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Summary

A �exible riser operating in deep water will experience large environmental forces. Due to
the length of the riser, dynamic tension from drag forces will be substantial. The tensile
force is transferred directly into the end �tting, and fatigue damage may be critical at
this point. In addition, the large hydrostatic pressure at the ocean �oor may induce
compressive stresses in the tensile armor, something this component is not designed for.
In connection with these challenges, this thesis deals with two di�erent phenomenons
relevant for deep water risers:

• Local stresses in tensile armor wires at the end �tting due to contraint e�ects.

• Radial and lateral buckling of tensile armor wires.

The �rst part of this report, section 2 and 3, is the result of a literature study regarding
�exible pipe technology, failure modes and design criteria with special focus on those
relevant for deep water applications. In section 4, theory important to the thesis work is
presented. This includes analytical methods for stress analysis of �exible pipes, theory of
thin curved beams, basic theory of restrained warping and �nite element methods.

In the last part of section 4, a new curved beam element for the nonlinear �nite element
program A�ex is presented. A central part of the thesis work has been to implement
this new element into the original A�ex code. The element has rotational degrees of
freedom about the bi-normal direction in addition to the degrees of freedom included in
the original A�ex code. Hence, the element is capable of investigating both radial and
lateral buckling modes. The element has also been implemented in a special version of
the B�ex2010 computer program.

Section 5 is dedicated to analyses of stresses in tensile armor wires at the end �tting.
The load case considered is axial straining of the pipe, which leads to a small change in
lay angle. As the wires are restrained at the end �tting, a change in lay angle will not
be allowed, and this constraint will induce local stresses. First, analytical calculations
neglecting friction between the armor wire and supporting layer are performed for di�erent
wire dimensions. Next, the new curved beam element is used for numerical analyses
of the same cases, and the transverse bending stress at the end �xation is studied for
varying friction coe�cients. Both analytical and numerical results show that the relative
magnitude of the local transverse bending stress increases as the axial straining of the
pipe increase. As an example, the bending stress is found to exceed 16 % of the nominal
axial stress when the axial stress is 400 MPa, for a �exible pipe including two tensile
armor layers and a friction coe�cient of 0.15.

Section 6 deals with di�erent buckling modes for tensile armor wires. Three di�erent
modes are presented, namely radial failure due to anti buckling tape rupture, radial elastic
buckling and lateral buckling. Analytical formulas for predicting the capacity with respect
to all three modes are established, and governing physical e�ects are discussed. Numerical
analyses with the new curved beam element are performed, and the results are compared
to the analytical solutions. It is found that the �rst radial failure mode is determined
primarily by the strength of the anti buckling tape, while the elasticity of the tape is
critical to the second radial mode. Comparison between the analytical solutions and
�nite element results indicate that the radial failure modes are accurately predicted by
both methods.

The lateral buckling capacity is more di�cult to predict, as the behaviour is dominated
by friction forces, and the stick-slip transition. However, analytical and numerical results

ii



all indicate a strong dependence upon friction coe�cient and pipe curvature. The �nite
element model reports the lowest capacity, and these results are also believed to be the
most accurate due to the more realistic modelling of friction.

A smaller investigation of the lateral buckling capacity under cyclic curvature is done
with the FE model, and it is found that buckling of tensile armor wires may occur after a
number of curvature cycles even if the combination of stress and curvature is signi�cantly
lower than critical in static curvature conditions. The results from these analyses are
unfortunately somewhat unclear, as they were found to be slightly in�uenced by the
numerical parameters de�ning the friction springs. Nevertheless it is concluded that
lateral buckling may occur as a result of gradual transverse slip under cyclic curvature
conditions, and that this may happen for curvatures in the vicinity of 0.1 m−1 combined
with a compressive stress in the armor wire equal to 300 MPa, given a friction coe�cient
of 0.15.
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Scope of work

The �exible riser is a vital part of a �oating production system. For deep water risers,
radial and lateral buckling phenomena in the tensile armour may govern the design.
Further due to the length of the catenary, signi�cant dynamic tension may occur due to
the tangential drag force. Since the dynamic tension is transformed directly into the end
�tting, fatigue due to constraint e�ects may take place. This thesis focus on establishing a
simpli�ed FEM based model that is capable of investigating both failure modes. Together
with the supervisor, it has been decided that the thesis work is to be carried out as follows:

1. Literature study including �exible pipe technology, failure modes and design crite-
ria specially focusing on external pressure buckling, analytical methods for stress
analysis of �exible pipes, the theory of thin curved beams and relevant non-linear
�nite element methods as those used in the softwares A�ex and B�ex.

2. Establish analytical formulas for the local bending and end section warping stresses
at the end �tting (neglect transverse friction) when considering the changes in lay
angle from dynamic axi-symmetric loads.

3. Establish analytical formulas for transverse and radial buckling of tensile armours
considering the anti-buckling tape strength and the natural transverse buckling
mode when considering imperfections from bending loads and friction resistance.

4. Familiarize with the computer code A�ex and implement a new curved beam element
that include 2 additional DOFs describing bi-normal rotation. As input, a full
version of the A�ex symbolic code will be provided by the supervisor.

5. Model a single armour layer and simulate axial tensile armour straining of the pipe
by a combination of X1 and X2 prescribed displacements of the tendon. Study
the transverse bending stress at the end �xation for variable friction coe�cients.
Compare the results against the analytical values.

6. Use the same A�ex model and apply compressive loads by a combination of pre-
scribed displacements and external pressure radial load. Find out under which
circumstances the tendon buckle radially or transversally. Again, compare with the
analytical prediction.

7. Conclusions and recommendations for further work.
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Nomenclature

General rules

• Vectors, tensors and matrices are written with bold letters, e.g. K, u.

• The transpose of a matrix is denoted by superscript T.

• Derivatives are denoted in either of the following ways:

F,1 ≡ dF
dX1 ≡ F ′

• Einstein's summation convention is adopted whenever index form is used, i.e:

ZI
,1EI = Z1

,1E1 + Z2
,1E2 + Z3

,1E3

• The scalar product of two second order tensors is denoted by a double dot:

a : b = aijbij

• The cross product between two vectors are denoted by a cross ×.
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Roman letters

Unfortunately, some letters have been used for more than one single purpose. The mean-
ing of di�erent symbols are usually explained in the text whenver they are introduced, so
misunderstandings should be avoided.

a Width of tensile armor wire
A Cross sectional area
b Thickness of tensile armor wire (except in section 4.2.4, where it is the width)
Cσ Youngs modulus, modulus of elasticity
Cτ Shear modulus
E Youngs modulus, modulus of elasticity
EI Base vectors in the ZI-system
E∗

KL Component KL of the Green strain tensor in local curvilinear coordinates
E, EIJ Tensor and component form of the Green strain tensor in local Cartesian coordinates
EI Bending sti�ness
G Determinant of metric tensor (in section 4.3 only)
G Shear modulus (except in section 4.3)
GI Base vectors along local armor wire curvilinear axes
II Unit tanget, unit normal and unit binormal vectors
It Cross section torsion constant
Ip Polar moment of inertia
I2 Second moment of area about the X2 axis
I3 Second moment of area about the X3 axis
k,K Element and system sti�ness matrix respectively
l, L Length
m Distributed moment
M Moment
Mf Friction moment
Mt Torsion moment
n Number of armor wires
N matrix of interpolation polynomials
p Pressure
q Distributed force
Q Force
r Position vector in deformed con�guration (in section 4.3)
r Global degrees of freedom
R Initial position vector (in section 4.3)
R External nodal point loading
R Radius
S Surface
S Generalized nodal point forces
t Thickness
t Surface traction
Te E�ective axial force
Tw True axial force in pipe wall
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u0, u0
i Displacement vector of wire center line and its component in direction i

u, ui Displacement vector and its component in direction i
v Element degrees of freedom
V Volume
Wi,We Internal and external work
XI Local curvilinear coordinates for armor wire
ZI Cartesian coordinates with origo in center of pipe

Greek letters

The letter σ is used for a number of stress components. Only the most important are
listed below, as the di�erent stress components are explained as they appear in the text.
In any case, the particular type of stress is indicated by subscripts.

α Lay angle of armor layer relative to the longitudinal axis of the pipe
β Twist
γ Change in lay angle due to axial straining when no end restraints are present
Γ Warping sti�ness
δ Indicates �virtual�
ϵ, ϵij Tensor and component form of strain tensor (in section 4.3)
ϵ Axial strain along strained helix (in section 5)
ϵa Axial strain in tensile armor wire
ϵp Axial strain in pipe
η Actual change in lay angle
θ Polar coordinate angle de�ning helix position
θi Armor cross section rotation around local axis i
κ Principal curvature of armor wire (except in section 4.2.4 where it is the pipe cur-

vature)
κ1 Total geometric torsion of armor wire
κ2 Total transverse curvature of armor wire
κ3 Total normal curvature of armor wire
κt Surface curvature along the transverse direction
µ Friction coe�cient
ξ Non dimensional arc length coordinate
ρ Radius of curvature of pipe
σ, σij Stress tensor and its component in ij-direction
σa Axial stress
σb Bending stress
σw Warping stress
τ Geometric torsion/twist
φ Warping function
ω Angle between surface normal and curve normal
ω1 Geometric torsion/twist deformation
ω2 Transverse curvature deformation
ω3 Normal curvature deformation
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1 INTRODUCTION 1

1 Introduction

The use of �exible risers in �oating production systems has increased rapidly since the
1990s [7]. As time passes, the number of available oil and gas reservoirs in shallow waters
decreases, and the o�shore industry is forced to move into deeper waters. This introduces
challenges with respect to the extreme tensile loads that may occur due to drag forces
and riser weight. Risers operating in deep water may also experience compressive axial
force induced by the large hydrostatic pressure at the ocean �oor.

1.1 Motivation

To ensure safe operation of �exible risers in deep water applications, there is a need for
analytical and numerical models capable of providing accurate predictions of the capacity
with respect to certain failure modes. Tensile loads are transferred directly into the end
�tting, and this may be a critical point with respect to fatigue. It is therefore necessary to
have insight in the di�erent stress components at this point, and the magnitude of local
stresses due to end restraints.

The stress distribution inside an end �tting has previously been investigated by Shen et
al. [8]. They developed a �nite element model of a tensile armor wire and the surrounding
end �tting structure, however the model did not take the actual 3D helical shape of the
armor wire into account. This model is therefore unable to predict bending stresses due
to bending around the strong axis of the armor wires.

Another failure mode relevant for deep water �exible risers is buckling of tensile armor
wires. The external pressure will induce a compressive axial force, which may result
in compressive axial stresses in the armor wires. The armor wires are not designed to
withstand this type of loading, and instabilities in the radial or lateral direction may take
place. This may result in severe structural damage, loss in capacity against other types
of loading and leakage.

There is a small number of papers concerning buckling of tensile armor wires in the
open literature. Becarte and Coutarel describes both bird caging (radial failure) and
lateral buckling [4]. Test procedures for lateral buckling is described, and a computer
model is mentioned, but no details with respect to methods or results are given. Tan et
al. also described the behaviour of tensile armor wires under compression [9]. A strain
energy approach for modelling the buckling and post-buckling behaviour of the wires is
outlined, but no usable expressions or results are actually presented. However, some test
results are presented which state that lateral buckling of the wires under cyclic bending
was observed under wet annulus conditions.

This indicates that there is a need for better understanding of the behaviour of tensile
armor wires under compressive axial load. Also, test results show that if not properly
taken into account, this failure mode is not unlikely to occur in the future, as the limits
for depth capabilities are being pushed.

1.2 Main contributions

This thesis focuses on establishing a �nite element model of a tensile armor wire, includ-
ing contact interaction with surrounding layers. The model is capable of describing both
local bending stresses at end restraints, and the di�erent wire buckling modes. Numerical
investigations of the local stress at the end restraint is performed for di�erent wire di-
mensions and friction coe�cients. The capacity with respect to di�erent buckling modes
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is also assessed, and it is observed how the capacity changes when key parameters are
varied.

The investigation is however not limited to numerical analyses. Attempts to �nd
analytical solutions to the di�erent problems have also been made. These solutions are
often simpli�ed and based on assumptions, but the understanding attained from deriving
analytical expressions is often bigger than what is obtained from interpreting numerical
results.

Hopefully, the combination of analytical and numerical analyses will provide both
useful information and understanding.

1.3 Organization of the thesis

The outline of the report is as follows:

Section 2 gives a short review of the �exible pipe technology.

Section 3 focuses on known failure modes and design criteria.

In Section 4, theory and methods important to the work done in this thesis are presented.
Most of the material is taken from other sources, except section 4.6, which presents a new
curved beam element developed as a part of this thesis work.

Section 5 deals with local stresses at end �ttings. First, an analytical solution is pre-
sented which aims at determining which physical e�ects that are important, and which are
not. Expressions for both warping and bending stresses are given. Next, a �nite element
model using the new curved beam element is established, and a number of analyses of
the local bending stress at the end restraint is performed. The importance of friction is
investigated.

In Section 6, analytical formulas for the armor wire buckling capacity with respect
to radial and lateral failure is presented. The developed �nite element model is used to
analyse the same cases. This model is also used to investigate the armor behaviour under
the combined action of compression and cyclic bending.

Section 7 summarizes the main �ndings and gives recommendations for further work.
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2 Flexible pipe technology

2.1 Introduction

The aim of this chapter is to give a short overview of the �exible pipe technology. There
are many applications for such pipes, however the common factor is the need for the ability
to undertake large �exural deformations while being subjected to high pressure and tensile
forces. A typical example is a marine riser transporting hydrocarbons from a subsea well
up to a �oating production platform. In such a situation, the �exible pipe is preferrable
over a rigid steel riser because it will not require a heave compensation and tensioner
system at the top. Another favourable property of such pipes is that transportation and
installation is easier, as it is possible to prefabricate long lengths and store it on reels.

2.2 Flexible pipes and applications in the o�shore industry

The following section is based on information found in [10]. The main application of
�exible pipes are as riser lines connecting subsea installations and production units at the
sea surface. Such a riser may have many functions, where the most important are:

• Transportation of well products such as oil, gas and condensate

• Well control lines

• Injection of water and gas

• Export of processed product

The detailed requirements for the riser such as size, pressure rating and internal coating
depends on the transport function. When it comes to maintaining structural integrity,
the main requirements will depend on:

• Water depth

• Motion characteristics of the surface vessel

• Current and wave loads

• Fluid characteristics (important for the choice of materials)

When designing a riser system, one must take the above mentioned parameters into
account, and ensure that the system of risers is arranged in such a way that the loading is
kept at a safe level when it comes to tension, curvature, torsion, compression and contact
with other structures. Assessment of the fatigue resistance is also important in dynamic
applications.

An important issue when designing such a riser system is to determine the type of riser
con�guration. Some examples of used con�gurations are presented in �gure 1. Selecting
a suitable set up for a particular �oating production system is based on experience and
engineering judgement, and a basic knowledge of the dynamic behaviour of the system is
essential.
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Figure 1: Some possible riser con�gurations [1]

Flexible pipes may also be used as �owlines connecting subsea wells, wellhead plat-
forms, templates or loading terminals and processing platforms. In these types of appli-
cations, the pipe is not expected to be subjected to dynamic loading in the operational
phase. The �exibility requirements are mainly related to transport and installation of the
pipe.

Other applications are as loading hoses between shuttle tankers and a storage tanker/loading
buoy and as jumper lines connecting a �xed platform to a �oating support vessel.

2.3 Structure of �exible pipes

This section is also largely based on [10] as well as [11]. In order to safely transport
hydrocarbons from the seabed up to the surface, a pipe which combines both strength
and �exibility is required. The strength requirements are mainly due to high internal �uid
pressure as well as external hydrostatic pressure at large depths and also due to tensile
forces. Ensuring su�cient strength is essential in order to prevent loss of containment.
The need for �exibility is due to the large motions which a �oating production platform
will experience. These motions would inevitably result in yielding and structural failure
of the pipe if it was rigid.

The key to the �exiblility is the composite structure of the pipe cross section. A
�exible pipe consists of multiple cylindrical layers, and the basic components are:

• Armor layers (pressure and tensile) which usually are made up of steel wires helically
wounded around the pipe axis. These layers are carrying most of the loading.
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• Polymer layers. The main function of these layers are to provide containment of the
transported �uids, or preventing seawater from coming in contact with the armor
layers.

There are two di�erent types of �exible pipe constructions. These are bonded and
nonbonded structures. In a nonbonded structure the armor layers will be able to slide
relative to the surrounding layers, while in a bonded construction the di�erent layers are
bonded together through a vulcanization proceess. The focus of this report will be on the
nonbonded type.

Nonbonded pipes can further be divided into two groups, namely rough bore and
smooth bore structures. In a rough bore pipe there is a steel carcass supporting the inner
liner. This is to prevent collapse of the liner, which may happen if a sudden pressure
drop in the transported �uid occurs. A smooth bore pipe is very similar to the rough
bore except that the carcass is omitted. This means that such a pipe can only be used
when there is no gas di�usion through the internal thermoplastic layer. An example of a
typical �exible pipe cross section is shown in �g 2.

Figure 2: A typical �exible pipe cross section [2]

The di�erent layers and their functions are as follows:

• The inner steel carcass supports the inner liner and prevents it from collapsing
inwards. The carcass is built up of pro�led steel strips, and is not �uid tight. This
means that the carcass will only be experiencing external compression forces due to
contact with the inner liner.

• The inner liner, or internal thermoplastic sheath, contains the transported �uids.
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• The pressure armor provides strength with respect to both internal and external
pressure. It is usually made up of a Z-shaped wire or two sets of C-pro�les.

• Intermediate thermoplastic sheaths are used to reduce friction and wear between
armor layers.

• The helically wound tensile armor layers provide axial and torsional capacity. They
are usually made of �at steel wires with a lay angle of around 35 ◦. The most common
type is the double crosswound tensile armor, having two layers with opposite winding
direction. To reduce friction and wear, a thermoplastic anti wear layer is inserted
between the tensile armor layers.

• The external thermoplastic layer keeps the seawater on the outside, and prevents
corrosion and abrasion of the armor beneath. It also holds the tensile armor in
place.

In addition to the layers mentioned above, a so called anti buckling tape layer may be
included. This is essentially a high strength tape wrapped around the tensile armor layers.
The function of the tape is to provide extra support for the armor in the radial direction.
This extra support is necessary for the tensile armor to resist axial compression. The
anti buckling tape is particularly important for deep water applications, and is critical
to the capacity of the pipe if the annulus is �ooded (meaning there is no hydrostatic
pressure di�erence over the external sheath). Further discussions of the importance of
the anti buckling tape strength is presented in section 6, which deals with buckling of
tensile armor wires.

2.4 Flexible pipe behaviour

When a �exible pipe is subjected to axisymmetric loads, the response will be linear as
long as the loading is within the linear range of the material [3]. The bending behaviour
is however quite di�erent. For small bending moments, the bending sti�ness is relatively
large, but at a certain value called the friction moment, the sti�ness will drop signi�cantly.
This is the slip point, and it is from this point that the pipe really starts to be �exible.

The physical explanation behind this is that the friction forces between the layers are
able to hold the tensile armor wires in place as long as the bending moment is small.
When the bending moments exceeds the friction moment Mf , the wires starts to slip,
and the sti�ness drops signi�cantly. It is noted that Mf will be a function of the contact
pressure between the layers, meaning that it will depend on the internal and external
pressure as well as the tensile force in the pipe.

For bending moments belowMf the assumption that plane sections remain plane holds
true, and the bending sti�ness can be assessed in the same way as for a composite beam.
In the slip phase the main contribution to the bending sti�ness comes from the circular
plastic sheaths, however local straining (bending and torsion) of the armor wires will also
contribute to the sti�ness.

As discussed in [12], not all the armor wires in a layer will start to slip at the same
time. If the pipe curvature is increased, the wires at the neutral axis will start to slip
�rst, and the wires at the extreme �ber position will be the last to slip. Hence, there is
a gradual transition from full stick to full slip. When all the wires in a layer has begun
sliding, the bending sti�ness of the layer has reached zero.
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When full slip in all tensile armor layers is reached, the bending sti�ness of the pipe
remains constant until the critical curvature is exceeded. This is the point where the pipe
is bent so much that the gaps between the armor wires are closed, and the wires come into
contact with each other. A further increase of curvature would lead to very high stresses
in the armor wires, and therefore the critical curvature should not be exceeded under
normal operation. The bending behaviour of a nonbonded �exible pipe is illustrated in
�gure 3 below.

Figure 3: Bending behaviour of a nonbonded �exible pipe [3].

2.5 End termination

The most critical part of a �exible pipe construction is the point where the pipe is termi-
nated to a rigid structure [10]. A typical way of doing this is to lead the pipe through a
bending sti�ener before the pipe is terminated at the end �tting. The bending sti�ener
ensures a gradual increase of bending sti�ness towards the end of the pipe and most im-
portantly keeps the pipe curvature below a critical value [3]. At the end of the pipe an
end �tting is mounted in order to [11]:

• terminate the di�erent layers of the �exible pipe in such a way that axial loads and
bending moments may be transferred to an end connector.

• secure a pressure-tight connection between the pipe and the connector.

Inside the end �tting the armoring wires are locked relative to each other and the
sealing layers. This means that close to the termination, in a zone corresponding to a
couple of tensile armor pitch lengths, the �exibility of the pipe is reduced. Also, the pipe
cannot be expected to have the same curvature capacity in this zone as in the rest of the
pipe [10]. The local stresses that may arise in the tensile armor wires due to the anchoring
of the tendons at the end �tting are investigated in section 5.
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3 Failure modes and design criteria

3.1 Introduction

Knowledge of �exible pipe performance and possible failure modes is essential in order to
do a successful design. There are numerous known failure modes, and checklists for design
against them are found in API Recommended Practice 17B [11]. A �exible pipe should be
designed to satisfy its functional requirements under the actual loading conditions. Load
types that must be considered are functional, environmental and accidental loads during
both installation and service conditions [11].

As the water depth at which �exible risers are being used increases, failure modes which
are unlikely in less deep water may become more important. This section summarizes
failure modes and design criteria with special focus on those relevant for deep water
applications.

3.2 Failure modes

Failure is often de�ned as an event where a system ceases to ful�ll its purpose. As the
purpose of a �exible pipe is to transport �uids from one place to another, failure is an
event which prevents this from happening. In general, this would be one of the two
following events [10]:

• Leakage

• Reduction of internal cross section

Due to the complexity of the �exible pipe structure it is likely that such a failure
will happen as a result of several less severe events. To avoid this, the design should
take all possible partial failure modes into account. Table 1 shows a checklist of failure
modes which should be taken into account during design. The table is taken from API
Recommended Practice 17B [11].
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Table 1: Failure modes for unbonded �exible pipes

Pipe failure mode Potential failure mechanisms

Collapse 1) Collapse of carcass and/or pressure armor due to excess
external pressure or tension.

2)Collapse of carcass and/or pressure armor due to installa-
tion loads or ovalization due to installation loads.

3)Collapse of internal pressure sheath in smooth-bore pipe.
Burst 1) Rupture of pressure armors because of excess internal pres-

sure.

2) Rupture of tensile armors due to excess internal pressure.
Tensile failure 1) Rupture of tensile armors due to excess tension.

2) Collapse of carcass and/or pressure armors and/or internal
pressure sheath due to excess tension.

3) Snagging by �shing trawl board or anchor, causing over-
bending or tensile failure.

Compressive failure 1) Bird-caging of tensile-armor wires.

2) Compression leading to upheaval buckling and excess bend-
ing.

Overbending 1) Collapse of carcass and/or pressure armor or internal pres-
sure sheath.

2) Rupture of internal pressure sheath.

3) Unlocking of interlocked pressure or tensile-armor layer.

4) Crack in outer sheath.
Torsional failure 1) Failure of tensile armor wires.

2) Collapse of carcass and/or internal pressure sheath.

3) Bird-caging of tensile armor wires.
Fatigue failure 1) Tensile armor wire fatigue.

2) Pressure armor wire fatigue.
Erosion Of internal carcass.
Corrosion 1) Of internal carcass.

2) Of pressure- or tensile armor exposed to seawater.

3) Of pressure- or tensile armor exposed to di�used product.
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Of the failure modes listed in table 1, those related to collapse, tensile failure and
compressive failure may be more pronounced for deep water applications because of large
external pressure and tension. Fatigue failure may also be relevant, as high dynamic
stresses are likely be present due to the large length which the environmental forces act
along.

Failure due to the external hydrostatic pressure may happen either by collapse of
the pressure armor/carcass or by so called bird-caging of the tensile armor. The pressure
armor and carcass are designed to take this kind of loading, so failure of these components
should be avoided by proper design. The bird-caging failure is di�erent, because it occurs
as a result of the tensile armor carrying loads which it is not designed for. Tensile armors
are not designed to withstand compression, and may fail by radial expansion or lateral
buckling.

The name bird-caging comes from the shape, which is seen in �gure 4. The picture
shows dissection of a bird-cage produced in a pressure tank test.

Figure 4: Bird-cage failure of �exible pipe [4].

Lateral buckling of the armor wires have also been reproduced in pressure tank tests,
and a picture of this is shown in �gure 5.

Figure 5: Lateral buckling of tensile armor causing severe dislocation [4].

Both pictures are taken from [4], which deals with instability issues of tensile armor
wires. The conclusion of this paper is that the current methods used to predict these failure
modes are inherently conservative, and that more accurate models may help increase the
water depth capability of �exible risers.
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Both radial and lateral failure modes for the tensile armor when subjected to com-
pression from external pressure are investigated in section 6.

3.3 Design criteria

In order to prevent failure, a multiple of design criteria are to be satis�ed. A design
criteria is usually stated in the form of an utilization factor, which is the ratio between the
structural capacity and the applied load. Because there are many uncertainties involved,
for instance in the yield stress of the material, residual stresses and applied loading, the
allowable utilization factor given in rules are much lower than 1.

Relevant design criteria for unbonded �exible pipes are explained in API RP 17B [11],
and are described in terms of:

• strain

• creep

• stress

• hydrostatic collapse

• mechanical collapse

• torsion

• crushing collapse and ovalization (during installation)

• compression

• service life factors

Strain is a critical parameter for both the internal and external polymer layers. The
strain must not exceed the allowable strain, which is speci�ed either in rules or by the
manufacturer.

Creep is relevant for the inner pressure sheath as this layer will creep into gaps in the
pressure armor under normal service conditions. This must be taken into account when
the wall thickness is to be determined.

Allowable stress is used as a design criteria for steel materials. Presence of residual
stresses must be taken into account.

Hydrostatic collapse is equivalent to buckling of the internal carcass due to the external
pressure. It should be veri�ed that the collapse-to-design ratio is in the acceptable range
for the case of both a breached and intact outer sheath.

Mechanical collapse of the internal carcass as a result of excessive tension should also
be checked. The contribution from the surrounding steel layers may be taken into account.

When it comes to torsion, there are two di�erent collapse scenarions depending on
which direction the pipe torsion is applied. If the outer tensile armor is turned inward,
it will press towards the internal armor layer, and tensile forces will develop. The stress
in the wires should not exceed the allowable stress. If torsion is applied in the opposite
direction, a gap will develop between the tensile armor layers, and the damaging torsion
may be taken as the torsion required to create a gap equal to half the thickness of a tensile
armor wire.
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The installation phase also needs attention. The pipe may be subjected to signi�cant
loads when tightened to a tensioner or under reeling/unreeling, and it should be controlled
that collapse or signi�cant ovalization is avoided.

Compression may as previously mentioned cause bird-caging of the tensile armor lay-
ers. This means that the tensile armor wires moves outward in the radial direction,
resulting in a bird cage shape. The allowable compression may be taken as the compres-
sion causing a gap between the underlying layers and the tensile armor wire equal to half
the thickness of the wire. Buckling of the tensile armor wires should also be checked.

The main service life factors are fatigue and degradation of the material. There are
several fatigue mechanisms, and careful evaluation of these should be performed. Corro-
sion and wear/fretting between wires should be taken into account.
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4 Theory and methods

4.1 Introduction

In this section, theory and methods which are important for the work performed in this
thesis is described. It is however not the intention to explain all the theory which is
used. Much of the work is based on well known methods from structural mechanics and
mathematics, and describing every aspect of this would be of little interest. Instead it is
focused on topics which are not that well known (at least not to the author), and which
are especially important in solving the problems of this thesis.

4.2 Analytical methods for stress analysis

When a nonbonded �exible pipe is subjected to axisymmetric loads (tension, pressure
and torsion), the behaviour will be linear and the sti�ness will be of the same order as
for a steel pipe [13]. The loads do not change the cylindrical shape, and due to the
symmetry of these problems, simple design formulas are obtained by introducing some
basic assumptions. The bending behaviour is however more complicated, and analytical
solutions for stress and strain in the helical tensile armor are based upon an assumed
path and constant pipe curvature. This section contains a brief review of some relevant
equations, and the assumptions behind them. The formulas for stress due to tension,
pressure and torsion are found in [10], while the section covering bending is based on [5].

4.2.1 Tension

Tensile loads are mainly taken up by the tensile armor. The resistance of the plastic
layers are negligible, and because of the very large lay angle of the pressure armor, its
contribution will also be small.

Equilibrium in the longitudinal direction of a pipe subjected to an e�ective axial force
Te gives the following equation:

N∑
i=1

niσiAi cosαi = Tw = Te + πR2
intpint − πR2

extpext (1)

where N is the number of layers contributing to the axial resistance, ni is the number
of wires in layer i, σi is the axial stress in the wire, Ai is the wire cross sectional area and
αi is the lay angle of the layer. It is observed that the internal and external pressure gives
rise to axial end cap forces.

When the helical armor layers are exposed to tension they will tend to contract,
however the underlying layers will prevent this. The resulting contact pressure can be
approximated by:

pT =
Tw tan2 α

2πR2
(2)

where R is the mean radius of the tensile armor layers.

4.2.2 Pressure

When subjected to pressure forces, it is mainly the armor layers that will carry the load.
A good approximation is to say that the plastic sheaths simply transmit the pressure,
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meaning that these layers do not give any contribution to the strength. The carcass does
not carry any internal pressure, so it is the pressure and tensile armor alone that takes the
internal pressure load. Equilibrium between internal and external pressure and internal
forces in the radial direction gives this equation:

N∑
i=1

niσiAi sinαi tanαi

2πRi

= pintRint − pextRext (3)

where N is the number of layers providing resistance to pressure, ni is the number of
wires, σi is the axial stress in each wire, Ai is the cross sectional area of a single wire, αi

is the lay angle and Ri is the radius of layer i.
The buckling strength is important with respect to collapse due to external pressure.

The buckling pressure of the carcass or pressure armor layer may be determined from:

pcr =
3EIeq
R3

(4)

where R is the mean radius of the layer and EIeq is the equivalent bending sti�ness.

4.2.3 Torsion

If the torsional resistance of the plastic layers is neglected, the torsional moment Mt must
be balanced by the stresses in the helically wound armor layers. It is found from this
equilibrium consideration that:

N∑
i=1

RiniσiAi sinαi = Mt (5)

It is mainly the tensile armors that provides the torsional resistance. This gives the
following approximation for the stress in the tensile armor wires:

σt =
Mt

nRAi sinα
(6)

where n is the total number of tensile armor wires and R is the mean radius of the
tensile armor layers.

4.2.4 Bending

As previously mentioned, the bending behaviour of a �exible pipe is more complicated
than for the axisymmetric load cases. This is mainly related to the helical reinforcing
layers which tend to slip relative to the surrounding layers when subjected to a bending
moment larger that Mf (see section 2).

The challenge is to �nd the stresses in the tendons during the slip phase, and in
order to do this analytically, a constant curvature is assumed along the pipe, and also
which path the tendons follow as they slip. In previous work, both the geodesic and the
loxodromic curve has been used to describe the path of the tendons, thus giving di�erent
results for the tendon stress.

The main properties of the two assumed curves are:

• Loxodromic curve:
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� Tendon slides in the longitudinal direction, inducing friction stress

� No transverse sliding

� Normal curvature (weak axis), transverse curvature (strong axis) and torsion

• Geodesic curve:

� Sliding in both longitudinal and transverse direction

� Normal curvature is larger than for the loxodromic curve

� No transverse curvature

� More torsion than for the loxodromic

Experiments have shown that the loxodromic curve gives the best �t with respect to
dynamic stresses for realistic friction coe�cients. [5].

Stress components of armors

The relevant stress components of armors are:

• σxx−fx: The axial stress which is constant over the wire cross section, and a result
of the axial force due to pressure, tension, torsion moment and friction.

• σxx−my: The normal curvature stress which is a result of bending about the weak
axis. Has its maximum at the outer and inner surface of the armor wire.

• σxx−mz: The transverse curvature stress which is a result of bending about the
strong axis. Has its maximum at the sides of the armor wire.

• σyz: The torsion shear stress.

Figure 6: Relevant stress components in armors [5].

Stresses when assuming geodesic curve

If the armor wires follow the geodesic curve, the change in stresses as a result of a change in
pipe curvature ∆κ may be expressed by the following formulas. The necessary parameters
are de�ned in �gure 7. In this �gure, the coordinate system is positioned in the center of
the pipe, and X indicates the longitudinal direction.
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Figure 7: Parameters for calculation of stresses in armor wires [5].

Dynamic bending stress due to normal curvature:

∆σxx−my =
3

2
cos2 α∆κtE cos θ (7)

Dynamic bending stress due to transverse curvature:

∆σxx−mz = 0 (8)

Dynamic axial stress (µ is the friction coe�cient):

∆σxx−fx = min(ER cos2 α∆κ cos θ, 2

[
πR

2 sinαA
(po + pi)b(1 + e)µ cos θ

]
) (9)

Dynamic stress due to torsion:

∆σyz = sinα cosα(
1

sin2 α
− 3)∆κ cos θ (10)
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Stresses when assuming loxodromic curve

If instead the loxodromic curve is used to describe the path of the armor wires, the ex-
pressions for the di�erent stress components will be as shown below.

Dynamic bending stress due to normal curvature:

∆σxx−my =
1

2
cos4 α∆κtE cos θ (11)

Dynamic bending stress due to transverse curvature:

∆σxx−mz =
1

2
cosα(1 + sin2 α)∆κbE sin θ (12)

Dynamic axial stress (the same expression as for the geodesic):

∆σxx−fx = min(ER cos2 α∆κ cos θ, 2

[
πR

2 sinαA
(po + pi)b(1 + e)µ cos θ

]
) (13)

Dynamic stress due to torsion:

∆σyz = sinα cos3 α∆κ cos θ (14)

4.3 Theory of thin curved beams

In order to correctly describe the behaviour of the tensile armor wires one needs a model
that is based on the actual geometry, with the inherent twist and curvature. Because of
the shape of the wire there will be a coupling between lateral and axial forces as well
as bending and torsional moments which makes the analysis more complicated than for
straight beams. This section is based on chapter 2 in [3], and gives a review of the theory
of thin curved beams sliding on a circular cylindric surface.

4.3.1 De�nitions

Assume that there is a �xed Cartesian coordinate system at the center of the pipe with
axes ZI and unit vectors EI. The underlying layers provide support such that the tendons
slide on a cylindrical surface represented by a radius R. The center line of a tendon
describes a curve in space which is characterized by its curvature components. Details
about curves in space and curvature may be found in mathematical textbooks, e.g. [14].
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Figure 8: EI and II coordinate systems.

Assume that the vector R0 describes any point P0 on the center line of a tendon and
let X1 be the arc length coordinate along the tendon. At the point P0 there is a local
orthonormal coordinate system with base vectors II. The concept is illustrated in �gure
8. The base vectors II are known from di�erential geometry as the unit tangent, unit
normal and unit binormal vectors and are determined as:

I1 = R0,1 = ZI
,1EI (15)

I2 =
1

κ
R0,11 =

1

κ
ZI

,11EI (16)

I3 = I1 × I2 (17)

The base vectors will rotate as we go along the arc length coordinate X1, and the
rotation over a small distance dX1 is given by the Seret-Frenet equation:

dI1
dX1

dI2
dX1

dI3
dX1

 =

 0 κ 0
−κ 0 τ
0 −τ 0

I1I2
I3

 (18)

For a circular helix with lay angle α, the torsion τ and the principal curvature κ are:

τ =
sinα cosα

R
(19)

κ =
sin2 α

R
(20)

The II base vectors de�nes the tendon center line only, and does not hold any infor-
mation about the orientation of the tendons cross section. To describe the orientation of
the cross section, another coordinate system is introduced with base vectors GI and axes
XI . The orientation is such that G1 is parallel to I1 while G2 is always directed along
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the inwards surface normal. The last vector, G3, is de�ned by being orthogonal to both
G1 and G2. The relative angle between the GI and II system is denoted ω as shown in
�gure 9.

Figure 9: GI and II coordinate systems.

The rotation of the GI system may be expressed in a similar way as for the II base
vectors, however this time through the generalized Seret-Frenet equation:

dG1

dX1

dG2

dX1

dG3

dX1

 =

 0 κ3 −κ2

−κ3 0 κ1

κ2 −κ1 0

G1

G2

G3

 (21)

Here, κ2 and κ3 is the components of the principal curvature, κ, in the X1X3 and
X1X2 planes respectively. Thus κ2 is called the transverse curvature and κ3 is called the
normal curvature. κ1 is the total torsion of the center line. The curvature components
relate to the principal curvature and geometric torsion through these formulas:

κ1 = τ +
dω

dX1
(22)

κ2 = κ sinω (23)

κ3 = κ cosω (24)
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4.3.2 Equilibrium equations

Consider a small element of a curved beam with a local coordinate system with base
vectors GI as decribed in the previous subsection (see �gure 10). The forces acting on the
element are the stress resultants QI (forces) and MI (moments), and also the distributed
external loading qI and mI . At the far end of the element, both the magnitude and

the direction of the forces has changed, and the change of direction is described by the
Seret-Frenet formula.

Figure 10: A small curved beam element subjected to stress resultants and external load.

Equilibrium equations are found by demanding zero net force and moment on vector
form. The force equilibrium equation is:

Q1
dG1

dX1
+Q2

dG2

dX1
+Q3

dG3

dX1
+ q1G1 + q2G2 + q3G3

+
dQ1

dX1
G1 +

dQ2

dX1
G2 +

dQ3

dX1
G3 = 0

(25)

and the moment equilibrium equation is:

M1
dG1

dX1
+M2

dG2

dX1
+M3

dG3

dX1
+m1G1 +m2G2 +m3G3

+Q2G3 −Q3G2 +
dM1

dX1
G1 +

dM2

dX1
G2 +

dM3

dX1
G3 = 0

(26)

As the two above equations are on vector form, they may be split into their three GI

components such that each vector equation yields three new equations. If one substitutes
for the dGI

dX1 -terms using equation (21) and separates the di�erent vector components, six
coupled equilibrium equations are found:
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dQ1

dX1
− κ3Q2 + κ2Q3 + q1 = 0 (27)

dQ2

dX1
− κ3Q1 + κ1Q3 + q2 = 0 (28)

dQ3

dX1
− κ2Q1 + κ1Q2 + q3 = 0 (29)

dM1

dX1
− κ3M2 + κ2M3 +m1 = 0 (30)

dM2

dX1
+ κ3M1 − κ1M3 −Q3 +m2 = 0 (31)

dM3

dX1
− κ2M1 + κ1M2 +Q2 +m3 = 0 (32)

4.3.3 Deformation and strain

In an undeformed con�guration, the position vector of a material particle at a speci�c
point P in the cross section of the beam is:

R = R0 +X2G2 +X3G3 (33)

Figure 11: Curved beam element before and after deformation.

Assume now that the beam deforms, see �gure 11. The material particle has now
moved from P to p. The displacement u of the point P is:
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u = u1G1 + u2G2 + u3G3 (34)

where each component is:

u1 = u0
1(X

1) +X3θ2(X
1)−X2θ3(X

1) + β(X1)φ(X2, X3) (35)

u2 = u0
2(X

1)−X3θ1(X
1) (36)

u3 = u0
3(X

1)−X2θ1(X
1) (37)

In the above equations, u0
i is the displacement of the center line of the beam in direction

i, while θi is the rotation of the cross-section about axis i. β is the twist of the cross-
section, which according to Saint-Venant's torsion theory for a straight beam loaded by
a constant torque would be equal to θ1,1. All the variables are assumed to be dependent
on the arc length coordinate X1 only, except φ which is the warping function and varies
over the cross section. More details about warping is given in section 4.4.

The Green strain tensor will be used as measure of strain in this case. Let E∗
KL be the

Green strain tensor in the local curvilinear coordinate system. This is given on component
form as:

E∗
KL =

1

2
(

∂r

∂XK

∂r

∂XL
− ∂R

∂XK

∂R

∂XL
) (38)

By introducing r = R+u with the expressions for R and u given above and by using
the Seret-Frenet equation to handle the derivatives of the GI terms, the components of
E∗

KL is found. This strain measure is however given in the curvilinear coordinate system
XI , while the material law which is to be used is given in Cartesian coordinates. Therefore
the strain tensor E∗

KL must be transformed from curvilinear to Cartesian coordinates. In
order to do this, a Cartesian coordinate system with axes Y I is positioned so that it
coincides with the curvilinear GI system. The transformation can now be done using the
following equation:

EIJ =
∂XK

∂Y I

∂XL

∂Y J
E∗

KL (39)

By carrying out the calculations and neglecting insigni�cant second order terms, the
Green strain tensor components in the Cartesian coordinate system is found to be:

GE11 =
√
G(ϵ1 +X3ω2 −X2ω3 + φβ,1 + κ1β[X

3φ,2 −X2φ,3]) +
1

2
ϵ21 +

1

2
ϵ22 +

1

2
ϵ23 (40)

2
√
GE12 = ϵ2 − θ3 −X3ω1 + β[

√
Gφ,2 + κ3φ] (41)

2
√
GE13 = ϵ3 + θ2 −X2ω1 + β[

√
Gφ,3 + κ2φ] (42)

where:

ϵ1 = u0
1,1 − κ3u

0
2 + κ2u

0
3 (43)
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ϵ2 = u0
2,1 + κ3u

0
1 − κ1u

0
3 (44)

ϵ3 = u0
3,1 − κ2u

0
1 + κ1u

0
2 (45)

ω1 = θ1,1 − κ3θ2 + κ2θ3 (46)

ω2 = θ2,1 + κ3θ1 − κ1θ3 (47)

ω3 = θ3,1 − κ2θ1 + κ1θ2 (48)

and G is the determinant of the metric tensor:

G = (1 +X3κ2 −X2κ3)
2 (49)

4.3.4 The principle of virtual displacements

The principle of virtual displacements states that [15]:

�the total virtual work performed by a system in equilibrium while undergoing
a set of virtual compatible displacements, is zero.�

In other words, the work done by the real internal stresses σ when a structure is
subjected to the virtual strains δϵ must be equal to the work done by the real external
surface tractions t over the virtual displacements δu. A necessary presumption is, as
suggested earlier, that the virtual strains and displacements are compatible and that
the internal stresses are in equilibrum with the external tractions (volume forces are
disregarded here). If the di�erence between one equilibrium state and the next is small,
the second order terms in the Green strain tensor may be neglected. Therefore the strain
measure ϵ is introduced where ϵ = E when the second order terms are neglected. In
mathematical terms the principle of virtual displacements is:∫

V

σ : δϵ dV −
∫
S

t · δu dS = 0 (50)

Here, dV =
√
G dX1dX2dX3, but in the present application

√
G ≈ 1 will be used as

this only introduces a very small error. When it comes to the stresses, a linear elastic
material behaviour is assumed, meaning that the stress components are found directly
from Hooke's law:

σ11 = Cσϵ11 (51)

σ12 = 2Cτ ϵ12 (52)

σ13 = 2Cτ ϵ13 (53)

In deriving the expression for the internal work, i.e. the �rst term of equation (50),
it will further be assumed that the cross section considered is double symmetric. This
means that:
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φ(X2, X3) = −φ(−X2, X3) = −φ(X2,−X3) (54)

By introducing the strain expressions from equations (40)-(42) and the material law
from equations (51)-(53) into the �rst term of equation (50), the internal virtual work is
found to be:

Wi =

∫ l

0

Q1δϵ1dX
1 + CσDκ1

∫ l

0

ϵ1δω1dX
1 − CσΓ

∫ l

0

ω1,11δω1dX
1 +

∫ l

0

Q2δ(ϵ2 − θ3)dX
1

+

∫ l

0

Q3δ(ϵ3 + θ2)dX
1 +

∫ l

0

M1δω1dX
1 +

∫ l

0

M2δω2dX
1 +

∫ l

0

M3δω3dX
1

(55)

Here, ϵi and ωi represents the actual strains the structure, corresponding to the real
stresses, while δϵi and δωi represents the virtual strains. The stress resultants Qi and Mi

are de�ned as:

Q1 = CσAϵ1 + CσDκ1β (56)

Q2 = CτA(ϵ2 − θ3) (57)

Q3 = CτA(ϵ3 + θ2) (58)

M1 = CτItβ + CτIp(ω1 − β) (59)

M2 = CσI2ω2 (60)

M3 = CσI3ω3 (61)

In the above equations, A is the cross section area, I2 and I3 are the second moment
of area about axis 2 and 3 respectively, It is the cross section torsion constant and Ip is
the polar moment of inertia of the cross section. D and Γ are de�ned as:

D = I2 + I3 −
∫
S

φ,2X
3 − φ,3X

2 +X2X2 +X3X3dS (62)

Γ =

∫
S

φ2dS (63)

The idea of deriving equation (55) is that it may be used to calculate the internal
forces in an element when the strain state is known. The internal forces are equivalent to
the internal load vector which is needed in the structural analysis. This will be explained
further in section 4.5.1.

Before moving on, some observations on the stress resultants given above may be done.
Recalling that a basic assumption in the traditional Euler-Bernoulli beam theory is that
shear deformations may be neglected, it seems reasonable to assume the same in this case.
Looking at the expressions for Q2 and Q3, this assumption leads to the following results:
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θ2 = −ϵ3 (64)

θ3 = ϵ2 (65)

This means that the rotation about the X2 and X3 axes are uniquely de�ned by the
displacement of the center line of the beam. It is also seen that if β equals ω1, a familiar
relation between the twist and torque for cylindrical shafts with constant twist and no
restrained warping appears from equation (59). Directed by this observation, it is in the
following assumed that:

β = ω1 (66)

One last, but important observation, is that the quantites ω1, ω2 and ω3 must be equal
to the curvature change around axis 1,2 and 3 respectively. This is due to the manner of
which the torque and bending moments are de�ned. It is therefore possible to de�ne the
curvature increments as:

∆κi = ∆ωi (67)

This result may be used to update the geometry in a stepwise solution method.

4.3.5 The principle of virtual displacements on incremental form

In large deformation problems of structural mechanics it is common to perform the anal-
ysis by increasing the external loading incremetally. In order to obtain the necessary
sti�ness relationship for such an analysis, the principle of virtual displacements on incre-
mental form may be utilized. Imagine that an element goes from the current con�gura-
tion, Cn, to the next, Cn+1. Let the physical stresses in the Cn con�guration be denoted
σ = C : ϵ and the surface tractions t. As the structure moves to the next con�guration,
the quantities change to:

σn+1 = C : (ϵ+∆E) (68)

tn+1 = t+∆t (69)

Now take the principle of virtual displacements at the Cn+1 con�guration, and assume
a virtual displacement δu and a corresponding virtual strain �eld δ(ϵ+∆E):∫

V

C : (ϵ+∆E) : δ(ϵ+∆E) dV −
∫
S

(t+∆t) · δu dS = 0 (70)

Subtracting equation (50) and neglecting second order terms in ∆ while assuming that
the di�erence between two neighbouring equilibrium states is small yields:∫

V

C : ∆ϵ : δϵ dV +

∫
V

σ : δ∆E dV −
∫
S

∆t · δu dS = 0 (71)

The above equation may be used to �nd the sti�ness matrix of a curved beam element.
The �rst term represents the material sti�ness, while the second term is the geometric,
or initial stress sti�ness. By inserting the strain expressions from equations (40)-(42) as
well as the material law, the two internal work terms are expressed as:
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WM
i = CσA

∫ l

0

∆ϵ1δϵ1dX
1 + CσDκ1

∫ l

0

(∆κ1δϵ1 +∆ϵ1δω1)dX
1 − CσΓ

∫ l

0

∆κ1,11δω1dX
1

+ (CτIt + Cσκ
2
1K1 − CτD + CτΓκ

2 + CτK2)

∫ l

0

∆κ1δω1dX
1

+ CσI2

∫ l

0

∆κ2δω2dX
1 + CσI3

∫ l

0

∆κ3δω3dX
1

(72)

WG
i = Q1

∫ l

0

(∆ϵ1δϵ1 +∆ϵ2δϵ2 +∆ϵ3δϵ3)dX
1 (73)

where:

K1 =

∫
S

(X3φ,2 −X2φ,3)
2dS (74)

K2 =

∫
S

φ2
,2 + φ2

,3dS (75)

The warping function φ is given in the next section.

4.4 Torsion with restrained warping

In section 5 the local bending and end section warping stresses at the end �tting will be
investigated. Here, an attempt will be made to explain the fundamentals of restrained
warping and also how the arising stresses can be found. Warping is a phenomenon related
to torsion of prismatic bars which can easily be visualized. Figure 12 is taken from [6]
and shows an experiment where a rectangular bar is subjected to torsion.

Figure 12: Prismatic bar subjected to torsion [6].
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It is seen that the cross sections do not remain plane and that rectangular elements
distort. This is what is referred to as warping. The twisting of the bar leads to dis-
placements in the longitudinal direction, and for a straight bar the magnitude of this
displacement is given by the angle of twist per unit length τ and the warping function
φ(X2, X3) [16]:

u1 = τφ(X2, X3) (76)

The warping function must of course satisfy the equilibrium equations of the cross
section as well as the boundary conditions, which are zero net force at the cross section
surface. In [6] it is shown that the equilibrium equations lead to the following requirement
to the warping function, which is known as Laplace's equation:

φ,22 + φ,33 = 0 (77)

Analytical expressions for the warping function may be found for some cross section
geometries by solving this equation while ful�lling the boundary conditions. The warping
function for a rectangular cross section of width a and thickness b is found in [16]:

φ(X2, X3) = −X2X3 + b2(
2

π
)3

∞∑
n=0

(−1)n

(2n+ 1)3
sinh (2n+1

b
πX3)

cosh (2n+1
2b

πa)
sin (

2n+ 1

b
πX2) (78)

The warping function has been visualized in the computer program Matlab and is
shown in �gure 13 below. It is seen that the function value is zero at both axes whereX2 =
0 and X3 = 0, i.e. the neutral axes of the cross section. It has its maximum/minimum
values on the edges at some point close to the corners of the cross section.
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Figure 13: Visualization of the warping function of a rectangular cross section.

Now take a look back at �gure 12 and imagine what the bar would look like if one
of the end surfaces was fully �xed, for example attached to a rigid wall. Obviously,
displacements in the longitudinal direction would have to change, because the material
would now be �xed at the end. The rectangular elements would have to remain straight
at the �xed end, and the warping would be restrained. The axial stresses that develop
due to restrained warping are described in [17], and are given by:
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σ11 = Cσϵ1 = Cσu1,1 = Cσφ(X
2, X3)τ,1 (79)

This result indicates that there will only be axial warping stresses present whenever
the twist per unit length changes along the structural member. As the warping stress
distribution over the cross section is in fact determined by the warping function φ, one
knows by looking at �gure 13 at which points in the cross section the stresses are largest.
As mentioned earlier, φ is largest on the edges and close to the corner of the cross section.
This is interesting, as the bending stresses present in tensile armor wires will be largest
at the corners, meaning that the corners of the cross section are the critical points with
respect to stress. As the warping stress adds up to the total stress, the magnitude of stress
at the corners will become even larger. Hence, the warping stress may give a contribution
to fatigue which should be taken into account. This will be looked into in section 5.

One may intuitively understand that the bar has a stronger ability to withstand twist-
ing when the warping is restrained, which means that a larger torque is needed in order
to twist the bar a given angle. The torsional moment due to restrained warping is [17]:

Mw = −Cστ,11

∫
S

φ2dS = −CσΓτ,11 (80)

The total torsional moment in the cross section of a straight beam is the sum of the
warping moment Mw and the well known Saint-Venant torsional moment, Mt = GItτ :

M1 = Mt +Mw = GItτ − CσΓτ,11 (81)

4.5 Finite element methods

The �nite element method has been important in the work with this thesis, as one of the
main goals has been to familiarize with the computer code A�ex and also to implement
a new curved beam element into the program. Therefore it seems natural to give a short
review of the method in general.

The �nite element method is a numerical procedure which is usually applied in solving
structural problems which are too complex to solve analytically. The method is used in for
example the design of buildings, ships, airframes and spacecraft [18]. The main issue in
structural analyis is to determine the displacement �eld for a structure under a given load,
and the classical approach to this will normally involve solving the di�erential equations
of equilibrium. This will be virtually impossible if the geometry and boundary conditions
are complicated. In the �nite element method, a direct solving of the di�erential equations
is avoided. Instead of having the entire displacement �eld as unknown, the problem is
reduced to �nding the displacements in each node.

The basic concept of the method is to discretize the structure into a �nite number of el-
ements. Each element has a certain number of nodes, and the displacment �eld within the
element is assumed to be uniquely de�ned by the nodal displacements. This means that
the �nite element method is an approximate method, and the accuracy depends on the
assumed displacement pattern within the elements. The assumed displacement pattern
is usually linear, quadratic or qubic, depending on how many degrees of freedom/nodes
each element is given. Increased accuracy is obtained by using higher order interpolation
for the assumed displacement pattern at the cost of increased computational time.

For each element in the structure, a sti�ness relationship is obtained using the principle
of virtual displacments together with the assumed displacement pattern. This results in
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a weak formulation of the problem, or an integrated equilibrium equation. This means
that the individual element is in overall equilibrium, but every point of the element is not
necessarily in equilibrium. The procedure results in an element sti�ness relationship of
the following form [18]:

S = kv + S0 (82)

Here, S is the generalized nodal point forces, k is the element sti�ness matrix, v is a
vector containing the nodal point displacements and S0 is equivalent nodal point forces
due to distributed loading. Normally, numerical integration is applied in order to �nd the
element sti�ness matrix, which introduces another approximation to the method.

The contributions from all elements in a structure may be added into a single equation
called the system sti�ness relationship. This follows from the fact that every nodal point
in the structure must be in equilibrium. The system sti�ness relationship is then [18]:

R = Kr+R0 (83)

where R is a vector containing all external nodal point loads, and r represents the
unknown global degrees of freedom. The system sti�ness matrix is found by directly
adding the contributions from each element, or more formally by:

K = Σja
T
j kjaj (84)

The R0-vector is found similarly:

R0 = Σja
T
j S

0
j (85)

Here, the a-matrix gives the relationship between the element degrees of freedom and
the global degrees of freedom:

vj = ajr (86)

When the system sti�ness relationship is established, it may be solved for the unknown
global nodal point displacements, r, after boundary conditions are introduced. To solve
the equation, one must in principle invert the system sti�ness matrix (which may be very
large), and it is important to handle this in an e�cient way. There are a variety of possible
solution algorithms, but these will not be discussed here. When the global displacements
are found, these may be used to calculate stresses in the structure by use of the material
law.

When it comes to �exible riser calculations, a nonlinear �nite element method is
needed. In a nonlinear analysis, the nodal displacements are no longer a linear function
of the external load. Sources of nonlinearities in structural analysis are in general [18]:

• Geometric nonlinearities

• Material nonlinearities

• Boundary conditions/contact

Geometric nonlinearities appears when one takes the e�ect of the changing geometry
of the structure into account. This is often referred to as large displacement analyses. As
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loading is applied, the structure deforms, and this will change the sti�ness matrix of the
elements and possibly also the load vector.

Material nonlinearities are a result of a nonlinear relationship betweeen strains and
stresses. For steel structures, the relationship is usually linear up to a certain limit which
is the yield strength of the material. When this limit is passed, the material law changes,
and this must be taken into account when the element sti�ness matrices are calculated.

For �exible risers, it is important to account for the nonlinearities that arise due to
changing contact conditions. The di�erent layers may slide relative to each other under
friction, and this is a nonlinear process. At one step in the analysis the layers stick to
each other, but when shear forces overcome the maximum static friction force, components
begin to slide.

To solve the nonlinear equations, an incremental procedure is used, typically using
equilibrium iterations for each load increment. The problem may be formulated in terms
of a total and an incremental equilibrium equation [18]:

Σja
T
j Sj = R (87)

KI(r)dr = dR (88)

For each increment the loading is increased an amount dR. Equation (88) is used
to predict the change in the displacement vector for a given increase in exteral load.
Then equation (87), which is the total equilibrium equation, may be used to correct the
answer by evaluating the di�erence between internal and external load. Then a new pre-
diction/iteration is performed. This is repeated until the di�erence between the external
and internal load is acceptable. The method with stepwise increments and equilibrium
iterations is known as the Newton-Raphson method.

A more detailed explaination of how the �nite element method works is given in the
next section, which is devoted to the computer code A�ex.

4.5.1 A�ex

A�ex is a nonlinear �nite element code developed as a tool for stress analysis of �exible
pipes exposed to bending gradients close to terminations [19]. The program models a
single tensile armor wire using curved beam elements based on the theory described in [3]
and section 4.3 in this thesis. The behaviour of the armor wire is simulated for a given
pipe curvature distribution. The program was developed as a part of Svein Sævik's dr.
ing. research work at the Division of Marine Structures, NTH, and a summary of the
program will be given here.

Kinematic restraint

The armor wire model is based on an assumption on the rotation of the cross section
around the longitudinal axis. If the deformation of the supporting surface is small, the
rotation θ1 is determined by displacements along the X1 and X3 axes and the curvature
of the supporting surface measured in the two orthogonal directions. Mathematically, this
means that the cross section rotation about the longitudinal axis is determined as:

θ1 = −κtu
0
3 + κ1u

0
1 (89)

Where κt is the curvature along the transverse direction, found as:
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κt = cos2 α κr + sin2 α κc (90)

where κr and κc are the principal curvatures in the circumferential and longitudinal
directions of the surface respectively.

Curved beam element

The central part of the A�ex computer program is the �nite element representing the
armor wire. When the kinematic restraint on θ1 is introduced, together with θ2 = −ϵ3
and θ3 = ϵ2 (this was discussed in section 4.3), the result is that the Green strain tensor
components given in equations (40) - (42) are determined by the displacements of the
beam center line alone. This means that the strain �eld within each element is uniquely
de�ned by the three unknown displacement variables u0

1, u
0
2 and u0

3.
This means that the �nite element can be based on an assumed displacement �eld for

the center line displacements:

u0 = Nv (91)

where N is a matrix containing interpolation functions and v is the element degrees
of freedom. The A�ex element has 10 degrees of freedom, where 8 are external and 2 are
internal and are eliminated by static condensation. The element with all its degrees of
freedom is shown in �gure 14 below:

Figure 14: A�ex curved beam element.

The degrees of freedom implies that the assumed displacement pattern is cubic in u0
1

and u0
3, and linear in u0

2. The matrix of interpolation functions is:
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NT =



1− 11
2
ξ + 9ξ2 − 9

2
ξ3 0 0

0 1− ξ 0
0 0 1− 3ξ2 + 2ξ3

0 0 −lξ(ξ − 1)2

ξ − 9
2
ξ2 + 9

2
ξ3 0 0

0 ξ 0
0 0 3ξ2 − 2ξ3

0 0 −lξ2(ξ − 1)
9ξ − 45

2
ξ2 + 27

2
ξ3 0 0

−9
2
ξ + 18ξ2 − 27

2
ξ3 0 0


(92)

where ξ is the non-dimensional arc length coordinate and l is the element length. Using
the relationship given in equation (91), all the strains may be expressed as a function of
the nodal degrees of freedom. Inserting this into the virtual work expressions in equations
(72) and (73) gives the material and geometric sti�ness matrices.

Element load vector

A characteristic feature of the A�ex formulation is that the nodal degrees of freedom are
the displacements relative to the supporting surface. This means that as the pipe is bent
to a speci�c curvature, the wire elements will be subjected to strain and internal forces
even if the degrees of freedom remain zero. The strain components for a �xed element
are calculated based on the loxodromic curve, which is the curve a helix will follow if it is
�xed to a curved cylinder. Proof of these expressions are given in [3], and the results are:

E∗0
11 = −R

ρ
cos2 α cos θ +

1

2
(
R

ρ
)2 cos2 α cos2 θ (93)

∆κ1 =
sinα cosα

ρ
cos2 α cos θ (94)

∆κ2 = −cosα

ρ
(1 + sin2 α) sin θ (95)

∆κ3 = −cos2 α

ρ
cos2 α cos θ (96)

Here, E∗0
11 is the longitudinal component of the green strain tensor, while the curvatures

are as de�ned in section 4.3. ρ is the global pipe curvature, while θ is the polar coordinate
angle de�ning the position of the helix.

By prescribing the changes in strain and curvatures using the above equations and
the internal virtual work expression from equation (55), an internal element load vector is
obtained. This is equivalent to the S0-vector in equation (82). In this way, the curvature
load is treated as an initial strain problem.

Friction and contact

Interaction between the armor wire elements and the surrounding layers is simulated by
hyperelastic or elastoplastic springs. The elastoplastic springs corresponds to a Coloumb
friction model, and are used for nonbonded pipes. The springs characteristics in the X1

and X3 direction are coupled to the X2 direction such that the sti�ness is reduced when
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the total friction force exceeds the friction coe�cient times the normal contact force. This
simulates sliding under friction.

Program execution

A summary of how the program executes is given below:

1. Read input �le. Calculate cross section parameters and initial values for the curva-
ture components.

2. Loop through all the load increments:

(a) Prescribe the changes in strain and curvature components using equations (93)-
(96). Then an iteration procedure is initiated in order to ensure equilibrium
at the current load step:

i. Calculate element sti�ness matrix and element load vector for all elements.
Internal degrees of freedom are removed by static condensation and ele-
ment contributions are added to the global sti�ness matrix and load vector.

ii. Spring sti�nesses are added to the global sti�ness matrix.

iii. The incremental sti�ness relation is solved for the incremental nodal dis-
placements.

iv. The kinematics are updated in terms of axial strain and curvature compo-
nents.

v. The contact springs are updated and the spring forces added to the internal
load vector.

vi. If the normalized Euclidean displacement norm and the unbalanced force
norm are larger than the tolerance limit, repeat the iteration procedure.

(b) End of iteration procedure, go to next load increment.

3. When all the load increments are completed, results are printed to the result �le in
terms of displacements and stresses.

4.5.2 B�ex

B�ex is a tailor made computer program for stress analysis of tensile armors in �exible
pipes, which originally was developed by SINTEF Civil and Environmental Engineering.
The details about how it works is found in [20]. The program establishes and solves �nite
element equations based on the principle of virtual displacements as well as kinematic
compatibility, material law and displacement interpolation. Nonlinear behaviour is taken
into account.

In [3] it was found that the transverse slip of the tensile armor wires may be neglected
for realistic friction coe�cients. This assumption is utilized in B�ex, and therefore the
tendons only have longitudinal degrees of freedom. This reduces the number of degrees
of freedom, and also contributes to the numerical stability. It is also assumed that the
supporting cross-section maintains its shape su�ciently, so that local bending and torsion
e�ects may be calculated analytically.

Stresses from internal pressure and external tension are found using a multilayer pipe
element, and are assumed uncoupled with the stresses arising from pipe bending. When
it comes to the bending response, there are three alternative formulations. The �rst one
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(ITCODE0) is a sandwitch beam formulation. Here, each tendon is modelled using a
�nite elements with contact interaction with the pipe core. Displacements relative to
the supporting surfaces introduce friction forces. The second formulation (ITCODE21)
is a moment based model. Analytical expressions are used to calculate the bending
moment contribution from the armor layers when the tendons start to slip, and when
there is full slip. In ITCODE21, the moment-curvature relationship is based on the inner
armor layer only, because this is the layer of concern for fatigue calculations. The last
bending formulation (ITCODE31) is essentially the same as ITCODE21, but here the
actual moment-curvature relationship for each armor layer is used.

B�ex also contains modules for postprocessing which are called P�ex, Boundary and
Lifetime. P�ex performs pressure armor bending stress analysis based on results from
B�ex bending analysis, while Boundary performs transverse cross section stress analysis
using a boundary element method. Lifetime performs fatigue analysis.

4.6 A new curved beam element for A�ex

A central part of this thesis work has been to implement a new curved beam element
into the A�ex computer program. The background for this is the study of radial buckling
phenomena. In the original A�ex version, the curved beam element only has translational
degrees of freedom in the radial direction. In order to describe non-uniform radial dis-
placements of the tensile armor wire, rotational degrees of freedom around the weak axis
of the wire is needed. Therefore, the A�ex code has been modi�ed such that the element
has the necessary rotational degrees of freedom.

4.6.1 Theoretical background

It is expected that radial buckling of tensile armor wires will be associated with a non-
uniform radial displacement �eld. Thus an interpolation polynomial of a degree higher
than one is needed in the radial direction. It is common for slender beam elements to
have both rotational and translational degrees of freedom at each end, and use these as
the basis for the displacement �eld. One rotation and one translation at each end gives a
total of 4 parameters to determine the displacement �eld, meaning that the displacement
polynomials will be cubic. The interpolation polynomials introduced for the new element
are shown in �gure 15.
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Figure 15: Interpolation polynomials introduced in the radial direction.

These are the same type of polynomials that are already used in the transverse direc-
tion. All other degrees of freedom and polynomials are kept the same, thus the matrix of
interpolation polynomials in the new A�ex version is:

NT =



1− 11
2
ξ + 9ξ2 − 9

2
ξ3 0 0

0 1− 3ξ2 + 2ξ3 0
0 0 1− 3ξ2 + 2ξ3

0 0 −lξ(ξ − 1)2

0 lξ(ξ − 1)2 0
ξ − 9

2
ξ2 + 9

2
ξ3 0 0

0 3ξ2 − 2ξ3 0
0 0 3ξ2 − 2ξ3

0 0 −lξ2(ξ − 1)
0 lξ2(ξ − 1) 0

9ξ − 45
2
ξ2 + 27

2
ξ3 0 0

−9
2
ξ + 18ξ2 − 27

2
ξ3 0 0



(97)

The new curved beam element with all the degrees of freedom is shown in �gure 16.
The total number of degrees of freedom are now 12, with 2 internal and 10 external, 5 at
each end.
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Figure 16: The new A�ex element.

4.6.2 Computer implementation

The original Alfex source code has been modi�ed in order to implement the new curved
beam element. A number of subroutines had to be changed, and a complete list of all
changes are given in the appendix. In short, the changes are related to the increased
number of degrees of freedom both globally and on element level. The number of degrees
of freedom per global node has been changed from 4 to 5, and the dimension of the element
sti�ness matrices are changed from 10 x 10 to 12 x 12.

The biggest changes are in the subroutines creating the element sti�ness matrices and
load vectors, as it is these routines that uses the interpolation polynomials. The new
interpolation polynomials are also included in the subroutine that updates the strain and
curvature state of the element.

After the A�ex code was updated and tested, the source code was used to implement
the new curved beam element into the B�ex2010 system under the name hshear353. This
work was performed by the supervisor, Prof. Svein Sævik. This made it possible to utilize
the available visualization and post processing tools, Xpost and B�ex2010Post. B�ex2010
also has a more advanced equation solver, with automatic load increment updating, and
possibilites for dynamic analysis. This has been very bene�cial in the buckling analyses
performed in section 6.
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5 Local stresses at end �ttings

5.1 Introduction

As previously pointed out, a critical point in a �exible riser is the end �tting, where the
pipe structure is terminated. In deep water applications, the tensile force being transferred
at this point may become very large, however, the force magnitude depends strongly upon
the speci�c riser con�guration (see e.g. [21]). In order to have a safe design, it is important
to have an understanding of the di�erent stress components at this point. The complex
anchoring of the structure inside the end �tting can however make it di�cult to give
accurate predictions of the magnitude of stresses. Sources of stress concentrations may be
numerous and dependent on how the speci�c construction is made. The investigation of
the stresses at the end �tting will in this case be based on a simple model of a single tensile
armor wire, and no speci�c data for the end �tting itself is used. One can argue that the
analysis is somewhat crude, but it may never the less provide important information and
understanding.

The investigation performed here is directed at local stresses arising from one single
phenomena: When a �exible pipe is axially stretched, the lay angle of the armor wires
must change slightly. However, close to the point where the wires are terminated, this
change in lay angle may not be allowed. In order to be conservative, it is in the succeeding
analyses assumed that the wires are fully �xed at the termination, and this constraint will
give rise to local stresses. Longitudinal stresses due to bending and warping will add to
the total axial stress and this may possibly constitute a danger when it comes to fatigue
of the pipe.

Two di�erent types of analyses will be done. First a simpli�ed analytical method where
friction between the wires and the underlying layer is neglected. It is hard to say how
good the results from this analysis will be before comparing to the more detailed FEM
anlyses, but it is however a very good way to gain knowledge about the problem and also
separate the important physical e�ects from the less important. Next, the �nite element
code A�ex with the new curved beam element is used. Here, friction forces between the
wire and the supporing layer is included, and the importance of the friction coe�cient is
investigated.

5.2 Analytical investigation of end �tting stresses

5.2.1 De�nitions and assumtions

It is assumed that the tensile armor wires are of a rectangular cross section and rests on a
circular surface of radius R. The pressure armor is assumed to be sti� enough in order to
neglect radial displacements. All displacements and strains are assumed to be su�ciently
small to neglect second order terms. In the unloaded con�guration the angle between
the tensile armor wires and the longitudinal axis of the pipe (the lay angle) is α0. Now
consider a pipe section of length Lp subjected to a global pipe strain ϵp as shown in �gure
17.
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Figure 17: De�nitions used when assessing the wire behaviour close to the end �tting.

As the pipe is axially strained, the curve which the tendon follows must change. If no
end restraints are present, the change in lay angle would be the same at all points along
the wire, and the wire would assume a path like the red one in the above �gure. The new
lay angle is denoted α1 and from geometry the di�erence between α0 and α1 is:

γ = α0 − α1 = α0 − tan−1 (
C

Lp(1 + ϵp)
) = α0 − tan−1 (

tanα0

1 + ϵp
) (98)

Let the axial strain along the curve de�ned by α1 be denoted ϵ. By neglecting second
order terms, ϵ is found using the Pythagorean theorem:

L2(1 + ϵ)2 = C2 + L2
p(1 + ϵp)

2

⇕
L2 + 2L2ϵ = C2 + L2

p + 2L2
pϵp

⇒ ϵ =
L2
p

L2
ϵp = cos2 (α0) · ϵp

(99)

As mentioned earlier, this displacement pattern (α1) and strain (ϵ) is only possible
when no end restraints are present. The wire is in fact �xed at the end �tting, meaning
that the lay angle must remain at α0 at the end �tting and gradually increase towards
α1 as one moves away from the end. This is illustrated in �gure 17 with a blue line. The
challenge is to �nd out just how this change in lay angle is. Therefore the actual change
in lay angle is introduced as the variable η(X1), meaning that the new lay angle at any
point along the wire is given as α0 − η(X1).

5.2.2 Curvature and strain

The undeformed tensile armor wire has the shape of a cylindrical helix, and as stated in
section 4, the curvature and twist components are given as
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κ2 = 0 (100)

κ3 =
sin2 α0

R
(101)

τ =
cosα0 sinα0

R
(102)

where, again, κ2 is the transverse curvature, κ3 the normal curvature and τ the twist,
or geometrical torsion. Now imagine that the helical angle changes slightly due to axial
straining of the pipe. The shape of the wire is still a helix, but the angle is now changed
to α0 − η, where η is a very small angle. Inserting this in the curvature expressions while
using double angle identities and neglecting second order terms in η gives:

κ3 =
sin2 (α0 − η)

R
=

1

R
[sinα0 cos η − cosα0 sin η]

2

=
1

R
[sin2 α0 cos

2 η − 2 sinα0 cos η cosα0 sin η + cos2 η sin2 η]

≈ 1

R
[sin2 α0 − 2 sinα0 cosα0 · η]

(103)

τ =
1

R
cos (α0 − η) sin (α0 − η)

=
1

R
(cosα0 cos η + sinα0 sin η)(sinα0 cos η − cosα0 sin η)

≈ 1

R
(cosα0 + sinα0 · η)(sinα0 − cosα0 · η)

≈ 1

R
(cosα0 sinα0 − cos2 α0 · η + sin2 α0 · η)

=
1

R
(cosα0 sinα0 + (1− 2 cos2 α0)η)

(104)

The transverse curvature of a helix with constant angle is zero, but when the angle
varies along the length of the wire, transverse curvature will in fact occur. In a similar
way as for straight beams, the transverse curvature may be taken as the change in angle
per unit length, assuming small deformations:

κ2 = − dη

dX1
(105)

Here, X1 is the arc length coordinate along the wire, as de�ned in section 4. Using
the above expressions, the change in twist and curvature are:

∆κ2 = − dη

dX1
(106)

∆κ3 = −2 sinα0 cosα0

R
· η (107)

∆τ =
1− 2 cos2 α0

R
· η (108)
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An expression for the axial strain of the wire is also needed in order to proceed. Let
the actual strain in the wire be ϵa, which will di�er slightly from ϵ due to the end restraint.
The di�erence is found from geometric considerations as shown in �gure 18:

Figure 18: Axial strain along the actual path versus a uniform strained helix.

As the axial strain along the strained helix is known to be ϵ, an in�nitesimal element on
the strained helix has the length dX1(1+ ϵ). The actual length of the element is assigned
the symbol dL. The relative angle between the two paths are γ − η, and therefore:

cos (γ − η) =
dX1(1 + ϵ)

dL
(109)

The axial strain is then found to be:

ϵa =
dL− dX1

dX1
=

1 + ϵ

cos (γ − η)
− 1

=
1 + ϵ− cos (γ − η)

cos (γ − η)
≈

1 + ϵ− (1− 1
2
(γ − η)2)

1− 1
2
(γ − η)2

=
ϵ+ 1

2
(γ − η)2

1− 1
2
(γ − η)2

≈ ϵ+
1

2
(γ − η)2

(110)

It is noted that this expression is equivalent to the additional axial strain in a beam
due to lateral de�ection, as given in [18]. The only di�erence is that w,x is replaced with
γ − η.

5.2.3 Potential energy

Now that expressions for all the curvature components and axial strain have been devel-
oped, it is possible to establish the total elastic potential energy in the wire as a functional
of the angle η(X1). A functional is a function of another function (in this case η) which in
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turn is a function of some other variable (in this case X1). Functional theory is described
in for example [22].

The energy is derived by integrating over the volume of the structure. For beam
structures, this integrations simpli�es to an integral over the length of the beam. The
expression used here is found in [23], and takes both bending, torsion and warping sti�ness
into account. The axial strain energy per unit volume is added to the expression, which
gives the total strain energy in the armor wire, Π:

Π =
1

2

∫ L

0

EAϵ2a + EI2(∆κ2)
2 + EI3(∆κ3)

2 +GIt(∆τ)2 − EΓ∆τ,11∆τ dX1 (111)

The warping term may be simpli�ed using integration by parts. As the wire is fully
�xed at the end �tting, ∆τ is zero at X1 = 0. Far away from the end restraint the wire
will follow the helical path with a constant angle, and thus ∆τ,1 = 0 at X1 = L. This
means that the term including these quantites vanish:

∫ L

0

∆τ,11∆τ dX1 = [∆τ ·∆τ,1]
L
0 −

∫ L

0

(∆τ,1)
2 dX1 = −

∫ L

0

(∆τ,1)
2 dX1 (112)

Now insert this result together with the strain and curvature expressions from equa-
tions (106)-(108) into the expression for the strain energy:

Π =
1

2

∫ L

0

EA(ϵ+
1

2
(γ − η)2)2 + EI2(−

dη

dX1
)2 + EI3(−

2 sinα0 cosα0

R
· η)2

+GIt(
1− 2 cos2 α0

R
· η)2 + EΓ(

1− 2 cos2 α0

R
· dη

dX1
)2 dX1

(113)

5.2.4 Minimization of the potential energy

A fundamental concept in physics and structural mechanics is the principle of minimum
potential energy, which states that a structure will deform into the position that minimizes
the total potential energy [16]. This principle will be used here in order to �nd the solution
for η(X1). Assuming there are no other types of energy but the eleastic strain energy
in the wire, the problem is reduced to �nding the function which minimizes the strain
energy given in equation (113).

One last thing is however required, and that is a constraint which makes sure that the
far end of the wire (away from the end �tting) is at the correct place. This is ensured by
demanding that η is such that the actual wire position coincides with the strained helix
at X1 = L. In other words, the constraint is zero relative lateral motion between the
actual curve and the strained helix at the end. The geometry is shown in �gure 19.
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Figure 19: Constraint: the wire end should be at the correct position.

The relative lateral motion may be found by integrating the lateral component of the
displacement along theX1-axis. Assuming small strains and displacements, the constraint
is expressed mathematically as:

∫ L

0

(1 + ϵa) sin (γ − η)dX1 = 0

⇒
∫ L

0

(η − γ)dX1 ≈ 0

(114)

The problem is now to minimize the potential energy under the constraint given above.
Let the integrand in the expression for the strain energy be F (X1, η, η′), and the integrand
in the constraint be G(X1, η), i.e:

F (X1, η, η′) =
1

2
EA(ϵ+

1

2
(γ − η)2)2 +

1

2
EI2(−

dη

dX1
)2 +

1

2
EI3(−

2 sinα0 cosα0

R
· η)2

+
1

2
GIt(

1− 2 cos2 α0

R
· η)2 + 1

2
EΓ(

1− 2 cos2 α0

R
· dη

dX1
)2

(115)

and:

G(X1, η) = η − γ (116)

The problem of minimizing the potential energy can be solved using Lagrange mul-
tipliers as described in [24]. The solution is found by �nding the minimum of a new
functional, K, de�ned as:

K =

∫ L

0

(F + λG) dX1 (117)

where λ is an unknown constant. The minimum of this new functional is found using
the Euler equation [24]:
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∂(F + λG)

∂η
− d

dX1
(
∂(F + λG)

∂η′
) = 0 (118)

Since the expressions are rather long, take one term at a time:

∂(F + λG)

∂η
=

∂

∂η
[
1

2
EA(ϵ+

1

2
(γ − η)2)2 +

1

2
EI2(−η′)2 +

1

2
EI3(−

2 sinα0 cosα0

R
· η)2

+
1

2
GIt(

1− 2 cos2 α0

R
· η)2 + 1

2
EΓ(

1− 2 cos2 α0

R
· η′)2 + λ(η − γ)]

≈ ∂

∂η
[
1

2
EA(ϵ2 + ϵ(γ − η)2) +

1

2
EI2(η

′)2 + 2EI3
sin2 α0 cos

2 α0

R2
η2

+
1

2
GIt

(1− 2 cos2 α0)
2

R2
η2 +

1

2
EΓ

(1− 2 cos2 α0)
2

R2
(η′)2 + λ(η − γ)]

= EAϵ(η − γ) + 4EI2
sin2 α0 cos

2 α0

R2
η +GIt

(1− 2 cos2(α0))
2

R2
η + λ

(119)

And the last term:

d

dX1
(
∂(F + λG)

∂η′
) =

d

dX1
(EI2η

′ + EΓ
(1− 2 cos2 α0)

2

R2
η′)

= EI2η
′′ + EΓ

(1− 2 cos2 α0)
2

R2
η′′

(120)

Inserting the above results into the Euler equation yields a second order di�erential
equation:

(EI2+EΓ
(1− 2 cos2(α0))

2

R2
)η′′−(EAϵ+4EI3

sin2 α0 cos
2 α0

R2
+GIt

(1− 2 cos2 α0)
2

R2
)η = λ−EAϵγ

(121)
which can be written as:

Bη′′ −Dη = λ− EAϵγ (122)

where the constants B and D are de�ned as:

B = EI2 + EΓ
(1− 2 cos2 α0)

2

R2
(123)

D = EAϵ+ 4EI3
sin2 α0 cos

2 α0

R2
+GIt

(1− 2 cos2 α0)
2

R2
(124)

5.2.5 Solution of the di�erential equation

The next step in the analysis is of course to solve the di�erential equation. Assume a
solution on the form:

η = CekX
1

(125)
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which gives:

η′′ = Ck2ekX
1

(126)

The total solution is the sum of the particular and the homogenous solution. Let us
�rst �nd the particular solution by inserting the assumed solution into equation (122):

Bk2CekX
1 −DCekX

1

= λ− EAϵγ (127)

The above equation is valid for all X1 only if k = 0. Hence:

−DC = λ− EAϵγ

⇒ C =
EAϵγ − λ

D

(128)

This means that the particular solution is simply:

ηp = C =
EAϵγ − λ

D
(129)

The homogenous solution is found by setting the right hand side of equation (122)
equal to zero. This gives:

Bk2CekX
1 −DCekX

1

= 0

⇒ Bk2 −D = 0

⇒ k =

√
D

B

(130)

This gives the homogenous solution:

ηh = C1e
−kX1

+ C2e
kX1

(131)

Intuitively, η can not be allowed to grow without limits as X1 increases. This implies
that C2 = 0. The total solution is now reduced to:

η = ηp + ηh =
EAϵγ − λ

D
+ C1e

−kX1

(132)

The constant C1 is found from the boundary condition η(0) = 0 to be:

C1 = −EAϵγ − λ

D
(133)

This produces the solution:

η =
EAϵγ − λ

D
(1− e−kX1

) (134)

The only remaining issue is to �nd the unknown constant λ. To �nd this we need to
insert the expression for η into the constraint from equation (114):
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∫ L

0

(η − γ)dX1 = 0

⇒
∫ L

0

(
EAϵγ − λ

D
(1− e−kX1

)− γ)dX1 = 0

⇒
∫ L

0

EAϵγ − λ

D
(1− e−kX1

)dX1 = γL

⇒ (
EAϵγ − λ

D
)[X1 +

1

k
e−kX1

]L0 = γL

⇒ (
EAϵγ − λ

D
)(L− 1

k
(1− e−kL)) = γL

⇒ EAϵγ − λ

D
=

γL

L− 1
k
(1− e−kL)

⇒ EAϵγ − λ

D
=

γ

1− 1
kL
(1− e−kL)

⇒ EAϵγ − λ

D
≈ γ

(135)

The last step in the above derivation is correct only if L is large, something which
it will surely be for a deep water �exible riser. This ends the search of the unknown
perturbation of the lay angle. When the above result is inserted into equation (134), the
�nal solution for η appears as a very simple exponential function:

η = γ(1− e−kX1

) (136)

where k is (as previously found):

k =

√√√√EAϵ+ 4EI3
sin2 α0 cos2 α0

R2 +GIt
(1−2 cos2 α0)2

R2

EI2 + EΓ (1−2 cos2 α0)2

R2

(137)

5.2.6 Comments to the solution

The solution for η seems intuitively correct, as it starts at zero and gradually increases
towards γ. How fast η increases along the X1-axis is determined by the single parameter
k. If k is large, the change is rapid and if k is small the rate of change is low. k is however
a function of several cross sectional parameters, as well as the initial lay angle and radius
of the pipe and also the strain, ϵ. It is therefore of interest to investigate the relative
importance of the di�erent terms. This may help in determining which physical e�ects
that dominaties.

This investigation will be done by looking at a typical �exible pipe with R = 0.1 m
and α0 = 35◦. The armor wire is given the dimensions 9 x 3 mm. The material is steel,
with E = 2.1 · 1011 Pa and G = 8 · 1010 Pa. The cross sectional parameters of the wire
are, using formulas found in [25]:
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A = ab = 0.009 m · 0.003 m = 2.7 · 10−5 m2

I2 =
1

12
a3b =

1

12
· (0.009 m)3 · 0.003 m = 1.82 · 10−10 m4

I3 =
1

12
ab3 =

1

12
· 0.009 m · (0.003 m)3 = 2.03 · 10−11 m4

It ≈
1

3
[1− 0.6

b

a
]ab3 =

1

3
[1− 0.6 · 3

9
] · 0.009 m · (0.003 m)3 = 6.48 · 10−11 m4

Γ =

∫
S

φ2 dS = 6.54 · 10−17 m4

(138)

Γ was found using numerical integration of the warping function given in equation 78.
For a pipe strain of ϵp = 0.001, the individual terms in k are:

EAϵ = 2.1 · 1011 Pa · 2.7 · 10−5 m2 · cos2 35◦ · 0.001 = 3804.6 N

4EI3
sin2 α0 cos

2 α0

R2

= 4 · 2.1 · 1011 Pa · 2.03 · 10−11 m4 · sin
2 35◦ cos2 35◦

(0.1 m)2
= 375.5 N

GIt
(1− 2 cos2 α0)

2

R2

= 8 · 1010 Pa · 6.48 · 10−11 m4 · (1− 2 cos2 35◦)2

(0.1 m)2
= 60.6 N

EI2 = 2.1 · 1011 Pa · 1.82 · 10−10 m4 = 38.22 Nm2

EΓ
(1− 2 cos2 α0)

2

R2

= 2.1 · 1011 Pa · 6.54 · 10−17 m4 · (1− 2 cos2 35◦)2

(0.1 m)2
= 1.6 · 10−4 Nm2

(139)

The �rst three terms given above are those present in the numerator of k. As seen,
the axial strain term represents 90 % of these three terms, and is de�nitively the most
important one among these. The torsional sti�ness term constitutes only 1.4 %, and is
almost negligible.

The two last terms above are those in the denominator of k. Here, the bending sti�ness
term dominates completely, and the warping sti�ess contribution is totally negligible. One
may thus conclude that the axial strain level and the bending sti�ness about the strong
axis are the most important parameters which de�nes the behaviour of the wire close to
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the end restraint. The axial strain term is however dependent on the strain level in the
pipe, and will be smaller for lower strains than in this example . This means that the
bending sti�ness about the weak axis and also the torsional sti�ness will be important
at low levels of pipe strain. The warping sti�ness is extremely small, and will never be
important to the solution.

5.2.7 Stress components

The stress components considered are the longitudinal stresses which can be divided into
pure axial stress σa, bending stress from bending about the X2-axis (strong axis) σb2,
bending stress from bending about the X3-axis (weak axis) σb3 and warping stress σw.
Simple formulas from beam theory will be used to evaluate the stresses. The di�erent
components are calculated as:

σa = Eϵa = E(ϵ+
1

2
(γ − η)2)

= E(ϵ+
1

2
(γ − γ(1− e−kX1

))2) = E(ϵ+
1

2
γ2e−2kX1

)
(140)

σb2 =
M2

I2
·X3 =

EI2∆κ2

I2
·X3 = −E

dη

dX1
·X3 = −Ekγe−kX1 ·X3 (141)

σb3 = −M3

I3
·X2 = −EI3∆κ3

I3
·X2 = E · 2 sinα0 cosα0

R
· η ·X2

= Eγ · 2 sinα0 cosα0

R
(1− e−kX1

) ·X2

(142)

σw = Eφ(X2, X3)∆τ,1 = Eφ(X2, X3)
1− 2 cos2 α0

R

dη

dX1

= Ekγφ(X2, X3)
1− 2 cos2 α0

R
e−kX1

(143)

At the end �tting, X1 = 0, and hence the stress components are:

σa = E(ϵ+
1

2
γ2) ≈ Eϵ (144)

σb2 = −Ekγ ·X3 (145)

σb3 = 0 (146)

σw = Ekγφ(X2, X3)
1− 2 cos2 α0

R
(147)

The axial stress is uniform over the cross section, while the bending stress varies
linearly and is largest at the edges where X3 = −a

2
. The warping stress has a more

complex distribution due to the warping function, but the value of interest is the maximum
value along the edge. Using the same cross section data and the same axial strain as in
the previous discussion, the numerical values are:
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γ = 0.6109− tan−1 (
tan 0.6109

1 + 0.001
) = 0.00047 (148)

σa = 2.1 · 1011 Pa · cos2 35◦ · 0.001 = 140.9 MPa (149)

σb2,max = 2.1 · 1011 Pa · 10.53 m=1 · 0.00047 · 0.0045 m = 4.7 MPa (150)

σw = 2.1 · 1011 Pa · 10.53 m=1 · 0.00047 · 2.9 · 10−6 · 1− 2 cos2 0.6109

0.1
= 0.01 MPa (151)

As seen, the warping stress is very small, and gives no signi�cant contribution to
the total stress. The warping sti�ness was also found to be insigni�cant to the wire
deformation close to the end. It is thus concluded that warping may be neglected in
relation with tensile armor wires and end restraints.

The bending stress is however far more interesting, as it constitutes 3 % of the total
longitudinal stress. This means that if only the axial stress is taken into account, the
predicted stress is 3 % too low. For high cycle fatigue, the fatigue life of a steel component
is typically proportional to (∆σ)−3 [26], meaning that a 3 % increase in dynamic stress
will give a 8.5 % decrease in fatigue life. And this is only for the particular case considered
above. The next step will be to see how the bending component varies as a function of
the axial stress, and also what role the dimensions of the armor wire plays.

5.2.8 Bending stress at the end �tting

To get a picture of the relative magnitude of the local bending stress at the end �tting,
the stress formulas derived previously have been used to calculate numerical values for a
wide range of pipe strain. The calculations have been performed in Matlab, and results
are shown in �gure 20, where the ratio between local bending stress and axial stress are
shown for two di�erent wire dimensions. The blue line shows results for a wire of width
9 mm and thickness 3mm, while the red line shows a larger wire of width 15 mm and
thickness 6 mm. The radius of the pipe is 0.1 meters and the lay angle is 35◦ in both
cases.
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Figure 20: Analytical results for the ratio between bending and axial stress.

As seen in the �gure, the bending component grows larger relative to the axial stress
as the stress increases, and the bending stress exceeds 6 % of the axial stress for an axial
stress above 500 MPa. The rate of increase in bending stress is relatively large at low
strain levels, but it does however decay as the axial stress increase. Even so, the relative
magnitude of bending stress continues to increase. It is also observed that the two curves
in the �gure are located very close to each other despite the relatively large di�erences
in wire dimensions. The bending component is slightly larger for the biggest wire, even
though the big wire has a lower width-to-thickness ratio than the small wire.

One could have thought that the dimensions of the wire are more important, and it is
therefore of interest to look deeper into the variables which determine the bending stress.
σb2 was found to be proportional to k, and even though the expression for k is quite
complex, the two most important terms are those containing the axial strain and the
bending sti�ness about the strong axis. This was seen in the previous discussion of the
solution. Using an approximate expression containing only these two dominating terms,
k reduces to:

k ≈
√

EAϵ

EI2
=

√
ab

1
12
ba3

ϵ0.5 =

√
12

a2
ϵ0.5 ≈ 3.46

ϵ0.5

a
(152)

Inserting this approximate result into equation (145) yields:

σb2,max ≈ 3.46Eγ
ϵ0.5

a

a

2
= 1.73Eγϵ0.5 (153)

This veri�es the fact that the magnitude of the localized bending stress at a given
pipe strain is virtually independent of the size of the cross section. Since γ is a linear
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function of the pipe strain ϵp, and hence also ϵ, the above result indicates that the bending

stress is approximately proportional to ϵ
3
2 . The ratio between σb2 and σa should then be

proportional to ϵ0.5, which is in aggreement with the shape of the curve in �gure 20.

5.3 End �tting stresses - A�ex/B�ex

A major shortcoming of the analytical results presented in the previous section is the lack
of friction. The tensile armor layers will contract under tension, and thus high contact
pressures between layers will occur near the end �tting. The high contact pressure makes
it possible to get large friction forces, and these forces will seek to pull the wire along
with the surrounding layers as the pipe elongates. Looking back at �gure 17, this means
that the friction forces will try to �x the wire to the curve de�ned by γ, and this again
means that the bending stress at the end �tting will become even larger than what was
found before.

In this section, a �nite element model of a single tensile armor wire will be established
using the new curved beam element described in section 4.6. Analyses will be done for
the same cases as was done analytically, with varying friction coe�cient. This is to test
the agreement between the analytical and the numerical method and also to investigate
the importance of friction.

5.3.1 Description of FEM model

The model is based on the new curved beam element described in section 4.6 and the
B�ex2010 program system is used for the analyses. The aim is to simulate the same
scenario as previously done analytically, i.e. a single tensile armor wire on a supporting
circular layer subjected to axial straining. The model is quite simple and consists of three
di�erent types of elements:

• Curved beam elements (hshear353) for the tensile armor wire.

• Pipe elements (pipe31) for the supporting layer. The element is a beam element
with 6 degrees of freedom at each end.

• Specialized contact elements (hcont453) to represent normal and frictional contact
between the two above elements.

The length of the model is set to 8 pitches, and for a lay angle of 35◦ and a radius of
0.1 meters this gives a model length of 7.179 meters. 400 elements are used to model the
wire, and each wire element has a pipe element and a contact element connected to it.
Boundary conditions are applied both to the wire elements and the pipe elements. Those
applied to the pipe elements are:

• End 1 �xed in all 6 degrees of freedom.

• End 2 free to move in the longitudinal direction and �xed in the remaining 5 degrees
of freedom.

It is important to note that for the curved beam element, the degrees of freedom are
not the actual displacements, but the displacements relative to the supporting surface.
This means that if one �xes all the nodal displacements for the wire, it is not �xed in
space, but it is �glued� to the supporting surface. The boundary conditions applied to the
wire elements are:
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• Wire �xed in longitudinal and lateral direction at both ends of the model.

The loading is applied through gradually increasing prescribed displacements. This is
done through two individual degrees of freedom. The node belonging to the pipe element
at end 2 of the model (away from the end �tting) is pulled in the longitudinal direction
a distance corresponding to the pipe strain, ϵp. At the same time, the node belonging to
the wire element at the end �tting is rotated an angle corresponding to the change in lay
angle when the pipe is axially strained, γ. This simulates the rotational restraint due to
the anchoring. For any level of pipe strain, this angle is calculated according to equation
(98).

The entire model is shown in �gure 21 and an enlarged view of the wire close to the
end �tting is shown in �gure 22. In the last of the two �gures, the magnitude of bending
stress is indicated by the color.

Figure 21: The A�ex/B�ex �nite element model used to calculate end �tting stresses.
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Figure 22: Close up view of the armor wire at the end restraint.

5.3.2 Results

Analyses have been performed with the �nite element model described above. Two di�er-
ent sets of analyses have been done. The �rst one with a 9 x 3 mm wire and the second
one with a 15 x 6 mm wire. It is of interest to compare the results from the frictionless
analyses with the analytical results presented earlier. In order to do so, the A�ex/B�ex
results have been plotted together with the analytical results:

Figure 23: Comparison of analytical and numerical results, no friction.
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The results are very similar, and especially for the 9 x 3 mm wire, the analytical and
numerical analyses agree very well. This is encouraging, although the numerical results
report a slightly larger ratio between the bending stress and the axial stress than what
was found analytically for the 15 x 6 mm wire. The di�erence is however small, which
indicates that the analytical model provides good results.

Next, the results from the A�ex/B�ex analyses with friction are presented. The friction
coe�cient between the layers are varied, and results are shown in �gures 24 and 25 below.

Figure 24: A�ex/B�ex results for end �tting bending stress, 9 x 3 mm wire.

Figure 25: A�ex/B�ex results for end �tting bending stress, 15 x 6 mm wire.
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As seen, the friction greatly increases the bending stress at the end �tting. There is a
major increase from µ = 0 to µ = 0.05, but the increase is not as large when the friction
coe�cient is increased further. The bending stress does however continue to grow for
increasing friction coe�cient. An interesting detail is the di�erent e�ect the friction has
on the small and the big wire. For zero friction, the results are very close to each other.
However, when friction is included, the di�erence between the two wires becomes much
larger. Take the point where σa = 500 MPa as an example. For a friction coe�cient of
0.15, the ratio between bending and axial stress is close to 0.14 for the big wire, but for
the small wire it is below 0.11. The di�erence continues to increase for even larger friction
coe�cients. It is therefore of interest to investigate if this is reasonable or not.

The reason why friction increases the local bending stress is that the friction forces will
try to �x the wire to the supporting layer. This layer will elongate as the pipe is stretched,
and due to the lay angle of the wire, a longitudinal displacement of the supporting layer
will have a transverse component relative to the wire. It is this transverse displacement
which leads to the change in lay angle called γ in the previous discussions. In the vicinity
of the end restraint, the lay angle is not allowed to change and hence relative slip between
the supporting layer and the armor wire must occur. One may intuitively understand that
if the friction forces are large, they will �quickly� force the lay angle to change, meaning
that the transverse curvature of the wire will be large close to the end �tting. This will
be associated with large bending stress. To illustrate this, the transverse curvature is
plotted as a function of the arc length coordinate X1 in �gure 26 below. The plot goes
from X1 = 0 to X1 = 300 mm, i.e. it is the part near the end �tting that is shown. The
curve with the largest value at X1 = 0 is for µ = 0.45 and the other is for no friction.

Figure 26: Transverse curvature close to the end �tting with and without friction.

So why is this e�ect larger for the big wire than the small one? It can of course be
multiple reasons to this, but an important point is that the maximum friction force is
related to the contact pressure, and the contact pressure depends on the axial force in
the wire, not only the stress. The axial force in the big wire is of course larger than in
the small wire if the axial stress in the two is the same. This means that the contact
pressure at a given axial stress will be larger for the big wire. This in turn means that the
maximum lateral friction force is larger, which results in larger localized bending stress.
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The analyses did only include a single armor wire, which means that the contact
pressure from a second armor layer is not directly accounted for. Even so, the results may
be used for a �exible riser with two tensile armor layers, if one uses a friction coe�cient
3 times larger than what it really is. This is illustrated in �gure 27 below:

Figure 27: Contact pressure if two armor layers are applied.

Imagine that there is only one armor layer, and the contact pressure on the inside is
p. If a second armor layer is added, a contact pressure of magnitude p must also act on
the inside of the new layer, which means that the contact pressure beneath the inner layer
must increase to 2p to maintain equilibrium. Thus, the total contact force on the inner
wire is 2p on the inside and p on the outside. There will be friction on both sides of the
inner wire, and the available lateral friction force (or stress) is now µp+µ2p = 3µp. This
indicates that the e�ect of the additional external tensile armor layer is achieved by using
a 3 times larger friction coe�cient. For example, if the actual friction coe�cient is 0.15,
the 0.45-curves in the above results should be used for a �exible pipe with two tensile
armor layers.

This means that for a �exible pipe with two tensile armor layers with wires of dimension
15 x 6 mm and a friction coe�cient of 0.15 between the steel material and the supporting
layer, one may experience a localized bending stress of approximately 16 % of the axial
stress if the pure axial stress is 400 MPa. This is signi�cant, and should be included in
fatigue analyses of the armor wires. It is however noted that all the above calculations
rests on the assumption that the armor wires are fully �xed at the end �tting. The
accuracy of this assumption depends on the end �tting construction, and more detailed
analyses taking the end �tting behaviour into the calculations should be performed.
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6 External pressure buckling

6.1 Introduction

Tensile armor wires in �exible risers are designed primarily to withstand large axial tensile
loads due to weight and environmental actions. To maintain the �exibility of the pipe,
the individual wires are made slender. This may be an issue in cases where the pipe is
subjected to a compressive axial force, because the slender cross section makes the wires
susceptible to elastic buckling. A compressive axial force may occur when the pipe is
loaded by external pressure. As discussed in a number of textbooks, for example [27],
both internal and external pressure will give rise to so called end cap forces. This means
that in a scenario where the internal pressure is low and the external pressure is high, the
wires may be subjected to compression. An example of such a scenario is the installation
phase. If a riser is being installed in deep water while it is empty inside, the part of the
riser close to the touch down point may be in danger. There will be very little tension
from riser weight, and the high external pressure combined with large pipe curvature may
be critical.

It must of course be taken into account that the armor wires are part of a larger struc-
ture, and that the surrounding layers will provide support. This means that compressive
failure may happen as a result of failure of the supporting layers, or slip between layers.
Hence, compressive failure is not necessarily a true buckling phenomenon.

There are basically two directions in which the wires may de�ect when they fail. They
may move outwards or sideways. The associated failure modes are radial and lateral

buckling. The two modes are very di�erent because of interaction with the surrounding
layers of the pipe, and the critical load for each mode will be determined from di�erent
parameters. For radial failure, the strength and sti�ness of the layers outside the tensile
armor will be important. These layers are typically the external plastic sheath and a
tape layer used speci�cally to prevent radial failure of the armor wires. When it comes to
lateral failure, the friction coe�cient and pipe curvature are important, as lateral friction
forces will restrain the wires from buckling.

In this section, both analytical and numerical analyses will be done in order to inves-
tigate the buckling behaviour of armor wires. As there is little previous work done in this
area, emphasis will be put on determining the governing e�ects and important parame-
ters. In order to compare the di�erent buckling modes and decide which one is critical, a
single measure of the buckling load is needed. Here, the axial stress in the tensile armor
wires is used to identify the buckling load. As an example, a �exible riser with a mean
tensile armor layer radius of 0.1 meter, a lay angle of 35◦, wire dimensions equal to 9 x 3
mm and a total of 100 tensile armor wires will be used. The wires are assumed to be of
steel with a modulus of elasticity equal to 200 GPa. Other parameters are varied in order
to investigate how the capacity changes.

6.2 Analytical buckling calculations

6.2.1 Radial buckling

The radial failure mode is also known as bird-caging, and was �rst observed in 1989 [4].
This failure mode may in theory occur in two di�erent ways:

• Failure of supporting layer (anti buckling tape)
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• Elastic buckling without tape failure

The �rst mode above is not really a buckling failure, it is simply triggered by the loss
of support. When the ultimate strength of the anti buckling tape is exceeded, a sudden
radial expansion of the tensile armor layers will take place. The second mode is a true
buckling phenomenon which is quite similar to buckling of a straigth beam on an elastic
foundation.

Before any strength calculations are performed it is of interest to summarize some
important physical e�ects. The external pressure, which is the driving force for buckling,
is of course also acting in the radial direction, pushing the external sheath inwards (given
that the external sheath is intact). This will directly counteract the radial expansion. In
order to get radial buckling, the net force in the radial direction must be directed outwards.
Thus one may ask if radial buckling due to hydrostatic pressure is at all possible? A simple
consideration of the radial forces on the external sheath is enough to answer this question.
Say that a �exible riser is empty, and the external hydrostatic pressure is pe. For a pipe
with external radius Re, the compressive force due to the pressure will be:

Tw = peπR
2
e (154)

As given in equation (2), the contact pressure felt by the anti buckling tape/external
sheath is approximately:

pT ≈ Tw tan2 α

2πR2
(155)

where α as usual is the lay angle, and R is the mean radius of the armor wires. Inserting
for Tw gives:

pT ≈ peπR
2
e tan

2 α

2πR
= pe

R2
e tan

2 α

2R2
(156)

As pT acts outwards and pe inwards, radial displacement can only take place if pT > pe.
From the above expression it is seen that this is only the case if:

R2
e tan

2 α

2R2
> 1 (157)

Now, if α = 35◦, this means that the ratio between the external radius and the radius
of the tensile armor must be:

Re

R
>

√
2

tan2 α
≈ 2 (158)

This is unlikely for most �exible risers, as the external radius and mean radius of the
tensile armor layers are normally quite close. It may possibly happen for small diameter
pipes. The above result indicates that investigation of radial buckling when the annulus is
assumed to be �ooded is far more interesting. When seawater has penetrated the external
sheath, the hydrostatic pressure acts on both sides, meaning that the net radial pressure
from seawater is zero. This allows for radial expansion and buckling, and this was in fact
the case when the radial failure mode was observed in 1989. The assumption of a �ooded
annulus is therefore used in the succeeding analyses.
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Radial failure mode 1, anti buckling tape failure

When the annulus is �ooded, there is nothing but the layers on the outside of the tensile
armor to restrain radial expansion. There is little support provided by any plastic layers,
and therefore they will be totally neglected in this context. Thereby, it is the anti buckling
tape alone that must carry the radial pressure due to expansion of the tensile armor, and
it is the ultimate strength of the anti buckling tape which will determine the critical
external pressure.

The external pressure leads to a compressive load which further will give a contact
pressure acting on the anti buckling tape as given by equation (2). The tape is thin, and
hence the circumferential stress which arises may be found as [25]:

σtape =
Rt

t
pT ≈ Rt

t

Tw tan2 α

2πR2
(159)

where Rt is the mean radius of the tape layer and t is the thickness of the tape. Failure
will occur when this stress reaches the ultimate tensile strength of the tape, σu,tape. As
seen, the stress in the tape does not depend on the cross sectional dimensions of the
tensile armor wires, or any material parameters at all. For a given �exible pipe where
lay angle and radii are given, the only way to increase the capacity with respect to this
failure mode is to increase the tape thickness, or use a stronger tape.

It is further assumed that Rt ≈ R, i.e. that the mean radius of the tensile armor layers
and anti buckling tape are approximately the same. Inserting for the axial force using
equation (1), an expression is found which relates the stress in the anti buckling tape to
the axial stress in the tensile armor wires:

σtape ≈
nσaA

t

cosα tan2 α

2πR
(160)

Here, n is the total number of tensile armor wires, σa is the axial stress in the armor
wires and A is the cross section area of a single wire. By rearranging the above expression,
the critical axial stress in the armor wires is given by the ultimate strength of the tape:

σa,max ≈ σu,tapet

nA

2πR

cosα tan2 α
(161)

The critical axial stress in the armor wires as given by the above equation is shown
in �gure 28 for varying σu,tape and di�erent tape thicknesses. All other parameters are
de�ned from the example riser described in this sections introduction.
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Figure 28: Critical compressive stress in tensile armor wires as a function of anti buckling
tape strength.

It is seen how the critical compressive stress in the tensile armor wires increases pro-
portionally with both the strength and thickness of the anti buckling tape. If a tape
material with an ultimate tensile strength of 1500 MPa and a thickness of 0.6 mm is used,
the maximum compressive stress in the armor wires will be approximately 500 MPa. The
capacity may however be doubled by doubling the tape thickness.

Radial failure mode 2, elastic buckling

The second radial failure mode is an elastic buckling mode, where the armor wires de�ect
radially in a sinusoidal pattern. The solution to a similar problem, which is buckling of
a straight beam on a uniform elastic support, is given in [28]. Here, the critical load
is found using energy principles and an assumed buckling shape. The internal potential
energy contains contributions from bending of the wire and the straining of the elastic
foundation. In this case, the foundation is the anti buckling tape, and its sti�ness will be
important to the critical load. In the analyses performed here, it is assumed that each
wire behaves as an individual structural member, meaning that there is no interaction
between wires. The total number of wires are taken into account by scaling the sti�ness of
the supporting tape. Hence, the buckling load may be determined by looking at a single
wire.

Beacuse bending energy and the elastic energy in the foundation/tape will dominate,
it seems likely that the straight beam solution as given in [28] will provide reasonable
results for a curved armor wire as well. Whether or not this is correct will be seen when
the results are compared to the �nite element analyses.

As the tensile armor wire is restrained from de�ecting inwards due to the large sti�ness
of the underlying layers, it is assumed that it only de�ects outwards. A possible buckling
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shape is shown in �gure 29:

Figure 29: Assumed radial buckling shape.

Using the symbol u for the radial de�ection, the assumed buckling shape is:

u = u0 sin
mπX1

l
(162)

The anti buckling tape is represented by radial springs with a sti�ness per unit length,
k. The internal elastic bending and spring energy over an arbitrarily length l is then:
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(163)

The work done by the axial compressive load, Q1, is given by the axial shortening as
the wire buckles:

We = −Q1

∫ l

0

1

2
u2
,1dX

1 = −Q1

2

∫ l

0

m2π2
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(164)

The principle of minimum potential energy gives the critical compressive load:

dΠ
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(165)
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It is seen that the elastic buckling load depends strongly upon m
l
, the number of

half waves per unit length. The critical load will be the lowest possible, and may be
found graphically by plotting the solution for di�erent m

l
. In order to relate the results

to an actual �exible pipe, it is necessary to �nd the spring sti�ness k from known pipe
parameters. This may be done in the following way.

As previously stated, the external layers feel a pressure, pT , as given in equation (2).
This pressure is equivalent to a line load on each tendon, and the magnitude of this line
load is:

q2 = pT
2πR

n
cosα (166)

where n is the total number of tensile armor wires in the pipe. The factor 2πR
n

comes
from projecting the total pressure around the circumference onto the individual wires.
The factor cosα takes into account that the length along the armor wire is longer than
along the pipe's longitudinal axis, thus the lay angle reduces the line load. Now the strain
in the anti buckling tape when subjected to a radial displacement, u2, is:

ϵ =
u2

R
(167)

The stress in the anti buckling tape when subjected to internal pressure was given in
equation (159), and by combining this expression with σ = Eϵ gives the radial displace-
ment of the tape for a given internal pressure:

u2 = pT
R2

Et
(168)

In the above result it has also been assumed that Rt ≈ R. Inserting for pT using the
relationship given in equation (166) results in:

q2
u2

=
2π

n

Et

R
cosα (169)

This is the radial sti�ness of the anti buckling tape per unit length along the wire,
i.e. the parameter k in equations (163) - (165). Not surprisingly, the sti�ness depends
on both the thickness and modulus of elasticity of the tape. The necessary equations for
calculating the elastic radial buckling load for a given pipe geometry, tape strength and
thickness have now been established. Results for the example riser with varying modulus
of elasticity and di�erent thicknesses for the tape are shown in �gure 30.
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Figure 30: Elastic buckling stress for armor wires as a function of tape sti�ness.

The �gure shows that the critical stress is not proportional to the tape sti�ness in
this case. This is because the bending sti�ness of the armor wire also gives a signi�cant
contribution to the buckling strength of the wire. If this failure mode is to occur, the
critical compressive stress must be lower than the one for the tape failure mode given
previously. This will then depend on the ratio between the elastic modulus and the
ultimate strength of the tape. For example, for a tape thickness of 0.6 mm and an ultimate
strength of 2000 MPa, the elastic modulus of the tape must be less than approximately
80 GPa for elastic buckling to occur. If the elastic modulus is higher than 80 GPa, the
tape will fail before the elastic buckling load is reached. This is seen by comparing �gures
28 and 30.

6.2.2 Lateral buckling

If the anti buckling tape is su�ciently strong to prevent radial buckling, the wire has
only one way to go, and that is sideways. However, if the wire is to slide in the lateral
direction, it must overcome the friction forces from the surrounding layers. If hydrostatic
pressure is acting on the external plastic sheath, there will be very high contact pressures,
thus making it hard to overcome the friction. Therefore, the assumption of a �ooded
annulus will be used here as well. This should make the results presented here �worst
case� scenarios.

As previously discussed, the wires will try to de�ect outwards in the radial direction
when compressed axially. This is due to the initial normal curvature of the wire, κ3.
The wires need to be restrained by an external layer, and from the equilibrium equation
in radial direction which was given in section 4.3, the restraining line load in the radial
direction is:

q2 = κ3Q1 (170)
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where Q1 is the axial compressive force in the wire. This line load is the equivalent
opposing reaction to the pressure excerted on the external layer, as given by equation
(2). The friction force may also be considered as a line load acting along the wire, and
its magnitude is determined by the contact force per unit length, q2, and the friction
coe�cient between the external layer and the wire, µ. There may in principle be friction
forces acting in both the longitudinal and the lateral direction of the wire, but it is only
the lateral friction that restrains lateral movement. For simplicity it will be assumed in
the analytical calculations that the longitudinal friction force is zero, meaning that the
full magnitude of the friction force may be utilized in the lateral direction. From this
assumption it follows that the lateral friction force per unit length is:

q3 = µq2 = µκ3Q1 (171)

It is evident from the above equation that axial compression will actually increase the
available friction force and in this way help prevent buckling. However, the lateral friction
force in equation (171) is based on full utilization of friction in the lateral direction. In
reality, longitudinal friction forces will be present when a �exible pipe is bent, meaning
that the available lateral friction force will be reduced. Therefore it is possible that
equation (171) severely overestimates the lateral friction force when the pipe is subjected
to bending. If this is true there will be a signi�cant di�erence in the analytical results
presented in this section, and the �nite element results presented next.

The starting point for the analytical calculations will be to consider an armor wire
with an initial transverse curvature due to bending. Imagine that a portion of the �exible
riser has been bent to a constant radius of curvature ρ. As discussed in [3], the lateral
sliding of the wires will be restrained even for small friction coe�cients. One may therfore
argue that a good approximation for the tendon curvature is given by the loxodromic curve
curvature [3]:

κ2 = −cosα

ρ
(1 + sin2 α) sin θ (172)

Here, θ the angle in a polar coordinate system with origo in the pipe center, i.e.
θ = 2πZ1

Lp
where Z1 is going in the longitudinal direction of the pipe and Lp is the pitch

length. Thus the transverse curvature along the wire will vary sinusoidally with a period
equal to the pitch length of the wire. It is likely that the wire will follow this curvature
pattern during buckling, meaning that the buckling curvature will be as illustrated in the
�gure below:

Figure 31: Lateral buckling curvature given by the initial curvature from bending.
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Depending on the amplitude of the initial transverse curvature, there will be some
parts of the wire that may slide, while other parts will be fully restrained by the friction.
Assuming that the only forces acting on the wire are the axial compressive force, Q1, and
the lateral friction q3 as given in equation (171), a criterion for lateral sliding is found
directly from the equilibrium equation in the lateral direction:

κ2Q1 = q3 = µκ3Q1

⇒ κ2 = µκ3

(173)

This means that for a given pipe curvature, the section along an armor wire where
κ2 is larger than µκ3 may be subjected to lateral sliding and buckling. At the remaining
sections, where κ2 is smaller than µκ3, no lateral slip is possible, and buckling cannot
take place here. In this way, the initial curvature de�nes a slip zone of a certain length
within each 1

2
-pitch of wire. This is shown in �gure 32

Figure 32: Lateral sliding is possible only in a zone de�ned by the initial transverse
curvature.

The length of this zone can be approximated by combining the above sliding criterion
with the loxodromic expression for transverse curvature. The point of transition between
possible slip and no slip is given as:

ρ−1 cosα(1 + sin2 α) sin (
πX1

L
) = µκ3

⇒ X1 =
L

π
sin−1 (µ

κ3

ρ−1 cosα(1 + sin2 α)
)

(174)

Thus the length of the slip sone is:

l = L− 2X1 = L(1− 2

π
sin−1 (µ

κ3

ρ−1 cosα(1 + sin2 α)
)) (175)

The length of this slip zone will be used to calculate the critical stress in an approxi-
mate way. For straight beams, the elastic buckling load, or Euler buckling load, is given
by [28]:
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σE =
π2EI2
Al2k

(176)

The buckling length lk depends on the boundary conditions. For a straigh beam of
length l which has ends that are free to rotate, lk = l, while for a beam clamped at both
ends, lk = 0.5l [28]. Inspired by this fact, it will in the following be assumed that within
each 1

2
-pitch length of wire, the part which buckles may be modelled as a straight beam

of a length given by equation (175). The boundary conditions are more complicated.
Will the part which is free to slide behave as pinned or clamped? The truth is probably
somewhere in between. To keep it simple, one may argue that if only a small portion of
the wire is able to slip, the remaining parts will provide su�cient support for the beam
to behave as clamped. If, however, the entire wire can slide, then there is no support and
the beam will behave as pinned. Following this idea, a simple interpolation formula for
the buckling length is suggested:

lk = 0.5l(1 +
l

L
) (177)

where l is the length of wire able to slide within each 1
2
-pitch length of wire, and

L is the full 1
2
-pitch length along the wire. Equations (175) - (177) have been used to

plot the elastic buckling stress as a function of initial pipe curvature for di�erent friction
coe�cients. The results are shown below:

Figure 33: Analytical results for lateral buckling stress.

As seen, there is a very strong dependence upon both friction coe�cient and pipe
curvature. This is as expected from this simple analytic model, as the friction coe�cient
and transverse curvature de�nes the length of wire which is able to slide. For zero friction
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there is no dependency upon curvature, as the entire wire is able to slide at any curvature,
but once friction is included, the critical stress increases. Lateral buckling is not possible
when the curvature is such that κ2 < µκ3 along the entire wire, and therefore the critical
stress is in�nite. Once the curvature is large enough to allow sliding, the critical stress
drops, and approaches the same value as for zero friction if the curvature is large enough.

The e�ect of friction is large, and even for the lowest friction coe�cients, a high pipe
curvature is needed for buckling to occur. When comparing to the critical stress for radial
buckling given in �gures 28 and 30, it seems unlikely that lateral failure will occur unless
the friction is low and the curvature is very high.

Because the friction is so important, it may be that a more accurate model taking
the longitudinal friction and sliding into account is needed. There is also of interest to
see if cyclic bending may reduce the buckling load. This will be investigated in the next
section.

6.3 Buckling analyses - A�ex/B�ex

The purpose of this section is essentially to repeat the buckling analyses in the previous
section using the �nite element method and the new curved beam element which has
been developed as part of this thesis. Both radial and lateral buckling analyses will be
performed, and the results compared to the analytical results previously obtained. In
addition, lateral buckling analyses will be done using cyclic curvature. Whether or not
this reduces the lateral buckling load will be investigated.

In order to focus on the fundamental e�ects, the �nite element model will only include
a single armor wire. In reality there may be interaction between the di�erent armor wires,
both internally in a layer and also between one layer and another. The aim of this study
is to gain knowledge about the basic mechanism of tensile armor buckling, and including
all armor wires would only make it harder to interpret the results and explain the physics
behind what is happening. Performing analyses including interaction between armor wires
remains to be done in the future.

6.3.1 The model

The model is mainly the same as the one described in section 5.3, which was used in
assessing the local stress at the end �tting. The geometry and structural elements remain
the same, and the dimensions of the armor wire is 9 x 3 mm in all the analyses.

New contact elements are however added in order to represent the anti buckling tape.
A spring element type called spring137 is used to represent radial contact as well as
longitudinal and lateral friction between the tensile armor wire and the external layer.
Spring137 is a point spring, and every node along the armor wire is attached to one of
these point springs. The point springs are given a radial sti�ness which corresponds to the
radial sti�ness of the anti buckling tape. This sti�ness is de�ned by equation (169), but
because the spring in the A�ex/B�ex model is a point spring, the sti�ness is multiplied
with the lengh of the armor wire element. The reason for using a point spring is that
it has the possibility for nonlinear sti�ness characteristics. This is necessary in order to
simulate rupture of the anti buckling tape.

To simulate friction, the longitudinal and lateral degrees of freedom of the springs are
coupled to the radial degree of freedom such that the maximum friction force is µ times
the contact force. If this force is exceeded, the sti�ness drops to approximately zero,
simulating sliding under friction. The sti�ness characteristics of the friction spring and
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their e�ect on the results are discussed in section 6.3.4.

The boundary conditions are:

• The pipe node at the middle of the pipe �xed in all 6 degrees of freedom.

• Armor wire �xed in the longitudinal and lateral direction at both ends.

The compressive load is modelled as a negative internal pressure.This gives no physical
meaning, and is merely a practical way of obtaining a compressive axial force in the armor
wire, as the program automatically accounts for the end cap force. Because the goal is
to simulate the pipe with a �ooded annulus, the pressure load is given as internal and
negative instead of external. If the load had been applied as external pressure, the extra
contact pressure would have been included in the analysis, and this is undesireable.

6.3.2 Radial buckling analyses

Radial failure mode 1, anti buckling tape failure

The springs representing the anti buckling tape is given a high initial sti�ness, but as
the force reaches a critical value, the sti�ness drops to zero. This simulates failure of
the anti buckling tape. The thickness and modulus of elasticity is �xed at t = 0.6 mm
and E = 100GPa, and the ultimate tensile strength is varied in the di�erent analyses.
The spring characteristics are entered as a force/displacement relationship, and the radial
displacement when the tape fails is found from the ultimate strain:

u2,u = Rϵu = R
σu

E
(178)

The force associated with this displacement is entered as:

F2,u = kspringu2,u (179)

where kspring is the radial point spring sti�ness, which is determined by multiplying
the expression in equation (169) with the length of the armor wire element. This is the
maximum force in the tape, which corresponds to the ultimate tensile strength.

A number of analyses have been run using di�erent tape strength. Friction combined
with zero pipe curvature ensures that no lateral buckling occurs. The results clearly shows
that the wire suddenly pops out when the tape fails. The results are visualized in the
computer program Xpost, and a picture showing the wire just after the tape has failed is
shown in �gure 34.
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Figure 34: Visualization of A�ex/B�ex results after failure of the anti buckling tape.

Results in terms of maximum compressive stress in the armor wire is presented in the
next �gure, together with the equivalent analytical results found previously:

Figure 35: A�ex/B�ex results and analytical results for maximum compressive stress in
armor wire, anti buckling tape failure.

The �nite element results are almost exactly the same as the analytical. This is as
expected, because of the simple failure mechanism. It is only the stress in the anti buckling
tape that matters, and this is found accurately by analytic formulas. It seems unnecessary
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to perform numerical analyses with di�erent tape sti�nesses and thicknesses as there are
strong indications that the results would match the analytical results here as well.

Radial failure mode 2, elastic buckling

The only change in the model compared to the one used in the analyses of radial failure
mode 1 is that the radial springs now has a linear force/displacement relationship. This
means that the springs still simulate the sti�ness of the anti buckling tape in the same
way, but the sti�ness is constant, i.e. the tape never fails. This forces the wire to buckle
in mode 2. The buckling mode appears as shown in �gure 36.

Figure 36: Visualization of A�ex/B�ex results, radial elastic buckling.
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Figure 37: A�ex/B�ex results and analytical results for maximum compressive stress in
armor wire, radial elastic buckling.

This sinusoidal buckling shape is clearly seen in the visualization, and it matches the
assumed shape of the analytical solution well. The A�ex/B�ex results are shown in �gure
37 together with the analytical results. A small discrepancy between the two types of
analysis is seen, but the overall agreement is good. From the above results it seems like
the �nite element model predicts a capacity approximately 8 - 14 % larger than what
was found analytically, but the numbers are in fact not accurate enough to say this with
certainty. The uncertainty in the A�ex/B�ex results is due to the �nite size of the load
increments. One can only say whether or not buckling has occured at any given load
increment. So if the wire actually buckles in the middle of two load increments, it would
seem like it buckles in the last. This error may be reduced by using very small load
increments close to the point where failure is expected.

When the above A�ex/B�ex results were obtained, results were only printed at ap-
proximately every 50 MPa of axial stress in the wire, meaning that the uncertainty is
almost of the same magnitude as the discrepancy between the analytical and numerical
results. This means that a better agreement could have been found if a better resolution
in results had been used.

With this in mind, the results shown in �gure 37 is rather convincing, and it seems
like both the analytical and numerical model is capable of predicting the radial elastic
buckling load.

6.3.3 Lateral buckling analyses

Gradually increasing pipe curvature

Analyses for a selection of friction coe�cients have been performed. The analyses were
done by �rst applying the pressure load. Next, gradually increasing prescribed curvature
is given to the pipe elements to simulate bending of the pipe. The magnitude of the
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pipe curvature increases linearly towards the middle of the pipe, such that the point of
maximum curvature is at the center of the model. The prescribed curvature is increased
until the armor wire buckles sideways. At this point, the static anlysis diverges, and the
last few steps are run dynamic in order to get past the point of buckling. Figures 38 and
39 shows the center part of the model before and after lateral buckling has occured.

Figure 38: A�ex/B�ex model prior to lateral buckling.

Figure 39: A�ex/B�ex model after lateral buckling.

The springs simulating the anti buckling tape has been given a high sti�ness to ensure
that buckling can take place in the lateral direction only. Analysis results are presented in
�gure 40 below, together with the analytical results given previously. The reported axial
stress is taken at the neutral axis of the pipe, i.e. the axial stress as a result of bending
is not included.
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Figure 40: A�ex/B�ex results and analytical results for lateral buckling stress, gradually
increasing curvature.

The numerical results are marked with solid dots and the analytical results with lines.
The number of numerical results are somewhat limited, but it is clear that the trend is
very much the same as in the analytical results. Also here, the strong dependence upon
the friction coe�cient is seen, and increasing the friction coe�cient means that the wire
can withstand a much higher compressive force or curvature before buckling. There is
however a signi�cant discrepancy between the analytic results and those obtained with
the A�ex/B�ex model. The main di�erence seems to be that failure occurs at a lower
curvature than what was found analytically. This is probably due to the assumption used
in the anaytical calculations that the friction forces may be fully utilized in the lateral
direction. What happens in the �nite element model is that longitudinal friction forces
contributes to the total magnitude of friction, meaning that slip occurs over a larger zone
than predicted by the analytical formulas presented previously.

Cyclic pipe curvature

Due to the dynamic behaviour of a �exible riser, it is of interest to check if the lateral
buckling strength may be reduced by applying cyclic curvature. Even if the maximum
curvature is smaller than the critical curvature for buckling, one may imagine that the
wire slides laterally a very small distance (without buckling) for each cycle. In this way the
maximum tranverse curvature of the wire may gradually increase for each global curvature
cycle. If this is the case, the wire will at some point obtain a transverse curvature so large
that it buckles.

The same A�ex/B�ex model as before is used to investigate this. A combination of
compressive stress and curvature is selected such that buckling should not occur if the
curvature is static. Now the prescribed curvature is varied from zero to the maximum
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value repeatedly, simulating an exaggerated state of cyclic curvature. Ideally, a large
number of analyses with di�erent curvatures, stress and friction coe�cients should be
done. It is impossible to say in advance how many cycles are required, and in some cases
a large number of cycles may be necessary.

It is not within the scope of this thesis to do such an extensive study, but a smaller
number of analyses will be done in order to provide some information about how cyclic
curvature a�ects the capacity. Because of limited computer resources, the number of
cycles in each analysis will be kept below 25. This might be too few cycles to induce
buckling in some cases, but the results will in any case show if the wire accumulates more
transvere curvature for each cycle. If it is so, it seems likely that buckling will occur after
a larger number of cycles.

Analyses with a friction coe�cient of 0.10 and 0.15 has been performed, and the results
are summarized in the tables below:

Table 2: Analysis results for cyclic curvature, µ = 0.10

Axial stress

in armor wire

(MPa)

Maximum

pipe curva-

ture (m−1)

Number of cycles to failure

300 0.29 2
300 0.25 5
300 0.2 21
300 0.15 No increasing lateral displacement

Table 3: Analysis results for cyclic curvature, µ = 0.15

Axial stress

in armor wire

(MPa)

Maximum

pipe curva-

ture (m−1)

Number of cycles to failure

300 0.4 3
300 0.35 5
300 0.29 11
300 0.25 22
300 0.2 >25
300 0.15 No increasing lateral displacement

The results show that in some cases the armor wire gradually slides sideways, and
suddenly buckles. This happens only in the cases where the pipe curvature is above a
critical level. For example, in the case of µ = 0.10, there is no sign of increasing lateral
sliding for a maximum curvature of 0.15 m−1. Only in the cases with a maximum curvature
of 0.2 m−1 or higher are an increasing lateral de�ection observed. In practical matters
it is not that interesting just how many cycles which give failure, but it is important
to know if failure will occur or not for a given combination of curvature variation and
stress. The results presented here indicate that there exists a critical curvature limit,
meaning that if the curvature is kept below this limit there will be no buckling, but if this
limit is exceeded, failure may occur after some number of cycles. From the above results
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it appears that this curvature limit is somewhere between 0.15 m−1 and 0.2 m−1 for a
friction coe�cent of both 0.10 and 0.15, given a compressive stress of 300 MPa,.

To illustrate how the wire gradually slides sideways, snapshots of the lateral wire
displacement is shown in �gure 41 below. The �gure shows the lateral displacement
relative to the supporting pipe structure as a function of the wire arc-length at di�erent
time steps. All the snapshots are taken at maximum curvature, so the di�erence between
one curve and the next corresponds to the lateral sliding in a single cycle. As seen in the
�gure, the lateral displacement increases dramatically when a critical curvature has been
accumulated.

Figure 41: Lateral displacement of armor wire subjected to cyclic curvature.

Comparing the results using cyclic curvature to the results obtained by monotonically
increasing the curvature, it is seen that cyclic curvature clearly has a negative e�ect on
the capacity. Taking the case with a friction coe�cient of 0.15 as an example, it was
found that the curvature had to reach values as large as 0.42 m−1 to get buckling using
static curvature, and this was for a compressive stress of 900 MPa. Here we have seen
that by varying the curvature, lateral buckling may occur at a maximum curvature of 0.2
m−1 and a compressive stress of 300 MPa. This is still a large curvature, but signi�cantly
lower than before.

The �nite element model used in the analyses consists of a single armor wire and a
pipe core. It was initially believed that the characteristics of the core was unimportant
to the results for wire buckling, and therefore there has been no focus on the value of the
axial sti�ness of the pipe elements. It was however noticed during the analysis work that
the axial strength of the supporting pipe elements actually had some e�ect on the results.
This is probably related to the fact that a sti� core will carry more axial force than a soft
core. In the results presented here, an axial sti�ness (EA) of 1 · 106 N was used. The
bending sti�ness of the pipe core was found to have no signi�cant impact on the results.

6.3.4 Lateral buckling and friction modelling

As friction between the tensile armor wires and the external layer is highly important for
the lateral buckling strength, it seems in place to investigate and discuss the modelling
of this phenomenon. The �nite element model simulates dry friction, or Coulomb fric-

tion using springs. The maximum force in such a spring is determined as µ times the
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contact force, and as long as the force is below this value the sti�ness is very high. This
simulates full stick between the wire and the external layer. To ensure absolutely zero
displacement under stick conditions, the sti�ness of the spring would have to be in�nitely
large. However, to avoid numerical problems, the spring sti�ness cannot be extremely
large relative to the other terms in the system sti�ness matrix. In the numerical analyses
done previously in this thesis work, an elastic displacement of the friction springs of 1
mm has been allowed. The force-displacement characteristics of the friction springs are
illustrated in �gure 42.

Figure 42: Force-displacement diagram for the friction springs.

Lateral buckling under cyclic curvature was triggered by very small lateral displace-
ments for each cycle. Because this failure mode is sensitive to small displacements, it
seems likely that the results may be a�ected by changing the allowed elastic friction
spring displacement. Whether or not this in�uences the results will now be investigated.

Analyses with µ = 0.15 has been repeated, using 0.1 mm as the new elastic friction
spring displacement. The compressive stress in the wire is the same as before, and the
new results are shown in the table below:

Table 4: New results, using an elastic friction springs displacement of 0.1 mm. µ = 0.15

Axial stress

in armor wire

(MPa)

Maximum

pipe curva-

ture (m−1)

Number of cycles to failure

300 0.29 4
300 0.2 9
300 0.15 15
300 0.1 >25



6 EXTERNAL PRESSURE BUCKLING 76

As suspected, the elastic friction spring displacement has an e�ect on the results.
When this value is reduced from 1 mm to 0.1 mm, it is evident that a lower number of
cycles are required to obtain the buckled con�guration. A possible explaination to this
may be that the elastic friction zone along the wire is shorter when the elastic displacement
is reduced, meaning that sliding takes place over a larger portion of the wire.

Another e�ect which may be important is that when the curvature has reached maxi-
mum and the process is reversed towards zero curvature, an elastic springback occurs due
to the elasticity of the springs. This means that the wire will be �pushed� back towards
its initial position by the friction springs. This is not a real physical e�ect, but it is a
result of the way the friction force is modelled. If the spring pushes the wire back, it will
slow down the buckling process, as the lateral displacement per cycle will be diminished.

The case with a smaller elastic displacement should give a better representation of the
reality, as the elasticity in the friction springs is unphysical.

In the initial cyclic curvature analyses, no increasing lateral displacement was found for
a maximum pipe curvature of 0.15 m−1, but with the elastic spring displacment reduced
to 0.1 mm, the wire actually buckles after 15 curvature cycles. A gradually increasing
lateral displacement is observed for a maximum curvature as low as 0.1 m−1. When it
comes to practical use of the results, it means that one may expect lateral buckling to
occur at even lower curvatures, because real life friction will have no elastic displacement
at all.

Because the modelling of friction is important to the results, further studies should be
performed. A more comprehensive study of how the friction spring characteristics a�ects
the results may provide valuable information. Perhaps it is possible to tune the friction
spring such that the results is as close to reality as possible. It may also be considered to
use alternative methods for friction modelling, which does not involve the spurious elastic
deformation.
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7 Conclusions

This thesis has focused on problems relevant for deep water applications of �exible risers.
Two di�erent issues have been investigated, namely local stresses in tensile armor wires
at the end �tting when the riser is subjected to large axial loads, and buckling of tensile
armor wires under compression due to external pressure.

Both analytical and numerical calculations have been performed, and a central part of
the numerical analysis has been the development of a new curved beam element for the
�nite element code A�ex. The new element includes rotational degrees of freedom around
the weak axis of the wire cross section, which enables the simulation of radial buckling
phenomena. The new element has been used extensively in analyses of both stresses at
the end �tting and armor wire buckling, and the element performs well. The new element
has also been implemented in a special version of the B�ex2010 program.

The investigation of local stresses at the end �tting are based on the assumption that
tensile armor wires are fully �xed at the point of termination. It is uncertain how good
this approximation is, but in any case the assumption is conservative. Any �exibility in
the end �tting structure will reduce the local stresses.

In the investigation of local stresses at the end �tting, analytical calculations were
performed in order to get an understanding of the problem. Terms due to warping of the
cross section were included, and the longitudinal warping stress was calculated and com-
pared to other stress components. The warping sti�ness was found to give no signi�cant
contribution to the solution, and the warping stress was totally negligible. Thus it has
been established that there is no need to include warping sti�ness terms, or take warping
stress into account when doing analyses of tensile armor wires close to end terminations.

The localized bending stress is however more interesting. In the analytical calculations
it was found that the magnitude of bending stress relative to the pure axial stress increases
for increasing axial stress, and the ratio is approximately proportional to the square root
of the pipe strain. This means that the bending component is more important when the
riser is subjected to large tensile loads, and may thus be important for deep water risers.
It was also found that the ratio between bending and axial stress is virtually independent
of the wire cross section dimensions as long as friction forces are disregarded.

There were no friction forces included in the analytical model, and because large
contact pressure will build up as a result of the tensile force in the armor wires, friction
will be important. The analytical expressions presented in section 5 is therefore perhaps
more of academic than practical interest. Friction was however included in the �nite
element analyses with the new curved beam element. The �nite element analyses agreed
very well with the analytical results when friction was set to zero, thus verifying that the
analytical model is correct within its limits. As expected, the results change signi�cantly
when friction between the wire and supporing layer is included. With friction, the ratio
between bending and axial stress is no longer independent of the cross section dimensions,
as a larger cross section area will give a larger axial force and contact pressure. Analysis
results show that for an armor wire of dimensions 15 x 6 mm, the bending stress exceeds
16% of the axial stress at an axial stress of 400 MPa for a riser with two tensile armor
layers and a friction coe�cient of 0.15. The percentage is even larger if the axial stress
is increased further. This indicates that the localized bending stress will constitute a
signi�cant part of the total longitudinal stress in the tensile armor wire, given that the
wire is fully �xed at the end termination.

When it comes to buckling of tensile armor wires, two di�erent modes has been in-
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vestigated, namely radial and lateral buckling. The importance of annulus conditions
has been discussed, and it was shown that outwards radial motion of the armor wires is
unlikely if the annulus is dry. Therefore, the analyses in this thesis have been performed
with the assumption of a �ooded annulus.

Both analytical and numerical studies of the di�erent buckling modes have been per-
formed, and the new curved beam element has been used for the numerical studies. One
of the objectives has been to �nd out under which circumstances the armor wire buckles
radially or laterally. There is however no simple formula for this, as there are many pa-
rameters in�uencing the capacity. In the analyses, an example riser with a given radius,
lay angle, wire dimensions and number of wires is used, but other parameters are varied
to investigate how the capacity changes. It is found that the capacity to the �rst radial
failure mode, which is anti buckling tape failure, is determined by the ultimate tensile
strength of the tape along with the tape thickness. The second radial failure mode is
elastic buckling of the armor wire, where the anti buckling tape acts as an elastic foun-
dation. The capacity with respect to this failure mode is given by the bending sti�ness
of the wire, the anti buckling tape thickness and the modulus of elasticity of the tape.
This means that the capacity with respect to both radial failure modes may e�ectively be
increased by applying a thicker tape layer.

Comparison between the analytical and �nite element results agree very well for both
radial failure modes. The small di�erences between the two methods found for radial
failure mode 2 is most likely due to the size of the intervals used for storing results. It
is therefore believed that both the analytical and �nite element results are correct, and
that both methods may be used to predict the capacity with respect to radial buckling.

The lateral buckling strength is however somewhat more di�cult to predict than the
radial, and the mechanism is quite di�erent. The armor wires will be restrained from
lateral displacement by friction forces, but at some point the friction will be overcome,
and lateral sliding can take place. This nonlinear process is captured by the �nite element
model, and an attempt to describe it analytically has also been done. There is however
a signi�cant discrepancy between the analytical and numerical results, even though both
methods show that the critical wire stress is strongly related to pipe curvature and friction
coe�cient.

The analytical model is based on calculating the Euler buckling load for a straight
beam, using the length of the �slip zone� as an important input parameter. The length
of the slip zone is determined by the friction coe�cient and pipe curvature, hence the
large correlation between critical stress and these two quantities. Compared to the �nite
element results, the analytical method overpredicts the capacity. This is because the
analytical model assumes that all available friction force can be utilized in the lateral
direction. This is not the case, because longitudinal friction forces are present when a
�exible pipe is subjected to bending. Thus the lateral friction force is reduced. This e�ect
is included in the �nite element model, and the results from the �nite element analyses
are therfore regarded as most correct.

Through �nite element analyses it has also been observed that cyclic curvature will
e�ectively decrease the buckling capacity. By alternating the pipe curvature between
zero and a given value, the armor wire may gradually slide sideways. After a number
of cycles, the accumulated transverse curvature become so large that the wire buckles.
This happens even if the maximum curvature is signi�cantly lower than the critical value
observed when the curvature was monotonically increased. This may be important to the
design of deepwater risers, because dynamic curvature always will be present due to the
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environmental forces.
It was however found that the behaviour during cyclic bending was a�ected by the

numerical characteristics of the spring elements simulating friction. The validity of the
results is therefore somewhat uncertain, but they indicate that lateral buckling may be
an issue for pipe curvatures in the vicinity of 0.1 m−1 combined with a compressive stress
of 300 MPa, even if the friction coe�cient is as large as 0.15.

7.1 Recommendations for further work

The accuracy of the predicted bending stress at the end �tting depends on the validity
of the assumption that the armor wires are fully �xed at the end. In order to be truly
con�dent in the results, further studies taking the actual geometry and material prop-
erties of the end �tting into account should be performed. The localized bending stress
calculated in this thesis arises due to the rotational restraint, and if the armor wires are
able to rotate only slightly inside the end �tting, this will a�ect the results.

There is undoubtfully more work to do when it comes to buckling of armor wires. To
start with, this thesis has focused on a single armor wire in contact with an external tape
layer. In reality, there is a large number of wires, separated in di�erent layers. Forces
may be transferred from one layer to the neighbouring as both normal and frictional force,
and interaction e�ects may alter the behaviour. The A�ex/B�ex model may be used to
analyse a riser cross section including all armor wires through proper use of contact
elements. In addition, contact between wires in the same layer will probably occur during
lateral buckling, and contact elements can possibly also be utilized to capture this e�ect.

Further, the armor wire material has been assumed to behave linearly elastic at all
times. As large bending stresses may occur when the wire buckles, the material behaviour
may in reality be elastoplastic. The true material behaviour might be included in a future
�nite element analysis of the problem.

It was observed that lateral buckling as a result of cyclic curvature may occur at
relatively low stresses for certain combinations of curvature and friction coe�cient. A
more extensive study of this phenomenon is necessary in order to provide a complete
understanding of it. However, the issue of results depending on the elastic sti�ness of the
contact friction springs (as discussed in section 6.3.4) needs to be solved. New analyses
with smaller allowable elastic deformation may be performed, and possibly, the results will
converge when a su�ciently small value is used. If this is unsuccessful, some alternative
way of friction modelling may be necessary.
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Appendix: Implementation of the new curved beam el-

ement

The following is a list of all changes done in the A�ex code when implementing the new
curved beam element described in section 4.6. For an explaination of the function of the
di�erent subroutines, see [19]. The subroutines are listed in the order which they are
called, and the changes are listed in the order which they appear in the code.

• a�ex.f:

� Changed NDOF to 5NNOD and NBW (bandwidth) to 10.

� Changed matrix indicators L16-L19 and L38-L40.

• insp.f:

� Changed array dimensions.

� Changed I3 to 5 under read boundary conditions, read point spring properties
and read prescribed de�ections.

� Changed counters and added new terms under calculate initial conditions for
spring force/sti�ness/displacement, internal forces and element end forces.

� Changed I1 to 5I-3 under radial spring properties.

� Changed read statements under restart condition.

• init.f:

� Changed the counters I1 and I2.

• anal.f:

� Changed array dimensions.

� Changed I1 under point spring.

� Changed loop range from 8 to 10 under set zero global sti�ness matrix.

� Changed loop range from 10 to 12 under form element sti�ness matrix.

� Changed I1 and I2 used to add into global sti�ness.

� Changed 4NNOD to 5NNOD under residual tension forces at ends.

� Changed I1 and I2 under contact pressure forces.

� Changed I2 under implement spring sti�ness.

� Changed I3 under point spring sti�ness.

� Changed I1 under boundary conditions and prescribed de�ections.

� Changed 4I-1 to 5I-2 and 4I-3 to 5I-4 under update coordinates and angle.

� Changed 4I-3 to 5I-4, 9 to 11 and 10 to 12 under adjust internal forces to take
friction into account.

� Changed 4I-2 to 5I-3 under update contact spring strains and stresses.

� Changed 4I-3 to 5I-4 and 4I-1 to 5I-2 under calculate directional cosines.
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� Changed 4 to 5 in I3 under update �xed spring strains and stresses.

� Changed 4I-3 to 5I-4, 4I-2 to 5I-3 and 4I-1 to 5I-2 under internal load vector
for contact springs.

� Changed 4I-1 to 5I-2 under �nd moment contribution from contact forces.
Added internal forces for the new rotational degree of freedom due to dis-
tributed contact forces.

� Changed I3 under support reactions.

� Changed write statements used for writing element forces to �le.

� Changed 4 to 5 under update plastic spring values.

• stlo1.f:

� Changed array dimensions.

� Changed loop range from 10 to 12.

� Changed interpolation polynomials.

• adfo.f:

� Changed array dimensions.

� Changed I1 from 10I-10 to 12I-12.

� Added terms 11 and 12 for element end forces.

• mat2.f:

� Changed array dimensions.

� Changed loop range from 10 to 12.

� Changed interpolation polynomials.

• adfo1.f:

� Same changes as for adfo.f.

• geom1.f:

� Changed array dimensions.

� Changed loop range from 10 to 12.

� Changed E1 to be the sum of the axial strain and the prescribed axial strain.

� Changed interpolation polynomials.

• keik.f:

� Changed array dimensions.

� Changed 9 to 11 and 10 to 12 under invert Kii and correct load vector.

� Changed 8 to 10, 9 to 11 and 10 to 12 under determine H1-matrix, calculate
e�ective element sti�ness.

• glfo.f:
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� Changed array dimensions.

� Changed 4IEL-3 to 5IEL-4.

� Added two internal force terms (one at each element end) and changed element
degree of freedom numbers.

• adst.f:

� Changed array dimensions.

� Changed 4 to 5 in loop range and matrix operations.

• spst.f:

� Changed array dimensions.

� Changed I1, I2, I3 and I4.

� Added 5 terms, SK(i,5).

• adsp.f:

� Changed array dimensions.

� Changed 4 to 5 in loop range.

• gstr.f:

� Changed array dimensions.

� Changed I1 and I2.

� Added term 9 and 10 in the local vector.

• stra.f:

� Changed array dimensions.

� Changed I2.

� Changed old terms and added terms 5 and 10 in the local displacement vector.

• upda1.f:

� Changed array dimensions.

� Changed 8 to 10 in loop range.

� Changed 9 to 11 and 10 to 12 in determine internal u.

� Changed interpolation polynomials.

• stre1.f:

� Changed array dimensions.

� Changed 10 to 12 in loop range.

� Changed interpolation polynomials.

• adfo2.f:

� Same changes as for adfo.f and adfo1.f.



REFERENCES A4

• zspr.f:

� Changed I2.

• xfric.f:

� Changed I2 and I3.

• hysp.f:

� Changed I1 and I3.

• prel.f:

� Changed array dimensions.

� Changed 4I-3 to 5I-4 in element axial stress.

• prne.f:

� Changed 4I-1 to 5I-2 and 4I-3 to 5I-4 under write element stresses.

� Changed 4I-1 to 5I-2, 4I-2 to 5I-3 and 4I-3 to 5I-4 under de�ection and spring
status.

• prdi.f:

� Changed array dimensions.

� Changed 4 to 5 under nodal displacement.


