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Abstract: 

The motivation for this thesis is to investigate how storm sea states in deep water transforms as the 

waves propagate towards shallow water. This is connection with the design of bottom fixed wind 

turbines in finite water depths. In order to investigate how the sea state is transformed, there have been 

performed a model test where the generated waves are measured as they propagate over a sloping beach. 

 

Theory behind different shallow water effects and how these will transform the sea state, is presented. 

The results obtained from the present model test have also been compared to similar model tests, and the 

comparison generally shows the same behavior.  

 

The results show that the surface process of the waves transforms into a nonlinear process, and the 

deviations from a Gaussian process shows this clearly in terms of values for skewness and kurtosis. It is 

seen that wave breaking will be an dissipation important in the wave spectra, significant wave height and 

the distributions of wave and crest heights in the sea state. Where wave breaking is seen to reduce the 

energy content in the wave spectrum, and contributes to make the proposed conventional distribution 

functions for both wave and crest height distributions conservative. The significant wave height is also 

seen to be transformed by effects from shoaling. 

 

For the largest individual waves it is seen that the waves in the measured time series are asymmetrical 

with respect to the front and back of the wave. This effect along with the calculated Ursell number for 

these waves indicates that there is a need for sophisticated wave model in order to model the surface 

elevation of the waves with corresponding wave kinematics. 
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The background for Statoil interest in waves in intermediate water depths is that the company is in the 

process of installing wind turbines off the east coast of England. Furthermore, there are plans for 

major wind turbine parks in the southern North Sea. The wind turbines that are in the process of being 

installed and this work will be a part of the work done in order to verify the design loads. More 

important is to ensure that Statoil with respect to future design of wind turbines have a solid scientific 

and engineering foundation for what is done.  

 

It is assumed that a sufficient knowledge regarding surface wave elevation process for water depths 

from 70-80m and deeper. In connection with this project, 70-80m is considered to represent deep 

water although this depth formally speaking is not deep water for storm waves. The wind turbines are 

installed in water depths from 15-35m. We will refer to this as shallow water, but formally this depth 

is more likely to represent intermediate depth.  

 

The steps involved in predicting design loads on the wind turbine foundation are as follows. The start 

is to establish a set of design storms in deep water (80m). These storm events are considered as the 

boundary condition for the wave analyses transforming the deep water wave conditions to more 

shallow water. In such an analysis are effects wind, wave refraction, and dissipative mechanisms like 

bottom friction and wave breaking accounted for. Interactions between the various wave components 

are also included. The wave models are spectral models, i.e. the calculate the changes of energy 

content of the various wave components, but the phasing between the components are not monitored. 

As a consequence spectral models can not produce wave histories for the surface elevation. Thus the 

models do not give any information regarding the shapes of extreme waves, in particular not if non-

linearities become important.   

 

It is assumed that in a near future, adequate estimates for the wave spectra for design sea states in 

shallow water will become available. The challenge is to establish reliable estimates for the surface 

elevation process being a result of this energy distribution. Even more challenging may be the shape 

of the largest or most dangerous wave episodes regarding hydrodynamic loads on bottom fixed wind 

turbines. This will be the major focus of this thesis. The background for the thesis work is the 

literature study performed during the project work. During the master thesis, an important part will be 

to perform a model test experiment with waves on a sloping bottom. The MSc candidate is expected 

to play a major role both with respect to define the model test program and the execution of the model 
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test. An important part of the work will thereafter be to analyse model test results and identify 

information that will be of importance regarding design of bottom fixed wind turbines.  

 

In closing the work, the load for idealized wind turbine foundation shall be considered. The relative 

importance of the various terms of the formula for the hydrodynamic load (generalized Morrisons 

equation).  

 

 A possible approach for assessing the problem could include the following steps: 

 

1. Review the problem of estimating the design load on a wind turbine foundation. This should 

be a part of the basis when deciding the content of the model test program. In the model test, 

focus is to be given to the modelling of surface waves 

 

2. Contribute in defining a scope of work for the model test – this includes also plans for 

possible video recordings. The work is to be done in cooperation with Marintek and Statoil. 

Sub-task should be concluded with a test plan for the model test.  

 

3. Execute model test. It is recommended that preliminary analyses are performed during the test 

period to ensure that the test program includes necessary tests in view of the of the master 

thesis.  

 

4. Analyses of model test results in view of scope of work. Subjects that should be assessed are:  

 

* Measure of deviation from the Gaussian assumption as function of wave steepness (s) and 

Ursell number (U).  

 

* Distribution of wave crest and wave height for various combinations of s and U. A 

comparison with available probabilistic models shall be done.  

 

* The shape of the most extreme individual wave events for various s and U. Is there a 

relation between horizontal asymmetry and the parameters s and U?  

 

* Frequency of wave breaking? What type of breaking is observed? 

 

The analyses do not need to be limited to these few points. The candidate may also focus on 

other subjects that may be of concern for the problem under consideration.   

 

5. The load on a pile shall be determined. Thereafter one shall investigate the importance of the 

various terms of generalized Morrisons equation with respect to quasi-static and dynamic 

response of wind turbine. Whether an available computer code (Nirwana) should be used or  

one should make a small program in Matlab is left for the candidate to consider. The surface 

elevation to be used is the surface elevation measured in the model test. A simplified 

kinematic model is to be used.  

 

6. The work shall be clearly presented. Conclusions shall be drawn and possible future work 

shall be established.  

 

 

The work may show to be more extensive than anticipated.  Some topics may therefore be left 

out after discussion with the supervisor without any negative influence on the grading. 
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The candidate should in his report give a personal contribution to the solution of the problem 

formulated in this text.  All assumptions and conclusions must be supported by mathematical 

models and/or references to physical effects in a logical manner. The candidate should apply 

all available sources to find relevant literature and information on the actual problem.  

 

The report should be well organised and give a clear presentation of the work and all 

conclusions.  It is important that the text is well written and that tables and figures are used to 

support the verbal presentation.  The report should be complete, but still as short as possible. 

 

The final report must contain this text, an acknowledgement, summary, main body, 

conclusions, suggestions for further work, symbol list, references and appendices.  All figures, 

tables and equations must be identified by numbers.  References should be given by author 

and year in the text, and presented alphabetically in the reference list. The report must be 

submitted in two copies unless otherwise has been agreed with the supervisor.   

 

The supervisor may require that the candidate should give a written plan that describes the 

progress of the work after having received this text.  The plan may contain a table of content 

for the report and also assumed use of computer resources. 

 

From the report it should be possible to identify the work carried out by the candidate and 

what has been found in the available literature.  It is important to give references to the 

original source for theories and experimental results. 

 

The report must be signed by the candidate, include this text, appear as a paperback, and - if 

needed - have a separate enclosure (binder, diskette or CD-ROM) with additional material. 

 

Supervisor:   Dr. Carl Trygve Stansberg, Marintek  

Prof. II Sverre Haver, Statoil ASA. 
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I 
 

 

Summary 
In this thesis it is investigated how the wave conditions transforms as storm condition sea states 

propagate from deep to shallow water, by means of a model test with a sloping beach. 

There is given a short overview of important effects in shallow water and how these effects 

transform the wave spectra. Theoretical models for wave spectra in finite water depths, wave and 

crest height distributions are also presented. 

The present model test is presented with a description of observations, setup, test programs and 

uncertainties. 

The data from the present model test have been analyzed, and it is seen that the skewness and 

kurtosis increase with decreasing water depth. The growth of the skewness is fund to be proportional 

to the Ursell number, similar relations for the kurtosis are not fund. It is seen as the skewness grows 

larger than zero and the kurtosis grows larger than 3, that the process grows into a non Gaussian 

process. The significant wave height is seen to be dependent on wave shoaling and wave breaking.  

The wave spectrum remains fairly constant throughout the propagation from deep to shallow water, 

but significant dissipation due to wave breaking is seen in a region corresponding to a full scale water 

depth of 15-20 meters. In general dissipation from bottom friction should cause a significant 

decrease of the energy in the wave spectra, but this is not seen in the present model test. 

There have been performed a comparison with the spectral estimates and the TMA spectra for finite 

water depths. It is seen that the TMA spectrum over predicts the energy dissipation of the spectra 

compared to what is seen in the spectral estimates for the present model test. 

Wave and crest height distributions have been compared to data by performing a zero up crossing 

analysis, and from the present model test it is seen that the largest waves from the largest sea states 

seem to be significantly affected by wave breaking. This causes the conventional distribution 

functions to be conservative. 

There are also presented plots of the largest waves from the measured time series in space. And 

from the largest sea states the waves are clearly asymmetrical with respect to the front and back of 

the wave.  
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1  Introduction 
The background for this thesis is related to bottom fixed wind turbines in a water depth of 15-40 

meters. These structures are already being built, thus the work in the present thesis will be related to 

verification and to give a theoretical basis for future builds. 

The focus of this thesis will be related to how the wave conditions transform from deep to shallow 

water. Effects like bottom friction, wave breaking, shoaling and other nonlinear effects will be 

considered. In connection with these effects the following will be discussed: 

 Will the process deviate from a Gaussian process? And can any of these deviations be 

quantified by nonlinearity parameters such as wave steepness or the Ursell number? 

 How does the wave spectrum change? Are there analytical models that can describe this 

transformation? 

 How do the distributions for wave crests and wave heights change? Can existing 

analytical models predict this? 

 How do the largest waves in a time series look like with respect to asymmetry? 

 Wave breaking are likely to be important, what type of wave breaking can be seen in 

such a case? And what contribution will wave breaking have for the surface process in a 

water depth of 15-40 meters? 

In order to investigate how the waves transform from deep to shallow water, there have been 

performed a model test in cooperation with Marintek and Statoil ASA. Where the surface elevation is 

measured as the generated waves propagated over a constantly sloping beach, most of the wave 

probes are positioned corresponding to full scale water depths of 15-40 meters. The time series from 

these measurements are the basis for the calculations made in this thesis. 

In chapter 2 there will be presented background theory, established analytical models and there are 

also found publications in which similar model tests are analyzed.  

In chapter 3 the present model test is described in detail, with specifications, observations and 

uncertainties. 

In chapter 4 the results from the model test are presented, discussed and compared with results 

from previous model tests. 

As the results from the model test have given a lot of data, all of them cannot be presented in the 

discussion of the results. Therefore tests from the most interesting cases have been selected, along 

with smaller sea states for comparison. Representative examples of these tests have been presented 

in the discussion. Complete sets of data from these examples can be found in the respective 

appendices. Furthermore complete sets of results from all the selected tests can be found in the 

digital appendix attached to this thesis. 
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2 Theory and previous work 

2.1 Wave transformation in finite water depth 
The wave transformation as the waves propagate from deep to shallow water is a process where 

many factors contribute. There will be made no attempt to calculate these effects in this thesis, but 

they are mentioned here in order to give the reader some insight in the terminology that will be used 

throughout this thesis. Some practical examples and more detailed physical description can be found 

in Svangstu (2010), if specific references are made to other authors the reader should use these for a 

more detailed description of the phenomenon in question. 

Waves entering intermediate water depth will no longer have a constant relation between wave 

period and wave length (dispersion relation), and as the wave propagates towards shallower water 

the wave length will decrease. This will cause the wave height to length ratio (steepness) to increase. 

As the wave steepness increases nonlinear effects will contribute to the surface process of the 

waves, which causes them to grow in the crest to through asymmetry. In other words the peaks of 

the wave will be steeper and higher, and the through of the wave will be flatter and smaller. 

As a wave propagates from deep to shallow water a great deal of the energy flux will be conserved, 

and some of the energy will be lost due to dissipation effects. The theory behind so called linear 

shoaling describes the effect this will induce on the wave height, neglecting effects from dissipation. 

Since the wave height is proportional to the total energy in the wave, the linear shoaling theory 

shows that the wave height will increase as the wave propagates from deep to shallow water. 

In real live sceneries it is observed that waves hits the shore line normally, and it is found that turning 

of the waves can be described by so called refraction theory. As waves turns towards a beach the 

energy will be spread out over a larger area, causing a lower energy concentration and thus reducing 

the wave height. However in this thesis we only consider long crested waves (2D), and thus this is 

only mentioned as a part of the bigger picture. 

Dissipation mechanisms are of great importance in such a case and the two most important 

dissipation mechanisms in such a process is bottom friction and wave breaking. 

Bottom friction is caused by the viscous interaction between the sea bottom and the boundary layer 

in the water. This only causes dissipation when the wave “feels” the bottom, when the water depth 

is less than half the wavelength, i.e. the effect starts being noticeable in intermediate water depth. 

With the expression that the wave “feels” the bottom, we mean that wave kinematics is large 

enough to cause any significant interaction with the bottom. As frictional energy in general, 

dissipation due to bottom friction is dependent on how long the wave have traveled. Thus the energy 

dissipation from bottom friction will be larger on a beach with a small slope than a beach with a large 

slope. Since the distance traveled when the wave “feels” the bottom will be longer on a beach with a 

small slope. A more detailed description of bottom friction can be found in Dean et. al. (1991). 

In deep water the wave breaking criteria is when the height to length ratio (steepness) of the wave is 

larger than 1/7. It is observed that waves in intermediate and shallow water have a stricter breaking 
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criterion. Wave breaking in deep water is only dependent on the wave steepness, the waves in 

shallow and intermediate water depths are additionally dependent on the wave height to depth 

ratio. Due to the fact that waves grow steeper and higher in shallow waters, we can then say that 

wave breaking will occur more frequently, and thus that the energy dissipation due to wave breaking 

in shallower water will of great importance. A detailed description of breaking waves can be found in 

Svendsen (2007). 

2.2 Wave models 
There will not be a large focus on wave models in this thesis, but this chapter is included in order to 

give the reader an overview of what kind of theoretical models in which such a problem can be 

solved with. There will be presented some examples in increasing complexity and precision.  

2.2.1 Linear wave theory 

Linear wave theory is what is most commonly used in marine applications, and are based on a simple 

harmonic shape of the wave. What limits the linear theory is that it is assumed that the wave 

steepness is small in order to solve the kinematic boundary condition. As a result of this the linear 

theory will have a limitation with respect to the wave steepness, according to Svangstu (2010) this 

limitation is kA=0.05-0.1   

2.2.2 Second order theory 

Second order theory is based on the perturbation principle proposed by Stoke, detailed information 

of this principle can be found in Dean et.al. (1991). From Svangstu (2010) the applicability of stoke 2nd 

order theory is investigated, and it is found that typical storm waves can only be described until 

water depths of approximately 50 meters. This is also seen in Stansberg (2011), where the 

applicability of the second order random wave theory is investigated. And it is also here found that 

the irregular second order formulation could be used until a water depth of 40 meters for the test 

cases, or a more general limitation with respect to the Ursell number; Ur=0.33. 

2.2.3 Stokes 5th order theory 

Stokes 5th order theory is described in Fenton (1985), and are basically a continuation of the work in 

which Gabriel Stokes performed up to 3rd order. This theory was also investigated in Svangstu (2010), 

and it was found that Stokes 5th order theory for storm size waves were applicable until a water 

depth of approximately 40 meters. This is slightly better than that of the second order theory, but 

the theory is still not applicable in shallow enough water in order to solve the problem in this thesis. 

2.2.4 Wave models based on the Boussinesq equations 

Wave models based on the enhanced Boussinesq equations proposed by Nwogu (1993) show great 

promises for the future, as the theory accounts for effects such as shoaling, bottom friction and wave 

breaking. Thus the model is capable of describing the propagation of waves on a beach. The 

limitations of wave models based on the Boussinesq equations have for a long time been that they 

only are applicable in shallow water, but the work done by Nwogu (1993) have made the theory 

applicable well into intermediate water depths, and further work based on the work from Nwogu 

have made the theory applicable in even deeper waters. The problem is however that at the present 

state these theories are somewhat complicated to use without a large effort, as the numerical 

solution scheme is based on solving a large number of high order partial differential equations. Thus 
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there have been made no effort in this thesis to use any wave models based on the Boussinesq 

equations. 

2.2.5 Computational fluid dynamics (CFD) 

Computational fluid dynamics is based on solving the Navier Stokes equation numerically, and this 

approach is considered the most exact to the present date. However this approach is very time 

consuming for marine applications, as the free surface makes the computational process more 

difficult. Simulations of waves with durations of a minute can take as long as half a day to calculate, 

and that is on a high end computer. Thus this kind of simulations basically needs a supercomputer in 

order to get adequate results in a reasonable amount of time.  

2.3 Ursell number and wave steepness 
In order to keep track of the different definitions that is used throughout this thesis, this chapter 

introduces some important wave characteristics; wave steepness and Ursell number. 

2.3.1 Wave steepness 

The classical definition of the wave steepness is related to the maximum angle in a linear harmonic 

wave, defined as:  

   
 

 
  

 

(1)  

The steepness presented in terms of radians is expressed as: 

Sk= kA 
 

(2)  

Where the difference between the equations is pi, thus that equation 1 times pi are equal to 

equation 2. 

For a nonlinear wave who has a clear crest to trough asymmetry these expressions will not give the 

maximum angle of the wave, as for linear waves. But it is a commonly accepted measure of wave 

steepness, even for nonlinear waves. These formulas are however related to individual or harmonic 

waves. As we often utilize irregular wave histories it is time consuming calculating the individual 

wave steepness for all the waves in the time series. A common measure of steepness in irregular 

waves is based on the parameters defining the sea state. Using the significant wave height (Hs), peak 

period (Tp) or mean period (T1), sea state steepness is given by, DNV(2007): 

   
  

 

  

  
  

(3)  

 

   
  

 

  

  
  

 

(4)  

The expression including the mean wave period (equation 4) is what has been used in this thesis. 

However when considering individual events, the two previous formulations have been used. In 

figures in this thesis a version of equation 2 is also used frequently, where the wave number 
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corresponding to the peak period following the linear dispersion relation have been used. As a 

representative amplitude of the sea state the half of the measured significant wave height in the 

relevant position have been used. The expression can be seen in equation 5. 

     
 

 
    

(5)  

  

2.3.2 Ursell number 

The Ursell number is a recognized measure of nonlinearity. The expression for the Ursell parameter is 

given from DNV(2007): 

   
   

  
 

 

(6)  

Equation 6 gives the Ursell number for individual waves, where d is the water depth and lambda is 

the wave length. When we have given an irregular sea state this does not help us much when trying 

to quantify the nonlinearity of the sea state. From DNV(2007) there are given a formula based on the 

significant wave height, and the wave number corresponding the mean wave period (k1): 

   
  

  
   

 

 

(7)  

And it is equation 7 that has been used to quantify the nonlinearity in the sea states in this thesis. 

However for the individual events that have been analyzed, there have been calculated the Ursell 

number of individual waves based on equation 6. 

2.4 Transformation of the wave spectrum in finite water depth 

2.4.1 Shape of the spectrum tail 

In Holthuijsen (2007) it is argued that the high frequency tail of the wave spectrum in finite water 

depths grows flatter, from an f-5 to an f-3 tail. Where the f-5 tail is seen in the high frequency range in 

deep water.  

The last part of the high frequency tail corresponds to that in deep water. There is no general 

agreement whether an f-5 or f-4 tail is correct. The f-5 tail is the most commonly used in engineering 

practice, and is implemented in known models such as the JONSWAP and Pierson Moskowitz 

spectrums. However according to Holthuijsen (2007) the f-4 tail fits better to data from deep water. 

2.4.2 Bottom friction 

The bottom friction as explained earlier is the friction between the boundary layer in the water and 

the bottom itself, induced by the particle motion from the waves. In Holthuijsen (2007) there are 

presented a couple of spectral bottom friction models, and it is seen that these are highly dependent 

on the roughness of the bottom surface. For further description of the models, see Holthuijsen 

(2007).  
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As the bottom friction is a dissipation effect it will reduce the total energy in the wave spectrum, this 

is predominant for the low and mid range frequencies, and the high frequency part of the wave 

spectrum is only affected in a small degree by bottom friction. An example of this is illustrated in 

Figure 1. 

In general for energy dissipation due to friction, it is highly dependent on the distance traveled. 

2.4.3 Shoaling 

As the waves shoal the wave height will increase and thus the significant wave height will increase. 

The effect from shoaling can then be seen in the wave spectrum with an increase of the area in the 

wave spectrum concentrated around the peak frequency. As the low frequency waves in the 

spectrum will be at lower relative water depth, the effect from shoaling will be more dominant for 

Figure 1: Illustration of bottom friction, taken from Holthuijsen (2007) 

Figure 2: Illustration of shoaling, taken from Holthuijsen (2007). 
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the low frequency part of the wave spectrum. This will result in a slight downshift of the dominant 

frequency in the wave spectrum, Holthuijsen (2007). This is illustrated in Figure 2. 

Although the effect from shoaling causes the peak frequency to shift towards the lower frequencies, 

the magnitude of this change is often not of great significance. Thus the peak frequency can in most 

cases be assumed as constant, Holthuijsen (2007). 

2.4.4 Wave breaking 

First of all the wave breaking can be divided into two main categories, the first on is often referred to 

as white capping or deep water breaking. Where the wave breaking only is dependent on the wave 

steepness, and the waves will break as the wave steepness exceeds 0.14 (H/λ=1/7). This is the only 

reason why waves break in deep water, but it is also a very frequent phenomenon in intermediate 

water depths. The reason for this is that the wave shoaling will contribute to increased wave 

steepness, and thus triggering the deep water breaking criteria. The second category is what is called 

depth induced wave breaking or surf breaking, which occurs in shallow water as a result of depth 

induced effects. 

Wave breaking is a dissipation mechanism and will reduce the total energy in the wave spectrum. 

According to Holthuijsen (2007) this reduction is distributed with the shape of the wave spectrum, 

thus the dissipation is largest around the peak frequency, and the resulting wave spectrum after the 

effect of wave breaking are considered will be of the same shape as the incident wave spectrum, only 

smaller. Additionally the wave breaking will disturb the smooth high frequency tail of the wave 

spectrum, this effect is however reversed by so called quadruple wave-wave interactions, which is 

described below.  

2.4.5 Quadruple wave-wave interactions 

Quadruple wave-wave interactions are resonant behavior of four wave components. For a thorough 

description of the phenomena the reader is referred to Holthuijsen (2007).  

Quadruple wave-wave interactions will shift the energy from the high frequencies (from ωP till 2ωP) 

to the mid range frequencies. These interactions will contribute to “stabilize” the wave spectrum as 

the waves break, thus shifting the energy from the chaotic behavior in the high frequency tail into 

the mid range frequencies. The behavior is then seen to preserve the smooth high frequency tail of 

the wave spectrum, Holthuijsen (2007).  

According to Holthuijsen (2007) the energy will be shifted to mid range frequencies lower than the 

peak frequency, resulting in a downshift of the peak frequency. It is also observed that the quadruple 

wave-wave interactions appear both in deep and shallow water, but they are stronger in shallow 

water, Holthuijsen (2007). An example of the contribution from quadruple wave-wave interaction in 

both deep and shallow water can be seen in Figure 3. 
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Figure 3: Illustration of quadruplet wave-wave interactions, taken from Holthuijsen (2007). 

 

2.4.6 Triad wave-wave interactions 

Triad wave-wave interactions are resonant behavior from three wave components, and only appear 

in shallow water since the resonance conditions cannot be satisfied with the linear dispersion 

relation in deep water, Holthuijsen (2007). The phenomenon is seen to appear in very shallow water, 

in the shallow water region (h/λP<0.05). But near resonant behavior may occur in slightly deeper 

Figure 4: Illustration of triad wave-wave interactions, taken from Holthuijsen (2007). 
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water. For a more thorough description of the phenomena the reader is referred to Holthuijsen 

(2007). 

Triad wave-wave interactions often cause a secondary peak at two times the peak frequency in the 

wave spectrum in shallow water. Where the energy will be shifted or transferred from the peak 

frequency to a secondary peak at two times the peak frequency, this is illustrated in Figure 4. 

These secondary peaks are seen to persist only for a couple of wavelengths, before the effect is 

reversed from the same effect. Triad wave-wave interactions may also transfer energy to the lower 

frequencies, and thus generate a sub harmonic peak in the low frequency part of the wave spectrum. 

This peak represents the effect that is most commonly referred to as surf beats, Holthuijsen (2007). 

This can be considered as slow variations in the water depth.   

2.5 Wave statistics and analytical wave spectra 

2.5.1 Analytical wave spectrum in finite water depths 

The TMA spectrum is described in Bows et.al. (1985). It is an analytical wave spectrum based on an 

scaling procedure in order to account for the depth induced changes in the wave spectrum as the 

waves propagate from deep to shallow water. The basis of the shape of TMA is the JONSWAP 

spectrum, and thus in deep water the TMA spectrum is identical to the JONSWAP spectrum. TMA 

takes into account effects of variable water depth and bottom friction, but does not take into 

account the dissipation effect of wave breaking DNV (2007). It is also worth mentioning that TMA 

makes no attempt to account for secondary peaks in the high frequency tail of the spectrum. The 

approach is based on a constant or gently sloping bottom. Further information regarding this 

spectrum can be found in Bows et.al. (1985) and Holthuijsen (2007). 

2.5.2 Generating spectral estimates 

The spectra estimated from measured time series by means of FFT are called raw spectra. The 

spectra will give a very noisy spectrum estimate and may be difficult to interpret. In order to get 

spectral estimates that are easy to compare and interpret we need to perform a so called smoothing 

of the raw spectra. What has been used in this thesis is something called a Welch averaged 

periodogram with overlapping batches. In short this approach is based on dividing the time series 

into many smaller “windows”, and then averaging the spectral densities from these windows into a 

spectral estimate. The standard approach is that a new window starts where the previous window 

ends, in such a way that the time series is divided into a finite number of equally sized windows 

where one window starts where the other ends, and so on. For the approach with overlapping 

batches the next window starts inside the previous window. In this thesis the WAFO (2000) function 

“dat2spec” have been used in Matlab. The only parameters that have been changed from the default 

values in this program are the smoothing method and the length of the windows.  

Before the spectral estimates are generated the mean water level are set to zero, and after the 

spectral estimates are generated they are scaled in order to fit the variance of the time series. This is 

performed after general tips regarding generation of spectral estimates from Goda (2010). 
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The method chosen is as previously mentioned a Welch averaged periodogram with overlapping 

batches, i.e. with overlapping windows. The parameters determining the length of the windows is 

significant with respect to the magnitude of smoothing that are preformed. The default value of the 

parameter is 400 points, which with a sampling frequency of 100Hz corresponds to a window length 

of 4 seconds. This was seen to smooth the spectrum too much, and by that we mean that the 

smoothing is preformed to such a degree that it removes important trends in the spectrum. After 

some trial and error there where found that a parameter of 1500 gave a good balance between 

smoothing enough to see the trends clearly, and not removing to much in order actually see these 

trends. A smoothing parameter of 1500 corresponds to a smoothing window of 15 seconds for a 

sampling frequency of 100Hz. In Figure 5 it is presented a comparison were the spectral estimates 

are smoothed a small (L=400), medium (L=1500) and large (L=10 000) smoothing parameter. 

 

Figure 5: Example of spectral estimates with different smoothing parameters (L) 

 

2.5.3 Spectral and statistical properties  

Significant wave height 

Hm0 is the symbol for the significant wave height estimated from the wave spectrum, with the 

relation: 

         

 

(8)  

Where m0 is the variance, and given by: 

            

 

  

 

 

 
(9)  

i.e. m0 is equal to the area of the wave spectrum. Since V        
  , the expression for the 

significant wave height (equation 8) can be presented as function of the standard deviation of the 

surface elevation (σ): 
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(10)  

From equation 10 the significant wave height can be estimated directly from the standard deviation 

of the time series of surface elevation. 

It is important to be aware that HS, also called the significant wave height, is not necessarily the same 

as Hm0. Hs is calculated as the mean of the 1/3 largest waves in a sea state, whereas Hm0 are 

estimated directly from the wave spectrum. In deep water they are approximately the same, but in 

shallow water they may differ significantly. 

Examples of measured Hm0 can be found in both Nilsen (1997) and Wei et. al. (1999). The papers 

show that the significant wave height decreases slowly in the first part of the propagation from deep 

to shallow waters, until it drops significantly in shallow water. 

Skewness 

The skewness coefficient gives information about the asymmetry in the distribution. For a Gaussian 

process the skewness will be equal to zero, and the distribution will be symmetrical. This distribution 

is often referred to as the normal distribution, an example of this can be seen in Figure 6(b). 

Distributions with skewness values that differ from zero, will indicate that the process is not 

Gaussian. Examples of distributions with negative and positive values of skewness can be seen in 

Figure 6(a) and Figure 6(b) respectively. 

 

Figure 6: Illustration of skewness, taken from Leira (2010) 

The physical meaning of the skewness coefficient can be explained as an indication of crest to trough 

asymmetry of the waves from the respective time series, where for example a skewness larger than 

zero means that the waves in the time series has larger and sharper peaks and smaller and flatter 

troughs.  

From Leira(2010), the expression for the skewness coefficient is given in terms of central moments: 

   
   
   

    
   

 
 

 

 

 

 
(11)  

Where    
   

 is given by: 
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(12)  

Where       is the probability density function and    is the mean of x. The variance is given as: 

         
         

        

 

  

 

 

 
(13)  

Thus in terms of central moments the variance can be expressed as: 

  
     

   
 

 

(14)  

Then the skewness coefficient can be written as: 

   
   
   

  
  

 

 
(15)  

From sample data we can estimate the skewness by: 

   
   
   

    
   

 
 

 

 

 

 
        

  
   

 
 

 
        

  
    

 

 

 
 

(16)  

The skewness coefficient is also given by definition as: 

      
    
  

 
 

  

 

 
(17)  

Since equation 17 easily can be implemented into matlab, it is this formula that has been used in 

order to calculate an estimate of the skewness coefficient in this thesis. 

In Nilsen (1997) there are calculated skewness coefficients for a lot of different 2D model tests. And 

it is seen that the skewness increases as the wave propagates from deep to shallow water. And since 

the skewness values are larger than zero, the transformation of the waves results in a process which 

is not Gaussian. The same is also seen in Nwogu (1993) and Wei et. al. (1999), however only with a 

single example in each paper. From Goda(2010) the same is also seen, where the skewness is 

compared to an analytical solution. In Goda (2010) it is proposed that the skewness is proportional to 

the wave steepness in deep water.  

Kurtosis 

The kurtosis coefficient gives information about the peakdness of the distribution. A Gaussian 

process will have a kurtosis coefficient equal to 3. Kurtosis values that are larger than 3 will give a 

distribution that have a sharper peak and longer tail compared to that of a Gaussian process. Kurtosis 

values smaller than 3 will give the complete opposite, i.e. a distribution with a flat peak and shorter 

tails. These cases are illustrated in Figure 7, where the distribution of a Gaussian process is presented 

with dashed lines. 
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Figure 7: Illustration of kurtosis, taken from Leira (2010). 

From Leira(2010) the kurtosis coefficient is given as: 

   
   
   

    
   

  
 

 

 
(18)  

Following the same procedure as for the skewness, the kurtosis can be presented as: 

   
   
   

  
  

 

 
(19)  

Which gives: 

      
    

  
 
 
   

 

 
(20)  

Equation 20 can easily be implemented into matlab, and it is this formula that has been used to 

calculate the kurtosis coefficient in this thesis. 

In Nilsen (1997) there are estimated kurtosis coefficients. The trend is that the kurtosis is slightly less 

influenced by the water depth than that of the skewness, and remains fairly constant with a slight 

increase until it increases significantly in shallow waters. The same trend is also seen in Goda (2010). 
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2.5.4 Crest height distributions 

Rayleigh 

The Rayleigh distribution for crest heights is given in Forristall (2000) as: 

                
 

   
 
 

   

 

 
(21)  

With a time series available the standard deviation and thus the estimated significant wave height 

(      ) can be estimated fairly quickly with for example matlab, and thus the parameters in the 

Rayleigh distribution can easily be found directly from the time series. 

The Rayleigh distribution is mainly used for the distribution of maxima for narrow banded stationary 

processes which follows the normal distribution with a mean value equal to zero. In a realistic 

situation the surface process of water waves are often broad banded, and deviates from the 

Gaussian process, however the deviation is not always of great significance. According to 

Myrhaug(2005), the Rayleigh distribution gives an upper limit for the distribution of maxima. And 

due to this the Rayleigh distribution is often used as a conservative estimate to the probability of 

exceedance above a certain level. This is illustrated in Figure 8, where it in the upper tail of the 

distributions can be seen that the Rayleigh distribution predicts a higher probability of exceedance 

than the Ritz distribution throughout the entire tail. Where the Ritz distribution is acknowledged as a 

more realistic distribution, thus the Rayleigh crest height distribution can be considered conservative 

for a Gaussian process. 

 

Figure 8: Rayleigh vs. Rice distribution, taken from Myrhaug (2005) 

The Rayleigh distribution assumes linear waves, and thus designed for wave conditions where linear 

theory is applicable. The wave conditions in our model tests are fairly steep, and often beyond 

applicability of linear theory even in deep waters. As the waves propagate from deep to shallow 

water, they will grow even steeper, and non-linear effects will be more predominant. One non-linear 

effect of great importance here is the crest to trough asymmetry. Assuming a Gaussian process may 

give an initial error in the crest height of 10-15%, effects from wave shoaling may make this error 
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even larger. And thus it seems reasonable to suggest that the Rayleigh crest height distribution 

should be used with care in shallow water, and is likely to be none conservative. The Rayleigh crest 

height distribution should therefore be used with care even in deep water. 

Forristall 

The crest height distribution proposed by Forristall (2000), has gained a lot of recognition, and is 

used extensively. The distribution is based on a second order surface profile, and includes 

parameters as wave steepness and water depth. The exceedance probability is given by Forristall 

(2000): 

                
 

   
 
 

   

 

 
(22)  

This then gives the cumulative distribution function: 

                 
 

   
 
 
   

 

 
(23)  

This is a Weibull type distribution function. For a 2-dimentional (long crested) simulation the alpha 

and beta parameters is given by: 

                            
 

(24)  

                       
 

(25)  

The steepness parameter (  ) and Ursell parameter (  ) is given by: 

   
  

 

  

  
  

 

 
(26)  

   
  

  
   

 

 

 
(27)  

From Forristall (2000) the significant wave height taken as an input parameter in the distribution 

should be estimated from the wave spectrum, hence the significant wave height to be used in this 

distribution is    . Further   is the mean wave period in the wave spectra, more commonly referred 

to as     . 

       
  

  
 

 

 
(28)  

Where the spectral moments     and    were found using the WAFO (2000) function “spec2mom” 

from the pre generated spectrums. And k1 is the wave number corresponding to the mean wave 

period. When the relation between wave period and angular frequency is known: 

  
  

 
 

 

 
(29)  
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And k1 was then found from    using the linear dispersion relation by the WAFO (2000) function 

“w2k”, and finally d is the water depth. 

 

2.5.5 Wave height distributions 

Rayleigh 

From equation 21 the expression for the Rayleigh crest height distribution is given, considering that 

the wave height is equal to two times the crest height, according to linear theory. 

  
 

 
  

(30)  

 

Inserting equation 30 into equation 21 gives: 

                
    

   
 
 

             
 

   
 
 

   

 

 
(31)  

In accordance to second order theory the wave height will only increase slightly, the crest to trough 

asymmetry will however increase significantly. Since the Rayleigh crest height distribution gives 

conservative crest heights for linear waves, this will also be a conservative wave height distribution 

for linear waves. Thus as long as the second order contributions are dominating, the Rayleigh wave 

height distribution will be conservative. This will for most practical purposes be the case in deep 

water, therefore the Rayleigh distribution is considered to be conservative in deep water.  

Battjes & Groenendijk 

The wave height distribution proposed by Battjes et. al. (2000) is a so called composite Weibull 

distribution, i.e. consisting of two Weibull distributions. The first one should fit the smallest waves, 

and is the Rayleigh distribution. While the second one takes into account the reduced wave heights 

from depth induced wave breaking, and should fit the largest waves in the time series.  

The wave height distribution is based on several model tests performed at WL/Delft hydraulics, 

where the model tank is 50 meters long, 1 meter wide and 1.2 meters deep. The model tests that this 

distribution has been fitted to is preformed with different bottom slopes (1:20-1:250), and thus the 

authors have been able to make an empirical fit of the so called transition wave height, as a function 

of the bottom slope. Where the transition wave height (Htr) is the wave height where the distribution 

changes from a Rayleigh to a Weibull distribution. The transition wave height is given by: 

            ; Where d is the water depth, and        is given by: 

                    ; Where alpha is the angle of the bottom slope, c1=0.35 and c2=5.8 are 

found empirically from data by the authors. From Battjes et. al. (2000) the distribution is given by: 
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(32)  

Where k1 and k2 are the shape parameters, and H1 and H2 are the scale parameters of the 

distribution. Since F1(h) is the Rayleigh distribution, k1=2 and H1=Hrms. In Battjes (2000) k2 is found 

empirically to be 3.6, and given the relation: 

 
   

  
 
  

  
   

  
 
  

 

 

 
(33)  

Which gives: 

  
      

       
   

 

(34)  

Using that;   

  
      

        
 
     

  

 
   

 

 
     

  
 

 
   

  
(35)  

 

The distribution can be expressed as: 

      

 
 
 

 
               

  

   
            

              
  

   
       

 
           

  

 

 
 

(36)  

Mai et. al. (2010) has compared the model with long term in-situ wave measurements in the 

southern part of the north-sea (Germany). The waves are measured at locations with water depths in 

the region of 8-29 meters. They concluded that the model fits well to the field data, after changing 

the parameters c1 to 0.23 and k2 to 2.31. It is shown that the distribution from Battjes et. al. (2000) 

both under and over predicts the wave heights for large cumulative exceedance probability. 

Næss 

The Rayleigh distribution is as mentioned earlier considered to be conservative, the distribution 

proposed by Næss (DNV(2007)) is a bandwidth corrected Rayleigh distribution. The principle is to 

correct for the conservative Rayleigh distribution, and thus we have a wave height distribution that 

fits more realistically to data. The distribution from Næss is given in DNV(2007) as: 

              
 

    
 
 
   

 

 
(37)  

Where    is given as: 



NTNU  
Norwegian University of Science and 
Technology 
Department of Marine Technology 

 M.Sc.THESIS  

 

19 
 

 

   
 

 
     

 

 
(38)  

The parameter   contains information about bandwidth effects, and is typically in the range of -0.6 

to -0.75. For JONSWAP spectrum with a gamma equal to 3.3 the rho is equal to -0.73, and it is this 

value that has been used for calculations in this thesis.   

Forristall 

The wave height distribution proposed by Forristall (1978) is a Weibull distribution, and is based on 

buoy data from the Gulf of Mexico. From DNV(2007) the distribution is given as: 

              
 

    
 
  

  

 

 
(39)  

The parameter values are given from Forristall (1978): 

                      
 

(40)  

 

2.6 Similar model tests 
In order to verify the results obtained from our model test, it is of great interest to compare the 

results with those obtained from similar model tests. To accomplish this, a literature search where 

preformed. 

Nilsen (1997) presents a model test in a facility with similar dimensions as “lilletanken”, with a beach 

with the exact same slope (1:20) and a water depth in the same order of magnitude. Memos (2002) 

have also presented results from this model test. 

Nwogu (1993) preformed a model test in order to compare results with his attempt to expand the 

validity of the Boussinesq equations. The model test performed in this paper is performed in a tank 

smaller than “lilletanken”, and a slightly smaller slope (1:25). 

Wei et.al. (1999) have also performed a model test to verify calculations with the Boussinesq 

equations. The facilities are similar to that of Nwogu (1993), but the tank is longer and the slope is 

slightly smaller (1:20). 
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3. Description of present model test 

3.1 Background 
The transformation of waves from deep to shallow water is a complicated process, where different 

nonlinear interactions will be of importance. In order to study the phenomena in detail a model test 

can be a very helpful tool. With respect to the scope of this thesis the results from such a model test 

will be used in order to investigate how statistical parameters, wave spectrums and distributions are 

affected by the transformation of the surface process. In our case there will be interesting to 

compare the results obtained with similar model tests, and see if we get similar results. It will also be 

used to see if the transformation can be dependent on nonlinearity parameters such as the wave 

steepness and Ursell number. Furthermore such a model test gives the opportunity to verify 

previously suggested theories for various subjects. As the scope of this thesis is the transformation of 

the waves itself, the present model test will only be related to the waves. Thus the model in this 

model test will be the beach, and the only quantity that will be measured is the surface elevation of 

the waves at different water depths. 

3.2 Facilities 
The model test was performed at “lilletanken”, NTNU. Which are 25 meters long, 2.8 meters wide 

and 1 meter deep. Inside the tank a channel was built, 1.2 meters wide 17.02 meters long and 0.83 

meters deep. Furthermore this channel has the capability of being raised in order to achieve a 

constant sloping beach. The slope used in the present model test is 1:20, which corresponds to an 

angle of 2.8 degrees. The channel is illustrated in Figure 9, here in an inclined position. 

 

Figure 9: The channel in “lilletanken” 

The model tank is equipped with a wave maker which can produce regular and irregular waves form 

a JONSWAP specter with the built in software. The software allows the use of pre generated time 

series from a binary file, as input to the wave maker. 
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A towing wagon is also available in the tank, but this was not used in our model test. 

 

3.2.1 Wave probes 

In this model test we have 16 wave probes at our disposal, where two of them are placed on the flap 

of the wave maker measuring the surface elevation along the flap as the waves are generated. The 

first one of these is taped like wave probe, where a metal strip is glued along the surface of the flap 

on the wave maker. This wave probe is however seen to produce some strange results, and these will 

not be considered in this thesis. The other wave probe positioned on the flap of the wave maker, is a 

conventional type of wave maker, and is similar to the rest of the wave probes used in this model 

test. An example of such a wave maker can be seen in Figure 10. Furthermore the position of the flap 

on the wave maker was also measured by a displacement sensor. The sampling frequency for the 

wave probes and the sensor where set to 100 Hz. 

 In general these wave probes work by measuring the voltage trough two metal bars, and by 

calibrating the probes by forcing a given displacement and then measuring the output voltage. There 

can then be found a relationship between displacement and voltage output from the wave probe. 

The signals measured from the wave probe is then sent to an amplifier before it is directed to a 

computer, in which the software converts the measurements from voltage to meters of surface 

elevation. The setup of the equipment and calibration have been performed by experienced lab 

technicians from Marintek and will not be discussed in further detail in this thesis, the interested 

reader is referred to Steen et.al. (2010) or Dean et.al (1991) for further details regarding wave probes 

and a detailed description of how these work. 

 

Figure 10: Wave probe 

The setup of the wave makers have been changed a couple of times during the model tests, initially 

the tests were performed on a flat bottom and then the wave probes were equally spaced 
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throughout the channel (WP setup 1). For the tests performed in the inclined position, the wave 

probes were positioned according to water depths of interest corresponding to full scale water  

depths in the region 40-15 meters (WP setup 2). Finally the wave probes were concentrated around 

an area corresponding to a full scale water depth of 25 meters (WP setup 3). 

The numbering of the different tests is related to which set up of the wave probes that has been 

used for that particular test, a description of this is given in Table 1. For sketches of the different case 

setups, the reader is referred to Appendix A where these can be found. 

Series Description 

1100 Flat bottom, WP setup 1 

2100 Sloping bottom, WP setup 2 

2200 Sloping bottom, WP setup 3 

2300 Slping bottom, no wave probes 
Table 1: Series description of irregular waves. 

 

3.3 Test program 
As mentioned earlier in this chapter the focus in 

this thesis will be on irregular waves on a sloping 

bottom, however also irregular waves on a flat 

bottom are useful for comparison. In addition, 

tests with regular waves and wave packets Clauss 

et.al. (1986) on both flat and sloping bottoms 

have been performed. In Table 2 there are listed 

the numbering of the different tests with irregular 

waves that have been performed. Similar tables 

for regular waves can be found in Appendix B. 

As there is no physical model in this model test 

we have more freedom regarding the scale of the 

tests. The only thing depending on the choice of 

scale (accept for the waves itself of course) is the 

water depth. For practical reasons regarding the 

water depth the model scale was set to 1:81. 

The most interesting sea states for our purpose 

will be sea states that correspond to ULS and ALS 

conditions in deep water. ULS conditions in deep 

water correspond to the specifications for xx11 

and xx15 in Table 2. Similarly the ALS conditions 

in deep water correspond to xx12 and xx16 in 

Test nr. 

Hs [m] Tp [s] 

Model s. Full s. Model s. Full s. 

xx01 0,015 1,22 

0,8 7,2 
xx02 0,030 2,43 

xx03 0,045 3,65 

xx04 0,060 4,86 

xx05 0,025 2,03 

1 9 
xx06 0,050 4,05 

xx07 0,075 6,08 

xx08 0,100 8,10 

xx09 0,035 2,84 

1,25 11,25 
xx10 0,070 5,67 

xx11 0,105 8,51 

xx12 0,140 11,34 

xx13 0,035 2,84 

1,5 13,5 
xx14 0,070 5,67 

xx15 0,105 8,51 

xx16 0,140 11,34 

xx17 0,035 2,84 

1,75 15,75 xx18 0,105 8,51 

xx19 0,140 11,34 
Table 2: List of test sea states 
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Table 2. 

 As for repetitions of sea states the ULS and ALS sea states have been the main focus, and most of the 

repetitions have been performed for these sea states. But for comparison reasons there have also 

been included test cases for smaller sea states. For similar reasons there have also been included 

some tests with longer peak periods, as these are expected to show clearer signs of depth induced 

effects, as the relative water depth will be lower. 

3.4 Observations during the test 
At first we started performing tests with a flat bottom. The reason for this is to have some references 

with respect to the surface process for the sloping bottom, since both spectra and probabilistic 

distributions may change along the channel even for a flat bottom. The position of the wave probes 

was in this case positioned as presented in Appendix A (WP setup 1). At this stage we also 

encountered some problems with the wave maker, where there was observed some strange “shut 

downs” of the wave maker. This was seen in the time series measuring the position of the wave 

maker. What we see is random shutdowns in some areas. However when the error was identified as 

outdated software in connection with transfer of control signals from the wave maker computer, the 

problem was solved fairly quickly. And we have not observed this behavior in any later stages of the 

model test. 

What was observed when running tests with a flat bottom, a chaotic behavior at the end of the 

channel. This was especially noticeable for the tests with the longest periods, and the explanation is 

simply the limitations of the beach designed to damp reflexes from incoming waves. Thus the beach 

does not work properly for waves with long periods. And due to this chaotic behavior we can say 

with a reasonable degree of certainty that the results obtained from the two wave probes closest to 

the end of the channel, are clearly influenced by reflected waves. This is most noticeable for the 

regular waves, but it is likely that reflected waves also influence the results for irregular waves. 

However for irregular waves it is more difficult to see this visually. As a consequence of the presence 

of these reflexes, the data from the tests performed with a flat bottom should be used with care. For 

a case with a sloping beach there are obviously reflexes that will interfere with the results, but these 

reflexes will be present in a natural situation where a wave propagates towards a beach, and we can 

then say that the behavior for the tests performed with a sloping beach will give a realistic “image” of 

the situation. 

During the start of the tests we experienced some resonant like behavior of the channel, this was 

especially noticeable for regular waves with a period of 1.5 s. This was corrected by stiffening the 

channel with diagonal braces. 

When we raised the channel to the inclined position, the wave probes where moved to the positions 

described in Appendix A (WP setup 2). This was done in order to get measurements from water 

depths related to the most interesting in our case, which is in the area of 40-15 meters in full scale. 

During this process it was also decided to increase the model scale from 1:144 to 1:81, since the scale 

we initially intended to use would give model scale water depths that are difficult to get good results 

from. The results were only analyzed roughly during the tests, but both the time series and statistical 

properties seem good at this stage. Where the waves clearly becomes more asymmetrical 
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(crest/trough) as they propagates, and this was also the case for the statistical values of skewness 

and kurtosis, which will be described further in chapter 4.1. 

Then the wave probes where moved closer together around the full scale water depth of 25 meters, 

and we tried to capture a breaking wave with the use of a wave packet Clauss et.al. (1986). The setup 

of the wave probes can be seen in Appendix A (WP setup 3). The idée behind this approach is to 

generate waves with different periods and amplitudes, initially waves with a small celerity followed 

by waves with a larger celerity. And they will then coincide in a focus point and become a large wave. 

This approach is however made for deep water waves, and have not accounted for any 

transformation of the waves as they propagate towards shallower water, which will happen in our 

case. And due to this we experienced some problems when we tried to focus a large wave in the 

region where the wave probes had been placed. Examples of this were too steep waves due to 

shoaling, which would break before they reached the intended position. Due to the differences in 

celerity in shallow water for the different frequency components, this caused the wave packet to 

miss the focus point entirely. The largest problem by far was the effect from shoaling, and we had to 

increase the peak period significantly in order to get a wave packet that did not break before the 

focus point. But after some trial and error we managed to achieve a quite large breaking wave within 

the area of the wave probes. 

At the end of the model test we did some runs without wave probes, where we repositioned the 

video camera in order to capture the behavior of the waves in a larger area of the channel. 

3.5 Uncertainties 
For the runs preformed with the flat bottom, there were as mentioned earlier observed some chaotic 

behavior at the end of the channel. We can say from visual observations from tests with regular 

waves that reflections from this behavior clearly will influence the measurements for the two closest 

wave probes (WP 06 and WP 07), but we cannot rule out that the reflexes also interfere with wave 

probes further from the end of the channel, but this was not observed visually. This is also the case 

for the runs with irregular waves, where this could not be seen visually, but most likely still is present 

for the wave probes close to the end of the channel. So the results from these runs should be 

handled with care. 

It has been observed that the wave maker is not perfectly calibrated, this is especially clear for the 

regular waves where the input wave height deviates from the measured wave height the wave 

maker produces. However this is not a very serious error, we only have to be aware that input into 

the wave maker does not correspond to the exact size of the measured waves, and then use the 

measurements before the wave transformation as the reference. The wave periods are unaffected by 

this, thus the measured periods are equal to those specified as input to the wave maker. 

For runs with irregular waves the input to the wave maker is a JONSWAP spectrum with a 

peakdnesskoefficient of 3.3, and it is seen from the resulting spectral estimates that this is not what 

the wave maker generates. However this is not a major concern, since we have wave probes close to 

the wave maker which will measure the generated waves before the wave transformation occurs. 

Thus we will have a reliable reference at these wave probes, and since it is the transformation that is 

of interest and not that the wave makers ability to generate the exact waves we have specified, this 
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should not be any critical error. But it is important to be aware of that it is the measurements close 

to the wave maker that has to be used as a reference and not the specific input to the wave maker. 

There was observed diffraction from the structure at the start of the channel, as the waves entered. 

And there was created some small disturbances, however they do not seem to be of any great 

significance for the results. Visually the waves propagating through the channel seem to be almost 

perfectly in 2D, but after a while the surface is disturbed by some small waves which may seem like 

short crested sea. But the magnitude of this disturbance is not of much significance for the final 

results, since the size of these waves are in the order of magnitude of a couple millimeters. 

The water level in the towing tank was not constant for the entire duration of the model tests, 

however the variation was small. The largest problem associated with this was that the wave probes 

where positioned in order to capture the surface process at water depths corresponding to water 

depths of interest in full scale (in the region of 40-15 meters). And small errors here corresponds to 

large errors in the full scale water depth, but the water depths of the wave probes have been 

checked and they were within a reasonable margin of error. There was a deviance of approximately 

3-5 mm in the worst cases. 

Since the maximum water depth in the tank is 1 meter, the longest deep water waves that can be run 

are waves with a period of 1.13 seconds. And thus a lot of our tests which initially should have 

started in deep water, really starts of on an intermediate water depth. The transformation of waves 

from these tests will then only be from intermediate to shallow water, and not from deep water. Not 

really a major concern, but important to be aware of when post processing. 

The effect from breaking waves in model scale will not be the same as in full scale, since the capillary 

effects will be much more dominating in model scale. And it is not certain that the energy dissipation 

in model scale wave breaking will be comparable with that of a full scale event, since the behavior of 

the dissipation due to wave breaking cannot be Froude scaled.  
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4 Data analysis and discussion 
As the amount of data from the present model test is large, the tests that are analyzed in this chapter 

are limited to ULS (test2111 and test2115) and ALS (test2112 and test2116) conditions. But for 

comparison reasons there have also been included more moderate sea states (test2109 and 

test2117). As a longer peak period will give a lower relative water depth at the position of the wave 

probes, thus more noticeable shallow water effects, there have also been included results for large 

sea states with a longer peak period (test2118 and test211).  

4.1 Statistical properties and statistical parameters 

4.1.1 Estimated significant wave height (Hm0) 

From the model test results the significant wave height has been calculated at each wave probe from 

the measured time series. But as mentioned earlier the input significant wave height deviates from 

the measured one, this is however not a big problem as it is the change that is of interest and not the 

wave makers ability to reproduce the specified input. This is however noted, and could have been 

avoided if the wave maker where calibrated before the model tests started. The specified peak 

period however remains the same as the one measured. In Table 3 the mean of the estimated 

significant wave height at wave probe 2 is presented for the different tests along with the input 

parameters. 

Test nr. 

Input Measured 

Hs Tp Hm0 

2109 0,035 

1,25 

0,047 

2111 0,105 0,130 

2112 0,140 0,162 

2115 0,105 
1,5 

0,114 

2116 0,140 0,147 

2117 0,035 

1,75 

0,032 

2118 0,105 0,097 

2119 0,140 0,127 
Table 3: Input and measured significant wave height 

Effects from shoaling are expected to influence the results for the significant wave heights, and 

important dissipation effects such as wave breaking and bottom friction will also be considered. The 

effect from shoaling will be dependent on the relative water depth (h/λ) and the increase in the wave 

height will not be of great significance before it enters shallow water (h/λ >=0.05), and thus be most 

noticeable for the tests with the longest wave periods. The general effect from shoaling will however 

contribute to the waves from the deep water limit, and will until a relative water depth of 

approximately 0.2 contribute to decrease the individual wave heights with almost 10% according to 

the theory of linear shoaling, according to Svangstu (2010). This is also the case for bottom friction, 

where it is considered as an effect that will be of importance in shallow water. Also remembering 

that bottom friction only should give noticeable contributions over longer distances. 
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As the waves propagate towards shallow water shoaling will contribute to increase the wave height, 

this will cause the steepness to increase. But also the decreasing wavelength in shallow water as a 

result of dispersion will contribute to increased steepness. From the time series it can also be seen 

that the wave profile grows asymmetrical with respect to the crest and trough of the wave, as a 

result of nonlinear effects. The presence of such asymmetry in the wave profile will cause the 

maximum angle of the wave profile (steepness) to be larger than that of the analytical expression (kA 

or H/λ) gives for linear waves, thus the wave steepness will be larger as the wave profile grows 

asymmetrical with respect to the crest and through of the wave. Eventually the increase in the wave 

steepness will cause the waves to waves to break, thus causing the dissipation and a decrease in the 

significant wave height.  

 The figures presented in this chapter are significant wave height plotted against the relative water 

depth, and thus the waves travel from right to left. 

The comparisons between different model tests have been done by first comparing tests with the 

same peak period. 

Tp=1.25 seconds 

The lowest peak period from the tests of the most interest is 1.25 seconds. The Figure 11 shows test 

2109, which has a significant wave height of 0.047 meters. This is a model test with a low steepness 

and wave breaking was observed to appear far beyond the wave probe closest to the beach, i.e. no 

wave breaking appeared before the waves had passed the last wave probe. Thus the behavior of the 

significant wave height in this test is only affected by bottom friction and shoaling. From Figure 11 it 

is seen that the wave height initially drops and then the curve flattens out, the most probable cause 

for this effect is a result of shoaling of the waves. As this effect is seen to reduce the wave height in 

intermediate water depths, before it starts to contribute to an increased wave height at a relative 

water depth of approximately 0.2. The presence of bottom friction cannot be neglected on the basis 

of this figure, but as the waves have not traveled over a large distance it seems unlikely to the author 

that there are any significant contributions from bottom friction.  
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Figure 11: Measured significant wave height for test2109 

In Figure 12 tests with the same period as in Figure 11 can be seen. The measured significant wave 

height at the entrance of the channel (WP 02) is 0.13 meters. This is a fairly steep sea state and it was 

observed that the largest waves break as they came out of the wave maker, in the area around the 

first wave probe. This was also the case for the largest test with the same period, which can be seen 

fin Figure 13, thus some care should be taken concluding that the significant drop in the wave height 

in the start of the channel only is a contribution from shoaling. As there probably are significant 

energy dissipation contributions from wave breaking at the two wave probes at the start of the 

channel. But further down the channel much of the same behavior as for test2109 can be seen. 

Where the wave height decreases, flattens out and then starts to increase. And it seems reasonable 

that this is a result of shoaling. 

At the end of the channel it is observed that the significant wave height decreases, this is most likely 

due to depth induced wave breaking, as this was observed visually in this area during the model 

tests.  
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Figure 12: Measured significant wave height for test2111 

In Figure 13 the significant wave height is 0.162 meters. Much of the same trend as in Figure 12 can 

be seen, however the wave breaking seems to appear earlier in the channel, which coincides with 

the visual observations from these tests. With steeper and higher waves this seems realistic, and 

since they break earlier the drop in the significant wave height can be seen more clearly in the figure. 

Further at the start of the channel it may seem that the decrease in the wave height is slightly larger 

than that of Figure 13, which can be explained as this sea state have larger waves then test2111 and 

thus depth induced wave breaking will appear in deeper water making the effect more visible for this 

case. 

  

Figure 13: Measured significant wave height for test2112 
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Tp=1.5 seconds 

From the tests with a peak period of 1.5 seconds one should expect that the effects from both 

shoaling and bottom friction should be of more significance. The longer period means a larger wave 

length and thus that the wave has more contact with the bottom with respect to particle kinematics, 

i.e. larger particle velocities at the sea bottom resulting in a larger contribution from the bottom 

friction. As the wavelength is longer the relative water depth will be smaller at the positions of the 

wave probes, and thus the effect from shoaling will be more visible. In general the wave breaking 

should also be more frequent at larger water depths, but in shallow waters the wave breaking is not 

only dependent steepness but also the relation between the wave height and water depth. However 

the only noticeable effect of a larger wavelength is that the effect from shoaling becomes more 

visible. But as an increased wavelength will also contribute to smaller initial wave steepness, that 

may explain the smaller drop in the wave height close to beach in the tests with a peak period of 1.5 

seconds. An example can be seen in the Figure 14, where the significant wave height is presented for 

test 2116 which has a measured significant wave height of 0.147 meters at the first wave probe. 

 

Figure 14: Measured significant wave height for test2116 

Tp=1.75 seconds 

The tests performed with a peak period of 1.75 seconds have not been repeated as many times as 

the previous tests, but there have been included some tests for comparison. What we see in these 

tests are a much clearer increase in the significant wave heights which is caused by contributions 

from shoaling, further a smaller initial wave steepness seem to reduce the amount of dissipation 

from wave breaking. An example of this can be seen in Figure 15, where the measured significant 

wave heights for test2119 with corresponding repetitions are presented. 
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Figure 15: Measured significant wave height for test2119 

Summary of observations 

To summarize the different tests, the mean of the significant wave height for the different have been 

plotted, and can be seen in Figure 16. 

For the tests with large initial wave steepness it is seen that there will be a significant drop in the 

significant wave height due to wave breaking in the first part of the channel. It is also seen that 

shoaling seems to reduce the wave heights for the first part of the channel, before it is increased by 

the same effect when the waves approaches shallow water.  

Figure 16: Summary of measured significant wave height 
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As bottom friction is an effect that is of importance in shallow water over longer distances it seems 

unlikely that the effect makes a significant contribution to energy dissipation in this model test. As 

the area where bottom friction will contribute only will be over a couple of wave lengths at most. 

Comparison with previous work 

From the model test which is presented in Nilsen (1997), the measured values of the significant wave 

height remains fairly constant. And it is augmented that the shoaling effect is canceled out by the 

effect from bottom friction for the wave probes closest to the beach. When comparing between our 

model tests it is worth mentioning that the sea states used in our model test often is quite steeper 

than those presented in Nilsen (1997). The cases who are fairly close to our test cases are the ones 

used for comparison. The setup of the wave probes is different, where the wave probes in the 

present model test are s positioned at shallower water depths. The shallowest water depth 

measured in Nilsen (1997) is 31 cm, and our shallowest water depth is at 18.5 cm (model scale). The 

result of this is that there are no measured significant wave height measured in Nilsen (1997) below 

a relative water depth of 0.14, and it is in this area that the wave breaking is indicated in our results, 

thus the results can only be compared with effects from shoaling and bottom friction. A clear 

deviation between the two model tests can however be observed, and the clear deviation is that our 

model tests has a clear drop in the significant wave height at the start of the slope, whereas the tests 

in Nilsen (1997) show a more or less constant value at this point. The most reasonable explanation 

for this is the difference in the steepness of the different tests. Where our tests as mentioned earlier 

are observed to break frequently at the start of the channel, which should cause a significant drop in 

the wave height. The observations from Nilsen (1997) comments that wave breaking only is observed 

sporadically. When comparing test 2109 as a test with low steepness we get the same trend in Nilsen 

(1997), as the wave height decreases slightly and almost linearly as the depth decreases. 

The model test performed in Wei et. al. (1999) has wave probes in even shallower water than in our 

model test, and there is included a figure in the paper where the standard deviation is plotted versus 

the water depth. Remembering that the significant wave height is equal to 4 times the standard 

deviation, the shape of the curve should give a good comparison. The peak period from this model 

test is 1 second, thus a shorter period than the cases analyzed in our model tests. But the general 

shape of the curve should still be comparable. What can be seen is that the standard deviation 

decreases slightly before there is a significant drop and the wave height goes towards zero. The start 

of this significant drop is seen to appear at a relative water depth of approximately 0.14-0.11. Since 

the depth induced wave breaking is dependent on the wave length we cannot compare our results 

directly against this model test, but it shows that the trend appears to be in the same order of 

magnitude. The comparison can be seen in Figure 17. 
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Figure 17: Comparison with measured significant wave height for similar model tests 
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4.1.2 Skewness 

The skewness has been estimated from each of the time series measured from the wave probes for 

each test. And the general trend is that the skewness increases as the water depth decreases. The 

results are presented in terms of relative water depth and nonlinearity parameters as the wave 

steepness and Ursell number. 

From all the tests we see that the skewness grows as the water depth decreases. Figure 18 shows the 

mean of repetitions for the tests in question, for relative water depths. The relative water depth is 

based on the assumption that a representative wavelength of the time series is the wavelength 

corresponding to the peak period, it is also assumed that the waves follow the linear dispersion 

relation.  

 

Figure 18: Skewness against relative water depth 

The trend is that the skewness grows slowly at the start of the channel, before it grows exponentially 

when it comes close to the shallow water limit. In general we can say that the skewness is seen to 

increase with decreasing water depth, and that the increase is exponentially when the waves 

approach the shallow water limit (h/λP =0.05). 

Goda (2010) proposes that the change in the skewness coefficients for waves in deep water is 

proportional to the wave steepness. In order to investigate how this change as the waves propagates 

towards shallow water, the skewness has been plotted against wave steepness for the tests in 

question. Another interesting parameter in this respect is the Ursell parameter, which is a general 

measure of nonlinearity in shallow water.  

As mentioned earlier the skewness gives an indication of the crest to trough asymmetry from the 

measured time series, where a skewness larger than zero will indicate that the waves in the time 

series have larger crests and smaller through. As this asymmetry is caused by nonlinear interactions, 
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we can say that the deviation from a Gaussian process in terms of a skewness coefficient larger than 

zero will appear when nonlinear contributions are present in the surface elevation. 

 As a matter of form the different tests will be presented with those of corresponding peak periods. 

Tp=1.25 seconds 

The smallest test in this period band is test2109, which has a significant wave height of 0.047 meters. 

Figure 19 shows the skewness as a function of the wave steepness, and seems that a linear growth of 

the skewness is not far off the truth if we accept some degree of scatter. 

 

Figure 19: Skewness vs. wave steepness, test2109 

In Figure 20 the skewness is shown vary linearly (approximately) with the Ursell number, here also if 

we accept some degree of scatter. For the low Ursell numbers in these curves it is noticed some 

significant scatter around a proposed linear fitted curve, the explanation for this might be that this 

are waves with small nonlinearity. According to Svangstu (2010) the limitation of linear theory can be 

applied for waves with a steepness up to 0.05-0.1 (kA). It seen from Figure 19 these waves can be 

described by linear theory, and thus that the waves are linear. And it is then not surprising that an 

attempt to quantify the skewness of linear waves with a nonlinearity parameter gives somewhat 

strange results. For higher Ursell numbers in Figure 20 it may seem that we have an linear relation 

between the skewness and the Ursell number, but before drawing that conclusion the reader should 

notice that Ursell number jumps significantly between the second to last and the last wave probe. 

And in order to say anything certain about the behavior in this region we should have had wave 

probes measuring the skewness between these two wave probes. However it seems from these 

measurements that as the waves propagate towards shallow water, they grow in nonlinearity and 

that a significant change can be seen in a region where the wave steepness is roughly 0.075. And that 
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the skewness for the purposed nonlinear waves seems to grow proportionally with the Ursell 

number, while increase in skewness for the linear waves is not well described by the Ursell 

parameter. 

 

Figure 20: Skewness vs. Ursell number, test2109 

From Figure 21 the skewness for test2111 can be seen, this test has a significant wave height of 0.13 

meters. It can be seen that the skewness the wave steepness with a nonlinear relation. It is worth 

mentioning that the skewness coefficients for a steepness smaller than 0.21, is proportional to the 

wave steepness. Further the steepness indicates that the waves are far beyond the reach of linear 

wave theory, and thus are nonlinear. 

 

Figure 21: Skewness vs. wave steepness, test2111 
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In Figure 22 the skewness is plotted against the Ursell number, in this case it can be seen that the 

skewness follows the Ursell number with a linear relation. This seems reasonable since this sea state 

is clearly a nonlinear process even in deep water, and thus is the nonlinearity shown in the skewness 

is proportional to the nonlinearity parameter given as the Ursell number. For the two last points in 

this figure (at Ur=0.4 and Ur=0.7) we have the same uncertainty as previously mentioned for 

test2109, where we do not have any verification of the behavior between these points. However 

since there have been performed so many repetitions for this test and since they coincide as well as 

they do, it seems like a reasonable explanation. 

 

Figure 22: Skewness vs. Ursell number, test2111 

Figure 23 shows how the skewness varies with the wave steepness for test2112. We can see that it 

also here seem to be a linear dependence up to a steepness of 0.25, but since this is higher than for 

test2111 there cannot be found a clear linear relation. 
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Figure 23: Skewness vs. wave steepness, test2112 

This is a fairly steep sea state, and this is also confirmed from Figure 23, and it is seen in Figure 24 

that this may to influence the dependence on the Ursell parameter. As there can be seen an almost 

perfect linear relationship between the skewness and the Ursell number. 

 

Figure 24: Skewness vs. Ursell number, test2112 



NTNU  
Norwegian University of Science and 
Technology 
Department of Marine Technology 

 M.Sc.THESIS  

 

40 
 

 

Tp=1.5 seconds 

In Figure 25 test2115 the skewness is presented as a function of the wave steepness, the significant 

wave height is 0.114 meters. Here we can observe that the trend is very similar to that of test2111 

(seen in Figure 21), but the steepness values are lower in this case.  

 

Figure 25: Skewness vs. wave steepness, test2115 

This seems reasonable since the longer peak period corresponds to a longer wave length, and thus a 

lower initial steepness. Another interesting thing is that the wave maker seems to be able to 

reproduce a wave height close to the given input for this period band. This is not of great significance 

but it is mentioned as the wave maker seems to give a smaller significant wave height, for larger peak 

periods. 

Figure 26 presents the skewness in terms of the Ursell number. The trend here is similar to that of 

the tests presented earlier in this chapter, that the skewness is proportional to the Ursell number.  
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Figure 26: Skewness vs. Ursell number, test2115 

In Figure 27 the skewness for test2116 is plotted against the wave steepness, the significant wave 

height for this test is 0.147 meters. The same is seen here as for the previous tests, where the 

skewness seem to be proportional to the wave steepness for the measured skewness corresponding 

to the lowest steepness. In order to fit all the data we can say that the skewness varies nonlinearly 

with the wave steepness. 

 

Figure 27: Skewness vs. wave steepness, test2116 

Figure 28 shows how the skewness as a function of the Ursell number, and again it is seen to be a 

linear relation between the two. It is however that repetition number 5 (Test 5 in the figure) deviates 
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from the rest at the last point of the curve, however the magnitude of the deviation does not cause 

any great concern. A reasonable amount of scatter has to be accepted.  

 

Figure 28: Skewness vs. Ursell number, test2116 

 

Tp=1.75 seconds 

In Figure 29 the skewness from test2117 is presented in terms of the wave steepness, the significant 

wave height for this test is 0.032 meters. The trend is that the skewness depends on the square of 

the wave steepness. 

 

Figure 29: Skewness vs. wave steepness, test2117 
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Figure 30 shows that there is not a linear relation between the measured skewness and the Ursell 

number. This is probably due to the same reason as for test2109, where the wave steepness is within 

the limitation of linear theory. Thus the waves can be considered linear, and it does not come as a 

surprise that an attempt to quantify the growth of the skewness in terms of a nonlinearity parameter 

don’t give linear relationship.  

 

Figure 30: Skewness vs. Ursell number, test2117 

In Figure 31 the skewness as a function of the wave steepness for test2118, where the significant 

wave height is 0.097 meters. The skewness is seen to proportional to the square of the wave 

steepness, and once again the skewness for the lowest steepness seems to be proportional to the 

steepness. 
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Figure 31: Skewness vs. wave steepness, test2118 

Figure 32 shows that the skewness is proportional to the Ursell number. 

 

Figure 32: Skewness vs. Ursell number, test2118 

In Figure 33 the skewness for test2119 is plotted against the wave steepness, this test has an 

significant wave height of 0.127 meters. Once again the skewness is seen to follow the steepness in a 
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linear relation for the lowest values of the steepness, but we need a nonlinear expression to the 

describe the behavior throughout the channel. 

 

Figure 33: Skewness vs. wave steepness, test2119 

Figure 34 shows that the skewness varies linearly with the Ursell number. 

 

Figure 34: Skewness vs. Ursell number, test2119 
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Summary of observations 

For the different tests the dependence on the wave steepness seems evident, for a large region in 

intermediate water depth. However as the water depth decreases further the relationship with the 

wave steepness is no longer linear. The explanation for this may be wave breaking, as this deviation 

from a linear relation is more evident for the tests where wave breaking was observed most 

frequently and in deeper areas of the channel. The wave breaking will decrease the wave steepness, 

and thus a fitted curve will have a larger gradient. But it cannot really be concluded that this is the 

single factor that this causes the skewness to grow “steeper”, since this is also seen in the less steep 

sea states, but then in a smaller degree. However it seems reasonable to the author that this is an 

effect that may contribute. 

The dependence on the Ursell number seems very good, where all the steep and nonlinear sea states 

have a skewness that is proportional to the Ursell number. The less steep sea states however does 

not seem to follow the same relation. Further it is worth mentioning that the distance between the 

last two points in all these figures is quite large, and we do not have any measurements in between 

these wave probes to confirm this behavior. But since this is the trend for all the relevant tests, it 

seems plausible that this is the case, i.e. that the skewness is proportional to the Ursell number.  

Comparison with previous work  

From the literature it is found three different publications which consider the change of the 

skewness coefficient on a sloping beach. Nilsen (1997), Wei et. al. (1999) and Nwogu (1993) all show 

the same, which is that the skewness increases as the water depth decreases, but they have not 

investigated the behavior any further. The same trend is clearly seen in our model test as well, this 

can be seen in Figure 18 at the beginning of this chapter. 

In Goda (2010), as mentioned earlier, it is said that the skewness in deep water is proportional to the 

wave steepness. Our model tests are never in deep water, so we do not have the opportunity to 

verify this. But there seems like a clear trend that the skewness grows proportional to the wave 

steepness for the first part of the slope, in intermediate water depth. Thus that the behavior 

described in Goda (2010) seems to be valid even in intermediate water depth, but not for the entire 

range of intermediate water depths.   

In Memos et. al. (2002) there is proposed an empirical formula to the skewness as a function of a 

non-dimensional water depth. This have been tested with the data from our model test, and it is 

found that except for the results from the wave probe on the shallowest water depth the skewness 

follows a straight line. However the only case where it follows the empiric formula is for test2111, for 

the larger sea states the formula under predicts the skewness. For the tests with low steepness 

(test2109 and test2117), the formula over predicts the skewness. 

From the tables of data presented in Nilsen (1997) there are one test that compare fairly well to our 

model test with respect to the input data, that is test “Kj31” with Hs=0.12 meters, Tp=1.4 seconds 

and a peakedness parameter equal to 3.3. Furthermore the results from Nwogu (1993) and Wei et. 

al. (1999) have been extracted from the graphs in the respective papers. The model test from Nwogu 

(1993) was preformed with a sea state with Hs=0.09 meters and Tp=1.5 seconds, in Wei et. al. (1999) 

the sea state where Hs=0.065 meters and Tp=1 second. The data from these model tests have been 
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plotted with results from representative sea states in our model test (test2111 and test2115), against 

the relative water depth and is shown in Figure 35. 

 

Figure 35: Comparison for skewness with previous model tests 

What we see from Figure 35 is that the results we have obtained from our model test are in the same 

order of magnitude as the tests from Nilsen (1997), Wei et.al. (1999) and Nwogu (1993). 
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4.1.3 Kurtosis 

The kurtosis coefficient is a far less stable parameter than the skewness. The results will be 

presented in a similar way as for the skewness, thus in terms of relative water depth, wave steepness 

and Ursell number. 

In Figure 36 the mean of the kurtosis coefficient for the different tests are presented in terms of the 

relative water depth, the behavior is somewhat chaotic but the trend is clear, the kurtosis increases 

with decreasing water depth. The gradient is increasing with decreasing water depth, thus the 

increase of kurtosis is significant when approaching the shallow water limit. There cannot be 

established a clear relation between the steepness of the different sea states, as for the skewness. 

This is probably due to the more random nature of the kurtosis. The kurtosis will also have variations 

in a Gaussian process, the magnitude of these variations can be determined by performing 

simulations of Gaussian processes resulting in an interval of variations that can be expected in a 

Gaussian process. Thus we would have a clearer indication of whether or not the process in question 

deviates from a Gaussian process, this has however not been done in this thesis due to lack of time.  

 

Figure 36: Kurtosis for relative water depths 

The results from the repetitions of these tests will be presented as earlier with those of 

corresponding peak periods. 
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Tp=1.25 seconds 

Figure 37 shows the kurtosis for test2109 as a function of the wave steepness, the input significant 

wave height for this test is 0.047 meters. It is seen that the kurtosis appears to grow linearly with the 

steepness, but there are some degree of scatter. 

 

Figure 37: Kurtosis vs. wave steepness, test2109 

From Figure 38 the skewness has been plotted against the Ursell number. What we see from this 

figure is that there does not seem to be any relation between the Ursell number and the kurtosis, at 

least for the lowest values of the Ursell number, however for higher Ursell numbers the kurtosis 

seem to grow proportional to the Ursell number. But the distance between the data points for “high” 

Ursell numbers is large, and thus the uncertainty of the behavior in-between is also large.  
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Figure 38: Kurtosis vs. Ursell number, test2109 

In Figure 39 the kurtosis for test2111 is presented in terms of the wave steepness. The different 

repetitions seem to follow the steepness in a relation that can be approximately linearly, but the 

magnitude of the different tests is different. It is difficult to make out any trend from this figure, due 

to the scatter.  

 

Figure 39: Kurtosis vs. wave steepness, test2111 

From Figure 40 the kurtosis is plotted against the Ursell number, and it is seen that the kurtosis from 

the tests follow the Ursell number linearly for the highest values of the Ursell number. But the 

increase of kurtosis for the lowest Ursell number differs quite significantly, and thus is it difficult to 

conclude with any clear trend.  
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Figure 40: Kurtosis vs. Ursell number, test2111 

The kurtosis from test2112 is shown in terms of the wave steepness in Figure 41. The figure shows 

that the kurtosis is slightly less scattered than the previous tests, but the initial values from the tests 

are strangely low. Remembering that the kurtosis in a Gaussian process is equal to 3, this figure 

shows that the distribution of the time series is flatter or less peaked than that of a Gaussian process. 

The reason for this may be that a wave maker that is not properly calibrated will give waves with a 

distribution that is wider than the input, i.e. a distribution which is flatter than the Gaussian input, 

and thus a kurtosis value that are smaller than 3.  

 

Figure 41: Kurtosis vs. wave steepness, test2112 
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In Figure 42 the kurtosis is plotted against the Ursell parameter. We can see a jump or a high gradient 

between the first and second wave probe, before the growth in the kurtosis seem to be proportional 

to the Ursell number. The scatter in the kurtosis values also seem less scattered in this case, as 

indicated previously. 

There can also be seen a “jump” in the kurtosis coefficient early in the channel which probably is a 

result of an un-calibrated wave maker giving a broad distribution of the time series, another 

explanation may be that this occurs and additionally unphysical waves due to this effect breaks. By a 

broad distribution it is mean that the tails of the distribution are steeper, and the peak of the 

spectrum is wide and flat. This is similar to the behavior of a distribution with a kurtosis lower than 3, 

and thus it seems like a reasonable explanation that the effects from an un-calibrated wave maker 

results in low kurtosis.   

Tp=1.5 seconds 

In Figure 43 the kurtosis for test2115 is presented in terms of the wave steepness. We can see that 

the trend can be approximated with a linear relation between the kurtosis and the wave steepness. 

Figure 42: Kurtosis vs. Ursell number, test2112 
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Figure 43: Kurtosis vs. wave steepness, test2115 

From Figure 44 the kurtosis is plotted against the Ursell number. We can see a kurtosis which is 

proportional to the Ursell number. 

 

Figure 44: Kurtosis vs. Ursell number, test2115 

In Figure 45 the kurtosis for test2116 is plotted against the wave steepness. From the figure we can 

see that the kurtosis follows the wave steepness with a linear relation, although with more scatter 

than that of test2115. 
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Figure 45: Kurtosis vs. wave steepness, test2116 

From Figure 46 the kurtosis is presented in terms of the Ursell number. We can see that the kurtosis 

follows the Ursell number with a linear relation, but the scatter is of a significant magnitude. 

 

Figure 46: Kurtosis vs. Ursell number, test2116 
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Tp=1.75 seconds 

From Figure 47 the kurtosis for test2117 is presented in terms of the wave steepness. The results are 

somewhat strange, since the kurtosis remains below 3 through the entire channel. And thus the 

kurtosis is below that of a Gaussian process, where the expected behavior should be that the kurtosis 

starts out as a Gaussian process and then grows to a distribution steeper than that of a Gaussian 

process.  

 

Figure 47: Kurtosis vs. wave steepness, test2117 

An explanation may be that as argumented previously the waves generated by the wave maker have 

a too wide distribution, giving a too flat distribution, thus a kurtosis below 3. This is something that 

has been seen predominately for the steepest sea states, but it is also seen clearly in this case. We 

see that the kurtosis increases with the steepness and the relative water depth (Figure 36), but as 

this is a fairly moderate sea state it seems likely that it should not follow as steep a gradient as for 

the steeper sea states, at least before entering shallow water. 

In Figure 48 the kurtosis has been plotted against the Ursell number. It is difficult to make out any 

trend in this case, it may be assumed to vary linearly with the Ursell number. 



NTNU  
Norwegian University of Science and 
Technology 
Department of Marine Technology 

 M.Sc.THESIS  

 

56 
 

 

 

Figure 48: Kurtosis vs. Ursell number, test2117 

From Figure 49 the kurtosis for test2118 has been plotted against the wave steepness. It seems that 

the kurtosis here has a linear relation with the wave steepness. 

 

Figure 49: Kurtosis vs. wave steepness, test2118 

In Figure 50 the kurtosis is presented in terms of the Ursell number. It is seen that some of the 

repetitions follows the Ursell number linearly, but it cannot be concluded to be very reliable. 
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Figure 50: Kurtosis vs. Ursell number, test2118 

In Figure 51 the kurtosis for test2119 is presented in terms of the wave steepness. It is clear that the 

data do not fit a straight line, and thus the kurtosis is not proportional to the wave steepness in this 

test. 

 

Figure 51: Kurtosis vs. wave steepness, test2119 

From Figure 52 the kurtosis has been plotted against the Ursell number, but there are no clear linear 

relation between the kurtosis and the Ursell number. 
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Figure 52: Kurtosis vs. Ursell number, test2119 

Summary of observations 

The figures presented in this chapter show that the change of the kurtosis as the waves transform 

from deep to shallow water fits a linear relation with the Ursell number and sometimes don’t. Thus it 

cannot be established any clear connection between the kurtosis coefficient and the parameters 

wave steepness and Ursell number from these model tests. The kurtosis values are largest for the 

largest periods, and small for the smallest periods. This makes sense since the longest periods should 

be most affected by the effect from wave shoaling, and thus gets larger waves which results in a 

more peaked distribution of the time series. 

It is observed that the kurtosis for the first wave probe often gives values that are below 3, and thus 

a distribution of the time series less peaked and with steeper tails than that of a Gaussian process. A 

possible explanation for this is that the wave maker is not properly calibrated, which may cause the 

distribution of the generated waves to be broader than the initial input. Another explanation may be 

that this is just variations of the kurtosis which is in the typical range of a Gaussian process, but as 

this tendency is the same for many repetitions this seem unlikely. This effect stabilizes itself as the 

waves propagate to the second wave probe, this is seen as a “jump” or a large gradient between the 

first and the second point in the figures.  

Comparison with previous work 

From previous work there are found two publications that presents the measured kurtosis coefficient 

from a model test, which can be found in Nilsen (1997) and Memos (2002). Further Goda (2010) also 

compares the kurtosis with full scale measurements, with respect to a nonlinearity parameter. This 

nonlinearity parameter converges towards the wave steepness in deep water, and towards the Ursell 

number in shallow water. It seen that the kurtosis increases with increasing nonlinearity, and thus 

decreasing water depth. This is the same trend seen in our model test, but there are no successful 
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attempt to get a connection between the kurtosis and other parameters. In Memos (2002) there 

have been established an empirical relation between the kurtosis and a normalized water depth from 

data of a model test with the same slope as ours, given as: 

             
  
 
    

 

(41)  

Where d0 is the water depth associated with the deep water limit for the peak period of the input 

wave spectrum, and d is the water depth at the location of the different measurements. This empiric 

formula overpredicts the kurtosis for all of the tests performed in our model test, with the exception 

of test2111, which fits fairly well. The empirical formula from Memos (2002) does not fit our data. 

But it is only the gradient of the line that do not fit our data, the kurtosis from our data follows the 

normalized water depth proposed by Memos approximately by a straight line. Thus the kurtosis 

appears to be proportional to the normalized water depth proposed by Memos (2002). An example 

of this can be seen in Figure 53 where the kurtosis for test2116 has been plotted against a 

normalized water depth, the empirical formula by Memos (2002) is the solid blue line whereas the 

data from our model tests can be seen as black single data points. 

 

Figure 53: Kurtosis compared to equation 39 from Memos (2002), for normalized water depths 

       

The model test which is analyzed in Nilsen (1997) is the same as the one analyzed in Memos (2002), 

thus we should expect the same trend when comparing against the data from this model test. The 

model test from Nilsen (1997) that compare the best with respect to input parameters from our 

model test is a test with Hs=0.12 meters and Tp=1.4 seconds. This test has been compared with 

test2111 (Hm0=0.13m, Tp=1.25s) and test2115 (Hs=0.114m, Tp=1.5s), and is plotted against the 

relative water depth. And the same trend as in Memos (2002) can be seen in Figure 54, where the 

gradient of the kurtosis are larger. For the larger water depths we get the same results, but the 
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kurtosis from Nilsen (1997) increases in deeper water and with a larger gradient compared to the 

results from our model test, the results are however not that far off, and we can say that we at least 

are in the same order of magnitude as the test performed by Nilsen (1997). 

 

Figure 54: Comparison with kurtosis from Nilsen (1997) 
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4.2 Spectral estimates 
The spectral estimates in this model test have been generated using the WAFO (2000) function 

“dat2spec”, using and approach called Welch averaged periodogram, which is described in chapter 

2.5.2. There have been generated spectral estimates for the recorded time series at each wave probe 

for all the relevant model tests, which obviously gives a lot of figures. In this chapter there will be 

presented examples where interesting behavior is observed. The reader is referred to appendices for 

a complete set of figures for the tests in question. The rest of the figures can be found in the digital 

appendix attached to this thesis. The results will be presented in the order that the wave propagates, 

i.e. there will be presented results from the start of the channel in the beginning of this chapter, and 

it will finish with the results from the last wave probe. In order to cut down on the amount of data to 

present, we will present the results from a large sea state (test2116), a medium sea state (test2111) 

and one low sea state (test2117) with respect to the significant wave height. The complete set of 

spectral estimates for these tests can be found in Appendix C, spectral estimates for the rest of the 

tests can be found in the digital appendix. 

4.2.1 Test 2116 

Beginning at the first wave probe, which is located in the entrance to the channel. From the steeper 

sea states it was observed a significant amount of wave breaking in this area, as the waves coming 

out of the wave maker where higher and thus steeper than specified as input. In connection with 

these observations it seems reasonable that there should be a large wave spectrum in this position, 

and possibly some deviations in the high frequency tail as a result of broken waves. In Figure 55 the 

wave spectrum for test2116 is presented for all the repetitions. 

 

Figure 55: Spectral estimates at wave probe 2, for test2116 
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It seen that there are some considerable disturbances in the high frequency tail of the spectra 

(5<ω<10), it cannot be said with an absolute degree of certainty that this is due to wave breaking 

since some of the disturbances certainly is a result process of generating the spectrum. If trends 

should be visible in the spectrum, then you have to allow some “noise” in the spectrum. However 

compared to Figure 56 which is the spectral estimates from the next wave probe, it seems clear that 

a portion of the disturbances are due to wave breaking. As the tails in this figure is smoother it seems 

evident that some portion of the energy has been transferred from the high frequency tail to the 

lower frequencies in the spectrum by means of quadruple wave-wave interactions. Further it seems 

like the height of the peak for most of the tests remained unchanged for most of the repetitions, 

indicating that the observed wave breaking is predominant before the first wave probe. Repetition 

number seven and ten (Test 7 and Test 10 in the figures) have however a significant drop in the area 

of the spectrum, and thus in the energy of the spectrum. This is an indication that there has occurred 

a significant amount of wave breaking between the first and second wave probe. 

 

Figure 56: Spectral estimates at wave probe 3, for test2116 

It is observed that the waves seem to shoal, as the peak of the spectrum increases. This is illustrated 

in Figure 57 where the estimated spectrum for wave probe 11 is shown. This is in the area of interest 

for this model test, the estimated spectrums in the area close till this wave probe shows 

approximately the same behavior. But it also noticed that the effect from shoaling is not very 

significant for all the repetitions. The spectrums then decrease slightly before a clear abrupt change 

can be seen in the region of wave probe 6 and 7.  
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Figure 57: Spectral estimates at wave probe 11, for test2116 

 

As the waves move closer to the shore the largest waves start to break, this is seen clearly in the 

spectrums from wave probe 7 which is shown in Figure 58. The spectrums are seen to decrease 

significantly, and as it was observed a significant amount of wave breaking in this region during the 

Figure 58: Spectral estimates at wave probe 7, for test2116 
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model test it seems reasonable that the reduction is caused by dissipation effects from wave 

breaking. However there cannot rule out that there are effects from bottom friction that contributes 

to the dissipation, this will however be discussed further for the low steepness case in this chapter. In 

test2117 wave breaking where observed to appear in shallower water than the last wave probe, and 

will thus give a clearer indication of whether or not the bottom friction has contributed with 

significant dissipation in this model test. 

From Figure 58 it is also seen sub- and super-harmonic peaks in the spectrum, these peaks are a 

result of triad wave-wave interactions. As triad wave-wave interactions are a nonlinear phenomenon 

that occurs in relatively shallow water, the presence of these interactions indicate that the surface 

process from these model tests are nonlinear. 

4.2.2 Test 2111 

In this test there were observed some wave breaking in the vicinity of the first wave probe. This test 

has a lower significant wave height than test2116, but is actually steeper. Thus one could expect to 

see much of the same behavior between the first and second wave probe as in the previous chapter, 

thus traces of breaking waves. The estimated spectrum for the first wave probe is seen in Figure 59, 

and it is seen the tail of these spectrums are somewhat scattered and deviate from a smooth shape. 

Which may be an indication that wave breaking have occurred prior to the first wave probe. 

In Figure 59 the wave spectra for the second wave probe are presented, here it can be seen that the 

tail although scattered has a tail that is smoother and more like the shape we should expect. This 

indicates that quadruple wave-wave interactions are present, and have contributed to shifting 

energy from the high frequency tail towards the mid frequencies in the wave spectrum, thus 

Figure 59: Spectral estimates at wave probe 2, for test2111 
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preserving the shape of the tail. Further it is observed that some of the spectrum energy has 

dissipated between the first and second wave probe, this indicating that there have occurred wave 

breaking between the two wave probes. This fits the visual observations, as there was observed 

breaking waves in the area before, at and after the first wave probe.  

 

Figure 60: Spectral estimates at wave probe 3, for test2111 

Further down the channel the spectral estimates remain fairly unchanged, with some local variations. 

For the wave probes closest to the beach we see a small increase in the spectra, before dissipation 

effects from wave breaking become noticeable. The spectral estimates from the last wave probe can 

be seen in Figure 61, and we see that there have been dissipated a significant amount of energy in 

Figure 61: Spectral estimates at wave probe 7, for test2111 
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the spectrums, it seems evident to the author that this primarily is due to dissipation effects from 

wave breaking. But as previously mentioned this is primarily based on visual observations, and the 

presence of dissipation due to bottom friction cannot be ruled out. This can however be indicated by 

the spectrums from test2117 where wave breaking was not observed before the waves passed the 

last wave probe, and thus the only dissipation effect should then be bottom friction. From Figure 61, 

sub- and super-harmonic peaks are seen, which are caused by triad wave-wave interactions. The 

triad wave-wave interactions are nonlinear phenomena, and the presence of these interactions 

indicates that there are predominant nonlinear effects in the surface process. The sub harmonic peak 

in the low frequency part of the spectrum represents surf beat, which can be explained as slow 

variations in the mean water level, according to Holthuijsen (2007) this sub harmonic peak has a 

period of a couple of minutes, which compares fairly well as it in this case corresponds to a period of 

approximately 95 seconds. The Super harmonic peak can be seen to appear at two times the peak 

frequency, this is in accordance to theory.  

4.2.3 Test 2117 

For the smallest test in this comparison there where only observed no wave breaking within the 

vicinity of the wave probes, i.e. the wave breaking occurred on shallower water than that of the 

wave probe closes to the beach. The spectral estimates for the first wave probe for this test can be 

seen in Figure 62, and it is seen that the high frequency tail of the spectrum does not behave as 

expected. The tail is simply too wide and not as smooth as could be expected. The explanation for 

this may be that an un-calibrated wave maker produces a wave spectrum tail that are too broad, and 

that this is the cause if the behavior seen in the figure. 

 

Figure 62: Spectral estimates at wave probe 2, for test2117 
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From Figure 63a) it seems however that the shape of the tail has been transformed into something 

that is more like expected, the spectrum seems narrower and the tail seems smoother. This is 

possibly due to effects from quadruple wave-wave interactions, which according to the theory should 

shift the energy from the high frequency tail towards the mid range frequencies in the spectrum. 

 It is also noted that peak of the spectrum decreases slightly compared to Figure 62, what causes the 

peak to decrease is not certain but when compared to the rest of the spectrums this seems to be in 

the order of magnitude of typical random variations. 

Further down the channel the spectrums remain fairly unchanged with only small variations and a 

small decrease in the peak of the spectrum, but at the last wave probe (closest to the beach) the 

peak of the spectrum increases again. This is illustrated in Figure 63b). From this figure it can also be 

seen that the sub- and super-harmonic peaks found in the two other test cannot be seen in this 

spectrum, it seems evident that as the triad wave-wave interactions generating these peaks are 

nonlinear phenomenon, then the surface process for this test at the last wave probe are not 

nonlinear to that magnitude as seen for the steeper tests presented earlier.    

4.2.4 Summary of observations 

“Deep water” breaking 

For the largest tests (test2111 and test2116) we can see clear traces of wave breaking in the spectral 

estimates at the first wave probe, as “noise” in the high frequency tail. Further we see unnaturally 

broad spectra at this position for all the tests, this is as argued in previous chapters most likely 

caused by an un-calibrated wave maker. As the wave propagates to the next wave probe, most of 

this behavior seems to have disappeared. Or to be more specific the energy does not disappear as it 

is shifted to the mid frequencies in the spectrum due to so called quadruple wave-wave interactions, 

Figure 63: a) Spectral estimates at wave probe 03, for test2117. b) Spectral estimates at wave probe 07  
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preserving the smooth tail of the spectra. For the largest sea states in question it is also seen that the 

peak of the spectrum decreases from the first to the second wave probe, this is due to energy 

dissipation caused by wave breaking. 

Shoaling 

From the test analyzed in this chapter the presence of shoaling in the spectral estimates can only be 

seen in one test (test2117). The reason for this may be that the effect from shoaling will be stronger 

for lower relative water depths, i.e. for the tests with the largest peak period. The fact that we do not 

see this before the last wave probe on the tests with the longest periods suggests that the effect 

should not be visible at all before we enter shallower water. 

Bottom friction 

As the spectral estimates from the tests above are compared, there cannot be seen any clear 

evidence of effects from bottom friction in the spectrums. 

As the spectral estimates from the tests above are compared, there cannot be seen any clear 

evidence of effects from bottom friction in the spectra. As mentioned previously the bottom friction 

should be an important dissipation mechanism in shallow water. But as the only significant 

dissipation occurs where waves are observed to break, and as the spectral estimates for test2117 in 

which the waves do not break within the vicinity of the wave probes, observe no visible contribution 

from bottom friction. The contribution can be assumed to be small and thus negligible for our tests. 

Also remembering that test2117 have a longer dominant period than the other tests, it should be 

expected that bottom friction will be more significant here than for other tests, this enhance the 

hypothesis. 

From the authors point of view there are three possible explanations to the absence of bottom 

friction. The first being that as this is a phenomenon that is said to make a significant contribution in 

shallow water, and thus a possible explanation may be that our wave probes are not in shallow 

enough water to capture the dissipation effects from bottom friction is such a degree that it is visible. 

However considering an example from Holthuijsen (2007) which can be seen in Figure 1, where the 

bottom friction is estimated for a sea state with Hs=3.5 meters and Tp=7 seconds on 10 meters water 

depth. But by calculating the relative water depth in test2117 it is seen that this test actually is on a 

lower relative water depth than the example given in Holthuijsen (2007), thus we can say that we are 

on shallow enough water for the effect from bottom friction to be present. 

Secondly if we consider frictional forces in general, the energy dissipation is highly dependent on the 

distance traveled. Thus considering that our model test setup gives the wave 17 meters to contribute 

to energy dissipation, whereas say two or three wavelengths of this distance are in an area where 

bottom friction will contribute, it does not seem unlikely that this energy dissipation will be small. 

This in accordance with observations from Holthuijsen (2007), where he states that the contribution 

from bottom friction only will be of significance as the waves travel over long distances.  

Thirdly the surface roughness is a very important parameter when considering bottom friction.  

Where a smooth surface (such as in our model test) will give a lot less friction than a typical sea 

bottom which may be covered with for example sand or rocks. 
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The reader should be aware that although there cannot be seen any significant contributions from 

bottom friction in the present model test, the effect are expected to make a significant contribution 

in a full scale event. Where there will not be idealized conditions such as the present model test. 

Depth induced wave breaking 

For the two wave probes closest to the beach we see clear effects of dissipation in the spectral 

estimations for the largest sea states. From visual observations the waves was seen to break in this 

area, also for the largest sea states. Thus it seems reasonable that this decrease in the energy of the 

spectrums is caused by energy dissipation due to wave breaking. This area corresponds to full scale 

water depths from 15-20 meters. For the largest sea states there were observed wave breaking as 

deep as a full scale water depth of 25 meters, but this was more sporadically and there are not seen 

any significant dissipation effects in the spectral estimates at this position.   

Since these waves break so close to the shore it seems evident that these are influenced by depth 

induced effects. Depth induced wave breaking are caused by nonlinear interactions in which causes 

the waves to grow asymmetrical (front/back of the wave) with decreasing water depth. As a result of 

this asymmetry the waves will eventually break. There were seen a significant difference between 

the shape of the waves in this position compared to those at the start of the channel, and it can then 

be said with a reasonable degree of certainty that these waves break as a result of depth induced 

effects. Thus the decreases of the energy in the spectral estimates are caused by depth induced 

breaking.  

Sub- and super-harmonic peaks 

In the two largest tests analyzed here it was noticed both sub- and super-harmonic peaks in the 

spectral estimates, this caused by triad wave-wave interactions which shifts energy from the mid 

range frequencies in the spectrum to a sub-harmonic peak in the low frequency range and to a 

super-harmonic peak at two times the peak frequency. The presence of such nonlinear interactions 

indicates that the surface has transformed into a process where nonlinear contributions are 

important.  

 

4.2.5 Behavior of the high frequency tail of the spectral estimates 

An interesting aspect of the waves spectrums in finite water depths, are that the tail deviates from 

the tail observed in deep water. What is proposed in the TMA spectrum is that the first part of the 

high frequency tail will follow f-3 and the last part of the tail will follow f-5. In order to investigate this 

proposed behavior the wave spectrums have been multiplied with both f3 and f5 (separately), if the 

tail follows let’s say f-3 it should appear as a straight line when multiplied with f3 and likewise for a tail 

following f-5. One behavior that will not be accounted for in a spectral model such as the TMA 

spectrum is the sub- and super-harmonic peaks that are observe in our spectral estimates. As the 

TMA spectrum has been proposed as a possible spectral model, the behavior of this spectrum tail is 

also compared to that of our spectral estimates. As the TMA spectrum don’t estimate the same 

dissipation of energy as we have measured in our model test (this will be documented in chapter 

4.2.6), the spectrum tail has been scaled for a better visual comparison.  
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When comparing the behavior of the tail in the spectral estimates, the root mean square (RMS) of 

the spectrums has been used. But there have also been included a figure with several spectrum tails, 

then the reason for the RMS seems evident, since they follow approximately the same trend but with 

such overlapping curves that it is difficult to compare results from multiple wave probes in the same 

figure. The RMS values of the spectrum tails have been plotted for wave probe 2, 5 and 7 in order to 

get a measure of how the tail transforms from deep to shallow water. In this chapter there will be 

focused on test2111 and test2116, the high frequency tail from the rest of the tests can be found in 

Appendix D.  

Omega to the power of -3 

From Figure 64 the spectral estimates times f3 are presented for test2111, and it is seen that the first 

part of the high frequency tail is not straight for any of the wave probes. They are however that far 

off. The tail of the TMA spectrum should in theory transform from a f-3 to a f-5 shape from “low” to 

high frequencies in the wave spectrum, this is not seen to occur for more than very small frequency 

band in the early stage of the high frequency tail. But it is important to have in mind that this tail has 

been scaled in order to compare the shape with our spectral estimates, and  the spectrum have been 

scaled up from something that have been significantly dissipated by bottom friction. Nevertheless 

the shape of the tail is not that far off. There are also observed a super-harmonic peak at three times 

the peak frequency that not are visible directly from the spectral estimates. 

In Figure 65 the RMS of the spectral estimates times f-3 are presented for test2116, and it is seen that 

the first part of the tail from wave probe 7 are constant (just before the 2*omega_p peak). This 

shows that the tail follows omega-3 for the first part of the high frequency tail. It is also noticed that 

the scaled tail of the TMA spectrum follows the behavior of the spectral estimates at wave probe 7 

fairly well. Also here a super-harmonic peak at three times the peak frequency can be noticed. 

Figure 64: RMS of spectrum tail times omega^3, test2111 
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Figure 65: RMS of spectrum tail times omega^3, test2116 

For the wave probes closer to the wave maker there cannot be found a relation for the high 

frequency tail with omega^-3. 

Omega to the power of -5 

 

Figure 66: RMS of spectrum tail times omega^5, test2111 

From Figure 66 the RMS of the spectrum tail for test2111 is presented, and the tail from wave probe 

3 can be seen to follow approximately a straight line, thus the shape of the tail are approximately 

omega-5. The tail at wave probe 5 is seen to decrease slightly, but it could also be said that it 

approximately follows omega to the power of -5. For wave probe 7 it seems that the tail follows 

omega to the power of -5 for all the places in the tail accept for the super-harmonic peaks at two and 

three times the peak frequency. Further it is seen that the TMA tail follows the behavior of the tail at 

wave probe 7 fairly well, however with the exception of the super-harmonic peaks. 
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Figure 67: RMS of spectrum tail times omega^5, test2116 

In Figure 67 the RMS values of the spectral estimates times omega to the power of 5 is presented for 

test2116, it is seen that wave probe 5 and 7 follows the behavior seen in Figure 66. Whereas the tail 

from wave probe 7 does not follow omega^-5 before it enters the last part of the high frequency tail. 

Summary of observations 

The behavior of the high frequency tail seems to follow omega to the power of -5 for the wave 

probes in deepest water. 

The tail in shallow water should be dependent on ω-3 which is transformed into ω-5 in the high 

frequency part of the high frequency tail. This is seen to be the case for test2116, but for test2111 

the proposed ω-3 behavior in the first part of the high frequency tail. And it seems like the tail of 

test2111 follows ω-5 between the super-harmonic peaks. But although the behavior of the tail 

between the super-harmonic peaks follow ω-5, the presence of these peaks seem to increase the 

“thickness” of the high frequency tail, which is a behavior that cannot be described by pure ω-5 high 

frequency tail tail. 

The TMA tail illustrated in these figures are as mentioned earlier scaled to fit the first part of the high 

frequency tail from the spectral estimates at wave probe 7, and should only be considered as an 

estimate of how a fitted TMA spectrum might behave. Considering this the tail of the TMA spectrum 

behaves fairly well, it does not predict the behavior exactly but it gives a good indication of how the 

tail transforms in finite water depths. It is also noted that the TMA tail grossly underestimates the 

magnitude of the high frequency part of the tail for test2116 (Figure 67), but it seems to accurately 

predict the place (frequencies) where the tail is transformed from ω-3 to ω-5. 

 

4.2.6 Comparison with analytical spectral models (TMA) 

The TMA spectrum is described in chapter 2.5.1, and is basically a JONSWAP spectrum scaled to finite 

water depths. The TMA spectrum have been fitted to our spectral estimates by using the measured 
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significant wave height and the given water depth from each wave probe, further the spectrum have 

been fitted to match the peak of the spectral estimate by adjusting the peakdness coefficient 

(gamma) in the TMA spectrum. The TMA spectrum have been fitted to match the second wave probe 

in the propagation direction of the waves (wave probe 2), and the parameters remain the same 

throughout the channel in order for us to be able to compare the transformation of the spectral 

estimates with the TMA spectrum. The trend seen when comparing TMA with our spectral estimates 

is the same, thus there have only been included one example in this chapter. The comparison will be 

illustrated by examples from different wave probe, a complete set of plots where the spectral 

estimates are compared with the TMA spectrum can be found in Appendix E. Comparisons with the 

TMA spectrum and spectral estimates from other tests can be found in Digital appendix 2. 

The first repetition of test2116 will be used as an example in this chapter. From the Figure 68 the 

spectrum estimation from test2116 can be seen in a solid red line, whereas the TMA is shown in a 

dotted blue line. It is seen that it is not a perfect fit, but that is of small significance. They are in the 

same order of magnitude, and it is the change further down the channel that is of interest. 

 

Figure 68: Comparison with spectral estimate and TMA at wave probe 3, test2116 

In the most interesting area for a full scale water depth in the region of 25 meters, this corresponds 

to the water depth where wave probe 11 is placed (h=0.309m). The comparison for wave probe 11 

can be seen in Figure 70, and it is seen that the TMA spectrum grossly underestimates the energy in 

the wave spectrum, compared to that of the generated spectral estimate in the same position.  
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It is obvious that the TMA spectrum has taken into account a significant amount of dissipation, the 

only place we have noticed a significant amount of dissipation in the spectral estimates are for the 

wave probe close to the beach. Then TMA is also compared to the spectral estimates for the last 

wave probe (wave probe 7), this can be seen in Figure 69. 

It then seems clear to the author that the TMA spectrum overestimates the energy dissipation in the 

wave spectrums in the results from our model test. The explanation for this may be that the TMA 

spectrum only considers dissipation from bottom friction, whereas there in our model test are no 

noticeable effects from bottom friction. 

It is worth reminding the reader that TMA does not account for dissipation due to wave breaking at 

all, but from Figure 69 it is seen that the estimated dissipation from bottom friction in the TMA 

spectrum are larger than the measured dissipation from wave breaking in our model test. 

Using the TMA may have been a bit optimistic in the first place, as it is an spectral model that 

assumes that the sea bottom is gently sloping, which it is not in our case. An as argued in the 

previous chapter the slope, and thus propagation distance of the waves seems like an obvious 

explanation of the absence of bottom friction in our results.  

As can be seen from chapter 4.2.5 the tail of the TMA spectrum seems to predict the behavior in the 

high frequency range of the spectrum fairly well.  

  Figure 70: Comparison with spectral estimate and TMA at 
wave probe 11, test2116 

Figure 69: Comparison with spectral estimate and TMA 
at wave probe 7, test2116 
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4.2.7 Comparison with previous work 

In Nilsen (1997) there have also been estimated spectral estimates, and there have been found one 

test that corresponds fairly well to some of the tests performed in our model test. The test used for 

comparison has a Hm0=0.1151 meters, Tp=1.417 seconds and a peakedness parameter of 3.3 the 

water depth is 0.31 meters. We do not have any exact matches of this test, but test2116 corresponds 

fairly well, and will be used for comparison. Furthermore the position of wave probe 12 corresponds 

to approximately the same water depth as from Nilsen (1997). The data from Nilsen (1997) are found 

by eye from figures presented in the thesis, and should only be taken as a rough trend. But the values 

for the peak frequency are fairly close to exact values, and this should be enough for us to determine 

whether or not the spectral estimates from our model test are in the same order of magnitude as 

those from Nilsen (1997). But as the spectral estimates in Nilsen are presented in terms of Hz instead 

of angular frequency, the spectral estimates have to be converted to a frequency (Hz) domain. This 

can be done fairly simple by specifying that you want the spectral estimates in terms Hz in the WAFO 

(2000) function “dat2spec” in matlab. Similar smoothing and scaling procedure as previously has also 

been performed.  

 

Figure 71: Comparison with spectral estimates from present model test and Nilsen (1997) 

From Figure 71 the comparison are presented, and it is seen that the results compare fairly well. 

Test2116 has a larger significant wave height than that of Nilsen (1997), but this is mostly due to a 

broader wave spectrum. And it seems reasonable to say that the results compare fairly well.  
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4.3 Wave and crest height distributions 
In order to identify the wave and crest heights from a time series of surface elevation, there have to 

be performed either a zero up crossing or a zero down crossing analysis. For a Gaussian process the 

two approaches should yield statistically the same wave heights. In finite water depth where the 

process might not be Gaussian we do not know with certainty that this will be the case. Then in order 

to check that a zero up crossing analysis can be used, there have been performed analysis with both 

approaches along with a Rayleigh reference all the selected tests in this thesis. These figures can be 

found in the Digital appendix 3 attached to this thesis. An example of this is however presented in 

Figure 72, and it is seen that the resulting wave heights from zero up- and down crossing analysis 

gives resulting wave heights in the same order of magnitude. The crest heights will be exactly the 

same for both zero up- and down crossing analysis. 

 

Figure 72: Comparison with data from zero up and down crossing analysis, and Rayleigh 

This trend is also seen for the rest of the tests only with some exceptions, which is within a 

reasonable degree of error. It can then be said that the wave heights can be approximated as 

independent of the type analysis used to obtain them. 
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Goda (2010) states that a zero up crossing analysis will yield slightly larger individual wave periods 

than a zero down crossing analysis when the waves are asymmetrical with respect to the front and 

back of the wave. But the characteristic wave heights will be statistically the same for both 

approaches. 

Since wave periods not will be of importance here, a zero up crossing analysis are performed in order 

to find the wave and crest heights in the time series. 

The data from the model test will then be compared with analytical models, the description of these 

models can be found in chapter 2.5.4 and 2.5.5 for wave crest and wave height distributions 

respectively. The distributions have been generated at each wave probe for all the relevant tests with 

corresponding repetitions that are of interest in this thesis. As a result of this there have been 

generated a large number of figures, thus in this chapter only representative examples will be 

presented. The complete set of figures from the presented tests can be found in Appendix 4 and 

Appendix 5 for wave height and crest height distributions respectively. For the rest of the tests and 

corresponding repetitions the reader is referred to the digital appendix attached to this thesis, where 

figures from all the tests can be found. 

There will be presented results for a large, medium and small sea state. The tests that are chosen are 

test2117, test2111 and test2116.  Further the results will be presented in the propagation direction 

of the wave, thus starting with the measured results from the wave probes closest to the wave 

maker, and finishing with results from the wave probes closest to the beach. 
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4.3.1 Wave height distributions 

Test2116 

In Figure 73 the wave height distributions are compared with data from test2116, at the start of the 

channel (wave probe 2). In this figure the distribution proposed by Battjes et.al. (2000) are following 

the Rayleigh distribution, as the threshold wave height is larger than the largest waves in the time 

series. The data is seen to approximately follow the Rayleigh distribution for the lower probabilities, 

but for the higher probabilities the distributions proposed by Forristall (1978) and Næss (DNV(2007)) 

are seen to fit the data better. This seems reasonable as the Rayleigh distribution is considered as a 

conservative distribution. There are also noticed that there are a wave height exceeding that 

predicted of Forristall and Næss, however this does not exceed the wave height predicted of the 

Rayleigh distribution. 

 

Figure 73: Wave height distributions at wave probe 2, test2116 

From Figure 74 the wave height distributions are compared with data at wave probe 11, and it is 

seen that the data seem curve upwards as the data no longer follows a straight line in the Weibull 
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paper. This behavior seems to be reasonable well captured by the distribution proposed by Battjes 

et.al. (2000). The Rayleigh distribution is as expected conservative, but both the Forristall and Næss 

distribution predicts the wave heights fairly well for the higher probabilities. 

 

Figure 74: Wave height distributions at wave probe 11, test2116 

In Figure 75 the wave height distributions for the wave probe closest to the beach are shown, and it 

is seen that the Battjes distribution under predicts the wave heights for the higher probabilities. The 
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gradient of the break in the curve seem to fit the data, but the threshold wave height is obviously too 

low. Once again the Forristall and Næss distribution predicts the wave heights for the higher 

probabilities fairly well, and the Rayleigh distribution gives conservative wave heights at high 

probabilities. 

 

Figure 75: Wave height distributions at wave probe 7, test2116 

Test 2111 

In Figure 76 the wave height distributions are compared with data from test2111, at the start of the 

channel (wave probe 2). The data is seen to follow the Forristall and Næss distribution for the higher 
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probabilities, and as observed previously the Rayleigh distribution is conservative for the higher 

probabilities.  

 

Figure 76: Wave height distributions at wave probe 2, test2111 

From Figure 77 the wave height distributions at wave probe 11 is presented and it is seen that the 

data follows the Rayleigh distribution for the lower probabilities, and it seems to shift towards the 
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Forristall and Næss distribution for the higher probabilities. Thus the Rayleigh distribution is once 

again seen to be conservative for the higher probabilities.  

 

Figure 77: Wave height distributions at wave probe 11, test2111 

In Figure 78 the wave height distributions are compared to the data at wave probe 7, and it is seen 

that the Battjes distribution fits the data well at high probabilities. And thus the Forristall, Næss and 

Rayleigh distribution will all be conservative in this case. When comparing the distributions from the 
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rest of the repetitions at this position, it is seen similar behavior for most of the cases. But for some 

repetitions the data is located between the Battjes distribution and Forristall&Næss distributions. 

 

Figure 78: Wave height distributions at wave probe 7, test2111 

Test 2117 

In Figure 79 the wave height distributions for test2117 is shown for wave probe 2, and it is seen that 

the data follows the Forristall distribution both for high and low probabilities. For the high 

probabilities the Næss distribution also gives a reasonable estimate of the wave heights, once again 

the Rayleigh distribution are conservative for high probabilities. 
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Figure 79: Wave height distributions at wave probe 2, test2117 

   

In Figure 80 the wave height distributions are shown at wave probe 11, and it is seen that the data 

follows the Forristall distribution. For high probabilities the Næss distribution also gives a good fit, as 

this distribution is very similar to the Forristall distribution for high probabilities. It is also seen that 

the Rayleigh distribution is conservative for high probabilities. 
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Figure 80: Wave height distributions at wave probe 11, test2117 

From Figure 81 the wave height distribution at wave probe 7 are shown, and much of the same 

behavior as for the other wave probes are seen here as well, where the data fits the Forristall 

distribution for both high and low probabilities. Thus the Næss distribution also fits the data well for 

high probabilities. And as seen before the Rayleigh distribution remains conservative. 
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Figure 81: Wave height distributions at wave probe 7, test2117 
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Summary of observations 

For the larger sea states it is observed that the data appear to follow a line with a larger gradient for 

the higher probabilities, this is something that are more clearly seen in shallow water and is most 

probably a result of depth induced wave breaking. This phenomena is reasonable well described by 

the distribution proposed by Battjes et.al. (2000), but for some repetitions of both test2111 and 2116 

this distribution underestimates the wave heights. The data in these cases seem to follow a shape 

similar to the Battjes distribution, but the threshold wave height (which is the wave height of the 

discontinuity in this distribution) seem to be to small in these cases. 

On deeper water the data seem to fit the distributions proposed by Forristall (1978) and Næss 

(DNV(2007)) for high values of cumulative probability. 

The smaller sea states are seen to follow the Forristall distribution, but the Næss distribution also 

gives an accurate prediction of the wave heights for high probabilities (cumulative). This applies for 

measurements throughout the channel. 

It is however seen a different behavior for test2109 , which not have been analyzed in this chapter. 

Here the data at high probabilities turns in the opposite direction as seen for the depth induced wave 

breaking in the larger sea states, and thus the proposed distributions underestimates the wave 

heights. This phenomenon is observed at the wave probe closest to the beach (wave probe 7), at 

wave probe 6 this phenomena is present but the magnitude is not that large and the data is seen to 

follow the Rayleigh distribution. It is speculated that the cause of this may be from effects of shoaling 

on the wave heights, but the author does not have any evidence that this is the case. But this 

explanation makes sense, as it is seen for the larger sea states that the wave heights with lower 

cumulative probability seem to have the same tendency, before effects from wave breaking seem to 

be predominant.  
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4.3.2 Crest height distributions 

Test 2116 

In Figure 82 the crest height distributions are compared with data for test2116 at wave probe 2, and 

it is seen that the crest heights for low probabilities are underestimated by the distribution proposed 

by Forristall (2000). For the higher probabilities the Forristall distribution are in good agreement with 

data. The Rayleigh distribution for crest heights underestimates the crest heights as previously 

predicted. 

 

Figure 82: Wave crest height distributions at wave probe 2, test2116 
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From Figure 83 the crest height distributions are compared with data from wave probe 11, and it is 

seen that the Forristall distribution predicts the crest heights fairly well. As previously seen the 

Rayleigh distribution under predicts the crest heights.    

 

Figure 83: Wave crest height distributions at wave probe 11, test2116 
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In Figure 84 the crest height distributions at wave probe 7 are compared to data, and it is seen that 

the crest heights are affected be wave breaking as they seem to increase with a steeper gradient. As 

a result of this the Forristall distribution will be conservative for the higher probabilities, for lower 

probabilities the distribution are slightly un-conservative.  

 

Figure 84: Wave crest height distributions at wave probe 7, test2116 
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Test 2111 

From Figure 85 the crest height distributions from test2111 can be seen at wave probe 2, and it is 

seen that the Forristall distribution follows the data fairly well. And once again the Rayleigh 

distribution underestimates the crest heights. 

 

Figure 85: Wave crest height distributions at wave probe 2, test2111 
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In Figure 86 the crest height distributions are compared with data at wave probe 11, and it is seen 

that the crest heights are fairly equal to those predicted by the Forristall distribution. Once again the 

Rayleigh distribution is un-conservative. 

  

Figure 86: Wave crest height distributions at wave probe 11, test2111 
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From Figure 87 the crest height distributions at wave probe 7 is presented, and it is seen that the 

crest heights from data increases with a larger gradient which most likely is caused by depth induced 

wave breaking. And thus the Forristall distribution will be conservative for the higher probabilities, 

the Rayleigh distribution will still be non-conservative. Although the largest wave in the time series 

almost can be predicted by the Rayleigh distribution, it will give a significant under estimation of the 

crest heights for the rest of the data from the time series.   

 

Figure 87: Wave crest height distributions at wave probe 7, test2111 



NTNU  
Norwegian University of Science and 
Technology 
Department of Marine Technology 

 M.Sc.THESIS  

 

94 
 

 

Test 2117 

In Figure 88 the crest height distributions are compared with data from test 2117 at wave probe 2, 

and it is seen that both the Forristall and Rayleigh distribution follows the data fairly well. However 

for the highest probabilities the crest heights are slightly under estimated. 

 

Figure 88: Wave crest height distributions at wave probe 2, test2117 
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 From Figure 89 the crest height distributions are compared to data at wave probe 11, and it is seen 

that the data compares fairly well to both the Forristall and Rayleigh distribution. However the crest 

heights are slightly underestimated for the highest probabilities. 

 

Figure 89: Wave crest height distributions at wave probe 11, test2117 
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In Figure 90 the crest height distributions is shown along with the data from the time series at wave 

probe 7, and it is seen that the data compares fairly well to the Forristall distribution. The Rayleigh 

distribution is non conservative in this case as well. It is also seen that the crest heights from data 

deviates from the Forristall distribution at high probabilities, thus making the Forristall conservative 

for high probabilities in this case. The reason for this behavior is not certain. 

 

Figure 90: Wave crest height distributions at wave probe 7, test2117 
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Summary of observations 

The distribution proposed by Forristall (2000) fits the crest height data from this model test fairly 

well. But in some cases in shallow water the Forristall distribution over estimates the crest heights as 

depth induced wave breaking limits the largest crest heights in the time series. Thus the Forristall 

distribution can be considered to be conservative for the high probability crest heights in shallow 

water. In some cases it is seen that some individual cases deviates from the usual pattern and in 

these cases some conservatism is nice to have, as these waves still do not exceed the crest heights 

predicted by the Forristall distribution. 

The Rayleigh distribution is as predicted un-conservative for the largest sea states, for the smaller sea 

states the Rayleigh distribution is fairly similar to the Forristall distribution. But also here the 

Forristall distribution is seen to fit better to the data, however with a much smaller margin for these 

cases.  
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4.4 Individual events 
In order to investigate how the largest waves in the time series behave, the largest, second largest 

and third largest waves in the time series have been plotted in space for the selected tests and the 

corresponding repetitions. This is performed by means of the times series from the wave probes in 

the array. Where the largest waves are found from the time series at the wave probe in the center of 

the array (wave probe 11), then the wave probes have been plotted in space with the indexes 

corresponding to that of the peaks at wave probe 11. 

There have also been calculated individual wave steepness and Ursell numbers for these waves, 

these calculations are based on the time series from wave probe 11. In order to calculate the 

wavelengths (which is an parameter for both steepness and Ursell numbers) the linear dispersion 

relation have been assumed, and the wavelengths have been calculated by the WAFO (2000) 

function “w2k” which solves the linear dispersion relation with the wave number as output. But as 

the wave periods from the time series are determined by means of a zero crossing analysis, the 

reader should be aware that this may cause slightly larger wave periods as the front/back asymmetry 

of the waves become large. 

In this chapter there will be presented one example for the largest waves from test2116 with 

corresponding repetitions, the rest of the tests with corresponding steepness and Ursell numbers can 

be found in Appendix H. 

From Figure 91 the largest waves from test2116 are presented, and it is seen that the waves are 

clearly asymmetrical with respect to the front and back of the wave.  

In Figure 92 the second largest waves from test2116 with corresponding repetitions are presented, 

and it is seen that the waves also here are clearly asymmetrical.  

 

Figure 91: Largest waves for test2116 
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Figure 92: Second largest waves for test2116 

From Figure 93 the third largest wave from test2116 is presented, and it is seen that also here the 

waves are asymmetrical. 

 

Figure 93: Third largest waves for test2116 

As seen in this chapter the largest waves in the time series for test2116 are asymmetrical with 

respect to the front and back of the wave, i.e. the wave are tilting forwards. This behavior seen for 

test2116 is similar to that of the other large sea states. Usually as the wave grows asymmetrical in 

this direction, it grows unstable and wave breaking are likely to occur.  

This effect also makes it difficult to model the surface elevation with corresponding wave kinematics 

by an analytical wave model, as this type of asymmetry are not described by classical higher order 

wave theory like stokes theories and Stream function wave theories. Thus in order to describe the 

wave kinematics in these kind of water depths for such sea states a much more advanced solution 



NTNU  
Norwegian University of Science and 
Technology 
Department of Marine Technology 

 M.Sc.THESIS  

 

100 
 

 

method needs to be applied. Like for example wave models based on the Boussinesq equations or 

computational fluid dynamics.  
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5 Conclusion and propositions for further work 

5.1 Conclusion 
The present master thesis has investigated the wave conditions for bottom fixed wind turbines in 

shallow water. By means of a model test with a sloping beach, the transformation of the surface 

process from deep to shallow water is measured. The results are compared to analytical models and 

similar model tests. 

The parameters that have been investigated show clear signs of shallow water effects. Effects from 

shoaling are noticeable in the measured significant wave height. The parameters skewness and 

kurtosis for the distribution of single points in the time series increase with decreasing depth, thus as 

the waves propagate from deep to shallow water the surface process will gradually deviate from a 

Gaussian process. The attempt to quantify the growth of skewness in terms of nonlinearity 

parameters have been successful, as the skewness are found to increase linearly with the Ursell 

number. Similar relations are not fund for the kurtosis. 

In the wave spectra there can be seen clear signs of nonlinear interactions as the waves propagate 

towards shallow water. At the wave probe closest to the beach it is seen both sub- and super-

harmonic peaks in the wave spectra. This is a result of triad wave-wave interactions. The 

predominant dissipation mechanism in the present model test is depth induced wave breaking, 

which is visible as a smaller wave spectrum. In general the wave spectrum remains fairly constant 

before the dissipation due to depth induced wave breaking reduces the size of the wave spectrum 

significantly, in regions corresponding to full scale water depths of 15-20 meters. Wave breaking 

does also appear in positions corresponding to a full scale water depth of 25 meters for the larger sea 

states, but this is more sporadically and does not seem to affect the energy content in the wave 

spectra significantly. 

The TMA spectrum does not predict the transformation of the wave spectra, as the energy 

dissipation in the spectra is grossly overestimated. The reason for this is that the TMA spectrum takes 

into account dissipation from bottom friction, which is negligible in the present model test. 

Furthermore the TMA does not take into account the dissipation effect of breaking waves, which is 

seen to be the predominant dissipation mechanism in the present model test. The predicted 

dissipation due to bottom friction in TMA are however larger than what is seen for depth induced 

wave breaking in the spectral estimates. The tail of the TMA spectra captures the behavior from the 

spectral estimates fairly well. 

The wave height distribution proposed by Battjes et.al. (2000) is seen to predict the measured wave 

heights in the present model test fairly well, for some sea states it is however seen that the 

distribution is un-conservative. But in general the distribution fits the measured results fairly well. 

The crest height distribution proposed by Forristall (2000) follows the measured data of crest heights 

fairly well. The estimated crest heights from the distribution gives conservative results compared 

with the results closest to the beach, as these crest heights are significantly reduced due to wave 

breaking for the steepest sea states. But in general the distribution by Forristall (2000) follows the 

measured crest heights from the present model test. 
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The largest individual waves in the time series have been analyzed at a position corresponding to a 

full scale water depth of 25 meters, and it is seen that these waves have a clear asymmetry with 

respect to the front and back of the wave. As a consequence of this there have to be used a 

sophisticated wave model in order to describe the surface process and corresponding of the waves. 

From what is seen from this model test, it can be said that a bottom fixed structure in water depths 

of 25 meters and shallower, are in a region where wave breaking will occur for the ULS and ALS sea 

states. And if several wind turbines are to be built in this area there are likely that some of them will 

be hit by large breaking waves.       

5.2 Proposition for further work 
First of all the further work on this subject could be related to the parts of this thesis that there has 

not been enough time to finish. Firstly related to the uncertainty of the kurtosis, this is seen to vary 

significantly. In order to determine whether or not these variations are due to the transformation of 

waves from deep to shallow water, or just typical variations of a Gaussian process, there can be 

established an interval of typical variations of the kurtosis by performing simulations of a Gaussian 

process.  

The next step in the process would be to estimate the loads on a bottom fixed cylinder in shallow 

water, this can be done by considering the load as the drag term from Morrisons equation and 

consider the loads of breaking waves as a slamming load, as proposed by Nestegård et.al (2004). But 

in order to estimate the loads, there have to be calculated wave kinematics. This could be done by 

implementing a wave model based on the enhanced Boussinesq equations, which are capable of 

describing the transformation of the waves. 
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Appendix 
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Digital Appendices 
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Digital 4 – Wave height distributions 

Digital 5 – Crest height distributions 

Digital 6 – Matlab scripts 
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Sketches of different wave probe set ups 
  



 



Position

Model sc. Full sc. x

WP_16 1,00 81,00 0,00

WP_02 0,83 67,23 2,00

WP_03 0,83 67,23 4,76

WP_04 0,83 67,23 7,51

WP_08 0,83 67,23 9,97

WP_09 0,83 67,23 10,07

WP_10 0,83 67,23 10,17

WP_11 0,83 67,23 10,27

WP_12 0,83 67,23 10,37

WP_13 0,83 67,23 10,47

WP_14 0,83 67,23 10,57

WP_05 0,83 67,23 13,02

WP_06 0,83 67,23 15,78

WP_07 0,83 67,23 18,20

WP setup 1

Water depth



 

 



Position

Model sc. Full sc. x

WP_16 1,000 81,00 0,000

WP_02 0,830 67,23 1,530

WP_03 0,671 54,35 4,755

WP_04 0,494 40,00 8,400

WP_05 0,370 30,00 10,935

WP_08 0,336 27,22 11,905

WP_09 0,327 26,49 12,005

WP_10 0,318 25,76 12,105

WP_11 0,309 25,00 12,205

WP_12 0,299 24,22 12,305

WP_13 0,290 23,49 12,405

WP_14 0,281 22,76 12,505

WP_06 0,247 20,00 13,470

WP_07 0,185 15,00 17,740

WP setup 2

Water depth



 

 



Position

Model sc. Full sc. x

WP_16 1,000 81,00 0,000

WP_03 0,671 54,35 4,755

WP_02 0,355 28,73 11,265

WP_04 0,345 27,94 11,465

WP_05 0,335 27,15 11,665

WP_08 0,323 26,20 11,905

WP_09 0,319 25,80 12,005

WP_10 0,314 25,41 12,105

WP_11 0,309 25,01 12,205

WP_12 0,304 24,62 12,305

WP_13 0,299 24,22 12,405

WP_14 0,294 23,83 12,505

WP_06 0,282 22,88 12,745

WP_07 0,273 22,09 12,945

WP setup 3

Water depth
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Overview of tests for regular waves   



 



Test nr. 

H [m] T [s] 
 Model s. Full s. Model s. Full s. 
 0x01 0,030 2,43 

0,8 7,2 
 0x02 0,060 4,86 
 0x03 0,090 7,29 
 0x04 0,120 9,72 
 0x05 0,050 4,05 

1 9 
 0x06 0,100 8,10 
 0x07 0,150 12,15 
 0x08 0,200 16,20 
 0x09 0,070 5,67 

1,25 11,25  0x10 0,140 11,34 
 0x11 0,210 17,01 
 0x12 0,070 5,67 

1,5 13,5 
 0x13 0,140 11,34 
 0x14 0,210 17,01 
 0x15 0,240 19,44 
 0x16 0,210 17,01 

1,75 15,75 
 0x17 0,240 19,44 
 

      

      Series Description 

0100 Flat bottom, WP setup 1 

0200 Sloping bottom, WP setup 2 
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Spectral estimates   
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High frequency tail of the spectra   
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TMA spectrum   
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Wave height distributions   
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Crest height distributions   
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Test nr.2109 
 
Largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0502  0.1578  7.6172 
Rep.2  0.0479  0.1504  5.1061 
Rep.3  0.0413  0.1297  6.9711 
  
 
Second largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0648  0.2035  4.3768 
Rep.2  0.0393  0.1236  6.8808 
Rep.3  0.0465  0.1462  4.9636 
  
 
Third largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0343  0.1076  9.6172 
Rep.2  0.0336  0.1055  8.6316 
Rep.3  0.0615  0.1932  2.5495 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Test nr.2111 
 
Largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.1087  0.3414  20.3509 
Rep.2  0.0997  0.3131  18.6644 
Rep.3  0.1159  0.3641  16.3209 
Rep.4  0.1012  0.3181  21.6240 
Rep.5  0.0989  0.3107  30.2369 
Rep.6  0.1158  0.3639  19.5591 
Rep.7  0.1044  0.3281  25.2803 
Rep.8  0.1044  0.3279  20.8953 
Rep.9  0.1188  0.3733  20.7774 
Rep.10  0.1076  0.3381  17.5462 
  
 
Second largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.1161  0.3649  16.3538 
Rep.2  0.1107  0.3478  15.0103 
Rep.3  0.1081  0.3395  17.6174 
Rep.4  0.1222  0.3838  14.1465 
Rep.5  0.1116  0.3506  22.3393 
Rep.6  0.1115  0.3502  20.8770 
Rep.7  0.1108  0.3479  22.1697 
Rep.8  0.1115  0.3501  18.1670 
Rep.9  0.1142  0.3587  16.6882 
Rep.10  0.1021  0.3208  17.8594 
  
 
Third largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.1145  0.3596  15.5154 
Rep.2  0.0884  0.2778  21.4048 
Rep.3  0.1075  0.3377  16.3021 
Rep.4  0.1204  0.3781  13.3776 
Rep.5  0.0966  0.3036  27.9207 
Rep.6  0.0977  0.3070  24.3798 
Rep.7  0.1030  0.3235  24.1746 
Rep.8  0.1192  0.3743  14.9485 
Rep.9  0.1028  0.3231  19.9149 
Rep.10  0.0953  0.2994  20.3519 
 
 
 
 
 
 
 



Test nr.2112 
 
Largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.1113  0.3496  23.7726 
Rep.2  0.1074  0.3375  27.6244 
Rep.3  0.0994  0.3122  31.2361 
Rep.4  0.1132  0.3557  24.1796 
Rep.5  0.1107  0.3477  31.0720 
Rep.6  0.1069  0.3358  25.8748 
Rep.7  0.1092  0.3429  26.4199 
Rep.8  0.1177  0.3697  25.1371 
Rep.9  0.1165  0.3659  24.0885 
  
 
Second largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.1067  0.3354  22.7976 
Rep.2  0.1007  0.3164  29.1065 
Rep.3  0.1023  0.3214  26.3000 
Rep.4  0.1228  0.3857  18.6190 
Rep.5  0.1006  0.3161  28.2439 
Rep.6  0.0967  0.3039  30.4093 
Rep.7  0.1182  0.3714  22.1395 
Rep.8  0.0983  0.3089  31.7700 
Rep.9  0.1062  0.3337  24.9326 
  
 
Third largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0916  0.2877  29.5890 
Rep.2  0.1004  0.3153  28.1812 
Rep.3  0.1218  0.3826  18.4721 
Rep.4  0.0956  0.3003  30.0433 
Rep.5  0.1013  0.3182  26.0413 
Rep.6  0.1214  0.3813  19.0909 
Rep.7  0.1100  0.3455  24.2487 
Rep.8  0.1053  0.3308  25.4930 
Rep.9  0.1030  0.3235  25.6922 
 
 
 
 
 
 
 
 
 
 

Test nr.2115 
 
Largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0969  0.3043  24.9060 
Rep.2  0.0765  0.2403  31.2685 
Rep.3  0.0950  0.2984  22.2979 
Rep.4  0.0769  0.2415  30.6355 
Rep.5  0.0927  0.2911  29.9361 
Rep.6  0.0907  0.2850  29.3099 
Rep.7  0.0990  0.3109  27.7867 
Rep.8  0.0838  0.2632  28.5748 
Rep.9  0.0809  0.2540  31.4269 
Rep.10  0.1030  0.3235  19.2850 
  
 
Second largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0961  0.3020  19.8827 
Rep.2  0.0782  0.2458  28.8867 
Rep.3  0.0813  0.2555  30.0249 
Rep.4  0.0994  0.3121  17.9841 
Rep.5  0.0909  0.2856  27.0238 
Rep.6  0.0931  0.2926  26.9129 
Rep.7  0.0861  0.2706  32.6223 
Rep.8  0.0856  0.2691  24.7491 
Rep.9  0.0814  0.2559  27.0419 
Rep.10  0.0866  0.2721  22.2736 
  
 
Third largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0921  0.2893  20.9563 
Rep.2  0.0739  0.2322  29.4666 
Rep.3  0.0739  0.2322  31.7379 
Rep.4  0.0825  0.2593  23.1751 
Rep.5  0.0714  0.2244  31.4382 
Rep.6  0.0948  0.2977  22.2392 
Rep.7  0.0916  0.2878  27.2304 
Rep.8  0.1003  0.3150  15.7723 
Rep.9  0.0735  0.2308  33.1175 
Rep.10  0.0769  0.2416  27.6626 
 
 
 
 
 
 
 



Test nr.2116 
 
Largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0884  0.2778  39.8664 
Rep.2  0.0916  0.2877  37.4298 
Rep.3  0.0957  0.3007  38.1601 
Rep.4  0.0989  0.3106  41.4334 
Rep.5  0.1010  0.3172  39.2342 
Rep.6  0.0947  0.2974  36.7894 
Rep.7  0.0897  0.2819  34.8674 
Rep.8  0.0937  0.2945  43.2915 
Rep.9  0.0958  0.3010  38.1913 
Rep.10  0.0962  0.3021  31.9266 
  
 
Second largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0838  0.2634  41.5529 
Rep.2  0.1010  0.3172  29.1766 
Rep.3  0.0834  0.2620  47.3510 
Rep.4  0.0894  0.2809  44.3128 
Rep.5  0.0855  0.2685  43.3499 
Rep.6  0.0858  0.2696  41.5442 
Rep.7  0.1004  0.3153  27.3747 
Rep.8  0.1036  0.3254  26.6325 
Rep.9  0.0985  0.3093  31.8145 
Rep.10  0.1065  0.3346  24.2377 
  
 
Third largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.1042  0.3275  24.4643 
Rep.2  0.1073  0.3372  23.6717 
Rep.3  0.0959  0.3011  31.8266 
Rep.4  0.0863  0.2712  37.9854 
Rep.5  0.0790  0.2481  44.8352 
Rep.6  0.0860  0.2702  32.5839 
Rep.7  0.0853  0.2678  34.8484 
Rep.8  0.1013  0.3182  27.6230 
Rep.9  0.0841  0.2641  41.6620 
Rep.10  0.0962  0.3024  29.4276 
 
 
 
 
 
 
 

Test nr.2117 
 
Largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0241  0.0758  7.3810 
Rep.2  0.0215  0.0677  8.1624 
Rep.3  0.0216  0.0678  8.3824 
  
 
Second largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0280  0.0880  4.4051 
Rep.2  0.0258  0.0809  4.8234 
Rep.3  0.0262  0.0822  4.7374 
  
 
Third largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0197  0.0619  8.4663 
Rep.2  0.0197  0.0618  8.0463 
Rep.3  0.0200  0.0628  7.1889 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Test nr.2118 
 
Largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0590  0.1853  39.7248 
Rep.2  0.0738  0.2319  30.9315 
Rep.3  0.1017  0.3194  15.9933 
  
 
Second largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0682  0.2144  25.1878 
Rep.2  0.0560  0.1761  41.7863 
Rep.3  0.0667  0.2096  25.9303 
  
 
Third largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0704  0.2213  22.7560 
Rep.2  0.0660  0.2072  28.3312 
Rep.3  0.0809  0.2543  16.7388 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Test nr.2119 
 
Largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0793  0.2491  50.1590 
Rep.2  0.0742  0.2332  48.9664 
Rep.3  0.0748  0.2348  54.6306 
  
 
Second largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.1036  0.3256  22.8508 
Rep.2  0.0889  0.2792  30.3111 
Rep.3  0.0818  0.2570  42.4460 
  
 
Third largest wave in time series 
 
Rep nr  H/L    kA     Ursell 
Rep.1  0.0705  0.2214  47.4793 
Rep.2  0.0753  0.2364  41.7857 
Rep.3  0.0787  0.2474  39.0294 
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