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Abstract

Most commercial computational fluid dynamics (CFD) packages available today are
based on the finite volume– or finite element method. Both of these methods have
been proven robust, efficient and appropriate for complex geometries. However,
due to their crucial dependence on a well constructed grid, extensive preliminary
work have to be invested in order to obtain satisfying results. During the last
decades, several so-called meshfree methods have been proposed with the intension
of entirely eliminating the grid dependence. Instead of a grid, meshfree methods
use the nodal coordinates directly in order to calculate the spatial derivatives.

In this master thesis, the meshfree least square-based finite difference (LSFD)
method has been considered. The method has initially been thoroughly derived
and tested for a simple Poisson equation. With its promising numerical perfor-
mance, it has further been applied to the full Navier-Stokes equations, describing
fluid motions in a continuum media. Several numerical methods used to solve
the incompressible Navier-Stokes equations have been proposed, and some of them
have also been presented in this thesis. However, the temporal discretization has
finally been done using a 1st order semi-implicit projection method, for which the
primitive variables (velocity and pressure) are solved directly. In order to verify the
developed meshfree LSFD code, in total four flow problems have been considered.
All of these cases are well known due to their benchmarking relevance, and LSFD
performs well compared to both earlier observations and theory.

Even though the developed program in this thesis only supports two dimensional,
incompressible and laminar flow regimes, the idea of meshfree LSFD is quite general
and may very well be applied to more complex flows, including turbulence.
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Chapter 1

Introduction

The ability to mathematically describe physical phenomenons in nature is essential
in most fields of science and engineering. The models describing complexities in
nature are called partial differential equations (PDE’s) and are in general difficult
if not even impossible to solve analytically. In order to solve problems of high
complexity, the reliance on numerical methods has therefore been crucial.

Traditionally, the favored methods applied to problems in fluid dynamics are the
finite difference method (FDM), finite element method (FEM) and finite volume
method (FVM). While FEM and FVM are robust and well suited for complex
geometries, they are both more computational expensive than the FDM. FDM
on the other hand, represents difficulties when applied to complex geometries due
to its reliance on coordinate transformation, which in fact is impossible for fairly
complex geometries. However, FDM performs efficiently on regular domains.

The flexibility in geometrical complexity has made FVM and FEM the preferred
methods in commercial packages. Despite their strengths they both have an im-
portant common shortcoming. They need a mesh with certain qualities fulfilled in
order to approximate an accurate solution. Not only does the meshing procedure
often turn out to be the most time consuming part of the analysis, but also mesh
adaptivity represents a tremendous challenge. In the last decade extensive research
has therefore been done in the field of so-called meshfree methods. In a meshfree
method, the main idea is basically to eliminate the entire meshing procedure and
instead use nodal coordinate information in order to obtain an approximation to
the PDE. Instead of mesh generation, the meshfree methods rely on node genera-
tion which is considered an easier and faster procedure in terms of computational
effort.

1



2 Chapter 1. Introduction

(a) Mesh representation (b) Node representation

Figure 1.1: Mesh– and node-based geometry representation.

Adaptivity is also much easier in meshfree procedures because nodes may simply
be added or removed from the domain, without having to re-mesh and verify the
mesh quality for every adaption step.

Several meshfree methods have been proposed to date. In this thesis however, only
the least square-based finite difference (LSFD) method has been considered. The
LSFD procedure can be viewed as a further development from an earlier meshfree
method called general finite-difference (GFD). The idea of LSFD was proposed by
Ding et al. [6], and has been treated in chapter 2. LSFD is a method used to
approximate the spatial derivatives and may in general be applied to any desired
PDE. By combining LSFD with a temporal scheme for solving the Navier-Stokes
equations, its potential can be fully utilized.

Earlier, computational fluid dynamics (CFD) had no serious commercial interest
simply because the computers were too weak at that moment. With increasing
availability in computational power, the situation today has turned entirely. While
experimental– and empirical methods earlier were the main sources for engineering
analysis, most of todays effort is done in CFD and later confirmed with experiments.
The complexity of problems such as CFD today can handle is increasing, and
the accuracy continuously gets better. The implementation of the fluid dynamics
equations has been discussed in chapter 3, and the LSFD method has further ben
programmed throughly, and executed for a set of problem cases. The programming
issues have been considered in chapter 4, while the analysis have been performed
and discussed in chapter 5.



Chapter 2

Development of the LSFD
scheme

One of the shortcomings in conventional finite difference method is that the deriva-
tives are approximated along one dimensional paths in a multidimensional domain.
For very simple geometries this is satisfactory, but as more complex geometries are
considered, difficulties may quickly arise. This is a great motivation for developing
a more general discretization method for multi dimensional geometries. The LSFD
method presented in this thesis, was originally developed by Ding et al. [6].

2.1 Taylor series expansion

In conventional finite difference method, the functional value at every node in the
domain is approximated by one dimensional Taylor series expansion on its adjacent
neighbors.

f (x+ ∆x) =

N∑
n=0

(
∆xn

n!

∂nf

∂xn

)
+ O

(
∆xN+1

)︸ ︷︷ ︸
Order of accuracy

(2.1)

In equation (2.1), N is the desired number of truncation terms. To illustrate how
the derivatives can be approximated, three points with individual distance ∆x are
considered in figure 2.1.

3



4 Chapter 2. Development of the LSFD scheme

x
i 12

∆x∆x

Figure 2.1: One dimensional node distribution

Taylor expansion up to 2nd order is introduced on node i in order to approximate
the functional values on node 1 and 2.

f1 = fi + ∆x
∂fi
∂x

+
∆x2

2

∂2fi
∂x2

+O
(
∆x3

)
(2.2)

f2 = fi −∆x
∂fi
∂x

+
∆x2

2

∂2fi
∂x2

+O
(
∆x3

)
(2.3)

By combining equation (2.2) and (2.3), the derivatives of fi can be approximated
as

∂fi
∂x

=
f1 − f2

2∆x
+O

(
∆x2

)
(2.4)

∂2fi
∂x2

=
f2 − 2fi + f1

∆x2
+O (∆x) (2.5)

Equation (2.4) and (2.5) are central difference approximations to the 1st– and 2nd
order derivatives of fi because they are found by evaluating the functional values
in both spatial directions. If the Taylor expansion in equation (2.2) and (2.3) were
only to be considered up to 1st order, f1 and f2 would be expressed as

f1 = fi + ∆x
∂fi
∂x

+O
(
∆x2

)
(2.6)

f2 = fi −∆x
∂fi
∂x

+O
(
∆x2

)
(2.7)

giving two different approximations to the 1st order derivative of fi.

∂fi
∂x

=
f1 − fi

∆x
+O (∆x) (2.8)

∂fi
∂x

=
fi − f2

∆x
+O (∆x) (2.9)

Equation (2.8) and (2.9) are the forward difference– and backward difference ap-
proximations. Obviously expression (2.4), (2.8) and (2.9) approximate the same
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derivative. However, the central difference expression in (2.4) provides one order
of accuracy higher. In general, if an n-order derivative with p-order of accuracy is
required, Taylor expansion have to be applied to (n+ p− 1) = j neighbor nodes.
Exceptions to this rule do however exist. If for instance Taylor expansion on node
i in figure 2.1 is truncated up to 3rd order, the system of equations would initially
be expected to be underdetermined due to more unknown derivative terms than
neighbor nodes.

f1 = fi + ∆x
∂fi
∂x

+
∆x2

2

∂2fi
∂x2

+
∆x3

6

∂3fi
∂x3

+O
(
∆x4

)
(2.10)

f2 = fi −∆x
∂fi
∂x

+
∆x2

2

∂2fi
∂x2

− ∆x3

6

∂3fi
∂x3

+O
(
∆x4

)
(2.11)

Combining equation (2.10) and (2.11) by elimination of the 3rd order derivative
gives the following expression.

∂2fi
∂x2

=
f2 − 2fi + f1

∆x2
+O

(
∆x2

)
(2.12)

The 1st order derivative term vanish automatically, giving one order of accuracy
higher than expected. Equation (2.5) will therefore show 2nd order of accuracy,
not 1st.

The concept of Taylor series approximations of derivatives can easily be extended
to higher dimensions. Two dimensional Taylor series expansion is generally written
as

f (x+ ∆x, y + ∆y) =

N∑
n=0

(
n∑
k=0

(
∆xn−k∆yk

(n− k)!k!

∂nf

∂xn−k∂yk

))
+O

(
∆xN+1,∆yN+1

)
︸ ︷︷ ︸

Order of accuracy

(2.13)

In two dimensional Taylor series expansion, there are no path-alignment restrictions
on the nodes. This provides much higher flexibility, though more neighbor nodes
are needed in order to evaluate the same derivatives as earlier, because the cross
derivatives will have to be encountered for as well.
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x

y

i

1

2

3

4

5
∆x1

∆y1

∆x2

∆y2

∆x3

∆y3

∆x4

∆y4

∆x5

∆y5

Figure 2.2: Two dimensional node distribution

In order to illustrate how two dimensional Taylor series expansion can be per-
formed, the node distribution in figure 2.2 will be considered during the following.
To approximate the derivatives of fi up to 2nd order, D = 5 number of deriva-
tive terms have to be considered. Therefore N = 5 number of neighbor nodes are
needed in order to determine all unknowns. As earlier, the functional values at
each neighbor node can be expressed as

fj = fi + ∆xj
∂fi
∂x

+ ∆yj
∂fi
∂y

+
∆x2

j

2

∂2fi
∂x2

+ ∆xj∆yj
∂2fi
∂x∂y

+
∆y2

j

2

∂2fi
∂y2

+O
(
∆x3

j ,∆y
3
j

)
(2.14)

where j ∈ {1, 2, ..., N − 1, N}, and (∆xj ,∆yj) denotes the distance from the refer-
ence node i to the neighbor node j. Expression (2.14) can be reformulated into a
matrix system of the form

∆f = Sdf (2.15)

where ∆f is the N × 1 array

∆f =
[
fj − fi

]
(2.16)
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S is the N ×D matrix

S =
[
∆xj ∆yj

1
2∆x2

j ∆xj∆yj
1
2∆y2

j

]
(2.17)

and df is the D × 1 array

df =

[
∂fi
∂x

∂fi
∂y

∂2fi
∂x2

∂2fi
∂x∂y

∂2fi
∂y2

]T
(2.18)

S is a square matrix if N = D and invertible given non-singular matrix condition.
The derivatives of fi can therefore be obtained as

df = S−1∆f (2.19)

The numerical condition of S is critically dependent on the node distribution.
Even though the matrix is non-singular it tends to become ill-conditioned if the
neighbor nodes are located too near the reference, or too near the other neighbors.
To overcome these issues, the LSFD method uses local scaling and weighted least
squares technique.
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2.2 Local scaling

The supporting node located furthest from its reference i in figure 2.3, will define
the size di of the local domain Ωi comprising all the neighbor nodes.

x

y

i

Ωi

di

Figure 2.3: Local subdomain

All the spatial differences inside the local domain is then scaled to the domain

size di = 1.2 ·max
(√

∆x2
ij + ∆y2

ij

)
[26], improving the numerical condition of the

coefficient matrix S.

∆xj =
∆xj
di

(2.20)

∆yj =
∆yj
di

(2.21)

By defining S = SD, where D is the diagonal matrix

D = diag
[
d−1
i d−1

i d−2
i d−2

i d−2
i

]
(2.22)

Equation (2.19) can be written as

df = DS
−1

∆f (2.23)
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2.3 Weighted least-squares approximation

The implementation of local scaling deals mainly with the relation between the
reference node and its neighbors. The distribution of nodes inside the local domain
may also cause an ill-conditioned coefficient matrix if neighbor nodes are located
too close to each other. One way to deal with this issue could be to eliminate
the nodes causing the problem. However, this approach may severely increase the
computational time [6]. An alternative way is to apply the least squares technique.
The least squares technique is a procedure used to approximate the solution of an
overdetermined set of equations. An approximation to df in equation (2.15) may
therefore be achieved by introducing the definition [21].

ST∆f = STSdf (2.24)

The right hand side-term STS in equation (2.24) is a definite square matrix and
can hence be inverted in order to obtain the expression

df =
(
STS

)−1

ST∆f (2.25)

By following this procedure, df can be approximated by including more support-
ing nodes than derivative terms, giving the coefficient matrix better numerical
condition. The more supporting nodes included, the better the condition of the
matrix will become. However, the drawback is that local errors will increase si-
multaneously due to the enlarged local domain size di. Therefore, the number of
supporting nodes should be kept large enough to ensure good numerical conditions
for the coefficient matrix, but small enough to minimize its errors.

When the least-squares approach shown above is applied, every node contributes
equally to the approximation of df . In the case of derivative approximation, this
is not satisfactory because nodes located near the reference should have a higher
impact on the solution. By introducing a weighting function, this can easily be
adjusted for. The weighted least-squares approximation is defined as

STW∆f = STWSdf (2.26)

Where the weighting W is a diagonal matrix

W = diag
[
w1 w2 ... wN−1 wN

]
(2.27)
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Each component along the diagonal in expression (2.27) represents the weighting
of the respective supporting node j ∈ {1, 2, ..., N − 1, N}. The weighting is simply
a function of Euclidean distance to the reference node. Several different weighting
functions have been suggested, but according to [6] the following function should
be applied. A visualization is given in figure 2.4.

wj =

√
4

π

(
1− r2

j

)4
(2.28)

rj is the scaled distance to the supporting node

rj =

√
∆x2

j + ∆y2
j

di
(2.29)

where di is the local scaling factor presented in chapter 2.2.
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Figure 2.4: Weighting function

Now that the details of least-square-based finite difference method are derived, the
final algebraic expression will be given.

df = C∆f (2.30)

C = D
(
S
T
WS

)−1

S
T
W (2.31)
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The coefficient matrix C needs to be calculated only once, as long as the nodal
positions are fixed.

2.4 Spatial discretized equations

As shown during the previous sections, all derivative terms, including the cross
derivatives, are made available up to the truncated term through the LSFD coef-
ficients. Therefore, a spatial discretization of any PDE can easily be constructed.
Recall the derivative matrix form in equation (2.30). Each of the derivatives are a
summation of the functional differences (fj − fi) and their coefficients ci,kj .

dfi,k =

N∑
j=1

ci,kj (fj − fi) =

N∑
j=1

ci,kjfj − fi
N∑
j=1

ci,kj (2.32)

i and j represent the reference– and supporting node, while k represents the con-
sidered derivative term. N is the total number of supporting nodes included. If
the Taylor series expansion is truncated up to 2nd order, each derivative term will
therefore be approximated respectively as

∂fi
∂x

=

N∑
j=1

ci,1jfj − fi
N∑
j=1

ci,1j

∂fi
∂y

=

N∑
j=1

ci,2jfj − fi
N∑
j=1

ci,2j

∂2fi
∂x2

=

N∑
j=1

ci,3jfj − fi
N∑
j=1

ci,3j

∂2fi
∂x∂y

=

N∑
j=1

ci,4jfj − fi
N∑
j=1

ci,4j

∂2fi
∂y2

=

N∑
j=1

ci,5jfj − fi
N∑
j=1

ci,5j (2.33)

For the Poisson equation ∇2f = g (x, y), the discretized LSFD scheme would give
the following algebraic equation system, ready to be solved.
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fi =

N∑
j=1

(ci,3j + ci,5j) fj − g (xi, yi)

N∑
j=1

(ci,3j + ci,5j)

(2.34)

2.5 Numerical performance

First of all, the spatial order of accuracy in the LSFD method is equal to the ordi-
nary finite difference method, and will not be degraded due to increasing number
of supporting nodes [6]. However, as mention in chapter 2.3, introducing more
supporting nodes will expand the local domain size and hence increase the scaled
spatial differences. In other words, the truncation errors will become larger. The
accuracy of the LSFD method is in fact proportional to dpi [25], where di is the
local scaling factor, and p is the order of accuracy (OOA).

In order to study the numerical performance of LSFD method, the following 2D
Poisson equation is solved on a square domain (x, y) ∈ [(0, 0) , (1, 1)].

∇2f = −2π2 sin (πx) sin (πy) (2.35)

The boundary conditions are f = (1 + x) on all edges ∂Ω. The analytical solution
to the problem is

f = 1 + x+ sin (πx) sin (πy) (2.36)

Numerical performance is investigated by solving the problem using four different
node distributions, all of them uniform (h=constant).

Increasing number of supporting nodes is expected to decrease the accuracy of
the method by expanding the local domain size. The rate of convergence (order
of accuracy) should however not be degraded. In order to investigate this, the
LSFD coefficients are obtained by expanding the Taylor series to 3rd order. In
theory, the 1st order derivatives should now be approximated with 3rd OOA, 2nd
order derivatives with 2nd OOA, and 3rd order derivatives with 1st OOA [6]. The
highest derivative terms occurring in the PDE will therefore decide the overall
spatial OOA of the discretized equation system. The PDE (2.35) contains two 2nd
order derivatives, hence the solution is expected to be of 2nd OOA.
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Figure 2.5: Contour plot of Poisson equation (2.35)

The errors between numerical– and exact solution are measured in the relative L2

error norm defined as

L2 =

√√√√ N∑
i=1

(fi,num − fi,exact)2

√√√√ N∑
i=1

fi,exact

(2.37)

Results in table 2.1 are plotted in figure 2.6, from which it can be clearly seen that
the rate of convergence is the same no matter the number of supporting nodes. As
expected, the error increases with the number of supporting nodes.

Table 2.1: Logarithmic L2 error norm with varying node spacing h and supporting
nodes.

Node spacing h 0.1 0.05 0.025 0.0125 OOA
Supporting nodes 11 -2.237029 -2.830069 -3.426431 -4.025362 2

16 -2.140827 -2.732095 -3.329643 -3.928001 2
21 -1.921275 -2.514601 -3.111741 -3.711016 2
26 -1.849553 -2.443697 -3.040754 -3.639906 2
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Figure 2.6: Convergence plot for varying number of supporting nodes

The rate of convergence can be calculated using a best fit of the curves in figure
2.6, or simply by a linear approximation.

log10 (err) = a log10 h+ b (2.38)

err is the L2 error norm and a is the rate of convergence. Using the results from
table 2.1, a convergence rate of ∼ 2 is hence obtained, supporting the theoretical
OOA.

In theory, if the Taylor series expansion is truncated up to 2nd order, expected
OOA is 1. Likewise, if truncated up to 4th– and 5th order, OOA is respectively
3– and 4. To investigate this, a convergence study is performed using Taylor series
expansions up to the respective orders.

Table 2.2: Logarithmic L2 error norm with varying node spacing h and truncated
terms.

Node spacing h 0.1 0.05 0.025 0.0125 OOA
Truncated terms 2 -2.699964 -3.290763 -3.886573 -4.485465 2

3 -2.237029 -2.830069 -3.426431 -4.025362 2
4 -4.059690 -5.021991 -6.185197 -7.232897 4
5 -3.351632 -4.569932 -5.770477 -6.986294 4
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Figure 2.7: Convergence plot for varying number of truncated terms

5th order truncation yields the theoretical accuracy of 4th order. When truncated
to the 2nd– and 4th order, the rate of convergence proves to be respectively ∼ 2–
and ∼ 3.6, providing one OOA higher than expected. This phenomena has also
been pointed out in [10], and can be explained by the fact that the applied node
spacing h is uniform. Recall the 2nd order central difference equation (2.12), where
2nd OOA was achieved due to the uniform spacing.

For demonstration purpose, one dimensional Taylor series expansion is applied for
conventional FDM.

∆f − ε = Adf (2.39)

A is a square matrix containing the Taylor coefficients and ε is the truncation
error. Inverting A reveals the vector of discretized derivatives.

df = A−1 (∆f − ε) (2.40)

df truncated to 2nd order, assuming constant ∆x, corresponds to the following
coefficient matrix.

A =

[
∆x 1

2∆x2

−∆x 1
2∆x2

]
(2.41)
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Inverting A and substituting into equation (2.40) yields

[
fx
fxx

]
=

[
1
2∆x−1 − 1

2∆x−1

∆x−2 ∆x−2

]([
f1 − fi
f2 − fi

]
−
[
O
(
∆x3

)
O
(
∆x3

)]) (2.42)

Following the same procedure, though truncating equation (2.40) to 3rd order,
gives

 fx
fxx
fxxx

 =

 ∆x−1 − 1
3
∆x−1 1

6
∆x−1

∆x−2 ∆x−2 0
−3∆x−3 −∆x−3 ∆x−3

f1 − fi
f2 − fi
f3 − fi

−

O (∆x4
)

O
(
∆x4

)
O
(
∆x4

)
 (2.43)

Comparing equation (2.42) and (2.43) reveals identical approximation of the 2nd
order derivative term, except that higher order of accuracy is achieved for (2.43).
If 2nd order approximation of the 2nd order derivative term is required, Taylor
series truncated to 2nd order is hence sufficient for the uniform node spacing. The
reason why 3rd order Taylor series expansion in figure 2.7 indicates larger error
is because more supporting nodes are used in order to prevent an ill-conditioned
coefficient matrix.

The same can be observed when equation (2.40) is truncated to 4th– and 5th order.
Actually, all even derivative terms will achieve one OOA higher than expected when
equation (2.40) is truncated up to an even term1. The LSFD scheme is basically
of central difference form since the supporting nodes are chosen entirely based on
their Euclidean distance to the reference node. Therefore, this behavior also applies
to LSFD method.

1Valid only for central difference approximations with uniform node spacing



Chapter 3

Computational fluid
dynamics

The PDEs governing fluid flow were first derived by Claude-Louis Navier and Sir
George Gabriel Stokes for more than a century ago. The Navier-Stokes equations
are mathematically very complex, and in most cases impossible to solve analytically.
However, by discretizing the equations in space and time, they may be solved
numerically.

3.1 Governing equations

The unknown variables in a general three dimensional fluid dynamics problem are
mainly the velocity components u,v and w, the pressure p and the temperature
T . In order to solve for these unknown variables, five equations are hence needed.
Through the laws of conservation, these equations can be obtained. Note that the
expressions in this chapter are given in Einstein summation notation, where index
i and j takes the values 1,2 and 3 (representing the dimensions of Euclidean space).
If either i or j appear more than once in a single term, as below, a summation is
present.

∂ui
∂xi

=
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
(3.1)

where

17
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u1

u2

u3

 =

uv
w

 and

x1

x2

x3

 =

xy
z

 (3.2)

3.1.1 Conservation of mass

Conservation of mass is a fundamental requirement which leads to the continuity
equation. Total mass m = ρV have to be maintained at all time.

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (3.3)

Equation (3.3) is the general continuity equation, where the density ρ is a function
of pressure and temperature. By requiring zero velocity divergence

∂uj
∂xj

= 0 (3.4)

the flow is considered incompressible. This condition is fulfilled when the density is
considered constant, which is the case for true incompressible fluids– or compress-
ible fluids at Mach number< 0.3.

The entire derivation of continuity equation (3.3) can be found in [31].

3.1.2 Conservation of momentum

Conservation of momentum, based on Newton’s 2nd law, is widely known as the
Navier-Stokes equations which preserves the total momentum in a system at all
time.

∂ρui
∂t

+ uj
∂ρui
∂xj

= − ∂p

∂xi
+
∂σ′ij
∂xj

+ ρfi (3.5)

σ′ij is the viscous stress term

σ′ij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uj
∂xj

)
(3.6)
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µ is the dynamic viscosity, which for Newtonian fluids is a function of temperature
and pressure. fi denotes a source term, often the gravitational acceleration. δij is
the Kronecker delta, defined as

δij =

{
1 if i = j
0 if i 6= j

(3.7)

When incompressible flow and constant viscosity are considered, the NS-equations
will reduce to

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

+ fi (3.8)

where ν is the kinematic viscosity defined as

ν =
µ

ρ
(3.9)

The entire derivation of equation (3.5) can be found in [31].

3.1.3 Conservation of energy

Conservation of energy is based on the first law of thermodynamics and will main-
tain the energy balance in a system at all time.

∂ρe

∂t
+ uj

∂ρe

∂xj
=

∂

∂xj

(
k
∂T

∂xj

)
+ σ′ij

∂ui
∂xj

(3.10)

e is the internal energy, and k is the thermal conductivity, which is a function of
pressure and temperature. In the case of incompressible flow and constant thermal
conductivity, equation (3.10) will reduce to

∂T

∂t
+ uj

∂T

∂xj
=

k

ρcp

∂2T

∂x2
j

(3.11)

where cp is the specific heat. An important feature with incompressible assumption
is that the coupling between the conservation of energy and conservation of mass–
and momentum disappears.

The complete derivation of (3.10) can be found in [31].
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3.1.4 Two dimensional incompressible isothermal flow

By reducing the problem by one dimension, one of the velocity components will
vanish with its respective momentum equation completely. Incompressible flow is
assumed, uncoupling the temperature from velocity and pressure, and temperature
is considered constant, eliminating the energy equation. By neglecting gravity, or
other source terms for that sake, the complete set of equations treated throughout
this thesis are hence obtained.

x-momentum:
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(3.12)

y-momentum:
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
(3.13)

continuity:
∂u

∂x
+
∂v

∂y
= 0 (3.14)

Equation (3.12) and (3.13) contains a convective– and diffusive term, which both
are of great interest. The non-linear convective term represents an acceleration
of velocity as a function of spatial position. In case of viscous dominating Stokes
flows, Re � 1, the convective term will become small compared to the viscous
stress, and may be neglected.

∂ui
∂t

+ uj
∂ui
∂xj︸ ︷︷ ︸

convective

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j︸ ︷︷ ︸
diffusive

(3.15)

In steady-state problems, the time dependent term vanish. However, when analyz-
ing a steady-state problem numerically, the term cannot usually be removed. Time
marching will have to be performed until the solution does no longer change with
time.

3.2 Solution methods

In chapter 2, the spatial discretization of the LSFD method has been explained in
detail. The temporal (time) discretization shall be treated in this section. As with
space derivatives, time derivatives may also be approximated with Taylor series
expansion. There are generally two main categories for which time discretization
can be divided into, explicit– and implicit. When the time derivatives are treated
explicitly, functional values at (k + 1) ∆t are found using the solution at the pre-
vious time level k∆t. Implicit treatment of the time derivatives means that the
solution are found by iteration at time level (k + 1) ∆t.
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Equation (3.12), (3.13) and (3.14) all contain the velocity components. The pres-
sure term however, is only appearing in the momentum equations. The lack of
an independent pressure equation invokes difficulties when solving the governing
equations numerically. This issue is treated differently in the following methods.

3.2.1 Direct methods

As the name implies, direct methods solve the governing equations directly. How-
ever, an individual pressure equation is also introduced by taking the divergence
of the momentum equations (3.12) and (3.13).

∂

∂xi

(
∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

)
(3.16)

By imposing the continuity restriction on equation (3.16) and noting that

(
∂u

∂x
+
∂v

∂y

)2

=

(
∂u

∂x

)2

+

(
∂v

∂y

)2

+ 2
∂u

∂x

∂v

∂y
= 0 (3.17)

The complete expression for the pressure is thus obtained.

∂2p

∂x2
+
∂2p

∂y2
= 2ρ

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
(3.18)

The continuity requirement is included in equation (3.18), and instead of solving
the individual continuity equation (3.14), the new pressure-Poisson equation (3.18)
will be solved in its place. Even though the solution procedure is pretty straight
forward, direct methods are usually computationally expensive, especially for three
dimensional problems [23].
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(u, v, p)n = (u, v, p)n+1
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Solution

converged?

p
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pn+1,k = pn+1,k+1
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(u, v, p)n+1

n = 0

k=0

noyes

yes

no

Figure 3.1: Explicit direct method algorithm

3.2.2 Vorticity-stream function method

The vorticity-stream function approach are one of the earliest methods used to solve
two dimensional fluid problems numerically. This procedure was actually invented
before the computer and solved entirely by hand [31]. The method does not aim to
solve the original NS-equation, but instead the vorticity transport equation, which
can be derived directly from NS.

Two dimensional vorticity ζ is defined as the velocity curl in equation (3.19), and
can be interpreted as the rotational ability in a flow.

ζ =
∂v

∂x
− ∂u

∂y
(3.19)

The stream function ψ is defined in a way such that the velocity components are
partial derivatives of the stream function itself.
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u =
∂ψ

∂y

−v =
∂ψ

∂x
(3.20)

By taking the curl of the momentum equations (3.12) and (3.13)

∂

∂x
(y-momentum)− ∂

∂y
(x-momentum) (3.21)

and using the definition of vorticity ζ and stream function ψ, the vorticity transport
equation is thus obtained.

∂ζ

∂t
+
∂ψ

∂y

∂ζ

∂x
− ∂ψ

∂x

∂ζ

∂y
= ν

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
(3.22)

Substituting the definition of stream function in equation (3.20) into equation
(3.19), the ψ-Poisson equation, linking vorticity and stream function is hence
achieved.

−ζ =
∂2ψ

∂x2
+
∂2ψ

∂y2
(3.23)

Equation (3.22) and (3.23) together make up the governing equations in the vorticity-
stream function approach. During derivation of the vorticity transport equation
(3.22), pressure was completely eliminated, reducing the dependent variables to
vorticity and stream function only. The velocities can be obtained by solving equa-
tion (3.20) whenever needed. Since the problem is reduced to two equation instead
of the original three, the procedure is generally very computational efficient.

If the pressure solution is required as well, it can be obtained by using a similar
approach as for the direct methods.

∂2p

∂x2
+
∂2p

∂y2
= 2ρ

(
∂2ψ

∂x2

∂2ψ

∂y2
−
(
∂2ψ

∂x∂y

)2
)

(3.24)

If both pressure and velocity components are required within each time step, two
individual Poisson equations then have to be solved, and the vorticity-stream func-
tion approach does no longer have any obvious advantages to the other solution
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methods. Another counterargument against the use of vorticity-stream function ap-
proach is the difficulties regarding boundary conditions. Besides, since the stream
function only exists in two dimensional flows, the method is hence only valid for
two dimensions.

IC

(ζ, ψ)0

Vorticity ζ BC
Vorticity transport

ζn+1

Time marching

(ζ, ψ)n = (ζ, ψ)n+1
ψ-Poisson

ψn+1,k+1 Stream function ψ BC

Solution

converged?

ψ

converged?

Update ψ

ψn+1,k = ψn+1,k+1

Solve variables

(u, v, p)n+1
Complete

(u, v, p)n+1

n = 0

k=0

noyes

yes

no

Figure 3.2: Explicit vorticity-stream function algorithm

3.2.3 Projection methods

The original projection method, initially developed by Chorin [4], is based on the
Helmholtz-Hodge decomposition theorem [5]. This theorem claims that any vector
field in a bounded domain with a smooth boundary may be decomposed into the
sum of a divergence free– and an irrotational part. Projection methods are used in
order to solve incompressible fluid flow problems in an efficient manner.

First, the intermediate velocities un+1
i are calculated using equation (3.12) and

(3.13), though without the pressure terms. The viscous terms should be treated
implicitly in order to avoid instabilities due to viscous effects.
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un+1
i − uni

∆t
= −unj

∂uni
∂xj

+ ν
∂2un+1

i

∂x2
j

(3.25)

The intermediate velocity fields does not generally satisfy the continuity restriction.
In the next step (the projection), the objective is to force continuity onto the next
velocity field un+1

i .

un+1
i − un+1

i

∆t
= −1

ρ

∂pn+1

∂xi
(3.26)

Taking the divergence of equation (3.26), and requiring continuity for the next
velocity time step, ∇un+1 = 0, the pressure-Poisson equation is obtained.

∂2pn+1

∂x2
j

=
ρ

∆t

∂un+1
i

∂xi
(3.27)

The boundary conditions for pn+1 can be deduced directly from equation (3.26).
Boundary conditions for the intermediate– and next velocity step can be assumed
equal. As the impermeable wall requires zero normal velocity at the wall, the
pressure gradient normal to the wall will have to be zero as well.

∂pn+1

∂η
= 0 (3.28)

The pressure solution pn+1 is found by iteration, and equation (3.26) can once
again be applied to finally achieve the velocity components at time step n+ 1.

un+1
i = un+1

i − ∆t

ρ

∂pn+1

∂xi
(3.29)

The projection methods have gained huge attention due to their computational
efficiency, especially for large scale problems [18]. They are valid also for three
dimensional problems, and boundary condition can easily be determined1.

1Valid only for 1st order methods. The boundary conditions for 2nd order methods are more
complicated.
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Figure 3.3: Semi-implicit projection method routine

3.3 Initial– and boundary conditions

In order to solve any PDE, boundary conditions are required on all edges (2D)–
or surfaces (3D) that defines the domain boundaries ∂Ω. In addition, if the PDE
is time dependent, which is the case for Navier-Stokes equations, also an initial
solution at time t = 0 will have to be defined. It is however quite common to set
this initial condition to zero for all variables and perform time marching in order to
achieve the final solution. Boundary conditions have to be treated carefully since
they will affect the solution in the entire domain. The boundary conditions may
be of Dirichlet– Neumann– or Periodic type.
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Boundary ∂Ω

b

1

2

Normal η

Tangential τ

∆η1

∆η2

Figure 3.4: Boundary illustration

The Dirichlet boundary condition is the easiest condition to implement. For this
condition type, the functional value fb at the boundary in figure 3.4 is known,
making it possible to determine f1, f2 etc.

The Neumann boundary condition is a derivative condition, for which the func-
tional value fb is not known, but its derivative term (usually the normal derivative)
is. It is therefore possible to construct an algebraic expression for fb, with respect
to the functional values at its neighbor nodes. If for example the normal derivative
at node b is known and ∆η1 = 1

2∆η2 = ∆η, functional values at node 1 and 2 may
be used to express fb as following.

f1 = fb + ∆η
∂fb
∂η

+
∆η2

2

∂2fb
∂η2

+O
(
∆η3

)
(3.30)

f2 = fb + 2∆η
∂fb
∂η

+ 2∆η2 ∂
2fb
∂η2

+O
(
∆η3

)
(3.31)

By substituting equation (3.30) into (3.31) the final expression for fb is obtained.

fb =
4f1 − f2

3
− 2∆η

3

∂fb
∂η

+O
(
∆η3

)
(3.32)

Expression (3.32) can be used explicitly at the boundary nodes, while the internal
nodes are treated as usual.

The Periodic boundary condition uses the solution at one boundary as the condition
for another. This condition type will however not be discussed any further, nor
used in this thesis.
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If ∆x and ∆y are known, then ∆τ and ∆η can be expressed in terms of the following
relation [27].

[
∆τ
∆η

]
=

[
τ
η

] [
∆x
∆y

]
(3.33)

η are the normal vectors
[
η1 η2

]
, while τ are the tangential vectors

[
τ1 τ2

]
. The

normal– and tangential vectors are related through a third vector k, defined to be
orthogonal to– and pointing into the xy- plane.

η = τ × k (3.34)

Solving expression (3.34) with k = i(0) + j(0) + k(−1) gives the direct relation
between τ and η.

[
η1

η2

]
=

[
0 −1
1 0

] [
τ1
τ2

]
(3.35)
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ητ
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Figure 3.5: Boundary coordinate system

The exact same procedure can be applied in order to transform velocity components
between the Cartesian– and local orthogonal coordinate system.

[
Uτ
Uη

]
=

[
τ
η

] [
u
v

]
(3.36)
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3.3.1 No-slip wall

Boundary ∂Ω

Normal η

Tangential τ

Velocity Uτ (η)

Figure 3.6: No-slip boundary condition

The wall is a boundary, for which no mass flow are allowed to cross. In other words,
the velocity normal to the wall Uη, have to be zero relative to the normal velocity
of the wall itself. This condition is universal, and is valid for both potential– and
viscous flow theory. In viscous flows however, another restriction does also apply.
The no-slip wall condition require the tangential fluid velocity Uτ to be zero relative
to the tangential velocity of the wall itself. The no-slip boundary condition hence
implies two individual Dirichlet conditions for the velocity.

[
Uτ
Uη

]
=

[
Uτ,wall
Uη,wall

]
(3.37)

From chapter 3.2.3, the wall boundary condition for the pressure have been given
by the Neumann condition

∂p

∂η
= 0 (3.38)
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3.3.2 Free-slip wall

Boundary ∂Ω

Normal η

Tangential τ

Velocity Uτ (η)

Figure 3.7: Free-slip boundary condition

Another important wall condition, the free-slip wall, is used to model both symme-
try and free stream flow. In this boundary condition, the no-penetrating condition
Uη = 0 applies together with a zero normal velocity gradient at the free-slip wall.

∂Uτ∂η
Uη

 =

[
0
0

]
(3.39)

The pressure condition is, like for the no-slip boundary

∂p

∂η
= 0 (3.40)
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3.3.3 Inlet

Boundary ∂Ω

Normal η

Tangential τ

Velocity Uη (τ)

Figure 3.8: Inlet velocity boundary condition

At inlets, the velocity distribution is often considered as known. In these cases, the
pressure at the boundary can be approximated as

∂p

∂η
= 0 (3.41)

By fixing the inlet velocity, it is guaranteed that no back flow will occur at the
boundary. This type of boundary condition is hence restrictive, though stable.

3.3.4 Open boundary

Boundary ∂Ω

Normal η

Tangential τ

Velocity Uη (τ) and Uτ (τ)

Figure 3.9: Open boundary condition
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The open boundary condition is mainly used at outlet boundaries, where the ve-
locity distribution is seldom known, but can also be applied to inlets. By fixing
the pressure, velocity is allowed to develop, making this boundary condition less
restrictive. There are two ways of defining the velocity condition, either by fixing
the tangential velocity Uτ , or by fixing its normal gradient.

 Uτ
∂Uη
∂η

 =

[
0
0

]
or


∂Uτ
∂η
∂Uη
∂η

 =

[
0
0

]
(3.42)

The first option in equation (3.42) is more restrictive than the other since the
tangential velocity is denied to develop. Making the boundary conditions restric-
tive may increase errors if it is located too near flow complexities. On the other
hand, less restrictive conditions may introduce instabilities, which could lead to
divergence.

3.4 Stability and convergence

In order to achieve the correct solution to a problem, the method have to be
consistent and stable. Consistency means that the approximated solution will tend
to the exact one as the node spacing h tends to zero. Stability is a subject only for
temporal (time dependent) schemes which are said to be stable if its errors does
not grow with time. In the discretized NS equations there are basically two terms,
the convective– and the diffusive term, for which stability have to be ensured.
The stability restrictions follow the applied scheme, not the PDE. In order for a
discretization scheme to be useful it has to be at least conditionally stable, though
unconditional stability is usually preferred. Unconditional stability comes with
implicit schemes where the solution at time level n+1 is approximated by iteration
on time level n+1. The conditionally stable schemes are explicit which means that
the solution at time level n+1 is obtained directly from the solution at time level n.
Even though the implicit schemes are unconditionally stable, they will usually be
more computational expensive than the explicit schemes. The convective stability
restriction in explicit schemes is called the CFL condition, and requires the Courant
number to be less than 1. The Courant number is defined as

c =
u∆t

∆h
(3.43)

where u is the velocity, ∆t is the time step, and ∆h is the spatial difference.
Since the velocity is a function of the actual problem and ∆h is given by the
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node distribution, the only adjustable parameter is the time step. If the temporal
discretization is implicit, no such restriction applies.

The term convergence is used in two different senses. The Lax equivalence theo-
rem claims that if a method is both consistent and stable, it will converge to the
exact solution as ∆h and ∆t tends to zero. The rate of convergence is therefore a
measure of how fast a method converges to the exact solution. The spatial rate of
convergence for the LSFD method have already been studied in chapter 2.5.

Iterative convergence is the other sense for which the term is used. Iterative meth-
ods are used in order to solve equation systems with a repetitive procedure until
some given convergence criteria is satisfied. At the end of each iteration step, the
residuals are compared to the convergence tolerance εtol.

max
(
fn+1
ij − fnij

)
≤ εtol (3.44)

Equation (3.44) is used to determine wether the iteration procedure should continue
or terminate. Iterative methods are therefore able to approximate the solution to
a chosen tolerance.
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Chapter 4

Program

This thesis has been based on the development of a meshfree method for solving two
dimensional incompressible fluid flows. Most of the effort have therefore naturally
been related directly to the programming which have been done in the C language.
The generated *.vtf result file can be post-processed directly in Ceetron GLview.
In this chapter, the developed code will be presented in detail. The flow chart can
be found in appendix A, and the source code is included electronically.

4.1 Program input

In order to solve any fluid flow problem the physical geometry will have to be de-
fined together with the boundary conditions, fluid properties and numerical solver
properties. The geometry is constructed using the 2D meshing software MEGA
(developed by H̊avard Holm), and can be imported directly for analysis. The *.vtf
geometry file exported from MEGA contains information on node coordinates, el-
ements, and boundary conditions. Numerical– and fluid properties are specified in
an individual input text file.

35



36 Chapter 4. Program

Table 4.1: Properties included in the input text file.

Fluid properties Numerical properties Boundary conditions
Density Number of auxiliary nodes No-slip
Dynamic viscosity Number of truncated terms Free-slip

Residual error Velocity
Relaxation factor Pressure
Pressure steps
Timestep
Time duration
Courant number
Output interval

4.2 Boundary conditions

When the geometry is constructed in MEGA, each boundary edge will be given an
identification number. Edges that later will share common boundary conditions
may be identified with equal numbers. This is however optional. In the input text
file, boundary conditions will have to be assigned to each identification number for
the problem to be fully defined. Boundary conditions are chosen based on the four
different options listed in table 4.1.

No-slip: This boundary condition will model a solid wall with tangential velocity.
”noslip 0” denotes a stationary wall, while ”noslip 0.5” denotes a wall
with velocity 0.5

[
m · s−1

]
in the tangential direction defined in figure 3.5.

Free-slip: The free-slip boundary condition can be used to model a symmetry– or
free stream edge. The condition is applied with the command ”freeslip”

Velocity: The velocity boundary condition is used to model an inlet with uniform
normal velocity distribution. This condition does not allow back flow and
is therefore more robust than the pressure boundary condition. ”velocity
0.5” denotes a uniform velocity 0.5

[
m · s−1

]
in the normal direction defined

in figure 3.5.

Pressure: The open boundary pressure condition can be used to model both inlets
and outlets, but is less robust for inlets than the velocity condition above. The
pressure condition is therefore mainly applied to outlet boundaries where the
velocity distribution is unknown. ”pressure 0.5” denotes a gauge pressure
of 0.5 [Pa].
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1

1

3pout2 Uin

Figure 4.1: Boundary identities for a rectangular channel flow

In order to model a channel flow with inlet velocity Uin = 1
[
m · s−1

]
and outlet

gauge pressure pout = 0 [Pa] using the geometry in figure 4.1, the boundary identi-
fication numbers will have to be linked to their respective boundary conditions as
following.

1 noslip 0

2 velocity 1

3 pressure 0

Since the edges are connected at the ends, corner nodes will have two possibly
different identification numbers. A singularity will arise if two conflicting boundary
conditions apply to the same corner node. One way to deal with this is to make
some boundary conditions systematically superior to the others by ranking. When
a node with two identities is then considered, the program will choose the identity
referring to the highest ranked boundary condition of the two.

1

1

1

1

2 2 2 22
1

Figure 4.2: Boundary identities at corner node

The corner is a geometrical discontinuity where the normal vector does not formally
exist. To deal with this issue, a normal vector is defined as a unit vector passing
through the corner node and the geometrical center of a circle, tangential to the
coinciding boundary edges as seen in figure 4.3.
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Boundary ∂Ω
αα

Figure 4.3: Normal direction at a discontinuous corner

The boundary conditions will become more or less unphysical at the corner nodes,
and should hence be ranked in a way that minimize their unphysical effects. As
an example, the inlet velocity in figure 4.1 should not be defined at the corners
because the definition of the normal vector at discontinuities (figure 4.3) will induce
a vertical velocity component. Instead, the no-slip condition should be applied and
therefore also ranked higher than velocity. The ranking system used for the code
developed in this thesis is showed in table 4.2.

Table 4.2: Boundary condition ranking

Boundary condition Rank

No-slip uτ = 0
[
m · s−1

]
5

No-slip uτ 6= 0
[
m · s−1

]
4

Pressure 3
Free-slip 2
Velocity 1

4.3 Neighbor node identification

As explained in chapter 2, every node in the domain comprises its own subdomain
with N number of neighbor/auxiliary/supporting nodes. In this program, the
neighbor nodes need to be settled only once since the node coordinates are fixed
throughout the calculation. The objective is therefore, for every single node in
the domain, to find its adjacent nodes in terms of Euclidean distance. The easiest
way to do this would be to simply calculate the distance to every node in the
domain, and sort their distances in order to decide which of them are located
closest to the reference. Even though the algorithm is easy to follow, it is extremely
computational expensive as the number of calculations needed are proportional to
the total number of nodes squared. This method would quickly end up as the
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bottleneck, and therefore a better procedure for deciding the neighbors will have
to be used.

1 2 3

4 5 6

7 8 9

1 2

3 4

Figure 4.4: Node connection

Even though the meshfree method does not in general need a mesh of connected
nodes, MEGA will provide one. This information can be used to identify the
neighbor nodes. Figure 4.4 shows an element mesh defined by a set of nodes. The
nodes assigned to each element are tabulated below.

Table 4.3: Nodes per element

Element Node
1 2 3 4

1 1 2 5 4
2 2 3 6 5
3 4 5 8 7
4 5 6 9 8

From the information in table 4.3, a new table is constructed, stating the elements
connected to each node.
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Table 4.4: Elements per node

Node Element
1 2 3 4

1 1 - - -
2 2 1 - -
3 2 - - -
4 1 3 - -
5 1 2 4 3
6 4 2 - -
7 3 - - -
8 3 4 - -
9 4 - - -

The information in table 4.3 and 4.4 can be utilized in order to decide the neighbor
nodes for each reference node using the following algorithm.

for reference=1 → total number of nodes do
status(all nodes) ← ”false”
status(node(reference)) ← ”true”
lower ← 1
upper ← 1
counter ← 1
neighbor(counter) ← node(reference)
while counter < required number of neighbor nodes do

for i=lower → upper do
temporary node ←neighbor(i)
for j=1 → number of elements connected to temporary node do

temporary element ← element(j) of temporary node
for k=1 → number of nodes connected to temporary element do

if status(node(k) of temporary element) = ”false” then
status(node(k) of temporary element) ← ”true”
counter ← counter+1
neighbor(counter) ← node(k) of temporary element

end if
end for

end for
end for
lower ← upper
upper ← counter

end while
calculate distance between node(reference) and the neighbor nodes.
sort the neighbor nodes with respect to difference and save.

end for

By following this procedure, the neighbor nodes can rapidly be identified. In fact,
the number of calculations needed is proportional to the total number of nodes
only. The neighbor nodes are decided this way for both internal– and boundary
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nodes.

4.4 LSFD coefficients

Now that the neighbor nodes have been decided, the LSFD coefficients derived in
chapter 2 can be solved for every node in the domain. The internal coefficients
are solved with respect to the Cartesian coordinate system for a given number of
truncated terms and neighbor nodes. The boundary coefficients are found using
the same procedure as for the internal nodes, but in terms of a local orthogonal
coordinate system where the unit normal vector points into the fluid domain, and
the unit vector normal to the xy-plane points in negative z-direction as shown in
figure 3.5. The boundary coefficients are truncated to 1st order, using 3 neighbor
nodes. It has been found that this configuration provided better stability, and
only 1st order derivatives needs to be evaluated at the boundaries anyway. It has
also been suggested [24] that lower order truncations at the border in many cases
actually give better accuracy than higher orders.

for reference=1 → total number of nodes do
Calculate the local scaling (chapter 2.2).
Calculate the Taylor series expansion (chapter 2.1).
Calculate the weighting functions (chapter 2.3).
Calculate the complete set of coefficients (chapter 2.3).

end for

4.5 Solver

The solver is based on the projection method explained in chapter (3.2.3), where
the algebraic equations are solved using iterative successive over-relaxation (SOR)
[32]. When solving Navier-Stokes equations, the advective terms can be written
in either conservative– or non-conservative form. Recall the equations (3.12) and
(3.13). The non-linear advection term can be expressed as

uj
∂ui
∂xj

=
∂uiuj
∂xj

− ui
∂uj
∂xj

(4.1)

The second term on the right hand side of equation (4.1) will vanish due to the
continuity equation (3.14). Hence equation (4.1) becomes
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uj
∂ui
∂xj︸ ︷︷ ︸

Non-conservative

=
∂uiuj
∂xj︸ ︷︷ ︸

Conservative

(4.2)

Even though the non-conservative– and conservative form of the Navier-Stokes
equations are equal on paper, they do behave numerically different. In fact, in
the code written for this thesis the conservative form does not convergence to the
correct solution, but the non-conservative form does and is hence adapted. The
advective– and diffusive term behave differently, and should be dealt with indi-
vidually for the temporal differencing. The diffusive term is made unconditionally
stable by using an implicit Euler scheme. The advective terms are discretized with
a semi-implicit Euler scheme, giving a conditional stability restriction with respect
to the courant number. This temporal discretizing of the Navier-Stokes equations
are found in [23].

un+1
i − uni

∆t
= −unj

∂un+1
i

∂xj
+ ν

∂2un+1
i

∂x2
j

(4.3)

The algorithm below shows the entire solver procedure.

max pressure steps, tolerance, max simulation time and output interval are given by the user
n← 1
j ← 1
repeat

for Internal nodes do
Calculate intermediate velocities (u, v)n+1

end for
for Boundary nodes do

Calculate updated boundary conditions for velocities (u, v)n+1

end for
k ← 1
repeat

for Internal nodes do
Calculate updated pressure pn+1,k+1 using SOR

end for
for Boundary nodes do

Calculate updated boundary conditions for pressure pn+1,k+1

end for
k ← k + 1

until abs
(
pn+1,k+1 − pn+1,k

)
<tolerance or k > max pressure steps

for Internal nodes do
Calculate velocities (u, v)n+1 using SOR

end for
for Boundary nodes do

Calculate boundary conditions for velocities (u, v)n+1

end for
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if j > output interval then
Write solution (u, v, p)n+1 to VTF-file
j ← 0

end if
j ← j + 1
n← n + 1

until abs
(
(u, v)n+1 − (u, v)n

)
<tolerance or simulation time > n ·∆t

As mentioned, successive over-relaxation (SOR) is used to solve the algebraic equa-
tions given by the projection method. SOR is a great improvement over the regular
Gauss-Seidel iterative method and can be seen as a weighted average of the solution
at iteration level k and the Gauss-Seidel solution at level k + 1.

fk+1 = ωfk+1 + (1− ω) fk (4.4)

ω is the relaxation factor which defines the weighting between the Gauss-Seidel
solution and the previous solution in a way that may speed up– or stabilize the
convergence.

Table 4.5: Relaxation factors

ω Relaxation
0 < ω < 1 Under
1 ≤ ω ≤ 1 Gauss-Seidel
1 < ω < 2 Over

Over-relaxation is used in order to increase the numerical convergence speed, and
under-relaxation is used to increase the stability of an else diverging solution. The
relaxation factor is given in the input file (chapter 4.1) and can be adjusted to speed
up– or stabilize the convergence. To illustrate, the PDE from chapter 2.5 have been
repeatedly solved on three different node distributions with uniform node spacing
h and with relaxation factor ω varying from 0→ 2.
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Figure 4.5: Number of iteration steps for varying relaxation factors.

From figure 4.5 it is seen that the solution converges faster for increasing ω up to an
optimum relaxation factor. Clearly, this optimum ω differ with the node spacing,
and seems to increase for finer distributions. For a Poisson equation on a square
domain with regular node spacing h, the optimum ω is given as

ωoptimum =
2

1 +

√
1−

(
1− 0.5 (πh)

2
)2

[32] (4.5)

The optimum ω for each node distribution in figure 4.5 can therefore be calculated
using equation (4.5).

Table 4.6: Optimum relaxation factors

h ωoptimum
0.1 1.53
0.05 1.73
0.025 1.85

The analytical relaxation factors in table 4.6 match the numerically calculated
optimums in figure 4.5 very well. However, identifying the optimum relaxation
factor for a general domain with irregular node spacing is not straight forward.
Therefore, in the developed code the relaxation factor has to be given by the user
based on trial and error. It is however advisable to initially apply over-relaxation
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and in the case of divergence, adjust the parameter. For a given node distribution,
set of boundary conditions, and fluid properties there are in fact five parameters
that can be adjusted in order to control the numerical convergence and stability.

1. Number of neighbor nodes

2. Relaxation factor

3. Maximum pressure steps

4. Time step

5. Courant number

By increasing the number of neighbor nodes, effective node spacing will increase
due to enlarged local domain size. This may lead to faster convergence or better
stability conditions. On the other hand, since the local domain size is increased,
the spatial accuracy will decrease as described in chapter 2.2. It is hence advisable
to keep the number of neighbors as low as possible. In figure 4.6, the PDE from
chapter 2.5 have been solved using uniform node spacing h = 0.05, relaxation
factor ω = 1.5, and tolerance criteria εtol = 10−10 in order to illustrate the effect
of increasing number of neighbor nodes.
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Figure 4.6: Number of iteration steps for varying number of neighbor nodes.

Initially, the pressure-Poisson equation is solved with a given tolerance criteria εtol.
However, if steady state solution is required only, the pressure field does not need
to be fully converged at every time step. Therefore, by imposing a finite num-
ber of iteration steps for the pressure-Poisson equation, the pressure will basically
work as a stabilizer for the solution. Increasing number of iteration steps yields a
better solution at each time step, giving a more stable solution procedure, though
increasing the computational cost at the same time.
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The CFL condition requires, as explained in chapter 3.4, Courant number c < 1
in order to achieve a stable solution for an explicit method. For a given node
distribution with specified boundary conditions, ∆t is the only adjustable variable.
In the developed code, the user is given the opportunity to specify a minimum–
and maximum Courant number together with an initial time step. The program
will then automatically optimize ∆t at the end of each time step with respect to
the given courant number restriction.

Calculate the maximal Courant number cmax = max

(√
u2+v2∆t

d

)
, where d is the local domain

size.
if cmax > maximum allowed Courant number then

∆t← 0.90∆t
else if cmax < minimum allowed Courant number then

∆t← 1.11∆t
end if

∆t can be kept constant and equal to the initial time step by defining the maximum
Courant number cmax = 0. This is usually preferred in case of transient analysis.
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Analysis

In order to verify the developed code, a series of analysis have been performed.
Among them are two cases for which analytical solutions exist, and two cases of
more complicated nature without any analytical solution.

5.1 Rotating Couette flow

Couette flows are named after the French physicist Maurice Couette, who per-
formed experiments on fluid flow between fixed and rotating concentric cylinders.
The flow regime is caused entirely by the driven wall and is viscous dominated.

Ωi

ri ro

Figure 5.1: Concentric Couette flow

47
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The analytical solution for the problem posed in figure 5.1 is given in [30].

uθ = Ωiri
ro/r − r/ro
ro/ri − ri/ro

(5.1)

Equation (5.1) is valid for an incompressible flow up to a certain limit, given by
the relation between angular velocity Ωi, inner– and outer radius (ri and ro) and
kinematic viscosity of the fluid ν. The relation is called the Taylor number Ta [30]
and is defined as

Ta =
ri (ro − ri)3

Ω2
i

ν2
(5.2)

Below the critical value Tacritical ≈ 1700, the analytical solution is valid. In
order to compare the analytical solution with numerical approximations, Ta hence
have to be lower than Tacritical. For the numerical calculation, a geometry with
ri = 1 [m] and ro = 4 [m] have been applied together with a kinematic fluid viscosity
of ν = 1 [Pa · s]. With these properties, the angular velocity is restricted to

Ωi =

√
1700ν2

ri (ro − ri)3 = 7.93
[
s−1
]

(5.3)

The analysis have therefore been performed with Ωi = 7
[
s−1
]
, giving a tangential

velocity at the inner wall Uτ,i = riΩi = 7
[
m · s−1

]
. The calculation have been

done using the four different node distributions shown in figure 5.2. The number
of truncated terms are 2, and number of auxiliary nodes are 9. The convergence
tolerance εtol is set to 10−10 and the courant number is restricted between 0.5 and
0.8. The results in figure 5.3(a) are difficult to interpret directly, though clearly
shows that the analysis have successfully captured the physics. The plot in figure
5.3(b) on the other hand, shows the relative errors between the analytical– and
numerical solutions in a way that makes it much easier to confirm that increasing
node density provides a more accurate solution. The node distribution in figure
5.2(d) however, performs relatively poor compared to the others with respect to
total node number. Additionally, for the node distribution in figure 5.2(c), an
analysis with various time step have also been executed, for which it is clearly
shown in figure 5.3(d) that decreasing time step produce more accurate results.
However, when the number of truncation terms are increased (figure 5.3(c)) using
the node distribution in figure 5.2(c) and 25 neighbor nodes, 3 truncation terms
provide more accurate results than 4. The reason for this is unknown. Additional
field plots can be found in Appendix B.
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(a) 960 nodes, uniform distribution (b) 3.720 nodes, uniform distribution

(c) 14.640 nodes, uniform distribution (d) 6.120 nodes, refined uniform distribution

Figure 5.2: Node distribution for the Couette flow problem
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Figure 5.3: Angular velocity plot from ri → ro for the Couette flow problem

5.2 Poiseuille channel flow

The previous analytical flow case was driven entirely by the rotating cylinder wall.
This time, a pressure driven flow shall be considered. The steady Poiseuille flow
in a channel is driven by a pressure gradient parallel to the channel walls, and
the analytical solution can be derived directly from the Navier-Stokes equations by
assuming two dimensions and infinitely long channel. The vertical velocity v will
hence vanish, and the horizontal velocity u will be a function of y only.

pin poutH

L

Figure 5.4: Poiseuille flow
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The original two dimensional Navier-Stokes equations (3.12) and (3.13) will reduce
to an ordinary differential equation.

∂2u

∂y2
=

1

µ

∂p

∂x
(5.4)

By applying no-slip condition on the top– and bottom of the channel, located at
respectively y = 0 and y = H, the final analytical expression is thus obtained.

u (y) =
1

2µ

dp

dx
y (y −H) (5.5)

In order to have constant velocity in the horizontal direction, the pressure gradient
will have to be constant i.e. linear pressure drop along the channel length. To nu-
merically investigate the problem, a short channel have been modeled as shown in
figure 5.4. In the numerical model, L = 2 [m] and H = 1 [m]. Pressure conditions
are imposed at the ends and no-slip condition is applied to the top– and bottom.
In total, four different node distributions have been considered (figure 5.5), for
which three of them are strictly uniform, and the 4th is uniform, though denser
near the boundaries. In figure 5.6(a) and 5.6(c), the four node distribution have
been tested against each other with a pressure drop of 8 [Pa], giving an effective
pressure gradient of 4

[
Pa ·m−1

]
, which can evidently be observed in figure 5.6(b)

as well. According to the analytical solution this corresponds to a maximum ve-
locity umax = 0.5

[
m · s−1

]
. Increasing number of nodes gives, as expected, better

accuracy. The node distribution in figure 5.5(d) performs very well near the no-slip
boundaries, though less accurate in the center. Figure 5.6(d) shows three calcula-
tions, all performed using the node distribution in figure 5.5(b). The simulations
have been done using varying pressure drops, though with adjusted viscosity pa-
rameter so that the velocity profile shall remain the same. From the figure it is
clear that by decreasing the pressure drop and viscosity, a more accurate solution
will be obtained. The reason for this could be due to a lower importance of the
diffusive term in the Navier-Stokes equations, resulting in reduced truncation error.
Additional field plots are given in appendix C.
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(a) 231 nodes, uniform distribution (b) 861 nodes, uniform distribution

(c) 3.321 nodes, uniform distribution (d) 3.321 nodes, refined uniform distribution

Figure 5.5: Node distribution for the Poiseuille flow problem
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Figure 5.6: Axial velocity plot and pressure drop for the Poiseuille flow problem

5.3 Lid-driven cavity flow

The lid-driven cavity flow has been extensively used to test numerical schemes.
The geometry shown in figure 5.7 is simple, and the boundary conditions are pretty
straight forward to implement as well, though the singularity corners at the top
have to be treated carefully. The flow regime, on the other hand is fairly complex
with its circulating flow patterns changing with respect to the Reynolds number.
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In order to verify the developed code, the work of Ghia et al. [15] and Wan et al.
[29] have been used as reference material.

Uτ

L

L

Figure 5.7: Lid-driven cavity flow

Calculations have been performed for Reynolds numbers Re 100, 400, 1000 and
3200. By keeping Uτ = 1

[
m · s−1

]
, L = 1 [m] and density ρ = 1

[
kg ·m−3

]
, the

dynamic viscosity µ has been systematically altered in order to obtain the correct
Re.

µ =
ρUτL

Re
(5.6)

Four different node distribution shown in figure 5.8 have been applied to the calcu-
lations, though not all of them are used for every Reynolds number. Analysis have
been performed using 2 truncated terms and 9 neighbor nodes, with convergence
tolerance εtol = 10−8. Increasing the truncation terms quickly led to divergence.
The resulting u-velocities are plotted in the y-direction along the geometrical center
x = 0.5 [m], while the v-velocities are plotted in the x-direction along y = 0.5 [m].
The velocity plots in figure 5.9 clearly show good comparison with the reference
values [15] and [29], especially for low Re numbers. However, in [15] one of the
tabulated u-velocities for Re = 3200 and v-velocities for Re = 400 are believed
to be typographical errors. Never the less, they are plotted in figure 5.9. It is
clear that for increasing Re-numbers, a finer node distribution is needed in order
to capture the flow details entirely. Figure 5.10 shows the vector fields for the
four individual Reynolds numbers. In addition to the primary eddy induced by
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the driven top wall, smaller secondary eddies can be found in the bottom corners.
These circulating regions are present in all the calculated cases, but clearly become
larger with increasing Reynolds number. In figure 5.10(d), a 3rd eddy has appeared
in the upper left corner. The appearance and size of all these eddies corresponds
very well to [15].

(a) 1.764 nodes, denser distribution near walls (b) 6.724 nodes, denser distribution near walls

(c) 26.244 nodes, denser distribution near
walls

(d) 40.804 nodes, denser distribution near
walls

Figure 5.8: Node distribution for the lid-driven cavity flow problem
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(d) v (x, y = 0.5) Re = 400
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(e) u (x = 0.5, y) Re = 1000
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(f) v (x, y = 0.5) Re = 1000
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(g) u (x = 0.5, y) Re = 3200
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Figure 5.9: Velocity comparison for the lid-driven cavity flow problem
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(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure 5.10: Velocity vectors for the lid-driven cavity flow problem

5.4 Viscous flow past a circular cylinder

One of the most popular test cases in CFD is the circular cylinder in uniform inci-
dent flow. The flow past slender cylindrical bodies are important in both on– and
offshore engineering, especially due to fatigue caused by vortex induced vibrations
(VIV). The problem is well documented due to extensive research, both experi-
mentally and numerically, which makes it very attractive as a benchmark case. As
a matter of fact, the problem was solved numerically by hand nearly 80 years ago
by Thom (1933). One of the major motivations for studying the viscous flow past
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blunt bodies is that the potential flow theory does not give satisfactory solutions
due to the large viscous effects.

For low Re i.e. viscous dominated flows, any perturbation will be damped out and
the flow is considered steady. The pressure distribution over the cylinder surface
will clearly show a favorable (negative) gradient up to about 90◦ from the front
stagnation point, and then turn adverse (positive) in the region 90◦ < θ < 180◦.
The adverse pressure gradient will lead to boundary layer separation somewhere
along the rear part of the cylinder body forming a wake downstream, also called
the separation bubble. As seen in figure 5.11, the separation bubble reattach at the
wake stagnation point downstream of the cylinder. It is widely agreed upon that
the flow will remain steady for Re < 40. Increasing the Reynolds number further
will perturb the steady behavior and lead to transient oscillations in the system.

Figure 5.11: Steady flow past a circular cylinder. From Grove et al. [17]

In the unsteady regime, the pressure distribution along the cylinder will no longer
be symmetric over the cylinder half shown in figure 5.11. This non-symmetrical dis-
tribution will eventually lead to periodic lift– and drag forces, which may cause VIV
to initiate in case of slender bodies, i.e. onshore chimneys and offshore pipelines.
The steady separation bubble have disappeared and instead a vortex street can be
observed behind the cylinder body. The frequency of which these vortexes are shed
can be made dimensionless with the Strouhal number St defined as

St =
fvD

U∞
(5.7)

where fv is the shedding frequency, D is the cylinder diameter and U∞ is the
uniform incident velocity. It is found that for a large range of Reynolds numbers
200 < Re < 2 · 105, the Strouhal number will remain ∼ 0.2.
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v = 0
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Figure 5.12: Flow past a circular cylinder

In the current analysis, the solution have been calculated for Re = 40 and 100 using
the four different node distributions shown in figure 5.13. The effect of blocking, i.e.
wall boundaries located near the immersed body, have been examined by varying
the factor D/h in figure 5.12. All analysis have been performed using 6 neighbor
nodes and 2 truncated terms in order to generate the LSFD coefficients. By keeping
the inlet velocity Uin = 1

[
m · s−1

]
, the diameter D = 1 [m] and the fluid density

ρ = 1
[
kg ·m−3

]
, the dynamic viscosity µ has been adjusted to achieve the desired

Reynolds number. For the steady analysis at Re = 40, a time step of ∆t = 0.05 [s]
has been chosen. In order to capture the more complex and oscillating flow field
appearing in the transient analysis at Re = 100, a time step of ∆t = 0.01 [s] has
been adapted. Convergence tolerance εtol = 10−7 has been chosen for the steady-
state analysis. For the transient analysis, 100 [s] are simulated using maximum 200
iterations for the pressure-Poisson equations in order to satisfy the incompressible
flow requirement. If too few iterations are used, the flow will not become fully
incompressible resulting in a slow varying pressure oscillation in the whole domain
due to low damping.
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(a) 2.367 nodes, D/h = 0.20 (b) 6.538 nodes, D/h = 0.10

(c) 22.213 nodes, D/h = 0.05 (d) 12.329 nodes, D/h = 0.05

(e) Close-up on cylinder for 5.13(a), 5.13(b)
and 5.13(c).

(f) Close-up on cylinder for 5.13(d).

Figure 5.13: Node distribution for the cylinder flow problem

As expected, the calculation at Re = 40 converges to a steady-state solution with
a symmetrical wake appearing right behind the cylinder body as shown in figure
5.11. The blocking effect is observed by plotting the the pressure distribution along
the cylinder surface, starting from the front stagnation point. Due to symmetric
behavior in the steady solution, only the upper half of the cylinder is considered in
figure 5.14(a). From the figure it is clear that by decreasing the blocking, the pres-
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sure distribution will converge to the correct free stream solution. The calculation
with blocking factor D/h = 0.20 reveals large interaction with the boundary walls,
which will result in incorrect drag force and separation point.
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(b) Re = 100

Figure 5.14: Pressure distribution along the cylinder surface for the steady– and
unsteady case.

In case of Re = 100, the pressure distribution will no longer be steady and sym-
metrical. In figure 5.14(b), the pressure is shown along the surface at the moment
of upper vortex shedding. In figure 5.15, the two extreme distributions are plot-
ted. Vortex shedding 1 represents the pressure distribution at the moment of lower
vortex shedding, while Vortex shedding 2 represents the upper. Each of the two
distributions are symmetric to the other at θ = 180◦.
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Figure 5.15: Pressure distribution along the cylinder surface for Re = 100.

The point of separation has been determined for each simulation and tabulated
in table 5.1 together with earlier observations for comparison. For the node dis-
tribution in figure 5.13(d) separation occurs much earlier compared to the other
simulations and the reference values. The reason for this is however unknown.
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Table 5.1: Separation point for the viscous flow past a cylinder.

Re Source θsep
40 Present D/h = 0.20 51.0

Present D/h = 0.10 51.0
Present D/h = 0.05 69.0
Ding et al. [7] 53.5

100 Present D/h = 0.20 60.0± 3.0
Present D/h = 0.10 60.0± 3.0
Present D/h = 0.05 67.5± 1.5
Kjell Herfjord [19] 60.0± 3.0
Grove et al. [17] D/h = 0.20 57.5

The vector field in figure 5.17(a) clearly shows how the steady separation bubble
behind the cylinder at Re = 40 is formed by two circulating regions which reattach
a couple of diameters downstream the cylinder body. Figure 5.17(b) shows how
a vortex is being generated at the lower rear of the cylinder surface. In order
to determine the shedding frequency, and hence find the dimensionless Strouhal
number, a time series has been extracted from a point downstream the cylinder
where the velocities fluctuate with time. The time series has later been transformed
into the frequency domain shown in figure 5.16 using fast Fourier transform (FFT)
from which the shedding frequency can be directly read out. The Strouhal number
converges to St = 0.16 already with blocking factor D/h = 0.10, and is hence
not very sensitive to the boundaries. St = 0.16 compares quite well to earlier
observations [19]. Additional field plots can be found in appendix E.

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
 

 

 

Frequency [1/s]

D/h=0.20

D/h=0.10

D/h=0.05

D/h=0.05 refined

Figure 5.16: Shedding frequency at Re = 100
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(a) Re = 40

(b) Re = 100

Figure 5.17: Vector field for the steady– and unsteady cylinder flow.
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Chapter 6

Discussion

During this thesis, the meshfree LSFD procedure has been explained throughly and
implemented in a code for solving two dimensional incompressible flow problems.
The program has been generalized as much as possible within the given restrictions.
Nevertheless, a list of important shortcomings can, and shall be highlighted. The
results from the analysis part have already been discussed, and the program itself,
with its limitations and suggestions for further work, will be subjected for discussion
in the following. Despite the drawbacks, the program is entirely capable of solving
incompressible two dimensional problems as it initially was meant for, something
the analysis in chapter 5 clearly show.

6.1 Neighbor node identification

The neighbor nodes have been determined using the element information given in
the geometry input file from MEGA. However, if the procedure is depending on any
element information, it is not entirely meshfree. The program should be able to
identify the neighbor nodes using the node coordinates only. Efficient methods for
this task do exist, i.e. binary tree search and Delaunay triangulation, but have not
been the subject of this thesis. However, as for further work these methods should
definitely be looked into. With more efficient search algorithms, node adaptivity
could also be developed in order to refine the node distribution in regions with large
gradients. In fact, this is one of the great advantages with the meshfree concept.

6.2 Three dimensional flows

The present program supports only two dimensional flows, which of course does
not exist in reality. However, the LSFD procedure is quite general and it should

65



66 Chapter 6. Discussion

definitely be possible to expand the program to three dimensions without too many
complications. As a matter of fact, this has already been done for a method closely
related to LSFD [8]. When three dimensions are settled, turbulent flows should
also be looked further into. Of course, with one more dimension even more care
have to be taken in terms of efficient programming since the computational expense
will increase tremendously.

6.3 Solution method

When it comes to the solution method, the foundations are settled. However, the
method is of 1st order only, which is a huge restriction in terms of accuracy. 2nd
order projection methods does exist and should be applied. Though with 2nd
order methods, the boundary conditions will become more complicated. As for the
boundary conditions in their present form, they are quite restrictive. The program
does not allow the end user to specify the x– and y component of the velocity
at inlet boundaries for example, only the normal component. Periodic boundary
condition have not been treated in this thesis, but is definitely a task subjected
for future improvement. Another issue which should be improved, is the solution
stability. The semi-implicit projection method applied to the program will give
restrictions in terms of the courant number. Especially for steady-state analysis, a
fully implicit method would be preferable.

6.4 Graphical user interface

The program in its present form is pure command line code. With no graphical
user interface, the program will be less user oriented and quite hard to understand.
For the most obvious errors during the calculation process i.e. singular coefficient
matrix, wrong input file etc., messages will be printed to the screen in order to
inform the user of where the program fails. For further work, a graphical user
interface with an intuitive options handler should be developed. Live convergence
information should also be implemented in order to give the user an idea of where
the analysis might fail.



Bibliography

[1] Numerical solutions of 2-D steady incompressible flow over a backward-facing
step, Part 1: High Reynolds number solutions. Computers & Fluids, 37(6):633
– 655, July 2008.

[2] John B. Bell, Phillip Colella, and Harland M. Glaz. A second-order projection
method for the incompressible Navier-Stokes equations. Journal of Computa-
tional Physics, 85(2):257 – 283, 1989.

[3] Yongchang Cai and Hehua Zhu. A local search algorithm for natural neigh-
bours in the natural element method. International Journal of Solids and
Structures, 42(23):6059 – 6070, 2005.

[4] Alexandre Joel Chorin. A numerical method for solving incompressible viscous
flow problems. Journal of Computational Physics, 2(1):12 – 26, 1967.

[5] Filippo Maria Denaro. On the application of the Helmholtz-Hodge decompo-
sition in projection methods for incompressible flows with general boundary
conditions. International Journal for Numerical Methods in Fluids, 2003.

[6] H. Ding, C. Shu, K. S. Yeo, and D. Xu. Development of least-square-based two-
dimensional finite-difference schemes and their application to simulate natural
convection in a cavity. Computers & Fluids, 33(1):137 – 154, 2004.

[7] H. Ding, C. Shu, K. S. Yeo, and D. Xu. Simulation of incompressible viscous
flows past a circular cylinder by hybrid FD scheme and meshless least square-
based finite difference method. Computer Methods in Applied Mechanics and
Engineering, 193(9-11):727 – 744, 2004.

[8] H. Ding, C. Shu, K. S. Yeo, and D. Xu. Numerical computation of three-
dimensional incompressible viscous flows in the primitive variable form by local
multiquadric differential quadrature method. Computer Methods in Applied
Mechanics and Engineering, 2006.

[9] H. Ding, C. Shu, K. S. Yeo, and D. Xu. Numerical simulation of flows around
two circular cylinders by mesh-free least square-based finite difference meth-
ods. International Journal for Numerical Methods in Fluids, 53(2):305 – 332,
2007.

67



[10] Qing dong CAI. Explicit formulations and performance of LSFD method on
Cartesian mesh. Applied Mathematics and Mechanics, 30(2):183 – 196, 2009.

[11] C. Henry Edwards and David E. Penney. Calculus. Prentice-Hall, 6 edition,
2002.

[12] Joel H. Ferziger and Milovan Peric. Computational Methods for Fluid Dynam-
ics. Springer, 1997.

[13] Ali Rahmani Firozjaee and Mohammad Hadi Afshar. Steady-state solution of
incompressible Navier-Stokes equations using discrete least-squares meshless
method. International Journal for Numerical Methods in Fluids, 2010.

[14] C.A.J. Fletcher. Computational Techniques for Fluid Dynamics, volume 1.
Springer, 2 edition, 1996.

[15] U. Ghia, K.N. Ghia, and C.T. Shin. High-Re solutions for incompressible
flow using the Navier-Stokes equations and a multigrid method. Journal of
Computational Physics, 48(3):387 – 411, December 1982.

[16] G.R.Liu and Y.T. Gu. An Introduction to Meshfree Methods and Their Pro-
gramming. Springer, 2005.

[17] A.S. Grove, F.H. Shair, E.E. Petersen, and Andreas Acrivos. An experimental
investigation of the steady separated flow past a circular cylinder. Cambridge
University Press, 1964.

[18] J.L. Guermond, P. Minev, and Jie Shen. An overview of projection meth-
ods for incompressible flows. Computer Methods in Applied Mechanics and
Engineering, 2006.

[19] Kjell Herfjord. A study of two-dimensional separated flow by a combination
of the finite element method and Navier-Stokes equations. PhD thesis, The
Norwegian Insitute of Technology, 1995.

[20] Joseph O’Rourke. Computational geometry in C. Cambridge University Press,
second edition, 1998.

[21] David E. Penney and C. Henry Edwards. Elementary Linear Algebra. Prentice-
Hall, 1988.

[22] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes in C. Cambridge University Press, 2 edition,
2002.

[23] Samuel R. Ransau. Numerical Methods for Flows with Evolving Interfaces.
PhD thesis, Norwegian University of Science and Technology, 2004.

[24] Patrick J. Roache. Fundamentals of Computational Fluid Dynamics. Hermosa
Publishers, 1998.

[25] C. Shu, H. Ding, and N. Zhao. Numerical comparison of least square-
based finite-difference (LSFD) and radial basis function-based finite-difference

68



(RBFFD) methods. Computers & Mathematics with Applications, 51(8):1297
– 1310, 2006.

[26] C. Shu, W.X. Wu, H. Ding, and C.M. Wang. Free vibration analysis of plates
using least-square-based finite difference method. Computer Methods in Ap-
plied Mechanics and Engineering, pages 1330 – 1343, 2007.

[27] T.E. Tezduyar and J. Liou. On the downstream boundary conditions for the
vorticity-stream function formulation of two-dimensional incompressible flows.
Computer Methods in Applied Mechanics and Engineering, 1991.

[28] Michael Vine. C Programming for the Absolute Beginner. Premier Press, 2002.

[29] D.C. Wan, B.S.V. Patnaik, and G.W. Wei. Discrete singular convolution–
finite subdomain method for the solution discrete singular convolution–finite
subdomain method for the solution discrete Singular Convolution-Finite Sub-
domain Method for the Solution of Incompressible Viscous Flows. Journal of
Computational Physics, pages 229 – 255, 2002.

[30] Frank M. White. Fluid Mechanics. McGraw-Hill, 5 edition, 2005.

[31] Frank M. White. Viscous Fluid Flow. McGraw-Hill, 3 edition, 2006.

[32] David M. Young. Iterative Methods for Solving Partial Difference Equations
of Elliptic Type. PhD thesis, Harvard University, 1951.

69



70



Appendix A

Program layout

As a supplementary to chapter 4, the input text file and a program flow chart have
been included in this appendix. The source code however, has only been included
electronically.

FILE PROPERTIES

Project name: name

Input file: geometry.vtf

FLUID PROPERTIES

Density: 1.0

Dynamic viscosity: 0.01

NUMERICAL PROPERTIES

Number of auxiliary nodes: 6

Number of truncated terms: 2

Residual error: 1e-7

Relaxation factor: 1.5

Pressure steps: 10

TIME SETUP

Timestep: 0.01

Time duration: 1000

Courant min max: 0.5 0.8

Output interval: 200

BOUNDARY CONDITIONS

1 noslip 0

2 freeslip

3 velocity 1

4 pressure 0
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Figure A.1: Program flow chart
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Appendix B

Rotating Couette flow

(a) u-velocity (b) v-velocity

(c) Total velocity (d) pressure

Figure B.1: Velocity field for Couette flow problem
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Appendix C

Poiseuille channel flow

(a) u-velocity

(b) pressure

Figure C.1: Velocity– and pressure field for Poiseuille flow problem
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Appendix D

Lid-driven cavity flow

(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure D.1: u-velocity fields for lid-driven cavity flow problem
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(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure D.2: v-velocity fields for lid-driven cavity flow problem
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(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure D.3: Total velocity fields for lid-driven cavity flow problem
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(a) Re = 100 (b) Re = 400

(c) Re = 1000 (d) Re = 3200

Figure D.4: Pressure fields for lid-driven cavity flow problem
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Appendix E

Flow past a circular cylinder

(a) Re = 40

(b) Re = 100

Figure E.1: u-velocity fields for the viscous cylinder flow
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(a) Re = 40

(b) Re = 100

Figure E.2: v-velocity fields for the viscous cylinder flow
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(a) Re = 40

(b) Re = 100

Figure E.3: Total velocity fields for the viscous cylinder flow
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(a) Re = 40

(b) Re = 100

Figure E.4: Pressure fields for the viscous cylinder flow
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