and 

environmental and operational data as relevant. 

The component reliability data are failure rates of equipments/devices collected from field 

operation, tests, and experience for computing quantitative RAMS characteristics. Reliability 

data from previous research on PV inverters, reliability database, reliability handbooks, 

standards, engineering and expert judgements are inputs applied in this analysis. The inputs 

applied in this comparative reliability analysis are presented in Table 4. Previous research in 

related topic are also considered to support expert judgement [12] [38]. Reliability data details 

for the submodule are presented in Table 3. 

 

Table 3: Half-Bridge Submodule (SM) with High Speed Bypass Switch 

Submodule Components FIT Quantity Total FIT 

IGBT Module – 2 pack 70 1 70 

Resistor 0.2 2 0.4 

Metallized Capacitor 2 1 2 

High speed bypass switch 50 1 50 

Total  5 122.4 
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Table 4: Reliability data for model events/basic components 

Model Label Device Name 
Failure rate 

(FIT) 
Data source Comment 

Control System Control board 250 
Expert 

Judgement 

Same failure rate 

for both models 

CLAMP_CAPACITOR Capacitor 10 SN29500  

UpperArm_Reactance Line inductor 5 SN29500  

LowerArm_Reactance Line inductor 5 SN29500  

LowerArm_Driver Drive board 50 
Expert 

Judgement 

Same failure rate 

for both models 

UpperArm_Driver Drive board 50 
Expert 

Judgement 

Same failure rate 

for both models 

Electrical Connections 
Electrical 

connectors/wires 
10 SN29500  

FiberOptic_Connections 
Fiber optic 

connectors/wires 
10 SN29500  

SM-R_BP 
Half-bridge Submodule 

with bypass 
122.4 SN29500  

SwitchModule IGBT switch module 70 SN29500  
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4.9 Analysis Results 

Results from reliability analysis of the multilevel inverter topologies are given under the 

respective topology subsection.  

 

4.9.1 Topology-1 Multilevel Inverter 

The results from analysis of Topology-1 reliability model are presented in this chapter. 

Computed reliability metrics for Topology-1 inverter model are presented in Table 5. 

Table 5: Computed Reliability Results for Topology-1 Multilevel Inverter (FC MLI) 

Metric Years of operation Value 

Survival probability 10 92 % 

Failure rate 10 0.008672/Year 

Mean Life (Constant failure rate)  115 Years 

 

Graph showing the reliability of Topology-1 multilevel inverter over 10 years is given by Figure 

26. The failure rate and probability distribution curves are shown respectively in Figure 27 and 

Figure 28.  

 
Figure 26: Reliability Curve of Topology-1 Multilevel Inverter 
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Figure 27: Failure Rate Curve of Topology-1 Multilevel Inverter 

 

 
Figure 28: Probability Density Function of Topology-1 Multilevel Inverter 
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4.9.2 Topology-2 Multilevel Inverter 

Results from analysis of Topology-2 reliability model are presented here. Reliability metrics 

for Topology-2 inverter model are presented in Table 6. 

 

Table 6: Computed Reliability Results for Topology-2 Multilevel Inverter (MMC) 

Metric Years of operation Value 

Survival probability 10 97 % 

Failure rate 10 0.003329/Year 

Mean Life (Constant failure rate)  248 Years 

 

Graph showing the reliability of Topology-1 multilevel inverter over 10 years is given by Figure 

29. The failure rate and probability distribution curves are shown respectively in Figure 30 and 

Figure 31.  

 

 
Figure 29: Reliability Curve of Topology-2 Multilevel Inverter 
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Figure 30: Failure Rate Curve of Topology-2 Multilevel Inverter 

 

 
Figure 31: Probability Density Function of Topology-2 Multilevel Inverter 
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5 Topology Assessment 

Topology assessment is done by comparing reliability characteristics of both inverter topologies 

on the basis of the metrics that has been defined. The comparison is presented in the following 

section. 

 

5.1 Topology Comparison 

Using the results from the analyzed models of the inverters, table xx is constructed to align the 

similarities, variations and margins between topology 1 and 2. 

 

Table 7: Comparative Analysis Table for Analyzed Inverter Topologies 

Metrics 
Topology-1  

(FC Inverter) 

Topology-2  

(MMC Inverter) 

Comment on topology-2 

(topology-1 as base) 

Survival probability 92% 97% 5.4% margin increase 

Failure rate 0.008672/year 0.003329/year 62% margin reduction 

Mean life (CFR) 115 years 248 years 116% margin increase 

Redundancy capability restricted Little restriction 
Redundancy achieved 

reliability 

Complexity low high 
Complexity in control, fault 

detection and isolation 

Availability low high 

Reconfiguration is not 

needed for additional 

submodules 

 

5.2 Ranking of the Topologies 

Ranking the analyzed inverter topologies is difficult to do even though the comparative analysis 

table favours topology-2. One must assess the assumptions made during the modelling and 

analysis stage for both inverters. Also high uncertainties exist in reliability data and the models.  

Having highlighted some of the obvious to take into consideration in judging by the 

comparative analysis table, it is easy to rank topology-2 higher for connecting PV to the grid.   
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6 Conclusion and Recommendations for 
Further Work 

 

6.1 Conclusion 

In this thesis, a review of PV system inverters is presented with main focus on grid-connected, 

transformerless multilevel inverters. It is evident that many research and analysis have been 

performed leading to the several topologies now available but most of the studies have focused 

on performance requirements such as efficiency of the inverter, power density, amount of 

leakage current and safety related issues when considering optimizing design. Most of the 

topologies have not considered designing in reliability along with performance or safety, rather 

if done was carried out in isolation. 

Two transformerless multilevel inverter topologies have been modelled and analyzed in a 

comparative reliability analysis and interesting results obtained. Bearing in mind the 

assumptions and uncertainties in reliability modelling and data, the modular multilevel 

converter (MMC) performed better than its corresponding flying capacitor (FC) multilevel 

inverter counterpart. The MMC inverter showed a higher reliability than FC inverter by a 

percentage of 5.4%. In terms of failure rate, MMC exhibited a reduced rate in the margin of 

62% which is significant. On the basis of the mean life metric assuming an exponential 

distribution in analysis, MMC showed a mean life twice the FC inverter. 

Complexity is also another factor that comes up when implementation of redundancy is 

performed. Although common cause failure was neglected, it is advised to be critically analyzed 

to assess the assumption. Complexity is seen in implementing the control, modulation of the 

switching fabric of the MMC although some level is also experienced with the FC inverter. It 

is also important to ensure a faulty submodule in the MMC switching arms are detected and 

isolated properly. This is implemented along the control and modulation system. It is noted 

from the analysis that the reliability performance margin would be greater for the MMC with 

higher voltage levels but keep in mind that there is also a limit to increasing redundancy 

submodules in order to achieve reliability. Once the limit is reached, any increase in redundancy 

submodules would impact reliability negatively. 

In summary, designing redundancy into a classical MMC using fault tolerant submodules for 

high voltage levels multilevel inverter does achieved increased reliability. In comparative 

reliability analysis, this has been compared to an equivalent flying capacitor multilevel inverter 

and has shown remarkable reliability performance.      
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6.2 Recommendations for Further Work 

In performing this comparative reliability analysis, it was noted that many assumptions were 

made that requires critical analysis to verify their validity. Thus in this respect, it is 

recommended in future to assess some of the assumptions that have been made in performing 

this analysis. 

Uncertainty in modelling and data are inevitably present in most and every reliability analysis. 

In the future, it is recommended to perform a suitable uncertainty and sensitivity analysis for 

the analyzed systems.  
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