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Summary

As an enabling technology of coordinated multi-vessel operations, formation control has received con-

siderable attention in recent times, with specific applications ranging from satellites in space to wheeled

robots on the ground. This thesis will serve as a continuation of previous efforts within the marine

control community, focusing on formation control design for fully actuated marine surface vessels. The

main objective for the designs is to enable a group of vessels to automatically position themselves in a

specified formation structure, which in turn should propagate along a parameterized path at a desired

speed. Although this problem statement forms the basis of many designs in the literature, a new approach

is taken herein where the vessels establish the formation in their immediate vicinity prior to initiation of

a collective movement towards the path. This separation between group coordination and path following

has, at least to the authors knowledge, not been pursued in previous works.

In Chapter 1, terms relevant to formation control systems are explained, and a review of earlier work is

conducted. Mathematical background is given in Chapter 2, after which the control designs take center

stage in Chapter 3. Three different designs are presented. The first two combine a decentralized group

coordination framework with maneuvering theory, utilizing the former to coordinate the vessels into a

formation, and the latter to ensure subsequent path following. Generic maneuvering theory forms the

basis of the third design, where an intuitive Line-of-sight steering algorithm is incorporated to ensure

feasible and predictable motion towards the path for the formation. Strong, global stability results are

achieved for all three designs, and computer simulations in Matlab/Simulink are used to illustrate their

performance.

In Chapter 4, the proposed control designs are evaluated with respect to inter-vessel communication

requirements, behavior during vessel failure scenarios, collision avoidance capabilities, and transient be-

havior during group coordination and path following. An ability to maintain formation structure during

mild and severe single vessel failures is demonstrated, illustrating the intuitive notion that the separa-

tion and prioritization of group coordination and path following increases safety. However, a guarantee

against collisions is not given, as none of the designs incorporate explicit collision avoidance capabilities.

Moreover, the designs are shown to require considerable inter-vessel communication during operations in

general, which could limit their applicability for large groups.
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Abbreviations

CLF Control Lyapunov function

FRF Formation reference frame

FRP Formation reference point

GNC Guidance, navigation, and control

IMU Inertial measurement unit
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UGAS Uniformly globally asymptotically stable

UGES Uniformly globally exponentially stable
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Chapter 1

Introduction

Formation control is concerned with simultaneous control of multiple dynamical systems, termed agents,

where the core objective is to get the agents to obtain and maintain a specified relative spatial config-

uration in their output space. As an enabling technology of coordinated collective movement, fulfilling

a desired behavior for the formation as a whole often forms a second objective for the control designer.

Examples are setpoint regulation, trajectory tracking, and path following. In this thesis, the desired

behavior for the formation will involve path following, and solutions to the formation control problem

will be proposed for fully actuated marine surface vessels.

1.1 Motivation

Applications of formation control are diverse and can be found on land, at sea, in the air and in space,

within both civil and military operations. The governing idea is to use formations to improve perfor-

mance in operations traditionally executed by single agents, and to enable execution of operations that

are infeasible for any single agent. Many applications have been envisioned in relation to the field of

autonomous vessel technology, where unmanned, self-governing vessels are used to aid or replace humans

in tedious, dangerous and hazardous missions. Applications of formation control can, however, also be

found in operations involving groups of manned vessels to improve performance and reduce fatigue and

difficulty for the people involved.

Applications of formation control involving unmanned vessels can be found at different levels of op-

erational autonomy. Some operations are highly autonomous in the sense that unmanned vessels are

used exclusively, while others have a lower level of autonomy through involvement of manned vessels. An

example of the former is the massive, distributed sensing networks envisioned in Breivik (2010), where

fleets of autonomous vessels cooperate in providing real-time data from areas that may be unaccessible

or too large to cover for manned vessels. Some examples of applications where such networks could be

useful are coastline surveillance, oil and gas exploration in arctic regions, and oceanographic sampling. By

making sure that the groups of autonomous vessels travel in formation structures during such missions,

the collective range of sensor equipment can be maximized, ensuring that larger areas can be covered in

shorter time. Moreover, reliability is achieved through redundancy, as remaining vessels can reconfigure

into new formation structures to minimize loss of collective sensing ability after individual vessel failures.

In space, satellites would be important assets in distributed sensing networks, and formation control can

also be utilized in this domain, as sensor arrays of multiple satellites can provide images of higher reso-

lution than single satellites(Breivik 2010). Other examples of highly autonomous operations where the

use of formations would be natural can be found in the military domain, including reconnaissance and

coordinated mine clearing using robots, combat using autonomous aerial vehicles, search and rescue mis-
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2 INTRODUCTION

sions and security patrols. In the future, it is also envisioned formations of unmanned ships for efficient

transport of cargo, and for towing of large structures (e.g. semi-submersibles, floating wind turbines).

Although fully autonomous, massive, distributed sensing networks are visions of the future, similar ap-

plications of formation control can be found in present time. An example is seabed mapping operations,

where a vessel carrying sensor equipment propagates along the ocean surface in order to obtain informa-

tion about the topology of the seabed underneath. The sensor equipment can only retrieve information

within a certain area below the ship, so in order to map a large area, a single ship will have to track

back and forth in straight lines offset by some distance for each pass. By including additional unmanned

surface vessels in a formation with the manned survey ship, a larger area can be covered in each pass,

thus reducing the time of operation to great extent.

Figure 1.1: Single and multiple-vessel seabed mapping. Illustration courtesy of Breivik (2010).

In operations involving groups of manned vessels, applications of formation control can be found both

in the air and at sea. Automated formation flight could reduce pilot fatigue during missions involving

extensive transit by making the pilots take turns on being formation leaders, letting formation controllers

ensure that the other aircraft stay in formation with respect to the assigned leader. Aerial refueling is

another natural application, as tight formation flying is vital to such operations. The marine equiva-

lence of aerial refueling - underway replenishment of ships - constitutes another application. Underway

replenishment operations are motivated by the prohibitive costs of taking large ships to port whenever

supplies and fuel need to be replenished, as well as by the desire to decrease the downtime of operations.

They are typically performed by one or more supply ships lining up at the side of the receiving ship, after

which all ships strive to maintain equal and constant forward speed and bearing while supplies are being

transferred across messenger lines(Wikipedia 2010b).



1.1. MOTIVATION 3

Figure 1.2: USS Harry S. Truman CVN-75, USNS Arctic T-AOE-8 and USS Monterey CG-61 performing

an underway replenishment in the Persian Gulf. Courtesy of MaritimeQuest (2010).

In replenishment operations requiring close proximity between the ships, hydrodynamic phenomena

creating attraction and repulsion forces can arise(Skejic et al. 2009). Considering that small deviations in

course and speed can lead to collisions, these hydrodynamic effects introduce notable risk. If the crucial

role of the helmsmen could be replaced by formation controllers taking the hydrodynamic phenomena

into consideration, the formation keeping capabilities of the ships would not be influenced by human

errors, thereby increasing safety.
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1.2 Explanation of terms

Important terms related to formation control will be addressed in the following.

• Formation: A formation is a specific physical arrangement of a group of entities. It is a geometrical

concept where only the relative positioning of the entities is of relevance.

• Agent: Herein, an agent is defined as an entity (e.g. marine vessel, satellite, ground vehicle) that

can be systematically controlled/manipulated.

• Group coordination problem: A group coordination problem is concerned with coordinating a

group of agents to obtain a desired configuration for the group as a whole.

• Group agreement problem: A group agreement problem is a special case of the group coordi-

nation problem, where it is desired to steer variables of interest to common values across the group

of agents(Arcak 2007).

• Consensus problem: Consensus problems are the same as group agreement problems (see e.g.

Olfati-Saber and Murray (2003)).

• Cooperative control: Cooperative control deals with design of control protocols that will solve

group coordination problems.

• Formation control: Formation control is concerned with design of control schemes that will enable

a group of agents to obtain and maintain a specified formation structure in their output space.

Typically, additional requirements to the collective behavior of the formation are also considered

in the design procedure. This could for instance involve trajectory tracking, path following, or

setpoint regulation.

• Swarming: Swarming is related to the movement of a formation. According to Wikipedia (2010a),

swarming refers to the behavior of an aggregate of animals migrating in the same direction. Further-

more, it is stated that flocking refers to swarming of birds, while schooling refers to swarming of fish.

The two latter terms are sometimes given different meanings in the formation control literature.

The alternative definitions are stated below.

• Flocking: In Leonard and Fiorelli (2001), flocking is explained as a maneuver where the agents in

a formation circles a stationary point so that the center of mass of the group is stationary.

• Schooling: In Leonard and Fiorelli (2001), schooling is explained as a maneuver corresponding

to a pure, steady translation of a formation. This implies that the formation as a whole does not

rotate, which makes it fundamentally different from a flocking maneuver.

• Leader-Follower: In the context of formation control, leader-follower refers to a design framework

where a formation is split into leaders and followers. The role of the leaders is to dictate the motion

of the formation as a whole, while the followers role is to move relative to the leaders so that they

maintain the formation. The reader is referred to Section 1.3 for a more thorough explanation of

the leader-follower approach and the other common design approaches within formation control.

• Virtual structure: The concept of a virtual structure is introduced in Lewis and Tan (1997),

where it is given the following definition: ”A virtual structure is a collection of elements, e.g.

robots, which maintain a (semi-)rigid geometric relationship to each other and a frame of reference”.

In formation control, the virtual structure approach forms a framework for control design where

the desired formation is treated as a rigid structure whose motions generate the desired trajectories

for each agent. A more detailed description of the virtual structure approach and how it relates to

other design approaches is given in Section 1.3.3.
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• Virtual leader: A virtual leader is a virtual agent that can be used to define desired formation

configurations for agents in the group (e.g. as a specified distance or position vector relative to the

virtual leader), and to direct the motion of the formation as a whole within the virtual structure

and leader-follower approaches of formation control.

• Artificial potential functions: As stated in Leonard and Fiorelli (2001), artificial potential

functions are used to derive interaction forces between neighboring agents in a formation. The

potentials are designed so that the corresponding forces acts as attractors or repulsers, depending

on the distance between the agents relative to a set of desired distances.

• Formation reference point, Formation reference frame: Formation reference points (FRPs)

and formation reference frames (FRFs), as illustrated in Skjetne (2005), constitute an approach to

specification of a desired formation configuration. The configuration for n agents is specified as a

set of vectors li, i = 1 . . . n, in a local frame of reference termed the formation reference frame.

The origin of the formation reference frame is termed the formation reference point. In this thesis,

however, the formation reference point will be given a more general meaning by defining it as a

vector containing the orientation and position of origin of the corresponding FRF relative to the

global reference frame.

To illustrate the approach, consider three marine surface vessels in an equilateral triangle for-

mation, where vessels 3 and 2 have an orientation offset of ±π2 [rad] relative to vessel 1. Fix an FRF

in the geometrical center of the triangle and align its orientation with vessel 1:

Figure 1.3: Illustration of an equilateral triangle formation using a formation reference frame

The generalized position vectors ηi = [xi, yi, ψi]
> containing the positions and orientations of the

three vessels relative to the global reference frame can now be expressed as

ηi = x0 + R(ψf )li i = 1, 2, 3, (1.1)

where x0 = [xf , yf , ψf ]> is the FRP containing the position and orientation of the FRF with respect

the global frame, R(·) is the rotation matrix in yaw (see Section 2.4.1) , and the vectors li are equal
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to

l1 = [
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In a straight forward formation control design, the objective would now be to get the vessels to

converge to desired generalized positions given by the right hand side of (1.1), where it is noted

that the FRF may translate and rotate in time according to a desired motion for the formation.

• Anti-collision: Anti-collision is concerned with design of control protocols that enable vessels to

automatically avoid collisions with objects in their surrounding environment during operations. As

stated in Breivik (2010), such designs involve sense and avoid capabilities, where the former includes

having access to global and local information about the environment, and the latter includes long-

term proactive planning and short-term reactive planning.

• Navigation, guidance, and control: Navigation, guidance and control refers to the three build-

ing blocks that constitute a motion control system.

The navigation block deals with processing of sensor signals and estimation of unmeasured states

(e.g. velocity and acceleration) from measured states (e.g. position). The role of the navigation

block can thus be summarized as determining ”where we are”.

The guidance block deals with generation of reference signals that is fed to the control block.

These signals contain the instantaneous desired states for the vessel. The role of the guidance block

can thus be summarized as determining ”where we want to go”.

The control block, typically consisting of high-level force and moment controllers in cascade with

low-level actuator controllers, generates actuator commands to get the states of the vessel to con-

verge to the reference signals received from the guidance block. Its role can thus be summarized as

getting the vessel from ”where we are”, to ”where we want to go”.

• Setpoint regulation, trajectory tracking, path following, maneuvering, generic maneu-

vering: These expressions are related to different control objectives.

Setpoint regulation refers to a control objective where the output of the system in question

should be controlled to a fixed value. In marine operations, setpoint regulation is referred to as

station-keeping, where the control system should make the vessel obtain and maintain a fixed po-

sition and orientation.

Trajectory tracking involves getting the output of the system to follow a time-varying refer-

ence signal.

Path following involves getting the output of the system to follow a parameterized path, without

any constraint on the propagation along the path (i.e. path following only involves a spatial con-

straint. Including a temporal constraint would make it a trajectory tracking problem).

Maneuvering, as treated in Skjetne (2005), refers to a control objective consisting of two subtasks.
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The geometric task consists of getting the output of the system, y(t), to converge to a desired path

parameterized by a path variable θ. Denoting the desired output states corresponding to the path

as yd(θ), the first objective is thus given by

lim
t→∞

|y(t)− yd(θ(t))| = 0

The dynamic task consists of getting the path variable to satisfy either a time assignment, speed

assignment or acceleration assignment in the limit. For a speed assignment with desired speed

function vs(θ, t), this task can be expressed as

lim
t→∞

|θ̇(t)− vs(θ(t), t)| = 0

By having separate geometric and dynamic tasks, it is possible to prioritize between the two so

that one always has precedence over the other. When the geometric task is given highest priority,

the transient dynamics of θ can be assigned to yield faster convergence of the system output to the

path, and thus faster fulfillment of the geometric task (this is done with gradient optimization in

Skjetne (2005)). The result is increased flexibility with respect to the trajectory tracking scenario,

where the temporal and spatial tasks are entwined.

The Generic maneuvering problem, introduced in Skjetne (2005) and proposed thoroughly in

Skjetne et al. (2011), is a generalization of the maneuvering problem. As in the maneuvering prob-

lem, two tasks are considered: the geometric task and the dynamic task. Rather than targeting

convergence to a parameterized path, the geometric task involves convergence to a a manifold of

dimension q ≥ 1. For a system with state vector x ∈ Rn and output y = h(x), h : Rn 7→ Rm, the

desired manifold can be expressed by the set

Q = {x ∈ Rn : ∃ζ ∈ Rq s.t. h(x) = hd(ζ)},

where hd : Rq 7→ Rm. The geometric task then becomes

lim
t→∞

|y(t)− hd(ζ(t)| = 0

The dynamic task involves satisfying a desired dynamical assignment fd(ζ,y, t) for ζ̇ in the limit,

typically corresponding to the desired dynamics when the geometric task is fulfilled:

lim
t→∞

|ζ̇(t)− fd(ζ(t),y(t), t)| = 0

• Configuration Space, work Space: The work space can be defined as the space in which a

vessel moves(Fossen and Breivik). For a marine surface vessel, the work space can be regarded

as two-dimensional (neglecting vertical motions on the ocean surface due to waves, etc.), while it

is three dimensional for a submarine. The configuration space is constituted by a set of variables

that are sufficient to specify all points of the vessel in the workspace(Fossen and Breivik). For the

marine surface vessel, this space is three-dimensional (two position variables and one orientation

variable), while it can be six or seven-dimensional for the submarine (three position variables, and

three/four orientation variables for Euler angles/quaternions).

• Centralized/Decentralized control: The terms centralized and decentralized control are used

to describe the amount of communication required in a multi-agent control scheme. In centralized

schemes, the control law for each agent requires input signals that only can be obtained by gathering

and processing information from all the agents in the group. Typically, the only feasible way this

can be done for large groups is for each agent to send relevant data to a central location where all

the data is gathered, processed, and redistributed back to the vessels.
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In a decentralized scheme, efforts have been made to decrease the required inter-agent commu-

nication, so that the control law for each agent only requires input from a subset of the other

agents. The lines of communication could be time-varying, e.g. where each agent requires input

from other agents that are within some proximity threshold, or time-invariant, where they have

been established prior to the operation.
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1.3 Review of earlier work

Formation control has received a considerable amount of attention in the last two decades, resulting in

control designs for a wide range of applications and dynamical systems. It is common to divide the research

efforts into three main groups based on the approach used in the control designs; the behavioral approach,

the virtual structure approach, and the leader-follower approach. Although there is a clear distinction

between the behavioral approach and the other two approaches, the differences between the leader-

follower and virtual structure approaches are more subtle and open to interpretation. Some of the papers

that have been examined in relation to this thesis do not lend themselves well to the abovementioned

categorization. Because of this, a fourth category consisting of the cooperative approach will be used. For

clarity of presentation, work related to the different approaches will be treated separately.

1.3.1 The behavioral approach

In the behavioral approach, the controller of each agent enforces local motion primitives similar to those

observed in migrating groups of animals in nature. The approach has its origin in the work of computer

scientist Craig W. Reynolds in Reynolds (1987), where a new method for animation of flocks, herds and

schools was proposed. Rather than scripting the individual paths of the animals explicitly, it was pro-

posed that animations could be generated through computer simulation by representing each animal as a

dynamical system, and assigning acceleration vectors in accordance with three fundamental local behav-

iors in order of decreasing precedence; collision avoidance, velocity matching, and flock centering. The

former represents each animals desire to avoid collisions with nearby flock mates and external objects, the

latter each animals desire to stay close to nearby flock mates, while velocity matching represents a desire

to obtain a common velocity for the group. The proposed algorithm is that each fundamental behavior

assigns its own desired acceleration vector, which then is processed through a weighting algorithm to

provide the final acceleration vector of each animal.

Although the idea of letting the motion of each group member be influenced by a weighting of fun-

damental motion primitives has been passed on to the behavioral approach in formation control, the

motion primitives have been modified. The reason should be quite apparent, as the motion primitives

in Reynolds (1987) yields no possibilities to specify a certain formation structure, and no control of the

collective motion of the group. In Balch and Arkin (1998), behavior-based control is applied to wheeled

robots. The local motion primitives, termed motor-schemas, are given by collision avoidance with static

objects and other robots, formation maintaining, and movement towards a target-position. The desired

position of each robot with respect to formation maintaining can be calculated in three different ways,

either relative to the centroid of the instantaneous position of the group, relative to an assigned formation

leader, or relative to one of the other robots (termed the neighbor). The motion assignment of each robot

is given by combining individual contributions from each motion primitive, where a simple weighted av-

erage is used.

In Arrichiello et al. (2006), the behavior-based method is used to control groups of underactuated marine

vessels. The control system consists of local maneuvering controllers that receive reference values from

a centralized guidance system based on the so-called null-space-based behavioral approach. The local

motion primitives, termed tasks, are associated with analytical functions of the system configuration

(the generalized position vectors of the vessels). Desired trajectories for the functions are specified, after

which corresponding, desired velocities for the ships are generated through inverse kinematics. The to-

tal commanded velocity for each vessel is given by a null-space based weighting algorithm, where strict

prioritization is achieved in the sense that velocity components of a task conflicting with the velocity

corresponding to a task of higher priority are removed. Three tasks are considered; Obstacle avoidance
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(with external objects and other ships), movement of the average position of the group, and keeping in

formation with respect to the average position of the group.

1.3.2 The leader-follower approach

In the leader-follower approach, hierarchy is assigned within the group of agents that is to be controlled

in formation. Followers strive to stay in formation with respect to their assigned leader(s), whose motions

are unaffected by their followers1. The leaders do not necessarily have to be agents, as virtual leaders can

be used effectively to control the movement of the group. By including multiple levels of leader-hierarchy

(so that the group has one true leader while some agents are both leaders and followers at the same time),

the leader-follower methodology allows for distributed control of large groups. This approach is taken

in e.g. Desai et al. (2001), where graph-theory and combinations of so-called l − ψ and l − l control are

used to control mobile robots into reconfigurable formations, and in Mesbahi and Hadaegh (1999), where

graph-theory and hybrid control solutions are used on groups of flying spacecraft.

In Breivik et al. (2006), a guided formation control scheme is proposed to get a group of unicycle-

type robots into formation with respect to a virtual leader propagating along a regularly parameterized

path. The design consists of three modules in cascaded structure, where the first consists of local motion

controllers for each robot controlling their forward and rotational speed as well as their orientation to

reference values received from guidance systems. The guidance system of each robot, all of which are

collected in the second module, utilizes look-ahead-based steering rules to drive the robot into formation

with respect to a local point on the path, termed the collaborator. The guidance systems collect inputs

from the third module, whose job is to ensure that all collaborator points are synchronized with the

virtual leader in the limit. This is done solely by adjusting the velocity reference signals to the ships, not

by manipulating the motion of the virtual leader. The design thus falls into the leader-follower category.

In Breivik et al. (2008), the same guided formation control approach is applied to marine surface vessels

subjected to an unknown, constant environmental disturbance.

Formation control design for underway replenishment operations is well suited to the leader-follower

approach. By controlling the supply ship and letting the receiving ship be a passive leader, the demands

placed on the technology of the receiving ship are reduced compared to a cooperative control design.

This can in turn broaden the applicability of operations into the civil domain. In Kyrkjebø and Pettersen

(2003), a leader-follower design is proposed. By using an observer-controller structure for the supply ship,

the control system only requires that position and orientation measurements are available from the two

ships. Furthermore, no demands are placed on the availability of a dynamical model for the receiving

ship.

1.3.3 The virtual structure approach

The virtual structure approach of formation control has its origin in Lewis and Tan (1997). An iterative

algorithm is proposed to make a collection of mobile robots comply with a virtual structure, specified

as a set of desired position vectors in a local reference-frame. Each iteration in the proposed algorithm

consists of four steps. The first step is to align the virtual structure to the instantaneous position of the

robots. This involves an optimization problem where the local reference-frame is moved to minimize the

positional errors between the robots and their designated positions in the virtual structure. The second

step involves displacing the virtual structure in accordance with an underlying mission objective, e.g.

moving to a target position. The third step involves computing trajectories for each robot to catch up

1The absence of mutual influence between leaders and followers is often not included in descriptions of the leader-follower

approach in the literature. The description used herein, which is supported by e.g. Ren and Beard (2003) and Ghommem

et al. (2007), enables a more clear-cut separation with the virtual structure approach, as explained in Section 1.3.3.
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with the displaced virtual structure within an allotted time-window, while the final step involves follow-

ing the calculated trajectories. A method for ensuring reasonable displacement of the virtual structure

in the second step is also proposed by defining reachability regions for each robot (which are based on

nonholonomic constraints and limitations in actuators) and using optimization techniques.

As the origin of the virtual structure approach is found within an algorithmic framework, a natural

question to ask is how the approach translates to a general control design methodology. A common char-

acterization of the approach in the literature is that it involves treating the formation as a rigid structure

whose motion generates the desired trajectories for each agent. Although this general characterization

certainly complies with Lewis and Tan (1997), it also yields a possible overlap with the leader-follower

approach. After all, if the virtual structure moves without any consideration for the agents in the group,

it can essentially be viewed as a virtual formation leader in accordance with the leader-follower methodol-

ogy. Since we have emphasized that leaders should be unaffected by their followers in the leader-follower

approach, a natural way to separate the two approaches is to require collaboration or mutual influence

in the virtual structure approach. This characterization fits very well with Lewis and Tan (1997), as the

first step in the proposed control algorithm effectively involves feedback from the robots to the motion

of the virtual structure.

In Skjetne (2005; Chap. 6), the formation control problem is solved for fully actuated agents belong-

ing to a general class of dynamical systems. The approach consists of defining an FRF that propagates

along a parameterized path, specifying the formation as a set of vectors to be attained in the FRF, and

restating the problem as a maneuvering problem. Two designs are presented, the first of which follows

the virtual structure approach. In this design, the path variable in the path parameterization is assumed

to be available for each vessel. The dynamic update law for the variable is chosen to consist of a nominal

term corresponding to a desired speed profile along the path, and a perturbation term that tries to mini-

mize the Lyapunov function used in the control design through gradient optimization. This perturbation

term provides the feedback from the vessels to the motion of the FRF that makes the design comply with

the virtual structure approach. The gradient optimization provides some very nice robustness proper-

ties, demonstrated through simulations for marine surface vessels where one of the vessels in the group

saturates. The FRF slows down, adjusting to the weakest link in the group, ensuring that the formation

travels at a speed that all the vessels can follow.

In Egerstedt and Hu (2001), a model-independent formation control scheme is introduced. Instead

of designing control laws for the agents directly, it is assumed that tracking controllers already are im-

plemented, so that the problem can be reduced to designing intelligent reference signal generators. The

desired formation structure is specified relative to a virtual leader that moves along a parameterized

path. The reference trajectory for each agent is chosen to propagate in a direction that minimizes a

so-called formation control function, where the magnitude of the motion depends on the tracking error.

Similarly, the velocity of the virtual leader along the path depends on the tracking errors of all the agents,

slowing down when they are large and speeding up when they are small. The result is a robust scheme

guaranteeing that the reference positions converge into formation as long as the tracking controllers of

the agents can guarantee upper bounds on the tracking errors (obviously, the agents will only converge

to the formation if the tracking controllers have asymptotical convergence properties).

1.3.4 The cooperative approach

A considerable amount of work on formation control does not seem to fit comfortably into the behavioral,

leader-follower, or virtual structure veins. In these efforts, there is no explicitly stated virtual structure

or leader dictating the desired positions for all the agents. The challenge of obtaining and maintaining a
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desired formation structure is instead approached as a problem of mutual coordination and synchroniza-

tion, where the agents are controlled relative to one another with little or no restrictions to their absolute

positions (i.e. synchronization within some manifold, e.g. a parameterized path, with no restrictions on

absolute position within the manifold).

The second formation control design in Skjetne (2005; Chap. 6) follows the cooperative approach. The

assumption of a commonly known path variable from the first design is relaxed. Each agent is instead

assigned a local path variable corresponding to a local FRF, and is controlled to its correct position with

respect to this FRF. The update law for each local path variable consists of a nominal term chosen in

accordance with a speed assignment, and a perturbation term that is designed to enable asymptotical

agreement with the other local path variables. Calculation of the perturbation term for a given agent

only requires communication with a limited number of other agents, resulting in a decentralized control

scheme. Furthermore, the perturbation term incorporates gradient optimization of a local Lyapunov

function, thus retaining some of the nice robustness properties of the first design.

We now move on to the work presented in Arcak (2007) and Bai et al. (2008). Although these papers

contain specific applications to formation control, it is the general design frameworks that are interesting

in relation to this thesis. In Arcak (2007), a passivity based framework for solving a class of group coordi-

nation problems is presented. In the class of group coordination problems that is considered, the control

objective is to get coordination variables, taken as the difference between output variables for the agents

and an optional virtual leader, to converge to prescribed compact sets, while simultaneously getting the

time derivative of the output variables to converge to a function that is assumed to be known by the

agents a priori (i.e. a common velocity input). Under certain passivity assumptions on the dynamics of

the agents, the framework solves the control objectives in a decentralized manner by utilizing a communi-

cation topology. The resulting closed-loop system has a very nice property in that the trajectories of the

coordination variables are restricted to propagate in prescribed open sets. To illustrate this property, the

author solves the formation control problem for fully actuated point masses. The output variables to be

coordinated are chosen as the positions of the point masses, while the compact sets that the coordination

variables should converge to are chosen in accordance with the formation specification as a set of rigid

body constraints. Finally, the open sets that the trajectories of the coordination variables are allowed

to propagate in are chosen to exclude the origin. By doing this, local asymptotic stability is guaranteed

with the addition of collision free operations.

A special case of the design framework in Arcak (2007) occurs when the prescribed compact sets for

the coordination variables are chosen as the origin. This implies that the control objective consists of

getting the output variables of the agents, and the optional virtual leader, to converge to a common value,

thus forming a group agreement problem. The framework provides strong, global stability properties for

this special case.

In Bai et al. (2008), the authors provide an extension to the framework presented in Arcak (2007).

The assumption that the common velocity input is known by each agent a priori is relaxed. It is instead

assumed that the velocity function can be parameterized by a set of base functions that are known by

each agent. The weights in the parameterization are unknown for all but one agent (termed the leader),

so that the other agents have to estimate these. The result is an adaptive scheme which guarantees that

the coordination variables converge to their target compact sets under the same assumptions as in Arcak

(2007). Parameter convergence is however not guaranteed in the general case, which implies that the

agents not always will reach a common velocity in the limit.

In Ihle et al. (2007), the decentralized formation control scheme presented in Skjetne (2005; Chapter
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6) is extended by incorporating the ideas of Arcak (2007). The control laws are chosen identical to those

derived in Skjetne (2005). The only difference lays in the way the perturbation terms in the local path

variable update laws are computed. Two main designs are presented. In both designs, the perturbation

term for each agent is taken as the output of a prescribed static or dynamical system being passive. The

input to the abovementioned system includes a synchronization term which is calculated in accordance

with the group agreement framework in Arcak (2007). The resulting designs are shown to be robust and

flexible, retaining integrity in the case of pointwise loss of connectivity in time, and enabling vessels to

enter/leave the formation during operations.

In Olfati-Saber and Murray (2002), a cooperative formation control scheme utilizing a communication

topology and the notions of rigid and unfoldable graphs is proposed. The control laws for the agents

are taken as gradients of structural potential functions obtained from rigid body constraints representing

the desired formation structure. By imposing certain restrictions on the interconnection between the

vessels, convergence to a unique formation is guaranteed, with the addition of collision-free trajectories

and bounded control inputs.

To conclude the review of earlier work within formation control, the author would like to emphasize

that the number of published papers on the matter is vast, and that the work covered herein must be

considered as ”a tip of the iceberg”. Furthermore, the categorization of efforts into behavioral, leader-

follower, virtual structure, and cooperative approaches must be considered as quite rough, as research

efforts often combine ideas from the different approaches. An example is the control scheme proposed

in Leonard and Fiorelli (2001), where artificial potential functions are used to derive mutual interaction

forces between agents, and one-way interaction forces between agents and virtual leaders. As pointed out

in the paper, the interaction forces are designed to emulate the local behavior of individual animals mi-

grating in groups in nature. The virtual leaders are included to manipulate group geometry and motion,

and their trajectories are unaffected by the agents. It is clear that elements from both the leader-follower

and behavioral approaches are incorporated in such a design.
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1.4 Main contributions

This thesis is concerned with formation control within a path-based framework, where we ultimately

want the formation to propagate along a parameterized path at a specified speed. In the marine con-

trol community, established designs within this framework (Skjetne (2005; Chap. 6), Ihle et al. (2007),

Breivik et al. (2008)) solve the problem by controlling the individual vessels to their correct positions

relative to a point on the path. When the formation is established, it is thus already located on the path,

meaning that the task of coordinating the vessels is entwined with the path following operation. The

main contribution of this thesis is to provide designs that enable separation and prioritization between

the tasks of group coordination and path following. The idea is for the vessels to primarily establish a

formation in the vicinity of their present location, and secondarily to initiate a collective motion towards

the path when they are sufficiently coordinated. The main motivation behind this separation is safety,

as the danger of collisions during the transient motion towards the path is alleviated by ensuring that

the vessels travel in a formation structure. A related notion is system behavior during individual vessel

failures such as saturations and blackouts. By making group coordination the sole focus of the control

system whenever the vessels are out of formation, the probability of collisions during such events can be

reduced.

Other contributions of this thesis can be found within the specificities of the proposed control designs.

The first control design will demonstrate a new approach to formation control within the group coor-

dination framework of Arcak (2007). By controlling points offset from the vessels and using a special

case of the framework for group agreement problems, the design circumvents the problem with unstable

equilibria that arise by following the proposed approach. Moreover, it will be shown how the common

velocity input in the framework can be used to achieve path following. Another contribution of the thesis

is related to the third control design, where it will be shown how the generic maneuvering methodology

can be used to solve the formation control problem.
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1.5 Publications

In relation to the work on this thesis, a paper presenting a variation of the first control design has been

submitted to the 50th IEEE Conference on Decision and Control and European Control Conference, 2011.

The paper, entitled Formation control of fully-actuated marine vessels using group agreement protocols,

is included in Appendix D.



Chapter 2

Preliminaries

2.1 Notation

• Norms: The p-norm of a vector x ∈ Rn is given by |x|p :=
(∑n

i=1 |xi|p
) 1
p . For p =∞, this reduces

to |x|∞ = maxi{|xi|}. The induced p-norm of a matrix A is given by

||A||p := max
x 6=0

|Ax|p
|x|p

For convenience, the subscript will be omitted for the 2-norm and the induced 2-norm: |x| := |x|2,

||A|| := ||A||2.

• Composite vectors and matrices: For a collection of column vectors xi ∈ Rni , i = 1 . . . k, the

following convention is used:

col(x1,x2, . . . ,xk) = [x>1 ,x
>
2 , . . . ,x

>
k ]> ∈ R

∑k
i=1 ni

row(x1,x2, . . . ,xk) = [x>1 ,x
>
2 , . . . ,x

>
k ] ∈ R1×(

∑k
i=1 ni)

The ”col” prefix will sometimes be omitted for convenience. Specifically,
∣∣(x,y)

∣∣ =
∣∣col(x,y)

∣∣.

For a collection of matrices Ai ∈ Rn×n, i = 1 . . . k,

diag(A1,A2, . . . ,Ak) ∈ Rkn×kn

denotes a block diagonal matrix with the matrices Ai along the diagonal band.

• Derivatives: Total time derivatives of a function h(t) is denoted by ḣ, ḧ, etc. Partial derivatives of

functions f : Rn × Rm × R 7→ Rq, g : R 7→ R will, whenever convenient, be denoted by superscripts

prior to the argument list. Other operations will be indicated after the argument list, with partial

differentiation as the primary operation:

fx(x,y, t) =
∂f(x,y, t)

∂x
=




∂f1(x,y,t)
∂x1

. . . ∂f1(x,y,t)
∂xn

...
...

∂fq(x,y,t)
∂x1

. . .
∂fq(x,y,t)

∂xn


 ∈ Rq×n

fx(x,y, t)> =

(
∂f(x,y, t)

∂x

)>
∈ Rn×q

fx,t(x,y, t) =
∂ (fx(x,y, t))

∂t
∈ Rq×n

f t
n

(x,y, t) =
∂nf(x,y, t)

∂tn
∈ Rq

gθ
2

(θ)3 =

(
∂2g(θ)

∂θ2

)3

∈ R

16
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For single-variable scalar functions, the argument list will sometimes be omitted to save space. The

following conventions will then be used: gθ
2

= gθ
2

(θ),
(
gθ
)2

= gθ(θ)2.

2.2 Stability properties

2.2.1 Stability of equilibrium points

Consider the system

ẋ = F(t,x), (2.1)

where x ∈ Rn and x = 0 is an equilibrium point for the system. We then have the following definitions:

Definition 1. The origin of (2.1) is said to be uniformly globally stable (UGS) if there exists a function

γ ∈ K∞ such that for each (t0,x0) ∈ R× Rn the solution x(t, t0,x0) satisfies

|x(t, t0,x0)| ≤ γ(|x0|) ∀t ≥ t0 (2.2)

Definition 2. The origin of (2.1) is said to be uniformly globally asymptotically stable (UGAS) if there

exists a Class-KL function β such that for each (t0,x0) ∈ R× Rn the solution x(t, t0,x0) satisfies

|x(t, t0,x0)| ≤ β(|x0|, t− t0) ∀t ≥ t0 (2.3)

2.2.2 Set-stability

Consider the autonomous system

ẋ = F(x), (2.4)

where x ∈ Rn. In some cases, it might be of interest to examine the stability properties of a general set

A ⊂ Rn, rather than the typical compact equilibrium set Ae = {x ∈ Rn : x = xe}. With respect to

such general sets, stability is defined through bounds on the distance-to-set function

|x|A = inf
y∈A
|x− y|

For non-compact sets, it is possible for the system (2.4) to escape to infinity in finite time even though

|x|A remains bounded. In the analysis of such sets, it is therefore important to establish that the system

is forward complete, i.e. that there are no finite escape-times.

Definition 3. If the system (2.4) is forward complete, a set A ⊂ Rn is UGAS if there exists a class-KL
function β such that ∀x0 ∈ Rn, the solution x(t,x0) satisfies

|x(t,x0)|A ≤ β (|x0|A, t) , ∀t ≥ 0

Remark 1. Any nonautonomous system ẋ = f(t,x) can be made autonomous by extending the state

vector according to z := col(x, t), yielding ż = Fz(z), where Fz(z) := col(f(t,x), 1). The corresponding

initial conditions are given by z(0) = col(x0, t0), where t0 is the initial time of the original system.

2.3 Reference frames

The reader is referred to Fossen (2010) for a thorough treatment of the reference frames that are applica-

ble in marine operations. In this thesis, local operations on the sea surface are assumed. An earth-fixed

tangent frame on the sea surface, with x-axis pointing towards north and y-axis pointing towards east,

will therefore be used as a global reference frame throughout the thesis. This frame will be denoted as

the E-frame, and is assumed to be inertial.

In addition to the E-frame, several local reference frames will be utilized in this thesis:
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• Vessel body frames: Each vessel is assigned a body-fixed reference frame, termed the B-frame,

which moves and rotates with the vessel. As stated in Skjetne (2005), the origin of this frame is

typically chosen in the principle plane of symmetry, with x-axis directed from aft to fore, y-axis

directed from port to starboard, and z-axis directed from top to bottom.

• Formation reference frames: Formation reference frames will be denoted by F , with subscripts

added in the case of multiple frames. The position of origin and orientation of an FRF relative

to the E-frame will be collected in a vector referred to as the FRP. For convenience, the velocity

vector of the origin of an FRF relative to E , decomposed along the x and y-axes of the FRF, will

be termed its surge and sway velocities, respectively. Similarly, rotational motion for the frame will

be termed as yaw motion.

2.4 Vessel models

This thesis will deal with fully actuated marine surface vessels. As for any rigid body, complete dynamical

models for this class of vessels require six degrees of freedom. However, by assuming that the heave, roll

and pitch motion excited by the environment and the control action of the actuators are sufficiently small

(These are valid assumptions for vessels with large longitudinal and transversal metacentric heights), the

work space of the vessels can be limited to two-dimensional planar motion (herein, along the E-frame),

and the configuration space will be three dimensional, consisting of two position-variables (the north

and east positions) and one orientation variable (the yaw angle). Dynamical models for marine surface

vessels that are simplified according to the previous discussion are derived in Fossen (2010). Two of

these models will now be introduced, one excluding all environmental disturbances, and one including a

constant environmental disturbance in the E-frame.

2.4.1 Dynamical model without environmental disturbances

The following three degree-of-freedom model is given in Fossen (2010):

η̇i = R(ψi)νi (2.5a)

Miν̇i + Di(νi)νi + Ci(νi)νi = τ i (2.5b)

Here, ηi = col(xi, yi, ψi) ∈ R3 contains the north position (xi), east position (yi), and yaw angle (ψi) of

the i’th vessel in the E-frame, νi = col(ui, vi, ri) ∈ R3 is a generalized velocity vector, decomposed in the

B-frame, containing velocity components in surge, sway, and yaw, and τ i is a generalized commanded

force vector decomposed in the B-frame. Furthermore, the matrix

R(ψi) =




cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1




is the rotation matrix in yaw satisfying

R(ψi)R(ψi)
> = R(ψi)

>R(ψi) = I3×3

Ṙ(ψi) = R(ψi)Sψ̇i = R(ψi)Sri

S =




0 −1 0

1 0 0

0 0 0




Finally, the matrices Mi, Di(vi) and Ci(vi), corresponding to total mass (i.e. including added mass),

damping and centripetal/Coriolis forces respectively, are assumed to satisfy the following properties:

Mi = M>
i > 0 (2.6)
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q>Di(vi)q > 0 ∀q 6= 0, ∀νi ∈ R3 (2.7)

Ci(vi) = −Ci(vi)
> ∀νi ∈ R3 (2.8)

It is noted that during maneuvering at forward speed, the assumption of a constant, symmetric, positive

definite mass matrix may be violated due to added mass effects. The assumption will, however, still be

used throughout the thesis.

2.4.2 Dynamical model including a constant environmental disturbance

The model (2.5) can be extended by including a constant environmental disturbance b = col(bN , bE , bψ) ∈
R3 containing disturbance forces in the north and east directions and a disturbance moment in yaw. A

disturbance of this kind will model the effect of steady ocean currents and mean wind with acceptable

accuracy for control purposes. The extended model can be expressed as:

η̇i = R(ψi)νi (2.9a)

Miν̇i + Di(νi)νi + Ci(νi)νi = τ i + R(ψi)
>b (2.9b)

ḃ = 0 (2.9c)

2.5 Communication topology

In order to control a group of vessels in formation, the vessels must be able to communicate. However,

due to costs or other restrictions, it might not be desirable to have a line of communication between every

pair of vessels. Such restrictions on communication, which can be used to enforce a decentralized versus a

centralized design, can be introduced through a communication topology. For the first two control designs

of this thesis, a communication topology will be specified through a communication graph, in accordance

with Arcak (2007). Two nodes in the graph can exchange state information if and only if there is an edge

between them. The graph will be explicitly stated through the incidence matrix B ∈ Rr×p, where, r is

the number of vessels, and p is the number of communication links (edges in the graph). The entries of

B are defined as follows:

bij =





+1 if the i’th node is the positive end of the j’th communication link

−1 if the i’th node is the negative end of the j’th communication link

0 if the i’th node is not a part of the j’th communication link

(2.10)

An important thing to note is that the incidence matrix will be used to describe two-way communication

paths between the nodes. If there exists a link between a pair of nodes, both can send and receive infor-

mation. Hence, whether a vessel is at the positive or negative end of a link is of no importance.

An important assumption that will be utilized in the control designs is related to the notion of con-

nectivity of a communication graph. A communication graph is connected if it is possible to get from

any node in the graph to any other node by following the edges of the graph (where there are no restric-

tions on the direction you can travel along an edge). With regards to formation control, it is natural to

require that the communication graph is connected for certain periods of time. After all, if the graph is

disconnected for all time, the vessels are divided into different groups that cannot communicate with each

other, making it impossible to coordinate the group as a whole. In Arcak (2007) and Ihle et al. (2007),

results are obtained for the case where connectivity can be established in an integral sense, which allows

for pointwise loss of connectivity in time. Herein, the control designs will be based on the assumption

that the communication graph is connected for all time. Furthermore, it will be assumed that there are

no cycles in the graph:

Assumption 1. The communication graph is connected at all times, and it does not contain any cycles.

Moreover, there exists at most one edge between any given pair of vertices.
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For a graph containing r vertices, an absence of cycles requires that there can be at most r− 1 edges

in the communication graph (assuming that only one edge can exist between any pair of vertices, this

is indeed a necessary condition). Since connectivity requires that there must be at least r − 1 edges in

the communication graph, Assumption 1 implies that the communication graph contains exactly r − 1

edges. As stated in Arcak (2007), the incidence matrix will have rank r− 1 when the graph is connected.

We thus have that the range space of B>, denoted R(B>), is equal to Rr−1 whenever Assumption 1

is satisfied. This fact will be used to obtain global stability results for the first two control designs of

Chapter 3.

2.6 Kronecker products

As stated in Arcak (2007), the Kronecker product between two matrices A ∈ Rm×n and B ∈ Rp×q is

given by

A⊗B =




a11B . . . a1nB
...

. . .
...

am1B . . . amnB


 ∈ Rmp×nq,

and satisfies the following properties:

(A⊗B)> = A> ⊗B>

(A⊗ Ip)(C⊗ Ip) = (AC)⊗ Ip

Here, Ip ∈ Rp×p is the identity matrix, and C is assumed to be compatible for multiplication with A.



Chapter 3

Formation Control Design

3.1 Introduction

This chapter is concerned with control design for the Formation Control Problem, which is chosen to

consist of two distinct tasks. In the Group Coordination Task, the objective is is to get the vessels in

the group to obtain specified relative positions in a formation reference frame F , whose position and

orientation with respect to the E-frame may be arbitrary. The Formation Mission Task is concerned

with getting the formation as a whole to fulfill its operational objective, which herein involves following

a specified parameterized path at a specified speed. In accordance with Section 1.4, the task of group

coordination is given the highest priority, and should be fulfilled sufficiently before the formation mission

task is pursued.

Figure 3.1: Illustration of the group coordination and formation mission tasks.

Three control designs solving the formation control problem will be presented. The first two designs are

closely related and lay heavily within the cooperative approach described in Section 1.3.4. By controlling

points offset from the vessels, group coordination is pursued through the group agreement protocols of

Arcak (2007), while path following is targeted through the maneuvering methodology of Skjetne (2005).

21
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The third design is is in the vein of the virtual structure approach, targeting group coordination through

the generic maneuvering methodology, and path following through the helmsman-like LOS algorithm

presented in Skjetne et al. (2011).
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3.2 Design 1: Formation control using group agreement proto-

cols

In the first design, the decentralized group agreement protocols of Arcak (2007) will be combined with

ideas from the maneuvering methodology of Skjetne (2005) to solve the formation control problem. The

design has been altered slightly from the version presented in the conference paper in Appendix D.

Instead of transforming the dynamical models of the vessels into the E-frame prior to performing the

control design, the model (2.5) is utilized directly, resulting in control laws where the damping gain

matrix for each vessel is specified in the B-frame instead of the E-frame.

3.2.1 Setup

Consider a group of r vessels to be controlled in formation, and let each vessel in the formation be

identified by a unique identifier in the index set I = {1, . . . , r}. The desired configuration of each vessel

in the formation is given by a possibly time-varying configuration vector in the local formation reference

frame F , denoted li(t) := col(xci(t), yci(t), ψci(t)). Each vessel is now assigned an individual formation

reference frame Fi, which moves with the vessel in such a way that the generalized position of the vessel

relative to Fi is equal to the formation configuration vector. The orientation and position of origin of Fi
in the E-frame is thus given by

x0i(ηi, t) := ηi −R (ψi − ψci(t)) li(t), (3.1)

where x0i = col(x0i, y0i, ψ0i) is the FRP for Vessel i. Through this setup, group coordination is achieved

when all Fi, i ∈ I, are synchronized into a common F , that is, if x01 = x02 = . . . = x0r.

Assumption 2. The configuration vectors li(t) ∈ C2, and ∃ lmax < ∞ such that ∀i ∈ I and ∀t ≥ t0,

then max{|li(t)|, |l̇i(t)|} ≤ lmax.

To address the formation mission task, the strategy is that one vessel, denoted as the acting leader

of the formation, will ensure path following. When all vessels are coordinated, this will indirectly ensure

that the formation as a whole executes its path following mission. Without loss of generality, Vessel 1 is

set as the acting leader, and path following is targeted as a maneuvering problem involving a geometric

task and a dynamic task.

The geometric task is to get the FRP of the acting leader to converge to and follow the desired curve

given by the set of points

P = {x ∈ R3 : ∃θ s.t. x = pd(θ)}, (3.2)

where pd(θ) := col(xd(θ), yd(θ), ψd(θ)), with (xd(·), yd(·)) sufficiently smooth functions parameterized by

the scalar variable θ, and

ψd(θ) = arctan

(
yθd(θ)

xθd(θ)

)
(3.3)

chosen as the direction of the tangential vector to the path in each point (xd(θ), yd(θ)).
1

The dynamic task is represented by a desired speed assignment vs(θ, t) for θ̇, which typically is designed

to set up a constant speed in [m/s] for the formation along the path.

Assumption 3. The path pd(θ) ∈ C2, and the speed assignment vs(θ, t) ∈ C1. There exists d <∞ such

that ∀θ ∈ R and ∀t ≥ t0, then max{|pθd(θ)|, |vs(θ, t)|} ≤ d.

1To ensure correct quadrant mapping, a four quadrant version of the arctan(·) function should be used for implementation,

e.g. the atan2 function in Matlab.



24 FORMATION CONTROL DESIGN

3.2.2 Problem statement

The control problem can now be formally stated by the following two objectives:

Group coordination objective: To develop synchronization control laws to ensure that

lim
t→∞

|x0i(t)− x0j(t)| = 0 ∀i, j ∈ I. (3.4)

Formation mission objective: To develop a maneuvering control law to ensure that

lim
t→∞

|x01(t)− pd(θ(t))| = 0, (3.5)

lim
t→∞

|θ̇(t)− vs(θ(t), t)| = 0. (3.6)

As mentioned earlier, the coordination objective is of primary concern and should be achieved before

the mission objective is pursued. The main reason for this is that having the vessels in formation is a

measure for avoiding inter-vessel collision, especially during the transients when converging to the path.

3.2.3 Control design

3.2.3.1 Group coordination task

In order to design control laws to achieve group coordination, the passivity-based group agreement pro-

tocols presented in Arcak (2007) are used. For the vessels with dynamics (2.5) and outputs (3.1), the

protocols are used to achieve (3.4) and

lim
t→∞

|ẋ0i(t)− vd(t)| = 0 ∀i ∈ I, (3.7)

where vd(t) is a common velocity input to all vessels that later will be used as a degree-of-freedom to

solve the formation mission task.

Establishing passivity: Motivated by the outline in Arcak (2007), the first step of the control design

is to construct partial control laws that transform the vessel dynamics (2.5) to strictly state passive

dynamical systems from auxiliary control inputs αi to the outputs2

ζi := R(ψi)
> (ẋ0i − vd) i ∈ I. (3.8)

Defining f1i(ηi, t) := R (ψi − ψci(t)) li(t) and f2i(ηi,νi,vd, t) := R(ψi)
>(ḟ1i+vd), ζi can be alternatively

expressed as

ζi = R(ψi)
>(η̇i − ḟ1i − vd)

= νi − f2i,

yielding the dynamics

Miζ̇i = Miν̇i −Miḟ2i

= τ i −Di(νi)ζi −Ci(νi)ζi −Di(νi)f2i −Ci(νi)f2i −Miḟ2i

Choosing the control inputs as

τ i = Di(νi)f2i + Ci(νi)f2i + Miḟ2i −Kdiζi +αi, Kdi = Kd
>
i > 0, (3.9)

gives the desired passivity properties. To show this, the following positive definite and radially unbounded

functions are utilized:

Sζi(ζi) :=
1

2
ζ>i Miζi (3.10)

2This deviates slightly from the framework in Arcak (2007), where the outputs are set as ζi := ẋ0i − vd.
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Taking time derivatives and using the properties (2.7),(2.8) yields

Ṡζi = ζ>i Miζ̇i

= ζ>i (−Di(νi)ζi −Kdiζi −Ci(νi)ζi +αi)

≤ −ζ>i Kdiζi + ζ>i αi,

which proves the claim.

Synchronization: To complete the first part of the control design, we need to specify the auxiliary

control inputs αi. These functions will enable the vessels to synchronize in the limit. Motivated by Arcak

(2007), the functions are chosen as

αi = −R(ψi)
>
(

p∑

k=1

bikγk(zk)

)
i ∈ I, (3.11)

where B = {bij} ∈ Rr×p is the incidence matrix of the communication graph3. For the k’th link

connecting vessels with indexes m and n, zk is the synchronization error between the vessels corresponding

to

zk :=

r∑

i=1

bikx0i =

{
x0m − x0n if m is the positive end

x0n − x0m if m is the negative end
(3.12)

Furthermore, we have that

γk(zk) =

(
∂Pk(zk)

∂zk

)>
∈ R3, (3.13)

where according to Arcak (2007), the functions Pk : R3 7→ R shall satisfy:

Pk ∈ C2 (3.14a)

Pk(zk) > 0 ∀zk 6= 0 (3.14b)

Pk(zk)→∞ as |zk| → ∞ (3.14c)

z>k

(
∂Pk(zk)

∂zk

)>
> 0 ∀zk 6= 0. (3.14d)

Examining (3.11) shows that the synchronizing control input for each vessel consists of feedback from

the synchronization errors between the vessel and its ”neighbors” in the communication topology. This

corresponds to a decentralized design that necessitates only limited inter-vessel communication.

3.2.3.2 Formation mission task

Define q as the path following error between the FRP of the acting leader and its desired position pd(θ)

on the path:

q(x01, θ) := x01 − pd(θ), q ∈ R3. (3.15)

Since ẋ01 = R(ψ1)ζ1 + vd, the dynamics of q becomes

q̇ = vd − pθd(θ)θ̇ + R(ψ1)ζ1,

where ζ1 is the synchronization velocity error (3.8) for the acting leader. In the next step, control laws

for vd and θ̇ will be designed in order to solve (3.5) and (3.6). The design will be based on the certainty

equivalence ζ1 = 0, while a thorough analysis is given in Section 3.2.4.

3According to Assumption 1 in Section 2.5, the number of columns in B must be p = r − 1.
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Maneuvering control design: To stabilize {q = 0}, we select a Hurwitz matrix A ∈ R3×3 together

with P = P> > 0 satisfying PA + A>P = −Q for a given Q = Q> > 0, and consider the CLF

Vq(x01, θ) = q(x01, θ)
>Pq(x01, θ). (3.16)

A simple choice for vd and θ̇ is

vd = Aq(x01, θ) + pθd(θ)vs(θ, t),

θ̇ = vs(θ, t).

This choice stabilizes the path-following error {q = 0} through q̇ = Aq (also verified by V̇q = −q>Qq)

for ζ1 = 0. Additionally, it satisfies the speed assignment along the path (3.6) identically. However, the

above control law has some severe flaws. The most notable is that the vessels will continuously receive

a commanded velocity that drives them towards the path, irrespective of how well they are coordinated.

To remedy this problem and ensure that coordination is handled with higher priority than path following,

the terms Aq and vs(θ, t) in the maneuvering control law will be weighted by functions that map the

synchronization errors into scalar weight signals. These signals should vanish for large synchronization

errors and be equal to unity when synchronized. Effectively, this means that the vessels will ”forget the

path” while synchronizing. To this end, the functions σk : R≥0 7→ R>0, k = 1, 2, are introduced, which

should be continuously differentiable, monotonically decreasing, and satisfy

σk(0) = 1 (3.17a)

lim
s→∞

σk(s) = 0. (3.17b)

As input to these functions, we use |z|2L1
:= z>L1z, where z = col(z1, . . . , zp), z ∈ R3p, and L1 = L>1 ≥ 0

is a weight matrix used to tune the gains for position and orientation errors4 in z. To enable control of

the transient movement towards the path after the vessels have synchronized, the term vs(θ, t) will be

scaled with an additional function that maps the path following error q to a scalar weight signal. This

function can be chosen to have the same properties as the functions σk(·), or equal to unity (the effect of

this choice will be discussed later). This is formalized by introducing the function β : R≥0 7→ R>0, which

should be C1, monotonically decreasing, and satisfy

β(0) = 1 (3.18)

As input to the function , we use |q|2L2
:= q>L2q, where L2 = L>2 ≥ 0 is a weight matrix. With these

activation functions defined, the maneuvering control law is assigned as

vd = σ1(|z|2L1
)Aq(x01, θ) + σ2(|z|2L1

)β(|q|2L2
)pθd(θ)vs(θ, t) (3.19)

θ̇ = σ2(|z|2L1
)β(|q|2L2

)vs(θ, t)− ω, (3.20)

where ω is a free input used to shape the transient movement of pd(θ). In the path following error q, the

closed-loop dynamics now become

q̇ = σ1(|z|2L1
)Aq + pθd(θ)ω + R(ψ1)ζ1 (3.21)

Motivated by the gradient optimization designs in Skjetne (2005), ω is assigned as

ω = µ(θ)V θq (x01, θ) = −2µ(θ)q(x01, θ)
>Ppθd(θ), (3.22)

where in contrast to Skjetne (2005), µ(θ) > 0 is designed as a function of θ to allow normalization with

respect to path parameterization. This ensures that the speed of the gradient minimization is independent

of how a certain path is parameterized (see Section 3.2.6 for an example of how this is done).

4The gains should be selected to normalize the position and orientation errors in |z|2L1
. See Section 3.2.5.4 for details.
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Assumption 4. The gain µ(θ) ∈ C1, and ∃µmax <∞ so that ∀θ ∈ R, then 0 < µ(θ) ≤ µmax.

Differentiating (3.16) with respect to time now yields

V̇q = −σ1(|z|2L1
)q>Qq + 2q>Ppθd(θ)ω + 2q>PR(ψ1)ζ1 (3.23)

= −σ1(|z|2L1
)q>Qq− µ(θ)V θq (x01, θ)

2 + 2q>PR(ψ1)ζ1

≤ −σ1(|z|2L1
)q>Qq + 2q>PR(ψ1)ζ1

For z confined to compact sets by the control design for group coordination, it follows for ζ1 = 0 that

(3.5) is satisfied by (3.15). Furthermore, (3.6) is satisfied as z(t)→ 0. A detailed analysis of stability for

the complete closed-loop system is provided in Section 3.2.4.

Operation phases: The activation functions σk(·) were introduced to enable the desired priority levels

between the group coordination and formation mission tasks, resulting in an operation effectively divided

into a coordination phase and a path following phase.

• Coordination phase: By proper design, the functions σ1(|z|2L1
) and σ2(|z|2L1

) can attain arbitrarily

small values for |z|L ≥ c, where c is a set threshold value. This ensures that the common velocity

input (3.19) to each vessel is close to zero when the synchronization errors are large. As the

synchronization errors typically are large in the beginning of an operation, the result is a low-speed

coordination phase where the vessels positions themselves relatively to the group without paying

any attention to the path following objective. During this phase, the dynamics of θ is approximately

reduced to

θ̇ ≈ −µ(θ)V θq (x01, θ),

which shows that the point pd(θ(t)) will move to a favorable position along the path by minimizing

θ 7→ Vq(x01, θ), and wait there until the group becomes coordinated.

• Path following phase: After the vessels are sufficiently coordinated, the path following phase

is initiated by a collective movement towards the path. This comes as a result of the functions

σ1(|z|2L1
) and σ2(|z|2L1

) approaching unity, thereby activating the maneuvering feedback and feed-

forward terms in the common velocity input (3.19). The transient behavior during this phase can

be manipulated through shaping of the function β(·). The first option is to design β(·) so that

the function vanishes for large inputs, thereby sharing the properties of the activation functions

σ1(·), σ2(·). Through proper tuning, β(|q|2L2
) can then attain arbitrarily small values for |q|L2

≥ c,
where c is a chosen threshold value. The dynamics of θ will then remain θ̇ ≈ −µ(θ)V θq (x01, θ) during

the transient motion towards the path, while the common velocity input will satisfy vd ≈ Aq. The

result is a strong separation between the geometric and dynamic tasks of the formation mission

objective, where collaboration between the common velocity input and the movement of pd(θ) will

make the formation take the shortest way to the path, prior to initiation of forward movement along

the path. The second option for β(·) is choosing the function identically equal to unity. This will

drive pd(θ) along the path according to vs(θ, t) immediately after the vessels have established the

formation. The result is a maneuvering design along the lines of Skjetne (2005), where the gradient

optimization is the sole provider of separation between the geometric and dynamic tasks.
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3.2.4 Stability analysis

3.2.4.1 Preliminary definitions and properties

Define

x0 := col(x01, . . . ,x0r) ∈ R3r (3.24)

ψ := col(ψ1, . . . , ψr) ∈ Rr (3.25)

ν̄ := col(ν1, . . . ,νr) ∈ R3r (3.26)

R̄(ψ) := diag (R(ψ1), . . . ,R(ψr)) ∈ R3r×3r (3.27)

α(z,ψ) := col (α1(z, ψ1), . . . ,αr(z, ψr)) ∈ R3r (3.28)

γ(z) := col(γ1(z1), . . . ,γp(zp)) ∈ R3p (3.29)

ζ := col(ζ1, . . . , ζr) ∈ R3r (3.30)

Υ := 1r ⊗ vd ∈ R3r, (3.31)

where, 1r ∈ Rr is the vector of ones. From the definition of ζi and equations (3.11), (3.12), it is verified

that the vectors x0, z, and α satisfy

ẋ0 = R̄(ψ)ζ + Υ, (3.32)

z = (B> ⊗ I3)x0, (3.33)

α(z,ψ) = −R̄(ψ)>(B⊗ I3)γ(z), (3.34)

where I3 ∈ R3×3 is the identity matrix. Furthermore, since the sum of entries in any column of B is

equal to zero, the basis for the nullspace N (B> ⊗ I3) is

{
u ∈ R3r : u = 1r ⊗ c, c ∈ R3

}
, (3.35)

from which it follows

(B> ⊗ I3)Υ = 0. (3.36)

A consequence of the connectivity assumption on the communication graph is the following lemma:

Lemma 1. For a connected communication graph with r nodes, p edges and index set I, then ∀i, j ∈ I
there exists Kij = [a1I3, a2I3, . . . , apI3] ∈ R3×3p, with al ∈ {−1, 0, 1}, l = 1 . . . p, such that

x0i − x0j = Kijz.

Proof. See Appendix C.1.

3.2.4.2 Closed-loop system

In terms of the error variables in the system, the closed-loop dynamics are given by

Miζ̇i = −Ci(νi)ζi −Di(νi)ζi −Kdiζi +αi(z, ψi), i ∈ I (3.37)

ż = (B> ⊗ I3)R̄(ψ)ζ (3.38)

q̇ = σ1(|z|2L1
)Aq− 2µ(θ)pθd(θ)q

>Ppθd(θ) + R(ψ1)ζ1 (3.39)

θ̇ = σ2(|z|2L1
)β(|q|2L2

)vs(θ, t) + 2µ(θ)q>Ppθd(θ). (3.40)

Utilizing Lemma 1, it is verified that ψi can be expressed as

ψi = ψ0i + ψci(t)

= e> (Ki1z + q + pd(θ)) + ψci(t)
∣∣e = col(0, 0, 1)
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Furthermore, we have that

νi = ζi + f2i

= ζi + R(ψi)
>
(
vd + R(ψi − ψci(t))

(
l̇i(t) + Sli(t)

(
e>νi − ψ̇ci(t)

)))
,

which after rearranging yields

νi = (I3 −R(ψci(t))
>Sli(t)e

>)−1
(
ζi + R(ψi)

>vd + R(ψci(t))
>
(
l̇i(t)− Sli(t)ψ̇ci(t)

))
, (3.41)

where it is easily verified that

(I3 −R(ψci(t))
>Sli(t)e

>)−1 = (I3 + R(ψci(t))
>Sli(t)e

>)

By defining

χ := col(z, ζ,q) ∈ R3(p+r+1), (3.42)

we can thus write the closed-loop dynamics compactly as
[
χ̇

θ̇

]
=

[
fχ(t,χ, θ)

fθ(t,χ, θ)

]
=: F(t,χ, θ). (3.43)

Note that in general, the closed-loop error dynamics are valid for (z, ζ,q, θ) ∈ {R
(
B>⊗I3

)
×R3r×R3×R}.

From Assumption 1, however, we have that R(B>) = Rp, which implies that R
(
B> ⊗ I3

)
= R3p. This

means that the stated closed-loop dynamics are valid over the entire state space, which enables a global

stability result.

The main result for the first design is stated in the following theorem:

Theorem 1. Under assumptions 1 – 4, the control laws laws (3.9), (3.19), (3.20), and (3.22) render the

closed-loop system (3.43) forward complete and the set A = {(χ, θ, t) : χ = 0} UGAS. This solves the

control objectives (3.4), (3.5), and (3.6).

3.2.4.3 Proof of Theorem 1

Forward completeness: Define the function

Vz,ζ(χ) :=

p∑

k=1

Pk(zk) +

r∑

i=1

Sζi(ζi) (3.44)

Since this function is both positive definite and radially unbounded in (z, ζ), by Khalil (2002; Lemma

4.3) there exists class-K∞ functions φ1, φ2 so that

φ1(|(z, ζ)|) ≤ Vz,ζ ≤ φ2(|(z, ζ)|). (3.45)

Differentiating (3.44) yields

V̇z,ζ =

[
∂

∂z

(
p∑

k=1

Pk(zk)

)]
ż +

r∑

i=1

Ṡζ,i

≤ γ(z)>(B> ⊗ I3)R̄(ψ)ζ +

r∑

i=1

(−ζ>i Kdiζi + ζ>i αi)

=
(
R̄(ψ)>(B⊗ I3)γ(z)

)>
ζ +

r∑

i=1

(−ζ>i Kdiζi + ζ>i αi)

= −α>ζ −
r∑

i=1

(ζ>i Kdiζi) + ζ>α

= −
r∑

i=1

(ζ>i Kdiζi) ≤ 0 (3.46)
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Since V̇z,ζ ≤ 0, this implies for all t in the maximum interval of existence [t0, T ), that Vz,ζ(t) ≤ Vz,ζ(t0).

Combining this with (3.45) yields

∣∣(z(t), ζ(t)
)∣∣ ≤ φ3

(∣∣ (z(t0), ζ(t0))
∣∣) (3.47)

where φ3(·) := φ−1
1 ◦ φ2(·) ∈ K∞.

Next, consider the positive definite, radially unbounded function (3.16) satisfying

λmin,P |q|2 ≤ Vq ≤ λmax,P |q|2. (3.48)

On the time interval [t0, T ), the bounds (3.47) and the fact that σ1(·) is monotonically decreasing give a

lower bound on σ1(|z(t)|2L1
) according to

σ1(|z(t)|2L1
) ≥ σ1

(
||L1||φ3

(∣∣ (z(t0), ζ(t0))
∣∣)2
)

=: ε1. (3.49)

From (3.23) we then get the following over [t0, T ), noting that ||R(ψ)|| = 1 ∀ψ ∈ R:

V̇q ≤ −ε1q>Qq + 2q>PR(ψ1)ζ1

≤ −ε1λmin,Q|q|2 + 2|q|||P|||ζ1|

≤ −1

2
ε1λmin,Q|q|2 ∀|q| ≥ 4||P||

ε1λmin,Q
|ζ1|

For

|q| ≥ 4||P||φ3

(∣∣ (z(t0), ζ(t0))
∣∣)

ε1λmin,Q
=: ε2,

we are thus guaranteed V̇q ≤ 0, which yields

Vq(t) ≤ max{Vq(q(t0)), sup
|q|=ε2

Vq(q)}

≤ Vq(q(t0)) + sup
|q|=ε2

Vq(q)

≤ λmax,P |q(t0)|2 + λmax,P ε
2
2 ∀t ∈ [t0, T ).

From this, we finally get uniform upper bounds for |q(t)| over the time interval [t0, T ):

|q(t)| ≤
√
λmax,P
λmin,P

(|q(t0)|+ ε2) (3.50)

Combining this with assumptions 3 and 4, we achieve a uniform upper bound for |θ̇| over [t0, T ), which

shows that there cannot be a finite escape time for the system (3.43), i.e. T = +∞. By a locally Lip-

schitz property of the closed-loop system, it is concluded that the solutions θ(t) and χ(t) exist and are

continuous functions over [t0,∞).

For the remainder of the analysis, θ will be treated as an external input, continuous in time, that

enters the dynamics of χ. Stability of the origin of

χ̇ = f(t,χ), (3.51)

where f(t,χ) := fχ(t,χ, θ(t)), will be investigated by the means of the Nested Matrosov Theorem for

time-varying systems, presented in Loria et al. (2005). The theorem is included in Appendix A.1 for the

sake of self-containment.
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Uniform Global Stability: To apply the Nested Matrosov Theorem, UGS of the origin is first estab-

lished. By forward completeness of the closed-loop system, the bounds in (3.47) and (3.50) hold ∀t ≥ t0.

Since |χ| ≤ |
(
z, ζ
)
|+ |q|, |χ| ≥ |

(
z, ζ
)
|, and |χ| ≥ |q|, we have that

|χ(t)| ≤ φ3

(∣∣ (z(t0), ζ(t0))
∣∣)+

√
λmax,P
λmin,P

[
|q(t0)|+ 4||P||φ3

(∣∣ (z(t0), ζ(t0))
∣∣)

ε1λmin,Q

]

≤ φ3 (|χ(t0)|) +
√
λmax,P
λmin,P

[
|χ(t0)|+ 4||P||φ3 (|χ(t0)|)

λmin,Qσ1

(
||L1||φ3 (|χ(t0)|)2

)
]

=: φ4(|χ(t0)|)

Since φ3(·) ∈ K∞ and σ1(·) is monotonically decreasing and strictly positive, we have that φ4(·) ∈ K∞,

which shows that the origin is UGS.

Uniform Global Asymptotic Stability: Defining

V0(χ) := Vz,ζ(χ), (3.52)

we have from (3.46) that

V̇0(t,χ) ≤
r∑

i=1

(−ζ>i Kdiζi) =: Y0(χ) ≤ 0 ∀χ, (3.53)

where it is noted that Y0(χ) = 0 implies ζ = 0. Now, define the first auxiliary function5

V1(t,χ) := z>(B⊗ I3)‡R̄(ψ)M̄ζ, (3.54)

where

M̄ := diag(M1, . . . ,Mr) ∈ R3r×3r, (3.55)

and (B⊗ I3)‡ ∈ R3p×3r is the Moore-Penrose pseudo-inverse of (B⊗ I3) satisfying

(B⊗ I3)(B⊗ I3)‡(B⊗ I3) = (B⊗ I3)

Differentiating (3.54) with respect to time yields

V̇1(t,χ) = ζ>R̄(ψ)>(B⊗ I3)(B⊗ I3)‡R̄(ψ)M̄ζ

+ z>(B⊗ I3)‡
( ˙̄R(ψ, ν̄)M̄ζ + R̄(ψ)M̄ζ̇

)

=: Y1(χ,φ(t,χ))

Here, all time dependent terms of V̇1(t,χ) have been collected in the vector φ(t,χ), defined as

φ(t,χ) := col(R̄(ψ)ζ, R̄(ψ)M̄ζ, ˙̄R(ψ, ν̄)M̄ζ, R̄(ψ)M̄ζ̇) (3.56)

Evaluating Y1(χ,φ(t,χ)) at ζ = 0, and using (3.37) yields:

Y1(χ,φ(t,χ))

∣∣∣∣
ζ=0

= z>(B⊗ I3)‡R̄(ψ)(M̄ζ̇)

∣∣∣∣
ζ=0

= z>(B⊗ I3)‡R̄(ψ)α(z,ψ)

= −z>(B⊗ I3)‡R̄(ψ)R̄(ψ)>(B⊗ I3)γ(z)

= −x0
>(B⊗ I3)(B⊗ I3)‡(B⊗ I3)γ(z)

= −x0
>(B⊗ I3)γ(z)

= −z>γ(z) < 0 ∀z 6= 0

5The time dependency of this function is due to the heading angles of the vessels being time dependent after the change

of variables, as shown in Section 3.2.4.2.
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The last inequality follows from the definition of γk(zk) in (3.13) and the properties listed in (3.14). Now,

define the second auxiliary function

V2(χ) := Vq(q) (3.57)

which satisfies

V̇2 ≤ −σ1(|z|2L1
)q>Qq + 2q>PR(ψ1)ζ1 =: Y2(χ,φ(t,χ)) (3.58)

Evaluating Y2(χ,φ(t,χ)) at ζ, z = 0 yields

Y2(χ)

∣∣∣∣
ζ,z=0

= −q>Qq < 0 ∀q 6= 0

It will now be shown that all assumptions of Theorem A.1 are fulfilled.

1: The origin of (3.51) has been shown to UGS, and Assumption 1 of Theorem A.1 is thus satisfied.

2: By continuity of θ(t) and the smoothness assumptions on pd(θ), Pk(zk), and li(t), we have that

V0(χ),V1(t,χ),V2(χ), ∂V0(χ)
∂χ ,∂V1(t,χ)

∂χ ,∂V2(χ)
∂χ are continuous on any set [a, b] × D, where [a, b] ⊂ [t0,∞),

D ⊂ R3(p+r+1). By Khalil (2002; Lemma 3.2), the functions Vi(t,χ) are thus locally Lipschitz over

[t0,∞)×R3(r+p+1). Since Y0(χ), Y1(χ,φ), Y2(χ,φ) are continuous in their arguments, the only thing left

to show for Assumption 2 of Theorem A.1 to be satisfied is that there exists uniform upper bounds on

|Vi(t,χ)| and |φ(t,χ)| for any given upper bound on |χ|. Uniform upper bounds on |V0(χ)|, |V2(χ)| follows

from (3.45) and (3.48), while bounds on |V1(t,χ)| is established by using the Cauchy-Schwarz inequality,

noting that the norm of the block-diagonal matrix R̄(ψ) is uniformly upper bounded by the property

||R(ψ)|| ≡ 1. To see that the bound on |φ(t,χ)| holds, first note that the norms of νi, i ∈ I, are bounded

for bounded |χ| by (3.41) and assumptions 2 – 3. Uniform upper bounds on |Ṙ(ψi,νi)| = |R(ψi)Se>νi|
follows, which in turn shows that | ˙̄R(ψ, ν̄)M̄ζ| is uniformly upper bounded. Since |R̄(ψ)ζ|, |R̄(ψ)M̄ζ|
and |R̄(ψ)M̄ζ̇| also are uniformly upper bounded for bounded |χ| (the latter follows from (3.37) and the

bounds on |νi|), it is concluded that a uniform upper bound on |φ(t,χ)| can be established for any given

upper bound on |χ|. Assumption 2 of Theorem A.1 is thus satisfied.

3: Since

Y0(χ) ≤ 0 ∀χ,
Y0(χ) = 0⇒ Y1(χ,φ(t,χ)) ≤ 0 ∀χ,φ,

Y0(χ), Y1(χ,φ(t,χ)) = 0⇒ Y2(χ,φ(t,χ)) ≤ 0 ∀χ,φ,

assumption 3 is satisfied.

4: Since

Y0(χ) = 0⇒ ζ = 0,

Y1(χ,φ(t,χ))

∣∣∣∣
ζ=0

= 0⇒ z = 0,

Y2(χ,φ(t,χ))

∣∣∣∣
ζ,z=0

= 0⇒ q = 0,

we have that Y0(χ), Y1(χ,φ(t,χ)), Y2(χ,φ(t,χ)) = 0 together imply χ = 0. Assumption 4 is thus satis-

fied.
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All assumptions of Theorem A.1 is satisfied, and UGAS for the origin of (3.51) is concluded. Noting that

|(χ, θ, t)|A = |χ|, this proves UGAS for the set A.

Fulfillment of control objectives: We now have that

lim
t→∞

(|z(t)|, |ζ(t)|, |q(t)|) = 0

By the definition of q, the control objective (3.5) is satisfied. Fulfillment of (3.4) and (3.6) follows from

Lemma 1 and the closed loop dynamics of θ in (3.40), respectively. The reader is referred to Appendix

C.2 for a formal proof of this last statement. �
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3.2.5 Practical considerations

3.2.5.1 Notes on implementation

The control design is summarized in Table 3.1

Control laws τ i = Di(νi)f2i + Ci(νi)f2i + Miḟ2i −Kdi(νi − f2i) +αi(z, ψi)

Internal dynamic

variables

θ̇ = σ2(|z|2L1
)β(|q|2L2

)vs(θ, t) + 2µ(θ)q>Ppθd(θ)

Parameters Kdi = Kd
T
i > 0

A Hurwitz

P = PT > 0 satisfying PA + A>P = −Q for some Q = Q> > 0

L1 = L>1 ≥ 0, L2 = L>2 ≥ 0

Signals

αi(z, ψi) is given jointly by (3.11)–(3.14)

q = x0j∗ − pd(θ) (j∗ ∈ I is the index of the assigned acting leader)

x0i = ηi − f1i

z = (B> ⊗ I3)x0 (B is the incidence matrix, x0 = col(x01, . . . ,x0r))

f1i = R (ψi − ψci(t)) li(t), (li(t) = col(xci(t), yci(t), ψci(t)))

ḟ1i = R(ψi − ψci)
(
Sli(ψ̇i − ψ̇ci) + l̇i

)
(S is given in Section 2.4.1)

f̈1i = R(ψi − ψci)
(
Sli(ψ̈i − ψ̈ci) + S2li(ψ̇i − ψ̇ci)2 + 2Sl̇i(ψ̇i − ψ̇ci) + l̈i

)

f2i = R(ψi)
>(ḟ1i + vd)

ḟ2i = S>f2iψ̇i + R(ψi)
>(f̈1i + v̇d)

vd = σ1(|z|2L1
)Aq + σ2(|z|2L1

)β(|q|2L2
)pθd(θ)vs(θ, t)

|z|2L1
= z>L1z, |q|2L2

= q>L2q

v̇d =

[
Aσ1(|z|2L1

) + σ2(|z|2L1
)pθd(θ)vs(θ, t)

∂(β(|q|2L2
))

∂(|q|2L2
)

2q>L2

]
(ẋ0j∗ − pθd(θ)θ̇)

+

[
Aq

∂(σ1(|z|2L1
))

∂(|z|2L1
)

2z>L1 + β(|q|2L2
)pθd(θ)vs(θ, t)

∂(σ2(|z|2L1
))

∂(|z|2L1
)

2z>L1

]
ż

+σ2(|z|2L1
)β(|q|2L2

)
(
pθ

2

d (θ)vs(θ, t) + pθd(θ)v
θ
s(θ, t)

)
θ̇

+σ2(|z|2L1
)β(|q|2L2

)pθd(θ)v
t
s(θ, t)

pd(θ) = col(xd(θ), yd(θ), ψd(θ))

ψd(θ) = arctan(
yθd(θ)

xθd(θ)
)

ψθd =
yθ

2

d xθd−xθ
2

d yθd
(xθd)2+(yθd)2

ψθ
2

d =
(yθ

3

d xθd−xθ
3

d yθd)((xθd)2+(yθd)2)−2(yθ
2

d xθd−xθ
2

d yθd)(xθdx
θ2

d +yθdy
θ2

d )

((xθd)2+(yθd)2)2

Table 3.1: Design 1 summarized

Calculation of accelerations during simulations: From the expression for ḟ2i stated in Table 3.1,

it is seen that the individual control laws require access to the yaw acceleration ψ̈i. For simulations of the

closed loop system, it may seem like this gives rise to algebraic loops, as the generalized control vector τ i

depends on the yaw acceleration, which naturally depends on τ i. It turns out that there are no algebraic

loops. First of all, note that the yaw acceleration can be written as

ψ̈i = e>ν̇i (e = col(0, 0, 1))
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Divide ḟ2i into two terms, where one is dependent and the other is independent on ν̇i:

ḟ2i = S>f2iψ̇i + R(ψi)
>(f̈1i + v̇d)

= S>f2iψ̇i + R(ψi)
>
(
v̇d + R(ψi − ψci)

(
Sli(ψ̈i − ψ̈ci) + S2li(ψ̇i − ψ̇ci)2 + 2Sl̇i(ψ̇i − ψ̇ci) + l̈i

))

= R(ψci(t))
>Sli(t)e

>ν̇i + S>f2iψ̇i + R(ψi)
>v̇d

+ R(ψci(t))
>
(
−Sliψ̈ci(t) + S2li(ψ̇i − ψ̇ci(t))2 + 2Sl̇i(ψ̇i − ψ̇ci(t)) + l̈i(t)

)

= R(ψci(t))
>Sli(t)e

>ν̇i + f3i

Here, the property R(ψi)
>R(ψi − ψci) = R(ψi)

>R(ψci − ψi)> = R(ψci)
> has been used, and

f3i := S>f2iψ̇i + R(ψi)
>v̇d + R(ψci(t))

>
(
−Sliψ̈ci(t) + S2li(ψ̇i − ψ̇ci(t))2 + 2Sl̇i(ψ̇i − ψ̇ci(t)) + l̈i(t)

)

(3.59)

The following is now obtained in closed loop:

Miν̇i = −Ci(νi)νi −Di(νi)νi + τ i

= −Ci(νi)(νi − f2i)−Di(νi)(νi − f2i) + Miḟ2i −Kdi(νi − f2i) +αi(z, ψi)

= −Ci(νi)(νi − f2i)−Di(νi)(νi − f2i) + MiR(ψci(t))
>Sli(t)e

>ν̇i + Mif3i

−Kdi(νi − f2i) +αi(z, ψi)

Rearranging yields

ν̇i =
(
I3 −R(ψci(t))

>Sli(t)e
>)−1

M−1
i

(
−Ci(νi)(νi − f2i)−Di(νi)(νi − f2i) + Mif3i

−Kdi(νi − f2i) +αi(z, ψi)

)
, (3.60)

where it is noted that the inverse of
(
I3 −R(ψci(t))

>Sli(t)e
>) always exists and is given by

(
I3 −R(ψci(t))

>Sli(t)e
>)−1

=
(
I3 + R(ψci(t))

>Sli(t)e
>) (3.61)

It is recommended that Equation (3.60) is used during simulations to avoid any warnings of algebraic

loops from the simulation software.

Proper handling of orientation error signals: The vectors zk, k = 1 . . . p, and q contain orienta-

tion errors between local FRPs, and between the FRP of the acting leader and ψd(θ), respectively. Due

to the S1 symmetry of orientation variables (i.e. ψ ± 2πn, n ∈ N represents the same physical orien-

tation), situations can arise where the value of the orientation error variables are larger in magnitude

than the physical orientation errors they correspond to (this is the case for any error larger than π in

magnitude), which in turn can result in misplaced control efforts. This is especially a problem for the

control of q through the common velocity input (3.19), as a discontinuous four quadrant version of the

arctan(·) function typically is used to calculate ψd(θ) in a practical implementation. A way to circumvent

these problems is to modify the numerical representation for one of the two orientation variables before

calculating the corresponding orientation error, so that the magnitude of the error is guaranteed to be

less than or equal to π in magnitude. Algorithm 1 has been developed by the author for this purpose.

It is recommended that the algorithm is applied to the orientation errors in both q and zk, k = 1 . . . p,

wherever they appear in the control system.
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Algorithm 1 Orientation handler

1: INPUT: ψ,ψd ∈ S1.

2: OUTPUT: ψout = ψ+2πn∗, where n∗ ∈ {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} is calculated so that |ψout−ψd|
is minimized.

3: PROCEDURE:

4: if |ψ − ψd| > π then

5: a = floor(
∣∣∣ψ−ψdπ

∣∣∣)
6: n = floor

(∣∣a−1
2

∣∣)

7: if ψ > ψd then

8: ψout = ψ − (n+ 1)2π

9: else

10: ψout = ψ + (n+ 1)2π

11: end if

12: else

13: ψout = ψ

14: end if

3.2.5.2 Choosing the functions Pk(zk)

A wide range of choices for Pk(zk) satisfy the requirements in (3.14). However, as the synchronization

terms αi(z, ψi) in the vessel control laws are given by weighted sums of the gradients of these functions,

some choices are more natural than others. The author finds the following to be appropriate for most

applications:

Pk(zk) =
1

2

(
akz

2
k1 + akz

2
k2 + bkz

2
k3

)
, ak, bk > 0, (zk = col(zk1, zk2, zk3)) , (3.62)

This corresponds to

γk(zk) = P zk
k (zk)>

= Akzk, Ak = diag(ak, ak, bk),

which gives synchronization through proportional control terms. Another possible choice is to achieve

synchronization through a combination of proportional and third degree terms, corresponding to

Pk(zk) =
1

2

(
akz

2
k1 + akz

2
k2 + bkz

2
k3 + a∗kz

4
k1 + a∗kz

4
k2 + b∗kz

4
k3

)
, ak, bk, a

∗
k, b
∗
k > 0 (3.63)

3.2.5.3 Choosing the activation functions

Since the only requirements to the activation functions σ1(·),σ2(·) are that they are continuously differ-

entiable, monotonically decreasing and satisfy (3.17) (where it is noted that the last of the two properties

in (3.17) can be relaxed), they can easily be tailored through e.g. sketching techniques. A lot of flexibility

can, however, also be found in analytical functions, where the author identifies the following as a good

starting point:

σk(s) = a−bs, a > 1, b > 0 (3.64)

3.2.5.4 Choosing the tuning matrix L1

The matrix L1 should be tuned so that the activation functions σ1(|z|2L1
),σ2(|z|2L1

) respond well to both

position and orientation errors in z. To illustrate the importance of this, consider a transversal straight

line formation with three ships, where the desired inter-vessel spacing is equal to a. From a configuration

where the vessels are perfectly synchronized, rotate one of the vessels an angle −π2 [rad] while moving it

so that the position of its local FRP remains synchronized with the other FRPs:
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(a) Perfectly synchronized formation (b) Configuration after moving vessel 3

Figure 3.2:

Despite the fact that the vessels are clearly out of formation in Figure 3.2(b), we have that |z|∞ = π
2 ,

which is small in the context of position errors. If L1 is chosen as e.g. the identity matrix, the path

following phase of an operation can consequently be initiated prematurely. To avoid such problems,

the elements in L1 corresponding to orientation errors should be chosen considerably larger than those

corresponding to position errors.
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3.2.6 Simulations

To illustrate the main properties of the first design, three simulation cases will be shown. Three vessels

with dynamics given in Appendix B are considered, where the desired formation structure (initially) is

given by l1 = col(0, 80, 0), l2 = col(0, 0, 0), l3 = col(0,−80, 0). This corresponds to a transversal line

formation where a common heading angle is desired for all the ships. The communication topology is

chosen according to two communication links, where Vessel 1 is the positive end of both links. Vessel 3 is

set as the active leader. The parameterized path is chosen as an ellipse according to the parameterization

xd(θ) = R1 cos(kθ)

yd(θ) = −R2 sin(kθ),

with R1 = 800[m], R2 = 600[m], k = 1
800 . The control parameters are chosen as Kdi = 104 ×

diag(6.5, 6.5, 1300), A = diag(−0.02,−0.02,−0.03), P = 3
2 × 10−2 × diag(1, 1, 10−5), L1 = diag(L0,L0),

L0 = diag(1, 1, 2500). The functions Pk(zk) are chosen as in (3.62) with ak = 3000, bk = 6 × 105,

and σ1(s) = σ2(s) = e−2.5s. Finally, vs(θ, t) and µ(θ) are chosen as vs(θ, t) = Ud(t)√
xθd(θ)2+xθy(θ)2

, µ(θ) =

1√
xθd(θ)2+xθy(θ)2

, corresponding to a desired speed in [m/s] along the path according to Ud(t), and nor-

malization of the gradient optimization with respect to the specific path parameterization. It is noted

that no saturations have been implemented in the simulation model, so that the response times may be

somewhat unrealistic.

3.2.6.1 Case 1

In the first simulation case, the function β(|q|2L2
) is chosen according to β(|q|2L2

) ≡ 1, so that vs(θ, t)

will drive pd(θ) along the path immediately after the vessels have synchronized. To illustrate the possi-

bilities for formation reconfigurations and time-varying speed assignments along the path, the formation

configuration vectors of the first and third vessels transition according to

lstart1 = col(0, 80, 0)⇒ lend1 = col(0, 40, 0),

lstart3 = col(0,−80, 0)⇒ lend3 = col(0,−40, 0), (3.65)

while the desired speed along the path transitions according to

Ustartd = 3[m/s]⇒ Uendd = 8[m/s]

during the simulation. This is done by feeding the new formation vectors and along-path speed as step

inputs to third and second order reference filters at t = 500[s] and t = 600[s], respectively. The initial

states of the system are chosen according to6 η10 = col(80.3, 831,− 7π
30 ), η20 = col(27.6, 782.1,−π3 ),

η30 = col(−94.3, 753.3,−π2 ), ν10,ν20,ν30 = 0, θ0 = 4200.

6The initial vessel positions where actually calculated by perturbing the vessels out of formation with respect to an FRF

placed outside the path. This is the reason for the decimal-point precision.
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Figure 3.3: North-east position plot for the three vessels. The red, purple and blue ships correspond to

vessels 1,2,3, respectively. The black arrow on the path indicates the position and orientation contained

in pd(θ). Initial positions are indicated by smaller-sized ships and arrow.
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Figure 3.4: Close-up of coordination and transient motion towards the path.

(a) North-east position plot of the position vectors

col(x0i, y0i) contained in x0i.

(b) Time series of ψ0i for the three vessels.

Figure 3.5: Plot showing synchronization of x0i, i = 1, 2, 3.
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(a) Surge velocities (b) Sway velocities

Figure 3.6: Surge and sway velocities for the three vessels

(a) Plot showing |z(t)|∞ and |q(t)|∞. At end of simula-

tion, magnitudes are in the order of O(10−6) and O(10−5),

respectively

(b) Plot showing
(
θ̇(t)− vs(θ(t), t)

)
. At end of simulation,

magnitudes are in the order of O(10−7).

Figure 3.7: Time series of error variables in the system

Figures 3.3 and 3.7 clearly demonstrate that the design is able to fulfill the group coordination and

formation mission tasks of the formation control problem. Fulfillment of the dynamic assignment along

the path is also seen from the surge speed of the second vessel in Figure 3.6(a), as the generalized position

vector of the vessel coincides with pd(θ) on the path through the specified formation configuration. The

prioritization between the coordination and path following tasks is evident in figures 3.5 and 3.7(a), where

it is seen that the vessels synchronize before they start moving towards the path. During synchronization,

pd(θ) moves to minimize q, as seen in Figure 3.4 and the initial transient of |q(t)|∞ in Figure 3.7(a).

This is a result of the gradient optimization incorporated in the update law for θ.

When the desired formation structure starts narrowing in at t = 600[s], it is seen from Figure 3.6(b)

that vessels 1 and 3 start utilizing sway motion. The reason is that the desired relative heading angles

in the formation configuration vectors satisfy ψci(t) ≡ 0 as a result of the way the transition (3.65) was

implemented. Consequently, the orientation of the vessels are restricted to the path-tangential direction

whenever they are synchronized and follow the path, thereby forcing the vessels to use sway motion to

reconfigure the formation. A more clever way to reconfigure the formation would be to dynamically

adjust ψci(t) so that surge and yaw motion could be used exclusively. An algorithm for doing this is
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developed for the third design in Section 3.4.5.2.

3.2.6.2 Case 2

To demonstrate the effect β(|q|2L2
) has on the transient behavior in the path following phase, the function

is now changed from β(|q|2L2
) ≡ 1 to β(|q|2L2

) = e−0.025|q|2L2 , thereby satisfying the properties of an

activation function. The matrix L2 is chosen equal to the identity matrix, and the initial states of the

system is chosen as η10 = col(88.9, 936,− 13π
30 ) ,η20 = col(41.6, 857.9,−π3 ),η30 = col(−57.9, 770.4,−π6 ),

ν10,ν20,ν30 = 0, θ0 = 4000.

Figure 3.8: North-east position plot for the three vessels.

(a) Plot showing |z(t)|∞ and |q(t)|∞. (b) Plot showing θ̇(t).

Figure 3.9: Time series of relevant system states
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As seen from Figure 3.9, θ̇(t) ≈ 0 between t ≈ 100[s] and t ≈ 300[s], which corresponds with the time-

interval where |q(t)|∞ converges to zero. The effect is seen in Figure 3.8, where pd(θ) remains stationary

while the formation converges to the path, after which forward motion is initiated. It is also seen that

the formation uses significant sideways motion to converge to the path, which is quite inefficient. This

illustrates one of the limitations of the first control design, as discussed in the next section.

3.2.6.3 Case 3

The feedback term σ1(|z|2L1
)Aq(x01, θ) in the common velocity input (3.19) is the mechanism that en-

sures path-convergence for the formation. As the common velocity input is given relative to the E-frame,

this corresponds to independent control of the position and orientation of the acting leaders FRP towards

pd(θ). Although this is a valid approach from a theoretical point of view, it does not take into con-

sideration that positive surge motion is preferred for marine surface vessels with regards to efficiency of

motion. Situations can thus occur where the control system for each vessel induces considerable motion in

sway (and in some extreme cases, motion in the negative surge direction) to steer the formation towards

the path. A typical scenario where such problems can arise is when the vessels establish the formation

far from the path. This will be demonstrated in the following. To illustrate another drawback of the

design, which is sensitivity to initial heading angles, the initial configuration of the vessels are chosen to

correspond perfectly to the desired line formation in terms of position, but where one of the vessels are

rotated a little more than 90[deg] relative to the others. More specifically, the initial positions are chosen

according to

ηi0 = col(0, 1350,−π
3

) + R
(
−π

3

)
(li + εi),

where ε1 = col(0, 0, 5π
8 ), ε2 = ε3 = 0. The initial velocities are set as the zero-vector. It is noted that

the function β(|q|2L2
) has been reset to β(|q|2L2

) ≡ 1 in the simulation.

Figure 3.10: North-east position plot for the three vessels.
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(a) Time series of x0i for the three ves-

sels..

(b) Time series of y0i for the three ves-

sels.

(c) Time series of ψ0i for the three ves-

sels.

Figure 3.11: Plot showing synchronization of x0i, i = 1, 2, 3.

(a) Surge velocities (b) Sway velocities

Figure 3.12: Surge and sway velocities for the three vessels

Although the vessels initially are very close to satisfying the specified formation configuration from

a practical point of view, the control system interprets the situation otherwise. Since the position of

a vessels local FRP is given relative to its body-fixed reference frame, the initial difference in heading

angles introduce a large initial synchronization error between the positions of the FRPs (Figure 3.11(a)).

As a result, the control system induces both translational and rotational motions to eliminate the errors,

rather than just rotating Vessel 1 to obtain perfect synchronization. This causes a very inefficient and

dangerous transient response (Figure 3.10). After the vessels have synchronized, the orientation of the

formation turns out to be close to the targeted path-tangential orientation. The independent control of

orientation and position in the common velocity input sees to that this orientation is reached quickly,

without any consideration to where the formation is located with respect to the path. This results in

sideways motion towards the path requiring significant sway velocities from the vessels (Figure 3.12(b)).
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3.3 Design 2: Closed-loop guidance and control design

The design presented in Section 3.2 can be implemented and used directly as high-level controllers on

real vessels. However, traveling in formation will typically only be one of many different operational

modes for candidate vessels. Having a bank of separate controllers for every operational mode is not an

optimal design choice, as it will require implementation of safe switching solutions, as well as more work

with respect to integration and testing. A more intelligent way to approach vessel diversity is to follow

the modular principles of the guidance, navigation, and control framework. The different operational

modes are realized by designing a bank of guidance systems that will be used to feed reference signals to

a separate control module. The control module contains a small bank of select controllers (e.g. one for

dynamic positioning/low-speed maneuvering, one one for high-speed transit) that are designed to follow

arbitrary reference signals, and that may have been optimized with regards to factors such as handling

environmental disturbances and taking into account properties of the low-level actuator controllers. By

following this modular approach, the operational performance can be increased, and costs can be reduced.

In this section, the first design will be adapted to the modular principles of guidance, navigation, and con-

trol. The approach will be to construct a formation guidance system that will generate reference signals

for tracking controllers, also to be designed, that are used by the vessels to be controlled in formation.

The motivation is to create a control system that addresses some of the shortcomings of the first design,

specifically the required access to yaw accelerations and the omission of bias environmental forces in the

vessel models.

3.3.1 Guidance system design aspects and approach

There are many aspects to consider when designing a guidance system. Arguably, the most important

ones are related to feasibility of the generated reference signals and the behavior during vessel failures:

• Feasibility: A guidance system should generate reference signals that are feasible for the vessel to

follow during normal operational conditions.

• Robustness: A guidance system should be robust in the sense that it is well behaved in the

case of vessel failures. This involves slowing down or stopping the propagation of the reference

signals sent to the control module when the vessel is incapable of following them, thereby avoiding

aggravation of issues related to saturation of actuators, and enabling smooth recovery when the

failure is remedied.

In order to obtain the desired properties, a closed-loop guidance system that utilizes feedback from rel-

evant states of the vessels and that takes into account reigning maneuverability constraints, should be

designed. Herein, a model-based approach will be used to achieve this. The guidance system for each

vessel is chosen to consist of a dynamical model7 of the vessel, corresponding to a virtual vessel, which is

simulated in closed loop with an extension of the formation controllers designed in Section 3.2. The accel-

erations, velocities and positions that result from the simulations are then fed to tracking controllers as

reference signals. Since the proposed guidance scheme is model-based, feasibility of the reference signals

can be achieved implicitly through proper tuning of the guidance controllers (i.e. not overly aggressive),

and explicitly by including saturations in the virtual vessel models.

Due to the desired closed-loop nature of the guidance system, the design will not be performed entirely

separately from the design of the tracking controllers. Instead, preliminary designs will be established

for each system, before they are combined to yield the final details.

7Depending on the available real-time computational resources, the vessel models used in the guidance systems may

include all terms of the models presented in section 2.4.1, or only a subset of the terms (e.g. non-linear damping, cen-

tripetal/Coriolis forces are omitted).
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3.3.2 Setup and problem statement

Consider r vessels to be controlled in formation, and assign to each of them a unique identifier in the

index set I = {1, . . . , r}. A virtual vessel is assigned to each real vessel, and given the same identifier in

the set I. To avoid ambiguities, a subscript ”v” is added to the position and velocity vectors (and their

entries) and model matrices corresponding to the virtual vessels. The control design will be based on the

following models for the real and virtual vessels:

η̇i = R(ψi)νi (3.66a)

Miν̇i + Di(νi)νi + Ci(νi)νi = τ i + R(ψi)
>b (3.66b)

ḃ = 0 (3.66c)

η̇vi = R(ψvi)νvi (3.67a)

Mviν̇vi + Dvi(νvi)νvi + Cvi(νvi)νvi = τ vi, (3.67b)

Note that the mass, damping, and centripetal/Coriolis matrices of the virtual vessels can be chosen dif-

ferently from those of the corresponding real vessels. Moreover, note that the real vessels are assumed to

be subjected to an unknown, constant environmental disturbance in the E-frame.

Motivated by the design in Section 3.2, we define the FRPs of the virtual vessels as

x0i(ηvi, t) := ηvi −R (ψvi − ψci(t)) li(t) (3.68)

Without loss of generality, we assign the virtual vessel with index i = 1 as the acting leader in the

formation guidance system. For a given path pd(θ) and a desired dynamic assignment vs(θ, t) for θ̇, the

problem of getting the real vessels to travel in formation and fulfill the path following mission objective

can through this setup be formally stated by the following three control objectives:

Tracking objective: To develop tracking control laws for the real vessels to ensure that

lim
t→∞

|ηi(t)− ηvi(t)| = 0 ∀i ∈ I (3.69)

Group coordination objective: To develop synchronization control laws for the virtual vessels to

ensure that

lim
t→∞

|x0i(t)− x0j(t)| = 0 ∀i, j ∈ I. (3.70)

Formation mission objective: To develop a maneuvering control law for the virtual vessels to ensure

that

lim
t→∞

|x01(t)− pd(θ(t))| = 0, (3.71)

lim
t→∞

|θ̇(t)− vs(θ(t), t)| = 0. (3.72)

3.3.3 Preliminary tracking control design

Adaptive tracking controllers that are to be used by the real vessels to achieve (3.69) will be the focus

of this section. The method of vectorial backstepping forms the basis of the design procedure, which is

performed in two steps.

Step 1: Define s1i as the generalized position error between i’th real and virtual vessels expressed in

the B-frame of the real vessel, and s2i as the velocity error between the i’th vessel and a virtual control

input νri:

s1i := R(ψi)
>(ηi − ηvi) (3.73)
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s2i := νi − νri (3.74)

Differentiating (3.73) with respect to time yields

ṡ1i = S>s1iψ̇i + R(ψi)
>(R(ψi)νi − η̇vi)

= S>s1iψ̇i + νi −R(ψi)
>η̇vi

= S>s1iψ̇i + s2i + νri −R(ψi)
>η̇vi

Define the positive definite, radially unbounded CLF

V1i(s1i) =
1

2
s>1iKpis1i, (3.75)

where

Kpi = diag(kp, kp, kψ), kp, kψ > 0 (3.76)

Taking time derivatives yields

V̇1i = s>1iKpiS
>s1iψ̇i + s>1iKpi(νri −R(ψi)

>η̇vi) + s>1iKpis2i

= s>1iKpi(νri −R(ψi)
>η̇vi) + s>1iKpis2i,

where the last step follows from KpiS
> being skew-symmetric by the assignment (3.76). The virtual

control input is chosen as

νri = −Λis1i + δi, (3.77)

where Λi is chosen to satisfy KpiΛi > 0, and δi is an auxiliary control input to be chosen in the final

design (see Section 3.3.5). This yields

V̇1i = −s>1iKpiΛis1i + s>1iKpi(δi −R(ψi)
>η̇vi) + s>1iKpis2i

Step 2: From (3.74), the dynamics of s2i becomes

Miṡ2i = Miν̇i −Miν̇ri

= τ i + R(ψi)
>b−Di(νi)s2i −Ci(νi)s2i −Di(νi)νri −Ci(νi)νri −Miν̇ri

Define the second CLF

V2i(s1i, s2i, b̃i) = V1i(s1i) +
1

2
s>2iMis2i +

1

2
b̃>i Γ−1

i b̃i, (3.78)

where Γi = Γ>i > 0, and b̃i is the bias estimation error for the i’th tracking controller:

b̃i := b̂i − b (3.79)

Taking time derivatives of (3.78) and using the fact that Ci(νi) is skew-symmetric yields

V̇2i = −s>1iKpiΛis1i + s>1iKpi(δi −R(ψi)
>η̇vi) + b̃>i

(
Γ−1
i

˙̂
bi −R(ψi)s2i

)

+ s>2i
(
Kpis1i + τ i + R(ψi)

>b̂i −Di(νi)s2i −Di(νi)νri −Ci(νi)νri −Miν̇ri

)

Choosing

τ i = −Kpis1i −R(ψi)
>b̂i + Di(νi)νri + Ci(νi)νri + Miν̇ri −Kdis2i, Kdi = Kd

>
i > 0 (3.80)

˙̂
bi = ΓiR(ψi)s2i, (3.81)

yields

V̇2i = −s>1iKpiΛis1i − s>2i(Di(νi) + Kdi)s2i + s>1iKpi(δi −R(ψi)
>η̇vi)

≤ −s>1iKpiΛis1i − s>2iKdis2i + s>1iKpi(δi −R(ψi)
>η̇vi)
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3.3.4 Preliminary guidance control design

Define

ζi := R(ψvi)
> (ẋ0i − vd) i ∈ I, (3.82)

where x0i is given in (3.68). Following the outline in Section 3.2.3.1, the closed-loop dynamics in ζi
become

Mviζ̇i = Mviν̇vi −Mviḟ2i

= τ vi −Dvi(νvi)ζi −Cvi(νvi)ζi −Dvi(νvi)f2i −Cvi(νvi)f2i −Mviḟ2i,

where f2i(ηvi,νvi,vd, t) := R(ψvi)
>(ḟ1i+vd), and f1i(ηvi, t) := R (ψvi − ψci(t)) li(t). The virtual control

laws are now chosen as an extension of the control laws in Section 3.2.3.1, where we include an extra

auxiliary control input δvi that is to be designed later:

τ vi = Dvi(νvi)f2i + Cvi(νvi)f2i + Mviḟ2i −Kdviζi +αi + δvi, Kdvi = Kd
>
vi > 0, (3.83)

The motivation behind δvi is to have an attraction term in the virtual vessel control law which will

”pull” the virtual vessels towards their corresponding real vessels, thereby creating a closed-loop guidance

system. Considering the positive definite, radially unbounded functions

Sζi(ζi) :=
1

2
ζ>i Mviζi, (3.84)

and taking time derivatives yields (using the properties (2.7),(2.8))

Ṡζi = ζ>i Mviζ̇i

= ζ>i (−Dvi(νvi)ζi −Kdviζi −Cvi(νvi)ζi +αi + δvi)

≤ −ζ>i Kdviζi + ζ>i αi + ζ>i δvi,

To finalize the preliminary guidance design, the synchronization terms αi and the maneuvering control

laws vd and θ̇ are chosen in accordance with Section 3.2.3.1:

αi = −R(ψvi)
>
(

p∑

k=1

bikγk(zk)

)
i ∈ I, (3.85)

vd = σ1(|z|2L1
)Aq(x01, θ) + σ2(|z|2L1

)β(|q|2L2
)pθd(θ)vs(θ, t) (3.86)

θ̇ = σ2(|z|2L1
)β(|q|2L2

)vs(θ, t) + 2µ(θ)q>Ppθd(θ), (3.87)

3.3.5 Final control design

In the following, all definitions from Section 3.2.4.1 are adopted, while some additional definitions are

made:

ψv := col(ψv1, . . . , ψvr) ∈ Rr (3.88)

ν̄v := col(νv1, . . . ,νvr) ∈ R3r (3.89)

s1 := col(s1i, . . . , s1r) ∈ R3r (3.90)

s2 := col(s2i, . . . , s2r) ∈ R3r (3.91)

b̃ := col(b̃1, . . . , b̃r) ∈ R3r (3.92)

Consider the positive definite, radially unbounded CLF

V (z, ζ, s1, s2, b̃) :=

p∑

k=1

Pk(zk) +

r∑

i=1

Sζi(ζi) +

r∑

i=1

V2i(s1i, s2i, b̃i), (3.93)
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Taking time derivatives yields

V̇ =

[
∂

∂z

(
p∑

k=1

Pk(zk)

)]
ż +

r∑

i=1

(Ṡζ,i + V̇2i)

≤ γ(z)>(B> ⊗ I3)R̄(ψv)ζ

+

r∑

i=1

(
−ζ>i Kdviζi + ζ>i αi + ζ>i δvi − s>1iKpiΛis1i − s>2iKdis2i + s>1iKpi(δi −R(ψi)

>η̇vi)
)

= −α>ζ + ζ>α+

r∑

i=1

(
−ζ>i Kdviζi + ζ>i δvi − s>1iKpiΛis1i − s>2iKdis2i + s>1iKpi(δi −R(ψi)

>η̇vi)
)

Since ζi = R(ψvi)
> (ẋ0i − vd) = R(ψvi)

>
(
η̇vi − ḟ1i − vd

)
, we get that

V̇ ≤
r∑

i=1

(
−ζ>i Kdviζi − s>1iKpiΛis1i − s>2iKdis2i + δ>viR(ψvi)

>
(
η̇vi − ḟ1i − vd

)
+ s>1iKpi(δi −R(ψi)

>η̇vi)
)

Choosing

δvi = R(ψvi)
>R(ψi)Kpis1i, (3.94)

δi = R(ψi)
>
(
ḟ1i + vd

)
, (3.95)

finally yields

V̇ ≤
r∑

i=1

(
−ζ>i Kdviζi − s>1iKpiΛis1i − s>2iKdis2i

)
≤ 0 (3.96)

From (3.94) and the definition of s1i in (3.73), it is seen that the guidance control law for each virtual

vessel now contains a proportional term pulling it towards the corresponding real vessel. Compared to

the proportional terms in the tracking control laws, the magnitudes of the forces/moments are the same,

while the directions are reversed in the E-frame. In the case of a failure on one of the real vessels, the

proportional guidance control term will ensure that the corresponding virtual vessel does not drift far

away. However, as the other terms in the guidance control law try to get the virtual vessel into formation

with the other virtual vessels, there will be a ”battle” between the terms. The solution is thus not the

most elegant way to achieve guidance system robustness, but it is certainly better than an open-loop

solution. It is also noted that in a traditional backstepping tracking control design, δi would have been

chosen as δi = R(ψi)
>η̇vi, corresponding to feedforward from the velocity of the target to be followed.

The choice (3.95) instead involves feedforward from the desired velocity of the virtual ships, which they

achieve when coordinated.

3.3.6 Stability analysis

3.3.6.1 Closed-loop system

In terms of the error variables in the system, the closed-loop dynamics are given by

Mviζ̇i = −(Cvi(νvi) + Dvi(νvi) + Kdvi)ζi +αi(z, ψvi) + R(ψvi)
>R(ψi)Kpis1i, i ∈ I (3.97)

ż = (B> ⊗ I3)R̄(ψv)ζ (3.98)

q̇ = σ1(|z|2L1
)Aq− 2µ(θ)pθd(θ)q

>Ppθd(θ) + R(ψv1)ζ1 (3.99)

θ̇ = σ2(|z|2L1
)β(|q|2L2

)vs(θ, t) + 2µ(θ)q>Ppθd(θ). (3.100)

ṡ1i = S>s1i(e
>νi)−Λis1i + s2i −R(ψi)

>R(ψvi)ζi, e = col(0, 0, 1), i ∈ I (3.101)

Miṡ2i = −Kpis1i −R(ψi)
>b̃i − (Di(νi) + Ci(νi) + Kdi)s2i, i ∈ I (3.102)
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˙̃
bi = ΓiR(ψi)s2i (3.103)

Following the outline in Section 3.2.4.2, ψvi and νvi can be expressed as

ψvi = e> (Ki1z + q + pd(θ)) + ψci(t) (3.104)

νvi = (I3 −R(ψci(t))
>Sli(t)e

>)−1
(
ζi + R(ψvi)

>vd + R(ψci(t))
>
(
l̇i(t)− Sli(t)ψ̇ci(t)

))
(3.105)

Furthermore, we have that ψi and νi can be expressed as

ψi = e>s1i + ψvi

= e> (s1i + Ki1z + q + pd(θ)) + ψci(t) (3.106)

νi = s2i −Λis1i + R(ψi)
>
(
ḟ1i + vd

)

= s2i −Λis1i + R(ψi)
>
(
vd + R(ψvi − ψci(t))

(
l̇i(t) + Sli(t)(e

>νvi − ψ̇ci(t))
))

(3.107)

By defining

χ := col(z, ζ,q, s1, s2, b̃) ∈ R3p+12r+3, (3.108)

the closed-loop system can thus be written compactly as
[
χ̇

θ̇

]
=

[
fχ(t,χ, θ)

fθ(t,χ, θ)

]
=: F(t,χ, θ). (3.109)

The main result for the second design is given in Theorem 2.

Theorem 2. Under assumptions 1 – 4, the tracking control laws (3.80)–(3.81) and guidance control laws

(3.83),(3.86),(3.87) render the closed-loop system (3.109) forward complete and the set

A = {(χ, θ, t) : χ = 0} UGAS. This solves the control objectives (3.69)–(3.72).

3.3.6.2 Proof of Theorem 2

Forward Completeness: Consider the positive definite, radially unbounded function V (z, ζ, s1, s2, b̃)

defined in (3.93). By Khalil (2002; Lemma 4.3) there exists class-K∞ functions φ1, φ2 such that

φ1(|(z, ζ, s1, s2, b̃)|) ≤ V (z, ζ, s1, s2, b̃) ≤ φ2(|(z, ζ, s1, s2, b̃)|). (3.110)

Since V̇ ≤ 0 (see (3.96)), this implies for all t in the maximum interval of existence [t0, T ), that V (t) ≤
V (t0). Combining this with (3.110) yields

∣∣(z(t), ζ(t), s1(t), s2(t), b̃(t)
)∣∣ ≤ φ3

(∣∣(z(t0), ζ(t0), s1(t0), s2(t0), b̃(t0)
)∣∣
)

(3.111)

where φ3(·) := φ−1
1 ◦ φ2(·) ∈ K∞. Defining

ε1 := σ1

(
||L1||φ3

(∣∣(z(t0), ζ(t0), s1(t0), s2(t0), b̃(t0)
)∣∣
)2
)
, (3.112)

ε2 :=
4||P||φ3

(∣∣(z(t0), ζ(t0), s1(t0), s2(t0), b̃(t0)
)∣∣
)

ε1λmin,Q
, (3.113)

and following the outline in Section 3.2.4.3 yields the following bounds on |q(t)| over [t0, T ):

|q(t)| ≤
√
λmax,P
λmin,P

(|q(t0)|+ ε2) (3.114)

Combining this with assumptions 3 and 4, a uniform upper bound for |θ̇| is achieved over [t0, T ), which

shows that there cannot be a finite escape time for the system (3.109), i.e. T = +∞. By a locally
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Lipschitz property of the closed-loop system, it is concluded that the solutions θ(t) and χ(t) exist and

are continuous functions over [t0,∞).

As in the proof of Theorem 1, θ will from now on be treated as an external input, continuous in time,

that enters the dynamics of χ Stability of the origin of

χ̇ = f(t,χ), (3.115)

where f(t,χ) := fχ(t,χ, θ(t)), will be investigated by the means of Theorem A.1.

Uniform Global Stability: By forward completeness of the closed-loop system, the bounds in (3.111)

and (3.114) hold ∀t ≥ t0. Since

|χ| ≤ |
(
z, ζ, s1, s2, b̃)|+ |q|,

|χ| ≥ |
(
z, ζ, s1, s2, b̃)|,

|χ| ≥ |q|,

we have that

|χ(t)| ≤ φ3

(∣∣(z(t0), ζ(t0), s1(t0), s2(t0), b̃(t0)
)∣∣
)

+

√
λmax,P
λmin,P

[
|q(t0)|+

4||P||φ3

(∣∣(z(t0), ζ(t0), s1(t0), s2(t0), b̃(t0)
)∣∣
)

ε1λmin,Q

]

≤ φ3 (|χ(t0)|) +

√
λmax,P
λmin,P

[
|χ(t0)|+ 4||P||φ3 (|χ(t0)|)

λmin,Qσ1

(
||L1||φ3 (|χ(t0)|)2

)
]

=: φ4(|χ(t0)|)

Since φ3(·) ∈ K∞ and σ1(·) is monotonically decreasing and strictly positive, we have that φ4(·) ∈ K∞,

which shows that the origin is UGS.

Uniform Global Asymptotic Stability: Define

V0(χ) := V (z, ζ, s1, s2, b̃), (3.116)

From (3.96), we have that

V̇0(t,χ) ≤
r∑

i=1

(
−ζ>i Kdviζi − s>1iKpiΛis1i − s>2iKdis2i

)
=: Y0(χ) ≤ 0 ∀χ, (3.117)

where it is noted that Y0(χ) = 0 implies ζ, s1, s2 = 0. Now, define the first auxiliary function

V1(t,χ) := z>(B⊗ I3)‡R̄(ψv)M̄vζ, (3.118)

where

M̄v := diag(Mv1, . . . ,Mvr) ∈ R3r×3r, (3.119)

(B⊗ I3)‡ ∈ R3p×3r is the Moore-Penrose pseudo-inverse of (B⊗ I3) satisfying

(B⊗ I3)(B⊗ I3)‡(B⊗ I3) = (B⊗ I3),

and it is once again noted that all definitions from Section 3.2.4.1 have been adopted. Differentiating

(3.118) with respect to time yields

V̇1(t,χ) = ζ>R̄(ψv)
>(B⊗ I3)(B⊗ I3)‡R̄(ψv)M̄vζ

+ z>(B⊗ I3)‡
( ˙̄R(ψv, ν̄v)M̄vζ + R̄(ψv)M̄vζ̇

)

=: Y1(χ,φ(t,χ))
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Here, all time dependent terms of V̇1(t,χ) are included in a function φ(t,χ) that will be specified later

on. Evaluating Y1(χ,φ(t,χ)) at ζ, s1, s2 = 0 and using (3.97) yields

Y1(χ,φ(t,χ))

∣∣∣∣
ζ,s1,s2=0

= z>(B⊗ I3)‡R̄(ψv)(M̄vζ̇)

∣∣∣∣
ζ,s1,s2=0

= z>(B⊗ I3)‡R̄(ψv)α(z,ψv)

= −z>(B⊗ I3)‡R̄(ψv)R̄(ψv)
>(B⊗ I3)γ(z)

= −x0
>(B⊗ I3)(B⊗ I3)‡(B⊗ I3)γ(z)

= −x0
>(B⊗ I3)γ(z)

= −z>γ(z) < 0 ∀z 6= 0

The last inequality follows from the definition of γk(zk) in (3.13) and the properties listed in (3.14).

Define the second auxiliary function

V2(χ) := q>Pq, (3.120)

which satisfies

V̇2 ≤ −σ1(|z|2L1
)q>Qq + 2q>PR(ψv1)ζ1 =: Y2(χ,φ(t,χ)) (3.121)

Evaluating Y2(χ,φ(t,χ)) at ζ, s1, s2, z = 0 yields

Y2(χ)

∣∣∣∣
ζ,s1,s2,z=0

= −q>Qq < 0 ∀q 6= 0

Define

M̄ := diag(M1, . . . ,Mr) ∈ R3r×3r,

Γ̄ := diag(Γ1, . . . ,Γr) ∈ R3r×3r,

and let the third and final auxiliary function be given by

V3(t,χ) := b̃>R̄(ψ)M̄s2, (3.122)

Taking time derivatives yields

V̇3(t,χ) = s>2 R̄(ψ)>Γ̄R̄(ψ)M̄s2 + b̃>
(

˙̄R(ψ, ν̄)M̄s2 + R̄(ψ)M̄ṡ2

)

=: Y3(χ,φ(t,χ)),

Evaluating Y3(χ,φ(t,χ)) at ζ, s1, s2, z,q = 0 and using (3.102) yields

Y3(χ,φ(t,χ))

∣∣∣∣
ζ,s1,s2,z,q=0

= b̃>R̄(ψ)(M̄ṡ2)

∣∣∣∣
ζ,s1,s2,z,q=0

= −b̃>R̄(ψ)R̄(ψ)>b̃

= −b̃>b̃ < 0 ∀b̃ 6= 0

It will now be shown that all assumptions of Theorem A.1 are satisfied.

1: The origin of (3.115) has been shown to be UGS, and Assumption 1 is thus satisfied.

2: We have established that θ(t) is a continuous function of time ∀t ≥ t0. Combining this with the

smoothness assumptions on pd(θ), Pk(zk), and li(t), it is verified that V0(χ),V1(t,χ),V2(χ),V3(t,χ),
∂V0(χ)
∂χ ,∂V1(t,χ)

∂χ ,∂V2(χ)
∂χ ,∂V3(t,χ)

∂χ are continuous on any set [a, b]×D, where [a, b] ⊂ [t0,∞), D ⊂ R3p+12r+3).

Consequently, the functions Vi(t,χ) are locally Lipschitz continuous over [t0,∞)× R3p+12r+3) by Khalil
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(2002; Lemma 3.2).

Collecting all time dependent terms appearing in the expressions for Yi(χ,φ(t,χ)) yields8

φ(t,χ) := col(R̄(ψv)ζ, R̄(ψv)M̄vζ,
˙̄R(ψv, ν̄v)M̄vζ, R̄(ψv)M̄vζ̇, R̄(ψ)s2, R̄(ψ)M̄s2,

˙̄R(ψ, ν̄)M̄s2, R̄(ψ)M̄ṡ2)

It is verified that Y0(χ), Y1(χ,φ), Y2(χ,φ), Y3(χ,φ) are continuous in their arguments. The only thing

left to show for Assumption 2 of Theorem A.1 to be satisfied is that there exist uniform upper bounds

on |Vi(t,χ)| and |φ(t,χ)| for any given upper bound on |χ|. Uniform upper bounds on |V0(χ)|, |V2(χ)|
follows from (3.110) and λmin,P |q|2 ≤ V2(χ) ≤ λmax,P |q|2, while bounds on |V1(t,χ)|, |V3(t,χ)| are es-

tablished by using the Cauchy-Schwarz inequality, noting that the norm of the block-diagonal matrices

R̄(ψ), R̄(ψv) are uniformly upper bounded by the property ||R(ψ)|| ≡ 1. To see that the bound on

|φ(t,χ)| holds, first note that the norms of νvi, i ∈ I, are uniformly upper bounded for bounded |χ|
by (3.105) and assumptions 2 – 3. By (3.107), this in turn gives uniform upper bounds on |νi|, i ∈ I.

Uniform upper bounds on |Ṙ(ψvi,νvi)| = |R(ψvi)Se>νvi| and |Ṙ(ψi,νi)| = |R(ψi)Se>νi| follows, which

in turn shows that | ˙̄R(ψv, ν̄v)M̄vζ| and | ˙̄R(ψ, ν̄)M̄s2| are uniformly upper bounded for bounded |χ|.
The bounds on νvi and νi also yield uniform upper bounds on |R̄(ψ)M̄ṡ2| and |R̄(ψv)M̄vζ̇| through

(3.97) and (3.102). Since |R̄(ψv)ζ|,|R̄(ψv)M̄vζ|,|R̄(ψ)s2|,|R̄(ψ)M̄s2| also are uniformly upper bounded

for bounded |χ|, it is concluded that a uniform upper bound on |φ(t,χ)| can be established for any given

upper bound on |χ|. Assumption 2 of Theorem A.1 is thus satisfied.

3: Since

Y0(χ) ≤ 0 ∀χ,
Y0(χ) = 0⇒ Y1(χ,φ(t,χ)) ≤ 0 ∀χ,φ,

Y0(χ), Y1(χ,φ(t,χ)) = 0⇒ Y2(χ,φ(t,χ)) ≤ 0 ∀χ,φ,
Y0(χ), Y1(χ,φ(t,χ)), Y2(χ,φ(t,χ)) = 0⇒ Y3(χ,φ(t,χ)) ≤ 0 ∀χ,φ,

assumption 3 is satisfied.

4: Since

Y0(χ) = 0⇒ s1, s2, ζ = 0,

Y1(χ,φ(t,χ))

∣∣∣∣
s1,s2,ζ=0

= 0⇒ z = 0,

Y2(χ,φ(t,χ))

∣∣∣∣
s1,s2,ζ,z=0

= 0⇒ q = 0,

Y3(χ,φ(t,χ))

∣∣∣∣
s1,s2,ζ,z,q=0

= 0⇒ b̃ = 0,

we have that Y0(χ), Y1(χ,φ(t,χ)), Y2(χ,φ(t,χ)), Y3(χ,φ(t,χ)) = 0 together imply χ = 0. Assumption

4 is thus satisfied.

All assumptions of Theorem A.1 are satisfied, and it is concluded that the origin of (3.115) is UGAS.

Since |(χ, θ, t)|A = |χ|, this proves UGAS for the set A.

Fulfillment of control objectives: We now have that

lim
t→∞

(|z(t)|, |ζ(t)|, |q(t)|, |s1(t)|, |s2(t)|, |b̃(t)|) = 0

8The time dependencies arise from the fact that the heading and velocities of the virtual and real ships are time-dependent

after the change of variables. See Section 3.3.6.1.
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By the definition of q and s1i, the control objectives (3.69),(3.71) are fulfilled. Fulfillment of (3.70),(3.72)

follows from Lemma 1 and the closed-loop dynamics of θ in (3.100). The reader is referred to Appendix

C.2 for a formal proof of this last statement. �
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3.3.7 Notes on implementation

The control design is summarized in Table 3.2.

Control laws, real

vessels

τ i = −KpiR(ψi)
>(ηi − ηvi)−R(ψi)

>b̂i + Di(νi)νri + Ci(νi)νri + Miν̇ri −
Kdi(νi − νri)

Control laws, vir-

tual vessels

τ vi = Dvi(νvi)f2i + Cvi(νvi)f2i + Mviḟ2i −Kdvi(νvi − f2i) +αi(z, ψvi) + δvi

Internal dynamic

variables

θ̇ = σ2(|z|2L1
)β(|q|2L2

)vs(θ, t) + 2µ(θ)q>Ppθd(θ) (see Table 3.1 for details)

˙̂
bi = ΓiR(ψi)(νi − νri)
η̇vi = R(ψvi)νvi

ν̇vi = M−1
vi (τ vi −Dvi(νvi)νvi −Cvi(νvi)νvi)

Parameters Kdi = Kd
>
i > 0

Kdvi = Kd
>
vi > 0

Kpi = diag(kp, kp, kψ), kp, kψ > 0

Γi = Γ>i > 0

Λi satisfying KpiΛi > 0

A Hurwitz

P = PT > 0 satisfying PA + A>P = −Q for some Q = Q> > 0

Signals

vd = σ1(|z|2L1
)Aq + σ2(|z|2L1

)β(|q|2L2
)pθd(θ)vs(θ, t) (see Table 3.1 for details)

δvi = R(ψvi)
>R(ψi)KpiR(ψi)

>(ηi − ηvi)
αi is given by (3.85), where all involved functions and variables are in accor-

dance with the first control design, noting that for this design, x0i = ηvi − f1i.

νri = −ΛiR(ψi)
>(ηi − ηvi) + R(ψi)

>
(
ḟ1i + vd

)

ν̇ri = −Λi

(
S>R(ψi)

>(ηi − ηvi)ψ̇i + νi −R(ψi)
>η̇vi

)

+S>R(ψi)
>
(
ḟ1i + vd

)
ψ̇i + R(ψi)

>
(
f̈1i + v̇d

)

f2i = R(ψvi)
>(ḟ1i + vd)

f1i = R (ψvi − ψci(t)) li(t)

See Table 3.1 for ḟ2i, f̈1i,v̇d, replacing all occurrences of ψi, ψ̇i, ψ̈i with ψvi,

ψ̇vi, ψ̈vi, respectively.

Table 3.2: Design 2 summarized

It is noted that all considerations presented in Section 3.2.5 are applicable to this design. The

accelerations of the virtual vessels should be calculated as in (3.60), with the obvious modifications due

to the change of notation and the extra term δvi in the virtual vessel control laws. Furthermore, all

orientation error variables in the system should be handled in accordance with the proposed algorithm.
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3.3.8 Simulation

The purpose of this simulation is to show that the closed-loop guidance and control design manages

to achieve group coordination and path following for the vessels despite the presence of an unknown,

constant environmental disturbance in the E-frame. Three vessels with dynamics given in Appendix B

are considered, where the desired formation configuration is given by l1 = col(0, 90, 0), l2 = col(0, 0, 0),

l3 = col(0,−90, 0). The path is chosen as a circle according to the parameterization

xd(θ) = R cos(kθ),

yd(θ) = −R sin(kθ),

where R = 800[m], k = 1
800 . The virtual vessel models are chosen equal to the models of the real

vessels. Furthermore, the communication topology, acting leader and control parameters for the virtual

vessels are chosen in accordance with Section (3.2.6), with the exception of Kdvi = 104×diag(5, 5, 1000),

σ1(s) = σ2(s) = e−0.25s. The function β(·) is chosen equal to unity, and the desired along-path speed is

set to Ud(t) ≡ 4[m/s]. The control parameters for the real vessels are chosen as Kdi = 104×diag(5, 5, 2),

Kpi = 103 × diag(3, 3, 60), Γi = 104 × diag(3, 3, 80), Λi = 10−1I3.

The initial states for the system are chosen as η10 = col(−106.1, 627.8, 5π
12 ), η20 = col(−45.3, 561.3, π4 ),

η10 = col(49.5, 472.2, π2 ), ν10,ν20,ν30, b̂1, b̂2, b̂3 = 0, θ0 = 3300, where the initial positions and velocities

of the virtual vessels are set equal to those of the corresponding real vessels. Finally, the environmental

disturbance is chosen as b = col(−105, 105, 106). It is noted that no saturations have been implemented

in the simulation model, so that the response times are somewhat unrealistic.

(a) |z(t)|∞ (b) |q(t)|∞

Figure 3.14: Time series of |z(t)|∞ and |q(t)|∞. At end of simulation, magnitudes are in the order of

O(10−7) and O(10−5), respectively.
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Figure 3.13: North-east position plot for the three vessels. The red, purple and blue ships correspond to

vessels 1,2,3, respectively. The black arrow on the path indicates the position and orientation contained

in pd(θ). Initial positions are indicated by smaller-sized ships and arrow.

(a) Vessel 1 (b) Vessel 2 (c) Vessel 3

Figure 3.15: Plots showing |s1i(t)|∞ for the three vessels. At end of simulation, magnitudes are in the

order of O(10−7).



58 FORMATION CONTROL DESIGN

(a) Vessel 1 (b) Vessel 2 (c) Vessel 3

Figure 3.16: Plots showing |b̃i(t)|∞ for the three vessels. At end of simulation, magnitudes are in the

order of O(10−2)

(a) Surge velocities (b) Sway velocities

Figure 3.17: Surge and sway velocities for the three vessels

After an initial transient caused by the unknown environmental disturbance, the real vessels track the

positions of the virtual vessels (Figure 3.15), which in turn ensures group coordination and path following

(Figure 3.14). Fulfillment of the dynamic assignment along the path is evident from figure 3.17(a), where

it is seen that the surge speed of Vessel 2 converges to the desired speed Ud = 4[m/s]. Figure 3.16

demonstrates the effectiveness of the bias estimators in the control system.
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3.4 Design 3: Generic maneuvering design using a LOS ap-

proach

The control designs of sections 3.2 and 3.3 have accomplished path following for the formation through

independent control of its position and orientation in the E-frame. Although this is a valid approach

from a theoretical point of view, the transient motion towards the path can become rather unpractical

for the vessels, as demonstrated in Section 3.2.6.3. In this third and final control design, path following

will be targeted through the line-of-sight(LOS) algorithm presented in Skjetne et al. (2011), ensuring a

practical and predictable transient motion towards the path. The design will also depart from the group

agreement protocols used in the previous designs, instead following the generic maneuvering methodology

to solve the formation control problem.

3.4.1 The LOS algorithm

Consider a vessel with generalized position η = col(p, ψ), p = col(x, y), in the E-frame, with dynamics

given by

η̇ = R(ψ)ν, (3.123)

where ν = col(u, v, r). For a parameterized path given by the set of points

P = {x ∈ R2 : ∃θ ∈ R s.t. x = pd(θ)},

where pd(θ) := col(xd(θ), yd(θ)) is a sufficiently smooth function, the LOS algorithm directs the course

angle of the vessel in such a way that it guarantees convergence to the path provided perfect tracking

and a non-zero lower bound on the magnitude of motion. For a vessel not experiencing any sideslip (i.e.

zero deviation between the course and heading angles), this translates to a reference signal ψlos for the

heading angle that accomplishes path following through positive surge motion. As the LOS algorithm ac-

tually will be used to direct the motion of an FRF in this design, sideslip is of no relevance in the following.

For a given value of θ, introduce a path-tangential reference frame with origin located at pd(θ). The

orientation of the reference frame is given by

ψd(θ) = arctan

(
yθd(θ)

xθd(θ)

)
(3.124)

The position of the vessel relative to the origin of the frame can be expressed in path-tangential coordinates

according to

ε(p, θ) = col(s(p, θ), e(p, θ)) = R2D(ψd(θ))
>(p− pd(θ)), (3.125)

where s(p, θ) and e(p, θ) are termed the along-track and cross-track errors, respectively, and

R2D(ψd(θ)) =

[
cos (ψd(θ)) − sin (ψd(θ))

sin (ψd(θ)) cos (ψd(θ))

]
(3.126)
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Figure 3.18: Illustration of the LOS algorithm in the case of zero sideslip. Courtesy of Skjetne et al.

(2011)

Let the surge speed of the vessel be given by u = Ud(t) > 0, and define

V (p, θ) =
1

2
ε(p, θ)>ε(p, θ) (3.127)

In accordance with Skjetne et al. (2011), the LOS algorithm can now be summarized as

ψlos(p, θ) = ψd(θ) + arctan

(−e(p, θ)
∆

)
, (3.128)

θ̇ = f∗θ (p, θ, t), (3.129)

f∗θ (p, θ, t) =
∆√

∆2 + e(p, θ)2

Ud(t)

|pθd(θ)|
− ωs(p, θ), (3.130)

ωs(p, θ) =
µθ
|pθd(θ)|

V θ(p, θ)

= −µθ
pθd(θ)

>

|pθd(θ)|
(p− pd(θ))

= −µθs(p, θ), (3.131)

where ∆, µθ > 0. It is seen that the algorithm points the vessel towards a point located a distance

∆ along the x-axis of the path-tangential frame. Furthermore, it is seen that the dynamic update law

for θ incorporates gradient optimization in addition to a feedback term from the surge speed of the vessel.

The stability properties of the LOS algorithm is derived in Skjetne et al. (2011). It turns out that

the algorithm solves a maneuvering problem given by the geometric and dynamic tasks

lim
t→∞

|η(t)− ηd(θ)| = 0,

lim
t→∞

|θ̇(t)− vs(θ(t), t)| = 0,
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where ηd(θ) = col(pd(θ), ψd(θ)), and vs(θ(t), t) = Ud(t)

|pθd(θ)| . The result is summarized in the following

proposition

Proposition 1. Let the parameterization θ 7→ pd(θ) be absolutely continuous, bounded, and such that

∃(p1, p2) > 0 s.t. ∀θ ∈ R, p1 ≤ |pθd(θ)| ≤ p2. For the system (3.123) with motion constrained to

ψ(t) ≡ ψlos(p(t), θ(t)), u(t) ≡ Ud(t) ≥ u0 > 0, v(t) ≡ 0, the LOS algorithm (3.128)–(3.131) renders the

set

A = {(η, θ) : η = ηd(θ)}
UGAS and ULES.

Proof. See Skjetne et al. (2011).

Proposition 1 clearly shows the effectiveness of the LOS algorithm.

3.4.2 Setup and problem statement

In the previous designs, a cooperative approach was utilized to ensure that the vessels established the

specified formation structure. This was done by making the vessels obtain their formation configuration

vectors in an implicit formation reference frame F resulting from an agreement of local FRFs. Motivated

by the approach of the first formation control design in Skjetne (2005), the position and orientation of

F will be stated explicitly in this design. Contrary to Skjetne (2005), however, the frame will not be

constrained to move along a parameterized path, but rather be allowed to evolve over the entire state

space. To this end, we define the FRP of F as

ζ := col(pζ , ζ3) ∈ R3, (3.132)

where

pζ = col(xζ , yζ) ∈ R2 (3.133)

contains the position of the origin of the FRF, and ζ3 contains its orientation relative to the E-frame.

Consider r vessels with dynamics given by (2.5) that is to be controlled in formation, and assign to

each of them a unique identifier in the index set I = {1, . . . , r}. The desired formation is specified as a

set of configuration vectors

li(t) = col(xci(t), yci(t), ψci(t)), i ∈ I
that is to be attained relative to F . This yields a desired generalized position vector for each vessel

according to

ηdi(ζ, t) = ζ + R(ζ3)li(t), i ∈ I, (3.134)

where R(·) is the rotation matrix in yaw. When the vessels have established the formation by reaching

their desired generalized positions, we want the formation to utilize the LOS algorithm to pursue path

following. In light of the generic maneuvering methodology, this can be fulfilled by letting the algorithm

dictate the trajectories of ζ when a certain manifold is reached. By defining

η̄ := col(η1, . . . ,ηr) ∈ R3r, (3.135)

ν̄ := col(ν1, . . . ,νr) ∈ R3r, (3.136)

η̄d(ζ, t) := col(ηd1(ζ, t), . . . ,ηdr(ζ, t)) ∈ R3r, (3.137)

a natural choice for the manifold is

A = {(η̄, ν̄, ζ, θ, t) : η̄ = η̄d(ζ, t), ζ3 = ψlos(pζ , θ)}, (3.138)

where t has been included in the system state vector by adhering to

ṫ = 1 t(0) = t0 (3.139)
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Remark 2. To separate the explicit time from the internal time-variable in the system, the explicit time

will from this point on be denoted t∗, so that t(t∗) = t∗ + t0 ∀t∗ ≥ 0, in accordance with (3.139).

The desired dynamics for F on the manifold A is given by the motion constraints in Proposition 1.

By defining

fp(ζ3, t) =

[
cos (ζ3)

sin (ζ3)

]
Ud(t), (3.140)

where Ud(t) is a desired surge speed for F , the control objectives can through this setup be expressed as

the following geometric and dynamic tasks:

Geometric task:

lim
t∗→∞

|η̄(t∗)− η̄d (ζ(t∗), t(t∗)) | = 0 (3.141)

lim
t∗→∞

|ζ3(t∗)− ψlos(pζ(t∗), θ(t∗))| = 0 (3.142)

Dynamic task:

lim
t∗→∞

|ṗζ(t∗)− fp(ζ3(t∗), t(t∗))| = 0, (3.143)

Since we want to separate the pursuit of group coordination and path following, (3.141) is given higher

priority than (3.142) and (3.143). This can prevent initiation of the collective movement towards the

path before the vessels are sufficiently close to being in formation, in accordance with the efforts of the

previous control designs.

It is finally noted that satisfying (3.142) and (3.143) does not provide a formal guarantee that F
will converge to the path, as applying Proposition 1 would require ṗζ(t

∗) ≡ fp(ζ3(t∗), t(t∗)), ζ3(t∗) ≡
ψlos(pζ(t

∗), θ(t∗)). However, based on the intuitive nature of the LOS algorithm and its proven effective-

ness in theory and practice, the author finds fulfillment of (3.142) and (3.143) to be sufficient ”proof” of

path convergence for any practical application.

3.4.3 Control design

A backstepping procedure similar to the formation control design in Skjetne (2005) will be used to achieve

the control objectives (3.141)–(3.143). The design will be presented after the dynamics of ζ and θ have

been specified.

3.4.3.1 Specification of FRP and path-variable dynamics

In a straight forward maneuvering design, the dynamics of ζ and θ would be chosen as

ζ̇ = f∗ζ (ζ, θ, t)− ωζ (3.144)

θ̇ = f∗θ (pζ , θ, t)− ωθ, (3.145)

where ωζ and ωθ would end up providing gradient optimization of the Lyapunov function used in the

design, and f∗ζ (ζ, θ, t), f∗θ (pζ , θ, t) are nominal terms that would be chosen in accordance with the desired

dynamics on the specified manifold. In our case, this would amount to choosing f∗θ (pζ , θ, t) as in (3.130),

f∗ζ (ζ, θ, t) =

[
fp(ζ3, t)

f∗ζ3(ζ, θ, t))

]
, (3.146)

where fp(ζ3, t) is given by (3.140), and

f∗ζ3(ζ, θ, t) = −kζ3(ζ3 − ψlos(pζ , θ)) + ψ
pζ
los(pζ , θ)fp(ζ3, t) + ψθlos(pζ , θ)f

∗
θ (pζ , θ, t), kζ3 > 0, (3.147)
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where a stabilizing term is included in (3.147) to enable fulfillment of (3.142).

The dynamics of ζ and θ will be assigned slightly different from (3.144)–(3.147). First of all, ωθ will

be omitted. The reason is that the LOS algorithm already incorporates a very intuitive gradient opti-

mization term in f∗θ (pζ , θ, t) that will work as a minimizer of the distance between the path-tangential

frame and pζ . Including additional gradient optimization through a new Lyapunov function could pollute

this nice feature, resulting in an unpredictable and less intuitive transient response for θ.

Due to our desire for a clear-cut separation between the group coordination and formation mission

tasks, fp(ζ3, t) and f∗ζ3(ζ, θ, t) in (3.146) will also be altered slightly from their preliminary specifications

in (3.140) and (3.147). As it is the desired surge speed function Ud(t) that will dictate the magnitude

of motion of F towards the path, and the stabilizing term in (3.147) that will drive the orientation of

F towards the LOS angle, ”deactivating” them when the vessels are out of formation will provide the

desired separation and prioritization. This is formalized by scaling the terms with activation functions

σk : R≥0 7→ R>0, k = 1, 2, which should be continuously differentiable, monotonically decreasing, and

satisfy

σk(0) = 1 k = 1, 2 (3.148a)

lim
s→∞

σ1(s) = 0. (3.148b)

σ2(s) ≥ ε ∀s ∈ R≥0, 1 >> ε > 0 (3.148c)

The positive lower bound the second activation function in (3.148c) is introduced due to technicalities in

the backstepping procedure. As ε can be chosen arbitrarily close to zero, this does not have any practical

implications (i.e. it can be chosen so that lims→∞ σ2(s) ≈ 0). As input to the activation functions, we

use |η̄ − η̄d(ζ, t)|2L := (η̄ − η̄d(ζ, t))> L (η̄ − η̄d(ζ, t)), where L = L> ≥ 0 is a weight matrix used to tune

the gains for position and orientation errors in (η̄ − η̄d(ζ, t)).

With these notes in mind, the dynamics of ζ and θ are chosen as

ζ̇ = fζ(ζ, η̄, θ, t)− ωζ , (3.149)

θ̇ = fθ(ζ, η̄, θ, t), (3.150)

where

fθ(ζ, η̄, θ, t) =
∆√

∆2 + e(pζ , θ)2

Ud(t)σ1

(
|η̄ − η̄d(ζ, t)|2L

)

|pθd(θ)|
+ µθ

pθd(θ)
>

|pθd(θ)|
(pζ − pd(θ)), (3.151)

fζ(ζ, η̄, θ, t) =

[
fpζ(ζ, η̄, t)

fζ3(ζ, η̄, θ, t))

]
, (3.152)

fpζ(ζ, η̄, t) =

[
cos (ζ3)

sin (ζ3)

]
Ud(t)σ1

(
|η̄ − η̄d(ζ, t)|2L

)
, (3.153)

fζ3(ζ, η̄, θ, t)) = −kζ3σ2

(
|η̄ − η̄d(ζ, t)|2L

)
(ζ3 − ψlos(pζ , θ)) + ψ

pζ
los(pζ , θ)fpζ(ζ, η̄, t) + ψθlos(pζ , θ)fθ(ζ, η̄, θ, t),

(3.154)

and ωζ is to be designed during the backstepping procedure.

3.4.3.2 Backstepping design

Step 1: Define

z1i(ηi, ζ, t) := ηi − ηdi(ζ, t) i ∈ I, (3.155)

z2i(ζ, η̄,νi, θ, t) := νi −αi(ζ, η̄, θ, t) i ∈ I, (3.156)
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where αi(ζ, η̄, θ, t), i ∈ I, are virtual control inputs to be designed. Differentiating (3.155) with respect

to time yields

ż1i = R(ψi)νi − ηζdi(ζ, t)fζ(ζ, η̄, θ, t)− ηtdi(ζ, t) + ηζdi(ζ, t)ωζ

= R(ψi)(z2i +αi)− ηζdi(ζ, t)fζ(ζ, η̄, θ, t)− ηtdi(ζ, t) + ηζdi(ζ, t)ωζ

Select Hurwitz matrices A1i and corresponding symmetric, positive definite matrices P1i satisfying

P1iA1i + A>1iP1i = −Q1i for some Q1i = Q>1i > 0. Defining the radially unbounded, positive defi-

nite CLF

V1(η̄, ζ, t) :=
∑

i∈I
z1i(ηi, ζ, t)

>P1iz1i(ηi, ζ, t), (3.157)

and differentiating with respect to time yields

V̇1 =
∑

i∈I
2z>1iP1i

[
R(ψi)(z2i +αi)− ηζdi(ζ, t)fζ(ζ, η̄, θ, t)− ηtdi(ζ, t) + ηζdi(ζ, t)ωζ

]

Choosing

αi(ζ, η̄, θ, t) = R(ψi)
>
(
ηζdi(ζ, t)fζ(ζ, η̄, θ, t) + ηtdi(ζ, t) + A1iz1i(ηi, ζ, t)

)
i ∈ I, (3.158)

yields

V̇1 =
∑

i∈I

(
− z>1iQ1iz1i + 2z>1iP1iR(ψi)z2i

)
+

(∑

i∈I
2z>1iP1iη

ζ
di(ζ, t)

)
ωζ

Before we move on to the next step of the backstepping procedure, it is noted that by defining

ψ := col(ψ1, . . . , ψr) ∈ Rr, (3.159)

R̄(ψ) := diag(R(ψ1), . . . ,R(ψr)) ∈ R3r×3r, (3.160)

the time derivatives of αi can be expressed as

α̇i = δi(ζ, η̄, ν̄, θ, t)−αζi (ζ, η̄, θ, t)ωζ i ∈ I, (3.161)

where

δi(ζ, η̄, ν̄, θ, t) =αζi (ζ, η̄, θ, t)fζ(ζ, η̄, θ, t) +αθi (ζ, η̄, θ, t)fθ(ζ, η̄, θ, t)

+αη̄i (ζ, η̄, θ, t)R̄(ψ)ν̄ +αti(ζ, η̄, θ, t), i ∈ I (3.162)

Step 2: From (3.156) and (3.161), the dynamics of z2i become

ż2i = ν̇i − δi(ζ, η̄, ν̄, θ, t) +αζi (ζ, η̄, θ, t)ωζ

= M−1
i

(
τ i −Di(νi)(z2i +αi(ζ, η̄, θ, t))−Ci(νi)(z2i +αi(ζ, η̄, θ, t))

)

− δi(ζ, η̄, ν̄, θ, t) +αζi (ζ, η̄, θ, t)ωζ

Defining the CLF

V2(ζ, η̄, ν̄, θ, t) = V1(η̄, ζ, t) +
∑

i∈I
z2i(ζ, η̄,νi, θ, t)

>Miz2i(ζ, η̄,νi, θ, t), (3.163)

and differentiating with respect to time yields (omitting some argument lists)

V̇2 =
∑

i∈I

(
− z>1iQ1iz1i

)
+

(∑

i∈I
2z>1iP1iη

ζ
di(ζ, t)

)
ωζ

+
∑

i∈I
2z>2i

[
R(ψi)

>P1iz1i + τ i − (Di(νi) + Ci(νi))(z2i +αi)−Miδi + Miα
ζ
i (ζ, η̄, θ, t)ωζ

]
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Choosing the control inputs as

τ i = −R(ψi)
>P1iz1i −Kdiz2i + Di(νi)αi + Ci(νi)αi + Miδi i ∈ I, (3.164)

where Kdi = K>di > 0, yields (using properties (2.7),(2.8))

V̇2 ≤ −
∑

i∈I

(
z>1iQ1iz1i + 2z>2iKdiz2i

)
+

(∑

i∈I

(
2z>1iP1iη

ζ
di(ζ, t) + 2z>2iMiα

ζ
i (ζ, η̄, θ, t)

))
ωζ

Step 3: Introduce the error variable

ζ̃3(ζ, θ) := ζ3 − ψlos(pζ , θ), (3.165)

and define the candidate Lyapunov function

V3(ζ, η̄, ν̄, θ, t) = V2(ζ, η̄, ν̄, θ, t) +
ρ

2
ζ̃2
3 , ρ > 0 (3.166)

Taking time derivatives and using (3.149)–(3.154) yields

V̇3 = V̇2 + ρζ̃3

[
fζ3(ζ, η̄, θ, t))− h>3 ωζ − ψ

pζ
los(pζ , θ)

(
fpζ(ζ, η̄, t)− I2×3ωζ

)

− ψθlos(pζ , θ)fθ(ζ, η̄, θ, t)
]

h3 = col(0, 0, 1), I2×3 =

[
1 0 0

0 1 0

]

≤ −
∑

i∈I

(
z>1iQ1iz1i + 2z>2iKdiz2i

)
− ρkζ3σ2

(
|η̄ − η̄d(ζ, t)|2L

)
ζ̃2
3

+

[∑

i∈I

(
2z>1iP1iη

ζ
di(ζ, t) + 2z>2iMiα

ζ
i (ζ, η̄, θ, t)

)
+ ρζ̃3

(
ψ
pζ
los(pζ , θ)I2×3 − h>3

) ]
ωζ

It is easily verified that

V ζ3 (ζ, η̄, ν̄, θ, t) =
∑

i∈I

(
−2z>1iP1iη

ζ
di(ζ, t)− 2z>2iMiα

ζ
i (ζ, η̄, θ, t)

)
+ ρζ̃3

(
h>3 − ψ

pζ
los(pζ , θ)I2×3

)
, (3.167)

which shows that

V̇3 ≤ −
∑

i∈I

(
z>1iQ1iz1i + 2z>2iKdiz2i

)
− ρkζ3σ2

(
|η̄ − η̄d(ζ, t)|2L

)
ζ̃2
3 − V ζ3 (ζ, η̄, ν̄, θ, t)ωζ ,

≤ −
∑

i∈I

(
z>1iQ1iz1i + 2z>2iKdiz2i

)
− ρkζ3εζ̃2

3 − V ζ3 (ζ, η̄, ν̄, θ, t)ωζ ,

where the last transition follows from (3.148c). At this point, a natural way to proceed would be to

utilize the gradient assignment ωζ = µζV
ζ
3 (ζ, η̄, ν̄, θ, t)> for some µζ > 0, making V̇3 negative definite in

our error variables. However, due to some technicalities in the stability proof of Section 3.4.4.4, ωζ will

instead be chosen as the output of a first order reference filter that is fed µζV
ζ
3 (ζ, η̄, ν̄, θ, t)> as input,

resulting in a filtered gradient assignment. To formalize this, we select a matrix Aζ = A>ζ > 0, and

assign

ω̇ζ = −Aζωζ + AζµζV
ζ
3 (ζ, η̄, ν̄, θ, t)> (3.168)

Intuitively speaking, the filtered gradient law will retain the optimization qualities of the pure gradient

assignment ωζ = µζV
ζ
3 (ζ, η̄, ν̄, θ, t)> provided the reference filter is tuned aggressively (i.e. Aζ is chosen

large).

Remark 3. Note that the mass matrices of the vessels are included in V ζ3 (ζ, η̄, ν̄, θ, t). By following the

approach of the formation control designs in Skjetne (2005), these matrices can be replaced by tunable

matrices P2i = P>2i > 0, resulting in increased flexibility with respect to tuning of the gradient optimiza-

tion. The downside is that the corresponding control laws must cancel the terms Di(νi)νi,Ci(νi)νi in

the vessel dynamics.
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Extending the candidate function (3.166) into the Lyapunov function

V4(ζ, η̄, ν̄,ωζ , θ, t) = V3(ζ, η̄, ν̄, θ, t) +
1

2µζ
ω>ζ A−1

ζ ωζ , (3.169)

and differentiating with respect to time finally yields

V̇4 ≤ −
∑

i∈I

(
z>1iQ1iz1i + 2z>2iKdiz2i

)
− ρkζ3εζ̃2

3 − V ζ3 (ζ, η̄, ν̄, θ, t)ωζ

− 1

µζ
ω>ζ ωζ + ω>ζ V

ζ
3 (ζ, η̄, ν̄, θ, t)>

= −
∑

i∈I

(
z>1iQ1iz1i + 2z>2iKdiz2i

)
− ρkζ3εζ̃2

3 −
1

µζ
ω>ζ ωζ

≤ 0

3.4.3.3 Operation phases

The activation functions σk (·) were included in (3.151), (3.153), and (3.154) to enable prioritization

and separation between the task of establishing the formation, and the task of getting the formation

to converge to the specified path. Through proper tuning of the system, this is achieved by effectively

dividing an operation into two distinct phases:

Coordination phase: By design, the activation functions σk

(
|η̄ − η̄d(ζ, t)|2L

)
can attain values ar-

bitrarily close to zero for |η̄ − η̄d(ζ, t)|L ≥ c, where c is threshold that can define when the vessels are

”out of formation”. In the coordination phase, where the vessels are outside this threshold, the dynamics

(3.151)–(3.154) consequently simplify to

fθ(ζ, η̄, θ, t) ≈ µθs(pζ , θ),
fpζ(ζ, η̄, t) ≈ 0,

fζ3(ζ, η̄, θ, t)) ≈ ψpζ
los(pζ , θ)fpζ(ζ, η̄, t) + ψθlos(pζ , θ)fθ(ζ, η̄, θ, t),

≈ µθψθlos(pζ , θ)s(pζ , θ),

where the last transition follows from |ψpζ
los(pζ , θ)| ≤ 1

∆ ∀(pζ , θ) (see Table 3.3 in Section 3.4.5.1). It is

seen that the dynamics of θ reduce to a minimizer of the along-track distance s(pζ , θ). As the vessels are

likely to require quite some time to reach their specified positions (in the order of minutes), there is no

need for this optimization to be very fast. By choosing µθ small we can thus approximate9

ζ̇ = fζ(ζ, η̄, θ, t)− ωζ
≈ −ωζ

The result is that F will move to minimize the function V3(ζ, η̄, ν̄, θ, t) while the vessels use control

efforts to obtain their specified positions relative to F . Although the orientation error between F and

the LOS angle is included in V3(ζ, η̄, ν̄, θ, t), the corresponding impact on the gradient optimization can

be made arbitrarily small by choosing ρ small. The vessels and F will then collaborate in establishing

the formation as quickly as possible without paying any attention to where the formation is established

relative to the path, and the desired separation from the LOS path following phase is achieved.

9It is noted that fζ3 (ζ, η̄, θ, t)) ≈ µθψ
θ
los(pζ , θ)s(pζ , θ) can cause some rotational motion for F during coordination.

The effect can, however, be mitigated by ensuring a small initial along-track error through proper initialization of θ, and

by choosing µθ small.
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LOS path following phase: After the vessels have converged to their desired generalized positions

relative to F , the LOS path following phase is initiated as a result of the activation functions approaching

unity in value. This activates the feedback in (3.154) turning F towards the LOS angle, as well as the

desired forward motion Ud(t) translating F in the direction of its x-axis. Through tuning of the gain kζ3
in (3.154) and the relative shaping of the two activation functions, the transient behavior in the path

following phase can be manipulated. By Choosing kζ3 large and making sure that σ2

(
|η̄ − η̄d(ζ, t)|2L

)

approaches unity faster than σ1

(
|η̄ − η̄d(ζ, t)|2L

)
, the time taken and distance traveled before the ori-

entation of F reaches the LOS angle is likely to be shorter than if kζ3 is chosen small and σ1(·), σ2(·) is

tuned the other way around. The appropriate choice will depend on the maneuverability of the vessels

and the specific formation configuration.

3.4.4 Stability analysis

3.4.4.1 Assumptions

The following assumptions are made:

Assumption 5. The configuration vectors li(t) ∈ C2, and ∃ lmax <∞ so that ∀i ∈ I and ∀t ≥ t0, then

max{|li(t)|, |lti(t)|} ≤ lmax.

Assumption 6. The desired speed function Ud(t) ∈ C1, and ∃Umax <∞ such that ∀t ≥ t0

0 < Ud(t) ≤ Umax

Assumption 7. The path pd(θ) ∈ C3, and ∃(p1, p2) > 0 s.t. ∀θ ∈ R,

p1 ≤ |pθd(θ)| ≤ p2

The reason for requiring pd(θ) ∈ C3 is that the control laws for each vessels utilize the third derivatives

of the path function through the feedforward signal (3.162).

Proposition 2. By assumption 7, there exists constants Lθ, cθ > 0 such that ∀θ ∈ R,

|pd(θ)| ≤ Lθ|θ|+ cθ

Proof. See Appendix C.3.

3.4.4.2 Change of variables

Define

z1 := col(z11, . . . , z1r) ∈ R3r (3.170)

z2 := col(z21, . . . , z2r) ∈ R3r (3.171)

x = col(η̄, ν̄, ζ,ωζ , θ, t) ∈ R6r+8 (3.172)

φ = col(z1, z2, ζ̃3,pζ ,ωζ , θ, t) ∈ R6r+8 (3.173)

In subsequent analysis, the diffeomorphism x 7→ φ is applied. The change of variables is performed

through the continuously differentiable map T : R6r+8 7→ R6r+8, where φ = T(x). The continuously

differentiable inverse map x = T−1(φ) is given implicitly by

ζ(pζ , ζ̃3, θ) = I3×2pζ +
(
ζ̃3 + ψlos(pζ , θ)

)
h3, (3.174)

η̄(z1,pζ , ζ̃3, θ, t) = z1 + η̄d

(
ζ(pζ , ζ̃3, θ), t

)
, (3.175)

ν̄(z1, z2,pζ , ζ̃3, θ, t) = z2 + ᾱ
(
η̄(z1,pζ , ζ̃3, θ, t), ζ(pζ , ζ̃3, θ), θ, t

)
, (3.176)
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where

ᾱ(ζ, η̄, θ, t) = col(α1(ζ, η̄, θ, t), . . . ,αr(ζ, η̄, θ, t)) ∈ R3r,

I3×2 =




1 0

0 1

0 0


 ,

h3 = col(0, 0, 1)

It is noted that by assumptions 5–7, the diffeomorphism satisfies lim|x|→∞ |T(x)| = ∞ (see Appendix

C.4 for a proof of this statement), so that boundedness of |φ| implies boundedness of |x|.

3.4.4.3 Closed-loop system

The closed-loop system in our transformed variables is given by (omitting the argument lists of the

original variables wherever they appear for convenience)

ż1i = A1iz1i + R(ψi)z2i + ηζdi(ζ, t)ωζ i ∈ I (3.177)

ż2i = M−1
i

(
−Kdiz2i −Di(νi)z2i −Ci(νi)z2i −R(ψi)

>P1iz1i

)
+αζi (ζ, η̄, θ, t)ωζ i ∈ I (3.178)

˙̃
ζ3 = −kζ3σ2

(
|z1|2L

)
ζ̃3 +

(
ψ
pζ
los(pζ , θ)I2×3 − h>3

)
ωζ (3.179)

ṗζ =

[
cos (ζ3)

sin (ζ3)

]
Ud(t)σ1

(
|z1|2L

)
− I2×3ωζ (3.180)

ω̇ζ = −Aζωζ + AζµζV
ζ
3 (ζ, η̄, ν̄, θ, t)> (3.181)

θ̇ =
∆√

∆2 + e(pζ , θ)2

Ud(t)σ1

(
|z1|2L

)

|pθd(θ)|
+ µθ

pθd(θ)
>

|pθd(θ)|
(pζ − pd(θ)) (3.182)

ṫ = 1 (3.183)

3.4.4.4 Main result

Theorem 3. Under assumptions 5–7, the control system given jointly by the dynamical assignments

(3.149)–(3.154),(3.168), and the vessel control laws (3.164), renders the set

M = {(z1, z2, ζ̃3,pζ ,ωζ , θ, t) ∈ R6r+8 : z1 = 0, z2 = 0,ωζ = 0, ζ̃3 = 0}

UGES, and solves the control objectives (3.141)–(3.143).

Proof. The closed-loop system (3.177)–(3.183) can be restated on the form of the interconnected sys-

tem (A.5) in Appendix A.2 by choosing x1 = col(z1, z2, ζ̃3,ωζ) ∈ R6r+4, x2 = col(pζ , θ, t) ∈ R4, and

(u1,u2) = 0. With these choices in mind, the set M can be restated on the form (A.6), where the

compact set A1 is given by the equilibrium point

A1 = {(z1, z2, ζ̃3,ωζ) ∈ R6r+4 : z1 = 0, z2 = 0,ωζ = 0, ζ̃3 = 0},

with corresponding distance function |(z1, z2, ζ̃3,ωζ)|A1
= |(z1, z2, ζ̃3,ωζ)|. We can thus examine stabil-

ity of M through Theorem A.2.

The first step is to show that the sector bound (A.7) holds for the system. For (z1, z2, ζ̃3,ωζ) confined in



3.4. DESIGN 3: GENERIC MANEUVERING DESIGN USING A LOS APPROACH 69

a compact set in which |(z1, z2, ζ̃3,ωζ)| ≤ C, we have that (utilizing assumptions 6–7 and Proposition 2)

|ṗζ | ≤ Umax + C

|θ̇| ≤ Umax
p1

+ µθ (|pζ |+ Lθ|θ|+ cθ)

|ṫ| = 1

Since

|(ṗζ , θ̇, ṫ)| ≤ |ṗζ |+ |θ̇|+ |ṫ|,
|pζ |, |θ| ≤ |(pζ , θ, t)|,

this yields

|(ṗζ , θ̇, ṫ)| ≤ µθ(Lθ + 1)|(pζ , θ, t)|+ Umax + C +
Umax
p1

+ µθcθ + 1,

which clearly shows that the sector bound (A.7) is satisfied.

Since the smooth function

V4(z1, z2, ζ̃3,ωζ) =
∑

i∈I

(
z>1iP1iz1i + z>2iMiz2i

)
+
ρ

2
ζ̃2
3 +

1

2µζ
ω>ζ A−1

ζ ωζ

satisfies

d1|(z1, z2, ζ̃3,ωζ)|2 ≤ V4(z1, z2, ζ̃3,ωζ) ≤ d2|(z1, z2, ζ̃3,ωζ)|2,

V̇4 ≤ −d3|(z1, z2, ζ̃3,ωζ)|2,

where

d1 = min

{
min
i∈I
{λmin,P1i

},min
i∈I
{λmin,Mi

}, ρ
2
,

1

2µζ
λmin,A−1

ζ

}
> 0,

d2 = max

{
max
i∈I
{λmax,P1i},max

i∈I
{λmax,Mi},

ρ

2
,

1

2µζ
λmax,A−1

ζ

}
> 0,

d3 = min

{
min
i∈I
{λmin,Q1i

}, 2 min
i∈I
{λmin,Kdi}, ρkζ3ε,

1

µζ

}
> 0,

UGES is concluded for the set M by Theorem A.2.

Having established UGES, it follows that limt∗→∞(|z1(t∗)|, |z2(t∗)|, |ζ̃3(t∗)|, |ωζ(t∗)|) = 0. From the

definitions of z1 and ζ̃3, it follows that the control objectives (3.141)–(3.142) are fulfilled. Fulfillment of

the control objective (3.143) follows from the closed-loop dynamics (3.180) and the property (3.148a). A

formal proof of the last statement is given in Appendix C.5.
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3.4.5 Practical considerations

3.4.5.1 Notes on implementation

The control design is summarized in Table 3.3. When implementing the design, it is important to apply

the orientation handler algorithm in Section 3.2.5.1 to all orientation error variables that are used in the

control system (the third elements of the signals z1i, i = 1 . . . r, and ζ̃3 = ζ3 − ψlos(pζ , θ)).

3.4.5.2 Choosing relative heading angles in the formation configuration vectors

In the control designs of this thesis, a formation is specified as a set of relative position vectors and head-

ing angles through the formation configuration vectors li(t) = col(xci(t), yci(t), ψci(t)). Although this

rigorous formation specification can be useful for some operations, it might be a bit overkill for others.

More specifically, it might be of interest to specify the formation as a set of relative positions without

posing any restrictions on the relative heading angles. The vessels can then control their orientation in

a manner that yields the most efficient and feasible motion within the moving formation. This might

involve choosing orientations that enable the vessels to follow their designated positions by utilizing surge

and yaw motion exclusively, as controlling motion in sway can become difficult at higher speeds10.

When the LOS path following phase is initiated (see Section 3.4.3.3), the vessels will be in formation with

respect to F , which in turn will utilize surge and yaw motion exclusively to guide the formation towards

the path. During this phase of the operation, the motion of the positions we want the vessels to track is

consequently very predictable, enabling us to specify relative heading angles ψci(t) that allow pure surge

and yaw motion for the vessels during tracking. A method for doing this will be presented in the following

The desired generalized positions for the vessels are given by

ηdi(ζ, t) = ζ + R(ζ3)li(t)

Separating this into desired positions and orientations yields

pdi = pζ + R2D(ζ3)lpi(t), (3.184)

ψdi = ζ3 + ψci(t), (3.185)

where lpi(t) = col(xci(t), yci(t)), and R2D(·) is given in (3.126). Since |ω| will be small after the coordi-

nation phase, we have that

ṗdi = ṗζ + R2D(ζ3)
(
S2Dlpi(t)ζ̇3 + l̇pi(t)

)

≈ fpζ(ζ, η̄, t) + R2D(ζ3)
(
S2Dlpi(t)fζ3(ζ, η̄, θ, t) + l̇pi(t)

)
=: v∗di,

where S2D is given in Table 3.3. By directing the vessels along

ψdi = arctan

(
row(0, 1)v∗di
row(1, 0)v∗di

)
, (3.186)

during the LOS path following phase, they will thus be able to track pdi by utilizing surge and sway

motion exclusively. By (3.185) this corresponds to

ψci = ψdi − ζ3, (3.187)

10Due to the coupling between sway and yaw in the equations of motion, pure surge and yaw motion still requires control

effort in sway. The most desirable choice for the orientations would enable the vessels to utilize forces/moments in surge/yaw

exclusively while following the formation, making the motion applicable to underactuated vessels. This will, however, not

be pursued further herein.
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where it is noted that the orientation algorithm of Section 3.2.5.1 should be utilized when calculating the

right hand side of the equation. To ensure that the heading configuration signals (3.187) are applied after

the coordination phase, it is proposed that they are scaled with an activation function σ3(|z1|2L) satisfying

the properties (3.148a)–(3.148b). By doing this, the signals will be close to zero during coordination,

and the ships will thus synchronize their heading with the orientation of F . Since the initial motion of

F in the LOS path following phase will be positive along its x-axis, the corresponding initial values of

ψci = ψdi − ζ3 will be close to zero, guaranteeing a smooth transition.

Since the control law for the i’th vessel requires signals for the first and second time derivatives of

ψci, the calculated signal should be passed through a fast, third order reference filter. This yields the

algorithm

v∗di = fpζ(ζ, η̄, t) + R2D(ζ3)
(
S2Dlpi(t)fζ3(ζ, η̄, θ, t) + l̇pi(t)

)

ψdi = arctan

(
row(0, 1)v∗di
row(1, 0)v∗di

)

ψri = (ψdi − ζ3)σ3(|z1|2L)

ψci =
ω3
l

(s+ ωl)3
ψri, ωl > 0 (3.188)

It is finally noted that by letting the time derivatives of ψci be dependent on the states of the system,

the stability result of Theorem 3 is no longer valid, as Assumption 5 no longer can be guaranteed. The

algorithm has, however, proved itself in simulations, as demonstrated in Section 3.4.6.
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Control laws τ i = −R(ψi)
>P1iz1i −Kdiz2i + Di(νi)αi + Ci(νi)αi + Miδi

Internal dynamic

variables

ζ̇ = fζ(ζ, η̄, θ, t)− ωζ , fζ(ζ, η̄, θ, t) is given in (3.152)–(3.154), ζ = col(pζ , ζ3)

θ̇ = fθ(ζ, η̄, θ, t), fθ(ζ, η̄, θ, t) is given in (3.151)

ω̇ζ = −Aζωζ + AζµζV
ζ
3 (ζ, η̄, ν̄, θ, t)>

Parameters Kdi = K>di > 0

A1i Hurwitz

P1i = P>1i > 0 satisfying P1iA1i + A>1iP1i = −Q1i for some Q1i = Q>1i > 0

Aζ = A>ζ > 0

L = L> ≥ 0 L ∈ R3r×3r

µθ, µζ , kζ3 , ρ,∆ > 0

Signals

η̄ = col(η1, . . . ,ηr)

ν̄ = col(ν1, . . . ,νr)

R̄(ψ) = diag(R(ψ1), . . . ,R(ψr))

z1 = col(z1i, . . . , z1r)

z1i = ηi − ηdi(ζ, t)
z2i = νi −αi(ζ, η̄, θ, t)
|z1|2L = |η̄ − η̄d(ζ, t)|2L = z1Lz1

αi(ζ, η̄, θ, t) = R(ψi)
>
(
ηζdi(ζ, t)fζ(ζ, η̄, θ, t) + ηtdi(ζ, t) + A1iz1i

)

αζi (ζ, η̄, θ, t),αη̄i (ζ, η̄, θ, t),αθi (ζ, η̄, θ, t),α
t
i(ζ, η̄, θ, t) are given in Appendix C.6

δi = αζi (ζ, η̄, θ, t)fζ(ζ, η̄, θ, t) +αθi (ζ, η̄, θ, t)fθ(ζ, η̄, θ, t)

+αη̄i (ζ, η̄, θ, t)R̄(ψ)ν̄ +αti(ζ, η̄, θ, t)

η̄d(ζ, t) = col(ηd1(ζ, t), . . . ,ηdr(ζ, t))

ηdi(ζ, t) = ζ + R(ζ3)li(t)

ηζdi(ζ, t) = I3 + R(ζ3)Sli(t)h
>
3 , h3 = col(0, 0, 1)

ηtdi(ζ, t) = R(ζ3)lti(t)

ψlos(pζ , θ) = ψd(θ) + arctan
(
−e(pζ ,θ)

∆

)

ψ
pζ
los(pζ , θ) = ∆

e(pζ ,θ)2+∆2 row (sin(ψd(θ)),− cos(ψd(θ)))

ψθlos(pζ , θ) = ψθd(θ)− ∆
e(pζ ,θ)2+∆2 e

θ(pζ , θ)

e(pζ , θ) = row(0, 1)R2D(ψd(θ))
>(pζ − pd(θ))

eθ(pζ , θ) = row(0, 1)
(
S>2DR2D(ψd(θ))

>(pζ − pd(θ))ψ
θ
d(θ)−R2D(ψd(θ))

>pθd(θ))
)

S2D =

[
0 −1

1 0

]

pd(θ) = col(xd(θ), yd(θ))

ψd(θ) = arctan
(
yθd(θ)

xθd(θ)

)

ψθd =
yθ

2

d xθd−xθ
2

d yθd
(xθd)2+(yθd)2

Table 3.3: Control laws, design 3



3.4. DESIGN 3: GENERIC MANEUVERING DESIGN USING A LOS APPROACH 73

3.4.6 Simulations

The author experienced some numerical problems when simulating the third design in closed loop. Utiliz-

ing fixed-step equation solvers in Matlab/Simulink caused the solutions to blow up, seemingly irrespective

of how the control system was tuned. Switching to a standard variable-step integrator remedied this prob-

lem, but the solver used extremely short time-steps when integrating the system equations, resulting in

very long execution times. The source of the problems seemed to be the gradient optimization, as setting

ωζ ≡ 0 yielded normal system behavior. Identifying the numerical difficulties as the characteristics of a

stiff problem, a specialized solver for stiff system equations has been used in the following simulations.

This has provided normal execution times, but as pointed out in the documentation of Matlab, lower

accuracy is expected compared to the standard variable-step solver.

To demonstrate the third design, two simulation cases will be shown. Three vessels with dynamics given

in Appendix B are considered. The path is chosen as a sine wave propagating along the positive y-axis

of the E-frame, with parameterization xd(θ) = 100 + 100 sin( 2π
800θ), yd(θ) = 100 + θ. The control param-

eters are chosen as A1i = −10−3 × diag(1, 1, 25), P1i = 103 × diag(2, 2, 150), Kdi = 104 × diag(5, 5, 60),

Aζ = 103 × I3, L = diag(L0,L0,L0), L0 = diag(1, 1, 1000), µθ = 10−2, µζ = 2.1021 × 10−5, ρ = 10−4,

kζ3 = 0.015, ∆ = 50. The activation functions are chosen as11 σ1(s) = σ2(s) = e−0.2s. It is noted that

no saturations have been implemented in the simulation model, so that the response times are somewhat

unrealistic.

3.4.6.1 Case 1

In the first simulation case, the desired formation configuration is set according to l1 = col(0, 80, 0),

l2 = col(0, 0, 0), l3 = col(0,−80, 0), which corresponds to a transversal line formation where the desired

generalized position for Vessel 2 coincides with ζ. The desired speed for the formation is chosen as

Ud(t) ≡ 3[m/s], and the initial states are η10 = col(−760, 85, −3π
4 ), η20 = col(−780, 200, −9π

10 ), η30 =

col(−745, 300, −7π
6 ), ζ0 = col(−700, 180,−π), ν10,ν20,ν30,ωζ0 = 0, θ0 = 10.

(a) |z1(t)|∞ (b) |ζ̃3(t)|

Figure 3.20: Time series of |z1(t)|∞ and |ζ̃3(t)|. At end of simulation, magnitudes are in the order of

O(10−4) and O(10−5), respectively.

11This choice for σ2(·) does not satisfy (3.148c). However, this is of no practical importance.
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Figure 3.19: North-east position plot for the three vessels. The red, purple and blue ships correspond to

vessels 1,2,3, respectively. The black arrow on the path indicates the position of pd(θ). The red bar with

black dots represents the desired positions ηdi, i = 1, 2, 3, and the position of ζ (equal to ηd2). Initial

positions are indicated by smaller-sized ships and arrow.

(a) e(t) (b) s(t)

Figure 3.21: Time series of the cross-track and along-track errors e(t) and s(t). At end of simulation,

magnitudes are in the order of O(10−3) and O(10−2), respectively.
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(a) Surge velocities (b) Sway velocities

Figure 3.22: Surge and sway velocities for the three vessels

Figure 3.23: Surge and sway velocities for F .

Figures 3.19, 3.20, and 3.23 clearly demonstrate that the proposed control system fulfills the control

objectives (3.141)–(3.143). Separation between the tasks of group coordination and path following is also

evident, as the desired motion (3.140) for F and convergence of |ζ̃3(t)| is initiated after |z1(t)|∞ has

converged. The effect of the gradient optimization can be seen by comparing figures 3.20(a), 3.22, and

3.23, as the initial rate of convergence for |z1(t)|∞ clearly exceeds the velocities of the vessels. It is also

seen that the LOS steering algorithm ensures transient motion that is well suited for the vessels, despite

the fact that the formation is established facing away from the path. The effectiveness of the algorithm

with respect to path-convergence is verified in Figure 3.21.
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3.4.6.2 Case 2

The purpose of this simulation is to demonstrate the algorithm proposed in Section 3.4.5.2 for ensuring

pure surge and yaw motion for the vessels after group coordination. The initial formation configuration is

chosen as a longitudinal line formation according to lp1 = col(−130, 0), lp2 = col(0, 0), lp3 = col(−65, 0).

Due to the large x-components in these formation vectors, specifying ψci(t) ≡ 0 would induce considerable

sway motion for vessels 1 and 3 when moving in formation along a curved path. To illustrate the

possibilities for formation reconfigurations, the configuration vectors gradually change through third

order reference filters to lnewp1 = col(−40, 80), lnewp3 = col(−40,−80) after t = 500[s]. The parameter ωl

in (3.188) is chosen as ωl = 100, and the activation function σ3(·) is chosen equal to σ1(·). The desired

speed for the formation is chosen as Ud(t) ≡ 4[m/s], and the initial states for the system are η10 =

col(−967.4, 95.3, 11π
60 ), η20 = col(−825.7, 107.4, π12 ), η30 = col(−900.4, 77, −π12 ), ζ0 = col(−780, 130, π12 ),

ν10,ν20,ν30,ωζ0 = 0, θ0 = −100. It is noted that by including the algorithm (3.188) in the system,

the closed-loop equations seemed to become even more stiff. To ensure feasible execution times for the

simulation, the tolerance of the equation solver was relaxed in Matlab/Simulink.

Figure 3.24: North-east position plot for the three vessels after the group coordination phase.
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(a) Surge velocities (b) Sway velocities

Figure 3.25: Surge and sway velocities for the three vessels

(a) |z1(t)|∞ (b) |ζ̃3(t)|

Figure 3.26: Time series of |z1(t)|∞ and |ζ̃3(t)|.

As seen from figures 3.25(b) and 3.26(a), the vessels move in formation without utilizing sway motion

shortly after group coordination has been achieved. Figure 3.24 shows how the relative orientations of

the vessels change dynamically to accommodate this behavior.



Chapter 4

Evaluation of control designs

In this chapter, the control designs of Chapter 3 will be evaluated against criteria that are important for

formation control systems. In the end, the designs will be compared to one another in terms of advantages

and disadvantages.

4.1 Evaluation criteria

The following aspects will be considered in the evaluation:

• Communication requirements: The possibility of extensive real-time communication between

vessels is typically limited at sea. A good control design should take such restrictions into account

and strive to limit the required inter-vessel communication.

• Behavior during failure scenarios: A formation control system should be well-behaved in the

case of vessel failures. This includes mild failures such as saturations, and severe scenarios such

as blackouts. The desired behavior during failure scenarios depends on operational philosophy. In

some applications, it might be of interest to leave a failing vessel behind, while in others, maintaining

the formation structure might be of utmost importance. Since the task of group coordination has

been given the highest priority in the control designs of this thesis, the desired behavior during

vessel failures will be defined by an ability to maintain the specified formation structure.

• Collision avoidance capabilities: Formation control deals with simultaneous control of multiple

vessels. The danger of collisions during operations is thus of major concern. Ideally, a formation

control system should include functionality that strives to avoid collisions during operations. This is

important in the initial phase of an operation where the formation is established, during formation

reconfigurations, and during failure scenarios.

• Transient behavior during group coordination and path following: The separation of group

coordination and path following has shaped the overall transients of the proposed formation control

systems. Transient behavior within the operational phases is, however, also of importance. In this

respect, factors such as feasibility and efficiency of motion for the vessels should be considered.

4.2 Evaluation

4.2.1 Communication requirements

By following the framework of Arcak (2007), the first two control designs have to some extent incorporated

limitations on inter-vessel communication through the use of a communication topology. Specifically, lim-

itations on the communication required to obtain the synchronization terms in the control laws (the terms

78
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αi) have been incorporated. In this respect, the designs satisfy the notion of a decentralized solution.

However, the control law for each vessel/virtual vessel requires access to more external signals than those

required for calculation of the synchronization term, namely the common velocity input vd and its time-

derivative v̇d. For the proposed solution of the formation mission task, vd and v̇d incorporates feedback

from the states of the vessels, as evident from Table 3.1. In the most general case, data must therefore

be collected in real-time to calculate vd and v̇d, which in turn must be distributed back to the vessels.

The result is a centralized control system requiring significant communication during operations.

The author has identified a way to circumvent the issues described above. By choosing the matrix

L1 incorporated in the activation functions σ1(|z|2L1
), σ2(|z|2L1

) such that only the synchronization errors

between the acting leader and its neighbors in the communication topology are required for calculat-

ing |z|2L1
, the acting leader can calculate all terms required in vd and v̇d locally while adhering to the

restricted lines of communication1. The signals can subsequently be distributed to the acting leaders

neighboring vessels in the communication topology, which in turn distribute the signals to their neigh-

bors until all the vessels have received them. This approach yields a fully decentralized design, although

there are some downsides. First of all, time-delays would be introduced into the system as a result of the

stepwise distribution of vd and v̇d. For large groups of vessels spanning long distances, this could possibly

deteriorate performance of the control system. Furthermore, choosing the matrix L1 as suggested can

lead to situations where the path following phase is initiated prematurely, as the omitted synchronization

errors lose influence on the activations functions σ1(|z|2L1
), σ2(|z|2L1

).

The third control design is very inefficient in terms of communication requirements. As seen in Ta-

ble 3.3, the controller of each vessel requires access to the states of all the vessels in the group (through

the signals αi, δi), as does the update laws for the internal dynamic variables ζ, θ, ωζ . To cope with these

demands in a real-world implementation, communication links would have to be set up between each ves-

sel and a central hub, resulting in a highly centralized system. With the exception of the workaround for

the first two control designs, it is thus concluded that the communication requirements of the proposed

control systems are extensive. In general, the author therefore recommends that the use of the designs is

limited to small groups of vessels.

4.2.2 Behavior during vessel failures

In this section, simulations demonstrating how the three control designs behave during two different

failure scenarios will be shown. The chosen scenarios correspond to surge speed saturation and a total

loss of propulsion (’blackout’) for a single vessel.

4.2.2.1 Velocity saturation scenario

In the following simulations, three vessels with dynamics given in Appendix B are considered. The desired

formation structure is chosen according to l1 = col(0, 80, 0), l2 = col(0, 0, 0), and l3 = col(0,−80, 0), and

the path is chosen as the sine wave in Section 3.4.6. A saturation limit umax = 5[m/s] has been set

for the surge speed of Vessel 3. To trigger the saturation, the desired speed for the formation change

from Ud = 2[m/s] to Ud = 8[m/s] through a reference filter after t = 500[s]. The initial positions

of the vessels are chosen as η10 = col(−70, 185, π10 ), η20 = col(−50, 140, 0), η30 = col(−80, 50,−π6 ),

and the initial velocities are set equal to zero. All control parameters for designs 1,2 and 3 are set in

accordance with sections 3.2.6 (Case 1), 3.3.8, and 3.4.6 (Case 1), respectively, with the exception of

σ1(s) = σ2(s) = e−0.25s for Design 1. For the second design, the initial states of the virtual vessels are set

equal to those of the corresponding real vessels, and the initial bias estimates are set as the zero-vector.

1It is noted that that the acting leader would calculate θ locally in such an approach.
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Furthermore, the virtual vessel models are chosen equal to the models of the real vessels. For the third

design, ζ0 = η20, and ωζ0 = 0. Finally, θ0 = 0.

Design 1: The following performance was achieved by the first design:

Figure 4.1: North-east position plot for the three vessels. The red, purple and blue ships correspond to

vessels 1,2,3, respectively.

(a) Plot showing |z(t)|∞ and |q(t)|∞. After t = 500(s), the

magnitudes are lower than |z|max∞ = 1.6 and |q|max∞ = 0.85,

respectively

(b) Plot comparing θ̇(t), vs(θ(t), t), and ω(t)

Figure 4.2: Time series of relevant system states
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(a) Surge velocities (b) Sway velocities

Figure 4.3: Surge and sway velocities for the three vessels

From figures 4.1 and 4.2(a), it is seen that both the formation keeping and path following capabilities

of the group are maintained throughout the saturation scenario. Furthermore, the formation travels along

the path at the maximum speed allowed by the saturating vessel (Figure 4.3(a)). This involves vessels 1

and 2 slowing down in the parts of the path where the commanded speed causes Vessel 3 to saturate, and

speeding up when the vessel exits saturation. In Figure 4.2(b), it is shown how the propagation of θ slows

down during the saturation scenario. It is interesting to see that the gradient optimization has little to

no influence in this respect, so that the decrease in θ̇(t) is attributed to the activation function σ2(|z|2L1
)

decreasing the nominal term in (3.20). If the activation function had been tuned less aggressively, the

gradient optimization would have played a more important role.

Design 2: For the second design, the saturation actually destabilized the closed-loop system. The

source of the problem turned out to be the bias estimator of the saturating vessel charging up and

causing oscillations. In the following simulation, the update law for bias estimator has simply been shut

off after t = 500[s]. The result is an ideal response, only achievable in a practical setting if an effective

fault-detection system is implemented.

Figure 4.4: North-east position plot for the three vessels.
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(a) |z(t)|∞ (b) |q(t)|∞

Figure 4.5: Time series of |z(t)|∞ and |q(t)|∞. After t = 500(s), the magnitudes are lower than |z|max∞ =

3.3 and |q|max∞ = 3.0, respectively

(a) Vessel 1 (b) Vessel 2 (c) Vessel 3

Figure 4.6: Plots showing |s1i(t)|∞ for the three vessels.

(a) Surge velocities (b) Sway velocities

Figure 4.7: Surge and sway velocities for the three vessels

Although synchronization and path following is maintained reasonably well by the virtual vessels

during the saturation scenario (Figure 4.5), the tracking errors for Vessel 3 show that the real vessels are

out of formation from time to time (Figure 4.6(c)). As the errors are small relative to the magnitude of

the formation configuration vectors, this is hardly noticeable in Figure 4.4.
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Compared to the response achieved by the first control design, the response of the second design is

seen to be less smooth, involving oscillatory stop and start motion for the vessels (Figure 4.7(a)). This

behavior can be attributed to conflicting efforts in the virtual vessel control laws, as explained in the end

of Section 3.3.5. When Vessel 3 saturates, the corresponding virtual vessel does not slow down before the

feedback term δv3 becomes sufficiently large relative to the synchronization and feedforward terms in its

control law. This involves the tracking error reaching a certain threshold, where the magnitude depends

on how the proportional gain matrix Kp3 is tuned. After the virtual vessel has slowed down, causing

synchronization errors that halt the rest of the formation, the saturating vessel catches up, causing the

virtual vessels to resume to their commanded velocities. The process is then repeated.

Design 3: The following response was achieved by the third control design:

Figure 4.8: North-east position plot for the three vessels.

(a) |z1(t)|∞ (b) |ζ̃3(t)|

Figure 4.9: Time series of |z1(t)|∞ and |ζ̃3(t)|. After t = 500[s], magnitudes are less than |z1|max∞ = 1.65

and |ζ̃3|max = 0.01[rad], respectively.
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(a) e(t) (b) s(t)

Figure 4.10: Time series of the cross-track and along-track errors e(t) and s(t). After t = 500[s],

magnitudes are less than |s|max = 0.35[m], |e|max = 0.3[m], respectively.

(a) Surge velocities (b) Sway velocities

Figure 4.11: Surge and sway velocities for the three vessels

(a) surge/sway velocities for F . (b) |ωζ(t)|∞

Figure 4.12: Time series of |ωζ(t)|∞ and the surge and sway velocities for F .

Figures 4.8, 4.9(a) and 4.10 show that group coordination and path following is maintained very nicely
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throughout the saturation scenario. As in the response achieved by the first design, the formation travels

along the path at the maximum speed allowed by the saturating vessel (Figure 4.11(a)). Comparing figures

4.12(a) and 4.12(b), it is seen that the gradient optimization has little influence on the motion of F after

Vessel 3 starts saturating. The reason to why the reference frame moves slower than the commanded

speed Ud = 8[m/s] can thus be attributed to the activation function in the nominal dynamics of pζ .

4.2.2.2 Blackout scenario

In the following simulations, a ’blackout’ is inflicted to Vessel 1 after t = 550[s]. This involves a loss of

propulsion for the vessel (i.e. τ 1 = 0). All initial conditions and parameters for the three designs are

in accordance with those used in the saturation scenarios. The desired speed for the formation is set as

Ud(t) ≡ 2[m/s]. In order to achieve similar post-blackout behavior for the failing vessel in all simulations,

the bias environmental disturbance is set equal to zero in the simulations for the second design.

Design 1: The following response was achieved by the first design:

Figure 4.13: North-east position plot for the three vessels. The red, purple and blue ships correspond to

vessels 1,2,3, respectively.

(a) |z(t)|∞ (b) |q(t)|∞

Figure 4.14: Time series of |z(t)|∞ and |q(t)|∞.
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(a) Surge velocities (b) Sway velocities

Figure 4.15: Surge and sway velocities for the three vessels

From figures 4.13 and 4.14(a), it is seen that the non-failing vessels manage to maintain the formation

structure very nicely after the blackout. This comes as a result of the prioritization between the group

coordination and formation mission tasks, as the non-failing vessels ’forget’ about path following after

the blackout, concentrating solely on decreasing the synchronization errors by following the failing vessel.

Design 2: The following response was achieved by the second control design:

Figure 4.16: North-east position plot for the three vessels.
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(a) |z(t)|∞ (b) |q(t)|∞

Figure 4.17: Time series of |z(t)|∞ and |q(t)|∞.

(a) Vessel 1 (b) Vessel 2 (c) Vessel 3

Figure 4.18: Plots showing |s1i(t)|∞ for the three vessels.

(a) Surge velocities (b) Sway velocities

Figure 4.19: Surge and sway velocities for the three vessels

From Figure 4.16, it is seen that the formation is maintained reasonably well after the blackout.

Comparing figures 4.17(a) and 4.18, the coordination errors that arise are mainly attributed to the

tracking error of Vessel 1. By increasing the proportional gain matrix involved in the feedback term δv1

of the virtual vessel control law, this tracking error can be reduced. From Figure 4.19(a), it is finally

noted that the transient response after the blackout is less smooth than the response achieved by the first
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control design. The explanation to the oscillatory behavior follows along the same lines as the explanation

in the saturation scenario.

Design 3: The following response was achieved by the third control design:

Figure 4.20: North-east position plot for the three vessels.

(a) |z1(t)|∞ (b) surge/sway velocities of F .

Figure 4.21: Time series of |z1(t)|∞ and the surge/sway velocities of F .
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(a) Surge velocities (b) Sway velocities

Figure 4.22: Surge and sway velocities for the three vessels

As seen in figures 4.20 and 4.21(a), the control system manages to maintain the formation well in

terms of position after the blackout. The relative heading angles are, however, not maintained. The

reason for this can be traced to the relative influence position and orientation errors have in the gradient

optimization. By tuning the third elements of the matrices P1i more aggressively, a response similar to

those of the first two designs was achieved. There is an obvious downside to doing this, however, as the

matrices also correspond to the proportional gains in the vessel control laws. In any case, the author

finds the response presented here to be adequate, as keeping the positional errors under control is what

is most important with respect to avoidance of collisions.

To summarize, the proposed control designs have been shown to be robust to individual vessel fail-

ures in general. With respect to surge velocity saturations, an equally good response was achieved for

the first and third designs, where the group managed to stay in formation and follow the path at the

maximum speed allowed by the saturating vessel. The second design did not perform well, however,

as the bias estimator of the failing vessel destabilized the system. By turning off the estimator update

law after the saturation was triggered, the control system displayed both formation-keeping and path

following capabilities, although the response was less smooth than the responses achieved by the other

designs. In the blackout scenario, the first design performed best in terms of maintaining the specified

formation structure. The second design performed reasonably well, although the response was less smooth

than the response achieved by the first design. Finally, the third design managed to keep the positional

coordination errors under control, but failed to maintain the specified relative heading angles. However,

as avoidance of collisions must be considered to be the primary goal during a blackout scenario, this is

only of minor importance.

4.2.3 Collision avoidance capabilities

Explicit anti-collision functionality has not been included in the designs of this thesis. Consequently,

collision-free operations cannot be guaranteed. The author identifies two main scenarios where collisions

can occur for the designs; in the coordination phase of an operation due to unfortunate initial conditions,

and during the path following phase due to vessel failures.

In the coordination phase, the vessels strive to obtain relative positions in accordance with the specified

formation structure. If the initial positions of the vessels are such that a crossing of paths is inevitable

in establishing the formation, collisions can occur. For the first two designs, it is important to ensure

that the local FRPs are in close proximity initially to avoid dangerous transients. As demonstrated in
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the third simulation case of Section 3.2.6, the initial heading angles of the vessels are just as important

as the initial positions in this respect. In the third design, the gradient optimization incorporated in the

equations of motion for the formation reference frame F can provide a safeguard to bad initial conditions.

To illustrate this, consider the transversal straight line formation utilized throughout this thesis. If the

initial position of Vessel 2 is at its desired position with respect to F , the initial position of Vessel 1 is

set at the desired position of Vessel 3, and vice versa, the resulting transient motion will almost certainly

result in collisions if F is fixed. However, with the gradient optimization engaged and properly tuned, F
will immediately rotate π[rad] to minimize the positional errors. The vessels will subsequently only have

to rotate π[rad] to obtain their desired generalized positions, and collisions are avoided. A slow motion

movie demonstrating this behavior has been included in the electronic version of this thesis.

After the coordination phase, the control designs will ensure that the vessels move as a single, rigid

unit. Because of this, collisions can only occur in the case of vessel failures2. The separation and prior-

itization between the group coordination and formation mission tasks in the control designs effectively

reduce the probability of collisions during such events, as demonstrated in Section 4.2.2. However, as

vessel failures always incur some positional errors with respect to the desired formation structure, severe

failures (e.g. blackouts) in formations involving close proximity between the vessels can still result in

collisions.

4.2.4 Transient behavior during group coordination and path following

The three proposed designs have pursued group coordination through independent control of the position

and orientation of the vessels in the E-frame. Consequently, it is difficult to influence which modes of

motion (surge,sway, yaw) the vessels use to establish the formation, and the efficiency of the response will

mainly depend on initial conditions. In general, the efficiency of the transients is expected to decrease

the more the vessels are out of formation initially, as undesirable modes of motion (e.g. pure sway trans-

lation, backing) possibly will be used over larger distances before the vessels reach a coordinated state.

For the first and second designs, the initial orientations of the (virtual)vessels have a big impact on the

transients of the coordination phase due to their influence on the initial positional synchronization errors

between the local FRPs. As demonstrated in Section 3.2.6.3, this can lead to dangerous and inefficient

responses in scenarios where little control effort is required to obtain coordination. The third design

is not associated with such problems, as a guidance approach, where the vessels are controlled towards

specified positions in an explicitly stated FRF, is used to achieve group coordination.

In the path following phase, the first and second designs utilize independent control of the position

and orientation of the implicit formation reference frame F to fulfill the mission objective. Depending

on the initial orientation and position of the formation relative to the path, this can result in inefficient

motion for the vessels. Examples of scenarios associated with unfortunate transients are when the vessels

coordinate far away and/or facing away from the path. By only utilizing (positive)surge and yaw motion

for F to achieve path-convergence, the third design effectively avoid these problems. Overall, it is thus

concluded that the third design outperforms the other two in terms of transient behavior within the

operational phases.

4.3 Comparison of designs

The main advantages and disadvantages of the first, second, and third control designs are summarized

in tables 4.1, 4.2, and 4.3, respectively.

2Naturally, collisions can also occur during formation reconfigurations. However, this will be attributed to poorly chosen

signals for li(t), and not to the control system.
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Advantages Disadvantages

1: Possibility for fully decentralized operations. 1: The controller of each vessel requires access to yaw

acceleration (an IMU or observer is thus required).

2: Best overall performance during individual vessel

failure scenarios.

2: Transients during group coordination are very

sensitive to initial heading angles, as they influence

the initial positional synchronization errors. The re-

sult can be inefficient transient responses, as demon-

strated in Section 3.2.6.3.

3: Independent control of the position and orienta-

tion of the acting leaders FRP towards the path can

result in inefficient transients in the path following

phase.

Table 4.1: Advantages/disadvantages, Design 1

Advantages Disadvantages

1: Solves the formation control problem for vessels

subjected to an unknown, constant environmental

disturbance in the E-frame.

1: Worst overall performance during individual ves-

sel failure scenarios.

2: Possibility for fully decentralized operations. 2: Transients during group coordination are very

sensitive to initial heading angles (see Table 4.1).

3: Independent control of the position and orienta-

tion of the acting leaders FRP towards the path can

result in inefficient transients in the path following

phase.

Table 4.2: Advantages/disadvantages, Design 2

Advantages Disadvantages

1: LOS algorithm provides intuitive and feasible mo-

tion for the formation in the path following phase.

1: Numerical issues could complicate an implemen-

tation under hard, real-time constraints.

2: Very good performance during individual vessel

failure scenarios.

2: Highly centralized.

Table 4.3: Advantages/disadvantages, Design 3

Overall, the author feels that the third design carries the greatest potential of the three. The main

reason for this is that the design addresses all the problems related to inefficient transient responses for the

first and second designs. Moreover, the similarities in approach with the established maneuvering designs

in Skjetne (2005) opens the door to interesting extensions, for instance towards uncertain non-linear

systems (e.g. systems that contain parametrical uncertainties or that are subjected to disturbances).



Chapter 5

Conclusion

This thesis has been concerned with formation control for fully actuated marine surface vessels. The

Formation Control Problem has been defined in terms of two separate tasks; the Group Coordination

Task and the Formation Mission Task. The former involves establishing a specified formation structure

at an arbitrary location in the E-frame, while the latter involves path following for the formation as a

whole. Motivated by a desire to reduce the risk of collisions during path-convergence and vessel failure

scenarios, separation and prioritization between the two tasks has been pursued. In Chapter 3, three

different control designs have been derived, analyzed, and demonstrated through simulations. The first

design utilizes the group coordination framework of Arcak (2007) to obtain group coordination, and the

maneuvering methodology in Skjetne (2005) to achieve path following. The second design modifies the

first design into a closed-loop guidance and control system, solving the formation control problem for

vessels subjected to an unknown, constant environmental disturbance in the E-frame. Finally, the third

design solves the formation control problem through a generic maneuvering approach by exponentially

stabilizing a manifold where the vessels are coordinated and the motion of the formation is in accordance

with a helmsman-like LOS algorithm. In Chapter 4, the three designs have been evaluated with regards to

important criteria that concerns formation control, and compared to one another in terms of advantages

and disadvantages. The main findings are:

• In general, all three designs are centralized and require extensive communication during operations.

There is a way to decentralize the first two designs, but doing so will introduce time-delays in the

system. This could possibly deteriorate performance.

• In general, the designs demonstrate an ability to maintain formation structure during vessel fail-

ures1. During surge speed saturations, the first and third designs also maintain path following for

the formation at the maximum speed allowed by the failing vessel.

• The designs do not contain any explicit anti-collision functionality, and collision-free operations can

thus not be guaranteed. However, the formation-keeping abilities during vessel failure scenarios

and the separation and prioritization between the group coordination and formation mission tasks

effectively reduce the risk of accidents.

• Due to the practical nature of the LOS algorithm and the possibilities of generalizations according

to the maneuvering designs in Skjetne (2005), the author believes that the third design has the

greatest potential of the three.

Hopefully, the contributions of this thesis have provided a foundation for future endeavors in the exciting

field of formation control. Some suggestions for future work is given in the following.

1Recall that the second design requires special handling of the bias estimator of the failing vessel in the case of surge

speed saturation.
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5.1 Recommendations for future work

• In order to determine the feasibility of the proposed method in Section 4.2.1 for decentralizing the

first two designs, it should be investigated how time-delays affect the stability properties of the

closed-loop systems.

• Efforts should be made to decentralize the third design. A possible approach is to synchronize

multiple maneuvering systems in a decentralized manner, as done in Ihle et al. (2007) and the

second formation control design in Skjetne (2005).

• The numerical issues encountered during simulations of the third design should be investigated, and

if possible, resolved.

• Adapting the third design to more general non-linear systems along the lines of Skjetne (2005).

• Modifying the designs to allow for underactuated vessels, or vessels that become underactuated at

higher speeds.

• Experiments (in model-scale) should be carried out to investigate how the designs behave in a

practical setting.
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Appendix A

Stability theorems

A.1 Nested Matrosov Theorem

Consider the system

ẋ = F (t, x), x ∈ Rn (A.1)

Furthermore, define the set Bn(r) as

Bn(r) = {z ∈ Rn : |z| ≤ r} (A.2)

The nested Matrosov theorem presented in Loria et al. (2005) is as follows:

Theorem A.1. Under the following assumptions the origin of (A.1) is UGAS.

Assumption 1. The origin of the system (A.1) is UGS.

Assumption 2. There exist integers j,m > 0 and for each ∆ > 0 there exist

• a number µ > 0;

• locally Lipschitz continuous functions Vi : R≥0 × Rn → R, i ∈ {1, . . . , j};

• a function φ : R≥0 × Rn → Rm;

• continuous functions Yi : Rn × Rm → R, i ∈ {1, . . . , j};

such that, for almost all (t, x) ∈ R≥0 × Bn(∆), and all i ∈ {1, . . . , j}

max {|Vi(t, x)|, |φ(t, x)|} ≤ µ (A.3)

V̇i(t, x) ≤ Yi(x, φ(t, x)). (A.4)

Assumption 3. For each integer k ∈ {1, . . . , j}, we have that1

A) {Yi(z, ψ) = 0 ∀i ∈ {1, . . . , k − 1} and all (z, ψ) ∈ Bn(∆)× Bm(µ)}

implies that

B) {Yk(z, ψ) ≤ 0, ∀(z, ψ) ∈ Bn(∆)× Bm(µ)}.

Assumption 4. We have that the statement

A) {Yi(z, ψ) = 0 ∀i ∈ {1, . . . , j}, and all (z, ψ) ∈ Bn(∆)× Bm(µ)}

implies that

B) {z = 0}

Proof. See Loria et al. (2005)

1For the case k = 1 this assumption takes the form: ”Statement B) holds with k = 1”
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A.2 Partial set-stability for interconnected systems

The following is taken from Skjetne (2005; Appendix A.5).

Consider the interconnected system

ẋ1 = f1(x1,x2,u1)

ẋ2 = f2(x1,x2,u2) (A.5)

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 are the states, u1(t) ∈ U1 ⊂ Rm1 and u2(t) ∈ U2 ⊂ Rm2 are inputs where

U1, U2 are compact sets, and the vector fields f1,f2 are smooth. Theorem A.2 considers stability of the

set

A := {(x1,x2) ∈ Rn1 × Rn2 : |x1|A1
= 0}, (A.6)

where A1 ⊂ Rn1 is a compact set (for instance an equilibrium point x1 = 0). This gives, |(x1,x2)|A =

|x1|A1
.

Lemma A.1. If for each compact set X ⊂ Rn1 , there exists L > 0 and c > 0 such that

|f2(ξ,x2,v)| ≤ L|x2|+ c ∀x2 ∈ Rn2 , (A.7)

uniformly for all (ξ,v) ∈ X × U2, that is, f2 satisfies a sector growth condition in x2, then the system

(A.5) is finite escape-time detectable through |(x1,x2)|A.

Proof. See Skjetne (2005; Appendix A.5)

Theorem A.2. Assume that the sector bound (A.7) in Lemma A.1 holds for the system (A.5). If, in

addition, there exists a smooth function V : Rn1 × Rn1 7→ R≥0 and K∞-functions αi, i = 1, . . . , 4, such

that

α1(|x1|A1
) ≤ V (x1,x2) ≤ α2(|x1|A1

) (A.8)

and

V x1(x1,x2)f1(x1,x2,u1) + V x2(x1,x2)f2(x1,x2,u2) ≤ −α3(|x1|A1
) + α4(|u|) (A.9)

hold, where u = (u1,u2) ∈ U1 × U2, then the system (A.5) is Input-to-state stable with respect to the

closed, 0-invariant set (A.6). In the case when u1,u2 = 0, then the closed, forward invariant set (A.6)

is UGAS with respect to (A.5), and if αi(|x1|A1
) = ci|x1|rA1

for i = 1, 2, 3, where c1, c2, c3, r are strictly

positive reals with r ≥ 1, then (A.6) is UGES with respect to (A.5).

Proof. See Skjetne (2005; Appendix A.5).
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Vessel Simulation Model

The vessel model used for simulations in this thesis corresponds to that of the virtual ship ’MS The

Waterfall’ presented in Breivik et al. (2010). The model is given by

η̇ = R(ψ)ν (B.1a)

Mν̇ + D(ν)ν + C(ν)ν = τ , (B.1b)

where the total mass matrix is constituted by rigid body and added mass matrices,

M = MR + MA = M> > 0, (B.2)

and the damping is given by a combination of linear and non-linear terms:

D(ν) = DL + Du|u|+ Dv|v|+ Dr|r| > 0 (B.3)

The numerical values for the different matrices are as follows:

MR = 107




0.026267070914126 0 0

0 0.026267070914126 −0.127532446870796

0 −0.127532446870796 3.632552946785921


 (B.4)

MA = 107




0.001254155924657 0 0

0 0.050080510599731 0.053729323885923

0 0.053729323885923 3.058410000661727


 (B.5)

DL = 106




0.000024881864101 0 0

0 0.009865273373387 0.001374903311471

0 0.000710605692916 2.813354837263425


 (B.6)

Du = 106




0.002375323545585 0 0

0 0.008842970679035 0

0 0.111773504851143 6.047977827568305


 (B.7)

Dv = 107




0 0 0

0 0.000282988598239 0.013494819354102

0 0 1.188650447871845


 (B.8)

Dr = 108




0 0 0

0 0.009537450243184 0

0 0 1.562879800522891


 (B.9)
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Finally, the matrix C(v) can be calculated from the total mass matrix by following the procedure pre-

sented in Fossen (2010). For a mass matrix on the form



M11 0 0

0 M22 M23

0 M23 M33


 ,

the procedure reduces to

C(v) =




0 0 −(M22v +M23r)

0 0 M11u

(M22v +M23r) −M11u 0


 (B.10)



Appendix C

Calculations

C.1 Proof of Lemma 1

For i = j, al = 0 ∀l satisfies the claim. Assume now that i 6= j. As described in Section 2.5, connectivity

means that it is possible to get from any node to any other node in the communication graph by following

the edges (i.e. communication links) in the graph. Thus, there exists a non-cyclic path in the graph

between nodes i and j. For a chosen non-cyclic path, let the index set I∗ ⊆ {1, . . . , p} contain the

column-indexes in the incidence matrix corresponding to the edges along the path. For any edge with

index k ∈ I∗ connecting two nodes with indexes m,n ∈ I, we have that zk either equates to (x0m−x0n)

or (x0n−x0m), depending on which node is the positive end of the link. Now, if there are any intermediate

nodes along the chosen non-cyclic path between nodes i and j, they will be connected to two distinct

edges along the path. By taking the sum
∑
l∈I∗ alzl and performing a wise selection of al ∈ {−1, 1}

∀l ∈ I∗, we can thus cancel out the occurrence of x0m for any m 6= (i, j) in the sum, ending up with∑
l∈I∗ alzl = x0i − x0j . The result then follows by choosing al = 0 ∀l /∈ I∗.

C.2 Further details on proofs of theorems 1 and 2

From UGAS of the targeted sets, it follows that

lim
t→∞

(|z(t)|, |q(t)|) = 0

From Lemma 1, we have that ∀i, j ∈ I,

x0i − x0j = Kijz (C.1)

By taking time limits of the norm of (C.1), we readily get

0 ≤ lim
t→∞

|x0i(t)− x0j(t)| ≤ ||Kij ||( lim
t→∞

|z(t)|) = 0 ∀i, j ∈ I

By utilization of the squeeze law of limits, it is concluded that the group coordination objective is fulfilled.

Through our assignment of θ̇, we have that

∣∣θ̇ − vs(θ, t)
∣∣ =

∣∣vs(θ, t)
(
σ2(|z|2L1

)β(|q|2L2
)− 1

)
+ 2µ(θ)q>Ppθd(θ)

∣∣

≤
∣∣vs(θ, t)

(
σ2(|z|2L1

)β(|q|2L2
)− 1

)∣∣+
∣∣2µ(θ)q>Ppθd(θ)

∣∣

Using assumptions 3–4 yields

∣∣θ̇ − vs(θ, t)
∣∣ ≤ d

∣∣(σ2(|z|2L1
)β(|q|2L2

)− 1
)∣∣+ 2µmaxd||P|||q|
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Now, since 0 ≤ |z|2L1
≤ ||L1|||z|2, and 0 ≤ |q|2L2

≤ ||L2|||q|2, we have that limt→∞ (|z(t)|2L1
, |q(t)|2L2

) = 0

by the squeeze law of limits. From continuity of the absolute value function and the functions σ2(·), β(·),
we then get from elementary limit laws (also utilizing (3.17),(3.18))

0 ≤ lim
t→∞

∣∣θ̇(t)− vs(θ(t), t)
∣∣ ≤ d

∣∣(σ2( lim
t→∞

|z(t)|2L1
)β( lim

t→∞
|q(t)|2L2

)− 1
)∣∣+ 2µmaxd||P||

(
lim
t→∞

|q(t)|
)

= d|1− 1|+ 0 = 0,

By the squeeze law of limits, it follows that the dynamic task of the formation mission objective is fulfilled.

C.3 Proof of Proposition 2

Since pd(θ) = col(xd(θ), yd(θ)) is continuously differentiable, we have from the mean value theorem of

calculus that ∀θ1, θ2 ∈ R, ∃θ∗1 , θ∗2 ∈ (θ1, θ2) such that

xd(θ1)− xd(θ2) = xθd(θ
∗
1)(θ1 − θ2)

yd(θ1)− yd(θ2) = yθd(θ∗2)(θ1 − θ2)

Taking absolute values, using the property

|xθd(θ)|, |yθd(θ)| ≤ |pθd(θ)| ≤ p2 ∀θ ∈ R,

and choosing θ1 = θ, θ2 = 0 yields

|xd(θ)| − |xd(0)| ≤ |xd(θ)− xd(0)| ≤ p2|θ| ⇒ |xd(θ)| ≤ p2|θ|+ |xd(0)|
|yd(θ)| − |yd(0)| ≤ |yd(θ)− yd(0)| ≤ p2|θ| ⇒ |yd(θ)| ≤ p2|θ|+ |yd(0)|

We thus have that

|pd(θ)| ≤ |xd(θ)|+ |yd(θ)|,
≤ 2p2|θ|+ |xd(0)|+ |yd(0)|,

which proves the claim.

C.4 Proof of diffeomorphism property for the third design

The property lim|x|→∞ |T(x)| = ∞, or rather limr→∞ inf |x|≥r |T(x)| = ∞, implies that there cannot

exist a trajectory for x ∈ R6r+8 along which |x| → ∞ and |T(x)| remains bounded. It will now be shown

through contradiction that no such trajectory can exist.

Suppose a trajectory T exists for x along which |x| → ∞ and |T(x)| remains bounded. Without loss of

generality, let the trajectory be contained in a domain D ⊆ R6r+8. T(x) maps

x := (η̄, ν̄, ζ,ωζ , θ, t) 7→ (z1, z2, ζ̃3,pζ ,ωζ , θ, t) =: φ,

i.e. φ = T(x). As (pζ ,ωζ , θ, t) is contained in both x and φ1, |(pζ ,ωζ , θ, t)| → ∞ implies |T(x)| → ∞.

Hence, |(pζ ,ωζ , θ, t)| must be bounded along T , and we can correspondingly restrict D to a domain

where |(pζ ,ωζ , θ, t)| is bounded. Since ψlos(pζ , θ) is bounded within such a domain, we have that if

|ζ3| → ∞ along T , |ζ̃3| → ∞, and thus |T(x)| → ∞. Hence ζ3 must also remain bounded along T , which

shows that D can be further restricted to a domain where |(ζ,ωζ , θ, t)| is bounded. From Assumption

1Recall that ζ := col(pζ , ζ3).
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5 and (3.134), we have that η̄d(ζ, t) is bounded within such a domain. Consequently, if |η̄| → ∞ along

T , |z1| → ∞, and thus |T(x)| → ∞. Hence, |η̄| must be bounded along T , and D can thus be further

restricted to a domain where |(ζ, η̄,ωζ , θ, t)| is bounded. Using assumptions 5–7, it can be verified that

(3.158) is bounded whenever |(ζ, η̄,ωζ , θ, t)| is bounded. Hence, |ν̄| → ∞ along T implies |z2| → ∞, and

thus |T(x)| → ∞. This shows that |ν̄| must remain bounded along T , which finally shows that D can be

restricted to a domain where |x| is bounded. Since T is contained in D, this contradicts that |x| → ∞
along T , which proves the stated claim.

C.5 Further details on the proof of Theorem 3

Since 0 ≤ |z1|2L ≤ ||L|||z1|2, we have that limt∗→∞ |z1(t∗)|2L = 0 by the squeeze law of limits. From the

continuity of the absolute value function and σ1(·), we then get the following from elementary limit laws

(also utilizing (3.148a)):

|ṗζ − fp(ζ3, t)| =
∣∣∣∣∣

[
cos (ζ3)

sin (ζ3)

]
Ud(t)

(
σ1

(
|z1|2L

)
− 1
)
− I2×3ωζ

∣∣∣∣∣

≤ Umax
∣∣∣σ1

(
|z1|2L

)
− 1
∣∣∣+ ||I2×3|||ωζ |

= Umax

∣∣∣σ1

(
|z1|2L

)
− 1
∣∣∣+ |ωζ |

⇓

0 ≤ lim
t∗→∞

|ṗζ(t∗)− fp(ζ3(t∗), t(t∗))| ≤ Umax
∣∣∣σ1

(
lim
t∗→∞

|z1(t∗)|2L
)
− 1
∣∣∣+ lim

t∗→∞
|ωζ(t∗)|

= Umax|1− 1|+ 0

= 0

By the squeeze law of limits, it is concluded that control objective (3.143) is fulfilled.

C.6 Feedforward signals for the third design

In the following, define

h1 := col(1, 0, 0),

h2 := col(0, 1, 0),

h3 := col(0, 0, 1),

I2×3 :=

[
1 0 0

0 1 0

]
,

Hi :=
[
0

(1)
3×3,0

(2)
3×3, . . . ,0

(i−1)
3×3 , I3×3,0

(i+1)
3×3 , . . . ,0

(r)
3×3

]
∈ R3×3r,

I3r := I3r×3r,

where 03×3 ∈ R3×3 is the zero-matrix, and I3r×3r ∈ R3r×3r is the identity matrix.

Calculation of αζi (ζ, η̄, θ, t)

αζi (ζ, η̄, θ, t) = R(ψi)
>
(
ηζdi(ζ, t)f

ζ
ζ (ζ, η̄, θ, t) + ηζ,ζ3di (ζ, t)fζ(ζ, η̄, θ, t)h

>
3 + ηt,ζdi (ζ, t)−A1iη

ζ
di(ζ, t)

)
,

(C.2)

where

ηt,ζdi (ζ, t) = R(ζ3)Slti(t)h
>
3 (C.3)

ηζ,ζ3di (ζ, t) = R(ζ3)S2li(t)h
>
3 (C.4)



104 CALCULATIONS

fζζ (ζ, η̄, θ, t) = col
(
fζpζ(ζ, η̄, t), f

ζ
ζ3

(ζ, η̄, θ, t)
)

(C.5)

fζpζ(ζ, η̄, t) =

[
− sin(ζ3)

cos(ζ3)

]
h>3 Ud(t)σ1

(
|η̄ − η̄d(ζ, t)|2L

)

− 2

[
cos(ζ3)

sin(ζ3)

]
Ud(t)



∂σ1

(
|η̄ − η̄d(ζ, t)|2L

)

∂
(
|η̄ − η̄d(ζ, t)|2L

)


 (η̄ − η̄d(ζ, t))> Lη̄ζd(ζ, t) (C.6)

fζζ3(ζ, η̄, θ, t) = 2kζ3(ζ3 − ψlos(pζ , θ))



∂σ2

(
|η̄ − η̄d(ζ, t)|2L

)

∂
(
|η̄ − η̄d(ζ, t)|2L

)


 (η̄ − η̄d(ζ, t))> Lη̄ζd(ζ, t)

− kζ3σ2

(
|η̄ − η̄d(ζ, t)|2L

)
(h>3 − ψ

pζ
los(pζ , θ)I2×3) + ψ

pζ
los(pζ , θ)f

ζ
pζ(ζ, η̄, t)

+ ψ
pζ ,xζ
los (pζ , θ)fpζ(ζ, η̄, t)h

>
1 + ψ

pζ ,yζ
los (pζ , θ)fpζ(ζ, η̄, t)h

>
2

+ ψ
θ,pζ
los (pζ , θ)I2×3fθ(ζ, η̄, θ, t) + ψθlos(pζ , θ)f

ζ
θ (ζ, η̄, θ, t) (C.7)

ψ
pζ ,xζ
los (pζ , θ) =

2e(pζ , θ) sin(ψd(θ))∆

(e(pζ , θ)2 + ∆2)
2 row (sin(ψd(θ)),− cos(ψd(θ)))

ψ
pζ ,yζ
los (pζ , θ) =

2e(pζ , θ) cos(ψd(θ))∆

(e(pζ , θ)2 + ∆2)
2 row (− sin(ψd(θ)), cos(ψd(θ)))

ψθlos(pζ , θ) = ψθd(θ)− ∆

e(pζ , θ)2 + ∆2
eθ(pζ , θ)

ψ
θ,pζ
los (pζ , θ) =

2∆e(pζ , θ)

(e(pζ , θ)2 + ∆2)
2 e
θ(pζ , θ)row(− sin(ψd(θ)), cos(ψd(θ)))

+
∆

e(pζ , θ)2 + ∆2
row(cos(ψd(θ)), sin(ψd(θ)))ψ

θ
d(θ)

fζθ (ζ, η̄, θ, t) = −
∆e(pζ , θ)Ud(t)σ1

(
|η̄ − η̄d(ζ, t)|2L

)

(e(pζ , θ)2 + ∆2)
3
2 |pθd(θ)|

row(− sin(ψd(θ)), cos(ψd(θ)), 0)

− 2∆Ud(t)

|pθd(θ)|
√

∆2 + e(pζ , θ)2



∂σ1

(
|η̄ − η̄d(ζ, t)|2L

)

∂
(
|η̄ − η̄d(ζ, t)|2L

)


 (η̄ − η̄d(ζ, t))> Lη̄ζd(ζ, t)

+ µθ
pθd(θ)

>

|pθd(θ)|
I2×3

Calculation of αθi (ζ, η̄, θ, t)

αθi (ζ, η̄, θ, t) = R(ψi)
>ηζdi(ζ, t)f

θ
ζ (ζ, η̄, θ, t), (C.8)

where

fθζ (ζ, η̄, θ, t) =




0

0

fθζ3(ζ, η̄, θ, t)


 (C.9)

fθζ3(ζ, η̄, θ, t) = kζ3σ2

(
|η̄ − η̄d(ζ, t)|2L

)
ψθlos(pζ , t) + ψ

pζ ,θ
los (pζ , θ)fpζ(ζ, η̄, t)

+ ψθ
2

los(pζ , θ)fθ(ζ, η̄, θ, t) + ψθlos(pζ , θ)f
θ
θ (ζ, η̄, θ, t) (C.10)

ψ
pζ ,θ
los (pζ , θ) = ψ

θ,pζ
los (pζ , θ)
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ψθ
2

los(pζ , θ) = ψθ
2

d (θ) +
2∆e(pζ , θ)

(e(pζ , θ)2 + ∆2)
2

(
eθ(pζ , θ)

)2 − ∆

e(pζ , θ)2 + ∆2
eθ

2

(pζ , θ)

eθ
2

(pζ , θ) = row(0, 1)

(
ψθ

2

d (θ)S>2DR(ψd(θ))
>(pζ − pd(θ))

+ ψθd(θ)S>2D
(
S>2DR2D(ψd(θ))

>(pζ − pd(θ))ψ
θ
d(θ)−R2D(ψd(θ))

>pθd(θ))
)

− S>2DR2D(ψd(θ))
>pθd(θ)ψ

θ
d(θ)−R2D(ψd(θ))

>pθ
2

d (θ)

)

fθθ (ζ, η̄, θ, t) = −
∆e(pζ , θ)Ud(t)σ1

(
|η̄ − η̄d(ζ, t)|2L

)

(e(pζ , θ)2 + ∆2)
3
2 |pθd(θ)|

eθ(pζ , θ)

−
∆Ud(t)σ1

(
|η̄ − η̄d(ζ, t)|2L

)

√
∆2 + e(pζ , θ)2

(
xθdx

θ2

d + yθdy
θ2

d

)

(
(xθd)

2 + (yθd)2
) 3

2

+ µθψ
θ
d(θ)row (− sin(ψd(θ)), cos(ψd(θ))) (pζ − pd(θ))− µθrow (cos(ψd(θ)), sin(ψd(θ))) pθd(θ)

Calculation of αti(ζ, η̄, θ, t)

αti(ζ, η̄, θ, t) = R(ψi)
>
(
ηζ,tdi (ζ, t)fζ(ζ, η̄, θ, t) + ηζdi(ζ, t)f

t
ζ(ζ, η̄, θ, t) + ηt

2

di(ζ, t)−A1iη
t
di(ζ, t)

)
, (C.11)

where

ηt
2

di(ζ, t) = R(ζ3)lt
2

i (t) (C.12)

ηζ,tdi (ζ, t) = ηt,ζdi (ζ, t) (C.13)

f tζ(ζ, η̄, θ, t) = col
(
f tpζ(ζ, η̄, t), f

t
ζ3(ζ, η̄, θ, t)

)
(C.14)

f tpζ(ζ, η̄, t) =

[
cos(ζ3)

sin(ζ3)

]
U td(t)σ1

(
|η̄ − η̄d(ζ, t)|2L

)

− 2

[
cos(ζ3)

sin(ζ3)

]
Ud(t)



∂σ1

(
|η̄ − η̄d(ζ, t)|2L

)

∂
(
|η̄ − η̄d(ζ, t)|2L

)


 (η̄ − η̄d(ζ, t))> Lη̄td(ζ, t) (C.15)

f tζ3(ζ, η̄, θ, t) = 2kζ3(ζ3 − ψlos(pζ , θ))



∂σ2

(
|η̄ − η̄d(ζ, t)|2L

)

∂
(
|η̄ − η̄d(ζ, t)|2L

)


 (η̄ − η̄d(ζ, t))> Lη̄td(ζ, t)

+ ψ
pζ
los(pζ , θ)f

t
pζ(ζ, η̄, t) + ψθlos(pζ , θ)f

t
θ(ζ, η̄, θ, t) (C.16)

f tθ(ζ, η̄, θ, t) =
∆

|pθd(θ)|
√
e(pζ , θ)2 + ∆2)

(
U td(t)σ1

(
|η̄ − η̄d(ζ, t)|2L

)

− 2Ud(t)



∂σ1

(
|η̄ − η̄d(ζ, t)|2L

)

∂
(
|η̄ − η̄d(ζ, t)|2L

)


 (η̄ − η̄d(ζ, t))> Lη̄td(ζ, t)

)

Calculation of αη̄i (ζ, η̄, θ, t)

αη̄i (ζ, η̄, θ, t) = R(ψi)
>ηζdi(ζ, t)f

η̄
ζ (ζ, η̄, θ, t) +

(
S>αi(ζ, η̄, θ, t)h

>
3 + R(ψi)

>A1i

)
Hi, (C.17)

where

f η̄ζ (ζ, η̄, θ, t) = col
(
f η̄pζ(ζ, η̄, t), f

η̄
ζ3

(ζ, η̄, θ, t)
)
, (C.18)
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f η̄pζ(ζ, η̄, t) = 2

[
cos(ζ3)

sin(ζ3)

]
Ud(t)



∂σ1

(
|η̄ − η̄d(ζ, t)|2L

)

∂
(
|η̄ − η̄d(ζ, t)|2L

)


 (η̄ − η̄d(ζ, t))> LI3r (C.19)

f η̄ζ3(ζ, η̄, θ, t) = −2kζ3(ζ3 − ψlos(pζ , θ))



∂σ2

(
|η̄ − η̄d(ζ, t)|2L

)

∂
(
|η̄ − η̄d(ζ, t)|2L

)


 (η̄ − η̄d(ζ, t))> LI3r

+ ψ
pζ
los(pζ , θ)f

η̄
pζ(ζ, η̄, t) + ψθlos(pζ , θ)f

η̄
θ (ζ, η̄, θ, t) (C.20)

f η̄θ (ζ, η̄, θ, t) =
2∆Ud(t)

|pθd(θ)|
√
e(pζ , θ)2 + ∆2)



∂σ1

(
|η̄ − η̄d(ζ, t)|2L

)

∂
(
|η̄ − η̄d(ζ, t)|2L

)


 (η̄ − η̄d(ζ, t))> LI3r
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Formation control of fully-actuated marine vessels using group
agreement protocols

Christoffer Thorvaldsen and Roger Skjetne

Abstract— This paper addresses the problem of getting fully-
actuated marine surface vessels to establish a formation before
executing its mission, which here is to traverse a predetermined
path. Whereas existing designs typically solve the problem by
establishing the formation on the path, the proposed design
in this paper allows the vessels to coordinate at an arbitrary
location prior to a collective movement to the path. Protocols
for group agreement form the basis of the proposed solution,
while ideas from maneuvering control theory are incorporated
to yield the desired path-following behavior. To demonstrate the
design, a simulation is shown, where the formation’s capability
of handling a severe single vessel failure is illustrated.

I. INTRODUCTION

As an area of research, formation control has attracted
increasing effort in recent times. Although the specific appli-
cations have been diverse, ranging from survey-missions on
the ocean surface to cooperative control of satellites in space,
the research efforts share the desire to use formations to
enable execution of complex operations that are infeasible or
less efficient for single agents. In the marine domain, possible
applications of formation control include operations such
as underway replenishment, towing of structures, geological
surveying, unmanned scouting, and fleet transit. In the future
it is also envisioned formations of unmanned ships for
efficient transport of cargo.

Many designs for formation control exists in the litera-
ture, providing solutions for different classes of dynamical
systems and different formation objectives. Examples are
the general designs in [2], [9], [10], [11] and [13], the
designs for mobile robots in [12] and [14], and the design
for spacecraft in [15]. Within the marine control community,
a large amount of work has been done within a path-based
framework, where one wants the formation to move along
a prespecified path with a desired speed. Examples are the
formation maneuvering design in [4], the extensions provided
in [5], and the guided leader-follower approach in [6].

A common trait in these designs is that the formation
is established by controlling the individual vessels to their
correct positions relative to a point on the path. When the
formation is established, the formation as a whole is already
positioned on the path, meaning that the task of coordinating
the vessels is entwined with the path-following operation.
The idea pursued herein is to provide a design that enables
a separation between the tasks of group coordination and
the path-following mission. The vessels will then primarily
establish a formation in the vicinity of their present location.

C. Thorvaldsen and R. Skjetne are with the Department of Marine
Technology, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway. E-mails: chrith@stud.ntnu.no and skjetne@ieee.org.

Secondarily, a collective path-following operation is initiated
when the vessels are sufficiently coordinated. By making sure
that the vessels are safely coordinated before convergence to
the path is attempted, the danger of collisions during the
transient motion towards the path is alleviated. Additionally,
in regard to an operational philosophy where the formation
should be maintained at all costs, robustness to severe vessel
failures such as blackouts followed by drift-off of a single
vessel, is also achieved.

The basis of our design is the passivity-based group coor-
dination framework in [2]. Generically, the framework can be
used to coordinate output variables of dynamical systems in
a decentralized manner while achieving a specified, common
velocity in the limit for all the outputs. In [2] the common
velocity signal is assumed to be known and available for each
system, whereas in [9] this is extended by an adaptive scheme
where all but one of the systems estimate the velocity. An
application towards formation control is given, where the
output variables are coordinated according to a formation
constraints function. The presence of local minima in the
example design in [2], however, has motivated the use of
another approach to achieve coordination.

A. Main contributions
Providing an overall design for marine surface vessels

that enables safe formation control by a separation between
the coordination tasks and the mission task is the main
contribution of this work. By controlling points that are offset
from the vessels and using a special case of the framework
for group agreement problems, the design circumvents the
problem with local minima in a formation constraint func-
tion. The paper also shows how the common velocity input
can be utilized to ensure path-following for the formation.
This is done by a maneuvering design in accordance to
[3], with some important modifications to ensure a clear-cut
separation between the tasks of establishing the formation
and performing path-following.

II. PRELIMINARY BACKGROUND

A. Notations
The euclidean vector norm of x is denoted |x|, while ||A||

denotes the induced euclidean norm of the matrix A. For a
collection of vectors xi ∈ Rni ,

col(x1,x2, . . . ,xk) = [x>1 ,x
>
2 , . . . ,x

>
k ]> ∈ R

∑k
i=1 ni .

Whenever convenient,
∣∣(x,y)

∣∣ denotes the norm of the vector
col(x,y). For a collection of square matrices Ai ∈ Rn×n,

diag(A1,A2, . . . ,Ak) ∈ Rkn×kn



denotes a block diagonal matrix. The smallest and largest
eigenvalues of the matrix Q is denoted λmin,Q, λmax,Q.
Total time derivatives are denoted by ḟ , f̈ , etc. Partial deriva-
tives of a function f(x, y, t) is denoted by a superscript
fx
n

(x, y, t) = ∂nf(x,y,t)
∂xn , etc. For a scalar multivariable

function f(x), we denote ∂f(x)
∂x = col

(
∂f(x)
∂x1

, . . . , ∂f(x)∂xn

)
.

For Kronecker products, see [2] for details, but note the
following properties,

(A⊗B)> = A> ⊗B>

(A⊗ Ip)(C⊗ Ip) = (AC)⊗ Ip,

where Ip ∈ Rp×p is the identity matrix, and C is assumed
to be compatible for multiplication with A.

B. Vessel models

The following three degree-of-freedom model for marine
surface vessels is assumed (see e.g. [1]):

η̇i = R(ψi)νi (1a)
Miν̇i + Di(νi)νi + Ci(νi)νi = τ i, (1b)

Here, ηi = col(xi, yi, ψi) represents the earth-fixed position
and orientation of the i’th vessel, νi = col(ui, vi, ri)
contains the body-fixed velocity components in surge, sway,
and yaw, and τ i is the control input. The mass matrix Mi

is assumed to be constant, positive definite and symmetric
(although this is not always the case at forward speed due
to added mass effects). The matrices Ci(νi) = −Ci(νi)

>,
Di(νi) > 0 are the centripetal/Coriolis and damping matri-
ces, respectively, while R(ψ) ∈ SO(3) is the rotation matrix,

R(ψ) =




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 ,

An alternative representation of the vessel model is

M2i(ψi)η̈i + C2i(ψi,νi)η̇i + D2(ψi,νi)η̇i = R(ψi)τ i
(2)

where

M2i(ψi) = R(ψi)MiR(ψi)
>, (3)

D2i(ψi,νi) = R(ψi)Di(νi)R(ψi)
>, (4)

C2i(ψi,νi) = R(ψi) (Ci(νi)−MiSri)R(ψi)
>, (5)

are locally Lipschitz functions, and

S = −S> =




0 −1 0
1 0 0
0 0 0


 .

It can be verified that the following holds:

M2i(ψi) = M2i(ψi)
> > 0 (6)

λmin,Mi |x|2 ≤ x>M2i(ψi)x ≤ λmax,Mi |x|2 (7)

x>D2i(ψi,νi)x > 0 ∀x 6= 0 (8)

x>
(

1

2
Ṁ2i(ψi,νi)−C2i(ψi,νi)

)
x = 0 ∀x ∈ R3 (9)

C. Communication topology

A graph is used to describe the lines of communication
between the vessels. Each vessel is a node in the graph,
and two vessels can exchange state information if an edge
(link) exists between them. For convenience, each link is
assigned a direction by letting one of the connected nodes
be the negative end and the other the positive end. All
communication, however, is assumed bidirectional, so that
any link can communicate information in both directions. For
a group of r vessels with p communication links, the graph
is represented by the incidence matrix B = {bij} ∈ Rr×p,
where

bij =




±1 if the i’th node is the positive/negative

end of the j’th link
0 otherwise

(10)
Assumption 1: The communication graph is connected at

all times, and it does not contain any cycles.
A necessary condition for this assumption to be satisfied is
that the minimum number of links for r vessels is p = r−1.
A consequence of the assumption is that the range space of
B> spans Rp.

III. CONTROL OBJECTIVE

Consider a group of r vessels to be controlled in formation.
To achieve this involves two tasks, a group coordination
task and a formation mission task. The primary task of
group coordination is achieved when all the vessels are
located at their specified relative position, with a specified
relative heading angle, in a local coordinate frame termed
the Formation Reference Frame F (see [3]). The secondary
objective, the formation mission task, is for the formation
as a whole to execute its operational objective. In this paper
this is to perform path-following along a prespecified smooth
path.

A. Setup

Let each vessel in the formation be identified by a unique
identifier in the index set I = {1, . . . , r}. The configuration
of each vessel i in the formation is given by a possibly
time-varying configuration vector in F , denoted li(t) :=
col(xci(t), yci(t), ψci(t)). One can then associate with each
vessel an individual Formation Reference Frame Fi, with
origin and orientation in the Earth-fixed frame given by

x0i := ηi −R (ψi − ψci(t)) li(t), (11)

where x0i = col(x0i, y0i, ψ0i) is denoted the Formation
Reference Point (FRP) for Vessel i. Group coordination is
then achieved if all Fi, i ∈ I, are synchronized into a
common F , that is, if x01 = x02 = . . . = x0r.

Assumption 2: The configuration vectors li(t) ∈ C2, and
∃ lmax < ∞ so that ∀i ∈ I and ∀t ≥ t0, then
max{|li(t)|, |l̇i(t)|} ≤ lmax.

To address the formation mission task, the strategy is that
one vessel, which we will denote as the acting leader of the
formation, will ensure path-following. When all vessels are
coordinated, this will indirectly ensure that the formation as



a whole executes its path-following mission. Without loss of
generality we let Vessel 1 denote the acting leader, and we
target path-following as a maneuvering problem [3] involving
a geometric task and a dynamic task.

The geometric task is to converge to and follow the desired
curve given by the set of points

P = {x ∈ R3 : ∃θ s.t. x = pd(θ)}, (12)

where pd(θ) := col(xd(θ), yd(θ), ψd(θ)), with (xd(·), yd(·))
sufficiently smooth functions parameterized by the scalar
variable θ, and

ψd(θ) = arctan

(
yθd(θ)

xθd(θ)

)
(13)

chosen as the direction of the tangential vector to the path
in each point (xd(θ), yd(θ)).

The dynamic task is represented by a desired speed
assignment vs(θ, t) for θ̇, which typically is designed to set
up a constant speed in [m/s] for the formation along the path
(see [3] for details).

Assumption 3: The path pd(θ) ∈ C2, and the speed
assignment vs(θ, t) ∈ C1. There exists d <∞ so that ∀θ ∈ R
and ∀t ≥ t0, then max{|pd

θ(θ)|, |vs(θ, t)|} ≤ d.

B. Problem statement

The control problem can now be formally stated by the
following two objectives:

Group coordination objective: To develop synchroniza-
tion control laws to ensure that

lim
t→∞

|x0i(t)− x0j(t)| = 0 ∀i, j ∈ I. (14)

Formation mission objective: To develop a maneuvering
control law to ensure that

lim
t→∞

|x01(t)− pd(θ(t))| = 0, (15)

lim
t→∞

|θ̇(t)− vs(θ(t), t)| = 0. (16)

The coordination objective is of primary concern and
should be achieved before the mission objective is pursued.
The reason for this is that having the vessels in formation
is a measure for avoiding inter-vessel collision, especially
during the transients when converging to the path.

IV. CONTROL DESIGN

A. Group coordination task

In order to design control laws to achieve group co-
ordination, the passivity-based group agreement protocols
presented in [2] are used. For the vessels with dynamics (2)
and outputs (11), the protocols are used to achieve (14) and

lim
t→∞

|ẋ0i(t)− vd(t)| = 0 ∀i ∈ I, (17)

where vd(t) is a common velocity input to all vessels
that later will be used as a degree-of-freedom to solve the
formation mission task.

1) Establishing passivity: Following the outline in [2], the
first step is to construct partial control laws that transform the
vessel dynamics (2) to strictly state passive dynamic systems
from the auxiliary control inputs αi to the outputs

ζi := ẋ0i − vd ∀i ∈ I. (18)

Using (11), defining fi(ηi, t) := R (ψi − ψci(t)) li(t), and
omitting the argument lists, then (2) are rewritten as

M2i

(
ẍ0i+ f̈i

)
= R(ψi)τ i−C2i(ẋ0i+ ḟi)−D2i(ẋ0i+ ḟi).

Choosing the control inputs

τ i = R(ψi)
>
(

(C2i + D2i)(ḟi + vd) + M2i(v̇d + f̈i)

−Kdi(ẋ0i − vd) +αi

)
, Kdi = Kd

>
i > 0, (19)

yields

M2iζ̇i = −C2iζi − (D2i + Kdi)ζi +αi, (20)

which is passive from αi to ζi. To show this, the following
positive definite, radially unbounded functions are utilized:

Sζi(ζi, ψi) :=
1

2
ζi
>M2i(ψi)ζi. (21)

Taking the time derivatives and using (8) and (9) yields

Ṡζi = ζ>i (
1

2
Ṁ2i −C2i)ζi − ζ>i (D2i + Kdi)ζi + ζ>i αi

≤ −ζ>i Kdiζi + ζ>i αi,

which by standard passivity theorems (see [7]) gives the
desired result.

2) Synchronization: To complete the first part of the
control design, we need to specify the auxiliary control inputs
αi. These functions will enable the vessels to synchronize
in the limit. Following [2], the functions are chosen as

αi = −
p∑

k=1

bikγk(zk) i ∈ I, (22)

where B = {bij} ∈ Rr×p is the incidence matrix of the
communication graph1. For the k’th link connecting vessels
with indexes i and j, zk is the synchronization error between
the vessels corresponding to

zk :=
r∑

i=1

bikx0i =

{
x0i − x0j if i is the positive end
x0j − x0j if i is the negative end

(23)
Furthermore, we have that

γk(zk) =
∂Pk(zk)

∂zk
, (24)

1According to Assumption 1 in Section II-C, the number of columns in
B must be p = r − 1.



where according to [2], the functions Pk(zk) shall satisfy:

Pk ∈ C2 (25a)
Pk(zk) > 0 ∀zk 6= 0 (25b)

Pk(zk)→∞ as |zk| → ∞ (25c)

z>k
∂Pk(zk)

∂zk
> 0 ∀zk 6= 0. (25d)

Examining (22) shows that the synchronizing control input
for each vessel consists of feedback from the synchronization
errors between the vessel and its ”neighbors” in the commu-
nication topology. This corresponds to a decentralized design
that necessitates only limited inter-vessel communication.

B. Formation mission task

Define q as the path-following error between the FRP of
the acting leader and its desired position pd(θ) on the path:

q(x01, θ) := x01 − pd(θ), q ∈ R3. (26)

Since vd = ẋ01 − ζ1, the dynamics of q becomes

q̇ = vd − pθd(θ)θ̇ + ζ1

where ζ1 is the synchronization velocity error (18) for the
acting leader. In the next step we design control laws for vd
and θ̇ in order to solve (15) and (16) based on the certainty
equivalence ζ1 = 0 .

1) Maneuvering control design: To stabilize {q = 0} we
select a Hurwitz matrix A ∈ R3×3 together with P = P> >
0 satisfying PA + A>P = −Q for a given Q = Q> > 0,
and consider the CLF

Vq(x01, θ) = q(x01, θ)
>Pq(x01, θ). (27)

A simple choice for vd and θ̇ is

vd = Aq(x01, θ) + pθd(θ)vs(θ, t),

θ̇ = vs(θ, t).

This choice stabilizes the path-following error {q = 0}
through q̇ = Aq (also verified by V̇q = −q>Qq) for
ζ1 = 0. Additionally, it satisfies the speed assignment along
the path (16) identically. However, the above control law has
some severe flaws. The most notable is that each vessel will
continuously receive a commanded velocity that immediately
drives them towards the path, irrespective of how well they
are coordinated.

To remedy this problem and ensure that coordination is
handled with higher priority than path-following, the terms
Aq and vs(θ, t) in the maneuvering control law will be
weighted by functions that map the synchronization errors
into scalar weight signals. These signals should vanish for
large synchronization errors and be equal to unity when
synchronized. Effectively, this means that the vessels will
”forget the path” while synchronizing.

To this end, the functions σk : R≥0 7→ R>0 are introduced,
which should be C1, decreasing, and satisfy

σk(0) = 1 (28a)
lim
s→∞

σk(s) = 0. (28b)

As input to these functions, we use |z|2L := z>Lz, where
z = col(z1, . . . , zp), z ∈ R3p, and L = L> ≥ 0 is a weight
matrix used to tune the gains for position and orientation
errors2 in z.

With these ”forgetting”-functions defined, we assign the
dynamic control law

vd = σ1(|z|2L)Aq(x01, θ) + σ2(|z|2L)pθd(θ)vs(θ, t) (29)

θ̇ = σ2(|z|2L)vs(θ, t)− ω, (30)

where ω is a free input used to shape the transient in the
path convergence phase. In the path-error q, the closed-loop
dynamics becomes

q̇ = σ1(|z|2L)Aq + pθd(θ)ω + ζ1. (31)

Motivated by the gradient optimization designs in [3], we
assign ω as

ω = µ(θ)V θq (x01, θ) = −2µ(θ)q(x01, θ)
>Ppθd(θ), (32)

where in contrast to [3], µ(θ) > 0 is designed as a function of
θ to allow normalization with respect to path parameteriza-
tion. This ensures that the speed of the gradient minimization
is independent of how a certain path is parameterized; see
Section VI for an example.

Assumption 4: The gain µ(θ) ∈ C1, and ∃µmax < ∞ so
that ∀θ ∈ R, then µ(θ) ≤ µmax.

Differentiating (27) with respect to time yields

V̇q = −σ1(|z|2L)q>Qq + 2q>Ppθd(θ)ω + 2q>Pζ1 (33)

= −σ1(|z|2L)q>Qq− µ(θ)V θq (x01, θ)
2 + 2q>Pζ1

For z confined to compact sets by the control design for
group coordination, it follows for ζ1 = 0 that (15) is satisfied
by (26). Furthermore, (16) is satisfied as z(t) → 0. A
detailed analysis of stability for the complete closed-loop
system is provided in Section V.

C. Operation phases

The scaling functions σk(·) and the gradient optimization
term in θ̇ were introduced to enable the desired priority levels
between the group coordination and the formation mission
objectives, resulting in an operation effectively divided into
a coordination phase and a path-following phase.

1) Coordination phase: In the beginning of an operation,
the synchronization errors are typically large. By proper de-
sign, the functions σ1(|z|2L) and σ2(|z|2L) can attain arbitrar-
ily small values for |z|L ≥ c, where c is a set threshold value.
This ensures that the common velocity command signal (29)
to each vessel is close to zero when the synchronization
errors are large. The result is a low-speed coordination phase
where the vessels efficiently positions themselves relatively

2The gains should be selected to normalize the position and orientation
errors in |z|2L. By setting the gains corresponding to zk’s that are unavailable
to the acting leader equal to zero, vd can be calculated locally by the acting
leader. This can make the design fully decentralized (see Section VII).



to the group without paying any attention to the path-
following objective. During this phase, the dynamics of θ
is approximately reduced to

θ̇ ≈ −µ(θ)V θq (x01, θ),

which shows that the point pd(θ(t)) will move to a favorable
position along the path by minimizing θ 7→ Vq(x01, θ), and
wait there until the formation becomes coordinated.

2) Path-following phase: After the group of vessels is
sufficiently coordinated, the path-following phase is initiated
by a collective movement towards the path. This is a result
of the functions σ1(|z|2L) and σ2(|z|2L) now approaching
unity, thereby activating the maneuvering feedback and feed-
forward terms in the common velocity command signal. This
also activates the speed assignment vs(θ, t) in (30), which
drives the desired position and heading pd(θ(t)) along the
path at the desired speed3.

V. STABILITY ANALYSIS

A. Preliminary definitions and properties

Define

x0 := col(x01, . . . ,x0r) ∈ R3r (34)

α(z) := col(α1(z), . . . ,αr(z)) ∈ R3r (35)

γ(z) := col(γ1(z1), . . . ,γp(zp)) ∈ R3p (36)

ζ := col(ζ1, . . . , ζr) ∈ R3r (37)

Υ := 1r ⊗ vd ∈ R3r, (38)

where, 1r ∈ Rr is the vector of ones. From the definition
of ζi and equations (22), (23), it is verified that the vectors
x0, z, and α satisfy

ẋ0 = ζ + Υ (39)

z = (B> ⊗ I3)x0, (40)
α(z) = −(B⊗ I3)γ(z), (41)

where I3 ∈ R3×3 is the identity matrix. Furthermore, since
the sum of entries in any column of B is equal to zero, the
basis for the left nullspace N (B> ⊗ I3) is

{
u ∈ R3r : u = 1r ⊗ c, c ∈ R3

}
, (42)

from which it follows

(B> ⊗ I3)Υ = 0. (43)

A consequence of the connectivity assumption on the com-
munication graph is the following lemma:

Lemma 1: For a connected communication graph with r
nodes and index set I, then ∀i, j ∈ I there exists Kij =
[a1I3, a2I3, . . . , apI3] ∈ R3×3p, with ai ∈ {−1, 0, 1}, such
that

x0i − x0j = Kijz.
It follows from this lemma that z = 0 solves the coordi-

nation objective (14).

3It is also possible to scale vs(θ, t) by a third weight function σ3(|q|2L2
),

to ensure that the speed assignment is not activated before the FRP of the
acting leader has converged to the path, i.e. q ≈ 0.

B. Closed-loop system

The total closed-loop dynamics becomes

M2i(ψi)ζ̇i = −C2i(ψi,νi)ζi −D2i(ψi,νi)ζi

−Kdiζi +αi(z), i ∈ I (44)

ż = (B> ⊗ I3)ζ (45)

q̇ = σ1(|z|2L)Aq− 2µ(θ)pθd(θ)q
>Ppθd(θ) + ζ1 (46)

θ̇ = σ2(|z|2L)vs(θ, t) + 2µ(θ)q>Ppθd(θ). (47)

It can be verified that ψi = ψ0i + ψci(t), where ψ0i =
e> (Ki1z + q + pd(θ)) and

νi = R(ψi)
>(I3 −R(ψ0i)Sli(t)e

>)−1
(
ζi + vd

+ R(ψ0i)(l̇i(t)− Sli(t)ψ̇ci(t))
)
, (48)

where e = col(0, 0, 1), and (I3×3 − R(ψ0i)Sli(t)e
>)−1 is

given explicitly by



1 0 (−yci(t) cosψ0i − xci(t) sinψ0i)
0 1 (−yci(t) sinψ0i + xci(t) cosψ0i)
0 0 1


 .

By defining

χ := col(z, ζ,q) ∈ R3(p+r+1), (49)

we can write the closed-loop dynamics compactly as
[
χ̇

θ̇

]
=

[
fχ(t,χ, θ)
fθ(t,χ, θ)

]
=: F(t,χ, θ). (50)

Note that in general, the closed-loop error dynamics are valid
for (z, ζ,q, θ) ∈ {R

(
(B> ⊗ I3)

)
× R3r × R3 × R}. From

Assumption 1, however, we have that R(B>) = Rp, which
implies that R

(
(B>⊗I3)

)
= R3p. This means that the stated

closed-loop dynamics is allowed to evolve on the entire state
space. The result is summarized in the following theorem:

Theorem 1: Under assumptions 1 – 4, the control laws
(19), (29), (30), and (32) render the closed-loop system (50)
forward invariant and the set {(χ, θ, t) : χ = 0} UGAS.
This solves the control objectives (14), (15), and (16).

C. Proof of Theorem 1

1) Forward completeness: Define the function

Vz,ζ(t,χ, θ) :=

p∑

k=1

Pk(zk) +
r∑

i=1

Sζ,i (ζi, ψi(t,χ, θ)) (51)

Using (7), it is seen that Vz,ζ satisfies
∑p
k=1 Pk(zk) +

λ1|ζ|2 ≤ Vz,ζ ≤
∑p
k=1 Pk(zk) + λ2|ζ|2, where λ1 =

mini∈I λmin,Mi and λ2 = maxi∈I λmax,Mi . Since the lower
and upper bounds here are positive definite and radially
unbounded in z and ζ, by [7, Lemma 4.3] there exists class-
K∞ functions φ1, φ2 so that

φ1(|(z, ζ)|) ≤ Vz,ζ ≤ φ2(|(z, ζ)|). (52)



Differentiating (51) yields

V̇z,ζ =

[
∂

∂z

(
p∑

k=1

Pk(zk)

)]>
ż +

r∑

i=1

Ṡζ,i

≤ γ(z)>(B> ⊗ I3)ζ +
r∑

i=1

(−ζ>i Kdiζi + ζ>i αi)

= −α>ζ −
r∑

i=1

(ζ>i Kdiζi) + ζ>α

= −
r∑

i=1

(ζ>i Kdiζi) ≤ 0 (53)

Since V̇z,ζ ≤ 0, this implies for all t in the maximum interval
of existence [t0, T ), that Vz,ζ(t) ≤ Vz,ζ(t0). Combining this
with (52) yields

∣∣(z(t), ζ(t)
)∣∣ ≤ φ3

(∣∣ (z(t0), ζ(t0))
∣∣) (54)

where φ3(·) := φ−11 ◦ φ2(·) ∈ K∞.

Next, consider the positive definite, radially unbounded
function (27) satisfying

λmin,P |q|2 ≤ Vq ≤ λmax,P |q|2. (55)

On the time interval [t0, T ), the bounds (54) and the fact
that σ1(·) is decreasing give a lower bound on σ1(|z(t)|2L)
according to

σ1(|z(t)|2L) ≥ σ1(||L||φ3
(∣∣ (z(t0), ζ(t0))

∣∣)2) =: ε1. (56)

From (33) we then get the following over [t0, T ):

V̇q ≤ −ε1q>Qq + 2q>Pζ1
≤ −ε1λmin,Q|q|2 + 2|q|||P|||ζ1|

≤ −1

2
ε1λmin,Q|q|2 ∀|q| ≥ 4||P||

ε1λmin,Q
|ζ1|

For

|q| ≥ 4||P||φ3
(∣∣ (z(t0), ζ(t0))

∣∣)

ε1λmin,Q
=: ε2,

we are thus guaranteed V̇q ≤ 0, which yields

Vq(t) ≤ max{Vq(q(t0)), sup
|q|=ε2

Vq(q)}

≤ Vq(q(t0)) + sup
|q|=ε2

Vq(q)

≤ λmax,P |q(t0)|2 + λmax,P ε
2
2 ∀t ∈ [t0, T ).

From this, we finally get uniform upper bounds for |q(t)|
over the time interval [t0, T ):

|q(t)| ≤
√
λmax,P
λmin,P

(|q(t0)|+ ε2) (57)

Combining this with assumptions 3 and 4, we achieve a
uniform upper bound for |θ̇| over [t0, T ), which shows that
there cannot be a finite escape time for the system (50), i.e.
T = +∞. By a locally Lipschitz property of the closed-loop
system, we conclude that the solutions θ(t) and χ(t) exist

and are continuous functions over [t0,∞).

For the remainder of the analysis, θ will be treated as
an external input, continuous in time, that enters the
dynamics of χ. Stability of the origin of

χ̇ = f(t,χ), (58)

where f(t,χ) := fχ(t,χ, θ(t)), will be investigated by the
means of the Nested Matrosov Theorem for time-varying
systems presented in [8].

2) Uniform Global Stability: To apply the Nested Ma-
trosov Theorem, UGS of the origin is first established. By
forward completeness of the total closed loop system, the
bounds in (54) and (57) hold ∀t ≥ t0.

Since |χ| ≤ |
(
z, ζ
)
| + |q|, |χ| ≥ |

(
z, ζ
)
|, and |χ| ≥ |q|,

we have that

|χ(t)| ≤ φ3
(∣∣ (z(t0), ζ(t0))

∣∣)+√
λmax,P
λmin,P

[
|q(t0)|+ 4||P||φ3

(∣∣ (z(t0), ζ(t0))
∣∣)

ε1λmin,Q

]

≤ φ3 (|χ(t0)|) +√
λmax,P
λmin,P

[
|χ(t0)|+ 4||P||φ3 (|χ(t0)|)

λmin,Qσ1

(
||L||φ3 (|χ(t0)|)2

)
]

=: φ4(|χ(t0)|)
It is verified that φ4(·) ∈ K∞, which shows that the origin
is UGS.

3) Uniform Global Asymptotic Stability: Defining

V0(t,χ) := Vz,ζ(t,χ, θ(t)), (59)

we have from (53) that

V̇0(t,χ) ≤
r∑

i=1

(−ζ>i Kdiζi) =: Y0(χ) ≤ 0 ∀χ. (60)

and where it is noted that Y0(χ) = 0 implies ζ = 0. Now,
define the first auxiliary function

V1(t,χ) := z>(B⊗ I3)‡M2ζ, (61)

where

M2 := diag(M21,M22, . . . ,M2r) ∈ R3r×3r, (62)

and (B⊗I3)‡ ∈ R3p×3r is the Moore-Penrose pseudo-inverse
of (B⊗ I3) satisfying

(B⊗ I3)(B⊗ I3)‡(B⊗ I3) = (B⊗ I3)

Differentiating (61) with respect to time yields

V̇1(t,χ) = ζ>(B⊗ I3)(B⊗ I3)‡M2ζ

+ z>(B⊗ I3)‡
(
Ṁ2ζ + M2ζ̇

)

=: Y1(χ,φ(t,χ))

Here, all time dependent terms of V̇1(t,χ) has been collected
in the vector φ(t,χ), defined as

φ(t,χ) := col[M2ζ, Ṁ2ζ,M2ζ̇] (63)



Evaluating Y1(χ,φ(t,χ)) at ζ = 0, and using (44) yields:

Y1(χ,φ(t,χ))

∣∣∣∣
ζ=0

= z>(B⊗ I3)‡M2ζ̇

∣∣∣∣
ζ=0

= z>(B⊗ I3)‡α(z)

= −x0
>(B⊗ I3)(B⊗ I3)‡(B⊗ I3)γ(z)

= −x0
>(B⊗ I3)γ(z)

= −z>γ(z) < 0 ∀z 6= 0

The last inequality follows from the definition of γk(zk) in
(24) and the properties listed in (25). Now, define the second
auxiliary function

V2(χ) := Vq(q) (64)

which satisfies

V̇2 ≤ −σ1(|z|2L)q>Qq + 2q>Pζ1 =: Y2(χ) (65)

Evaluating Y2(χ) at ζ, z = 0 yields

Y2(χ)

∣∣∣∣
ζ,z=0

= −q>Qq < 0 ∀q 6= 0

We now have that Y0(χ), Y1(χ,φ(t,χ)), Y2(χ) = 0
together imply χ = 0.

By noting that V0(t,χ), V1(t,χ), V2(χ) are locally
Lipschitz continuous4 over [t0,∞) × R3(r+p+1), and that
Y0(χ), Y1(χ,φ), Y2(χ) are continuous in their arguments,
the only thing left to show is that there exist uniform upper
bounds on |Vi(t,χ)| and |φ(t,χ)| whenever |χ| is upper
bounded. The bounds on |V0(t,χ)|, |V2(χ)| follows from
(52) and (55), while the bounds on |V1(t,χ)| is established
by using the Cauchy-Schwarz inequality, noting that the
norm of the block-diagonal matrix M2 is uniformly upper
bounded by the uniform upper bounds on ||M2i||.

To see that the stated bounds on |φ(t,χ)| holds, first
note that the norms of νi, i ∈ I, are bounded for bounded
|χ| by (48) and assumptions 2 – 3. Uniform upper bounds
on Ṁ2i = R(ψi)

(
SMie

>νi + MiS
>e>νi

)
R>(ψi)

follows, which in turn shows that |Ṁ2ζ| is bounded. Since
|M2ζ| and |M2ζ̇| also are bounded for bounded |χ| (the
latter follows from (44) and the bounds on |νi|), the bounds
on |φ(t,χ)| follows.

All assumptions of [8, Theorem 1] is satisfied, and
UGAS for the origin of (58) is established. By lemma (1)
and the closed loop dynamics of θ in (47), it follows that
the control objectives (14)-(16) are satisfied. �

4This follows from [7, Lemma 3.2] by
V0(t,χ), V1(t,χ), V2(χ),

∂V0(t,χ)
∂χ

,
∂V1(t,χ)

∂χ
, ∂V2(χ)

∂χ
being continuous

on any set [a, b]×D, where [a, b] ⊂ [t0,∞), D ⊂ R3(p+r+1).

VI. SIMULATION

The proposed control-scheme is demonstrated numerically
for three ships with dynamics given by (1), where the mass
matrices are identical, the damping is given by

Di(νi) = DL + Du|ui|+ Dv|vi|+ Dr|ri|, (66)

and Ci(νi) is calculated based on the mass matrix from
the procedures in [1]. The numerical values for the involved
matrices are

Mi = 107




0.0275 0 0
0 0.0763 −0.0738
0 −0.0738 6.6910




DL = 106




0.0000 0 0
0 0.0099 0.0014
0 0.0007 2.8134




Du = 106




0.0024 0 0
0 0.0088 0
0 0.1118 6.0480




Dv = 107




0 0 0
0 0.0003 0.0135
0 0 1.1887




Dr = 108 × diag(0, 0.0095, 1.5629)

The earth-fixed frame gives north-position along its x-axis,
and east-position along its y-axis. The parameterized
path is chosen as xd(θ) = 100 sin( π

400θ) + 100,
yd(θ) = θ + 100. The desired formation configuration
is chosen as l1 = col(0, 80, 0), l2 = col(0, 0, 0),
l3 = col(0,−80, 0), which corresponds to a transversal line
formation where a tangential heading angle is common
for all the ships. The communication topology is chosen
according to two communication links, where Vessel 1 is the
positive end of both links. Vessel 3 is set as the acting leader.

The control-specific parameters is chosen according
to Kdi = 104 × diag(5, 5, 1000), A =
diag(−0.02,−0.02,−0.03), P = 3

2 × 10−2 ×
diag(1, 1, 10−5), L = diag(L0,L0), L0 = diag(1, 1, 2500).
The control-specific functions is chosen according to
Pk(zk) = 1

2 (az2k1 + az2k2 + bz2k3), a = 3000, b = 6 × 105,
σ1(s) = σ2(s) = exp(−0.25s), vs(θ, t) = 3√

xθd(θ)
2+yθd(θ)

2
,

µ(θ) = 1√
xθd(θ)

2+yθd(θ)
2

.

The initial positions of the vessels is chosen as
η10 = col(−70, 185, π10 ),η20 = col(−50, 140, 0),η30 =
col(−80, 50,−π6 ), while θ0 = 50. To illustrate the strong
separation achieved between the group coordination and
formation mission objectives, a ”blackout” is inflicted to
Vessel 1 after t = 550[s] (at this point, the east-position of
Vessel 1 is ≈ 1250[m]). The result is that the vessel slows
down and starts drifting south-east at a speed of ≈ 0.6[m/s].

The simulation results are shown in Fig.1 and Fig.2.
It is seen that the vessels synchronize before they initiate



Fig. 1. North-east position plot for the three vessels. The red, purple, and blue ships correspond to vessels 1, 2, and 3, respectively. The green arrow
indicates the position of pd(θ) which the FRP of the acting leader should converge to. Initial positions are indicated by smaller-sized ships and arrow.

Fig. 2. Time-series of |z(t)|∞ and |q(t)|∞

movement towards the path. After the blackout, the two
vessels that still are operational abandon the formation
mission objective, concentrating solely on decreasing the
synchronization errors by following the drifting vessel. It
is seen that steady state synchronization errors arise after
the blackout. This is due to Vessel 1 not partaking in the
synchronization work. The steady state errors are, however,
kept within reasonable limits.

VII. CONCLUSION

This paper has addressed the topic of formation control for
fully actuated marine surface vessels within a path-following
framework. Rooted in an operational philosophy where the
formation should be maintained at all costs, the design
enables strong separation and prioritization between the task
of getting the vessels into formation, and the task of getting
the formation to follow a prespecified path. This separation
provides inter-vessel anti-collision capabilities during the
path-following phase of a mission. However, the design
cannot guarantee collision-avoidance during the coordination
phase for unfortunate initial conditions.

By following the group agreement protocols in [2], the
coordination between the vessels is performed through a
decentralized communication topology. However, as path-

following requires that each vessel has access to a common
velocity signal that is calculated based on the states of the
vessels, the proposed solution is in general centralized. It is
possible to let the velocity input be calculated locally by the
acting leader, and distributed to the other vessels through the
communication topology. This would decentralize the design,
but at the same time introduce time-delays. Achieving a fully
decentralized design has not been the focus in this paper, but
is certainly a topic for future work, in addition to the effect
of communication delays on the closed loop performance.
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