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Problem Description

Cranes on offshore vessels are used in various operations all over the world. Dependent on
the operations, the cranes differ in size, lifting capacity, number of joints, working area,
etc. and are specifically chosen due to the environment and working area. Operations
spans from simple bulk handling to advanced subsea lifting operations in harsh weather.
For ship owners, it is important to perform crane operations faster, in deeper waters and
with increased weather operation window. In addition, necessary precautions towards
safety to human lives, environment and property are to be taken, as demanded by classifi-
cation societies. The objective of this master thesis is to investigate mathematical models
and control methods for offshore cranes, and implement and test them in Simulink.

Scope of work:

1. Review necessary literature within the fields of offshore cranes and control strate-
gies like input shaping.

2. Formulate a mathematical model of an given offshore crane with 3 joints and 4
links.

3. Implement the mathematical model in Simulink.

4. Implement a movable foundation so waves and other environmental disturbances
can influence the crane.

5. Include a dynamic wire model as given by SINTEF in the simulation model.

6. Investigate and implement, if possible, a planar control algorithm as well as a os-
cillation control algorithm using e.g. input shaping.

7. Analyse and test stability and performance.

8. Conclude and make a plan for further work.

The report shall be written in English and edited as a research report including literature
survey, description of mathematical models, description of control algorithms, simulation
results, model test results, discussion and a conclusion including a proposal for further
work. Source code should be provided on a CD with code listing enclosed in appendix. It
is supposed that Department of Marine Technology, NTNU, can use the results freely in
its research work, unless otherwise agreed upon, by referring to the students work. The
thesis should be submitted in three copies within June 14th.

Assignment given: January 2011

Supervisor: Asgeir Sørensen (NTNU)
Cosupervisor: Karl Gunnar Aarsæther (SINTEF)

Thor Erling Grahl Nielsen (MacGregor)
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Abstract

This master thesis is about modeling and control of crane placed on an offshore vessel.
An active heave compensating crane, designed by MacGregor, has been used as a basis for
developing the crane model. Cranes of this type are placed on a wide variety of vessels
and operate all over the world. Besides MacGregor, several other well reputated crane
suppliers design similar cranes. In addition, two inverse kinematics control algorithms
and three input shapers have been described, implemented and tested in Simulink.

The model of the MacGregor crane was developed mathematically using robot modeling
theory. The resulting model was implemented in Simulink and verified both mathemat-
ically and against a SimMechanics model. In addition, a cable model and vessel crane
interaction were added to the Simulink model. The total Simulink model responded ac-
cording to expectations during simulations.

Two inverse kinematics algorithms were implemented and tested. Both had vessel kine-
matics incorporated. As a result, these two algorithms enabled the crane to counteract the
vessel motion. This control method is also of interest to operators. It enables the them to
control the crane in the workspace, instead of in the joint space. Simulations show that
the two inverse kinematics algorithms were able to keep the crane tip at a fixed point in
an earth fixed reference frame. However, in sea state 6 the vessel motion was fluctuating
to fast, making the crane unable to keep the crane tip at a fixed point.

The input shaping control algorithm shapes the control input given from the operator
in a manner that makes the crane stop at any point with reduced payload swing. The
effect of increasing the robustness of the shaper was checked using three different shapers.
Simulations showed that the input shapers were able to reduce the residual vibration.

For a 5 meter long cable, the zero vibration shaper reduced the residual vibration from 1
meter to approximately 20 cm, whereas the zero vibration derivative shaper reduced the
vibration to about 5 cm. The zero vibration derivative derivative shaper was able to reduce
the vibration to about 2.5 cm.
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Chapter 1

Introduction

The aim for this master thesis is to model and develop control strategies for an offshore
crane. New control algorithms that make crane operations safer and faster are needed in
the future. This thesis is a part of that work and it is a continuation of the authors project
assignment.

1.1 Background and Motivation

Cranes on offshore vessels are used in various operations all over the world. Dependent
on the operations, the cranes differ in size, lifting capacity, number of joints, etc., and
they are designed with regards to the environment and desired working area. Due to the
custom-made design, the cranes can be placed on a wide variety of vessels, such as

• Diving support vessel vessels,

• Subsea construction and maintenance vessels,

• Platform supply vessel ,

• Anchor handling tug supply vessels,

• Drill ships,

• Floating production storage and offloading vessels,

• Research vessels,

• Seismic vessels.

Depending on the type of vessel a crane is placed on, operations span from simple bulk
handling to advanced subsea lifting in harsh weather. The robust design strengthens the
crane’s reliability and enables it to perform crane operations for a longer period of time.

1



Furthermore, MacGregor’s HMC3568 150t active boost crane has been used as a basis
for developing the crane model. The crane is cable of lifting up to 150 tons, single line.

MacGregor (formerly named Hydramarine) has a long history developing equipment for
the offshore industry. The company was founded in 1977 and began selling hydraulic
pumps, small cranes and davits. During the 90’s they sold a wide range of simple cranes
and winches. In 2001 the first large MacGregor active heave compensating (AHC) crane
was delivered, with the first 150 ton knuckle-jib crane being delivered the following year
(MacGregor, 2010). During the last decade there has been an explosion in software com-
plexity, leading to advanced features such as auto-tension, heave compensation (passive
and active) and automatic overload protection. MacGregor, as well as other equipment
handling suppliers, saw an increasingly interest in their technology during this decade.

Now, as the energy requirements grow exponentially, so too does the market for offshore
cranes. The difficult nature of this market is that it demands even more complex sys-
tems and equipment capable of operating at deeper waters, more remote locations and in
increasingly severe environments. Increasing the ”weather operation window” is a com-
mon phrase in the industry, and of great interest to ship owners. To close the gap between
today’s solutions and what is needed in the future, new technology that is safer, more
efficient and more robust has to be developed.

Input Shaping is a control shaping technique that has the potential to bring today’s cranes
towards the need of the future. The technique works by shaping the operator input with
an input shaper so that payload swing is removed. Input shaping is a feedforward control
strategy, i.e. it does not require feedback from sensors. Together with a feedback con-
troller, one could obtain an effective and precise control system (Garrido et al., 2008). On
board crane vessel, reduction of payload swing is very important due to the constantly
changing workspace. A reduction of payload swing would increase safety and enable the
operator to accurately position vulnerable payloads (Khalid et al., 2004).

The earliest usage of input shaping can be dated all the way back to O.J.M Smith in the
1950’s (Mitchell, 1958). Smith developed the ”posicast” control, which is nowadays ref-
fered to as the Zero Vibration (ZV) shaper. The ZV got it’s name from the fact that it
removes all vibration if the system model is perfect. In modern time, the input shapers
have successfully reduced vibration on cranes at nuclear facilities (Singhose et al., 2008),
on gantry and overhead cranes (Sorensen et al., 2007) and during experiments on board
of the space shuttle Endeavor (Tuttle and Seering, 1995). Input shapers have also proven
to be effective on robots, chemical processes, to mention a few. Input shaping has demon-
strated that it is an effective control method for reducing vibration, and cranes that utilize
the method has shown an improvement in efficiency and safety (Sorensen et al., 2007).

Another method that has the ability to make crane operations safer, more efficient and
more robust, is a workspace control. This control method would have to solve the inverse
kinematics, in order for the operator to control the crane tip in the x-y-z direction. Today,
each joint is controlled separately. Besides being useful for the operator, the vessel ori-
entation could be incorporated in the kinematics, making the algorithm able to generate
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reference position that is fixed in an earth fixed frame.

1.2 Contribution

Chapter 4 presents a mathematical model of the HMC3568 crane. In addition, it is de-
scribed how the cable model works, and how the crane model was modified to include
vessel-crane interaction.

Chapter 6.5 presents two inverse kinematics algorithms that were implemented and tested.
Besides being useful for the operator, these two algorithms are able to actively compensate
for the vessel motion.

Chapter 6.6 presents a control shaping technique called input shaping. Performance and
robustness of three different input shapers have been analysed and tested. To the authors
knowledge, both input shaping and vessel-crane inverse kinematics have never been em-
ployed on a crane of this type.

1.3 Outline

Chapter 2 introduce and define technical terms that are essential for the understanding of
this master thesis. Chapter 3 present and explain the design of the HMC3568 crane. In
Chapter 4, a mathematical model is derived. In addition, the cable model and vessel-crane
interaction are accounted for. The mathematical model, as well as the Simulink model,
are verified in Chapter 5. Furthermore, Chapter 6 deals with the control of the modeled
crane. The inverse kinematics and the input shapers are described in detail in this chapter.
Finally, Chapter 7 conclude and give recommendations for further work.
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Chapter 2

Preliminaries on Robot Modeling
Theory

The purpose of this chapter is to introduce and define basic technical terms that are es-
sential for the understanding of this thesis. Offshore cranes come in various sizes and
capabilities. However, most of them share one similarity, they can be described by robot
modeling theory. Translations, rotations, torque etc. are all parameters that have to be
found. This chapter review some of the most important terms and equations regarding
robot modeling theory. The purpose is to provide necessary information so that the fol-
lowing chapters are understandable. If the reader is up to date with robot modeling theory,
it should be no problem to understand the following chapters without reading this chapter.
Terminology, explanations, figures and equations are a summary from Mark W. Spong
et al. (2006) and Sciavicco and Sciavicco (2000).

2.1 Notation

The notation used throughout this thesis is shown in Table 2.1, and on vector form in
Table 2.2. Vectors and matrices are printed in bold face. A robot manipulator variable is
represented with qi, and the set of joint variables are represented as q = [q1, q2, . . . , qn]T .
A coordinate system is written as oixiyizi, or in short form as {i}, where i is the frame
number.

2.2 Robot Manipulator

A robot manipulator is a connection between joints and links. Together they form a robot
manipulator which is capable of altering joint angles so the end point of the manipulator,
often called the end effector, moves towards a desirable point in space.
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DOF forces and
moments

linear and
angular velocities

position and
Euler angles

1 motion in the x-direction (surge) X u x
2 motion in the y-direction (sway) Y v y
3 motion in the z-direction (heave) Z w z
4 rotation about the x-axis (roll) K p φ
5 rotation about the y-axis (pitch) M q θ
6 rotation about the z-axis (yaw) N r ψ

Table 2.1: Notation used throughout this paper, inspired by Thor I. Fossen (2010).

NED posi-
tion pn =

xy
z

 Orientation
(Euler
angles)

Θo
b =

φθ
ψ


Body-fixed
linear
velocity

vn =

uv
w

 Body-fixed
angular
velocity

ω =

pq
r


Body-fixed
force f bb =

XY
Z

 Body-fixed
moment mb

b =

KM
N



Table 2.2: Vector representation of table 2.1, inspired by Thor I. Fossen (2010).

In this thesis two kinds of joints have been used; prismatic and revolute. The prismatic is
a linear joint. It can alter the length between two links, and is therefore also called a slider.
Hydraulic cylinders are an example of prismatic joints. On the other hand, a revolute joint
is a rotary joint that alters the relative angle between two links. Hinges on doors and a
human elbows are examples of revolute joints.

Both the revolute and prismatic joint are one degree of freedom (DOF) joints. This means
that the prismatic joint is only capable of altering the length along one axis. Similarly, the
revolute joint is only capable of revolve around one axis. As a result of using one DOF
joints, the manipulator’s DOF equals the number of joints. A manipulator is said to be
kinematically redundant if it got more than six DOF. If it got less than six DOF it is not
possible to position the end effector with a arbitrary orientation.

2.3 Operational Space, Workspace and Configuration Space

The representation of the end effector position can be given as minimal number of coor-
dinates with regards to the geometry of the structure. In the 3 dimensional case, a vector

6



Figure 2.1: Workspace of an elbow manipulator.

with three elements are needed to represent the position. Likewise, a vector with three el-
ements are used to represent the orientation of the end effector. These elements are called
Euler angles. This way, the 3×1 position vector p, and the 3×1 orientation vector Θ, are
elements in the 6×1 vector

x =

[
p
Θ

]
. (2.1)

This representation of the position and orientation is defined in the space in which the
manipulator operations are specified in. Hence, this space is called the operation space.

A subcategory of the operational space, is the workspace. This region is described by
the origin of the end effector frame when all the manipulator joints execute all possible
motions, i.e.

p = p(q), qim ≤ qi ≤ qiM . (2.2)

The region is limited by the manipulator geometry and the mechanical joint limits. In
(2.2), the maximum and the minimum joint limit are denoted as qiM and qim, respectively.
For an n-degree manipulator the reachable workspace is finite, closed and connected, as
shown in Figure 2.1.

The configuration space, also called the joint space, denotes the space in which all con-
figurations are defined in. By assuming that the manipulator consists of several individual
rigid links, a configuration of a robot manipulator is the n × 1 joint variable vector q.
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2.4 Rigid Body Motion

An important part of robot modeling concerns transformations and rotations of various
coordinate frames. These operations make it possible to calculate the end effectors posi-
tion based on the base coordinates of the manipulator.

2.4.1 Rotations

In order to represent the relative position and orientation of one rigid body with respect
to another, a coordinate system oixiyizi, also called reference frame i, will be attached to
each body part. It is possible for two reference frames with the same origin to represent
the 3× 1 vector p0

a in o0x0y0z0 as

p0
a = R0

1p
1
a, (2.3)

when p1
a is given in o1x1y1z0 as a 3× 1 vector. The 3× 3 rotation matrix R0

1 is given as

R0
1 = Rz,ΦRy,ΘRx,Ψ =

=

cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

 . (2.4)

Here, cos(ψ) and sin(ψ) are shortened to cψ and sψ for convenience. Equation (2.4) is the
rotation matrix that rotates pa from o1x1y1z1 to o0x0y0z0. The rotation matrix is expressed
in Euler angles and is obtained by first performing a rotation of Φ degrees about the z axis,
then θ degrees about y, and Ψ degrees about the x axis. These rotations alone are called
basic rotations.

2.4.2 Homogeneous Transformation

A rigid body motion is a translation combined with a rotation. When a motion consist of
both a rotation and a translation, it is called a transformation. Let p0

1 be the 3 × 1 vector
that represent the origin of o1x1y1z1 relative to o0x0y0z0, expressed in o0x0y0z0, and R0

1

the rotation matrix. p0
a can then be expressed as

p0
a = R0

1p
1
a + p0

1. (2.5)
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Furthermore, o2x2y2z2 is introduced. Point a with respect to o1x1y1z1 can be written as

p1
a = R1

2p
2
a + p1

2. (2.6)

Now, combining (2.6) and (2.5) yields

p0
a = R0

1R
1
2p

2
a + R0

1p
1
2 + p0

1, (2.7)

p0
a = R2

0p
2
a + p0

2, (2.8)

where

R0
2 = R0

1R
1
2, (2.9)

p0
2 = p0

1 + R0
1p

1
2. (2.10)

One can easily see that equation 2.7 could lead to complicated equations if a series trans-
formations were used. By introducing transformations we try to simplify the equations.
The transformation is given as

r0
a = T0

1r
1
a, (2.11)

where r0
a and r1

a are the 4 × 1 vector representing [p0
a, 1]T and [p1

a, 1]T , respectively. T0
1

is the 4 × 4 transformation matrix that transforms a vector from o1x1y1z1 to o0x0y0z0. It
is given as

T0
1 =

[
R0

1 p0
1

0 1

]
. (2.12)

Equation 2.7 can now be rewritten to

r0
a = T0

1T
1
2r

2
a =

[
R0

2 R0
1p

1
2 + p0

1

0 1

] [
p2
a

1

]
. (2.13)

This way of representing transformations makes it easy to write and understand the oper-
ations , especially when it’s a large number of transformations.
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2.5 Kinematics

The problem of determine the kinematics can be divided into two parts, namely forward
kinematics and inverse kinematics. The main objective of the kinematics is to describe
the motion of the robot manipulator without taking torque and forces into consideration.
The forward kinematic problem is to determine the position and orientation of the end
effector given the configuration of the robot manipulator. The inverse kinematic problem
is to determine the configuration of the manipulator given the end effector position and
orientation.

2.5.1 Kinematic Chains

As described in the previous sections, a robot manipulator consist of links connected to
each other by joints. The joints can either be simple such as prismatic and revolute joints,
or more complex such as ball or socket joints. A nice thing with simple joints is that they
only got one DOF, which means that the revolute joint revolve around one axis, and that
the prismatic alter the linear displacement along one axis.

A manipulator with n joints consist of n+1 links since each joint is connected with two
links. The joints are numbered from 1 to n, starting with 1 at the first joint, usually the
one connected to the ground/base link. Joint one is therefore connected to link zero and
link one, with link zero considered as an unmovable link. When a force or torque actuate
joint i, link i moves and the configuration is changed. All links in the configuration have
one joint variable qi. They represent

qi =

{
Θi represent an angle if joint i is revolute,
di represent a displacement if joint i is prismatic. (2.14)

In addition, it is attach a coordinate frame rigidly to each link. In particular, link i has
reference frame oixiyizi attached. Figure 2.2 illustrates how this can be done for an elbow
manipulator.

As figure 2.2 suggest, frame o0x0y0zo is placed at the bottom of the manipulator. This
means that link zero is the ground. As a result, all positions and orientations are expressed
with respect to this frame.

2.5.2 The Denavit-Hartenberg Convention

The DH convention provide a systematic procedure to develop robot manipulator kine-
matics. The kinematics for a n link robot manipulator can be extremely complex and
the convention simplifies the analysis considerably. It also provides a universal language
engineers can use to communicate with each other.
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Figure 2.2: Coordinate frames attached to an elbow manipulator.

With this convention, each homogeneous transformation Ai is represented as a product
of two rotations and two translations

Ai = Rotz,ΘiTransz,diTransx,aiRotx,αi

=


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 . (2.15)

The transformation matrices can now be found by performing multiple homogeneous
transformations

T0
i = A1(q1) · · ·Ai(qi). (2.16)

The four parameters θi, di, ai and αi are associated with joint i. The parameters represent

• di - Link offset: The distance from the origin of oi−1xi−1yi−1zi−1 to the intersection
of zi−1 and xi, measured along zi−1. di is the joint variable if the joint is prismatic.

• θi - Joint angle: The angle of rotation from xi−1 to the xi axis, measured in a plane
normal to zi−1. θi is the joint variable if the joint is revolute.

• ai - Link length: The distance between the axes zi−1 and zi, measured along xi .

• αi - Twist angle: The angle between the axes zi−1 and zi, measured in a plane
normal to xi. The positive sense for α is determined from z0 to z1 by the right hand
rule.

Three of these variables are constants since joint i only got one variable. Accordingly
to (2.15) there is four parameters that have to be found, while a transformation without
using the D-H convention need six parameters. This simplifies the effort of deriving
the transformation matrices. However, one have to place the origin and coordinate axes
according to some rules. The coordinate axes should be chosen as
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1. The z-axis is in the direction of the joint axis, i.e. along the the revolute axis for
revolute or the displacement axis for prismatic.

2. The x-axis is parallel to the common normal, i.e. xi = zi−1 × zi. If there is no
unique common normal (parallel z axes), then xi is a free parameter. The direction
of xi is from zi−1 to zi.

3. The y-axis follows from the x- and z-axis by choosing it to be a right-handed coor-
dinate system.

In fact, the origin and coordinate axes of figure 2.2 is placed according to the DH conver-
sion. Table 2.3 shows the DH parameters for the elbow manipulator in figure 2.2.

Link ai αi di θi
1 0 90◦ d1 θ1*
2 l1 0◦ 0 θ2*
3 l2 0◦ 0 θ3*

Table 2.3: DH parameters for the elbow manipulator.

2.5.3 Velocity - The Jacobian

A moving reference frame got both linear and angular velocity components. The manip-
ulator Jacobian relates the link angular and linear velocity with the joint velocities. It can
be split into two parts. One that relates the joint velocity of link i with the linear velocity
ṗi, and the other relates the joints angles to the angular velocity ωi, both expressed in
oixiyizi. The velocities for link i can be written as

ṗi = j
(i)
ṗ1
q̇1 + . . .+ j

(i)
ṗi
q̇i = J

(i)
ṗ q̇, (2.17)

ωi = j(i)
ω1
q̇1 + . . .+ j(i)

vi
q̇i = J(i)

ω q̇. (2.18)

Here, the subscript of the Jacobians distinguish the linear (J(i)
ṗ ) and the angular (J(i)

ω )
Jacobian. The superscript gives the number of links that have been taken into account.
The 6× n Jacobian to consider are then

J
(i)
ṗ =

[
j

(i)
ṗ1

. . . j
(i)
ṗi

0 . . . 0
]
, (2.19)

J(i)
ω =

[
j(i)
ω1

. . . j(i)
ωi

0 . . . 0
]
. (2.20)
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Taking the type of joint into consideration, each element will look like

[
j

(i)
ṗj

j(i)
ωj

]
[
zj−1 × (pi − pj−1)

zj−1

]
if joint i is revolute,[

zj−1

0

]
if joint i is prismatic.

(2.21)

Here, the 3 × 1 vector zj−1 is given by the the first three elements in the third column of
T0
j−1, while pj−1 is given by the first three elements of the fourth column of T0

j−1.

2.6 Dynamics

While the kinematics describes the motion of a robot manipulator without considering the
torque applied, the dynamics describes the relationship between torque and motion.

2.6.1 Lagrange Formulation

The Lagrange formulation is a conceptual simple and systematic procedure to derive the
dynamics of a manipulator. The Lagrangian dynamic formulation is an energy based
approach of the system, i.e. the approach derives the dynamics using the kinetic and
potential energy of the system.

With the Lagrange formulation, the equations of motion can be derived systematically
without regards of the reference coordinate frame. A set of variables λi, i = 1, . . . , n,
named generalized coordinates , are chosen which effectively describe the link positions
of a manipulator. The Lagrangian of the mechanical system can be defined as the differ-
ence between the kinetic and potential energy

L = K − P , (2.22)

whereK and P represents the total kinetic energy and potential energy, respectively. For a
manipulator the most natural choice for the generalized coordinates are the joint variables

λ1
...
λn

 = q. (2.23)

With this choice of generalized coordinates, the Euler-Lagrange equations of motion are

d

dt

∂L
∂q̇i
− ∂L
∂qi

= τi, (2.24)
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where τi is the force associated with link i. Equation (2.24) establish the relations between
the force applied to each joint and the joint positions, velocities and accelerations. Hence,
the equations allow us deriving the dynamical model using the potential and kinetic energy
of the system.

2.6.2 Computation of Kinetic Energy

The total kinetic energy of a n-link manipulator is given by the sum of the contributions
relative to the motion of each link

K =
n∑
i=1

Ki. (2.25)

where Ki is the kinetic energy of link i. The kinetic energy contribution of link i is given
by

Ki =
1

2

∫
Vi

ṗ∗
T

i ṗ∗i ρdV, (2.26)

where ṗ∗i denotes the linear velocity vector, expressed in the base frame, and ρ is the
density of the elementary particle of volume dV . The integration is performed over the
total volume of link i, Vi. Now, consider the position vector p∗i of the elementary particle
and the position vector pi of the link’s center of mass, both expressed in the base frame.
One has

ri =
[
rix riy riz

]
= p∗i − pi, (2.27)

with

pi =
1

mi

∫
Vi

p∗i ρdV, (2.28)

where mi is the mass of link i. As a consequence, the linear velocity of the elementary
particle can be expressed as

ṗ∗i = ṗi + ωi × ri

= ṗi + S(ωi)ri. (2.29)

14



Figure 2.3: Kinematic description of link i.

The position and velocity vectors are shown in Figure 2.3. The translation and rotational
part of the kinetic energy are found by substituting (2.29) into (2.26). The translation
contribution of the kinetic energy is

1

2

∫
Vi

ṗTi ṗiρdV =
1

2
miṗ

T
i ṗi, (2.30)

and the rotational part of the kinetic energy is

1

2

∫
Vi

rTi S(ωi)
TS(ωi)riρdV =

1

2
ωTi

(∫
Vi

S(ri)
TS(ri)ρdV

)
ωi. (2.31)

Here, mi is the mass of link i and S(·) is the cross product operator

S(ri) =

 0 −riz riy
riz 0 −rix
−riy rix 0

 . (2.32)

In (2.31) the property S(ωi)ri = −S(ri)ωi has been used. Inserting (2.32) into (2.31)
yields

1

2
ωTi

(∫
Vli

S(ri)
TS(ri)ρdV

)
ωi =

1

2
ωTi I

(0)
i ωi. (2.33)

I
(0)
i is symmetric and represents the inertia tensor relative to the center of mass of link i,

expressed in the base frame. It is worth noticing that the inertia tensor, when expressed in
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the base frame, is configuration-dependent. If the angular velocity of link i is expressed
with reference to a frame attached to the link, as in the DH convention, it is expressed as

ω
(i)
i = R0T

i ωi. (2.34)

It can be shown that the following relation then holds

Ii = R0
i I

(i)
i R0T

i , (2.35)

where I
(i)
i is expressed with regards to the link frame. The new inertia tensor matrix I

(i)
i

is therefore independent of the manipulator’s configuration. It can be written as

I
(i)
i =

∫ (y2 + z2)ρdV
∫
xyρdV

∫
xzρdV∫

xyρdV
∫

(x2 + z2)ρdV
∫
yzρdV∫

xzρdV
∫
yzρdV

∫
(x2 + y2)ρdv

 . (2.36)

By summing the translational and rotational contributions, the total kinetic energy of link
i can be written as

Ki =
1

2
miṗ

T
i ṗi +

1

2
ωTi R0

i I
(i)
i R0T

i ωi. (2.37)

Using Equation (2.17) and Equation (2.18), the total kinetic energy can be written as

K =
n∑
i=1

1

2
miq̇

TJ
(i)T

ṗ J
(i)
ṗ q̇ +

1

2
q̇TJ(i)T

ω R0
i I

(i)
i R0T

i J(i)
ω q̇

=
1

2

n∑
i=1

n∑
j=1

dij(q)q̇iq̇j (2.38)

=
1

2
q̇TD(q)q̇,

where

D(q) =

[
n∑
i=1

{miJ
T
ṗi

Jṗi + JTωiR
0
i I

(i)
i R0T

i Jωi}

]
. (2.39)

Here, D(q) is the n× n matrix which is symmetric and positive definite.
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2.6.3 Computation of Potential Energy

As done for the kinetic energy, the potential energy stored in the manipulator is the sum
of the contribution relative to each link. On the assumption that the manipulator only
consists of rigid links, the only source of potential energy is the gravity. The potential is

P =
n∑
i=1

Pi, (2.40)

where

Pi = −
∫
Vi

gT0 p∗i ρdV = −mig
T
0 pi. (2.41)

Here g0 is the 3 × 1 gravity acceleration vector in the base frame, and pi is the distance
to from o0x0y0z0 to CG of link i. If the z is the vertical axis , g0 =

[
0 0 −g

]T .

2.6.4 Equations of Motion

Having computed the kinetic and potential energy, the Lagrangian (2.22) of the system
can be written as

L(q̇,q) = K(q̇,q)− P (q)

=
1

2

n∑
i=1

n∑
j=1

dij(q)q̇iq̇j +
n∑
i=1

mig
T
0 pi. (2.42)

First, taking the derivatives of the kinetic part of the Lagrangian, as required by (2.24),
yields

d

dt

∂K
∂q̇i

=
n∑
j=1

dij(q)q̈j +
n∑
j=1

d

dt
dij(q)q̇j (2.43)

=
n∑
j=1

dij(q)q̈j +
n∑
j=1

n∑
k=1

d

dqk
dij(q)q̇kq̇j,

and
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∂K
∂qi

=
1

2

n∑
j=1

n∑
k=1

d

dqi
dij(q)q̇kq̇j. (2.44)

Here the indices of summation have been switched. Second, the potential contribution to
(2.24) is

∂P
∂qi

= −
n∑
j=1

mjg
T
0

d

dqi
pj

= −
n∑
j=1

mjg
T
0 j

(j)
ṗi

= gi(q), (2.45)

where the index of summation also has been changed. Due to the fact that the potential
energy is independent of q̇, the following relation holds

d

dt

∂P
∂q̇i

= 0. (2.46)

As a result, the equations of motion are

n∑
j=1

dij(q)q̈j+
n∑
j=1

n∑
k=1

(
d

dqk
dij(q)q̇kq̇j −

1

2

d

dqi
djk(q)q̇kq̇j

)
+gi(q) = τi, i = 1, . . . , n.

(2.47)

On matrix form it can be written

D(q)q̈ + C(q, q̇)q̇ + g(q) = τ . (2.48)

Here D(q) is defined in (2.39) and g(q) is given in (2.45). Element (k,j) of the n × n
matrix C(q, q̇) is given as

ckj =
n∑
i=1

1

2

[
∂dkj
∂qj

+
∂dki
∂qj
− ∂dij
∂qk

]
q̇i. (2.49)

A notable property of the dynamical model, is the skew symmetry of

N(q, q̇) = Ḋ(q)− 2C(q, q̇). (2.50)

For more thorough explanations and derivations, see Mark W. Spong et al. (2006) and
Sciavicco and Sciavicco (2000).
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Chapter 3

Crane Design

This chapter introduces the crane that is used as a basis for the mathematical modeling
and the implementation in Simulink. In the first section, a description of the crane and
it’s main components will be given. Then, a more detailed overview of the overall control
system, with focus on actuators and sensors, will be given. In the last section, necessary
mechanical restrictions are listed. Throughout the thesis there will be used a Macgregor
AHC crane as a basis for the modeling and simulation work. The design is robust and
several other crane suppliers develop similar cranes. Most of the information presented
here was provided by MacGregor (2010).

3.1 Description

When a crane operation is performed in a moving environment, like on a ship, it is crucial
to have a robust and safe system controlling the load at all time. The Macgregor AHC
knuckle jib crane has proven to be such a crane. It is 10 yeas since the first model was
delivered, and since then, the crane has been continuously improved.

Figure 3.1 shows a 150 metric tonne AHC knuckle-jib crane in operation. It was installed
on the supply vessel Seven Sisters in 2008, with a design that focused on hoisting speed/-
capacities, as desired by client needs. This is the crane that has been used a basis for the
mathematical and Simulink modeling. The physical dimensions are shown in Table 3.1.
The dimensions are given as length in x, y and z direction for the knuckle jib and main
jib. For the king it is given as a radius and length in z direction. Weight of each part is
given in kilos, and the center of gravity (CG) defines where the gravity force acts upon
the body part. The CG length is expressed as the distance from joint i to the CG of link
i.It will later be described why the center of gravity is placed as it is. For convenience, a
schematic drawing of the crane can be seen in Figure 3.2.

Cranes of this type are mounted on a foundation on the star or port side of the vessel. It
is preferred that the crane is mounted as close as possible to the center of flotation (CF),
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Figure 3.1: Seven Sisters with the AHC knuckle jib crane in operation. Courtesy of
Subsea7 (2011).

Name of part Dimension [m] Weight [kg] CG [m]
King (3.568, 4.250) 200 000 2.125
Main jib ( 1.5, 2.5, 21) 30 000 10.5
Knuckle jib ( 1.5, 2.5, 12) 23 000 6

Table 3.1: Offshore crane dimensions.

in order to minimize roll and pitch motion. Normally, the crane is mounted close to the
transverse CF axis, which reduces the crane motion due to the vessel pitch motion. In
contrast, the crane is normally placed on the star or port side of the vessel. As a result, the
vessel’s roll motion induces crane tip motion. The placement ensures a large operating
radius. However, the roll induced motion could have been reduced by placing the crane
close to the CF longitudinal axis.

The pedestal is placed on top of the foundation. One of the most important unit for the
heave compensation, the motion reference unit (MRU), is placed in the pedestal. The
rotating king is installed on top of a rotating slew bearing. The king acts as the main
structural element between the pedestal and the jib system. Most of the crane equipment
are mounted on the king, which makes this part heavier then the others. Actuators, winch,
wire drum, crane cabin etc. are equipment that are mounted on the king. The wire capacity
on the HMC3568 is 3000 m and the weight is approximately 20 kg/m. The king structure
also houses the hydraulic oil reservoir and the general machine room where most of the
control valves are fitted. The total oil volume in the reservoir is approximately 6000 liters,
plus oil in system loops. The crane cabin is where the crane operator controls the crane
using touch screens, joysticks and other control hardware. Hydraulic actuators provide
torque so the king are able to rotate. This motion is called slewing. Two large cylinders
connect the king with the main jib. These provide torque such that the Main jib alter its
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Figure 3.2: Drawing of the knuckle jib crane (Skagestad et al., 2008).

angle relative to the king.

Another pair of cylinders connect the main jib to the knuckle jib. At the end of the knuckle
jib, the main and whip winch hangs freely. They can be lowered or elevated to a desired
position by the crane operator. A hook is mounted at the end of each wire. This makes
the crane able to hook up various objects.

In addition to the main and whip winch, there are a two tugger winches. The two tugger
winches are mounted on the lower part of the king, and are mainly used to prevent payload
oscillation. The whip winch is used in the same manner as the main winch. However, it
has lower capacity than the main winch.

3.2 Actuators and Sensors

The active heave compensating cranes are highly sophisticated. It consist of several sen-
sors, instruments and actuators connected to a control system. For a given input from the
sensors, it produces an output to the actuators.

There are four electrical motors, each driving a hydraulic pump on the Hydraulic power
unit (HPU). These motors are 300-550KW alternating current (AC) motors, driven by a
690 Voltage alternating current (VAC) three phase supply. The operator can start and stop
the motors from the operator panels, but it also has a built in protection in form of circuit
breakers. In addition to the four motors, an emergency motor is installed, which make the
system redundant. To prevent system downtime, a filtration/cooling assembly is installed.
It ensures good oil quality, and equally important, that the oil temperature is as desired.

Four hydraulic pumps feeds hydraulic power into a common control valve system that
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distribute the power among the actuators, based on signals from the crane control system.
Furthermore, the crane control system is connected to joysticks at the operators chair
inside the crane cabin. The power unit system is built in such a way that as little as one
pump as able to control the entire crane, but with reduced velocity.

The control system get its input from sensors and instruments. They provide information
about the current state of the system. There are encoders for measuring hook position,
angle encoders for measuring main jib and knuckle jib angle, load sensors for measuring
the hook load, pressure transmitters, temperature sensors, level sensors and a MRU. In
the crane cabin, the operator got LCD screens, which is used for control and monitoring
of the crane’s current state.

There are different signal types used for communication between sensor/instruments and
the Programmable Logic Controller (PLC) system. These signals are usually current or
voltage based, depending on the type of sensor/instrument that is being dealt with, and
whether it is an input or output.

In addition to the normal mode, the crane got some special functions. Three of these are:

• Automatic overload protection system (AOPS) - A fail to safe system where the
winch will pay out wire if the load reaches a certain high value, and keep paying
out only until the tension is below a certain lower value.

• Active heave compensation (AHC) - A control mode where the hook position is
kept at a constant desirable hight above the seabed.

• Auto tension (AT) - This feature is a sub-mode of the AHC mode. Instead of keep-
ing a certain height, it keeps a certain wire tension.

A schematic diagram of the crane system is shown in Figure 3.3.

3.3 Crane Limitations

Besides being limited by geometry and mechanical joint limits, there are some other re-
strictions that have to be accounted for. Table 3.2 shows the maximum and minimum
joint angle, velocity and acceleration for the crane. These restrictions are a result of lim-
ited hydraulic flow and mechanical limits. One should notice that the restrictions of joint
i is placed with regards to reference frame i. The placement of each reference frame will
be carried out in the next chapter.

In reality, the maximum velocity and acceleration depend on the crane’s configuration.
For instance, the crane has higher slew rate if the operating radius is less than 15 meters.
This makes Table 3.2 configuration dependent. However, this has not been taken into
account in this thesis.
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Joint Orientation [deg] Angular velocity
[deg/s]

Angular acceleration
[deg/s2]

1 [0, 360] 6 2
2 [0, 86] 1 0.5
3 [-155, -37] 2 1

Table 3.2: Crane restrictions.
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Figure 3.3: System drawing of the crane system.
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Chapter 4

Modeling of Crane

In this chapter a crane model will be derived mathematically and implemented Simulink.
The first section states the simplifications that was needed in order to use robot modeling
theory. In addition, a figure shows how the reference frames were placed. In Section 4.2, a
mathematical crane model has been derived using robot modeling theory. The last section
concerns the implementation in Simulink. Here it will be described how the vessel-crane
dynamics were found, and how the cable model works.

4.1 Simplifications

In order to derive a mathematical model, one first need to do some simplifications. The
first simplification that is made is that each body part is symmetric and got an uniformly
distributed mass. As a result, the link’s CG is located at the center of each structural
element. Consequently, the torque that is needed to rotate a joint will be slightly wrong
compared to the actual crane. However, this thesis has not focused on producing the
right amount of torque in every situation. If this had been the goal, one would have to
incorporate an accurate actuator model. Secondly, all body parts are rigid bodies, i.e. the
distance between the start and the end of each body part remains the same regardless of the
external forces exerted on it. This means that deformation and flexibility is neglected. As
a result, the crane tip position might be somewhat different from what it would have been
in a real life. However, this difference would be small compared to the crane dimensions.

A drawing of the simplified knuckle jib crane is shown in Figure 4.1. It has labeled
the crane coordinate frames {1},{2},{3} and {4}, which is placed according to the DH
convention. In addition, the vessel fixed frame {B} and the earth fixed frame {N} has
been labeled. They coincide if the vessel’s orientation and position is zero. Frame {0}
is placed at [−20, 8, 10] with regards to {B}. That means that the crane is placed on the
aft port side, and that the foundation and the pedestal are modeled to be about 10 meters
high. One should notice that the {B} frame has the z-axis pointing upwards. The joint
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variables are also labeled in the figure.

Figure 4.1: Simplified crane with local coordinate systems placed according to DH con-
vention. Courtesy of Skagestad et al. (2008).
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4.2 Mathematical Modeling

This section is split in six. In the first section, the inertia tensor matrix of each structural
element are found. The next section show how the transformation and Jacobian matrices
are derived. In the third section, the crane’s inertia matrix and Coriolis and centripetal
matrix are calculated using the transformation and Jacobian matrices. The inertia matrix
and the Coriolis and centripetal matrix represent the kinetic part of the crane dynamics.
The fourth section calculates the potential energy of the system, while the fifth section
concerns the skew-symmetry property. Last, it is described how to find the vessel-crane
dynamics.

4.2.1 Inertia Tensor Matrices

In this section, the inertia tensor matrix for the king, main jib and knuckle jib are defined.
The inertia tensor matrix of link i will from now on be expressed in the local frame. That
means that the inertia tensor matrix of link i will be expressed in {i}. From now on it
will be denoted as Ii. Due to the fact that all structural elements are symmetric, the off
diagonal elements equals to zero. As a result, the representation of the inertia tensor of
link i is

Ii =

Iix 0 0
0 Iiy 0
0 0 Iiz

 . (4.1)

The inertia tensor matrix of each structural element are found using (2.36). The following
subsections present these matrices.

Inertia Tensor King

I1x =
m1(3r2

1 + l21
12

, (4.2)

I1y = m1r
2
1, (4.3)

I1z =
m1(3r2

1 + l21
12

, (4.4)

where r1 represents the radius and l1 the length of the king.
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Inertia Tensor Main Jib

I2x =
m2(d2

2 + h2
2)

12
, (4.5)

I2y =
m2(d2

2 + l22)

12
, (4.6)

I2z =
m2(h2

2 + l22)

12
, (4.7)

where d2 represents the depth, l2 represents the length and h2 the height of the main jib.

Inertia Tensor Knuckle Jib

I3x =
m3(d2

3 + h2
3)

12
, (4.8)

I3y =
m3(d2

3 + l23)

12
, (4.9)

I3z =
m3(h2

3 + l23)

12
, (4.10)

where d3 represents the depth, l3 represents the length and h3 the height of the knuckle
jib.

4.2.2 Transformation Matrices and the Jacobian

To start with, the reference frames are placed according to the rules stated in Section
2.5.2. The resulting DH parameters are shown in Table 4.1, and the reference frames
were shown in Figure 4.1. In fact, the crane got the same DH parameters, workspace and
reference frames as the elbow manipulator, which were shown in Table 2.3 and Figures
2.1 and 2.2.

Link ai αi di θi
1 0 90◦ l1 θ1

2 l2 0◦ 0 θ2

3 l3 0◦ 0 θ3

Table 4.1: DH parameters for the crane.

In Table 4.1, li represent the length of link i and θi represent the joint variable qi. The DH
table makes it very simple to define the homogeneous transformation between each link.
Equation (2.15) yields
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A1 =


c1 0 s1 0
s1 0 −c1 0
0 1 0 l1
0 0 0 1

 , (4.11)

A2 =


c2 −s2 0 l2c2

s2 c2 0 l2s2

0 0 1 0
0 0 0 1

 , (4.12)

A3 =


c3 −s3 0 l3c3

s3 c3 0 l3s3

0 0 1 0
0 0 0 1

 . (4.13)

Here, the ci and si means cos(θi) and sin(θi), respectively. Furthermore, the transforma-
tion matrices are found using (2.16). They are found to be

T0
1 =A1, (4.14)

T0
2 =A1A2 =


c1c2 −c1s2 −s1 l2c1c2

c2s1 −s1s2 c1 l2c2s1

−s2 −c2 0 l2s2 + l1
0 0 0 1

 , (4.15)

T0
3 =A1A2A3

=


c1c2c3 − c1s2s3 c1c2s3 − c1c3s2 −s1 l3c1c23 + l2c1c2

s1c2c3 − s1s2s3 s1s3c2 − s1s2c3 c1 l3s1c23 + l2s1c2

−s2c3 − c2s3 s2s3 − c2c3 0 l3s23 + l2s2 + l1
0 0 0 1

 . (4.16)

Here, c23 and s23 means cos(θ2 + θ3) and sin(θ2 + θ3), respectively. The last column in
(4.16) has been simplified by using the following relationships

sin(α + β) = sin(α) cos(β) + cos(α) sin(β), (4.17)

cos(α + β) = cos(α)cos(β)− sin(α) sin(β), (4.18)

sin2(α) + cos2(α) = 1. (4.19)

The Jacobian matrix is derived using (2.21). As an effect of having three revolute joints,
the Jacobian forms a 6× 3 matrix. Using (4.14) - (4.16), the various parameters in (2.21)
are found to be
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z0 =

0
0
1

 , z1 = z2 =

 s1

−c1

0

 ,
p0 =

0
0
0

 , p1 =

0
0
l1

 , (4.20)

p2 =

 l2c1c2

l2c2s1

l2s2 + l1

 , p3 =

 l3c1c23 + l2c1c2

l3s1c23 + l2s1c2

l3s23 + l2s2 + l1

 .

As a result, the Jacobian J
(i)
ṗ and J

(i)
ω are

J
(1)
ṗ =

0 0 0
0 0 0
0 0 0

 , J(1)
ω =

0 0 0
0 0 0
1 0 0

 , (4.21)

J
(2)
ṗ =

−1
2
l2c2s1 −1

2
l2c1s2 0

1
2
l2c23 −1

2
l2s1s2 0

0 1
2
l2c2 0

 , J(2)
ω =

0 s1 0
0 −c1 0
1 0 0

 , (4.22)

J
(3)
ṗ =

−1
2
l3s1c23 − l2c2s1 −1

2
l3c1s23 − l2c1s2 −1

2
l3c1s23

1
2
l3c1c23 + l2c23 −1

2
l3s1s23 − l2s1s2 −1

2
l3s1s23

0 1
2
l3c23 + l2c2

1
2
l3c23

 , (4.23)

J(3)
ω =

0 s1 s1

0 −c1 −c1

1 0 0

 . (4.24)

4.2.3 Kinetic Energy

In order to find D(q), Equations (4.21)-(4.24) are inserted into (2.38). D(q) is split up
into 3 parts, and are later sum up to the total D(q). The rotation matrix R0

i are found
from the rotation part of the transformation matrix T0

i . The first contribution to D(q) is
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D1(q) = m1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

+

0 0 1
0 0 0
0 0 0

c1 0 s1

s1 0 −c1

0 1 0

I1x 0 0
0 I1y 0
0 0 I1z

c1 s1 0
0 0 1
s1 −c1 0

0 0 0
0 0 0
1 0 0


=

I1y 0 0
0 0 0
0 0 0

 . (4.25)

The same procedure is used to find D2(q)

D2(q) = m2

−1
2
l2c2s1

1
2
l2c23 0

−1
2
l2c1s2 −1

2
l2s1s2

1
2
l2c2

0 0 0

−1
2
l2c2s1 −1

2
l2c1s2 0

1
2
l2c23 −1

2
l2s1s2 0

0 1
2
l2c2 0


+

 0 0 1
s1 −c1 0
0 0 0

c1c2 −c1s2 −s1

c2s1 −s1s2 c1

−s2 −c2 0

I2x 0 0
0 I2y 0
0 0 I2z


 c1c2 c2s1 −s2

−c1s2 −s1s2 −c2

−s1 c1 0

0 s1 0
0 −c1 0
1 0 0


=

m2(1
2
l2)2(c2)2 + I2x(s2)2 + I2y(c2)2 0 0

0 m2
1
2
l2)2 + I2z 0

0 0 0

 . (4.26)

The next part is more complex, so it is divided into the the linear kinetic part D3ṗ and the
rotation part D3ω. They can be written as

D3ṗ(q) = m3

−1
2
l3s1c23 − l2c2s1

1
2
l3c1c23 + l2c23 0

−1
2
l3c1s23 − l2c1s2 −1

2
l3s1s23 − l2s1s2

1
2
l3c23 + l2c2

−1
2
l3c1s23 −l3 1

2
s1s23

1
2
l3c23


−1

2
l3s1c23 − l2c2s1 −1

2
l3c1s23 − l2c1s2 −1

2
l3c1s23

1
2
l3c1c23 + l2c23 −1

2
l3s1s23 − l2s1s2 −l3 1

2
s1s23

0 1
2
l3c23 + l2c2

1
2
l3c23

 (4.27)

=

m3(1
2
c23 + l2c2)2 0 0

0 m3((1
2
l3)2 + (l2)2 + l2l3c3) m3((1

2
l3)2 + 1

2
l3l2c3)

0 m3((1
2
l3)2 + 1

2
l3l2c3) 1

2
m3l3

 ,
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D3ω(q) =

 0 0 1
s1 −c1 0
s1 −c1 0

c1c2c3 − c1s2s3 c1c2s3 − c1c3s2 −s1

s1c2c3 − s1s2s3 s1s3c2 − s1s2c3 c1

−s2c3 − c2s3 s2s3 − c2c3 0

I3x 0 0
0 I3y 0
0 0 I3z


c1c2c3 − c1s2s3 s1c2c3 − s1s2s3 −s2c3 − c2s3

c1c2s3 − c1c3s2 s1s3c2 − s1s2c3 s2s3 − c2c3

−s1 c1 0

0 s1 s1

0 −c1 −c1

1 0 0


=

(s23)2I3x + (c23)2I3y 0 0
0 I3z I3z

0 I3z I3z

 . (4.28)

In summary, D(q) can be written as

D(q) = D1(q) + D2(q) + D3ṗ(q) + D3ω(q) (4.29)

=

d11 d12 d13

d21 d22 d23

d31 d32 d33

 , (4.30)

where

d11 =I1y + I2x(s2)2 + I2y(c2)2 + I3x(s23)2 + I3y(c23)2

+m2(
1

2
l2)2(c2)2 +m3(

1

2
c23 + l2c2)2,

d12 =d21 = 0,

d13 =d31 = 0, (4.31)

d22 =I2z + I3z +m2(
1

2
l2)2 +m3((

1

2
l3)2 + (l2)2 + l2l3c3),

d23 =d32 = I3z +m3((
1

2
l3)2 +

1

2
l3l2c3),

d33 =I3z +m3(
1

2
l3)2.

Furthermore, this matrix is used to derive the Coriolis and centripetal matrix C(q, q̇). The
elements in the Coriolis and centripetal matrix

C(q, q̇) =

c11 c12 c13

c21 c22 c23

c31 c32 c33

 , (4.32)

are given by (2.49). They are found to be
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c11 =
1

2
(
∂d11

∂q2

q̇2 +
∂d11

∂q3

q̇3)

=(s2c2(I2x − I2y) + c23s23(I3x − I3y)−m2l
2
2cc2s2 −m3(l3cc23 + l2c2)(l3cs23 + l2s2))q̇2

+(c23s23(I3x − I3y)−m3l3cs23(l3cc23 + l2c2))q̇3,

c12 =
1

2

∂d11

∂q2

q̇1

=(s2c2(I2x − I2y) + c23s23(I3x − I3y)−m2l
2
2cc2s2 −m3(l3cc23 + l2c2)(l3cs23 + l2s2))q̇1,

c13 =
1

2

∂d11

∂q3

q̇1 = (c23s23(I3x − I3y)−m3l3cs23(l3cc23 + l2c2))q̇1,

c21 =− 1

2

∂d11

∂q2

q̇1 = −c12,

c22 =
1

2

∂d22

∂q3

q̇3 = −1

2
m3l2l3s3q̇3,

c23 =
1

2
(
∂d22

∂q3

q̇2 + 2
∂d23

∂q3

q̇3) = −1

2
m3l2l3s3q̇2 −m3l3cl2s3q̇3,

c31 =− 1

2

∂d11

∂q3

q̇1 = −c13,

c32 =− 1

2

∂d22

∂q3

q̇2 =
1

2
m3l2l3s3q̇2,

c33 =0.

Here, lic represents li/2.

4.2.4 Potential Energy

The potential energy equation (2.41) is a function of the gravity. It is written as

P = m1
l1
2
g +m2g(

l2
2
s2 + l1) +m3g(

l3
2
s23 + l2s2 + l1). (4.33)

The g(q) is found from (2.45). The result is

g(q) =

 0
m2gl2cc2 +m3gl3cc23 + l2c2

m3gl3cc23

 . (4.34)

In summary, each term in (2.48) have been accounted for. The system of equations are
obtained if D(q), C(q, q̇) and g(q) are inserted into (2.48).
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4.2.5 Skew-symmetry

As stated in (2.50), the N(q, q̇) matrix is supposed to skew symmetric. In other words

N(q, q̇) = −N(q, q̇)T . (4.35)

Equation (2.50) yields

N(q, q̇) =

 0 −∂d11
∂q2

q̇1 −∂d11
∂q3

q̇1
∂d11
∂q2

q̇1 0 −∂d22
∂q3

q̇2 − ∂d23
∂q3

q̇3
∂d11
∂q3

q̇1
∂d22
∂q3

q̇2 + ∂d23
∂q3

q̇3 0

 . (4.36)

The matrix in (4.36) is obviously skew symmetric. Hence, it is reason to believe that
procedure has been carried out in a correct manner.

4.2.6 Vessel Crane Dynamics

The vessel-crane model is derived by introducing a movable foundation, which in our case
can be seen as a 6 DOF massless joint. The joint represent the vessel’s ability to surge,
sway, heave, roll, pitch and yaw about {B}. For the vessel-crane dynamics, the system of
equations will be dependent on the vessel’s linear and angular velocity

ν =
[
u v w p q r

]
, (4.37)

as well as the position and orientation

η =
[
x y z φ θ ψ

]
. (4.38)

The transformation matrix from the sea {N} to the vessel {B} can be written as

TN
B =


cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ x
sψcθ cψcφ + sφsθsψ −cψsφ + sθsψcφ y
−sθ cθsφ cθcφ z

0 0 0 1

 . (4.39)

In addition, the crane is placed on the aft port side of the vessel. This is done by multi-
plying HN

B by

TB
0 =


1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1

 , (4.40)
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where

[
px py pz

]T
=
[
−20 8 10

]T
. (4.41)

This vector represents where the crane is mounted with regards to {B}. Furthermore, the
vessel-crane transformation matrices are found using TB

N , T0
B and T3

0. Futhermore, the
Euler-Lagrange method is employed in order to find the vessel-crane system of equations.

A Matlab script performs the needed operations and stores the matrices in a Matlab func-
tion, optimized with respect to performance. These matrices are used by the Simulink
model in the calculation of the crane dynamics. They are also used by the controller and
the inverse kinematics. This will be described more closely in Chapter 6. The vessel crane
model will be used for simulations in Chapters 5 and 6.

4.3 Simulink Model Overview

In this section, the implementation of the vessel-crane-cable model will be described.
There will also be given an overview of the total system. The model has been built by
the Simulink software, which is a widely used program to implement dynamical systems
using differential equations. Simulink code consist of several blocks that have been put
together in order to represent differential equations. In addition to the standard Simulink
blocks, there exist various toolboxes that utilize different features.

4.3.1 Crane Model

Figure 4.2 shows the block diagram of the overall system, together with a more detailed
figure of the crane model. A similar figure will be shown in the later chapters as well,
but with focus on the other parts of the Simulink model. The block that is going to be
explained will always be represented with a red block, as for the crane in this case.

The detailed crane block diagram shows that (2.48) has been rearranged in order to calcu-
late the joint angles. The inverse block invokes the inverse method in Simulink, and the
Matrix Mult. block performs a matrix multiplication. The 1

s
block represent an integra-

tion. In the figure there is also a torque block. This is the crane input, which is provided
by the proportional-derivative controller (PD) with gravity compensation ,denoted as PD
with Gravity FF. For the vessel-crane dynamics, the matrices will also be dependent of ν
and η.
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Figure 4.2: Overview of the Simulink model, with the crane dynamics shown in detail.

4.3.2 Cable Model

The cable model shown in Figure 4.3 is provided by SINTEF, which is the largest in-
dependent research organisation in Scandinavia. The cable is made of a software tool
called FhSim, which is tool for describing and simulating real world systems that may be
formulated as ordinary differential equations.

The differential equations are defined by one or several simObjects. These may be imple-
mented as ordinary pre-defined C++ classes or as user defined modules.The cable model
implemented here consist of 5 simObjects, where all the elements are of type CCableEl-
DynStiff. Each element is regarded as a straight segment, responsible for calculating the
forces acting on each of its ends, as well as the mass associated with each end node. The
forces and mass from each element is added to the corresponding nodes of the cable, and
the acceleration of each node is calculated in the OdeFcn (SINTEF, 2010). A 30 tonnes
payload is connected to the end of the cable, which is supposed to represent a fully loaded
ISO standard shipping container.

Each element in the cable model is influenced by

• Internal stiffness,

• Internal damping,
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Figure 4.3: Overview of the Simulink model, with the SINTEF cable model shown in
detail.

• Hydrodynamic normal and tangential forces,

• Buoyancy and gravity,

• Added mass.

The cable model is coded in C++, and implemented in the Simulink model using a s-
function block.

4.3.3 Vessel Model

The vessel block shown in Figure 4.4 generates vessel motion. Due to environmental
disturbance, the vessel will experience surge, sway, heave, roll, pitch and yaw. The crane,
which is placed at the aft port side of the vessel, will be influenced by the vessel motion.
In addition, the vessel roll, pitch and yaw will induce extra surge, sway and heave crane
motion, due to the off center placement of the crane.

In this thesis the vessel surge and sway will be assumed to be taken care by the DP system.
This is only partially true because the main objective of the DP system is to take care of
the slowly varying motion, not the highly fluctuating force. The largest slowly varying
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Figure 4.4: Overview of the Simulink model, with the vessel model shown in detail.

Sea State Heave
Amp [m]

Roll Amp
[deg]

Pitch Amp
[deg]

Heave Per.
[s]

Roll Per.
[s]

Pitch Per.
[s]

2 0.1 2 0.5 6 15 6
4 0.5 5 1 7 16 7
6 3.5 13 3 8 17 8

Table 4.2: Vessel motion description, inspired by Love et al. (2003).

contributer is usually current, while members of the highly fluctuation force are wind
gusts and waves. Furthermore, yaw amplitudes are normally small if the the vessel has
the bow pointing towards the incoming waves. For this reason, yaw motion has been
neglected.

The vessel block seen in Figure 4.4 consist of several sine input blocks. Each block
represent one of the vessel’s DOF and each has a fixed amplitude and period. Data about
the amplitudes and periods are shown in Table 2.1. The vessel data is representative for
a vessel similar to the Seven Sisters. Vessel data are presented for sea state 2, 4 and 6.
Definitions of the three sea states are shown in Table 4.3.
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Sea State Description Wave
height [m]

Character-
istics

2 Small waves becoming larger 0.1-0.5 Smooth
4 Moderate waves, taking a more pronounced long form 1.25-2.5 Moderate
6 White crests are more extensive everywhere 4-6 Rough

Table 4.3: Sea state definitions, inspired by Love et al. (2003).
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Chapter 5

Verification of Crane Dynamics

The main goal of this chapter, is to check whether or not the Simulink model and the
SimMechanics model produce the same output. First, the mathematical model that was
derived in 4.2, will be compared to a Matlab generated model. Second, a SimMechanics
model that was developed during the author’s project assignment, will be used to verify
the vessel-crane model. Last, there will be a discussion based on the results that have
been presented.

5.1 Mathematical Verification

To verify the equations of motion in Chapter 4.2, a Matlab script has been made. The
script generates the equations of motion using the symbolic math toolbox. It was devel-
oped by inspiration of Love et al. (2003). In Chapter 4.2, it shown that there is reason to
believe that the calculation were correct, due to the proven skew symmetry of (4.36).

The Matlab script uses the Euler-Lagrange formulation, which was described in Chapter
2. The Matlab script produces the following elements of g(q) and D(q)

g1 = 0,

g2 =
1

2
g (l3m3 cos (q2 + q3) + l2m2 cos (q2) + 2l2m3 cos (q2)) , (5.1)

g3 =
2
l3gm3 cos (q2 + q3) ,
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d11 = I1y + I2x + I3x − I3xc
2
23 + I3yc

2
23 − I2xc

2
2 + I2yc

2
2

+m3(
l3
2

)2c2
23 +m2(

l2
2

)2(c2)2 +m3l
2
2(c2)2 + 2m3l2

l3
2
c23c2,

d12 = d21 = 0,

d13 = d31 = 0, (5.2)

d22 = m3l
2
2 + 2m3l2l3c3 +m2

l2
2

2

+m3
l3
2

2

+ I2z + I3z,

d23 = d32 = m3
l3
2

2

+m3l2
l3
2
c3 + I3z,

d33 = m3
l3
2

2

+ I3z.

(5.3)

The Coriolis and centripetal contribution

c1

c2

c3

 =

c11 c12 c13

c21 c22 c23

c31 c32 c33

q̇1

q̇2

q̇3

 , (5.4)

are

c1 = c11q̇1 + c12q̇2 + c13q̇3

= −1

4
(q̇1(4I2y q̇2 sin(2q2)− 4I2xq̇2 sin(2q2)

− 4I3xq̇2 sin(2q2 + 2q3)− 4I3xq̇3 sin(2q2 + 2q3)

+ 4I3y q̇2 sin(2q2 + 2q3) + 4I3y q̇3 sin(2q2 + 2q3)

+ l2
2m2q̇2 sin(2q2) + 4l2

2m3q̇2 sin(2q2) (5.5)

+ l3
2m3q̇2 sin(2q2 + 2q3) + l3

2m3q̇3 sin(2q2 + 2q3)

+ 2l2l3m3q̇3 sin(q3) + 4l2l3m3q̇2 sin(2q2 + q3)

+ 2l2l3m3q̇3 sin(2q2 + q3))),
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c2 = c21q̇1 + c22q̇2 + c23q̇3

=
1

2
I2y q̇

2
1 sin (2q2)− 1

2
I2xq̇

2
1 sin (2q2)

− 1

2
I3xq̇

2
1 sin (2q2 + 2q3) +

1

2
I3y q̇

2
1 sin (2q2 + 2q3)

+
1

8
l2

2m2q̇
2
1 sin (2q2) +

1

2
l2

2m3q̇
2
1 sin (2q2) (5.6)

+
1

8
l3

2m3q̇
2
1 sin (2q2 + 2q3)− 1

2
l2l3m3q̇

2
3 sin (q3)

+
1

2
l2l3m3q̇

2
1 sin (2q2 + q3)− l2l3m3q̇2q̇3 sin (q3) ,

c3 = c31q̇1 + c32q̇2 + c33q̇3

=
1

2
I3y q̇

2
1 sin (2q2 + 2q3)− 1

2
I3xq̇2

1 sin (2q2 + 2q3)

+
1

8
l3

2m3q̇
2
1 sin (2q2 + 2q3) +

1

4
l2l3m3q̇

2
1 sin (q3) (5.7)

+
1

2
l2l3m3q̇

2
2 sin (q3) +

1

4
l2l3m3q̇

2
1 sin (2q2 + q3) .

Furthermore, it is possible to simplify (5.5) - (5.7) using

s12c12 =
1

2
sin(2q1 + 2q2), (5.8)

s12c1 =
1

2
(sin(2q1 + q2) + sin(q2)), (5.9)

c12s1 =
1

2
(sin(2q1 + q2)− sin(q2)), (5.10)

c2s2 =
1

2
sin(2q2). (5.11)

By employing (5.8)-(5.11) on (5.5) - (5.7), the inertia matrix, Coriolis and centripetal
matrix and gravity matrix becomes identical to the ones that were found in Chapter 4.2.

5.2 Simulation Verification

In this section, simulation results from the Simulink model will be compared to the sim-
ulation results from the SimMechanics model. The SimMechanics environment is a tool
for modeling mechanical systems within the Simulink environment. Furthermore, the
Simulink model that has been used, has incorporated vessel-crane interaction. This has
been done by modifying the Matlab script to include (4.39 and (4.40). In addition, the
vessel motion amplitudes, described in Section 4.3.3, has been set to zero. That means
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that the vessel has not been exposed to waves during simulations. This was done because
the SimMechanics model does not include vessel crane interaction.

During simulations, both cranes were exposed to a step input after 20 seconds. The initial
configuration of the crane was set to

qinitial =
[
0 0 −π

2

]T
, (5.12)

and the step input was

qstep =
[
π
2

π
4
−3π

2

]T
. (5.13)

Figures 5.1 - 5.3 show the joint variables for the Simulink model and the SimMechanics
model. It can be seen that the models respond almost identical when they are exposed to
the same step input. In fact, there is not possible to see any difference in orientation at all.

The torque that is fed into the crane model, are shown in Figures 5.4 - 5.6. The torque is
calculated by the controllers, which for the SimMechanics model is a built-in controller.
The Simulink model uses a PD controller with gravity compensation. The figures show
that torque given from the controllers are almost identical. There can be seen some dif-
ferences when the crane accelerates. These differences are small and appear in a short
period of time.

Figures 5.7 and 5.8 show the difference between the Simulink and SimMechanics torque
and orientation. Figure 5.7 shows that the maximum error in orientation is less than
0.01◦, which is considered to be very accurate. For the torque, the biggest difference
is approximately 5 · 105, which occurs after about 10 and 12 seconds. Besides this, the
torque difference is small. The difference in torque is most likely an effect of using two
different controllers.
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Figure 5.1: Simulink and SimMechanics joint variable q1.

Figure 5.2: Simulink and SimMechanics joint variable q2.
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Figure 5.3: Simulink and SimMechanics joint variable q3.

Figure 5.4: Simulink and SimMechanics torque τ1.
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Figure 5.5: Simulink and SimMechanics torque τ2.

Figure 5.6: Simulink and SimMechanics torque τ3.
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Figure 5.7: Simulink and SimMechanics configuration difference.

Figure 5.8: Simulink and SimMechanics torque difference.
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5.3 Discussion

The mathematical model derived in Chapter 4.2 and the model derived by the Matlab
script, turned out to identical. It is therefore reason to believe that the mathematical
model, as well as the script generated model, are correct. Consequently, the reliability to
vessel-crane dynamics, which is found using the same script (with a slight modification),
is strengthened.

The vessel crane Simulink model and the SimMechanics model showed almost identical
behavior when they were exposed to the same step input. There were some small dif-
ferences in the generated torque. However, this was expected since the models use two
different controllers.

In conclusion, the vessel-crane model has successfully been verified, and is now ready to
perform vessel-crane-cable simulations.
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Chapter 6

Control of Offshore Crane

This section describes how the Simulink model is controlled, and how it could be con-
trolled to damp payload oscillations. First, todays’s control modes will be explained.
Second, today’s and future control objectives are accounted for. In order to get the crane
to work desirable, one need a reference model that takes the crane dynamics into account.
This is described in the third section. The fourth section concerns a workspace control
method, while the last section concerns a control shaping algorithm called input shaping.

6.1 Today’s Solution

Today’s cranes are controlled by the operator from the crane cabin, which is mounted on
the left side of the King. The placement gives the operator a good view over the the crane
and its surroundings. In addition, an LCD screen based control system gives the crane
operator all required information for both crane system and its current operation status.

The operator cabin consists of a control system and several operating panels for easy
control of all crane functions. The operator sits in a chair equipped with two joysticks,
one on the left hand side, and one on the right hand side. Both joysticks are equipped
with multiple buttons that utilize different functions. When the left hand side joystick is
pushed out of its neutral position, the crane will either slew or raise/lower the main jib.
The right hand side joystick control the knuckle jib and the winches.

The joysticks and the LCD screen have real time communication with the PLC. If a joy-
stick is moved out of its neutral position, the PLC calculates the needed hydraulic flow
and which valves that have to be opened or closed in the the main hydraulic valve system.
Automatic control functions, such as AHC and AT, are started and stopped by the opera-
tor. If one of these functions are activated, algorithms in the PLC automatically calculates
the needed winch in and out speed.
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6.2 Control Objectives

Modern offshore cranes are able to switch between different control objectives. The most
used control objective is the manual operator mode, also called the normal mode. In this
mode the operator changes slew, main and knuckle jib angle, as well as he operates the
winches. However, there are also more sophisticated control objectives like the AHC and
AT. In addition to the existing functions, crane suppliers have an urge to develop new
functions that keep their technology attractive. Future functions could be

• Workspace control,

• Control shaping,

• Payload swing compensation.

Instead of use the joysticks to control the king, main and knuckle jib separately, a workspace
algorithm could calculate the needed crane movement in x or y direction based on the po-
sition of the joysticks. In order to do this, the inverse kinematics has to be calculated
and applied. The workspace for the HMC3568 crane, was shown in Figure 2.1. Today,
there exist various inverse kinematic algorithms with different pros and cons. Besides
being useful for the operator, the algorithm could be optimized with regards to derating,
shortest path and collision avoidance. However, one should be aware that singularities
and computation delay could contribute to unwanted results.

If the vessel is exposed to waves and wind, there is a possibility that the payload will start
to swing. The payload swing compensation algorithm could be split in three parts. Firstly,
the pendulum compensation algorithm should remove kinetic and potential energy from
the payload, thus reducing the payload oscillations. This could be done by measuring
the cable angle and analysing pendulum energy equations. Secondly, the control loop
should compensate for the ship induced crane motions. By applying kinematics to the
MRU signals, one could calculate the crane tip motion. The resulting motion should be
compensated by the control loop. The last part of the algorithm is the normal mode, with a
sleight alteration. The joystick signals are modified through an control shaping algorithm
such that the operator cannot cause payload swing to occur. The control shaping algorithm
could be used in conjunction with the pendulum compensation algorithm, or alone. In
brief, the three parts of the payload swing compensation algorithm are

• Remove payload swing using pendulum energy equations.

• Compensate for the ship induced crane motions using inverse kinematics.

• Remove operator induced payload swing using a control shaping technique.

This algorithm could be advantageous in many situations, especially in severe sea condi-
tions. An increased weather operation window are of great interest, due to the high day
rates on offshore support vessels. Algorithms like this also make the operations safer.
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In the following sections two inverse kinematics algorithms, as well as a control shaping
technique, will be described, implemented and tested in Simulink. The first part of the
payload swing compensation algorithm, namely to measure the payload swing angle and
analyzing pendulum energy equations, has not been studied in this thesis. The reason for
this, is because the HMC3568 crane, as well as similar cranes, do not have any equipment
for measuring the cable angle. As a result, new hardware would have to be installed in
order for the algorithm to work on an actual crane. Instead, the following sections have
focused on methods that can implemented without the need of any new hardware.

6.3 Automatic Control

Figure 6.1: Overview of the Simulink model, with the reference model shown in detail.

This section describes how the reference signals are generated. Using the GUI input
block, the operator are able to set the desired angles or the desired position. The block
brings fourth a graphical user interface (GUI), which can be used to communicate with
the Simulink model. The GUI replaces joysticks and panels, which would have been
used by the operator to control the crane. Furthermore, if the operator sets a desired
position (workspace control), the reference signal is first guided through the inverse kine-
matics block before it reaches the reference model. For convenience, Table 6.1 shows
the four control inputs that have been used in this thesis. Two of them are specified in
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the configuration space, and two in the workspace. The workspace desired positions are
given in {N}. In addition, the initial configuration for the three first control schemes are
q =

[
0 0 −π

4

]T . The fourth control scheme has the same initial configuration as the
desired one. It will be described later in this section what the two different modes means.

Control scheme
number

Space Desired Reference model mode

1 Joint space q =
[
π
2

π
4
−π

2

]T Normal
2 Joint space q =

[
π
4

0 0
]T Normal

3 Workspace X =
[
−10 20 13

]T Normal
4 Workspace X =

[
−10 20 13

]T Position keeping

Table 6.1: Input schemes.

The objective of the reference model is to generate smooth trajectories for the crane to
follow. It is important that the bandwidth of the reference model is chosen lower than the
bandwidth of the motion control system in order to obtain satisfactory tracking perfor-
mance. One way to generate smooth trajectories is to use a reference model inspired by a
the dynamics of a mass-damper-spring system.

The reference model described in this section is motivated by a mass-dampen-spring
model. It can be seen on block form in Figure 6.1, and on transfer function form, it
can be written as

qr
qd

=
ω2
n

s2 + 2ζωns+ ω2
n

. (6.1)

Here, qr is the reference joint angle and qd is the desired joint angle, given from the
GUI. ζi is the relative damping ratio and ωni are the natural frequency. Both the relative
dampening ratio and the natural frequency have to be chosen with regards to the desired
crane performance. Due to the fact that the reference model is of second order, it is
possible to saturate position, velocity and acceleration.

As mentioned, ζ is the relative dampening ratio. By choosing ζ = 0 one obtain an
undamped system, i.e. no energy is removed from the system. By choosing 0 < ζ < 1
one obtain an under damped system, while choosing ζ = 1 a critical damped system
is obtained. By choosing ζ > 1, the system becomes over damped. Furthermore, a
reference model with high natural frequency are able to track signals of higher frequency
then a model with low natural frequency.

Industrial reference models usually have stored several sets of parameters. Each set of
parameters are used in certain modes, like the AHC or AT for the crane, or at specific
occasions. In our case, there are needed two pairs of parameters. One pair that is used
when the crane is in normal mode, and one pair that is used when the crane counteracts
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the vessel induced crane motion, which is called position keeping mode. For the normal
mode, the parameters that gives the most satisfactory tracking performance are

ω1 =

1
1
1

 , ζ1 =

0.9
0.9
0.9

 . (6.2)

These parameters make the reference model slightly under damped. The reference model
also produces very similar qr to what the real operator input would have produced.

When the crane counteracts the vessel induced crane motion, a reference model that is
able track signals of higher frequency are needed. Therefore, the parameters for this
mode have been chosen to

ω2 =

6
4
6

 , ζ2 =

1
1
1

 . (6.3)

As a result of increasing the natural frequency, the reference model able to track sig-
nals of higher frequency. The relative dampening has also been increased. The resulting
reference model is a critical damped model, that is able to track signals of high frequency.

According to Wittenmark et al. (2003), a model with integral action combined with an
signal that becomes saturated may lead some undesirable effects. Hence, an anti windup
feature has been implemented in the reference model. The anti windup feature is marked
in Figure 6.2. The model also contains saturation blocks. These make sure that the limi-
tations in Table 3.2 are met.

6.4 PD Controller with Gravity Compensation

The problem of controlling the crane can be formulated as that to determine the torques
and forces so as to guarantee that the crane stays on the desired path. In all it essence, the
problem is to find τ in (2.48) in a way that makes the system stable and work according
to requirements.

In robot control theory, there are usually two kinds of controllers that are considered,
namely joint space controllers and workspace controllers. Both have a closed loop struc-
ture in order to exploit the good features provided by the feedback. The resulting con-
trollers are robust and able to suppress disturbance. Workspace controllers have a greater
complexity due to its inverse kinematics algorithm in the feedback loop. Its main ad-
vantage is that this controller gives the possibility to act directly upon the work space
variables. Joint space controllers however, are the way the operators control the crane to-
day. This group of controllers can be further be divided into two control techniques. The
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Figure 6.2: Overview of the Simulink model, with the reference model shown in detail.

first technique is called decentralized control. It considers a single manipulator joint in-
dependently of the others. The other technique is called centralized control. This control
technique takes the dynamic interaction effects between the joints into account.

The controller used in the Simulink model shown in Figure 6.2 is a joint space centralized
control technique. It is a PD controller that also feedforward the vessel-crane form of
(2.45), which is the gravity term. The PD term is used for fast response, while the gravity
term simply compensate for the gravitational influence on each structural element. To-
gether they stabilizes the system, while also keeping the crane on it’s desired path. See
Sciavicco and Sciavicco (2000) for proof of global asymptotic stability of this controller.
Stability is ensured for any choice of Kd and Kp, as long as these matrices are positive
definite.

6.5 Inverse Kinematics

As mentioned, the forward kinematics problem is to calculate the end effector position
given the joint angles. The end effector position given in {0}, is simply found by insert-
ing the joint variables into (4.16). On the other hand, the inverse kinematic problem is
much more complex. The problem is to determine the joint angles given the end effec-
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Figure 6.3: Overview of the Simulink model, with the inverse kinematics model shown
in detail.

tor position. A solution to the inverse kinematic method could be advantageous in many
situations. For instance, the algorithm could be used to keep a fixed crane tip position
with regards to {N}. This means that the the algorithm could compensate for the vessel
orientation and position. The method could also be used by the crane operator to control
the crane tip in the workspace.

In this section, two inverse control methods will be described and tested. Both methods
are simulated with the vessel-crane model, with and without vessel movement. For sim-
ulations without waves, control scheme number 3 has been used, while control scheme
number 4 has been used when the vessel was exposed to waves of sea state 2, 4 and 6.
The control schemes were sown in Table 6.1, and the sea states were shown in Table 4.2.

The inverse kinematics algorithms are able to calculate configurations that are needed to
keep the crane tip fixed in {N}. However, during simulations it was seen that the slow
jib and luff rate made it hard for the crane to keep the desired position. Therefore, both
algorithms presented in this section calculates q based on the desired x and y position. The
desired z position has been removed from the equations. In fact, it would be impractical
to use the crane to compensate for the z position, when the winch, which has higher
bandwidth, are able to do the job. If one want to keep a fixed x, y and z crane tip position,
one could use the already existing ACH function together with workspace control method.
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6.5.1 The General Inverse Kinematics Problem

The inverse kinematics problem is a much more complex problem to solve than the for-
ward kinematics problem for the following reasons (Sciavicco and Sciavicco, 2000)

• The equations to solve are in most cases highly nonlinear, and thus it is not always
be possible to find a closed form solution.

• Multiple solutions may exist.

• Infinite solutions or no admissible solutions may exist, in view of the manipulator
kinematic structure.

Furthermore, the inverse problem can be stated as follows. Given the 4× 4 homogeneous
transformation matrix

Hd =

[
Rd pd
0 1

]
, (6.4)

with Rd as the 3×3 desired orientation matrix, and pd as the 3×1 desired position vector,
find joint variables q1, q2, q3 so that

TN
BTB

0 T0
3(q1, q2, q3) = TN

3 (q1, q2, q3) = Hd. (6.5)

Here, Hd is expressed with regards to {N}. Furthermore, the inverse kinematics problem
can be decomposed into two subproblems, namely the inverse position kinematics, and
the inverse orientation kinematics. When the orientation is of no interest, as for the AHC
crane, the problem is reduced to an inverse position problem, which can be written as

pN3 (q1, q2, q3) = pd. (6.6)

As a result, the problem is reduced to finding three unknowns, using three equations.

There exist two main categories of solution methods to the inverse kinematics problem.
They can be split into the two following categories

Closed Form The forward kinematics may be rewritten in a manner that leads to a set of
structured non-linear equations that may be solved explicitly for the joint variables.
The closed form solution can be further divided into two approaches

1. Geometric Reduce the larger problem to a series of plane geometry problems.

2. Algebraic Rearrange the equations to find a trigonometric solution.

Numerical A numerical algorithm is applied and explicitly produces all feasible solu-
tions.

For the vessel-crane inverse kinematics problem, the closed form solution approach would
be unsuitable due to the overall complexity. For this reason the main focus has been on
developing numerical algorithms.
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6.5.2 Trust-Region-Reflective Algorithm

The trust-region-reflective algorithm is a subspace trust-region method, and it the standard
solution method for the function lsqnonlin in Matlab. This method is based on the interior-
reflective Newton method, and is described in (Coleman and Li, 1996) and (Coleman
and Li, 1994). The function solves a system of non-linear equations, with or without
constraints.

For the lsqnonlin function to solve the non-linear equations (6.6), they are rearranged to

pN3 (q1, q2, q3)− pd = 0. (6.7)

As mentioned, only the x and y part of (6.7) will be used to generate qd. In addition,
there have been added constraints that makes sure that the configurations are within the
joint space. Another nice feature, is that a cost function can be specified. As a result, the
method can be optimized with regards to lift capacity (derating), shortest path etc.

Figure 6.4 present simulation results when there were no waves affecting the vessel. From
the subfigures it can be seen that the algorithm is capable of getting the crane to the desired
position. This means that the position error converge towards zero, which can be seen on
the position error subfigure.

The resulting crane response when the vessel is exposed to waves of sea state 2 is shown
in Figure 6.5. This sea state is characterized as smooth. From the joint variable subfigures
it can be seen that the q1 and q3 are able to track the q1d and q3d. In contrast, q2 has a small
phase lag compared to q2d. However, the crane is capable of keeping the position error
within±6 cm. It should be noted that the jitter that is seen on the sub-figures, is filtered by
the reference model before it reaches the controller. The jitter is produced by the lsqnonlin
function.

Figure 6.6 presents the crane response for sea state 4, which is characterized as a moderate
sea state. The sub-figures show similar results to what were seen in sea state 2. However,
the position error has increased to ±15 cm.

Simulation results for sea state 6, are shown in Figure 6.7. Still, the joint variable q1 is
able to track q2d. In contrast, the two other joint variables are not able to track the desired
joint variable. As a result, the position error oscillate around the desired position with
approximate 2m in amplitude.
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(a) Joint variable q1 (b) Joint variable q2

(c) Joint variable q3 (d) Position x

(e) Position y (f) Position error

Figure 6.4: Without waves.
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(a) Joint variable q1 (b) Joint variable q2

(c) Joint variable q3 (d) Position x

(e) Position y (f) Position error

Figure 6.5: Sea state 2.
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(a) Joint variable q1 (b) Joint variable q2

(c) Joint variable q3 (d) Position x

(e) Position y (f) Position error

Figure 6.6: Sea state 4.
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(a) Joint variable q1 (b) Joint variable q2

(c) Joint variable q3 (d) Position x

(e) Position y (f) Position error

Figure 6.7: Sea state 6.
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6.5.3 The Jacobian Transpose Method

The Jacobian transpose method is based on the computationally slower algorithm, the
inverse Jacobian method. The only difference between these two methods is that the
Jacobian transpose method use, as the name indicate, the transposed Jacobian instead of
the inverse Jacobian. Compared to the Jacobian inverse, the Jacobian transpose method
has cheaper step evaluation cost, as well as it avoids singularity problems. Figure 6.3
shows the block scheme of the Jacobian transpose method. Proof of convergence can be
found in (Sciavicco and Sciavicco, 2000).

Figure 6.8 presents simulation results when there are no environmental disturbance. It
can be seen that the method makes the position error converge towards 0. However, this
method generate configurations that are not within the configuration space. In contrast to
the lsqnonlin function, the Jacobian transpose method is not able to ensure that the calcu-
lated qd is a feasible configuration. For this reason, the position saturation in the reference
model had to be removed. The crane reaches its desired position after 60 seconds.

Figure 6.9 presents the simulation results for sea state 2. It can be seen that the Jacobian
method generate q1d and q3d that the crane are able to track. Joint variable q2 has problems
tracking q2d, which makes the position error oscillate at about ± 0.6 m.

Figure 6.10 and Figure 6.11 present simulation results for sea state 4 and 6, respectively.
In sea state 4, q3 are the only joint variable that is able to track the desired value. Joint
variable 1 and 2 are unable to follow the desired value. In sea state 6, all three joint
variables are unable to track the desired value. This results in a position error of ± 5m in
sea state 4 and ± 12m in sea state 6.
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(a) Joint variable q1 (b) Joint variable q2

(c) Joint variable q3 (d) Position x

(e) Position y (f) Position error

Figure 6.8: Without waves.
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(a) Joint variable q1 (b) Joint variable q2

(c) Joint variable q3 (d) Position x

(e) Position y (f) Position error

Figure 6.9: Sea state 2.
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(a) Joint variable q1 (b) Joint variable q2

(c) Joint variable q3 (d) Position x

(e) Position y (f) Position error

Figure 6.10: Sea state 4.
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(a) Joint variable q1 (b) Joint variable q2

(c) Joint variable q3 (d) Position x

(e) Position y (f) Position error

Figure 6.11: Sea state 6.
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6.5.4 Discussion

Section 6.5 has presented results for both the transposed Jacobian method and the lsqnon-
lin method. The transposed Jacobian method generated an infeasible solution, which was
not dealt with. Instead, the position saturation in the reference model was removed. This
makes the Jacobian method not very interesting for crane suppliers because they have to
be sure that feasible solutions are generated.

The lsqnonlin method proved to be way better than the transposed Jacobian. As well as
the method produced desired joint values that the crane was able to track, the method also
generated feasible configurations. The method successfully kept the crane tip position
within ±15cm of the desired values in moderate seas. The transposed Jacobian on the
other hand, showed an position error of approximately 5m. In sea state 6 however, the
crane became unable to follow the desired values generated by lsqnonlin. This inability
to keep a fixed position in rough sea is most likely due to saturations in the crane.

All in all, the lsqnonlin proved to be superior to the transposed Jacobian. It showed better
performance, as well as well as it generated feasible solutions.

6.6 Input Shaping

In this section, a control shaping technique called input shaping will be discussed. First,
there will be given an introduction to the vibration control problem. Second, input shaping
theory will be given, before three different shapers are formulated and implemented in the
Simulink model. Last, there will be a discussion based on simulation results.

6.6.1 Introduction

Input Shaping is a feedforward control technique for reducing vibrations of oscillatory
systems controlled by computers. The method works by creating command signals that
cancels the vibration caused by the first part of the command signal. If the command
signals in the shaper are chosen correctly, the system will respond without vibration.
As an example, a ZV shaper response for an undamped system is illustrated in Figure
6.13. The figure shows how a second impulse can cancel the vibration caused by the first
impulse.

For the computer controlled system to be able to utilize vibration control, the vibrations
have to be of a finite frequency and amplitude. In addition, the vibration frequencies have
to be within the control systems bandwidth. Input shaping is most often implemented on
computers that control multi-body, or single-body, flexible systems. These systems may
have resonance frequency that is within the control system’s bandwidth, hence making it
possible to reduce the vibrations.
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Figure 6.12: Overview of the Simulink model, with the input shaping block shown in
detail.

Modern AHC cranes are controlled by a human operator who uses joysticks to alter joint
angles. If the operator alter a joint for a finite time period, the crane tip will move a finite
distance before it comes to rest. The payload however, might not come to rest. It may start
to oscillate due to the change of distance. An experienced crane operator may be able to
reduce these oscillations by alter the joint angles multiple times at proper instances. This
process takes time, and even experienced operators may struggle to put the payload to
rest.

For convenience, an overview of the input shaping implementation is shown in Figure
6.12. The reference signal is shaped by a number of number of gains and signal delays.
These parameters are chosen in a way that reduces the residual vibration. For the reader
to be fully aware of the shaping control problem, a simulation without any vibration con-
trol is shown in Figure 6.14. The figure shows that the difference between the crane tip
position and the payload position oscillate at approximately 1m in amplitude in the x and
y direction. This simulation, and all other simulations in this section have been done
by rotating the king 45◦, i.e. control scheme number 2 in Table 6.1. The input shapers
main objective is to alter the cranes configuration without inducing the oscillations seen
in Figure 6.14.

70



Figure 6.13: Two impulse response.

Figure 6.14: Payload oscillations without any input shaper.
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6.6.2 Preliminaries on Input Shaping Theory

It may be possible to decompose a high order system to be a combination of a series of
second order subsystems and design the corresponding shaper for each subsystem. It is
feasible to discuss the system performance by assuming the closed-loop transfer function
of the model as (Yuan and Chang, 2006)

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

. (6.8)

In (6.8), ωn represents the natural frequency, and ζ the dampening ratio of the system.
The unit impulse response of (6.8) is given as

y(t) =
ωn√
1− ζ2

e−ζωn(t−t0) sin
[
(ωn
√

1− ζ2)(t− t0)
]
u(t− t0), (6.9)

where to is the impulse time instance and u(·) is the unit step function (Chang et al., 2006).
The unit step function is split into a series of impulse inputs Aiδ(t-ti). Here, Ai and ti are
the amplitudes and the time locations of the impulse inputs. The total response is

y(t) =
m∑
i=1

yi(t), (6.10)

where m is the number of impulses. The unit impulse response yi(t) is given as

yi(t) =
Aiωn√
1− ζ2

e−ζωn(t−ti) sin
[
(ωn
√

1− ζ2)(t− ti)
]
δ(t− ti), (6.11)

The total response for the vibration system at settling time t= tN can be written as

y(tN) =
m∑
i=1

Aiωn√
1− ζ2

e−ζωntN eζωnti sin(ωn
√

1− ζ2(tN − ti)), (6.12)

or alternatively,

y(tN) =
m∑
i=1

Bi sin(ωdtN − ωdti), (6.13)

where

ωd = ωn
√

1− ζ2, (6.14)
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Bi =
Aiωn√
1− ζ2

e−ζωntN eζωnti . (6.15)

Using the trigonometric identity (Gieck and Gieck, 1996)

K1 sin(αt+ φ1) + . . .+Kn sin(αt+ φn) = Aamp sin(αt+ ψ), (6.16)

where

Aamp =

√√√√( n∑
i=1

Ki cos(φi)

)2

+

(
n∑
i=1

Ki sin(φi)

)2

, (6.17)

ψ = tan−1

∑n
i=1 Ki cos(φi)∑n
i=1Ki sin(φi)

, (6.18)

makes it possible to write the vibration amplitude as

A∑ = e−ζωntN
ωn√
1− ζ2

√√√√(
m∑
i=1

Aieζωnti cos(ωdti))2 + (
m∑
i=1

Aieζωnti sin(ωdti))2. (6.19)

To form a nondimensional vibration amplitude, (6.19) is divided by the amplitude of
residual vibration from a single impulse of unity magnitude. The resulting expression
gives the vibration in percentage of the unshaped vibration. The amplitude of residual
vibration from a single unity-magnitude impulse applied at time zero is (Vaughan et al.,
2008)

Asingle =
ωn√
1− ζ2

. (6.20)

Now, dividing (6.19) by (6.20) yields

V (ω, ζ, tN) = e−ζωntN
√
C(ω, ζ)2 + S(ω, ζ)2, (6.21)

where

C(ω, ζ) =
m∑
i=1

Aie
ζωnti cos(ωdti), (6.22)

S(ω, ζ) =
m∑
i=1

Aie
ζωnti sin(ωdti). (6.23)
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Here, the two following trigonometric relations has been used:

sin(−φ) = − sin(φ), (6.24)
cos(−φ) = cos(φ). (6.25)

By setting (6.21) to zero, enables us to find the amplitudes and time locations that would
result in zero vibration. But first, a few restrictions have to be placed on the impulse
amplitude. The first constraint is that the sum of all amplitudes have to sum to one

m∑
i=1

Ai = 1. (6.26)

This restriction is placed in order to avoid zero-valued impulses, and to obtain a normal-
ized result. Next, each impulse amplitude has to be restricted to take on only positive and
finite values

Ai > 0 i = 1, . . . ,m. (6.27)

It is also possible to add another constraint that makes the shaper more robust to errors
in the natural frequencies of the system. By setting the derivative of V (ω, ζ, tN) to zero
makes the level of robustness higher, but it also makes the system response slower. The
constraint is

di

dωi
V (ω, ζ, tN) = 0, (6.28)

where i is the level of robustness needed. The last constraint is the time optimality con-
straint which minimizes the response delay

min tm. (6.29)

The problem is to find the unknown amplitudes and time locations that makes Equation
(6.21) zero, while also satisfying the constraints.

6.6.3 Zero Vibration Shaper

The first shaper that will be described is the ZV Shaper. The ZV shaper constructs a
second impulse that cancel the vibration induced by the first impulse. This means that
the ZV Shaper is a two impulse shaper, which makes m = 2 in (6.22) and (6.23). For
simplicity, and for avoiding response delay, t1 is set to zero. The problem now consist of
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finding the three unknowns t2, A1 and A2. Setting (6.21) to zero, and also ensuring that
restriction (6.26), (6.27) and (6.29) are satisfied, results in three equations

A1 + A2e
ζωt2 cos(ωdt2) = 0, (6.30)

A2e
ζωt2 sin(ωdt2) = 0, (6.31)

A1 + A2 = 1. (6.32)

Equation (6.31) is satisfied when the sine term equals zero. This occurs at

ωdt2 = nπ ⇒ t2 =
nπ

ωd
n = 1, 2, . . . (6.33)

In order to cancel the vibration in the shortest amount of time, hence satisfying (6.29), t2
is chosen to

t2 =
π

ωd
. (6.34)

Now, substituting (6.34) and (6.32) into (6.30) yields

A1 − (1− A1)e
ζω π

ωd = 0. (6.35)

Rearranging (6.35) and inserting (6.14) gives

A1 =
e

ζπ√
1−ζ2

1 + e
ζπ√
1−ζ2

. (6.36)

All in all, the two impulses and time instances that leads to zero vibration are

[
Ai
ti

]
=

[ 1
1+K

K
1+K

0 π
ωd

]
, (6.37)

where

K = e
−ζπ√
1−ζ2 . (6.38)

In our case, the natural frequency for the vibration system can be expressed as

ωn =

√
g

l
, (6.39)
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where l is the length of the cable and g is the gravitational constant. The dampening ratio
is set to zero, due to the fact that the density of air is low. Now, the two impulses and time
instances are convolved with the initial command, thus creating the shaped command.
The procedure is illustrated in Figure 6.15.

Figure 6.15: Continuous ZV shaper.

The input shaper, together with the rest of the system, are shown in Figure 6.12. Simu-
lations of the input shaper are shown in Figures 6.16 and 6.17. The results show that the
shaper is able to reduce almost all the payload oscillation, in both the x and y direction.
The shaper introduces a 1.5 seconds delay compared to the unshaped command. How-
ever, the shaper would probably beat the human operator with regards to time used, and
residual vibration.

Figure 6.16: Payload position with, and without the continuous ZV shaper.

Figure 6.17 shows the difference between the crane tip position and the payload posi-
tion. From Figure 6.14 it can be seen that the oscillations without an input shaper are
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approximately ±1m, whereas ±0.2m for the ZV shaping case.

Figure 6.17: Difference between the crane tip and the payload position, using the contin-
uous ZV shaper.

The ZV shaper is in theory able to suppress all vibration if the dampening and the natural
frequency are chosen correct. But, unmodeled dynamics will affect the systems behavior.
It is therefore necessary to discuss the robustness of the shaper. The robustness of an
input shaper can be expressed as the level of the residual vibration (6.21), with respect to
variation of the system parameters.

Figure 6.18 shows the three dimensional sensitivity curve for the ZV Shaper. This figure
was produced by designing the input shaper with Ai and ti according to (6.37) and (6.39).
Then, a vector of natural frequencies ωactual and dampening ratios ψactual were inserted
into (6.21) together with Ai and ti. The actual dampening ratios and natural frequencies
were varied according to

ωactual =

√
g

l
− 0.5

√
g

l
, . . . ,

√
g

l
+ 0.5

√
g

l
, (6.40)

ψactual = 0, . . . , 0.2. (6.41)

The result was a V(ω, ζ, tN) matrix, where each element correspond to a natural fre-
quency in (6.40), and a dampening ratio in (6.41). It can be seen in Figure 6.18 that even
small changes in the natural frequency makes the residual vibration increase rapidly. This
makes the ZV Shaper the first of choice when one has perfect knowledge of the system.
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Figure 6.18: Three dimensional sensitivity curve for the ZV shaper.

6.6.4 Zero Vibration Derivative Shaper

The ZV Shaper that was described in the previous section, proved to be sensitive with
regards to modeling error. In fact, in the two impulse ZV shaper discussed above, there
can be a lot of vibration even for small modeling errors. This gave motivation to develop
the more robust Zero Vibration Derivative (ZVD) Shaper. The three impulse (m = 3)
ZVD shaper is a more robust shaper than the ZV shaper because it also satisfies the fist
order robustness constraint

d

dω
V (ω, ζ, tN) = 0. (6.42)

The physical meaning corresponds to zero amplitude and velocity of vibration at the end
of the third impulse, whereas the ZV shaper only considered the amplitude of vibration.

The unknown variables t2, t3 A1, A2 and A3 are found using the same approach as for the
ZV shaper. The unknown variables are

[
Ai
ti

]
=

[
1

1+2K+K2
2K

1+2K+K2
K2

1+2K+K2

0 π
ωd

2π
ωd

]
, (6.43)

where K is the same as for the ZV shaper. This shaper construct signals of the type shown
in Figure 6.19.
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Figure 6.19: Continuous ZVD shaper.

Simulations show that this method reduces more vibration than the ZV Shaper, but it in-
troduces an additional time delay. The payload x and y positions are shown in Figure 6.20,
and the x and y errors are shown in Figure 6.21. The oscillations are now at approximately
3-4cm in amplitude.

Figure 6.20: Payload position with, and without the continuous ZVD shaper.

Figure 6.22 shows the sensitivity curve for the ZVD Shaper. It is seen that the residual
vibration is kept low, even when there are some modeling errors. This makes the ZVD
Shaper suitable when one is not able to obtain perfect knowledge of the system.
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Figure 6.21: Difference between the crane tip and the payload position, using the contin-
uous ZVD shaper.

Figure 6.22: Three dimensional sensitivity curve for the ZVD shaper.

80



6.6.5 Zero Vibration Derivative Derivative Shaper

The Zero Vibration Derivative Derivative (ZVDD) Shaper is an even more robust shaper
than the ZVD Shaper. It is a 4 impulse shaper, which makes m=4 in (6.22) and (6.23).
The problem is therefore to find 7 unknowns. The only difference from the ZVD Shaper
is that the second order robustness constraint is added

d2

dω2
V (ω, ζ, tN) = 0. (6.44)

The unknown variables are derived as for the ZV shaper. The ZVDD parameters are
shown in (6.45), and the four impulse convolving process is illustrated in Figure 6.23.
Simulation results for the ZVDD shaper are shown in Figure 6.24 and 6.25. These figures
show that the shaper is able to reduce the vibration even more than the ZV and ZVD
shaper. However, it also introduces more delay than the ZV and the ZVD shaper. The
oscillations are now at approximately 2-3cm.

[
Ai
ti

]
=

[
1

1+3K+3K2+K3
3K

1+3K+3K2+3K3
3K2

1+3K+3K2+K3
K2

1+3K+3K2+K3

0 π
ωd

2π
ωd

3π
ωd

]
. (6.45)

Figure 6.23: Continuous ZVDD shaper.

Figure 6.26 shows a 3 dimensional sensitivity curve for the ZVDD Shaper. The figure
shows that the residual vibration is kept very low, even when there are modeling errors.
The ZVDD Shaper is the most robust compared to the ZV and the ZVD. It is therefore
the one that is able to keep the residual vibration at its lowest when there are modeling
errors. If a robust shaper is needed, this shaper would be the best choice.
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Figure 6.24: Payload position with, and without the continuous ZVDD shaper.

Figure 6.25: Difference between the crane tip and the payload position, using the contin-
uous ZVDD shaper.
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Figure 6.26: Three Dimensional Sensitivity Curve for the ZVDD shaper.
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6.6.6 Discussion

The ZV shaper was able to reduce the vibrations to about 20cm, the ZVD to about 5cm
and the ZVDD to about 2-3cm. For the unshaped case, the oscillation amplitude was
approximately 1m. The three shapers have reduced the residual vibration significantly.
Even better performance could possibly be achieved by tuning the damping and natural
frequency.

As mentioned, more robustness leads to a greater delay in the operator input. The desir-
able robustness level has to be seen in connection with the operations the crane perform
and the desired residual vibration. A figure that shows the three different shapers for the
zero dampening case is shown in Figure 6.27. It is easy to see that the ZV vibration shaper
is the least robust one, because it has a smaller width of frequencies of which it cancels the
vibration. This was also seen from the simulation results and the 3 dimensional sensitivity
curves.

It might also be possible to look at other types of shapers. For instance, the extra insen-
sitive (EI) shaper, the unity magnitude zero vibration (UM-ZV) shaper and the specified
intensity (SI), could be of interest. These shapers have not been considered due to similar
delay and robustness properties.

All in all, the input shapers have proven to work very well on the vessel-crane-cable
model. The input shaping technique has the potential to bring today’s cranes towards a
more demanding future.

Figure 6.27: Two dimensional sensitivity curves for the three shapers.
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Chapter 7

Conclusions and Further Work

7.1 Conclusions

The main focus of this thesis has been on developing an offshore crane model, both math-
ematically and through computer based software. Furthermore, three input shapers and
two different workspace controllers have been developed in order to reduce residual vi-
bration.

A mathematical model of a HMC3568 150t active boost crane was developed using robot
modeling theory. The resulting equations and matrices were verified using Matlab’s sym-
bolic package. All matrices in the mathematical model were identical to the matrices
Matlab generated. The vessel-crane model that was implemented in Simulink, was ver-
ified against a SimMechanics crane model. The two models showed almost identical
behavior. However, small differences were found, which seemed to be a result of using
two different controllers.

The Simulink model was later expanded to include a SINTEF cable model. The complete
simulation tool consisted of a crane model, a vessel model and a cable model. During
simulations, the total Simulink model responded according to what was expected.

A second order reference model were implemented in order to generate smooth refer-
ence signals. Furthermore, the reference model had incorporated position, velocity and
acceleration saturations. Together with the PD controller with gravity compensation, the
system became stable.

Two inverse kinematics algorithms were implemented and tested. Both the Jacobian trans-
pose method, and the lsqnonlin method, were able to position the crane tip in {N}. The
Jacobian Transposed method however, was not able to constrain the solution to a feasi-
ble area. This resulted in crane configurations that were invalid on the HMC3568 crane.
Furthermore, the lsqnonlin method turned out to be superior to the Jacobian transposed
method. The lsqnonlin method showed better performance without waves, and in sea state
2, 4 and 6. In sea state 6, the vessel motion became more extensive, making the crane un-

85



able to keep a fixed position. This was most likely an effect of saturations on the velocity
and acceleration.

Three input shapers have successfully reduced the payload swing. Without the shapers,
the vibration were approximately 1m in amplitude. When the operator input was shaped
by the ZVD shaper, it was reduced to about 5cm. This is a significant change in payload
swing, and is expected to be of great interest to crane suppliers. The down side of it, is
that the shaped command is delayed compared to the unshaped one. However, it would
be safer and more efficient to use the shapers than to manually damp the payload swing.
As a result, the input shaping technique has the potential bring the crane industry one step
closer to what is needed in the future.

7.2 Recommendations for Further Work

Further work on this subject should include testing of the input shapers. They have proven
to work in the Simulink environment which makes the next natural step to perform exper-
iments and full scale tests. For this reason, a set up that is able to measure the residual
vibration has to be installed. For the time being, cranes of this type do not have a device
that measures the payload position or the cable angle.

In the future, the crane system might be able to communicate with the vessel system.
Therefore, the crane system could be extended to automatically set the desired vessel
position and orientation. As a result, the vessel, instead of the crane, could reduce residual
vibration. This could be advantageous when the residual vibration periods are large. The
crane are be unable to reduce the residual vibration when the oscillation amplitudes are
larger than the crane’s operating radius.

Another area of improvement, is the inverse kinematics algorithms. The Jacobian trans-
pose method produces infeasible configurations, which is unwanted. This has to be dealt
with. In addition, simulations with the cable model should be performed and analysed.

Another area of improvement, is how reference signals are generated. The reference
model is tuned to generate similar inputs as what the crane operator would have generated.
However, further work should be done by making the reference signals more realistic. For
this purpose, the GUI input block could be replaced with joysticks.
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