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Summary

Computational Fluid Dynamics (CFD) have been applied for numerical
simulations of the flow around simplified shapes of a Remotely Operated
Vehicle (ROV). The simulations have been carried out at Re = 8.5× 105,
which coincides with a free stream velocity of one knot in seawater
conditions. Detached Eddy Simulation (DES) have been used with the
k − ω SST turbulence model in the near-wall (unsteady RANS) regions.
The CFD code Fluent from Ansys Inc. have been used.

The first case to be investigated, was a fully submerged rectangular
stationary cube with both sharp and rounded edges. The sharp edged case
showed good agreement with published reference values. The results for
the refined mesh gave CD = 0.8192, CLrms = 0.0473 and St = 0.1132. The
Strouhal number was identical for both meshes, while small discrepancies
were seen on the mean drag and the root mean square lift coefficient. For
the round edged case, the mean drag coefficient was shown to be about
25% of the sharp edged case (CD = 0.2257). The lift was more difficult to
model correct and large discrepancies were seen both on the Strouhal
number and the root mean square lift coefficient. It was concluded that
longer time series were needed in addition to further mesh refinement in
order to get more stable mean quantities of the lift history. Some effort
were also made on trying the realizable k − ε turbulence model in the
near-wall regions for the round edged case, but without noticeably effect
on the results. For both the sharp edged case and the round edged case it
was concluded that although the drag was successfully modeled, a further
mesh refinement was needed in order to ensure converged results.

For the case of the simplified model of the ROV, three meshes were used
for the grid convergence study. Small discrepancies were seen, between 2%
and 6.2%. The pitch moment through the Center of Gravity (COG) was
also measured and a negative mean value of CM = −0.2563 was obtained.
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This means that the reported instability for the ROV was also seen in the
simplified model. Through a more detailed study of the pressure and
velocity distributions, the main problem regions were identified to be
above the forward top and below the aft bottom. Here high-velocity
regions generate low-pressure regions, which coincides with a negative
pitch moment. One proposed solution was the removal of the plate in the
aft which span the width of the ROV. The effect of this solution was
however found to be questionable. This is due to the components which
are placed in front of the plate, and these may actually cause the same
effect. For this reason, these components should be relocated.

It was concluded that there should be performed numerical simulations
without the plate and the components in front included. The effect of
these components could then be studied and a decision on whether to
remove the plate could be made. Also, numerical simulations where
different locations for the components in front of the plate are tried should
be an interesting case to run with respect to the stability analysis.



Sammendrag

“Computational Fluid Dynamics” (CFD) har blitt brukt til å gjøre
numeriske analyser av strømningen rundt forenklede modeller av en ROV
(Remotely Operated Vehicle). Simuleringene har blitt gjennomført ved et
Reynoldstall på Re = 8.5× 105. Dette tilsvarer en strømningshastighet på
en knop i sjøvann. “Detached Eddy Simulation” (DES) har blitt benyttet
sammen med turbulensmodellen k − ω SST i områdene nær ROVen.
Simuleringene er utført med CFD koden Fluent fra Ansys Inc.

De første numeriske analysene ble gjort for en helt neddykket stasjonær
rektangulær kube, med både skarpe og avrundede hjørner og kanter.
Tilfellet med skarpe kanter viste gode resultater sammenlignet med andre
publiserte resultater. Resultatene for det fineste rutenettet (mesh) gav
CD = 0.8192, CLrms = 0.0473 og St = 0.1132. Strouhalstallet var likt for
begge rutenettene, mens små avvik ble registrert for
motstandskoeffisienten og den kvadratiske middelverdien av
løftkoeffisienten. For tilfellet med avrundede kanter og hjørner ble
motstandskoeffisienten vist å være kun 25% av det som var tilfellet med
skarpe kanter (CD = 0.2257). Løftet viste seg å være vanskeligere å
modellere korrekt, og store avvik i både Strouhalstall og i den kvadratiske
middelverdien ble registrert. Det ble konkludert at det trengtes både
lengre tidsserier og finjustering av rutenett for å kunne oppnå stabile
middelverdier av løftet. Det ble også forsøkt å benytte turbulensmodellen
k − ε nær ROVen, men dette var uten nevneverdige påvirkninger på
resultatet. Til slutt ble det konkludert med at selv om motstanden var bra
modellert for begge tilfeller, ville det trenges videre finjustering av
rutenett for å kunne se konvergens.

For tilfellet med den forenklede modellen av ROVen ble det laget tre
forskjellige rutenett til konvergensstudie. Små avvik ble registrert mellom
rutenettene, mellom 2% og 6.2%. Stamp-momentet om
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gravitasjonssenteret ble også målt og en gjennomsnittsverdi på
CM = −0.2563 ble registrert (for det fineste rutenettet). Dette viste at den
forenklede modellen var ustabil, som også er tilfellet i fullskala. Gjennom
en mer detaljert studie av trykk- og hastighetsfordelinger i forskjellige plan
ble problemområder identifisert. Usymmetri i trykkfordeling over og under
ROV ble konkludert med å være hovedårsaken til ustabiliteten. En mulig
løsning av problemet var å fjerne platen som er plassert akter i ROVen.
Effekten av denne løsningen ble konkludert med å være tvilsom, ettersom
det er plassert forskjellige komponenter foran platen som kan gi samme
effekt på strømmen som platen. Omplassering av disse komponentene kan
derfor være en nødvendighet.

Til slutt ble det konkludert med at det burde kjøres numeriske analyser
uten platen, men med komponentene tilstede, for å undersøke påvirkningen
fra disse. Numeriske simuleringer der disse komponentene er omplassert er
også et interessant tilfelle å undersøke med tanke på stabiliteten til ROVen.
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Chapter 1

Introduction

1.1 Purpose of the Master’s Thesis

The purpose of this Master’s Thesis is to investigate numerically the flow
behaviour around a Remotely Operated Vehicle (ROV). The ROV, named
“Merlin WR200”, is known to be subjected to an instability in survey mode
(i.e. at constant speed) in both surge and sway. The instability is recognised
by a pitching motion in surge and a rolling motion in sway. For this reason, it
is wanted to investigate the flow around the ROV using Computational Fluid
Dynamics (CFD) for identification of problem areas causing the instability.
Suggestions for improvement is based on the identified problem areas.

Due to the high computational costs associated with CFD simulations in
three dimensions, this thesis will only cover survey mode in surge.

1.2 Remotely Operated Vehicle (ROV)

1.2.1 General

A Remotely Operated Vehicle (ROV) is an unmanned underwater vehicle
used in different subsea industries. Especially in the offshore hydrocarbon
extraction industry, the ROV play an important role. The vehicle is
controlled by an operator stationed on a surface vessel via an umbilical
cable [32]. Most ROVs are built inside or around a rectangular frame with
a flotation pack on top. The heavier equipment are placed as low as
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2 1.2. Remotely Operated Vehicle (ROV)

possible to ensure that the center of gravity is lower than the center of
buoyancy, and hence, that a sufficient stability is achieved. Strong
hydraulic arms capable of carrying different tools for the specific task of
the ROV are fitted in the front together with lights and cameras.

The first ROVs were developed in the 1950s for military purposes. In the
1960s, the US Navy developed ROVs for deep-sea rescue missions and for
retrieving lost objects on the sea floor [32]. These vehicles were at that time
called Cable-controlled Underwater Recovery Vehicle (CURV), and were the
basis for the later development of the work class ROVs in the oil and gas
industry [32].

In the oil and gas industry the ROV is used for a large variety of tasks,
including inspections and maintenance of subsea structures, such as
pipelines and manifolds, and aiding construction of subsea structures, such
as connection of pipes and placing manifolds on the sea floor. The ROV
also play an important role in science communities. They are used to
study the deep oceans and its plants and animals. Many new species of
plants and animals have been discovered by ROVs in depths otherwise
impossible for divers to reach. A number of famous ship wrecks including
the RMS Titanic and the German battleship Bismarck have been
discovered using ROVs.

1.2.2 Merlin WR200

Figure 1.1 show the Merlin WR200 electrical work class ROV. It is
designed to be the most efficient and reliable work class ROV on the
market. The all electric propulsion system has the advantage of having all
the control and power systems located topside. For this reason, reduced
maintenance, increased reliability and power efficiency is achieved. An all
electric propulsion system also has the advantage of minimizing leak of
hydraulic fluid, which have been experienced with conventional ROVs.

Main Dimensions

The main dimensions of the Merlin WR200 ROV are as given in Table 1.1.
The thickness of the top and bottom frame and side framework are not
given. Using the CAD model provided by IKM Subsea these quantities can
be measured. The top frame is found to have a thickness of 0.5m and the
bottom frame and sides are found to have a thickness of 0.2m.
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Figure 1.1: Merlin WR200 ROV.

Table 1.1: Main dimensions.

Dimension Symbol Value
Depth rating 3000m
Length L 2.8m
Width B 1.8m
Height H 1.7m
Weight M 2800 kg

General Data

The supporting frame of the ROV is made of an non-corrosive material and
coated with Glass-Reinforced Plastic (GRP). GRP, or fiberglass, is a fiber
reinforced polymer, where the plastic matrix is reinforced with fine fibers
of glass [31]. The frame is filled with a buoyant material ensuring minimal
volume and hence drag. The frame structure itself is open, ensuring easy
access during inspection or maintenance of equipment (cf. Figure 1.2).

The Merlin WR200 have 8 electric driven thrusters, 4 for vertical thrust
and 4 vectored for horizontal thrust. Figure 1.1 show how the horizontal
thrusters are mounted in the top corners of the frame of the ROV.
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Figure 1.2: Forward view from aft of ROV.

1.3 Simplifications of ROV for Flow Modelling
Purposes

Since the geometry of the Merlin WR200 is very complicated, this thesis
will start by investigate the flow around two fully submerged stationary
rectangular cubes; one with sharp edges and one with rounded edges. If
the results for the two rectangular cubes are sound, the author feel
confident that the same meshing technique and case setup should yield
good results also for the simplified ROV model. Following is a description
of the rectangular cube cases and the ROV model provided by IKM
Subsea.

1.3.1 Rectangular Cubes

The rectangular cubes (from now on referred to as “cubes” in spite of their
rectangular shape) are given dimensions that are consistent with the
dimensions for the Merlin WR200 as given in Section 1.2.2. Figure 1.3
show the Merlin WR200 simplified as a cube both with sharp and rounded
edges. To the authors’ knowledge, there are no published results for flow
around a fully submerged stationary cube to this date - which hence make
validating the results more difficult. Ideally, both numerical simulation
and experimental tests should have been performed, but this is not
achievable due to limitations for the workload in the thesis.
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(a) Sharp edges and corners. (b) Round edges and corners.

Figure 1.3: Cube shapes.

Figure 1.3a show the the cube with sharp edges and corners. The sharp
edges may cause a high value of y+ (which is the dimensional distance from
the first node to the wall - which will be explained later) due to high induced
shear velocities around the edges and corners. Hence, it is important to
investigate the effect of rounding the edges of the cube (Figure 1.3b).

It is also important to study the behaviour of the drag for these two cases.
The round corners and edges will certainly cause a lower drag than the
sharp edges. Looking at the Merlin WR200 (e.g. Figure 1.4), it is seen that
the framework consist mainly of rounded columns. Since it is expected that
the rounded cube have less drag than the sharp, the rounded framework of
the Merlin WR200 will have to be modeled on the simplified model.

1.3.2 CAD Model

After the simulations of the two cubes, a simplified model of the ROV will
be made. A CAD (Computer-Aided Design) model of the Merlin WR200
have been provided by IKM Subsea (Figure 1.4). Using this model, the
critical parts affecting the flow behaviour around and through the ROV
may be identified. The model itself is however too complex to use for the
CFD analysis and hence the simplified model will be made. In order to
be representative, this simplified model will have to be able to capture the
main flow behaviour as for the real case. The making of this model is further
discussed in Section 4.1.1.
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Figure 1.4: CAD model of Merlin WR200.

1.4 Published work

As briefly mentioned, there have not (at least to the authors’ notice) been
performed any numerical studies of the flow around a fully submerged
stationary cube. White [29] reports a drag coefficient of CD = 1.07 for
Re ≥ 1× 104 based on frontal area of the cube - he does however not state
if this value is numeric, experimental or theoretic. There have however
been made many studies of the flow around surface mounted cubes at
moderate to high Reynolds numbers. These are among others Gao and
Chow [7], Lakehal and Rodi [12], Paterson and Apelt [18], Rodi [20] and
Yakhot, Liu, and Nikitin [35]. These authors have mainly studied the
distribution of the turbulent kinetic energy, k, for different turbulence
models and the separation and reattachment of vortices on top and behind
the cube.

Lee [13] reported a mean drag coefficient (CD) of 2.04 and a Strouhal number
(St) of 0.122 for a two-dimensional (2D) square cylinder at Re = 1.76× 105.
This was achieved by a wind tunnel experiment, using pressure tappings for
measuring the pressure. The force coefficients were obtained by integrating
the mean pressure distribution (Cp). Schewe [21] investigated among other
an inclined square cylinder, reporting CD = 2.4 and St = 0.12 at Re =
6× 105 (found in Ahlborn, Seto, and Noack [1]).
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The most interesting work is probably the “Applied Fluid Dynamics
Handbook” by Blevins [4]. This work includes a thorough review of
published results for the drag coefficient (and other hydrodynamic
quantities such as Strouhal number) for different shapes of bluff bodies.
The results are presented in tables as function of key geometric relations
(e.g. L/D). This work will thus be essential for validating the results for
the two cubes.

Tian et al. [27] investigated the flow normal to a flat plate at Re = 1.5× 105

in both 2D and 3D. In the 2D case, the URANS equations were used in
conjunction with the k−ω SST turbulence model. The 3D simulations were
carried out using LES and the Sub-Grid Scale (SGS) model by Smagorinsky
[23]. The aim was to investigate the 3D effects of the flow normal to a
flat plate. The results showed that the 2D simulations were not able to
capture these 3D effects. The 3D simulations were in good agreement with
experimental results. Tian et al. [27] and Blevins [4] will be further discussed
later in this thesis.

There are few published papers of CFD simulations of ROVs. Some
publications have used CFD of entire ROV structures for estimation of
drag force and pressure center for design purposes (e.g. [6, 8, 19]), while
others have focused on the thruster units and prediction of thrust and
torques (e.g. [16, 28]). These will be further discussed in Section 4.1.2.

1.5 Definition of Terms

In this Master’s Thesis, different terms are used. For the discretised domain,
both “grid” and “mesh” are used and have the same meaning. “Eddy” is
also used and have the same meaning as “vortex”. When describing the
simplified ROV, the terms “sides”, “plate”, “top frame” and “bottom frame”
are used. These are shown in Figure 1.5. The last remark is regarding the
dimensionless distance from the surface to the first node, y+. This is for all
directions (not just y-direction).

1.6 Structure of the Master’s Thesis

This section give a short description on the following chapters in this Mas-
ter’s Thesis.
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(a) Top frame. (b) Sides.

(c) Bottom frame. (d) Plate.

Figure 1.5: Naming of simplified ROV.

Chapter 2 is a theoretical chapter. Here, the basics for flow around bluff
bodies, general ROV stability (as given by [8]), basics for CFD, CFD
software to be used, meshing and turbulence modeling will be described.

Chapter 3 addresses the case with the two cubes. First, the general case
setup is described (computational domain, boundaries, reference values
etc.). Then there is a short description of the test runs to be performed.
The test runs are performed in order to assure that the simulations do not
crash and for adjusting the distance from the first node to the surface.
Next, the results from the grid convergence study are presented together
with a more thorough discussion of the results.

Chapter 4 addresses the case with the Merlin WR200 ROV. This chapter
begin with an investigation of the CAD model and the making of the
simplified model for the simulation. Following is a discussion of the quality
of the mesh. The results of the grid convergence study are then presented
together with a discussion of the results with regards to the instability
problem. Problem areas are identified by examining the results.

Chapter 5 give the final conclusions and recommendations for further work
to be done on the same topic.



Chapter 2

Theoretical Background

2.1 Flow Around Bluff Bodies

The flow around a two-dimensional circular cylinder have been studied by
numerous authors (both numerically and experimentally), and the theory
of the flow behaviour is well documented in different literature (e.g. by
Sumer and Fredsoe [25], White [29] and Zdravkovich [36]). However, for the
flow around square cylinders and cubes, there exist almost no literature of
the theory. The “Applied Fluid Dynamics Handbook” by Blevins [4] does
discuss among other drag coefficient for non-circular cross-sections and other
bluff bodies. Figure 2.1 is taken from this book and show drag coefficient
for various rectangular cross sections. Some publications also have, to some
extent, discussed briefly the basic theory for flow around square cylinders.

The main difference for the flow behaviour around a circular and around a
square cylinder, is that for the square cylinder the separation points are fixed
to the upstream corners. For this reason, the effect of increasing Reynolds
number is not as important for square cylinders as for circular cylinders. For
the case of a circular cylinder, the separation points change with Reynolds
number and hence the forces acting on the cylinder also varies.

In order to understand why vortices are created, one need to understand
the physics of the flow behaviour on the surface of a body in a viscous flow.
The no-slip condition state that the velocity have to be zero (or equal if the
cylinder is not stationary) on the cylinder surface and hence a boundary
layer (with thickness δ) is formed. When separated, the free shear layer
tend to curl inward, creating a vortex. This is due to the velocity gradient

9
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Figure 2.1: Flow over various rectangular cross sections [4].

as shown in Figure 2.2 for the case of a circular cylinder. The vortices are
then shed in an alternate process.

Figure 2.2: Separation of boundary layer for a circular cylinder [25].

The alternate vortex shedding is a result of one vortex cutting off the supply
of vorticity to the other one, which then is shed. A new vortex is then formed
and starts to grow and eventually cuts off the supply of vorticity to the first
vortex. This vortex shedding results in forces acting on the cylinder. The
drag force arises from the fact that the fluid is viscous and varies with the
width of the wake. In an inviscid flow, the drag force would be zero due
to flow symmetry. This phenomenon is called D’Alemberts Paradox and
arises from the fact that there is no separation. The lift force is due to the
alternate vortex shedding and hence the instantaneous lift force changes
sign for each vortex shedding, resulting in a zero mean force. Only when
the separation is partly laminar and partly turbulent can the mean lift force
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be non-zero.

2.1.1 Force Coefficients

The dimensionless force and pressure coefficients are given as:

CD = Drag
1
2ρU

2
∞A

(2.1)

CL = Lift
1
2ρU

2
∞A

(2.2)

CM = Moment
1
2ρU

2
∞AL

(2.3)

Cp = ∆p
1
2ρU

2
∞

(2.4)

Here ρ is the density of the fluid, A the characteristic area (e.g. frontal
area of cube or span-wise length of square cylinder) and L characteristic
length. Furthermore, the Strouhal number, which is the dimensionless
vortex shedding frequency (fv), is defined as:

St = fvD

U∞
(2.5)

Here, D is the diameter of a circular cylinder or span-wise length of a
square cylinder. For the cube and ROV, the height is used as characteristic
length. The Strouhal number is dependent on the Reynolds number, which
defines the vortex shedding process. However, since the separation points
for square and rectangular cylinders are for most cases fixed to the leading
corners, the flow will not vary as much as for the case of a circular cylinder.
The Reynolds number is calculated using the flow velocity (U∞), kinematic
viscosity (ν) and characteristic length (D) as:

Re = U∞D

ν
(2.6)
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2.2 ROV Stability

A general stability analysis and a theoretical investigation of the drag force
acting on the ROV can be of importance, both for validating CFD results
and evaluating the thruster locations. Gomes et al. [8] did such an analysis
for a similar ROV. The ROV they investigated had the same arrangement
of vectored thrusters in the four frame corners of the vehicle as the Merlin
WR200.

In their paper, they set up a set of equations for the restoring moments on
pitch and roll:

KΦ = −BGyW cos(θ) cos(Φ) +BGzW cos(θ) sin(Φ) (2.7)
Mθ = BGzW sin(θ) +BGxW cos(θ) cos(Φ) (2.8)

Here, W is the gravity force (W = Mg, where g = 9.81m/s2) and BGi is
the distance between the center of gravity and the center of buoyancy in the
three directions (1−3 or X, Y and Z). These equations can then be used to
set demands for passive roll and pitch stability. The restoring forces should
be zero for zero angles, both in pitch and roll. If these angles are non-zero,
the restoring forces should bring the angles back to zero. According to [8],
the first condition demand that both BGx and BGy are zero - i.e. the center
of buoyancy and the center of gravity are on the same coordinate in the XY -
plane. The second condition then require BGz (i.e. the metacentric height)
to be different from zero. Now Equation (2.7) and (2.8) can be written as:

KΦ = BGzW cos(θ) sin(Φ) (2.9)
Mθ = BGzW sin(θ) (2.10)

The last two equation show that the pitch and roll moment are proportional
to the metasentric height for given pitch and roll angles.

Further, the authors states the importance of the thruster force being
aligned with the drag force. If this is achieved, the ROV will not suffer any
moment in pitch or roll for pure longitudinal or lateral motion. Hence, the
vertical placement of the Merlin WR200s thrusters may be an issue to
address when the pressure distribution on the ROV itself is revealed.

2.3 Computational Fluid Dynamics (CFD)

Computational Fluid Dynamics (CFD) is a way of analysing fluid flows
numerically on a computer by a set of algebraic equations. The algebraic
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equations are obtained by discretising the partial differential equations
(PDEs), which may be conservation of mass, momentum, energy etc. The
solution is attained at discrete points and hence the computational domain
need to be discretised into discrete areas or volumes - which is the mesh or
grid. For this reason, the grid resolution is of great importance. For
instance, in order to fully describe the physics of the flow close to a wall,
the grid resolution need to be very fine. Generally, areas with abrupt
changes in geometry or adverse pressure gradients need to have a fine grid
resolution. However, it is also important to be able to identify areas where
the grid can be more coarse. Hence, a good grid could spare the user for
an unnecessarily high cell count and thus also computational demands.

CFD also allow the user to study fluid phenomena at very small scales,
which otherwise would be impossible in an experimental test. By studying
the phenomena in slow motion, a greater understanding of the physics may
be achieved. Economically, numerical simulations are much cheaper than
experimental tests.

When performing numerical analysis, it is important to ensure that the
numerical errors are as small as possible. Except from the error associated
with the fact that the solution is attained at discrete points in the domain,
there are three important sources of error; Firstly, the governing equations
need to be able to describe the fluid flow in a satisfactory way. This lead
to the second source of error which is the algebraic equations and lastly the
physical models used in the simulation (e.g. turbulence models).

The general procedure when performing CFD analysis, is:

1. Identify problem (define goals and domain).

2. Pre-processing (geometry, mesh, physics and solver settings).

3. Solve.

4. Post-processing (examine and evaluate/validate results).

If the results (step 4) are not satisfactory, one need to either change geom-
etry, mesh or solver settings. This loop continues until the results are sat-
isfactory.
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2.3.1 Courant Number

An important condition for convergence when performing CFD analysis, is
the Courant-Friedrich-Lewy (CFL) condition, or simply the Courant num-
ber. For a given flow velocity U , time step ∆t and cell size ∆x it is:

CFL = U
∆t
∆x < 1 (2.11)

The most simple way of explaining this condition is that the fluid particles
should not travel more than the grid spacing for each time step. If CFL� 1,
it would mean that the fluid particles were travelling more than the grid
spacing for each time step, and hence the mesh would not be able to describe
the physics of the flow.

2.3.2 Meshing

The mesh, or grid, is the discretised domain in which the flow problem is
to be solved. The flow properties are calculated in each cell, and hence, as
briefly described, the density of the cells (i.e. the mesh resolution) is of great
importance. Basically, the grid could be either structured or unstructured.
In an unstructured grid, the cells are arranged in an apparently random
fashion in contrast to a structured grid. Further, the mesh could be either
single-block or multi-block. For instance, in a structured single-block mesh,
the grid lines must pass through the entire domain. For complex geometries,
multi-block grids is a necessity.

2.3.3 Mesh Quality

The quality of the mesh is measured using three factors; skewness,
smoothness and aspect ratio (more about mesh quality in Appendix A).
Also, different cell types may be preferred over others, typically
hexahedral meshes with the grid lines aligned with the flow are preferred
over tetrahedral meshes if the cell count is the same. Generally,
hexahedral meshes give a lower cell count than tetrahedral and are
regarded as numerically more stable.
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2.4 ANSYS FLUENT

For this Master’s Thesis, the CFD-package Fluent from Ansys Inc. is
used. Ansys Fluent is able to perform incompressible and compressible
modeling of both laminar and turbulent fluid flows. The user can choose
to use either a steady-state or a transient solver. The Ansys CFD-solvers
are based on the Finite Volume Method (FVM). The control volumes in
Fluent are cell-centered, meaning that they correspond directly with the
mesh. The computational domain is discretised into a finite set of control
volumes where the conservation equations (as given by [2]) are solved:

∂

∂t

∫
V
ρφdV︸ ︷︷ ︸

Unsteady

+
∮
A
ρφV · dA︸ ︷︷ ︸

Convection

=
∮
A

Γφ∇φ · dA︸ ︷︷ ︸
Diffusion

+
∫
V
SφdV︸ ︷︷ ︸

Generation

(2.12)

Here, ρ is the density of the fluid, V volume, A area and φ a conserved
quantity (e.g. energy, momentum etc.). The partial differential equations
are then discretised into a set of algebraic equations, which are solved
numerically, on the form:

Au = b (2.13)

Where A is an n × n matrix of known quantities, u a column vector con-
taining the unknowns and b a column vector of known quantities.

2.4.1 ANSYS DesignModeler (DM)

The geometry and computational domain is created using Ansys
DesignModeler (DM). This is an application accessed from the Ansys
Workbench. DM give the user two options, either to import a model from
CAD (Computer-Aided Design model) or to create a specific geometry
from scratch.

2.4.2 ANSYS Meshing

When the geometry and the domain have been created, one proceeds to
Ansys Meshing to generate the mesh of the domain (see Section 3.1.4 for
further details). Here, details of the mesh (e.g. mesh quality as presented
in Appendix A) may be studied after the mesh have been generated.
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2.5 Turbulence Modeling

2.5.1 General About Turbulence

Turbulence is a three-dimensional (3D) phenomenon. It is characterized by
an apparently random and chaotic fluid motion, or, vorticity. Hinze [9] give
the following definition of turbulence:

“Turbulent fluid motion is an irregular condition of flow in which the various
quantities show a random variance with time and space coordinates, so that
statistically distinct average values can be discerned”

If a flow is turbulent, the turbulence will dominate over the other fluid
phenomena and cause increased mixing, energy dissipation, drag and heat
transfer [5]. The flows of engineering interest, can for most cases be
considered as turbulent due to the fact that the fluid is viscous and that
the scales and velocities are large (e.g. flow past rockets, airplanes, ships
etc. as stated by Wilcox [34]). Only for small scales and low velocities can
the effect of turbulence be disregarded as the flow is laminar.

2.5.2 Law of the Wall

The law of the wall is an empirically-determined relationship for turbulent
flows in close proximity to a wall (or other solid boundaries). It states that
the streamwise velocity in the flow near the wall varies logarithmically with
the distance to the wall [34]. It is also known as the logarithmic law of the
wall - or simply the log-law. It can be written as given by White [29]:

u

u∗
≈ 1
κ

ln
(
yu∗

ν

)
+ C (2.14)

Here u is the stream velocity, u∗ the shear velocity, y distance to the wall,
ν the kinematic viscosity of the fluid, κ the Von Karman constant and C a
constant. Equation (2.14) can be made dimensionless as:

u+ = 1
κ

ln
(
y+
)

+ C (2.15)

Where u+ = u/u∗ and y+ = yu∗/ν is dimensionless velocity and distance
to the wall, respectively. For smooth surfaces C = 5.0, while κ = 0.41 holds
for both smooth and rough surfaces [34]. The wall shear stress can then be
found as:

τw = ρ(u∗)2 (2.16)
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The log-law is however only valid in the log-law region, which typically
is 30 ≤ y+ ≤ 200 as seen in Figure 2.3. Further, it is seen that in the

Figure 2.3: The log-law [30].

viscous sublayer (i.e. y+ ≤ 5), the linear approximation (u+ = y+) holds,
while neither the linear nor the log-law holds in the buffer layer (5 ≤ y+ ≤
30). This is handled by using the linear approximation close to the viscous
sublayer and the log-law close to the log-law region (switching at y+ = 11
[30]).

In the log-law region, i.e. 30 ≤ y+ ≤ 200, wall functions are used for
modeling the velocity profile and calculating the properties of the flow.
The wall function assumes that the flow close to the wall behaves like a
fully developed turbulent flow.
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2.5.3 Large Eddy Simulation (LES)

This mathematical model for turbulence was proposed in 1963 by Joseph
Smagorinsky. As the name “Large Eddy Simulation” suggests, the LES
approach only resolve the larger eddies. This is done using a low-pass
filtering of the Navier-Stokes equations and hence eliminating the small
scales of the solution, reducing the computational cost for the simulation.
Compared with Direct Numerical Simulation (DNS) and
Reynolds-Averaged Navier-Stoke (RANS), LES lies in between in terms of
computational demands. Using LES, the grid of the computational
domain can be more coarse and the time step larger compared with DNS
since the small scale motions are modeled using a sub-grid scale (SGS)
model. This means that the eddies which are smaller than the cell size are
removed and modeled by the SGS model, hence the grid itself is the filter.

Ansys Fluent have the following SGS models available [2]: Smagorinsky-
Lilly, WALE (Wall-Adapting Local Eddy-Viscosity), Dynamic Smagorinsky-
Lilly and Dynamic Kinetic Energy Transport.

For a given scalar φ, the following holds:

φi = φi + φ′i (2.17)

Here, the last term is the fluctuating (SGS) part and φi the resolvable scale
part. The incompressible Navier-Stokes equation of motion is:

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ∂

∂xj

(
ν
∂ui
∂xj

)
(2.18)

Now, inserting for ui = ui + u′i and p = p + p′ and filtering the equation,
the equation of motion for the resolved field is:

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ∂

∂xj

(
ν
∂ui
∂xj

)
+ ∂τij
∂xj

(2.19)

Here, τij is the SGS turbulent stress given as:

τij = ρ(ūiūj − uiuj) (2.20)

Here, i, j = 1 − 3. x1, x2 and x3 then denote the streamwise, vertical and
cross-flow directions and u1, u2 and u3 the corresponding velocities (also
referred to as u, v and w), respectively. ν is the kinematic viscosity and p
the instantaneous dynamic pressure. Primed quantities are the fluctuating
part of the instantaneous value - which are filtered.



Chapter 2. Theoretical Background 19

2.5.4 Detached Eddy Simulation (DES)

Standard LES models may have difficulties in areas in close proximity to a
wall. Since LES does not use wall functions, there is a high resolution
requirement for the grid in the boundary layer, typically y+ ∼ 1. In
addition, a LES simulation need to be run for a sufficiently long flow-time
in order to obtain stable statistics of the flow. This result in higher
computational demands when running LES simulations compared with
stable RANS simulations.

In order to achieve both the advantage of a coarser mesh in the outer region
(achieved by LES) and to avoid the need for a high grid resolution in the
boundary layer (RANS models), hybrid models combining the unsteady
RANS models in the boundary layer and LES treatment in the separated
regions have been developed. Detached Eddy Simulation (DES) by Spalart
et al. [24] is such a hybrid model. In the current work, LES in conjunction
with the unsteady RANS equations and the k−ω SST turbulence model is
used.

2.5.5 Unsteady Reynolds-Averaged Navier-Stokes
(URANS)

In the near-wall regions of the cubes and ROV, the Unsteady
Reynolds-Averaged Navier-Stokes (URANS) equations are used. The
Reynolds-averaged equations for conservation of mass and momentum for
an unsteady, incompressible, viscous and turbulent flow are:

∂ui
∂xi

= 0 (2.21)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂x2

i

−
∂u′iu

′
j

∂xj
(2.22)

Here, i, j are as described for the LES equations. The last term in Equation
(2.22) is the Reynolds stress component, u′iu′j (see Appendix B for details
regarding further relations and constants).

2.5.6 The k − ω SST Turbulence Model

In the areas close to the surface of the ROV, the URANS equations will
be used in conjunction with the k− ω SST (Shear Stress Transport) model
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of Menter [14]. This model is basically a combination of the k − ω model
by Wilcox [33] and the standard k − ε model by Jones and Launder [11].
Close to the cylinder surface, i.e. in the near-wall region, the original k− ω
model is used. In the free shear layers and in the outer wake region, the
standart k − ε model is used. Compared with other two-equation models,
the k − ω SST model have shown to be specially good in adverse pressure
gradient areas and separating flows. The equations for k and ω are given
from Menter, Kuntz, and Langtry [15] as:

D(ρk)
Dt

= P̃k − β∗ρωk + ∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
(2.23)

D(ρω)
Dt

= αρS2 − β∗ρω2 + ∂

∂xj

[
(µ+ σωµt)

∂ω

∂xj

]
+ 2(1− F1)ρσω2

1
ω

∂k

∂xj

∂ω

∂xj
(2.24)

Where P̃k is a production limiter for avoiding build-up of turbulence in
stagnation regions and F1 a blending function. These are given as:

P̃k = min

[
µt
∂ui
∂xj

(
∂ui
∂xj

+ ∂uj
∂xi

)
, 10β∗ρkω

]
(2.25)

F1 = tanh

[min{max( √k
β∗ωy

,
500ν
y2ω

)
,

4ρσω2k

CDkωy2

}]4
 (2.26)

Here y is the distance to the nearest wall. In the near-wall region, F1 = 1,
while it goes to zero in the outer region. CDkω is given as:

CDkω = max

(
2ρσω2

1
ω

∂k

∂xj

∂ω

∂xj
, 10−10

)
(2.27)

The standard k − ε model has two weaknesses; it overpredicts the shear
stress in adverse pressure flows and requires a modification for near-wall
cases. The latter weakness is solved in the k−ω SST model by a limitation
of the shear stress. For further details of the constants and relations used
in this model, see Appendix B.
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Stationary, Submerged Cube

3.1 Numerical Modeling of Fully Submerged Sta-
tionary Cube

In order to have a set of reference values for the hydrodynamic quantities
to be calculated for the ROV, numerical simulation of the flow around a
fully submerged stationary cube is performed. Due to flow symmetry in
both XY -plane and XZ-plane, the mean lift and hence also moment
coefficients should be zero. The simulation is performed at Re = 8.5× 105,
which corresponds to a velocity of one knot in seawater conditions (i.e.
ρ = 1025 kg/m3, ν = 1× 10−6 m2/s and U∞ = 0.5m/s).

3.1.1 Solver Setup

The solver used in this present study is the transient pressure-based solver.
This solver takes pressure and momentum as primary variables. Further, the
flow model used is the Detached Eddy Simulation (DES), which is a hybrid
model consisting of LES in the outer region and URANS in conjunction
with the k − ω SST turbulence model in the near-wall region.

The calculations are carried out using the PISO (Pressure Implicit with
Splitting of Operators) scheme. Further, the spatial schemes used are
“Green-Gauss Cell Based”, “PRESTO!”, “Bounded Central Differencing”,
“Second Order Upwind”, “Second Order Upwind” and “Second Order
Implicit” for gradient, pressure, momentum, turbulent kinetic energy,

21
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specific dissipation rate and transient formulation, respectively.

The force coefficients, as described in Chapter 2, are calculated on the fol-
lowing reference values:

A = 3.06m2

L = H = 1.7m
p = 0Pa
ρ = 1025 kg/m3

ν = 1× 10−6 m2/s

(3.1)

Here, A is the projected frontal area of the cube and ρ the density of sea-
water.

The numerical simulations are run on “Njord”, a supercomputer located at
NTNU in Trondheim. “Njord” have an IBM p575+ system with 192 nodes
and a total of 2976 cores (each 1.9GHz). The cases are run in batch mode,
which mean that the simulations are controlled by a “job” and a “journal”
file. These scripts then read the case and data files created by Fluent.
Output is produced as specified by the user and also written into separate
case and data files for further post-processing.

3.1.2 Computational Domain

The computational domain is of great importance when performing CFD
simulations. If the computational domain is too small, far field effects from
the surrounding boundaries may cause non-realistic or polluted results. For
instance, if symmetry boundaries are used, which mean that the flow can
only travel parallel to the boundary, a too small computational domain
would clearly disrupt the flow around the given body.

In order to ensure that there is no effect from the surrounding boundaries,
the inlet, top, bottom and sides of the domain is at a distance of 7B from
the origin (B being the width of the ROV). The outlet is then placed 21B
downstream of the origin. Hence, the total size of the domain is 14B ×
14B × 28B (Figure 3.1a). The origin is placed in the center of the cube,
with X positive downstream, Y positive upwards and Z positive to the port
side of the cube and ROV.

In order to control the mesh around the cube, two smaller domains have
been created. The inner domain is made close to the cube in order to get
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(a) 3D view of the domain. Inlet to the left, outlet to the right.

(b) 2D view of the domain (XZ-plane).

Figure 3.1: 3D and 2D domain view.

the desired resolution of the boundary layer. The middle domain stretches
3H into the wake (H being the height of the ROV - and hence also the
cube) to capture the behaviour of the vortices.

3.1.3 Boundary and Initial Conditions

When performing CFD analysis, two type of boundary conditions (BC)
applies. These are Neumann and Dirichlet types. Dirichlet type BC
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describes the value of a variable, while the Neumann type BC describes
the gradient of a variable normal to the boundary.

The domain is divided into the following boundaries:

• Inlet

• Outlet

• Cube

• TopBottomSides

The inlet is defined as “velocity-inlet”. Here the inflow velocity (i.e. U∞) is
defined according to the desired value of one knot (Dirichlet type). Further,
the turbulent length is set as l = 0.0045H = 0.007 65m and the turbulent
intensity I = 0.8%.

The outlet is defined as “pressure-outlet”. Here the gauge pressure is set
equal to zero and l and I are as for the inlet.

The cube surface is defined as a “wall”. This means that the no-slip
condition is taken into account on the entire surface of the cube. Hence,
the velocity have to be zero on the surface. The normal velocity on the
surface is also equal to zero, hence there can be no flow through the
surface of the cube/ROV.

The last boundary is the top, bottom and sides of the computational
domain. These have been given “symmetry” boundary conditions. This
mean that the normal velocity and normal gradients (Dirichlet and
Neumann type) of all variables are zero.

3.1.4 Mesh

CutCell Meshing

The meshes of the domain have been made using the “CutCell” method.
This is an cartesian patch independent meshing method designed for Ansys
Fluent.

The general process of the CutCell meshing start with the user specifying
the size functions, for instance minimum cell size and growth rate. The
maximum cell size is then calculated according to the input. Then the
initial size of the Cartesian grid is computed based on the values set in the
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size function. At first, a uniform grid is created within the entire domain.
Then, using the size function, the grid is refined according to specifications
made by the user. The next step is projecting the nodes in the cells which
intersect with the geometry, to the geometry. The mesh outside of any body
(the body being the fluid for this case) is then removed and the boundary
mesh is recovered and separated based on the underlying geometry.

The CutCell process creates hanging nodes (red circles in Figure 3.2) where
the cell size change (e.g. close to a surface). This is however not a problem
for Ansys Fluent. Two faces then share the same plane where a hanging
node occurs (Fluent treats hanging nodes in the same way as polyhedral
meshes).

Figure 3.2: Change in cell size due to surface proximity. Outer do-
main to the left.

Details of Generated Mesh

In order to get the desired grid resolution in the boundary layer, an inflation
layer have been created on the cube surface. This consist of 10 layers which
grow by 10% for each grid point. The distance from the wall to the first grid
point is controlled and can thus be varied in order to get the desired value
of y+. Outside the layer, the domain is meshed using the CutCell method,
with a 10% increase in cell size until the maximum cell size is 0.64m (8%
increase for refined mesh (M2 and M4 cf. Table 3.1 on page 28)).
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(a) Entire domain (XY-plane).

(b) Close-up on cube (M1). (c) Close-up on corner (M1).

(d) Close-up on cube (M3). (e) Close-up on corner (M3).

Figure 3.3: Mesh M1 and M3.

The minimum cell size (“element size” in Fluent) have been set equal to
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1× 10−2 m. In the span-wise direction, where the width is B = 1.8m, this
give 180 cells. Normal to the wall, the minimum distance to the first grid
point is 4.0× 10−3 m for M1 and M2 and 3.5× 10−3 m for M3 and M4,
which is 0.22% and 0.19% of the width. The cell size on the surface of
the cube have been kept constant for all meshes. This was done both in
order to be able to run the simulation with the same time step for all cases
and to be able to control the maximum amount of cells within a reasonable
limit. Reducing the cell size on the surface was tried, but the required time
step was then too low to be economical with respect to computational time
needed.

Figure 3.3 show details of mesh M1 and M3, which have a cell growth rate
of 10%. Figure 3.3a show how the finer mesh have been extended into the
wake area in order to capture the behaviour of the wake (this is holds for all
meshes). From Figure 3.3b and 3.3c it is seen how the mesh is refined close
to the cube for mesh M1, while Figure 3.3d and 3.3e show this for mesh M3.
From Figure 3.3c, one can see how sharp corners may create skewed cells in
the inflation layer (the inner layer) and in the transition region.

Figure 3.4: Cell-wall distance [m] for mesh M1.

From Figure 3.4 it is seen how the cell-wall distance on the cube surface
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varies. It is seen that it is constant on the faces and gets smaller close to
the edges and corners. The cell-wall distance is defined as the distance from
the surface to the cell centroid.

For the case with the ROV simplified as a cube, the cube have been made
both with sharp and rounded corners. This is because the sharp corners
will induce a high local value of y+ due to the high shear velocity. However,
as seen from Figure 3.4, the cell-wall distance is less around the corners and
edges. This may actually counteract the effect of high shear velocity and
thus avoiding high values of y+.

3.1.5 Test Run

In order to make sure that the CFL-condition is fulfilled (see Section 2.3.1)
and to make sure that the first grid point is within the log-law region (30 ≤
y+ ≤ 200), a bit trial and error is needed. This is done by running the
simulation for a short while and observing the trend of the results.

As briefly described above, the value of y+ may for the case of the sharp
edged cube be quite high due to the high shear velocities as explained.
Hence, the simulation is tried with both sharp and rounded corners. For
the cube with rounded edges and corners, circular arches with radius 0.1m
are used. The results after the test runs can be seen in Table 3.1. In the
table, y+ is an area weighted average value at the last time step and ∆y is
the distance from the surface to the first grid point. It should be mentioned
that the values for y+ and CD in the table are not the stable values. The
flow is still developing and thus these will change.

Table 3.1: Test of sharp corners vs. rounded corners.

Edge type Mesh #Nodes #Cells ∆y y+ CD

Sharp M1 7.08× 106 6.75× 106 4.0× 10−3 m 57.9 1.69
M2 8.10× 106 7.75× 106 4.0× 10−3 m 58.6 1.69

Rounded M3 6.86× 106 6.54× 106 3.5× 10−3 m 56.4 0.11
M4 7.84× 106 7.51× 106 3.5× 10−3 m 57.4 0.11

One concern that arises for the case with a sharp edged cube, apart from
the high shear velocity, is the possible high skewness of the cells around
the edges and corners. This is due to the difficulties in modeling the sharp
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edges numerically. Especially the transition regions from inflation mesh to
regular mesh showed to be problematic (cf. Figure 3.3c on page 26). Here,
highly skewed cells were not possible to avoid.

The simulations are run using a time step of ∆t = 0.001 s for two hours and
thus the values of y+ and CD are expected to change from the values given
in Table 3.1 as mentioned. The drag coefficient given in the table, is the
instantaneous value after the test run is complete, i.e. for the last time step.

Based on Table 3.1 it is seen that the cube with rounded corners and edges
have less nodes than the sharp edged cube. This is due to the fact that the
mesh is not completely hex dominant. Around the corners, there have been
created tetrahedrons due to the geometry. It is also seen that the distance
from the surface to the first node can be smaller for the case with rounded
corners and edges. This is as discussed due to the lower shear velocity
around the corners compared with the case of sharp edges and corners.

The largest difference between the two cases is seen in the drag coefficient.
As given in Section 1.4, the target range for the mean drag coefficient in 2D
should be 1.07 − 2.4 [13, 21, 29] (The results from Schewe [21] have been
found in Ahlborn, Seto, and Noack [1]). It is however expected that the
value for CD for the 3D case should be smaller than CD for the 2D case (as
shown by e.g. Tian et al. [27]). This is because the flow in the 3D case also
can pass around the cube on the top and bottom sides, compared with the
2D case where the flow only can pass around the sides. As seen, the drag
coefficient obtained for meshes M1 and M2 are within the 2D interval, but
it is expected to decrease as the flow stabilizes.

It is seen that the drag coefficient for the case with rounded edges and
corners are much lower than the case with sharp edges and corners. This
clearly seems like a non-physical result, but the trend for CD is actually
increasing for both M3 and M4.

3.2 Simulation of Flow Around a Fully Submerged
Stationary Cube

Numerical simulation of flow around a fully submerged stationary cube
with both sharp and rounded edges and corners have been performed. As
observed during the test run, the initial drag coefficient obtained for the
rounded cube was much lower than the sharp cube. Further study was
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thus performed in order to study the flow around the rounded cube, which
is important since the ROV have rounded edges. All the results have been
obtained for a fully developed and stable flow.

In order to make sure that the flow is fully developed and stable, a gliding
average procedure can be applied. The idea is that when fully developed
the flow will have a mean value on which the time dependent quantities will
fluctuate. If then several windows in a time series have almost the same
time averaged value, the flow can be characterized as fully developed and
stable. Several windows can thus be made e.g. in the time series of the
drag coefficient CD, each overlapping half of the next window length. The
data for developing flow, which is characterized by large fluctuations, are
disregarded in such an analysis.

3.2.1 Grid Convergence Study

In order to be sure that the solution is grid independent, a grid convergence
study have been performed with one additional grid per case with a finer
resolution (mesh M2 and M4). Ideally, this convergence study should have
been performed with three or four grids per case, but due to limited available
time and the great computational costs associated with 3D simulations,
only two grids per case were created. The time step used for all cases was
∆t = 0.001. All the time series of the force coefficients and power spectral
analysis can be found in Appendix E.

Sharp Edged Cube

Table 3.2 show the results from the grid convergence study for the sharp
edged cube.

Table 3.2: Grid convergence study for sharp edged cube. CD is aver-
aged over the last quarter of the time series.

Mesh # Nodes # Cells CD CLrms St y+

M1 7.08× 106 6.75× 106 0.8367 0.0495 0.1132 23
M2 8.10× 106 7.75× 106 0.8192 0.0473 0.1132 23

From Table 3.2 and Figure 3.5 it is seen that there is good agreement for
the root mean square of the lift and the mean drag coefficient (−4.4% for
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(a) CD. (b) CLrms.

Figure 3.5: Grid convergence for meshes M1 and M2.

CLrms and −2.1% CD for refinement of mesh M1). Further, the Strouhal
number have been found to be identical for the two cases.

Looking at the value of y+ for mesh M1 and M2, one see that it is a bit too
low. Ideally it should have been higher than 30 - which is the boundary for
the log-law region. However, y+ is an area-weighted average value and thus
the local y+ will have both lower and higher values at different places on
the cube depending on the local shear velocity.

In order to check the influence of the low y+, a new mesh was made based
on M1 where the distance from the surface to the first node was increased.
This increase led to y+ ≈ 27. The drag coefficient was then averaged over a
time interval and compared with the value from the same time interval for
mesh M1. The improved version of mesh M1 gave CD = 0.8331 compared
with CD = 0.8348 for M1 (averaged over the interval 50 s ≤ t ≤ 140 s).
Based on this, it was concluded that the results were good and the effect of
the low y+ could be disregarded.

Round Edged Cube

In spite of the apparent increase of the drag coefficient as commented for
the test run earlier in this report, the first results for CD for mesh M3 and
M4 were still much lower (about four times) than the results obtained for
the sharp edged cube (M1 and M2 cf. Table 3.2). The results also showed
that the lift behaviour seemed non-physical, with a mean lift coefficient CL
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smaller than zero. For this reason, and knowing that the k − ω SST
turbulence model may have difficulties predicting the lift for a circular
cylinder [17] (in contrast to a square cylinder - as seen by Tian et al. [26]),
the decision was made to stop the simulation at t = 50 s, and continue
using DES in conjunction with the realizable k − ε turbulence model by
Shih et al. [22] (details can be found in Appendix C.1).

However, the realizable k − ε model showed no noticeable increase in the
drag coefficient. As one can see from Figure C.2 in Appendix C, the
separation occurs at the trailing edges of the cube and not the leading
edges as for the sharp edged cube. For this reason, the Reynolds number
was reduced to Re = 5000 by reducing the viscosity (run using the k − ω
SST model, see Appendix C.2). This gave vortex shedding from the
leading edges and an increase in the drag coefficient by approximately
three times. The simulation was then yet again stopped and the Reynolds
number was increased back to its original value. This resulted in a
reduction in the drag coefficient and the separation point moved
downstream to the trailing edges. The simulation was run for as long as
possible and the results can be seen in Table 3.3. Complete time series of
drag and lift coefficients plus the power spectral density of the lift can be
found in Appendix E.2.

Table 3.3: Grid convergence study for round edged cube. CD is aver-
aged over the last quarter of the time series.

Mesh # Nodes # Cells CD CLrms St y+

M3 6.86× 106 6.54× 106 0.2176 0.0086 0.02220 30
M4 7.84× 106 7.51× 106 0.2257 0.0357 0.02914 30

Figure 3.6 show that there is good agreement for the drag coefficient between
meshes M3 and M4. Larger discrepancy is seen on the Strouhal number and
the root mean square lift coefficient. The results clearly indicate that the
lift is not very accurately predicted for the rounded cube, leading to the
large difference in the root mean square of the lift coefficient for mesh M3
and M4. Looking at the fluctuations of the lift for meshes M3 and M4 (cf.
Figure E.2c and E.2d in Appendix E.2), it is seen that the reason most likely
is too short time series in both cases. The time series for the fluctuating lift
coefficients show that it takes quite a while for the flow to begin to stabilize
after being run on low Reynolds number (approximately at t = 270 s and
t = 250 s for M3 and M4, respectively). Another reason for the poor results
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(a) CD.

(b) CLrms.

(c) St.

Figure 3.6: Grid convergence for meshes M3 and M4.
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for the lift could be insufficient mesh around the edges and corners of the
cube. Since the separation points are not fixed as for the sharp edged cube,
further mesh refinement, especially around the edges and corners, would be
preferred.

Having run the simulation at low Reynolds number (Re = 5000) and seen
that the vortex shedding at the leading edges almost disappears for
increasing Re, the low drag coefficient obtained in Table 3.3 for
Re = 8.5× 105 can be considered to be correct. This will be further
discussed in the next section.

3.3 Discussion of Results

Ideally, the convergence study should have been performed with more than
two meshes per case and there should also have been performed a time
step convergence study. Due to high computational demand and limited
available time for calculations, this have not been performed.

3.3.1 Drag Coefficient

According to “Applied Fluid Dynamics Handbook” page 335 by Blevins [4],
the drag coefficient of a square rod parallel to an incoming flow should take
a value in the range 0.87 ≤ CD ≤ 1.25 depending on the relation L/D.
Here, L is the length of the rod, which correspond to the length of the
current cube, and D is the width and height. This means that the reference
area for calculation of the force coefficients is D2. The CD-range is for
Re = 1.7× 105.

Using the data for the current cube, L = 2.8m and D = H = 1.7m, the
relation L/D = 1.65 then give that the drag coefficient for the sharp edged
cube should be between 0.87 and 0.97. However, the current Reynolds
number is five times higher than the reference Reynolds number and thus
a deviation from this reference value is expected. Table 3.2 show that the
results for CD obtained for the sharp edged cube agree well with Blevins [4].
A Strouhal number of St = 0.1132 is also in good agreement with St = 0.12
as given by Blevins [4] on page 313. Tian et al. [27] showed however that the
Strouhal number in 3D was slightly higher than the 2D value (St = 0.155).
In spite of this, the present results show that mesh M1 and M2 are well
suited for simulating the flow around the sharp edged cube.
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Also the effect of rounded edges is discussed by Blevins [4]. He states that
just a rounding of 2.5% of the width of a rectangle can cause a 10 − 20%
reduction of the drag. For a given 2D rectangular cross-section with
Reynolds number in excess of 104, he states that the drag coefficient is
CD = 1.6 (cf. Figure 2.1 on page 10), provided that the flow is fully
separated from the sharp-edged nose. If the same cross-section is made
with rounded corners, he states that the drag coefficient is CD = 0.4.
Which is only 25% of the sharp edged rectangle! He explains the lower
drag for the rounded sections by three factors; a drop in the net pressure
drag, rounded edges can cause postponed boundary layer separation and
hence a more narrow wake leads to less drag.

Tian et al. [27] investigated the difference between 2D and 3D simulations
for the flow normal to a flat plate at Re = 1.5× 105. He showed that the
mean drag coefficient and the mean recirculation length was over-predicted
by a factor of two in the 2D case. The mean recirculation length was defined
as the streamwise distance from the center of the plate to the position where
the mean streamwise velocity changes its sign from negative to positive. He
concluded that although the geometry was nominally 2D, the 3D effects for
blunt geometries should be further explored.

Now looking at Table 3.3 on page 32, the results obtained for the mean
drag coefficient for meshes M3 and M4 actually agree well with Blevins [4].
The mean drag coefficient obtained for M3 and M4 are approximately 25%
of the results obtained for the sharp edged cube using meshes M1 and M2.
It is also seen that the mean drag coefficient for both the rounded edged
cube and the sharp edged cube are about half the value for the 2D case
described by Blevins [4] (as seen from Figure 2.1 on page 10). This is in
good agreement with the difference noticed by Tian et al. [27]. Based on
this it can be concluded that the results for the drag coefficient for both
cubes agree very well with the stated reference values.

3.3.2 Flow in the Wake of the Cubes

Figure 3.7 on page 37 show the velocity profiles both streamwise through
the domain and in the wake region for meshes M1, M2, M3 and M4. The
streamwise velocity (Figure 3.7a and 3.7b) is taken along the X-axis at Y =
Z = 0. Figure 3.7c and 3.7d show the streamwise velocity component along
the Z-axis at X = 1.5m. These figures show that this velocity component
is negative in the wake close to the cube - which is expected. These figures
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also show that there is good agreement between meshes M1 and M2 and
M3 and M4. The last two figures (3.7e and 3.7f) show the w-component
along the same line as the previous two figures. Here, larger discrepancies
are seen between meshes M1 and M2, while meshes M3 and M4 show good
agreement. One reason for this may be the fact that the sharp edged cube
(M1 and M2) have vortex shedding from the leading edges and that this
leads to a much more complex wake.

The recirculation length (Lw/H) is seen from Figure 3.7a and 3.7b as the
distance from the center of the cube to the point where the streamwise
velocity changes its sign from negative to positive. The plots show that there
is good agreement between meshes M1 and M2 (Lw/H ≈ 1.58 for both),
while there are discrepancies between meshes M3 and M4 (Lw/H ≈ 1.79
and Lw/H ≈ 1.22 for M3 and M4, respectively). Both cases (sharp and
round edges) show a lower recirculation length compared with Tian et al.
[27]’s result of (Lw/H) = 2.28. This could be due to the fact that Tian
et al. [27]’s 3D simulations were for an infinitely long cylinder, i.e. the flow
could only pass over and under the cylinder and not around the sides as for
the present cubes.

The plots have been made at t = 180 s, when the maximum fluctuation of
the lift coefficient coincide for mesh M1 and M2 and for M3 and M4.

3.3.3 Vorticity

Figure 3.8 on page 38 show vortex structures plotted on an iso-surface using
λ2 = −0.082 s−2 for the sharp edged cube and λ2 = −0.135 s−2 for the round
edged cube (see Appendix D for details regarding this method). From Figure
3.8a it may seem like the shedding from the sharp edged cube is much more
chaotic than the round edged cube in Figure 3.8b. However, using the lift
history for meshes M3 and M4 (Figure E.2c and E.2d in Appendix E) it is
seen that it is difficult to obtain a dominating shedding frequency, meaning
that the shedding is more random than what is the case for the sharp edged
cube. Longer time series for the lift history in these two cases would thus
be preferred. Figure 3.8b show that there is some shedding remaining from
the leading edge after the Reynolds number was increased from Re = 5000
to Re = 8.5× 105. It is easily seen from the latter figure that the resulting
wake is much more narrow than the sharp edged cube and hence this alone
should result in a considerable reduction of the drag.



Chapter 3. Stationary, Submerged Cube 37

(a) u-comp. along X-axis. (b) u-comp. along X-axis.

(c) u-comp. at X = 1.5m. (d) u-comp. at X = 1.5m.

(e) w-comp. at X = 1.5m. (f) w-comp. at X = 1.5m.

Figure 3.7: Velocity profiles for sharp and rounded cube.

3.4 Conclusions

The flow around two fully submerged stationary cubes, both sharp edged
and round edged, have been studied numerically using LES in conjunction



38 3.4. Conclusions

(a) M1 at t = 250 s. (b) M3 at t = 285 s.

Figure 3.8: Instantaneous vortical structures for meshes M1 and M3.

with the k − ω SST in the near-wall (URANS) regions at Re = 8.5× 105.
Comparing with results stated by Blevins [4], the drag coefficients are
concluded to be reasonable and in good agreement with the stated values.
The lift have been shown to be more problematic to model for the cube
with rounded edges. The results show that longer time series and further
mesh refinement are needed in order to obtain stable mean quantities.

For the sharp edged cube, the Strouhal number have shown to be smaller
than what was obtained by Tian et al. [27]. This also holds for the mean
drag coefficient, which from the present study is about 40% of the
reported value by [27]. This is reasonable, since the present study is of a
fully submerged cube, while Tian et al. [27] studied an infinitely long
cylinder (thus the flow can only pass over and under the cylinder). The
mean drag coefficient obtained for the round edged cube is also considered
reasonable, using results stated by Blevins [4].

At this point, it is hard to judge which of the meshes (M1 or M2 and M3 or
M4) that give the most reasonable and correct hydrodynamical quantities.
A further grid refinement should have been performed in order to more
clearly see convergence.



Chapter 4

Merlin WR200

4.1 Modeling of Merlin WR200 ROV

In order to be able to evaluate the stability of the Merlin WR200, CFD
analysis of the ROV itself is needed. However, simplifications will have to
be made to the geometry. It is important that the simplified model have
the same rough features as the Merlin WR200. This is necessary since the
main flow behaviour around the ROV is important to model as correct as
possible. If this is achieved, the instability, caused by the flow around the
ROV, should be detected also in the simulation. A study of the CAD-model
provided is thus a necessity.

4.1.1 Simplifying the CAD-model

There are some distinct features seen from the CAD-model which are
important to model in the simplified ROV model. Firstly, there is a plate
shielding some components in the aft section. This plate stretches across
the entire width of the ROV and has about 60% of the height of the open
tunnel which run through the ROV in the length direction. This plate
clearly have a large influence on the flow passing through the ROV (Figure
4.1a and 4.1b). Secondly, there are two rectangular openings in the
bottom frame of the ROV (Figure 4.1c and 4.1d). The CAD-model show
that there are no components preventing the flow from passing through
these holes, and thus these need to be taken into account. The top of the
ROV (containing the buoyancy modules), also have similar openings, but

39
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here the thrusters for vertical movement are located thus causing less flow
to pass through. These holes will be disregarded and the top part of the
ROV will be modeled in such a way that the flow is prevented from
passing through. Further, it is seen that most of the components and
equipment are located on the sides and in between the side columns on
both sides. The side frames will thus be modeled such that no flow can
pass through (Figure 4.1e and 4.1f). The rest of the internal components
including the thrusters for horizontal motion and equipment in the front
are disregarded (including the hydraulic arms).

As a remark, the mounting for the camera in front and the camera itself
is not modeled even though these are located in the middle of the tunnel
opening. This decision was made purely with regard to the mesh and mesh
quality. This component clearly have some effect on the flow through the
ROV, but in order to take the effect of this into account, the mesh in the
tunnel of the ROV would have to have a very high resolution.

These simplifications should ensure that the main characteristics of the flow
are taken into account making the model representative for flow modeling
purposes and stability analysis.

4.1.2 Published Papers on the Topic

To the authors knowledge, there are to this date few published papers
regarding CFD-analysis on entire ROV structures available. Gomes et al.
[8] mentions that CFD of a simplified model was used to find the pressure
center and hence the drag center in order to verify theoretical results.
These results are however not presented in the paper. Eng et al. [6]
performed a pendulum test with a scaled down model of a ROV for
determining hydrodynamics coefficients. These were compared to values
obtained by CFD simulations (thruster force and added mass coefficients
plus linear and quadratic damping coefficients), and concluded to agree
well with the experimental results. Ramirez et al. [19] used CFD
simulations of an entire ROV in order to predict drag forces for design
purposes. The resulting drag force was used for calculation of
thruster-force. Neither [6] nor [19] give any further details regarding
numerical model used in their work.

Muljowidodo et al. [16] and Valencia et al. [28] used CFD simulations of
a thruster unit for numerical predictions of thruster-forces and torques.
Valencia et al. [28] used the RANS equations in conjunction with both
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(a) Plate, CAD-model. (b) Plate as modeled.

(c) Bottom holes, CAD-model. (d) Bottom holes as modeled.

(e) Sides, CAD-model. (f) Sides as modeled.

Figure 4.1: Modeled features of the ROV.

the k − ω and the Reynolds transport stresses turbulence model. They
concluded that experimental tests of the thruster unit was necessary in
order to be able to validate the numerical predictions. Muljowidodo et al.
[16], however, combined the CFD analysis (with the RNG k− ε turbulence
model) with experimental tests and concluded that thruster design using
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CFD methods was effective and that the approach could be used for more
general cases. They reported a difference of 0 − 6.25% between numerical
and experimental test results.

Altogether, there seems to be no reference literature for comparison of the
hydrodynamic quantities to be obtained for the simulation of the ROV.
However, the same meshing technique showed very good results for the
sharp edged cube. It is thus expected that the same technique should give
good results also for the ROV.

4.1.3 Solver Setup

The solver used and spatial schemes are the same as used for the case of
the cubes as presented earlier in this thesis (cf. Section 3.1.1), except for
“momentum” where “Second Order Upwind” is used instead of “Bounded
Central Differencing”. Detached Eddy Simulation (DES) is used with the
k − ω SST turbulence model in the near-wall URANS regions (LES in the
outer regions). The numerical simulations are carried out at Re = 8.5× 105

and the reference values used for calculating force coefficients are:

A = 2.5m2

L = H = 1.7m
p = 0Pa
ρ = 1025 kg/m3

ν = 1× 10−6 m2/s

(4.1)

For the instability analysis, the moment coefficient (CM ) is calculated about
the Z-axis through the Center of Gravity (COG). This have been given by
IKM Ocean Design and is located at (in current co-ordinate system):

X = 53.788mm
Y = 1.156mm
Z = −6.548mm

(4.2)

The current co-ordinate system is defined with the origin at the center of
the ROV, with X being positive downstream and Y positive upwards. It is
thus seen that the center of gravity is located slightly starboard and aft of
the origin.

Figure 4.2 show the simplified ROV from the front and aft. It is seen that
the projected area is smaller than for the cube, hence the drag is expected to
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be less than for the cube. It is also seen that the plate in the aft must have
a large influence on the flow through the ROV. A high-pressure area on the
upstream side is expected due to stagnation of the flow, while a negative
pressure area is expected behind the plate. It is possible that the openings
in the bottom frame are designed in order to also direct flow through and
thus minimizing the maximum pressure on the plate (apart from the fact
that they are needed when thrusting vertically). This might then lead to
low pressure regions over or under the plate. The effect of this can be
studied by plotting streamlines through the ROV and thus visualize the
flow behaviour.

(a) Frontview. (b) Backview.

Figure 4.2: Frontview and backview of the simplified ROV.

4.1.4 Computational Domain and Boundaries

The computational domain can be seen in Figure 4.3a and is the same as
used for the simulations of the cubes (Figure 3.1b on page 23). With B
being the width of the ROV, the domain span 14B× 14B× 28B. The same
configuration of two smaller domains around the ROV (cf. Figure 4.3b) is
also used in this case. This is necessary in order to control the sizing of the
cells around the ROV - especially in the wake region. Dividing the domain
stretching into the wake was done in order to assure that the cell size was
approximately constant in the wake close to the ROV.

The boundary and initial conditions are also the same as used for the
cubes (cf. Section 3.1.3). This involves “symmetry” boundary for the top,
bottom and sides of the domain, “velocity-inlet” boundary for the inlet
and “pressure-outlet” for the outlet. The ROV itself is defined as “wall”,
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(a) Whole domain.

(b) Inner domains.

Figure 4.3: Domain for ROV (identical for all meshes).

i.e. the no-slip condition is valid on the surface. A turbulent intensity of
0.8% and a turbulent length of 0.0045H = 0.007 65m is used (H being the
height of the ROV).
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4.1.5 Mesh

In order to keep the maximum amount of cells within a reasonable limit,
some simplifications, as described in Section 4.1.1, were needed. Preferably
the maximum amount of cells should not exceed eight million. This limit is
based on both the available computational power and time. The latter case
is regarded as decisive, since the supercomputer “Njord” is scheduled for
decommissioning during the Master thesis period. This thus create a high
demand on the computational resources during the final period.

As for the cubes, the ROV is meshed using the CutCell method. The results
obtained for the cubes showed that this method gave good results combined
with a low cell count. Face sizing is used to keep cell size constant on any
given face of the geometry or inner domain faces. The minimum face size
is 1× 10−2 m - which is for all faces on the surface of the ROV. The mesh
then expand with a user defined growth rate. An inflation layer has been
created in order to properly resolve the boundary layer. The distance from
the surface to the first node is specified as ∆y = 0.0045m - which is a bit
higher than what was used for the cube. This is done in order to make sure
that y+ is within the log-law region. A total of 8 layers are used for the
inflation layer (6 for the most coarse mesh). Figure 4.4 show the domain in
the XY -plane and a close-up on the ROV itself (in the same plane).

Mesh Quality

Due to the more complex geometry of the ROV, good mesh quality may be
difficult to achieve. Highly skewed cells were observed after the first mesh
was created (mesh R2). The main problem area was identified to be the
corners and edges of the plate in the aft section (especially around the base),
which span across the width of the ROV. For this reason, the edges of this
plate were made round with a radius of 0.02m (the thickness of the plate
being 0.04m). Figure 4.5 show a cut through the plate in the aft of the
ROV in the XY -plane. It is seen from Figure 4.5b how this effort improved
the mesh in the base area (marked by red circles). This resulted in a much
lower maximum aspect ratio and only a few cells exceeding a skewness of
0.98. For the refined mesh (R3), the number of highly skewed cells were
reduced to 5. Still, it is also seen that the transition area from the inflation
mesh to the rest of the mesh at the top of the plate is not optimal.

Other regions where bad cells may occur, are the areas where the sides meet
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(a) Entire domain for ROV.

(b) Close-up on ROV.

Figure 4.4: Mesh R2 for ROV (XY -plane).

the top and bottom frame and in the corners of the openings in the bottom
frame. In Figure 4.6 some of these regions are seen marked by red circles.
However, the effort made by rounding the edges on the plate in the aft
showed to have the largest influence on the amount of bad cells. No further
effort was thus made for improving the areas as shown in Figure 4.6.
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(a) Sharp edges. (b) Rounded edges.

Figure 4.5: Effect of rounded edges on back plate (mesh R2).

(a) Transition from bottom frame to
sides.

(b) Bottom frame openings.

Figure 4.6: Regions where skewed cells may occur.

4.2 Numerical Simulation of Flow Around
Simplified Model of ROV

Numerical simulation of the flow around a simplified model of an ROV have
been performed. As previously mentioned, the supercomputer “Njord” was
shut down during the Master’s Thesis period. This meant that only one
case for the simplified ROV was planned (mesh R2). However, another
opportunity for running on a local cluster (“Kongull”) for high performance
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computing made it possible for running two more cases for the ROV (R1
and R3). Hence, a grid convergence study for the ROV was possible.

4.2.1 Grid Convergence Study

For the grid convergence study, one coarse and one fine mesh was created.
The grid size on the surface of the ROV was kept constant for all meshes
since this showed to have the largest effect on the total cell count. Also
the distance from the surface to the first node (in any direction) was kept
constant at ∆y = 0.0045m resulting in y+ ≈ 45. The growth rates used
were 10%, 10% and 8.5% for R1, R2 and R3, respectively. The element size
on the inner domains were both increased and decreased in order to see the
effect of a fine grid resolution versus a more coarse grid resolution in the
near-surface and wake regions. For all cases, a time step of ∆t = 0.001 s
were used. This is small enough to fulfill the requirement of a Courant
number less than unity.

Since mesh R2 already had been run, and a stable flow had been achieved,
the data for p, ω, k, u, v and w was interpolated onto the finer mesh (R3)
and the more coarse mesh (R1). The interpolation was done by Fluent
using zeroth-order interpolation. Table 4.1 show the results for meshes R1,
R2 and R3. The moment coefficient (CM ) is calculated about the Z-axis
through COG, which is positive on the port side of the ROV. This means
that CM corresponds to a positive pitch moment. The time series for the
meshes used for the ROV can be found in Appendix E.3.

Table 4.1: Grid convergence study for ROV. CD and CM are averaged
over the last quarter of the time series for mesh R2 and
between 5 s ≤ t ≤ 30 s for R1 and R3.

Mesh #Nodes #Cells CD CLrms CM y+

R1 6.71× 106 6.34× 106 0.5354 0.1785 -0.2579 45
R2 7.63× 106 7.26× 106 0.5251 0.1882 -0.2428 45
R3 8.47× 106 8.09× 106 0.5431 0.1778 -0.2563 45

In Figure 4.7 on page 50 the results from the grid convergence study as
presented in Table 4.1 are seen. It is seen that coarsening the initial mesh
(R2) gave a slight increase in both the mean drag and moment coefficient
(+2% and +6.2%). This trend also holds for the refined mesh (R3) with an
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increase of +3.4% and +5.6% for CD and CM , respectively. The opposite
effect is seen on the root mean square lift coefficient. The decrease for the
coarse mesh (R1) is −5.2% and −5.5% for the refined mesh (R3).

Figure 4.7 show that a further refinement of mesh R3 plus a time step
convergence study would have been preferred in order to see more clearly the
trend of the convergence. However, due to limited available computational
resources, only three meshes were possible to run. In spite of this, the
overall difference between the results for the different meshes are relatively
small (between 2% and 6.2%) - hence large discrepancies for further mesh
refinement is not expected. The stability of the Merlin WR200 ROV will
be further discussed based on the results obtained for the refined mesh R3.

4.3 Discussion of Results

The previous section show that there is good agreement between the three
meshes for the force coefficients. More details in the flow around the ROV
and the wake will now be discussed. All the plots from Fluent are available
as electronic appendix (due to the difficulties reading the legend).

4.3.1 Force Coefficients

Looking at the drag coefficient obtained, it is seen that it lies in between
the results for the sharp edged cube and the round edged cube. Comparing
with the sharp edged cube, this is reasonable since the projected area is
less for the ROV. The corners of the top and bottom frame of the ROV are
sharp, which is in contrast to the rounded cube which also have rounded
corners. A wider wake for the ROV will thus lead to higher drag than the
rounded cube. Based on this, the drag coefficients presented in Table 4.1
can be considered reasonable.

For the round edged cube, the lift was shown to be hard to model. The
reason for this was concluded to be insufficient mesh around the rounded
edges and corners combined with too short time series. For the ROV, the
meshes show good agreement for the root mean square lift coefficient and
the resulting moment - in spite of the rounded edges of the top and
bottom frame. The reason for this is that the separation points for this
more complex model are more or less fixed to the areas with abrupt
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(a) CD.

(b) CLrms.

(c) CM .

Figure 4.7: Grid convergence study for meshes R1, R2 and R3.
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changes in geometry (e.g. corners of top and bottom frame, around the
plate in the aft and the openings in the bottom frame).

Moment History

Figure 4.8 shows the fluctuating moment coefficient for the refined mesh R3.
The peak values from the time history are CM,min = −0.2377 and CM,max =
−0.2789. The maximum deviation from the mean value is thus 8.8%, which
is quite significant! The plot show that there are seven major fluctuations in
28.6 s, which correspond to a frequency of 0.245Hz and period of 4.09 s. This
frequency most likely corresponds to the shedding from the plate in the aft,
which probably is the most dominant vortex shedding (this will be further
discussed in Section 4.3.5). The CAD model of the Merlin WR200 show
that the thrusters are located just below the top frame. Hence, the thruster
force will cause a positive pitch moment (constant moment for constant
speed). If then the fluctuating negative pitch moment is combined with the
constant positive thrust moment, it is clear that also the resultant moment
will fluctuate significantly, leading to a pitching motion of the ROV.

Figure 4.8: Fluctuation of the moment coefficient.
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4.3.2 Velocities

Figure 4.9 show iso-surfaces of the u-component of the velocity around the
ROV. The cyan color represent negative values (less than −0.01m/s) while
the yellow colour represent velocities higher than the inflow velocity (more
than 0.53m/s). The figure indicates that there is a low-pressure region on
the forward part of the top frame and under the bottom frame furthest to
the aft. Figure 4.10a show how the u-velocity varies in the XY -plane. Here
these high-velocity areas can be seen by the red colouring of the contour.
The figure shows that there is a lack of symmetry in the u-velocity about
the X-axis. The high-velocity area under the ROV is seen to occur further
aft than the high-velocity area on the top. The reason for this is that some
of the flow through the ROV is re-directed under the plate through the aft
opening. The strong red colouring of the contour plot in this area supports
this fact. For the top frame of the ROV, the high velocity is due to the flow
being forced either over or under the frame.

Figure 4.9: Iso-surfaces of u-velocity.

Figure 4.10b shows the v-velocity in the XY -plane. Negative velocities
are shown with darker green and blue colours. Similarly, high velocity
regions are recognised by yellow and red colour. Now looking at the areas
described for the u-velocity, it is seen that high negative values of the v-
velocity support that much of the flow is re-directed through the aft opening
of the bottom frame.
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(a) u-velocity.

(b) v-velocity.

Figure 4.10: u- and v-component of the velocity in the XY -plane.

In Figure 4.11, streamlines through the ROV are plotted at the center
(Z = 0). The figure indicates that there seems to be no shedding from the
upstream edge of the top and bottom frame. This was also noticed for the
rounded cube case. Blevins [4] explained that rounding of the edges on a
rectangular section could cause postponed boundary layer separation,
which is seen her by the separation occurring from the downstream edge.
This figure also indicates that there is more flow through the aft opening
in the bottom frame than through the forward opening. This results in the
lack of symmetry in the u-velocity as seen in Figure 4.10a.

4.3.3 Pressure Distribution

Figure 4.12a show the distribution of the non-dimensional pressure
coefficient in the XY -plane. This figure immediately indicates a high
stagnation pressure on the top frame and especially on the lower part of
the plate in the aft. Low-pressure areas are seen over the top frame and
under the plate in the aft. The lack of symmetry in the u-velocity in the
same plane is seen to result in an asymmetric pressure distribution in the
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Figure 4.11: Streamlines through ROV.

same plane. If Figure 4.12a is compared with Figure 4.12b, it is seen that
in the XZ-plane the pressure distribution seems more or less symmetric.
From this fact it is easily understood that there should be an instability in
the XY -plane. Figure 4.12b actually shows that the stagnation pressure
on the plate is concentrated to the center region of the plate. This is due
to the gap between the sides and the plate where the flow can escape.

(a) XY -plane.

(b) XZ-plane at Y = −0.2m.

Figure 4.12: Cp in the XY and XZ-plane.

The lack of symmetry in the pressure distribution is more clearly visualized
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(a) Cp on top and under ROV. (b) ∆Cp.

Figure 4.13: Cp and ∆Cp for ROV.

in Figure 4.13. Here, the pressure under the bottom frame is subtracted from
the pressure on the top frame of the ROV (Figure 4.13b). In Figure 4.13a the
pressure on the top and under the ROV are plotted (using Cp). Initially it
is seen a decrease in the pressure as the flow accelerates around the rounded
edge of the top or bottom frame. The next peak for the pressure under the
ROV (blue line) show where the flow accelerates around the downstream
edge of the forward opening. The third and largest decrease is seen as the
flow is forced through the aft opening in the bottom frame (around the
downstream edge of the aft opening). Similarly, the pressure drop on top of
the ROV in the aft is insignificant. Hence, the imbalance in the net pressure
is clearly seen in Figure 4.13b.

The current model shows that if the plate was removed, less flow would
probably flow through the aft opening leading to a more symmetric pressure
distribution. However, as seen from the CAD-model previously described,
there are several components placed in front of this plate, which to some
extent also would prevent the flow from flowing freely through the ROV.

4.3.4 Effect of Plate

The plate in the aft of the ROV have been shown to cause a lack of
symmetry in the velocity and pressure distributions in the XY -plane.
However, as mentioned briefly in the previous section, the components in
front of the plate might cause a similar effect as the plate. This is more
clearly seen in Figure 4.14 (marked by red circles) where a cut have been
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made through the ROV. Judging by this figure, these components have
roughly half the height of the plate. A more accurate and detailed
modeling of the ROV, including these components and disregarding the
plate, would have been an interesting case to run with respect to the
stability analysis and understanding of the flow behaviour. Such an
analysis could perhaps give an indication to whether the plate should be
removed or not and if the components in front need to be relocated. Still,
since the top frame is thicker than the bottom frame, there would be a
non-zero moment acting on the ROV. However, this effect may in reality
be counteracted by the placement of the thrusters for horizontal
movement. According to Gomes et al. [8], the ROV would not suffer from
any pitch moment at constant surge velocities if the thrust vector is
aligned with the resultant drag vector.

Figure 4.14: Components in front of the plate.

4.3.5 Vorticity

Figure 4.15 on page 58 shows vortex structures plotted using
λ2 = −0.259 s−2. Figure 4.15a and 4.15b show that the plate generates the
largest vortex structures in the wake; two from the sides, one from the top
of the plate and one from the bottom frame under the plate (the last one
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is more clearly seen in Figure 4.16c on page 61). These seem to interact
further down the wake and causing a more randomly looking vortex
pattern. In contrast to the cube with rounded edges and corners, the ROV
have only rounded edges, meaning that the corners of the top and bottom
frame are sharp, causing separation from all four leading corners. Looking
more closely on Figure 4.15a, two major vortices are seen that have been
shed from the port side of the plate (marked by red arrows). It is clearly
seen from these two figures that the major vortex structures are shed from
the plate, resulting in the large fluctuations seen in the moment history.

Figure 4.16 on page 61 shows the Z-vorticity in the XY -plane in different
scales. The blue colour represent negative values and the red positive.
Turbulent intensity in the same plane is also shown. Figure 4.16c shows
more clearly that, as mentioned, the plate in the aft generates the largest
vortex structures. Combined with the shedding from the top and bottom
frame, the close wake looks quite chaotic. Looking at the bottom frame, it
is seen that the separation from the upstream edge of the forward opening
seems to prevent the flow from flowing through. The aft opening shows
smaller vortices, allowing the flow to flow through. This is in consistency
with what was seen from the streamlines in Figure 4.11 on page 54.

The last figure (4.16d) shows the turbulent intensity in the wake of the
ROV. As expected, the turbulent intensity is high at the points where the
separation occurs due to the abrupt change in the geometry. The highest
intensity is seen where the vorticity from the shedding from the top frame,
the plate and the bottom frame meets. Further this figure shows that the
wake seems to have an oscillatory behaviour further downstream. This
apparent oscillatory nature of the wake may very well be a large contributor
to the instability of the ROV (as seen by the large fluctuations in the moment
history). It is also recognised from the v-velocity plotted in Figure 4.10b
on page 53. This figure indicates three areas of circular motion - one in the
close wake and two further downstream.

Figure 4.17 on page 62 shows Y -vorticity and turbulent intensity in the
XZ-plane at Y = −0.2m. As previously discussed, it is seen that also
here there is no vortex shedding from the forward edges of the side frame.
The separation is seen to occur from the downstream edges. Scaling up the
vorticity (Figure 4.17c), the wake behind the plate seems even more chaotic
than what was observed in the XY -plane. The vortex structures from the
downstream sides of the ROV are seen to interact with the vortex structures
shed from the side of the plate on the same side.
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(a) Front.

(b) Rear.

Figure 4.15: Instantaneous vortical structures for mesh R3.

Figure 4.17d show the turbulent intensity. This figure shows that the areas
with the highest intensity are the areas where the vortices from the side
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frame interact with the vortices from the plate side. Comparing the wake
seen from this figure with Figure 4.16d, on can see that the turbulent
intensity in the XZ-plane shows symmetrical features while this is clearly
not the case in the XY -plane.

4.3.6 Comments Regarding the Stability of the ROV

The current simplified model of the Merlin WR200 ROV have been shown
to be subjected to a non-zero mean pitch moment. As seen from Figure 4.8
on page 51, the fluctuations in the moment history are significant. During
survey mode (i.e. at constant speed), the thruster force should create a
constant moment. The large fluctuations in the pitch moment would then
result in a pitching behaviour of the ROV, which is in good consistency
with the reported instability problem. Hence, minimizing the peaks in the
moment history should ensure a less violent pitching behaviour.

The first issue to be noticed is the large influence of the plate in the aft on
the flow through the ROV. This plate creates a high-pressure zone in front
and a negative pressure zone on the other side in the wake. The flow is seen
to be forced either over the plate or under through the aft opening in the
bottom frame. By studying the u-velocity and pressure distributions in the
XY -plane, it is seen that there is a high-velocity region beneath the plate
as a direct result of the flow-redirection, creating a low-pressure region. A
similar low-pressure region is seen over the front top of the ROV which
result in an asymmetric pressure distribution. As a direct result of these
two low-pressures, a non-zero mean negative pitch moment is experienced
by the ROV. The fluctuations in the moment have been found to arise from
the shedding from the plate. The low-pressure area under the plate will vary
in size during the shedding, hence causing variations in the pitch moment.

It has also been discussed that removing the plate might not be a
sufficient solution due to the components placed in front. For this reason,
these components could, if possible, be relocated in order to be able to
remove the plate and ensuring less obstruction for the flow through the
ROV. These alternatives should however first be tested numerically before
any destructive action is done to the ROV.
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4.4 Conclusions

The flow behaviour around and through the simplified model of the Merlin
WR200 have been studied numerically at Re = 8.5× 105 using LES in
conjunction with the k − ω SST turbulence model in the near-wall
(URANS) regions. The stability is studied by means of the fluctuating
moment coefficient, velocity and pressure distributions and vorticity.

The cause of the instability is concluded to be the lack of symmetry in the
velocity distribution in the XY -plane, and hence also the pressure
distribution. This causes a non-zero mean pitch moment. The shedding
from the plate in the aft is most likely the cause of the large fluctuations
seen in the moment, causing the pitching motion of the Merlin WR200.

The present results show that in order to be able to propose an effective
solution to the instability of the ROV, a more detailed modeling of the
components in the aft of the ROV is needed for comparison. These can
then be relocated in order to ensure minimal flow obstruction through the
ROV. However, based on the present results, it can be concluded that the
redirection of the flow through the ROV (and thus the plate itself) probably
is the major contributor to the instability of the current model.
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(a) Range: −20 s−1 to 20 s−1.

(b) Range: −10 s−1 to 10 s−1.

(c) Range: −5 s−1 to 5 s−1.

(d) Turbulent intensity (range 0.2% to 20%).

Figure 4.16: Z-vorticity and turbulent intensity in the XY -plane.
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(a) Range: −20 s−1 to 20 s−1.

(b) Range: −10 s−1 to 10 s−1.

(c) Range: −5 s−1 to 5 s−1.

(d) Turbulent intensity (range 0.2% to 20%).

Figure 4.17: Y -vorticity and turbulent intensity in the XZ-plane at
Y = −0.2m.



Chapter 5

Conclusions and
Recommendations for
Further Work

The flow structure around the ROV “Merlin WR200” have been studied
numerically at Re = 8.5× 105 by means of Computational Fluid Dynamics
(CFD) using LES in conjunction with the k − ω SST turbulence model in
the near-wall (URANS) regions.

5.1 Conclusions

As a start, the ROV was simplified as a fully submerged stationary
rectangular cube, with both sharp and round edges. By studying these two
cases, the effect of the rounded edges was seen to have a large influence on
the hydrodynamical quantities obtained. The mean drag coefficient for the
round edged case was found to be approximately 25% of the case when the
rectangular cube had sharp edges. By studying published work of similar
cases, the mean drag coefficient is concluded to be in good agreement with
the stated values. The lift was however hard to model correct for the case
with rounded edges, and it is concluded that longer time series and further
mesh refinement are needed in order to get stable mean quantities. For the
case with sharp edges, the lift have been shown to be more easily modeled.
Very good results were obtained for all the force coefficients. The Strouhal
number obtained in this case is in good agreement with published

63
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reference values. However, due to the fact that only two meshes was used
per case, it is concluded that a further mesh refinement is needed in order
to more clearly see convergence of the results obtained.

Due to the good results obtained for the rectangular cubes, the same
meshing technique was used for the simplified model of the Merlin WR200.
Three meshes were made for the grid convergence study, the largest
difference between the meshes was found to be 6.2%. Altogether, the
discrepancies between the meshes are concluded to be small and the
results obtained to be good. The moment coefficient history showed that
there was a negative mean pitch moment acting on the ROV. The largest
fluctuation was found to be 8.8% from the mean value. This fluctuating
moment was identified as the reason for the pitching motion of the ROV in
survey mode in surge. By means of a more detailed study of the velocity
and pressure distributions in different planes, it was discovered that there
was a low-pressure area on the front top of the ROV and under the the aft
of the ROV. This would then clearly result in a negative pitch moment.
Further, it is concluded that the main contributor to the instability of the
current simplified ROV model, is the plate in the aft spanning across the
width of the ROV. This plate causes some of the flow through the ROV to
be forced through the aft opening in the bottom frame, creating a
high-velocity region and hence the low-pressure region observed under the
ROV in the aft. This low-pressure region will vary in size during the
shedding process from the plate, hence causing the variations seen in the
pitch moment. Based on this, it is concluded that the plate should be
removed in order to not prevent the flow from flowing freely through the
ROV. However, if this is done, the components in front of the plate might
have to be relocated. This should be further studied numerically before
any destructive action is done to the ROV.

Although there were small discrepancies between the meshes, the trend were
increased results for the force coefficients both for more coarse and refining
the mesh. For this reason, it is concluded that a further mesh refinement
or also a time step convergence study should be applied in order to more
clearly see convergence.

5.2 Recommendations for Further Work

The main contributor to the instability of the ROV, have been identified
to be the plate in the aft. For this reason it would be interesting to make
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an even more detailed model of the ROV, perhaps without the plate for
comparison of the moment history. However, if the plate was to be
removed, a study of the CAD model show that there are components in
the aft that need to be taken into account. These components may
actually cause a similar effect as the plate itself, and may thus have to be
relocated. This would be an interesting topic of investigation for a
Master’s Thesis, investigating the stability of the ROV for different
placements of these components. Experimental tests with a scaled model
(or full size) for comparison would also be of great interest. Further, the
instability in survey mode in sway have not been investigated at all.
Hence, numerical simulation of the flow structure for this operating mode
would also be of great interest. Altogether, the amount of remaining work
could be suitable for a Doctoral Thesis.
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Appendix A

Mesh Quality

A.1 Skewness

Skewness is measured between 0 and 1. Highly skewed cells should be
avoided, generally up to 0.94 is acceptable while higher than 0.98 is
unacceptable. There are two methods for determining cell skewness:

1. Equilateral volume deviation - applies for triangles and tetrahedrons:

Skewness = optimal cell size− cell size
optimal cell size (A.1)

2. Normalized angle deviation - applies for all cell and face shapes:

Skewness = max

[
θmax − θe
180− θe

,
θe − θmin

θe

]
(A.2)

Here θe is the equiangular face/cell, i.e. 60° for triangles and tetrahedrons
and 90° for quads and hexahedrons.

A.2 Orthogonal Quality

Orthogonal quality is a quantity which Ansys Fluent allow the user to
check for determining mesh quality. For all faces i, the following is
calculated:

I



II A.2. Orthogonal Quality

(a) Optimal cell size. (b) Definition of angles.

Figure A.1: Cell skewness [3].

1. The normalised dot product of the area vector of a face ( ~Ai) and a
vector from the centroid of the cell to the face center (~fi):

~Ai · ~fi
| ~Ai||~fi|

(A.3)

2. The normalised dot product of the area vector of a face and a vector
from the centroid of the cell to the centroid of the next cell sharing
the same face (~ci):

~Ai · ~ci
| ~Ai||~ci|

(A.4)

The minimum value of these two equations are then referred to as the or-
thogonal quality of the cell. Values close to 0 are bad, while values close to
1 are good. For a face, the minimum value of the following is used:

~Ai · ~ei
| ~Ai||~ei|

(A.5)
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Figure A.2: Vector definition. Cells to the left, faces to the right [3].

A.3 Aspect Ratio

The aspect ratio is an important part when determining the mesh quality.
Generally, it can be described as a measure of the stretching of a cell. It is
computed as the ratio between the maximum and minimum value of certain
distances in a given cell: distance between the cell and face centroid and
the cell centroid and nodes [3]. Figure A.3 illustrates this for a unit cubical
cell.

A.4 Smoothness

Rapid change in cell volume between neighbouring cells will result in large
errors due to the difference between the partial derivatives in the governing
equations and their discrete approximations. This is also commonly known
as truncation error. A smooth mesh will not have this rapid change in cell
size and hence smoothness is an important factor when evaluating mesh
quality.



IV A.4. Smoothness

Figure A.3: Distances for a unit cubical cell [3].



Appendix B

Details in the URANS
Equations

The Reynolds stress component (from Equation (2.22)) can be expressed
using the Boussinesq approximation:

−u′iu′j = νt

(
∂ui
∂xj

+ ∂uj
∂xi

)
− 2

3kδij (B.1)

Where k is the turbulent kinetic energy and δij is the Kronecker delta, which
is defined as a function of two variables or integers, being equal to 1 if they
are equal and zero if not:

δij =
{

1, if i = j

0, if i 6= j
(B.2)

The turbulent kinetic eddy viscosity may then be determined as [15]:

νt = a1k

max(a1ω, SF2) (B.3)

Here, S is the invariant measure of the strain rate and F2 a second blending
function given as [15]:

F2 = tanh

max(2
√
k

0.09ωy ,
500ν
y2ω

)2
 (B.4)

The constants used in the k− ω SST model are: Cµ = 0.09, σk1 = 0.85034,
σk2 = 1, σω1 = 0.5, σω2 = 0.85616, α1 = 0.5532, α2 = 0.4403, β1 = 0.075,
β2 = 0.0828, β∗ = 0.09, a1 = 0.31 and c1 = 10.
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Appendix C

Troubleshooting the
Rounded Cube Case

C.1 Using the Realizable k − ε Turbulence Model

When simulating the flow around the fully submerged stationary cube with
rounded edges and corners, it was discovered that the k−ω SST turbulence
model might have difficulties in predicting both the drag and the lift. The
latter case was also observed in Ong et al. [17], when comparing the root
mean square lift coefficient produced by the standard k−ε turbulence model
on a pipe close to a flat seabed with results obtained by Zhao, Cheng, and
Teng [37] using a k−ω turbulence model. However, Tian et al. [26] showed
that the k − ω SST turbulence model was able to produce the lift on a 2D
square cylinder very well. These two facts lead to the assumption that the
rounded edges and corners might create difficulties for the k−ω SST model.

As seen from Figure C.1b and C.1d, the lift history seemed to be incorrect.
The mean lift for this case would be expected to be zero, which is not the
case here. Looking at the drag history in Figure C.1a and C.1c, it was seen
that the flow seemed to be stable.

Figure C.2 show that the flow separates from the trailing edges instead of
the leading edges (iso-surface of λ2 = −0.142 s−2). As a result of this, the
wake is much more narrow and hence the drag is also much less. It was
however expected that the separation should occur from the leading edges,
and for this reason it was wanted to investigate if the problem could be

VII



VIII C.1. Using the Realizable k − ε Turbulence Model

(a) CD for M3. (b) CL for M3.

(c) CD for M4. (d) CL for M4.

Figure C.1: Drag and lift coefficients for M3 and M4 using the k − ω
SST model.

the turbulence model or simply if the flow was still developing. In order to
check the first possibility, the simulation was stopped and continued using
the realizable k − ε turbulence model by Shih et al. [22].

It is seen from Figure C.3 that the realizable k − ε turbulence model did
not give the desired increase in the drag coefficient. This may then indicate
that the flow was still developing and that Fluent might have too much
damping in the code, which causes problems when the edges are rounded
compared with sharp edges. In order to check if the shedding from the
trailing edges was correct, the Reynolds number was dropped to Re = 5000
in order to trigger shedding from the leading edges. If then the shedding
move downstream for increasing Reynolds number, the initial results for M3
and M4 could be verified.
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Figure C.2: λ2 criterion at t = 50 s for mesh M3.

(a) CD for M3. (b) CD for M4.

Figure C.3: Time series of drag coefficient using the realizable k − ε
model.

C.2 Re = 5000

In Figure C.4a, instantaneous vortical structures are plotted at t = 115 s
using the λ2 = −0.0137 s−2. It is clearly seen that vortex shedding was
achieved at the leading edges and corners. When the drag history seemed
to be stable, the Reynolds number was increased to its original value. Figure
C.4b show that there was still some shedding left from the leading edges,
but mostly from the trailing edges. The vortices are plotted using λ2 =
−0.135 s−2.



X C.2. Re = 5000

(a) Re = 5000. (b) Re = 8.5 × 105.

Figure C.4: Iso-surfaces of λ2 for mesh M3.

Now, looking at the time history for the drag coefficient in Figure C.5, it
is seen that the mean value have increased to approximately 0.6. This is
about 75% of the value for the sharp edged cube, and given that separation
occurs from the leading edges this agrees well with Blevins [4]. He states
that a rounding of the edges can cause a reduction of the drag by 10−20%.
Hence, it is concluded that the low drag at Re = 8.5× 105 must be correct.

Figure C.5: CD for M3 at Re = 5000.



Appendix D

λ2 Method

The λ2 method by Jeong and Hussain [10] is a commonly used vortex
detection algorithm. Often, a pressure minimum is used to identify a
vortex, but according to Jeong and Hussain [10] this pressure minimum is
not enough as a detection criterion. The explanation is that a pressure
minimum may exist without a vortex due to unsteady irrotational
straining and that viscous effects may eliminate a pressure minimum
within a vortex. These effects are removed by only considering the
contribution from S2 + Ω2. Here, S is the symmetric component (rate of
deformation or strain rate) of the velocity gradient tensor J. Ω is then the
antisymmetric component (spin tensor):

S = J + JT

2 (D.1)

Ω = J− JT

2 (D.2)

Since S2 + Ω2 is real and symmetric, there are only real eigenvalues (λ1, λ2
and λ3). A vortex is then defined as a region where S2+Ω2 has two negative
eigenvalues. λ2 is defined as the second largest eigenvalue (λ1 ≥ λ2 ≥ λ3)
and if it is negative at a point, this point belongs to a vortex core. One
weakness with the λ2 method is that it may have difficulties distinguishing
between individual vortices when several vortices exist.

Here, Q is given as:

Q = −1
2(λ1 + λ2 + λ3) (D.3)

XI



XII

Table D.1: Possible choices of eigenvalues [10].

λ1 λ2 λ3
∑
λi Negative λ2 Positive Q

+ − − − vortex core vortex core
+ − − + vortex core not vortex core
+ + − − not vortex core vortex core
+ + + + not vortex core not vortex core

Table D.1 show the possible combinations for the eigenvalues (taken from
Jeong and Hussain [10]).



Appendix E

Force Coefficients

The force coefficients have been plotted using Matlab. The Strouhal
number is found by means of Fast Fourier Transform (FFT) of the
fluctuating lift coefficient. This is because the instantaneous lift force
changes sign for each vortex shedding. Hence, the dominating frequency
found by means of FFT of the time series of the lift coefficient will
correspond to the vortex shedding frequency (fv). The FFT is performed
in Fluent by choosing a sufficiently long time interval (≈ 100 s, which
corresponds to roughly 10 vortex sheddings) in the lift coefficient series.

When performing the FFT analysis, Fluent uses a so-called prime-factor
algorithm. This algorithm is known for preserving the original data better
than the conventional FFT [3].

In section E.3, the time series for meshes R1 and R3 are much shorter
compared with R2. This is because the stable solution of R2 was
interpolated onto R1 and R3, hence long time series was not needed.
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XIV E.1. Sharp Edged Cube

E.1 Sharp Edged Cube

(a) CD M1. (b) CD M2.

(c) CL M1. (d) CL M2.

(e) St M1. (f) St M2.

Figure E.1: Drag and lift history and power spectral density for mesh
M1 and M2.
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E.2 Round Edged Cube

(a) CD M3. (b) CD M4.

(c) CL M3. (d) CL M4.

(e) St M3. (f) St M4.

Figure E.2: Drag and lift history and power spectral density for mesh
M3 and M4.



XVI E.3. ROV

E.3 ROV

(a) CD R1. (b) CD R2.

(c) CL R1. (d) CL R2.

(e) CM R1. (f) CM R2.

Figure E.3: Drag, lift and moment history for ROV (R1 and R2).
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(a) CD R3.

(b) CL R3.

(c) CM R3.

Figure E.4: Drag, lift and moment history for ROV (R3).
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