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ABSTRACT

The scope of this work is to implement a realistic looking ocean simulator with a ship
floating on the surface. Foam, and ship wake is included to add to the realism. The
application is designed to run on a normally equipped laptop with an ATI graphics card
and Windows as the operation system. All calculations except the wake generation are
performed in real time.

The program, named ’OceanSimulator’, is written in C++ with OpenGL for visualization.
The waves are represented with the JONSWAP spectrum and calculated using fast fourier
transformation algorithm. The ship movement is calculated by use of transfer functions
given in a RAO text file.

The graphics card is programmed directly by use of shaders to get high flexibility regarding
visual effects. Two different lighting approaches of the ocean are explored, cube mapping,
and parameterization.
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Introduction

During the last decade, there has been a revolution in the use of graphics card. Tools
for using and instructing the graphics card have improved a lot, at the same time as the
performance drastically increases. Calculating and visualizing complex problems can now
be done on a normal laptop, and that is the essence of the work presented in this report.

With overall increasing performance for computers, more advanced simulators are being
developed each year. Marine and offshore industry sees the benefits this technology gives.
Doing a simulation before performing the real operations can be beneficial. The crew
that is supposed to carry out the work may need training, and doing the operations in a
simulator can be a valuable exercise. The simulator provides a safe environment, and the
tasks can be done over and over again. An example of this is the vessel winch simulator
developed by Rolls Royce and Offshore Simulator Centre. This is the first anchor-handling
simulator developed, and gives the crew a safe environment to practice. The simulator
was developed as a result of the "Bourbon Dolphin" accident.

The goal for this work is to develop a simulator for the ocean sea, with a ship moving
on the surface. The calculations are performed in real-time, on a laptop with sufficient
powerful graphics card. The main concern with this work has been to make the program
mathematically correct without compromising the frame rate. The sea wave pattern
is calculated by integrating the JONSWAP spectrum to find the amplitude at distinct
wave frequencies and directions. Then the inverse fast fourier transform is applied to
calculate the ocean elevation. OpenGL code makes the basis for visualizing the result.
The code is optimized with respect to common computer architecture to provide realistic
visualization at a high frame rate. To get the required visual effects, shaders have been
used to program the graphics card. Two different approaches regarding the visualization
of the ocean surface have been tested. These two approaches are by use of a skybox, and
by use of a parametrization. The ship movement is calculated by combining the sea wave
pattern with a transfer function file. The wake generated by the ship is added based on
the hull geometry.
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Background Theory

The following chapter will explain theory and methods that have been used in the im-
plementation of the simulator. This includes how to calculate the wave pattern on the
ocean surface and ship response. A description for ship generated wake for calm water is
also provided. The chapter explains how OpenGL operates, including an explanation of
lighting and shaders.

1.1 Symbols

ζi: wave height, one wave
ζ: wave height, sum of all waves
s(ω): energy curve for wave distribution
ω: wave frequency
θ: wave direction relative to main wave direction
Ei: energy of single wave
ρ: density water
g: gravity
k: wave number, determines the wave length
φ: phase

1.2 Coordinate System

Three coordinate systems are used.

(x, y, z, t) Cartesian coordinate system. Used to describe the water
elevation on CPU

(x, z, y, t) Cartesian coordinate system. Used to describe the water
elevation on GPU

(ω, θ) Frequency domain. For describing wave height or energy
with respect to frequency and direction

Within marine engineering the z-axis is normally upward. However, OpenGL uses a right-
handed coordinate system with the y-axis pointing upwards. Except the for switch of axis,
the two coordinate systems are equal. Meaning that (x, y, z, t)marine = (−x, z,−y, t)opengl.
The marine coordinate system is used when calculating the wave pattern and the surface
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elevation. The OpenGL coordinates are used when drawing objects and waves on to the
screen.

1.3 Wave Conventions

This section explains the technique used to describe the wave pattern mathematically.
The equations are found in Faltinsen (1990).

A simple sine shaped wave is written as:

ζi(x, t) = Ai cos(ωt− kx+ φ) (1.1)

For two dimensional waves, the equation is:

ζi(x, y, t) = Ai cos(ωt− kxx− kzz) (1.2)

k =
√
k2
x + k2

y (1.3)

In cylindrical coordinates:

ζi = Ai cos(ωt− k cos(θ)x+ k sin(θ)z) (1.4)

The relationship between wave period and wave length:

λ = 1.56 ∗ T 2 (1.5)

Of which it follows that

omega =

√
2πg

λ
; (1.6)

1.3.1 Energy Distribution

Wave height and wave period for a given sea state is represented by an energy curve. The
energy curve describes how much energy the sea state contains for different frequencies.
The formulas can be found in Myrhaug (2007)

Ei =
1

2
ρgζ2

i (1.7)

E = ρg

n∑
i=0

Ei (1.8)

E = ρg

∫ ∞
0

S(ω) dω (1.9)

Ei = ρg

∫ ωi+0.5

ωi−0.5

S(ω) dω (1.10)
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Combining the first and last equation, the wave height for one wave can be represented
by:

ζi =

√
2

∫ ωi+0.5

ωi−0.5

S(ω) dω (1.11)

ζi =
√

2S(ωi) ∆ω (1.12)

The equations above can only represent waves coming from one direction. A new param-
eter, θ, describing direction is included. By multiplying the equation above with cos2s the
equation will be able to represent waves from multiple directions. ’S’ is a positive integer,
describing the spread of the incoming waves. High value of ’S’ gives low spread.

ζi =

√
2S(ωi)

cos2s(θj)

C1

∆ω∆θ (1.13)

C1 =

∫ 0.5π

−0.5π

cos2s(θ) dθ (1.14)

By summing up all the individual waves, the total surface elevation is given by:

ζ(x, z, t) =
n∑
i=0

ζi(x, z, t) (1.15)

1.3.2 Fast Fourier transformation

Fast Fourier Transformation (FFT) is an algorithm for solving Discrete Fourier Transfor-
mation (DFT). DFT is used to transform a function from regular cartesian coordinates
into the frequency domain. From (1.13) the wave height in frequency domain can be
calculated. Inverse FFT is used to transfer from frequency to cartesian coordinates. The
cartesian coordinates can then be transferred to the graphic card. Further explanation of
the FFT algorithm is found in Kreyszig (2006).

The mathematical definition of the inverse fast fourier transform is:

xn =
1

N

N−1∑
k=0

Xke
2πi
N
kn (1.16)

For 2 dimensional waves the inverse FFT is:

xn1,n2 =
1

N

N−1∑
j=0

Xj,k

N−1∑
k=0

e
2πi
N

(jn1+kn2) (1.17)

From the mathematical definition above, it follows that the input argument for an inverse
FFT algorithm is a matrix containing complex number. Each element in this matrix is
describing one single wave. Each wave has a unique combination of wave length and
direction. For time state ’t’, the input argument will be described as:

input(i, j) = ζi,je
φ+ωt+kxx0+kyy0 (1.18)
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Let n1 and n2 denote the row and column number in the input matrix. Let L be the
physical length of the domain. Then the total wave length of a single wave is given by
(1.19).

λ =
L√

n2
1 + n2

2

(1.19)

θ = arctan(
n1

n2
) (1.20)

From wave theory, a single sine wave can be writen as:

ζ(x, t) = Real(ζ0e
φ+ωt) = Real(ζ0(cos(φ+ ωt0) + i sin(φ+ ωt)) (1.21)

The last equation is directly applicable as input argument to the inverse FFT algorithm.
The input argument for the inverse FFT algorithm is then calculated by dividing the sea
state into a predetermined set of frequencies and directions. The next section describes
how the amplitude of the different single waves are estimated.

Figure 1.1: The real result of an inverse fast fourier transform. Element number (3, 2) in
input matrix is given value 1. All other elements in matrix are given value 0.

Figure 1.2: The imaginary part of an inverse fast fourier transform. Element number (3,
2) in input matrix is given value 1. All other elements in matrix are given value 0.
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1.3.3 Integration

Using inverse FFT algorithm, only a predetermined set of individual waves are available.
Figure 1.3 displays all available combinations of frequencies and directions for a 64 x 64
system.

Figure 1.3: Plot of possible angles and frequencies on a 64 x 64 inverse FFT transformation

The wave height in absolute value for each unique wave, is given by:

H(i, j) = S(ω(i, j), θ(i, j))dA (1.22)

S(ω(i, j), θ(i, j)) is the wave spectral function, which is described in previous chapter. dA
is the area surrounding the wave number i, j. The value of dA is found by calculating the
vectors spanning from the given node, to its surrounding nodes. Then taking 1/4 of the
cross product of these vectors.

Figure 1.4: Node (i, j) in frequency domain
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The area surrounding node i, j can be described as:

dA =
1

2
(A1 + A2 + A3 + A4) (1.23)

dA =
1

4
(|V 1× V 2|+ |V 2× V 3|+ |V 3× V 4|+ |V 4× V 1|) (1.24)

PROOF

This paragraph proofs that the integration technique explained in section 1.3.3 is valid.

Figure 1.5: Node (i, j) in frequency domain
ion is valid.

The area of the figure above is
A = A1 + A2
A = 1

2
|V 1× V 2|+ 1

2
|V 3× V 4|

1
2
A = 1

2·2 |V 1× V 2|+ 1
2·2 |V 3× V 4|

which proofs that the area belonging to two diametral nodes sums up to be 1
2
of the total

area of the figure. The sum of the area belonging to all the nodes therefore has to be
equal to the total area of the figure.

1.4 Ship Motion by Use of Transfer Functions

The wave elevation is calculated by superposition of a series of simple sine shaped waves.
Chapter 1.3 explains how the single waves are calculated. The movement of the ship is
known for a single sine shaped wave. Adding together the movement of the ship for each
single wave will give a good estimate of the ship response. How the ship reacts to each
wave is calculated by a transfer function. A transfer function is a function which operates
in the frequency domain. If the input value is a simple sine shape, the function value is
the movement of the ship. A transfer function can be written as:

y(s) = h(s)u(s) (1.25)
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For the purpose of this report. A transfer function can be described as

y(ω) = h(ω)ζ(ω) (1.26)

ζ(ω): input signal
h(ω): transfer function
y(ω): response
s: frequency
ω: frequency
All values are of complex numbers.

y(ω) = |y(ω)| eφyi (1.27)

h(ω) = |h(ω)| eφhi (1.28)

ζ(ω) = |ζ(ω)| ei(ωt+kx(ω)x0+ky(ω)y0) (1.29)

ζ(ω) is the wave height, h(ω) is the transfer function. x0 and y0 is denoting the center of
the ship. For this case the transfer function is a complex number given by an amplitude
and a phase. The real value of y(ω) is the response on ship. One transfer function is given
for each of the 6 DOF.

1.5 Wake

The wake is calculated based on the method described by E.O. Tuck and Scullen (1999).
A more detailed explanation of the mathematics is found in Faltinsen (2005). The method
calculates the surface elevation for a ship with constant speed on flat water. The method
is based on potential theory.

ζ(x, y) = real(

∫ pi/2

−pi/2
A(θ)e−iω(θ)dθ (1.30)

ω(θ) = k(θ)[x cos(θ) + y sin(θ)] (1.31)

k =
g

u2

1

cos(θ)2
(1.32)

A(θ) =
2

π
k(θ)2

∫∫
Y (x, z)exp(k(θ)Z + ik(θ))dxdz (1.33)

(1.30) describes the surface elevation. (1.33) describes the wave amplitude with respect
to frequency. (1.31) describes the heading of the wave with respect to frequency. Y(x,
z) is half the beam of the ship at position (x,z), below water line. z is assumed to be
negative below water line.
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The integral has to be computed numerically. An analytic solution of the A(θ) integral
exists only for idealised system, and is difficult to compute. However, for a ship model
consisting of flat planes, an analytical solution can be found for A(θ).

(1.33) is becoming extremely oscillating when θ approaches ±π
2
. Solving the integral of

A(θ) will therefore require a very fine discretization. The number of elements needed is
in the matter of thousands. Computing the wake is therefore time consuming. A(θ) is
plotted for a ship of length 320 meter in Figure 1.6.

Figure 1.6: A(θ) for a 320 meter long ship with speed 3 m/s

The graph below shows the A(θ) function for a ship with length 64 meter. The speed is 3
m/s, which is the same as the graph above. Notice the longer oscillations on the function
in Figure 1.7 compared to the graph in Figure 1.6 above.

Figure 1.7: A(θ) for a 64 meter long ship with speed 3 m/s
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By choosing the values of θ carefully, inverse fast fourier transformation can be applied.
The constraint is that the total domain length is a multiple of the wave length given by
the ω(θ) value, (1.31). The constraint has to be for filled for only one dimension. The
equations below shows how the θ values are chosen. For the fourier transformation the
expression e−iω(θ) has to correspond to a wave length of Ld

i
. Where i is an integer with

value less than the vector length used. Ld is the domain length. The equation below show
how the θ value is defined.

2πi = Ld cos(θ)k(θ) (1.34)

2πi = Ld
k0

cos(θ)
(1.35)

θi = arccos(
Ldk0

2πi
) (1.36)

By using inverse FFT (IFFT) the computation time will beO(Nx, Ny, Nθ) = NyNθ log(Nθ)
provided that Nx ≤ Nθ. Nx and Ny denotes the grid size while Nθ denote number
of sampling points. By not using IFFT the computational time will be O(Nx, Ny, Nθ) =
NxNyNθ. When N is in the size of thousands, the difference in computation time becomes
significant.

IFFT is not able to cover the whole specter of θ. The largest θ value possible to represent
is θn = arccos(Ldk0

2πN
). The smallest value of θ is limited by ∆θ. The IFFT method

is therefore unable to capture the upper and lower range of θ. Alternative integration
technique has to be implemented for these ranges.

Since the A(θ) function is highly oscillatory it is practical to keep the ∆θ below a fraction
of the length of an oscillation when doing numerical integration. In Figure 1.8 a graph
displaying the ∆θ value for a 320 m ship with speed of 6 knot is shown. The Figure
shows two plots. One viewing the ∆θ using IFFT. The other one shows the limit when
10 sampling point per cycle is required. The graph shows that IFFT keeps the ∆θ is
within the margin. If the ship would be smaller, the oscillations would be smaller. Thus
resulting in fewer sampling points required.
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Figure 1.8: Computational domain for wake

1.6 Graphics Card Programming with OpenGL

When developing an application for displaying 3D computer graphics, both the CPU
(processor) and the GPU (graphics card) have to work together. Traditional programming
languages like C++ and fortran are only applicable to the CPU. Therefore a new type
of programming language has to be used on the GPU. There are mainly two different
programming languages available for the GPU, DirectX and OpenGL. Both DirectX and
OpenGL work as a set of commands which is sent from the CPU to the GPU. These
commands include information of the objects we want to display. The GPU then organizes
the commands and generates the final picture displayed.

Figure 1.9: The graphics device (GPU) is controlled by CPU by use of OpenGL instruc-
tions

OpenGL is an open source API and works on most operation systems. This includes
Microsoft, Apple and most unix platforms. DirectX is restricted to only operate on
Microsoft platforms, including Windows OS and Xbox. ’Ocean Simulator’ is based on
OpenGL due to its open source concept.
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1.6.1 Shaders

This section describes how OpenGL operates in its most basic form. A more comprehen-
sive explanation is given in Appendix A.

A graphics card uses points, lines and planes to describe 3D objects. A 3D object will
therefore consist of a series of polygons and lines in a 3D space. The polygons and lines
are called primitives. The objective of the CPU is to send the primitives to the GPU.
The CPU also sends information in terms of textures. The textures are then mapped on
one or more primitives. A texture is a vector or a matrix consisting of number. A texture
can represent a picture or a data set.

OpenGL has options for programming directly on the GPU, called shader programming.
By using shaders, each polygon or line can be manipulated individually. There are two
types of shaders, called vertex shader and fragment shader. The vertex shader has ability
to change the position of the primitives. The vertex shader can also send single values
to the fragment shader. The values are then linear interpolated by the fragment shader.
The fragment processor determines how the color changes over each polygon.

When using shaders, there is no small limitation to what data can be sent to the GPU.
The data is sent in terms of textures or single values like float. These data are called
uniforms, and will not be changed by the shaders. Instead the shader uses the uniform
values to change the vertex and fragment values. The picture below describes how the
GPU is programmed.

Figure 1.10: Programming the GPU can be devided into vertex and fragment manipula-
tion

1.7 Colors and Lighting

On a computer screen, each pixel emits different amounts of red, green and blue light.
These are called the R, G and B values. Mixing different intensities of the parameters
gives all kinds of colors. The R, G, and B values can range from 0.0 (none) to 1.0 (full
intensity). For example, R = 1.0, G = 0.0 and B = 0.0 gives the brightest possible red.
If all values are zero, the pixel is black, and if all values are 1.0, the pixel is white.
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The final color of an object depends on what lighting is used in the scene, and how the
object in the scene reflects or absorbs the light. The formula below shows how the reflected
color is calculated:

colorsurrounding = [rs, gs, bs] (1.37)

colorobject = [ro, go, bo] (1.38)

colorreflected = [rs · ro, gs · go, bs · bo] (1.39)

The direction of the light reflected depends on the property of the object material. Nor-
mally we divide the reflection into specular and diffuse. By specular means shiny, metal
like reflection, while diffuse reflection spreads the light equally in all directions. Diffuse
reflection is not dependent on the angle of the incoming light. The difference between
specular and diffuse reflection is further explained in Appendix B.

In addition to light directly reflected from a light source, light reflected more than once
is also simulated. This kind of reflection is called ambient light. Assuming that the
concentration of ambient light is equal everywhere, the ambient color setting can be
calculated with

colorambient = ka · colorobject (1.40)

where ka is the ambient constant.

In this work, two approaches have been explored regarding lighting, Cube mapping and
parameterization. With the cube mapping approach, images taken from outdoor en-
vironment is used for reflection, see Appendix C. The parameterization approach uses
mathematical formulas to calculate the reflected color.
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Implementation

2.1 Overview

The main goal is to make a realistic representation of the ocean wave pattern, capable
of running on a laptop with a decent graphics card. There are several ways to imple-
ment a program like this regarding workload balance, each with their own strengths and
weaknesses. With the hardware available today there are roughly two main strategies to
choose amongst. The first strategy is to let the CPU do all the calculations regarding
the wave field, and let the GPU take care of the rendering with the requested effects like
lightning and reflections. This requires communication and data transfers between the
CPU and the graphics device. Thanks to new powerful GPUs it is also possible to do
all the calculations on the device itself. The strength of this approach is that there is no
need to transfer any data between the CPU and the GPU, thus removing the transfer rate
bottleneck. Compared to the CPU, the GPU has an enormous capacity. As a result, com-
puting the water elevation on the GPU will be less time consuming. But the algorithms
are more complicated to implement. With a correct setup of the first strategy described,
the bandwidth bottleneck is not a compromising factor for the performance, and it does
not require the latest graphics card. In addition, the domain size of the FFT calculations
is relatively small so the computational time of this domain is small compared to the
total time needed to draw one frame. Testing on two computers, the computation time
for FFT was 4% and 7% of total computation time. It is therefore not much performance
to gain by doing the computations on the GPU. The cpu is therefore chosen to perform
this work.

2.1.1 Libraries

The application itself is written in C++, and uses OpenGL for rendering. In addition to
self produced code, two external libraries have been used. One for the wave calculations,
and one for loading 3D models. The fourier transformations used in the wave calculations
are implemented with the Fastest Fourier Transform in the West (FFTW) library FFTW
(2011). To load the ship model itself the library Open Asset Import (ASSIMP) is used.

2.1.2 Application Design

Figure 2.1 gives an overview over the most important classes, attributes and methods. The
class Main takes care of setting up the windows environment, with OpenGL as graphical
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API. It also holds the ocean related classes needed for the simulation and visualization.
The Camera class uses mouse and keyboard input in order for the user to move around
in the 3D environment. The wave calculations, which give us the heightmap and normal
maps are implemented in the class WaveHeight. ModelObject is a class used to load
3D models, in this case the ship model. Ship movement according to the ocean waves
are implemented in Transfer which reads a transfer file containing transfer data, and
calculates the movement in all the six degrees of freedom. The Wake class calculates the
wake with different vessel velocities based on the hull of the ship. To add realism to the
scene, Foam is added when certain criteria are met.

Figure 2.1: Class diagram for OceanSimulator

Figure 2.2 shows the initialization stage of the program. All classes are instantiated with
correct parameters and are ready for further usage while running in the main loop. Three
WaveHeight objects are instantiated with parameters regarding domain, height, spread
and period. The 3D environment is configured with OpenGL, and the viewpoint (camera)
is given a starting position and a view vector. The 3D model of the ship gets loaded and
placed in the center of the scene. Setting up buffers for data transfer between the CPU
and GPU is the last stage before the program is ready to run.
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Figure 2.2: Sequence diagram for the setup stage

Figure 2.3 is a simplified diagram for the main loop. The loop starts by calculating
the next step of the wave pattern in the WaveHeight objects. Once this is done, the
translations and rotations for the ship are calculated based on the data output from the
wave patterns. The foam calculations are also based on the WaveHeight objects. The
foam object requests the amplitudes and uses these to calculate where the foam should
appear, and returns this information in a 128 x 128 mesh. The new data is then sent to
the GPU and finally drawn to the screen with SwapBuffers.
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Figure 2.3: Main loop

In addition to the events in the main loop there are two triggered events that may occur,
time scaling and keyboard inputs.

The program is scaled with time in order to get a constant speed regardless of the frame
rate achieved on a given computer. The frame rate on one specific computer can also vary
quite much as it depends on the current field of view. For instance, turning the camera
away from the ship model only looking at the ocean can double the frame rate. The time
scaling is implemented by measuring the time spent on doing all the calculations and the
drawing of the scene, which essentially is the time spent on one iteration in the main loop.
When a change in frame rate is detected the WaveHeight objects are updated with the
new time and scaled properly. This ensures that the waves move with constant velocity
without any glitches.

Keyboard and mouse inputs can trigger a whole set of function calls. These inputs
are mainly used to change wave parameters, and controlling the camera. The keyboard
mapping is described in Figure 4.3.

2.2 Generating Wave

Generating a realistic wave elevation, is done by combining Jonswap spectrum with inverse
fast fourier transformation (IFFT). Explanation of the method is done in 1.3.2. IFFT
is used due to its running time. Not using a frequency transformation for calculating
the wave height would lead to a vast increase in computation time. Ocean Simulator
uses two dimensional IFFT. One dimensional IFFT could be used for wave generation.
Even though it gives a slower solution, computation time will still scale as N2log(N).
N different one dimensional IFFT has to be computed. Then only the wave length will
be restricted, not the direction. Since the current 2D IFFT version is giving satisfying
results, the 1D IFFT solution has not been further investigated. The basis for the waves is
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three 64 x 64 IFFT transformation on different domain sizes. For an IFFT algorithm the
physical domain size and the size of the matrix limit both the longest and shortest wave
possible to represent. By introducing three different domain sizes, waves up to 512 meter
are calculated, without compromising the details of the smallest waves. The results from
the different IFFT transformations add together to the final elevation. The computation
time for IFFT is O(N2log(N)). Having three 64 by 64 domain requires less computation
than computing one more detailed IFFT. To avoid duplication of singular waves, each
domain is given an upper and a lower limit for the wave length.The physical sizes of these
domains are:

Name Domain size Shortest wave Largest wave
small waves 32 m - m 15 m
medium wave 128 m 15 m 74 m
big waves 512 m 74 m - m

Figure 2.4: Shows the size of the different domain. The three domains are added together
to calculate the final wave elevation

One drawback is that the domain sizes are a multi plum of each other, resulting in a
repeating pattern. How to fix this problem is explaind in 5.1.

2.2.1 Updating wave

Each iteration the wave pattern has to be updated. By assuming that the FPS rate is
constant, the wave pattern can be updated by multiplying each wave component with a
complex value each iteration. A wave component is the same as the input value for the
IFFT . This update factor is a complex number of length 1, with an angle equal to dt ·ω.
The ω value can be found from (1.6). The updating factor also includes the ship speed.
By adding the ship speed to the updating factor, the ship position will be constant relative
to the wave domain. The C++ code below shows how the updating factor is found.
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void WaveHeight::newSpeed(float Vx)
{

//dt= newDt;
// omega :wave frequency
// dt : time step
// Vx : speed x direction
for (int i=1;i<N/2;i++)
{

for (int j=1;j<N/2;j++)
{

w_inc[i+j*N][0]=cos(dt*omega(i,j)+2.0*pi*Vx/L*j*dt);
w_inc[i+j*N][1]=sin(dt*omega(i,j)+2.0*pi*Vx/L*j*dt);

w_inc[N-i+j*N][0] = w_inc[i+j*N][0];
w_inc[N-i+j*N][1] = w_inc[i+j*N][1];

}
}

}

2.2.2 Choppy Waves

The Fast Fourier Transformation creates normal sin shaped waves, which will be the case
for a non windy condition. For windy condition realistic waves will have sharper crests
and less curved trough. Ocean Simulator uses the method described by Jensen and Golias
(2001).

The basis of the method is to change the position the x and z position of each vertex
according to the equations given below. The z coordinate is kept constant. The equations
are given for OpenGL coordinate system, meaning that the Y axis is upward.

X = X +
C1T1

H0

(∆ζ)

∆x
(2.1)

Z = Z +
C1T1

H0

∆(ζ)

∆x
(2.2)
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Figure 2.5: Wave profile before and after modification

These calculations are done in the vertex shader. The calculation of the heightmap is
thereby not affected by this manipulation. Another positive benefit of this method is that
the distance between the vertexes is smaller on the wave crest than on the wave trough.
The wave crest is most sensitive to visual quality with respect to vertex density. Smaller
distance between the vertexes on the crest results in better graphic without increasing
the vertex density.

Quality Check

The total energy level in our final sea state is to be one concrete value, only depending
on the square of the wave height. Both left and right side of the equation below are
calculated in the program. The relationship between Hi and S(ω) and T1 is explained in
1.3.1

T1 = 2π
m0

m1

(2.3)

mi =

∫ inf

ω=0

ωiS(ω)δω (2.4)

mi,discrete =
N∑
k=0

ωik0.5H
2
k (2.5)

m0error = 1− (m0discrete)

m0

(2.6)

T1error = 1− T1discrete
T1

(2.7)

σerror = 1− stdev(Hi)

stdev(S(ω))
(2.8)

The graph below shows the relative error
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Figure 2.6: relative error. m0error, T1error, varianceerror

The graphs indicate an error of less than ±2% for the T1 and m0. The error for stdev(
m0 ) is 0.1 % for a period of 2 sec. But the error increases for larger periods. The error
with respect to T1, is stable when T1 is in the range { 2 s - 12 s}. The longest possible
wave to be represented has a period of 18 s. For the range between 12.5 s and 18 s, only
4 single waves are calculated. It is therefore impossible to give a good representation of
a sea state with peak period over 12.5 s. For the same reason, the standard deviation
therefore starts to drop for T1 over 12 sec.

2.3 Generating Wake

The algorithm for generating wake is based on the theory from 1.5. The implementation of
the wake function has only been tested visually. No systematic testing or error estimating
has been done. It is therefore no guarantee that there is no smaller error in the code.
Visually the results seem promising. It is therefore to believe that the algorithm has
no major fault. The picture below shows the result for a 32 meter ship at a speed of 2
m/s. The data has been calculated using an algorithm written in Matlab, but the same
algorithm has been implemented in the c++ code . The kelvin angle can be seen from
the picture. The wave length on the graph fits well with a wave having a speed of 2 m/s.
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Figure 2.7: Wake from a 32 m long ship at 2 m/s

Using Ifft with a domain size of 1024 meter and 2048 sized IFFT, the largest θ value
possible to represent is then 1.4839, which is 0.945π. No attempt to capture the remaining
5.5 percent has been done. An upper limit of 0.02 rad is set for ∆θ. For the range where
the IFFT algorithm gives an ∆θ larger than 0.02, the trapezoidal rule has been used. The
computation time is measured to 26 sec on a two year old 2.2 GHZ 64 bit Intel processor.

Picture below shows the sampling points for a 32 meter long vessel. Notice how the
density of the sampling points increases as theta approaches π/2. Where the sampling
points is marked with ’+’, the basic trapezoidal are used for integration. The pictures
shows that the number of samplings points

Figure 2.8: A( θ ), for a 64 meter ship with speed 3 m/s

The picture below 2.9 displays a fraction of the samplings points for A( θ ). The ship
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length is here 320 meter. Having a 320 more sampling points is needed to get a smooth
integration.

Figure 2.9: section of A( θ ), for a 320 meter ship with speed 3 m/s

Only a simple ship model is used when calculating the waves. The shape of the ship
model is described below. The depth of the model is constant 16 m over the whole length.
A method for reading a 3D. model and calculating the wake is made. But due to limited
time, no testing of this method has been done. Therefore only the simplified model is
activated. The algorithm for calculating the wake based on the ship shape can be done
by activating the method called ’calcAt(...)’ in class file ’Wake.cpp’ in the program.
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Figure 2.10: Simplified ship model. Depth is 16 m

Picture below 2.11 shows the results. In the upper left of the computational domain some
noise can be seen. The noise is due to the discretization. A finer discretization will reduce
this problem.

Figure 2.11: Wake calculated using simplified ship model. The visual signature of the
wake is increased
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Solving the integral for the whole area is time consuming, and requires several minutes
of computation time. The wake is therefore computed in advance and stored on an ascii
file. One ascii file for each speed of a set of predetermined speed is made. Running the
program, the ascii file is then loaded when needed. To reduce the amount of data needed
to be loaded, the wave elevation is only computed for a part of the domain. Due to
symmetry the only left half of the domain is computed and then mirrored on the right
side. The area computed is illustrated below. The size of the grid corresponds to a density
of 2 sampling points per meter. A wave having a speed of 2 m/s will be 2.6 m long. To
visually represent a wave at least 4 sampling points per wave length is required. 2 m/s is
therefore the lowest possible speed to be represented.

Figure 2.12: Computational domain for wake
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2.4 Heightmap and Normal Maps

Before anything can be animated or rendered on the screen, the graphics device needs its
data. As mentioned earlier all the calculations are done on the CPU, and the results need
to be transferred to the GPU. The best way of doing this is by structuring the data in a
heightmap, also called heightfield.

A heightmap is represented by an image where each pixel, instead of representing a RGB
color, represents a single displacement value. Heightmaps are often used in geographic
information systems to describe terrain. It is also heavily used in the rendering of terrain
in video games, and it is a perfect way to store the elevation of an ocean surface.

Figure 2.13: Heightmap Figure 2.14: Normal map

When visualizing the data in heightmap directly the result is a greyscale image, as shown
in Figure 2.13. Black represents the minimum height, and white represents the maximum
height. In Figure 2.15 the data from the heightmap have been used to elevate the nodes
in a 3D mesh.
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Figure 2.15: Elevated mesh

It is not only elevation data that can be structured and sent this way. Normally an image
texture consists of RGB colors. That means each pixel can store three values (Red, Green
and Blue). Instead of storing RGB values, it is possible to store whatever kind of values
that is needed for the shader. To make possible for light and reflection calculations, the
normal vector for the surface is needed in order to get the direction each polygon is facing.

A normal is a vector consisting of three values, and it is possible to use all of the RGB
values in a texture to store the normal. The red, green and blue channels of the map
represent the X, Y, and Z values of the normal vector. The Z value is the height, while
the X, and Y values are the directions.

In Figure 2.14 the first component in a normal vector has been stored at the red location,
and the second component has been stored at the green location, and at last the height
is stored in the blue location. The result is a normal map. All the maps in this section
are taken from the application with JONSWAP spectrum.

2.5 Foam

There is no exact answer to when foam emerge. When foam is turned on, Ocean Simulator
adds foam to those area where the surface elevation is more than 60 % of H0. When foam
is added, the repeating pattern of the wave elevation is easy to detect. To avoid this
repeating pattern, the domain size of the different wave systems can be manipulated.
Chapter 5.1 gives a further explanation.

The Foam value are calculated two different way and then added together.

• A 128 x 128 matrix is calculated on cpu, describing the foam level on an area equal
the largest heightmap. If wave height is higher than 60 % of the H0, a value of 0.03
is added each iteration. The foam level is fading by 1-3% for each iteration.
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• On shader, foam is shown for every wave higher than 60 % of H0. This foam has a
higher intensity than the foam given by the 128 by 128 matrix.

To reduce the number of texture units used, the foam is calculated by using the gradients
from the smallest and medium sized waves.

The foam around the ship is created when loading the wake. The third parameter in the
matrix describing the wake is used to describe the foam intensity. The foam from the
ship is only calculated once and then shuffled to the GPU. The structure of the foam
is calculated on the GPU, using the same technique as when calculating foam from the
waves.

2.6 Shaders

This section describes how shaders have been used to visualize the ocean. There are
two different types of shaders. The vertex shader sets the position of each vertex. The
fragment shader describes the color setting on each fragment. There are two different
implementations of the fragment shader.

2.6.1 Vertex Shader

The vertex shader is run for every vertex in the mesh. The vertex shader sets the correct
elevation of each node, based on the data given from the heightmaps. This includes the
heightmap from the ocean, and the heightmap based on the wake contribution.

As described in figure 2.4 the ocean consists of three textures mixed together. These span
over different size domains, and they are repeated several times. Based on the vertex
position from the mesh, the correct values from the textures must be chosen. A texture
is clamped on a domain from [0, 0] to [1, 1]. In order to pick the correct heightmap value,
the vertex position has to be converted to a texture coordinate. The code snippet below
calculates the texture coordinates for the medium domain and the big domain. ’v’ is the
position of the vertex.

mediumCord.x = mod(v.x, 128.0f)/128.0f;
mediumCord.y = mod(v.z, 128.0f)/128.0f;
bigCord.x = mod(v.x, 512.0f)/512.0f;
bigCord.y = mod(v.z, 512.0f)/512.0f;

Once the texture coordinates are created, they can be used to pick the the values stored
in the textures. First the displacement values are fetched. Only the textures describing
the two largest domains are used. The smallest domain is only used for surface details,
and not displacement.

v.y = texture2D(heightmapBig, bigCord)[0];
v.y += texture2D(heightmapMedium, mediumCord)[0];

Second, the normals for the vertex are fetched, and sent to the fragment shader for lighting
calculations. Fetching a texture to vertex shader is less time consuming than fetching a
texure to the fragment shader. The grid of the biggest waves is coarser than the grid
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of the vertices. Fetching the gradient of the biggest waves can be done in vertex shader
without loosing data. But the two smaller wave systems have to be loaded in fragment
shader.

normal.xyz = texture2D(gradientBig, bigCord).xyz;

The waves look more realistic with sharper wave crest. The waves are therefore manipu-
lated according to 2.2.2 making the waves more choppy.

v.x -= 10*Tc/H0*normal.x
v.z -= 10*Tc/H0*normal.z
Tc := T1*T1, calculated on CPU.

If the ship is displayed, the following code is adding the wake to the elevation data. The
code also reads the foam generated by the ship.

shipCord.x = abs(v.x/(281.6f)-1.822);
shipCord.y = v.z/(716.0f);

wakeFoam = 0.0f;
if ( shipCord.x<1.0f && shipCord.y<1.0f)
{
wakeFoam = texture2D(gradientShip, shipCord).z;
v.y += texture2D(heightmapShip, shipCord)[0];
}

2.6.2 Fragment Shaders

The fragment shader sets the final color of each pixel. Normals are added together from
each of the wave textures, and the fresnel effect is calculated. Two different fragment
shaders have been made. One version using the skybox approach, and one using parame-
terized approach. An option in Ocean Simulator decides which one to use. Both shaders
start with loading the texture values and calculating the gradients.

First gradients from the different textures are loaded.

finalNormal.x = normal.x + 0.8f*tex.x + gradSh.x + tex2.x;
finalNormal.y = 1.0f;
finalNormal.z = normal.z + 0.8f*tex.y + gradSh.y + tex2.y;

finalNormal = normalize(finalNormal);

Then the view vector is calculated. The view vector describes the direction from viewpoint
to one fragment.

vec3 view = normalize(gl_ModelViewMatrixInverse[3].xyz - pos);

To be able to calculate the intensity of the light, the reflection vector is calculated.

vec3 reflection;
reflection = (reflect(view, finalNormal));
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The fresnel factor is calculated to simulate the diffraction pattern. The calculation of
fresnel factor is done according to B.3.

cosinus = dot(view, finalNormal);
sinvec = cross(view, finalNormal);
sinus = sqrt(1.0f-0.25f*dot(sinvec,sinvec));
fresnel = (cosinus - 2.0f*sinus)/(cosinus + 2.0f*sinus);
fresnel = fresnel*fresnel;

Foam

When simulating foam, further manipulation of the color is needed. The following code
is only executed when foam is simulated. See chapter 2.5 for further explanation.

The foam is simulated by combining a CPU generated matrix with a hight check in shader.
First an ’if sentence’ makes a check for simulating whether a wave is breaking or not. If a
wave is breaking, the color is changed according to the code below. FoamMap is a simple
picture used to give texture to the breaking wave.

vec4 foam2 = texture2D(foamMap2, foamCord);

if(wakelessHeight > 0.6f*H0 && normal.z<-0.01)
{
finalColor.x = foam2.x+0.4;
finalColor.y = foam2.y+0.4;
finalColor.z = foam2.z+0.4;
}else{
finalColor.x = 0.0;
finalColor.y = 0.0;
finalColor.z = 0.0;
}

A breaking wave tends to create foam which fades away after some minutes. To simulate
this effect a foamMap is calculated on the CPU. The texture of the foam is made by
combining gradients of the the smallest waves width texture foamMap2.

float foamI = abs(tex.x)*25/H0;;

finalColor.x += (foam)*(foam2.y*foamI);
finalColor.y += (foam)*(foam2.y*foamI);
finalColor.z += (foam)*(foam2.y*foamI);

Foam generated by the ship is calculated using similar technique. But the foam intensity
is given by the same textures as describe the gradients of the wake.

float foamI = abs(tex.x*tex2.x)*7500/H0/H0;

if (shipCord.x<1.0f && shipCord.y<0.99f)
{
finalNormal.x += gradSh.x;
finalNormal.z += gradSh.y;
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finalColor.x += foamI*wakeFoam;
finalColor.y += foamI*wakeFoam;
finalColor.z += foamI*wakeFoam;
}

Parameter

In the parameter shader, position of the sun is set directly in the fragment shader.

lightDirection.x = -1.0f;
lightDirection.y = -0.4f;
lightDirection.z = -0.0f;
lightDirection=normalize(lightDirection);

based on the reflection vector, the intensity of diffuse and specular light is calculated. The
max() and min() functions make sure that the quotients are 0 or larger.

Rs = max(dot(reflection,lightDirection.xyz), 0);
Rd = -min(dot(finalNormal,lightDirection.xyz), 0);
Ra = max(dot(reflection,view), 0);

An if sentence separates the area where the sun is directly reflected to viewpoint. For
the fragments reflecting the sun directly, a clear bright color is given. For all the other
fragments, a modified version of phong formula gives the lighting. . The fresnel component
is the only component separating the shader from the Phong formula Phong shading
(2011).

if (Rs >= 0.9903f)
{

finalColor.x = 0.99f;
finalColor.y = 0.79f;
finalColor.z = 0.65f;

}
else
{

finalColor.x = 0.03f*Rd*fresnel+0.02f*Ra+0.13f*Rs*fresnel+0.02f;
finalColor.y = 0.04f*Rd*fresnel+0.07f*Ra+0.25f*Rs*fresnel+0.03f;
finalColor.z = 0.05f*Rd*fresnel+0.10f*Ra+0.4f*Rs*fresnel+0.04f;

}

Skybox

Using the Skybox shader instead of the Parameter shader, the color setting is made by
the code given below.

finalColor += textureCube(skyBox, reflection).zyxw;

if(finalColor.x<0.9f)
{
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finalColor *=fresnel;
}

The textureCube command gives the reflecting color from a surrounding skybox. The
skybox principle is explaind in C.

2.7 Ship Motion

How the ship moves in the waves is calculated by using transfer function. Chapter 1.4
explains how a transfer function works.

In naval engineering, a common way of describing a transfer function is by using Ascii
file. The file describes the transfer function for distinct frequencies and directions. The
value of the transfer function is given by two numbers, one amplitude and one phase
shift. The file gives one transfer function for every combination of a direction, frequency
and DOF. In the beginning of the file, the available frequencies and directions are listed.
Interpolation can be used to find the transfer function for directions and frequencies in
between the given values.

Ocean Simulator uses the transfer function closest to the original wave. Ocean Simulator
operates on several different coordinate system. Making algorithms as simple as possible
is therefore crucial for debugging. A more mathematical correct representation would
be to use linear interpolation. As the algorithm for calculating the transfer function is
implemented, using linear interpolation will not make the algorithm more complicated.
But due to the vast number of single waves, the implemented method gives good results.
Rewriting the class to use linear interpolation has therefore not been prioritized.

A matrix describes the relationship between each single wave and the transfer function.
For each single wave, the matrix has a reference to the nearest transfer function. The
pseudo code below describes how the algorithm works.

N : Grid size.
reDof[]: relationship between single wave and transfer function.
wave[] : input values for ifft. Complex number.
transfer[] : transfer function. Complex number.
DOF[] : calculated ship position.

for k = 0:sizeof(DOF)
for i = 0_N

for j=0:N
closest_dir = reDof[i,j,1]
closest_omega = reDof[i,j,0]
DOF[k] += real ( transfer[closest_dir,closest_omega] * wave[i,j] )

end
end

end
return DOF
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Results

3.1 Performance

3.1.1 IFFT

The asymptotic behaviour of the computation time for a IFFT algorithm is given below.

O(N) = N ∗N ∗ log(N); (3.1)
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Figure 3.1: Time consumption. The lines show the asymptotic behaviour of the complex-
ity.

Figure 3.1 shows the computation time on two different mediocre CPU’s. For grid size
below 256, both CPU’s run through the algorithm quite fast. The CPU time is not
significant for the total performance of the program. But when the grid size exceeds 256,
both processors use significantly longer time. Both processors have a L1 cache of 512 kB,
which is the same size as a 256 by 256 matrix of complex floating point numbers. The
limitation of L1 cache can therefore explain the jump in time consumption when grid size
exceeds 256 by 256 elements. But for the purpose of Ocean Simulator, a grid size of 64
by 64 is enough. The IFFT algorithm is therefore not a limiting factor.
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3.1.2 FPS vs. Grid Size

For the simulation to run smoothly, a frame rate above 50 is required. The graphs below
show how the frame rate responds to a change in the number of vertices. As expected,
the relationship between the computation time and the total number of vertices seems to
be linear.

The performance has been tested on a 2 year old computer with a ATI 4000 - series GPU.
The tests have been done without displaying the ship and without simulating foam. The
results are varying with a factor of 2 based on other programs running in Windows. To
establish the reason for this variation, more testing is needed.

’Ocean Simulator’ is optimized to display waves without effects like foam. Including foam
therefore reduces the frame rate significantly. Including a ship in addition results in a
reduction of the FPS of approximately one half.
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Figure 3.2: The frame rate vs. total number of unique vertices.
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Figure 3.3: Time consumption for swappbuffer

D.N. N Vertex N IFFT FPS T IFFT T texture T swapB
2 64 64 82.8 0.901 0.518 7.55
2 128 64 73.6 0.669 0.00 8.944
2 256 64 51.5 0.873 0.00 14.997
4 64 64 70.9 1.282 0.855 7.306
4 128 64 53.7 1.527 0.983 11.042
4 256 64 23.5 0.921 0.746 37.960
4 512 64 5.0 1.237 0.816 195.12
2 128 128 37.5 3.738 1.397 14.379
2 256 128 29.9 3.888 1.621 20.652
2 512 64 18.9 3.62 1.387 40.746
4 128 128 27.7 3.646 1.359 23.904
4 256 128 17.9 3.556 1.393 43.815
4 512 128 4.8 4.528 2.333 193.917
2 128 64 84.2 0.894 0.491 7.401
2 256 128 47.2 3.653 0.992 9.353

Explanation Table

D.N.: number of repetition of largest wave system.
N Vertex: Number of vertexes for one repetition of largest wave
N IFFT: Size of matrix for fast fourier transformation.
FPS: Frame rate.
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T IFFT: Time needed for all inverse fast fourier transformation
T texture: Time consumption updating all textures.
T swapB: Time consumption Swap Buffer.

3.2 Skybox and Parameterization

In the application two different lighting shaders were implemented. The skybox approach,
and the parameterization approach. The visual results are shown in Figure 3.4 and Figure
3.5. Both approaches give a nice looking sea, but the skybox approach gives the most
realistic representation. This conclusion might not be a big surprise since the skybox uses
pictures of the real sky. All the details in a picture are difficult to represent mathematically
with a formula. Both shaders run with the same execution time giving no difference in
the overall performance.

Figure 3.4: Skybox (cube mapping)

Figure 3.5: Parameterization
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3.3 Repetition

With a short wave length, it is easy to see the repetitive pattern of the wave. Figure 3.6
below shows the wave pattern with a T1 of 4 s, which gives a wave length of approximately
25 meter. Ocean Simulator uses three heightmap with dimensions of 32, 128 and 512
meter. Since the 128 is a multiple of 32, the two smaller height map produce a repetitive
pattern for every 128 meter.

Figure 3.6: Repetitive pattern of waves

A solution is to implement a new height map and change the physical size of their domain,
at which they are not a multiple of each other. E.g.. Having 4 heightmaps with sizes 24,
53, 189 and 551 meter will eliminate this problem.
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The OceanSimulator Application

To run OceanSimulator, double click on the file ’oceanSimulator.exe’. For the program to
run properly, the requirements below have to be met. Most graphics card with less than
2 year of age will meet these requirements.

Requirements:

• Graphics card from ATI (may run on some Nvidia devices)

• Support for OpenGL 3.2 or newer version.

• Support for at least 16 texture units.

Figure 4.1 and Figure 4.2 shows the different program interfaces. They are accessed by
pressing ’B’. Figure 4.1 shows the first interface giving information about the different
wave parameters, and time spent on the different calculation and data transfer tasks.
Figure 4.2 shows the second interface displaying plots for the ship motion.

Figure 4.1: Application with the first interface showing wave parameters and time spent
on different tasks
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Figure 4.2: Application with the second interface showing plots of the ship movement

Operation of Ocean Simulator is based on keystroke and mouse input. An overview of
the different keyboard inputs can be seen in Figure 4.3. Note that the keys ’W’, ’S’ ,
’E’ , ’D’ will change purpose when a single wave is generated. Keyboard arrow ’UP’ and
’DOWN’ zooms the view in, and out, respectively. The mouse is used to look around in
the scenery. Holding right mouse button down enables the user to strafe left, right, up
and down with the mouse. Left clicking pauses the program and unlocks the mouse so
other tasks can be performed on the desktop. ’ESC’ shuts down and exits the program.
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Figure 4.3: User input
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Further work

5.1 Generating Wake

The algorithm for generating wake has an option for implementing a 3D model of a
ship. But this method is not combined with the use of IFFT algorithm. Which means a
computation time of one hour instead of 30 sek. In addition the algorithm which calculates
the wake based on an external 3D model, does so by using numerical integration of function
1.33. If the numerical integration was switched with an analytical model, the algorithm
would be both faster and more correct. The method below describes how to implement
an analytical model.

The method described here assumes that a model consists of triangles, or can be repre-
sented by triangles. The shape of a triangle can be represented by four linear functions,
as shown in picture 5.1 below. The first step is then to dividing the triangle into two new
triangles separated by a vertical line going through the second vertex. Then A(θ) can be
found by analytical integration over each of the two triangles 5.2. y(x,z) is the function
describing the plane surface.

Figure 5.1: A triangle can be represented as equations

A(θ) from each primitive can then be computed by adding together the contribution from
each area.

A(θ) = A(θ)A1 + A(θ)A2 (5.1)
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From chapter 1.5 we have the formula for Aθ

A(θ) =
2

pi
∗ k(θ)2

∫ ∫
Y (x, z)exp(k(θ) ∗ Z + i ∗ k(θ)))dzdx (5.2)

A(θ)A1 =
2

pi
∗ k(θ)2

∫ V 2.x

V 1.x

∫ z1(x)

z3(x)

Y (x, z)exp(k(θ) ∗ Z + i ∗ k(θ)))dzdx (5.3)

A(θ)A2 =
2

pi
∗ k(θ)2

∫ V 2.x

V 1.x

∫ z2(x)

z3(x)

Y (x, z)exp(k(θ) ∗ Z + i ∗ k(θ)))dzdx (5.4)

A brief attempt to estimating the error has been done. The IFFT method is combined
with the trapezoidal rule for integration, the error estimate for the trapezoidal rule is
applicable. The proof for the error formula is given in R. L. Burden (2005).

Error =
∑ (∆θi)

3

12
f ′′(θi) (5.5)

The maximum wave amplitude found for a 320 meter long ship at speed of 10 knots is 0.45
meter. The maximum error found from the formula is 0.1 m. Which gives an maximum
error of approximately 20 %. From Figure 2.9 it is clear that a more clever integration
technique than the trapezoidal rule has to be implemented if the number of sampling
points is not increased. The error estimate can explain the noise emerging in the outer
areas of the wake domain. Since the computation time is around 30 sec for one wake field,
increasing the accuracy of the method seems feasible. One solution for reducing the error
could be to to increasing vector for the IFFT by a factor of 8. Thus increasing the number
of sampling points by a factor of 8. Simultaniusly increasing the computational domain
by a factor of 8 in x direction. The step size in frequency domain will then be redused
by a factor of 8. Leaving the error estimate with a value of (1

8
)2 = 1.5% of current value.

Since a bigger area will be computed, only 1/8 of the computed needs will be used in the
program. Increasing the computational domain with a factor of 8 is expected to increase
computation time with a factor of 10.

In the current configuration, the IFFT algorithm will not capture the last 5.5 % of the
domain of A(θ). Integrating the A(θ) function over the last 0.055% , will affect the wave
height by at most 10−4m. Compared to a wake amplitude of 0.45 meter, this is a small
error. The value 10−4 is found by doing the following integration.

error =

∫ π/2

0.95∗pi/2
abs(A(θ))dθ (5.6)

Another small problem with the wake algorithm is that it produces texture with a size of
700 by 1700. Textures are more efficiently handled when it is at a size of 2n. In addition,
some older versions of OpenGL drivers may not support textures which do not have a
size of 2n. Testing the program on an older computer, the textures may therefore be
interpreted wrongly. Increasing the texture size to 1024 by 2048 will therefore increase
the performance and stability of the program. But longer loading time is to be expected.
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5.2 Tessellation

Tessellation is a technique for dynamically varying the number of vertices. Typically
increasing the number of vertices near the view point, and decreasing the number of
vertices for objects far away.

The mesh implemented in the application is static. The size of each polygon is the same
whether viewing from a distance far away or near the surface. This can cause a problem
when looking closely at the elevated surface. If the node size in the mesh is big enough,
it might be possible to see that the surface consists of squares. Another visual aspect to
notice is that the surface itself looks relatively flat. The elevation data density is greater
than the node density. A solution for how to use more of the height data could simply be
to increase the number of nodes. The downside of increasing the number of nodes is that
it increases workload on the GPU, and would drop the frame rate significantly. The best
solution would be to implement a tessellation algorithm.

Tessellation techniques are used to divide a polygon into a suitable sized structure. In
graphics programing this is implemented by introducing the geometry shader which builds
the vertices and polygons. With a proper algorithm in the geometry shader, the size of
the polygons could be determined based on the distance from the camera to the surface.
This is known as adaptive subdivision tessellation, and an example of this technique is
shown in Figure 5.2. Polygons near the camera would be small, making the surface more
detailed where it is important, and polygons far away would be bigger. The result would
be a fine grid near the camera and a coarse grid at distance. With this technique the
visualization would be improved, only suffering a small performance loss when the same
number of vertices as in the static approach is used.

Figure 5.2: (a) The base mesh for a hand. (b) Refined mesh based on distance from
camera. (Nguyen, 2007)
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Figure 5.3 shows the current elevation mesh. Keeping the density of the vertices constant
results in more vertices than possible to represent on screen. The high number of vertices
may also result in a distorted picture, reducing the visual quality. A clever implementation
will use less resources on computing the areas far away, without compromising with the
quality.

Figure 5.3: Elevated mesh
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Appendix A

Opengl, Graphics Language

When developing an application capable of producing 2D and/or 3D computer graph-
ics, there are two major application programming interfaces (APIs). One of these is the
Windows specific version, called DirectX. DirectX generally targets the Microsoft Win-
dows platform, including the Xbox consoles. Second, there is OpenGL (Open Graphics
Library). OpenGL is a cross-language, cross-platform API. The OpenGL API is available
under an open source license, and implementations exist on most platforms. The idea
behind OpenGL is to have an open source platform for programming on graphics card.
The usage of OpenGL has increased greatly the last years mostly due to the smartphone
revolution where the Microsoft Windows platform (DirectX) has a very limited amount
of the market share.

The graphics card gets its instructions from the central processing unit (CPU), and exe-
cutes the given commands. All well known programming languages supports OpenGL.

A.1 Functionality

DirectX and OpenGL have to be supported in the graphics processing unit (GPU) in order
to work. Nearly all GPU vendors have support for both of these APIs. The OpenGL
interface consists of more than 700 distinct commands that allow the user to specify
operations needed to produce interactive three-dimensional applications.
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Figure A.1: Overview of the geometric primitives

It does not provide high-level commands for describing models of three-dimensional ob-
jects, like a boat model for instance. Every model is built up with a set of geometric
primitives consisting of points, lines and polygons. Figure A.1 shows all the primitives
in OpenGL. The primitives are specified by their vertices, and OpenGL converts these
primitives to images on the screen. A vertex may be specified in either 2D (x, y) or 3D
(x, y, z). The coordinates are used for positioning in space. Different numbers of vertices
give different geometric primitives. Two vertices are needed for a line, three vertices for
a triangle and four for a quad.
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A.2 The OpenGL Shading Language

Figure A.2: OpenGL rendering pipeline (Rost, 2006)

Figure A.2 is a detailed overview of the rendering pipeline in OpenGL. The rendering
pipeline consists of several stages that is required to get the image of a 3D model to
the screen. The important stages here are the vertex processor, and fragment (pixel)
processor, numbered with 1, and 2, respectively. The vertex processor assembles the
geometry, and the fragment processor performs coloring of the geometry surface. These
stages are fully programmable, and a program running on either the fragment or vertex
processor is called a shader. To program a shader the OpenGL Shading Language (GLSL)
is used. With C as its basis, functions like for loops, subroutine calls, and branching (if-
statements) are supported. In addition the language has a rich set of types, including
vector and matrix types which are heavily used in typical 3D graphics operations.

To run the shader, a shader program must be created and the source code has to be sent
to the GPU. The steps are shown in Figure A.3. When the applications is running, the
instructions (shader) for the vertex processor is run on every vertex in the 3D model, with
one vertex in, and one updated vertex out. The same concept applies for the fragment
processor. For every pixel that needs to be drawn on the 3D model surface, the fragment
processor performs its instructions and the result is one updated pixel ready to be drawn
on the screen. The vertex and fragment shader is described further in Section A.3 and
Section A.4.

48



Figure A.3: Steps in creating and sending shaders to the graphics device

In order to get a realistic looking ocean, both the vertex and the fragment stages needs
to be programmed properly. To get correct animation of the waves, the vertex processor
needs its instructions. In order to get the water looking realistic with light reflections and
optical effects, the proper algorithms has to be implemented in the fragment processor.

A.3 Vertex Processor

First and foremost a vertex is described by its location in space, as mentioned earlier,
but it also holds other values like color, texture coordinates and normals. The vertex
shader cannot change the data types but they can change the value of the data. The
vertex processor performs operations such as vertex transformation, normal transforma-
tion and normalization, texture coordinate generation, texture coordinate transformation,
lightning, and color material application. Because of its general purpose programmability
mathematical equations and implementations can be used in any order to manipulate
these data to give the desired effect. The same applies to the fragment shader.

Figure A.4 shows the different data values that are used as inputs to the vertex processor,
and the values that are produced by the vertex processor. There are two types of attribute
variables, the built in and the user defined. The built in variables consist of the vertex
coordinates, normals, colors, and texture coordinates, i.e. variables that describe the ge-
ometry. But it is also possible to define your own variables, called uniforms. The uniform
variables are available in both the vertex and fragment shader, and can be updated from
the CPU when it is needed. It can store integers, floats, boolean, matrix values, and
arrays of these.

With the vertex processors capability to read from texture memory, displacement mapping
algorithms, among other things, can be implemented. This is a key feature regarding our
implementation of the ocean surface.
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Variables can also be passed from the vertex processor to the fragment processor. These
variables are called varying variables, and both built-in and user-defined varying variables
are supported. They are called varying because each of these variables usually are different
for each vertex.

Figure A.4: Vertex processor inputs and outputs (Rost, 2006)

A.4 Fragment Processor

The fragment processor operates on fragment values and their associated data. It performs
traditional graphics operations such as operations on interpolated values, texture access,
texture application, fog, and color sum. These operations are performed on each fragment
generated by the rasterization of points, lines, polygons, pixel rectangles and bitmaps. If
a texture is enabled, the fragment processor will read the image from the texture memory
and apply it to the polygon while performing traditional operations such as pixel zoom,
scale and bias, color table lookup, convolution, and color matrix.

Figure A.5 gives a representation of which inputs and outputs that are processed.
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Figure A.5: Fragment processor inputs and outputs (Rost, 2006)

The fragment shader computes color, depth, and arbitrary values. Different lightning,
reflection, and shadow effects are typically added here. When the fragment has got its
final color, it is sent to the framebuffer and displayed on the screen.
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Appendix B

Optical Effects On The Water Surface

To get a realistic rendering of the water surface there are many components that must be
considered. Water reflects its surroundings, and the reflection changes depending on the
viewing angle. When observing at a glancing angle (eyes at level with the water surface)
there are reflections and specularity on the surface. If the water’s orientation reflects
sunlight directly there will appear very bright spots on these locations. When looking
straight down from above the ocean, or a pool for instance, there is not much reflected
light on the water surface. The reason for this is that water is a transmissive medium,
and at a certain angle the incoming ray will not be reflected, but it will continue through
the water. If the reflectivity of the water surface is low, light coming from below the
surface can be visible to the observer. This light is either caused by scattered light from
the water volume, or reflection from the water bottom. The scattered light is a result of
unabsorbed light from water molecules, and impurities in the water. The impurities in
the water determine how much of the light is scattered, and what color the water gets.
For instance muddy water is brown, and algae can cause the water to become green.

B.1 Reflection

There are basically two kinds of reflections. Reflection of light is either specular or diffuse
which depends on the material of the reflecting surface. Specular reflection is a mirror
like reflection where light from a single incoming ray is reflected into a single outgoing ray.
The angle of the incoming ray is equal to the angle of the outgoing ray. Diffuse reflection
is a ray where light from a single source is reflected at many angles rather than just one
angle. Figure B.1 shows how the incoming light can be reflected, either in a diffuse or
specular manner.
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Figure B.1: Diffuse and specular reflection

B.2 Refraction

If the incoming ray is not reflected, it may either be absorbed by the material, or it
will pass through the material. When a wave travels from one medium to another with
different densities, the speed will change. This results in a change in the direction of the
wave, also called refraction. Snell’s law, (B.1), describes refraction where the angle of
incidence θ1 is relative to the angle of refraction θ2. n1 and n2 are the refractive indices of
the two media. These parameters expresses the slowdown of the light in the given media
compared to the light speed in vacuum. For air and water, the value of these indices are
1 and 1.333.

sin(θ1)

sin(θ2)
=
v1

v2

=
n2

n1

(B.1)
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Figure B.2: Refraction of light between two media with different densities
(Wikipedia:Refraction)

Figure B.2 is an example of how the light would bend when entering a material with
greater density than its origin.

B.3 Fresnel

Reflection and refraction may occur at the same time if the material allows it. Water is
both a transmissive medium and a great specular reflector. The Fresnel equations describe
this behaviour.

Figure B.3: Incoming light P gets reflected Q, and refracted
(Wikipedia:Fresnel_equations)

In Figure B.3 symbols and behaviour of an incoming light ray is shown. The initial power
of the incoming ray is split between the reflection and the refraction. Reflectance R is
the fraction of initial power that is reflected, and transmittance T is the fraction of the
initial power that is refracted. If the light is s-polarized the reflection coefficient is given
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by:

Rs =

(
n1cos(θi)− n2cos(θt)

n1cos(θi) + n2cos(θt)

)2

(B.2)

If the light is p-polarized the reflection coefficient is given by:

Rp =

(
n1cos(θt)− n2cos(θi)

n1cos(θt) + n2cos(θi)

)2

(B.3)

Due to conservation of energy the transmission coefficient is given by:

T = 1−R (B.4)

The reflection coefficient for unpolarized light is:

R =
Rs +Rp

2
(B.5)
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Figure B.4: Reflectance of water to air
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Figure B.5: Reflectance of air to water

Figure B.4 and Figure B.5 shows the reflectance at different angles of water-to-air, and
air-to-water, respectively. The graphs in Figure B.4 converge to a critical angle. This
angle can be found with (B.6). Total internal refraction occurs beyond this angle.

θc = arcsin(
n2

n1

) (B.6)
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Appendix C

Cube mapping

Environment mapping is an technique to render an object as if it were perfectly reflective,
so the colors on the surface are those reflected to the eye from its surroundings. The
technique is an approximation based on the assumption that the environment is far away
comparing to the reflective object.

With a cube map, also called a skybox, the surroundings are represented by images, and
these images are mapped onto a cube.

Figure C.1: An object in a cube map (Wikipedia:Cube_mapping)

In Figure C.1 an object is placed in a cube map environment. The reflective vector is
calculated based on the viewing vector and the surface normal. The direction of the
reflection vector determines which pixel from the cube map that is chosen. Based on the
material properties of the object, the material uses the reflected value to calculate its final
color.
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Cube maps are supported in the graphics hardware, and integrated into shading languages.
When the cube map is loaded into the GPU, a single function call with the cube map and
the reflective vector as input is enough to get the reflected color.
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