
AnyBoard spillplattform
Et JavaScript rammeverk for å støtte

utviklingingen av digital brettspill

Tomas Albertsen
Fagerbekk

Master i datateknologi

Hovedveileder: Monica Divitini, IDI

Institutt for datateknikk og informasjonsvitenskap

Innlevert: september 2015

Norges teknisk-naturvitenskapelige universitet

Tomas Albertsen Fagerbekk

AnyBoard game platform
A JavaScript software platform supporting the
development of hybrid board games.

Trondheim, September 2015

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

Abstract

Previous work has sparked interest in hybrid games, games that combine video
games and traditional board games by using digital surfaces or tangible, digital
tokens. Whilst video games provide a rich, dynamic and interactive environment,
board games has the advantage of a social face-to-face interaction. Hybrid board
games attempts to combine the best of both, providing the dynamic interactivity
of digital games with the social aspect of traditional games.

In this thesis a software platform has been developed for creating hybrid board
games. Its goal is to simplify the challenges with creating and implementing
game concepts digitally, in combination with integrating tangible digital devices.

The work has resulted in AnyBoard, a JavaScript based platform that is openly
available at github.com/tomfa/anyboardjs. A common communication protocol as
well as firmware implementations for two different Arduino-based chipsets has
been developed and tested on mobile surfaces. With the current state of the
AnyBoard platform, developers are able to create games using pawns that detect
location, display colors and print cards from a mobile-surface game hub, without
knowing anything but common web technology. The platform supports
integration with any other JavaScript-based game library available.

AnyBoard can be used as is to create hybrid board games, but also has a great
potential to become a richer and more potent tool with further development.

Keywords: hybrid games, board game, tangible interfaces, arduino,
javascript

ii

https://github.com/tomfa/anyboardjs/

Preface

This project was carried out as a Master’s thesis at NTNU as part of the MSc
programme in Computer Science during the summer of 2015. The work has been
supervised by Monica Divitini and co-supervised by Simone Mora.

The work is in large part motivated by challenges with previous projects done by
students of supervisor Monica Divitini when creating hybrid board games. The
contributions from in this thesis include the development and design of the
AnyBoard library, token drivers and firmware that is located at
github.com/tomfa/anyboardjs. Available open source tools have been used where
applicable.

The design and assembly of the Arduino-based tokens has been done by
co-supervisor Simone Mora.

Thanks to my supervisors for guidance, input and motivation throughout the
thesis. You’ve been great!

iii

https://github.com/tomfa/anyboardjs/

Contents

Abstract ii

Preface iii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem definition . 3

1.3 Research questions . 3

1.4 Research method . 4

1.5 Contribution . 4

1.6 Thesis outline . 4

2 Problem Elaboration 6

2.1 Previous work . 6

2.2 Characteristics of board games 7

2.3 Life cycle and roles . 16

2.4 Challenges . 19

2.5 Components and high level requirements 21

iv

CONTENTS v

3 Preliminary studies 25

3.1 Cross platform tools . 25

3.2 Game engines . 31

4 System Design 35

4.1 Requirement specification . 35

4.2 Application architecture . 40

4.3 Phone-Token communication . 40

4.4 Web-Phone communication . 41

5 System implementation 43

5.1 Development environment . 43

5.2 Logical Entities . 47

5.3 Token Communication . 51

5.4 Graphical Elements . 58

6 Evaluation 59

6.1 Evaluation method . 59

6.2 Evaluation process . 61

6.3 Results . 64

7 Discussion 68

7.1 Development process . 68

7.2 Implementation . 69

7.3 Evaluation . 73

7.4 Potentially interesting new features 74

8 Conclusion 78

8.1 Future Work . 79

vi CONTENTS

Bibliography 80

A Details on development environment 83

B AnyBoard Quiz Game 91

C Provided examples 101

D Implemented tokens 106

E AnyBoard Tests 110

F Bluetooth communication protocol 111

G Article: Reflections on AnyBoard 113

H A grammer for mapping token-based interaction to game dynamics 122

I AnyBoard Documentation 124

Chapter 1

Introduction

The aim of this thesis is to look at how one can simplify the development of
hybrid board games. The next sections of this chapter describe the context and
motivation of the thesis. The research questions and research method are then
described, before the final section (1.6) which gives an outline of the report.

1.1 Motivation
Much of the motivation is based on experiences from previous work on hybrid
board games1 at NTNU. Don’t Panic(1) was a hybrid board game developed for
training and play for emergency personnel, where the goal was to minimize the
level and spreading of panic. The players used small digital pawns representing
each player to move about a non-digital board. Details around Don’t Panic can be
seen in chapter 2.2. The lessons from this work is much of the background for the
motivation in the following subsections of this chapter.

Hybrid board games are more immersive than traditional board games

The limitations of traditional board games lie in the static tokens and constrains.
It is up to the players to understand the concepts and rules, as well as imagine or
enforce the consequences of player actions. A digital game on the other hand is
more dynamic with a richer interface that can be more absorbing. Consequences
of a players actions can be enforced and accompanied by sound, vibration and
graphical simulation. But digital games often take focus away from the social
aspect of their traditional counterparts. The hope for hybrid board games is an

1 Hybrid (board) games: We will use this term in the thesis to refer to the type of games we are tar-
geting: A game where players interact with digital pawns, such as Arduino devices on a physical
non-digital board

1

2 Introduction

immersive, dynamic game play that also keep the social aspect of face-to-face
interaction.

Both Don’t Panic and other similar projects(2, 3) show good results: The players
find them engaging and fun. One comparison between digital tabletop2 and
traditional board games even indicate that "senior citizens found the tabletop
version of the game to be more immersive and absorbing [than regular board
games]"(2).

Existing tools can be difficult to set up

In the testing of Don’t Panic(1), the users enjoyed the game play and showed
enough interest in it to request to keep a version of the game for themselves. The
challenge with this was the complexity of setting the game up. It required turning
on an off-site server that held a database and worked as a sort of game hub, as well
as manually starting scripts in on-site components. The result was that it wasn’t
feasible for the players to initialize the setup of the board game by themselves.

In addition to this, much time had been put into programming the devices.
Creating a replica of the game required much more than ordering a new set of
hardware.

Existing tools can be expensive

In other more established tools for hybrid board games, the interaction is typically
done via digital tabletop devices(2), such as Microsoft Surface Hub3. These
devices, similar to a table with a large touch screen on top, restrict the mobility of
the game, require a dedicated physical space and remain a large investment in
terms of money.

Creating hybrid board games is time consuming

While there are plenty tools for creating online games, and a few for creating
digital tabletop-based games, we have been unsuccessful in finding existing tools
for creating hybrid board games that uses small hardware tokens.

The result when implementing Don’t Panic was creating custom scripts and
communication for the different pawns and implementation of game logic.
Needless to say, this was very time consuming.

2 Digital tabletop: A term we will use to refer to large horizontal touch screen devices with a built
in computer, such as Microsoft Surface Hub

3 www.microsoft.com/microsoft-surface-hub/en-us

https://www.microsoft.com/microsoft-surface-hub/en-us

1.2. Problem definition 3

1.2 Problem definition
Based on the observations made in the previous section, we see that hybrid board
games pose several problems.

The cost for developers to create new hybrid board games is very big in terms of
time spent. They are required to create most of their game from scratch, as there
are few suitable existing tools. Due to the different types of components in a
hybrid game, they will also have to know several kinds of technology.

Also in terms of money, the cost for developers is big. Due to the lack of standard
tools, creating a game that makes use of a certain token4 will require acquiring
that token, since one cannot be certain it works without actual testing.

For players, the acquisition cost for the required hardware is huge if we consider
the digital tabletop solutions. If we on the other hand consider hybrid games with
tokens, the lack of mature software solution require players to have time and
technical knowledge to set up and use.

1.3 Research questions
Below are our research questions. The first being a main question, that embraces
those that follow.

RQ1: How can we lower the barrier for developers to start creating hybrid
board games? We do wish for as many as possible to start creating hybrid board
games. In order to get there, we need to lower the barrier so that more developers
play around with the technology and get interested.

RQ2: How can we lower the investment required by developers, both in time
and money, in order to create hybrid board games? One of the main obstacles
we have seen from previous work is the amount of time involved. If creating
hybrid board games was quick and cheap, more developers would do the same.

RQ3: How can we facilitate developers so that they are able to simplify the
setup of such board games, in order to make it easy for players to acquire
and play hybrid games? We believe in the importance of involving
non-technical people in these games. If developers are able to create hybrid board
games that everyone is able to set up and use, this opens a range of new
possibilities, including creating a business around it.

4 Token: A term we will use in this thesis a lot to note a tangible piece of hardware used in a hybrid
game. E.g. a digital pawn.

4 Introduction

1.4 Research method
This thesis takes an experimental approach to developing a platform for creating
hybrid board games. Due to practical reasons, adjustments to the development
process and requirements has come by evaluation from ourselves, without
feedback from outside user groups.

The process led to the creating of a platform, which address challenges from
previous work done with hybrid games. First by reviewing relevant literature and
current workflow for creating these games. This was followed by a design process
and implementation phase, before we evaluated how the resulting platform
addressed the identified challenges.

1.5 Contribution
This thesis has resulted in a AnyBoard, a JavaScript-based platform for creating
hybrid board games. It is openly available on github.com/tomfa/anyboardjs.

The location also includes extensive documentation, several examples, and
drivers as well as firmware for three different tokens. These are also described in
appendix I, C and D respectively. For the source code itself, we refer to the
Github repository in the previous paragraph.

The thesis has already formed the basis for a published article from our institute,
Making interactive board games to learn: Reflections on AnyBoard(4). This
article is included in appendix G

In addition, we’d like to point to the discussion chapter (7) where we suggest
different future directions and features for AnyBoard.

1.5.1 Limitations

AnyBoard itself is compatible with any JavaScript-environment. As such, it can
be integrated with any other JS-framework or game engine without issues. For
communication with tokens, AnyBoard depends on plugin-drivers with a
firmware compatible with that driver. These drivers can pose their own
limitations.

The drivers and firmware for the three types of tokens we have supported, can be
seen in appendix D. These require Evothings Bluetooth libraries and Cordova
libraries. This limits their use to Android and iOS environments.

1.6 Thesis outline
The report is split into seven section.

https://github.com/tomfa/anyboardjs

1.6. Thesis outline 5

The first section (chapter 1) consists of the introduction to and motivation for this
thesis. We explain the why, what and how of the thesis, providing a problem
definition, research questions and method.

Section two (chapter 2) contains a problem elaboration. We take a look at related
previous work, and characteristics of common board games as well as what
concepts they include. A description of the life cycle of developing hybrid board
games and which roles are involved follows, and thereafter we identify common
challenges AnyBoard should address. We then illustrate a rough outline of the
platform and the parts it should consist of, before we finally present a set of high
level requirements for AnyBoard.

In the third section (chapter 3), we evaluate different tools and platforms for
AnyBoard to make use of or build upon. Creating a hybrid digital game is a
complex process, and here we look at existing tools that can be used in
collaboration to simplify the complexity and make use of existing communities.

The fourth section (chapter 4-5) involves the design and implementation of
AnyBoard. We present non-functional and functional requirements in section 4.1,
followed by a more specific architecture for AnyBoard. In chapter 5 we present
the implementation: details on the parts that was developed, the game entities and
token communication protocol.

Evaluating the result is done in the fifth section (chapter 6). We implement a quiz
game controlled with physical tokens, both with and without the use of
AnyBoard. We evaluate how AnyBoard made this easier, and compare it to the
implementation without the use of AnyBoard.

Lastly (chapter 7-8), we summarize and discuss the what could’ve been done
better. Which parts of the thesis gave value and not. We explain what this mean
for our research questions, before we provide our suggestions and thoughts
around future work.

Chapter 2

Problem Elaboration

2.1 Previous work
This thesis and its motivation is derived from previous work with hybrid games at
NTNU, as mention in chapter 1. In particular, Don’t Panic was well received, but
implementation was time consuming and setup during play proved difficult for
players(1).

Other work done regarding hybrid games are often centered around digital
tabletops as the central component of the game. Weathergods(3), KnightMage(5)
and False Prophets(6) are examples of these. Most of these report a positive
feedback from users, inclining that hybrid games indeed can utilize the best from
both regular and digital games. An article evaluating tabletop game experience
for seniors even claim they enjoy hybrid games and get more immersed than with
regular games (2).

Two frameworks has been previously developed for creating digital tabletop
board games: ToyVision(7) and ReacTIVision(8). However, their relevance might
be dwindling, as digital tabletops for private use has near to disappeared. Most of
the existing work regarding digital tabletop games was done in the period
2004-2010. Since then, there has been little development around digital tabletop
games and digital tabletops in general, at least that target to the private consumer
marked. Microsoft PixelSense1, and their accompanied hardware, Samsung
SUR40 is retired, according to their own websites2. We speculate that the high

1 Microsoft PixelSense: Microsofts initative for tabletops.
2 www.samsung.com/uk/business/business-products/smart-signage/specialised-

display/LH40SFWTGC/EN displays Samsung SUR40 as no longer available.

6

http://www.samsung.com/uk/business/business-products/smart-signage/specialised-display/LH40SFWTGC/EN
http://www.samsung.com/uk/business/business-products/smart-signage/specialised-display/LH40SFWTGC/EN

2.2. Characteristics of board games 7

cost of aqcuiring tabletop devices3 has played a large role.

Hybrid games without digital tabletops has also been created. The game "In
Search of the Amulet"(9)is an 8x8 tiled board implemented with rfid tags was
used together with rfid readers inside digital player pawns. The pawns detected its
movement and location on the board, and reported it to a computer. Each player
here had each their computer functioning as a hidden private space4 that allowing
them to do actions without the other player knowing. In addition, a "public"
screen showed information visible for both players. One of the challenges here
was the potential intruding effects of the displays, and it was deliberately made to
require as little as possible interaction with the computer in order to uphold the
social aspect. The article does not mention any existing hybrid game platform
being used.

2.1.1 Summary

Hybrid games of various kinds has been tested, prototyped and developed
previously. From those articles we’ve seen, there has been nothing but positive
feedback from users, who have found such games entertaining and immersive.

Platforms for developing hybrid games more easily has been made, but these are
centered around digital tabletop environments, which is not suitable for our task,
due to their high acquisition cost.

With the exception of In Search of the Amulet(9), we’ve been unable to find
previous work of hybrid games with simple digital pawns independent of a digital
tabletop device. We have been completely unable to find hybrid game platforms
similar to the one we’ve planned to develop.

2.2 Characteristics of board games
In this section we will look at three different board games in order to identify
typical components of the board games. The purpose of this is to identify classic
types of interactions and components in board games, so that we can ensure
including the most central elements of board games in our platform.

Note that this is not an exhaustive list of all board game characteristics in these
games, but rather a superficial view over the most common and easily visible
features. We have not used a previously designed approach for this analysis, but
rather attempted to categorize the elements we’ve seen in our own words.

A summary of the characteristical concepts of board games are described in

3 Samsung SUR40 goes for about 5000 USD on eBay market (August 2015)
4 Hidden private space: A part of the game that is only visible to one player

8 Problem Elaboration

subsection 2.2.4, while the physical elements common for board games can be
found in subsection 2.2.5.

The three board games we’ve chosen is Lords of Waterdeep, Monopoly and Don’t
Panic. These are chosen to cover common, but different types of board games.
Lords of Waterdeep is a classic Dungeons and Dragons game, making use of
typical "advanced" board game dynamics, while Monopoly is a simpler common
type of board game, employing many standard actions and elements. Don’t Panic
has been chosen in order to include an existing hybrid board game.

2.2.1 Monopoly

Figure 2.1: A version of Monopoly from Parker Brothers. Player pawns move from one
to the next of the 40 tiles clockwise using two six sided dice. [Picture by Horst Frank at
the German language Wikipedia]

Monopoly is a widely popular property trading game. Players acquire properties
and money through chance cards, landing on property tiles and completing "laps"
on the board5. They charge each other money for the "use" (landing on) their land.
Players lose by going "bankrupt", which is when their assets amount to less than
0 amount of money. The winner is declared when all other players are bankrupt.

The Monopoly board consists of roughly 40 discrete tiles as shown in figure 2.1.
Each player has a pawn that represents them, which they move about the board

5 We’ve based our description on Monopoly rules from
http://www.hasbro.com/common/instruct/00009.pdf

https://de.wikipedia.org/wiki/User:Horst_Frank
https://de.wikipedia.org/wiki/User:Horst_Frank
https://de.wikipedia.org/wiki/
http://www.hasbro.com/common/instruct/00009.pdf

2.2. Characteristics of board games 9

with. The movement is determined by a roll of dice. Monopoly is turn-based,
which means players take turn to throw the dice, moving their pawns, and
completing a set of possible actions they can choose from, determined from the
tile they land on.

Each action usually involves buying, paying or exchanging resources in form of
money or stocks – which are placed in an inventory of each player. The inventory
is a private space which contains the resources belonging to that player. Players
starts the game with some initial resources in their inventory, but most are
acquired during the game play. Resources are represented in form of two sorts of
informational tokens: stocks and monopoly money.

In short, the goal of the game is to maximize the acquisition of resources.

2.2.2 Lords of Waterdeep

Lords of Waterdeep (LoW) is a turn-based game from the Dungeons and
Dragons series, where players fight as a Lord in order to control a city. The goal
of the game is to maximize the number of points. which are obtained mainly by
completing quests. Quests are completed by obtaining a specific combination of
different adventurers in addition to a quest-card6.

In addition to quests and resources held by a player (marked red in figure 2.2),
each player also is a specific Lord (role) which gives bonus points to certain
quests for that player. LoW also include a type of cards called Intrigue, which can
be used in various advantageous ways.

The Lord and Intrigue-cards are held in a hidden private space, a space that is
not visible to other players other than the holder. Compared to games that doesn’t
have such dynamic, this hidden space introduces a new dimension to the game, as
players hold different information.

LoW also make use of rounds. After all players have placed their pawns on the
board, and actions has been completed, a round is over. All pawns are being put
back into the inventory of each player, and points given by acquiring new tiles
(buildings) are increased. After the fourth round, players are given an extra pawn,
and the game ends after the eight round.

Another interesting component of LoW is its dynamic board. One of the initial
tiles can be used by players that wish to buy a new tile. The new tile will be an
available in that and all the remaining rounds, and will reward the buyer upon
usage.

6 We have based the description of LoW rules on rules from
http://media.wizards.com/downloads/dnd/DnD_LOW_Rulebook_EN.pdf

http://media.wizards.com/downloads/dnd/DnD_LOW_Rulebook_EN.pdf

10 Problem Elaboration

Figure 2.2: Lords of Waterdeep. Players have multiple pawns and place them on available
tiles as they please. New tiles (yellow) can be bought into the game allowing for a greater
set of possible actions. Each player has both a visible (red) and hidden (blue) private space.
[Picture by the author]

2.2.3 Don’t Panic

Don’t Panic (DP) is a cooperative board game with different zones, where panic
can emerge among "people" and spread to nearby zones. The players, unlike in
Monopoly or LoW, work together in an effort to reduce panic. In DP, the players
attempt to calm a situation down, and loses if the panic level goes beyond a
certain threshold.

Each player is presented by a pawn (colored circles in figure 2.3) located on tiles
(black nodes), and takes turn to draw two informational cards, two event cards
and complete four "actions". Event cards are challenges which the players have to
deal with on their turn, and can be resolved by "actions" or the use of
informational cards. The informational cards are a form of resource that can
(optionally) be used on a players turn.

The four "actions" performed by players on each turn can be chosen from a set of
actions containing movement of pawn, movement of people between zones, set

2.2. Characteristics of board games 11

Figure 2.3: Digital version of Don’t Panic. The map is divided into zones with a respective
panic level. Player pawns locate themselves on the different nodes, and attempt to lower
and contain the panic. [Picture by Ines Di Loreto]

up or remove road blocks to contain panic, as well as building an information
center. Each player is also randomly given a role at the start of the game, which
gives them an advantage on a specific type of action.

Once the game starts, a timer is initialized, counting down from a certain amount
of minutes. Once the timer rings, panic levels are increased, and can spread
between zones. This introduces a dimension of stress or hurry to the game, as
playing faster gives an advantage.

2.2.4 Summary: concepts

Players and Teams: Board games are typically played in social settings with two
or more players. In many board games such as Monopoly, each player is
represented with a physical object called "pawn". In LoW, we saw that this is not
the case, but rather had several agents that acted on behalf of the player.

Commonly, every player play against each other and is as such on team with only
themselves, such as in Monopoly or Low. In other games, such as DP, several or
all players can also play on teams with each other, fighting common enemies.

Roles and skills are player-specific properties that deviate from the standard rules
of the game, and can give advantages or disadvantages in different aspects of the

12 Problem Elaboration

game. In DP, each player is assigned a Role by random, which gives them
advantages in performing certain actions. For example, a driver can move more
people out of paniced areas. Similarly in LoW, each player is assigned a Lord
card (character) by random, which increases the points granted upon completing
certain quests. LoW also has special quests that provide an advantage for the rest
of the game (skill). For example, completing the quest "Quell Merchenary
Uprising" will provide the player with two extra points for every other quest of
the same type he or she completes.

Public and private spaces: Public and private spaces are the conceptual areas
containing parts of the game that is interacted with by all or one of the players.
Public spaces can be interacted with by all players, while each player has a
private space that only that player can interact with. In Monopoly, question cards,
dice and cards are a part of the public space, while money belong to the private
spaces of each player.

Hidden private space, is the a private space that is not visible for other players.
For example a hidden hand contains cards that are visible only to the holder of the
cards. For example in LoW your Intrigue cards (uncommon advantageous actions
you can perform) is hidden from other players.

Events are special parts of the game that often go outside the normal flow of the
game. In Monopoly, one of the tiles will send you to "jail". This includes a
movement of the pawn that is not based on dice like the rest of the game, and
gives an exception to the dice rolling and movement in the next turns. An event is
also triggered when drawing question cards: winning the lottery or having to
repair your houses go outside the normal flow of the game. In LoW, playing
Intrigue cards will trigger events, allowing for players to take resources from
others or imposing a mandatory quest upon other players. And in DP, Event
Cards and playing Informational Cards can be categorized as events. Events are
typically unpredictable, either by being in a shuffled deck of cards or played from
a hidden private space.

Resources are assets belonging to a player. In Monopoly, the resources are
Stocks, Money and Houses. Player controlled events, such as the Get Out of Jail
Free Card (Monopoly) or Intrigue card (LoW) can also be considered resources.
Resources are often made physical through Indicator Tokens (see 2.2.5).

Turns and actions: In turn-based games each player takes turn to complete some
actions, before the next person plays his turn. Each turn usually involves a
scripted set of actions. In Monopoly, you must always roll two dice and move
your pawn that amount of tiles. This is a mandatory action. The tile determines

2.2. Characteristics of board games 13

the next set of actions you can perform. Either 1) pay the owner rent (mandatory),
if the tile is currently owned by anther player, 2) buy the stock (optional) if the
tile is for sale, 3) draw a card and complete it’s action (mandatory) if landing on a
question-tile. In other words, turns are sets of actions, where each action can
either be mandatory or optional, that can have a precondition, i.e. do this if that,
and can be ordered, i.e. done in a speific order.

Rounds is a concept that holds some event will occur, after some criterion is met.
In LoW, actions is performed via agents, which is "spent" once put on the board.
When all agent actions are exhausted, the round is over, and agents are put back
into their respective players private space so that they can perform actions on
behalf of the player again. In DP, one can interpret the time between each alarm
as a round. Once the round is over, panic is increased and potentially spread.

Rules tell us the possible interactions between game components: How can your
pawn move around the board? When is a winner declared, or a player out of the
game? Rules explicitly define the starting conditions upon starting the game, and
are a central part of all games, as they dictate the flow of the game and define the
boundaries of them.

2.2.5 Summary: Physical components

Board is the surface used to play a board game. Most games have a unchanging
board (Monopoly), while some have a modular board with varying layout in each
session or while the game is played (LoW). The board consists of tiles and
placeholders for other assets.

Tiles are discrete locations on the board. Which tile a player is located on, usually
determines which set of actions the player can perform. In Monopoly for
example, a stock can only be bought when the the pawn is located on that specific
tile. In Don’t Panic, it didn’t determine which actions one could perform, but
rather which part of the city the player could perform his actions upon. In some
games, such as Monopoly and DP, movement is only allowed over adjacent tiles.

Indicator tokens, e.g. Gold, Wood, Stone, Gas, Money, Points, Stocks and
Houses help keeping track of an informational aspect in the game. In Monopoly,
the paper money is simply an indicator of how much resources, and stocks an
indicator of the lots owner. It serves its purpose by holding some information, and
as such simplifying the amount of information players have to remember and
keep track of themselves.

These are simple tokens, as they are only representational of some game
information, and does not change the game state or provide interactive

14 Problem Elaboration

Figure 2.4: Common components of board games. Board with tiles and functional tokens
as a part of the public space, while informational tokens (resources) as part of each players
private space, potentially hidden from view from other players. The game is progressed by
players taking turn to acquire and trade resources, triggering events and interacting with
functional tokens.

functionality like randomness. Such tokens can easily be replaced by a number
value or position on a screen, as they are not interacted with other than changing
owner.

Functional tokens, e.g. dice, cards and pawns play an active part in how the
game unfolds. For example, a dice in provides randomness as a functionality to
the player, while the timer in DP provide an aspect of time or hurry. Cards are the
most common functional tokens, which can provide many types of events and
exceptions to the standard flow of the game, as well as provide randomness
through being shuffled and used in a drawable deck.

These tokens change the state of the game by opening or closing certain actions

2.2. Characteristics of board games 15

and aspects for players. Each of these tokens have a specialized functionality, and
can not be implemented as generally as indicator tokens.

16 Problem Elaboration

2.3 Life cycle and roles
In this section we go through the life cycle of a game, from idea through creation
of a playable hybrid board game. We focus on the roles and their contributions
and actions in creating and using the game, as was the case with the previous
hybrid board game created at NTNU, Don’t Panic . In the next section we will
look at the challenges linked with these activities.

We have identified three typical roles: a Game Designer, who formalizes and
defines the game. The end result from a game designers production is a playable
paper prototype. A Developer takes this prototype and identifies and acquires
suitable hardware pieces, designs the user interface to be used in the game
controller and implements the game through the controller and the hardware
tokens. A Player should then able to acquire, set up and play the game. These
roles and their typical activities are illustrated in figure 2.5, 2.6 and 2.7. The
activites that we will focus on in this thesis is marked in green.

Figure 2.5: An overview over the responsibilities of the Game Designer in implementing
hybrid board games.

2.3.1 Designing

The Game Designer starts with an idea, and details it through defining concepts,
providing a motivation/goal, and giving the game clear rules and boundaries. The

2.3. Life cycle and roles 17

Figure 2.6: An overview over the responsibilities of the Developer in implementing hybrid
board games, after a finished paper prototype is provided by the game designer. The
responsibilites marked with green are areas where we think AnyBoard can assist.

end result from the game designer should be a playable paper prototype of the
game. The following questions are the main questions that a game designer
should be able to provide answers for (short Monopoly example answer in
emphasized text):

1. How are the teams - who is playing against who? Every player for
themselves

2. What is the game concept? What are the the goal of players? Achieving
monopoly by making your opponents bankrupt

3. What resources and game objects does the game consist of? Which is
manifested in physical tokens? Stock, Money, Pawns, Houses, Hotel,
Board, Question Cards

4. What are the definite win- and lose conditions? You lose when you have no
valuables left. Winner is the last player standing

5. Through which actions does the game progress? Roll dice to change tiles.
Tiles can be bought, traded, trigger event, paid rent for staying at. Each
player takes it turn to complete a set of actions

6. What are the initial set-up conditions of the game? Every player start at go

18 Problem Elaboration

Figure 2.7: Main interactions from the view of a player in using hybrid board games.
From previous experience in the testing of Don’t Panic, replacing hardware tokens and
game initialization (marked green) was too hard for non-technical players to receive a
copy of the game.

tile with the same initial amount of resources.

These answers is described in detail and usually goes through several iterations
(often with user feedback), before he or she comes to a final version that should
be able to be played on a paper prototype. This iteration and refinement process
could also be skipped, and rather done in the next phase, after implementing the
game as an hybrid board game.

2.3.2 Implementing

The Developer should have a clear description of the board game from the Game
Designer. He will convert the game into a hybrid version, by identifying suitable
digital tokens and interfaces, and implement the game logic into the necessary
tokens and devices. A user friendly interface is necessary to allow players to
initiate and play the game, and the applications should be distributed in a way that
makes it easy to acquire. In short, the Developer takes the game from a finished
concept to a finished product. This is shown in figure 2.6.

Here we have assumed a case where a game controller (phone, Tablet, computer)
and a set of digital hardware tokens has been used to create a hybrid version of
the board game. The Developers main responsibilites, are (examples are shown in
emphasized text):

2.4. Challenges 19

1. Translate the required token expressions and interactions into a clear
grammar. Pawn can be placed on board and should notify of location.
Pawn can show color and vibrate.

2. Find or make digital hardware tokens that are capable of necessary token
expressions. "rfduino" device should be capable of our requirements.

3. Define and implement a communication protocol between tokens. Make
"rfduino" accept "SET COLOR RED" over serial Bluetooth and execute the
corresponding expression.

4. Implement game concepts, rules and token communication. Creating the
logical representations of "Stock", "Money", "Board" etc, a token
communicator object, and procedures to initiate the game and handle
"paying rent".

5. Designing and implementing the GUI. Creating a menu with buttons to run
initiate procedure, read rules, and exit game. Designing an choice screen to
handle trades between players

6. Compile the game so it is distributable. Compile to iOS and Android files
and distribute on App Store and Google Play

Prior to the compiling and distribution the game, the Developer should go through
an iteration and refinement process to ensure the quality of the game. The game
should now be ready for players to acquire and play the game.

2.3.3 Playing

A Player of the game is not involved in the creation of the game, but is a
consumer of the finished product, a player of the hybrid board game. In acquiring
and playing the game, he or she will typically go through the following steps
(examples in emphasized text, illustrated in figure 2.7):

1. Locate the game. Hear of game from a friend, and go to its website.
2. Acquire hardware and application. Order the necessary tokens online, and

download a corresponding application from App Store
3. Learn game rules. Read the game manual, and a FAQ on the applications

website
4. Initiate Game. Turn on tokens, open phone application, establish

communication between tokens, and set up initial game conditions
5. Play game. Interact with tokens (and phone application) according to the

game rules

2.4 Challenges
In this section, we will look at some of the challenges that each role face today
when creating hybrid games, such as Don’t Panic. These will strongly influence

20 Problem Elaboration

us when making high level requirements in the next section.

2.4.1 Game Designer

The work of the Game Designer is creating an entertaining experience. It’s a
creative process, with few rules that dictates how things ought to be. The
challenges for a game designer is finding the inspiration and ideas necessary to
create a good game concept. The designer should find volunteers to play the game
and give adjustive feedback. Once a prototype is polished enough for the designer
to be satisfied, the rules and concepts must be defined in such a way that the
developer is able to translate it to a program.

• Finding inspiration for the game concept and ideas can be hard.
• The game designer must find volunteers that can provide user feedback to

help refine the game.
• The game designer should preferably have knowledge of typical game

concepts.
• Defining the game clearly enough to be computer translated.

2.4.2 Developer

There exists few suitable digital tokens for hybrid board games. As with the
augmented version of Don’t Panic, this can lead to a large amount of time being
spent finding or making custom tokens (number 2), and establishing
communication (number 3 and 4) between the tokens. This also requires
knowledge of low level programming, as the tokens are based on low level
programming languages such as C.

There are few existing game tools aimed for board games. Among them, there are
no tools geared for using digital tokens. A developer might therefore have to
build the board game concepts from scratch (4, 5), and modify the tools to
support the tangible aspect (4).

• Developers must know both high level and low level code
• Large amount of time is used creating custom hardware tokens
• Communication between tokens must be built from scratch.
• Existing game tools is likely to require modification to support the tangible

aspect of hybrid board games.
• End-users (Players) use various devices, operating systems and screen

sizes. It can be time consuming to support the different devices.
• Licenses for game development tools can be costly.

2.5. Components and high level requirements 21

2.4.3 Player

Challenges of the Player: First, the lack of mature components make it hard to
initiate the game (number 4 in). In Don’t Panic, set up of the game required
technical knowledge and was time consuming. It required starting an off-site
server, and starting scripts manually on some of the game tokens. Second, the
equipment used was custom made, and could as such not be easily replaced
(number 2). Since the equipment was custom made, it could not be reused for
other purposes without reprogramming. If a Player wish to acquire a second
similar game, he must anticipate to buy another set of hardware (number 2).
Having played and enjoyed one hybrid board game, the lack of a an community
or platform around hybrid board games can make it difficult to find new such
games (number 1)

• In existing prototypes it has been hard for players to initiate a game, as the
setup have required technical knowledge.

• Hardware purchased for one game has not been suitable for reuse in other
games without reprogramming, which is both time consuming and requires
technical knowledge.

• Lack of community around hybrid board games, makes it hard to acquire
and locate such games.

2.5 Components and high level requirements
From the challenges we’ve identified, we find that the lack of mature tools and
active community is basis for much of the challenges. We therefore pose that a
platform for creating hybrid games could assist greatly in the process. The role of
a game designer could be assited by a community that provides resources on
concepts that a board game typically consist of. A game developer could be
assistted through suitable hardware tokens and tools for integrating them with a
user friendly mobile surface. From testing Don’t Panic, we know that acquisition
of hardware tokens should be cheap, and games easier to set up. A platform can
assist by making tokens reusable between games. We also think that a platform
could make games more easily discoverable for players.

2.5.1 High level requirements

We have chosen to focus mainly on the challenges of the developer, and assist
him or her in the implementation process of hybrid board games.

22 Problem Elaboration

Table 2.1: High level requirements

Functionality

D1
A game developer should be able to extend or remove parts of the
platform, in order to suit his or her needs that are not originally
covered by the platform.

D2
A game developer should not be required to pay for creating
games through the platform, in order to lower the barrier for using
it.

D3

A game developer should not be required to rewrite his or her
game in order to be supported on different platforms or screen
sizes, so to minimize the development effort necessary to reach a
broad audience.

D4

A game developer should be assisted with guidance on how to
compile and deploy the applications to Google Play (Android)
and App Store (iOS), in order to simplify the development and
distribution of games made with the platform.

D5

A game developer should be provided with an API for communi-
cating with supported digital tokens, and not be required to have
knowledge of low-level code, in order to lower the barrier for us-
ing the AnyBoard platform.

D6
A game developer should be able to extend digital token support
to new tokens with new features, in order not to restrict the devel-
oper to a fixed set of digital tokens.

D7
A game developer should be provided with classes and abstrac-
tions for typical board game entities, such as boards, pawns, dice,
cards and decks, in order to lower the development time.

D8
A game developer should be provided with a basic set of visual
elements for screen display, such as menus, cards, boards, pawns,
timers and buttons, in order to lower the development time.

D9
A game developer should be provided with signals and event han-
dlers to simplify implementing responses to a players actions, and
game events.

P1
A player should not be required to have technical competence
in order to initialize a game made with the platform, in order to
lower the barrier for players to acquire an hybrid board game.

P2
A player should be able to reuse board game hardware to play
other games with ease, in order to lower the barrier for players to
try other hybrid board games once having acquired one.

2.5. Components and high level requirements 23

2.5.2 Main components

We present here a broad idea for how we can fulfill these requirements and create
tools to accomodate and help developers and players to create and use hybrid
board games. A sketch of this can be seen in figure 2.8. We don’t expect to
implement all components in this thesis. The parts for implementation will be
narrowed down in chapter 4

Figure 2.8: High level components of AnyBoard.

Game development tools and communities already exists, and hence the main part
that makes the AnyBoard platform unique, is helping integrate the digital tokens
as a part of games. This is therefore the area of greatest importance.

Example tokens, with low level code implementing typical token capabilities, will
be provided for developers that wish to create games with general token
requirements. This token will communicate with a Token manager on the
application side that handles the communication between the game logic and
physical devices. This component will provide a token API on the software side,
so developers can listen to token-events and send commands without the
knowledge of the low level code, as well as assist developers to create easy-to-use
interfaces for connecting and initiating the game and game tokens. (P1, D5)

The Token manager is separated from any specific token, and communicates
through a device specific driver. A generic extendable driver will be provided to
assist developers that wish to create their own tokens with other capabilities. (D1,
D6)

24 Problem Elaboration

A Game engine will provide tools that help the developer quickly create the
components of his or her game. We wish to provide base components specifically
suited for hybrid board games, such as Board, Tile, Pawn, Dice etc, both the
logical and visual UI part. (D7, D8, D9)

The AnyBoard software platform should be based on a cross platform tool that
enable games made with the AnyBoard to compile to different operating systems.
(D3, D4)

Several of these components exists already, and we aim to use open source,
free-to-use, modular and well documented tools, so that a developer can pick
apart the AnyBoard system and add capabilities where need be. (D1, D2)

Lastly, a web-based home for AnyBoard can grow a community and provide
information for all roles involved with hybrid board games. The AnyBoard
platform could be downloaded from here, and tokens sold from a web store. It
can also provide a knowledge base and tools for developers to assist each other.
Through a Game Store or an overview of hybrid board games, we hope to assist
users with finding other games they can play, and an assistive IDE for game
developers could help lower the knowledge barrier for new developers even
further. (P2)7.

7 A game store, or a web based IDE is a later stage than the AnyBoard platform presented in this
thesis.

Chapter 3

Preliminary studies

In this chapter we’ll look at two different types of tools: Cross platform tools and
game engines. These are natural tools to use in the development of mobile games,
because they drastically simplify the development process. It is therefore also
important that AnyBoard is compatible with some of them; since the tools differ
in design and features, we must determine which of them we aim to support and
which we can ignore.

In this chapter we will first look at cross platform tools, and evaluate candidate
tools. The choice of cross platform tool will limit the set of game engine
candidates, which is the evaluated in section 3.2.

3.1 Cross platform tools
One of the main goals of the software platform is that it should be easily
accessible to use and develop on. Since we’re in the beginning of developing the
platform, the tools we choose should restrict us in the least amount of way,
regarding technical capabilities. The purpose of using a cross platform tool is
being able to develop for multiple platforms simultaneously, and hence lower the
development time for both us and developers making use of AnyBoard.

In order to lower barrier for new developers or other users to use the platform,
AnyBoard should ideally be built with the use of free tools, and written in popular
languages. Code written in AnyBoard should be deployable to multiple platforms
with none or only minor modifications. Support for deploying to iOS and
Android platforms is chosen as a minimum requirement, due to them covering the
largest audience1.

1 According to http://en.wikipedia.org/wiki/List_of_mobile_software_distribution_platforms (Ac-

25

http://en.wikipedia.org/wiki/List_of_mobile_software_distribution_platforms

26 Preliminary studies

3.1.1 Criteria

We’ve judged options in regard to the following criteria:

• Popularity of programming language – Projects based on languages
popular in open source communities have a larger pool of potential
developers to contribute to the platform

• Knowledge of programming language with regards to team – The
programming languages chosen should be of some familiarity to the people
involved in this project

• License and cost to use – Cost is a barrier for developers to contribute to
the project. Like with hardware, required software should be as cheap as
possible to acquire. An open source framework would be preferable, not to
create restrictions on possible functionality of the software.

• Existing Bluetooth capabilities - Bluetooth functionality is a requirement
for the basic functionality of AnyBoard. A tool with good Bluetooth
support would be preferable.

3.1.2 Candidate cross-platform tools

The candidates were chosen from comparisons and benchmarks of cross platform
tools(10, 11, 12, 13). Some were excluded immediately if they clearly didn’t meet
our criteria, while a couple were added due to our previous experience with them.

cessed 2015-05-13)

3.1. Cross platform tools 27

N
am

e
L

an
gu

ag
e

B
lu

et
oo

th
L

ic
en

se
Fr

ee
Po

pu
la

ri
ty

Ph
on

eG
ap

a
JS

Y
es

A
pa

ch
e

Y
es

V
er

y
hi

gh
(>

60
%

)
A

pp
ce

le
ra

to
rb

JS
po

ss
ib

le
(n

ot
vi

a
A

pp
ce

le
ra

to
rA

PI
)

A
pa

ch
e

Y
es

H
ig

h
(>

40
%

)
C

oc
os

2d
c

C
++

/J
S

po
ss

ib
le

(n
ot

vi
a

C
oc

os
A

PI
)

M
iT

Y
es

M
ed

iu
m

(>
20

%
)

U
ni

ty
3d

d
C

#/
JS

po
ss

ib
le

(n
ot

vi
a

U
ni

ty
A

PI
)

Pr
op

ri
et

ar
y

Y
es

*
V

er
y

hi
gh

(>
60

%
)

C
or

on
ae

L
ua

po
ss

ib
le

(n
ot

vi
a

C
or

on
a

A
PI

)
Pr

op
ri

et
ar

y
Y

es
*

H
ig

h
(>

40
%

)
Q

tf
C

++
Y

es
L

G
PL

Y
es

*
H

ig
h

(>
40

%
)

X
am

ar
in

g
C

#
po

ss
ib

le
(n

ot
vi

a
X

am
ar

in
A

PI
)

Pr
op

ri
et

ar
y

Y
es

*
H

ig
h

(>
40

%
)

K
iv

yh
Py

th
on

po
ss

ib
le

(n
ot

vi
a

K
iv

y
A

PI
)

M
iT

Y
es

U
nk

no
w

n
E

vo
th

in
gs

i
JS

Y
es

A
pa

ch
e

Y
es

U
nk

no
w

n

Ta
bl

e
3.

1:
O

ve
rv

ie
w

ov
er

in
iti

al
ca

nd
id

at
es

fo
r

cr
os

s-
pl

at
fo

rm
co

m
pa

tib
ili

ty
.

Pr
ef

er
ab

le
pr

op
er

tie
s

of
th

e
pl

at
fo

rm
s

ar
e

m
ar

ke
d

in
lig

ht
gr

ee
n,

le
ss

pr
ef

er
ab

le
in

or
an

ge
,

w
hi

le
un

de
si

ra
bl

e
pr

op
er

tie
s

ar
e

m
ar

ke
d

in
da

rk
re

d.
Po

pu
la

ri
ty

ba
se

d
on

de
ve

lo
pe

rs
aw

ar
en

es
s

in
C

ro
ss

-P
la

tf
or

m
To

ol
B

en
ch

m
ar

ki
ng

20
14

(1
3)

.

a
ph

on
eg

ap
.c

om
-T

he
or

ig
in

al
na

m
e

fo
rt

he
A

pa
ch

e
C

or
do

va
fr

am
ew

or
k.

Ph
on

eG
ap

is
es

se
nt

ia
lly

C
or

do
va

w
ith

ad
di

tio
na

lb
ut

op
tio

na
lp

ay
-t

o-
us

e
se

rv
ic

es
.

b
ap

pc
el

er
at

or
.c

om
–

C
om

pi
le

s
JS

to
na

tiv
e

co
de

.
c

co
co

s2
d.

or
g

-
C

ro
ss

-p
la

tf
or

m
ga

m
e

en
gi

ne
av

ai
la

bl
e

in
bo

th
JS

,L
ua

an
d

C
++

.
C

om
pi

le
s

to
M

ac
O

Sx
,W

in
do

w
s,

A
nd

ro
id

an
d

iO
S.

d
un

ity
3d

.c
om

-
C

ro
ss

-p
la

tf
or

m
fr

am
ew

or
k

bu
ilt

on
an

ad
va

nc
ed

ga
m

e
en

gi
ne

.
Fr

ee
Pe

rs
on

al
ed

i-
tio

n
is

lim
ite

d.
e

co
ro

na
la

bs
.c

om
–

*L
im

ite
d

ve
rs

io
n

w
ith

ou
t

ac
ce

ss
to

na
tiv

e
ca

lls
ar

e
fr

ee
to

us
e.

D
ue

to
th

e
lim

ita
tio

ns
of

th
e

A
PI

an
d

lic
en

se
,B

lu
et

oo
th

co
m

m
un

ic
at

io
n

is
un

av
ai

la
bl

e
fo

rf
re

e
ve

rs
io

n.
f

qt
.io

.*
Fr

ee
to

us
e

fo
ro

pe
n-

so
ur

ce
,n

on
-c

om
m

er
ci

al
ap

pl
ic

at
io

ns
g

xa
m

ar
in

.c
om

–
co

m
pi

le
s

C
#

co
de

to
na

tiv
e

ap
pl

ic
at

io
ns

.F
re

e
ve

rs
io

n
ha

s
lim

ite
d

fe
at

ur
es

.
h

ki
vy

.o
rg

-
Py

th
on

-b
as

ed
fr

am
ew

or
k

th
at

co
m

pi
le

s
to

m
ob

ile
(i

O
S

an
d

A
nd

ro
id

)
as

w
el

la
s

W
in

-
do

w
s,

O
Sx

an
d

L
in

ux
.

Po
pu

la
ri

ty
un

kn
ow

n,
bu

tp
re

su
m

ed
to

be
lo

w
co

m
pa

re
d

to
ot

he
r

al
te

rn
a-

tiv
es

.
i

ev
ot

hi
ng

s.
co

m
-

L
ig

ht
fr

am
ew

or
k

ba
se

d
on

C
or

do
va

,
w

ith
lib

ra
ri

es
ce

nt
er

ed
ar

ou
nd

co
m

m
un

i-
ca

tio
n

w
ith

sm
al

lh
ar

dw
ar

e
ob

je
ct

s
(I

nt
er

ne
to

f
T

hi
ng

s)
an

d
si

m
pl

if
yi

ng
te

st
in

g.
Po

pu
la

ri
ty

un
-

kn
ow

n,
bu

tb
en

efi
ts

fr
om

be
in

g
ba

se
d

on
C

or
do

va
.

http://www.phonegap.com
http://www.appcelerator.com/
http://cocos2d.org/
http://unity3d.com
http://coronalabs.com/
http://qt.io
http://xamarin.com
http://kivy.org
http://evothings.com/

28 Preliminary studies

3.1.3 Evaluation

Cross-platform tools (CPTs) are increasing in popularity. Some of them compiles
to a native application on each platform (Unity, Cocos, Appcelerator), while the
others run in an "in-app browser" (PhoneGap, Evothings), essentially acting as
web pages. The latter will in most cases simplify the development and make an
easier transition for existing web-developers, at the price of performance and
functionality. Such tools might therefore not be an alternative for
graphic-intensive games or where access to certain parts of the phones
functionality.

With the exception of Evothings, Bluetooth capabilities is not an area of focus for
any of the tools. They do however support writing own libraries or plugins or give
developers the opportunity to write native code that can access Bluetooth
capabilities on the phone. We could also find support or plugins for PhoneGap
and Qt to simplify Bluetooth access for us.

We chose three different frameworks to further investigate based on our initial
findings. PhoneGap, due to it’s licensing and popularity; Evothings, for being
closely related to PhoneGap and adding functionality suited for our purpose, and
lastly Appcelerator Titanium for the comparison of in-browser vs native app
platforms.

PhoneGap

PhoneGap by Adobe/Nitobi was the original creator of Apache Cordova, which is
today the most popular engine for creating mobile cross-platform in-browser
applications. The Cordova engine provides basic phone functionality such as
Camera, GPS and vibration to a web based environment for creating apps. In
2011, Adobe donated the Cordova code-base to the Apache Foundation, and
PhoneGap instead focused on providing services on top of the engine, such as
marketing, analysis, building, support and training. PhoneGap consists today of
both an Open Source fork of Apache Cordova in addition to these services. The
services are optional, and most of them are pay-to-use.

• + Based on well known Cordova platform
• + No or little additional code necessary to support different platforms
• - Compiles to in browser apps, giving reduced performance

Evothings

Evothings is a toolkit based on the Cordova platform, as PhoneGap. Evothings is
centered around the idea of "Internet of things" or "ubiquitous" computing, and it
provides simplifications for communicating with several different types of tokens,

3.1. Cross platform tools 29

as well as code examples.

While the Evothings toolkit itself is not very popular, valid Cordova code will be
valid in Evothings. An app developed with Evothings could also be ported to
other Cordova-based frameworks with no or only small changes in the code base.
This has the added benefit of making existing Cordova/PhoneGap community
relevant for development on this platform.

The additional features included in Evothings compared to Apache Cordova is a
simplification of testing by allowing instant deployment to your phone in the
testing phase, using a Evothings app. In addition, libraries to communicate using
Bluetooth with external hardware is included.

• + Toolkit allows instant deployment to phones through Evothings test suite
app

• + Extra support and examples for relevant communication with external
hardware through Bluetooth

• + Based on well known Cordova platform, making a large existing
community relevant for this platform

• + No or little additional code necessary to support different platforms
• - Compiles to in browser apps, giving reduced performance

Appcelerator Titanium

Appcelerator Titanium has a different approach than the Cordova-engine on how
to create cross-platform applications. Appcelerator themselves compare
Appcelerator Titanium vs PhoneGap and explain their differences. Some of their
main points2 is that:

The barrier to entry in using PhoneGap to package web pages as native apps is
extremely low. - Starting developing with PhoneGap requires very little
knowledge or experience with creating mobile applications, or knowing the
difference between platforms. Knowledge of creating web applications is
sufficient for starting to create PhoneGap applications for different platforms.

Very few native APIs are exposed to PhoneGap applications by default - While
PhoneGap by default only provides functionality that are common among
different phones, Titanium has a richer set of functionality available from the
phone. A Titanium-based app can be better tailored to fit and use all of the
capabilities of a phone.

The quality of the user interface in a PhoneGap application will vary based on

2 According to http://www.appcelerator.com/blog/2012/05/comparing-titanium-and-phonegap/ -
"Comparing Titanium and PhoneGap" (May, 2012)

http://www.appcelerator.com/blog/2012/05/comparing-titanium-and-phonegap/

30 Preliminary studies

the quality of the web view and rendering engine on the platform. - Since the user
interface of PhoneGap is based on an in-browser app, it will not look like a native
app with native controls and buttons. The performance of a browser interface will
also be slower than interfaces made up of the phones native controls. In addition,
due to browser differences, the interface might look different between platforms.

The scope of the Titanium API makes the addition of new platforms difficult –
implementing the Titanium API on a new native platform is a massive
undertaking. The price to pay for being able to create tailored apps for each
platform is a lower code re-usage. Considerably more time must be spent for
porting an application from one platform to another.

• + Compiles to native code, providing better performance than in-browser
apps

• + Can be better tailored by use of native UI of each OS.
• + Provides a richer set of phone functionality
• + Has optional pay-to-use platforms
• - Higher barrier for new developers
• - Lower code re-usage (60-90% according to them selves) than

in-browser-apps, requiring effort to port app to different platforms

3.1.4 Conclusion

From our findings we find that the Cordova-platform has a lower barrier for entry
than Titanium. We believe that this is of greater importance than the performance
advantage and access to native UI. This is large part due to our low need for a
high performance app, and our requirement of low barrier to contribute to the
platform 2.5.

Between PhoneGap and Evothings, the difference seems to be small due to both
of them being based on a Cordova engine. Applications made with Evothings are
designed to be built as regular Cordova apps3, which are compatible with
PhoneGap. Hence, valid Phonegap code will run with Evothings and visa versa.
Therefore, we have chosen to develop and test in the Evothings framework. Its
suitability in our project with regards to Bluetooth devices and communication
with tangible hardware is unmatched. It also provides a few very handy
development features, such as instantaneous deployment to the phone. This
allows for rapid testing and development . If the services PhoneGap provides is of
interest later, a transition to using that is expected to go swiftly.

3 As shown in http://evothings.com/doc/build/Cordova-guide.html

http://evothings.com/doc/build/Cordova-guide.html

3.2. Game engines 31

3.2 Game engines
The purpose of a game engine (GE) is to structure the game components and
allow reuse of its code in other games. It also provides features for common
components of games, such as file loading, audio playing and graphics handling.
In large part, the AnyBoard platform is a GE for hybrid board games, albeit a
simple one. It also differs in that AnyBoard provides board game entities, and
communication with digital tokens. This is unlike typical GEs, that rather focus
on timing, sound and graphics. Since creating a GE is a massive task, we would
like to reuse existing open source game engines to include these features in
AnyBoard or find game engines that can complement the functionality of
AnyBoard when used side by side.

Common features of a GE include:

1. Graphics engine/Renderer – Assisting the rendering of graphical
elements on the screen.

2. Map creation tools -Providing an easy way to create maps (or in our case
boards), and structures suited for abstracting locations and its properties.

3. Asset handler - Early loading of game assets can put unnecessary load on
memory, while late loading can lead to a low performance. An asset
handler loads the game elements at an appropriate time.

4. Physics Engine and collision detection - Giving the game a realistic
feeling of physics.

5. Artificial Intelligence - Some game engines provide components to
support creating computer-based opponents.

6. Signals and event handler - With the exception of certain genres, games
are commonly based on events initiated by the player, such as clicking
buttons or interacting with elements in the game. A game engine often
includes mechanisms that helps notify parts of the system that have
registered to such events.

7. Other - Game engines can also provide simplification for networking in
order to support multiplayer games or interactions with internet servers.

The purpose of finding a suitable GE is to enable the development of more
complex games in collaboration with AnyBoard. When using an established GE,
one can create game with complex graphics, scale graphics, create maps or play
sounds more easily than without. If examples of AnyBoard is displayed in
collaboration with popular GEs, we might also be able to more quickly recruit
developers from that community.

32 Preliminary studies

3.2.1 Criteria

We’ve judged our options for a GE in regards to the following criteria:

• Licensing - As with other parts of the software platform, we prefer an open
source, free-to-use game engine.

• Compatibility – As we have chosen Evothings (Cordova-based) as cross
platform tool, a game engine based on the same programming language
(JavaScript) is required.

• Popularity and activity - We want the software platform to be based on
tools that are popular and are being actively developed. We’ve judged this
on 1) Number of developers that have marked the repository as a favorite.
2) Number of code-changes done to the repository the last 12 months

• Performance - As one of the drawbacks of Cordova is performance, we
wish for the game engine to be as light and efficient as possible. This can
be hard to judge without testing, so we have used library size as a proximity
to this. We have also looked at whether or not mobile platforms seems to be
a target audience for the platform.

3.2.2 Candidate game engines

There is a large community around JavaScript, and there are a lot of options for a
JavaScript-based game engine. Our candidates has been chosen from overview
and comparisons by several community resources such as HTML5GameEngine4

and Github5. Several were excluded immediately if they clearly didn’t meet our
criteria. Our candidates can be seen in table 3.2.

3.2.3 Evaluation

We have chosen CraftyJS, Phaser and Quintus to evaluate further.

All of these have compatibility with with Tiled6 - a visual game map editor for
creating maps. All three also support our other basic technical requirements, such
as signal/event handlers, and have examples that indicate performance beyond our
requirements.

Quintus is some way just what we want. It’s a simple library that covers our
basic technical requirements, and seems to support extendability well. It was
originally made as an example for a book on game development, HTML5 Game
Development(14), and is therefore well documented. They say on their own

4 html5gameengine.com
5 github.com/showcases/javascript-game-engines
6 Tiled (mapeditor.org) - an commonly used editor for creating game maps.

https://html5gameengine.com/
https://github.com/showcases/javascript-game-engines
http://mapeditor.org

3.2. Game engines 33

Framework License Sizea Activityb Communityc

CraftyJS MiT 99KB 81/7k/3k 1772/97
LimeJS Apache 200KB* 5/54/21 1320/30
ImpactJS Propr.
Ludei Propr.
EnchantJS MiT 225KB* 19/202/282 1300/25
MelonJS MiT 168KB 333/14k/8k 1367/33
Quintus MiT 20KB 17/793/509 1000/29
Phaser MiT 692KB 1.1k/230k/117k 8694/140

Table 3.2: Overview over candidates for game-engine. Preferable properties of the plat-
forms are marked in light green, less preferable in orange, while undesirable properties are
marked in dark red.

a Size of minified JS libraries. Libraries marked with * are unminified size
b Files changed/additions/deletions in the 12 months between June 2014 to June 2015. k = thousand
c Number of favorites/Number of contributors to repository pr. June 2015

website7 that it does very little game-wise by itself and provides little more than a
backbone for the other modules to build around.

Its downside is a low level of activity and small community. Its lower amount of
activity can to some extent be contributed to lower code base size, but the
difference in community from Crafty and Phaser still shows that Quintus is not as
well established and polished. On their Github page8 it states "Warning: Quintus
is at a very early stage of development, use at your own risk.*".

CraftyJS is a larger library than Quintus, and provides a richer set of built in
functionality. Documentation seems to leave us with the impressions of a modular
and easily extendable architecture. One comparison of Phaser and Crafty(15) has
listed this as the main advantage of Crafty. It supports mobile, even though that’s
not a focus from the looks of their webpage.

Phaser is clearly the most mature and popular of the alternatives we have
investigated. Phaser have more game examples and thorough guides than our
other candidates. The framework has support for TypeScript and JavaScript in
addition to providing an in-browser game editor. Its graphics engine is PixiJS, a
standalone webGL renderer which claims performance to be their strength.

Phaser seems suited for this project in many ways. It’s focus is mobile, and
provides a scaling manager component for handling various screen sizes. It has

7 html5quintus.com/guide/core.md
8 github.com/cykod/Quintus

http://www.html5quintus.com/guide/core.md
https://github.com/cykod/Quintus

34 Preliminary studies

the community and guides to make it easily understood and learnt, and feels like a
solid component to base our project upon.

Our only concern is the suitability for such a polished product to be integrated in
AnyBoard. While it does provide a plugin system, it could be difficult to
encapsulate Phaser in a new framework. Users have reported that Phaser can feel
clumsy and not modular enough(15, 16), which can make it hard to break apart
and reuse relevant parts alone.

3.2.4 Conclusion

Both Quintus, Crafty and Phaser covers our basic criteria. Their differences lies
mainly in size, amount of functionality and popularity. The more popular, the
more solid it seems, and the less functionality will we be required to make from
scratch. On the other hand, it can be harder to encapsulate and reuse only parts of
the GE, and the game engine part can end up being unnecessarily heavy.

Quinitus is a great choice for learning purposes, and accompanied by its book(14)
developers could learn about game engines, HTML5 game development, and then
reuse that knowledge and parts or whole of Quintius in collaboration with
AnyBoard.

Phaser on the other hand, seems to have a great community behind it, and has an
appealing mobile-first focus. We believe creating examples with Phaser could
spark interest among its large community and existing developers. This GE could
also be used in collaboration with AnyBoard to simplify the making of
professional and polished games. However, its size and complexity might prove
too difficult to dissect and integrate with AnyBoard.

Due to these observations, and the very dynamic and active environment around
game development in JavaScript, we will attempt to create AnyBoard as a
standalone platform, independent of other GEs. This way, AnyBoard could be
used in different settings, from educational to professional purposes. This will
allow developers to use their own preferred library in collaboration with
AnyBoard. When providing examples where a GE is needed, we will go for
Phaser due to it having the largest community.

Chapter 4

System Design

4.1 Requirement specification
The requirements are written as stories inspired from agile methodologies.
Instead of attempting to write a complete and detailed description of the system,
where all requirements is to be implemented, we have written down a backlog of
conceivable requirements and wishes, and implemented them with what we assert
to be the most important ones first. Requirements are subject to change, and some
have not been implemented either due to time or proving unnecessary during the
development phase.

4.1.1 Non-functional requirements

Considering that our goal is for the AnyBoard library to be used by different
developers in creating games, as well as further developed and maintained, we
wish to lower the threshold and difficulty of using the library, as well as
contributing to it.

We believe this is done by creating the library and environment in the following
ways:

NFR-1, Setup should be simple, for both game developers and developers of
AnyBoard - The first barrier of development is setup of the environment. To
minimize this, a developer should ideally have to go through as few as possible
steps before he or she can use the library, or contribute to it. This is relevant both
to the game developer using AnyBoard as a library to create their own game, as
well as a developer that wish to contribute or change the AnyBoard library itself.

We believe a simple setup is important for curious developers to test the library,

35

36 System Design

and for more dedicated developers to take the step and modify it for their own
needs.

NFR-2, AnyBoard should be provided with a rich set of examples - A
common way of understanding the usefulness and workings of any programming
library is looking at simple examples demonstrating the code syntax, function and
the effects of using that library. They can work both as a way of marketing the
library to game developers, and a way of assisting developers in need of help or a
starting point for their own game.

This can be done through publishing the code of complete games built with
AnyBoard platform, as well as through small code snippets demonstrating some
concrete functionality or even test code.

We believe examples are very important for the adoption of the AnyBoard library
by game developers.

NFR-3, The features and functionality of AnyBoard should be tested, and
easily available - Tests should be implemented, so that one can confidently
change parts of the code without unknowingly breaking part of the code, as well
as providing small examples of library usage.

As a code-base grows in size, the barrier to contribute to the code base increases.
There are more classes and functions to be understood before one feels confident.
One can often feel uncertain of how changing one part of the code affects the rest
of the code base, and in fear of breaking some other functionality unknowingly,
refrain from changing anything.

Having written tests for the functionality of the software, can dramatically lower
the fear of unknowingly breaking parts of the code-base, and as such lower the
barrier for contributing to the AnyBoard library. It also provides examples of how
features are used and expected to work, which complements rich examples as
well as documentation.

We believe tests are very important for the further development of the AnyBoard
library.

NFR-4, AnyBoard must be consistently documented, in an accessible and
understandable matter, both for new and experienced developers -
Non-internal elements of the framework (Classes and methods intended to be
public) should be well documented. Names, parameters and types of parameters
should be easily attainable.

The larger a code base is, the more difficult is it often to understand. By providing

4.1. Requirement specification 37

good documentation, in form of both in-line coding, auto-complete functionality
for editors and online documentation, we lower the time used by both game
developers and developers of the library to understand and use the it. We believe
that providing good documentation is vital for the chances for the library to be
used and developed further.

NFR-5, AnyBoard should strive to have decoupled code, as to maximize
re-usability of different parts, and be independent of other libraries - Code
should be decoupled, so parts can easily be replaced without having cascading
effects on other parts of the code base.

An example of this would be using dependency injection: The token manager for
instance will be using some sort of Bluetooth communicating capabilities in order
to communicate with the token. By passing the Bluetooth driver to the manager
class upon creation, instead of directly calling the Bluetooth drivers we know of,
the Bluetooth communication libraries will be decoupled from the AnyBoard
library.

Decoupling of code allows changing or replacing parts of the our library more
easily.

4.1.2 Functional requirements

Here we present stories that relate to the hardware tokens and the interaction
between those and the software platform.

Tokens

The ability for simple interaction with tokens is the main feature of AnyBoard
that sets it apart from other game engines. Hence, the requirements relating to this
is the main part of the platform. Our requirements are shown in table 4.1, and is
related to simple scanning, connecting and listening to tokens and its interactions
as well as decoupling tokens from game code.

Graphics

Board games will include common features, such as menus or rules for games.
We wish to provide common entities for quick development of these graphical
elements. The requirements relating to this are shown in table 4.2.

Entities

Table 4.3 shows the requirements relating to logical board game entities. Hybrid
board games will include many of the same entities, which was described in
section 2.2. We believe it could be useful for developers to have these available.

38 System Design

Table 4.1: Functional requirements for token capabilities

Functionality Priority

FT-1
As a developer, I need a token manager that holds all to-
kens, so I easily can obtain the individual tokens instances
from different parts of the code.

Low

FT-2
As a developer, I want the token manager to be able to scan
for and return active tokens nearby, so I’m not required to
have intimate Bluetooth knowledge.

High

FT-3
As a developer, I want to be able to replace the token driver
without changing my game code, so I can efficiently test
and try different tokens.

High

FT-4

As a developer, I want tokens to trigger events upon token-
token events or token-constrain events, and allow me to
subscribe to this and other events, so I can respond to token
interaction.

High

FT-5
As a developer, I want to be able to obtain standard tokens
and drivers, so I can quickly create a game without having
intimate knowledge of hardware or low-level code.

High

FT-6

As a developer, I need to be able to test how my game is
using tokens and responding to token interactions within
a digital interface, and not have to use physical tokens for
testing, so I can test more efficiently and develop games
with tokens I have not acquired.

Medium

FT-7
As a developer, I need to be able to connect simultaneously
to at least four different tokens.

High

Table 4.2: Requirements for graphical interface entities

Functionality Priority

FG-1
As a developer, I want to be able to create menus and menu
items that link to new screens or internet web, so I can
create a menu-feature quickly

Low

FG-2
As a developer, I want to be able to quickly be able to create
a rule-screen from a set of written rules and a FAQ from a
set of questions, so I can create this feature quickly.

Low

FG-3
As a developer, I wish to be able to retrieve rules and FAQ
from a web page, so I don’t have to have duplicate infor-
mation in case I have a web page.

Low

4.1. Requirement specification 39

Table 4.3: Functional requirements for game entities

Functionality Priority

FE-1

As a developer, I want to be able to build on a generic Re-
source model, so I don’t have to spend time implementing
interactions such as paying, trading or giving resources be-
tween Players and/or the Game.

High

FE-2
As a developer, I want to be able to build on a generic Card
and Deck model, so I don’t have to implement standard
usages such as shuffling, drawing, playing.

High

FE-3

As a developer, I want to be able to build on a generic
Player model, that holds a Pawn, has a set of resources,
a set of cards, a set of missions, points and similar, so I
don’t have to implement those

High

FE-4

As a developer, I want to be able to build on a generic Dice
model, so I don’t have to spend time implementing inter-
actions such as rolling and returning values from a set of
dice.

High

FE-5
As a developer, I want to be able to build on a generic
Timer model, so I can create events that happens at a set
amount time into the game.

Low

FE-6
As a developer, I want to be able to build on a generic Turn
model, so I can quickly specify what goes into each turn of
a player.

Medium

FE-7

As a developer, I want to be able to build on a generic
Board and Tile model with listeners and triggers, so I can
quickly specify where one can go from which tile, their
distance, what happens when one steps on a tile without
having to create the models from scratch.

High

FE-8
As a developer, I want to be able to log events of different
severity, and be able to see them, so I can debug my code
and see where something fails

High

FE-9
As a developer, I want to be able to assign properties and
fields to all my models, so I can create my own concepts
and define my own properties on top of the existing models.

High

40 System Design

4.2 Application architecture
AnyBoard will exist over three types main parts, as first shown in figure 2.8.
Tokens, such as the AnyBoard pawn, or printer, are the digital tokens that users
can interact with. Tokens talk with the second part, the Controller. The
controller is run on a smart device, such as a mobile phone or a tablet. Here, all
the logic lies for the game, including the rendering of graphics. The third part is a
web based community. This part is conceptual, and will not be implemented in
this thesis. The application architecture that we will work on in this thesis,
consists therefore of the controller and token part, which is shown in figure 4.1.

Figure 4.1: Architecture overview. AnyBoard will exist over three components. Digital
tokens such as tangible pawns, a game controller/hub running on a smartphone, and an on-
line application assisting the a community of both developers and players. My contribution
in this thesis consists of the light grey boxes, denoted "Planned implementation".

4.3 Phone-Token communication
The means of communicating easily with different tokens is the most central
component of AnyBoard. We aim for decoupled token-specific code, to address
the requirements in table 4.1.

TokenManager is a static component that handles the scanning and
connecting/disconnect to tokens. Its purpose is to identify nearby tokens, and
determine an appropriate driver for the token to use. TokenManager has an own

4.4. Web-Phone communication 41

driver for this purpose.

In figure 4.2 we see this illustrated. Upon finding suitable drivers for detected
tokens, TokenManager instantiates Token A1, Token A2 and Token B. These are
Token Class instances, which – seen from the developers point of view – work as
a sort of API on top of the tokens. These abstract away the low level
communication and commands between AnyBoard and the specific tokens, and
provide affordances such as ledOn(), ledOf() and print() functions.

Figure 4.2: Communication overview between phone and token. An example where three
tokens are discovered by the discovery driver and mapped to two different drivers, which
handles the communication with their compatible tokens.

4.4 Web-Phone communication
Web is a component of AnyBoard that will not be implemented in this project,
and will hence not be discussed or designed in any detail here. However, it’s
worth to note some thoughts about this important capability.

We imagine to use HTTP-communication where the phone sends requests to a
API on the server. Suggested uses for this communication are:

1. Retrieving updated FAQ for the game.
2. Sending of events and actions in the game to enable multiplayer

functionality, or viewers to watch a game.
3. Sending of events and actions in the game for history/logging.
4. Gathering statistics of usage.

42 System Design

5. Download new games from a game store
6. Retrieve updates for a current games

The basic tool necessary to enable this sort of communication is capability of
communication over the HTTP-protocol. This capability could also be a useful
feature for developers that wish to encapsulate web services into their board game
or use physical devices that communicate using web APIs.

This capability is already built into the JavaScript language, with the class
XMLRequest. Abstracted HTTP calls using Ajax is also available in a variety of
other JavaScript libraries. We therefore see no obstacles for this capability, even
without designing for it in the current phase.

Chapter 5

System implementation

This chapter describes the implementation of AnyBoard library. We follow the
chronological implementation of the library, by starting with the setup of the
environment, then the entities of the board game, followed by Bluetooth
communication and token implementation. We’ll describe what technical choices
were made, our motivation for them, and what part they play in the project.

5.1 Development environment
During the development of AnyBoard, we have used some tools to simplify
certain tasks for us. This section explains the different elements and tools that we
have used during development of the AnyBoard library. These tools are not
required, nor related to the use of the AnyBoard framework in creating board
games, only in the development of the library itself. However, they have been of
great assistance in accomplishing the non-functional requirements from chapter
4.1 regarding documentation, testing and quick setup. More information
regarding these tools can be found in appendix A.

For the implementation of the AnyBoard platform itself, see section 5.2

All tools used here are based upon a NodeJS platform. Developing AnyBoard in
this environment is therefore supported by those operating systems that support
NodeJS (Linux, Mac OSX, Windows, SunOS).

5.1.1 Platform and dependency handler: NodeJS

NodeJS1 is a platform built on Chrome’s JavaScript runtime for easily building
fast, scalable network applications. It is used in the project as a dependency

1 nodejs.org

43

http://nodejs.org

44 System implementation

handler and platform for our other tools, i.e. it gives us the opportunity to use the
other .

We have chosen to use NodeJS as a tool in this project due to the active
community around it, which has resulted in it being a reliable platform with a rich
variety of tools that can be found and used with it. In this project, it provides us
with a large set of possible tools and libraries to simplify development. It also
gathers all dependencies and specifies them in one file, and provides a simple
setup (requirement NFR-1) of dependencies for the environment.

Being the by far most dominant JavaScript-based platform and something that we
have previous experience with, we have not considered other options.

5.1.2 Test framework: MochaJS

Mocha 2 is a JavaScript-based test framework. It is used in the project in
providing an easy to understand syntax in writiting tests, and reports the results of
tests in a readable manner (see figure A.3 in the appendix).

Testing frameworks provides a clear syntax for testing, as well as methods and
constructs for asserting whether or not function work as intended. Using a test
framework and writing tests (requirement NFR-3) for our library provides
confidence to developers that they don’t break the code unknowingly when
changing the code. It also provides examples (requirement NFR-2) of how to use
the library.

We have chosen MochaJS over alternatives like UnitJSunitjs.com and VowsJS due
to our familiarity with it, and great reporting format.

5.1.3 Task runner: Grunt

Grunt3 is a JavaScript-based Task Runner. It is used in the project to simplify
building the AnyBoard library, generating documentation and running tests.

Task runners simplify common tasks, such as concatenation of files, compilations
etc. by allowing us to create shorthand commands for doing larger tasks. Our
motivation is simplifying the creating of documentation files, concatenation and
minifying our library from smaller modules, as well as test running. This
contributes to the requirement NFR-1.

Grunt was chosen over alternatives such as GulpJS4 and BroccoliJS5 due to our

2 mochajs.org
3 gruntjs.com
4 gulpjs.com
5 broccolijs.com

http://unitjs.com/
http://mochajs.org/
http://gruntjs.com/
http://gulpjs.com/
http://broccolijs.com/

5.1. Development environment 45

prior experience with it, as well as larger community.

5.1.4 Documentation generation: JSDoc and grunt-jsdoc-to-markdown

JSDoc6 is a standardized way of documenting JavaScript code. It allows IDEs7 to
give assisting information to a developer about the code he’s using, which classes
and methods are available, what they return, take as parameters etc.

In addition, software plugins for our development platform (NodeJS + Grunt)
exist that allows us to generate automatic documentation based on JSDoc syntax.

Documenting code usually makes the further development and maintenance of
code simpler. Doing it in certain ways, will also allow developers that create
games with the AnyBoard libraries to be informed of which AnyBoard classes
and methods that are available in his environment, as well as providing parameter
list and types, provided they use a compatible IDE.

A third reason is the automatic generation of human readable documentation files,
such as HTML or MarkDown files, that can be used to inform new developers of
their available tools in the AnyBoard platform. Generating this documentation
automatically instead of writing it manually saves us time, and gives us
consistency between different sources of documentation (requirement NFR-4),
namely from the IDE, inline code and online documentation.

We have chosen to document our code with JSDoc-oriented syntax over YUIDoc
and Doxx due to JSDoc doing source parsing8, and high extensability.

For the plugin that runs the documentation generation, we have used
grunt-jsdoc-to-markdown9), over jsdox10 due to its very readable output designed
for Github pages (which the project already uses).

5.1.5 Summary

A lot of thought and effort has been put into the development environment, in
order to ensure simple setup and deployment, quick generation of usable files and
updated documentation. We feel that this has been well spent time, and goes far
in addressing NFR-1: Setup should be simple, for both game developers and
developers of AnyBoard.

6 usejsdoc.org - a JavaScript documentation syntax and parser
7 IDE is shorthand for Integrated Development Environment and is simply put a rich featured editor.
8 JSDoc considers source code in addition to comments in order to generate documentation
9 grunt-jsdoc-to-markdown - a grunt package generating Github friendly documentation generator

of JavaScript files commented with JSDoc syntax, that we decided to use
10 grunt-jsdox - a another documentation generator of Javascript files using JSDoc syntax

http://usejsdoc.org/
https://www.npmjs.com/package/grunt-jsdoc-to-markdown
https://www.npmjs.com/package/grunt-jsdox

46 System implementation

Figure 5.1: Example of jsdoc commenting in source code.

Game developers are able to use AnyBoard by including the following line in
their code:

<script src="path/to/anyboard.js"></script>

While developers of the AnyBoard platform will only be required to install node
and its dependencies. For an elaboration on this, see appendix A.1.

5.2. Logical Entities 47

Figure 5.2: Example of generated documentation by grunt-jsdoc-to-markdown.

5.2 Logical Entities
The requirements of logical game entities were listed in table 4.3. With the
exception of requirement FE-5, FE-6 and FE-7, the requirements were met. We
here go through the the entities available in the current version of AnyBoard, and
how they relate to the functional and non- functional requirements.

Examples of use and thorough documentation is available in appendix C and I for
all entities, with regards to non-functional requirements NFR-2 and NFR-3. The
entities has been subject to automatic testing (see appendix E) with regards to
requirement NFR-4.

5.2.1 Decks of cards

AnyBoard provides two classes AnyBoard.Deck and AnyBoard.Card that
combined addresses requirement FE-2: As a developer, I want to be able to build
on a generic Card and Deck model, so I don’t have to implement standard usages
such as shuffling, drawing, playing.

The explicit part of the requirement was straight forward. A Deck in AnyBoard
reads a JSON object11 in order to create a Deck instance. The Deck consists of a
pile and a used pile that initially is full/ empty of instances of Card.

11 See Deck example in appendix C for how this object is structured

48 System implementation

The affordances to draw, shuffle and play cards are also implemented, and the
deck can optionally restock itself from the used pile or a brand new stock of cards.

However, we saw that this requirement is actually more complex than first
expected. In board games, cards can have a wide range of consequences. Some
might provide resources, while others can disrupt the game and go far beyond the
regular flow of the game. Some cards have to be played at once, while others at
will. In order to accommodate this large variety of consequences for drawing and
playing cards, both Deck and Card entity has been given the affordance to execute
custom code upon these events, through the methods onPlay and onDraw.

The Card model also allows for custom properties to be added, as part of
addressing requirement FE-9.

5.2.2 Resources and transactions

The classes AnyBoard.ResourceSet and AnyBoard.Resource has been
implemented to address requirement FE-1: As a developer, I want to be able to
build on a generic Resource model, so I don’t have to spend time implementing
interactions such as paying, trading or giving resources between Players and/or
the Game. The player model (described in the next subsection) complements
these classes in addressing this requirement as well.

A Resource defines a valid type of game resource, and is simply a representation
of a string, e.g. "Gold" or "Silver", but with the possibility to attach custom
properties, as a part of addressing requirement FE-9.

A ResourceSet provides helpful functions to handle sets of resources. A
ResourceSet could for example contain 4 Gold and 3 Silver. It provides the
functionality of adding and subtracting resources to the set, as well as seeing the
similarities between two ResourceSets, or checking whether or not a ResourceSet
is contained by another. A ResourceSet can either allow or not allow containing a
negative amount of Resource.

5.2.3 Player

The AnyBoard.Player class addresses requirement FE-3: As a developer, I want to
be able to build on a generic Player model, that holds a Pawn, has a set of
resources, a set of cards, a set of missions, points and similar, so I don’t have to
implement those.

An instance of the Player class holds a set of Cards and a ResourceSet. It
provides the affordance to pay(), receive() and trade() a ResourceSet, which
complements requirement FE-1. It also provides functions to draw() from a Deck

5.2. Logical Entities 49

and play() a Card, which complements requirement FE-2.

The set of cards belonging to a Player exists in its own class, called Hand. This
provides functions to discard() a card or the whole hand, as well as has() to see if
the Hand contains a certain Card.

We have not implemented any connection between a Player and a Pawn, nor have
we implemented missions or points. We still think this connection is a good idea,
but under the time constraints of this thesis, these elements were not prioritized.
However, we have addressed the requirement for custom properties (FE-9),
which would allow a developer to attach a token or other property to the Player
class as he or she sees fit.

5.2.4 Dice

AnyBoard.Dice is a generic implementation of game dice. It allows the creation
of one or more dice in a set, with any amount of eyes. This addresses the
requirement FE-4: As a developer, I want to be able to build on a generic Dice
model, so I don’t have to spend time implementing interactions such as rolling
and returning values from a set of dice

5.2.5 Logging

AnyBoard.Logger is a static log class that addresses requirement FE-8: As a
developer, I want to be able to log events of different severity, and be able to see
them, so I can debug my code and see where something fails.

Logger is a simple class that affords methods for logging of different severity:
debug(), log(), warn() and error(). In addition, the threshold for which severity of
logging it should perform can be set through setThreshold(). This can be useful
for enabling full logging output during development and testing.

The actual output of the logger, whether to a file, or a console is decoupled from
the logger itself. AnyBoard.Logger contains a log handler. By default, it uses the
console object available in most JavaScript environments. If used with Evothings,
the log events with also be output through the logging tool available in Evothings,
hyper. The log handler can be switched with one suitable for the needs of the
developer. This is related to requirement NFR-5 regarding decoupled code.

5.2.6 Summary

The implemented entities provide a good starting point for creating hybrid board
games, and we’re pleased with the resulting components. No notable problems
arose during development of the AnyBoard entities. FE-5 (Timer), FE-6 (Turn)
and FE-7 (Board, Tile) were not implemented, due to time limitations. We still

50 System implementation

see a purpose for these entities, and discuss their potential implementation in
Discussion (section 7.

5.3. Token Communication 51

5.3 Token Communication
Implementing capabilites for Token communication was without doubt the
hardest, most time consuming and trying part of the development, but also the
central and unique component of AnyBoard.

In this section we will take a look at the implementation of the AnyBoard
components relevant to this, the TokenManager, BaseToken and Driver. The first
two classes are in large part containers of information, with APIs for game
developers to access, while the Drivers handles the communication with the
physical tokens.

Examples of use and thorough documentation is available in appendix C and I for
all entities, with regards to non-functional requirements NFR-2 and NFR-3. The
entities has been subject to automatic testing (see appendix E) with regards to
requirement NFR-4.

5.3.1 Token Manager

AnyBoard.TokenManager is a static class of AnyBoard. Its purpose is to handle,
scan for and connect to tokens. For this purpose it has a plugin "discovery" driver
that enables this communication. Such a driver has been provided during the
development. The TokenManager class itself is a "shell" around this driver, and
provides the following affordances to the game developer:

scan() probes for tokens nearby. Which types of communication, whether it is
Bluetooth, HTTP or both, is up to the plugin driver. Upon finding tokens, an
uninitialized BaseToken (see the following subsection) will be created for each of
them, containing address information and the ability to connect to the Tokens. As
such, this addresses requirement FT-2: As a developer, I want the token manager
to be able to scan for and return active tokens nearby, so I’m not required to have
intimate Bluetooth knowledge.

The details of this procedure is shown in figure 5.3. Some code is executed from a
game implementation, which calls the scan() function (1). TokenManager in turn
calls upon its plugin driver to carry out the scanning (2). In our case, the driver
makes use of Evothings and Cordova libraries (3) to create a Bluetooth signal that
communicates with all nearby Bluetooth devices (4). For each token that
responds, the driver will create instances of BaseToken, which it returns back to
the original caller.

setDriver() replaces the driver used for discovering tokens. The driver must
implement methods for scanning for and (dis-)connecting to tokens, and will be
rejected otherwise. All the communication logic and methods retain in the driver.

52 System implementation

Figure 5.3: Flow chart for executing scan() functionality on TokenManager class

As such, one could change the method of connecting to tokens by simply
exchanging the driver. This has been done to address requirement NFR-5,
regarding decoupled code.

onTokenEvent() are one of six methods in the same category. We have
categorized token interactions in three different types based on the article in
appendix H, namely Token event, Token-Token event and Token-Constraint
Event. TokenManager provides two methods for executing custom code upon
each of these three types of events. One method is provided for inserting custom
code to be executed every time, onToken...(), and another method is provided to
be executed the next time, onceToken...(). This addresses requirement FT-4: As a
developer, I want tokens to trigger events upon token-token events or
token-constrain events, and allow me to subscribe to this and other events, so I
can respond to token interactions.

The flow of these events are identical to that shown in figure 5.5, with the
exception that the insertion and triggering of code (marked 1 and 6) goes via
TokenManager instead of BaseToken.

get() allows retrieval of any Token that the TokenManager has scanned. This
addresses FT-1: As a developer, I need a token manager that holds all tokens, so I
easily can obtain the individual tokens instances from different parts of the code.

5.3.2 BaseToken

Connecting and disconnecting: Immediately after being scanned by the
TokenManager, the BaseToken instance is not connected. For this to occur, one

5.3. Token Communication 53

has to use the method connect().

The flow of connecting when using the current Bluetooth plugin-driver is shown
in figure 5.4. Upon calling the connect function on a BaseToken (1), the token
will use the TokenManager plugin driver to connect to the token (2). It will use
this instead of an own driver due to that necessary information to determine a
suitable driver is unavailable before connection is established. The driver will
then connect to the token (3) and read available information (4) from the token.
Based on the services and characteristics a token responds with, the driver will
find a compatible driver from the Drivers class (5). It will set this as a new driver
for the token (6), and (if implemented) call the initialize method on the new driver
(7). In our developed Bean and Token driver, this will in turn subscribe to any
events and updates from the token (8).

Figure 5.4: Flow chart for connecting to a token, after discovery.

Event listeners are implemented via the functions on(), once() and trigger(). In
addition to the token-, token-token-, and token-constraint events, these events can
be manually initiated by code, and also include reporting of minor changes, such
as a change of LED color.

The methods on and once inserts custom code to be run always or once on certain
events, while trigger() executes the inserted code for that event. Figure 5.5
illustrates how this works. First, code from the game developer states that it wish
to insert custom code to be run upon a certain event (1), here the event is
’EVENT’). Then, a player interacts with a token (2). The token registers being
acted upon (3), and sends a code (4) describing what sort of interaction has
occurred. The token specific driver interprets the signal, and triggers the event (5)
on the BaseToken instance that represents the token. If this event is the same type

54 System implementation

as the developer has stated that he wish to listen to, his code is being run (6).

Figure 5.5: Flow chart for adding event listener, and its executing on BaseToken class

Token functionality calls are methods that communicate with the physical token,
such as turning on LED or printing a message. There are many such functions
implemented – an exhaustive list can be seen in the documentation in appendix I.
Common for them all is that they pass two parameters, win and fail, which
themselves are functions. The reasoning for this is that the communication with
the token can take considerable computing time, and the calls are therefore done
asynchronous, allowing the program to go on executing code instead of stalling
while waiting for a reply.

This concept is still unfamiliar for some developers, even though it is (now)
common in JavaScript development. Several full examples has therefore been
provided alongside the library (See appendix C).

The flow of executing a token functionality call is illustrated by a ledOn
command in figure 5.6. The game code calls ledOn function (1) on the
BaseToken, which in turn calls the same method on the Token driver (2). This
results in a generic send() command (3), which adds a once() listener back on the
BaseToken, telling it to trigger the win function next time ledOn has been
triggered on it (4). If the driver doesn’t have a send queue, or after the earlier
commands have gone through, the driver goes on to call a rawSend command,
which sends the command to the token (5). Once the token has executed its
command, it responds back to the driver that the command was completed (6),
where upon the driver tells the BaseToken that the event has occurred (7). The
BaseToken in turn executes the stored win function.

5.3. Token Communication 55

Figure 5.6: Flow chart for executing a token functionality call on BaseToken class

5.3.3 Drivers

Currently, two types of drivers has been made. The first one is a discovery driver,
meant for the TokenManager class. Its purpose is to implement scanning for and
connecting to tokens. Our implementation uses Bluetooth for this purpose.

The other type of driver is a Token driver. The purpose of the Token drivers is to
translate the affordances of the BaseToken class to be compatible with a certain
token model or set of models. As such, programming towards the BaseToken
API, allows us to exchange the token and the driver without causing the game
code to be invalid. This meets requirement FT-3 that states: As a developer, I
want to be able to replace the token driver without changing my game code, so I
can efficiently test and try different tokens. It’s also relevant with regards to
NFR-5, concerning re-usability and decoupled code.

For implementation details on the drivers, see appendix D.

Driver communication

During the initial development of drivers, firmware and their communication,
we’ve met several challenges. The development was done with two different
tokens, the LightBlue Bean and a customly assembled RFduino (more
information on these can be found in appendix D). We first drafted a Bluetooth
communication protocol to suit our needs, where we considered the benefits and
drawbacks of using a JSON based data stream compared with a binary one. This
is shown in figure 5.7.

Initially, we went with the JSON based protocol. Tests using
USB-communication with RFduino worked well, while Bluetooth
communication with Bean had some instabilities, but worked most of the time.

56 System implementation

Figure 5.7: Considering the benefits and drawback of JSON vs byte communication pro-
tocol.

What we didn’t know at the time was that Bluetooth low energy allowed packets
for no more than 20 bytes. In order to allow larger than 20 byte packets, one
would have to implement packet handling to divide and recombine packets at
each end. This was not a problem for the RFduino while using USB to
communicate, but over Bluetooth, our firmware attempted to parse partial packets
unsuccessfully. Our code for Bean, which at the time was copy-pasted from what
we could find online, proved to have a bug in it that broke every 64th byte that
was sent. Which meant it worked fine sometimes, and sometimes not at all.

We also spent much time getting reading and writing serial data to work. Each
token has a large list of so called services, characteristics and descriptors that
notes which capabilities it has. For example, the Bean has a unique service
identifier a495ff10-c5b1-4b44-b512-1370f02d74de, under which the
characteristic a495ff11-c5b1-4b44-b512-1370f02d74de specifies that
it can be written to. In order to write to the Bean, one has to specify both the
service identifier and characteristic before sending data. Identifying these UUIDs
took what felt like an unnecessarily large amount of time.

We ended up after identifying the correct UUIDs for different services, and
changed our protocol to a binary one. This puts a limitation of maximum 12 byte
commands to the Bean, and 20 byte commands to the RFduino. The smaller Bean
packets size is due to their own protocol implemented on top of the Bluetooth

5.3. Token Communication 57

protocol, that has a 8 bit overhead. The final draft of the binary Bluetooth
protocol that is currently used can be seen in appendix F.

5.3.4 Summary

With the exception of FT-6, all requirements regarding functional requirements
for tokens has been fulfilled.

Requirement FT-1 through FT-4 has been addressed in the previous subsections.
Requirement FT-5 says As a developer, I want to be able to obtain standard
tokens and drivers, so I can quickly create a game without having intimate
knowledge of hardware or low-level code. We have created two different token
drivers, one for RFduino and one for Bean, as well as a discovery driver for the
TokenManager. In addition, we’ve created firmware for three different token
setups. Details on these can be seen in appendix D. The Bean driver and Bean
Token can be bought and used without writing any line of firmware, nor adjusting
drivers, nor solder any components. We regard this requirement as satisfied.

Requirement FT-6 has not been completed. A dummy token for testing purposes
has not been developed. The reasons for this is the time constraints in this thesis,
and being lowered in priority. When dropping the requirements regarding
graphical elements, and without creating full games, there was no need for a
Dummy token for testing. We still believe that this functionality is important for
fast development, and allowing development to be done without the need of
possessing tokens physically.

Requirement FT-7 states that As a developer, I need to be able to connect
simultaneously to at least four different tokens. We regard this requirement as
satisfied. There has not been tests performed with more than three tokens, but we
have no reason to believe four connected tokens would cause a problem.

58 System implementation

5.4 Graphical Elements
No efforts have been made to complete requirements FG-1, FG-2 or FG-3.

Graphical elements and the manipulation of these are the main element of near to
all game engines. Efforts made to create a set of standard graphical elements,
would therefore quickly be incompatible with most game engines. If we created a
standard menu with Phaser, this would not be compatible with Quintius or visa
versa. Our best option to create a widely compatible graphical elements, was
considered to be by creating plain HTML elements. With the changes in browser
speed and web technologies in the recent years (CSS3, HTML5, WebGL), this
could also provide rich and quick graphical environments in games. However,
these requirements were still downprioritized and none was implemented.

We believe that if such capabilities should be provided by AnyBoard, it would be
best served as a standalone UI-library next to AnyBoard. This is discussed further
in chapter (7).

Chapter 6

Evaluation

The research questions stated in chapter 1.3, in plain terms, asks how we can
simplify the development of hybrid board games by limiting the usage of time,
money and required knowledge. In problem definition (1.2), we pose that creating
a tool – AnyBoard – to assist developers can assist in this.

In this chapter we will evaluate to what extent AnyBoard accomplishes these
goals, more specifically by:

1. Lowering the money cost to developers, by providing assistance in creating
board games without having acquired the hardware you develop for.

2. Lowering the knowledge requirements needed to create hybrid board
games, by providing useful examples and abstractions of token
communication and firmware.

3. Lowering the time spent development, by providing helpful abstractions of
hybrid game concepts, and token entities.

We first present how we will evaluate this, followed by a description of the
process before we in 6.3 present results. Relevant code for the evaluation is found
in appendix B.

6.1 Evaluation method
We have evaluated this by implementing a quiz game that uses two RFduino
pawns (see D.1) to control the game flow and answering of alternatives. The
implementation has been done without having physical tokens present in order to
evaluate goal 1. After having implemented it with the use of AnyBoard, the game
was reimplemented without it. We then look at the differences between the
implementations and evaluate how much more time and knowledge the

59

60 Evaluation

implementation without AnyBoard requires. This is done to evaluate goals 2 and
3.

6.1.1 Criteria

The implementations are evaluation against each other on the following basis

• C1: Number of implementation code lines.
• C2: Code readability
• C3: Number of different libraries used.
• C4: Number of different sources of knowledge
• C5: Ability to test game flow without a physical token.

Number of code lines is an indicator of time spent developing. Parts can be copy
pasted, but most code lines will have to be written by the developer deliberately.
We believe, more specifically, that number of instructions are closer correlated to
time spent than number of lines. We will therefore use this to give us a rough
estimate of the time used.

Code readability is our second criterion. Much of the time spent developing is
used reading code rather than writing it. That the resulting implementation is
easily understood, will lower the time spent interpreting it at a later stage, and
simplify development for those that use this implementation as inspiration or
learning example. We also believe it to be likely that a library with an interface
that is short and easy to understand, will lower the developing time for developers
that make use of that interface.

Number of libraries has been chosen as a third criterion. Each library has its own
interface, and will require some time getting to know. Hence, the fewer libraries
used, the shorter time is needed for research. Derived libraries, i.e. libraries that
only act as a dependency for other libraries, are not considered as the developer
doesn’t have to interact with these.

Different sources of knowledge is included because a considerable part of the
time spent developing is used finding information. We think that the more
different sources you will have to go through, the more time is spent finding
information. Leaning on (and finding) five web resources to write code, takes
more time than leaning on one web resource.

The ability to test the game and play it, is necessary in order to be reassured that a
game is finished and works as intended. Developed programs where one is unsure
of what works or not, often ends up in much time spent fixing bugs.

6.2. Evaluation process 61

6.2 Evaluation process
The evaluation process have been done by designing a small quiz game that
includes some of the common token interactions that AnyBoard will support.
This includes discovering and connecting to token, as well as responding to
token-token events and token-constraint events (see appendix H).

The game has then been implemented using the AnyBoard platform. AnyBoard
has then been removed from the implementation and replaced with plain
JavaScript. The Evothings Bluetooth library that has been used in the
development of AnyBoard has also been used in the JS-implementation1. This
way we get to isolate the difference of only AnyBoard library itself.

Both implementations has been done without physical access to the relevant
token, in order to simulate a situation where a developer can’t afford, or don’t
currently possess the token he or she is developing for. We have done this
evaluation ourselves, without the use of volunteering developers.

6.2.1 Implemented game

Figure 6.1: The quiz game implemented for evaluation. Each player places his or her
token on the colored tile corresponding to the alternative.

The game we have created for evaluation is a simple quiz game for mobile
phones. The game itself, all of its screens, and code structure can be seen in
appendix B along with differences between the two implementations. The code

1 JS: A common abbreviation for JavaScript

62 Evaluation

Figure 6.2: The setup phase of the quiz game, assisting the player in connecting to tokens
and place the tokens on the starting point.

for it can be seen in full and downloaded at
github.com/tomfa/anyboardjs-evaluation.

The game consists of a short setup phase where the tokens are being connected to,
assigned a player color and the player places the tokens on the board. This phase
it shown in figure 6.2. This allows us to evaluate the difficulty for players to set
up the game. Placing all the tokens on a question-field will both trigger
Token-Constraint events as well as Token-Token events as two or more tokens are
placed on the same location.

After having set up the game, the players will iterate between answering
questions and reading solutions as shown in figure 6.1. A player answers the
question by placing his or her token on the colored tile that corresponds to that
alternative. This triggers a Token-Constraint response event in AnyBoard, which
checks whether or not all players has answered yet. If all players has answered,
the solution will then appear. A new question will appear once all players has
placed their tokens back on the question-field.

6.2.2 AnyBoard implementation

The AnyBoard implementation of the game was done deliberately by separating
code into the following parts:

• index.html, marking up the elements of the game.

https://github.com/tomfa/anyboardjs-evaluation

6.2. Evaluation process 63

• style.css, defining styling of elements.
• data.js, declaring data elements, such as questions.
• ui.js, manipulates graphical elements.
• logic.js, holds all game logic and token interaction.

In addition, it contains firmware and drivers. This structure allowed us to put all
code interacting with AnyBoard to be placed in one file (logic.js), which
simplified the comparison between the two implementations.

The code size is kept to a minimum. We have not attempted creating a polished
game, but a simple and functional implementation.

6.2.3 JavaScript implementation

We have based the JS-implementation on the AnyBoard-implementation. The
code that uses AnyBoard (logic.js) has been replaced with plain JS in addition to
using Evothings Bluetooth library.

In short, the functionality that was replaced is:

• Logging to console instead of through the AnyBoard Logger entity
• Replacing token and token-event listeners with naive listeners
• Re-implementing Bluetooth discovering, and connecting to tokens
• Re-implementing functions for sending and reading data from token

AnyBoard provides some nice functionality such as message throttling to prevent
overwhelming the token with Bluetooth messages, but such features are
secondary. We have not re-implemented these in the JS-implementation, but
rather listed these missing features below. The reason for this choice is that we
consider it unlikely to be implemented in a real scenario. These features take too
much time to implement compared with the value for a single game.

The replacement of AnyBoard logic with plain JavaScript can be seen on Github2

or in appendix B.

The features that have been ignored, and hence is unavailable in the
JS-implemention are:

1) Message throttling: The JS-implementation lacks message throttling, and can
therefore in rare cases overwhelm the token with too many messages, leading to
loss of data packets and hence integrity. This would be necessary in games
including high data transfer to the token, such as with a print token. However in
this case, traffic to the token is very limited, and this should therefore not be an
2 Git commit replacing AnyBoard logic with Javascript: github.com/tomfa/anyboardjs-

evaluation/commit/64d335c3b606bcf0a1d2f89f0f0be3fbba27a7e0

https://github.com/tomfa/anyboardjs-evaluation/commit/64d335c3b606bcf0a1d2f89f0f0be3fbba27a7e0
https://github.com/tomfa/anyboardjs-evaluation/commit/64d335c3b606bcf0a1d2f89f0f0be3fbba27a7e0

64 Evaluation

issue.

2) Error handling: The AnyBoard platform provides built in error handling in
most cases, as well as extensive logging. This makes the AnyBoard platform
more robust, and easier to debug. Since the JS-implementation is a concrete
game, it does not have the same need for generic methods and validating data and
parameters. There is therefore much less error handling in the JS-implementation.

3) Plugin drivers: In AnyBoard, we have strived to separate game logic from
token communication. The driver used for communicating with a certain token is
therefore separated from the AnyBoard-implementation, and the implementation
will work even though the token is replaced with a completely new one, or
firmware is updated, given it has a compatible driver. This is not the case for the
JS-implementation. This is targeted to the specific token this demo was intended
for.

6.3 Results

6.3.1 Number of code lines

Code AnyBoard JavaScript Increase
All lines 186 333 +80%
Different lines 35 183 +423%
Different instructions 18 137 +661%

Table 6.1: Different amount of code logic between the two implementations, in number
of lines

The full difference in source code between the two implementations can be seen
in appendix B.

The logic of the game, placed in logic.js, grew from 186 to 333 lines (80%).
This was done by replacing 35 lines with 183. If we count the number of
instruction, and ignore comments, empty lines and lines used for decent code
readability, we can lower these numbers to 18 lines for 137. When these lines of
instruction was considered, each line of AnyBoard code was on average replaced
by more than seven (7,61) lines of JavaScript.

The implementation have zero differences in regards to HTML, CSS,
manipulation of DOM or other aspects of the game.

6.3. Results 65

6.3.2 Code readability

As the previous section indicates, AnyBoard can significantly lower the necessary
code with the regards to game logic in hybrid board games. It does this through a
higher expressiveness, as evident when 18 code lines replaces 137.

Below are an example from the game implementations. The code will send
command to the token for it to change it’s LED color.

Listing 6.1: Turning on LED (with AnyBoard)
t o k e n . ledOn (t o k e n . c o l o r) ;

Listing 6.2: Turning on LED (without AnyBoard)
v a r s u p p o r t e d C o l o r s = {

’ red ’ : [2 5 5 , 0 , 0] ,
’ g reen ’ : [0 , 255 , 0] ,
’ b lue ’ : [0 , 0 , 2 5 5] ,
’ whi te ’ : [2 5 5 , 255 , 255]

} ;
v a r ledOnBitCommand = 129 ;
v a r sendData = s u p p o r t e d C o l o r s [t o k e n . c o l o r]
sendDa ta . u n s h i f t (ledOnBitCommand)
l o g i c . _ sendOutgo ingDa ta (token , sendDa ta) ;

[. . .]

_ sendOutgo ingDa ta : f u n c t i o n (dev i ce , u i n t 8 d a t a , win , f a i l) {
e v o t h i n g s . b l e . w r i t e C h a r a c t e r i s t i c (

d e v i c e . dev iceHand le ,
d e v i c e . s e r i a l C h a r ,
u i n t 8 d a t a ,
f u n c t i o n () { win && win () } ,
f u n c t i o n () { f a i l && f a i l () }

) ;
}

The AnyBoard implementation is pretty unambiguous. It’s one line, calling a
method on an object, sending a single parameter. Number of parameters is a
commonly cited evaluation for how readable code is(17, 18). This as opposed to
_sendOutgoingData, which accepts four arguments.

We also have code on different abstract levels. This is generally acknowledged to
be bad coding practice(17). Handling token operations throughout the whole JS
implementation involves low level code to some extend. Such as here, where we
shift 8-bit integers to form a valid byte-array to be sent via Bluetooth, preceding

66 Evaluation

sending of data between different hardware components. In a small game such as
this one, where we’re creating graphical mobile games communicating with a low
level protocol, this is inevitable without a library such as AnyBoard.

We see the same difference in any part of the code base related to token
communication, including connecting, discovering and subscribing to token
events. This can be seen in appendix B.

6.3.3 Number of different libraries

Both implementations exposes two libraries to the developer: jQuery3 plus one
more – AnyBoard in the first implementation, and Evothings Bluetooth4 library
for the JS-implementation.

6.3.4 Number of different sources of knowledge

Impl. Location Comment
AnyBoard Github AnyBoard5 AnyBoard library documentation
AnyBoard jQuery webpage6 jQuery library documentation
JavaScript jQuery webpage7 jQuery library documentation
JavaScript Github Evothings8 Evothings Bluetooth library documentation
JavaScript Example of html identifers9 Token Bluetooth-identifiers
JavaScript Firmware doc10 The concret pawn arduino implementation

Table 6.2: Different sources of knowledge for each implementations

The number of resources is lower for the AnyBoard implementation. This is not
surprising, as one avoids to deal directly with the specific pawn and its
implementation when using AnyBoard. From the development of the RFduino
and Bean drivers in creating AnyBoard, we know one can spend considerable
time and effort for small details. Especially finding the correct UUIDs11 for
Bluetooth characteristics and services. These UUIDs are often not documented
anywhere, and in our case was found on a small user-created repository after
attempting many other alternatives.

6.3.5 Ability to test game

The implementation and testing was done without the required token. The
required token was instead placed with colleagues, who could (with delay, over
Skype and without intimate knowledge of the source code) give feedback on what
worked and not. The challenge was then how to make sure the game responded as
3 jQuery, a JavaScript library designed to simplify the client-side scripting of HTML. jquery.com
4 github.com/evothings/Cordova-ble
11 UUID - Universally unique identifier. A string to give some object or function an unique ID

http://jquery.com/
https://github.com/evothings/Cordova-ble

6.3. Results 67

intended upon actually being used with the token.

We did encounter a few bugs in our implementation that was first discovered upon
testing with the physical token. Three rounds of tests were done before we
discovered a very helpful functionality of Evothings. Evothings allowed for us to
manually insert javascript code into the Cordova application during runtime. That
made us able to create virtual tokens and simulate a connect or movement to a
board. The code needed for the different implementations to accomplish this was
more or less equal, as shown in the examples below. The test done after this was
discovered, was fully functional.

Listing 6.3: Code run in evothings workbench to simulate a movement of physical token
on a constraint (AnyBoard-implementation)
v a r t o k e n = d . p l a y e r s [0] . p r o p e r t i e s . t o k e n
v a r c u r r e n t T i l e = 2 ;
t o k e n . t r i g g e r (

"MOVE_TO" ,
{

" meta−even tType " : " token−c o n s t r a i n t " ,
" c o n s t r a i n t " : c u r r e n t T i l e

}) ;

Listing 6.4: Code run in Evothings workbench to simulate a movement of physical token
on a constraint (JS-implementation)
v a r t o k e n = d . p l a y e r s [0] . t o k e n ;
v a r c u r r e n t T i l e = 2 ;
l o g i c . t r i g g e r (

"MOVE_TO" ,
{

" t o k e n " : token ,
" c o n s t r a i n t " : c u r r e n t T i l e

}) ;

Chapter 7

Discussion

In this chapter, we’ll discuss choices done at the different stages in the thesis.
Looking back we can find both misplaced and well placed effort, bad as well as
good priorities. We also have a range of ideas for what entities and features
AnyBoard could have benefited from as well as thought for the further
development of the platform.

We’ll first look at the process, followed by the implementation and lastly
reflections on our evaluation.

7.1 Development process

7.1.1 Time spent researching game engines

In the start of the development process, quite some time was spent both
evaluating different game engines, and (later) existing games made with the
Phaser engine. Phaser provides a plugin API, and we suspected that we could
create a plugin that exposed a Bluetooth API to the Phaser engine.

We eventually decided to go away from Phaser, and create a standalone library.
This in itself is a decision we’re very happy with, as the library is accessible
without having to learn Phaser or any other library in particular. But the decision
should have come sooner. Too much time was spent researching and looking at
Phaser related work that in the end gave no value to the thesis.

7.1.2 Selected AnyBoard entities

The set of implemented entities, could have had better synergy. For example,
Deck, Card and Dice was implemented, alongside Tokens. But Tokens interact in

68

7.2. Implementation 69

many more ways with the concept of Board and Tile. However, these entities
were not prioritized.

The way entities were chosen for implementation was based on priority in the
design chapter, but also a gut feeling on how much time the implementations
would take vs value and time remaining. Rather than basing this on gut feeling,
the development phase could have benefited from estimating the amount of time
required for each entity at the start, and then developed iteratively, achieving set
minimally viable improvements on each iteration. This way, we would probably
had end up with better synergy between the entities, e.g. by creating Board, Tile
and Token. On the other hand, this extra planning could have created more
overhead and been demotivating. It might not have had much positive effect in a
project with only one developer, and such a short development phase.

7.2 Implementation

7.2.1 Independent from other libraries

We feel confident in the decision of implementing AnyBoard decoupled from
other libraries or frameworks. During the research phase, we found a huge
amount of many relevant libraries and options for game development in
JavaScript. The choice to remain decoupled from any one library in particular,
removes the risk of AnyBoard being outdated and dependant on something that is
no longer maintained.

7.2.2 A good development environment

We have benefited by the way the development environment was set up. First, the
tests provides great value in different ways. First, AnyBoard has been developed
by a single developer that won’t be working with AnyBoard after the delivery of
this thesis. But the library will continue to be developed upon at the institute. In
order for new developers to feel confident that they don’t break the functionality,
tests are important. Tests also give value by providing examples for how different
entities can be used. With the usage of Grunt Task runner, tests are also easily run
with a simple command.

Unfortunately, the tests were neglected in the later stages of the development
process, during the implementation of token functionality. This came back to us
during the development of examples, where several bugs were discovered as
demos didn’t work as expected. Even after everything worked OK, some new
bugs were introduced during refactoring1 of code. We strongly encourage these

1 Code refactoring is the process of restructuring existing computer code – changing the factoring
– without changing its external behavior. – Wikipedia

70 Discussion

tests to be written before doing much more development.

Secondly, we’re very satisfied with the documentation. A new student took over
the development of AnyBoard only days before the end of this thesis. The first
feedback from the student was that it was so well documented, that he felt
confident this would work out fine even though he had no previous experience
with JavaScript, he thought this would work out well. This is just what we hoped
to hear when we set documentation as a high priority. We’re also very happy
about the automatically generated docs based on inline JSDoc. Not only does it
keep the source of documentation to one place, but it provides both inline
explanation of methods, autocomplete in most IDEs as well as auto-generated
online documentation.

7.2.3 Missing a DummyToken

Requirement FT-6 (see table 4.1) asks for a simplified way of testing without
having acquired the physical token. Our idea for this was by creating a Dummy
Token, but we failed to fulfill this requirement (see section 5.3).

The result is that AnyBoard doesn’t assist in developing games for tokens you
don’t possess. In the evaluation, we found no benefit from debugging with or
without AnyBoard. We figured out a way that worked well, but that was made
possible by having intimate knowledge of the code base and tools. Even then, the
solution didn’t immediately come to mind.

We regret not putting a higher priority on creating a solution for Dummy Tokens,
and encourage this to be done in near future. Luckily, the decoupling of code
should make this a relatively straight forward task. The only implementation
required would be replacing the driver
discovery.rfduino.Bluetooth.js with a "dummy driver", that
pretends to find tokens, send and respond to data. Since replacing the discovery
driver is done by the game developer by replacing the import of one driver with
another, changing from testing to production environment will not require any
knowledge nor code change other than this one line.

7.2.4 Make Logger logs easier to read

The Logger has several minor areas of improvement. First of all, it’s not intuitive
to see debug log with numbers, for example:

LOG: AnyBoard (0): Connected to Token: AnyBoard Printer
LOG: AnyBoard (10): Somethingelsehappened

Instead of numbers, "DEBUG", "WARN" etc. would be more readable.

7.2. Implementation 71

Secondly, we have NORMAL as a level of severity. This is an uncommon level
that might throw of some developers. Instead, one could use Apache Commons
Logging labels: [FATAL ERROR WARN INFO DEBUG TRACE], or Python
logging terms2: [critical error warn info debug].

Lastly, the Logger functionality to print to hyper (Evothings logging tool)
automatically was very useful during debugging. An improvement to this, would
making threshold level of the Logger to also apply to hyper logging. When it
indiscriminately logs everything, the errors can drown in a the amount of logging.

7.2.5 Ensure stability in Bluetooth communication

During the late stages of implementation, we discovered that the Bluetooth
drivers for AnyBoard Token, AnyBoard Bean Token and AnyBoard Printer were
causing packet losses when several commands were sent at the same time. The
reason for this was a naive sending of data to the Bluetooth devices. There was no
throttling, which caused an overload on the tokens.

Throttling was implemented to increase stability, with great success. However,
there are some limitations to the implementation, which we think should be
addressed.

If a token does not receive a command, as illustrated in figure 5.6, or does not
confirm the received command, or this confirmation is lost, AnyBoard will not be
able to determine whether or not the executed command was received or
completed by a token. In the current implementation, AnyBoard will timeout after
2 seconds, and simply go on to the next command, ignoring the possibly lost one.

This can lead to inconsistent outcomes, and unreliability issues and annoyances.

A solution could be to give each packet an identifier so that both client and token
can confirm received commands and respond in a reliable fashion, so that every
packet is delivered in order.

It’s worth noting that the source code that holds the Bluetooth communication
handling, all resides in the individual drivers for each chip (pr now one for
RFduino and one for the bean). As these draw on very much of the same
functionality, we believe it would be beneficial to subtract the common logic in
these two drivers into a common base class that they instead inherit from. This
could also make it serve as a template for developers who wish to create their own
drivers.

2 docs.python.org/2/library/logging.html

https://docs.python.org/2/library/logging.html

72 Discussion

7.2.6 Implement remaining AnyBoard entities

Several game entities that were planned were not implemented. We prioritized
creating fully functional, tested and documented entities rather than completing
all requirements within the time frame of the thesis. We believe this choice to be
the correct one, with regards to the library being developed by new personnel
after the delivery of this thesis. Easily understandable and well documented code
makes it easier for these people to take over.

A short description of the entities that hasn’t been implemented yet, but were a
part of the original requirements are shown in the list below.

• Board and Tiles - Originally planned to be implemented (requirement
FE-7 in 4.3), but not prioritized. In the evaluation, instead of using Board
and Tiles, we kept track of location by adding a simple integer property to
the tokens, telling where on the board it is located. AnyBoard does not
simplify any logic on a board or movement between them other than a
change event on the token and this token property. We believe
AnyBoard.Board and AnyBoard.Tile classes with methods for (1)
calculating distance between tiles, (2) whether or not movement between
tiles are legal and (3) special properties belonging to tiles would simplify
the game development.

• Turn - was a part of the original requirement (FE-6 in 4.3). It was
postponed until we could test an actual case where we needed it. We didn’t
arrive at a point where this would be useful, which is not surprising seeing
that a Turn is more abstract that the physical entities we’ve worked with.
We’re not too sorry about this. At a later stage, we believe this concept
could show up as being useful having entities for. At that point it would
make sense implementing this entity.

• Timer - requirement FE-5 (see 4.3) was not implemented due to it’s low
priority. This entity would be useful during implementation of quiz games,
Don’t Panic and other games that uses time as a game concept.

7.2.7 Do minor implementation changes

”MOVE” as a token-constraint event

The driver rfduino.evothings.Bluetooth.js triggers two events when
a token is moved, MOVE_TO and MOVE_FROM. We believe we would have
benefited with a single MOVE event that tells both where the token was and went.
This could be useful in cases where some action is to be performed based on both
your current and previous location.

7.3. Evaluation 73

Get ”other” tokens

Quite it would’ve been useful to get all other tokens except the one you’re
holding. For example by implementing token.getOtherTokens(). Same
with getting all connected tokens (not including those that are simply discovered).
Today’s implementation is a bit verbose, and makes the code less readable:

connectedTokens = []
for (var key in AnyBoard.TokenManager.tokens) {

var aToken = AnyBoard.TokenManager.tokens[key];
if (key !== token.address && aToken.isConnected()) {

connectedTokens.push(aToken);
}

}

Remove complexity in firmware

We’ve been too quick in implementing some of the token functionality. In
particular, lets take a short look at hasLed functionality.

If the driver hasn’t implemented hasLed, AnyBoard will respond with an error
instead of doing the reasonable deduction that drivers that don’t implement
hasLed (or ledOn), neither has the functionality.

Perhaps more importantly is the allowing firmware not to implement such
methods. In case of Bean firmware, the Bean Token implements ledOn, while the
Bean Printer does not. When executing hasLed, the firmware on Bean Printer has
to handle the command "hasLed" and respond to this for the
AnyBoard.BaseToken method hasLed to correctly return false. Instead of
this being necessary, we should allow it to respond 0 (unknown command) and
from the AnyBoard library correctly respond false.

7.3 Evaluation

7.3.1 Should have tested with target audience

Instead of testing the library ourselves, we should have preferably tested the
library against potential users. The developer of AnyBoard is not a typical user of
AnyBoard, as he naturally sits with considerable knowledge of the library. In
short, we lack feedback from our target audience.

74 Discussion

7.3.2 Lacks evaluation of AnyBoard entities

The game implemented makes use of interactions with pawn that can be
considered to be common in board games, namely token-constraint and
token-token interactions, as well as sending commands to the token. But the
implementation lack use of logical entities such as dice, decks or cards. This part
of the AnyBoard is therefore basically unevaluated.

7.4 Potentially interesting new features
Here we go through some features which was not a part of the design for
AnyBoard, but was imagined or felt need for during the implementation. These
can also serve as ideas for future work.

7.4.1 Facilitate persistent storage

AnyBoard could facilitate for developers to get easy access to persistent storage.
A small library could provide access for developers to a simple database or other
persistent storage, for storing player names, previously connected devices etc.
These capabilities could, among other things, reduce setup time for players.

This functionality might be considered unnecessary, though, as there is access to
persistent storage in HTML5. Phaser, which is the game engine we’ve looked to
for ensuring compatibility has opted to not provide such a functionality3 due to
the simplicity of plain HTML5 LocalStorage. HTML5 LocalStorage provides a
simple key-value storage, which is restricted in that values can only be strings
(conversion can in practice use this for integer and JSON), with a recommended
limit of 5 MB4. Should this capability not be sufficient, AnyBoard could make
use of the Cordova Storage5 plugin, which is based on SQLite 3, that could
provide file storage and more.

7.4.2 HTTP-based tokens

Currently, AnyBoard is tested with a driver that connects to tokens which
communicate over Bluetooth. HTTP-based interfaces are also popular, and we
believe that providing examples with HTTP-based drivers could open up for new
exiting features.

3 Phaser game engine recommends using HTML5 Localstorage for persistent storage according to
html5gamedevs.com/topic/3765-preferred-way-of-saving-data/ - Phaser forums

4 http://www.w3.org/TR/webstorage/
5 Cordova Storage Documentation, on use of Storage and HTML5 LocalStorage - Cor-

dova.apache.org/docs/en/3.0.0/Cordova_storage_storage.md.html

http://www.html5gamedevs.com/topic/3765-preferred-way-of-saving-data/
http://www.w3.org/TR/webstorage/
https://Cordova.apache.org/docs/en/3.0.0/Cordova_storage_storage.md.html
https://Cordova.apache.org/docs/en/3.0.0/Cordova_storage_storage.md.html

7.4. Potentially interesting new features 75

One example is a driver for Phillips Hue6, which is a light bulb with an
HTTP-interface which is able to change colors and dim upon HTTP-requests. We
imagine Hue could be incorporated with a game, to provide both relevant mood to
a situation (imagine more red light signaling a threat), or as an informational
token of other sorts.

7.4.3 Hidden private space

Currently, the intended implementation of hidden private space in
AnyBoard-based games are by printing cards that a player keeps to himself. This
requires players playing games with private spaces to have a AnyBoard
compatible printer, as well as refilling paper and ink.

Another way of implementing hidden private spaces would be by using several
mobile devices, where one acts as the main game hub, and the other acts as a
private space to each player. This would be more time consuming to set up, and
shift the focus further towards a digital focus during play, which we consider a
drawback. On the other side, it lowers the barrier for acquiring and playing games
that uses this characteristic.

7.4.4 Private actions and communication

Using the cell phones of each player as a device to interact with could also allow
us the capabilities of performing actions or communicating in secret.

In traditional board games, all actions and all communication between players is
usually publicly visible. This is a natural restriction by the fact that the players sit
next to each other, being able to see and hear what other players do and say. In
digital games on the other hand, people are some times able to do actions in
secret, or team up to plot against other players.

The fact that traditional board games are so open, and nothing can be performed
without other players taking notice, might be one of the main components that
make these more social than digital games. Allowing for these features can in
other words lower the benefit hybrid games have over digital games. It suffers
from the same potential problem as the suggestion for hidden private space, in
that it diverts the focus from the physical aspect to the digital.

7.4.5 QR-codes and barcodes

A Bean Printer driver was developed during this thesis, and can be found at
github.com/tomfa/anyboardjs. This demonstrates the capabilities of printing text,

6 meethue.com - home for Phillips Hue, a digital light bulb with an HTTP-interface

https://github.com/tomfa/anyboardjs
http://www2.meethue.com/no-no/

76 Discussion

using an AdaFruit Mini Thermal Printer7.

A relatively simple change in the Bean driver and firmware would allow us to
print QR- and barcodes as this is a feature of the AdaFruit printer8. Printing QR
and barcodes allows for cellphone based interactivity, such as providing a phone
number, opening a SMS with predefined text or URLs. This is provided by
Android and iOS by default and does not require the development of a separate
standalone mobile application.

The functionality of reading QR and bar codes from the game hub could be done
via Cordova plugins9 or via HTML5 GetUserMedia10 which would work
synergistically with this feature.

7.4.6 AnyBoardUI library

AnyBoard does currently not provide any means to simplify creating graphical
components. This is in part an intentional choice, as we during the development
realized how much it would narrow the compatibility with other libraries and
JavaScript tools available.

However, creating GUI is a sizeable job that can be cumbersome for
inexperienced developers. The existing example games attached with this report
are simple, HTML-based. By the very least, we think more examples should be
provided in order to lower the barrier for new developers.

Seeing that board games have a set of pretty standard interaction and events, we
propose that a UI-module of AnyBoard that implements standard graphical
elements is developed and delivered next to the AnyBoard library. We advice
against integrating the UI library into the standard library. That way, the standard
library could be used standalone and independent of other tools, while the
UI-library is directed at developers that are inexperienced with UI-programming.
This should implement the following elements:

• Displaying boards created with Tiled
• Menu with buttons and labels.
• Buttons and text holders for starting game, reading rules and connecting to

tokens
• Displaying pawns and their position

7 AdaFruit Mini Thermal Printer: https://learn.adafruit.com/mini-thermal-receipt-printer
8 AdaFruit printer QR capabilities: https://learn.adafruit.com/downloads/pdf/mini-thermal-receipt-

printer.pdf
9 QR code capabilities in Cordova-based applications: phonegap.com/blog/build/barcodescanner-

plugin
10 GetUserMedia is not supported by all mobile browsers yet – caniuse.com/#search=getusermedia

https://learn.adafruit.com/mini-thermal-receipt-printer
https://learn.adafruit.com/downloads/pdf/mini-thermal-receipt-printer.pdf
https://learn.adafruit.com/downloads/pdf/mini-thermal-receipt-printer.pdf
http://phonegap.com/blog/build/barcodescanner-plugin/
http://phonegap.com/blog/build/barcodescanner-plugin/
http://caniuse.com/#search=getusermedia

7.4. Potentially interesting new features 77

• Displaying cards, and providing action buttons
• Displaying players and their resources

7.4.7 Chrome Cast

Chrome Cast11 is a small device similar to Apple TV, allowing for iPhone,
Android and Chrome (browser) applications to display their working
PC/mobile/tablet screen on a TV screen.

Allowing for games to be cast to a larger screen introduces another digital device
to the hybrid board game, and could act as a diversion from the tangible parts.
However, using chrome casting is an optional feature, and could be skipped by
users if it proves distracting. Also, we believe that in games where physical
interaction with the phone is kept to minimal and the game hub screen is purely
informational, casting to a bigger screen will keep focus on the physical parts,
and avoid potentially having to pass around a mobile phone.

Whether or not any new feature in AnyBoard could simplify adding support for
Chrome Cast, we have not investigated in. But even an example showcasing how
it could be done, might attract potential game developers.

11 www.chromecast.com, developers.google.com/cast/docs/developers

http://www.chromecast.com
https://developers.google.com/cast/docs/developers

Chapter 8

Conclusion

The objective of this thesis was to simplify the development of hybrid board
games.

In our research questions, we asked how we can facilitate developers to create
hybrid board games that are easy to set up (RQ-3). Our approach was to simplify
the discovery, connection and communication with the tokens. This was done
through creating highly abstract methods for this functionality. This has enabled
us in all examples and the quiz game to provide a very simple setup for players:
Given that the tokens are attached to a power source and the mobile application is
open, all they need to do is click one button to search for tokens, which appear as
button on the screen. They then click on this button to connect to the token.

We also ask how we can lower the investment required for developers to
implement hybrid board games (RQ-2). A hybrid board game will necessarily use
hardware components, so in order to keep it low-cost, we believe using mobiles
and tablets where feasible is the best move, as the players are likely to already
own these devices. In addition, Arduino and similar digital devices are becoming
ubiquitous as their price drops, and these can replace previously used, expensive
digital tabletop devices. On the software side, a free to use, well documented and
purposed tool, will lower the time investment. This has not previously been
available, but is what we’ve tried to address with AnyBoard.

Our main research question is how we can lower the barrier for developers to start
creating hybrid board games (RQ-1). We believe this is can be accomplished
through better tools for simplifying the interaction with Arduino and similar
devices. AnyBoard is to our knowledge the first tool made specifically for this
purpose. We think that the thoroughness of the documentation and the examples

78

8.1. Future Work 79

provided will provide a gentle learning curve and quick results for developers
who decide to use AnyBoard.

8.1 Future Work
We’ve addressed many suggestions for potential future work of AnyBoard in the
discussion chapter. But the perhaps most interesting one is the one we addressed
in the article "Making interactive board games to learn: Reflections on
AnyBoard"(4). By drastically shortening the distance from computer code to
visual responses, AnyBoard could be a relevant tool for learning settings. One
way of doing this could be to implement a Blockly1 or Scratch module on top of
the AnyBoard code. These are visual "drag-and-drop" programming language,
which makes programming a suitable learning activity for non-programming
students or pupils in high an middle school. Alternatively, one use AnyBoard in
collaboration with Quintius (see chapter 3.1)

Another potential use of AnyBoard is location based games. AnyBoard provides
a simplified connection and communication over Bluetooth, while in a JavaScript
(or web) environment on mobile devices. Relatively small changes could also
allow us to print and read bar- and QR codes. This gives us a great starting point
for creating games where the players move in an outdoor environment from post
to post, where each post involve some sort of interaction. For example, the
interaction could involve getting in proximity to, shake, move or change the
temperature of a token. QR codes could link to web pages, or provide phone
numbers or messages. In other words, AnyBoard could provide the basis for an
new type of interactive "treasure hunt" involving tokens with different
capabilities, smart phones and internet connectivity.

1 developers.google.com/blockly

https://developers.google.com/blockly/

Bibliography

[1] I. Di Loreto, S. Mora, and M. Divitini, “Don’t panic: Enhancing soft skills
for civil protection workers,” in Serious Games Development and
Applications, pp. 1–12, Springer, 2012.

[2] A. Al Mahmud, O. Mubin, S. Shahid, and J.-B. Martens, “Designing and
evaluating the tabletop game experience for senior citizens,” in Proceedings
of the 5th Nordic conference on Human-computer interaction: building
bridges, pp. 403–406, ACM, 2008.

[3] S. Bakker, D. Vorstenbosch, E. van den Hoven, G. Hollemans, and
T. Bergman, “Weathergods: tangible interaction in a digital tabletop game,”
in Proceedings of the 1st international conference on Tangible and
embedded interaction, ACM, 2007.

[4] S. Mora, T. Fagerbekk, I. Di Loreto, and M. Divitini, “Making interactive
board games to learn: Reflections on anyboard,” in Proceedings of the
Workshop of Making as a Pathway to Foster Joyful Engagement and
Creativity in Learning (Make2Learn 2015), CEUR-WS, Vol. 1450,
pp. 29–36, 2015.

[5] C. Magerkurth, M. Memisoglu, T. Engelke, and N. Streitz, “Towards the
next generation of tabletop gaming experiences,” in Proceedings of
Graphics interface 2004, pp. 73–80, Canadian Human-Computer
Communications Society, 2004.

[6] R. L. Mandryk and D. S. Maranan, “False prophets: exploring hybrid
board/video games,” in CHI’02 extended abstracts on Human factors in
computing systems, pp. 640–641, ACM, 2002.

80

BIBLIOGRAPHY 81

[7] J. Marco, E. Cerezo, and S. Baldassarri, “Toyvision: a toolkit for
prototyping tabletop tangible games,” in Proceedings of the 4th ACM
SIGCHI symposium on Engineering interactive computing systems,
pp. 71–80, ACM, 2012.

[8] M. Kaltenbrunner and R. Bencina, “reactivision: a computer-vision
framework for table-based tangible interaction,” in Proceedings of the 1st
international conference on Tangible and embedded interaction, pp. 69–74,
ACM, 2007.

[9] C. Magerkurth, “Hybrid gaming environments: keeping the human in the
loop within the internet of things,” Universal Access in the Information
Society, vol. 11, no. 3, pp. 273–283, 2012.

[10] C. Reynolds, “Ten of the best cross-platform mobile development tools for
enterprises.” http://appindex.com/blog/ten-best-cross-platform-
development-mobile-enterprises/, 2014. [Online, accessed
2015-04-21].

[11] J. Cowart, “Pros and cons of the top 5 cross-platform tools.”
http://www.developereconomics.com/pros-cons-top-5-cross-platform-tools/,
2015. [Online, accessed 2015-04-21].

[12] C. Baldwin, “Should i develop for ios or android? 10 cross-platform tools
that make both possible.” http://thinkapps.com/blog/development/develop-
for-ios-v-android-cross-platform-tools/, 2014. [Online, accessed
2015-04-21].

[13] research2guidance, “Cross-platform tool benchmarking 2014.”
http://research2guidance.com/cross-platform-tool-benchmarking-2014,
2014. [Online, accessed 2015-04-21].

[14] P. Rettig, Professional HTML5 mobile game development. John Wiley &
Sons, 2012.

[15] ashes999 (Github user), “Phaser vs craftyjs.”
http://ashes999.github.io/javascript-blog/2014/10/06/phaser-vs-craftyjs/,
2014. [Online, aksessert 2015-06-05].

[16] A. Holden, “The search for a javascript game engine.”
http://adam-holden.com/blog/category/game-development/crafty/, 2014.
[Online, aksessert 2015-06-05].

http://appindex.com/blog/ten-best-cross-platform-development-mobile-enterprises/
http://appindex.com/blog/ten-best-cross-platform-development-mobile-enterprises/
http://www.developereconomics.com/pros-cons-top-5-cross-platform-tools/
http://thinkapps.com/blog/development/develop-for-ios-v-android-cross-platform-tools/
http://thinkapps.com/blog/development/develop-for-ios-v-android-cross-platform-tools/
http://research2guidance.com/cross-platform-tool-benchmarking-2014/
http://ashes999.github.io/javascript-blog/2014/10/06/phaser-vs-craftyjs/
http://www.adam-holden.com/blog/category/game-development/crafty/

82 BIBLIOGRAPHY

[17] R. C. Martin, Clean code: a handbook of agile software craftsmanship.
Pearson Education, 2009.

[18] K. Henney, “Seven ineffective coding habits.” https://vimeo.com/97329157,
2014. [Online, accessed 2015-09-21].

https://vimeo.com/97329157

Appendix A

Details on development
environment

A.1 Setup
For updated and more thorough setup details, we refer to
github.com/tomfa/anyboardjs

A.1.1 For developing AnyBoard further

The following three steps is required to set up the development environment for
AnyBoard. In addition, we strongly recommend installing Evothings from
evothings.com.

1. Download the latest version of the repo from github.
2. Install NodeJS from nodejs.org
3. Install dependencies with npm install

You should now be ready to develop. Open the repository with your favorite IDE
(mine is WebStorm).

A.1.2 For developing games using AnyBoard

Locate your Cordova application. If you don’t have this yet, you can download
Evothings and copy one of its examples from evothings.com.

The following code must be inserted in the head tag of the index.html file.

1) Will you develop for Android and iOS devices? If yes, include the
following: <script src="Cordova.js"></script>

83

https://github.com/tomfa/anyboardjs
https://evothings.com/
https://evothings.com/
https://nodejs.org/en/
https://evothings.com/

84 Details on development environment

2) Will you use the Bean Printer, Bean Token and AnyBoard Token as a part
of this game? If yes, include the following:

<script src="dist/AnyBoard.js"></script>
<script src="libs/evothings/evothings.js"></script>
<script src="libs/evothings/easyble/easyble.js"></script>
<script src="drivers/discovery.evothings.Bluetooth.js"></script>
<script src="drivers/rfduino.evothings.Bluetooth.js"></script>
<script src="drivers/bean.evothings.Bluetooth.js"></script>

3) Have you updated the token with the newest firmware? If no, upload the
firmware located in the firmware folder at github.com/tomfa/anyboardjs.

That’s it. Look at the document (I) to get started with creating your game.

A.2 Using Evothings in development

Figure A.1: Screen shot of Evothings workbench. Log output can be seen in the lower
right, while code insertion can be done in the upper right. An overview over applications
are seen on the left

We recommend using Evothings during development. This is due to it’s quick
debugging and setup. A mobile phone connects to the computer on which
development is done, and provides several nice features:

• Instant logging from phone to computer during testing: The application
running on the phone will log instantly to the computer.

• Allows insertion of code: You’re allowed to insert code on the fly into the
application

https://github.com/tomfa/anyboardjs

A.3. Deploying apps 85

• Automatic deployment of code to connected devices: The computer
watches on source files of the currently running application. If you change
any file on the computer while the app is open on the phone, the phone is
provided with the newest version.

This is done without requiring any code changes on the Cordova application. No
libraries or commands are required to be run on the source files. The only
requirement is that the Evothings mobile application is installed on the mobile
phone used for testing.

A.3 Deploying apps
The apps and demos we’ve developed, have been Cordova based. Since
Evothings doesn’t require any particular code change, the deployment of apps and
making them available from app stores or .apks is not really related to Evothings.
However, they have published a nice guide at
evothings.com/doc/build/build-overview.html.

In order to publish your applications as a standalone app for others to download,
or want to publish an app on App Store or Play Store, this would be a good place
to start.

A.4 Details on modules
All tools used here are based upon a NodeJS platform. Developing AnyBoard in
this environment is therefore supported by those operating systems that support
NodeJS (Linux, Mac OSX, Windows, SunOS).

A.4.1 Platform and dependency handler: NodeJS

NodeJS1 is a platform built on Chrome’s JavaScript runtime for easily building
fast, scalable network applications. It is used in the project as a dependency
handler and platform for our other tools, i.e. it gives us the opportunity to use the
other .

Being the by far most dominant JavaScript-based platform and something that we
have previous experience with, we have not considered other options.

Usage

In figure A.2 package.json is a node package file for AnyBoard. It gives meta data
about AnyBoard, such as location of online repository and version number, in
addition to specifying all dependencies that should be installed in order to set up

1 nodejs.org

http://evothings.com/doc/build/build-overview.html
http://nodejs.org

86 Details on development environment

Figure A.2: Overview over the AnyBoard development files and folder structure.

the development environment. Installing all dependencies is as easy as installing
NodeJS, followed by navigation to the folder in a terminal and typing npm install.

Upon installing dependencies, those are automatically installed under the
node_modules folder, shown in the auto generated section of figure A.2.

Replacing NodeJS

Not using or replacing NodeJS will require changing most of the development
environment, including test framework and task runner, but has no effect on the
functionality of the AnyBoard library.

A.4.2 Test framework: MochaJS

Mocha 2 is a JavaScript-based test framework. It is used in the project in
providing an easy to understand syntax in writiting tests, and reports the results of

2 mochajs.org

http://mochajs.org/

A.4. Details on modules 87

tests in a readable manner (see figure A.3).

Motivation

Testing frameworks provides a clear syntax for testing, as well as methods and
constructs for asserting whether or not function work as intended. Using a test
framework and writing tests (requirement NFR-3) for our library provides
confidence to developers that they don’t break the code unknowingly when
changing the code. It also provides examples (requirement NFR-2) of how to use
the library.

We have chosen MochaJS over alternatives like UnitJSunitjs.com and VowsJS due
to our familiarity with it, and great reporting format.

Usage

Our tests are located within the test library shown in figure A.2. They are named
with the same name as the library in the libs folder that they test. All .js files
placed in this folder will automatically be run by our MochaJS installation upon
running grunt test from the console when located in this folder.

Replacing MochaJS

Changing the choice of test framework will require rewriting at least parts of the
tests, but has no effect on the functionality or build of the AnyBoard library, nor
documentation.

Figure A.3: Human readable test results from unit tests made with Mocha test framework.

http://unitjs.com/

88 Details on development environment

A.4.3 Task runner: Grunt

Grunt3 is a JavaScript-based Task Runner. It is used in the project to simplify
building the AnyBoard library, generating documentation and running tests.

Grunt was chosen over alternatives such as GulpJS4 and BroccoliJS5 due to our
prior experience with it, as well as larger community.

Usage

Gruntfile.js as shown on top in figure A.2. The file specifies 7 different tasks, that
is run by grunt "taskName", where the different "taskName" are specified in bold
below. The first four tasks are simple tasks that have names dictated by a
corresponding grunt module, whereas the last three are combinded tasks of which
we have selected the name.

• concat - concatenates all javascript files located in lib folder into one file,
that is then put into dist/AnyBoard.js.

• uglify - Takes dist/AnyBoard.js and compresses/minifies it, and stores it in
dist/AnyBoard.min.js

• mochaTest - runs all javascript files located in the test folder, and report
their successes to the console. The result is also (over-) written to results.txt

• jsdoc2md - reads through dist/AnyBoard.js and interprets the commenting.
A markdown-file is generated and (over-) written to documentation.md

• build - runs concat followed by uglify
• test - runs build followed by mochaTest
• doc - runs build followed by jsdoc2md

Replacing Grunt

Replacing Grunt with Gulp, Broccoli or another task runner will involve
replacing grunt modules specified in package.json with modules designed for the
new task runner, as well as replacing the Gruntfile.js file with a new configuration
file. It has no effect on the functionality of the AnyBoard library.

A.4.4 Documentation generation: JSDoc and grunt-jsdoc-to-markdown

JSDoc6 is a standardized way of documenting JavaScript code. It allows IDEs7 to
give assisting information to a developer about the code he’s using, which classes
and methods are available, what they return, take as parameters etc.

3 gruntjs.com
4 gulpjs.com
5 broccolijs.com
6 usejsdoc.org - a JavaScript documentation syntax and parser
7 IDE is shorthand for Integrated Development Environment and is simply put a rich featured editor.

http://gruntjs.com/
http://gulpjs.com/
http://broccolijs.com/
http://usejsdoc.org/

A.4. Details on modules 89

In addition, software plugins for our development platform (NodeJS + Grunt)
exist that allows us to generate automatic documentation based on JSDoc syntax.

Figure A.4: Example of jsdoc commenting in source code.

Figure A.5: Example of generated documentation by grunt-jsdoc-to-markdown.

Usage

All source files are commented with JSDoc-syntax, see figure A.4. Most IDEs
and some regular editors will automatically pick up on these comments and assist
developers with writing code.

Our grunt command grunt doc, autogenerates the documentation.md
documentation file, see A.5

90 Details on development environment

Replacing JSDoc

Minor changes would be required to all source file comments in order to change
to a different syntax for commenting. In addition, one would naturally have to
replace grunt-jsdoc-to-markdown.

Replacing grunt-jsdoc-to-markdown

Replacing grunt-jsdoc-to-markdown will require finding a suitable
grunt-compatible jsdoc compatible documentation generator, and replacing
grunt-jsdoc-to-markdown in the package.json file.

Appendix B

AnyBoard Quiz Game

Figure B.1: The quiz game implemented for evaluation. Each player places his or her
token on the colored tile corresponding to the alternative.

AnyBoard Quiz Game was a game implemented for the purpose of evaluation
(see chapter 6). It’s complete code base can be seen and downloaded from
github.com/tomfa/anyboardjs-evaluation.

It can be seen in play in figure B.1.

91

https://github.com/tomfa/anyboardjs-evaluation

92 AnyBoard Quiz Game

B.1 Graphical user interface
The graphical user interface of AnyBoard Quiz Game is shown in figures B.2, B.3
and B.4.

It was designed for android and iOS mobile devices in mind, but should also be
compatible with other Android and iOS devices, such as iPad.

Figure B.2: Starting screen for the evaluation game.

B.1. Graphical user interface 93

Figure B.3: Screen 2 (left), 3 (middle) and 4 (right) of AnyBoard Quiz, assisting the
player in connecting to tokens and place the tokens on the starting point.

Figure B.4: Screen 5 (left), 6 (middle) and 7 (right) of AnyBoard Quiz. The player
answers the questions by moving his or her token to the tile that corresponds to the color
of the alternative. An answer will show when all tokens are placed. Once all questions has
been answered, a summary will be displayed.

94 AnyBoard Quiz Game

B.2 File structure
The file structure of AnyBoard Quiz game is shown in figure B.6. The game itself
is divided in index.html (markup), style.css (styling), js/data.js (data), js/logic.js
(logic) and js/ui.js (manipulation of the graphical elements).

dist - folder contains the AnyBoard library, drivers the AnyBoard drivers,
firmware the firmware for the AnyBoard token. Libs contains dependencies
for the AnyBoard drivers and implementation. jQuery is used for the game
development.

The code amount in each implementation can be seen in figure B.5.

Figure B.5: Code lines in each implementation.

Figure B.6: File structure of the AnyBoard Quiz Game.

B.3. Implementation difference with and without AnyBoard 95

B.3 Implementation difference with and without AnyBoard
The code difference between the game implemented with and without AnyBoard
is shown in the pdf-file on the next pages. Lines marked + with a green line
denotes added lines, while - with red line shows deleted ones (when changing
from the AnyBoard implementation to the non-AnyBoard implementation).

For comparison of length where blank lines, comments and unnecessarily "pretty"
structures are ignored, we could remove/compress the following lines:

• AnyBoard implementation: 6, 38-47, 66-73
• JS implementatation: 43, 56, 76-82, 85, 86-91, 117, 129, 135, 140, 147,

151, 154, 162, 167, 170, 175, 178, 186-189, 195, 199-200, 204-208, 212,
218, 228, 230, 233-236

9/26/2015 Replace AnyBoard logic with plain JS · tomfa/anyboardjs-evaluation@64d335c

https://github.com/tomfa/anyboardjs-evaluation/commit/64d335c3b606bcf0a1d2f89f0f0be3fbba27a7e0 1/5

commit 64d335c3b606bcf0a1d2f89f0f0be3fbba27a7e01 parent 27ade59

C

Replace AnyBoard logic with plain JS
� master

 tomfa authored 3 hours ago

Showing 2 changed files with 183 additions and 41 deletions.

Browse files

Split

 js‐question‐game/index.html

0

14 14
15 15
16 16
17
18
19
20 17
21 18
22 19
23
24
25
26 20
27 21
28 22

0

View6 HHHHH

@@ ‐14,15 +14,9 @@

 <!‐‐ cordova.js based ‐‐>
 <script src="cordova.js"></script>

‐ <!‐‐ AnyBoard libraries ‐‐>
‐ <script src="dist/anyboard.js"></script>
‐
 <!‐‐ Bluetooth driver and dependencies ‐‐>
 <script src="libs/evothings/evothings.js"></script>
 <script src="libs/evothings/easyble/easyble.js"></script>
‐ <script src="drivers/discovery.evothings.bluetooth.js"></script>
‐ <script src="drivers/rfduino.evothings.bluetooth.js"></script>
‐ <script src="drivers/bean.evothings.bluetooth.js"></script>

 <!‐‐ We've used jquery for quick development ‐‐>
 <script src="libs/jquery‐1.11.3.min.js"></script>

 js‐question‐game/js/logic.js

... ...

1
2

1 3
2 4
3
4

5
6
7
8

5 9
6
7 10
8 11
9 12

0

13 16
14 17
15 18
16

19
17 20
18 21
19 22
20

23
24
25

21 26
22 27
23 28

0

28 33
29 34
30 35
31
32

36
37

33 38
34 39
35 40
36 41

View218 HHHHH

@@ ‐1,9 +1,12 @@

+if (typeof hyper === 'undefined') hyper = console;
+
 var logic = {
 initiate: function() {
‐ var handleTokenMove = function(token, constraint, options) {
‐ AnyBoard.Logger.log(token.player + " moved to tile " + constraint);
+ var handleTokenMove = function(options) {
+ var token = options.token;
+ var constraint = options.constraint;
+ hyper.log(token.player.name + " moved to tile " + constraint);
 token.player.location = constraint;
‐
 if (logic.everyOneHasAnswered()) {
 ui.showAnswer();
 return;

@@ ‐13,11 +16,13 @@ var logic = {

 // is placed on a tile. Therefore we check if the token is the only one, and trigger the TT‐event manually
 // if it is
 if (logic.numberOfConnectedTokens() === 1 && token.player.location === 2) {
‐ handleTokenTokenTouch(token, token);
+ handleTokenTokenTouch({"initiatingToken": token, "respondingToken": token});
 }
 };

‐ var handleTokenTokenTouch = function(initiatingToken, respondingToken, options) {
+ var handleTokenTokenTouch = function(options) {
+ var initiatingToken = options.initiatingToken;
+ var respondingToken = options.respondingToken;
 if (respondingToken.player.location === 2) {
 hyper.log("handleTokenTokenTouch");
 if (typeof d.currentQuestionPos === "undefined") ui.activatePanel('game');

@@ ‐28,23 +33,28 @@ var logic = {

 logic.addListener("game", logic.startGame);
 logic.addListener("summary", ui.finishGame);

‐ AnyBoard.TokenManager.onTokenConstraintEvent("MOVE_TO", handleTokenMove);
‐ AnyBoard.TokenManager.onTokenTokenEvent("MOVE_NEXT_TO", handleTokenTokenTouch)
+ logic.addListener("MOVE_TO", handleTokenMove);
+ logic.addListener("MOVE_NEXT_TO", handleTokenTokenTouch)
 },

 // Discover bluetooth tokens in proximity
 discover: function() {

Unified

9/26/2015 Replace AnyBoard logic with plain JS · tomfa/anyboardjs-evaluation@64d335c

https://github.com/tomfa/anyboardjs-evaluation/commit/64d335c3b606bcf0a1d2f89f0f0be3fbba27a7e0 2/5

37 42
38
39
40
41
42
43
44
45
46
47

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

48 58
49 59
50 60

0

59 69
60 70
61 71
62

72
63 73
64 74
65
66
67
68
69
70
71
72
73

75
76
77
78
79
80
81
82

74 83
75 84
76

85
86
87
88
89
90
91
92
93

77 94
78 95
79 96
80

97
98
99

81 100
82 101
83 102

0

86 105

 var self = this;
‐ AnyBoard.TokenManager.scan(
‐ // success function to be executed upon _each_ token that is discovered
‐ function(token) {
‐ self.addDiscovered(token);
‐ },
‐ // function to be executed upon failure
‐ function(errorCode) {
‐ hyper.log(errorCode)
‐ }
‐);
+
+ evothings.easyble.reportDeviceOnce(true);
+ evothings.easyble.startScan(function(device){
+ hyper.log('Device found: ' + device.name + ' address: ' + device.address + ' rssi: ' + device.rssi);
+ device.sendGtHeader = 0x80;
+ device.gettingServices = false;
+ device.serialChar = null; // Characteristic handle for serial write, set on getServices()
+ device.serialDesc = null; // Description for characteristic handle, set on getServices()
+ device.singlePacketWrite = true;
+ self.addDiscovered(device);
+ }, function(errorCode) {
+ hyper.log(errorCode)
+ });
+
+ setTimeout(function() {evothings.easyble.stopScan();}, 5000);
 },

 // Function to be executed upon having discovered a token

@@ ‐59,25 +69,34 @@ var logic = {

 '<button class="player‐icon' + '"> </button>' + '</div>');

 // Add listener to be executed if the token connects
‐ token.on('connect', function() {
+ logic.addListener('connect', function(token) {
 document.getElementById(token.address).className = 'green token';
 token.color = d.colors.pop();
‐ token.player = new AnyBoard.Player(
‐ token.color + "‐player",
‐ {
‐ "color": token.color,
‐ "points": 0,
‐ "locations": ‐1,
‐ "token": token
‐ }
‐);
+ token.isConnected = true;
+ token.player = {
+ "name": token.color + "‐player",
+ "color": token.color,
+ "points": 0,
+ "locations": ‐1,
+ "token": token
+ };
 d.players.push(token.player);
 $(document.getElementById(token.address)).next().addClass(token.color);
‐ token.ledOn(token.color);
+
+ var supportedColors = {
+ 'red': [255, 0, 0],
+ 'green': [0, 255, 0],
+ 'blue': [0, 0, 255],
+ 'white': [255, 255, 255]
+ };
+ var ledOnBitCommand = 129;
+ logic._sendOutgoingData(token, new Uint8Array(supportedColors[token.color]).unshift(ledOnBitCommand));
 });

 // Add listener to be executed if the token disconnects
‐ token.on('disconnect', function() {
+ listener.addListener('disconnect', function(options) {
+ var token = options.token;
+ token.isConnected = false;
 document.getElementById(token.address).className = 'grey token';
 $(document.getElementById(token.address)).next().removeClass(token.color);
 d.colors.push(token.color);

@@ ‐86,6 +105,135 @@ var logic = {

9/26/2015 Replace AnyBoard logic with plain JS · tomfa/anyboardjs-evaluation@64d335c

https://github.com/tomfa/anyboardjs-evaluation/commit/64d335c3b606bcf0a1d2f89f0f0be3fbba27a7e0 3/5

87 106
88 107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

 },

+ _sendOutgoingData: function(device, uint8data, win, fail) {
+ evothings.ble.writeCharacteristic(
+ device.deviceHandle,
+ device.serialChar,
+ uint8data,
+ function(){ win && win()},
+ function(){ fail && fail()}
+);
+ },
+
+ _handleIncomingData: function(device, uint8data) {
+ var moveBitCommand = 194;
+ var cmd = uint8data[0];
+ var currentTile = uint8array[1];
+ var previousTile = uint8array[2];
+ if (cmd === moveBitCommand) {
+ logic.trigger("MOVE_TO", {"token": device, "constraint": currentTile});
+ logic.addListener("MOVE_NEXT_TO", handleTokenTokenTouch)
+ }
+ hyper.log(device.address + " moved from " + previousTile + " to " + currentTile);
+ },
+
+ _evothingsDisconnect: function(device) {
+ device.close();
+ device.haveServices = false;
+ logic.trigger("disconnect", {"token": device });
+ },
+
+ _evothingsConnect: function(device) {
+ var requiredCharacteristic = 'a495ff11‐c5b1‐4b44‐b512‐1370f02d74de';
+ var requiredService = 'a495ff10‐c5b1‐4b44‐b512‐1370f02d74de';
+ var requiredDescriptor = '00002902‐0000‐1000‐8000‐00805f9b34fb';
+
+ device.connect(function() {
+ getServices();
+ }, function(errorCode) {
+ device.haveServices = false;
+ fail(errorCode);
+ });
+
+ var getServices = function() {
+ if (device.gettingServices)
+ return;
+
+ var self = device;
+ device.gettingServices = true;
+
+ hyper.log('Fetch services for ' + device.address);
+ evothings.ble.readAllServiceData(
+ device.deviceHandle,
+ function(services) {
+ device.services = {};
+ device.characteristics = {};
+ device.descriptors = {};
+
+ for (var si in services) {
+ var service = services[si];
+ if (service.uuid !== requiredService)
+ continue;
+
+ device.services[service.uuid] = service;
+ hyper.log('Service: ' + service.uuid);
+
+ for (var ci in service.characteristics) {
+ var characteristic = service.characteristics[ci];
+ if (characteristic.uuid !== requiredCharacteristic)
+ continue;
+
+ hyper.log('Characteristic: ' + characteristic.uuid);
+ device.characteristics[characteristic.uuid] = characteristic;
+
+ for (var di in characteristic.descriptors) {
+ var descriptor = characteristic.descriptors[di];
+ if (descriptor.uuid !== requiredDescriptor)
+ continue;
+ device.descriptors[descriptor.uuid] = descriptor;

9/26/2015 Replace AnyBoard logic with plain JS · tomfa/anyboardjs-evaluation@64d335c

https://github.com/tomfa/anyboardjs-evaluation/commit/64d335c3b606bcf0a1d2f89f0f0be3fbba27a7e0 4/5

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

89 237
90 238
91 239

0

96 244
97 245
98 246
99

247
100 248
101 249
102 250
103 251
104 252
105 253
106

254
107 255
108 256
109 257

0

165 313
166 314
167 315
168

+ device.serialChar = characteristic.handle;
+ device.serialDesc = descriptor.handle;
+ }
+ }
+ }
+
+ if (device.serialChar) {
+ device.haveServices = true;
+ device.gettingServices = false;
+ logic._evothingsSubscribeToEvents(device, logic._handleIncomingData);
+ logic.trigger('connect', device);
+ }
+ else {
+ device.gettingServices = false;
+ hyper.log('Could not find predefined services for token');
+ }
+ },
+ function(errorCode) {
+ device.gettingServices = false;
+ hyper.log('Could not fetch services for token ' + device.name + '. ' + errorCode);
+ }
+);
+ }
+ },
+
+ _evothingsSubscribeToEvents: function(device, callback) {
+ var enableSubscribeDescriptor = '00002902‐0000‐1000‐8000‐00805f9b34fb';
+ var notificationCharacteristic = '00002221‐0000‐1000‐8000‐00805f9b34fb';
+
+ evothings.ble.writeDescriptor(
+ device.deviceHandle,
+ device.descriptors[enableSubscribeDescriptor].handle,
+ new Uint8Array([1,0])
+);
+
+ evothings.ble.enableNotification(
+ device.deviceHandle,
+ device.serialChar,
+ function(data){
+ data = new DataView(data);
+ var length = data.byteLength;
+ var uint8Data = [];
+ for (var i = 0; i < length; i++) {
+ uint8Data.push(data.getUint8(i));
+ }
+ callback && callback(device, uint8Data);
+ },
+ function(errorCode){
+ hyper.log("Could not subscribe to notifications");
+ }
+);
+ },
+
 // Attempts to connect to token.
 connect: function(tokenAddress) {
 var token = d.devices[tokenAddress];

@@ ‐96,14 +244,14 @@ var logic = {

 // If already connected, disconnect
 if (document.getElementById(tokenAddress).className.indexOf('green') !== ‐1) {
‐ token.disconnect();
+ logic._evothingsDisconnect(token);
 return;
 }
 // Signal that we're attempting to connect
 document.getElementById(tokenAddress).className = 'blue token';

 // Send connect command.
‐ token.connect();
+ logic._evothingsConnect(token);
 },

 startGame: function(){

@@ ‐165,9 +313,9 @@ var logic = {

 },

 everyOneHasAnswered: function() {
‐ var tokenSet = AnyBoard.TokenManager.tokens;

9/26/2015 Replace AnyBoard logic with plain JS · tomfa/anyboardjs-evaluation@64d335c

https://github.com/tomfa/anyboardjs-evaluation/commit/64d335c3b606bcf0a1d2f89f0f0be3fbba27a7e0 5/5

316

169 317

170

318

171 319

172 320

173 321

0

177 325

178 326

179 327

180

328

181 329

182 330

183

331

184 332

185 333

186 334

0

+ var tokenSet = d.devices;

 for (var key in tokenSet) {

‐ if (tokenSet.hasOwnProperty(key) && tokenSet[key].isConnected()) {

+ if (tokenSet.hasOwnProperty(key) && tokenSet[key].isConnected) {

 if (tokenSet[key].player.location < 3) {

 return false;

 }

@@ ‐177,10 +325,10 @@ var logic = {

 },

 numberOfConnectedTokens: function() {

‐ var tokenSet = AnyBoard.TokenManager.tokens;

+ var tokenSet = d.devices;

 var numOfConnected = 0;

 for (var key in tokenSet) {

‐ if (tokenSet.hasOwnProperty(key) && tokenSet[key].isConnected()) numOfConnected += 1;

+ if (tokenSet.hasOwnProperty(key) && tokenSet[key].isConnected) numOfConnected += 1;

 }

 return numOfConnected;

 }

Appendix C

Provided examples

We have created four small examples that can be found at
github.com/tomfa/anyboardjs. We will describe them in the following section.

C.1 Deck and Card
This example is an example of a player that draw cards from a deck to his hand.
The cards on his hand can then be played to the board. The game also shows a log
from the events of the game on the screen.

101

https://github.com/tomfa/anyboardjs

102 Provided examples

Figure C.1: The Deck demo. New cards are drawn by clicking "DRAW CARDS FROM
DECK". Each card on hand is shown as a green button with the card title printed on top.
Events happening to the token is listened to an printed in the log part at the bottom.

The example shows use of:

• AnyBoard.Logger, setting threshold.
• AnyBoard.Deck, its loading of data and callback on play and draw events.
• AnyBoard.Card, its callback on play events
• AnyBoard.Player, playing cards and discarding hand.

C.2. LED demo 103

The code for this example can be found in examples/mobile-deck/ and
examples/html-deck/.

C.2 LED demo
Here we show how one can scan for devices, then select which of them to connect
to, and send a simple LED command.

104 Provided examples

Figure C.2: Simple example of turning on LED. It provides a button for discovering
nearby tokens, which then is shown is individual buttons. Once clicked, the example will
connect to the corresponding button and send a command to turn on its LED. The same
design is used in the print demo and color detection demo.

The example shows use of:

• AnyBoard.TokenManager, scanning for devices
• AnyBoard.BaseToken, listening to events, connecting, disconnecting and

sending LED command

C.3. Printer demo 105

The code for this example can be found in examples/mobile-led-on/.

C.3 Printer demo
In this example we print some dummy text to the Bean Printer.

The example shows use of:

• AnyBoard.TokenManager, scanning for devices
• AnyBoard.BaseToken, listening to events, connecting, disconnecting and

sending print command

The code for this example can be found in
examples/mobile-bean-printer/.

C.4 Color detection demo
In this example we connect to a token, and register and logs its movements
between pawns of different color.

The example shows use of:

• AnyBoard.TokenManager, scanning for devices
• AnyBoard.BaseToken, listening to events, connecting, disconnecting and

responding to MOVE command sent from token.

The code for this example can be found in
examples/mobile-rfduino-color-detection/.

Appendix D

Implemented tokens

D.1 AnyBoard RFduino Token

Figure D.1: The AnyBoard RFduino Pawn

The AnyBoard Token is based on RFduino components and was assembled by
co-supervisor Simone Mora. It is an RFduino with Bluetooth and battery
capabilities and uses Adafruit TCS34725www.adafruit.com/products/1334 for
detecting colors. The cost of this is roughly 50 USD using manufactured shields.
Homemade circuit boards can be created at roughly 10 USD.

Other than detecting colors, the token also provides the capability of displaying a
color.

AnyBoard communicates with the token through
drivers/rfduino.evothings.Bluetooth.js, and the token runs on

106

https://www.adafruit.com/products/1334

D.1. AnyBoard RFduino Token 107

firmware/RFduinoToken.ino.

The token is under continued development by Mora.

108 Implemented tokens

D.2 AnyBoard Bean Token

Figure D.2: The AnyBoard Bean

The AnyBoard Bean Token consists simply of a LightBlue Bean1. The cost of
this is 30 USD.

The token provides capability of displaying a LED color, measure temperature
and contains an accelerometer. Neither temperature or accelerometer reading has
been implemented, but could perhaps spark some neat ideas if they were
available. Including these features in the existing driver and firmware should be a
simple job.

AnyBoard communicates with this setup through
|drivers/bean.evothings.Bluetooth.js|, and the bean runs on
|firmware/BeanToken.ino|.

1 legacy.punchthrough.com/bean

http://legacy.punchthrough.com/bean/

D.3. AnyBoard Bean Printer 109

D.3 AnyBoard Bean Printer

Figure D.3: The AnyBoard Bean Token

The AnyBoard Bean printer consists of an Adafruit Mini Thermal Receipt
Printer2 connected with a LightBlue Bean3.The cost of this setup is roughly 95
USD.

Only text-size, printer feeding and text-alignment was implemented during this
thesis. We described potential uses of its other capabilities (QR, barcode etc.) in
chapter 7

AnyBoard communicates with this setup through
|drivers/bean.evothings.Bluetooth.js|, and the bean runs on
|firmware/BeanPrinter.ino|.

2 https://learn.adafruit.com/mini-thermal-receipt-printer
3 legacy.punchthrough.com/bean

https://learn.adafruit.com/mini-thermal-receipt-printer
http://legacy.punchthrough.com/bean/

Appendix E

AnyBoard Tests

Tests has been written for the AnyBoard entities. This excludes drivers and
firmware. In addition, tests have regrettably only partially been implemented for
the Token and TokenManager. We advice for these to be completed.

Tests are located inside the folder test. All files here are automatically run by
navigating to the AnyBoard folder in terminal and running the command
grunt test.

Upon running, the tests provide a human readable output as shown in figure E.1.

Figure E.1: Screen shot of the resulting output from running tests.

110

111

Appendix F

Bluetooth communication
protocol

SEND DATA RETURN DATA
SENDER NICKNAME FUNCTION (1B) DATA (up to 20B) Comment
Chip INVALID_DATA_RECEIVE 0 [0] Sent if token didn't support incoming data command

Cellphone GET_NAME 32 [32, <less than 20 chars>] Returns name of device, in ASCII (example: "AnyPawn")

Cellphone GET_VERSION 33 [33, <less than 20 chars>] Returns version of firmware, in ASCII (example: "0.1")

Cellphone GET_UUID 34 [34, <less than 20 chars>] Returns a unique identifier for that token

Cellphone GET_BATTERY_STATUS 35 Returns the status of battery, in percentage

Cellphone HAS_LED 64 [64, <1 if true, else 0>] Whether or not it has a LED

Cellphone HAS_LED_COLOR 65 [65, <1 if true, else 0>] Whether or not it has LED with color

Cellphone HAS_VIBRATION 66 [66, <1 if true, else 0>] Whether or not it has vibration

Cellphone HAS_COLOR_DETECTION 67 [67, <1 if true, else 0>] Whether or not it can detect color of underlying board

Cellphone HAS_LED_SCREEN 68 [68, <1 if true, else 0>] Whether or not it has LED based screen

Cellphone LED_SCREEN_WIDTH 69 [69, <2 byte integer width>] Returns number of columns in LED "screen"

Cellphone LED_SCREEN_HEIGHT 70 [70, <2 byte integer width>] Returns number of rows in LED "screen"

Cellphone HAS_RFID 71 [71, <1 if true, else 0>] Whether or not it can read RFID chips

Cellphone HAS_NFC 72 [72, <1 if true, else 0>] Whether or not it can read NFC chips

Cellphone HAS_ACCELEROMETER 73 [73, 0, 0, 0] to [73, 1, 1, 1] (xyz axis) Whether or not it has accelerometer (X, Y, Z axis)

Cellphone HAS_PRINT 74 [74, <1 if true, else 0>]

Cellphone LED_OFF 128 [128] to confirm action taken Turns off LED (blink or stable)

Cellphone LED_ON 129 [129] to confirm action taken Turns on LED (stable)

Cellphone LED_BLINK 130 [130] to confirm action taken Turns on LED (blinking)

Cellphone VIBRATE_OFF 131 [131] to confirm action taken Cancels any vibration if still active

Cellphone VIBRATE 132 [132] to confirm action taken Turns on vibration for up to 25,6 seconds (length), up to 256 different modes, 256 different strengths)

Cellphone SET_LED_SCREEN 133 ?? [133] to confirm action taken ??

Cellphone READ_NFC 134 Return raw NFC read data

Cellphone READ_RFID 135 Returns raw RFID read data

Cellphone READ_COLOR 136 Returns raw camera read color code

Cellphone PRINT_FEED 137 [137] to confirm action taken

Cellphone PRINT_JUSTIFY 138 [138] to confirm action taken

Cellphone PRINT_SET_SIZE 139 [139] to confirm action taken

Cellphone PRINT_WRITE 140 [140] to confirm action taken

Chip LIFT 192 Indicates the pawn is being lifted

Chip MOVE 194 Indicates pawn has arrived at new tile

Removed permanently Not implemented (no use yet)

DATA (up to 11B)

[1B red, 1B green, 1B blue]

[1B red, 1B green, 1B blue]

[1B length, 1B mode, 1B strength]

[1B character "l"/"c"/"r"]

[1B character "S"/"M"/"L"]

ASCII encoding for characters to write

[192, 2B x-axis, 2B y-axis, 2B z-axis]

[194, 1B previous sector, 1B new sector]

Appendix G

Article: Reflections on AnyBoard

113

Making interactive board games to learn:
 Reflections on AnyBoard

Simone Mora*, Tomas Fagerbekk*, Ines Di Loreto**, Monica Divitini*

* Dept. of Information and Computer Science, NTNU, Trondheim, Norway
{simone.mora, divitini}@idi.ntnu.no

** TechCICO, ICD-Université de technologie de Troyes, France
ines.di_loreto@utt.fr

ABSTRACT. In this paper we discuss the making of interactive board games as a
learning activity. We do this by presenting AnyBoard, a platform that we are currently
developing to support the design and implementation of board games. In our approach
we do not use a game board virtualised on an interactive surface, but rather achieve
interactivity through technology-augmented game pieces. In this way, we aim at offer-
ing to game designers a broader design space and lower costs of the final product. In
this paper we discuss the possible use of AnyBoard in the learning context.

1 Introduction

Making games, either analogic or computer-based, has long been used as a learning
activity in different educational contexts. Making games has proved useful in areas as
diverse as engaging students with cultural heritage [1] and teaching university students
about software architectures [2]. Teachers have used making games as a way for teach-
ing programming in high or middle schools for many years, for example using RPG
maker1 or Scratch2.

In this context, we want to discuss the making of interactive board games to promote
learning. With the term interactive we mean board games that use tangible computer-
augmented objects. There are different benefits that could be achieved, mainly combin-
ing the learning strengths of creating games with the strengths of making tangible and
interactive objects for educational purposes [3, 4]. In addition, board games are popular
also among the elderly, offering a cross-generational form of entertainment. This is an
aspect that could be exploited to create cross-generational maker activities. Finally, by
making board games the learner does not get distracted by the complex graphics that is
common to many video games. In this way, it is easier for the learner to concentrate on
the game concept.

To ease the development of digital board game we present AnyBoard, a framework
for supporting the making of interactive board games. AnyBoard supports the design of
digital board games by providing theoretical constructs, software tools and a set of aug-
mented game pieces (all currently under development). The platform was not originally

1 RPG Makers - https://en.wikipedia.org/wiki/RPG_Maker
2 The Scratch project – http://scratch.mit.edu

designed to be used in the educational context, but mainly targeting maker communi-
ties. However, it could potentially be useful in the context of educational maker activi-
ties. In this paper, after presenting the AnyBoard approach, we discuss the challenges
connected to the use of this platform for learning building on our experience on the
creation of an interactive board game.

2 The AnyBoard framework

The dominant paradigm for creating digital board games consists in designing games
for interactive surfaces such as smartphones, tablets or tabletop computers. In some
cases, artefacts that resemble game tokens, yet augmented with markers (e.g. barcodes,
RFIDs), can facilitate interaction with the interactive surface [5, 6].

We propose a different approach: the game pieces are the means to bring interactiv-
ity, rather than the game board virtualised on an interactive surface. Distributing inter-
activity across multiple components opens for a wider space of possibility in designing
game experiences. For example, game pieces can influence the state of a game not only
when they sit on an interactive surface, but also when they are manipulated over and
around it. In this way, the board is mainly used to stage the game and set a context for
the use of the pieces, as in traditional board games. In addition, the interactive area of
the board is less limited by size, which also determines the portability of the game and
costs.

2.1 A new perspective on digital board games

In our approach to digital board games the role of technology is twofold. On one side
it brings interactivity by augmenting, not virtualizing, pieces’ material representations,
for example we aim at providing developers with tangible game pieces augmented with
visual, audio or haptic feedbacks (e.g. by means of LEDs or displays). On the other side
sensor technology is used to capture players’ physical interaction with pieces aiming at
preserving their traditional physical affordances; for example, to sense the result of a
dice throw, or the movements of pieces onto the board.

Game pieces still preserve their traditional aspect, having a tangible representation
that complements an intangible one provided by technology. For example, in a revisited
version of Monopoly tokens might preserve their physical semblances to identify play-
ers but might embed a graphical representation of the number of property owned by the
player (e.g. in icons or symbols on a LCD display). The intangible representation is
kept updated by a computer game engine during the playtime, as a consequence of
players’ interaction with game pieces and activation of game rules. The interaction with
pieces is based on a double loop [7].

Fig. 1. Double interaction loop in interactive board games

A first interaction loop consists in the passive haptic and visual feedback the player

perceives when manipulating pieces on the board, this loop is in common with tradi-
tional board games. A second loop adds interactivity by means of graphical and audi-
tory feedbacks conveyed via the tokens’ intangible representation (Figure 1). This loop
requires technology for sensing tokens’ manipulations as well as providing visual/audio
feedbacks. The set of valid interactions with game pieces are defined by the affordances
of pieces and by game rules. To formalize these rules we build on two theories: the T+C
framework [8], providing a powerful descriptive language, and the MCRit model [9],
addressing issues of representations and control in TUI.

2.2 Key design constructs

We define a game, which is composed by game dynamics (the sum of game logic
and rules), as a sequence of player-initiated interaction events that modify spatial con-
figurations of tokens with respect to board constraints and other tokens. In the follow-
ing, building on the T+C framework, we describe key constructs required to develop
an Anyboard game.

Tokens are technology-augmented artifacts capable of triggering digital operations
that can activate game dynamics. They are an augmentation of traditional pawns, dice
and cards. Tokens may be capable of sensing information (e.g. proximity with other
tokens) and displaying computer graphic and sound.

Constraints are confining regions in the board space, for example checks in the
Chess game and territories in Risk. The association or dissociation of a token within a
constraint can be mapped to digital operations to activate game dynamic. Constrained
regions are determined by a perimeter that could be visual, or physical.

Interaction events are player-triggered manipulations of tokens, that modify the
(digital and physical) state of a game. We identified three types of events.

Solo-token event (T) - the manipulation of a single token over or on the board. For
example, the action of rolling a dice or drawing a card.

Token-constraint event (T-C) - the operation of building transient token-constraint
associations by adding or removing tokens to a constrained region of the board. T-C
events can have different consequences depending on game rules.

Token-token (T-T) event - the operation of building transient token-token adjacency-
relationships, achieved by moving tokens on the board. For example, approaching a
token next to a different token to unlock special powers, or to exchange a resource
between two players.

Sequence of interaction events, validated against game-specific rules, activate game
dynamics and allow the game to evolve from a state to another. For example, we can
model the act of capturing a piece in chess as a sequence of interaction events that
modify proximity between two chess tokens within checkers constraints. For more de-
tails, see [10].

In the following section we describe how theoretical contracts have been imple-
mented for the augmentation of an existing board game.

2.3 An example

Don’t Panic, is a collaborative game inspired by Pandemic3. Four players start the
game as member of a panic manager team that must work together to manage panicking
crowds. A map representing a city map is displayed on the game board and the territory
is divided in sectors. Each sector contains a number of people (PO) characterized by a
panic level (PL). During the game randomly triggered panicking events (e.g. fires, ex-
plosions) increase PLs in determinate sectors. Each player is represented on the board
space by a personal pawn token and gets a limited number of actions with the goal to
lower the panic level in the city. Using the public “Calm!” and “Move!” tokens a player
can either reduce the panic in a specific sector or move panicked people to an adjacent
sector. Information cards tokens distributed in each turn can lower the panic in multiple
sectors. Players collectively win the game when the PL in all sectors is zero. For a full
description of game rules see [11].

Don’t Panic is composed by a cardboard and a set of tokens:
The board (Figure 2-a) – is a cardboard that visualizes a map portraying a territory

divided in nodes, sector and paths. Nodes feature physical constraints and no degree of
freedoms for the hosted tokens; sector and paths provide visual constraints allowing
tokens’ translation and rotation, within the perimeter.

The card deck (Figure 2-c) – dynamically print information card tokens. Each card
has a textual description of how it affects the game and a barcode that links the card to
its digital representation. The top surface of the card deck can read the barcode on the
card and trigger actions in the game (Figure 2-d).

Pawn tokens (Figure 2-b) – embody the players’ presence on a node. Pawns can be
moved from node to node and provide visual information via a LCD display. These
include the role of the player, number of people present in sectors adjacent to each of
the four pawn’s sides; and their panic level.

The Calm! token – represent the field action of calming people talking to them, thus
reducing the PL in a specific sector. This action is activated when Calm! is bumped
towards a Pawn token (Figure 2-e).

3 Pandemic board game - http://zmangames.com

The Move! token – simulates moving people across sectors, in this way people
moved acquire the panic level of the recipient sector. This action is activated by drag-
ging Move! across a border between two sectors (Figure 2-f).

Fig. 2. Don´t Panic interactive tokens

3 The AnyBoard software library

 We present here a library to bridge the gap between the theoretical constructs re-
ported in section 2 and the making of interactive game pieces.

Game design communities, game developer environments and game engines already
exist, and hence the main part that makes the AnyBoard framework unique is helping
integrate the development interactive tokens interaction as a part of games (Figure 3).
This role is performed by the Token Manager library.

The token manager provides a Token API to available game engines, so developers
can listen to player-token events and send commands to the interactive tokens without
the knowledge of the low level code or the tokens’ hardware. The API provides primi-
tives specifically suited for augmented board games, such as Token, Constraint and
Interaction Events (Section 2.2). The API is generic enough to be used with popular
game engines, both commercial and open source, such as Phaser4 and Unity5.

On the other end, the token manager is separated from any specific hardware imple-
mentation, and communicates with the physical tokens through device-specific drivers.
Besides a set of tokens is provided as part of the framework, expert users can tinker
them or build new tokens using popular toolkits such as Arduino and RaspberryPi.
Drivers for the Arduino platform as well as a generic extendable driver will be provided
to assist developers that wish to create their own tokens with specific technologies.

4 Phaser game engine – http://phaser.io
5 Unity game engine – http://unity3d.com

The AnyBoard library builds on the Apache Cordova6 platform that enable games
made for AnyBoard to compile to different operating systems, including mobile ones
such as Android and iOS. We aim to use open source, free-to-use, modular and well
documented tools, so that a developer can pick apart the AnyBoard system and add
capabilities where need be.

Fig. 3. High level components of AnyBoard

Standard example games, and templates implementing typical token capabilities,

will be provided for developers that wish to create games with general token require-
ments.

Finally, a web-based community for AnyBoard is intended to grow a community
and provide information for all roles involved with augmented board games. The Any-
Board platform will be available from there, and tokens sold from a third-party or made
using prototyping techniques and open source schematics. The community will provide
a knowledge base and tools for developers. Furthermore, it will feature a repository of
ready to use Anyboard games and an assistive IDE for game.

4 AnyBoard for learning

Making an interactive board game with AnyBoard requires different competencies,
varying from game design to software and hardware development skills, and it therefore
opens for the design of learning activities with different and multiple learning objec-
tives. In this section we reflect on how the platform, when fully developed, could be
used for learning.

6 Apache Cordova Platform - https://cordova.apache.org

The phases that are required for the full development of an AnyBoard game include:
- Game design, i.e. the definition of the game concept, logic and rules
- Interaction game design, i.e. the definition of the interactions of the players with

the game tokens and the interaction among players, either directly or mediated
by game elements

- Mapping of the game into the associated token+constraints system
- Implementation of hardware and software, this might range from implementa-

tion of the game engine to the development of the token interactions. This phase
might also include the production of objects that are not computerized, like the
board and cases to tailor the appearance of tokens, e.g. using 3D-printing.

The different phases allow to explore different learning goals through adequate ac-
tivities. The design of the learning activity might focus on one or more of the following
learning area:

- Specific subjects. If the game is designed as a serious game, i.e. by playing the
game players are expected to learn X, it requires that students gain a knowledge of
subject X to inform their design. In this perspective, the implementation part might be
less relevant and the main focus is on the first phase of game design.

- Interaction design by designing the intended interactions among players and the
interaction with the tokens. It should be noted that the actual design of the tokens ap-
pearance and interaction is strictly related to the game design. It can also become a way
to learn about the game subject. For example, in developing a game for crisis manage-
ment, one could work on tokens that resemble actual objects in the domain, mirroring
their behavior in the real world.

- Abstract thinking/logic. To achieve this learning goal, in addition to the high level
design, one should put focus on the translation of the high level rules into the framework
constructs in terms of tokens and constraints.

- Coding. Learning to code can be achieved during the implementation phase. This
might include both more traditional coding for the game engine and coding for embed-
ded systems. In this way, different computational approaches, languages, and feedback
systems might be explored.

- Tinkering. The design and implementation of the game requires to play around with
different software and tangible components.

5 Conclusions: towards a revised framework

In this short paper we presented an innovative approach to design of interactive
board games. The approach is based on the use of interactive tokens on an analogic
surface, in alternative to current approaches that mainly rely on interactive surfaces.
This approach, we claim, might be suitable to be used in the context of learning by
making. The paper discusses the potential of the framework for learning.

To realize this vision there are a number of components that should be added to the
framework, including:

- Graphical interface for coding, hiding if required by the design of the learning
activity, the complexity of moving from high level rules to the token+constraint
system.

- Templates for learning activities with different learning objectives. These tem-
plates should help the organizers of the learning activities to quick-start the de-
sign, choosing activities that reflect the intended learning objective.

- Scaffolding, possibly including support to hide complexity or irrelevant parts of
the platform. This can be achieved in different ways at different level of com-
plexity. It should be taken into account that board games might have a lot of
objects and very complex rules that can be overwhelming for a non expert. At
the same time, though learners are getting less distracted by developing graphics
than in a traditional video games, still the development of the tangible parts
might become very complex and distract the learner from other possible learn-
ing objectives.

- Community support oriented to education
- Analytics for reflection

As part of our future work we aim at developing these components following a
learner-centered approach. This will require to identify more in detail the benefits of
this approach compared to other types of game development for learning to focus the
development of the component necessary for the more suitable learning activities.

REFERENCES

1. Yiannoutsou, N. & Avouris, N.: Game Design as a context for Learning in Cultural Insti-
tutions. In C. Karagiannidis, P. Politis, & I. Karasavvidis, eds. Research on e-Learning
and ICT in Education. New York, NY: Springer New York, pp. 165–177, (2014).

2. Wang, A.I. & Wu, B.: Using Game Development to Teach Software Architecture. Int. J.
Comput. Games Technol. (2011)

3. Horn, M.S., Crouser, R.J. & Bers, M.U.: Tangible interaction and learning: the case for a
hybrid approach. Personal and Ubiquitous Computing, 16(4), pp.379–389 (2012).

4. Mellis, D.A. & Buechley, L.: Case studies in the personal fabrication of electronic prod-
ucts. In Proceedings of the Designing Interactive Systems Conference (DIS2012), ACM
Press, pp. 268-277.

5. Haller, M., Forlines, C., Koeffel, C., Leitner, J., Shen, C.: Tabletop games: Platforms, ex-
perimental games and design recommendations. Art and Technology of Entertainment
Computing and Communication. 271–297 (2010).

6. Bakker, S., Vorstenbosch, D., Van Den Hoven, E., Hollemans, G., Bergman, T.: Tangible
interaction in tabletop games. In Proc. of ACE 2007. 163–170 (2007).

7. Ishii, H.: Tangible bits: beyond pixels. In Proc. of TEI 2008. (2008).
8. Ullmer, B., Ishii, H., Jacob, R.J.K.: Token+constraint systems for tangible interaction

with digital information. ACM Transactions on Computer-Human Interaction (TOCHI).
12, (2005).

9. Ullmer, B., Ishii, H.: Emerging frameworks for tangible user interfaces. IBM systems
journal. 39, 915–931 (2000).

10. Mora, S., Di Loreto, I., Divitini, M.: The interactive-token approach to board games. In
Proceedings of AMI2015, LNCS, Springer (to appear).

11. Di Loreto, I., Mora, S., Divitini, M.: Don’t Panic: Enhancing Soft Skills for Civil Protec-
tion Workers. In Proc of SGDA. 7528, 1–12 (2012).

Appendix H

A grammer for mapping
token-based interaction to game
dynamics

Note: This is a excerpt of a draft from an article by co-supervisor Simone Mora
on token-based interaction. It has influenced the thesis in the implementation of
token-events

Designing interactive game pieces, game dynamics can e mapped to sequences of
expressions that describe players’ interaction during the game.

Expressions are generated using tokens, constraints and interaction events
according with a formal syntax and a grammar of rules derived from
game-specific rules. Fore example expressions might encode static configurations
of tokens on a board both with respect to constraints and to each other. Once
validated by a game engine an expression can trigger digital operations that affect
the (digital and physical) state of the game.

Tokens are technology-augmented artifacts capable players interact with. They
may be capable of sensing information and displaying computer graphic and
sound (active tokens) or they can be conventional object enhanced with electronic
tags that act as triggers for game rules (passive tokens). Some tokens are
personal, embodiment of the player on the board, while others are meant for
shared use and can be passed around during the game. Examples of tokens are
computer augmented pawns and dice, or barcode-tagged cards.

Constraints are physical or visual confining regions in the board space that can be

122

123

mapped with game mechanics. Once a token is placed within a constraint the two
can act as a system that enable nested interaction with other token-constraint
system. Examples of constraint are checked for chess pieces, territories for risk
pawns or the card deck for cards.

Interaction events are player-triggered manipulations of tokens that modify the
(digital or physical) state of the game. There are three types of events:

(i) solo-token events (t-event), the manipulation of a single token over on on the
board. For example the action of rolling a dice or drawing a card

(ii) token-constraint events (tc-event), the operation of building transient
token-constraint associations by adding or removing tokens on particular surface
region of the board. For example adding a pawn to a determinate sector of the
board.

(iii) token-token events (tt-event), the operation of building transient adjacency
relationships between tokens, achieved by moving tokens on the board. For
example approaching a pawn next to another token artifact.

We specify the multiple ways tokens, constraint and interaction event can be
composed in expressions using the Extended Back-Naur Form (EBNF1). In
Listing 1 we describe the grammer. In our formalization tokens and constraint
resemble the use of nouns in natural language while interaction events stand as
verbs. Sequences of expressions parsed by a game engine can activate game
dynamics thus allowing the game to evolve from a state to another. As a
consequence, the players are notified by a change of tangible and in tangible
representations of tokens. The grammar has to be finalized with terminal symbols
for token and constraint for the specific game design.

The proposed syntax doesn’t eliminate the possibility of meaningless expressions.
For example not all the interaction events we define might be affordable by any
token or some configurations of token and constrain, although physically
possible, might not be allowed by game rules. Hence, in our grammar syntax
rules must be complemented by a set of game-specific rules that define what
interaction events, and token-constraint plus token-token spatial relationship are
valid to form expressions generated with the proposed syntax. These grammar
rules might be derived from game rules.

Examples of expressions that can be mapped to game are: approaching two
pawns to exchange resources among players, or associating a card to an area on

1 BN Explained - http://www.princeton.edu/ãchaney/tmve/wiki100k/docs/Extended_Backus-
%E2%80%93Naur_Form.html

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Extended_Backus%E2%80%93Naur_Form.html
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Extended_Backus%E2%80%93Naur_Form.html

the board to unlock special interactions between pawns.

Listing H.1: Grammar for mapping game dynamics to token-based interactions in EBNF
form
gamedynamic : : = e x p r e s s i o n ∗
e x p r e s s i o n : : = t−e x p r e s s i o n | t c−e x p r e s s i o n | t t −e x p r e s s i o n
t−e x p r e s s i o n : : = token , t−e v e n t
t c−e x p r e s s i o n : : = token , t c−even t , c o n s t r a i n t
t t −e x p r e s s i o n : : = token , t t −even t , t o k e n
t−e v e n t : : = " shake " , " t i l t " , " r o l l " , " r o t a t e _ c l o c k w i s e " , " r o t a t e _ c o u n t e r c l o c k w i s e "
t c−e v e n t : : = " a dd _ t o " , " remove_from "
t t −e v e n t : : = " a p p r o a c h _ t o " , " d i s t a n c e _ f r o m " , " s t a c k _ o n " , " s t a c k _ u n d e r "
t o k e n : : = u t f −8∗
c o n s t r a i n t : : = u t f −8∗

Appendix I

AnyBoard Documentation

The remaining part of the appendix consists of the complete documentation of the
AnyBoard library pr. September 2015. This excludes drivers and firmware which
is not considered a part of the library. The documentation is also available in
interactive format at http://github.com/tomfa/anyboardjs.

124

https://github.com/tomfa/anyboardjs/

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 1/28

AnyBoard : object
Global variable AnyBoard.

playDrawCallback : function
This type of callback will be called when card is drawn or played

simpleTriggerCallback : function
Type of callback called upon triggering of events

stdStringCallback : function
Generic callback returning a string param

stdBoolCallback : function
Generic callback returning a bool param

stdNoParamCallback : function
Generic callback without params

onScanCallback : function
Type of callback called upon detecting a token

stdErrorCallback : function
This type of callback will be called upon failure to complete a function

Global variable AnyBoard.

Kind: global variable

AnyBoard : object
.Driver

new AnyBoard.Driver(options)
.toString() ⇒ string

.Deck
new AnyBoard.Deck(name, jsonDeck)
instance

.shuffle()

.initiate(jsonDeck)

.refill([newDeck])

.onPlay(func)

.onDraw(callback)

.toString() ⇒ string
static

.get(name) ⇒ Deck
.Card

new AnyBoard.Card(deck, options)
instance

.onPlay(func)

.onDraw(callback)

.toString() ⇒ string

Members

Typedefs

AnyBoard : object

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 2/28

static
.get(cardTitleOrID) ⇒ Card

.Dices
new AnyBoard.Dices([eyes], [numOfDice])
.roll() ⇒ number
.rollEach() ⇒ Array

.Player
new AnyBoard.Player(name, [options])
instance

.pay(resources, [receivingPlayer]) ⇒ boolean

.trade(giveResources, receiveResources, [player]) ⇒ boolean

.recieve(resourceSet)

.draw(deck, [options]) ⇒ Card

.play(card, [customOptions]) ⇒ boolean

.toString() ⇒ string
static

.get(name) ⇒ Player
.Hand

new AnyBoard.Hand(player, [options])
.has(card, [amount]) ⇒ boolean
.discardHand()
.discardCard(card)
.toString() ⇒ string

.Resource
new AnyBoard.Resource(name, [properties])
.get(name) ⇒ Resource

.ResourceSet
new AnyBoard.ResourceSet([resources], [allowNegative])
.contains(reqResource) ⇒ boolean
.add(resourceSet)
.subtract(resourceSet) ⇒ boolean
.similarities(resourceSet) ⇒ object

.BaseToken
new AnyBoard.BaseToken(name, address, device, [driver])
instance

.isConnected() ⇒ boolean

.connect([win], [fail])

.disconnect()

.trigger(eventName, [eventOptions])

.on(eventName, callbackFunction)

.once(eventName, callbackFunction)

.send(data, [win], [fail])

.print(value, [win], [fail])

.getFirmwareName([win], [fail])

.getFirmwareVersion([win], [fail])

.getFirmwareUUID([win], [fail])

.hasLed([win], [fail])

.hasLedColor([win], [fail])

.hasVibration([win], [fail])

.hasColorDetection([win], [fail])

.hasLedScreen([win], [fail])

.hasRfid([win], [fail])

.hasNfc([win], [fail])

.hasAccelometer([win], [fail])

.hasTemperature([win], [fail])

.ledOn(value, [win], [fail])

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 3/28

.ledBlink(value, [win], [fail])

.ledOff([win], [fail])

.toString() ⇒ string
static

.setDefaultDriver(driver) ⇒ boolean
.Drivers : Object

.get(name) ⇒ Driver | undefined

.getCompatibleDriver(type, compatibility) ⇒ Driver
.TokenManager

.setDriver(driver)

.scan([win], [fail], [timeout])

.get(address) ⇒ BaseToken
.Logger

.warn(message, [sender])

.error(message, [sender])

.log(message, [sender])

.debug(message, [sender])

.setThreshold(severity)
.Utils

.isEqual(a, b, [aStack], [bStack]) ⇒ boolean

Kind: static class of AnyBoard
Properties

Name Type Description

name string name of the driver

description string description of the driver

version string version of the driver

dependencies string Text describing what, if anything, the driver depends on.

date string Date upon release/last build.

type Array Array of string describing Type of driver, e.g. "bluetooth"

compatibility
 Array | object |
 string

An object or string that can be used to deduce compatibiity, or an array of
different compatibilies.

properties object dictionary that holds custom attributes

.Driver
new AnyBoard.Driver(options)
.toString() ⇒ string

Represents a single Driver, e.g. for spesific token or bluetooth discovery

Param Type Description

options object options for the driver

options.name string name of the driver

options.description string description of the driver

options.version string version of the driver

AnyBoard.Driver

new AnyBoard.Driver(options)

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 4/28

options.type string Type of driver, e.g. "bluetooth"

options.compatibility

 Array |
 object

|
 string

An object or string that can be used to deduce compatibiity, or an array of
different compatibilies. How this is used is determined by the set standard
driver on TokenManager that handles scanning for and connecting to
tokens.

[options.dependencies] string (optional) What if anything the driver depends on.

[options.date] string (optional) Date upon release/last build.

options.yourAttributeHere any
custom attributes, as well as specified ones, are all placed in
driver.properties. E.g. 'heat' would be placed in driver.properties.heat.

Returns a short description of the Driver instance

Kind: instance method of Driver

Kind: static class of AnyBoard
Properties

Name Type Description

name string name of Deck.

cards
 Array.

<Card>
complete set of cards in the deck

pile
 Array.

<Card>
remaining cards in this pile

usedPile
 Array.

<Card>
cards played from this deck

autoUsedRefill boolean
(default: true) whether or not to automatically refill pile from usedPile when
empty. Is ignored if autoNewRefill is true.

autoNewRefill boolean
(default: false) whether or not to automatically refill pile with a whole new deck
when empty.

playListeners
 Array.

<function()>
holds functions to be called when cards in this deck are played

drawListeners
 Array.

<function()>
holds functions to be called when cards in this deck are drawn

.Deck
new AnyBoard.Deck(name, jsonDeck)
instance

.shuffle()

.initiate(jsonDeck)

.refill([newDeck])

.onPlay(func)

.onDraw(callback)

.toString() ⇒ string
static

.get(name) ⇒ Deck

driver.toString() ⇒ string

AnyBoard.Deck

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 5/28

Represents a Deck of Cards

Param Type Description

name string name of Deck. This name can be used to retrieve the deck via AnyBoard.Deck.all[name].

jsonDeck object loaded JSON file. See examples/deck-loading/ for JSON format and loading.

Shuffles the pile of undrawn cards . Pile is automatically shuffled upon construction, and upon initiate(). New cards
added upon refill() are also automatically shuffled.

Kind: instance method of Deck

Reads Deck from jsonObject and provides a shuffled version in pile. Is automatically called upon constructing a deck.

Kind: instance method of Deck

Param Type Description

jsonDeck object loaded json file. See examples-folder for example of json file and loading

Manually refills the pile. This is not necessary if autoUsedRefill or autoNewRefill property of deck is true.

Kind: instance method of Deck

Param Type Default Description

[newDeck] boolean false
(default: false) True if to refill with a new deck. False if to refill with played
cards (from usedPile)

Adds functions to be executed upon all Cards in this Deck.

Kind: instance method of Deck

Param Type Description

func playDrawCallback callback function to be executed upon play of card from this deck

Adds functions to be executed upon draw of Card from this Deck

Kind: instance method of Deck

Param Type Description

callback playDrawCallback
function to be executed with the 3 parameters AnyBoard.Card, AnyBoard.Player,
(options) when cards are drawn

Sting representation of a deck

new AnyBoard.Deck(name, jsonDeck)

deck.shuffle()

deck.initiate(jsonDeck)

deck.refill([newDeck])

deck.onPlay(func)

deck.onDraw(callback)

deck.toString() ⇒ string

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 6/28

Kind: instance method of Deck

Returns deck with given name

Kind: static method of Deck
Returns: Deck - deck with given name (or undefined if non-existent)

Param Type Description

name string name of deck

Kind: static class of AnyBoard
Properties

Name Type Description

title string title of the card.

description string description for the Card

color string color of the Card

category string category of the card, not used by AnyBoard FrameWork

value number value of the card, not used by AnyBoard FrameWork

type string type of the card, not used by AnyBoard FrameWork

amount number amount of this card its deck

deck Deck deck that this card belongs to

playListeneres Array
holds functions to be called upon play of this spesific card (before potential
playListeners on its belonging deck)

drawListeners Array
holds functions to be called upon draw of this spesific card (before potential
drawListeners on its belonging deck)

properties object dictionary that holds custom attributes

.Card
new AnyBoard.Card(deck, options)
instance

.onPlay(func)

.onDraw(callback)

.toString() ⇒ string
static

.get(cardTitleOrID) ⇒ Card

Represents a single Card Should be instantiated in bulk by calling the deck constructor

Param Type Default Description

deck Deck deck to which the card belongs

options object options for the card

options.title string title of the card.

Deck.get(name) ⇒ Deck

AnyBoard.Card

new AnyBoard.Card(deck, options)

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 7/28

options.description string description for the Card

[options.color] string (optional) color of the Card

[options.category] string
(optional) category of the card, not used by AnyBoard
FrameWork

[options.value] number (optional) value of the card, not used by AnyBoard FrameWork

[options.type] string (optional) type of the card, not used by AnyBoard FrameWork

[options.amount] number 1 (optional, default: 1) amount of this card in the deck

[options.yourAttributeHere] any

custom attributes, as well as specified ones, are all placed in
card.properties. E.g. 'heat' would be placed in
card.properties.heat.

Adds functions to be executed upon a play of this card

Kind: instance method of Card

Param Type Description

func playDrawCallback callback function to be executed upon play of card from this deck

Adds functions to be executed upon a draw of this card

Kind: instance method of Card

Param Type Description

callback playDrawCallback function to be executed upon play of card from this deck

Returns a string representation of the card.

Kind: instance method of Card

Returns card with given id

Kind: static method of Card
Returns: Card - card with given id (or undefined if non-existent)

Param Type Description

cardTitleOrID number | string id or title of card

Kind: static class of AnyBoard

.Dices
new AnyBoard.Dices([eyes], [numOfDice])
.roll() ⇒ number
.rollEach() ⇒ Array

card.onPlay(func)

card.onDraw(callback)

card.toString() ⇒ string

Card.get(cardTitleOrID) ⇒ Card

AnyBoard.Dices

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 8/28

Represents a set of game dices that can be rolled to retrieve a random result.

Param Type Default Description

[eyes] number 6 (default: 6) number of max eyes on a roll with this dice

[numOfDice] number 1 (default: 1) number of dices

Example

// will create 1 dice, with 6 eyes
var dice = new AnyBoard.Dices();

// will create 2 dice, with 6 eyes
var dice = new AnyBoard.Dices(2, 6);

Roll the dices and returns a the sum

Kind: instance method of Dices
Returns: number - combined result of rolls for all dices
Example

var dice = new AnyBoard.Dices();

// returns random number between 1 and 6
dice.roll()

Example

var dice = new AnyBoard.Dices(2, 6);

// returns random number between 1 and 12
dice.roll()

Roll the dices and returns an array of results for each dice

Kind: instance method of Dices
Returns: Array - list of results for each dice
Example

var dice = new AnyBoard.Dices(2, 6);

// returns an Array of numbers
var resultArray = dice.rollEach()

// result of first dice, between 1‐6
resultArray[0]

// result of second dice, between 1‐6
resultArray[1]

Kind: static class of AnyBoard

new AnyBoard.Dices([eyes], [numOfDice])

dices.roll() ⇒ number

dices.rollEach() ⇒ Array

AnyBoard.Player

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 9/28

Properties

Name Type Description

hand Hand hand of cards (Quests)

faction string faction (Sp[ecial abilities or perks)

class string class (Special abilities or perks)

holds ResourceSet the resources belonging to this player

color string color representation of player

.Player
new AnyBoard.Player(name, [options])
instance

.pay(resources, [receivingPlayer]) ⇒ boolean

.trade(giveResources, receiveResources, [player]) ⇒ boolean

.recieve(resourceSet)

.draw(deck, [options]) ⇒ Card

.play(card, [customOptions]) ⇒ boolean

.toString() ⇒ string
static

.get(name) ⇒ Player

Represents a Player (AnyBoard.Player)

Param Type Description

name string name of the player

[options] object (optional) options for the player

[options.color] string (optional) color representing the player

[options.faction] string (optional) faction representing the player

[options.class] string (optional) class representing the player

[options.yourAttributeHere] any
(optional) custom attributes, as well as specified ones, are all placed in
player.properties. E.g. 'age' would be placed in player.properties.age.

Take resources from this player and give to receivingPlayer.

Kind: instance method of Player
Returns: boolean - whether or not transaction was completed (false if Player don't hold enough resources)

Param Type Description

resources ResourceSet dictionary of resources

[receivingPlayer] Player
(optional) Who shall receive the resources. Omit if not to anyone (e.g. give to
"the bank")

Trade resources between players/game

new AnyBoard.Player(name, [options])

player.pay(resources, [receivingPlayer]) ⇒ boolean

player.trade(giveResources, receiveResources, [player]) ⇒ boolean

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 10/28

Kind: instance method of Player
Returns: boolean - whether or not transaction was completed (false if Player don't hold enough resources)

Param Type Description

giveResources ResourceSet resources this player shall give

receiveResources ResourceSet resources this player receieves

[player] Player (optional) Who shall be traded with. Omit if not to a player, but to "the bank".

Example

new AnyBoard.Resource("gold");
new AnyBoard.Resource("silver");

var startTreasure = new AnyBoard.ResourceSet({"gold": 6, "silver": 42});
var goldTreasure = new AnyBoard.ResourceSet({"gold": 2});
var silverTreasure = new AnyBoard.ResourceSet({"silver": 12});

var dr1 = new AnyBoard.Player("firstDoctor");
var dr2 = new AnyBoard.Player("secondDoctor");

dr1.receive(startTreasure);
dr2.receive(startTreasure);

// returns true. dr1 will now own {"gold": 4, "silver": 54}. dr2 owns {"gold": 8, "silver": 30}
dr1.trade(goldTreasure, silverTreasure, dr2)

Example

// returns true. dr1 will now own {"gold": 2, "silver": 66}. dr2 still owns {"gold": 8, "silver": 30}
dr1.trade(goldTreasure, silverTreasure)

Example

var firstOverlappingTreasure = new AnyBoard.ResourceSet({"silver": 115, "gold": "6"});
var secondOverlappingTreasure= new AnyBoard.ResourceSet({"silver": 100, "gold": "7"});

// returns true. The trade nullifies the similarities, so that the trade can go through even though
// dr1 has < 100 silver
dr1.trade(firstOverlappingTreasure, secondOverlappingTreasure)

Receive resource from bank/game. Use pay() when receiving from players.

Kind: instance method of Player

Param Type Description

resourceSet ResourceSet resources to be added to this players bank

Example

new AnyBoard.Resource("gold");
new AnyBoard.Resource("silver");

var startTreasure = new AnyBoard.ResourceSet({"gold": 6, "silver": 42});
var secondTresure = new AnyBoard.ResourceSet({"silver": 12, "copper": 122});

var dr1 = new AnyBoard.Player("firstDoctor"); // player owns nothing initially

player.recieve(resourceSet)

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 11/28

dr1.receive(startTreasure); // owns {"gold": 6, "silver": 42}
dr1.receive(secondTresure); // owns {"gold": 6, "silver": 54, "copper": 122}

Draws a card from a deck and puts it in the hand of the player

Kind: instance method of Player
Returns: Card - card that is drawn

Param Type Description

deck Deck deck to be drawn from

[options] object (optional) parameters to be sent to the drawListeners on the deck

Example

var dr1 = new AnyBoard.Player("firstDoctor"); // player has no cards initially

// Now has one card
dr1.draw(deck);

// Now has two cards. option parameter is being passed on to any drawListeners (See Deck/Card)
dr1.draw(deck, options);

Plays a card from the hand. If the hand does not contain the card, the card is not played and the hand unchanged.

Kind: instance method of Player
Returns: boolean - whether or not the card was played

Param Type Description

card Card card to be played

[customOptions] object (optional) custom options that the play should be played with

Example

var DrWho = new AnyBoard.Player("firstDoctor"); // player has no cards initially

// Store the card that was drawn
var card = DrWho.draw(existingDeck);

// Play that same card
DrWho.play(card)

Returns a string representation of the player

Kind: instance method of Player

Returns player with given name

Kind: static method of Player
Returns: Player - player with given name (or undefined if non-existent)

player.draw(deck, [options]) ⇒ Card

player.play(card, [customOptions]) ⇒ boolean

player.toString() ⇒ string

Player.get(name) ⇒ Player

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 12/28

Param Type Description

name string name of player

Kind: static class of AnyBoard

.Hand
new AnyBoard.Hand(player, [options])
.has(card, [amount]) ⇒ boolean
.discardHand()
.discardCard(card)
.toString() ⇒ string

Represents a Hand of a player, containing cards. Players are given one Hand in Person constructor.

Param Type Description

player Player player to which this hand belongs

[options] object (optional) custom properties added to this hand

Checks whether or not a player has an amount card in this hand.

Kind: instance method of Hand
Returns: boolean - hasCard whether or not the player has that amount or more of that card in this hand

Param Type Default Description

card Card card to be checked if is in hand

[amount] number 1 (default: 1) amount of card to be checked if is in hand

Example

var DrWho = new AnyBoard.Player("firstDoctor"); // player has no cards initially

// Store the card that was drawn
var tardis = DrWho.draw(tardisDeck);

// returns true
DrWho.hand.has(card)

// returns false, as he has only one
DrWho.hand.has(card, 3)

Discard the entire hand of the player, leaving him with no cards

Kind: instance method of Hand

Discard a card from the hand of the player

Kind: instance method of Hand

AnyBoard.Hand

new AnyBoard.Hand(player, [options])

hand.has(card, [amount]) ⇒ boolean

hand.discardHand()

hand.discardCard(card)

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 13/28

Param Type Description

card Card card to be discarded.

Returns a string representation of the hand

Kind: instance method of Hand

Kind: static class of AnyBoard
Properties

Name Type Description

name string name of resource

properties any custom options added to resource

.Resource
new AnyBoard.Resource(name, [properties])
.get(name) ⇒ Resource

Represents a simple resource (AnyBoard.Resource)

Param Type Description

name string name representing the resource

[properties] object (optional) custom properties of this resource

Example

var simpleGold = new AnyBoard.Resource("gold");

// The optional properties parameter can be of any type.
var advancedPowder = new AnyBoard.Resource("powder", {"value": 6, "color": "blue"});

// 6
advancedPowder.properties.value

Returns resource with given name

Kind: static method of Resource
Returns: Resource - resource with given name (or undefined if non-existent)

Param Type Description

name string name of resource

Example

var simpleGold = new AnyBoard.Resource("gold");

// returns simpleGold
AnyBoard.Resource.get("gold");

hand.toString() ⇒ string

AnyBoard.Resource

new AnyBoard.Resource(name, [properties])

Resource.get(name) ⇒ Resource

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 14/28

Kind: static class of AnyBoard
Properties

Name Type Default Description

resources object (optional) a set of initially contained resources

allowNegative boolean false
(default: false) whether or not to allow being subtracted resources to
below 0 (dept)

.ResourceSet
new AnyBoard.ResourceSet([resources], [allowNegative])
.contains(reqResource) ⇒ boolean
.add(resourceSet)
.subtract(resourceSet) ⇒ boolean
.similarities(resourceSet) ⇒ object

Creates a ResourceSet

Param Type Default Description

[resources] object (optional) a set of initially contained resources

[allowNegative] boolean false
(default: false) whether or not to allow being subtracted resources to
below 0 (dept)

Example

// Returns a resourceset that can be deducted below 0
var debtBank = new AnyBoard.ResourceSet({}, true);

Whether or not a ResourceSet contains another ResourceSet

Kind: instance method of ResourceSet
Returns: boolean - true if this ResourceSet contains reqResource, else false

Param Type Description

reqResource ResourceSet ResourceSet to be compared against

Example

new AnyBoard.Resource("gold");
new AnyBoard.Resource("silver");

var myTreasure = new AnyBoard.ResourceSet({"gold": 6, "silver": 42});
var minorDebt = new AnyBoard.ResourceSet({"gold": 1, "silver": 3});
var hugeDebt = new AnyBoard.ResourceSet({"gold": 12, "silver": 41});

// returns true
myTreasure.contains(minorDebt);

// returns false
myTreasure.contains(hugeDebt);

AnyBoard.ResourceSet

new AnyBoard.ResourceSet([resources], [allowNegative])

resourceSet.contains(reqResource) ⇒ boolean

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 15/28

Adds a ResourceSet to this one

Kind: instance method of ResourceSet

Param Type Description

resourceSet ResourceSet ResourceSet to be added to this one

Example

new AnyBoard.Resource("gold");
new AnyBoard.Resource("silver");

var myTreasure = new AnyBoard.ResourceSet({"gold": 6, "silver": 42});
var minorGift = new AnyBoard.ResourceSet({"silver": 2});

myTreasure.add(minorGift);
// myTreasure is now {"gold": 6, "silver": 45}

Subtracts a dictionary of resources and amounts to a ResourceSet

Kind: instance method of ResourceSet
Returns: boolean - whether or not resources were subtracted successfully

Param Type Description

resourceSet ResourceSet set of resources to be subtracted

Example

new AnyBoard.Resource("gold");
new AnyBoard.Resource("silver");

var myTreasure = new AnyBoard.ResourceSet({"gold": 6, "silver": 42});
var minorGift = new AnyBoard.ResourceSet({"silver": 2});
var debtBank = new AnyBoard.ResourceSet({}, true);
var cosyBank = new AnyBoard.ResourceSet();

// returns true. myTreasure becomes {"gold": 6, "silver": 40}
myTreasure.subtract(minorGift);

// returns true. debtbank becomes {"silver": ‐2}
debtBank.subtract(minorGift);

// returns false and leaves cosyBank unchanged
cosyBank.subtract(minorGift);

Returns the common resources and minimum amount between a dictionary of resources and amounts, and this
ResourceSet

Kind: instance method of ResourceSet
Returns: object - similarities dictionary of common resources and amounts

Param Type Description

resourceSet ResourceSet dictionary of resources and amounts to be compared against

resourceSet.add(resourceSet)

resourceSet.subtract(resourceSet) ⇒ boolean

resourceSet.similarities(resourceSet) ⇒ object

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 16/28

Example

new AnyBoard.Resource("gold");
new AnyBoard.Resource("silver");

var myTreasure = new AnyBoard.ResourceSet({"gold": 6, "silver": 42});
var otherTresure = new AnyBoard.ResourceSet({"silver": 2, "bacon": 12});

// returns {"silver": 2}
myTreasure.similarities(otherTresure);

Kind: static class of AnyBoard
Properties

Name Type Description

name string name of the token

address string address of the token found when scanned

connected boolean whether or not the token is connected

device object driver spesific data.

listeners object functions to be execute upon certain triggered events

onceListeners object functions to be execute upon next triggering of certain events

sendQueue Array.<function()> queue for communicating with

cache object key-value store for caching certain communication calls

driver Driver driver that handles communication

.BaseToken
new AnyBoard.BaseToken(name, address, device, [driver])
instance

.isConnected() ⇒ boolean

.connect([win], [fail])

.disconnect()

.trigger(eventName, [eventOptions])

.on(eventName, callbackFunction)

.once(eventName, callbackFunction)

.send(data, [win], [fail])

.print(value, [win], [fail])

.getFirmwareName([win], [fail])

.getFirmwareVersion([win], [fail])

.getFirmwareUUID([win], [fail])

.hasLed([win], [fail])

.hasLedColor([win], [fail])

.hasVibration([win], [fail])

.hasColorDetection([win], [fail])

.hasLedScreen([win], [fail])

.hasRfid([win], [fail])

.hasNfc([win], [fail])

.hasAccelometer([win], [fail])

.hasTemperature([win], [fail])

.ledOn(value, [win], [fail])

.ledBlink(value, [win], [fail])

AnyBoard.BaseToken

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 17/28

.ledOff([win], [fail])

.toString() ⇒ string
static

.setDefaultDriver(driver) ⇒ boolean

Base class for tokens. Should be used by communication driver upon AnyBoard.TokenManager.scan()

Param Type Default Description

name string name of the token

address string address of the token found when scanned

device object device object used and handled by driver

[driver] Driver AnyBoard.BaseToken._defaultDriver token driver for handling communication with it.

Returns whether or not the token is connected

Kind: instance method of BaseToken
Returns: boolean - true if connected, else false

Attempts to connect to token. Uses TokenManager driver, not its own, since connect needs to happen before
determining suitable driver.

Kind: instance method of BaseToken

Param Type Description

[win] stdNoParamCallback (optional) function to be executed upon success

[fail] stdErrorCallback (optional) function to be executed upon failure

Disconnects from the token.

Kind: instance method of BaseToken

Trigger an event on a token

Kind: instance method of BaseToken

Param Type Description

eventName string name of event

[eventOptions] object (optional) dictionary of parameters and values

Example

var onTimeTravelCallback = function (options) {console.log("The tardis is great!")};
existingToken.on('timeTravelled', onTimeTravelCallback);

// Triggers the function, and prints praise for the tardis
existingToken.trigger('timeTravelled');

new AnyBoard.BaseToken(name, address, device, [driver])

baseToken.isConnected() ⇒ boolean

baseToken.connect([win], [fail])

baseToken.disconnect()

baseToken.trigger(eventName, [eventOptions])

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 18/28

existingToken.trigger('timeTravelled'); // prints again
existingToken.trigger('timeTravelled'); // prints again

Adds a callbackFunction to be executed always when event is triggered

Kind: instance method of BaseToken

Param Type Description

eventName string name of event to listen to

callbackFunction simpleTriggerCallback function to be executed

Example

var onTimeTravelCallback = function () {console.log("The tardis is great!")};
existingToken.on('timeTravelled', onTimeTravelCallback);

// Triggers the function, and prints praise for the tardis
existingToken.trigger('timeTravelled');

existingToken.trigger('timeTravelled'); // prints again
existingToken.trigger('timeTravelled'); // prints again

Example

var onTimeTravelCallback = function (options) {
 // Options can be left out of a trigger. You should therefore check
 // that input is as expected, throw an error or give a default value
 var name = (options && options.name ? options.name : "You're");

 console.log(options.name + " is great!");
};
existingToken.on('timeTravelled', onTimeTravelCallback);

// prints "Dr.Who is great!"
existingToken.trigger('timeTravelled', {"name": "Dr.Who"});

// prints "You're great!"
existingToken.trigger('timeTravelled');

Adds a callbackFunction to be executed next time an event is triggered

Kind: instance method of BaseToken

Param Type Description

eventName string name of event to listen to

callbackFunction simpleTriggerCallback function to be executed

Example

var onTimeTravelCallback = function (options) {console.log("The tardis is great!")};
existingToken.once('timeTravelled', onTimeTravelCallback);

// Triggers the function, and prints praise for the tardis
existingToken.trigger('timeTravelled');

baseToken.on(eventName, callbackFunction)

baseToken.once(eventName, callbackFunction)

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 19/28

// No effect
existingToken.trigger('timeTravelled');

Sends data to the token. Uses either own driver, or (if not set) TokenManager driver

Kind: instance method of BaseToken

Param Type Description

data Uint8Array | ArrayBuffer | String data to be sent

[win] stdNoParamCallback (optional) function to be executed upon success

[fail] stdErrorCallback (optional) function to be executed upon error

Prints to Token

String can have special tokens to signify some printer command, e.g. ##n = newLine. Refer to the individual driver for
token spesific implementation and capabilites

Kind: instance method of BaseToken

Param Type Description

value string

[win] stdNoParamCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Gets the name of the firmware type of the token

Kind: instance method of BaseToken

Param Type Description

[win] stdStringCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Example

// Function to be executed upon name retrieval
var getNameCallback = function (name) {console.log("Firmware name: " + name)};

// Function to be executed upon failure to retrieve name
var failGettingNameCallback = function (name) {console.log("Couldn't get name :(")};

existingToken.getFirmwareName(getNameCallback, failGettingNameCallback);

// Since it's asyncronous, this will be printed before the result
console.log("This comes first!")

Gets the version of the firmware type of the token

Kind: instance method of BaseToken

baseToken.send(data, [win], [fail])

baseToken.print(value, [win], [fail])

baseToken.getFirmwareName([win], [fail])

baseToken.getFirmwareVersion([win], [fail])

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 20/28

Param Type Description

[win] stdStringCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Gets a uniquie ID the firmware of the token

Kind: instance method of BaseToken

Param Type Description

[win] stdStringCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Checks whether or not the token has simple LED

Kind: instance method of BaseToken

Param Type Description

[win] stdBoolCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Checks whether or not the token has colored LEDs

Kind: instance method of BaseToken

Param Type Description

[win] stdBoolCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Checks whether or not the token has vibration

Kind: instance method of BaseToken

Param Type Description

[win] stdBoolCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Checks whether or not the token has ColorDetection

Kind: instance method of BaseToken

Param Type Description

[win] stdBoolCallback (optional) callback function to be called upon successful execution

baseToken.getFirmwareUUID([win], [fail])

baseToken.hasLed([win], [fail])

baseToken.hasLedColor([win], [fail])

baseToken.hasVibration([win], [fail])

baseToken.hasColorDetection([win], [fail])

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 21/28

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Checks whether or not the token has LedSceen

Kind: instance method of BaseToken

Param Type Description

[win] stdBoolCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Checks whether or not the token has RFID reader

Kind: instance method of BaseToken

Param Type Description

[win] stdBoolCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Checks whether or not the token has NFC reader

Kind: instance method of BaseToken

Param Type Description

[win] stdBoolCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Checks whether or not the token has Accelometer

Kind: instance method of BaseToken

Param Type Description

[win] stdBoolCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

Checks whether or not the token has temperature measurement

Kind: instance method of BaseToken

Param Type Description

[win] stdBoolCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon failure

baseToken.hasLedScreen([win], [fail])

baseToken.hasRfid([win], [fail])

baseToken.hasNfc([win], [fail])

baseToken.hasAccelometer([win], [fail])

baseToken.hasTemperature([win], [fail])

baseToken.ledOn(value, [win], [fail])

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 22/28

Sets color on token

Kind: instance method of BaseToken

Param Type Description

value string | Array string with color name or array of [red, green, blue] values 0-255

[win] stdNoParamCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon

Example

// sets Led to white
existingToken.ledOn([255, 255, 255]);

// sets Led to white (See driver implementation for what colors are supported)
existingToken.ledOn("white");

tells token to blink its led

Kind: instance method of BaseToken

Param Type Description

value string | Array string with color name or array of [red, green, blue] values 0-255

[win] stdNoParamCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon

Example

// blinks red
existingToken.ledBlink([255, 0, 0]);

// blinks blue
existingToken.ledBlink("blue");

Turns LED off

Kind: instance method of BaseToken

Param Type Description

[win] stdNoParamCallback (optional) callback function to be called upon successful execution

[fail] stdErrorCallback (optional) callback function to be executed upon

Representational string of class instance.

Kind: instance method of BaseToken

Sets a new default driver to handle communication for tokens without specified driver. The driver must have implement

baseToken.ledBlink(value, [win], [fail])

baseToken.ledOff([win], [fail])

baseToken.toString() ⇒ string

BaseToken.setDefaultDriver(driver) ⇒ boolean

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 23/28

a method send(win, fail) in order to discover tokens.

Kind: static method of BaseToken
Returns: boolean - whether or not driver was successfully set

Param Type Description

driver Driver driver to be used for communication

Manager of drivers.

Kind: static property of AnyBoard

.Drivers : Object
.get(name) ⇒ Driver | undefined
.getCompatibleDriver(type, compatibility) ⇒ Driver

Returns driver with given name

Kind: static method of Drivers
Returns: Driver | undefined - driver with given name (or undefined if non-existent)

Param Type Description

name string name of driver

Example

var discoveryBluetooth = new AnyBoard.Driver({
 name: 'theTardisMachine',
 description: 'bla bla',
 version: '1.0',
 type: ['bluetooth‐discovery', 'bluetooth'],
 compatibility: ['tardis', 'pancakes']
 });

// Returns undefined
AnyBoard.Drivers.get("non‐existant‐driver")

// Returns driver
AnyBoard.Drivers.get("theTardisMachine")

Returns first driver of certain type that matches the given compatibility.

Kind: static method of Drivers
Returns: Driver - compatible driver (or undefined if non-existent)

Param Type Description

type string name of driver

compatibility string | object name of driver

Example

var discoveryBluetooth = new AnyBoard.Driver({

AnyBoard.Drivers : Object

Drivers.get(name) ⇒ Driver | undefined

Drivers.getCompatibleDriver(type, compatibility) ⇒ Driver

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 24/28

 name: 'theTardisMachine',
 description: 'bla bla',
 version: '1.0',
 type: ['bluetooth‐discovery', 'bluetooth'],
 compatibility: ['tardis', {"show": "Doctor Who"}]
 });

// Returns undefined (right type, wrong compatibility)
AnyBoard.Drivers.getCompatibleDriver('bluetooth', 'weirdCompatibility');

// Returns undefined (wrong type, right compatibility)
AnyBoard.Drivers.getCompatibleDriver('HTTP, {"service": "iCanTypeAnyThingHere"});

// Returns discoveryBluetooth driver
AnyBoard.Drivers.getCompatibleDriver('bluetooth', 'tardis');

A token manager. Holds all tokens. Discovers and connects to them.

Kind: static property of AnyBoard
Properties

Name Type Description

tokens object dictionary of connect tokens that maps id to object

driver Driver driver for communication with tokens. Set with setDriver(driver);

.TokenManager
.setDriver(driver)
.scan([win], [fail], [timeout])
.get(address) ⇒ BaseToken

Sets a new default driver to handle communication for tokens without specified driver. The driver must have
implemented methods scan(win, fail, timeout) connect(token, win, fail) and disconnect(token, win, fail), in order to
discover tokens.

Kind: static method of TokenManager

Param Type Description

driver Driver driver to be used for communication

Scans for tokens nearby and stores in discoveredTokens property

Kind: static method of TokenManager

Param Type Description

[win] onScanCallback
(optional) function to be executed when devices are found (called for each device
found)

[fail] stdErrorCallback (optional) function to be executed upon failure

[timeout] number (optional) amount of milliseconds to scan before stopping. Driver has a default.

Example

AnyBoard.TokenManager

TokenManager.setDriver(driver)

TokenManager.scan([win], [fail], [timeout])

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 25/28

var onDiscover = function(token) { console.log("I found " + token) };

// Scans for tokens. For every token found, it prints "I found ...")
TokenManager.scan(onDiscover);

Returns a token handled by this TokenManager

Kind: static method of TokenManager
Returns: BaseToken - token if handled by this tokenManager, else undefined

Param Type Description

address string identifer of the token found when scanned

Static logger object that handles logging. Will log using hyper.log if hyper is present (when using Evothings). Will then
log all events, regardless of severity

Kind: static property of AnyBoard
Properties

Name Type Description

threshold number
(default: 10) threshold on whether or not to log an event. Any message with level above
or equal threshold will be logged

debugLevel number (value: 0) sets a threshold for when a log should be considered a debug log event.

normalLevel number (value: 10) sets a threshold for when a log should be considered a normal log event.

warningLevel number (value: 20) sets a threshold for when a log should be considered a warning.

errorLevel number (value: 30) sets a threshold for when a log should be considered a fatal error.

loggerObject object
(default: console) logging method. Must have implemented .debug(), .log(), .warn() and
.error()

.Logger
.warn(message, [sender])
.error(message, [sender])
.log(message, [sender])
.debug(message, [sender])
.setThreshold(severity)

logs a warning. Ignored if threshold > this.warningLevel (default: 20)

Kind: static method of Logger

Param Type Description

message string event to be logged

[sender] object (optional) sender of the message

logs an error. Will never be ignored.

TokenManager.get(address) ⇒ BaseToken

AnyBoard.Logger

Logger.warn(message, [sender])

Logger.error(message, [sender])

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 26/28

Kind: static method of Logger

Param Type Description

message string event to be logged

[sender] object (optional) sender of the message

logs a normal event. Ignored if threshold > this.normalLevel (default: 10)

Kind: static method of Logger

Param Type Description

message string event to be logged

[sender] object (optional) sender of the message

logs debugging information. Ignored if threshold > this.debugLevel (default: 0)

Kind: static method of Logger

Param Type Description

message string event to be logged

[sender] object (optional) sender of the message

Sets threshold for logging

Kind: static method of Logger

Param Type Description

severity number a message has to have before being logged

Example

// By default, debug doesn't log
AnyBoard.debug("Hi") // does not log

Example

// But you can lower the thresholdlevel
AnyBoard.Logger.setThreshold(AnyBoard.Logger.debugLevel)
AnyBoard.debug("I'm here afterall!") // logs

Example

// Or increase it to avoid certain logging
AnyBoard.Logger.setThreshold(AnyBoard.Logger.errorLevel)
AnyBoard.warn("The tardis has arrived!") // does not log

Example

Logger.log(message, [sender])

Logger.debug(message, [sender])

Logger.setThreshold(severity)

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 27/28

// But you can never avoid errors
AnyBoard.Logger.setThreshold(AnyBoard.Logger.errorLevel+1)
AnyBoard.error("The Doctor is dead!!") // logs

Utility functions for AnyBoard

Kind: static property of AnyBoard

Returns whether or not two objects are equal. Works with objects, dictionaries, and arrays as well.

Kind: static method of Utils
Returns: boolean - whether or not the items were equal

Param Type Description

a object | Array | String | number | boolean item to compare

b object | Array | String | number | boolean item to compare against a

[aStack] Array (optional) array of items to further compare

[bStack] Array (optional) array of items to further compare

Example

var tardis = {"quality": "awesome"}
var smardis = {"quality": "shabby"}
var drWhoCar = {"quality": "awesome"}

// Returns true
AnyBoard.Utils.isEqual(tardis, drWhoCar)

// Returns false
AnyBoard.Utils.isEqual(tardis, smardis)

This type of callback will be called when card is drawn or played

Kind: global typedef

Param Type Description

card Card that is played

player Player that played the card

[options] object (optional) custom options as extra parameter when AnyBoard.Player.play was called

Type of callback called upon triggering of events

Kind: global typedef

Param Type Description

AnyBoard.Utils

Utils.isEqual(a, b, [aStack], [bStack]) ⇒ boolean

playDrawCallback : function

simpleTriggerCallback : function

9/12/2015 anyboard-lib/documentation.md at master · tomfa/anyboard-lib

https://github.com/tomfa/anyboard-lib/blob/master/documentation.md 28/28

event string name of event

[options] object (optional) options called with the triggering of that event

Generic callback returning a string param

Kind: global typedef

Param Type

string string

Generic callback returning a bool param

Kind: global typedef

Param Type

boolean boolean

Generic callback without params

Kind: global typedef

Type of callback called upon detecting a token

Kind: global typedef

Param Type Description

token BaseToken discovered token

This type of callback will be called upon failure to complete a function

Kind: global typedef

Param Type

errorMessage string

stdStringCallback : function

stdBoolCallback : function

stdNoParamCallback : function

onScanCallback : function

stdErrorCallback : function

	Abstract
	Preface
	Introduction
	Problem Elaboration
	Preliminary studies
	System Design
	System implementation
	Evaluation
	Discussion
	Conclusion
	Bibliography
	Details on development environment
	AnyBoard Quiz Game
	Provided examples
	Implemented tokens
	AnyBoard Tests
	Bluetooth communication protocol
	Article: Reflections on AnyBoard
	A grammer for mapping token-based interaction to game dynamics
	AnyBoard Documentation

