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Preface

This thesis is submitted in fulfillment of the requirements for the degree Philo-
sophiae Doctor (PhD) at the Norwegian University of Science and Technology
(NTNU). It treats the problem of tracking a target, such as an aircraft, with multi-
ple sensors. Target tracking with a single sensor, such as a radar, is a mature field
of study where publications date back to the sixties. The extension to multiple
sensors has received more recent attention. In target tracking the position mea-
surements from all sensors are combined (fused) to create a track consisting of
a target ID, position and velocity. In theory multiple sensors improve accuracy,
reliability and coverage, but with regards to accuracy there are some challenges.
These stem from the fact that the target position measurements may differ sub-
stantially between sensors, causing problems in the measurement fusion process.
This problem is addressed herein.

I have a Master’s degree in Engineering Cybernetics from the Norwegian Uni-
versity of Science and Technology (NTNU) in Trondheim, Norway. I started
this work in 2005, and it has been performed at University Graduate Center
(UNIK) at Kjeller in Norway under the supervision of Adjunct Professor Oddvar
Hallingstad (NTNU). I was part of the Sea Air and Land Surveillance (SEALS)
research project. In 2006 I spent half a year in Canada at McMaster University in
Hamilton, Ontario. During that time I was part of the research group of Professor
Thiagalingam Kirubarajan, a group which specializes in multisensor-multitarget
tracking and information fusion.

I would like to thank the parties providing the funding for this work as part

i



ii Preface

of the SEALS project, which was the Research Council of Norway, the Norwe-
gian Defence Research Establishment (FFI), Kongsberg Defence & Aerospace
(KDA) and Indra Navia AS (IN). Furthermore I would like to thank my research
colleagues at UNIK for fruitful discussions and exciting table tennis matches,
Morten Stakkeland, Edmund Brekke, Anders Rodningsby, Kjetil Aanonsen, Are
Willumsen, Oyvind Hegrenas and Kjell Magne Fauske. From my time at Mc-
Master University I would like to thank Dr Abhijit Sinha for valuable discus-
sions. From the SEALS partners I would like to thank Tore Smestad (FFI) and
Svein Fagerlund (KDA) for valuable feedback, and I would like to thank pre-
vious IN employees Borge Midtgaard and Tom Borge, in addition to current
employee Siv Brendbakken, for supporting my work during my time at UNIK.
I started working for IN in 2008, and would like to thank Dr Hans Christian
Guren and Terje Dalen for their support, and for giving me time to work on my
thesis. Special thanks to Dr Thiagalingam Kirubarajan for letting me participate
in his research group at McMaster University, and to my supervisor Dr Oddvar
Hallingstad for supporting me all this time. Lastly I thank my wife and kids for
love, support and time to finish this thesis.



Summary

This thesis deals with multisensor fusion in the presence of systematic errors in
the context of target tracking. A typical target tracking problem consists of mul-
tiple sensors producing position measurements of multiple targets, for instance
aircraft. The goal is to establish tracks on all targets that are observed by the sen-
sors. A track usually consists of an id, such as a track number, target position,
and target velocity. The systematic errors are modeled as measurement biases. If
unaccounted for these biases may lead to inaccurate estimates of the target state
(position and in particular velocity) and a single target may appear as several tar-
gets if the biases are large enough (ghost tracks). Furthermore, if all sensors are
biased it is challenging to find an unbiased estimate of target state with respect
to a coordinate system independent of the sensors.

In this thesis the sensors are radars producing measurements in 3D. The sys-
tematic errors (biases) are called alignment bias, location bias and sensor bias.
The first two are related to sensor deployment, as they describe errors in orienta-
tion (misalignment) and sensor placement (location). The sensor bias addresses
errors caused by sensor imperfections. These biases are estimated relative to a
sensor independent coordinate system and relative to a sensor of reference (mas-
ter sensor). A novel distinction is made in this context, where a universal bias
estimator (UBE) is used relative to sensor independent coordinates, while an ab-
solute bias estimator (ABE) is used relative to a master sensor. The estimability
of the biases is investigated using a novel estimability index, which quantifies
whether a bias can be estimated more accurately with the available measure-
ments. The estimability index is based on the Cramer-Rao Lower Bound.

iii



iv Summary

The study of estimability is used to determine a multisensor-multitarget sce-
nario where several bias estimators are compared with respect to performance
using a Monte Carlo simulation. The simulation includes alignment, location
and sensor biases, and all sensors are affected. The estimators are evaluated in
sensor independent coordinates and master sensor coordinates. Two Kalman Fil-
ter (KF) based estimators are used as references. A lower bound is represented
by a KF where the bias values are known, while an upper bound is represented
by a KF where the measurement noise is increased to reflect the biases present.
The alignment, location and sensor biases contain three elements each, to a to-
tal of nine bias values to estimate per sensor. The UBE performs well (below
the upper bound) in sensor independent coordinates when one of the sensor bias
values are removed from the simulation, estimating eight bias values per sensor.
Performance is close to the lower bound when the location bias only is removed,
yielding six bias values per sensor. In master sensor coordinates the ABE has
the best performance. However a simplified version has almost identical perfor-
mance. It is called the Relative Bias Estimator (RBE), and it neglects the biases
of the master sensor. This is a popular assumption in the literature, and this study
confirms that this simplification should be preferred in an implementation.

Possible extensions of this work are explored. First curved target motion is ex-
plored by letting the target move at constant altitude above the Earth. The curva-
ture of the trajectory results in increased bias estimability. However, observing
this curvature requires observing the target for a long time with high accuracy.
This is challenging in practice, and therefore this path was not explored further.

Second, extending the application to Air Traffic Control (ATC) is considered. At
airports radars typically produce 2D measurements, so to extend the developed
3D bias estimators it is necessary to incorporate altitude measurements from the
aircraft Mode C transponders with these 2D measurements. The altitude mea-
surements are quantized and received with a coarse resolution which may have
a negative impact on bias estimator performance since the vertical velocity es-
timate becomes unstable. Several estimators are developed to estimate altitude
and vertical velocity, and these are tested on real measurement data for a perfor-
mance comparison. The main contribution is the use of the Interacting Multiple
Model (IMM) and Unscented Kalman Filter (UKF) based estimators on quan-
tized real world measurements. The UKF produces the best performance for
long term altitude predictions, meaning that its vertical velocity estimate is the
most stable.
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Notation

x Scalar.
~dAB Geometric (not coordinatized) displacement vector from

point A to point B.
{a} A Cartesian coordinate system given by the origin and

coordinate axes along base vectors.
{u} A universal (sensor independent) Cartesian coordinate

system.
{si} The local Cartesian coordinate system of Sensor i.
xa Column vector coordinatized (written) in {a} with di-

mension nx.
X Matrix.
[X]ij = xij The element at index ij of matrix X .
Xa Matrix coordinatized in {a}.
T ba The Coordinate Transformation Matrix which trans-

forms vectors from {a} to {b}.
daab Displacement vector from the origin of {a} to the origin

of {b}, coordinatized in {a}. Note that daab = −daba.
pa = [px py pz]

T Target position in Cartesian coordinates in {a}.
%a = [ρ θ φ]T Target position in spherical coordinates in {a}.
ρ, θ, φ The spherical coordinates range, azimuth and elevation

respectively.



xi

%a = hs
(
pa
)

The coordinate transformation function hs (·) converts
Cartesian coordinates to spherical coordinates.

pa = hc
(
%a
)

The coordinate transformation function hc (·) converts
spherical coordinates to Cartesian coordinates.

Ca The Coordinate Transformation Matrix for hc (·) ob-
tained through linearization, which transforms spherical
coordinates into Cartesian coordinates in {a}.

I The identity matrix.
S (xa) The skew symmetric form (matrix) of xa.
E {xa} The expected (mean) value of xa.
xa (t) Vector at continuous time t.
xak Vector at discrete time index k.
ẋa Time differentiation of xa.

δkl The Kronecker delta δkl =

{
0 if k 6= l
1 if k = l

.

δ (t− τ) The Dirac delta function which satisfies f (t) =
∫∞−∞ f (τ) δ (t− τ) dτ .

vak ∼
N (ma, P aδkl)

The vector vak is stochastic and time variant with a nor-
mal (Gaussian) distribution of mean ma and covariance
matrix P a in discrete time.

va (t) ∼
N
(
ma, Q̃aδ (t− τ)

) The vector va (t) is stochastic and time variant with a
normal (Gaussian) distribution of mean ma and spectral
density matrix Q̃a in continouos time.

α, β, γ The Euler angles roll, pitch and yaw respectively.
bba = [bα bβ bγ]

T A vector containing an alignment bias in α, β, γ.
baab = [bx by bz]

T A vector containing a location bias in x, y, z.
b = [bρ bθ bφ]T A vector containing a sensor bias in ρ, θ, φ.
za A measurement in {a}.
p (xa) The probability density function (pdf) of the stochastic

state vector xa.
p (xa | za) The pdf of xa, given the measurement za and a prior pdf

for xa.
p (xa : za) The pdf of xa, given the measurement za with no prior

pdf for xa.
Zk = {z1, . . . , zk} All measurements from discrete times 1 to k.
zsii,k = zsik Measurement from Sensor i at time k in coordinate sys-

tem {si} associated to Sensor i.
∆t Sampling interval.
σx Standard deviation of scalar stochastic variable x.



xii Nomenclature

σ2
x Variance of scalar stochastic variable x.
σxy Cross covariance of scalar stochastic variables x and y.
J The Fisher Information Matrix.
η The estimability index.



1
Introduction

Surveillance of aircraft is performed at airports all over the world, and has a long
history in defense applications. In recent years more and more effort has been put
into combining (fusing) information and measurements from different sources
and sensors to improve performance of aircraft surveillance systems. Combining
measurements from several sensors is called multisensor fusion. A major goal
for researchers is to find algorithms which ensure that more sensors mean better
surveillance. This work addresses two of the challenges in that regard, systematic
errors (measurement biases) for radars, and quantized altitude measurements for
aircraft.

1.1 Motivation

This section presents the motivation for the work in this thesis. First we present
target tracking, and second we treat multisensor fusion.

1.1.1 Target Tracking

Aircraft surveillance is an important part of the field of study called target track-
ing. A typical target tracking problem consists of multiple sensors producing
position measurements of multiple targets, for instance aircraft. The goal is to
establish tracks on all targets that are observed by the sensors. A track usually
consists of an id, such as a track number, target position, and target velocity.
More information could be included, such as target acceleration and target type.

1



2 1 Introduction

A process producing tracks is usually called a tracker. The target tracking prob-
lem has several challenges:

Data association Which measurement belongs to which target?

Track initiation Is this measurement from a new target? How is the track initial-
ized?

Track maintenance How does one predict where the target is heading? How
accurate is the track? How accurate are the measurements?

Track termination When should a track be deleted?

This work focuses on handling systematic measurement errors, called measure-
ment biases, during track maintenance. Data association is not treated. Track
maintenance is typically done through recursive filtering. A filter provides esti-
mates of the target state, which usually consists of position and velocity. Esti-
mate accuracy is included through covariance estimates, or alternatively through
the probability density function (pdf) of the estimate.

The most famous filtering algorithm is the Kalman Filter. The estimate at
time step k is modeled as a state vector, denoted x̂k, which is an estimate of
the true state vector xk. The filtering process starts with a prior estimate x̄k of
the target state vector consisting of position and velocity. Using a mathematical
filter model, the estimate can be propagated (predicted) to any time step. If a
measurement of the target state is received at time k + 1, x̂k is propagated to
k + 1 and updated with the measurement, yielding the posterior estimate x̂k+1.
The measurement will typically be a position measurement, and its accuracy is
included through covariance information or the associated pdf. The posterior es-
timate is obtained by giving probability weights to the prediction based on the
prior estimate, and the measurement. This weighting differs across filtering algo-
rithms, and the ones used in this work are discussed later. Note that this type of
estimation is called Bayesian estimation, as opposed to Fisher estimation where
the state vector is considered an unknown constant and no prior information is
available. Only the measurement is modeled stochastically.

1.1.2 Multisensor Fusion and Systematic Errors

1.1.2.1 Benefits and Challenges of Multisensor Fusion

In the early stages of aircraft surveillance, aircraft were monitored using a single
radar. A radar is a sensor which emits electromagnetic waves which are reflected
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by the aircraft body. The arrival time of the received reflected waves are used to
calculate the aircraft position. Presently many aircraft surveillance systems use
several sensors to monitor aircraft. There are several reasons for doing so:

1. Some radars produce three-dimensional measurements of aircraft position,
but two-dimensional measurements are more common. In the latter case
more sensors are needed to get aircraft position in 3D.

2. More sensors of different types provide more information about the air-
craft.

3. More sensors ensure redundancy. If a sensor fails, another can take over.

4. More sensors achieve a better coverage of the surrounding airspace.

5. More sensors give more measurements which can be used to calculate air-
craft position, which should yield improved accuracy when calculating air-
craft position.

However, there are some problems associated with multisensor fusion, which
originate from errors in the measurements used:

1. Sensor registration errors are errors caused by misplacement and misalign-
ment of the sensor, and these lead to systematic errors (biases) in position
measurements of aircraft when comparing measurements from one sensor
to measurements from another.

2. Imperfections in the sensors themselves can lead to systematic errors as in
item 1.

3. Measurements can be offset in time, for instance if the sensors are not
synchronized or the measurements are not time stamped. Again this leads
to systematic errors as in item 1.

Sensor registration errors are errors associated with deploying the sensor. First it
is placed at the appropriate location, given by for instance a map or GPS (Global
Positioning System). This location is uncertain, as both maps and GPS have an
associated level of accuracy. Thus the sensor will get a systematic location error
(bias), which is present in all position measurements from the sensor. If measure-
ments of a given aircraft from a sensor (Sensor i) are compared to measurements
of the same aircraft from another sensor (Sensor j), one will observe that the
measurements from Sensor i are biased with respect to Sensor j. If this bias
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Figure 1.1: An aircraft is seen as two aircraft because of sensor registration
errors. The green items represent the truth, and the red items represent the
assumed sensor alignment and location, and the resulting erroneous mea-
surements of aircraft position.

originates from the systematic location error, it is called a location bias herein.

When deploying the sensor, it is aligned to match the local North, East and
Down directions. Aligning it perfectly is not feasible, so when comparing mea-
surements of an aircraft from two different sensors, the alignment error will cause
a systematic error called an alignment bias. Other sources of systematic errors
are sensor imperfections, a sensor bias, and unsynchronized measurement time
stamps from different sensors. The latter leads to measurements being offset in
time, a time bias, which can be caused by unsynchronized clocks or network
delays when reporting the measurements. Thus we have the following measure-
ment biases:

Alignment Bias Sensor registration error caused by misalignment.

Location Bias Sensor registration error caused by misplacement.

Sensor Bias Systematic measurement error due to sensor imperfections.

Time Bias Systematic error due to time offsets.
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Measurement biases lead to several problems when using multisensor fusion to
perform target tracking:

1. Biases can lead to a situation where position measurements of a specific
target are so far apart that the target is identified as several targets, as in
Figure 1.1.

2. Biased measurements may lead to inaccurate estimates of the target state.

3. If all sensors are biased, it is challenging to find an unbiased estimate of
target state with respect to a coordinate system independent of the sensors.

For these issues to become problems in a multisensor target tracking scenario,
the biases need to be large enough to have a noticeable effect on target measure-
ments. This means that they are large enough not to be negligible compared to
the measurement noise. Compensating for the existence of measurement biases
can be done in several ways. A popular approach in defense applications has
been to use a local tracker for each sensor, and only use the best track for each
target across sensors. This concept is called Reporting Responsibility, where
every target has one sensor which is responsible for tracking it. Since multiple
sensors are used, both redundancy and better coverage of the airspace are en-
sured. However this is not multisensor fusion, since only measurements from
one sensor is used to update a specific target. Thus problem 1. above is not ap-
plicable, and ignoring the measurement biases appears as a more viable option.
Problem 2. above is reduced to only apply when there is a switch of responsible
sensor, i.e. when the sensor with the best track for a given target changes. If this
happens often, problem 2. may still be significant. Another downside of this ap-
proach is that the measurements used to update a track which is not the best for
a given target may never be of use. The concept is throwing away information.
Furthermore, problem 3. above is not addressed.

Multisensor fusion has the potential to improve track quality (accuracy) con-
siderably since it allows for processing of all measurements to update the tracks.
However, in the presence of measurement biases the performance of a multi-
sensor fusion tracker may be inferior to a single sensor tracker, because of the
problems noted previously. Compensating for measurement biases by estimat-
ing them is one way to gain the benefits of multisensor fusion. This technique
has the potential to solve all of the problems mentioned, provided that all biases
can be estimated successfully. However, perfect bias estimation is generally not
feasible. The measurement noise, the measurement biases and the target motion
need to be modeled mathematically. Perfect modeling is generally infeasible,
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thus errors are introduced. Another important aspect is observability (Maybeck,
1994) and estimability, which apply for deterministic and stochastic systems re-
spectively. Criterions for observability and estimability answer the following
question. Given the models, measurements and the geometry of the scenario, is
it possible to observe or estimate the states of all targets and the measurement
biases?

pupu

{u}

{s1}

{n0}

{s0}

{n1}

Universal coordinates

Master sensor

ps0

ps1

Sensor 1

Figure 1.2: Universal Bias Estimation. The black coordinate systems {u},
{n0} and {n1} are known. The coordinate systems {s0} and {s1} have
alignment biases, which are observed as rotations about the origin, and
location biases, which are observed as a displacement of the origin. The
curved arrows indicate coordinate transformations of target position from
one coordinate system to another. When the two sensors observe the same
target, its position is correct in {s0} and {s1}, denoted ps0 and ps1 respec-
tively. However when the target observations from Sensor 0 and Sensor 1
are transformed from {s0} and {s1} respectively to {u}, the resulting po-
sitions are different. This position error is caused by the alignment and
location biases.

1.1.2.2 Universal, Absolute and Relative Bias Estimation

There are different ways of modeling and estimating measurement biases. In
universal bias estimation the goal is to estimate all biases of all sensors with
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ps0

ps0
{s1}{n0}

{s0} {n1}

Master sensor

ps1

Sensor 1

Figure 1.3: Absolute Bias Estimation. The black coordinate systems {n0}
and {n1} are known. The coordinate systems {s0} and {s1} have align-
ment biases, which are observed as rotations about the origin, and location
biases, which are observed as a displacement of the origin. The curved
arrows indicate coordinate transformations of target position from one co-
ordinate system to another. When the two sensors observe the same target,
its position is correct in {s0} and {s1}, denoted ps0 and ps1 respectively.
However when the target observation from Sensor 1 is transformed from
{s0} to {s1}, the resulting position is different from the position observed
by Sensor 0. This position error is caused by the alignment and location
biases.

respect to a sensor independent universal coordinate system. In Figure 1.2 this
coordinate system is denoted {u}. If done successfully, target tracks will be un-
biased in the universal coordinate system. This is a challenging problem where
for instance the location bias is unestimable if no sensor locations are known
exactly.

Measurement biases are usually estimated relative to a master sensor, in a mas-
ter sensor coordinate system {s0} as shown in Figure 1.3. There are two typical
ways of doing this, and it is usually possible to reduce the number of biases to es-
timate with respect to universal bias estimation, thereby increasing estimability.
The first method is to reduce the amount of biases, but retaining the mathemat-
ical correctness of the model. The location bias for instance can be expressed
relative to a master sensor without making simplifying assumptions leading to
an inferior mathematical model. This method leads to an estimator performing
absolute bias estimation. If done successfully, target tracks will be unbiased in
the master sensor coordinate system. However the tracks will be biased with re-
spect to a universal coordinate system.

The second method is to not estimate some or all of the measurement biases
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of the master sensor, which is called relative bias estimation herein. In this case
there are fewer biases to estimate with respect to universal and absolute bias es-
timation. If done successfully relative bias estimation leads to tracks that are ap-
proximately unbiased with respect to the master sensor. However, not estimating
the master sensor biases may lead to simplifying assumptions in the mathemati-
cal model, making it inferior to a model used for absolute bias estimation. Note
that the tracks are biased with respect to a universal coordinate system.

Although universal bias estimation may seem to be the overall best method, it
may not be necessary in practice. A common military application for multi-
sensor bias estimation is an air defense system, where a surface-to-air missile
launcher could be connected to each radar. If the launcher and radar use the
same coordinate system, the only thing that matters is that the target coordinates
are correct in that system. Universal, absolute and relative bias estimation may
all solve this problem, and in such cases relative bias estimation may be prefer-
able since it will usually include less biases to estimate and better estimability.

It is sometimes necessary to know the target position in reference to a sensor
independent coordinate system. In an air defense system this could mean that
the launcher is not connected to a radar, but has its own sensor independent co-
ordinates. Another case would be an Air Traffic Control (ATC) scenario where
target positions with respect to a universal coordinate system tied to an airport is
of interest.

The main strength of universal bias estimation is that the estimated biases can be
used to compute correct target position in any known coordinate system. When
the biases are estimated successfully, the sensor coordinate systems are known
with respect to a known sensor independent coordinate system. The target po-
sition can then be transformed to any coordinate system known with respect to
these coordinate systems.

1.1.3 Aircraft Altitude Determination

As stated in Section 1.1.2 the radars used for aircraft surveillance typically return
measurements in two dimensions, range and bearing. Thus the aircraft altitude
is missing. The altitude of an aircraft in civilian airspace is determined by Mode
C transponder transmissions using Secondary Surveillance Radars (SSRs). This
measurement has a resolution of 100 ft due to bandwidth constraints, resulting
in measurements forming a staircase as shown in Figure 1.4. The coarse reso-



1.2 Previous Work 9

ft

1000

1100

Time

1200

(a)

Velocity

Time

0

(b)

Figure 1.4: The Mode C measurements (dots) form a staircase in (a) where
the dashed line is the true trajectory. The measurements lead to a velocity
as shown in (b) where the dashed line is the true velocity.

lution creates difficulties in estimating the vertical velocity of the aircraft which
influences altitude prediction. The latter is used by ATC surveillance systems to
alert controllers of possible dangerous situations.

1.2 Previous Work

This section presents relevant references for this thesis.

1.2.1 Multisensor Bias Estimation

Unless otherwise specified, the sensors broadcast their estimates as track data,
not the measurements they receive (plots). This is the most common approach,
as it has a lower impact on the sensor network communication load (Drummond,
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2002). Table 1.1 shows relevant references concerning multisensor bias estima-
tion, and unless otherwise stated the sensor measurements are from active (as
opposed to passive) radars, and bias estimation is performed by tracking targets
that are observed by all sensors. In general the sensors are distributed, as op-
posed to collocated where the distance between sensors is negligible compared
to the distance from the sensors to the targets. When the latter is the case, it will
be specified.
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1.2.1.1 The Sensor Bias

Studying Table 1.1 it is clear that the sensor bias has been treated extensively for
both 2D and 3D radars. Observability and estimability for the sensor bias has
been investigated, and it has been found to be universally estimable (Blackman
and Popoli, 1999; Easthope, 2000; Kosuge and Okada, 2000, page 289-299). In
Kosuge and Okada (2000) an index of radar bias estimation is presented which
is based on the minimum singular value of the observation matrix. The index
is used to determine if a bias estimation problem is estimable. An alternative
observability index using the inverse condition number for the observation matrix
is presented in Arrichiello et al. (2013). The sensor bias for a radar is usually
modeled as an additive bias in range, azimuth and elevation, but some references
(Lin et al., 2004a,b, 2005; Qi et al., 2008a; Rafati et al., 2006, 2007; Ying et al.,
2010) include multiplicative scale biases as well. Note that when this is the
only bias estimated, any unmodeled alignment or location biases present will be
partially included in the sensor bias. This means that an estimator estimating
the sensor bias may partially compensate for the unmodeled biases as well. This
applies to the alignment bias in particular since it is usually modeled using the
three Euler angles (roll, pitch and yaw). The sensor bias includes angular biases
in azimuth and elevation which can be assumed to compensate partially for the
alignment bias. In fact, if the problem is modeled in 2D, with 2D target motion
and 2D sensor measurements, the alignment bias will only include a yaw bias
which will be the same angle as the sensor azimuth bias. Thus the alignment bias
will be included in the sensor bias. This makes the 2D bias estimation problem
easier to solve than the 3D counterpart.

1.2.1.2 Bias Estimation using Reference Data

Applied to ATC, Besada Portas et al. (2002) proposes a solution to estimate sen-
sor biases relative to GPS measurements. A more general approach is presented
in Besada Portas et al. (2004). In a series of papers Watson and Rice (2001,
2002a,b); Watson et al. (1999) uses a Kalman Filter (KF) to find alignment and
sensor biases, but the targets are assumed cooperative and truth data is available
from them. A similar method is proposed by Novoselov et al. (2005) which ac-
counts for cross-correlation between target state and residual bias. A nonlinear
Least Squares (LS) method has been used to find alignment, location and sensor
biases in Herman and Poore (2006) and Scott Danford and Poore (2007a,b) with
the use of truth data in 3D.
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1.2.1.3 Relative Alignment, Location and Sensor Biases

The papers by Helmick and Rice (1993); Helmick et al. (1994) deal with all three
biases treated herein with 3D measurements, although the location bias is not es-
timated, and perform estimation based on targets observed by all sensors. They
assume that the sensors are collocated, which means that any location bias can be
neglected since the distance between sensors is negligible compared to the dis-
tance from the sensors to the targets. In a recent paper by Fortunati et al. (2011)
all the biases are estimated using a linear LS estimator. The hybrid Cramer-Rao
Lower Bound (CRLB) for the estimation problem is provided.

1.2.1.4 Absolute Alignment, Location and Sensor Biases

Using a LS method Easthope (1999) estimates biases for two distributed radars.
The sensor bias is found to be absolutely estimable, while alignment, location
and time biases are not.

1.2.1.5 Universal Alignment, Location and Sensor Biases

The observability (estimability) of the location bias has been investigated by Bar-
Shalom (2000), who finds that the location bias can be estimated by using fixed
(static) targets of opportunity. The location biases are modeled as slowly vary-
ing, and if they vary differently as a function of time across sensors they can
be separated and estimated universally. If the same bias model is used for all
sensors, the biases are relatively estimable. Universal alignment bias estimation
is performed by Gade (2004) and Kragel et al. (2007). The paper by Sviestins
(2000) uses a modified LS method including a priori data to find universal align-
ment, location, sensor and time biases in a quasi-recursive manner. The bias
estimation is done centrally, using targets of opportunity. Results from three ex-
periments are presented, and it is the use of a priori data which makes absolute
bias estimation possible. The first experiment estimates a combination of sensor,
alignment and time biases. The second and third experiments estimate location
and alignment biases respectively. A LS method is also used in Pan et al. (2008)
to find alignment and sensor biases, but not all angle biases are found success-
fully for two sensors. In a recent paper by Fortunati et al. (2012a) all the biases
are estimated using a linear LS estimator. The hybrid CRLB for the estimation
problem is provided.
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1.2.1.6 Topics for Further Investigation

From the previous discussion it is clear that multisensor bias estimation has al-
ready been well treated in the literature. However, there is still room for improve-
ment. Regarding universal bias estimation, an attempt to recursively estimate as
many biases as possible using 3D measurements from common targets should be
made. At the time of writing no papers present such results when truth data is
unavailable. Additionally a comparison of relative, absolute and universal bias
estimators should be made to see when the added complexity of universal bias
estimation is needed. These topics are addressed in this thesis.

1.2.2 Aircraft Altitude Prediction and Estimation

Altitude prediction is important in conflict alarm systems which monitor separa-
tion distances between aircraft. Examples are Short Term Conflict Alert (STCA),
Minimum Safe Altitude Warning (MSAW) and Area Proximity Warning (APW).
These systems rely on altitude prediction of the aircraft at most 2 minutes ahead
in time (Technical Staff, 1999). Poor altitude prediction, which is caused by a
poor vertical velocity estimate, results in unnecessary false alarms. These diffi-
culties arise since the Mode C altitude measurements are quantized because of
bandwidth constraints.

The effect of quantization of data is discussed by Vardeman and Lee (2005).
This problem has been treated before (Sviestins and Wigren, 2001), where an
estimator derived from the solution of the Fokker-Planck equation was used to
filter the quantized Mode C measurements. The aircraft motion was modeled as
deterministic with constant velocity, and it outperformed the Extended Kalman
Filter (EKF) on this problem. The latter was based on a stochastic model with
colored noise. A numerical algorithm for approximate Minimum Mean Square
Error (MMSE) is developed in Duan et al. (2008a,b) for quantized measure-
ments. A Maximum Likelihood (ML) method is presented by Kim (2011). A
simple approach to handle quantized measurements is presented in Hodel and
Hung (2003) where a quantizer is included in a deterministic observer for state
estimation.

1.3 Thesis Outline and Contribution

Target tracking and bias estimation are mature fields of study, and many prob-
lems are already well treated in the literature. Mathematical background material
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concerning the CRLB and coordinate systems can be found in Chapter 2. Chap-
ter 3, Chapter 4 and Chapter 5 contain the main contributions of this thesis, and
a discussion of results and conclusions are found in Chapter 6.

Chapter 3 contains the derivation of formulas for converting a 3D measurement
in spherical coordinates to Cartesian coordinates. The derivation is analogous to
the 2D case in Bar-Shalom and Li (1995). Furthermore the fundamental mea-
surement models for universal, absolute and relative bias estimation are derived.
In the Universal Bias Estimator (UBE), tracking is performed in sensor inde-
pendent coordinates, while the Absolute Bias Estimator (ABE) and the Relative
Bias Estimator (RBE) perform tracking in the coordinates of a master sensor.
The mathematical model used in the ABE is mathematically equivalent to the
model in the UBE, but tracking in sensor coordinates allows some simplifica-
tions. It is shown that the ABE model holds for small alignment biases even if
the coordinate transformation from a biased sensor to the master sensor involves
large angles. The measurement biases of the master sensor are not estimated in
the RBE, and a method to compensate for this uncertainty through added mea-
surement noise is presented. The author has not seen this clear distinction in
the literature previously, although universal, absolute and relative bias estima-
tion have all been treated.

Chapter 4 deals with estimation of measurement biases. The main contribu-
tions of this chapter are the study of universal, absolute and relative estimability
using the novel CRLB based estimability index of alignment, location and sen-
sor biases, and a performance comparison of the UBE with the ABE, RBE and
standard filters from the literature. Estimability is studied when the system and
filter models are the same, but the performance of the estimators is evaluated in
scenarios where system and filter models are different. This is important, as it is
common in the literature that system and filter models are equal. These results
can serve as a guideline for estimator design in the sense that we can see which
unmodeled biases have the strongest effect on estimator performance. This re-
search complements the work in Helmick and Rice (1993), Easthope (1999),
Kosuge and Okada (2000), Gade (2004), Kragel et al. (2007) and Fortunati et al.
(2011, 2012a,b,c). Some of the results have been published in the peer reviewed
conference paper Topland and Hallingstad (2008).

Furthermore, a novel demonstration of increased bias estimability for a target
moving at constant altitude above the Earth contributes to bias estimation re-
search. These results are published in the peer reviewed conference paper Top-
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land et al. (2007). All results are derived in three dimensions assuming three-
dimensional radar measurements.

Aircraft altitude prediction is investigated in Chapter 5 and several Bayesian es-
timators are tuned and tested on real measurement data for a performance com-
parison. It is shown that a single model filter with maneuver handling using the
Unscented Kalman Filter (UKF) is superior to Interacting Multiple Model (IMM)
estimators and KFs for long term predictions. The major contribution of this
chapter is the use of the IMM estimators and the UKF algorithm on quantized
measurements using measurements from the real world. These measurements
are used both for evaluation (testing), and for LS and ML based estimator tuning.
This work has been published in the peer reviewed conference paper Topland and
Hallingstad (2007), and complements the research presented in Section 1.2.2.
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2
Mathematical Background

This chapter presents mathematical background material used in this disserta-
tion. Section 2.1 presents the Cramer-Rao Lower Bound (CRLB), and Section
2.2 discusses relevant coordinate systems.

2.1 The Cramer-Rao Lower Bound

The CRLB is often used as a measure of filtering performance. It yields the
minimum variance possible for an unbiased estimator given a deterministic state
vector (Fisher estimation). This minimum variance can be computed by inverting
the Fisher Information Matrix (FIM). In Fisher estimation the state vector x is
assumed to be a deterministic unknown constant, and no prior information is
available. This is opposed to Bayesian estimation where x is a stochastic vector,
and prior information exists. The CRLB can be calculated for a Bayesian system
as well, which is discussed in Section 2.1.2. The state vector x is in this section
assumed to be coordinatized in an appropriate coordinate system, omitting the
name of the coordinate system for simplicity.

2.1.1 The CRLB for a Static System

Theorem 2.1
When estimating the deterministic state vector x from the measurement z with

19
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an unbiased estimator, the covariance is bounded from below

E
{

(x− x̂) (x− x̂)T |z
}
≥ J−1 (2.1)

where x̂ is the estimate, J−1 is the CRLB, and J is the FIM which is a positive
definite symmetric matrix (Papoulis and Pillai, 2002)

[Jij] =

[
E

{
∂ ln p (z : x)

∂xi

∂ ln p (z : x)

∂xj

}]
(2.2a)

=

[
−E

{
∂2 ln p (z : x)

∂xi∂xj

}]
(2.2b)

or in vector form

J = E

{
∂ ln p (z : x)

∂x

∂ ln p (z : x)

∂xT

}
(2.3a)

= −E
{
∂2 ln p (z : x)

∂x∂xT

}
(2.3b)

where z is a vector containing all measurements, and the state vector x is an
unknown constant with dimension nx. The parameters xi and xj are elements of
x where i, j ∈ {1, 2, . . . , nx}.

Note that a colon is used to show dependence in (2.2) instead of a |. This is to
emphasize the absence of statistical information about x, thus separating Fisher
and Bayesian notation. For proof of Theorem 2.1 see Kay (1993) or Appendix
A.1.

Example 2.1
Given a measurement z of the unknown constant x

z = Hx+ w (2.4a)
w ∼ N (0, R) (2.4b)

the CRLB covariance matrix P is given by

P−1 = J = HTR−1H (2.5)

where H is the measurement matrix and R is the measurement covariance ma-
trix. A static system is a system which is time invariant. Equation (2.5) can also
be used for nonlinear systems through linearization. The following assumptions
are made in (2.5):
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1. The state vector x is an unknown constant vector.

2. The measurement equation is known.

3. The measurement noise is additive with known mean and covariance.

Note that although there is no prior information in Fisher estimation, such infor-
mation can still be included as additional measurements of the state vector. A
proof of (2.5) follows. Given (2.4) the probability density function (pdf) is

p (z : x) =
e−

1
2

(z−Hx)TR−1(z−Hx)

(2π)nz/2 ||R| |1/2
(2.6)

since z −Hx = w. Its logarithm is

ln p (z : x) = − ln
(

(2π)nz/2 ||R| |1/2
)
− 1

2
(z −Hx)T R−1 (z −Hx) (2.7a)

= − ln
(

(2π)nz/2 ||R| |1/2
)
− 1

2

(
zTR−1z − xTHTR−1z

−zTR−1Hx+ xTHTR−1Hx
)

(2.7b)

Using (2.7a) and (2.3a) and recalling that R is symmetric

∂ ln p (z : x)

∂x

∂ ln p (z : x)

∂xT
= HTR−1 (z −Hx) (z −Hx)T R−1H

E

{
∂ ln p (z : x)

∂x

∂ ln p (z : x)

∂xT

}
= HTR−1H. (2.8)

Using (2.7b) and (2.3b)

∂2 ln p (z : x)

∂x∂xT
= −HTR−1H

−E
{
∂2 ln p (z : x)

∂x∂xT

}
= HTR−1H. (2.9)

Thus (2.3a) and (2.3b) yields the same expected result

J = HTR−1H. (2.10)
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Example 2.2

It is possible to obtain an analogous expression to (2.5) for a nonlinear stochastic
system with additive noise. Consider the system

z = h (x) + w (2.11a)
w ∼ N (0, R) (2.11b)

and define

f (x, z) = z − h (x) = w. (2.12)

The pdf is

p (z : x) =
e−

1
2
f(x,z)TR−1f(x,z)

(2π)nz/2 ||R| |1/2
(2.13)

and its logarithm is

ln p (z : x) = − ln
(

(2π)nz/2 ||R| |1/2
)
− 1

2
f (x, z)T R−1f (x, z) . (2.14)

Using (2.14), the fact that R is symmetric,

∂ ln p (z : x)

∂x
= −

[
∂f (x, z)

∂x

]T
R−1f (x, z) , (2.15)

and (2.3a) leads to

∂ ln p (z : x)

∂x

∂ ln p (z : x)

∂xT
=

[
∂f (x, z)

∂x

]T
R−1f (x, z) f (x, z)T R−1

[
∂f (x, z)

∂x

]
E

{
∂ ln p (z : x)

∂x

∂ ln p (z : x)

∂xT

}
=

[
∂f (x, z)

∂x

]T
R−1

[
∂f (x, z)

∂x

]
. (2.16)

because E
{
f (x, z) f (x, z)T

}
= R. Alternatively (2.3b) yields

∂2 ln p (z : x)

∂x∂xT
= −

[
∂f (x, z)

∂x

]T
R−1

[
∂f (x, z)

∂x

]
− f (x, z)T R−1

[
∂2f (x, z)

∂x∂xT

]
−E

{
∂2 ln p (z : x)

∂x∂xT

}
=

[
∂f (x, z)

∂x

]T
R−1

[
∂f (x, z)

∂x

]
(2.17)
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since derivatives of f (x, z) with respect to x are deterministic andE
{
f (x, z)

}
=

0. Thus

J =

[
∂f (x, z)

∂x

]T
R−1

[
∂f (x, z)

∂x

]
(2.18)

which we rewrite to an expression analogous to (2.5):

J (x) = H (x)T R−1H (x) (2.19a)

H (x) =
∂h (x)

∂xT
(2.19b)

2.1.2 The CRLB for a Dynamic System

The CRLB can be calculated for a dynamic system with no process noise using
a Bayesian model with state vector xk. The CRLB for the model

xk+1 = f
k

(xk) (2.20a)

x0 ∼ N (x0, P0) (2.20b)
zk = hk (xk) + wk (2.20c)
wk ∼ N (0, Rk) (2.20d)

is calculated using the Extended Kalman Filter (EKF) covariance propagation
equations linearized about the true system states in Taylor (1979).

In the Bayesian case where the state vector is dynamic and stochastic with prior
information, the Posterior CRLB can be calculated. Using the Bayesian model

xk+1 = f (xk, vk) (2.21a)

x0 ∼ p0 (x0) (2.21b)
vk ∼ pv (vk) (2.21c)
zk = h (xk, wk) (2.21d)
wk ∼ pw (wk) (2.21e)

where vk and wk are white noise processes, and x0, vk and wk are independent,
a general way of computing the Posterior CRLB is found in Tichavsky et al.
(1998). The special case with additive vk and wk is also treated.
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2.2 Coordinate Systems

When modeling a multisensor target tracking problem, coordinate systems and
transformations between them are mandatory. A coordinate system is usually
attached to a physical body, for instance the Earth or a sensor gathering mea-
surements. To clarify how a coordinate system is defined mathematically, we
start with the physical body. A physical body can be viewed as a collection of
points, which can be expanded in space. This expanded set of points is in physics
referred to as a reference frame. To work with this set of points it is necessary
to add a vector space. The mathematical operations of an affine space are well
suited for this, and when adding these operations we get a frame which we can
use for mathematical modeling. In the literature an affine frame is a chosen
origin and a set of base vectors. The base vectors make it possible to define ori-
entation, and orthonormal base vectors are chosen for mathematical simplicity.
Lastly the frame is coordinatized, which corresponds to choosing a function to
transform points in the affine frame to Rn (labeling). The Cartesian coordinate
system is the most common, but in addition we will use spherical and geodetic
coordinates. For more on coordinate systems and frames see Zipfel (2007). The
coordinate systems used in this thesis are described next.

2.2.1 Earth Centered Earth Fixed Coordinate System

The Earth Centered Earth Fixed (ECEF) coordinate system has its origin at the
center of the Earth, its z-axis ze points to the North Pole, and its x-axis xe points
to the prime meridian. The y-axis ye is chosen to make xeyeze a right-handed
Cartesian coordinate system. In the following the ECEF coordinate system will
be denoted as coordinate system {e}, and vectors written in this system will have
the superscript e.

2.2.2 Geodetic Coordinate System

The geodetic coordinate system is the system describing a location in reference
to the Earth using latitude µ, longitude l and altitude h. The Earth is modeled as
the rotation symmetrical WGS-84 ellipsoid. The geodetic coordinate system is
denoted {g}, and vectors written in this system will have the superscript g.

2.2.3 Geographic Coordinate System

The standard local coordinates for a geographic location are given in the ge-
ographic coordinate system, which is a right-handed North East Down (NED)
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system. The origin is defined in reference to the Earth, and in this work the
origin is typically chosen to coincide with the sensor location. The xn, yn and
zn-axes point respectively towards north, east and down. The xnyn plane is tan-
gent to the Earth’s surface. A geographic coordinate system is denoted {n}, and
vectors written in this system will have the superscript n.

2.2.4 Universal Coordinate System

The universal coordinate system {u} is a coordinate system independent of the
sensors where we wish to track targets. It can be an ECEF, geodetic, or geo-
graphic coordinate system. This depends on the scenario treated.

2.2.5 Sensor Coordinate System

In this work sensors are used to get measurements of target positions. The sen-
sor locations are described in {u}, and each sensor, Sensor i, has an associated
nominal geographic coordinate system denoted {ni}. The term nominal means
that {ni} is an assumed known coordinate system. When Sensor i is deployed
it is aligned and located to coincide with {ni}. If aligned and located perfectly,
the transformation of a measurement to any known coordinate system is known.
This enables target tracking in any known coordinate system. However, perfect
alignment and location is usually infeasible in the real world. Therefore we intro-
duce a sensor coordinate system {si} which is a NED coordinate system whose
xsiysi plane may not coincide with xniyni , and whose origin may not coincide
with the origin of {ni}. In other words {si} is a perturbation of {ni}. The coor-
dinates of {si} will in the following be referred to as the local coordinates of the
sensor.

2.2.6 Cartesian Coordinate Transformations

The transformation of the point coordinates from one Cartesian coordinate sys-
tem {n} to another {s} is in general given by

ps = T sn
(
pn + dnns

)
= T snp

n + dsns (2.22)

where pn and ps are coordinate vectors represented in {n} and {s} respec-
tively, T sn is a Coordinate Transformation Matrix (CTM) and dnns and dsns are
displacement vectors from the origin of {n} to the origin of {s}, represented in
{n} and {s} respectively. A composite coordinate transformation is represented
by the product of two CTMs T se = T snT

n
e . Note that (T se )T = T es because T se is
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x
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ρ = ||~p| |
θ

φ
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0
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px

Figure 2.1: The geometric position vector ~p is in Cartesian coordinates
equal to p = [px py pz]

T , and in spherical coordinates equal to % = [ρ θ φ]T .

orthonormal. In fact a CTM T is a member of the special orthogonal group of
order 3,

SO(3) =
{
T | T ∈ R3×3, T TT = I, detT = 1

}
. (2.23)

2.2.7 Conversion Between Cartesian and Spherical
Coordinates

Let a point in space in Cartesian coordinates be given by

p =
[
x y z

]T
. (2.24)

Then the same point in spherical coordinates is

% =
[
ρ θ φ

]T (2.25)

where range, azimuth and elevation are denoted ρ, θ and φ respectively. Figure
2.1 shows Cartesian and spherical coordinates. The Coordinate Transformation
Function (CTF) from spherical to Cartesian coordinates is defined by

p = hc
(
%
)

(2.26)
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where the elements of hc (·) transform the coordinates in the following nonlinear
way:

x = ρ cos θ cosφ (2.27a)
y = ρ sin θ cosφ (2.27b)
z = ρ sinφ (2.27c)

The inverse transformation hs (·) is:

ρ =
√
x2 + y2 + z2 (2.28a)

θ = arctan
y

x
(2.28b)

φ = arcsin
z√

x2 + y2 + z2
(2.28c)
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3
Measurement Modeling and

Estimability
This chapter deals with measurement models and estimability of biases. Section
3.1 explains the difference between system and filter models, Section 3.2 treats
sensors and measurement models concerning bias estimation, and Section 3.4
discusses estimability for static targets using the presented measurement models.

3.1 System and Filter Models

When evaluating estimators or filters in a simulation it is important to separate
system and filter models.

System Model An accurate mathematical description of the truth. The model is
used to generate measurements, and is also called simulation model.

Filter Model The model used to design an estimator or filter.

The system model is in general nonlinear and computationally demanding to use.
When this is the case the filter model is usually a simplified version of the system
model. This can be done through linearization or omitting of system variables.
In many cases the system model is the most accurate description sought for a
real world scenario. Because of its complexity it may be unusable in a realtime
system, hence a filter model is used in the design of the estimator instead.

29
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3.2 Modeling of Measurements and Biases for
3D Radars

In this work we focus on modeling of measurements from 3D radars with errors
that can be modeled as unknown constants. Registration errors and measurement
noise which is not zero-mean fall into this category. These constants are called
biases in the following. This section explains the modeling of the measurement
biases, and presents several models for the sensor measurement. There are two
reference models. One where the measurement biases are known, and one where
they are neglected. These will serve as references when the other models are
used to estimate the biases. A good choice of filter model should yield tracking
performance between these two reference models. The final part of this section
derives measurement models for universal, absolute and relative bias estimation.

3.2.1 The Bias Model

Definition 3.1. A bias is a random constant, thus the bias ba in coordinate sys-
tem {a} obeys

ḃ
a

(t) = 0 (3.1a)
ba (t0) ∼ pb (ba0) (3.1b)

in continuous time and
bak+1 = bak
ba0 ∼ pb (ba0)

(3.2a)
(3.2b)

in discrete time where k is the discrete time index. The probability density
function (pdf) pb (·) is arbitrary. In this work we assume that the covariance
matrix E

{
ba0b

a
0
T
}

is diagonal and

E {ba0} = 0. (3.3)

Note that using Definition 3.1 for bias modeling is correct for constant biases
and approximate for biases that are slowly varying. In the system model (3.1)
or (3.2) are used to model biases. In Section 3.4 and Section 4.2 both the sys-
tem and filter models use (3.2) for bias modeling, but in the Monte Carlo (MC)
simulations in Section 4.1 we assume slowly varying biases in the filter models
and add Gaussian white noise to avoid divergence of bias estimates. In these
simulations divergence may occur because the filter models are not equal to the
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system model. Furthermore the pdf pb (·) is assumed to be Gaussian. Thus the
bias model becomes

ḃ
a

(t) = na (t) (3.4a)
ba (t0) ∼ N (0, Ba) (3.4b)

na (t) ∼ N
(

0, Q̃aδ (t− τ)
)

(3.4c)

in continuous time, and

bak+1 = bak + nak
ba0 ∼ N (0, Ba

0)

nak ∼ N (0, Qaδkl)

(3.5a)
(3.5b)
(3.5c)

in discrete time where na (t) and nak are Gaussian noise vectors. The spectral
density matrix Q̃a and the covariance matrices Ba and Qa are assumed constant.

3.2.2 The Spherical Measurement Model with Spherical
State Vector

The use of radars is common for tracking of aircraft. Radar is an acronym for
RAdio Detection And Ranging. Although the results herein may be applicable to
several types of sensors, the modeling is done under the assumption that the sen-
sor is a pulsed radar system which measures the position of targets in 3D. Radars
use electromagnetic waves to obtain these measurements. Pulses are emitted,
and when they hit a target they are reflected and scattered in several directions.
Some pulses come back to the emitting radar, and the position is measured based
on the travel time of the pulse. Radars typically receive measurements in 2D or
3D. 3D radars are the primary focus of this work, and unless clearly stated oth-
erwise the word sensor refers to a 3D radar. A 3D target position measurement
z from a sensor at discrete time k is assumed to be given by

zk = %
k

+ b+ wk (3.6a)

wk ∼ N (0, Rδkl) (3.6b)
b ∼ N (0, B) (3.6c)

where %
k

is the target position in local spherical sensor coordinates, which
consist of range ρ, azimuth θ and elevation φ. The measurement noise is given
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by wk which is assumed Gaussian and zero-mean with covariance R. The Kro-
necker delta δkl means that the noise is white. The covariance matrix R is diag-
onal and constant

R =

σ2
ρ 0 0

0 σ2
θ 0

0 0 σ2
φ

 . (3.7)

Because of imperfections in the sensor itself we assume that it is subject to a
sensor bias b which include constant biases in range, azimuth and elevation

b =
[
bρ bθ bφ

]T (3.8)

with covariance matrix

B =

σ2
bρ

0 0

0 σ2
bθ

0
0 0 σ2

bφ

 (3.9)

where the sensor bias variances are found as elements of the diagonal. In Barton
(1988) several sources of radar measurement errors are presented:

Refraction The emitted electromagnetic waves are bent in the atmosphere, which
results in a range bias.

Local Oscillator The radar system uses an oscillator to clock the range counter.
Errors result in a range bias.

Receiver Delay A time delay in the receiver causes a range bias.

Drift of the Electrical Axis Sensor imperfections may cause the calibrated ver-
tical axis (electrical axis) to drift with respect to the mechanical vertical
axis, causing an azimuth or elevation bias, or both.

3.2.3 The Spherical Measurement Model with Cartesian
State Vector

In (3.6) both target position and sensor bias are given in the local spherical coor-
dinates of the sensor. In multisensor target tracking it is often desirable to track
the target in Cartesian coordinates, since it is straightforward to use linear tar-
get motion models in that case. This is especially true if the target position in
a universal Cartesian coordinate system is required. Suppose that we want to
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track the target in {u}, hence the target position is given by pu
k
. To get a proper

measurement model we need to express the measurement zk as a function of pu
k
.

An alignment bias and location bias is also added. The registration errors are
modeled as a difference between the assumed nominal coordinate system {n}
and the true coordinate system {s} of the sensor. First we express the target po-
sition in the local Cartesian coordinate system {s} for the sensor using Cartesian
coordinates

ps
k

= T snT
n
u

(
pu
k
− duun − buns

)
(3.10)

where the alignment bias is given by the Coordinate Transformation Matrix
(CTM) T sn from {n} to {s}, and the location bias is given by the displacement
vector buns =

[
bx by bz

]T . The alignment bias is the difference in orientation of
the two coordinate systems, while the location bias is the difference in position
of the coordinate system origins as seen in Figure 3.1. Note that buns = −busn.
The CTM is given by the Euler angles roll α, pitch β and yaw γ which corre-
spond to rotations about the x, y and z axes respectively (Zipfel, 2007). The
CTM depends on the sequence of Euler angle rotations. In this work we will use
the zyx convention where the first rotation is about the z axis, the second about
the y axis, and the third about the x axis. The Euler angles of the alignment bias
are assumed small, which yields a simplified CTM

T sn ≈ I + S (bsn) (3.11)

where I is the identity matrix and

bsn =
[
bα bβ bγ

]T (3.12)

S (bsn) =

 0 −bγ bβ
bγ 0 −bα
−bβ bα 0

 . (3.13)

The simplified CTM in (3.11) is independent of the Euler angle rotation se-
quence. Using (2.28) on (3.10) and inserting the result into (3.6) yields the
measurement model sought

zk = hs

(
T snT

n
u

(
pu
k
− duun − buns

))
+ b+ wk

wk ∼ N (0, Rδkl)

buns ∼ N (0, Bu
ns)

bsn ∼ N (0, Bs
n)

b ∼ N (0, B)

(3.14a)

(3.14b)
(3.14c)
(3.14d)
(3.14e)
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z

x

y

β

α

γ

{n}

{s}
~bns

Figure 3.1: Registration errors separating {s} from {n} described by an
alignment bias using the Euler angles α, β and γ, and a location bias~bns.

where

Bs
n =

σ2
bα

0 0
0 σ2

bβ
0

0 0 σ2
bγ

 (3.15a)

Bu
ns =

σ2
bx

0 0
0 σ2

by
0

0 0 σ2
bz

 . (3.15b)

3.2.4 The Cartesian Measurement Model with Cartesian
State Vector

Equation (3.14) is given in the local spherical coordinates of the sensor. It may
be useful to model the measurement in Cartesian coordinates, for instance if the
sensor performs coordinate conversion to Cartesian coordinates automatically.
Transforming (3.6) to Cartesian coordinates in {s} yields

zsk = hc (zk) (3.16)
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where hc (·) is the Coordinate Transformation Function (CTF) converting
spherical coordinates to Cartesian coordinates as given in (2.27). Linearization
yields a linear error model with time varying matrices.

zsk = hc (zk) = hc

(
%
k

+ b+ wk

)
≈ hc

(
%
k

)
+
∂hc
∂%

k

∣∣∣∣∣
%
k

b+
∂hc
∂%

k

∣∣∣∣∣
%
k

wk

= ps
k

+ Cs
kb+ wsk (3.17a)

wsk ∼ N (0, Rkδkl) . (3.17b)

where ps
k

is the local target position in Cartesian coordinates. The matrix Rk is
the measurement noise covariance matrix written in Cartesian coordinates

Rk =

R11 R12 R13

R12 R22 R23

R13 R23 R33

 (3.18)

where the matrix diagonal elements are

R11 = σ2
ρ cos2 θ̃k cos2 φ̃k + σ2

θ ρ̃
2
k sin2 θ̃k cos2 φ̃k + σ2

φρ̃
2
k cos2 θ̃k sin2 φ̃k (3.19a)

R22 = σ2
ρ sin2 θ̃k cos2 φ̃k + σ2

θ ρ̃
2
k cos2 θ̃k cos2 φ̃k + σ2

φρ̃
2
k sin2 θ̃k sin2 φ̃k (3.19b)

R33 = σ2
ρ sin2 φ̃k + σ2

φρ̃
2
k cos2 φ̃k, (3.19c)

and the off-diagonal elements are

R12 = σ2
ρ cos θ̃k sin θ̃k cos2 φ̃k − σ2

θ ρ̃
2
k sin θ̃k cos θ̃k cos2 φ̃k

+ σ2
φρ̃

2
k cos θ̃k sin θ̃k sin2 φ̃k (3.20a)

R23 = σ2
ρ sin θ̃k cos φ̃k sin φ̃k − σ2

φρ̃k sin θ̃k cos φ̃k sin φ̃k (3.20b)

R13 = σ2
ρ cos θ̃k cos φ̃k sin φ̃k − σ2

φρ̃
2
k cos θ̃k cos φ̃k sin φ̃k. (3.20c)

The conversion to Cartesian coordinates is done through linearization about the
target position %̃ in spherical coordinates where the coordinates are obtained us-
ing true, predicted or measured values. For more details on this conversion see
Appendix B.1. The expression for Rk can be rewritten to

Rk = Cs
kR (Cs

k)
T (3.21)

Cs
k =

cos θ̃k cos φ̃k −ρ̃k sin θ̃k cos φ̃k −ρ̃k cos θ̃k sin φ̃k
sin θ̃k cos φ̃k ρ̃k cos θ̃k cos φ̃k −ρ̃k sin θ̃k sin φ̃k

sin φ̃k 0 ρ̃k cos φ̃k

 . (3.22)
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where R is given by (3.7) and Cs
k is called a Sensor Bias Transformation Ma-

trix (SBTM). The measurement in local Cartesian coordinates is obtained by
inserting (3.10) into (3.17):

zsk = T snT
n
u

(
pu
k
− duun − buns

)
+ Cs

kb+ wsk (3.23a)

wsk ∼ N (0, Rkδkl) (3.23b)
buns ∼ N (0, Bu

ns) (3.23c)
bsn ∼ N (0, Bs

n) (3.23d)
b ∼ N (0, B) (3.23e)

3.2.5 The Cartesian Measurement Model without Biases

If the measurement biases are known, or they are small enough to be neglected,
the Cartesian measurement model without biases is obtained by treating the bi-
ases in (3.23) as zero which yields

zsk = T su

(
pu
k
− duus

)
+ wsk

wsk ∼ N (0, Rkδkl) .

(3.24a)

(3.24b)

3.2.6 The Bias Ignorant Cartesian Measurement Model

It is possible to account for the added uncertainty introduced by the biases with-
out estimating them. This is done by adding a zero-mean white Gaussian noise
vector ask which accounts for the uncertainty of the unestimated biases. The
bias ignorant Cartesian measurement model is obtained by ignoring the biases in
(3.23) assuming {s} = {n} and b = 0 which yields

zsk ≈ T nu

(
pu
k
− duun

)
+ ask + wsk

wsk ∼ N (0, Rs
kδkl)

ask ∼ N (0, Askδkl) .

(3.25a)

(3.25b)
(3.25c)

The covariance matrix Ask is defined as

Ask = Asn (k) + Auns (k) + Asb (k) (3.26)
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where Asn, Auns and Asb (time index omitted) are the added measurement noise
covariances due to the alignment bias, location bias and sensor bias respectively.
The sensor bias covariance matrix is

Asb (k) = Cs
kB (Cs

k)
T , (3.27)

and the location bias covariance matrix is

Auns =

σ2
bx

0 0
0 σ2

by
0

0 0 σ2
bz

 (3.28)

where the location bias variances in {u} are found as elements of the diagonal.
We will now calculate the alignment bias covariance matrix

Asn =

A11 A12 A13

A12 A22 A23

A13 A23 A33

 . (3.29)

The calculation is based on linearization about a known target position given by
x̃, ỹ and z̃, which could be estimates or measurements. Uncertainty in target
position is neglected. The true target position isxy

z

 =

 1 −bγ bβ
bγ 1 −bα
−bβ bα 1

x̃ỹ
z̃

 =

x̃− bγ ỹ + bβ z̃
ỹ + bγx̃− bαz̃
z̃ − bβx̃+ bαỹ

 . (3.30)

Assuming

E {bα} = E {bβ} = E {bγ} = E {bαbβ} = E {bαbγ} = E {bβbγ} = 0 (3.31)

the variances are

A11 = E
{
x2
}
− E {x}2

= ỹ2σ2
bγ + z̃2σ2

bβ
(3.32a)

A22 = x̃2σ2
bγ + z̃2σ2

bα (3.32b)

A33 = x̃2σ2
bβ

+ ỹ2σ2
bα (3.32c)

and the cross covariances are:

A12 = E {xy} − E {x}E {y}
= −x̃ỹσ2

bγ (3.33a)

A13 = −x̃z̃σ2
bβ

(3.33b)

A23 = −ỹz̃σ2
bα (3.33c)
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3.2.7 The Cartesian Measurement Model with Spherical
State Vector

In this section we will derive a nonlinear Cartesian measurement model which
will be used to prove Proposition 3.1 in Section 3.2.8. The measurement of target
position with sensor bias in spherical coordinates is given by

znk = T ns hc

(
%
k

+ b
)
− bnns + wnk . (3.34)

We choose the measurement in {n} to include alignment, location and sensor
biases in the measurement model. In the following we omit the time index k and
define

pn
k

= T ns hc

(
%
k

+ b
)
− bnns =

[
xb yb zb

]T
. (3.35)

We start with the measurement in spherical coordinates and its biases

ρb = ρ+ bρ (3.36a)
θb = θ + bθ (3.36b)
φb = φ+ bφ. (3.36c)

This measurement is transformed to Cartesian coordinates using (2.27), obtain-
ing

xz = ρb cos θb cosφb (3.37a)
yz = ρb sin θb cosφb (3.37b)
zz = ρb sinφb. (3.37c)

Adding the alignment and location biases we get the deterministic biased posi-
tion measurement in Cartesian coordinates

xb = xz − bγyz + bβzz − bx (3.38a)
yb = yz + bγxz − bαzz − by (3.38b)
zb = zz − bβxz + bαyz − bz (3.38c)
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Using (3.36), (3.37), (3.38) we get

xb = (ρ+ bρ) cos (θ + bθ) cos (φ+ bφ)

− (ρ+ bρ) bγ sin (θ + bθ) cos (φ− bφ)

+ (ρ+ bρ) bβ sin (φ+ bφ)− bx (3.39a)
yb = (ρ+ bρ) sin (θ + bθ) cos (φ+ bφ)

+ (ρ+ bρ) bγ cos (θ + bθ) cos (φ− bφ)

− (ρ+ bρ) bα sin (φ+ bφ)− by (3.39b)
zb = (ρ+ bρ) sin (φ+ bφ)

− (ρ+ bρ) bβ cos (θ + bθ) cos (φ+ bφ)

+ (ρ+ bρ) bα sin (θ + bθ) cos (φ+ bφ)− bz. (3.39c)

Using the following trigonometric relations

sin (θ + bθ) = sin θ cos bθ + cos θ sin bθ

≈ sin θ + bθ cos θ (3.40a)
cos (θ + bθ) = cos θ cos bθ − sin θ sin bθ

≈ cos θ − bθ sin θ (3.40b)

where the approximation is obtained through the small angle bias assumption,
and only including first order terms, we obtain

xb ≈ (ρ+ bρ) cos θ cosφ− (bθ + bγ) ρ sin θ cosφ

+ (bβ − bφ cos θ) ρ sinφ− bx (3.41a)
yb ≈ (ρ+ bρ) sin θ cosφ+ (bθ + bγ) ρ cos θ cosφ

− (bφ sin θ + bα) ρ sinφ− by (3.41b)
zb ≈ (ρ+ bρ) sinφ+ (bφ − bβ cos θ + bα sin θ) ρ cosφ− bz. (3.41c)

3.2.8 The Alignment Bias and the Sensor Angle Biases

Both the alignment bias bsn and the sensor bias b include angle biases, five in total.
Assuming that all angle biases are small, the CTM T sn represents all possible
rotations of {s} with respect to {n}. This means that it may be possible to
reduce the number of angles to estimate, without sacrificing performance.

Proposition 3.1
The effect of the sensor angle bias in azimuth can without loss of generality be
included into the alignment bias Euler angle yaw.
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Proof: Looking at (3.41) we see that bθ and bγ always appear as a sum. Since
both are constant they cannot be separated in a bias estimator. Only the sum is
observable, which is expected since bθ and bγ both are defined as a rotation about
the z axis. Thus we can choose to represent the sum of bθ and bγ either as bγ ,
which leads to bθ = 0, or vice versa. To prove the proposition we state that bγ
represents the sum of these biases, and set bθ = 0.

3.2.9 Universal, Absolute and Relative Bias Estimation

One way of estimating sensor measurement biases is to assume that all sensors
are biased with respect to a universal coordinate system, and try to estimate all
biases for all sensors. This is called universal bias estimation. Universal estima-
tion is not necessarily possible for all biases, and this will be discussed later. The
advantage of this method is that if successful, fused target estimates are unbi-
ased in a sensor independent coordinate system. An estimator using this method
is called a Universal Bias Estimator (UBE).

Another way of modeling biases is to choose one sensor as the master sensor.
The biases of the other sensors are estimated relative to this sensor. This makes
it possible to simplify the mathematical model for the measurement biases. Some
biases may for instance be additive under this assumption, and it is thus sufficient
to estimate a sum of biases instead of individual biases. The latter is usually the
case in universal bias estimation. If the resulting mathematical model in the-
ory leads to unbiased estimates in the master sensor coordinates, the estimator is
called an absolute bias estimator. The advantage of absolute bias estimation with
respect to universal bias estimation is that it is simpler to do successfully. The
disadvantage is that target tracks will be biased when they are transformed to a
universal coordinate system. If it is desired to track the targets in a coordinate
system associated to the master sensor, this method is well suited. An estimator
using this method is called an Absolute Bias Estimator (ABE).

A common method in the literature is to choose a master sensor and assume
that this sensor has no biases. The biases of the other sensors are estimated rela-
tive to this sensor. Successful use of this method leads to fused target estimates
that are biased with the neglected master sensor biases only. An estimator using
this method is called a Relative Bias Estimator (RBE).
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3.2.10 General Measurement Model for Universal Bias
Estimation

We seek a general measurement model for universal bias estimation which takes
into account all the sensor measurement biases discussed in Section 3.2. First
it is necessary to define in which coordinate system the targets will be tracked,
and we choose the coordinate system {u} which is independent of the sensors.
The transformation between {u} and the nominal sensor coordinate system {n}
is assumed known. Thus we use the results from Section 3.2.3. The target mea-
surement from Sensor i ∈ {0, 1, . . . ,M} is according to (3.14)

zii,k = hs

(
T siniT

ni
u

(
pu
k
− duuni − b

u
nisi

))
+ bi + wi,k

wi,k ∼ N (0, Rδkl)

(3.42a)

(3.42b)

where zii,k is the measurement in local spherical sensor coordinates, hs (·) is
the CTF from Cartesian to spherical coordinates, T sini is the CTM representing
the alignment bias, pu

k
is the target position, bunisi is the location bias, bi is the

sensor bias, wi,k is the white measurement noise and R is its covariance matrix
given by (3.7). The sensor bias includes biases in range and elevation since
according to Section 3.2.8 the sensor angle bias in azimuth is included in the
alignment bias Euler angle yaw. As stated in Section 3.2.4 it is possible to convert
spherical measurements to Cartesian coordinates. If this is desirable the target
measurement from Sensor i is according to (3.23)

zsii,k = T siniT
ni
u

(
pu
k
− duuni − b

u
nisi

)
+ Csi

k bi + wsii,k (3.43a)

wsii,k ∼ N
(
0, Rsi

i,kδkl
)

(3.43b)

where Csi
k is the SBTM from spherical to Cartesian coordinates given by (3.22),

and Rsi
i,k is the measurement covariance matrix given by (3.21). These matrices

are calculated based on linearization about the true values of ρ, θ and φ for the
target. Measured or estimated values can be used instead of the true values when
they are not available.

3.2.11 General Measurement Model for Absolute Bias
Estimation

In this section the models are derived assuming converted Cartesian target mea-
surements in order to simplify expressions and clarify the coordinate transforma-
tions involved. In absolute bias estimation a master sensor is chosen, whose true
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local Cartesian coordinates are denoted {s0}. The targets are tracked in these
coordinates.

3.2.11.1 Biased Sensor

In order to simplify the number of biases to estimate, some of the master sensor
biases are not estimated. To retain absolute accuracy these biases are modeled as
part of the biases of the biased sensors. Thus the biased sensor measurement is
affected by its own biases as well as the master sensor biases. Since the sensor
bias effect in Cartesian coordinates depends on target position, the sensor bias
needs to be estimated for all sensors. The alignment and location biases however,
are constant in Cartesian coordinates. Thus we will model the alignment and lo-
cation biases of the master sensor as part of the biases of the biased sensors.

The target is tracked in {s0}, thus the target position in the measurement
model must be ps0

k
. The target position in {n0} is given by

pn0

k
= T n0

s0

(
ps0
k
− bs0s0n0

)
(3.44)

where the alignment bias T n0
s0

and the location bias bs0s0n0
of the master sensor

are included. Since tracking is performed in the master sensor coordinate system
{s0}, the target measurement from a biased sensor should be expressed as a
function of the target position in {s0}. The target position in {si} is

psi
k

= T siniT
ni
n0
pn0

k
− dsin0ni

− bsinisi + Csi
k bi (3.45)

where the alignment bias T sini , the location bias bsinisi and the sensor bias bi of
the biased sensor have been added. To obtain the measurement equation of the
biased sensor we insert (3.44) into (3.45) and add measurement noise. The target
measurement from a biased sensor (Sensor i) at time k is

zsii,k = T siniT
ni
n0
T n0
s0

(
ps0
k
− bs0s0n0

− ds0n0ni
− bs0nisi

)
+ Csi

k bi + wsii,k (3.46a)

wsii,k ∼ N
(
0, Rsi

i,kδkl
)

(3.46b)

where the alignment bias is T sini , b
s0
nisi

is the location bias, and bi is the sensor
bias of Sensor i. Note that T n0

s0
and bs0s0n0

are the alignment and location biases
respectively of the master sensor. In absolute bias estimation we seek to reduce
the number of biases to be estimated, but retain the accuracy of the measurement
model. We manipulate (3.46a) to achieve this by including the master sensor
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Figure 3.2: Elevation alignment biases bβi and elevation angle βd due to the
curvature of the Earth.

biases in the biases of the other sensors. The location bias is straightforward, by
defining the relative location bias as

bs0s0si = bs0s0n0
+ bs0nisi . (3.47)

The location bias of Sensor 0 is thus included in all the relative location biases
of Sensor i. Hence these biases are correlated. The cross-covariances for Sensor
i and j, which follow from Definition 3.1, are

σbi,xbj,x = σ2
b0,x

(3.48a)

σbi,ybj,y = σ2
b0,y

(3.48b)

σbi,zbj,z = σ2
b0,z

(3.48c)

where σ2
b0,x

, σ2
b0,x

and σ2
b0,x

are the assumed location bias variances of Sensor 0.

To obtain one alignment bias in (3.46a) we define T sis0 = T siniT
ni
n0
T n0
s0

as the align-
ment bias to estimate. In general the Euler angles of T nin0

are arbitrary, thus the
Euler angles of T sis0 are not assumed small. Note that these Euler angles will be
correlated across the biased sensors.

Example 3.1
If the Euler angles of T nin0

are small enough, then T sis0 can be assumed small.
Given the maximum range of sensor coverage and the curvature of the Earth, it
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is possible to investigate whether the Euler angles of T sis0 can be assumed small.
Approximating the Earth as a sphere, its radius r can be approximated to 6371
km when conserving the area or volume of the Earth ellipsoid. An angle β is
assumed small when sin β ≈ β. Defining the angle β to be small when this is
true by a 1 % margin, it must obey

β ≤ π

13
. (3.49)

For two sensors this angle is the sum of an angle βd due to the distance between
them and the curvature of the Earth, and their respective alignment biases. As
seen from Figure 3.2

βd =
d

r
(3.50)

where d is the distance between the sensors. Denoting bβi as the worst case pitch
bias of sensor i, and using (3.49) and (3.50) we get

βd + bβ1 + bβ2 = β

d

r
+ bβ1 + bβ2 ≤

π

13
(3.51)

which must hold for the small angle assumption to be true by a 1 % margin.
Suppose that both sensors have a maximum range of 500 km, and that they have
the same worst case pitch bias. Setting d = 500 km, we get a worst case pitch
bias for each sensor of 82 mrad = 4.7◦. So if the biases are larger than this value,
the Euler angles of T sis0 cannot be assumed small. This discussion applies equally
to the roll bias bαi , but not the yaw bias bγi which is not affected by the curvature
of the Earth in this manner.

In the general case it is possible to define one alignment bias with small angles
for each sensor as described in the following proposition.

Proposition 3.2
The alignment bias for Sensor i can be approximated to

T sis0 = T siniT
ni
n0
T n0
s0
≈ T siT nin0

(3.52a)
T si = I + S (bsi) (3.52b)

S (bsi) = S
(
bsini
)
− T nin0

S
(
bn0
s0

)
T n0
ni

(3.52c)

ignoring higher order terms where T si is an alignment bias with small angles
and the angles of T nin0

are arbitrary and known.
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j

Figure 3.3: Two sensors with locations denoted by their vertical axes
(cross), z1 and z2, are each subject to a range bias. Each sensor measures the
position of Target j, and the measurements are represented by their value
(blue and red dots) and their covariance (blue and red ellipses). Requiring
the measurements to overlap yields a unique solution. The range biases are
exaggerated for illustrative purposes.

Proof: We will solve for the alignment bias T si using the following equation

T siniT
ni
n0
T n0
s0

= T siT nin0
(3.53a)(

I + S
(
bsini
))
T nin0

(
I − S

(
bn0
s0

))
= (I + S (bsi))T nin0

(3.53b)

where we have used (3.11). Performing matrix multiplications on the left hand
side and using the fact that I = T n0

ni
T nin0

we get

T siT nin0
=
(
I + S

(
bsini
)
− T nin0

S
(
bn0
s0

)
T n0
ni
− S

(
bsini
)
T nin0

S
(
bn0
s0

)
T n0
ni

)
T nin0

.
(3.54)

Neglecting the last higher order term we get

S (bsi) ≈ S
(
bsini
)
− T nin0

S
(
bn0
s0

)
T n0
ni

(3.55)

which has a solution if the right hand side is a skew symmetric matrix according
to (3.13). This is the case since both terms are skew symmetric matrices. The
second term is skew symmetric since it is a similarity transformation of a skew
symmetric matrix using orthogonal transformation matrices (Weisstein, 2013).

In general the master sensor bias cannot be included in the sensor bias of the
biased sensors. This can be seen from Cs0

k which is not constant and from Figure
3.3 which shows that the range directions of two sensors are not the same. In fact
this is only the case if the targets are located along the line connecting the two
sensors, or if the targets are so far away that the distance between the sensors can
be neglected. None of these assumptions are made herein. Finally we arrive at
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the target measurement from a biased sensor (Sensor i) at time k which is

zsii,k = T si
(
ps0
k
− ds0n0ni

− bs0s0si
)

+ Csi
k bi + wsii,k

wsii,k ∼ N
(
0, Rsi

i,kδkl
)
.

(3.56a)

(3.56b)

3.2.11.2 Master Sensor

The master sensor alignment bias is estimated through the estimation of the
alignment biases of the other sensors. The same applies to the location bias,
hence the only master sensor bias remaining is the sensor bias. The target mea-
surement in Cartesian coordinates from the master sensor (Sensor 0) at time k is
given by (3.17)

zs00,k = ps0
k

+ Cs0
k b0 + ws00,k

ws00,k ∼ N
(
0, Rs0

0,kδkl
)
.

(3.57a)

(3.57b)

3.2.12 General Measurement Model for Relative Bias
Estimation

In relative bias estimation a master sensor is chosen, whose true local Cartesian
coordinates are denoted {s′0}. In this case the master sensor biases will not be
estimated, which leads to tracking being performed in {s′0} rather than {s0}. The
alignment and location biases of the master sensor are included in the biases of
the biased sensors as in the previous section. However the sensor bias of the
master sensor is neglected and compensated for by increasing the measurement
noise.

3.2.12.1 Biased Sensor

We start by defining a zero-mean white Gaussian noise vector as0i,k which will
replace the sensor bias of the master sensor

as00,k ≈ Cs0
k b0 (3.58a)

as00,k ∼ N
(
0, As00,kδkl

)
(3.58b)

As00,k = Cs0
k B0 (Cs0

k )T (3.58c)
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where B0 is given by (3.9). The target measurement in Cartesian coordinates
for a biased sensor (Sensor i) at time k is approximated to

zsii,k ≈ T si
(
ps
′
0

k
+ as00,k − ds0n0ni

− bs0s0si
)

+ Csi
k bi + wsii,k. (3.59)

Defining

asii,k = T sias00,k (3.60a)

asii,k ∼ N
(
0, Asii,kδkl

)
(3.60b)

Asii,k = T siCs0
k B0 (T siCs0

k )T (3.60c)

we get

zsii,k ≈ T si
(
ps
′
0

k
− ds0n0ni

− bs0s0si
)

+ Csi
k bi + asii,k + wsii,k

wsii,k ∼ N
(
0, Rsi

i,kδkl
)
.

(3.61a)

(3.61b)

Note that because of this approximation we get a residual bias which may or
may not be small enough to be neglected.

3.2.12.2 Master Sensor

The target measurement in Cartesian coordinates from the master sensor (Sensor
0) at time k is given by

z
s′0
0,k = ps

′
0

k
+ w

s′0
0,k

w
s′0
0,k ∼ N

(
0, R

s′0
0,kδkl

)
.

(3.62a)

(3.62b)

3.3 Measurement Model Discussion

3.3.1 Summary

The system model uses the General Measurement Model for Universal Bias Es-
timation, i.e. (3.42) for all sensors, to produce measurements. The presented
measurement models will be used in the following estimators:

UBE The Universal Bias Estimator uses the General Measurement Model for
Universal Bias Estimation, i.e. (3.42) for all sensors.
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ABE The Absolute Bias Estimator uses the General Measurement Model for
Absolute Bias Estimation, i.e. (3.56) for all sensors except the master
sensor which is modeled by (3.57).

RBE The Relative Bias Estimator uses the General Measurement Model for Rel-
ative Bias Estimation, i.e. (3.61) for all sensors except the master sensor
which is modeled by (3.62).

3.3.2 General Measurement Model for Universal Bias
Estimation

The measurement model for the UBE is designed for tracking in a sensor inde-
pendent coordinate system. The measurement (3.43) is given in spherical coor-
dinates which coincides with the basic model for the sensor measurement (3.6).
The primary benefit of this model is that it enables estimation of all biases for all
sensors, which makes it possible to transform a target position to any known co-
ordinate system as long as the biases are successfully estimated. The drawbacks
of this model are a large number of unknowns (target state and biases) to be es-
timated, and the fact that the location bias is unestimable if all sensor locations
are biased and all targets are moving.

3.3.3 General Measurement Model for Absolute Bias
Estimation

The measurement model for the ABE is designed for tracking in the coordinate
system of a master sensor. The measurement (3.56) is given in Cartesian coordi-
nates because that allows us to have a linear measurement model for the master
sensor. The measurement model is mathematically equivalent to the measure-
ment model of the UBE, but tracking in master sensor coordinates leads to a
reduction of unknowns with respect to the UBE. The ABE is able to estimate
all of the biases treated herein. In the development of the ABE it is shown that
the model holds for small alignment biases even if the coordinate transformation
from a biased sensor to the master sensor involves large angles.

3.3.4 General Measurement Model for Relative Bias
Estimation

The measurement model for the RBE is designed for tracking in the coordinate
system of a master sensor where its biases are not estimated. The measurement
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(3.61) is given in Cartesian coordinates because that allows us to have a linear
measurement model for the master sensor. The number of unknowns is reduced
with respect to the ABE since the master sensor biases are not estimated. They
are however compensated for by adding measurement noise. The primary ad-
vantage of the RBE is a further reduction of unknowns yielding a simpler model
than the ABE. It is in fact an approximation of the ABE, and in many cases
the RBE may perform just as well as the ABE. Note that this approximation
leads to tracking in different coordinate systems for the master sensor and the
biased sensors respectively. Since the master sensor biases are not estimated, the
measurements from the biased sensors cannot be transformed to the coordinate
system where the master sensor measurement is represented and vice versa. This
leads to a residual bias, and its size determines the difference in performance of
the RBE with respect to the ABE.

3.4 The Static Cramer-Rao Lower Bound

Now that the measurement models include all the biases of interest, the funda-
mental question becomes: Is it possible to find all the biases present, and the
positions of all the targets? In this section we will look at stochastic estimability
conditions, that is what conditions need to be fulfilled in order to estimate suc-
cessfully all the biases present and all the target positions. Note that a bias can be
strongly or weakly estimable, which is different from deterministic observability
where the bias is either observable or not. Observability is a necessary condition
in order to have estimability. We limit the discussion to cases where the number
of targets and sensors is limited.

3.4.1 The Estimability Index

The static Cramer-Rao Lower Bound (CRLB) is a useful tool to quantify estima-
bility, since it yields the lower bound for estimator performance.

Definition 3.2. A variable is estimable if the measurements available lead to a
decrease in its variance with respect to its prior variance using the static CRLB.

Prior variance is included as additional measurements of the state vector.
Using the CRLB to define estimability has previously been suggested in Bar-
Shalom et al. (2001). The bias is weakly estimable if the decrease is small, and
strongly estimable if the decrease is large. If there is no decrease, the bias is
unestimable. For details on the static CRLB see Section 2.1.1. We will study
estimability by plotting an estimability index defined as follows.
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Definition 3.3. The estimability index η for the state vector x with normalized
CRLB positive definite covariance matrix Pn is

η = 1−
√
λmax (3.63)

where λmax > 0 is the largest eigenvalue of Pn giving η ≤ 1. The covariance
matrix Pn is normalized using the current and prior CRLB covariance matrices P
and P0 respectively. The normalization of the matrix elements is done according
to

Pm = MT
0 PM0 (3.64a)

Pn (i, j) = Pm (i, j) /
√

Λ0 (i, i) Λ0 (j, j) (3.64b)

where i and j are matrix indices and P is given by (2.5). The diagonal Eigen-
value matrix Λ0 is obtained from

Λ0 = MT
0 P0M0 (3.65)

where Λ0 contains the Eigenvalues of P0 along its diagonal, and M0 is the or-
thonormal Eigenvector matrix of P0.

It is possible to simplify (3.64) in the case where P0 is diagonal. In that case
it is possible to choose Λ0 = P0 and M0 = I according to (3.65). Thus (3.64)
simplifies to

Pn (i, j) = P (i, j) /
√
P0 (i, i)P0 (j, j). (3.66)

Note that using λmax in (3.63) is equivalent to using the matrix 2-norm for pos-
itive definite symmetric matrices. If P (i, j) ≤

√
Λ0 (i, i) Λ0 (j, j), all elements

of Pn are between 0 and 1 and η ∈ [0, 1]. If the matrix 2-norm of P has increased
with respect to the matrix 2-norm of P0, λmax > 1 and η < 0. From (3.63) it is
seen that η ≤ 1 which should be interpreted as follows.

η = 1 The state vector elements are estimable and known exactly using the
available measurements.

0 < η < 1 The state vector is estimable, and the variance of all elements has
decreased.

η = 0 The state vector is unestimable since at least one linear combination of
the state vector elements has unchanged variance. Variance may have de-
creased in other directions in the state space.



3.4 The Static Cramer-Rao Lower Bound 51

η < 0 The state vector is unestimable since at least one linear combination of the
state vector elements has increased variance. Variance may have decreased
in other directions in the state space.

We are now ready to define estimability for a set of biases.

Definition 3.4. A set of biases is estimable if 0 < η ≤ 1 for the set. The
estimability index is calculated for the submatrix of Pn which corresponds to the
elements of the set.

In this work examples of sets of biases are the alignment bias, location bias
and sensor bias. Note that

√
λmax is the semimajor axis of the covariance el-

lipsoid of Pn. The square root in (3.63) is used to quantify improvement in
standard deviation, instead of variance. This choice is made because it is com-
mon to refer to uncertainty in standard deviation, for instance when plotting one
sigma curves. The following example provides more explanations regarding the
estimability index.

Example 3.2
In this example we will look at how the normalized covariance matrix Pn changes
after consecutive measurement updates, and the associated values of the estima-
bility index η. Suppose that we have the prior 2D covariance matrix

P̄0 =

[
2 0.2

0.2 1

]
. (3.67)

Furthermore we assume that we receive two measurement updates, and we will
verify that the resulting normalized covariance matrix is the same regardless of
the processing order of these measurements. One measurement measures the
sum of the state vector elements with the measurement matrix H0 =

[
1 1

]
, and

the other measurement is of the first element where H1 =
[
1 0

]
. The measure-

ment noise variance is R = 0.3. In the first case H0 is processed first, then H1.
Figure 3.4a shows the covariance ellipses of P̄0, P̂0 and P̂1 where P̂0 and P̂1 are
the resulting covariance matrices after the first and second measurement updates
respectively. The corresponding normalized covariance matrices P̄n0 , P̂n0 and
P̂n1 are also shown. These are normalized with respect to P̄0. Figure 3.4b shows
the same kind of plot, but in this case the measurement updates are reversed.
We see that P̂1 and P̂n1 are the same in both cases with η = 0.3412 showing
that the problem is estimable. The covariance matrices after one measurement
update P̂0 and P̂n0 differ in Figure 3.4a and Figure 3.4b, but in both figures the
associated η = 0. We understand that both measurement updates are needed to
get estimability with respect to P̄0.
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Figure 3.4: The plots show unnormalized (blue) and normalized (red) co-
variance ellipsoids. In (a) the measured sum of the state vector elements is
processed first, and in (b) the first element is measured first.
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In general when using the estimability index, care must be taken in the choice
of the covariance matrix used to normalize the posterior covariance matrix. In
this work the measurements are processed simultaneously in an augmented state
vector, and the normalization is done with respect to the prior covariance matrix.
If measurements are processed sequentially, one should in general not normalize
with respect to the previously computed covariance matrix, i.e. the covariance
matrix obtained after processing the previous measurement. The reason for this
is that it is possible to get an estimability index of 0 after processing each mea-
surement, even if after processing several measurements the covariance in all
state space directions has decreased. This is possible because each measurement
may decrease covariance in some directions, and not in others. In fact if covari-
ance is not decreased in at least one direction after each measurement, and this
direction changes with each measurement, covariance will decrease in all direc-
tions after processing several measurements, but the estimability index may still
be zero for each covariance update.

3.4.2 Linearization of Measurement Error Model

To compute the CRLB the measurement error is linearized about the augmented
true state vector x. The nominal state vector is denoted x̃. For M + 1 sensors
and N targets

z = h (x) + w (3.68)

where h is the nonlinear measurement model which we linearize about x to

δz = Hδx+ w (3.69)

where

δx = x− x̃ (3.70a)
δz = z − z̃ (3.70b)

H =
∂h (x)

∂xT

∣∣∣∣
x

. (3.70c)

To simplify notation below we define the target position p
j

to be equal to pu
j

or
ps0
j

in the universal and absolute/relative case respectively. Analogously the bias
vector bi below contains all appropriate alignment, location and sensor biases.
The state vector x and measurement vector z for Sensor i ∈ 0, 1, . . . ,M and
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Target j ∈ 1, 2, . . . , N are

x =
[
(p

1
)T (p

2
)T . . . (p

N
)T (b0)T (b1)T . . . (bM)T

]T
(3.71)

z =
[

(b̄0)T (b̄1)T . . . (b̄M)T (zs01 )T (zs02 )T . . . (zs0N )T (zs11 )T

(zs12 )T . . . (zs1N )T . . . (zsM1 )T (zsM2 )T . . . (zsMN )T
]T (3.72)

where x̃ = 0, z̃ = 0 and the prior bias mean b̄i = 0. The augmented measurement
error covariance matrices for a Cartesian measurement are given by

Ra =


Ba 0 0 . . . 0
0 Rs0 0 . . . 0
0 0 Rs1 . . . 0
...

...
... . . . ...

0 0 0 . . . RsM

 (3.73a)

Ba =


Bs0 0 . . . 0
0 Bs1 . . . 0
...

... . . . ...
0 0 . . . BsM

 (3.73b)

Bsi =

Bsi
ni

0 0
0 Bsi

nisi
0

0 0 Bi

 (3.73c)

Rsi =


Rsi

1 0 . . . 0
0 Rsi

2 . . . 0
...

... . . . ...
0 0 . . . Rsi

N

 (3.73d)

Rsi
j = CT

i,jRCi,j (3.73e)

where the submatrices ofBsi are given by (3.9) and (3.15),R is the measurement
noise covariance matrix in spherical coordinates given by (3.7), and Ci,j = Csi

k

for Target j given by (3.22). Note that we linearize about the true state vector
because we want to calculate the CRLB without errors caused by incorrect lin-
earization. When the truth is unknown the estimated or the predicted state vector
can be used. Regarding computation of the estimability index, we see that Ba is
diagonal, hence in the following we can use (3.66) to compute η with (3.63).

3.4.3 The Effect of Geometry and Measurement Noise

Measurement noise and the geometry of the problem decides if there is enough
information to estimate the biases. This includes:
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1. Number of targets and their positions.

2. Number of sensors and their locations.

3. Target motion models.

White measurement noise has an important impact on estimability, since an
estimable measurement bias can become unestimable as the noise increases.
This means that the effect of the bias on the measurement is hidden because
of the noise. Assuming that the target is positioned at long range, the angular
measurement noise variances σ2

θ and σ2
φ are the dominant noise sources. This

is because their contribution to the measurement noise in Cartesian coordinates
increases with range. Thus σ2

ρ can be neglected. At long range φ is assumed
small. Using these assumptions on the covariance conversion formulas in (3.19)
we get

R11 ≈ σ2
θ ρ̃

2 sin2 θ̃ (3.74a)

R22 ≈ σ2
θ ρ̃

2 cos2 θ̃ (3.74b)
R33 ≈ σ2

φρ̃
2 (3.74c)

where (̃·) denotes the value used for linearization. Equation (3.74) shows that
σ2
θ is dominant in the xy plane, and that σ2

φ only affects the z axis. The corre-
sponding cross covariance is given by using (3.20)

R12 ≈ −σ2
θ ρ̃

2 sin θ̃ cos θ̃ (3.75a)

R23 ≈ −φ̃σ2
φρ̃

2 sin θ̃ (3.75b)

R13 ≈ −φ̃σ2
φρ̃

2 cos θ̃. (3.75c)

3.4.4 Estimability Contours and Sensitivity Analysis

We assume T niu = T nin0
= I and that the Euler angles in T siu and T sis0 are small.

Hence the alignment bias is represented by T siu and T sis0 in the universal and ab-
solute/relative cases respectively, and (3.11) applies. To study the estimability
given by the CRLB matrix we make a contour plot of the smallest estimabil-
ity index of the biases sought using a grid in the state space. These plots are
geometric plots where the position of Target 1 changes. The measurements are
originally in spherical coordinates, and then converted to Cartesian coordinates.
Table 3.1 shows the simulation parameters used. The plots are presented with a
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value at a given position together with contour resolution in order to derive val-
ues elsewhere in the state space. In addition to the geometric plots we present a
plot of estimability in function of the angular measurement noise standard devi-
ations σθ and σφ. These plots are used for sensitivity analysis where Target 1 has
been placed in a given horizontal position in the geometric plot. The plots are
given for the simplest bias estimation scenarios, and then expanded to more com-
plicated scenarios which can be used to compare universal, absolute and relative
bias estimation.

Table 3.1: Altitude of sensors (z) and targets (pz), prior bias standard devi-
ations (σbα , σbβ , σbγ , σbx , σby , σbz , σbρ , σbθ , σbφ), and measurement standard
deviations (σρ, σθ, σφ).

z pz σbα , σbβ , σbγ , σbθ , σbφ σbx , σby , σbz , σbρ σρ σθ, σφ

0 m 1000 m 5 mrad 20 m 20 m 0.5 mrad

3.4.5 The Alignment Bias

Since in this case the only measurement bias present is the alignment bias,
(3.43a) and (3.46a) are used with bunisi = bs0s0n0

= bs0nisi = bi = b0 = 0 which
leads to

zsij = T siu

(
pu
j
− duuni

)
+ wsij (3.76)

for the universal case and

zsij = T sis0

(
ps0
j
− ds0n0ni

)
+ wsij (3.77)

for a biased sensor in the absolute and relative case. The displacement vectors
duuni and ds0n0ni

are known, and j is a target index. The time index k is omitted
since all states are assumed static in the following analysis. The measurement
vector and noise vector notation is simplified to zsii,j = zsij and wsij = wsii,j respec-
tively. The subscript i indices are removed because the measurement coordinates
do not change. Thus the i index of {si} denotes the measurement origin as well
as coordinate system.

Figure 3.5a and Figure 3.6a show the smallest estimability index for simple
scenarios where all the alignment biases become estimable. In these scenarios
there is no such thing as a least estimable bias. Rather there is a least estimable
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Figure 3.5: Universal estimability index of all bsini in function of geometry
and measurement noise where the contour resolution is 0.05, and lighter
contours indicate a larger estimability index. Figure (a) shows a geometri-
cal estimability plot with axis unit km, and the contour value at (41,−41).
Triangles and stars show targets and sensors respectively. Figure (b) shows
a measurement sensitivity plot when Target 1 is in (41,−41) in (a), and the
contour value at (12.5, 12.5) is displayed. The axis unit is mrad.

direction in the bias space, since the Euler angles are all correlated. This di-
rection can be found through the eigenvectors of the submatrix of the CRLB
containing the biases. Note that the estimability contours for two sensors show
that all three Euler angle biases are unestimable in the universal sense, which
is because any rotation of the targets about the line connecting the two sensors
will yield the same measurements, as explained in Example 3.3. Figure 3.5a and
Figure 3.6a show the importance of having well spread targets. Placing target 1
near another target has a low impact on estimability, which is expected as there
is little new geometric information in that case. In fact Figure 3.6a shows that the
absolute and relative alignment bias is unestimable if the targets and the biased
sensor are located along the same line. This is expected according to Example
3.5.

Figure 3.5b and Figure 3.6b show sensitivity analysis plots. Note the sub-
stantial difference of universal versus absolute/relative estimability. In Figure
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Figure 3.6: Absolute and relative estimability index of bs1n1
in function of

geometry and measurement noise where the contour resolution is 0.05, and
lighter contours indicate a larger estimability index. Figure (a) shows a
geometrical estimability plot with axis unit km, and the contour value at
(41,−41). Triangles and stars show targets and sensors respectively. Figure
(b) shows a measurement sensitivity plot when Target 1 is in (41,−41) in
(a), and the contour value at (12.5, 12.5) is displayed. The axis unit is mrad.

3.5b the contour for η = 0.05, denoted η0.05, intersects with σφ ≈ 3 mrad, while
η0.05 intersects with σφ ≈ 9 mrad in Figure 3.6b. The sensitivity to measure-
ment noise is greater in the universal case since more information is extracted
from the measurements as there are more biases to estimate. Note that Figure
3.5b and Figure 3.6b show stronger sensitivity with respect to σφ compared to
σθ. This can be explained from (3.74) where it is seen that when σθ = σφ, the
covariance in the xz and yz planes is larger than in the xy plane. Increasing σφ
yields a strong increase in covariance for the xz and yz planes. An increase in
σθ has less effect since σ2

θ is multiplied by sin2 θ̂ or cos2 θ̂.

Example 3.3

Suppose that we have an arbitrary number of sensors that are located along a line.
Without loss of generality, assume that they have the same x and y coordinates in
{u}. The sensors are thus located along the z axis. Assume that Sensor i is only
subject to a small alignment bias angle γi about the x axis. The deterministic
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Figure 3.7: Figure (a) shows a scenario where two sensors are located along
the same axis z1 = z2, denoted by a cross. Each sensor measures the posi-
tion of Target j, and the measurements are represented by their value (blue
and red dots) and their covariance (blue and red uncertainty intervals). Re-
quiring the measurements to overlap we obtain multiple solutions. One
solution is given by γi, and another by γ′i. In Figure (b) the two sensors are
located along different axes, z1 and z2, and a unique solution is found. The
angles are exaggerated for illustrative purposes.

target measurement is

xzi = x− γiy (3.78a)
yzi = y + γix (3.78b)
zzi = z (3.78c)

where xzi , yzi , zzi are the measured target coordinates, and x, y, z are the
true target coordinates. Requiring the true target coordinates to be equal for all
sensors i ∈ {1, 2, . . . ,M}, and recalling that all sensors have the same x and
y coordinates, yields γi equal for all sensors. Thus γi can have any value as
long as it is small. Figure 3.7a shows a scenario where there are two sensors
receiving one measurement of the position of Target j each. The measurements
are given by their measured position values and covariances. The alignment bias
γi of Sensor i is estimated by requiring the measurements and their covariance
to overlap under the constraint that γi is small. In Figure 3.7a this problem has
multiple solutions since any solution satisfying γ1 + γ2 = δ can be used. For M
sensors we get

γ1 + γ2 + . . .+ γM = δmax (3.79)

where δmax is the largest possible angle difference δ about the x axis of any two
measurements. Because there are multiple solutions to the problem, all γi are
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unobservable when performing universal bias estimation. This problem only oc-
curs for a rotation angle about the line connecting the sensors. The unobservable
angle always exists when the sensors are located along a line, and will in gen-
eral be a linear combination of the Euler angle biases of each sensor. Thus it is
impossible to estimate the alignment bias of individual sensors located along the
same line.

Example 3.4
Universal observability can be achieved if at least one sensor is not located along
a line connecting the other sensors, as shown in Figure 3.7b for two sensors
where Sensor i has an γi bias. Requiring the measurements to overlap yields
a unique solution, with associated covariance, under the assumption that γi is
small. Note that if γi is arbitrary, the problem has two solutions, and γi is thus
unobservable. Hence three sensors are required to get observability for the align-
ment biases of all sensors, since two sensors are always located along a line.

Example 3.5
Suppose that there are two targets (Target 1 and Target 2), one master sensor
(Sensor 0) and one biased sensor (Sensor 1). Assume that Target 1 is located
on the line connecting Sensor 1 and Target 2. In that case the position of Target
1 is a linear function of the position of Target 2, thus making Target 1 linearly
dependent on Target 2. Thus Target 2 does not provide more information on the
alignment bias of Sensor 1, hence the bias is unestimable.

3.4.6 The Location Bias

The location bias can only be found by adding a sensor without a location bias,
otherwise only relative locations are observable. The reason is that without a
known location of a sensor, a displacement applied to all sensors and targets
conserving the sensor’s latitude will yield the same measurements. This is be-
cause the Earth ellipsoid is rotationally symmetric about the polar axis, i.e. a
spheroid. If a flat Earth is assumed, a location bias applied to all sensors will
result in a case where no points in space are known. Thus the location bias is un-
observable and unestimable universally. In the absolute and relative case where



3.4 The Static Cramer-Rao Lower Bound 61

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

S0S1

T2

0.22

x

y

(a)

2 4 6 8 10 12

2

4

6

8

10

12
0

σθ
σ
φ

(b)

Figure 3.8: Absolute and relative estimability index of bs0s0s1 in function
of geometry and measurement noise where the contour resolution is 0.02,
and lighter contours indicate a larger estimability index. Figure (a) shows
a geometrical estimability plot with axis unit km, and the contour value at
(41,−41). Triangles and stars show targets and sensors respectively. Figure
(b) shows a measurement sensitivity plot when Target 1 is in (41,−41) in
(a), and the contour value at (12.5, 12.5) is displayed. The axis unit is mrad.

Sensor 0 is a master sensor, and the location bias is the only measurement bias,
the measurement of a biased Sensor i is (3.46a)

zsij = ps0
j
− ds0n0ni

− bs0s0si + wsij (3.80)

where we have used that T sini = T s0n0
= T nin0

= I and bi = b0 = 0. Note that (3.80)
is linear, and that the effect of the location bias does not change with target po-
sition, as opposed to the alignment bias. Hence no new geometrical information
is gained when adding targets. Figure 3.8a shows an estimability plot, where it
is seen that the bias is estimable everywhere in the plot region for the two target
case. Estimability decreases with target range since the measurement noise in-
creases. The measurement noise sensitivity analysis is presented in Figure 3.8b
where η0.05 is situated at σθ ≈ 2.5 mrad. We see that there is strong sensitivity to
σθ, and weak sensitivity to σφ. This can be explained by examining (3.74) and
(3.75). An increase in σθ leads to an increase in measurement noise in both x
and y directions, affecting the estimability of both bx and by. Furthermore the
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measurement cross covariance in the xy plane is also increased. This increase is
larger than the corresponding effect of increasing σφ.

3.4.7 The Sensor Bias

In this section we analyse the sensor bias bi which is assumed to be the only
measurement bias present. Using T siu = I and bunisi = 0, (3.43a) yields

zsij = pu
j
− duuni + Csi

j bi + wsij (3.81)

for the universal/absolute case. For the relative case using T sini = T nin0
= I and

bs0s0n0
= bs0nisi = 0 (3.56a) becomes

zsij = ps0
j
− ds0n0ni

+ Csi
j bi + wsij . (3.82)

Neither (3.81) nor (3.82) are well suited to interpret how the sensor bias evolves
in Cartesian coordinates, since the matrix Csi

j is a function of spherical coor-
dinates (3.22). To get a better understanding of the sensor bias evolution, it is
desirable to have a Cartesian sensor measurement which is a function of Carte-
sian coordinates. This can be achieved by using

zsij = hc

(
hs

(
pu
j
− duuni

)
+ bi

)
+ wsij

= h
(
pu
j
, bi

)
+ wsij . (3.83)

Denoting

pni
j

= pu
j
− duuni (3.84)

p
j

= hs

(
pni
j

)
+ bi, (3.85)

using (2.28) and pni
j

=
[
xn yn zn

]T , p
j

=
[
ρ θ φ

]T in spherical coordinates
is given by

ρ =
√
x2
n + y2

n + z2
n + bρ (3.86a)

θ = arctan
yn
xn

+ bθ (3.86b)

φ = arcsin
zn√

x2
n + y2

n + z2
n

+ bφ. (3.86c)

Using (2.27) and

psi
j

= hc

(
p
j

)
(3.87)
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we calculate psi
j

=
[
xb yb zb

]T :

xb = ρ cos θ cosφ = ρ
sin θ

tan θ

sinφ

tanφ
(3.88a)

yb = ρ sin θ cosφ = ρ sin θ
sinφ

tanφ
(3.88b)

zb = ρ sinφ (3.88c)

Using (3.40), the trigonometric equalities

arctan a = arcsin
a√
a2 + 1

(3.89a)

arcsin a = arctan
a√

1− a2
(3.89b)

and neglecting products of the sensor bias elements we get the derivatives of
h =

[
hx hy hz

]T with respect to bρ:

∂hx
∂bρ

=
xn

√
1− z2n

x2n+y2n+z2n√
x2
n + y2

n

(3.90a)

∂hy
∂bρ

=
yn

√
1− z2n

x2n+y2n+z2n√
x2
n + y2

n

(3.90b)

∂hz
∂bρ

=
zn√

x2
n + y2

n + z2
n

(3.90c)

It is seen that there is much information about bρ in the Cartesian coordinates x
and y, and less information in z. This is expected since almost all information
about bρ is in the xy plane for small elevation angles. There is no information in
x and y when the target and sensor share the same x and y coordinates. Since in-
formation about the range bias bρ is strong in x and y, it is universally estimable.
Given one target and two sensors with range biases, and neglecting the informa-
tion in z, there are four measurements and four unknowns. The measurement
equations are linearly independent since the effect of the range bias depends on
the sensor locations, and these are assumed different. Hence universal estimabil-
ity is achieved.
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The derivatives of h with respect to bθ are

∂hx
∂bθ

= −yn (3.91a)

∂hy
∂bθ

= xn (3.91b)

∂hz
∂bθ

= 0 (3.91c)

and the derivatives of h with respect to bφ are

∂hx
∂bφ

= − xnzn√
x2
n + y2

n

(3.92a)

∂hy
∂bφ

= − ynzn√
x2
n + y2

n

(3.92b)

∂hz
∂bφ

=

√
1− z2

n

x2
n + y2

n + z2
n

. (3.92c)

There is much information about the azimuth bias bθ in the xy plane, except for
the case where the target is very close to the sensor, and no information in the
z direction. Information about the elevation bias bφ is primarily found in the z
direction, but as long as zn is not close to zero, some information is found in the
xy plane. If zn is fixed and target range increases, information in the xy plane is
reduced.

Figure 3.9 and Figure 3.10 show estimability plots for the range bias in the
universal/absolute and relative case respectively. Note the large differences in
estimability for Figure 3.9a and Figure 3.10a. In Figure 3.9a strong estimability
only occurs at close range, while Figure 3.10a shows strong estimability every-
where in the plotted region. The measurement noise sensitivity can be found in
Figure 3.9b and Figure 3.10b. Both plots show strong sensitivity to σθ, and al-
most no sensitivity to σφ.

The weak estimability in Figure 3.9a is caused by two factors. At y = 0
(3.90b) becomes zero for both sensors. Given small elevation angles (3.90c)
is approximately zero, hence information about bρ is only available from the x
position of the target. Thus there are two x measurements that can be used to
determine the two biases bρ, yielding 2 equations and 3 unknowns (target x po-
sition and two biases). This problem occurs when y = 0 for both sensors and
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Figure 3.9: Universal and absolute estimability index of bρ1 (range only) in
function of geometry and measurement noise where the contour resolution
is 0.02, and lighter contours indicate a larger estimability index. Figure (a)
shows a geometrical estimability plot with axis unit km, and the contour
value at (0, 0). Triangles and stars show targets and sensors respectively.
Figure (b) shows a measurement sensitivity plot when Target 1 is in (0, 0)
in (a), and the contour value at (12.5, 12.5) is displayed. The axis unit is
mrad.

z �
√
x2 + y2 + z2 for at least one of the sensors. The latter is not true be-

tween the sensors, which explains the stronger estimability in that region. Note
that y = 0 corresponds to the general case where the target is on the line con-
necting the two sensors.

The other factor that creates weak estimability in Figure 3.9a is the increas-
ing noise in Cartesian coordinates where the noise depends on target range. This
is due to the angular measurement noise in azimuth and elevation. At long range
the noise leads to weaker estimability for universal and absolute range biases.

Figure 3.11 and Figure 3.12 show estimability plots for the azimuth and el-
evation biases in the universal/absolute and relative case respectively. Figure
3.11a shows that in the universal and absolute case, well spread targets is im-
portant to achieve strong estimability. Figure 3.11b shows a strong sensitivity to



66 3 Measurement Modeling and Estimability

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

S0S1

T2

0.61

x

y

(a)

2 4 6 8 10 12

2

4

6

8

10

12
0.44

σθ
σ
φ

(b)

Figure 3.10: Relative estimability index of bρ1 (range only) in function
of geometry and measurement noise where the contour resolution is 0.02,
and lighter contours indicate a larger estimability index. Figure (a) shows
a geometrical estimability plot with axis unit km, and the contour value at
(0, 0). Triangles and stars show targets and sensors respectively. Figure (b)
shows a measurement sensitivity plot when Target 1 is in (0, 0) in (a), and
the contour value at (12.5, 12.5) is displayed. The axis unit is mrad.

measurement noise in elevation. Figure 3.12a shows strong estimability every-
where in the relative case, except when the target is close to the biased sensor.
Figure 3.12b shows strong sensitivity to measurement noise in azimuth.

In the universal and absolute case, bφ is less estimable than bθ since z �√
x2 + y2 everywhere except close to the sensors. This leads to larger measure-

ment noise in the z direction. Therefore, an increase in σφ has a strong effect
on estimability since it affects estimability of bφ directly. In the relative case
the difference in estimability is smaller because the master sensor biases are not
estimated.

3.4.8 Universal Alignment and Sensor Bias

The following combinations of universal alignment and sensor bias are unes-
timable:
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Figure 3.11: Universal and absolute estimability index of b1 (azimuth and
elevation) in function of geometry and measurement noise where the con-
tour resolution is 0.02, and lighter contours indicate a larger estimability
index. Figure (a) shows a geometrical estimability plot with axis unit km,
and the contour value at (−41,−41). Triangles and stars show targets and
sensors respectively. Figure (b) shows a measurement sensitivity plot when
Target 1 is in (−41,−41) in (a), and the contour value at (12.5, 12.5) is
displayed. The axis unit is mrad.

• Alignment and sensor bias.

• Alignment and range bias.

• Alignment and elevation bias.

Recall that the alignment yaw bias and sensor azimuth bias are the same angle.
When the estimator is allowed to adjust sensor alignment and target range or el-
evation for all sensors, the bias estimation problem has several solutions. This
means that several values of each individual bias yield the same target measure-
ments. Since the alignment and sensor bias are estimable individually, a possible
solution is to use some targets to estimate the alignment bias, ignoring the sensor
bias, and vice versa.
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Figure 3.12: Relative estimability index of b1 (azimuth and elevation) in
function of geometry and measurement noise where the contour resolution
is 0.02, and lighter contours indicate a larger estimability index. Figure (a)
shows a geometrical estimability plot with axis unit km, and the contour
value at (−41,−41). Triangles and stars show targets and sensors respec-
tively. Figure (b) shows a measurement sensitivity plot when Target 1 is in
(−41,−41) in (a), and the contour value at (12.5, 12.5) is displayed. The
axis unit is mrad.

3.4.9 Absolute and Relative Alignment, Location and
Sensor Bias

The alignment, location and sensor biases are all estimable in the absolute and
relative cases. The biggest difference lies in estimation of the sensor range bias
which in the absolute case requires targets at shorter range to become estimable.



4
Bias Estimation and Data Fusion

for Distributed Radars in 3D
An important property of a multisensor data fusion scheme in a target tracking
scenario is to be able to improve tracking by adding more sensors. This property
is challenging to implement because of unknown sensor measurement biases.
Not accounting for these may lead to more false tracks and poor performance. It
is desirable to find all of these biases from measurements from common targets.
We consider a network of 3D sensors observing targets of opportunity which re-
turn measurements in spherical coordinates. The measurements are subject to
biases due to uncertain sensor alignment and location, and biases from sensor
imperfections.

Section 4.1 presents simulation results where the estimability conclusions
from Section 3.4 are used to create interesting simulation scenarios for targets
moving at constant velocity. In Section 4.2 the targets are moving at constant
altitude, and the curvature of the Earth is taken into account.

4.1 Constant Velocity Flight with Monte Carlo
Simulations

The estimability results in the previous section are valid for static targets. In
this section the targets are moving at constant velocity, however the estimability
plots for static targets can be used to predict estimability for moving targets. A
target moving at constant velocity yields information about a line, whereas a

69
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Figure 4.1: Simulation scenario for bias estimation. The stars represent
sensors, and the arrows represent targets which start at the tail of the arrow,
and end at the arrow tip. The axis unit is km.

static target yields a point. A line includes more geometric information than a
point, thus bias estimability should be improved. In the following we investigate
bias estimator performance in Monte Carlo (MC) simulations. Since there is an
infinity of simulation scenarios possible, we will use the estimability plots from
Section 3.4 to choose interesting ones.

Table 4.1: Target altitude, prior bias uncertainty, measurement noise and
sampling interval.

pz σbα0 , σbβ0 , σbγ0 , σbθ0 , σbφ0 σbx0 , σby0 , σbz0 , σbρ0 σρ σθ, σφ ∆t

1 km 5 mrad 20 m 20 m 5 mrad 4 s

4.1.1 Simulation Scenario and Parameters

We will now run 1000 MC runs to compare estimator performance. Two simu-
lation scenarios are considered where the targets move as in Figure 4.1, and the
simulation parameters are given in Table 4.1. The movement in Figure 4.1 is
chosen to ensure universal estimability of the alignment and sensor bias, which
was studied in Figure 3.5 and Figure 3.9. This is achieved by using the long
range targets to estimate the alignment bias, and the close range targets to es-
timate the sensor bias. Furthermore this geometry ensures well spread targets.
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Eight targets are required to estimate all of the unknowns in all simulation cases.
The unknowns are position and speed for all targets, and the biases to be esti-
mated for all sensors.

The first scenario evaluates estimator performance when alignment, location and
sensor biases are present for all sensors, while the second scenario removes el-
evation from the sensor bias. The third scenario includes alignment and sensor
bias only for all sensors, and the fourth scenario simulates location and sensor
bias. The measurement biases for each sensor are drawn individually in each
MC run from a normal distribution with mean zero and standard deviations as
stated in Table 4.1. The initial bias values for the estimators are zero with stan-
dard deviations as in Table 4.1. The target tracks are initialized using two point
differencing (Bar-Shalom et al., 2001).

Bias estimation performance in universal coordinates is compared to the per-
formance in master sensor coordinates. It is important that the estimators are
compared in equal scenarios in order to present a fair comparison. All sensors
have biases, thus the sensor chosen as master sensor is also biased. This gives an
advantage to the estimators performing universal and absolute bias estimation,
the Universal Bias Estimator (UBE) and the Absolute Bias Estimator (ABE) re-
spectively. The ABE and Relative Bias Estimator (RBE) has the advantage of
having fewer biases to estimate, and they are able to estimate location biases
with respect to the master sensor. The final estimators to be evaluated are the
Standard Universal Bias Estimator (SUBE) and the Standard Absolute Bias Es-
timator (SABE), which are classic bias estimators from the tracking literature.
The SUBE and SABE perform bias estimation in universal coordinates and sen-
sor coordinates respectively. They estimate the sensor bias for all sensors, which
consists of range, azimuth and elevation. The alignment bias is not estimated,
and the location bias is estimated relative to a master sensor in the SABE. Some
of the alignment bias is accounted for by estimating the biases in azimuth and
elevation.

4.1.2 Process Model and Estimator

The targets are assumed to move at constant velocity for the system and filter
models, thus the linear target process model in continuous time is

ṗu
j

= vuj (4.1a)

v̇uj = nuj ∼ N
(

0, Q̃δ (t− τ)
)

(4.1b)
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where vuj is the target velocity and nuj is the white process noise. This model
is discretized, (Gelb, 1974). An Extended Kalman Filter (EKF) is used to es-
timate the target positions and velocities, and the measurement biases of the
sensors. The measurement biases are modeled as in (3.2). An EKF is used to es-
timate the biases, where all sensor measurements for one time step is included in
an augmented measurement vector. The state vector xk and measurement vector
zk for Sensor 0, 1, . . . ,M and Target 1, 2, . . . , N are

x (t) =
[
(xu)T (xb)T

]T (4.2)

zk =
[
(zs11 )T . . . (zs1N )T . . . (zsM1 )T . . . (zsMN )T

]T (4.3)

where

xu =
[
(pu

1
)T (vu1)T . . . (pu

N
)T (vuN)T

]T
(4.4)

xb =
[
(bs0n0

)T (bun0s0
)T (b0)T . . . (bsMnM )T (bunMsM )T (bM)T

]T (4.5)

for universal bias estimation. When performing relative bias estimation xb con-
tains biases from Sensor 1, 2, . . . ,M , and bunisi is replaced by bs0s0si . For absolute
bias estimation xb is unchanged from the relative case, with the exception that
the sensor bias of Sensor 0 b0 is added as a vector element.

4.1.3 Measurement Models

To simplify notation, the target index j is omitted from the measurement models.

4.1.3.1 Measurement Noise Covariance

The measurement models presented in this section use the following matrices to
determine the white measurement noise covariance. The covariance matrix of a
spherical target measurement is given by (3.7)

R =

σ2
ρ 0 0

0 σ2
θ 0

0 0 σ2
φ

 , (4.6)

while the Sensor Bias Transformation Matrix (SBTM) is given by (3.22)

Csi
k =

cos θ̃k cos φ̃k −ρ̃k sin θ̃k cos φ̃k −ρ̃k cos θ̃k sin φ̃k
sin θ̃k cos φ̃k ρ̃k cos θ̃k cos φ̃k −ρ̃k sin θ̃k sin φ̃k

sin φ̃k 0 ρ̃k cos φ̃k

 (4.7)

where the measured values are used for ρ̃k, θ̃k and φ̃k.
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4.1.3.2 The System Sensor Measurement Model

The measurement system model is given by (3.42)

zi,k = hs

(
T siniT

ni
u

(
pu
k
− duuni − b

u
nisi

))
+ bi + wi,k (4.8a)

wi,k ∼ N (0, Rδkl) (4.8b)

where i ∈ {0, 1, . . . ,M}. The spherical measurement zi,k is produced by first
calculating its true value

%
i,k

= hs

(
T siniT

ni
u

(
pu
k
− duuni − b

u
nisi

))
+ bi (4.9)

and draw the corresponding measured value using

zi,k ∼ N
(
%
i,k
, Rδkl

)
. (4.10)

The Cartesian measurement zsii,k is given by

zsii,k = hc
(
zi,k
)

(4.11)

where hc (·) is the Coordinate Transformation Function (CTF) from spherical to
Cartesian coordinates given by (2.27). The bias values are drawn once in each
MC run at time k = 0 according to

bsini ∼ N
(
0, Bsi

ni

)
(4.12a)

bunisi ∼ N
(
0, Bu

nisi

)
(4.12b)

bi ∼ N (0, Bi) (4.12c)

where

Bsi
ni

=

σ
2
bα0

0 0

0 σ2
bβ0

0

0 0 σ2
bγ0

 (4.13a)

Bu
nisi

=

σ2
bx0

0 0

0 σ2
by0

0

0 0 σ2
bz0

 (4.13b)

Bi =

[
σ2
bρ0

0

0 σ2
bφ

]
, (4.13c)

and the associated values can be found in Table 4.1.
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4.1.3.3 The Unbiased Kalman Filter

The measurement filter model for the unbiased Kalman Filter (KFU) is given by
(3.24)

zsii,k = T siu

(
pu
k
− duusi

)
+ wsii,k (4.14a)

wsii,k ∼ N
(
0, Rsi

i,kδkl
)

(4.14b)

Rsi
i,k = Csi

k R (Csi
k )T (4.14c)

where i ∈ {0, 1, . . . ,M}. The measurement biases are assumed known values
for this filter, hereby its name, so only the target states are estimated. This filter
serves as a reference with respect to the other filters since a filter which succeeds
in compensating for all bias effects will have performance close to the KFU.
Note that this filter will always have superior performance compared to the other
filters.

4.1.3.4 The Biased Kalman Filter

The measurement filter model for the bias ignorant Kalman Filter which tracks
in {u} (KFBU) is given by (3.25)

zsii,k = T niu

(
pu
k
− duuni

)
+ asii,k + wsii,k (4.15a)

wsii,k ∼ N
(
0, Rsi

i,kδkl
)

(4.15b)

Rsi
i,k = Csi

k R (Csi
k )T (4.15c)

asii,k ∼ N
(
0, Asii,kδkl

)
(4.15d)

where i ∈ {0, 1, . . . ,M} and the added noise covariance matrix Asii,k is given by
(3.26) and derived in Section 3.2.6. The measurement filter model for the bias
ignorant Kalman Filter which tracks in {s0} (KFBS) is given by

zsii,k = T nin0

(
ps0
k
− dn0

n0ni

)
+ asii,k + wsii,k (4.16a)

wsii,k ∼ N
(
0, Rsi

i,kδkl
)

(4.16b)

Rsi
i,k = Csi

k R (Csi
k )T (4.16c)

asii,k ∼ N
(
0, Asii,kδkl

)
(4.16d)
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for i ∈ {1, 2, . . . ,M} where Asii,k is given by (3.26). The master sensor is
modeled by (3.62)

z
s′0
0,k = ps

′
0

k
+ w

s′0
0,k (4.17a)

w
s′0
0,k ∼ N

(
0, R

s′0
0,kδkl

)
(4.17b)

R
s′0
0,k = C

s′0
k R

(
C
s′0
k

)T
. (4.17c)

This filter accounts for measurement bias uncertainty by increasing the white
noise in the measurement model, but the biases are not estimated. Only the
target states are estimated. This filter serves as a worst case reference. If a filter
performs worse than this filter, it means that it is better to increase measurement
noise instead of estimating the measurement biases.

4.1.3.5 The Universal Bias Estimator

The measurement filter model for the UBE is given by (3.42) with bunisi = 0

zi,k = hs

(
T siniT

ni
u

(
pu
k
− duuni

))
+ bi + wi,k (4.18a)

wi,k ∼ N (0, Rδkl) (4.18b)

where i ∈ {0, 1, . . . ,M}. This filter estimates the alignment bias bsini and sensor
bias bi for all sensors, and the target states. The location bias bunisi is neglected.

4.1.3.6 The Absolute Bias Estimator

The measurement filter model for the ABE is given by (3.56)

zsii,k = T sis0

(
ps0
k
− ds0n0ni

− bs0s0si
)

+ Csi
k bi + wsii,k (4.19a)

wsii,k ∼ N
(
0, Rsi

i,kδkl
)

(4.19b)

Rsi
i,k = Csi

k R (Csi
k )T (4.19c)

where i ∈ {1, 2, . . . ,M}, and (3.57)

zs00,k = ps0
k

+ Cs0
k b0 + ws00,k (4.20a)

ws00,k ∼ N
(
0, Rs0

0,kδkl
)

(4.20b)

Rs0
0,k = Cs0

k R (Cs0
k )T . (4.20c)

This filter estimates the alignment bias bsis0 and location bias bs0s0si for Sensor
i ∈ {1, 2, . . . ,M}, the sensor bias bi for Sensor i ∈ {0, 1, . . . ,M}, and the
target states.
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4.1.3.7 The Relative Bias Estimator

The measurement filter model for the RBE is given by (3.61)

zsii,k = T sis0

(
ps
′
0

k
− ds0n0ni

− bs0s0si
)

+ Csi
k bi + asii,k + wsii,k (4.21a)

wsii,k ∼ N
(
0, Rsi

i,kδkl
)

(4.21b)

Rsi
i,k = Csi

k R (Csi
k )T (4.21c)

asii,k ∼ N
(
0, Asii,kδkl

)
(4.21d)

Asii,k = T sis0C
s0
k B0

(
T sis0C

s0
k

)T (4.21e)

where the sensor bias covariance matrixB0 is defined by (3.9), and i ∈ {1, 2, . . . ,M}.
The master sensor is modeled by (3.62)

z
s′0
0,k = ps

′
0

k
+ w

s′0
0,k (4.22a)

w
s′0
0,k ∼ N

(
0, R

s′0
0,kδkl

)
(4.22b)

R
s′0
0,k = C

s′0
k R

(
C
s′0
k

)T
. (4.22c)

This filter estimates the alignment bias bsis0 , location bias bs0s0si and the sensor bias
bi for Sensor i ∈ {1, 2, . . . ,M}, and the target states.

4.1.3.8 The Standard Universal Bias Estimator

The measurement filter model for the SUBE is given by (3.42) with T sini = I and
bunisi = 0

zi,k = hs

(
T niu

(
pu
k
− duuni

))
+ bi + wi,k (4.23a)

wi,k ∼ N (0, Rδkl) (4.23b)

where i ∈ {0, 1, . . . ,M}. This filter estimates the sensor bias bi only, which
includes biases in range bρ and azimuth bθ. The sensor elevation bias bφ, the
alignment biases roll bα and pitch bβ , and the location bias bunisi are neglected.
The alignment bias bγ is estimated through the estimation of bθ since these are
different representations of the same angle. Note that although bφ can be esti-
mated by the SUBE, it is neglected because of poor estimator performance when
estimating bφ together with bρ and bθ. This is due to disturbances from the unes-
timated alignment biases bα and bβ and the location bias.
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4.1.3.9 The Standard Absolute Bias Estimator

The measurement filter model for the SABE is given by (3.56) with T sini = I

zsii,k = T nin0

(
ps0
k
− ds0n0ni

− bs0s0si
)

+ Csi
k bi + wsii,k (4.24a)

wsii,k ∼ N
(
0, Rsi

i,kδkl
)

(4.24b)

Rsi
i,k = Csi

k R (Csi
k )T (4.24c)

where i ∈ {1, 2, . . . ,M}, and (3.57)

zs00,k = ps0
k

+ Cs0
k b0 + ws00,k (4.25a)

ws00,k ∼ N
(
0, Rs0

0,kδkl
)

(4.25b)

Rs0
0,k = Cs0

k R (Cs0
k )T . (4.25c)

This filter estimates the sensor bias bi, including range bρ, azimuth bθ and ele-
vation bφ, for Sensor i ∈ {0, 1, . . . ,M}, and the location bias bs0s0si for Sensor
i ∈ {1, 2, . . . ,M}. The alignment biases roll bα and pitch bβ are neglected.
The alignment bias bγ is estimated through the estimation of bθ since these are
different representations of the same angle.

4.1.4 Alignment, Location and Sensor Bias

Table 4.2 shows simulation and filter models for the first scenario with alignment,
location and sensor biases. The system model is used to produce measurements
for the estimators, while the estimators are based on filter models. The UBE is
omitted from the results since it performs worse than both the KFBU and the
KFBS.

4.1.4.1 The Absolute and Relative Bias Estimator

Figure 4.2 shows simulation results for the ABE, implemented as an EKF. In
Figure 4.2 the EKF is compared to two Kalman Filters (KFs). The KFU receives
unbiased measurements, which is equivalent to saying that the biases are known.
If the EKF converges close to the KFU, the biases have been successfully ac-
counted for. The KFBU tracks targets in {u}, while the KFBS tracks targets in
{s0}. The EKFU and EKFS show the performance of the EKF in {u} and {s0}
respectively. If the EKFU and EKFS performances are similar to or worse than
the KFBU and KFBS respectively, the bias estimation does not improve target
tracking performance.
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Figure 4.2: Position RMSE in meters versus time steps k for the ABE.
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Figure 4.3: Position RMSE in meters versus time steps k for the RBE.



4.1 Constant Velocity Flight with Monte Carlo Simulations 79

Table 4.2: Simulation and filter (estimator) measurement models for align-
ment, location and sensor bias estimation. The SUBE should ideally es-
timate all elements of the sensor bias bi, but due to poor performance in
estimating the elevation bias bφi , the estimated biases are reduced to range
bρi and azimuth bθi .

Measurement model Bias model

System model (4.8) Present: bsini , bunisi , bρi , bφi , i ∈
{0, 1, . . . ,M}

KFU model (4.14) Known: bsini , bunisi , bρi , bφi , i ∈
{0, 1, . . . ,M}

KFBU model (4.15) White noise vector asii,k accounts for:
bsini , b

u
nisi

, bρi , bφi , i ∈ {0, 1, . . . ,M}
KFBS model (4.16) & (4.17) White noise vector asii,k accounts for:

bsini , b
u
nisi

, bρi , bφi , i ∈ {1, 2, . . . ,M}
UBE model (4.18) Estimates: bsini , bρi , bφi , i ∈

{0, 1, . . . ,M}
ABE model (4.19) & (4.20) Estimates: bsis0 , bs0s0si , i ∈

{1, 2, . . . ,M} , bρi , bφi , i ∈
{0, 1, . . . ,M}

RBE model (4.21) & (4.22) Estimates: bsis0 , bs0s0si , i ∈
{1, 2, . . . ,M} , bρi , bφi , i ∈
{0, 1, . . . ,M}

SUBE model (4.23) Estimates: bρi , bθi , i ∈ {0, 1, . . . ,M}
SABE model (4.24) & (4.25) Estimates: bs0s0si , i ∈

{1, 2, . . . ,M} , bi, i ∈ {0, 1, . . . ,M}

In this simulation the estimation performance of the ABE and the RBE is
approximately identical in {s0}, as shown in Figure 4.2b and Figure 4.3b respec-
tively. The EKFS converges close to the KFU in both cases. In {u} both the
ABE and the RBE perform worse than the KFBU, which is expected since the
master sensor (Sensor 0) has an alignment bias which is not estimated. Thus
the transformation from {s0} to {u} is not known accurately. Figure 4.2a shows
better performance of the ABE in {u} compared to the RBE in Figure 4.3a. This
is explained by the unestimated master sensor bias in the RBE.
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(a) Position RMSE in {u} (EKFU).
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(b) Position RMSE in {s0} (EKFS).

Figure 4.4: Position RMSE in meters versus time steps k for the SUBE.

4.1.4.2 The Standard Universal Bias Estimator

As noted in Table 4.2, the sensor bias of the SUBE only includes biases in range
and azimuth since elevation bias estimation performs poorly in this scenario.
This poor performance is explained by two factors. From (3.74) it is clear that
at long range there is more measurement noise along the z axis than in the xy
plane. This makes it more challenging to estimate the elevation bias. The other
factor is the bias model mismatch. The system model produces sensor measure-
ments where all sensors have an alignment bias, which consists of the three Euler
angles. The SUBE tries to compensate for the alignment bias using azimuth and
elevation biases. It succeeds in compensating for the yaw alignment bias with its
azimuth bias model because these angle biases are geometrically the same, and
they are situated in the xy plane which has less measurement noise than planes
including the z axis. Estimation of the elevation bias is subject to disturbance
from both larger measurement noise and the unmodeled roll and pitch biases.

Figure 4.4 shows the estimation performance of the SUBE. The EKFU has
similar performance as the KFBU, while the EKFS performs worse than the
KFBS. The measurements are processed in {u} which leads to the superior per-
formance of the EKFU compared to the EKFS. The EKFS gets larger errors
because the coordinate transformation from {u} to {s0} is not accurately esti-
mated.
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(a) Position RMSE in {u} (EKFU).
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(b) Position RMSE in {s0} (EKFS).

Figure 4.5: Position RMSE in meters versus time steps k for the SABE.

4.1.4.3 The Standard Absolute Bias Estimator

Figure 4.5 shows the estimation performance for the SABE. The EKFU per-
forms poorly, while the EKFS has about the same performance as the KFBS.
The superior performance of the EKFS compared to the EKFU is explained by
the fact that measurements are processed in {s0}.

4.1.4.4 Conclusions

Figure 4.2 and Figure 4.3 show the estimator performance on a simulation sce-
nario where the alignment, location and sensor biases are present for the ABE
and RBE respectively. In this scenario the angles involved in all known and
unknown coordinate system transformations are small. Hence the measurement
model for a biased sensor in absolute bias estimation (4.19) is correct, since the
angles of the Coordinate Transformation Matrix (CTM) from master Sensor 0
to Sensor i T sis0 are assumed small. The measurement model for a biased sensor
in relative bias estimation (4.21) is almost correct. The only bias missing is the
master sensor range and elevation biases. In fact the performance of the ABE
and the RBE is almost identical, which is explained by this small difference.
The additional error introduced by the RBE is small enough not to influence the
tracking performance.
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Table 4.3: Simulation and filter (estimator) measurement models for align-
ment, location and sensor range bias estimation.

Measurement model Bias model

System model (4.8) Present: bsini , bunisi , bρi , i ∈
{0, 1, . . . ,M}

KFU model (4.14) Known: bsini , bunisi , bρi , i ∈
{0, 1, . . . ,M}

KFBU model (4.15) White noise vector asii,k accounts for:
bsini , b

u
nisi

, bρi , i ∈ {0, 1, . . . ,M}
KFBS model (4.16) & (4.17) White noise vector asii,k accounts for:

bsini , b
u
nisi

, bρi , i ∈ {1, 2, . . . ,M}
UBE model (4.18) Estimates: bsini , bρi , i ∈ {0, 1, . . . ,M}
ABE model (4.19) & (4.20) Estimates: bsis0 , bs0s0si , i ∈

{1, 2, . . . ,M} , bρi , i ∈ {0, 1, . . . ,M}
RBE model (4.21) & (4.22) Estimates: bsis0 , bs0s0si , bρi , i ∈

{1, 2, . . . ,M}
SUBE model (4.23) Estimates: bρi , bθi , i ∈ {0, 1, . . . ,M}
SABE model (4.24) & (4.25) Estimates: bs0s0si , i ∈

{1, 2, . . . ,M} , bρi , bθi , i ∈
{0, 1, . . . ,M}

Figure 4.4 shows the estimator performance of the SUBE. In {u} it has sim-
ilar performance as the bias ignorant KFBU. In {s0} it performs worse than the
KFBS. Since the KFBU and the KFBS are simpler mathematically, they seem to
be better choices.

Figure 4.5 shows the estimator performance of the SABE. In {u} it performs
poorly, and in {s0} it has similar performance as the KFBS. This means that
its performance is never better than the KFBU nor the KFBS which ignore all
measurement biases. This poor performance is explained by the bias model mis-
match since the angular biases in roll and pitch are not estimated.

The UBE performs poorly both compared to the KFBU and the KFBS. The
location bias degrades the UBE performance as it is not estimated.
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(a) Position RMSE in {u} (EKFU).
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(b) Position RMSE in {s0} (EKFS).

Figure 4.6: Position RMSE in meters versus time steps k for the UBE.

4.1.5 Alignment, Location and Sensor Range Bias

Simulation and filter models are shown in Table 4.3 where alignment, location
and sensor range biases are present.

4.1.5.1 The Universal Bias Estimator

In Section 3.4 it is concluded that joint estimation of target position, alignment
bias and sensor bias in universal coordinates is impossible. However these biases
are estimable separately. The effect of the alignment bias and sensor elevation
bias on target position is small at close range and large at long range, while
the sensor range bias is constant. According to Figure 3.9a the range bias has
stronger estimability close to the sensors. Thus it seems to be a good assumption
to neglect the range bias at long range, and neglect the alignment bias at short
range. This means that targets at long range are assumed to only be affected by
the alignment bias, while short range targets are only affected by the range bias.
The problem is now estimable. In the scenario shown in Figure 4.1 a target is
defined to be at short range when the predicted position of each Cartesian coor-
dinate x, y and z is in the interval [−25 km, 25 km]. If the target exceeds this
interval in any coordinate it is at long range. This threshold is chosen based on
Figure 3.9a, but recall that it is only approximate since the constant velocity as-
sumption is not included in the static estimability plots.
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Figure 4.6 shows the estimation performance for the UBE. The EKFU per-
forms better than the KFBU in Figure 4.6a, while the EKFS has superior perfor-
mance compared to the KFBS in Figure 4.6b. However neither the EKFU nor
the EKFS come close to the KFU.

4.1.5.2 The Absolute and Relative Bias Estimator

In this simulation the estimation performance of the ABE and the RBE are sim-
ilar to the performance in Figure 4.2 and Figure 4.3 respectively. The EKFS
converges close to the KFU in both cases. The performance of the EKFU is
poor in both cases, which is expected since the master sensor (Sensor 0) has an
alignment bias which is not estimated.

4.1.5.3 The Standard Universal Bias Estimator

In this simulation the estimator performance of the SUBE is similar to the perfor-
mance in Figure 4.4. The EKFU performs slightly better than the KFBU, while
the EKFS performs worse than the KFBS.

4.1.5.4 The Standard Absolute Bias Estimator

In this simulation the estimator performance of the SABE is similar to the perfo-
mance in Figure 4.5. The EKFS and KFBS have similar performance while the
EKFU performs worse than the KFBU.

4.1.5.5 Conclusions

Comparing Figure 4.4 with the performance of the UBE in Figure 4.6 it is clear
that the UBE has superior performance in both {u} and {s0}. The inferior perfor-
mance of the SUBE is explained by the bias model mismatch. The azimuth bias
estimation of the SUBE is only able to account for the yaw alignment bias, but
not the roll and pitch biases. Since location biases are present the UBE perfor-
mance is degraded since it is not able to estimate the location bias. The objective
of this simulation is to find a scenario where location biases are present and the
UBE estimates as many biases as possible. This is achieved by removing the
sensor elevation bias. Other alternatives are to remove the alignment biases roll
or pitch.

The performance of the ABE and RBE is approximately equal to the perfor-
mance presented in Section 4.1.4.1, Figure 4.2 and Figure 4.3 respectively. The
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Table 4.4: Simulation and filter (estimator) measurement models for align-
ment and sensor bias estimation. The SUBE should ideally estimate all el-
ements of the sensor bias bi, but due to poor performance in estimating the
elevation bias bφi , the estimated biases are reduced to range bρi and azimuth
bθi .

Measurement model Bias model

System model (4.8) Present: bsini , bρi , bφi , i ∈ {0, 1, . . . ,M}
KFU model (4.14) Known: bsini , bρi , bφi , i ∈ {0, 1, . . . ,M}
KFBU model (4.15) White noise vector asii,k accounts for:

bsini , bρi , bφi , i ∈ {0, 1, . . . ,M}
KFBS model (4.16) & (4.17) White noise vector asii,k accounts for:

bsini , bρi , bφi , i ∈ {1, 2, . . . ,M}
UBE model (4.18) Estimates: bsini , bρi , bφi , i ∈

{0, 1, . . . ,M}
ABE model (4.19) & (4.20) Estimates: bsis0 , i ∈

{1, 2, . . . ,M} , bρi , bφi , i ∈
{0, 1, . . . ,M}

RBE model (4.21) & (4.22) Estimates: bsis0 , bρi , bφi , i ∈
{1, 2, . . . ,M}

SUBE model (4.23) Estimates: bρi , bθi , i ∈ {0, 1, . . . ,M}
SABE model (4.24) & (4.25) Estimates: bi, i ∈ {0, 1, . . . ,M}

fact that the ABE model is correct, and the RBE is almost correct, explains the
superior performance in {s0} of the ABE and RBE in Figure 4.2b and Figure
4.3b with respect to the UBE in Figure 4.6b. In the absolute and relative case
there are fewer biases to estimate, and the mathematical model is correct. The
superior performance is obtained in {s0} which is where tracking is done in the
absolute and relative case. In {u} the ABE and RBE perform poorly, as seen
in Figure 4.2a and Figure 4.3a with respect to Figure 4.6a. This is because it
assumes that the CTM T us0 = I , which is not the case. The performance of the
bias ignorant KFBU is superior, which means that there is no point in using the
ABE or the RBE when tracking targets in {u}. This highlights the importance of
universal bias estimation if tracking is done in sensor independent coordinates.
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(a) Position RMSE in {u} (EKFU).
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(b) Position RMSE in {s0} (EKFS).

Figure 4.7: Position RMSE in meters versus time steps k for the UBE.

4.1.6 Alignment and Sensor Bias

Simulation and filter models are shown in Table 4.4 where alignment and sensor
biases are present.

4.1.6.1 The Universal Bias Estimator

Since joint estimation of the alignment and sensor elevation bias is unestimable,
we neglect the sensor elevation bias at long range. This means that targets at long
range are assumed to only be affected by the alignment bias, while short range
targets are only affected by the sensor bias. The problem is now estimable.

Figure 4.7 shows the RMSE in position for the UBE. In Figure 4.7 we see
that both the EKFU and EKFS converge close to the KFU, but the KFU does
perform noticeably better.

4.1.6.2 The Absolute and Relative Bias Estimator

In this simulation the estimation performance of the ABE and the RBE are sim-
ilar to the performance in Figure 4.2 and Figure 4.3 respectively. The EKFS
converges close to the KFU in both cases. The performance of the EKFU is
poor in both cases, which is expected since the master sensor (Sensor 0) has an
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alignment bias which is not estimated.

4.1.6.3 The Standard Universal Bias Estimator

In this simulation the estimator performance of the SUBE is similar to the perfor-
mance in Figure 4.4. The EKFU performs slightly better than the KFBU, while
the EKFS performs worse than the KFBS.

4.1.6.4 The Standard Absolute Bias Estimator

In this simulation the estimator performance of the SABE is similar to the perfo-
mance in Figure 4.5. The EKFS and KFBS have similar performance while the
EKFU performs worse than the KFBU.

4.1.6.5 Conclusions

Figure 4.7 shows the estimator performance on a simulation scenario where the
alignment and sensor biases are the only measurement biases present for the
UBE. The UBE converges close to the unbiased KFU in both {u} and {s0}.
Note that the UBE has slightly better performance in {s0} than in {u} as seen
in Figure 4.7. The reason is that target position measurements in any sensor
coordinate system {si} are unbiased in that system, so performance is slightly
improved. When fusing the measurements in {si} the unbiased measurements
are given more weight in the EKF than the biased measurements, since the bias
estimates have not converged. The unbiased measurements ensure that the esti-
mator gets nearly unbiased tracks on the targets quickly. In a sensor independent
coordinate system such as {u} all measurements are biased, thus performance
suffers until the biases of at least one sensor has converged. Since one cannot
expect the bias estimates to converge exactly to the true values, performance is
slightly better in a sensor coordinate system. This suggests that tracking should
always be done in a sensor coordinate system if the only measurement biases
present are coordinate system transformations.

It is interesting to compare the UBE performance in Figure 4.6 with its per-
formance in Figure 4.7 where the alignment and sensor biases are the only bi-
ases present. Since the location bias is ignored by the UBE it is expected that
performance degrades when location biases are present. This is clearly seen by
comparing Figure 4.6 with Figure 4.7. However the performance degradation is
clearly worse in {u} than in {s0}.
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Table 4.5: Simulation and filter (estimator) measurement models for loca-
tion and sensor bias estimation.

Measurement model Bias model

System model (4.8) Present: bunisi , bi, i ∈ {0, 1, . . . ,M}
KFU model (4.14) Known: bunisi , bi, i ∈ {0, 1, . . . ,M}
KFBU model (4.15) White noise vector asii,k accounts for:

bunisi , bi, i ∈ {0, 1, . . . ,M}
KFBS model (4.16) & (4.17) White noise vector asii,k accounts for:

bunisi , bi, i ∈ {1, 2, . . . ,M}
UBE model (4.18) Estimates: bγi , bρi , bφi , i ∈

{0, 1, . . . ,M}
ABE model (4.19) & (4.20) Estimates: bs0s0si , i ∈

{1, 2, . . . ,M} , bγi , bρi , bφi , i ∈
{0, 1, . . . ,M}

RBE model (4.21) & (4.22) Estimates: bs0s0si , bγ, bρi , bφi , i ∈
{1, 2, . . . ,M}

SUBE model (4.23) Estimates: bi, i ∈ {0, 1, . . . ,M}
SABE model (4.24) & (4.25) Estimates: bs0s0si , i ∈

{1, 2, . . . ,M} , bi, i ∈ {0, 1, . . . ,M}

4.1.7 Location and Sensor Bias

Simulation and filter models are shown in Table 4.5 where the location and sensor
biases are present. This simulation case serves as a verification of the SUBE and
the SABE, since they do not model the alignment bias. In fact, in this simulation
the mathematical models of the UBE and the ABE become equal to the SUBE
and SABE respectively. Since the RBE performance is approximately equal to
the performance of the ABE and SABE in this case, we only present the plots
for the SUBE and SABE.

4.1.7.1 The Standard Universal Bias Estimator

Figure 4.8 shows the estimation performance of the SUBE. The EKFU per-
formance is about half way between the KFU and the KFBU, while the EKFS
performance is about half way between the KFU and the KFBS.
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(a) Position RMSE in {u} (EKFU).
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(b) Position RMSE in {s0} (EKFS).

Figure 4.8: Position RMSE in meters versus time steps k for the SUBE.
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(b) Position RMSE in {s0} (EKFS).

Figure 4.9: Position RMSE in meters versus time steps k for the SABE.
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4.1.7.2 The Standard Absolute Bias Estimator

Figure 4.9 shows the estimation performance for the SABE. The EKFU per-
formance is about half way between the KFU and the KFBU, while the EKFS
has about the same performance as the KFBS. The superior performance of the
EKFS compared to the EKFU is explained by the fact that measurements are
processed in {s0}.

4.1.7.3 Conclusions

Figure 4.8 shows the estimator performance on a simulation scenario where
the location and sensor biases are the only measurement biases present for the
SUBE. Since the UBE in this case yields the same mathematical model as for
the SUBE, Figure 4.8 represents UBE performance as well. Neither of these
estimators estimate the location bias, thus their performance is worse than the
KFU. However their performance is better than both the KFBU and the KFBS.

Figure 4.9 shows the estimator performance of the SABE. Since the ABE
in this case yields the same mathematical model as for the SABE, and the RBE
performance is approximately equal to the ABE, Figure 4.9 shows the perfor-
mance of both the ABE and RBE in addition to the SABE. Note the substantial
performance difference in {u} shown in Figure 4.9a compared to Figure 4.5a
and Figure 4.5a. Since there is no alignment bias in this case, there are fewer
angular biases causing errors when transforming position estimates from {s0} to
{u}. This leads to acceptable performance in {u}.
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4.2 Constant Altitude Flight Using the
Curvature of the Earth

In Section 4.1 the targets were considered to move in straight lines. In Air Traffic
Control (ATC) aircraft may be told to fly at a certain altitude. The Earth can be
approximated to an ellipsoid, hence an aircraft flying at constant altitude will
move in a slight curve, and not along a straight line. This type of motion is used
in this section to perform universal estimation of the alignment bias.

4.2.1 Measurement model

To model motion on the Earth, it is convenient to use longitude, latitude and alti-
tude, i.e. the geodetic coordinate system as described in Section 2.2.1. The trans-
formation he (·) transforms a vector in Geodetic coordinates in {g} to Cartesian
coordinates in {e}. In Sudano (1997) more details on this transformation and its
inverse can be found. The measurement vector zsii,k for Sensor i is given by

zsii,k = hs

(
T sini

(
T nie

(
he

(
pg
k

)
− deeni

)
+ bninisi

))
+ Csi

k bi + wsik . (4.26)

The transformation matrix T sini is the alignment bias, bninisi is the location bias,
and bi is the sensor bias. The SBTM Csi

k , the transformation matrix T nie and the
displacement vector deeni are assumed known. Every measurement from Sensor
i is now given as a function of the target state in {g} and the biases we wish to
estimate. Note that both CTFs hc (·) and he (·), and the unknown CTM T sini make
(4.26) nonlinear. The geometry of the transformations is shown in Figure 4.10.

4.2.2 Target Motion Model

The targets move at constant altitude, speed and heading, thus

• the target is moving on the surface of an ellipsoid given by the WGS-84
Earth ellipsoid and the constant altitude,

• and the target is moving at constant speed and heading on this surface.

In the following the target motion model is derived. The aircraft moves on an
ellipsoid at constant speed and heading, i.e. its trajectory is a part of an ellipse
in 3D space. This corresponds to a 3D planar turn model, which in geodetic
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Figure 4.10: The geometrical transformations in the measurement equa-
tion. From Topland et al. (2007); reprinted with permission of the Institute
of Electrical and Electronics Engineers.

coordinates is given by

µ̇ = ωµ (4.27a)

λ̇ = ωλ (4.27b)

ḣ = 0 (4.27c)
ω̇µ = νµ ∼ N (0, qµδ (t− τ)) (4.27d)
ω̇λ = νλ ∼ N (0, qλδ (t− τ)) (4.27e)

where µ, λ and h are latitude, longitude and altitude respectively. The ve-
locity is modeled as constant in geodetic coordinates where νµ and νλ are white
noise scalars. The target state vector is

xu =
[
µ1 λ1 h1 ωµ,1 ωλ,1 . . . µN λN hN ωµ,N ωλ,N

]T (4.28)
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for Target 1, 2, . . . , N , and the bias state vector is

xb =
[
α1 β1 γ1 . . . αM βM γM

]T
, (4.29)

for Sensor 1, 2, . . . ,M . The augmented state and measurement vectors are

x =
[
(xu)T (xb)T

]T (4.30)

zk =
[
(zs11 )T . . . (zs1N )T . . . (zsM1 )T . . . (zsMN )T

]T (4.31)

where the discretization of the process model is done according to Gelb
(1974). The process model consists of the target motion model (4.27) and the
bias model (3.1) augmented appropriately.

4.2.3 Simulation

The above model is used to estimate the target states for one sensor and one target
using the Unscented Kalman Filter (UKF) (Julier and Uhlmann, 2004), mainly
to avoid differentiation of (4.26). This filter is known performance-wise to be
equivalent or better than the EKF. To study the observability of the biases, we
use measurements without white noise. The filter however assumes both process
and measurement white noise. The alignment bias is of special interest, since
the observability of bsi and bninisi has been reported elsewhere. In the presented
simulation the target is moving at constant altitude and heading, traveling 160 km
on the Earth ellipsoid with a constant speed of 200 m/s. The sampling interval is
4 seconds, and the alignment bias is the only bias investigated. Figure 4.11 shows
the successful determination of αi, and the target position error in {e}. Once
the Euler angle bias has been determined, the error becomes small as expected.
Other simulations show that βi is observable in the same manner, but αi and
βi are not observable when estimated at the same time. The third rotation γi is
never observable. It is noted that it takes some time for αi to converge. This is
because it takes some time for the Earth’s curvature to appear for the estimator.
It is essential that the curved motion is observed to find the alignment biases.

4.2.4 Observability and Estimability

In order to estimate all the biases, they need to be observable in the deterministic
case. We will investigate the observability of the continuous system given by
(4.27) and (3.1), and a continuous deterministic version of (4.26),

zsi (t) = hs
(
T sini
[
T nie

[
he
(
pg (t)

)
− deeni

]
+ bninisi

])
+ bsi

= h
(
pg (t) , bsini , b

ni
nisi

, bsi
)
. (4.32)
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Figure 4.11: Alignment bias and target position error, where F e = {e}.
From Topland et al. (2007); reprinted with permission of the Institute of
Electrical and Electronics Engineers.

Note that only the target position is time dependent. This new model adds
more information to the estimation of the alignment bias, compared to the dis-
cussion in Section 3.4.5. The discussion on the location bias in Section 3.4.6 and
the sensor bias in Section 3.4.7 is unchanged. In the following we discuss Earth
approximations and their consequences for the observability of the alignment
bias. The flat Earth assumption is treated in Section 3.4.5.

4.2.4.1 Spherical Earth

If a target is moving on a spherical Earth with constant altitude and speed, it will
have an acceleration which is a function of velocity and altitude. Thus it has a
known acceleration, and we can expect to observe some of the alignment biases
without the aid of another sensor. The expected trajectory is the equivalent of
a straight line on a sphere, i.e. a great circle. The shortest path between two
locations on a sphere is always a great circle. This is a circle whose center co-
incides with the center of the Earth. The orientation of the circle in 3D space is
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unknown. In order to observe any alignment bias, its presence must yield an ob-
served trajectory which is different from the expected trajectory. The rotational
effect of these biases will keep the circular shape of the trajectory, but the center
of the circle may deviate from the center of the Earth. Biases which generate this
effect will be observable. Since we know the true Earth center location we can
determine the biases that change the observed Earth center.

Proposition 4.1
Assuming the Earth is spherical the alignment biases of Sensor i, αi and βi, will
move the observed center of the circular trajectory away from the center of the
Earth since the xni- and yni-axes of {ni} do not pass through it. The alignment
bias γi is not observable in this manner, since a rotation about an axis passing
through the center of a sphere will not change the location of the sphere.

Proof: Consider a sensor located at the equator, along the xe-axis. Because of
a sphere’s symmetry this location is arbitrary. This sensor is tracking a target,
whose position in {e} is

pe
1

=
[
xe ye ze

]T
. (4.33)

The subscript indicates position 1. The target is moving on a sphere, thus

(xe)2 + (ye)2 + (ze)2 = (r + h)2 = r2
h (4.34)

where r is the Earth’s radius and h is the target altitude. The target location in
{n} is

pn = T ne p
e

1
+ snen =

 0 0 1
0 1 0
−1 0 0

 xe

ye

ze

+

 0
0
rh


=

 ze

ye

−xe + rh

 . (4.35)

We will use a linearized rotation matrix T sn , assuming small biases,

T sn =

 1 −γ β
γ 1 −α
−β α 1

 . (4.36)
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In {s} we obtain

ps =

 1 −γ β
γ 1 −α
−β α 1

 ze

ye

−xe + rh


=

 ze + β (rh − xe)− yeγ
ye − α (rh − xe) + zeγ
rh − xe + yeα− zeβ

 . (4.37)

We now transform back to {e}, expecting that {n} = {s},

pe
2

=

 0 0 −1
0 1 0
1 0 0

 ze + β (rh − xe)− yeγ
ye − α (rh − xe) + zeγ
rh − xe + yeα− zeβ


+

 rh
0
0

 =

 xe − yeα + zeβ
ye − rhα + xeα + zeγ
ze + rhβ − xeβ − yeγ


=

 xe − yeα + zeβ
ye + xeα + zeγ
ze − xeβ − yeγ

+

 0
−rhα
rhβ

 . (4.38)

If we complete the same transformations, but exclude the displacements we get

pe
3

= T enT
s
nT

n
e p

e =

 xe − yeα + zeβ
ye + xeα + zeγ
ze − xeβ − yeγ

 . (4.39)

Thus we can write
pe

2
= pe

3
+ rb (4.40)

where rb is a displacement bias caused by the alignment biases. This displace-
ment bias is a displacement of the observed Earth center because of α and β.
Note that γ does not contribute in this manner. Since we know that pe

3
is only

rotated, and thus the Earth sphere has not changed, the new sphere equation for
the target

(xe − yeα + zeβ)2 + (ye − rhα + xeα + zeγ)2 + (ze + rhβ − xeβ − yeγ)2

= r2
h (4.41)

is equivalent to

(xe)2 + (ye − rhα)2 + (ze + rhβ)2 = r2
h. (4.42)

Thus it is proven that a sensor misalignment in α or β causes a circular trajectory
with a displaced center.
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From the measurements we get the observed Earth sphere, while we know
the true Earth sphere. However (4.42) is one equation with two unknowns, sug-
gesting that we may only be able to observe αi or βi or a combination. This is
indeed what was observed using the model previously considered. To find the
other bias, another constraint is needed. Such a constraint could be that the tar-
get is moving on a great circle. This constraint is not included in the simulated
model which allows motion on a circle whose center is different from the center
of the sphere. The shortest path between two points on the Earth sphere is always
a section of a great circle, so a possible assumption is that an aircraft will move
on a great circle. The plane of a great circle is given by (Weisstein, 2002)

xe sin c2 + (ye − rα) cos c2 −
(ze + rβ)√

(r + h)2 /c2
1 − 1

= 0 (4.43)

where αi and βi is included, and c1 and c2 are constants which can be determined
from two positions on the observed great circle. So we now have two equations
and two unknowns, which make αi and βi observable. Note that this is equivalent
to saying that the tilt of the horizontal plane tangent to the Earth’s surface at a
sensor’s location is observable.

4.2.4.2 Elliptical Earth

A target moving on the Earth ellipsoid with constant altitude and speed will
have an acceleration which is a function of position and velocity. The expected
trajectory of a target is an ellipse, whose center coincides with the center of the
Earth. In this case all the alignment biases in bsini move the center of the observed
Earth in different directions through the three Euler rotations. The reason why
γi also causes the center to move is that the zni-axis in {ni} no longer passes
through the Earth center, except at the poles and at the equator. The alignment
biases cause the observed ellipsoid to be rotated in reference to the true ellipsoid.
Note that when using an estimator to determine γi, the performance will be better
the more elliptical the surface. For movement on an ellipsoid close to a sphere, γi
will be more difficult to estimate since the effect will be small, and thus sensitive
to measurement noise. This applies to the Earth, as it is close to spherical.
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5
Aircraft Altitude Prediction Using

Mode C Measurements

The altitude of an aircraft in civilian airspace is determined by Mode C transpon-
der transmissions using Secondary Surveillance Radars (SSRs). This measure-
ment has a resolution of 100 ft due to bandwidth constraints. The coarse reso-
lution creates difficulties in estimating the vertical velocity of the aircraft which
influences altitude prediction. Altitude prediction is important in conflict alarm
systems. This problem is investigated and several Bayesian estimators, includ-
ing the Interacting Multiple Model (IMM) algorithm, are tuned and tested on
real measurement data for a performance comparison. It is shown that a single
model filter with maneuver handling using the Unscented Kalman Filter (UKF) is
superior to IMM estimators and Kalman Filters (KFs) for long term predictions.

5.1 Modeling

5.1.1 Altimeters and the Mode C Measurement

Aircraft operating in civilian airspace use altimeters to measure their own baro-
metric altitude. This altitude is then transmitted using transponders to Air Traffic
Control (ATC). Due to bandwidth constraints the altitude is transmitted with a
resolution of 100 ft. The Mode C measurement zk is discrete in time and mod-

99
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eled by

zk = h (xk, wk,∆) = ∆round

(
xk + wk

∆

)
(5.1a)

wk ∼ N
(
0, σ2

wδkl
)

(5.1b)

where xk is aircraft altitude, wk is white noise from the onboard altimeter and
∆ is the Mode C resolution of 100 ft. The quantization function round (·) returns
the integer closest to the input. Note that this function is nonlinear, discontinuous
and many-to-one, and that the effect of the measurement noise in (5.1) depends
on xk because of this nonlinearity. If the quantization is the dominant error
source wk = 0 is a good assumption (Sviestins and Wigren, 2001). Filter models
are discussed next.

5.1.2 Aircraft Vertical Motion Filter Process Models

The vertical motion of an aircraft typically consists of two modes; level flight and
altitude change. In level flight the aircraft will oscillate around a set altitude with
low vertical velocity. When the aircraft changes altitude, the vertical velocity
oscillates around a set velocity. Both of these modes will be described using
stochastic linear models. The continuous time models are discretized (Gelb,
1974).

5.1.2.1 Level Flight

We propose two different models for this mode. Model (5.2), which describes
constant altitude, is a position random walk which is given in discrete time by

x1 (k + 1) = x1 (k) + n1 (5.2a)

n1 ∼ N
(
0,∆tσ2

n1
δkl
)
, (5.2b)

where x1 is the aircraft air pressure altitude (time index omitted), n1 is the
white process noise and ∆t is the sampling interval. Choosing this model to
represent the level flight mode means that the predicted altitude is the same as
the current altitude. It follows that the predicted vertical velocity is zero and
its discretized variance is 2σ2

n1
/∆t. Model (5.3) describes motion with slowly

oscillating vertical velocity x2 about zero. This can be modeled appropriately
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by using a continuous first order Markov process for the vertical velocity of the
aircraft,

ẋ1 = x2 (5.3a)

ẋ2 = −1

κ
x2 + n2 (5.3b)

n2 ∼ N
(
0, σ2

n2
δ (t− τ)

)
, (5.3c)

where n2 is the white process noise and κ is the correlation time of the
Markov process (Gelb, 1974). We see that these two models differ with respect
to state and covariance predictions.

5.1.2.2 Altitude Change

In this mode we choose a velocity random walk model. The continuous time
Model (5.4) is given by

ẋ1 = x2 (5.4a)
ẋ2 = n3 (5.4b)

n3 ∼ N
(
0, σ2

n3
δ (t− τ)

)
(5.4c)

where n3 is the white process noise. Note that the vertical velocity prediction
of this model is not constrained about zero as in model (5.3). The predicted
vertical velocity at discrete time k + 1 equals the vertical velocity estimate at
time k.

5.2 Estimation

5.2.1 Nonlinear Estimators

Since the Mode C measurement (5.1) is nonlinear, nonlinear filtering algorithms
should be used. We will investigate Bayesian methods which can be divided into
methods that estimate entire probability density functions (pdfs) and methods
that estimate moments of pdfs.
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5.2.1.1 Estimation of Probability Density Functions

The general Bayesian filtering equations

p (xk | Zk−1) =

∫
p
(
xk | xk−1

)
p
(
xk−1 | Zk−1

)
dxk−1 (5.5a)

p (xk | Zk) =
p (zk | xk) p (xk | Zk−1)∫
p (zk | xk) p (xk | Zk−1) dxk

(5.5b)

return the posterior conditional probability density function (cpdf) p (xk | Zk)
given the prior cpdf p

(
xk−1 | Zk−1

)
, the process cpdf p

(
xk | xk−1

)
, the likeli-

hood function p (zk | xk), the initial pdf p (x0) and the measurement sequence
Zk = {z0, z1, . . . , zk}. In this case p (x0) is a Gaussian distribution. However
it is passed through (5.1), so the resulting pdf is not Gaussian. The likelihood
function p (zk | xk) is

p (zk | xk) =

{
1 for x1 (k) ∈

[
zk − ∆

2
, zk + ∆

2

〉
0 otherwise

(5.6)

where we have assumed a deterministic measurement, i.e. wk = 0 in (5.1).
One of the most common ways of computing pdfs is to use the Particle Filter (PF)
(Ristic et al., 2004). Note that the PF may diverge if no particles are validated
by the measurement. This problem can be treated by increasing process noise to
increase the probability that there are measurement validated particles. Details
on the PF can be found in Appendix C.1.

5.2.1.2 Estimation of Moments

Calculating (5.5a) and (5.5b) is computationally expensive. An alternative is to
calculate the first two moments of the pdf, which can be done considerably faster.
Typical moment matching filters include the Extended Kalman Filter (EKF) and
the more recent UKF (Julier and Uhlmann, 2004). The latter is presented in
Appendix C.2, and uses the unscented transform to match moments instead of
performing linearization like the EKF. It has been shown that the EKF produces
poor results applied to our problem of measurement quantization (Sviestins and
Wigren, 2001). This is because (5.1) is not smooth. Thus it needs to be approx-
imated by a smooth function, yielding an incorrect measurement model. The
UKF does not have this weakness, and it has the potential to match the fourth
central moment of the pdf in addition to its mean and covariance. The measure-
ment model (5.1) needs to be modified when using the UKF. The UKF uses
sigma points to match the moments of the pdf. It does not include the measure-
ment noise of the quantization function in (5.1) when all sigma points are within
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the quantization interval. Therefore the measurement noise is added. We will
use the filter measurement model

zk = ∆round
(x1

∆

)
+ wk (5.7a)

wk ∼ N
(
0, σ2

wδkl
)

(5.7b)

where the white measurement noise variance σ2
w is chosen to match the vari-

ance of a uniform distribution (Soderstrom, 2002) with σ2
w = ∆2/12 ≈ 833

ft2.

5.2.2 Linear Estimator

Because of its simplicity and speed, the KF is a popular choice for filtering prob-
lems. It is optimal for linear systems with Gaussian pdfs. For nonlinear problems
it is suboptimal, but it may still provide satisfactory results. We will use the filter
measurement model

zk = x1 (k) + wk (5.8a)

wk ∼ N
(
0, σ2

w

)
(5.8b)

when we use the KF. Equation (5.8) is clearly different from (5.1) and (5.7).
Finding a value for the filter model measurement noise variance σ2

w is challeng-
ing, since the measurement model should be as close to (5.1) as possible. It
is tempting to choose a constant approximation of σ2

w, for example matching it
with the variance of a uniform measurement as in (5.7). In this way the normal
measurement noise distribution will have a variance matched to a uniform distri-
bution, but higher order moments are not matched. This is done for all KF based
estimators in the following.

5.2.3 Interacting Multiple Model Estimator

Since we have two modes for the motion of the aircraft, we would like to in-
clude these two modes in our altitude and vertical velocity estimator. One of
the best ways to do multiple model estimation for target tracking is to use the
IMM framework (Bar-Shalom et al., 2001). Using the IMM estimator on the
vertical motion of an aircraft has previously been suggested in Bar-Shalom et al.
(2001), but only the horizontal motion is treated in that work. The IMM estima-
tor works by processing several filters in parallel where each filter uses a different
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mathematical model for the target motion. Transition probabilities between the
possible models are given as prior information.

5.2.4 Maneuver Handling

When an estimator reaches steady state it is vulnerable to maneuvers. Steady
state means that the covariance estimates have converged and the measurements
are arriving close to predictions. If the aircraft changes velocity, the estimator
will lag behind for a period of time before adjusting to the new velocity. We want
this period of time to be short, in order to avoid too many inaccurate predictions.

5.2.4.1 Adjustable Level Process Noise

A simple way to handle maneuvers is to use process noise level switching (Bar-
Shalom et al., 2001). The Normalized Innovation Squared (NIS)

εk = νTk S
−1
k νk (5.9)

is monitored, and if it exceeds a certain threshold the process noise is in-
creased. The vector νk is the innovation (prediction error) and Sk is its covari-
ance. When the NIS is no longer exceeded, the process noise switches back. If
we assume that the innovation and its covariance is linear and Gaussian, the NIS
is chi-square distributed. The threshold is chosen so that there is a certain chance
of exceeding it (tail probability). An alternative to process noise switching is to
reinitialize the estimator when the threshold is exceeded.

5.2.4.2 The IMM Estimator

A more advanced method is to use the IMM framework for maneuver handling
(Bar-Shalom et al., 2001). In fact this is probably the most common way of
employing the IMM structure. One of the parallel filters has low process noise
while the other has increased process noise to handle maneuvers. The IMM
estimator will automatically switch between the models as necessary. In fact
the estimate is always a weighted average of the two models. Hence it does not
switch completely as with the previous method, but increases or decreases the
model weights.
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5.3 Results

5.3.1 Estimator Tuning on Real Trajectories

The estimators are tuned on 130 measurement sequences generated from previ-
ously filtered trajectories based on real Mode C measurements. First long se-
quences of level flight are removed from the trajectories, and then they are quan-
tized to recreate Mode C measurements. The long sequences of level flight are
long sequences of the same Mode C measurement. All estimators can be tuned
to perform well on such flight behavior, and since this flight mode is likely to
be dominant it may hide differences in estimator performance. When these long
sequences are removed, staircase measurements from constant velocity motion
are dominant. This is the measurement behavior which is problematic for the
estimators. We will refer to the remaining sequences as the tuning data. The
tuning variables are process noise levels, the sigma point weights of the UKF
and the tail probability of the NIS threshold. The tuning is based on minimizing
the Least Squares (LS) cost function (Bar-Shalom et al., 2001)

cLS
(
ξ
)

= arg min
ξ

∑
νTk νk (5.10)

using numerical search when processing all the measurements. The vector ξ
contains the tuning variables and νk is the innovation for five step predictions.
We use five step predictions to emphasize the velocity estimates, since the po-
sition estimates are too dominant in one step predictions. This tuning scheme
applies to all estimators except the PF which is tuned using the Maximum Like-
lihood (ML) criterion (Bar-Shalom et al., 2001) on five step predictions

cML

(
ξ
)

= arg max
ξ
p (xk | zk) . (5.11)

The ML criterion yields better results for the PF regarding velocity conver-
gence. Tuning the PF using the ML criterion leads to a narrower pdf than the LS
criterion since the tuning is done with respect to the most likely estimate. A nar-
rower pdf leads to a more responsive filter, which means that the PF tuned using
ML has better maneuver handling than the PF tuned using LS. This explains the
superior performance of the former.

5.3.2 The Estimators Tested

Table 5.1 shows the estimators tested. Note that only model (5.4) is used as
filter process model in our performance evaluation. IMM estimators using the
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Table 5.1: Estimators tested for performance evaluation. All use filter process
model (5.4). From Topland and Hallingstad (2007); reprinted with permission
of the American Institute of Aeronautics and Astronautics, Inc.

Estimator Maneuver handling Measurement Comments
model

UKFKF IMM* (5.7) & (5.8) Uses UKF on (5.7), and KF
on (5.8) for maneuvers.

UKFIMM IMM* (5.7) & (5.7)
UKFA Noise adjustment using (5.9) (5.7)

UKF None (5.7)
PF Reinitialization using (5.9) (5.1) Uses Algorithm C.1 and

wk = 0 in (5.1).
KFIMM IMM* (5.8) & (5.8)

KFA Noise adjustment using (5.9) (5.8)
KF None (5.8)

* The IMM estimators have two parallel filter models where the process models are one
standard model (5.4) and one maneuver model (5.4) with larger process noise covariance.
The filter models differ in choice of measurement models and tuning.

models (5.2) or (5.3) specialized for level flight produce poor results. The reason
is that in order for these to be chosen by the IMM algorithm when measurements
confirm level flight, they need to have lower process noise than the constant
velocity model for altitude change (5.4). Problems occur because an aircraft that
climbs or descends will often produce a couple of measurements at each flight
level before moving to the next due to the quantization. When that happens the
level flight model is chosen by the IMM algorithm instead of model (5.4). This
is logical because both models may get their predictions confirmed. This yields
poor performance whenever the aircraft is actually climbing or descending, since
the IMM estimator switches models to level flight when it is not appropriate. On
the other hand, if the process noise of the level flight model is increased it may
never be chosen, as (5.4) fits for all constant velocity motions, including zero
vertical velocity.

5.3.3 Example: Performance on a Simulated Trajectory

The estimators are tested on a deterministic trajectory in order to show how
quickly they respond to maneuvers and how they perform when vertical velocity
is zero. This serves as a verification of the filter tuning. The simulated trajectory
is a trajectory which all estimators should perform well on. The aircraft climbs
at 6 m/s for 23 samples, flies level for 22 samples and descends at 6 m/s for
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25 samples. The sampling interval ∆t = 4 s. The measurements are generated
from a deterministic version of (5.1) where wk = 0.

5.3.3.1 Nonlinear Estimators

These estimators take the nonlinear measurement into account. The PF uses (5.1)
whereas the UKF uses (5.7). Figure 5.1 shows estimated altitude and velocity
of the aircraft, and Figure 5.2 shows one step altitude prediction errors. If we
look at the estimated velocity in Figure 5.1 we see that the estimated velocity
of the PF eventually converges to a value close to the truth. This is the desired
filter behavior, and it is achieved because the PF models the entire pdf. The
moment matching of the UKF does not necessarily converge to the true velocity.
The estimate will stay at a value close to the truth for a couple of samples, and
then it will jump to a new value close to the truth. Typically one would want
convergence to the true value, at least when the aircraft is flying at constant
altitude. However, due to the measurement quantization, it is impossible to know
whether the aircraft is flying level. If the aircraft is moving slowly vertically
it will generate several measurements at the same altitude, just like an aircraft
which is not moving vertically. So a sequence of measurements at the same
altitude fits with several values of constant velocity. The UKF chooses one of
these and keeps it until it misses with a prediction, which can be seen in Figure
5.1 and 5.2. All UKF based estimators show this kind of behavior. They differ
in maneuver handling, which allows for lower process noise covariance.

5.3.3.2 Estimators Using the KF

The KF based estimators use the linear measurement model (5.8), and the per-
formance of the KF is depicted in Figure 5.1 and 5.2. The KF performs well
when the aircraft flies level. It converges to zero vertical velocity because that is
when its measurement predictions fit perfectly. However when the vertical ve-
locity is different from zero, the KF is not able to estimate it properly, since the
measurement quantization is not modeled well. Maneuver handling separates the
performance of KF based estimators.

5.3.4 Performance Comparison on Real Measurements

The estimators are tested on 186 real Mode C measurement sequences, the test-
ing data, which do not include the tuning data. When comparing estimators it
is important to choose performance metrics appropriate for the problem at hand.
We will look at the Root Mean Square Error (RMSE) and the Average Euclidean
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Figure 5.1: Estimates for simulated trajectory. From Topland and
Hallingstad (2007); reprinted with permission of the American Institute of
Aeronautics and Astronautics, Inc.

Error (AEE) (Li and Zhao, 2001). The AEE does not penalize large errors as
much as the RMSE, and it has a clear physical interpretation. The AEE is the
average Euclidean distance between the prediction and the measurement. The
RMSE is a statistical measure, and if the prediction errors are zero mean it equals
the prediction error standard deviation. They are defined as

RMSE =

(
1

M

M∑
i=1

eTi ei

)1/2

(5.12)

AEE =
1

M

M∑
i=1

(
eTi ei

)1/2
(5.13)

ei =
1

Ni

Ni∑
k=1

(zk − z̄k) (5.14)

where M is the number of measurement sequences, Ni is the number of
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Figure 5.2: Prediction error for simulated trajectory. From Topland and
Hallingstad (2007); reprinted with permission of the American Institute of
Aeronautics and Astronautics, Inc.

samples of a given measurement sequence and z̄k is the predicted measurement.
These metrics are computed as an average across each individual track and across
all the measurement sequences.

Figure 5.3 and 5.4 show AEE and RMSE for the estimators applied to the
tuning and testing data respectively. Note the large difference in performance
on the tuning data versus the testing data. The estimators are tuned to fit the
tuning data well, but that is not the only explanation. The testing data include
long sequences of level flight. These sequences cause estimated covariance to
be small. Hence the estimators have to rely heavily on their maneuver handling
ability when the aircraft suddenly maneuvers. This happens more often on the
testing data which leads to larger prediction errors.

Overall the PF is the worst performer. It may model the system well, but it is
usually slow to converge to good velocity estimates. This is because it has larger
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Figure 5.3: Estimator performance on tuning data for five step predictions
(20 s). From Topland and Hallingstad (2007); reprinted with permission of
the American Institute of Aeronautics and Astronautics, Inc.
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Figure 5.4: Estimator performance on testing data for five step predictions
(20 s). From Topland and Hallingstad (2007); reprinted with permission of
the American Institute of Aeronautics and Astronautics, Inc.

process noise covariance which is necessary to have a good spread of the parti-
cles. The IMM estimators (KFIMM, UKFIMM, UKFKF) are the second worst
performers. This is probably because they let the maneuver model have too much
influence on the estimates. Stronger process noise makes the velocity estimates
unstable. The UKFA is the winner regarding five step predictions, and that is
explained by its maneuver handling, its accurate model of the measurement (5.7)
and low process noise. The latter yields accurate velocity estimates which be-
come more important when long predictions are made. Note that the KFA, UKF
and KF are not far behind the UKFA in Figure 5.4.



6
Discussion and Conclusion

This chapter discusses the measurement models in Section 3.2, the estimability
analysis in Section 3.4 and the results of Chapter 4 and Chapter 5. Conclusions
are drawn, and topics for future work are suggested.

6.1 Discussion on Linearization

Measurement models for universal, absolute and relative bias estimation were
presented in Section 3.2 for estimation of an alignment bias, a location bias, and a
sensor bias. The latter originates from sensor imperfections, while the other two
originate from sensor calibration. The coordinate system of the sensor is neither
aligned nor located correctly with respect to the assumed coordinate system.
The resulting measurement models are nonlinear. Linearization is used in the
bias estimators, which makes it possible to use linear analysis in the form of the
static Cramer-Rao Lower Bound (CRLB), and to use linear filter algorithms. An
alternative would have been to use analysis of the nonlinear models, and to use
nonlinear filters. However, nonlinear function analysis is in general a challenging
problem, so the simplicity of linearization is preferred.

6.2 Estimability Analysis using the Static CRLB

The purpose of the estimability analysis in Section 3.4 is to find when a stochas-
tic bias estimation problem can be solved. This is investigated by plotting the
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estimability index of the CRLB covariance matrix, and explaining the plots us-
ing analysis and examples.

6.2.1 Discussion on The Estimability Index

The CRLB is used to account for the measurement noise in addition to the ge-
ometry of the problem. To determine when a bias estimation problem becomes
weakly estimable or unestimable, the estimability index (Definition 3.3) is used
which is defined using the static CRLB. The estimability index is zero (becomes
unestimable) when the measurement does not yield more information about all
state variables. The goal of the estimability contour plots is to show when this
happens in selected scenarios. Estimability indices not close to zero are of less
importance, since weak estimability can be compensated for by adding more
measurements.

A collection of sensors and targets can be positioned in 3D space in an infinite
number of ways. Therefore the scenarios selected show the simplest scenarios
where estimability is achieved in some area of the state space. These simple
scenarios reveal challenges from the geometry of the problem and sensitivity to
increased measurement noise.

6.2.2 Conclusions from Analysis

The analysis revealed the following important cases where the measurement bi-
ases are unestimable.

The Alignment Bias Unestimable in the universal case if all sensors are located
along the same line. Thus at least three sensors are required to get universal
estimability.

The Location Bias Unestimable in the universal case since no points in space are
known exactly.

The Sensor Range Bias Unestimable in the universal and absolute case at long
range due to measurement noise.

The Alignment and Sensor Bias Unestimable in the universal case when esti-
mated jointly. However estimability is achieved by removing one of the
angular biases roll, pitch or elevation.
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The above findings would also have been found investigating observability, ex-
cept for the sensor range bias case where measurement noise increasing with
range makes the problem unestimable. This highlights the key benefit of using
estimability instead of observability.

6.3 Constant Velocity Simulation Results

6.3.1 Discussion

The conclusions regarding estimability in Section 3.4 are used to decide inter-
esting simulation scenarios in Section 4.1. The goal of Section 4.1 is to com-
pare the performance of the Extended Kalman Filters (EKFs) the Universal Bias
Estimator (UBE), the Absolute Bias Estimator (ABE) and the Relative Bias Es-
timator (RBE) on targets moving at constant velocity. Targets moving at con-
stant velocity is one of the most common assumptions in target tracking. The
EKF estimators estimate measurement biases and target positions jointly. The
performance of these estimators are also compared to standard bias estimators
found in the literature, the Standard Universal Bias Estimator (SUBE) and the
Standard Absolute Bias Estimator (SABE). Recall that the KFU, KFBU and
KFBS are Kalman Filters (KFs) which herein are used as performance bounds.
The biases are known in the KFU (lower bound), while they are unestimated but
accounted for in the KFBU and KFBS (higher bound). The KFBU and KFBS
perform tracking in the sensor indpendent universal coordinate system {u} and
the master sensor coordinate system {s0} respectively. The best estimators have
performance close to the lower bound.

6.3.2 Conclusion

6.3.2.1 Sensor Independent Coordinates

If tracking is performed in the sensor independent universal coordinate system
{u} performance depends on which biases it is necessary to estimate. In the first
scenario neither the UBE, the ABE, the RBE, the SUBE nor the SABE yield
performance which justify their use with respect to the KFBU. Recall that the
KFBU is simpler to implement as it accounts for the biases without estimating
them. In this scenario the UBE attempts to estimate three alignment bias angles,
a range bias, and an elevation angle bias for each sensor, in addition to target
positions. All of these quantities rely on a known sensor location, thus perfor-
mance suffers when the location bias is not estimated. In the second and third
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scenario the UBE is the best performer of the estimators tested. When removing
the elevation angle in the second scenario performance is midway between the
KFU and the KFBU. In the third scenario where the location bias is removed
the UBE performance is close to the KFU both in {u} and {s0}. Recall that
the UBE needs at least three sensors observing the same targets to estimate the
biases. If only two sensors are present and target tracking is performed in {u},
the UBE should be replaced by the SUBE in cases where the SUBE outperforms
the KFBU.

6.3.2.2 Master Sensor Coordinates

If tracking is performed in {s0}, and performance in {u} is of no importance,
the best performing bias estimator is the ABE. Its performance in {s0} is close
to the KFU in all simulation scenarios, and it is able to estimate successfully
the alignment, location and sensor biases. It is the only estimator which accom-
plishes this. Note that the performance of the RBE is approximately identical to
the ABE despite the fact that it does not estimate the master sensor range and
elevation bias. This is because the unestimated master sensor range and eleva-
tion biases do not have a noticeable effect on tracking performance. Thus the
added complexity of the ABE does not yield better performance with respect to
the RBE in the scenarios treated herein. This may explain why tracking in the
coordinates of an assumed bias free master sensor is popular in the bias estima-
tion literature. Note that the UBE has slightly better performance in {s0} than in
{u}, suggesting that tracking should be done in {s0} if tracking performance is
of primary concern. Using the UBE it is possible to convert positions to {u} if
necessary, provided that its bias estimation performance is good enough.

6.4 Bias Estimation Using the Curvature of the
Earth

6.4.1 Discussion

A drawback of the UBE in the previous section is that it requires at least three
sensors observing the same targets in order to determine the alignment bias suc-
cessfully in sensor independent coordinates. Section 4.2 investigates a way to
relax this requirement by assuming that aircraft flies at constant altitude, speed
and heading above the Earth. This motion results in curved motion which en-
hances the estimability of the alignment bias. The single sensor case is discussed
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in Section 4.2, and it is shown that either roll α or pitch β become estimable be-
cause of the curved motion. For an aircraft flying at constant velocity, none of
the alignment bias Euler angles are estimable for a single sensor.

However, determining one of the Euler angles in this manner is not suffi-
cient. Two are required to get a UBE which for two sensors can determine the
alignment bias successfully. A way to do this is discussed in Section 4.2.4.1.
It involves constraining the allowed aircraft motion even further. The simulated
model allows several curved motions, but this can be constrained to a specific
curved motion such as the motion on a Great Circle. This constrained motion
is expected to allow determination of both roll and pitch for one sensor. Yaw
becomes observable when a second sensor is added. This is a topic for further
research.

6.4.2 Conclusion

It is shown that assuming a curved constant altitude motion makes it possible
to estimate either roll α or pitch β biases for a single sensor observing a single
target. Note that Figure 4.11 shows slow convergence of α. In fact the aircraft
has traveled 80 km when the position error is close to zero. This is a weakness
of the proposed method since it requires a long continuous track for the curved
motion to become visible for the estimator. Another challenge for this method
is that measurement noise will make it more challenging to observe the curved
motion. Measurement noise is not included in the simulation herein since the
focus is on determining whether such a method could be used in theory. While
the answer to that question may be yes, it seems to be challenging to use this
method in practice given the slow convergence and measurement noise issues.
It could possibly be used for ships instead of aircraft, since a ship’s altitude is
known. A 2D radar observing ships may also have an alignment bias as discussed
in this thesis.

6.5 Aircraft Altitude Prediction Using Mode C
Measurements

6.5.1 Discussion

Several Bayesian estimators are tuned and tested on the problem using real mea-
surements and comparing estimator predictions with actual measurements. Of
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particular interest are Interacting Multiple Model (IMM) estimators, but in this
case they perform worse than single model estimators with adjustable process
noise, and a standard KF. The IMM estimators using specialized models for
level flight are often not able to choose the correct model when the alternative
is a constant velocity model. The IMM estimators using constant velocity mod-
els with different process noise levels perform better, but they tend to give too
much weight to the maneuver model during small maneuvers. The KF based
estimators have position estimates closer to the measurements because of their
linear measurement model. This model mismatch is apparent in the velocity esti-
mates which are inferior to the nonlinear estimators using the Unscented Kalman
Filter (UKF) or the Particle Filter (PF). Improved velocity estimates yield bet-
ter long term predictions, which are important in conflict alarm systems for Air
Traffic Control (ATC).

6.5.2 Conclusion

The best overall performers are the estimators with adjustable process noise for
maneuver handling, in particluar the UKF based UKFA. The IMM estimators
can adjust their weighting of the maneuver model, whereas the latter estimators
use either the standard model or the maneuver model based on a threshold. This
threshold is not exceeded during small maneuvers, which leads to better per-
formance. The IMM estimators tend to put too much weight on the maneuver
model. The theoretically most advanced estimator, the PF, is the worst performer
since it depends on a larger process noise covariance to spread its particles in
state space. Note that the performance of the KF with adjustable process noise
(KFA) is only slightly worse than the UKFA. Since this is a linear estimator with
a simpler impementation than the UKF, it is a good alternative.

6.6 Suggested Topics for Future Research

6.6.1 Alternative Bias Models

The mathematical model of a bias is defined in Definition 3.1 which states that
a bias is a constant parameter. There are alternative bias models which could
be appropriate, for instance that a bias is a parameter which oscillates about a
constant value. This could be done using a first order Markov model.

Sensor scale biases (Lin and Bar-Shalom, 2005) is a type of bias which could
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be added to the sensor bias model, thus (3.6) would be replaced with

zk = F
(
g
)
p
k

+ b+ wk (6.1a)

wk ∼ N (0, Rδkl) (6.1b)
b ∼ N (0, B) (6.1c)
g ∼ N (0, G) (6.1d)

where

g =
[
gρ, gθ, gφ

]T (6.2a)

F
(
g
)

=

1 + gρ 0 0
0 1 + gθ 0
0 0 1 + gφ

 . (6.2b)

Adding scale biases to the sensor bias makes the bias estimation problem more
challenging, since there are three more biases to estimate per sensor. An es-
timability study is required to see how this affects estimability of the alignment,
location and sensor biases.

Another type of bias which could be investigated using the measurement
models herein is a time bias, a systematic error due to time offsets across sen-
sors. Time bias estimation would require a reference clock. In universal bias
estimation the clock would be sensor independent, while in absolute/relative bias
estimation the clock of the master sensor would be used as reference.

6.6.2 Asynchronous Sensors

In a real world scenario sensors will in general send measurements asynchronously.
The results herein are for synchronous sensors. There are several ways of dealing
with asynchronous sensors. One way is to manipulate the measurements directly
as in Lin and Bar-Shalom (2005). Another is to use biased local sensor tracks or
tracklets as measurements for the bias estimator. Tracks from a given target are
in general correlated, but there are ways to remove this correlation, for instance
by using tracklets, which are essentially uncorrelated tracks. Tracks and track-
lets are straightforward to propagate to a common time, hence it is possible to
use bias estimation methods for synchronous sensors. For more information on
fusion of tracks and tracklets from multiple sensors consult the series of papers
Drummond (1997a,b, 1995, 1996, 2002) which discusses how to calculate cross
correlations between tracks, taking into account the sensor network communica-
tion load of several methods.
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6.6.3 Performance on Real Measurements

The bias estimation results herein are simulated, but it is vital to test the sug-
gested bias estimators on real measurements. The bias estimator would have
to handle asynchronous sensors, as treated in the previous section, and maneu-
vering targets. Although targets that maneuver a lot could be ignored, targets
that maneuver a little should be accounted for, since requiring constant velocity
motion could be too restrictive. Targets that move in a coordinated turn are of
particular interest as they increase bias observability and estimability as in Nabaa
and Bishop (1999).

6.6.4 Nonlinear Bias Estimation

Although the measurement models herein are nonlinear, the filter models are ob-
tained using linearization for the EKF and matching of moments up to the fourth
order for the UKF. Furthermore both of these methods are recursive, and they
rely on the Markov property which says that the future states only depend on the
present state. This means that only the most recent estimate is required to predict
future states.

To improve bias estimator performance it would be interesting to investigate
bias estimators that use the nonlinear models directly, such as the PF. If such
estimators are found to be too expensive computationally, it would be interesting
to see if one could derive a Best Linear Unbiased Estimator (BLUE) (Li et al.,
2003) without using linearization.

A recursive algorithm may be efficient, but more accurate bias estimates may
be obtained by using batch methods that operate on a measurement set. Using
the measurement models herein one could formulate a nonlinear optimization
problem, and solve it using a numerical search or a genetic algorithm. See Kragel
et al. (2007) for a nonlinear Least Squares (LS) method which estimates the
alignment bias. A simpler alternative would be to use a smoothing algorithm
(Gelb, 1974).

6.6.5 Bias Estimation for 2D Radars and Mode C
Measurements

In ATC 2D radar and Mode C measurements are used to measure the position of
airborne targets. The bias estimation models herein should be adapted to perform
bias estimation with these sensors. This involves using (5.1) with (3.16) to get a
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new model for a sensor measurement in Cartesian coordinates. Note that several
types of sensors are used in ATC. The modeling herein may be adapted to radars,
Primary Surveillance Radars (PSRs) and Secondary Surveillance Radars (SSRs)
for airborne aircraft, and Surface Movement Radars (SMRs) for aircraft close
to the ground. The 2D position measurement of a SSR relies on transponder
messages from aircraft, where the alignment and location bias discussed herein
applies, but the sensor bias does not.

6.6.6 Bias Estimation for Extended Targets

The mathematical models herein all assume that the target can be modeled as a
point in 3D space. This is a valid assumption when the target is an aircraft situ-
ated far away from the radar. However, radars are also used for aircraft surveil-
lance on airports, where the targets are close to the radars. In this case the point
assumption no longer holds, and biases are introduced because the radars will re-
port different positions since their beams reflect on different parts of the aircraft
body. This kind of problem is also present in harbor surveillance of ships. It
would be of great interest to adapt the bias models herein to this scenario, where
the radars would typically be 2D radars. If the targets are assumed to be on the
ground the target altitude would be known, and in the case of ship surveillance at
long range, it might be possible to use the curvature of the Earth to aid the bias
estimator.
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A
Cramer-Rao Lower Bound

A.1 Proof of the Static CRLB

Proof: To prove Theorem 2.1 we need the relation

∂p (z : x)

∂x
=
∂ ln p (z : x)

∂x
p (z : x) (A.1)

which is proved by looking at differentiation with respect to element xi where
i ∈ {1, 2, . . . , nx}, and using the chain rule,

∂ ln p (z : x)

∂xi
p (z : x) =

∂ ln p (z : x)

∂p (z : x)

∂p (z : x)

∂xi
p (z : x)

=
1

p (z : x)

∂p (z : x)

∂xi
p (z : x) =

∂p (z : x)

∂xi
. (A.2)
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We start by proving (2.2) using that the integral of a probability density function
(pdf) equals 1.

∞∫
−∞

p (z : x) dz = 1

∞∫
−∞

∂

∂xi
p (z : x) dz =

∞∫
−∞

∂ ln p (z : x)

∂xi
p (z : x) dz = 0

∂

∂xj

∞∫
−∞

∂ ln p (z : x)

∂xi
p (z : x) dz = 0

∞∫
−∞

∂2 ln p (z : x)

∂xi∂xj
p (z : x) dz +

∞∫
−∞

∂ ln p (z : x)

∂xi

∂p (z : x)

∂xj
dz = 0

∞∫
−∞

∂2 ln p (z : x)

∂xi∂xj
p (z : x) dz +

∞∫
−∞

∂ ln p (z : x)

∂xi

∂ ln p (z : x)

∂xj
p (z : x) dz = 0

E

{
∂2 ln p (z : x)

∂xi∂xj

}
+ E

{
∂ ln p (z : x)

∂xi

∂ ln p (z : x)

∂xj

}
= 0.

(A.3)

The Fisher Information Matrix (FIM) is by definition (Kay, 1993)

J = −E
{
∂2 ln p (z : x)

∂xi∂xj

}
= −E

{
∂2 ln p (z : x)

∂x∂xT

}
, (A.4)

thus (2.2) is proved. Proving (2.1) requires the use of Schwarz’s inequality

|〈f1, f2〉|2 ≤ 〈f1, f1〉〈f2, f2〉 (A.5)

where f1 and f2 are real integrable functions, and the inner product is defined by

〈f1, f2〉 =

∞∫
−∞

f1 (z) f2 (z) dz. (A.6)
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We prove (2.1) starting with the fact that the estimator is unbiased. The estimate
is denoted x̂ (z).

E {x̂ (z)− x} = 0
∞∫

−∞

(x̂ (z)− x) p (z : x) dz = 0

∂

∂xT

∞∫
−∞

(x̂ (z)− x) p (z : x) dz = 0

−
∞∫

−∞

Ip (z : x) dz +

∞∫
−∞

(x̂ (z)− x)
∂p (z : x)

∂xT
dz = 0

∞∫
−∞

(x̂ (z)− x)
∂p (z : x)

∂xT
dz = I

∞∫
−∞

(x̂ (z)− x)
∂ ln p (z : x)

∂xT
p (z : x) dz = I (A.7)

To use (A.5) we need real scalar functions inside the integral, and not vector
functions. Defining two arbitrary vectors a and b, we multiply with aT from the
left and b from the right.

∞∫
−∞

aT (x̂ (z)− x)
√
p (z : x)︸ ︷︷ ︸

f1(z)

∂ ln p (z : x)

∂xT
b
√
p (z : x)︸ ︷︷ ︸

f2(z)

dz = aT b (A.8)

Using (A.5) we get

∣∣aT b∣∣2 ≤ ∞∫
−∞

aT (x̂ (z)− x) (x̂ (z)− x)T a p (z : x) dz

∞∫
−∞

bT
∂ ln p (z : x)

∂x

∂ ln p (z : x)

∂xT
b p (z : x) dz. (A.9)

Assuming that neither a nor b depend on z we get∣∣aT b∣∣2 ≤ aTPa bTJb (A.10)
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where we recognize the true covariance matrix P of the estimate and the FIM J .
In order to prove (2.1) we need to find suitable expressions for a and b.



B
Measurement Covariance

B.1 Measurement Covariance Conversion from
Spherical to Cartesian Coordinates

As discussed in Bar-Shalom and Li (1995) it is desirable to track targets in Carte-
sian coordinates, since the modeling of target motion is practical in these coor-
dinates. If the measurement is in different coordinates like polar or spherical
coordinates, the measurement and its covariance can be converted to Cartesian
coordinates. The covariance conversion from spherical to Cartesian coordinates
follows. The calculation is analogous to the covariance conversion from polar to
Cartesian coordinates in Bar-Shalom and Li (1995). The conversion from polar
to Cartesian coordinates is also investigated in Longbin et al. (1998), Duan et al.
(2004), and Zhao et al. (2002, 2004a,b). Conversion from spherical coordinates
to Cartesian coordinates is given in (2.27). The measurement error

ε = z − x (B.1)

is used to calculate the covariance conversion, where z is the measurement and
x is the true state vector. We will now find expressions for the measurement
errors of x, y and z, and calculate the associated covariance. These expressions
are based on linearization about the measurements when the angle errors are
assumed small. Note that this linearization may be done about estimates instead
of measurements. The measurement error xε is

xε = xz − x = ρz cos θz cosφz − ρ cos θ cosφ (B.2)
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where xε, xz and x are the x components of ε, z and x respectively. The lin-
earization leads to xε = Term 1 + Term 2 + . . ..
Term 1:

(ρz − ρ) cos θz cosφz = ρε cos θz cosφz (B.3)

Term 2:

ρz cosφz (cos θz − cos θ) = −θερz sin θz cosφz (B.4)

Term 3:

ρz cos θz (cosφz − cosφ) = −φερz cos θz sinφz (B.5)

The measurement error yε is

yε = yz − y = ρz sin θz cosφz − ρ sin θ cosφ. (B.6)

Term 1:

(ρz − ρ) sin θz cosφz = ρε sin θz cosφz (B.7)

Term 2:

ρz cosφz (sin θz − sin θ) = θερz cos θz cosφz (B.8)

Term 3:

ρz sin θz (cosφz − cosφ) = −φερz sin θz sinφz (B.9)

The measurement error zε is

zε = zz − z = ρz sinφz − ρ sinφ. (B.10)

The linearized measurement errors become:

xε ≈ ρε cos θz cosφz − θερz sin θz cosφz − φερz cos θz sinφz

yε ≈ ρε sin θz cosφz + θερz cos θz cosφz − φερz sin θz sinφz

zε ≈ ρε sinφz + φερz cosφz (B.11)

Assuming

E {xε} = E {yε} = E {zε} = 0, (B.12)



B.1 Measurement Covariance Conversion from Spherical to Cartesian Coordinates139

we calculate the elements of the covariance matrix.

R11 = E
{
x2
ε

}
−

0︷ ︸︸ ︷
E {xε}2

= E
{
ρ2
ε cos2 θz cos2 φz − 2ρεθερz cos θz sin θz cos2 φz

− 2ρεφερz cos2 θz cosφz sinφz + θ2
ερ

2
z sin2 θz cos2 φz

+ 2θεφερz sin θz cos θz cosφz sinφz + φ2
ερ

2
z cos2 θz sin2 φz

}
. (B.13)

Using

E
{

(̃·)(̃·)
}

= σ2
(·)

E {ρεθε} = E {θεφε} = E {ρεφε} = 0 (B.14)

we get the diagonal elements:

R11 = σ2
ρ cos2 θz cos2 φz + σ2

θρ
2
z sin2 θz cos2 φz + σ2

φρ
2
z cos2 θz sin2 φz (B.15a)

R22 = σ2
ρ sin2 θz cos2 φz + σ2

θρ
2
z cos2 θz cos2 φz + σ2

φρ
2
z sin2 θz sin2 φz (B.15b)

R33 = σ2
ρ sin2 φz + σ2

φρ
2
z cos2 φz (B.15c)

The off-diagonal elements become:

R12 = E {xεyε} −
0︷ ︸︸ ︷

E {xε}E {yε}
= σ2

ρ cos θz sin θz cos2 φz − σ2
θρ

2
z sin θz cos θz cos2 φz + σ2

φρ
2
z cos θz sin θz sin2 φz

(B.16a)

R23 = σ2
ρ sin θz cosφz sinφz − σ2

φρ
2
z sin θz cosφz sinφz (B.16b)

R13 = σ2
ρ cos θz cosφz sinφz − σ2

φρ
2
z cos θz cosφz sinφz (B.16c)
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C
Filtering Algorithms

C.1 The Particle Filter

While the Kalman Filter (KF) and the Extended Kalman Filter (EKF) estimate
first and second order central moments of a stochastic variable, the Particle Filter
(PF) is a filtering algorithm that estimate the entire probability density function
(pdf) of a stochastic variable. It can be used for any nonlinear system, but it
is computationally expensive. For more details on the PF consult Ristic et al.
(2004).

C.1.1 General Bayesian Filtering

A general discrete time nonlinear system with the state vector xk, the input vec-
tor uk, the process noise vector vk, the measurement noise vector wk, and the
measurement vector zk, is given by

xk+1 = f
k

(
xk, uk, vk

)
(C.1a)

zk = hk (xk, wk) (C.1b)

where

x0 ∼ px (x0) , vk ∼ pv (vk) , wk ∼ pw (wk) , (C.2)

and x0, vk and wk are statistically independent. A general filtering solution
exist for the system described by (C.1) and (C.2), and it is given by the general
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Bayesian filtering equations

p (xk | Zk−1) =

∫
p
(
xk | xk−1

)
p
(
xk−1 | Zk−1

)
dxk−1 (C.3a)

p (xk | Zk) =
p (zk | xk) p (xk | Zk−1)∫
p (zk | xk) p (xk | Zk−1) dxk

(C.3b)

which return the conditional probability density function (cpdf) p (xk | Zk)
given the prior cpdf p

(
xk−1 | Zk−1

)
, the process cpdf p

(
xk | xk−1

)
, the likeli-

hood function p (zk | xk), the initial pdf p (x0) and the measurement sequence
Zk = {z0, z1, . . . , zk}. In general the integrals in (C.3) can not be solved. Hence
they need to be approximated. Popular approximations are modeling the pdfs in
a grid with finite resolution (Bucy and Senne, 1971), or using a cloud of particles.
These implementations all suffer from the curse of dimensionality, which means
that the computational load increases exponentially as the state vector grows in
dimension.

C.1.2 The Particle Cloud Approximation

When using the particle cloud approximation the pdfs are approximated using
particles that are sampled from the underlying pdf. This approximation yields

p (xk | Zk−1) ≈ 1

N

N∑
i=1

δ
(
xk − xik

)
(C.4)

where the cloud of N particles {xik}
N

i=1 is assumed to be independent and
identically distributed samples from p (xk | Zk−1). The pdf of an area in the
state space is now derived from the density of the particles in that area. Inserting
(C.4) into (C.3b) yields

p
(
xk+1 | Zk

)
=

∫
p
(
xk+1 | xk

)
p (xk | Zk) dxk

≈
∫
p
(
xk+1 | xk

) 1

N

N∑
j=1

δ
(
xk − xjk

)
dxk

=
1

N

N∑
j=1

p
(
xk+1 | xjk

)
(C.5)
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and

p (xk | Zk) =
p (zk | xk) p (xk | Zk−1)∫
p (zk | xk) p (xk | Zk−1) dxk

≈ p (zk | xk) 1
N

∑N
i=1 δ (xk − xik)∫

p (zk | xk) 1
N

∑N
i=1 δ (xk − xik) dxk

=
p (zk | xk)

∑N
i=1 δ (xk − xik)∑N

i=1 p (zk | xik)
(C.6)

where the particle cloud {xik}
N

i=1 represents p (xk | Zk−1) and
{
xjk
}N
i=1

rep-
resents p (xk | Zk). There are several algorithms used to implement the PF. One
of the most common is known as the Bayesian Bootstrap algorithm.

Algorithm C.1 Particle Filter using Sequential Importance Resampling

1: Given px (xk), generate {xik}
N

i=1 through N samples from px (xk).
2: Time increment: k = k + 1
3: Predict every particle in the cloud r = M/N (M > N) times using (C.1a),

obtaining
{
xjk
}M
i=1

.
4: Compute the probability weights wjk using (C.7b).
5: Calculate estimate and covariance using (C.8).
6: Sample N particles from

{
xjk
}M
i=1

where the particle weights are given by
wjk, producing {xik}

N

i=1.
7: Go to item 2.

C.1.3 Bayesian Bootstrap

The Bayesian Bootstrap algorithm is also known as Sequential Importance Re-
sampling (SIR). Consider the particle cloud {xik}

N

i=1 which approximates
p (xk | Zk−1). When a measurement zk is received a probability weight wik is
defined for every particle

wik = γ−1
k p

(
zk | xik

)
(C.7a)

γk =
N∑
j=1

p
(
zk | xik

)
(C.7b)

where γk is a normalizing constant ensuring
∑N

i=1 w
i
k = 1. The weights

wik are proportional to p (zk | xik), which means that the most likely (important)
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particles are given the largest weights. Estimate and covariance can now be
calculated:

x̂k =

∫
xkp (xk | Zk) dxk ≈

∫
xkp (zk | xk)

∑N
i=1 δ (xk − xik) dxk∑N

i=1 p (zk | xik)

=

∑N
i=1 x

i
kp (zk | xik)∑N

i=1 p (zk | xik)
=

N∑
i=1

wikx
i
k (C.8a)

P̂k =
N∑
i=1

wik
(
xik − x̂k

) (
xik − x̂k

)T (C.8b)

The recursive SIR algorithm is presented in Algorithm C.1. According to
Bergman (1999), the amount of predicted particles M should be about 10 times
more than the cloud of N particles that is propagated. Line 6 in Algorithm C.1
is the resampling step, where a cloud of M particles is reduced to a cloud of
N particles. Note that there are cases where a measurement may yield large
weights to only a few particles, resulting in a cloud spanning a small region of
the state space. If the next measurements occur outside this region, the PF may
diverge. This problem is reduced by using the mentioned resampling step, and
by increasing the process noise.

C.2 The Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is an alternative to the EKF. While the EKF
uses linearization to handle nonlinearities, the UKF uses the unscented transfor-
mation. This transformation can deal with a wider range of nonlinearities, where
it in some cases yields better approximations of the mean and covariance. The
UKF is discussed in Julier et al. (1995) and Julier and Uhlmann (1996, 2004),
and it is also known as the Sigma Point Kalman Filter (Wan and Van Der Merwe,
2000). Next the unscented transform and a UKF implementation are presented.

C.2.1 The Unscented Transformation

Given a nonlinear function

y = g (x) (C.9)

where x is a stochastic vector with known mean x̄ and covariance Px. The
unscented transformation is performed through the following steps.
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1. Calculate the sigma points xi and the associated weights wi for x using x̄
and Px.

2. Apply (C.9) to the sigma points, and calculate the sigma points yi of y.

3. Calculate the mean and covariance of the function using the sigma points
yi and the weights wi.

ȳ =
∑
i

wiyi (C.10a)

Py =
∑
i

wi
(
yi − ȳ

) (
yi − ȳ

)T (C.10b)

There are several ways to calculate the sigma points and their weights, yield-
ing several possible sigma point sets for a given function. A sigma point set must
yield correct values for the mean and covariance of x, and the associated weights
must satisfy ∑

i

wi = 1, (C.11)

but the weights do not have to be positive. If they are positive, they can be
interpreted as a probability mass function.

C.2.2 The Extended Symmetric Sigma Point Set

The Extended Symmetric Sigma Point Set is the result of a sigma point selection
algorithm yielding 2nx + 1 sigma points where nx is the dimension of x. It is
presented in Algorithm C.2. The weight w0 is a tuning parameter, and it can
be used to adjust the central fourth order moment of the Gaussian pdf resulting
from the sigma points. Assuming that the pdf of y is Gaussian, w0 = 1/3. Other
sigma point sets can be found in Julier and Uhlmann (1996) and Julier (2002).

C.2.3 Unscented Filtering

Consider (C.1) where

E {x0} = x̂0; E
{

(x0 − x̂0) (x0 − x̄0)T
}

= P̂0 (C.12a)

E {vk} = 0; E
{
vkv

T
l

}
= δklQk (C.12b)

E {wk} = 0; E
{
wkw

T
l

}
= δklRk (C.12c)

E
{
x0v

T
k

}
= 0; E

{
x0w

T
k

}
= 0; E

{
vkw

T
l

}
= 0. (C.12d)
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Algorithm C.2 Extended Symmetric Sigma Point Set
1: Compute sigma points:

P = UUT

U =
[
u1 u2 . . . unx

]
x0 = x̄

xi = x̄+

√
nx

1− w0
ui for i ∈ {1, 2, . . . , nx}

xi+nx = x̄−
√

nx
1− w0

ui for i ∈ {1, 2, . . . , nx}

wi =
1− w0

2nx
for i ∈ {1, 2, . . . , 2nx}

yi = g
(
xi
)

for i ∈ {0, 1, 2, . . . , 2nx}

2: Calculate mean and covariance:

ȳ =
2nx∑
i=0

wiyi

Py =
2nx∑
i=0

wi
(
yi − ȳ

) (
yi − ȳ

)T

The UKF algorithm is presented in Algorithm C.3. To use Algorithm C.2, an
augmented state vector x̂a is defined yielding 2nxa + 1 sigma points. A square
root version of Algorithm C.3 can be found in Van Der Merwe and Wan (2001).



C.2 The Unscented Kalman Filter 147

Algorithm C.3 The Unscented Kalman Filter
1: Augment the state vector to yield the system

xak =

x̂k0
0

 ; P̂ a
k =

P̂k 0 0
0 Qk 0
0 0 Rk+1

 .
2: Compute the sigma points of the augmented system yielding np sigma

points:

xa,ik =

 xik
vik
wik+1

 ; i ∈ {0, 1, . . . , np}

3: Predict state and covariance:

x̄ik+1 = f
(
x̂ik, uk, v

i
k

)
; i ∈ {0, 1, . . . , np}

x̄k+1 =

p∑
i=0

wix̄ik+1

P̄k+1 =

p∑
i=0

wi
(
xik+1 − x̄k+1

) (
xik+1 − x̄k+1

)T
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4: Predict measurement and covariance:

zik+1 = h
(
xik+1, w

i
k+1

)
; i ∈ {0, 1, . . . , np}

z̄k+1 =

p∑
i=0

wizik+1

P̄zz (k + 1) =

p∑
i=0

wi
(
zik+1 − z̄k+1

) (
zik+1 − z̄k+1

)T
P̄xz (k + 1) =

p∑
i=0

wi
(
xik+1 − x̄k+1

) (
zik+1 − z̄k+1

)T
5: Calculate estimated state and covariance:

Kk+1 = P̄xz (k + 1) P̄−1
zz (k + 1)

P̂k+1 = P̄k+1 −Kk+1P̄zz (k + 1)KT
k+1

x̂k+1 = x̄k+1 +Kk+1

(
zk+1 − z̄k+1

)
6: Time increment: k = k + 1
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