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Abstract 
Lately, focus is put on renewable energy resources as the environmental concerns regarding 
exploitation of hydrocarbons are increasing. The enormous energy potential found in offshore 
wind fields is proposed utilized by installing floating wind turbines in interconnected wind farms. 
As for all other floating structures operating within a limited area, stationkeeping is needed in 
order to keep the motions of the floating structure within permissible limits. In this study, methods 
for selecting and optimising the mooring system for floating wind turbines in shallow water are 
investigated. The design of the mooring system is checked against the governing rules and 
standards. 
 
Initially, the forces and moments associated with such structures are identified as the various 
terms in the equations of motions. 
 
Furthermore, the different mooring system concepts investigated in the study are described. They 
include distributed mass-, clump weight-, and buoyancy element mooring system. They are all 
based on the Hywind design with three distributed main mooring lines, each split into two delta-
lines. Software programs suitable for analysing the system behaviour are recognized as SIMO, 
Riflex and TDHMILL3D. The analysis methods include quasi-static catenary analysis, eigenvalue 
analysis and decay analysis, in addition to integrated time domain analysis. 
 
The mooring system concepts are studied, and the clump weight mooring system is shown to be 
the preferred one with respect to limiting peak tensions in the mooring lines. The selected design 
concept is subjected to an optimisation procedure, where the main focus is to select mooring line 
segments with adequate breaking strength to sustain the maximum line tension with sufficient 
margins and to avoid vertical forces on the anchors. From parameter studies, the size of the clump 
weight is shown to be the most influential design parameter. Other parameters investigated 
include the position of the clump weight, pretension, overall length of the mooring system, chain 
and wire weight/dimension, vertical fairlead position and the delta-line length. 
 
Finally, the intact optimised mooring system is checked against the Ultimate limit state, while 
Accidental limit state control is performed for the mooring system in damaged condition. Both the 
cases of loss of line and loss of clump weight are investigated. The Troll field is selected as design 
location. For the Ultimate limit state, the criteria given in the standards are fulfilled for all 
directions. For the Accidental limit state, the mooring system design fails to meet the criteria 
given in the standards. Lack of redundancy is shown as this may cause loss of additional 
anchorlines. 
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1. Introduction 

1.1 General 
As the demand for energy is increasing and the oil and gas deposits are limited, focus is put on 
renewable energy sources. Wind energy, being one of this renewable energy sources, has been 
utilized for agricultural purposes for centuries, and became important also for power production in 
the second half of the 20th century. As one wants to take advantage of the enormous wind power 
potential offshore, several participants in the international energy business have installed and 
commercialized interconnected bottom-fixed wind turbine structures in areas of shallow water. 
The water depth is however strongly limiting the extent of such applications, as the support 
structures of offshore wind turbines become highly dynamic, having to cope with combined wind 
and hydrodynamic loading in addition to the complex dynamic behaviour of the wind turbine 
itself (Hordvik, 2010). Wind turbines installed on floating substructures are therefore proposed in 
order to utilize the potential for harvesting wind energy in areas that are not feasible for bottom-
fixed structures. Developing and the possibility of commercializing floating offshore wind 
turbines are presently being investigated by several developers, technology providers and research 
institutes worldwide. The Spar concept is one of the designs that have been proposed as 
substructure for floating offshore wind turbines. 
 

1.2 Spar concept 
The Spar concept is not by any means a new concept. It has been used in marine applications for 
decades as marker buoys and for gathering oceanographic data. Later it was scaled up and 
introduced as production platform in the offshore energy market. The world’s first production spar 
was the Neptune Spar installed in 1996 by Oryx Energy Company and CNG (Chakrabarti 2005). 
In 2009, Statoil introduced a floating wind turbine based on the Spar concept, which is reviewed 
in the following section. 
 
Simplified we can say that the Spar consists of a large cylinder floating vertically in the water. A 
Spar platform is weight stabilized, which implies a design where the centre of gravity (COG) is 
located below the centre of buoyancy (COB). The low COG is obtained by heavy ballasting in the 
bottom part of the cylinder. The concept is characterized by its deep draft which gives the Spar 
concept favourable motion characteristics compared to other floating concepts; because the wave 
action at the surface is damped by the counter balance effect of the structural weight (Hordvik, 
2010).  
 
Some of the key features of the Spar concept include: 

- Feasible for water depths up to 3000 m. 
- Possibility for a large range of payloads 
- Is always stable because the COB is located above the COG 

 
As for any other floating structure operating within a limited area, stationkeeping becomes 
important. Spars are traditionally moored by the means of spread catenary moorings. The 
restoring forces are then provided by the weight of the mooring lines. When the water depth is 
reduced to only 100 m, as investigated in this study, catenary mooring becomes challenging 
because the suspended length of the mooring lines, and hence the submerged weight, is limited. 
Focus is put on these issues later in the report. 
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1.3 Hywind pilot 
As this study is investigating the mooring system of a floating wind turbine structure similar to the 
Hywind pilot, a short introduction to the concept is given in the following. 
 
According to Statoil’s homepage, the world’s first operational deep-water floating large-capacity 
wind turbine is the Hywind pilot, which is a prototype of the Hywind concept. The pilot is located 
about ten kilometers off the coast of Karmøy on the west coast of Norway; it is still in operation, 
generating electricity to the Norwegian grid. The main purpose of the pilot project is to investigate 
how wind and waves are affecting the structure. 
 
The design is owned by Statoil while Technip built the floater and Siemens manufactured the 
turbine. The concept is based on a Spar buoy type design. A 2.3 MW turbine is mounted on the 
tower 65 m above the water line. The draft is 100 m and the buoy is moored at a water depth of 
approximately 210 m. The tower and substructure is made in steel with water and rock ballasting. 
The installation is expected to generate about 9 GWh of electricity annually.  
 
The Hywind mooring system consists of a three-point catenary spread with an angular spacing of 
120°. The mooring lines are composed of a combination of chain and steel wire segments. A 
clump weight of 60 tons is attached to each mooring line. Each of the main mooring lines is split 
into two separate lines (forming a bridle) that are attached to the fairlead. This arrangement 
provides increased yaw stiffness. 
 
The main characteristics of the Hywind pilot are collected in table 1-1.  
 
 
 
 
 

Hywind Prototype Main Data 
WTG (Wind Turbine 
Generator) 

2.3 MW 

Turbine weight 138 tons 
Nacelle height 65 m 
Rotor diameter 82.4 m 
Draft hull 100 m 
Water depth 210 m 
Displacement 5300 m3 
Diameter (Water Line) 6 m 
Diameter (Submerged Body) 8.3 m 
Rated wind speed 12 m/s 
Mooring 3 lines 
Pitch control Dynamic 
Table 1-1: Hywind prototype main data 

                     
                    Figure 1-1: Hywind prototype 
               (Source: http://www.statoil.com) 
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2. System motions and forces 

2.1 General 
In this chapter, motions and forces associated with floating structures are briefly discussed. When 
appropriate, reference is made to the literature for further details. 
 
It is assumed that we are dealing with a catenary moored vertical cylinder, similar to the Hywind pilot. 
The coordinate system for a segmented vertical column is defined in figure 2-1. 
 

 
Figure 2-1: Definition of coordinate system 

 

2.2 The equations of motions 
 
For steady-state sinusoidal motions, Faltinsen (1990) showed that the equations of motions can be 
expressed as: 
 

 
6

1

[( ) ] ( 1, ..., 6)ei t

jk jk jk k jk k j
k

M A B C F e jωη η η −

=

+ + + = =∑    (2.1) 

 
On the left side of the equation, the three terms represent the inertia, damping and restoring forces and 
moments respectively. On the right side,

jF are the complex amplitudes of the exciting forces and 

moment-components with the force and moment-components given by the real part of ei t

jF e ω− .  
 
For a structure with lateral symmetry (symmetry about the x-z-plane) the six coupled equations 
reduces to a set of two equations. We see that for the floating structure considered in figure 2-1, the 
motions in six degrees of freedom are described by two sets of three coupled equations; one set for 
surge, heave and pitch and one set for sway, roll and yaw. Hence, the lateral motions are uncoupled 
from the vertical and longitudinal motions. 
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In the following, the various terms of the equations of motions (2.1) are briefly discussed. 

2.3 Mass matrix 
The forces on a structure proportional to the acceleration are denoted inertia forces. These are 
composed of mass- and hydrodynamic forces and moments.  
 
Keeping in mind that we are considering a structure with lateral symmetry, Nielsen (2007) showed that 
the mass matrix for vertical and longitudinal motions can be written as: 
 

 
11 15

33

2

51 55 55

0

0 0

0

G

G G

M A Mz A

M A

Mz A I Mz A

+ +

= +

+ + +

 
 
  
 

M  (2.2) 

 
Here M denotes the total mass of the system, Aij are the hydrodynamic masses, Gz  is the vertical 
position of the centre of gravity and 55I  is the vertical moment of inertia about the centre of gravity. 
For a structure with no forward speed and no current present it can be shown that Akj = Ajk, hence A51 
= A15. 
 

2.4 Damping 
Damping is the structures ability to dissipate energy and becomes very important in order to limit 
resonant motions of the structure. 
 
For a floating wind turbine structure, Nielsen (2007) recognized the main contributions to the total 
damping as: 
 

- Wave radiation damping 
 - Viscous damping on the submerged hull 
 - Viscous damping on the tower due to the relative wind velocity 
 - Damping due to the velocity dependent forces on the wind turbine 
 
For a detailed description on how the various damping effects are found, reference is made to Nielsen 
(2007). Later in the report, it is outlined how the linear and quadratic damping levels can be estimated 
from motion decay tests. 
 

2.5 Restoring matrix 
The restoring forces will work to pull the structure back to its equilibrium position and consist of the 
stiffness forces proportional to the motion of the structure. For a freely floating structure the restoring 
forces will appear from hydrostatic and mass considerations, while for a moored structure, restoring 
forces from the mooring system have to be added. The total restoring matrix will therefore be: 
 
 H M= +C C C  (2.3) 
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2.5.1 Hydrostatic 
By considering the vertical and longitudinal motions, the hydrostatic contribution to the restoring 
matrix for a vertical column will be: 
 

 2

0 0 0

0 0

0 0 ( )
H WL

WL B G

g R

g I Vz mgz

ρ π

ρ

=

+ −

 
 
  
 

C  (2.4) 

 

where WLR is the radius in the water line, V is the displaced volume of the column and 
4

4
WL

WL

R
I

π
=  is the 

surface moment of inertia of the water line area. 
 

2.5.2 Catenary 
In general, the restoring matrix for a catenary mooring system will depend on the offset. Nielsen 
(2007) demonstrated how the restoring matrix for a mooring system could be calculated from the 
restoring matrices for the individual lines at a given offset level. 
 
It is assumed that the line initially only will have restoring effects from motion in the catenary plane, 
i.e. an x-z-plane with the local x-axis parallel to the extension of the catenary. The only non-zero 
contributions to the line restoring matrix will therefore be ( ) ( ) ( ) ( )

11 13 31 33, , ,l l l lC C C C . 
 
The catenary plane is rotated an angle θ relative to the floater coordinate system, where θ denotes the 
azimuth angle of the fairlead coordinates relative to the floater coordinate system. 
 
By introducing the transformation matrix: 
 

 
cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

θ θ

θ θ= −

 
 
  
 

γ  (2.5) 

 
the restoring effect in a coordinate system parallel to the platform coordinates can be found as: 
 

  (2.6) 
 
By using the line upper connection point (fairlead) coordinates [XT,YT,ZT], the line’s contribution to 
the restoring matrix for the mooring system will become: 
 

 
(0) (0)

(0) (0)M T T
=
 
 
 

C Cα
C

α C α C α
 (2.7) 
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where α  is given as: 
 

 
0

0

0

T T

T T

T T

Z Y

Z X

Y X

−

= −

−

 
 
  
 

α  (2.8) 

 
Hence for a spread mooring system consisting of lN lines, the main contributions to the 3dof (surge, 
heave and pitch) restoring matrix will be: 
 

 

( ) 2

,11 11
1

( ) 2 ( ) 2 2

,55 11 33
1

( )
,33 33

1

( ) 2
,15 11

1

cos

[ ] cos

cos

l

l

l

N
l

M n
n

N
l l

M T M n
n

l

N
l

M
n

N
l

M T n
n

C C

C C Z C r

C C

C C Z

θ

θ

θ

=

=

=

=

=

= +

=

=

∑

∑

∑

∑
 (2.9) 

        
The superscript ( )l refers to the line restoring coefficient jkC ; nθ is the azimuth angle of line number n; 

TZ is the vertical coordinate of the fairlead; and Mr is radius of mooring line attachments. For the three 
point equally spread mooring system utilized on the Hywind (see figure 1-1), equation (2.9) simplifies 
to: 
 

 

( )
,11 11

( )
,33 33

( )
,15 11

( ) 2 ( ) 2
,55 11 33

3
2
3

3
2
3

[ ]
2

l
M

l
M

l
M T

l l
M T M

C C

C C

C C Z

C C Z C r

=

=

=

= +

 (2.10) 

 
One should note that only contributions to the restoring matrix from the catenary plane are included in 
the above derivation. These will form the main contributions, but restoring effects from out of plane 
motions will also be present. These effects will form the yaw stiffness of the mooring system, which is 
briefly discussed in Chapter 8. For further details on how the yaw restoring coefficients are derived, 
reference is made to Nielsen (2007).    
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2.6 Excitation forces and moments 
The excitation forces and moments are added to the right side of the equations of motions (2.1). The 
external forces on the structure are typically environmental loads and may be composed of wave 
forces, current forces and wind forces. 

2.6.1 Wave forces 
By using linear theory, the wave elevation can be described as a sum of individual sinusoidal wave 
components. From Faltinsen (1990) we have that for N waves, the total wave elevation for a long-
crested wave propagating along the positive x-axis can be expressed as: 
 

 
1

sin( )
N

j j j j
j

A t k xζ ω ε
=

= − +∑  (2.11) 

 
where subscript j denotes wave number j , A is the wave amplitude,ω , k andε  are the circular 
frequency, wave number and random phase angle respectively. 
 
Furthermore, the relationship between the wave amplitude and wave spectrum is given as: 
 

 21
( )

2 j jA S ω ω= ∆  (2.12) 

 
where ( )jS ω is the spectral density for wave component j , and ω∆ is a constant difference between 
successive frequencies. By considering a wide range of frequencies, the wave spectrum will indicate 
which frequencies that are contributing to the total energy in the sea state.    
 
A JONSWAP wave spectrum is typically used for describing North Sea sea states. 
 

 
Figure 2-2: JONSWAP wave spectrum 

HS = 12m, TP = 16s 
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Furthermore, a description on how linear and second-order wave forces are obtained is included in the 
following. A short summary is reproduced here, while reference is made to Faltinsen (1990) for further 
details. 
 
By solving the linear problem, i.e. satisfying the free-surface and body boundary condition on the 
mean position of the free-surface and submerged hull, first-order wave forces on the structure are 
obtained. These forces will induce first-order motions known as wave-frequency (WF) motions. 
However, in order to capture motions in severe sea states and for moored structures, the problem has 
to be solved to the second order. This implies accounting for the zero-normal flow condition through 
the body at the instantaneous position of the body. The solution of the second-order problem will 
result in mean forces and forces oscillating with the sum and difference frequency in addition to the 
linear solution. The steady component is known as mean wave-drift forces, while the oscillating 
component may act together with environmental forces to induce low-frequency (LF) motions. 
 
For a catenary moored structure, mean and slowly-varying wave forces (difference frequency forces) 
are of importance. For a lightly damped moored structure, slow-drift resonant motions occur in surge, 
sway and yaw. 
 

2.6.2 Current forces 
The current velocity is assumed to be constant with time, and is described by the speed and direction. 
For a cylinder with current perpendicular to the cylinder axis, vortices will be shed on alternating 
sides, giving rise to drag and lift force on the cylinder. When the vortex-shedding frequency is close to 
the natural frequency of the cylinder, large vibrations may occur in both cross-flow and in-line 
direction. These vibrations are recognized as vortex-induced vibrations (VIV). When the two 
frequencies coincide, the vortex-shedding frequency locks on to the natural frequency of the cylinder 
and large resonant motions may occur. The phenomenon is known as lock-in, which in addition to 
increased motion amplitudes will cause increased in-line drag forces due to a larger effective drag 
area. 
 

2.6.3 Wind forces     
The wind speed is typically composed of a rapidly fluctuating gust wind superimposed onto the 
slowly-varying mean wind speed. Haver (2010) expressed the total wind speed at time instant t as: 
 
 ( ) ( ) ( )m tV t V t V t= +  (2.13) 
 
where ( )mV t is the mean wind speed and ( )tV t is the turbulent (gust) wind speed at time instant t . The 
mean wind force will give rise to a steady-state wind force; while for a moored structure, the gust wind 
may excite resonant slow-drift motions of the structure.   
 
A Kaimal wind spectrum is recommended used for representing the spectral density of the wind 
process (DNV-OS-J101), and is shown in figure 2-3. 
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Figure 2-3: Kaimal wind spectrum 

Um = 12m/s, TI = 0.1, λ=42 
 

2.7 A discussion on natural periods 

2.7.1 General 
As the mass and stiffness matrices are found for vertical and longitudinal motions, the natural periods 
can be obtained for the same motion modes. 
 
Faltinsen (1990) expresses the natural period for degree of freedom i as: 
 

 

1

2

2 ii ii
ni

ii

M A
T

C
π

+
=

 
 
 

 (2.14) 

 
Remembering that we defined M as the total mass, including the hydrodynamic mass; by using a strip 
theory approach to obtain the added mass, the natural period in surge is written as: 
 

 

1 11

2 22
11 11

1

11 ,11 ,11

2
2 2 2 w

n

M M

VM M A
T

C C C

ρ
π π π

+
= = =

    
    

     
 (2.15) 

     
where wρ is the water density andV is the displaced volume. Since there is no hydrostatic stiffness 
contribution in surge, only the mooring line stiffness will contribute to the stiffness matrix. 
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In heave, we get: 
 

 

11 1

22 2
33 33 33

3 2

33 ,33 ,33

2 2 2n

H M wl

M M A M A
T

C C C g R
π π π

ρ π

+ +
= = ≈

+

    
    

    
 (2.16) 

 
Since the mooring line contribution to the heave stiffness is minimal compared to the hydrostatic 
contribution, it can be neglected. The vertical added mass will be very small compared to the mass and 
may also be neglected. We see that the natural period in heave is strongly dependent on the waterplane 
area. 
 
By considering a reference point close to the vertical COG and assuming wV mgρ = , the natural period 
in pitch becomes: 
 

 

1 11 1

2 22 2
55 55 55 55 55 55 55

5

55 ,55 ,55 ,55

2 2 2 2
( )n

H M H B G

M I A I A I A
T

C C C C Vg z z
π π π π

ρ

+ + +
= = ≈ ≈

+ −

      
      

      
 (2.17) 

 
where Bz and Gz is the vertical position of the centre of buoyancy and gravity respectively. The mooring 
system effect on the pitch restoring coefficient is neglected. 
 
Typically, for moored structures, the natural period in surge is in order of minutes. For heave and pitch 
it is usually required that the natural periods are larger than 20T s= , above most wave periods in open 
sea (4-20s). 
 

2.7.2 Mathieu instability 
According to Nielsen (2007), the Mathieu instability is related to a time dependent restoring term in 
the equation of motion and is a well-known dynamic phenomenon for spar platforms. 
 
For the coupled heave-, pitch motions, instabilities can occur when the pitch natural period is close to 
the heave natural period or twice the heave natural period. 
 
Haslum (2000) showed another effect that may cause Mathieu effects. For a certain wave period, 
denoted ,wave crT , the combined action of wave induced heave and resonant heave may excite pitch 
resonance. The critical wave period is given as: 
 

 
,

5 3

1
1 1wave cr

n n

T

T T

=
+

 (2.18) 
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3. Catenary mooring systems 

3.1 General 
As seen in the previous chapter, the mooring system contributes to providing restoring forces and 
moments on a floating structure, pulling the structure back against its equilibrium position. A wide 
selection of mooring systems are applied in the offshore industry; ranging from tension leg moorings, 
with small horizontal offsets and large vertical forces on the anchors, to catenary moorings, with larger 
horizontal offsets and no vertical forces on the anchors. In the present study, only catenary mooring 
systems are considered. 
 
A catenary mooring system may be composed of one or several individual lines connected to the 
floating structure at the fairlead and the sea bottom at the anchors. The suspended part of each line will 
form a catenary, where the shape is dependent on the weight of the line in addition to the horizontal 
and vertical distance between the fairlead and anchor. The line arrives at the sea bottom horizontally, 
so that the anchor is only subjected to horizontal forces. The initial horizontal holding capacity, often 
referred to as the pretension, is dependent on the horizontal distance between the fairlead and the 
anchor. The restoring forces are provided by the weight of the line. Hence the major contribution to 
the stiffness matrix from the mooring system comes from the geometric stiffness of the line, i.e. 
stiffness due to the change of geometry of the catenary. 
 
As the top end point of the mooring line is moved, the initial configuration of the mooring line is 
modified; and assuming that part of the line is resting on the sea bottom, the new position is 
determined by the geometric stiffness of the line. The restoring force from the mooring system will be 
non-linear as the catenary configuration of the mooring lines and the existence of the sag introduce 
geometric non-linearity (Loukogeorgaki et al. 2005). In chapter 6, it is shown how the restoring forces 
from each mooring line can be calculated. 
 
Typically, the mooring lines are segmented in order to optimise the force/displacement characteristics 
known as the mooring line characteristics. In addition to anchors and connectors, the lines may be 
composed of chains, wire ropes and synthetic fiber ropes. For details regarding the different mooring 
components, reference is made to Hordvik (2010).  
 
In this report, three different concepts based on catenary moorings are considered. They are presented 
in the following.  

 

3.2 Distributed mass mooring system 
For the distributed mass mooring system, the restoring stiffness is obtained by applying mooring line 
segments with large submerged weight. Typically, large diameter chains are used as they have 
significantly larger self-weight than wire and synthetic fiber ropes. The bottom chain can either have 
the same weight as the rest of the line, or larger weight for increased geometric stiffness. This mooring 
system concept is widely used for stationkeeping of offshore applications.  
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3.3 Clump weight mooring system 
For the clump weight mooring system, the restoring force is mainly provided by attaching a large mass 
clump weight to the mooring lines. The clump weight will increase the vertical component and the 
total tension in the line. The stiffness of the system increases accordingly providing more restoring 
forces. 
 
Luo (1992) argues that the clump weights should be installed near the line’s touchdown point, causing 
increased stiffness and a steeper tension excursion curve as the weight is lifted off from the sea 
bottom. The stage when the clump weight is lifted off the bottom is referred to as the effective stage, 
and may be tuned to optimise the mooring characteristics. Nielsen (2011) however claims that in 
conventional mooring designs involving clump weights, the weights are installed so that they will not 
touch the sea bottom during normal operation. This reduces the risk of the clump weights digging into 
the soil, causing large, uncontrollable forces and overshoot in the anchor lines as they are lifted off. 
The restoring force is then merely provided by the line configuration. 
 

3.4 Buoyancy element mooring system 
The buoyancy element mooring system has a buoyancy element attached to the mooring lines, creating 
an upward force. This results in a virtual displacement of the top end point, so that the main 
contribution to the restoring forces is provided by the suspended part of the mooring lines below the 
buoyancy element. Such a layout is especially attractive for deep water applications, to limit the 
mooring line dynamics. As for the other concepts, combination of chain and wire segments may be 
used.  
 
All three concepts are illustrated in figure 3-1.   
 

 
Figure 3-1: Mooring system concepts 

From left to right: Clump weight-, distributed mass- and buoyancy element mooring system 
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4. Analysis software 
In order to investigate the performance of the different mooring system concepts, various computer 
programs dedicated to analysis of marine structures are applied. In the following, these computer 
programs are presented. 
 

4.1 SIMO 
According to the user manual, SIMO (Simulation of Marine Operations) is a time domain simulation 
program for study of motions and stationkeeping of multibody systems. The program is typically 
applied for time domain simulation of surface vessels and for simulation of complex marine 
operations. The results are presented as time series, statistics and spectral analysis of all forces and 
motions of the bodies in the analysed system. SIMO is interactive and modular, i.e. the results from 
one module becomes the input for the next module. 
 
In the present study, SIMO is used for environmental modelling (waves and current) and for its ability 
to include wind forces from an external force subroutine (TDHMILL3D) linked into the program.  
 
Waves can be modelled by regular waves and by various model spectra for irregular waves. The 
current speed and direction is assumed to be constant with time. However it can vary with depth by 
specifying a current profile. 
 

4.2 TDHMILL3D 
TDHMILL3D is, according to the User Documentation, a simplified computer tool developed by 
MARINTEK for analysis of floating wind power facilities. The code is a numerical model of thrust 
from a wind turbine rotor onto the nacelle, and consists of coefficients for thrust (force in axial 
direction of the rotor axis) tabulated as a function of relative velocity between the rotor and the wind. 
Gyro-moments from the rotor when it is rotating about an axis in the rotor plane are also included. 
 
The wind speed at hub height can be specified by the user directly as a time series, or by specifying a 
dynamic wind spectrum and let the program generate an irregular wind speed time series. The Kaimal 
wind spectrum (see figure 2-3) is used for generating irregular wind speed time series. 
 
The thrust force from the rotor onto the rotor axis at time t is calculated from the wind speed time 
series and loaded by SIMO at runtime through a DLL (Dynamic Linked Library). 
 
By using a built-in notch filter tuned to the pitch natural period of the system, the user can choose to 
include the control system in a very simplistic way. A notch filter is designed such as to remove the 
contribution from a certain frequency band of a given signal. 
 

4.3 Riflex 
Originally, according to the user manual, Riflex is a finite element program developed as a tool for 
analysing flexible marine riser systems. However the program can also be used for analysing other 
types of slender marine structures (e.g. mooring lines and umbilicals). The program features an 
extremely efficient and robust non-linear time domain formulation applicable for irregular wave 
analysis; and high flexibility in modelling, enabling analysis for a wide range of structures. The 
hydrodynamic loading is described by the generalized Morison’s equation.   
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4.4 Integrated analysis 
By coupling the computer programs described above together, one can take advantage of the features 
characterizing each program and combine them. SIMO, for instance, models all structures as rigid 
bodies, i.e. internal forces are not captured. The complete structure (including the mooring system) is 
therefore modelled in Riflex, allowing for flexible modelling. SIMO does however as mentioned, offer 
the option of including an external force through a DLL, in addition to excellent modelling of waves 
and current. SIMO in combination with TDHMILL3D is therefore used for environmental modelling 
(wind, waves and current). 
 
The combined SIMO-Riflex simulation is widely used to simulate floating offshore structures. In order 
to couple the programs together, the different modules of the programs must be run in a specific order: 
 

1. Riflex inpmod 
2. SIMO stamod 
3. Riflex stamod 
4. SIMO dynmod 
5. Riflex dynmod 

 
Of course additional modules for postprocessing (e.g. s2xmod and outmod) may be added 
subsequently. For details regarding the different modules of the program, reference is made to the 
respective user manuals. 
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5. Analysis models 

5.1 General 
The models used in this study are based on an early phase Hywind design with a steel tower and a 
concrete substructure. 
 
The original model was used by Furunes (2010). As the study is focusing on the mooring system 
design and not the structural design of the support structure, this tower model is conveniently used as a 
starting point. All structural properties remain unchanged, while major adjustments have been made 
with respect to the heading of the mooring lines. Furthermore, the water depth is modified, and the 
mooring system is adjusted to reproduce the three concepts described in Chapter 3. The model applied 
for shallow water (100m ) analysis is henceforth referred to as the test model. In the following the test 
model will be reviewed. 
 

5.2 Finite element model 
Figure 5-1 shows the finite element model and coordinate system for the test model. SN i refers to 
supernode i , while the bracket numbers refers to the Riflex line numbers. The main mooring lines and 
delta-lines are named Anch.line 1-3 and DL 1-6 respectively. 
 
 

 
Figure 5-1: Test model, finite element model 

 
We see that the system topology is defined in terms of branching points and terminal points called 
supernodes. Lines are defined between the supernodes, and subsequently split into segments consisting 
of equally sized elements. The element mesh is automatically computed based on the topology, line 
and component description. SN 1, which is the tower bottom, is fixed; while the anchornodes (SN 10 – 
12) are given prescribed displacements. All other supernodes are free, i.e. nodal position and rotations 
are unknown prior to the analysis. SN 3, which is located at the top of the tower, is connected to a 
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mass free SIMO body through a floater force model, accounting for the thrust force from the wind. 
The substructure has a draft of 80m, and the water depth is set to 100m. 

5.3 Tower structure 
All the elements in the tower structure are modelled as 3D beam elements with an axi-symmetric cross 
section and constant axial-, bending-, and torsional stiffness. The beam element formulation uses a co-
rotated ghost reference description, with three translational and three rotational degrees of freedom at 
each node. For further details regarding the beam theory, reference is made to the Riflex theory 
manual. 
 
The tower structure layout, including section levels, diameter and weight is shown in figure 5-2.  
 

 
Figure 5-2: Test model, tower structure 

Source: Furunes (2010) 
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5.4 Mooring system 
The mooring system is represented by 3D bar elements, specified with axial stiffness only. The bar 
element is described in a total Lagrangian formulation, and adjusted to a formulation based on 
integrated cross-section forces and small strain theory. 
 
The three-point lateral symmetric mooring system is laid out with an angular spacing of 120o. Each 
mooring line is attached to the tower structure at the fairlead. Two lines are connected to each fairlead 
point so that the upper part of each mooring line forms a bridle. These upper line segments are denoted 
delta-lines. In the original model, the water depth is 220m and the length of each delta-line is 50m. For 
the test model, the water depth is reduced to 100m. The length of each delta-line is accordingly 
reduced to 40m in order to have adequately vertical distance between the sea bottom and the delta-line 
connection points. A single line is extending from the delta-lines to the anchor. The anchornodes are 
given a prescribed displacement in order to obtain the desired pretension. The length of the delta-lines 
is further assessed in Chapter 8. 
 
The modelling of the different mooring system concepts is reviewed in the following. The layout 
described here is merely used for comparing the concepts, i.e. segment lengths and weights are not 
optimised. The total line length is for simplicity equal for all three mooring system concepts and is set 
to 513 m.  
 
The delta-lines consist of only one segment, while the main mooring lines are composed of 7 segments 
each. Table 5-1 shows segment lengths and total weight for the three different mooring system 
concepts considered. 
 
 

 
Table 5-1: Segment lengths 
 

Segement type Segment length [m] Segement type Segment length [m] Segement type Segment length [m]
Chain (delta-line) 40,00 Chain (delta-line) 40,00 Chain (delta-line) 40,00

Chain 70,00 Chain 5,00 Chain 5,00
Chain 70,00 Wire 25,02 Wire 76,02
Chain 70,00 Chain 5,00 Chain 5,00
Chain 70,00 Clump weight 1,00 Buoyancy element 1,00
Chain 40,00 Chain 5,00 Chain 5,00
Chain 53,04 Wire 332,02 Wire 281,02
 Chain 100,00 Chain 100,00 Chain 100,00

Total length [m] 513,04 513,04 513,04

Distributed mass mooring system Clump weight mooring system Buoyancy element mooring system

Total submerged 

weight [kN]
676,03 527,03 120,12
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5.4.1 Distributed mass mooring system 
For the distributed mass mooring system, all segments are composed of chain. The layout is shown in 
figure 5-3, while the main parameters describing the chain modelling is given in table 5-2. 
 
 

 
Figure 5-3: Layout, distributed mass mooring system 

 
Segment type Mass/unit 

length   [t/m] 
External C-S area 

[m2] 
Axial stiffness 

[kN] 
Hydrodynamic diameter 

[m] 
Chain 0,1545 0,0197 7,09 E+5 0,1583 

Table 5-2: Segment properties, distributed mass mooring system 

 

5.4.2 Clump weight mooring system 
In addition to the clump weight, the clump weight mooring system is composed of a combination of 
chain and steel wire segments in order to introduce more elasticity and ease the handling. Chains are 
used for the delta-lines and for connecting different segments together. The mooring system layout and 
main segment properties are shown in figure 5-4 and table 5-3 respectively. 
 
The clump weight is modelled as an axi-symmetrical line segment, i.e. a cylinder. The clump weight 
properties are shown in table 5-4. 
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Figure 5-4: Layout, clump weight mooring system 

 
 
 
Segment type Mass/unit 

length   [t/m] 
External C-S area 

[m2] 
Axial stiffness 

[kN] 
Hydrodynamic diameter 

[m] 
Chain 0,1545 0,0197 7,09 E+5 0,1583 
Wire 0,0379 0,0057 3,43 E+5 0,0850 

Clump Weight 24,66 3,14 6,28 E+9 2,0 
Table 5-3: Segment properties, clump weight mooring system 
 
 
Material STEEL 
Density [kg/m3] 7850 
Young’s modulus [N/m2] 2,0 E+11 
Diameter [m] 2,0 
Thickness [m] 2,0 
Length [m] 1,0 
Volume [m3] 3,14 
Mass [kg/m] 24662 
Area moment of inertia [m4] 0,8836 
Gyration radius [m] 0,53 
Buoyancy force [kN] 31,59 
Gravity force [kN] 241,9 
Net force (positive upwards) [kN] -210,34 
Weight in water [kN/m] 210,34 
Table 5-4: Clump weight properties 
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5.4.3 Buoyancy element mooring system 
The buoyancy element mooring system is composed of a combination of chain and wire segments in 
addition to the buoyancy element. The mooring system layout and main segment properties are shown 
in figure 5-5 and table 5-5 respectively. 
 
As for the clump weight, the buoyancy element is modelled as a line segment with axi-symmetrical 
cross-section. The buoyancy element modelling is based on the properties given in table 5-6. 
 

 
                      Figure 5-5: Layout, buoyancy element mooring system 

 
 

Segment type Mass/unit 
length   [t/m] 

External C-S area 
[m2] 

Axial stiffness 
[kN] 

Hydrodynamic diameter 
[m] 

Chain 0,1545 0,0197 7,09 E+5 0,1583 
Wire 0,0379 0,0057 3,43 E+5 0,0850 

Buoyancy element 19,41 38,48 1,10 E+9 7,0 
Table 5-5: Segment properties, buoyancy element mooring system 
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Material STEEL 
Density [kg/m3] 7850 
Young’s modulus [N/m2] 2,0 E+11 
Diameter [m] 7,0 
Thickness [m] 0,025 
Length [m] 1,0 
Volume buoy [m3] 38,48 
Volume steel [m3] 2,47 
Mass [kg/m] 19406 
Equivalent density buoy [kg/m3] 504 
Area moment of inertia [m4] 117,5 
Gyration radius [m] 1,75 
Buoyancy force [kN] 387 
Gravity force [kN] 190 
Net force (positive upwards) [kN] 196,6 
Weight in water [kN/m] -196,6 
Table 5-6: Buoyancy element properties 
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6. Analysis methods 
In the following, the theoretical basis underlying the analysis methods used in the study are described. 
 

6.1 Catenary analysis 
In Chapter 2, it was shown how the catenary contribution to the total stiffness matrix was obtained 
from the single line stiffness matrix. In this section it is shown how the single line stiffness matrix is 
obtained. 
 
Nielsen (2007) demonstrated a stepwise procedure for how the restoring coefficients in surge and 
heave may be calculated: 
 

• Assuming that the horizontal position of the upper mooring line end is known, a small 
perturbation of the horizontal force is made. 

• The corresponding variation in end point coordinates and vertical force are found and denoted
1

x∆ , 
1

z∆ and
1

H∆ , 
1

V∆ respectively. 
• A similar perturbation is made for the depth, and the end point coordinates and vertical force 

are respectively denoted 
2

x∆ ,
2

z∆ and
2

H∆ ,
2

V∆ . 
• The stiffness components are then found as: 
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The restoring force can be written on matrix and compact form as: 
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And the restoring force coefficients on compact form are found as: 
 

  (6.4) 
 

Each mooring line will be subjected to direct action of waves and current, but the principal loads are 
the forces transmitted by the moored structure. By assuming a horizontal sea bed, and neglecting 
bending stiffness, dynamic effects in the line and current forces, the x- and z-coordinates can therefore 
be found quasi-statically for a range of horizontal force levels by applying the catenary equations. In 
cases with high tension in the line, stretching becomes important. The effect of axial elasticity can be 
included to form the elastic catenary equations as shown by Triantafyllou (1990). Elasticity effects are 
accounted for in the present study. The equations are derived in Appendix A. 
 
A Matlab routine (Nielsen, 2004) for computing mooring line geometry and restoring characteristics 
for multi-segment mooring lines has been modified and adapted to quasi-static analysis of the mooring 
system concepts presented in this study. The mooring lines are modelled as continuous lines, not 
accounting for the stiffness effect of the delta-lines. The weight of the upper segment is therefore 
adjusted according to the weight of the delta-lines. Quasi-static analysis is very convenient in the 
initial design phase due to the minimal computational effort required. 
 

6.2 Eigenvalue analysis 
Finding the natural frequencies of an inclined catenary is not straight forward as the static quantities 
are varying in space. By modelling a single mooring line in Riflex, the lines’ eigenfrequencies and 
eigenvectors can be found by using the built-in eigenvalue analysis option. Lancros’ method for 
solution of eigenvalue problems is utilized. 
 

6.3 Motion decay test 

6.3.1 General 
A motion decay test, often called a free oscillation test, is carried out by giving the system an initial 
displacement and then leaving the system free to oscillate. After the system is released, and by 
assuming linear damping, the motion in the degree of freedom regarded can be described by: 
 
 0Mx Bx kx+ + =   (6.5) 
 

where M is the structural and added mass of the system, B is the linear damping coefficient and k is the 
stiffness coefficient. x , x and xare the translation/rotation, velocity and acceleration of the system 
respectively. 
 
By using the dynamic nodal forces option in Riflex, a motion decay test can be simulated by applying 
a ramp force/moment to the COG of the structure in the desired degree of freedom. When the ramp 
force is switched off, the system is released and free to oscillate. Natural periods and damping levels 
can be found from the decay test, and the respective procedures are reviewed in the following. 
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6.3.2 Natural periods 
The natural periods may be obtained from the decay time series by measuring the time difference 
between two consecutive peaks. Another method, which is utilized here, is to apply a Fast Fourier 
Transform (FFT) on the time series. The natural period is then taken as the period corresponding to the 
frequency level containing the most energy in the power spectrum. 
 

6.3.3 Damping 
By assuming quadratic damping, the damping term of equation (6.5) becomes: 

 
 1 2( ) | |DF x B x B x x= +     (6.6) 
 
We see that the damping force is split into two contributions, where the first term represents the linear 
damping force proportional to the velocity, while the second term represents the quadratic damping 
force proportional to the velocity squared. 

The linear damping term includes hydrodynamic damping from wave generation in addition to 
structural damping, while the quadratic damping term includes the eddy-making damping or drag 
damping. 
 
By dividing both sides of (6.5) with M and insert (6.6), we get: 
 
 1 2 3| | 0x b x b x x b x+ + + =     (6.7) 
 
where

1
b , 2

b and
3

b are the linear and quadratic damping coefficients and the stiffness coefficient divided 
by M respectively. 
 
Nielsen (2007) showed that equation (6.7) can be linearized by introducing an equivalent damping 
coefficient eb : 
 
 3 0ex b x b x+ + =   (6.8) 
  
For a motion decay signal with n cycles, the equivalent linearized damping can be expressed as: 
 

 *

1 2 1 2

16

3
n

e L

n

x
b b K b b b

T
= + = +  (6.9) 

 
where

n
x and

n
T are the motion amplitude and period for cycle n respectively, and *

LK  is the linearization 
coefficient. The linearization coefficient is found by using the value that will minimize the error 
(Larsen 2010). 
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The equivalent linear damping may be estimated within each half cycle of the decay signal by using 
the logarithmic decrement. By considering two consecutive peaks in the motion decay signal, as 
shown in figure 6-1, we can define the logarithmic decrement as: 
   

 
1

ln n

n

x

x
δ

+

=  (6.10) 

 
 

 
Figure 6-1: Motion decay signal 

  
 

Furthermore we introduce the relative damping, which can be expressed as a function of the 
logarithmic decrement: 
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+
 (6.11) 

  
The critical damping is given as: 
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By expressing the relative damping as a fraction of the critical damping, we get: 
 

 0

4
e

e
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b T
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ζ

π
= =  (6.13) 

 
The equivalent linearized damping is now found from the decay signal as: 
 

 
2 2
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π δ
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π δ
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+
 (6.14) 

 
The measurements in equation (6.14) can be fitted to equation (6.9); and by linear regression the linear 
and quadratic contribution to the damping can be estimated as a function of motion amplitude.   
 

6.4 Time domain analysis procedure 
The equations of motions can be solved in the time domain by dividing the desired time period into a 
number of time steps and perform equilibrium iterations at each time step. The solution is obtained by 
using the start conditions from the previous time step and assuming a motion pattern. The solution will 
then in turn become the start conditions for the next time step. 
 
According to the theory manual, non-linear time domain analysis in Riflex, which is utilized in this 
study, is performed by using a true Newton-Raphson type of equilibrium iteration. This implies 
recalculating the tangential mass, damping and stiffness matrices at each iteration cycle. The procedure 
offers a quadratic convergency rate. A modified Euclidean displacement norm is used as convergence 
criterion, i.e. the sum of displacements must be below a certain value.  
 
The numerical integration is based on the Newmark β-family. By assuming an acceleration pattern, i.e. 
choosing the parameters β andγ ; and denoting the time step increment τ∆ , the velocity and 
displacement at time step t τ+ ∆ is found as: 
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 (6.15) 

  
A β -value of ¼ gives constant average acceleration, while aγ -value of ½ gives no numerical 
damping. For all the analyses presented in this study, these values are used. 
 
The overall structural damping matrix is described by a Rayleigh damping formulation: 
 
 

1 2
α α= +C M K  (6.16) 

 
The global mass proportional damping contribution (

1
α ) is omitted to avoid unphysical structural 

damping due to rigid body motions. The global stiffness proportional damping contribution (
2

α ) shall 
give a realistic energy dissipation at the peak period of the loading. Since

1
α is omitted, 

2
α simply 

becomes 2 /λ ω  and is set to 0,01.λ is the relative structural damping. 
 
At each time step, the external loads are updated due to improved estimates of structural velocities. 
The other contributions to the load vector are kept constant. 
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The hydrodynamic contributions to the external forces are found by using a long wave length 
approximation for the wave-induced excitation forces and a generalized Morison’s equation 
formulation for the viscous forces. They are calculated to the actual instantaneous structural position.  

6.5 Data handling 
A Matlab routine is developed to run the coupled software programs described in Chapter 5 and 
implement the theory described in this chapter. The structural properties and main dimensions of the 
three models with different mooring system concepts are incorporated in Excel. The same is the case 
for the environmental input and time domain simulation parameters. Matlab reads data from Excel and 
applies it to the selected types of analysis to be performed. Postprocessing data and calculating 
statistics from time domain simulations are also incorporated. 
 
Because this study includes a large number of analyses with different system configurations, the 
Matlab routine and Excel sheets are proven invaluable. In Excel, system properties and simulation 
parameters are easily altered and presented in a clear manner, while Matlab is an excellent tool for 
handling large amount of data and for postprocessing purposes. 
 
An overview of the analysis methods is shown in figure 6-2. 
 
 

 
 

Figure 6-2: Overview of analysis methods 
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7. Concept selection 

7.1 General 
In this chapter, the three different mooring system concepts introduced in Chapter 5 are compared and 
one of the concepts is selected for further studies based on the results. 
 
The concepts are analysed quasi-statically to obtain line configuration and mooring line characteristics. 
Furthermore, motion decay tests are performed in surge, heave and pitch to find natural periods and 
damping levels. Finally, dynamic response and statistics are obtained for operational and severe 
environmental conditions by the means of non-linear time domain analysis.  
 

7.2 Quasi-static analysis 
By varying the horizontal force levels, line configurations for the three mooring system concepts are 
obtained as shown in figure 7-1. 
 

 
Figure 7-1: Mooring line configuration 

Top: Distributed mass mooring system, Middle: Clump weight mooring system, Bottom: Buoyancy element 
mooring system 
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We see that as the horizontal force is increased, the catenary geometry changes due to fairlead 
displacements and consequently chain lifted off from the sea bottom. For the buoyancy element 
mooring system, no line is left resting at the sea bottom as the horizontal force reaches the largest 
value of 1500 kN. For the other two concepts however, a great portion of the line is still left on the sea 
bottom at the same horizontal force level. 
 
The mooring line characteristics are shown in figure 7-2. Both the horizontal top tension and the total 
top tension is plotted for the three mooring system concepts. 
 

 
Figure 7-2: Mooring line characteristics for three mooring system concepts 

 
Because of the buoys attached to the lines of the buoyancy element mooring system, it is seen that 
initially for a large fairlead displacement range, the top tension is kept almost constant as the line 
between the fairlead and the buoy is “tightened up” (see figure 7-1). A further increase in displacement 
beyond this range will give non-linear restoring forces from the geometric stiffness as line is lifted off 
from the sea bottom. However, already at a top tension of approximately 1200 kN, the whole line 
length is suspended, i.e. all the line is lifted from the sea bottom. Additional increase in top tension 
beyond this point is therefore due to the combined effects of non-linear restoring forces from the 
change in geometry as the buoy is pulled down, and linear restoring forces from elasticity in the line. 
As a result of the buoys effect on the line configuration, the total top tension will be almost identical to 
the horizontal top tension for the whole tension range considered. 
 
The distributed mass mooring system, solely consisting of chain segments, will respond by an increase 
in top tension as soon as the fairlead displacements increase. Because of the large submerged weight 
of the line, parts of the line remain resting on the sea bottom through the whole top tension range 
considered. This provides geometric stiffness contributions to the restoring forces. However, the large 
axial stiffness of the chain segments leads to increasingly mooring line response due to stretching as 
the tension increases. 
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For the clump weight mooring system, the tension-displacement curve will initially be steep due to the 
increased stiffness when the clump weight is partially lifted off the sea bottom. Furthermore, when 
fairlead displacements increase, the wire segments in the lines will reduce the stiffness of the system, 
resulting in a smaller top tension gradient than the case with the distributed mass mooring system. 
Because of the clump weight’s effect on the line configuration (see figure 7-1) the total top tension 
will have a significant vertical component. The effect is primarily seen for low top tension levels. 
 

7.3 Motion decay analysis  
Motion decay tests have been carried out on the test model. Results for vertical and longitudinal 
motion modes for the three different mooring system concepts are found.  
 
The structure is initially given 500 s to obtain equilibrium before the ramp force is applied for 600 s. 
For translational motion modes (surge and heave) the ramp force is 5 kN/s, while for the rotational 
motion mode (pitch) the ramp force is 1500 kNm/s. For all three concepts, the anchors where given a 
prescribed displacement corresponding to a pretension of 500 kN.  
 
The main results are presented in the following. 
 

7.3.1 Natural periods 
The natural periods obtained from the motion decay tests are presented in table 7-1.  
 

 
Table 7-1: Natural periods 
 
It is seen that the natural periods in all the degrees of freedom considered are above the WF range, i.e. 
resonant WF motions are avoided. The surge natural period is significantly larger for the clump weight 
mooring system than for the others. This is because all three mooring systems have an equal 
pretension of 500 kN, and with respect to the mooring line characteristics (see figure 7-2) we see that 
the clump weight mooring system is significantly “softer” than the other concepts at low tension 
levels. For the buoyancy element mooring system it is seen that the heave and pitch natural periods are 
identical and possible Mathieu effects must be considered. It is however important to note that the 
natural periods of the system are not tuned for these initial concept studies. 

Mooring system concept Degree of freedom Natural period [s]
Surge 54,1
Heave 28,8
Pitch 25,6
Surge 82,5
Heave 27,5
Pitch 25,4
Surge 52,4
Heave 26,4
Pitch 26,4

Distributed mass

Clump weight

Buoyancy element
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7.3.2 Damping 
The relative damping (ζ) from the logarithmic decrement is presented as a function of surge 
displacement in figure 7-3 (left), while the ratio between linear and quadratic damping as a function of 
surge displacement is shown in figure 7-3 (right). 
 

 
Figure 7-3: Surge damping 

Left: Relative damping (ζ) as function of surge displacement. Right: Damping ratio (linear/quadratic) as 
function of surge displacement 

Top: Distributed mass-. Middle: Clump weight-. Bottom: Buoyancy element mooring system. 
 
Generally, the relative damping decreases with decreasing motion amplitudes which is obvious from 
studying figure 7-3 (left). From the plots on the right side, it is seen that the effect from quadratic 
viscous damping is prominent for large motion amplitudes, while we are left with the linear damping 
as the motion amplitudes approaches zero. The mooring system itself has little effect on the overall 
system damping, and the differences are mainly due to different displacement levels.  
 
For the other motion modes considered (heave and pitch), the viscous damping is not as prominent as 
for surge. For heave, the linear damping contribution is in order of 10-100 times larger than the 
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viscous damping, and is therefore close to constant; while a larger viscous damping contribution is 
seen in pitch. The relative damping levels presented in table 7-2 are mean values over the decay signal 
considered. As expected, the type of mooring system has negligible effect on the heave and pitch 
damping. 
 

Mooring concept Distributed mass Clump weight Buoyancy element 
Degree of freedom Relative damping ζ Relative damping ζ Relative damping ζ 
Heave 0,0295 0,0283 0,0266 
Pitch 0,0201 0,0196 0,0203 

Table 7-2: Relative damping, heave and pitch 

 

7.4 Time domain analysis 
In order to compare the different concept’s response to environmental loads and capture dynamic 
effects in the mooring lines, time domain analysis is performed. Two environmental load conditions 
are considered. The first condition, denoted operational condition, is taken as an environmental 
condition where the wind turbine is operating at maximum effect, i.e. with wind speeds close to the 
rated wind speed. The second condition, denoted storm condition, is taken as a non-operating 
condition with combination of wind and waves with 100-year return periods and current with 10-year 
return period. Typical values for the Northern North Sea as given in DNV-OS-E301 are used. 
 
The environmental conditions are shown in table 7-3. 
 

 
Table 7-3: Environmental conditions 
 
All the environmental loads are applied to the structure with a heading of 0° relative to the x-axis, in 
the direction of the anchorline parallel to the x-axis (Anch.line 1). The anchor nodes are given a 
prescribed displacement corresponding to a pretension of 500 kN for all three concepts. An 1-hour 
simulation is carried out for each environmental condition and the main results are presented for the 
operational- and storm condition in table 7-4 and 7-5 respectively. 

Opertional Condition Storm Condition
Hs [m] 1,0 15,0

Tp [s] 6,6 16,0

Umean [m/s] 11,0 40,5
Turb. Intensity 0,1 0,1
V0 [m/s] 0,5 1,6

V20 [m/s] 0,4 1,1

V40 [m/s] 0,3 1,1

V60 [m/s] 0,2 0,7

V80 [m/s] 0,1 0,7

V100 [m/s] 0,0 0,6

Wave

Wind

Current
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Table 7-4: Response statistics, operational condition 
 

 

 
Table 7-5: Response statistics, storm condition 

 
See figure 5-1 for definition of the anchorline directions. Waterline is referring to the waterline at zero-
load initial configuration∗.  
 
Generally, it is seen that the mean mooring line tensions are approximately equal for the three 
concepts for both environmental conditions. For the operational condition, the mean mooring line 
tension is slightly larger for the clump weight concept than for the other two concepts; while for the 
storm condition, the buoyancy element concept experiences the largest mean mooring line tension. 
The maximum values and variation in line tension (expressed in terms of the standard deviation) are 
however significantly larger for the concepts utilizing distributed mass and buoyancy element than for 
the clump weight concept∗∗.  
 
The effects described above can be explained by the mooring line characteristics (see figure 7-2). At 
the applied pretension level, the total tension is significantly larger for the clump weight mooring 

                                                 
∗ Mean heave response should be zero at the actual waterline. 
∗∗ The negative minimum values for axial force are not physical, i.e. chain segments are not in compression. 

Mooring system concept
Response Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max
Surge - Waterline [m] 4,8 0,7 2,0 6,8 7,3 0,7 4,0 9,4 4,8 0,7 2,1 6,7
Sway - Waterline [m] 0,0 0,0 -0,1 0,1 0,0 0,0 -0,1 0,1 0,0 0,1 -0,1 0,1
Heave - Waterline [m] 4,1 0,1 3,6 4,5 3,6 0,2 3,1 4,1 6,8 0,2 6,2 7,3
Pitch - Waterline [m] 3,9 0,8 1,0 6,2 3,8 0,8 0,9 6,1 4,2 0,8 1,4 6,6
Tower bottom heave [m] -75,7 0,1 -76,2 -75,3 -76,3 0,1 -76,7 -75,8 -73,0 0,2 -73,8 -72,4
Axial force - DL1 [kN] 462,4 16,3 400,7 510,0 433,7 11,7 382,1 471,1 408,7 15,6 351,9 458,0
Axial force - DL2 [kN] 462,5 15,7 407,7 501,6 433,8 11,3 390,5 467,6 408,7 15,9 352,2 457,1
Axial force - DL3 [kN] 364,4 11,9 318,8 401,4 352,0 14,2 305,4 396,7 257,9 3,9 245,9 270,2
Axial force - DL4 [kN] 253,6 12,9 214,3 306,9 239,4 14,4 199,7 294,4 244,9 3,3 235,4 262,7
Axial force - DL5 [kN] 253,7 13,2 214,3 309,8 239,3 14,7 201,1 298,8 244,9 3,7 234,6 260,6
Axial force - DL6 [kN] 364,3 12,1 316,9 403,5 352,0 14,5 303,9 399,8 257,9 3,3 248,0 274,5
Axial force - Anch. Line 1 [kN] 829,4 31,8 713,6 913,6 816,6 22,7 728,1 879,8 801,9 30,5 692,8 895,1
Axial force - Anch. Line 2 [kN] 516,9 5,4 499,2 540,9 527,8 4,4 516,1 547,3 493,4 5,6 478,7 517,4
Axial force - Anch. Line 3 [kN] 516,8 5,5 498,8 541,3 527,7 4,4 516,1 547,4 493,4 5,7 479,0 517,9

Distributed mass Clump weight Buoyancy element

Mooring system concept
Response Mean Std. Min Max Mean Std. Min Max Mean Std. Min Max
Surge - Waterline [m] 3,8 4,8 -12,8 18,4 7,3 4,8 -8,8 21,6 3,1 5,0 -13,3 21,4
Sway - Waterline [m] 0,0 0,0 -0,1 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1
Heave - Waterline [m] 3,5 1,4 -1,4 8,3 3,0 1,5 -2,7 8,4 5,0 3,7 -11,8 17,0
Pitch - Waterline [m] 2,0 3,0 -8,5 12,2 1,9 3,1 -9,8 12,3 2,1 3,2 -7,9 14,7
Tower bottom heave [m] -76,3 1,3 -81,3 -71,7 -76,8 1,5 -82,4 -71,5 -74,8 3,7 -91,7 -62,9
Axial force - DL1 [kN] 570,1 353,7 -105,1 2459,8 535,5 156,4 83,7 1454,0 591,5 453,2 -75,1 3101,2
Axial force - DL2 [kN] 584,0 385,8 -100,9 2487,6 542,4 194,2 63,6 1557,7 603,0 462,7 -56,7 3145,3
Axial force - DL3 [kN] 332,0 64,2 83,3 726,3 316,8 77,4 101,2 501,7 343,4 163,1 125,5 1321,4
Axial force - DL4 [kN] 252,7 89,4 62,6 856,7 254,4 83,8 85,5 523,5 203,1 70,2 51,1 782,4
Axial force - DL5 [kN] 259,7 98,7 31,6 907,3 258,1 86,4 86,6 553,7 208,3 66,2 61,7 743,9
Axial force - DL6 [kN] 325,0 42,4 85,9 573,5 312,7 75,8 97,0 474,8 337,6 144,7 139,9 1159,6
Axial force - Anch. Line 1 [kN] 1061,7 746,6 -332,2 4875,5 1030,4 354,1 114,4 2942,2 1176,4 912,5 -150,4 6211,9
Axial force - Anch. Line 2 [kN] 481,9 118,6 33,2 1272,7 506,5 23,8 430,0 649,4 537,0 173,5 273,2 1537,1
Axial force - Anch. Line 3 [kN] 481,6 118,7 41,4 1270,6 506,1 23,4 425,6 636,3 536,3 173,9 275,8 1583,5

Distributed mass Clump weight Buoyancy element
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concept than for the other two concepts, i.e. the vertical tension component is larger. At the same time, 
the tension-excursion curve gradient is smaller. When the environmental load is applied, the clump 
weight concept will therefore experience a large surge offset due to the load while the line tension 
remains approximately the same as for the other concepts. Due to the large gradients of the tension-
excursion curves, the distributed mass- and buoyancy element concepts will have large tension 
variations even for relatively small variations in horizontal offset. Actually, for the buoyancy element 
concept in storm condition, maximum line tension in the most heavily loaded line reaches a value 
above 6000 kN, while the same value is just below 5000 kN and 3000 kN for the distributed mass- and 
clump weight concept respectively. The same effect is observed for the most heavily loaded delta-
lines. 
 
It is observed that even though the initial gap between the tower bottom and sea bottom was only 20 
m, neither of the concepts are risking bottom contact during the storm condition.  
 
The complete response time series from the concept comparison are found in Appendix B.  
 

7.5 Conclusion and selection of concept for further studies 
By studying the three concepts, pros and cons for each concept are revealed. 
 
The buoyancy element concept is desirable for deep water mooring systems because the weight and 
stiffness is reduced, and dynamic effects in the mooring line are limited to the part of the line 
extending from the buoy to the sea bottom. For the application investigated in this study however, the 
buoyancy element concept is failing when it comes to limiting the maximum line tension. Because the 
suspended length of the line is very limited for the water depth considered, the soft nature of the 
mooring system will result in large peak tensions. Also, the buoy may cause challenges during 
installation and handling. Furthermore, by using the present layout we risk having vertical forces on 
the anchor. This can be resolved by increasing the line length or bottom segment weight, further 
complicating the handling and compromising on the mooring system cost. 
 
The distributed mass concept may be the most desirable when it comes to installation and handling 
purposes. In addition, the large submerged weight allows for short line lengths and ensures no vertical 
forces on the anchor. However, the large tension-excursion curve gradient gives large tension 
variations during severe weather conditions. 
 
When it comes to limiting maximum line tension, the clump weight concept is superior to the other 
two concepts. The relatively small tension-excursion curve gradient over a large displacement range 
ensures good control with the line tension even in severe weather conditions. As for the distributed 
mass concept, the large submerged weight allows for shorter line lengths and limits the risk of vertical 
forces on the anchor. The drawback is that the horizontal offset will be large, resulting in a large 
footprint and possibly inflicting damage on the power cable. The offset can however be controlled by 
tuning the pretension, compromising on the maximum line tension level. 
 
Based on the discussion in this chapter, the clump weight mooring system is selected for further 
studies. The two other concepts will not be further discussed. 
 
  



              
 

36 
 



              
 

37 
 

8. Mooring system optimisation 

8.1 General 
A number of key parameters defining the mooring system have been selected and subjected to a 
parameter study. Their effects on the system performance are investigated in order to optimise the 
mooring system. The main concerns that need to be considered when selecting the design parameters 
may be summarized as: 
 

• Avoiding vertical forces on the anchors 
• Select segments with adequate breaking strength to resist the maximum line tension with 

sufficient margins 
• Avoiding clump weight touchdown 
• Keeping the mooring lines as short as possible 
• Utilize the geometric stiffness range by tuning the pretension 

 
For a mooring system with clump weights, the most influential design parameters are the size (mass) 
of the clump weights and their position along the mooring line. Emphasis is therefore put on these two 
design parameters. 
 
Other parameters that are investigated include: 

• Pretension 
• Overall length of the mooring system 
• Chain and wire weight/dimension 
• Vertical fairlead position 
• Delta-line length 

 
The parameter study is carried out by the means of quasi-static and dynamic analysis. The clump 
weight size and position are investigated by utilizing a quasi-static approach. Furthermore, by applying 
the optimised values for the clump weight size and position; the pretension, overall length of the 
mooring system and chain- and wire weight/dimension are determined by the means of time domain 
analysis. The storm condition defined in Chapter 7 is applied with environmental loading acting with 
an heading of 0° relative to the x-axis. The vertical fairlead position and delta-line lengths are selected 
based on theoretical considerations. 
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8.2 Clump weight size 
In order to investigate the effect of the clump weight size, all other parameters are kept constant while 
the clump weight size is varied according to table 8-1. 
 

 
Table 8-1: Clump weight size 
 
The resulting line configuration, here presented for a pretension level of 700 kN, is shown in figure 8-
1. 
 

 
Figure 8-1: Line configuration for various clump weight sizes 

 
As the line configuration is determined by the submerged weight of the line, it is seen that the size of 
the clump weight is of major importance for the configuration. For the largest clump weights, the short 
suspended part of the mooring line is close to vertical while the major part of the line is resting on the 
sea bottom. Even in equilibrium position, the largest clump weights are close to the sea bottom and 
will therefore experience touchdown on the leeward side when the floater is displaced due to 
environmental loading. This will not be the case for the smaller clump weights as the reduced weight 
ensures adequate vertical distance to the sea bottom. Problems with possible vertical forces on the 
anchors may occur however, as the catenary sag is relatively small.   
 
 
 
 
 
 

Diameter Volume Mass Gyration radius Buoyancy force Gravity force Weight in water
[m] [m3] [tons] [m] [kN] [kN] [kN/m]
1 0,79 6,17 0,35 7,90 60,48 52,58
2 3,14 24,66 0,53 31,59 241,93 210,34
3 7,07 55,49 0,76 71,08 544,34 473,26
4 12,57 98,65 1,01 126,36 967,72 841,36
5 19,63 154,13 1,25 197,43 1512,06 1314,62
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The mooring line characteristics for the selection of clump weights are shown in figure 8-2. 
 

 
Figure 8-2: Mooring line characteristics for various clump weight sizes 

 
It is seen that for all the applications, the tension-extension curves initially have small gradients at low 
and moderate horizontal top tension levels. The restoring forces are obtained from the catenary 
(geometric) stiffness contribution as the line curvature changes when bottom chain is lifted off due to 
increasing fairlead displacements. For higher tension levels, the lines will respond increasingly by 
stretching, i.e. the elastic stiffness contribution is governing the restoring forces. The tension-extension 
curve will eventually approach a straight line and the mooring lines will fail structurally when the 
breaking strength is exceeded. The dynamic tension may become very large in the elastic region as a 
small change in displacement causes large changes in tension. The transition to the elastic region 
occurs at much lower tension levels for the small clump weights than for the larger ones. For the large 
clump weights, the weights will be resting on the sea bottom for low horizontal top tension levels. A 
large pretension is thus required to prevent leeward weights from touchdown, which in turn can give 
rise to large impact forces.  
 
Ultimately, the choice of clump weight size becomes a trade-off between increased pretension and 
reduced dynamic tension for the large weights; and reduced pretension and increased dynamic tension 
for the smaller weights. The latter will be preferable in most operational conditions, but will fail to 
limit the peak tension in severe weather conditions.  
 
A clump weight with diameter 3,5 m and mass 75,5 t is selected. By choosing this relatively large 
clump weight size, we ensure that the non-linear restoring forces from the catenary stiffness are acting 
over a large top tension range; hence limiting the maximum tension. Though even larger clump 
weights would give slightly more favourable line characteristics in the high tension range, a large 
pretension would be required to prevent clump weight touchdown on the leeward side, resulting in 
larger mean tension in the lines. In addition, very large clump weights would increase the cost and 
complicate the installation. 
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8.3 Clump weight position 
By varying the distance between the clump weight and the fairlead, and keeping all other parameters 
constant, the effect of the clump weight position can be investigated. The distance between the fairlead 
and the clump weight is increased in steps of 5 m. Mooring line characteristics for 6 different clump 
weight positions are shown in figure 8-3. 

 
Figure 8-3: Mooring line characteristics for various clump weight positions 

 
We see that after the clump weights are lifted from the sea bottom, the horizontal top tension levels are 
almost identical for all applications. This is due to the fact that only the clump weight position is 
varied, i.e. the submerged weight of the mooring lines which governs the top tension is constant. 
 
The vertical distance between the fairlead and the sea bottom is only 54 m, and in addition, delta-lines 
are used. Attaching clump weights to the delta-lines is not desirable as this will add further complexity 
to the system, especially with respect to installation. It may also influence the delta-lines’ effect on the 
yaw restoring coefficient. Depending on the size of the clump weight and the pretension in the lines, 
we are therefore left with a narrow range of positions for where the clump weight may be attached to 
the main mooring line. As the position is not affecting the tension in the lines much, a clump weight 
position close to the delta-lines is preferred. This will reduce the possibility of clump weight 
touchdown on leeward side during severe weather conditions. 
 
A distance of 56 m along the cable from the fairlead to the clump weight is selected. This is 
sufficiently close to the delta-lines so that problems with clump weight touchdown on the leeward 
lines are avoided. It will also allow us to use a short wire segment between the delta-lines and the 
clump weight, introducing some additional elasticity to the upper part of the mooring lines. 
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8.4 Pretension 
The pretension of a mooring system is important for limiting the horizontal offset. For the considered 
mooring system, the pretension is tuned by analysing the line tension and horizontal offset for various 
pretension levels. The surge response and axial forces in the most heavily loaded line (Anch.line 1) 
and one of the leeward lines (Anch.line 2) are presented in table 8-2.  
 

 
Table 8-2: Dynamic response as function of pretension 
 
 
We see from the results that low pretension is favourable with respect to limiting the mean and 
maximum tension in the lines. However, the lines on the leeward side may become slack which can 
give rise to snap loads and impact forces from clump weight touchdown. For large pretension values, 
the mean- and maximum tension in the lines are increased, and the standard variation of axial force in 
the most heavily loaded line increases due to stretching. 
 
For conventional offshore production units, the risers are limiting the permissible horizontal offsets. 
This does not apply to the considered application, but it is important to limit offsets of concern to the 
power cable and adjacent structures. 
 
A pretension level of 700 kN is selected. This will give a reasonable compromise between line tension 
and floater excursions. It is important to note that the pretension is not given explicitly as input to 
Riflex. The input is given as prescribed displacements of the anchors, which in turn will govern the 
pretension. The relationship between the two is found quasi-statically. Since the quasi-static analysis is 
not accounting properly for the effect of the delta-lines, the pretensions given in table 8-2 will slightly 
overestimate the actual horizontal top tension as it appears from the time domain analysis. 
 

 

 

 

 

 

Response
Pretension Mean Std Min Max Mean Std Min Max Mean Std Min Max

300 kN 17,60 4,91 2,64 37,85 1027,23 65,62 883,87 1643,65 455,56 267,35 -261,39 1106,34
500 kN 13,13 5,23 -2,34 32,10 1225,02 114,23 934,65 2211,16 763,40 73,77 -117,22 1021,04
600 kN 11,04 5,26 -4,64 29,74 1312,71 149,60 870,49 2608,74 834,77 23,89 405,22 933,73
700 kN 9,34 5,27 -6,65 27,75 1400,95 186,08 821,16 2965,65 902,31 24,09 791,24 1034,93
900 kN 6,83 5,32 -9,83 24,91 1588,42 276,89 749,02 3713,12 1052,32 38,15 893,62 1280,41
1100 kN 5,24 5,38 -11,99 23,23 1776,36 383,90 641,61 4479,17 1209,98 59,92 993,40 1585,92

Surge - Waterline [m] Axial force - Anch.line 1 [kN] Axial force - Anch.line 2 [kN]
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8.4 Total line length 
By increasing the horizontal distance between the anchor and the fairlead, the total length of the 
mooring system is increased. All other parameters are kept constant while the lower wire segment 
length is varied. The effect on the mooring line characteristics is presented in figure 8-4.  

 
Figure 8-4: Mooring line characteristics for various line lengths 

 
 
As expected, the length of the line has no effect on the line characteristics for low tension levels. Part 
of the line is resting on the sea bottom for all considered applications, providing the same restoring 
forces. As the top tension increases however, we see that the transition to elastic stiffness dominance 
appear earlier for the shorter lines. This is simply because they have less bottom line length; which 
thus will be exhausted at smaller excursion levels than for the longer lines. 
 
Ideally, one would want as short lines as possible. This is favourable because it will reduce the cost of 
the mooring system. If we also assume that the floating wind turbine is one of multiple turbines in a 
wind farm, reducing the mooring line length will increase the income as more wind turbines can be 
installed in the same area. 
 
However, the most important from a design perspective is that we limit the peak tension and ensure no 
vertical forces on the anchor. The mooring line length must therefore be determined by analysing in 
the time domain. The three shortest line lengths from figure 8-4 are analysed, and it is checked for 
vertical forces on the anchor of Anchorline 1 during the time of maximum surge offset of the floater.  
 
 
 
 
 
 
 



              
 

43 
 

The results are presented in table 8-3.  
 

 
Table 8-3: Check of vertical forces on anchor 
 
For the shortest line length, maximum vertical forces in the order of 102 kN are observed on the 
anchor. For the line of length 513 m, the line 10 m from the anchor was lifted only a few centimetres 
above the sea bottom during the instant of maximum line tension; hence the vertical force on the 
anchor will be very small compared to the weight of the anchor. For the longest line length, no line 
lift-up close to the anchor was observed. Based on the results, mooring lines with a total length of 513 
m are selected.    
 

8.5 Chain and wire dimension 
Changing the weight of the suspended chain and wire segments to manipulate the mooring line 
characteristics is unnecessary as the weight of the suspended catenary effectively can be controlled by 
the clump weight size. Our only concern when choosing chain and wire dimensions will therefore be 
to provide sufficient breaking strength to resist the maximum tension with adequate safety margins.  
 
The effect of the bottom chain weight has been investigated quasi-statically. The results showed that 
for the mooring system considered, the mooring line characteristics are not very sensitive to this 
parameter. However, due to the fact that analysis showed a very small vertical force on the anchor for 
the selected line length, bottom chain slightly heavier than the chain used in the suspended line is 
selected. The length of the bottom chain is 150 m. As tensions in the delta-lines are approximately half 
the tensions in the upper part of the main mooring line, the delta-line chains are somewhat reduced in 
dimension compared to the chain segments in the main mooring line. 
 
The chain and wire diameter is selected to fulfil the design criteria, based on the maximum tension 
values in table 8-2. Data is taken from Vryhof anchors (2010) and presented in table 8-4. For details on 
how the design mooring system components are modelled in Riflex, see Appendix C. 
 
 

 
Table 8-4: Chain and wire properties 
   
Studless chain is applied as recommended for permanent moorings. This type of chain is attractive 
with respect to the fatigue life and weight per unit strength ratio. For the wire segments, six strand wire 
rope is applied. This gives high elasticity and flexibility, and relatively low axial stiffness. The 
drawback is that it is only recommended for up to 10 years design life. 

Mooring line length [m] Vertical force on anchor
385,4 YES
513 NEGLIGIBLE

768,6 NO

Chain - Connectors Chain - Delta lines Chain - Bottom Wire
Class/Type R4-RQ4 studless R4-RQ4 studless R4-RQ4 studless Six strand wire rope
Diameter [mm] 87 73 105 96
Proof load [kN] 5355 3884 7497 -
Break load [kN] 7682 5572 10754 6965
Weight [kg/m] 151 107 221 40,5
Axial stiffness [MN] - - - 483,8

Component type
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8.6 Vertical fairlead position 
Ideally, the vertical fairlead position should be located at a point where there is no coupling between 
surge and pitch, i.e. at the vertical position of the centre of rotation. By doing so, the wind and wave 
induced dynamic loading in the mooring lines will be minimized. According to Nielsen (2009), this 
position will for a deep-draft floating wind turbine structure oscillating at its pitch natural period be 
located somewhere between the COB and COG, closer to the COG. However, since the vertical 
distribution of wave forces is frequency dependent, so is the vertical position of the centre of rotation. 
 
This frequency dependency can be shown mathematically. By utilizing the description of the motion 
of any point on the floating body, as shown by Faltinsen (1990), we get: 
 

 1 5 6 2 4 6

3 4 5

( ) ( )

( )

z y z x

y x

η η η η η η

η η η

= + − + − +

+ + −

s i j
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 (8.1) 

 
where 1 6η − are the translational and angular rigid body motions. Furthermore, by choosing a point 'z
close to the COG of the body, Nielsen (2009) demonstrated that the horizontal motion of this point is 
described by: 
  
 1 1 5( ') 'z zη η η= +  (8.2) 
 
The vertical position of the centre of rotation will then be the point where the horizontal motion of 'z is 
zero, hence: 
 

 1

5

'rotz
η

η
= −  (8.3) 

 
By assuming zero damping, and surge and pitch excitation forces in phase, the motions in surge and 
pitch may be approximated as: 
 

 

1
1 2

11 11

5
5 2

55 55 55

( )

( )

F

m A C

F

I A C

η
ω

η
ω

− + +

− + +





 (8.4) 

 
If 'Fz is the resultant position of the horizontal wave forces, the pitch moment may be approximated as 

5 1 'FF F z . Furthermore 11 0C  and 2 2
55 55 11( ) ( )I A m A r Mr+ + =

, where r is the radius of inertia in 
pitch. 
 
The vertical position of the centre of rotation is then obtained as: 
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When excited by waves of high frequency, the vertical centre of rotation will be located close to the 
bottom of the cylinder; while it moves towards plus infinity as the excitation frequency goes to zero. 
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It is obvious that we cannot choose a single point that will have no coupling between surge and pitch 
for the whole WF range. A fairlead connection point far up on the cylinder will be favourable in 
survival conditions, while moving the point down towards the bottom of the cylinder is favourable for 
most operational conditions. It is also important to consider that lowering the fairlead position will 
increase the overturning moment on the support structure from the wind thrust, and hence increase the 
static pitch angle. 
 
With respect to the design of the mooring system, the most important consideration is however to 
choose a fairlead position that will give sufficiently suspended line length to achieve the desired 
mooring line characteristics. With the COG located 28 m from the bottom of the cylinder, i.e. only 48 
m from the sea bottom, it is obvious that the fairlead has to be located above the COG. Especially 
since the length of the delta-lines further limits the length of suspended main mooring line to play 
with. The vertical fairlead position has not been subjected to a parameter study like other key 
parameters of the mooring line. It is chosen based on the issues discussed here and is subsequently 
verified by the means of time domain analysis. The mooring lines are attached to the fairlead 46,4 m 
below the mean water line as indicated in figure 8-5. 
 
 

 
Figure 8-5: Vertical fairlead position 
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8.7 Delta-line length 
The delta-lines will contribute to increased yaw stiffness because they are attached to the fairlead with 
an angle to the centre line of the structure. Nielsen (2009) demonstrated that the yaw restoring 
coefficient can be written as: 
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∑  (8.6) 

 
whereT is the top tension, R is the distance from the centre of the structure to the ”effective” mooring 
line connection point, ϕ is the top angle between the mooring line and the horizontal plane, and HL is 
the horizontal distance from the “effective” mooring line connection point to the anchor. n is the 
number of mooring lines. When delta-lines are applied, the “effective” mooring line connection point 
is the point where the two delta-lines meet the main mooring line (see figure 8-6). 
 
Furthermore, the delta-lines will act as a rigid connection as long as they are in tension, which is 
governed by the yaw angle. Nielsen (2009) showed that the delta-lines are in tension as long as the 
yaw angle is less than given by: 
 

 
6 tanH

H

L

L R
η β<

+
 (8.7) 

 
Here 6η is the yaw angle in radians and β is the angle between the delta-lines and the centre line of the 
structure, as indicated in figure 8-6. 
 

 
Figure 8-6: Mooring system layout 
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By assuming that the total mooring line length is constant, it is seen that by using long delta-lines, the 
maximum yaw angle before the delta-lines go slack is reduced, and the yaw restoring coefficient is 
increased. Shorter delta-lines will allow for larger yaw angles before the delta-lines go slack, but the 
restoring coefficient is reduced and the yaw natural period will increase. From equation (8.6) we see 
that the yaw restoring coefficient, and consequently the natural period can however be effectively 
controlled by the pretension. 
 
The main consideration when selecting the delta-line length will be the water depth. As discussed 
earlier, the clump weight should preferable not be attached to the delta-lines. Hence, the delta-lines 
must be relatively short in order to achieve adequate length of main mooring line to play with. A 
length of 40 m is selected for the delta-lines, which means that the yaw angle must be below 6° in 
order to maintain tension in the delta-lines. 
 
With all the other parameters defined as given in the previous sections, we get the top tension 

807T kN (total top tension from stamod), the angle 43°ϕ  , 42,15R m=  and 457,3HL m= . By 
using the data from figure 5-2 we get 2

6 6, 28 07I E kgm= . Hence the yaw restoring coefficient will be
81,5 /MNm rad and a natural period in yaw of approximately 5,5 s is obtained. The low natural period 
will contribute to minimize rotations induced by asymmetric forces on the rotor. 
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8.8 Design mooring system 
In this section, some key features of the design mooring system are presented. 
 
The static equilibrium configuration is shown in figure 8-7.  

 
Figure 8-7: Static equilibrium configuration 

Top: x-z-plane, Bottom: x-y-plane 
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The results obtained from 1-hour time domain analysis in operational- and storm conditions (from 
Chapter 7) are presented in table 8-5. Note that the standard deviation of surge motion is significantly 
smaller at the fairleads than in the waterline and at the rotor. 
 

 
Table 8-5: Response from time domain analysis 
 
 
The natural periods of the whole system and for one single line are presented in table 8-6 and 8-7 
respectively. 
 

 
Table 8-6: System natural periods 
 

Mean Std Min Max Mean Std Min Max
7,37 0,69 3,88 9,46 9,34 5,27 -6,65 27,75

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01

-0,60 0,10 -0,93 -0,31 -1,01 1,09 -5,63 2,43

3,29 0,67 0,95 5,67 1,77 3,78 -9,61 14,86

11,12 1,39 5,45 15,40 11,34 9,51 -17,57 44,11

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

63,28 0,13 62,77 63,66 62,82 1,19 57,63 66,27

4,73 0,39 2,79 5,64 7,91 2,37 0,90 16,16

0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,01

-46,92 0,08 -47,18 -46,68 -47,29 1,06 -51,88 -43,79

-83,49 0,44 -85,66 -82,39 -79,81 3,88 -90,91 -62,92

-90,42 0,18 -90,92 -89,57 -91,89 1,36 -97,87 -88,18

-90,42 0,18 -90,92 -89,57 -91,89 1,36 -97,87 -88,18

1177,97 18,75 1090,65 1231,36 1400,95 186,08 821,16 2965,65

939,82 4,82 926,62 966,23 902,31 24,09 791,24 1034,88

939,82 4,82 926,62 966,23 902,31 24,09 791,24 1034,93

616,73 9,18 574,19 643,02 721,21 94,17 405,83 1501,65

616,73 9,18 574,19 643,02 721,20 94,16 405,63 1501,65

625,13 30,16 525,94 728,00 578,18 195,33 28,56 927,62

377,52 30,14 281,73 476,77 389,33 203,57 -11,39 1002,68

377,52 30,14 281,73 476,77 389,32 203,57 -11,41 1002,72

625,13 30,16 525,94 728,00 578,18 195,33 28,56 927,81

Heave - Tower bottom [m] -80,47 0,08 -80,71 -80,24 -80,80 1,06 -85,46 -77,18

0,00 0,25 -0,94 0,85 0,00 3,74 -12,47 11,89

10,97 1,19 6,24 14,46 40,45 3,11 27,63 50,98

Vertical force on anchor NO

Axial force - Anch.line 1 [kN]
Axial force - Anch.line 2 [kN]
Axial force - Anch.line 3 [kN]

Axial force - DL2 [kN]

Total surface elevation [m]
Wind speed [m/s]

Pitch - Waterline [deg]

Z-pos - Clump weight 2 [m]

Sway - Rotor [m]

Surge - Waterline [m]
Sway - Waterline [m]
Heave - Waterline [m]

Z-pos - Clump weight 1 [m]

Surge - Rotor [m]

Heave - Fairlead [m]

Heave - Rotor [m]
Surge - Fairlead [m]
Sway - Fairlead [m]

Operational condition Storm condition

NO

Axial force - DL3 [kN]
Axial force - DL4 [kN]
Axial force - DL5 [kN]
Axial force - DL6 [kN]

Z-pos - Clump weight 3 [m]

Axial force - DL1 [kN]

Response

Natural period
[s]

Surge 84,6
Heave 27,7
Pitch 23,9

Degree of 
freedom
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It is seen that all the natural periods are above the WF range. Furthermore, Mathieu effects due to 
coincident heave and pitch natural periods are avoided; while the critical wave period , 13wave crT s= may 
excite pitch resonance. 
 
 

 
Table 8-7: Single line natural periods 
 
From table 8-7 it is seen that only the 1st natural period is in the wave period range, while the other 
modes have lower natural periods. It is therefore checked for resonance in the mooring lines by 
exposing the system for waves with peak periods close to the 1st natural period. The results are shown 
in table 8-8. No significant increase of the axial force and motions in the mooring lines are observed, 
i.e. no mooring line resonance. This is probably due to the large drag damping in the mooring lines; in 
addition to the fact that for the considered wave periods, almost all wave kinematics are eliminated at 
the depth of the mooring lines.     
 

 
Table 8-8: Mooring line resonance test 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pretension Circular frequency Natural period
[kN] [rad/s] [s]

1 0,62 0,79 7,96
2 6,76 2,60 2,42
3 20,88 4,57 1,38
4 28,21 5,31 1,18
5 28,65 5,35 1,17

Mode Eigenvalue

700

Significant wave height Peak period

Hs [m] Tp [m] Mean Std Min Max Mean Std Min Max
4 7,66 1451,33 35,26 1305,12 1580,54 -30,56 0,05 -30,83 -30,33
4 7,96 1450,62 34,55 1307,06 1576,41 -30,56 0,05 -30,83 -30,37
4 8,26 1450,04 33,90 1300,81 1575,57 -30,56 0,05 -30,83 -30,38

Response
Axial force anchorline 1 X-pos - anchorline top
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9. Design check 

9.1 General 
Since floating offshore wind turbines is a relatively new concept that has yet to be fully 
commercialized, there is currently no unique standard governing the design of such structures. Until a 
standard that fully covers these structures is established, DNV proposed to use the standard DNV-OS-
J101 “Design of Offshore Wind Turbine Structures” together with DNV Guideline for Offshore 
Floating Wind Turbine Structures. The former provides principles, technical requirements and 
guidance for design, construction and in-service inspection of offshore wind turbine structures. The 
latter discusses issues related to design principles, site conditions, loads, stability and stationkeeping of 
floating wind turbine structures. 
 
The guideline states that: “Until loads and response of catenary moored floating wind turbine 
structures are more thoroughly understood, the permanent mooring line tension as well as the dynamic 
mooring line tension shall be taken according to DNV-OS-E301 “Position Mooring”, which applies to 
the design of the mooring line as well as to the design of the anchor that transfers the loads to the 
supporting seabed soils.” DNV-OS-E301 “Position Mooring” is henceforth referred to as OS-E301. It 
provides environmental conditions and methods for mooring system analysis, in addition to 
requirements regarding mooring equipment. 
 
When it comes to mooring line components, requirements concerning materials, manufacture, testing, 
dimensions and tolerances are given for mooring chain and steel wire ropes in DNV-OS-E302 
“Offshore Mooring Chain” and DNV-OS-E304 “Offshore Mooring Steel Wire Ropes” respectively. 
 
Figure 9-1 illustrates the relationships discussed here, and how the standards are referring to each 
other. 
 

 
Figure 9-1: Overview of standards  
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9.2 Limit states 
The Framework Regulations enforced by the Norwegian Petroleum Safety Authority, refers to 
NORSOK Standards when it comes to design of offshore structures. The NORSOK standards will in 
turn refer to the rules of classification societies, as represented with DNV in the previous section. 
According to Haver (2007), the structural design of offshore structures is based on the limit states 
design method; where a limit state is referred to as a state where the structure or a part of the structure 
no longer fulfils the requirements ensuring that the structure performs according to the design 
specification. 
 
The four limit states are recognized as: 

• Ultimate limit state 
• Accidental limit state 
• Fatigue limit state 
• Serviceability limit state 

 

9.2.1 Ultimate limit state (ULS) 
The ultimate limit state (ULS) corresponds to the resistance to maximum applied loads. The control 
shall demonstrate that all foreseen loads can be resisted with an adequate margin. 
 
Typically, according to ISO 19900, the ULS for offshore structures include: 

• Loss of static equilibrium of the structure (e.g. overturning or capsizing) 
• Failure caused by exceeding the ultimate strength 
• Transformation of the structure into a mechanism 
• Loss of structural stability 
• Sinking 
• Loss of stationkeeping 

 
With respect to the ULS, control against loss of stationkeeping, as given in OS-E301, is emphasized in 
this study. It is stated that the ULS is introduced to ensure that the individual mooring lines have 
adequate strength to withstand the load effects imposed by extreme environmental conditions. 

9.2.2 Accidental limit state (ALS) 
The accidental limit state (ALS) corresponds to accidental situations or abnormal events. The control 
ensures that a given accidental scenario does not lead to a complete loss of the integrity of the 
structure. Also some very rare accidental loads are to be checked under the ALS. 
 
As for the ULS, the ALS requirements for the stationkeeping system, as given in OS-E301, are 
emphasized in this study. The limit state is introduced to ensure that the mooring system has adequate 
capacity to withstand the failure of one mooring line. For cases where the mooring lines are equipped 
with clump weights, the loss of a clump weight due to failure of the connection to the mooring line is 
included as a single failure event. 
 

9.2.3 Fatigue limit state (FLS) 
The fatigue limit state (FLS) refers to the cumulative damage due to repeated loads. The control 
ensures that the structure is designed with proper margins against fatigue failure. The FLS control is 
not considered in this study. 
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9.2.4 Serviceability limit state (SLS) 
The serviceability limit state (SLS) addresses the effect on comfort and non-structural components 
from the motions and structural responses. The control is carried out to ensure that the structure fulfils 
the functional requirements adequately. The SLS control is not considered in this study. 
 

9.3 Environmental conditions  
For details on environmental conditions, DNV standards generally refer to DNV-RP-C205 
“Environmental Conditions and Environmental Loads”. However, for simplicity, the environmental 
conditions applied here are taken directly from OS-E301. Northern North Sea – Troll field is selected 
as design location. This location has a water depth of slightly above 300 m, while the water depth in 
this study is set to 100 m. The current profile is therefore adjusted, while the wave and wind conditions 
are taken as given in OS-E301. In the following, details about the waves, wind and current are given, 
in addition to the drag force coefficients. 
 

9.3.1 Waves 
Sea states with return periods of 100 years shall normally be used. Combinations of significant wave 
height and peak period along the 100-year contour, defined by the inverse FORM technique, shall be 
applied. In cases with limited environmental data, typical sea states for specific areas can be applied 
for preliminary design. This is utilized in the present study. The peak period is then determined from 
the range of peak periods given by the means of a sensitivity analysis. 
 
The 100-year sea state for the Troll field is given in table 9-1. 
 

 
Table 9-1: Troll field sea state 
 
Based on the maximum axial force response in the anchor lines for the peak period range considered, a 
design peak period of 16,5 s was selected. A JONSWAP wave spectrum is used for modelling the sea 
state. The waves are given with an average propagation direction including a cosine spreading 
function. 
 

9.3.2 Wind 
According to OS-E301, a mean wind speed 10 m above sea level, with a return period of 100 years 
based on the marginal distribution of wind speeds at the specific location, should normally be used. 
The wind load is treated as a steady component in combination with a time varying gust component. 
The time varying wind is here described by a Kaimal wind spectrum. 
 
In the standard, a 1-hour mean wind speed 10 m above the sea level, with a return period of 100 years 
is given. This is taken as the 3-hour mean wind speed at hub height in the analysis. The turbulence 
intensity is set to 0,1. 
 
The 100-year mean wind speed for the Troll field is given in table 9-2. 
  

 
Table 9-2: Troll field wind speed 

Hs [m] Tp [s]
Northern North Sea - Troll field 15,0 15,5 - 17,5

U [m/s]
Northern North Sea - Troll field 40,5
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9.3.3 Current 
OS-E301 states that a surface current speed with a 10-year return period should normally be used, 
based on the marginal distribution of current speeds at the location. Based on measurements from the 
Troll field, Mathiesen et al. (2008) proposed a current profile. Since the water depth at the Troll field 
far exceeds the water depth used in this study, only the part of the profile down to a water depth of 100 
m is used. 
 
The 10-year current profile applied is given in table 9-3. 
 

 
Table 9-3: Modified Troll field current profile 
 

9.3.4 Directions 
All the environmental loads are assumed to be acting in the same direction. All directions from 0° to 
360°, with a spacing of 30°, are investigated. 0° is along the positive x-axis, while the other directions 
are defined clockwise accordingly as shown in figure 9-2. 
 

 
Figure 9-2: Definition of directions 

 

U [m/s] Level [m]
1,59 0
1,14 -20
1,06 -40
0,72 -60
0,72 -80
0,72 -100

Northern North Sea - Troll field
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9.3.5 Drag force coefficients 
The drag force coefficients for the mooring line components are taken according to OS-E301 and 
presented in table 9-4. 
 

 
Table 9-4: Drag force coefficients 
 
Marine growth and special sea bed soil conditions are not considered in this study. 

9.4 Mooring system analysis 
According to OS-E301, mooring system analysis can be performed by applying a frequency domain or 
a time domain method. The latter is utilized in this study, due to the possibility of including drag 
forces and non-linear mooring systems. 
 

9.4.1 Time domain analysis 
In general, the required simulation length is governed by the number of maxima per unit time of the 
combined WF/LF process. The duration of an environmental state is usually taken as 3 hours, which is 
the simulation length used here. 
 
From one 3-hour time series, a global maximum, which forms the basis for the extreme value 
statistics, is referred to as the maximum response between two successive mean-up-crossings. The 
global maxima are assumed to be independent stochastic variables. 
 
The required extreme value for the line tension is taken as the Most Probable Maximum (MPM) value 
of the extreme value distribution. This distribution is found by simulating, say 20, realizations of 
duration 3 hours. The largest global maxima from each realization form the extreme sample, which 
then is fitted to an extreme value distribution. For a large extreme sample, the distribution will 
approach a Gumbel distribution; and the MPM value will correspond to the 37% percentile, i.e. 63% 
probability of exceedance. An alternative approach could be to use the expected value from the 
extreme sample. This would be conservative as it corresponds to the 57% percentile value of the 
Gumbel distribution. 
 

Component type Transverse Longitudinal
Studless chain 2,4 1,15
Stranded rope 1,8 -

Drag coefficients, Cd
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9.4.2 Characteristic line tension 
In the standard, two components of the characteristic line tension are considered: 
 

• TC-mean – The characteristic mean line tension, due to pretension and mean environmental 
loads. 

• TC-dyn – The characteristic dynamic line tension, induced by LF and WF motions. 
 
When analysing in the time domain, the former is taken as the mean of the time series. The latter is 
taken as the difference between the MPM value of the extreme value distribution and the characteristic 
mean line tension. The characteristic line tensions are thus found as: 
 
TC-mean = mean tension of the time series 
TC-dyn = TMPM - TC-mean  

 

9.4.3 Characteristic capacity 
For cases where statistics for the breaking strength of mooring line components are not available, the 
characteristic strength may be taken according to 
 
 0,95C mbsS S=  (9.1) 
 
where mbsS is the minimum breaking strength for new components as given in table 8-4. 
 

9.4.4 Design equation and partial safety factors 
In OS-E301, the mooring system is categorized according to the consequences of mooring system 
failure. The two categories are: 
 
Class 1 -  Mooring system failure is unlikely to lead to unacceptable consequences such as loss of 

life, collision with adjacent platform, capsize or sinking. 
Class 2 - Mooring system failure may well lead to unacceptable consequences of these types.  
 
Furthermore, the design equation is introduced as: 
 
 0C C mean mean C dyn dynS T Tγ γ− −− − ≥  (9.2) 
 
where the characteristic quantities are defined in the previous sections, and the partial safety factors 
are given in table 9-5.   
 

 
Table 9-5: Partial safety factors 
 

Partial safety factor Partial safety factor Partial safety factor Partial safety factor
on mean tension on dynamic tension on mean tension on dynamic tension

Consequence class γmean γdyn γmean γdyn

1 1,10 1,50 1,00 1,10
2 1,40 2,10 1,00 1,25

ULS ALS
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It is seen that the safety factors for ALS are relatively small. Conservatism is however ensured by the 
very small probability of coincident line failure and characteristic loads with return period of 100 
years. 
 

9.4.5 Horizontal offset and permissible line length 
The standard states that the horizontal offset of a given reference point shall be within the operational 
service limitation both for intact mooring system and in the case of a single line failure. For riser 
applications, the riser manufacture specification will govern the maximum permissible horizontal 
offset. Floating wind turbine applications are not specifically addressed in the standards; it is however 
obvious that the horizontal offset will be limited by the power cable configuration and the distance to 
adjacent structures.  
 
When it comes to permissible line lengths, the following applies to design where anchors that cannot 
take uplift forces are used: 

- The mooring lines shall have enough length to avoid uplift at anchors for all relevant design 
conditions in the ULS. 

- Vertical forces on the anchors can be accepted in the ALS, if it is documented that these forces 
will not significantly reduce the characteristic resistance of the anchors. 

Furthermore, it is stated that the maximum permissible line length is limited to the suspended length at 
a line tension equal to the breaking strength of the line plus 500 m. 
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9.5 Results – ULS 
For the ULS, analyses of duration 3 hours are carried out with the mooring system in intact condition. 
The environmental conditions described in Chapter 9.3 are applied. Analyses are performed with 
environmental loads from 0° to 360° with an angular increment of 30° according to figure 9-2, i.e. a 
total of 12 analyses. The main results are presented in table 9-6, while complete results are found on 
the attached DVD. 
 

 
Table 9-6: Results ULS analysis 
 
We see that as expected, the maximum tension will be largest in the cases where the environmental 
loads are acting directly towards one of the anchorlines, i.e. for directions 0°, 120° and 240°. This is 
because almost all the forces are taken up by only one anchorline in these cases. For all directions, 
very small differences are observed between the most heavily loaded chain segment and the most 
heavily loaded wire segment. 
 
The anchorline number refers to the most heavily loaded anchorline in each case. See figure 5-1 for 
definition of anchorline numbering. 
 
The horizontal plane excursion refers to the maximum horizontal offset during each of the 3 hours 
simulations. The maximum offsets vary between 28 m and 39 m. We see that the largest offsets occur 
in cases where the environmental loads are acting in between adjacent lines. The maximum tension in 
these cases are however limited because the forces are distributed almost evenly between two lines 
instead of only one. Since the power cable configuration nor the possibility of adjacent wind turbines 
is investigated in this study, the ULS requirements regarding permissible horizontal offset are assumed 
fulfilled. 
 
Maximum lift-off refers to the maximum lift-off of a point located 10 m from the anchor of the most 
heavily loaded anchorline during each 3 hour simulation. This value will thus strongly indicate 
whether we are experiencing vertical forces on the anchors or not. Lift-off is only observed for cases 

Max Anch. 
 

Horizontal plane

Lift-off line excursion

Mean Max Mean Max [m] nu. [m]

0 1399,35 3547,12 1397,56 3546,26 0,01 1 30,74

30 1370,86 2682,69 1368,93 2681,46 0,02 1 31,97

60 1296,66 1934,28 1294,43 1932,64 0,00 1 38,91

90 1299,14 2391,42 1297,10 2390,09 0,00 2 30,14

120 1340,95 2912,33 1339,08 2911,36 0,01 2 29,25

150 1300,81 2169,52 1298,79 2167,71 0,00 2 28,26

180 1188,83 1657,21 1186,44 1655,57 0,00 2 38,49

210 1294,93 2165,74 1292,90 2163,87 0,00 3 28,68

240 1336,88 3234,03 1335,00 3233,07 0,02 3 29,17

270 1296,52 2531,76 1294,48 2530,43 0,00 3 30,65

300 1294,50 1682,10 1292,27 1680,23 0,00 1 35,39

330 1367,88 2964,16 1365,95 2963,26 0,01 1 32,56

Direction

Axial forces [kN]
Chain segment Wire segment
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where the environmental loads are acting close to or directly towards an anchorline. However, when 
accounting for the weight of the anchor, a lift-off of 2 cm of a point 10 m from the anchor will give 
negligible vertical forces on the anchor.  
 
Ideally, 20 simulations of duration 3 hours should be performed for each direction in order to establish 
an extreme value distribution for the line tension. This would however demand an unrealistic amount 
of computational effort. The extreme value distribution is therefore conservatively fitted to 20 3-hour 
simulations for the case with largest maximum line tension, i.e. environmental loads with a direction 
of 0°. By using different seed number for each simulation and fitting the extreme line tension sample 
to a Gumbel distribution, the extreme value distribution is obtained as shown in figure 9-3. The 
Gumbel parameters are obtained according to Leira (2010). Complete results from all the 20 
simulations are found on the attached DVD.  
 

 
Figure 9-3: Distribution of maximum line tension ULS 

 
The distribution of global maxima from a single 3-hour simulation is fitted to a Weibull distribution 
and plotted in dotted lines. Both distributions shown are for the most heavily loaded chain segment. 
The MPM- and expected value for the maximum line tension is indicated in dotted red lines, and 
correspond to the 37% percentile and 57% percentile value of the Gumbel distribution respectively. 
The results are presented in table 9-7 for both the most heavily loaded chain- and wire segment. 
 

 
Table 9-7: MPM and expected value for maximum line tension ULS 
  

Chain Wire
MPM value [kN] 3534,90 3534,04

Expected value [kN] 3362,37 3361,43
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By applying the MPM value when calculating the characteristic dynamic line tension, the design 
equation (eq. 9-2) is presented for all considered directions in table 9-8.  
 

 
Table 9-8: Design equation results ULS 
 
We see that for both consequence classes 1 and 2, all values are positive, and the design equation is 
hence fulfilled for all directions. It is safe to assume that unless the structure is placed in a wind farm 
very close to adjacent structures, a floating wind turbine will be classified as a class 1 type of structure. 
Regardless, the criteria given in the ULS control will be fulfilled.  
  
 
 
 

Consequence
class Chain Wire

1 2814,09 2133,62

2 1216,47 536,03

1 2802,69 2122,17

2 1196,53 515,99

1 2773,01 2092,37

2 1144,59 463,84

1 2774,01 2093,44

2 1146,33 465,71

1 2790,73 2110,23

2 1175,60 495,10

1 2774,68 2094,11

2 1147,50 466,89

1 2729,88 2049,18

2 1069,11 388,25

1 2772,32 2091,76

2 1143,38 462,77

1 2789,10 2108,60

2 1172,75 492,24

1 2772,96 2092,39

2 1144,49 463,88

1 2772,15 2091,51

2 1143,08 462,33

1 2801,50 2120,98

2 1194,45 513,90

270

300

120

150

Design equation

180

210

240

Direction

330

0

30

60

90
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9.6 Results – ALS 
For the ALS, analyses of duration 3 hours are carried out with the mooring system in damaged 
condition. Two damaged conditions are examined. The first is investigating the case of loss of one 
anchorline, while the second case investigates the loss of a clump weight. The environmental 
conditions described in Chapter 9.3 are applied. Analyses are performed with environmental loads 
from 0° to 360° with an angular increment of 30° according to figure 9-2, i.e. a total of 12 analyses for 
each of the two ALS cases. The main results are presented here, while complete results are found on 
the attached DVD. 
 

9.6.1 Loss of one line 
For the purpose of analysing the effect of loss of an anchorline, a new Riflex analysis model is made 
with anchorline 1 missing. The new finite element model is presented in figure 9-4. 
 
 

 
Figure 9-4: Finite element model, ALS – Loss of line 
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The results from the 12 analyses are presented in table 9-9. 
 

 
Table 9-9: Results ALS analysis – Loss of line 
 
We see that as one anchorline is removed, the horizontal plane excursions are significantly increased. 
This is especially prominent for the directions where the environmental loads are acting towards the 
removed anchorline, i.e. for directions 0°-90° and 270°-330°. The same directions are also associated 
with very large mean and maximum yaw angles. Because there is no anchorline present to resist the 
motions, the floater will drift off and rotate around its z-axis (yaw) until the two originally leeward 
anchorlines are tightened and equilibrium is regained. In practice, this new equilibrium position would 
cause very large tension levels in the delta-lines as the two delta-lines on the leeward side of the new 
equilibrium position will be pinched around the floater circumference. This does not appear from the 
analyses however, as the delta-lines go directly through the body of the floater in a non-physical 
manner. It is therefore fair to assume, though it is not supported by the analyses, that when 
environmental loads with a return period of 100 years are applied on the structure from the discussed 
directions, we run an impending risk of losing additional anchorlines. Hence, the mooring system 
lacks redundancy for these directions. It is also obvious that with horizontal offsets up to 500 m, there 
is a large risk of running into adjacent structures if we assume that the floating wind turbine is located 
in a wind farm. 
 
For the other directions considered, 120°-240°, sufficient restoring forces are provided by the 
remaining two anchorlines. Mean and maximum tension in the most heavily loaded anchorline will be 
relatively low and horizontal plane excursions are somewhat in the same range as experienced in the 
ULS case. 
 
Vertical forces on the anchors are not observed for any of the directions considered. 
 
Using the worst case as basis for calculating extreme value statistics will be futile as the missing 
anchorline makes the response for each case strongly dependent on the direction of the environmental 
loads. The maximum value from each simulation is therefore taken as the MPM value when 
performing the design check; the design equation is calculated for consequence class 1 and 2 for each 
direction. The results are found in Appendix D. The design equation is satisfied for all directions 
except for environmental loads from 90° and 270°. However, the results can as mentioned not be taken 
as the truth as larger tension levels are expected in real life. When the large horizontal offset values are 

Max Anch. 
Li  

Max horizontal-

Lift-off line plane excursions

Mean Max Mean Max [m] nu. [m] Mean Max
0 968,27 1154,54 965,40 1152,07 0,00 3 500,04 52,38 66,28
30 932,16 1203,16 929,32 1201,46 0,00 2 484,86 54,06 64,54
60 905,14 1288,62 902,28 1285,98 0,00 2 407,71 47,00 51,76
90 450,82 4620,97 446,96 4749,10 0,00 3 228,02 28,75 30,56
120 519,88 2911,31 516,00 2291,19 0,00 3 47,55 4,73 7,47
150 961,97 1282,92 959,23 1280,18 0,00 2 29,75 0,83 3,52
180 900,75 1040,48 897,73 1035,78 0,00 3 25,90 0,00 0,00
210 963,59 1282,55 960,86 1280,14 0,00 3 29,54 -0,86 -5,07
240 910,97 1253,22 908,15 1250,29 0,00 3 47,61 -4,73 -8,04
270 450,97 5631,22 447,12 5653,40 0,00 2 226,54 -28,70 -30,54
300 905,01 1288,85 902,15 1286,22 0,00 3 407,80 -47,03 -51,76
330 928,57 1149,49 925,72 1147,20 0,00 3 483,09 -54,20 -62,86

Direction

Axial forces [kN]

Chain segment Wire segment
Yaw angle

[deg]
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added, the conclusion is that when considering the case of loss of one anchorline, the mooring system 
fails to meet the criteria given in the ALS.  
 

9.6.2 Loss of one clump weight 
For these analyses, the clump weight on anchorline 1 is removed from the Riflex model and replaced 
by a regular chain segment. The results from the 12 analyses are presented in table 9-10. 
 

 
Table 9-10: Results ALS analysis – Loss of clump weight 
 
 
The results show that we can expect large peak tensions in the mooring lines for the directions where 
the environmental loads are acting towards the removed clump weight. The effect is prominent for the 
directions 0°-60° and for 300°-330°. This is due to the fact that when the clump weight is removed 
from an anchorline, the restoring forces from the geometric stiffness contribution of the considered 
line are dramatically reduced. Hence, the line will respond by stretching and the elastic stiffness 
contribution will govern the restoring forces. It is also seen that the horizontal plane excursions are 
larger for these directions, and that vertical forces on the anchors are expected. The sum of these 
effects may result in loss of the anchorline, and we are back to the first ALS case discussed in the 
previous section. 
 
For the other directions considered, the results are similar to the ULS case. 
 
As for the first ALS case, the maximum line tension from each of the 12 simulations is taken as the 
MPM value when checking the design equation. The results, which are found in Appendix E, show 
that the design equation is not fulfilled for directions 0°, 30°, 300° and 330°. 
 
The mooring system is seen not to fulfil the design criteria for neither of the two investigated ALS 
cases. Introducing additional anchorlines to increase the redundancy of the mooring system may 
therefore be considered. 
 

Max Anch. 
i  

Max horizontal-

Lift-off line plane excursions

Mean Max Mean Max [m] nu. [m]
0 1130,30 6916,15 1130,09 6916,42 2,05 1 32,43
30 1085,61 6492,04 1085,23 6492,23 1,80 1 34,10
60 962,56 4317,20 961,89 4317,10 1,14 1 37,10
90 1159,58 2187,49 1157,30 2186,14 0,00 2 38,90
120 1152,37 2113,67 1150,16 2111,95 0,00 2 26,32
150 1075,56 1549,36 1073,11 1546,78 0,00 2 20,36
180 972,76 1162,27 969,91 1159,67 0,00 2 18,04
210 1076,54 2231,08 1074,09 2229,61 0,00 3 27,27
240 1151,45 1893,37 1149,25 1891,36 0,00 3 25,80
270 1156,56 1801,67 1154,27 1799,67 0,00 3 34,60
300 960,12 4242,72 959,46 4242,69 1,00 3 38,60
330 1080,96 6093,79 1080,59 6093,98 1,84 3 34,16

Direction

Axial forces [kN]

Chain segment Wire segment
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10. Conclusion 
The purpose of this study has been to select and optimise the mooring system design for floating 
offshore wind turbine structures in shallow water. Furthermore, methods for designing the mooring 
system according to the governing standards were demonstrated. 
 
The design of the floating support structure was based on the Hywind concept, utilizing a deep-draft 
Spar floater. The draft of the substructure was reduced to 80 m to accommodate to the water depth of 
only 100 m. Only catenary mooring systems were considered since other types of stationkeeping 
systems would compromise the design concept. Three types of catenary mooring systems were 
defined, distributed mass-, clump weight- and buoyancy element mooring system. They were analysed 
by the means of quasi-static and dynamic analysis in order to determine the system behaviour. The 
mooring line characteristics obtained from quasi-static analysis showed that the clump weight mooring 
system had favourable characteristics compared to the other two mooring system concepts considered. 
The relatively low submerged weight of the buoyancy element mooring system will reduce the 
geometric stiffness. When the horizontal offset is increased, the line length would therefore have to be 
very large in order to ensure non-linear restoring forces and preventing vertical forces on the anchors. 
The distributed mass mooring system had a larger submerged weight and consequently more 
geometric stiffness. The large axial stiffness of the chain gave however a large elastic stiffness, and a 
transition to the elastic stiffness range was quickly observed as the horizontal offset increased. The 
clump weight mooring system had large geometric stiffness due to the large catenary sag from the 
clump weight, while the elastic stiffness was reduced due to the wire segments in the mooring lines. 
This combination of stiffness contributions was proven effective, as the transition to the elastic 
stiffness range was observed to occur at larger tension levels than for the other two concepts. Peak 
tensions in the mooring lines were then limited. This was also supported by time domain analysis, 
which demonstrated that the maximum tension observed in the mooring lines during a 1-hour 
simulation in severe environmental conditions were 40% and 53% larger for the distributed mass- and 
buoyancy element mooring system respectively than for the clump weight mooring system. 
 
Sensitivity studies were carried out with respect to a number of mooring system parameters. As the 
main problem was to get sufficient geometric stiffness from the limited suspended line length, the size 
of the clump weight was seen to be the most influential parameter on the system behaviour. Various 
sizes, ranging from 6 – 154 tons were investigated. The heaviest ones had major impact on the 
catenary sag, resulting in favourable mooring line characteristics. However, using clump weights with 
mass above 100 tons would require very large pretension in order to prevent clump weight touchdown 
on leeward lines when the floater is offset. In addition, issues related to installation and handling arise 
for the largest clump weights. Clump weights of size 75 tons were therefore selected. As the 
suspended line length was limited, and attaching the clump weights to the delta-lines not desirable, a 
clump weight position on the main mooring line very close to the delta-lines was selected. The 
pretension needed to be large enough to avoid slack leeward lines and small enough to limit the mean 
and maximum tension in the weather ward lines. A pretension corresponding to a horizontal top 
tension of 700 kN was used. The total line length and chain and wire segments were selected to meet 
the criteria given in the standards with respect to vertical forces on the anchors and permissible line 
tension. The vertical fairlead position and the length of the delta-lines were merely assessed by 
theoretical considerations. The former is ideally located close to the vertical centre of rotation, which 
was shown to be frequency dependent. The vertical fairlead position was set to a point between the 
centre of gravity and the centre of buoyancy of the floating structure, mainly to provide enough 
suspended line length. The delta-line length, which influences the yaw restoring coefficient and 
consequently the yaw natural period was set to 40 m. As the vertical distance between the sea bottom 
and the fairlead is only 53,6 m, this gave some suspended main mooring line length left to play with. 
The yaw natural period was estimated to 5,5 s, while the natural periods for the other motion modes 
were kept above the wave period range. 
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There is no unique standard governing the design of floating wind turbines, but a guideline assessing 
the key issues regarding the floating body of such structures is established by DNV. The guideline 
refers to DNV-OS-E301 “Position Mooring” for design of mooring system. The Troll field was 
selected as design location, and analyses were carried out against the ULS and ALS. Environmental 
loading from a total of 12 directions were considered for each limit state, ranging from 0°-360° 
relative to the floating structure. The results showed that the line tensions were within the acceptable 
limits for all directions in the ULS. For the ALS, both the cases of loss of line and loss of clump 
weight were considered. For the first case, large tensions exceeding the criteria given by the standard 
were observed when the environmental loads were acting in the direction of the missing line. Very 
large horizontal offsets in the range of the length of the mooring system were also observed. For the 
case with the loss of clump weight, tensions exceeding the permissible limits and vertical forces on the 
anchor were observed for directions were the environmental loads were acting towards the line with 
the missing clump weight. The ALS analyses proved the lack of redundancy in the mooring system in 
the cases of line breakage and loss of clump weight. Using more than three mooring lines must be 
considered in order to limit the mooring line tension and horizontal offsets in the ALS cases.  
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11. Recommendations for further work 
The detail design of the clump weights is not studied here, but must be investigated if such 
components are to be used in a mooring system. E.g. by designing a round or coned clump weight 
without a large suction surface, the clump weight may partly rest on the sea bottom which will 
improve the mooring line characteristics. This is especially relevant for shallow water applications, as 
utilizing larger clump weights would increase the geometric stiffness contribution to the restoring 
forces. Other aspects concerning the detail design of the clump weights include selecting material and 
investigate how they should be installed and attached to the mooring line. 
 
In this study, the design check focused on the ultimate limit state and the accidental limit state. In 
order to complete the design check, also the fatigue limit state should be assessed. This involves 
calculating the fatigue damage arising in the long term environment the mooring system is subjected 
to, represented by a number of discrete environmental conditions. Furthermore, VIV analyses must be 
carried out both for the ULS and for the ALS to include the VIV effects on the mean and low-
frequency components of line tension. Related to the ALS control, one would need to adjust the design 
(e.g. by adding additional anchorlines) so that the redundancy of the system increases. This can be 
challenging as the diameter of the substructure is small, and one would want to include delta-lines to 
maintain the low yaw natural periods.  
 
As floating wind turbines are intended to be installed in wind farms consisting of a large number of 
structures, issues related to the mooring system arise. When using catenary moorings, the mooring 
system may in fact be the limiting factor on how close the wind turbines can be installed; especially if 
one assumes a design where mooring lines for different structures are not crossing. To save cost on the 
anchors, one may also investigate the possibility of using one common anchor point for two or several 
mooring lines of different structures.   
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Appendix A: Catenary equations, including the effect of 
elasticity 
Deriving the catenary equations is taken from Faltinsen (1990). 
 
Bending stiffness and dynamic effects in the line are neglected and we assume a horizontal 
seabed. 
 
In figure A1 an element of the line is shown. The mean hydrodynamic forces per unit length in the 
normal and tangential direction are denoted D and F respectively. W is the submerged weight of 
the line per unit length, A is the cross-sectional, E is the elastic modulus and T is the line tension. 
Due to the submerged weight, the correction forces gAzρ− and gAZ gAdzρ ρ− − are introduced at 
the end of the element. 
 
 
 

 
Figure A1: Forces acting on an element of an anchor line (Source: Faltinsen (1990)) 

From equilibrium we find 
 
 [ ]sin (1 / ( ))dT gAdz w F T AE dsρ φ− = − +  (3) 
 [ ]cos (1 / ( ))Td gAzd w D T AEφ ρ φ φ− = + +  (4) 
 
By neglecting the effect of current forces F and D, and neglect the effect of elasticity the analysis 
is simplified. The cable line is assumed to have constant weight per unit length. 
 
Introducing 
 
 'T T gzAρ= −  (5) 
 
 
 
And write 
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 ' sindT w dsφ=  (6) 
 ' cosT d w dsφ φ=  (7) 
 
Eq. (4) and (5) can be divided to obtain 
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By integration we get 
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cosdx φ=  and we can write 
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sindz φ= and we can write 
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∫
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If 

0
φ is the point of contact between the cable line and the sea bed so

0
0φ = , we see that 

 
 

0
' ' cosT T φ=  (13) 

 
The horizontal component of the tension at the sea bed can be written as 
 
 cos

H w
T T φ=  (14) 

 
 
 
By comparison we see that 
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The angle φ can be eliminated from Eq.(8) and (10), and (9) can be written as 
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And we may write 
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 (16) 

 
By combining Eq. (3), (10) and (11) the line tension can be found as 
 

 ( )
cos

H

H

T
T gzA T w z hρ

φ
− = = + +  

 
i.e. 
 
 ( )

H
T T wh w gA zρ= + + +  (17) 

 
In the waterplane we have 
 
 

z
T ws=  (18) 

 
By using the above derived formulas, the following quantities can be found with reference to 
figure A2. 
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Figure A2: Vessel moored with one anchor line (Source: Faltinsen (1990)) 
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where  
 

 H
T

a
w

=  (21) 

 
By a combination of Eq. (17) and (18) we obtain 
 
 2 2 2

s
l h ha= +  (22) 

 
The maximum tension in the cable can be written as 
 
 

max H
T T wh= +  (23) 

 
And the minimum length of the cable becomes 
 

 ( )
1

2
max

min
2 1

T
l h

wh
= −  (24) 

 
The horizontal distance X is found as 
 
 

s
X l l x= − +  (25) 

 
 
 



              
 

A5 
 

Triantafyllou (1990) showed how the effects of stretch could be accounted for in the catenary 
equations. By assuming that the cross-sectional area after stretching A , has been replaced by the 
unstretched area

0
A , the x-coordinate is obtained by integration and reads: 
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The z-coordinate is obtained in a similar fashion and reads: 
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Appendix B: Time series, comparison of mooring system 
concepts 

B.1 Operational condition 

 
Figure B1: Comparison of axial forces – main mooring lines 

 

 
Figure B2: Comparison of axial forces – delta-lines 

 
 



 

B2 
 

 
 
 

 
Figure B3: Comparison of tower bottom heave motions 

 

Figure B4: Comparison of fairlead translations 
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Figure B5: Comparison of waterline translations 

 

 
Figure B6: Comparison of weight element heave motions 
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B.2 Storm condition 

 
Figure B7: Comparison of axial forces – main mooring lines 

 

 
Figure B8: Comparison of axial forces – delta-lines 
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Figure B9: Comparison of tower bottom heave motions 

 

 
Figure B10: Comparison of fairlead translations 
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Figure B11: Comparison of waterline translations 

 

 
Figure B12: Comparison of weight element heave motions 
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Appendix C: Riflex modelling of design mooring system 
components 
 
The design mooring system components are modelled in Riflex according to table C1. 
 
 

 
Table C0-1: Riflex modelling of mooring system segments 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Dimension Chain (Connectors) Chain (Delta-lines) Chain (Bottom) Wire Clump weight
AMS [t/m] 0,151 0,107 0,221 0,0405 75,526
AE [m2] 0,01189 0,00837 0,0173 0,00724 9,6211
AI [m2] 0 0 0 0 0
RGYR [m] 0 0 0 0 0,88510
AST [m2] 0,01189 0,00837 0,0173 0,00724 78,54
WST [m3] 0,0001827 0,0001079 0,0003208 0,0000869 98,175
EA [kN] 7,09E+05 7,09E+05 7,09E+05 4,84E+05 1,92E+09
D [m] 0,174 0,146 0,21 0,096 3,5

Component type
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Appendix D: Design equation results ALS – Loss of line 
 
The results from calculating the design equation for the 12 directions considered in the ALS – 
Loss of line are shown in table D1. 
 

 
Table D0-1: Design equation results ALS – Loss of line 
 

Consequence
class Chain Wire

1 6124,74 5259,34
2 6096,80 5231,34
1 6067,64 5115,94
2 6027,00 5075,12
1 5970,94 4908,69
2 5913,41 4851,14
1 2259,91 -2864,70
2 1634,39 -3510,03
1 4147,45 2372,85
2 3788,73 2106,57
1 5982,89 4983,53
2 5934,75 4935,38
1 6243,45 5429,11
2 6222,49 5408,41
1 5983,45 4985,40
2 5935,61 4937,50
1 6010,46 4990,10
2 5959,12 4938,78
1 1148,65 -4763,56
2 371,62 -5544,51
1 6392,89 4908,06
2 6392,89 4850,45
1 6369,33 5225,92
2 6369,33 5192,70

210

240

270

300

330

Design equation

180

Direction

0

30

60

90

120

150



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



 

E1 

Appendix E: Design equation results ALS – Loss of clump 
weight 
 
The results from calculating the design equation for the 12 directions considered in the ALS – 
Loss of line are shown in table E1. 
 

 
Table D1: Design equation results ALS – Loss of clump weight 
 

Consequence
class Chain Wire

1 -196,83 -6664,63
2 -1064,71 -7532,58
1 265,22 -5823,17
2 -545,74 -6634,22
1 2645,23 -1391,09
2 2142,04 -1894,37
1 5007,62 3298,90
2 4853,43 3144,57
1 5088,10 3446,83
2 4943,91 3302,56
1 5701,16 4548,94
2 5630,10 4477,89
1 6116,68 5248,35
2 6088,25 5219,89
1 4951,37 3116,08
2 4778,19 2942,75
1 5330,34 3909,07
2 5219,05 3797,76
1 5431,72 4107,14
2 5334,95 4010,33
1 6337,78 -1237,50
2 6337,78 -1729,98
1 6216,94 -4991,96
2 6216,94 -5743,97
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Appendix F: Content on the attached DVD 
 

F.1 T. Hordvik Master Thesis 2011 – 2 sided print (pdf -file): 
Master thesis. 
 

F.2 Presentation_Statoil_09062011 (power-point presentation): 
Power point presentation for Statoil research centre 09.06.2011. Summarizes the highlights of the 
study. 
 

F.3 Other matlab routines (folder): 
Contains matlab scripts and functions that are not directly related to running the analyses. 
 
Scripts: 

- damping.m  
o Finding linear and quadratic damping from decay test. Calls on subroutine 

SPEGEN_T.m. 
- design_config.m 

o Plot static equilibrium configuration of mooring system from Riflex stamod 
results. 

- Gumbel_fit.m 
o Fit extreme sample to Gumbel distribution and plot. Calls on subroutine weibull.m 

- JONSWAP.m 
o Plots JONSWAP-spectrum from given Hs and Tp 

Functions: 
- SPEGEN_T.m 

o FFT-routine for generating power spectrum from given time history xt. By Finn 
Gunnar Nielsen. 

- weibull.m 
o Fits sample to a Weibull distribution. 

 

F.4 Analyses (folder): 
Contains the input files and results (tables and plots) from all the analyses. Contains 4 subfolders. 
 

1. RUN - Comparison (subfolder): 
Contains the input files and results (tables and plots) from the comparison analyses. 
 

- model.xls  
o All structural properties, environmental input and simulation 

parameters defined in excel. 

Scripts : 
- Run_script.m 

o The main script which controls the analyses. Calls on numerous 
subroutine
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Functions: 
- make_directories.m 

o Make directories for saving the results from the analyses. 
- user_input.m 

o Controls the user interface of the program. 

Subfolders: 
- Anchor routines (folder) 

o Contains all the subroutines necessary for running the catenary and 
mooring system calculations. 

- Decay test (folder) 
o Contains all the input files and subroutines necessary for running the 

decay analysis. 
- Dynamic analysis routines (folder) 

o Contains all the input files and subroutines necessary for running the 
dynamic analysis. 

- Eigenvalue analysis routines (folder) 
o Contains all the input files and subroutines necessary for running the 

eigenvalue analysis. 
- Results (folder) 

o Contains plots and statistics for various analyses of the different 
mooring system concepts, and also the results for the sensitivity 
analyses. The Riflex result files are not included due to the size of 
these files. 

 
2. RUN – Optimized system (subfolder): 
Contains the input files and results (tables and plots) from the comparison analyses. 
 

- model.xls  
o All structural properties, environmental input and simulation 

parameters defined in excel. 

Scripts: 
- Run_script.m 

o The main script which controls the analyses. Calls on numerous 
subroutines. 

Functions: 
- make_directories.m 

o Make directories for saving the results from the analyses. 
- user_input.m 

o Controls the user interface of the program. 

Subfolders: 
- Anchor routines (folder)



 

F3 

 
o Contains all the subroutines necessary for running the catenary and 

mooring system calculations. 
- Decay test (folder) 

o Contains all the input files and subroutines necessary for running the 
decay analysis. 

- Dynamic analysis routines (folder) 
o Contains all the input files and subroutines necessary for running the 

dynamic analysis. 
- Eigenvalue analysis routines (folder) 

o Contains all the input files and subroutines necessary for running the 
eigenvalue analysis. 

- Results (folder) 
o Contains plots and statistics for various analyses of the optimized 

mooring system. The Riflex result files are not included due to the size 
of these files. 

 
 

3.   Parameter study (subfolder): 
Contains the input files and results for all the parameters that are studied by the means of 
quasi-static analysis. 
 
4.   Design check (subfolder): 
Contains the input files and results for the design check. 
 

Subfolders: 
- ALS (folder) 

o Input files and results from two ALS cases 
- ULS (folder) 

o Input files and results from one ULS case 
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