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Abstract: 

As the limited fossil energy sources become empty, new sources for energy need to be exploited. One such 

renewable energy is wind energy. The wind energy potential is high offshore, and is therefore a beneficial  

location to place wind power plants. Europe has very large areas of seabed with a suitable water depth and sea  

floor. However, due to a number of reasons, the available shallow area for bottom-fixed offshore wind farms is 

limited. One must therefore exploit the possibility of wind turbines at large water depths. Here, floating solutions 

must be introduced. As it is not possible to perform model tests which comply with the scaling laws for both the 

aerodynamic and wave forces, the design of floating wind turbines is highly dependent on precise numerical tools 

to find the optimal technical solutions. 

 

The main loads on an offshore structure come from the environmental, waves, wind and current, with waves as  

the most important. Thus, it is very important to simulate waves correctly so that their effects on the structures  

have an adequate degree of accuracy.  Fast Fourier Transform (FFT) is normally used for linear analysis when 

simulating irregular waves. However, the computational requirements will become prohibitive when performing  

a nonlinear analysis on floating offshore structures, and therefore is another method for representation of  

the wave spectrum desirable. The purpose of this thesis is to contribute to the verification of an alternative method, 

the Equal Area Principle (EAP). The adequacy of the equal area method is tested on a bottom-fixed, vertical 

cylinder and the SWAY turbine.  

 

The models are implemented in the nonlinear structural analysis program, USFOS. The accuracy of the USFOS 

command, SpoolWave employed on SWAY has also been examined, and is found to be satisfactory. 

   

According to present observations the equal area method is not recommended to be used on fixed structures  

because of the non-consistent trend in the results. Regarding the SWAY turbine, the equal area method gives 

satisfactory results, and is therefore considered valid when used on floating solutions.  
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Time-domain simulation of floating wind power plants in irregular seas 

Tidsplananalyse av flytende vindkraftverk i irregulær sjø   

  
As the limited, fossil energy sources become empty, new sources for energy need to be exploited. One 

such source is wind energy. Most wind turbines today are installed on-shore, and in many regions the 

remaining on-shore sites are limited. There is often a conflict between installation wind turbines and 

other use of the area, for example noise, visual “pollution” etc. 
One solution to this may be to put the wind turbines offshore where the wind energy potential is high. 

Relative shallow water areas will be utilized first with bottom-fixed installations. 

As large areas offshore have water depths more than 50-70m, which is the limit for bottom-fixed 

structures, floating solutions will have to be introduced. 

 

As it is not possible to perform model tests which comply with the scaling laws for both the 

aerodynamic and wave forces, the design of floating wind turbines is highly dependent on precise 

numerical tools to find the optimal technical solutions. This paper addresses some central aspects in 

the design of floating wind turbines. One such tool is vpOne, which has performs time domain 

integrated the servo-aero-hydroelastic system.  

  
A challenge with time-domain analysis is the representation of the sea spectrum. For linear analysis 

and small displacements is common to use fast Fourier transform (FFT) of the sea spectrum. In order 

to avoid repetition of the wave history several thousand of uniformly spaced wave components may be 

needed. For floating structures large horizontal motions the computational requirements will become 

prohibitive by using FFT. An alternative top FFT is to use few wave components based on equal area 

principle. This implies that emphasis is placed on the energy rich parts of the wave spectrum.  The 

accuracy of this method must be demonstrated. The purpose of this work is to check contribute to the 

verification of the method. 
  

The following topics should be addressed:                               
 

1. Perform time domain static and dynamic simulation of a single bottom fixed, vertical cylinder 

subjected to Morrison based wave forces. The cylinder diameter shall be varied so that the loads 

are either mass dominated or drag dominated. The eigenperiod of the cylinder shall be varied be in 

regions with high energy and low energy. Simulations shall be carried out with both with constant 

frequency width and the equal area method. The number of wave components shall be varied. 

 

2. Compare the statistical properties of the simulated histories and assesses the adequacy of using the 

constant area method. The required number of wave components shall also be addressed. 

 

3. Perform a statistical comparison of the two methods for FLS and ULS characteristic response for 

the SWAY turbine concept and a bottom fixed (jacket) turbine.  

 

4. Conclusions and recommendation for further work. 

   Literature studies of specific topics relevant to the thesis work may be included. 

 

The work scope may prove to be larger than initially anticipated.  Subject to approval from the 

supervisors, topics may be deleted from the list above or reduced in extent. 

 

In the thesis the candidate shall present his personal contribution to the resolution of problems within the 

scope of the thesis work. 
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Summary 
As the limited fossil energy sources become empty, new sources for energy need to be exploited. One 

such renewable energy is wind energy. The wind energy potential is high offshore, and is therefore a 

beneficial location to place wind power plants. The dimensions of offshore wind turbines are relatively 

larger than onshore wind turbines. Traditionally, offshore wind turbines are bottom fixed and installed 

in relatively shallow waters. Europe has very large areas of seabed with a suitable water depth and sea 

floor. However, shipping lanes, fishing banks, bird migration zones, defense testing grounds and 

recreational interest all tend to limit the area potentially available for offshore wind farms. Taking 

these limitations into account, there are not sufficient shallow water areas for large-scale offshore wind 

farms. One must therefore exploit the possibility of wind turbines at large water depths. Here, floating 

solutions must be introduced. As it is not possible to perform model tests which comply with the 

scaling laws for both the aerodynamic and wave forces, the design of floating wind turbines is highly 

dependent on precise numerical tools to find the optimal technical solutions. 

 
The main loads on an offshore structure come from the environmental, waves, wind and current, with 

waves as the most important. Thus, it is very important to simulate waves correctly so that their effects 

on the structures have an adequate degree of accuracy.  Fast Fourier Transform (FFT) is normally used 

for linear analysis when simulating irregular waves. However, the computational requirements will 

become prohibitive when performing a nonlinear analysis on floating offshore structures, and therefore 

is  an alternative method for representation of the wave spectrum desirable. The purpose of this thesis 

is to contribute to the verification of an alternative method, the Equal Area Principle (EAP), i.e. the 

main objective is to compare the Equal Area Principle method against Fast Fourier Transform.  

 

The thesis is divided into two main parts where the first part deals with the adequacy of the equal area 

method on a single bottom fixed, vertical cylinder. The second part compares the equal area method 

with FFT on the floating structure, the SWAY turbine. The assessment of the validity of the equal area 

method is based upon results from the following quantities; the mean, the standard deviation and the 

extreme values plotted in Gumbel probability papers. 90 percentile estimate of the Gumbel 

distributions are also used for comparison.  

 

The models are implemented in the nonlinear structural analysis program, USFOS. The accuracy of 

the USFOS command, SpoolWave employed on SWAY has also been examined, and is found to be 

satisfactory.   

 

The relevant statistical parameters for the resulting surface elevations have also been investigated. The 

simulated waves should approach a Gaussian process. The distribution has the following 

characteristics; a mean value of 0, standard deviation of 3, skewness of 0, and a kurtosis of 3. Both 

methods produce a good wave profile, i.e. satisfactory parameters, except the kurtosis. FFT produces a 

kurtosis value less than 3 and less than the equal area method. EAP produces in fact “better” 

parameters than FFT. The mean extremes of surface elevation from FFT and EAP are respectively 

lower and higher than the theoretical value. However, the deviations are not significant, and FFT and 

EAP results in a satisfactory, asymptotically Gaussian distribution. 

 

Considering the results for the fixed cylinder, the equal area method gives both conservative and non-

conservative response in comparison to FFT, i.e. the tendency of the equal area method is not 

predictable. Safety factors are proposed in the conclusions if employing EAP. However, according to 

present observations the equal area method is not recommended to be used on fixed structures because 

of the non-consistent trend in the results.  

 

Several response quantities have been studied when checking the adequacy of the equal area method 

on the SWAY turbine. The equal area method always produces higher responses than FFT, i.e. the 

equal area method is conservative when employed on the SWAY turbine. However, the difference 

between the two methods is minor. This suggests that the equal area method is valid when employing 

a potential correction factor. These are proposed in conclusions.   
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The simulations have been carried out with a duration of one thousand seconds, and twenty samples 

from each case are available for comparison. Because of statistical uncertainty, the information basis 

may be too small to justify firm conclusions. It is therefore recommended to carry out more 

simulations with longer duration before final conclusions are made.  
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Nomenclature 
An attempt has been made to explain all symbols the first time they appear in each chapter. Here 

follows a list explaining the most important symbols and abbreviations.  

 

Latin Symbols 

α  Gumbel parameter 

α  Damping coefficient 

β  Damping coefficient 

   Frequency ratio 

γ1  Skewness   

γ2  Kurtosis 

     Phase angle associated with response 

ԑ  Phase angle 

ϵ  Phase angle 

   Damping ratio 

μ
n
  Moments 

 ̅   Central Moments 

   Surface elevation 

    Wave Amplitude  

   Water density 

σ  Standard deviation 

σ
2 
  Variance 

ϕ  Phase angle 

ω  Frequency (rad/s) 

 
Greek Symbols  

A  Added mass 

    Wave amplitude 

    Horizontal water particle acceleration 

C  Damping matrix 

    Drag coefficient 

    Mass coefficient 

   Diameter 

E()  Expectation value 

f()  Probability density distribution 

f  Hertz (s
-1

) 

F()  Cumulative density function 

    Total wave force per unit length 

Hs  Significant wave height 

       Transfer function  

K  Stiffness matrix 

k  Stiffness 

M  Mass matrix 

m  Mass 

mo  Second standardized moment 

N  Number 



ix 

 

R  External forces 

r  Response 

S()  Wave spectrum 

Ti  Transfer function 

Tn  Natural period 

T  Time 

t  Time 

   Horizontal water particle velocity 

   Gumbel parameter 

x  Stochastic variable  

    Unit length in z direction 

 

 

Abbreviations 

CDF  Cumulative distribution function 

EAP  Equal Area Method 

FFT  Fast Fourier Transform 

PDF  Probability density function 

RAO  Response amplitude operator 

ULS  Ultimate limit state 
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1 Introduction 
As fossil energy sources become empty, new sources for energy need to be exploited. One such source 

is wind energy. The wind energy potential is high offshore. Traditionally, offshore wind turbines are 

installed on relatively shallow waters. However, due to a number of reasons, the potentially available 

shallow area for offshore wind turbines is limited. One needs therefore to exploit the possibility of 

wind turbines at larger depths. When the water depth is large, floating solutions must be introduced 

where horizontal deformations are large. In a linear analysis, the Fast Fourier Transform (FFT) is 

commonly used for simulating irregular waves. However, here, the computational requirements will 

become prohibitive, and an alternative method for representation of the wave spectrum is desirable. 

An option is using a method based on the equal area principle with few wave components. The 

accuracy of this method has not yet been fully demonstrated.  

 
Thesis Outline  
The purpose of this Thesis is to contribute to the verification of the alternative method to simulate 

waves, the Equal Area Principle (EAP). The main objective of this thesis is to compare the Equal 

Area Method against Fast Fourier Transform. The main loads on an offshore structure come from 

environmental, waves, wind and current, with waves as the most dominating. Thus, it is very 

important to simulate waves correctly so that their effects on the structures have an adequate degree of 

accuracy. 

 

The thesis is divided into two main parts where the first part deals with the adequacy of the equal area 

method on a fixed offshore structure, a single bottom fixed, vertical cylinder. The latter part compares 

the equal area method upon FFT on the floating structure, the SWAY turbine.    

 

When comparison of two methods is made, several statistical parameters must be checked. Chapter 2 

gives an overview and explanation of these parameters together with a short introduction of the 

methods, FFT and EAP, and stochastic processes.   

 

Chapter 3 describes the performance of a time-domain static and dynamic simulation of the fixed 

cylinder subjected to Morison based wave forces. The computer program, USFOS is used throughout 

this project for the analyses. Chapter 4 gives a short description of the program.  

 

Chapter 5 contains all results from the time-domain analyses of the fixed cylinder together with 

discussion of the results. A temporary conclusion of the adequacy of the equal area method is made in 

Chapter 6.   

 

Chapter 7 gives an introduction of the SWAY concept and outlines the performance and results for the 

dynamic analyses of the turbine in USFOS. Discussion around the results is found in Chapter 8.  

 

Further reduction of computer time can be possible by using a command, SpoolWave in USFOS. 

Verification of this command is attempted in Chapter 9.   

 

Chapter 10 contains the conclusion of this work and Chapter 11 gives recommendations for further 

work.  
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2 Time-Domain Analysis 
A challenge with time-domain analysis is to get a correct representation of the sea spectrum. It is 

common to use Fast Fourier transform (FFT) for representation of the sea spectrum. But in order to 

avoid repetition of the wave history and to describe the peak accurately, several thousand of uniformly 

spaced wave components may be necessary. Therefore, the computational requirements will become 

prohibitive concerning nonlinear analyses. An alternative is to use few wave components based on the 

equal area principle (EAP). In this case the area in the spectrum is kept constant as the name implies, 

in contrast to FFT.  

 

This chapter gives a description of FFT and EAP, together with the theory regarding statistical 

parameters and extreme value distribution that is used to assess the adequacy of the equal area method.  

 

2.1 Simulation of Irregular Sea 
The irregular sea is generated by Fast Fourier Transform of the wave spectrum. This gives a finite set 

of discrete wave components. Each component is expressed as a harmonic wave amplitude, angular 

frequency and random phase angle. The surface elevation of the irregular sea is approximated by 

superposition of all extracted harmonic wave components with random phase angles between 0 and 

2π. Refer equation 2-1 and Myrhaug (2007).  

 

     ∑                    
 
        (2-1) 

 

Where: 

    Amplitude of harmonic wave number n 

   Angular frequency of harmonic component n 

   Wave number for harmonic component n 

   Random phase angle for harmonic component n 

 

The wave amplitude of each harmonic component is determined by the wave spectrum 

 

    √ ∫        
    

    
      (2-2) 

 

Where S(ωn) is a given value in the wave spectrum, and ωl,n ωu,n represents the lower and upper angular 

frequency limit for wave component n. Two methods are available for the integration term, refer 

USFOS Hydrodynamics (SINTEF marintek 2010).  

 

2.1.1 FFT – Fast Fourier Transform 

The traditional method, FFT calculates the wave amplitude with same resolution in frequency, giving 

different amplitudes for each calculation.  

 

             
     

 
             (2-3) 

 

Where ωu and ωl are the upper and lower limit for the integration of the wave energy spectrum, refer 

Figure 2-1. The number of components, N must be sufficiently large in order to avoid repetition of the 

wave history. A minimum number of harmonic components are given by Δω≤π/T, where T is the 

simulation time, refer Langen (1979). 
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2.1.2 EAP – Equal Area Method 

The equal area method adjusts the frequency limits so that each component contains the same amount 

of energy, resulting in equal wave amplitudes for each calculation. This is illustrated in Figure 2-2 and 

shown in equation 2-4. Number of components that are required in EAP is not as strict because of the 

variable resolution in frequency. The following periods of the sine curves are not harmonically related 

and the series repeats only after a long time, refer USFOS Hydrodynamics (SINTEF marintek 2010). 

 

    √ ∫       
    

    
 √

 ∫        
  
  

 
            (2-4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above methods give a deterministic spectral amplitude, i.e. only random phase and non-random 

generation of amplitudes. A stochastic process with only random phase is asymptotically Gaussian. 

Use of this equation in a time simulation will always produce a spectrum equal to S(ω) and thus some 

randomness of the real wave system will be lost according to M. J. Tucker et al. (1984). In reality the 

amplitude should be random resulting in a Gaussian distribution.  

 

Due to the idealization one has to some extent lost contact with reality, and the adequacy of this 

idealization regarding the actual problem is essential with respect to reliability of the decisions that are 

to be made. To quantify this sort of uncertainty is in general rather difficult.   

 
Figure 2-1 Illustration of irregular sea state 

generation with FFT (USFOS Hydrodynamics 2010) 

 
Figure 2-2 Illustration of irregular sea state generation with 

EAP (USFOS Hydrodynamics 2010) 
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2.2 Statistical Parameters 
Spectral analysis of stochastic processes carried out in the frequency domain is a prerequisite for 

predicting properties of stochastic processes (Leira 2010). A detailed description of a stochastic 

variable, such as a wave profile is achieved by characteristic quantities given by higher order 

moments. It is important to evaluate various parameters of a stochastic process such as those 

representing the measure of mean, variance, asymmetry and peakedness of the probability distribution.  

Haver (2010) states that in practice it is usually assumed that the variations in characteristics are much 

slower than the variations in the sea surface itself. Due to this realization, the stochastic process can 

for short time periods considered as being a realization of a stationary process. 

 

For a total description of a stochastic variable by its moments, one must in general include an infinite 

number of moments. In practice, this is impossible, and the methods available for describing a variable 

by moments are based on inclusion only of moments up to a certain order. This implies that one only 

have an approximate description. However, the mean value and the variance are the most important 

characteristic quantities for a variable. If the variable is normally distributed, such as a wave profile, 

the second order moments give a complete description of the variable, refer Leira (2010). Moments 

and central moments are defined below:  

 

Moments:      
   

 ∫    

  
          (2-5)    

            

Central moments:    ̅ 
   

 ∫       
  

  
         (2-6)  

 

Where: 

 x  Variable X 

        Probability density function for a variable 
      

2.2.1 Expectation Value 

The expectation value represents the “center of gravity” for the distribution (Leira 2010), where X is 

the stochastic variable. The mean is the expected value for a random variable.  

 

  
     [ ]  ∫  

 

  
             (2-7)   

          

This value is zero for a normal distribution.  

 

2.2.2 The Variance 

The variance is used in order to express the spreading of the distribution (Leira 2010). The standard 

deviation is the square root of the variance. Figure 2-3 illustrates the center of gravity and standard 

deviation for a normal distribution.  

 

 ̅ 
      

     [ ]  ∫       
  

  
           (2-8)   

      

 

 

 

 

 

 

 

 

 

 

 

    
 

Figure 2-3 Normal distribution with sketch of standard deviation and mean 
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2.2.3 Skewness 

The skewness gives a description of the asymmetry of a distribution around its mean. The skewness of 

a random variable X is the third standardized moment (Leira 2010), and defined as:  

 

   
 ̅ 
   

  ̅ 
   

    
 

 ̅ 
   

  
      (2-9)       

          

This value is zero for a normal distribution. Figure 2-4 illustrates different shapes for distributions 

with variable skewness. 

 

 

 
Figure 2-4 Illustration of distributions with different skewness 

 

2.2.4 Kurtosis 

Kurtosis is the measurement of the “peakedness” of the probability distribution.  The kurtosis 

coefficient is also called the fourth standardized moment (Leira 2010) and is defined as:  

 

   
 ̅ 
   

  ̅[ ]  
 

 ̅ 
 

  
       (2-10)      

            

  

This value is three for a normal distributed variable. Refer Figure 2-5 for illustration. 

 

 
Figure 2-5 Illustration of distributions with different kurtosis 

 

 

2.3 Extreme value statistics and Distribution 
A quantity of high interest is the maximum value from a sample of a stochastic process. The 

distribution of the largest maxima from each sample is very important when it comes to analysis. The 

following assumptions are made in this thesis, refer (Leira 2010). 

 

- All wave peaks are identically Rayleigh-distributed.  

- All maxima are statistically independent and identically distributed.   
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2.3.1 The Gumbel Distribution 

The Rayleigh distribution together with normal, log-normal, exponential, Weibull and Rice 

distributions result in an asymptotic Gumbel extreme value distribution, and is the most common 

extreme value distribution.  The Gumbel cumulative density function (CDF) and probability density 

function (PDF) are defined as:  

 

                         (2-11)  

 

                                (2-12) 

 

Where: 

y Sample maxima 

 α Gumbel parameter 

 u Gumbel parameter  

 
Gumbel Probability Paper 
Gumbel probability paper is based on the linearization of the cumulative distribution function shown 

in equation 2-11. Selecting a system with x as the horizontal axis and y=-ln[-ln(Fy(y))] as the vertical 

axis, the Gumbel distribution will result in a straight line, i.e. the coordinate system is a Gumbel 

probability paper (Leira 2010).  

 

Plotting the extreme values in a probability paper is a subjective method for verification of a selected 

distribution. This is due to the fact that it is not possible to establish any objective criteria for how 

large deviations from the straight line that can be accepted until the postulated distribution is rejected 

for a given significance level according to Leira (2010). However, the method represents a very simple 

and efficient tool for preliminary assessment of a tentative model. Accordingly, it is frequently applied 

in practical applications. Refer equation 2-13 for transformation to the Gumbel paper: 

 

    [   [     ]              =αy-b   (2-13) 

 

Where: 

 α Slope of straight line 

 b  Crossing of the axis        

 

The cumulative density function Fi from an available sample is given by: 

 

   
 

    
      (2-14)      

        

Where:  

 i Number of samples within a given level 

 Ny Total number of samples 

  

2.3.2 Extreme value predictions 

Provided that the number of samples is sufficiently large for identifying the tail behavior of the 

distribution, one can obtain extreme values in a Gumbel Probability Paper corresponding to a priory 

given exceedance probability. The duration of simulation should also be sufficiently long. In practice 

it is important to remember that there is considerable variability from sample to sample and whether 

the estimator is biased or not, i.e. there are scatter around the “true” value, refer Haver (2010). Various 

results may also come from different calculations of the Gumbel parameters α and b. They can be 

established from the moments from the distribution or by regression (Leira 2010). In this thesis, the 

parameter estimation is done by fitting the straight line to the empirical distribution functions in the 

diagrams and using the relations to relate parameters to intercept and slopes of the estimated lines, 

refer WAFO Tutorial (2000).  



7 

 

 

3 Time-Domain Simulation on a Fixed Cylinder 
This chapter describes the performance of a time-domain static and dynamic simulation of a single 

bottom fixed, vertical cylinder subjected to Morison based wave forces. Simulations are carried out 

with FFT and the equal area method. Number of wave components is constant considering FFT and 

varied in the latter. The computer program USFOS is used when performing the time-domain 

simulations. Chapter 4 gives a description of the program. 

 

The wave loads are chosen to be either mass dominated or drag dominated. This results in four 

separate analyses where comparison of FFT and equal area principle will be made. The following are: 

 

- Static analysis when loads are mass dominated 

- Static analysis when loads are drag dominated 

- Dynamic analysis when loads are mass dominated 

- Dynamic analysis when loads are drag dominated 

When comparing two different methods, an adequate number of samples must be available. Twenty 

samples from each method with corresponding components in the four cases have been chosen to be a 

satisfying number. Statistical properties calculated from wave elevation time histories will be 

compared and evaluated, together with the extreme value distribution for wave elevation, wave load 

and overturning moment. 

 

Running this many simulations is time consuming, and to automatize this process, Cygwin has been 

made use of. Cygwin is a Linux-like environment and command-line interface for Windows.  

 

3.1 Case Study 
The simulations of waves in USFOS have duration of one thousand seconds, T=1000s. FFT is 

executed with 1000 components while the number of wave components in the equal area method is 

varied between 30, 60 and 90 components. Morison‟s equation displayed in equation 3-1 is used to 

calculate wave forces on the structure (Pettersen 2007).  The control file and model file for the fixed 

cylinder is given in Appendix A. Figure 3-1 illustrates the cylinder in USFOS.  

 

    
   

 
       

 

 
               (3-1) 

 

Where:  

    Total force per unit cylinder length 

   Water density 

   Diameter of cylinder 

    Mass coefficient 

   Drag coefficient 

    Horizontal water particle acceleration 

   Horizontal water particle velocity 

    Unit length in z direction 

 

The first term represents the inertia force, and the latter, drag force. The cylinder diameter is varied so 

that the loads are either mass dominated or drag dominated, refer (Pettersen 2007). The wave loads 

decrease exponentially with water depth. It is therefore important to define number of integration 

sections to be used in connection with wave load calculation and to subdivide the cylinder in several 

beam elements to obtain accurate results (USFOS User's Manual 2006). A fine mesh is specified in the 

water surface where the wave loads are dominating. To save computer time, a coarser mesh is defined 

with increasing water depth where the wave loads are minor, refer Appendix A.  
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The same Jonswap wave spectrum is used throughout the analysis. The gamma parameter in the 

Jonswap spectrum is set to 3.3 which give a realistic sea state of waves in the North Sea, according to 

Myrhaug (2007). The frequencies in the wave spectrum vary from 0.04s
.1 

to 0.33s
.1
 with a top period, 

Tp=14s, refer Figure 3-2. The water depth is set to 90m and the cylinder is 120m high. Significant 

wave height is also kept constant throughout the analysis, keeping the surroundings the same at all 

times.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 3-2 Specified wave spectrum 

 

 
Figure 3-1 Fixed Cylinder in USFOS 
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3.2 Static Analysis 
In order to get a static behavior the cylinder‟s E-modulus is set to a value hundred times larger than 

steel, giving the cylinder hardly any horizontal displacement. The largest natural period is then far 

below 2s, and the cylinder can be considered as a quasi-static structure (Haver 2010), i.e. one can 

neglect the mass and damping term in the equation of motion. The equation of equilibrium is given by: 

 
                 (3-2) 

 

Where:  

 k  Stiffness  

 r(t)  Response 

 R(t)  External/wave forces  

 

3.3 Dynamic Analysis 
The dynamic equation of equilibrium is formulated in terms of 

 
   ̈      ̇                 (3-3) 

 

Where:  

    Mass 

    Damping 

    Stiffness  

 R(t)  External/wave forces 

 r(t)  Response 

 

The structural response can for all structures in principle be found by solving the equation of motion. 

The left hand side of the equation characterizes the mechanical properties of the system, i.e. how the 

structure responds to the loading, while the right hand side defines external loading. The damping 

coefficient and stiffness coefficient will generally be of a nonlinear behavior. However, results of 

sufficient accuracy can be achieved by modeling damping force as a linear function of  ̇ and the 

stiffness as a linear function of  , and one can define the problem as a linear mechanical system. Here, 

the acceptance of using a linear mechanical system is of reasonable accuracy as far as one is not 

analyzing the structure close to its limiting utilization. A linear model assumes that the structural 

response stay well within the elastic behavior (Haver 2010).   

 

The response of a structure is dependent on the eigenfrequency of the structure, wave height and 

period of the wave profile subjected to the structure, refer Larsen (2009). It is therefore important to 

run the dynamic analyses on the cylinder with different natural periods to check the validity of EAP. 

The resolution in frequency intervals in the equal area method increases as the energy increases in the 

wave spectrum and therefore one suspect that large spreading in frequency in the low energy parts 

may give spurious response of the structure in USFOS. It is essential to investigate these responses to 

find the adequacy of the equal area method. Refer equation 3-4 for formula of the natural period.  

     √
   

 
     (3-4) 

 

Where: 

 m  Mass 

 A  Added mass 

 k  Stiffness 
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The structure‟s natural period is dependent of added mass, the natural period increases as the added 

mass increases. Added mass is dependent of wave frequency, and therefore will different wave height, 

seed and wave components in USFOS influence the natural period. Calculations of the natural periods 

must therefore be performed in calm water; significant wave height is set to 0.1m in USFOS.  E-

modulus and density are altered for obtaining the desired natural periods, keeping the dimensions of 

the cylinder the same. Structural displacements should not be too large, around 0.5m, keeping the 

structure in the elastic range, i.e. obtaining a linear mechanical system. This is taken in under 

consideration when tuning the natural periods. The three different natural periods that are chosen for 

dynamic analysis are: 

- Tn=4.4s  Lays in the low energy part of the wave spectrum.  

- Tn=8.5s  Lays in the mid energy part of the wave spectrum. 

- Tn=14.0s Lays in the highest energy part of the wave spectrum. 

 

It should be exercised that the initial transient response has been damped out when finding extreme 

responses from the dynamic simulation. Startup period is therefore set to eight minutes and is specified 

in the control file in USFOS.  

 

3.3.1 Damping Actions 

The damping coefficient in the equation of motion is one of the most critical parameters to be 

accounted for. The variables that govern damping forces are generally not as clear as they are for 

inertia and stiffness forces. Because of this uncertainty, it is most common to use viscous damping or 

Rayleigh damping, in which it is assumed that the damping matrix is proportional to the mass matrix, 

M and stiffness matrix, K (Langen 1979).  

 
          (3-5) 

 

Since the damping properties are frequency dependent, the identification of valid damping 

coefficients, α and β is a very complicated task. By assuming the relationship between the damping 

ratio and natural frequencies, Langen (1979) states that one can estimate the Rayleigh damping 

coefficients that will approximate the damping for all frequency modes. Here, one are assuming a 

damping ratio,  λ=3%, at the periods 2s (ω1= 3,14rad/s) and 15s (ω2= 0,42rad/s), resulting in a 

damping ratio ranging between 2-3%. The relationship between damping ratio and frequency is 

calculated in an Excel spreadsheet and is shown in Figure 3-3.  Equations used are displayed below: 

  

 

   
 

 
 
  

  
          (3-6) 

 

Where:   

 

   
     

  
    

               (3-6)  

  

   
            

  
    

     (3-7) 
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Figure 3-3 Damping as a function of eigenfrequency by proportional damping 
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4 Brief USFOS Review 
This chapter gives a short review of the computer program, USFOS where the analyses are executed. 

The review focuses on parts which is important for time-domain simulation of irregular waves. Time-

domain analysis gives the best prediction of “reality” where dynamic effects, integration to true 

surface level, buoyancy effects, hydrodynamic damping and other nonlinear effects become 

significant.  

 

USFOS is a computer program for nonlinear static and dynamic analysis of space frame structures. 

The collapse process is accurately simulated in USFOS, from the initial yielding, through to the 

formation of a complete collapse mechanism and the finale toppling of the structure (USFOS Getting 

Started 2001). 

 

The user may give all input on one file, or distribute the data on two or three .fem files. Usually, all 

control parameters are specified in the analysis control/head file and structure data are given in a 

separate file. The data records can be given in an arbitrary order (USFOS User's Manual 2006).  

 

If not noted otherwise, default values are automatically used. For example the mass and drag 

coefficients are respectably 2.0 and 0.7.   

 

4.1.1 Hydrodynamic Forces and Parameters 

USFOS has built in the following wave theories; Airy extrapolated, Airy stretched, Stoke‟s 5th and 

stream function theory. Wave loads are calculated up to the momentary sea surface elevation. 

The user may also specify an irregular wave to be applied to the structure as hydrodynamic forces. 

This includes specification of different specter types, Jonswap, Pierson-Moscovitz or user defined.  

One can also select different representations of the sea spectrum, FFT and the equal area method. In 

order to obtain different time series the user must specify different “seeds” in the command, wavedata. 

Wave load integration points may be specified in connection with wave conditions for a more accurate 

result. In addition to surface waves, a stationary current can be defined. Refer USFOS User‟s Manual 

(2006). 

 

Hydrodynamic forces are calculated according to Morison‟s equation with nonlinear drag formulation; 

refer equation 3-1. Loads are applied up to the instantaneous water surface generated by superposition 

of regular wave components. On the basis of the kinematics of each wave component, the 

hydrodynamic loads are calculated as a time series with a given time increment and for a given time 

interval. In a dynamic simulation the wave forces have to be introduced gradually, and the wave is 

ramped up using a user defined “envelope” (USFOS Hydrodynamics 2010).  

 

The acceleration of the member influences the mass force in Morison‟s equation. In USFOS, the 

structure accelerations are transformed to element local axes, before subtraction from the local wave 

particle accelerations. Added mass are included in the mass term on the left side of the dynamic 

equation. Added mass intensity for each element is predefined. Motion in and out of water is taken 

into account on node level, i.e. the mass matrix is constantly updated. Only submerged nodes 

contribute to the system‟s added mass, refer USFOS Hydrodynamics (SINTEF marintek 2010).  

 
The hydrodynamic pressure is specified by the command buoyform panel and is integrated to the true 

surface. The resultant of integrating the hydrodynamic pressure is the Archimedes buoyancy force. 

Integration of the hydrodynamic pressure gives a reduced buoyancy effect during a wave crest an 

increase of the buoyancy during a wave trough compared to the “Archimedes” (static force) force 

(USFOS Hydrodynamics 2010).  

 
Buoyancy may be calculated either by determination of the displaced volume or by direct integration 

of the hydrodynamic – and hydrostatic pressure over the wetted area mentioned above. The buoyancy 

forces are added to the actual load case or if no load case is specified, added to the wavedata load case. 
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By default all elements are buoyant, but by using the flooded command, it is possible to remove 

buoyancy for selected elements. The flooded command has only meaning if buoyancy is specified. The 

current position of the sea surface defines whether an element becomes buoyant or not at any time.  
 

Marine growth can also be implemented and is specified as a thickness addition to element diameter 

and may be specified by a depth profile, tmg(z). The thickness of the marine growth is based upon the 

midpoint coordinate of the member and is characterized by its density. In USFOS, the buoyancy 

counteracts marine growth when the pipe is submerged. The buoyancy disappears and the weight of 

the marine growth becomes fully effective when the pipe is free of water. 

 

The SpoolWave command in USFOS can be used for reduction in computer time, and is applied in this 

rapport. Further details around the command are found in Chapter 9.  

 

4.1.2 Dynamic Modeling Parameters 
The user may choose between a static or dynamic analysis. If a dynamic analysis is chosen, damping 

ratio or Rayleigh damping can be specified. In connection with calculation of drag forces, one must 

specify the command rel_velo to account for the relative velocity between the structure and the wave 

particles.  

 

The input parameter Dynres may be considered one of the most important dynamic modeling 

parameters in USFOS. A Dynres parameter specifies element quantities to be saved every step during 

a dynamic analysis independent on the „raf‟-file saving interval where structure data, analysis results, 

and restart data at each load step are found. Results are stored on a separate file and these time 

histories are accessed from exact.exe which is the graphical user interface for USFOS. The dynamic 

result may refer to node, beam or global result (USFOS User's Manual 2006).  

4.1.3 Generally 

The loads on the structure are applied in steps, and the system stiffness equations are solved at every 

step according to the updated Lagrangian formulation. After each step, element forces, nodal 

coordinates etc. are updated, and plastic hinges are introduced if necessary. In other words, each step 

forms a full and linear analysis, based on the updated information from all previous analysis steps. A 

pure incremental procedure is adopted as default. Equilibrium iterations may also be specified by the 

user (USFOS Getting Started 2001). 

 

Other area of application has not been an important part of this thesis, and will not be taken into more 

detail. For more details refer USFOS Hydrodynamic (SINTEF marintek 2010), USFOS User‟s Manual 

(SINTEF marintek 2006) and Theory Manual (Tore H. Søreide 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



14 

 

 

5 Discussion and Results from Fixed Cylinder Analyses 
To find the accuracy of the equal area method, several statistical properties for the wave profile must 

be examined from time series of the surface elevation. These are the mean value, standard deviation, 

skewness, kurtosis and the extreme value distribution. Time series from FFT are treated as the correct 

solution and results from the equal area principle are compared upon FFT. Extreme values for wave 

load and overturning moment are also going to be examined.  

 

Results from the static and dynamic analyses are given and discussed in this chapter. Mean values are 

calculated as   
 

 
∑   

 
   .  

5.1 Verification of Statistical Parameters for the Wave profile 
Time series from a wave elevation should approach a Gaussian/normal distribution. A normal 

distribution has a mean value of zero, skewness value of zero and kurtosis value of three. Refer 

Chapter 2.2 for more details.  

 

As mentioned previously, a sufficient number of samples must be available to compare the two 

methods. The static and dynamic simulations have a duration of 1000s. It should be exercised that the 

initial transient response has been damped out when performing the dynamic simulation. Startup 

period is therefore set to 500s in the dynamic analysis (T=500s-1500s). A consequence of this is that 

the wave profile for the same method with same seed and number of components results in two 

different sea states in the dynamic and static simulation. A consequence of this is more data, and a 

judgment on the accuracy of methods can more accurately be performed. However, the last 500s in the 

static simulation and the first 500s in the dynamic simulation will consist of the same wave history, i.e. 

one cannot compare the resulting wave profiles independently. Though, one can assure that a correct 

wave profile have been subjected to the cylinder in all dynamic and static simulations. The estimates 

will generally be subjected to random error. Short term variability will always be present, as one will 

observe from the deviations of the wave elevation from the dynamic and static analysis. 

 

Simulations for the equal area method are carried out with 30, 60 and 90 components. FFT is carried 

out with a requisite number of 1000 components in order to avoid repetition of wave history according 

to Langen (1979). 

 

5.2 Results 
Time series from USFOS are analyzed in MATLAB for calculation of the statistical parameters of the 

wave profile. The mean, maximum, minimum, standard deviation, skewness and kurtosis are built-in 

MATLAB functions. To assure that the calculation is correct, the global maximum is asked for in both 

USFOS and MATLAB. The maximum wave elevations are identical and one can therefore conclude 

that the calculations in MATLAB are correct. Refer Appendix B for script.   

 

The Gumbel probability papers are obtained using the MATLAB toolbox, WAFO. WAFO contains 

MATLAB routines for statistical analysis and simulation of random waves and random loads (WAFO-

Group 2000). The used WAFO routines, wgumbplot.m and a built-in function that calculates the 

Gumbel parameters are given in Appendix B.  An extreme value for a given percentile can be found 

from these Gumbel parameters.  

 

Take notice that the built-in function log in MATLAB refers to the natural logarithm, ln.  
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5.2.1 Wave Profile Results 

Table 5-1 gives a total overview of the mean maximum for the statistical parameters from the two 

methods. Each method with corresponding components is run 20 times. Refer Appendix C for total 

summary of each sample.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2.2 Extreme Value Distribution for Surface Elevation 

The sample extremes are plotted in a Gumbel probability paper to see if the extremes follow a straight 

line, and large deviations cannot be accepted. 20 samples for each case from the static analysis are 

plotted in Figure 5-1 to Figure 5-4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5-1 Gumbel Plot for Wave Elevation. EAP, 30comp 

 

Figure 5-2 Gumbel Plot for Wave Elevation. EAP, 60comp 

 

Table 5-1 Overview of Statistical Parameters 

Overview of mean values from Static Simulation 

Method 
Number of 

comp. 
Mean 

Standard 

Deviaton 
Kurtosis Skewness 

Max Surf. 

Elev [m] 

EAP 30 0,00 2,99 2,92 0,01 9,97 

EAP 60 0,00 2,95 2,92 0,02 9,83 

EAP 90 0,00 2,97 2,93 0,02 9,75 

FFT 1000 0,00 2,99 2,73 -0,01 9,00 

 

Overview of mean values from Dynamic Simulation 

Method 
Number of 

comp. 
Mean 

Standard 

Deviaton 
Kurtosis Skewness 

Max Surf. 

Elev [m] 

EAP 30 0,00 2,97 2,96 -0,01 9,78 

EAP 60 0,00 3,02 2,89 0,00 9,83 

EAP 90 0,00 3,03 2,95 -0,03 10,19 

FFT 1000 0,00 3,00 2,77 -0,00 9,34 

 
Table 5-2 Statistical Parameters for Kurtosis (Static Analysis) 

Method  EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 

FFT, 

1000comp  
 Kurtosis  

Max 3,47 3,73 3,39 2,96 

Min 2,48 2,48 2,65 2,57 

STD 0,28 0,27 0,21 0,11 

Mean 2,92 2,92 2,93 2,73 
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5.3 Discussion of Wave Profile Results 
The major loads on an offshore structure are generally those caused by waves and accordingly an 

adequate description of ocean waves is necessary. This subchapter discusses the results from each 

statistical parameter one by one. The Gaussian model can be questioned if the results deviate 

significantly from the correct value.  

5.3.1 Mean Value 

The mean value function E[x(t)] should be constant independent in the collected data. This value is 

zero for a wave profile. Observing the mean value from Table 5-1, both methods give satisfactory 

results.  

 

5.3.2 Standard Deviation 

Significant wave height is set to 12m in this case study. Wave peaks are Rayleigh distributed when 

assuming that the wave process is stationary and normally distributed, and has the following properties 

(Myrhaug 2007): 

 

     
 ⁄
  √            

  

 
        (5-1) 

 

Where Hs are significant wave height, m0 second standardized moment and σ the standard deviation. 

Equation 5-1 gives a standard deviation equal to 3. From Table 5-1, one finds that the requirement for 

this statistical property for wave elevation is also fulfilled.  

 

5.3.3 Skewness 

The skewness coefficient is equal to zero in a normal distribution. When one has assumed ergodic 

Gaussian process for the wave profile, the skewness property for waves should also equal zero to be 

satisfactory. The skewness is approximately zero and the requirement is satisfied.  

 

5.3.4 Kurtosis 

The kurtosis for a standard normal distribution is 3. The equal area method with different components 

is closer to 3 than FFT, refer Table 5-1. The Gaussian model should be questioned if the estimate 

deviates significantly. Here, one must consider if the noticeable deviation from the value 3 considering 

FFT is within an acceptable range. 

 
Figure 5-3 Gumbel Plot for Wave Elevation. EAP, 90comp 

 

 
Figure 5-4 Gumbel Plot. for Wave Elevation. FFT, 1000comp 
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5.3.5 Largest Maximum  

The process for individual maxima is usually assumed to be narrow banded. This assumption 

introduces uncertainties into the analysis. However the adequacy of the assumption is assumed to be 

good enough according to Leira (2010). Assuming that all maxima are identically distributed, and 

furthermore, that they are statistically independent, then the individual maxima specializes into the 

well-known Rayleigh distribution (Leira 2010), refer equation 5-2.  

 

      
 

     {  
 

 
(
 

 
)
 

}        (5-2) 

 

Where ξ represents wave peaks, and σ the standard deviation. According to Myrhaug (2005), the 

theoretical extreme value in a period T is given by:  

 

  
 ⁄
  (√       

      

√      
)   (√          

      

√         
)            (5-3) 

 

Where   
 ⁄

 are the global maxima in a sample, n number of wave peaks, T the duration, To  the zero 

crossing wave period and   the standard deviation. 

 

From Table 5-1, it is clear that FFT produces lower extremes than the theoretical value and the equal 

area method. According to Saha et al. (in press) the peak maxima are dependent on the kurtosis. 

Kurtosis values for FFT are 2.73 and 2.77 for static analysis and dynamic analysis respectively. A 

kurtosis less than 3 makes the peak lower and wider around the mean in the probability density 

function in comparison to the Gaussian probability density function. The extreme values will therefore 

be underestimated than that obtained using Gaussian process. This complies with the surface elevation 

extremes presented in Appendix C where one observes a small deviation in the extremes for FFT.  

 

The spectral set of Δω is larger in the tail regime of spectrum than the peak region of spectrum 

considering the equal area method. Saha et al. (in press) states that the phenomenon of spikes is bound 

to occur when a large spectral band is represented by a single frequency. This is somewhat confirmed 

when investigating surface elevation extremes for EAP found in Appendix C where the standard 

deviation is larger for EAP. Therefore one should exercise caution for applications to extreme 

responses with a small number of frequencies. 

 

Conclusion is that the equal area method and FFT are therefore only asymptotically Gaussian, refer 

2.1. However, from an engineering point of view, the mentioned methods for simulation of waves are 

very attractive due to the simplifications they imply on a possible structural response analysis; refer 

Saha et al. (in press). 

 

One should also be aware of statistical uncertainties with a sample size of only 20 simulations.  The 

standard deviation of kurtosis in Table 5-2 confirms this. The non-consistent trend seen in Table 5-1 

between 30, 60 and 90 components in the equal area method also support this statement. 

 

The deviation from the theoretical value is minimal, but the amount of effect this has on the response 

of the structure is still unknown.  When comparing FFT and equal area against each other, the 

difference between mean extremes can be up to 10%. Therefore, further investigation on the equal area 

method must be carried out.  

5.3.6 Extreme Value Distribution 

Figure 5-1 to Figure 5-4 displays the extreme value distribution. A noticeable deviation from the 

straight line in largest extremes in both methods is observed, except EAP with 90 components. This 

could be a coincidence when only dealing with twenty samples since one may not expect that EAP 

with 30 components has approximately the same fitting as EAP with 60 components.   
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5.4 Wave Load Results from Static Analysis  
Table 5-3 shows mean extreme values and standard deviation for wave loads in the static analysis. For 

a better comprehension of the results, ratio between FFT and EAP is also given and the results are 

plotted in a Gumbel probability paper, see Figures 5-5 to 5-12. Refer Appendix C for wave load result 

from each sample.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5-3 Mean and Standard deviation for results from static analysis 

Method 
Number 

of comp. 

Wave Loads [N] 

Mass 

dominated 

Ratio Standard 

Deviation 

Drag 

dominated 

Ratio Standard 

deviation 

EAP 30 8,89E+06 1,10 1,03E+06 2,00E+05 1,18 3,33E+04 

EAP 60 8,66E+06 1,07 6,06E+05 1,95E+05 1,15 2,61E+04 

EAP 90 8,73E+06 1,08 7,38E+05 1,97E+05 1,17 2,71E+04 

FFT 1000 8,09E+06 1,00 7,93E+05 1,69E+05 1,00 2,52E+04 

 

  

 
Figure 5-5 Gumbel Plot for Mass dominated Wave Loads.  

EAP, 30comp 

 

 

 
Figure 5-6 Gumbel Plot for Mass dominated Wave Loads.  

EAP, 60comp 

 

 
Figure 5-7 Gumbel Plot for Mass dominated Wave Loads.  

EAP, 90comp 

 

 
Figure 5-8 Gumbel Plot for Mass dominated Wave Loads.  

FFT, 1000comp 
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5.5 Discussion of Wave Load Results from Static Analysis 
Mass dominated wave loads from the equal area method gives 7-10% larger results than FFT. Drag 

dominated loads gives 15-18% larger results. This is a consequence of larger wave amplitudes 

produced by the equal area method. The velocity squared in the Morison‟s equation may be the reason 

for the larger deviation between FFT and the equal area method when wave loads are drag dominated. 

 

There is a noticeable difference in the extent of deviations from the straight line when comparing the 

Gumbel probability papers for wave load. But the deviations are slightly less when considering plots 

for mass and drag dominated wave loads than surface elevation, which is preferable considering 

design. There are no clear difference when comparing deviations from the straight line in the Gumbel 

plots between FFT and equal area principle. If the deviations are too large is yet to be found. 90 

percentile estimates from all plotted distributions are found in Appendix D. These results are used for 

further discussion and conclusion in Chapter 6.   

 

Figure 5-9 Gumbel Plot for Drag dominated Wave Loads.  

EAP, 30comp 

 

 
Figure 5-10 Gumbel Plot for Drag dominated Wave Loads.  

EAP, 60comp 

 

Figure 5-11 Gumbel Plot for Drag dominated Wave Loads.  

EAP, 90comp 

 

 
Figure 5-12 Gumbel Plot for Drag dominated Wave Loads.  

FFT, 1000comp 
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From Table 5-3, it is clear that the largest standard deviation comes from the equal area method with 

30 components. One should therefore be careful using EAP with 30 components because of larger 

spreading in response per simulation. Also note that EAP with 30 components has better fitting to the 

straight line than EAP with 60 components. One assumes that this is a result of statistical uncertainty 

and short term variability.  

  

Considering the difference between FFT and EAP, it should be questioned if the results from the equal 

area method are within an acceptable range.  

5.6 Results from Dynamic Analysis  
The dynamic analysis is run with three different natural periods. Response quantities asked for in the 

dynamic analysis are the maximum surface elevation, wave load and overturning moment. Results are 

found in Tables 5-4 to 5-7 and in Gumbel probability papers shown in Figures 5-13 to 5-18. The color 

red represents FFT, and blue, black and green represent the equal area method with 30, 60 and 90 

components.  

5.6.1 Results when Wave Loads are Mass dominated.  

When the wave loads are mass dominated, the first term in Morison equation are governing. Results 

are given in Table 5-4 and ratio between FFT and the equal area method considering the overturning 

moment are found in Table 5-5. 
 

Table 5-4 Overview of mean values for mass dominated loads 

 
Method 

Number 

of comp. 

ReacOVTM 

[Nm] 

Wave 

Load [N] 

Surface 

Elevation [m] 

Tn=4,4s 

EAP 30 9,50E+08 8,87E+06 9,78 

EAP 60 9,11E+08 8,64E+06 9,83 

EAP 90 8,95E+08 9,15E+06 10,19 

FFT 1000 1,23E+09 8,15E+06 9,34 

      

Tn=8,5s 

EAP 30 2,07E+09 8,86E+06 9,78 

EAP 60 2,43E+09 8,65E+06 9,83 

EAP 90 2,65E+09 9,16E+06 10,19 

FFT 1000 2,58E+09 8,16E+06 9,34 

      

Tn=14s 

EAP 30 3,94E+09 8,83E+06 9,78 

EAP 60 4,21E+09 8,70E+06 9,83 

EAP 90 4,04E+09 9,14E+06 10,19 

FFT 1000 4,24E+09 8,16E+06 9,34 

 
  Table 5-5 Overview of deviation between EAP and FFT of 

Overturning Moment when loads are mass dominated 

 
Method 

Number 

of comp. 

ReacOVTM 

[Nm] 
Difference 

Tn=4,4s 

EAP 30 9,50E+08           0,77  

EAP 60 9,11E+08           0,74  

EAP 90 8,95E+08           0,73  

FFT 1000 1,23E+09           1,00  

     

Tn=8,5s 

EAP 30 2,07E+09 0,80 

EAP 60 2,43E+09           0,94  

EAP 90 2,65E+09           1,03  

FFT 1000 2,58E+09           1,00  

      

Tn=14s 

EAP 30 3,94E+09 0,93 

EAP 60 4,21E+09 0,99 

EAP 90 4,04E+09           0,95  

FFT 1000 4,24E+09           1,00  
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5.6.2 Results when Wave Loads are Drag Dominated 

When wave loads are drag dominated, the second term in Morison equation is governing. Results are 

found in Table 5-6 and comparison between FFT and the equal area method regarding overturning 

moment is given in Table 5-7. Ratio between the reaction overturning moment and wave overturning 

moment is also calculated to get an indication around the ratio between the static and dynamic results. 

It is not analogous to the transfer function because of the relative velocity in the drag term. However, 

one would expect larger response amplification when the natural period lay in the peak area of the 

wave spectrum, and this is confirmed when viewing Table 5-6.  

5.6.3   
 
Table 5-6 Overview of mean values for drag dominated loads 

  
Method 

Number 

of comp.  

ReacOVTM 

[Nm] 

WaveOVTM 

[Nm] 

Ratio 

OVTM 

Wave 

Load [N] 

Surface 

Elevation [m] 

Tn4,4s 

EAP 30 2,41E+07 1,52E+07 1,61 2,00E+05 9,78 

EAP 60 2,34E+07 1,43E+07 1,67 1,95E+05 9,83 

EAP 90 2,28E+07 1,55E+07 1,49 2,20E+05 10,19 

FFT 1000 2,32E+07 1,32E+07 1,79 1,74E+05 9,34 

        

Tn=8,5s 

EAP 30 3,79E+07 1,51E+07 2,57 1,93E+05 9,78 

EAP 60 4,19E+07 1,40E+07 3,13 1,90E+05 9,83 

EAP 90 4,41E+07 1,48E+07 3,05 2,08E+05 10,19 

FFT 1000 4,02E+07 1,35E+07 3,06 1,78E+05 9,34 

        

Tn=14s 

EAP 30 6,92E+07 1,34E+07 5,31 1,74E+05 9,78 

EAP 60 7,40E+07 1,23E+07 6,06 1,73E+05 9,83 

EAP 90 7,17E+07 1,37E+07 5,36 1,98E+05 10,19 

FFT 1000 7,58E+07 1,18E+07 6,47 1,81E+05 9,34 

 

 
Table 5-7 Overview of deviation between EAP and FFT of 

Overturning Moment when loads are drag dominated 

 
Method 

Number 

of comp. 

ReacOVTM 

[Nm] 
Difference 

Tn4,4s 

EAP 30 2,41E+07 1,04 

EAP 60 2,34E+07 1,01 

EAP 90 2,28E+07 0,98 

FFT 1000 2,32E+07 1,00 

     

Tn=8,5s 

EAP 30 3,79E+07 0,94 

EAP 60 4,19E+07 1,04 

EAP 90 4,41E+07 1,10 

FFT 1000 4,02E+07 1,00 

     

Tn=14s 

EAP 30 6,92E+07 0,91 

EAP 60 7,40E+07 0,98 

EAP 90 7,17E+07 0,95 

FFT 1000 7,58E+07 1,00 
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Figure 5-13 Gumbel Plot. FFT vs. EAP. Mass Dominated Wave Loads, Tn=4,4s 

 

 
Figure 5-14 Gumbel Plot. FFT vs. EAP. Mass Dominated Wave Loads, Tn=8,5s 

 

 
Figure 5-15 Gumbel Plot. FFT vs. EAP. Mass Dominated Wave Loads, Tn=14s 
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Figure 5-16 Gumbel Plot. FFT vs. EAP. Drag Dominated Wave Loads, Tn=4,4s 

 

 
Figure 5-17 Gumbel Plot. FFT vs. EAP. Drag Dominated Wave Loads, Tn=8,5s 

 

 
Figure 5-18 Gumbel Plot. FFT vs. EAP. Drag Dominated Wave Loads, Tn=14s 
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5.7 Discussion of Results from Dynamic Analysis 
Table 5-4 and Table 5-6 show mean maximum outcome of overturning moment, wave load and 

surface elevation. Mean maximum surface elevation is of interest to make sure that one apply the same 

wave profile in all three cases (Tn=4.4s, Tn=8.5s, Tn=14s). The main interest is the overturning 

moment that is used as the target quantity to compare the two methods. For a better comparison, Table 

5-5 and Table 5-7 show the ratio between the correct answer from FFT and EAP with different 

number of components.  

 

5.7.1 Mass Dominated Wave Loads 

Large deviations in the overturning moment between EAP and FFT are found when the natural period 

is 4.4s. The straight lines in the Gumbel probability paper in Figure 5-13 illustrate this. The difference 

is less when the natural periods lay in the more energy rich parts of the wave spectrum. All other cases 

give rather close results to FFT, except EAP with 30 components when the natural period is 8.5s.  

 

The reason for larger difference in reaction overturning moment when the natural period is small is 

found when investigating the dissolution of the wave spectrum considering the equal area method. 

Table 5-8 shows the lower range of wave periods in the wave spectrum for different number of 

components in EAP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The spreading in wave periods is large in the low energy parts of the wave spectrum. A consequence 

of this may be that the waves don‟t “hit” the natural period of the cylinder resulting in a lower 

dynamic effect, i.e. lower response amplitude operator (RAO) considering EAP. RAO are effectively 

transfer functions used to determine the effect that a sea state will have upon the motion of a structure 

(Haver 2010), refer equation 5-4.  

 

           
 

                
 
 

     (5-4) 

 

Where:  

          Transfer function (Response amplitude per unit wave amplitude)  

     Stiffness 

    Frequency ratio, ω/ω0 

    Damping ratio, c/2mω0 

Table 5-8 Overview of splitting of the Wave spectrum with AEP 

Wave Spectrum 

Period, T 

30 comp 60 comp 90 comp 

12,22 9,90 8,83 

11,87 9,62 8,59 

11,47 9,32 8,34 

11,02 9,00 8,07 

10,54 8,65 7,77 

10,02 8,27 7,44 

9,45 7,84 7,06 

8,80 7,34 6,62 

8,02 6,72 6,08 

6,94 5,86 5,33 

3,85 3,75 3,61 
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Mass dominated wave loads is a linear function of the surface elevation, and one can refer the 

response as a linear response problem, refer Haver (2010). Linear theory can to a large extent describe 

the wave-induced motions and loads (Faltinsen 2009). Because of linearity one can get the response to 

each wave component separately, and write the steady state response as: 

 

                  (  )            (5-5) 

 

Where: 

     Wave amplitude 

         Transfer function 

     Frequency 

  (  )  Phase angle associated with response 

     Random phase angle 

 

Due to linearity, one can superpose the response from all wave components, i.e. one can write 

 
∑                   (  )     

 
         (5-6) 

 

The overturning moment is dependent of the global response, and a bad transfer function will result in 

bad values for the overturning moments.  The equal area method gives higher wave loads than FFT 

and this compensates for a lower dynamic amplification factor. However, the conclusion is that one 

gets an inadequate transfer function, especially in the low energy parts of the wave spectrum.  

 

5.7.2 Drag Dominated Wave Loads 

Deviations in overturning moment between FFT and equal area principle are less when the wave loads 

are drag dominated, also considering the lowest natural period. Only a few percent between the two 

methods are observed several places. However, one still observe a 10% difference between FFT and 

EAP when the natural period is 8.5s and one should exercise caution when dealing with this method.  

 

What is the physical reason for that the drag dominated wave loads gives “better” results? Transfer 

functions are used when the load is linearly related to the wave process, but this is not valid 

considering drag forces, refer equation 3-1. When investigating the Morison‟s equation closer, it is 

seen that the drag force is proportional to the velocity squared, and the force is not proportional to the 

wave height since the term u0
2 
enters the equation. Nor is the wave load harmonic since there is a 

                 term. According to Larsen (2005), frequencies other than the wave frequency will 

also appear in the nonlinear drag term and is shown in the following equations. Equation for drag force 

is:  

 

   
 

 
      [      ̇]       ̇       (5-7) 

 

Where: 

 ρ Water density 

 Cd Drag coefficient 

 D Diameter  

 Δl Length section 

 u(t) Water particle velocity 

  ̇ Velocity of the pile 

 

 

Further, one assumes that the wave induced motion are harmonic,                and neglect the 

relative velocity in further equations, refer (C. M. Larsen 2005). The force equation will hence be 

written as: 
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 [         ]                   (5-8)  

 

Where: 

  
  

 

 
              (5-9) 

 

The dynamic equilibrium equation can now be written as 

 

  ̈    ̇       
   

 [       ]                                    (5-10)  

 

Equation 5-10 can be expressed as a Fourier series, which will give following results 

 
     ∑          

             (5-11)  

 

The Fourier coefficient, bn can be found as 

 

   
 

 
∫               

   

 
∫                   

   

 

   

 
     (5-12)  

  

Calculating equation 5-12, the force time function can now be written as 

 

       *
 

  
      

 

   
       

 

    
          +      (5-13) 

 

Equation 5-13 shows that the drag force contains higher order frequency components than the wave 

frequency. It is observed that both the second and third term is of considerable amplitude, refer Figure 

5-20. If these terms hit a natural period, a considerable dynamic amplification can occur even if the 

wave frequency, ω and the eigenfrequency are well separated. Here, when the natural period is 4.4s, 

the term, 3ω may have noticeable effects. Since the top period in the wave spectrum is 14s, the 3ω 

term is very close to hit this natural period because Tn=4.4s is within a 90% interval of the top period 

(Haver 2010). Figure 5-19 and Figure 5-20 gives illustrations of the accuracy and importance of the 

higher frequency terms.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These higher order frequencies may be the reason for obtaining a more accurate result with the equal 

area method for drag dominated wave loads. 

 

There are also other differences between mass and drag dominated loads that may also be the reason 

for obtaining better results considering drag dominated wave loads. The maximum drag forces occur 

during a wave crest and is more concentrated at sea surface while maximum mass force occur during a 

wave node.   

 
Figure 5-19 Fourier description of total drag load on 

pile (Haver 2010) 

 

 
Figure 5-20 True drag force and first Fourier 

component (C. M. Larsen 2005) 
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6 Temporary Conclusion 
Summing up all the results of statistical parameters of the wave profile, wave loads, and overturning 

moment, a temporary conclusion of the adequacy of the equal area method can be made. Note that one 

should be aware of statistical uncertainties with a sample size of only twenty simulations.   

 

6.1.1 Statistical Parameters for the Wave Profile 

The simulated waves in the computer program, USFOS should approach a Gaussian process. Here, the 

Gaussian distribution has the following characteristics; a mean value of 0, standard deviation of 3, 

skewness of 0, and a kurtosis of 3. The two methods give a satisfactory representation of the sea state 

when considering the statistical parameters given in Table 5-1 and Figures 5-1 to 5-4. FFT produces a 

kurtosis value less than 3 and less than the equal area method. However the deviation is not significant 

and one assumes that it is acceptable to proceed. The equal area method produces a somewhat higher 

surface elevation, i.e. the equal area method is conservative which is not necessarily so bad.   

 

All in all, one can clearly observe that the wave elevation shows a Gaussian trend by comparing Table 

5-1 upon statistical properties for a Gaussian distribution. Similar experiments performed by Saha et 

al. (in press) show similar results and characteristics and has the same conclusion.  

 

6.1.2 Mass dominated Wave Loads 

Higher results in wave loads in the equal area method are produced because of the linear relationship 

between wave elevation and wave loads. Mass dominated wave loads in the static analysis using the 

equal area method gives a 7-10% higher result than FFT, and 6-12% higher results are found in the 

dynamic analysis. Extensive deviations in results are found when considering overturning moment in 

the dynamic analysis when the natural period is 4.4s. Here, the equal area method gives an overturning 

moment 23-27% less than the exact value, and lays far away from an acceptable region. Deviations 

decrease as the natural period goes to the peak period of the wave spectrum. This is not the case when 

wave loads are drag dominated.     

 

6.1.3 Drag dominated Wave Loads  

The equal area method produces 15-18% larger results in drag dominated wave loads in the static 

analysis. Considering Table 5-6, a difference between FFT and EAP can be as high as 26% when the 

natural period is 4.4s in the dynamic analysis.  

 

Looking at the target quantity; reaction overturning moment the differences decreases between FFT 

and EAP. The ratio of overturning moment between FFT and the equal area method is small. This may 

be because of a too small dynamic amplification factor in the equal area method which compensates 

for the too high wave load. However, the conclusion is that the large spreading in frequencies of wave 

components from the equal area methods gives inaccurate response amplitude, especially in the low 

energy parts of the wave spectrum.  

 

Several reasons for better results considering overturning moment when the wave loads are drag 

dominated are mentioned. However, one should also consider the possibility that it may just come 

from a coincidence. The transfer function for mass and drag dominated loads may be equally 

inaccurate, but the too large drag dominated wave load from the equal area method may compensate 

better for this.   

 

6.1.4 Summary 

The equal area method gives conservative and non-conservative results in comparison to FFT, i.e. 

there is no consistent trend in the outcome of this method. The equal area method is in other words not 

predictable.  
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All ratios between EAP and FFT are given in Table 6-1 and Table 6-2 for a better overview.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the current results, a correction factor is necessary if one should make use of the equal area 

method. EAP with 90 components gives the most accurate statistical parameters for a Gaussian 

distribution, and is therefore preferred. A safety factor using EAP with 90 components should be high 

enough so that the possibility for underestimation of the response is small. Considering wave loads, no 

safety factor is necessary.  A safety factor regarding the overturning moment however, is necessary.  

 

It is common to make a q-probability estimate of the Gumbel distribution when dealing with extreme 

responses. These estimates are used to compare the two methods. Appendix D gives estimates of the 

90 percentile of all distributions. It should be noted, that if number of samples are small and N (N=voT 

are the number of peaks that depends on the duration T over which the extreme peak distribution is 

requested) is much smaller than the actual value relevant for design, the linearization of the Gumbel 

distribution will result in an inaccurate estimate of the probability of exceedance of a design threshold 

value. This is the case here with a simulation with duration of 1000s and is a drawback in the use of 

Gumbel fitting procedure.  

 

Assuming that the structure‟s natural periods and properties are known, a safety factor for overturning 

moment is proposed when viewing 90 percentile estimates in Appendix D. Results from Table 6-2 are 

also considered because of the mentioned uncertainty around the extreme percentile estimates.  

 

 

- Natural period in the low energy part of wave spectrum and mass dominated:  1.35 

- Natural period in the high energy part of wave spectrum and mass dominated:  1.10  

- Natural period in the low energy part of wave spectrum and drag dominated:  1.05  

- Natural period in the high energy part of wave spectrum and drag dominated:  1.05 

 

The mean of surface elevation extremes are largest considering 30 components in the static analysis, 

whereas 90 components in the dynamic analysis results in largest mean. Spikes are bound to occur 

when a large spectral band is represented by a single frequency according to Saha et al. (in press). In 

other words, higher extremes are expected when considering only 30 components. One can assume 

Table 6-1 Wave Load Ratio between FFT and EAP results 

 
EAP Static 

Dynamic 

Tn=4,4s Tn=8,5s Tn=14s 

Mass 

dominated 

wave loads 

30 1,10 1,09 1,09 1,08 

60 1,07 1,06 1,06 1,07 

90 1,08 1,12 1,12 1,12 

 Drag 

Dominated 

wave loads  

30 1,18 1,15 1,08 0,96 

60 1,15 1,12 1,07 0,96 

90 1,17 1,26 1,17 1,09 

 
Table 6-2 OVTM Ratio between FFT and EAP 

 EAP Tn=4,4s Tn=8,5s Tn=14s 

OVTM, 

mass 

dominated 

30 0,77 0,80 0,93 

60 0,74 0,94 0,99 

90 0,73 1,03 0,95 

OVTM, 

drag 

dominated 

30 1,04 0,94 0,91 

60 1,01 1,04 0,98 

90 0,98 1,10 0,95 
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that the non-consistent trend between the equal area method with 30, 60 and 90 components is a result 

of only having twenty samples available, i.e. statistical uncertainty. Same trend is found in wave load 

and overturning moment because of this. For further work, more samples are required for a final 

conclusion.  

 

All in all, caution should be exercised if choosing the equal area method and are not recommended, 

especially considering mass dominated wave loads. Results are not completely satisfying when the 

method is used with fixed structures. Whether the method can be introduced to floating structures 

remains to be investigated.  
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7 Time-Domain simulation on the SWAY Turbine  
The main aim of this thesis is to perform a comparison between two methods for simulating waves, the 

equal area method and the Fast Fourier Transform, treated as the correct solution. It is very important 

to simulate waves correctly since the main load on an offshore structure comes from waves.  

 

The adequacy of the equal area method is to be tested on both fixed and floating structures. Previous 

chapters have dealt with results from FFT and EAP when the methods where subjected to a fixed 

cylinder. This chapter deals with the validity of the equal area method when the floating solution, 

SWAY is introduced. Statistical comparison of the two methods for an ultimate limit state (ULS) 

characteristic response will be made. A short outline of the SWAY concept is also given.  

7.1 The SWAY Concept 
The sway concept consists of a floating spar buoy designed to rise and fall with wave activity. The 

floating tower is anchored to the seabed with a single pipe and suction anchor. The center of gravity of 

the tower is located far below the center of buoyancy of the tower. This gives the tower enough 

stability to withstand large loads produced by the wind turbine installed on the top of the tower, refer 

Figure 7-1. The concept is unique since the turbine will face downwind when wind hits the rotor. The 

tower will then tilt around 5-8 degrees. By placing the rotor downwind of the tower the rotor is kept 

perfectly aligned with the wind. The tower turns around a subsea swivel when the wind changes 

direction. This makes it possible to strengthen the tower with a tension rod system that results in that 

the tower is capable of carrying a much larger turbine due to the decreased stresses in the tower. This 

again is economically favorable (SWAY AS).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When built, it will be the world‟s largest turbine standing 160m tall with a rotor diameter of 145m. It 

will also be the most powerful by generating 10MW.  

7.2 Performance of SWAY Analysis 
When performing the analyses on the SWAY turbine, ULS characteristic response shall be found. 

Dynamic effects, integration to true surface level, buoyancy effects, hydrodynamic damping and other 

nonlinear effects becomes significant, and therefore a time-domain simulation of irregular waves must 

be chosen to give the best prediction of reality. The dynamic analysis is carried out in USFOS; refer 

Appendix A for control file and model file. The force in the cardan is of main interest when comparing 

the two methods. Other important response quantities requested in USFOS for comparison are; 

displacement and acceleration at the top of the turbine, moment in the tower at sea surface, wave load 

and surface elevation.   

 

 
Figure 7-1 Illustration of SWAY concept (SWAY AS) 
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When investigating full plots for response versus time, it is found that the maximum cardan force 

often occur in the very beginning of the analysis. These too large responses come from the initial 

transient response that has not been damped out. To avoid these spurious responses, all maximum 

results are specified to come from 100s to 1000s. A startup period of 100s is shown to be more than 

enough satisfying when observing the plots for temporal variation for the cardan force. An example of 

the initial response is given in Figure 7-2.  

 

 

 

 

 

 

 

 

 

 

 

 

7.2.1 SWAY in USFOS 

The SWAY model in USFOS has real life dimensions together with specified hydrodynamic 

coefficients. The wind is modeled as a constant force, F= 117kN in the x-direction subjected to a node 

at the top of the cylinder that represents the actual force on the rotor turbine. X-Y-Z relationships and 

the SWAY turbine in USFOS are displayed in Figure 7-3. The diameter at sea surface is around 5m, 

resulting in mass dominated wave loads. The significant wave height is 16.4m and peak period is set 

to 17s when performing the ULS analysis. The water depth is set to 150m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
Figure 7-3 Model of the SWAY turbine in USFOS 

 

 

 
Figure 7-2 Illustration of initial response 
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7.2.2 Results from ULS Analysis in USFOS 

When comparison of the results for the fixed cylinder for the two methods were made, a number of 

samples were required, and obviously the same holds true for the ULS analysis on the SWAY tower. 

20 runs are executed from each method with appurtenant components. Results are found in Table 7-1. 

Table 7-2 shows the ratio between results from FFT and EAP and Table 7-3 gives the standard 

deviation of the response quantities.  Results from each sample are found in Appendix E. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To get a better understanding of the results, our main target quantity, the cardan force is plotted in 

Gumbel probability papers in the following page; refer Figure 7-4 to Figure 7-6. The results from the 

equal area method are plotted against FFT to obtain a visual comparison. In this thesis, one has chosen 

a 90 percentile estimate of the Gumbel distribution to compare the two methods. In practice, the 90 

percentile estimate of a short term distribution for 3-hour extreme value distribution is used for 

obtaining the 10^-2 annual probability. In order to find a more accurate estimate, a long term analysis 

is required. The error for adopting 90% for 10^-2 annual probability for a short term distribution is 

within +/- 10% (Haver 2010). However, here, the duration of simulation is only in the order of 1000s 

and the choice of percentile is not analogous with an annual exceedance level, merely a way to 

compare FFT and EAP. Refer Table 7-4 for results of the 90% estimate of the distribution of the 

cardan force.  

Using the relations to relate parameters to intercept and slopes of the estimated lines, Gumbel 

parameters and 90 percentile estimates are found. The estimate can be inaccurate because of the 

related statistical estimation uncertainty when only 20 samples are available. Also, the extreme value 

distribution is typically best close to peak, and may deviate in the tails (Leira 2010).  

Table 7-2 Ratio between FFT and EAP when considering Mean Values 

Method 
Disp top 

tower [m] 

Acc top tower 

[m/s^2] 

Cardan Force 

(top) [N] 

Mz, sea 

surface [Nm] 

Surface 

elevation [m] 

Wave 

load [N] 

FFT, 1000comp       1,00         1,00            1,00        1,00         1,00      1,00  

EAP,    90comp       1,04         1,13            1,01        1,05         1,04      1,10  

EAP,    60comp       1,07         1,12            1,02        1,10         1,09      1,08  

EAP,    30comp       1,18         1,13            1,03        1,11         1,07      1,08  

 
Table 7-3 Standard Deviation 

Method 
Disp top 

tower [m] 

Acc top tower 

[m/s^2] 

Cardan Force 

(top) [N] 

Mz, sea 

surface [Nm] 

Surface 

elevation [m] 

Wave 

load [N] 

FFT, 1000comp       4,97         0,34  1,06E+05 1,72E+07        1,23  1,31E+06 

EAP,    90comp       6,09         0,44  1,22E+05 3,25E+07        1,08  1,46E+06 

EAP,    60comp       6,61         0,65  1,33E+05 3,60E+07        1,29  1,82E+06 

EAP,    30comp       5,80         0,61  1,76E+05 2,57E+07        1,63  2,27E+06 

 

Table 7-1 Mean Values of Global Maximum from all Samples 

Method 
Disp top 

tower [m] 

Acc top tower 

[m/s^2] 

Cardan Force 

(top) [N] 

Mz, sea 

surface [Nm] 

Surface 

elevation [m] 

Wave 

load [N] 

FFT, 1000comp     42,49         4,86  4,24E+06 2,47E+08          12,17  1,46E+07 

EAP,    90comp     44,34         5,48  4,26E+06 2,59E+08          12,70  1,60E+07 

EAP,    60comp     45,59         5,42  4,30E+06 2,72E+08          13,25  1,58E+07 

EAP,    30comp     50,00         5,50  4,37E+06 2,75E+08          12,97  1,57E+07 
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Table 7-4 Cardan Force results 

Method #comp Mean Value α=0.90 

FFT 1000 4,24E+06 4,38E+06 

EAP 30 4,37E+06 4,61E+06 

EAP 60 4,30E+06 4,48E+06 

EAP 90 4,26E+06 4,43E+06 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 
Figure 7-4 Gumbel Plot for Cardan Force. Equal Omega vs. Equal Area, 30comp 

 

 
Figure 7-5 Gumbel Plot for Cardan Force. Equal Omega vs. Equal Area, 60comp 

 

 
Figure 7-6 Gumbel Plot for Cardan Force. Equal Omega vs. Equal Area, 90comp 
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8 Discussion of Results from SWAY analysis 
From Table 7-2, the equal area method gives very satisfactory results, especially considering the 

cardan force which differs with only some few percent. For a floating structure, it is common with 

large motions horizontally and a displacement of the top tower in the range of 40-50 meters is 

expected. All response quantities using the equal area method give larger values than for FFT, i.e. the 

equal area method is conservative. The reason lies in that the equal area method produces in average a 

higher surface elevation. This leads to larger wave loads, which again results in higher values for 

displacement, accelerations and forces.  

 

In contrast to the dynamic analysis of the fixed cylinder where the natural periods lay well inside the 

wave spectrum, the natural periods of the SWAY turbine lay far away from the frequency range of the 

wave spectrum.  SWAY‟s natural periods are 1s in heave motion, 30s with the clutch fixed and 80s for 

reversed pendulum at 150m water depth (the remaining natural periods are not found in USFOS). In 

other words, the frequency of the wave load is not so important when it comes to the floating solution, 

the SWAY turbine. However, when dealing with floating structures that are mass dominated, other 

loads from the waves become significant. In addition to the wave frequency load, there will also be a 

slowly varying force on the turbine corresponding to difference frequencies (slow-drift excitation 

loads) and a high frequency load corresponding to sum frequencies. Further descriptions of these 

effects are found in following subchapters. 

 

8.1.1 Slow-Drift Motions in Irregular Waves 

Slow-drift motions are resonance oscillations excited by nonlinear interaction effects between the 

waves and body motion according to Faltinsen (2009). Due to low damping of the SWAY turbine, 

large motions occur, and cause rather large forces in the cardan. When the mean wave loads are large, 

so are the slow-drift excitation loads, and can be of equal importance. For a moored structure, such as 

the SWAY turbine, slow drift resonance oscillations occur in surge, sway and yaw. Refer equation 8-1 

for general formula of the slow-drift excitation loads Fi
SV 

(Faltinsen 2009). 

 

 

  
   ∑ ∑     ⌈   

     {(     )         }     
     {(     )         }⌉

 
   

 
      (8-1) 

 

Where: 

A Wave amplitudes  

ω Wave frequencies  

ϵ  Random phase angles  

T Second order transfer function  

N  Number of wave components  

t Time 

 

8.1.2 Sum-Frequency Effects 

Due to nonlinear effects, one gets excitation forces with higher frequencies than the dominant 

frequencies in the wave spectrum. This is because of terms oscillating with frequencies 2ωj, 2ωk, and 

(ωj+ωk), where ω are the wave frequency. These may be important for exciting the resonance 

oscillations in heave, pitch and roll of the turbine. This is referred to as ringing. However, it is shown 

that the sum-frequency heave forces are small at the natural period in heave (Faltinsen 2009) and these 

forces are much lower than the wave frequency load. 
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8.2 Temporary Conclusion 
It is clear from results given in Table 7-1 to Table 7-3 and Gumbel plots in Figure 7-4 to Figure 7-6 

that the equal area method with 90 components gives the best results when compared with FFT. Not 

surprisingly, because of the highest number of components in the wave spectrum.  

 

Since the equal area method produces almost the same results as FFT, one can conclude that the wave 

spectrums of the equal area method are able to produce the same or higher nonlinear effects that may 

compensate for the smaller linear effects found in Chapter 5. The equal area method produces slightly 

higher responses than FFT, i.e. the equal area method is conservative. The small difference between 

results from FFT and EAP suggests that the equal area method can be employed.  

 

Considering the responses; cardan force, moment in the tower at sea surface and displacement at top 

tower, the minimum extreme using EAP always exceeds minimum extreme obtained when using FFT. 

Therefore, the chance for underestimating response is negligible and no safety factor is necessary, 

refers Appendix E. EAP and FFT have approximately the same results concerning these response 

quantities, and a correction factor is not required, refer Table 7-2.  

 

Especially the cardan force gives very satisfying results. The 90 percentile estimate from the Gumbel 

distribution between FFT and EAP with 90 components is only in the order of 1%, i.e. negligible 

difference, refer Table 7-4. Concerning the wave load and the acceleration at top tower, a correction 

factor may be necessary because of higher ratio between FFT and EAP. One proposes a correction 

factor of 0.9 if it is important with an accurate result.  

 

Take notice that the standard deviation is larger considering the equal area method. It is therefore 

recommended to run more than one simulation using the equal area method.  

 

Together with a significantly reduction in computer time and non-conservative results, the equal area 

method is the preferable method in this case.  It may be possible for further reduction in computer time 

by using a built-in command, SpoolWave in USFOS. This is investigated in the following chapter.  
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9 SpoolWave Command 
A method for reducing the computational time is by using the command, SpoolWave in USFOS. With 

this record, the user defines how to search for the highest/lowest waves in an irregular wave field. The 

analysis time will be moved forward to the specified “time before peak”, resulting in decreased 

computer time (USFOS User's Manual 2006), refer Figure 9-1 for illustration of the command. 

However, using the spoolwave command should be executed with caution and results given should not 

be accepted without reflection. Among other things is it necessary to have a long enough “time before 

peak” period to get the similar dynamic behavior and satisfactory results. Necessary start time length 

before specified wave peak depends on the type of structure. The user must also have knowledge about 

how the structure responds to waves i.e. whether or not the structure gives largest responses during 

highest, second highest wave peak or trough. The “spoolwave method” for reduction of computer time 

has not been fully tested and it is uncertain which types of results that can be used when employing the 

command. This Chapter tests the adequacy of the SpoolWave command on the SWAY turbine.  

 

 

 
Figure 9-1 Illustration of the spoolwave command (USFOS User's Manual 2006) 

 

 

 

9.1 Spoolwave on the SWAY Turbine 
It is assumed that the extreme response will occur close to some of the extreme surface elevations, 

both peak trough and crest, refer USFOS Hydrodynamics (2010). The equal area method with 90 

components gives satisfactory results when compared upon FFT, refer Chapter 7.2.2. Employing the 

spoolwave command with the equal area method with 90 components will decrease the computer time 

even further. The spoolwave command has been tested on all twenty samples with a simulation time 

300s before specified trough or crest. The responses requested from this analysis are the same as for 

the original analysis; cardan force, displacement and acceleration at the top, moment in tower at sea 

surface, wave load and surface elevation. It will be shown that the history plots resemble those 

obtained from the full analysis, but the “spoolwave values” differ from exact to conservative and non-

conservative results.  This applies for both highest wave crest and trough, and it is therefore necessary 

to check the temporal variation of response and surface elevation to get a better understanding of these 

random deviations.  

 

When performing the time-domain analyses with the spoolwave command it was observed that the 

specified peak/trough does not always appear after 300s as specified. This was found by comparing 

values for extreme surface elevation from the full analysis with extremes from the spoolwave analysis. 

The reason for this is that there is no specified peak/trough to “spool” i.e. the specified peak/trough 

occurs before 300s in these cases. 300s correspond to around one third of the full analysis, and the 

chance for this occurrence is much larger than for example applying the spoolwave command to a 

three hour time simulation, i.e. 300s cover only 2.8% of three hours. When comparing surface 

elevation results, it is seen that largest wave crest occur before 300s in seven samples and lowest 
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trough occur before 300s in five samples, i.e. thirteen samples are available for spoolwave with 

maximal crest and fifteen samples are available for lowest trough when attempting to verify the use of 

the spoolwave command.  

 

It is also worth mentioning that maximum results given from the spoolwave command are from 

simulation time 250s to 350s. This is to eliminate results from the initial transient response and an 

attempt to narrow down the possibility that one would get maximum results that occur from other 

incidents than largest/smallest surface elevation.  

 

9.2 Results 
The moment in the tower at sea surface, acceleration at the top tower and tension in the rod are 

considered the most interesting and important responses to consider. Results, discussion and 

conclusion of the use of spoolwave regarding these quantities are found in the following pages. 

Results for displacement at tower top and wave load are given in Appendix F. 

9.2.1 Moment in Tower at Sea Surface 

Bending moments in the tower are important design parameters and are mainly caused by the 

inclination of the tower and by tower top accelerations. The movements of the tower top give a good 

picture of the source of these bending moments. The largest moment is assumed to come from largest 

crest and not the lowest trough. This is verified when comparing results from the full analysis against 

spoolwave results when asking for maximum trough and crest. Table 9-1 gives a full overview of the 

results using spoolwave versus results from the full analysis from the thirteen available samples.  

 
Table 9-1 Spoolwave Analysis vs. Full Analysis. Mz at Sea Surface [Nm]. 

Case Full Analysis 
Spoolwave, 

Max Crest 
Ratio 

H=16.4_T=17_Seed=000_0090.max 2,80E+08 2,86E+08         1,02  

H=16.4_T=17_Seed=030_0090.max 2,34E+08 2,26E+08         0,97  

H=16.4_T=17_Seed=060_0090.max 2,34E+08 2,30E+08         0,98  

H=16.4_T=17_Seed=080_0090.max 2,39E+08 2,51E+08         1,05  

H=16.4_T=17_Seed=100_0090.max 2,52E+08 2,52E+08         1,00  

H=16.4_T=17_Seed=110_0090.max 2,50E+08 2,44E+08         0,97  

H=16.4_T=17_Seed=130_0090.max 2,78E+08 2,22E+08         0,80  

H=16.4_T=17_Seed=140_0090.max 2,26E+08 2,91E+08         1,29  

H=16.4_T=17_Seed=150_0090.max 2,87E+08 2,89E+08         1,00  

H=16.4_T=17_Seed=160_0090.max 2,87E+08 2,87E+08         1,00  

H=16.4_T=17_Seed=170_0090.max 2,17E+08 2,14E+08         0,99  

H=16.4_T=17_Seed=180_0090.max 2,39E+08 2,42E+08         1,01  

H=16.4_T=17_Seed=190_0090.max 2,21E+08 2,08E+08         0,94  

Max 2,87E+08 2,91E+08          1,29  

Min 2,17E+08 2,08E+08          0,80  

Standard Deviation 2,52E+07 3,00E+07          0,10  

Mean 2,50E+08 2,49E+08          1,00  

  

 

Table 9-1 indicates that the SpoolWave option with the highest crest gives almost identical results for 

moment at sea surface. Results from the samples in the spoolwave analyses differ with only a few 

percent, and almost all maxima from the spoolwave analysis refer to the same moment maxima as for 
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the full analysis. In other words, the response history plots are visually the same with a minor 

difference in values. If an identical result from the spoolwave analysis is desired, one could try to 

increase the duration of the spoolwave analysis, but the cost is longer computational time and one 

should discuss if this is necessary. If the extreme response comes from another surface elevation, one 

can most likely expect that the second largest moment comes from the largest crest.  

 

The reason for the large deviation in sample Seed=140 is because maximum surface elevation occurs 

at the very end of the full analysis and often the maximum moment occurs right after peak maxima, 

refer Figure 9-2. In contrast to the full analysis, the spoolwave analysis “captures” this extreme. 

Results from Seed=130 also deviates significantly. This shows that moments are not only dependent 

on maximum surface elevation but also that previous wave history plays a small role.  

 

Gumbel plots are useful to see the different trends between the results from the spoolwave - and full 

analyses. Figure 9-3 compares the results from using the spoolwave command upon the correct results. 

The blue points represent results from the full analysis, and the cyan points represent results from the 

spoolwave analysis. The straight lines give a visual view of the trend.   

  

 
Figure 9-3 Gumbel Plot for Moment at Sea Surface. Full Analysis vs. 

Spoolwave Analysis with maximum surface elevation 

 

 
Figure 9-2 Time history plots for Moment at Sea Surface and Surface Elevation 

 

 



39 

 

 

9.2.2 Horizontal Movement of the Tower Top 

Results for acceleration at top tower from the full analysis and the use of the spoolwave command are 

compared in Table 9-2. Order in Table 9-2 and Table 9-3 describes which kind of wave crest or trough 

that is selected in the spoolwave analysis. First, second, third etc. highest wave crest is selected by 

specifying 1, 2, 3 etc. in the head file in USFOS, refer Appendix A. A negative number represent the 

first, second, third etc. lowest wave trough (USFOS User's Manual 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Usually the largest surface elevation leads to the largest acceleration in top tower. All samples from 

spoolwave analysis run with maximum crest gives satisfactory results except samples Seed=60, 

Seed=100, Seed=110 and Seed=190. Here, the lowest trough results in the maximum acceleration. 

Only sample Seed=100 have a significant deviation in both cases. Here the second lowest surface 

elevation results in the largest response. From exact.exe it is seen that the second largest trough has 

approximately the same dimensions as the largest trough. 

 

The standard deviation is only 5% when considering the best results with use of the spoolwave 

command and is within an acceptable range.  

 

9.2.3 Tension Rod Forces 

The tension in the rod is a result of the difference between two big, opposite forces (gravity and 

buoyancy, static and dynamic). Some extreme responses are expected to occur for the extreme trough. 

However, this is not necessarily true sometimes the worst situation can come from another large 

elevation (both crest and trough). Therefore, the spoolwave command is employed with several 

different surface elevations when searching for the extreme for cardan force. Here, the spoolwave 

command is executed with the highest crest and 1
st
, 2

st
, 3

st
 lowest troughs. Seed=100 was also run with 

the second highest wave crest since none of the above gave satisfactory results. Order with best result 

in sample Seed=90 was found after manually investigating the full dynamic plot in exact.exe because 

the crest occurs after only 200s.  

Table 9-2 Spoolwave Analysis vs. Full Analysis. Acceleration at Toper Top [m/s^2] 

Case 
Full 

Analysis 

Spoolwave, 

Max Crest Ratio 
Best Result 

with Spoolwave 
Ratio Order 

H=16.4_T=17_Seed=000_0090.max 5,60 5,62 1,00   5,61  1,00 1 

H=16.4_T=17_Seed=030_0090.max 5,41 5,47 1,01   5,40  1,00 -1 

H=16.4_T=17_Seed=060_0090.max 5,42 4,23 0,78   5,46  1,01 -1 

H=16.4_T=17_Seed=080_0090.max 4,80 4,73 0,99   4,73  0,99 1 

H=16.4_T=17_Seed=100_0090.max 6,12 4,73 0,77   5,20  0,85 -1 

H=16.4_T=17_Seed=110_0090.max 5,37 4,52 0,84   5,31  0,99 -1 

H=16.4_T=17_Seed=130_0090.max 5,39 5,34 0,99   5,34  0,99 1 

H=16.4_T=17_Seed=140_0090.max 5,05 5,51 1,09   5,51  1,09 1 

H=16.4_T=17_Seed=150_0090.max 5,16 5,16 1,00   5,16  1,00 1 

H=16.4_T=17_Seed=160_0090.max 5,22 5,22 1,00   5,22  1,00 1 

H=16.4_T=17_Seed=170_0090.max 5,34 5,34 1,00   5,34  1,00 1 

H=16.4_T=17_Seed=180_0090.max 5,10 5,07 0,99   5,07  0,99 1 

H=16.4_T=17_Seed=190_0090.max 5,73 4,07 0,71   5,80  1,01 -1 

Max 6,12 5,62 1,09   5,80  1,09 

Min 4,80 4,07 0,71   4,73  0,85 

Standard Deviation 0,33 0,50 0,12   0,26  0,05 

Mean 5,36 5,00 0,94  5,32  0,99 
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Results from the full analysis and spoolwave analysis are found below in Table 9-3. Fifteen samples 

are available for deciding the adequacy of the spoolwave command considering cardan force.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Every sample from the spoolwave analysis found in Table 9-3 has also been checked visually in 

dynamic plots in exact.exe to get a better understanding of the behavior of the tension rod force. It is 

observed that two local peaks always occur simultaneously with largest trough and does not result in 

the largest outcome. The extreme responses occur right after or before specified surface elevation, 

refer Figure 9-4.  

 

It is also worth mentioning that observed extreme result from the spoolwave analysis may refer to 

another extreme than the full analysis. The result from the spoolwave analysis may have be 1% larger 

(e.g. Seed=000) if the extreme from the spoolwave analysis refers to the same extreme in the full 

analysis, but this difference is negligible.  

 

Gumbel plots in Figure 9-6 and Figure 9-7 visually compare the results from using spoolwave 

command with the correct results. Both regression lines from the spoolwave results are close to the 

regression line of the full analysis.  

 

 

 

 

 

 

Table 9-3 Overview of Cardan Force results from Full Analysis and Spoolwave Analysis 

Cardan Force [N] 

Case 
Full 

Analysis 

Spoolwave, 

Min Crest Ratio 
Best Results 

with Spoolwave 
Ratio Order 

H=16.4_T=17_Seed=000_0090.max 4,50E+06 4,57E+06   1,01  4,57E+06  1,01  -1 

H=16.4_T=17_Seed=010_0090.max 4,35E+06 4,35E+06   1,00  4,35E+06  1,00  -1 

H=16.4_T=17_Seed=030_0090.max 4,31E+06 4,10E+06   0,95  4,10E+06  0,95  -1 

H=16.4_T=17_Seed=060_0090.max 4,54E+06 3,92E+06   0,86  4,56E+06  1,00  -2 

H=16.4_T=17_Seed=070_0090.max 4,25E+06 4,26E+06   1,00  4,26E+06  1,00  -1 

H=16.4_T=17_Seed=080_0090.max 4,22E+06 4,11E+06   0,97  4,22E+06  1,00  -3 

H=16.4_T=17_Seed=090_0090.max 4,33E+06 3,88E+06   0,90  4,33E+06  1,00  1 

H=16.4_T=17_Seed=100_0090.max 4,24E+06 3,95E+06   0,93  4,29E+06  1,01  2 

H=16.4_T=17_Seed=110_0090.max 4,21E+06 3,94E+06   0,94  4,26E+06  1,01  1 

H=16.4_T=17_Seed=120_0090.max 4,42E+06 3,92E+06   0,89  4,42E+06  1,00  -2 

H=16.4_T=17_Seed=130_0090.max 4,23E+06 4,07E+06   0,96  4,07E+06  0,96  -1 

H=16.4_T=17_Seed=140_0090.max 4,14E+06 4,02E+06   0,97  4,12E+06  1,00  -3 

H=16.4_T=17_Seed=150_0090.max 4,23E+06 4,03E+06   0,95  4,03E+06  0,95  -1 

H=16.4_T=17_Seed=180_0090.max 4,08E+06 4,12E+06   1,01  4,12E+06  1,01  -1 

H=16.4_T=17_Seed=190_0090.max 4,26E+06 4,24E+06   1,00  4,24E+06  1,00  -1 

Max 4,54E+06 4,57E+06 1,01 4,57E+06 1,01 

Min 4,08E+06 3,88E+06 0,86 4,03E+06 0,95 

Standard Deviation 1,25E+05 1,88E+05 0,05 1,64E+05 0,02 

Mean 4,29E+06 4,10E+06 0,96 4,26E+06 0,99 
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9.3 Conclusion  

9.3.1 Moment in Tower at Sea Surface 

The results when using spoolwave is satisfactory since the mean ratio are equal to one.  However, the 

standard deviation for the spoolwave results are somewhat high because of sample Seed=130 and 

Seed=140.  

 

The hypothesis that was done before the analysis that an extreme response occur close to extreme 

surface elevations is confirmed when considering the moment in the tower at sea surface. Only sample 

Seed=130 have its extreme at a random place during full time-domain simulation. This implies that the 

 

 
Figure 9-6 Illustration of cardan force behavior vs. surface elevation 

 

Figure 9-4 Gumbel Plot for Cardan Force. Full Analysis 

vs. Spoolwave Analysis with minimum surface elevation 

 

Figure 9-5 Gumbel Plot for Cardan Force. Full   

Analysis vs. Spoolwave Analysis with best results 
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moments are not only dependent of current surface elevation, but are also slightly influenced by 

previous surface elevation history. The regression lines from the samples for the full analysis and 

spoolwave analysis intersects and have resembling gradients, and the results from the spoolwave 

command are therefore satisfactory, refer Figure 9-3. 

 

It is only necessary to use the spoolwave command with maximum surface elevation. Using a scaling 

factor is not required here, but may be recommended if only running a few analyses because of a 

larger standard deviation. 

9.3.2 Horizontal Movement of the Tower Top 

When comparing the results from the spoolwave analysis and the full analysis it is seen that the 

spoolwave command gives in average, lower results when just using maximum surface elevation. 

Samples Seed=60, Seed=100, Seed=110 and Seed=180 deviates significantly and leads to a mean ratio 

of 0.96. When spoolwave is also run with minimum surface elevation, the samples mentioned above 

gives almost the identical results as the full analysis. Here, the mean ratio increases to 1.0. Plots from 

all these samples show that the lowest trough are together with a high crest indicating that the extreme 

acceleration are dependent of total wave height. The standard deviation decreases from 12% to 5% 

when spoolwave analysis is also run with minimum trough. 

 

If one shall only execute the spoolwave command with maximum surface elevation, a correction factor 

of 1.10 is recommended because of a mean ratio difference of 0.94 and a larger standard deviation. 

However, a spoolwave analysis with minimum and maximum surface elevation is recommended. 

9.3.3 Tension Rod Forces  

Considering Table 9-3, best results comes from running the spoolwave command with several 

different surface elevations. Combining results from the spoolwave command with different surface 

elevations, one obtains a mean ratio of 0.99 between correct results and spoolwave results. With only 

maximum trough and crest one get a mean ratio of 0.96 and 0.97. Since the mean ratio are about the 

same, it may not be necessary to run many spoolwave analyses if several tests are to be executed. But 

if only a single test is run, one should use the spoolwave command with several different surface 

elevations because of a larger spreading in results for spoolwave command performed with only 

largest trough.  

 

The Extremes from samples Seed=30, Seed=130 and Seed=150 deviates the most and occur in random 

locations in the full analysis, and the “order” of surface elevation that leads to largest response varies. 

One concludes therefore that the response is also highly dependent of previous surface elevation 

history. 

 

The extreme in the spoolwave analysis does not always refer to the same extreme in the full analysis, 

but because of small variation in the cardan force, one obtains similar results. Figure 9-4 displays a 

visual view of the small variance in peaks for the cardan force.   

 

The Gumbel plots for samples from the full analyses and spoolwave analyses are similar and 

satisfying.  

 

The process with trying spoolwave with so many different wave heights are time consuming, and is 

not recommended unless one want to perform time-domain simulation with a duration in order of 

hours. One should select largest trough if only one spoolwave analysis are executed.  

9.3.4 Summary 

Considering all results and Gumbel plots, the spoolwave command is satisfactory for all three 

response quantities. Acceleration and moment behave similar; having a linear relationship between the 

response and surface elevation, refer Figure 9-2. The highest crest will in general lead to the largest 

response. This yield for general tower forces, but sometimes the largest response may occur during a 
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large wave height, refer chapter 9.3.2. The results for wave load and displacement when using the 

spoolwave command are found in Appendix F.  

 

Of all three responses, the tension in the rod is most influenced by the previous wave history, and the 

spoolwave command should be performed with several different surface elevations to obtain good 

results.   

 

Using the spoolwave command leads to conservative, non-conservative or exact results and it is 

necessary to use corrections factor to make sure that no underestimation of response occur. Combining 

results from standard deviation, mean and 90 percentile estimates, refer Appendix D, following safety 

factors are recommended:  

 

 

- General tower forces/movements, using highest crest/trough  Scaling factor: 1.00 

- Moment and displacement, using highest crest    Scaling factor: 1.05 

- Wave load and acceleration, using highest crest    Scaling factor: 1.10 

- Tension rod forces:  Use both crest/trough. 1
st
, 2

st
, 3

st
 largest   Scaling factor: 1.05 

 

The safety factors are proposed when assuming few simulations. More samples would lead to smaller 

standard deviation, and the scaling factors may then be unnecessary high.  

 

It has been time consuming to go into exact.exe for each sample to check whether or not the specified 

crest/trough in spoolwave occur before the specified “spool time”. A solution to this problem may be 

to have a start and end time of the storm length specified in the command, SpoolWave, instead of the 

total duration of the storm. Then one would avoid the possibility that the crest/trough occur before 

specified time and spurious large responses from the initial transient response.  

 

In this comparison one should be aware of that the results from the spoolwave simulation covers one 

tenth of the full analysis and correct results can therefore come from a coincidence.  

 

Having a three hour simulation that is common for a short term analysis, and using the spoolwave 

command together with the equal area method would reduce the computer time significantly.  
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10 Conclusions  
This thesis has dealt with the adequacy of simulating waves with a method based on the equal area 

principle. The equal area method has been compared upon the traditional method, Fast Fourier 

Transform. Checking the validity of the equal area method has been performed in three steps. First the 

statistical parameters for the surface elevation have been discussed. Second, the method has been 

applied to a single bottom fixed, vertical cylinder where both a static and dynamic analysis has been 

carried out. Last, the equal area method has been tested on a floating structure, the SWAY turbine. The 

accuracy of the USFOS command SpoolWave has also been examined.  

 

Statistical Parameters 
Results and discussion of the statistical parameters are reviewed in Chapter 5. The simulated waves in 

the computer program, USFOS should approach a Gaussian process. Here, the distribution should 

have the following characteristics; a mean value of 0, standard deviation of 3, skewness of 0, and a 

kurtosis of 3. All resulting parameter quantities except the kurtosis are very satisfactory. FFT produces 

a kurtosis value less than 3 and less than the equal area method. EAP produces in fact “better” 

parameters than FFT. The mean extremes of surface elevation from FFT and EAP are respectively 

lower and higher than the theoretical value. However, the deviations are not significant, and one 

concludes that FFT and EAP results in an asymptotically Gaussian distribution, which is satisfactory.   

  

Static and Dynamic Analysis of Fixed Cylinder 
The equal area method result in both conservative and non-conservative responses in comparison to 

FFT, i.e. there is no consistent trend in the outcome of this method. Chapter 5 and Chapter 6 give a 

fully discussion and conclusion of the results. Safety factors are proposed if EAP is chosen for 

simulating irregular waves. However, the equal area method is unpredictable and is not recommended 

to be used on fixed structures. 

 

Dynamic Analysis of SWAY turbine 
Several responses have been focused when checking the adequacy of the equal area method on the 

SWAY turbine. These are the cardan force, displacement and acceleration at the top of the turbine, 

moment in the tower at sea surface, wave load and surface elevation.  

 

The equal area method always produces higher responses than FFT, i.e. the equal area method is 

conservative when employed on the SWAY turbine. The small ratio between results from FFT and 

EAP suggests that the equal area method can be used when employing a potential correction factor. 

Using the equal area method on the SWAY turbine gives satisfactory results. Full conclusion is given 

in Chapter 8. 

  

The SPOOLWAVE Command 
The SpoolWave command in USFOS is used for reduction in computer time. It should be exercised 

that the startup time is sufficiently long ahead of the peak wave, so that the response versus time is 

equal to the original analysis and that the initial transient response has been properly damped out. 

Here, a startup period of 300 seconds is satisfactory.  

 

The command leads to conservative, non-conservative or exact results and it is therefore necessary to 

use corrections factor to make sure that no underestimation of response occur. However, the deviation 

between the full analysis and the analysis performed with the SpoolWave command are small. The 

spoolwave command has therefore been found to be adequate if employed correctly.  

 

Summary 
The equal area method produces a satisfactory Gaussian trend in surface elevation and good responses 

considering the SWAY turbine. There are therefore no noticeable reasons for not using the equal area 

method on floating solutions.  
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The deviations in response between FFT and EAP when considering the fixed cylinder are too large. 

The equal area method is not recommended on fixed solutions.   
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11 Recommendations for Further Work 
The thesis leaves some questions open. Several issues can be explored in more detail. Here a few 

recommendations for further work will be given. 

 

It has been found that certain control parameters in USFOS may be benefited by being slightly altered.  

One suggestion is to expand the commands, static, dynamic and spoolwave in USFOS from total 

duration of the storm to a start and end time. During the startup period, the structure experiences 

responses as an effect of initial conditions. By specifying a start time after T=0s, one would be able to 

avoid these results.  

 

There is also noticeable uncertainty when finding 90 percentile estimates from Gumbel plots with only 

20 samples and a duration of 1000 seconds. Therefore a three hour simulation comparison between the 

equal area method and FFT would be more precise. Number of available components for splitting the 

wave spectrum in USFOS is therefore recommended to be extended. 

 

The adequacy of the equal area method is not satisfying when the natural period of the structure lays in 

the low energy part of the wave spectrum. Here, the spreading in frequency, Δω, is too large to capture 

the dynamic amplification factors. Therefore an alternative method that emphasizes the part of the 

wave spectrum where the natural period of the structure is located may be an option.  

 

The theory and reasons for different results obtained from FFT and the equal area method is 

incomplete. The specific reason for more accurate results when wave loads are drag dominated are still 

unknown. Hence, this should be investigated further to arrive at a final conclusion on the quality of the 

equal area method.  

 

There may also be too little information basing all conclusions on simulations with duration of 1000 

seconds and with only 20 samples available, i.e. statistical uncertainty. Therefore more samples with 

longer duration are recommended for a final conclusion. 
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A USFOS FILES 
The USFOS files used for performing time-domain analysis on the fixed cylinder and the SWAY 

turbine is given in this appendix. Subchapters A.1 and A.2 contains the control file and model file for 

the fixed cylinder, and subchapters A.3 and A.4 contains the control file and model file for the SWAY 

turbine. The load controls STATIC and DYNAMIC are altered when performing the static and dynamic 

analysis on the fixed cylinder. The SpoolWave command in Figure A.3 is made use of when 

performing the “spoolwave analysis”.  

 

Refer to USFOS User’s Manual for description and use of the different commands.  

A.1 Control File for Fixed Cylinder   
HEAD       Project Thesis for Ine-Therese Binner.   Hs=HEIGHT,  Tp=PERIOD, Seed=SEED 

                  I r r e g u l a r  W a v e   A n a l y s i s  

           ------------------------------------------------------------  

' 

 Switches  Wave  TimeIncr   0.1    ! Compute Waves every 0.1s 

 

 BeamType Riser All 

' 

'          EndT      dT    dTRes d TPri 

DYNAMIC   1500.0   0.10    100     100   

' 

'           End_Time   Delta_T   Dt_Res  Dt_term   mxdisp   nstep   minstp 

'STATIC     1000.0       0.1    100.     100.       0.0       0     0.001   

' 

' 

' eigenval  Time     60 

' 

' ====================================================================== 

'     W A V E. Jonswap Spect. Hs=HEIGHT, Tp=PERIOD, Dir=SEED 

'              frequency ranging from T=3-25s. Fix Gamma Param 

' ---------------------------------------------------------------------- 

'        LCase  LoTyp   Hs      Tp      Dir   Seed  Surflev  Depth   n_ini 

 WaveData  2    Spect  HEIGHT  PERIOD   000   SEED    90.0   90     4  

' 

     -1000   1 

      -200   1 

         0   0 

       100   0 

' 

'     nfreq   Type     T_min  T_max   igrid  Gamma 

      1000      Jonsw    3      25.0    1      3.3  

' 

'           Ratio_1  Ratio_2  Freq_1  Freq_2 

DampRatio  0.03     0.03      0.07      0.5 

' 

 Buoyancy 

'Rel_velo 

 BuoyHist   2   Mat 

' 

' 

' 

'            ID      Type     T1     T2    Fac   Pow 

 TimeHist     1    S_Curve     0     2     1     2    ! Gravity 

'  

'            ID   <type>    Dtime Factor   Start_time Ini_Time End_Time 

 TIMEHIST     2    Switch   0.0   1.0       0.0             ! Wave 

' 

' 

 LoadHist     1    1      !  Gravity 

 LoadHist     2    2      !  Wave 

' 

' 

'           Time          

INI_TIME    500  

' 

Dynres_G   ReacOVTM 

Dynres_G   WaveOVTM 

DynRes_G   WaveElev 

DynRes_G   WaveLoad 

' 

 CNODES     1 

 '         nodex    idof     dfact 

            2       1        1.00 

          

' ------------------  e o f -------------------------- 

Figure A-1 USFOS Control file for Fixed Cylinder 
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A.2 Model File for Fixed Cylinder 
 

 

  

HEAD 

' 

'            Node ID            X              Y              Z    Boundary code 

 NODE              1            0.00         0.000          0.000   1 1 1 1 1 1 

 NODE              2            0.00         0.000         50.000 

 NODE              3            0.00         0.000         75.000 

 NODE              4            0.00         0.000         90.000 

 NODE              5            0.00         0.000        120.000 

 

' 

'            Elem ID     np1      np2   material   geom    lcoor    ecc1    ecc2 

 BEAM             1        1        2        1        1       

 BEAM             2        2        3        1        1    

 BEAM             3        3        4        1        1 

 BEAM             4        4        5        1        1      

' 

' 

'            N_divide    Elem 

REFINE         2        1 

REFINE         5        3 

REFINE         10       4 

' 

'            NIS         Elem 

Wave_int       2         1  

Wave_int       3         2  

Wave_int       4         3  

Wave_int       6         4          

' 

'         matno    E-mod     poiss  yield      density   term. expantion 

' 

 MISOIEP      1    0.21E14   0.3    10.0E+10    7.85E3   0.0 !Static Analysis 

' 

'MISOIEP      1    0.42E12   0.3    10.0E+10    0.82E5   0.0 !Mass Dominated. Tn=4.4s 

'MISOIEP      1    0.42E12   0.3    10.0E+10    2.8E5    0.0 !Mass Dominated. Tn=8.  

'MISOIEP      1    0.63E12   0.3    10.0E+10    8.7E5    0.0 !Mass Dominated. Tn=14s 

' 

'MISOIEP      1    3.20E12   0.3    10.0E+10    0.64E4   0.0 !Drag Dominated. Tn=4.4s 

'MISOIEP      1    3.19E12   0.3    10.0E+10    2.18E4   0.0 !Drag Dominated. Tn=8.5s  

'MISOIEP      1    3.69E12   0.3    10.0E+10    5.22E4   0.0 !Drag Dominated. Tn=14s 

' 

'            Geom ID       Do         Thick     

 PIPE             1        8.00        0.10  !When Wave Loads are Mass Dominated 

 PIPE             1        1.00        0.10  !When Wave Loads are Drag Dominated 

' 

 GRAVITY           1    0 0 -9.81 

' 

Figure A-2 USFOS Model File for Fixed Cylinder 
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A.3 Control File for SWAY Turbine 

  
HEAD       Sway Floating. Const dArea Hs=HEIGHT, Tp=PERIOD, Seed=SEED  nFq=NFREQ 

                  S w a y S i m   A n a l y s i s  

                Virtual Prototyping AS 2009-12-01 

' 

 Switches  Wave  TimeIncr   0.1    ! Compute Waves every 0.1s 

' 

 BeamType Riser All 

#liter 

' 

'          EndT      dT    dTRes d TPri 

#Dynamic  1000.0   0.050    20     20  

Dynamic   350.0   0.050     1      1  

' 

'            TimeBeforePeak   Order  dT  StormLength  Crit 

SpoolWav          300           -1    0.5   1000      Elev 

' 

'        LCase  LoTyp   Hs      Tp     Dir   Seed  Surflev  Depth   n_ini 

 WaveData  09  Spect  HEIGHT  PERIOD   000   SEED    0.0    150   4  

' 

     -1000   1 

      -200   1 

         0   0 

       100   0 

' 

'     nfreq Type     T_min  T_max   igrid  Gamma 

       NFREQ  Jonsw      3    50.0     3       3.3     

' 

'          Cd    Cm  Elno... 

 Hyd_CdCm   1.4  2.0 

 RaylDamp  0.00   3E-3        ! Gives 0.5% damp at 0.5Hz 

 

'                           Z    NIS 

 Wave_Int         Profile 10.0   10 

                           0.0   10 

                         -10.0    8 

                         -20.0    4 

                         -50.0    3 

                        -100.0    3 

' 

 Rel_Velo 

' 

 Buoyancy 

 BuoyHist   11   Mat 

' 

 BuoyForm  Panel  Group 100 

 BuoyForm  Panel  Elem 110120 

'  

'         Elem 

 Flooded  1019            ! Tension Rod 

' 

'            ID      Type     T1     T2    Fac   Pow 

 TimeHist     1    S_Curve     0     2     1     2    ! Gravity 

 TimeHist     3    S_Curve     0     2     1     2    ! Wind  

 TimeHist    11    S_Curve     0     2     1     2    ! Buoyancy 

  

'           ID   <type>    Dtime Factor   Start_time Ini_Time End_Time 

 TIMEHIST     9    Switch   0.0   1.0       0.0             ! Wave and current 

' 

 LoadHist     1    1      !  Gravity 

 LoadHist     9    9      !  Wave and current 

 LoadHist     3    3      !  Wind 

' 

'           Type    Node   Dof 

 DynRes_N   Disp   301     1    ! Top of tower            !1   

 DynRes_N   Acc    301     1    ! Top of tower            !2 

 DynRes_N   Disp   301     2    ! Top of tower            !3 

 DynRes_N   Disp   19      1    ! Top of tension bar      !4 

 DynRes_N   Acc    19      1    ! Top of tension bar      !5 

 DynRes_N   Disp   19      2    ! Top of tension bar      !6 

 DynRes_N   Disp   19      3    ! Top of tension bar      !7 

' 

'           Type    Elem   End  Dof 

 DynRes_E   Force   1019    2    1    !  Cardan force Top                 !8 

 DynRes_E   Force   1019    2    4    !  Cardan torsional moment Top      !9 

 Dynres_E   Force  110100   2    1                                        !10 

 Dynres_E   Force  110100   2    5                                        !11 

 Dynres_E   Force  110100   2    6                                        !12 

' 

 DynRes_G   WaveElev                                      !13 

 Dynres_G   WaveLoad                                      !14 

' 

 CNODES     1 

 '         nodex    idof     dfact 

            301       1        1.00 

          

Figure A-3 USFOS Control File for SWAY 



A-4 

 

A.4 Model File for SWAY Turbine 

  
' wind force   

'          LC  Node   Fx 

 NodeLoad   3  300  117E3                   ! WindForce X-dir 

 NodeMass      300  117E3/9.81  0  0  0 0 0 ! X-mass 

' 

 GroupDef      100 Mat       2 3 4 5 6 7 8 9 10 

 Name   Group  100 Main_Buoy 

'  

'            Node ID            X              Y              Z    Boundary code 

 NODE             10        -00.000         -0.800       -150.000   1  1  1  0  0  1 

 NODE             19        -00.000         -0.800       -100.000 

 NODE             20        -00.000         -0.800       -100.000 

 NODE             30        -00.000         -0.800        -87.350 

 NODE             40        -00.000         -0.800        -66.000 

 NODE             50        -00.000         -0.800        -54.000 

 NODE             60        -00.000         -0.800        -49.000 

 NODE             61        -00.000         -0.800        -38.641 

 NODE             62        -00.000         -0.800        -29.707 

 NODE             70        -00.000         -0.800        -21.000 

 NODE             80        -00.000         -0.800        -14.500 

 NODE             90        -00.000         -0.800         -9.000 

 NODE            100        -00.000         -0.800          0.920 

 NODE            110        -00.000         -0.800          8.000 

 NODE            120         -0.000         -0.800         27.281 

 NODE            121         -0.000         -0.800         30.738 

 NODE            122         -0.000         -0.800         33.701 

 NODE            130         -0.000         -0.800         37.158 

 NODE            131         -0.000         -0.800         41.603 

 NODE            132         -0.000         -0.800         46.047 

 NODE            140         -0.000         -0.800         50.492 

 NODE            141         -0.000         -0.800         55.431 

 NODE            142         -0.000         -0.800         59.200 

 NODE            150         -0.000         -0.800         65.308 

 NODE            160         -0.000         -0.800         75.185 

 NODE            169          0.000         -0.800         90.100 

 NODE            170          0.000         -0.800         90.450 

 NODE            300          0.000         -0.800         92.450 

 NODE            301          0.000         -0.800         94.410 

#NODE            400        300.000         -0.800         92.450   0  1 1  1 1 1 

#NODE           1111        -14.788         -2.003          9.973 

#NODE           1112        -14.791         -2.005          9.975 

#NODE           1113        -21.560         -7.232         13.527 

#NODE           1121        -14.788          0.403          9.973 

#NODE           1122        -14.791          0.405          9.975 

#NODE           1123        -21.560          5.632         13.527 

#NODE           1169          0.001         -0.800         90.000 

 

'            Elem ID     np1      np2   material   geom    lcoor    ecc1    ecc2 

 BEAM          1019       10       19       51      900   ! in PVC in tests! 900 mm diamter 1.4 x 45 thickness 

 BEAM          1920       19       20     1200      940 

 BEAM          2030       20       30        2    73530 

 BEAM          3040       30       40        3    73530 

 BEAM          4050       40       50        4    73530 

 BEAM          5060       50       60        5   735301 

 BEAM          6061       60       61        6     9230 

 BEAM          6162       61       62        6     9230 

 BEAM          6270       62       70        6     9230 

 BEAM          8070       80       70        7   735301 

 BEAM          9080       90       80        8     5750 

 BEAM        100090      100       90        9     5060 

 BEAM        110100      110      100       10     4550 

 BEAM        110120      110      120       11     4535 

 BEAM        120121      120      121       12     4530 

 BEAM        121122      121      122       12     4528 

 BEAM        122130      122      130       12     4526 

 BEAM        130131      130      131       13     4525 

 BEAM        131132      131      132       13     4524 

 BEAM        132140      132      140       13     4522 

 BEAM        140141      140      141       14     4520 

 BEAM        141142      141      142       14     4518 

 BEAM        142150      142      150       14     4518 

 BEAM        150160      150      160       15     4516 

 BEAM        160170      160      170       16     4514 

 BEAM        170300      170      300       17     3050 

 BEAM        300301      300      301       17      165 

' 

ElmTrans Loc 2 Elem 1920 

'            Geom ID       Do         Thick   (Shear_y   Shear_z      Diam2 ) 

 PIPE           165       0.165       0.043 

 PIPE           250       0.250       0.030 

 PIPE           900       0.900       0.0675  ! PVC pipe in tests 

 PIPE           940       0.940       0.030 

 PIPE          1025       1.000       0.015 

 PIPE          2000       2.000       0.025 

 PIPE          3050       3.500       0.050 

 PIPE          4514       4.500       0.0675   ! Changed al tube   0.014 correct value  

 

Figure A-4 USFOS Model File for SWAY, part1 
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 PIPE          4516       4.500       0.0675   ! Changed al tube   0.016 

 PIPE          4518       4.500       0.0675   ! Changed Al tube   0.018 

 PIPE          4520       4.500       0.0675   ! Changed Al tube   0.020 

 PIPE          4522       4.500       0.0675   ! Changed Al tube   0.022 

 PIPE          4524       4.500       0.0675   ! Changed Al tube   0.024 

 PIPE          4525       4.500       0.0675   ! Changed Al tube   0.025 

 PIPE          4526       4.500       0.0675   ! Changed Al tube   0.026 

 PIPE          4528       4.500       0.0675   ! Changed Al tube   0.028 

 PIPE          4530       4.500       0.0675   ! Changed Al tube   0.030 

 PIPE          4535       4.500       0.0675   ! Changed Al tube   0.035 

 PIPE          4550       4.500       0.0675      0.00      0.00       5.000 ! Changed Al tube       0.050 

 PIPE          5060       5.000       0.0675      0.00      0.00       5.700 ! Changed Al tube       0.060  

 PIPE          5750       5.700       0.0675      0.00      0.00       7.350 ! Changed Al tube       0.050 

 PIPE          7015       7.000       0.0675   ! Changed Al tube 0.015 

 PIPE          7330       7.300       0.0675   ! Changed Al tube 0.030 

 PIPE          9030       9.000       0.0675   ! Changed Al tube 0.030 

 PIPE          9230       9.200       0.0675   ! Changed Al tube 0.030 

 PIPE         70251       7.000       0.0675     0.00      0.00       9.000 ! Changed Al tube   0.025 

 PIPE         73301       7.300       0.0675     0.00      0.00       9.000 ! Changed Al tube   0.030 

 PIPE         73530       7.350       0.0675   ! Changed Al tube 0.030 

 PIPE        735301       7.350       0.0675     0.00      0.00       9.200 ! Changed Al tube 0.030 

 

'            Loc-Coo           dx             dy             dz 

'            Ecc-ID            Ex             Ey             Ez 

' 

'            Mat  ID     E-mod       Poiss     Yield      Density     ThermX 

 MISOIEP          1   0.700E+11   3.000E-01   4.000E+08   2.700E+03   0.000E+00 

 MISOIEP          2   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP          3   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP          4   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP          5   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP          6   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP          7   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP          8   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP          9   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP         10   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP         11   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP         12   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP         13   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP         14   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP         15   0.700E+13   3.000E-01   4.000E+18   2.700E+03   0.000E+00 

 MISOIEP         16   0.700E+13   3.000E-01   4.000E+08   2.700E+03   0.000E+00 

 MISOIEP         17   0.700E+11   3.000E-01   4.000E+08   1.000E+02   0.000E+00 

 MISOIEP         20   0.700E+11   3.000E-01   4.000E+08   2.700E+03   0.000E+00 

 MISOIEP         30   1.391E+11   3.000E-01   4.000E+08   2.700E+03   1.000E-03 

' 

' Tension bar in pvc  

' 

 MISOIEP         51   1.380E+11   3.000E-01   4.000E+08   1.400E+03   1.000E-03 

' 

'            Mat  ID               P           Delta 

 HYPELAST       201 

                            -1.00000E+10   -1.00000E+00 

                             1.00000E+10    1.00000E+00 

 HYPELAST       204 

                            -1.00000E+11   -1.00000E+00 ! Forandret fra E+09 

                             1.00000E+11    1.00000E+00 

 HYPELAST       205 

                            -1.00000E+10   -1.00000E+00 

                             1.00000E+10    1.00000E+00 

 HYPELAST       206 

                            -5.00000E+04   -1.00000E+00 

                             5.00000E+04    1.00000E+00 

 

'            Mat  ID          S P R I N G    R E F S. 

 MREF          1200      204      201      201      205      206      206 

'            Node ID                M A S S 

 NODEMASS         30              2.19000E+06    2.19000E+06    2.19000E+06 

 NODEMASS        300              3.03000E+05    3.03000E+05    3.03000E+05  

' 

 NodeMass  20   274.805E3 ! Ballast Water. Use Do to match old calc 

 NodeMass  30   738.606E3 ! Ballast Water  Use Do to match old calc 

 NodeMass  40   463.801E3 ! Ballast Water  Use Do to match old calc 

' 

'            Load Case   Acc_X       Acc_Y       Acc_Z 

 GRAVITY           1  0.0000E+00  0.0000E+00 -9.8100E+00 

' 

'  *added  mass* 

 node 8120    0   -5.3    -100   ! dY = -4.5m 

 node 8220    0    3.7    -100   ! dY = +4.5m 

 beam 8100   20  8120  8000  8000 

 beam 8200   20  8220  8000  8000 

 misoiep   8000  210000e6 0.3 1000.0e6  0 0 

 pipe      8000  8  0.010 

 flooded   8100  8200 

 hydropar  Cd    0.0  Elem  8100 8200 

 hydropar  Cm    2.0  Elem  8100 8200 

Figure A-5 USFOS Model File for SWAY, part2 
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B MATLAB Scripts 
MATLAB have been used for calculation of statistical parameters for wave profiles and plotting 

relevant Gumbel probability papers. This appendix displays the scripts that have been employed.  

B.1 Calculation of Statistical Properties 
MATLAB has built-in functions that calculate the mean, maximum, minimum, standard deviation, 

kurtosis, and skewness from a time series. Figure B-1 shows an example where these properties are 

calculated from a random time series sample for the surface elevation.  

 

 

 

 

 

 

 

 

 

 

 

 

  

clear all 

 

% Calculation of statistical parameters for a given time series.  

     

load 

C:\Documents\test\time_series_waveelevation\14s\omega_mass\H12_T14_Seed190_omega_waveelevation.txt;  

                                                   

 

waveelevation=H12_T14_Seed190_omega_waveelevation; 

    

%----------------------------------------- 

 

time = waveelevation(:,1); 

dt=time(20)-time(19); 

n1=round(0.1/dt); 

n2=length(time); 

 

disp = waveelevation(:,2); 

 

 

res(1,1) = mean(disp(n1:n2)); 

res(1,2) = std(disp(n1:n2)); 

res(1,3) = kurtosis(disp); 

res(1,4) = skewness(disp); 

res(1,5) = max(disp(n1:n2)); 

res(1,6) = min(disp(n1:n2)); 

 

 

format short eng 

res; 

  

xlswrite('C:\Users\Ine-Therese\Desktop\MASTER\Matlab\res\H12_T14_Seed190_omega_wave.xls', res, 

'resultater'); 

 

Figure B-1 MATLAB Script for calculation of Statistical Properties 



B-2 

 

B.2 Gumbel Probability Papers 
The MATLAB toolbox, WAFO contains several routines for statistical analysis. Figure B-2 shows the 

function, wgumbplot.m that is used for plotting extremes in a Gumbel probability paper. The last part 

of the script contains a built-in function that calculates the Gumbel parameters, which has been added 

manually. From these parameters, the extreme value for a 90 percentile estimate of the distribution is 

found.  

 

The parameter estimation in wgumplot() is done by fitting a straight line to the empirical distribution 

functions in the diagrams and using the relations to relate parameters to intercept and slopes of the 

estimated lines. Refer WAFO Tutorial (2000) for more information.  

 

This particular script plots the 20 maximum surface elevations for the equal area method with 30 

components, refer Figure 5.1.  Desired Gumbel plots of extremes are written into the function 

manually.  

 
function phat = wgumbplot(x) 

%WGUMBPLOT Plots data on a Gumbel distribution paper. 

% 

% CALL:  phat = wgumbplot(X) 

%       phat = [a b] Parameters (see wgumbcdf) estimated from the plot by 

%              least squares method  

%          X = data vector or matrix 

% Example: 

%   R=wgumbrnd(2,0,[],1,100); 

%   phat=wgumbplot(R) 

  

% Reference:  

%  Johnson  N.L., Kotz S. and Balakrishnan, N. (1994) 

%  Continuous Univariate Distributions, Volume 2. Wiley.  

% rewritten ms 20.06.2000 

  

max_30=[8.85  

 9.25  

 9.53  

 8.98  

 11.13  

 11.18  

 9.39  

 10.32  

 9.30  

 11.24  

 11.33  

 8.93  

 9.85  

 9.51  

 11.54  

 9.53  

 10.39  

 11.32  

 9.16  

 8.62] 

  

x=max_30 

  

figure(1) 

F=empdistr(x,[],0); 

plot(F(:,1),-log(-log(F(:,2))),'b.','markersize',12); 

U=[ones(size(F(:,1))) F(:,1)]; 

c=U\(-log(-log(F(:,2)))); 

a=1/c(2); 

b=-c(1)*a; 

hold on 

plot(F(:,1),U*c,'r--') 

hold off 

title('Gumbel Plot: Equal Area, 30comp for Surface Elevation') 

xlabel('Surface Elevation [m]') 

ylabel('-log(-log(F))') 

if nargout > 0, 

  phat=[a,b] 

end 

  

saveas(figure(1),'C:\Users\Ine-

Therese\Desktop\MASTER\Matlab\Gumbelplots\cylinder\static\gumbelplot_surfaceelevation_30.jpg'); 

 

gum=wgumbplot(x) 

a=gum(1) 

b=gum(2) 

  

p=0.90 

Extrem_percentile=b+(-log(-log(p)))*a 

  B-2 wgumbplot.m 
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C Results from Analyses on Fixed Cylinder 
This appendix shows all wave load results from the static and dynamic analysis performed on the fixed 

cylinder together with statistical parameters for the surface elevation.  

C.1 Statistical parameters for Surface Elevation 
Table C-1 to Table C-4 gives a total overview of the statistical parameters for each sample in the static 

analysis. Since similar observations are observed for the dynamic analysis, one finds it adequate to 

only show the parameters for the static analysis.  

 

EAP with 30 componenTable C-1 Statistical parameters for surface elevation with EAP with 30 components 
Sample Name 

Mean 
Standard 

Deviaton 
Kurtosis Skewness 

Max 

(MATLAB) 

Min 

(MATLAB) 

Max (USFOS) 

1 H12_T14_Seed000_30_waveelevation -0,00 2,98 2,48 -0,03 8,85 -7,69 8,85 

2 H12_T14_Seed010_30_waveelevation 0,00 2,99 2,73 -0,11 8,36 -9,25 9,25 

3 H12_T14_Seed020_30_waveelevation -0,00 3,10 2,71 -0,04 8,93 -9,53 9,53 

4 H12_T14_Seed030_30_waveelevation -0,00 2,95 2,66 0,09 8,89 -8,98 8,98 

5 H12_T14_Seed040_30_waveelevation 0,01 3,04 3,04 0,08 11,13 -10,21 11,13 

6 H12_T14_Seed050_30_waveelevation -0,01 3,06 3,28 0,09 11,18 -10,34 11,18 

7 H12_T14_Seed060_30_waveelevation -0,01 3,06 2,73 -0,04 9,39 -9,10 9,39 

8 H12_T14_Seed070_30_waveelevation 0,02 2,97 3,16 -0,01 9,33 -10,32 10,32 

9 H12_T14_Seed080_30_waveelevation 0,00 3,05 2,65 -0,05 9,30 -9,25 9,30 

10 H12_T14_Seed090_30_waveelevation 0,01 3,01 2,94 0,03 11,24 -9,65 11,24 

11 H12_T14_Seed100_30_waveelevation -0,00 3,07 3,26 -0,09 10,21 -11,33 11,33 

12 H12_T14_Seed110_30_waveelevation -0,01 2,85 2,88 -0,01 8,93 -8,23 8,93 

13 H12_T14_Seed120_30_waveelevation 0,01 3,01 2,85 0,03 9,85 -8,40 9,85 

14 H12_T14_Seed130_30_waveelevation 0,01 2,94 2,73 0,05 9,51 -8,68 9,51 

15 H12_T14_Seed140_30_waveelevation 0,00 2,92 3,44 0,11 11,54 -10,49 11,54 

16 H12_T14_Seed150_30_waveelevation -0,01 2,99 2,87 -0,07 9,46 -9,53 9,53 

17 H12_T14_Seed160_30_waveelevation -0,00 2,98 2,95 -0,01 10,14 -10,39 10,39 

18 H12_T14_Seed170_30_waveelevation -0,00 2,95 3,47 0,10 11,32 -10,21 11,32 

19 H12_T14_Seed180_30_waveelevation 0,01 2,88 3,03 -0,07 7,90 -9,16 9,16 

20 H12_T14_Seed190_30_waveelevation 0,01 3,02 2,64 0,05 8,62 -8,11 8,62 

         

                                          Max     0,02 3,10 3,47 0,11 11,54 -7,69 11,54 

                                          Min  -0,01 2,85 2,48 -0,11 7,90 -11,33 8,62 

                  Standard Deviation  0,01 0,06 0,28 0,07 1,09 0,94 0,99 

                                      Mean 0,00 2,99 2,92 0,01 9,70 -9,44 9,97 

 

 

Table C-2 Statistical parameters for surface elevation with EAP with 60 components 

Sample Name Mean 
Standard 

Deviaton 
Kurtosis Skewness 

Max 

(MATLAB) 

Min 

(MATLAB) 
Max (USFOS) 

1  H12_T14_Seed000_60_waveelevation  0,00 2,86 2,70 -0,06 9,63 -8,16 9,63 

2  H12_T14_Seed010_60_waveelevation  -0,01 2,84 2,71 0,04 8,71 -7,54 8,71 

3  H12_T14_Seed020_60_waveelevation  0,00 3,02 2,62 0,04 7,91 -9,39 9,39 

4  H12_T14_Seed030_60_waveelevation  0,00 2,86 2,88 0,15 9,48 -8,19 9,48 

5  H12_T14_Seed040_60_waveelevation  -0,01 3,04 2,76 -0,00 9,45 -11,00 11,00 

6  H12_T14_Seed050_60_waveelevation  0,01 3,02 3,21 0,07 10,96 -10,25 10,96 

7  H12_T14_Seed060_60_waveelevation  -0,00 3,12 3,01 0,03 11,09 -8,92 11,09 

8  H12_T14_Seed070_60_waveelevation  -0,01 2,94 2,48 0,07 8,55 -7,33 8,55 

9  H12_T14_Seed080_60_waveelevation  0,01 2,90 2,97 0,11 10,72 -9,30 10,72 

10  H12_T14_Seed090_60_waveelevation  -0,01 2,92 3,10 0,03 9,08 -9,60 9,60 

11  H12_T14_Seed100_60_waveelevation  -0,01 2,98 2,71 0,08 9,60 -7,77 9,60 

12  H12_T14_Seed110_60_waveelevation  -0,00 3,06 2,88 0,05 9,91 -9,86 9,91 

13  H12_T14_Seed120_60_waveelevation  0,00 2,97 2,82 -0,16 8,26 -9,85 9,85 

14  H12_T14_Seed130_60_waveelevation  -0,00 3,16 3,02 -0,06 8,88 -10,49 10,49 

15  H12_T14_Seed140_60_waveelevation  0,00 3,06 2,83 0,04 9,67 -10,44 10,44 

16  H12_T14_Seed150_60_waveelevation  -0,00 2,95 3,73 0,02 9,95 -11,01 11,01 

17  H12_T14_Seed160_60_waveelevation  -0,00 2,80 3,24 -0,00 8,22 -10,09 10,09 

18  H12_T14_Seed170_60_waveelevation  0,01 2,98 2,74 0,08 8,36 -8,17 8,36 

19  H12_T14_Seed180_60_waveelevation  -0,00 2,69 2,87 -0,09 8,09 -8,99 8,99 

20  H12_T14_Seed190_60_waveelevation  -0,01 2,77 3,00 -0,11 7,90 -8,79 8,79 

         

                                                      Max  0,01 3,16 3,73 0,15 11,09 -7,33 11,09 

                                                     Min  -0,01 2,69 2,48 -0,16 7,90 -11,01 8,36 

                             Standard Deviation  0,01 0,12 0,27 0,08 0,99 1,13 0,88 

                                                  Mean  -0,00 2,95 2,92 0,02 9,22 -9,26 9,83 
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Table C-3 Statistical parameters for surface elevation with EAP with 90 components 

Sample Name Mean 
Standard 

Deviaton 
Kurtosis Skewness Max (MATLAB) 

Min 

(MATLAB) 

Max 

(USFOS) 

1  H12_T14_Seed000_90_waveelevation  -0,01 2,89 2,75 0,05 9,36 -7,82 9,36 

2  H12_T14_Seed010_90_waveelevation  0,01 2,92 3,09 0,07 9,08 -9,52 9,52 

3  H12_T14_Seed020_90_waveelevation  0,00 3,09 3,08 -0,02 9,42 -10,50 10,50 

4  H12_T14_Seed030_90_waveelevation  0,01 3,08 2,92 0,05 10,71 -8,54 10,71 

5  H12_T14_Seed040_90_waveelevation  -0,01 3,07 2,67 -0,05 9,34 -10,10 10,10 

6  H12_T14_Seed050_90_waveelevation  -0,02 3,03 3,38 0,01 10,43 -10,64 10,64 

7  H12_T14_Seed060_90_waveelevation  -0,01 3,15 3,12 -0,02 9,64 -9,69 9,69 

8  H12_T14_Seed070_90_waveelevation  -0,00 2,94 2,74 -0,01 8,56 -10,41 10,41 

9  H12_T14_Seed080_90_waveelevation  0,00 2,99 2,84 0,08 8,89 -8,29 8,89 

10  H12_T14_Seed090_90_waveelevation  0,01 2,88 2,97 -0,02 9,48 -9,02 9,48 

11  H12_T14_Seed100_90_waveelevation  0,00 3,12 2,96 -0,06 9,79 -9,27 9,79 

12  H12_T14_Seed110_90_waveelevation  0,00 2,93 2,66 -0,09 7,48 -8,11 8,11 

13  H12_T14_Seed120_90_waveelevation  0,00 2,96 2,90 -0,03 8,88 -9,49 9,49 

14  H12_T14_Seed130_90_waveelevation  0,01 2,91 3,11 0,02 10,60 -9,40 10,60 

15  H12_T14_Seed140_90_waveelevation  -0,00 2,95 2,65 -0,11 7,84 -8,84 8,84 

16  H12_T14_Seed150_90_waveelevation  -0,01 2,95 2,93 -0,01 8,84 -9,20 9,20 

17  H12_T14_Seed160_90_waveelevation  0,01 2,83 3,39 0,13 11,90 -8,97 11,90 

18  H12_T14_Seed170_90_waveelevation  -0,00 2,87 2,88 0,06 9,71 -8,42 9,71 

19  H12_T14_Seed180_90_waveelevation  0,00 2,89 2,84 0,09 8,74 -8,15 8,74 

20  H12_T14_Seed190_90_waveelevation  0,00 2,92 2,76 0,16 9,42 -8,27 9,42 

         
                                                Max  0,01 3,15 3,39 0,16 11,90 -7,82 11,90 

                                                Min  -0,02 2,83 2,65 -0,11 7,48 -10,64 8,11 

                         Standard Deviation  0,01 0,09 0,21 0,07 1,00 0,85 0,87 

                                              Mean  0,00 2,97 2,93 0,02 9,40 -9,13 9,75 

 

 
Table C-4 Statistical parameters for surface elevation with FFT with 1000 components 

Sample Name Mean 
Standard 

Deviaton 
Kurtosis Skewness Max (MATLAB) 

Min 

(MATLAB) 

Max 

(USFOS) 

1  H12_T14_Seed000_omega_waveelevation  0,00 2,85 2,64 -0,01 7,89 -8,01 8,01 

2  H12_T14_Seed010_omega_waveelevation  0,00 3,06 2,89 0,03 9,87 -9,15 9,87 

3  H12_T14_Seed020_omega_waveelevation  -0,00 3,17 2,89 0,01 9,66 -9,40 9,66 

4  H12_T14_Seed030_omega_waveelevation  -0,00 2,90 2,68 0,08 9,13 -8,24 9,13 

5  H12_T14_Seed040_omega_waveelevation  0,01 2,98 2,68 -0,05 9,60 -8,35 9,60 

6  H12_T14_Seed050_omega_waveelevation  -0,01 3,01 2,77 0,01 8,28 -9,24 9,24 

7  H12_T14_Seed060_omega_waveelevation  -0,01 3,13 2,74 -0,05 9,35 -9,36 9,36 

8  H12_T14_Seed070_omega_waveelevation  -0,01 2,88 2,70 -0,08 7,95 -8,05 8,05 

9  H12_T14_Seed080_omega_waveelevation  0,00 2,80 2,64 -0,07 7,71 -7,71 7,71 

10  H12_T14_Seed090_omega_waveelevation  -0,01 2,87 2,75 -0,06 8,04 -8,02 8,04 

11  H12_T14_Seed100_omega_waveelevation  -0,01 2,97 2,65 -0,05 8,76 -8,31 8,76 

12  H12_T14_Seed110_omega_waveelevation  -0,00 3,12 2,70 0,06 9,08 -9,73 9,73 

13  H12_T14_Seed120_omega_waveelevation  -0,00 3,26 2,96 0,01 9,48 -9,64 9,64 

14  H12_T14_Seed130_omega_waveelevation  -0,01 3,24 2,85 0,00 10,09 -10,05 10,09 

15  H12_T14_Seed140_omega_waveelevation  0,01 3,12 2,71 0,01 8,71 -9,83 9,83 

16  H12_T14_Seed150_omega_waveelevation  -0,01 2,91 2,64 -0,05 8,15 -8,23 8,23 

17  H12_T14_Seed160_omega_waveelevation  -0,00 2,94 2,58 0,06 8,47 -8,67 8,67 

18  H12_T14_Seed170_omega_waveelevation  -0,01 2,94 2,83 -0,02 9,94 -8,60 9,94 

19  H12_T14_Seed180_omega_waveelevation  -0,01 2,88 2,57 -0,09 7,68 -8,24 8,24 

20  H12_T14_Seed190_omega_waveelevation  -0,01 2,86 2,67 0,03 7,74 -8,17 8,17 

         
                                                       Max  0,01 3,26 2,96 0,08 10,09 -7,71 10,09 

                                                      Min  -0,01 2,80 2,57 -0,09 7,68 -10,05 7,71 

                               Standard Deviation  0,01 0,14 0,11 0,05 0,82 0,72 0,79 

                                                    Mean -0,00 2,99 2,73 -0,01 8,78 -8,75 9,00 
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C.2 Wave Load Results from Static Analysis 
Overview of wave loads on the fixed cylinder for each sample is given in Table 6-5 and Table C-6.

Table C-5 Mass dominated Wave Loads on fixed Cylinder for all Samples 

Sample Name 

FFT, 1000 

comp 

EAP, 30 

comp 

EAP, 60 

comp 

EAP, 90 

comp 

Force 

H=12.0_T=14_Seed=000.max: PeakValue for DynRes   2 : 7,37E+06 7,65E+06 7,49E+06 8,02E+06 [N] 

H=12.0_T=14_Seed=010.max: PeakValue for DynRes   2 : 9,64E+06 8,86E+06 8,63E+06 8,33E+06 [N] 

H=12.0_T=14_Seed=020.max: PeakValue for DynRes   2 : 8,58E+06 8,95E+06 8,00E+06 9,52E+06 [N] 

H=12.0_T=14_Seed=030.max: PeakValue for DynRes   2 : 7,83E+06 7,58E+06 9,01E+06 9,72E+06 [N] 

H=12.0_T=14_Seed=040.max: PeakValue for DynRes   2 : 7,94E+06 9,98E+06 8,78E+06 8,54E+06 [N] 

H=12.0_T=14_Seed=050.max: PeakValue for DynRes   2 : 8,12E+06 9,39E+06 9,54E+06 9,60E+06 [N] 

H=12.0_T=14_Seed=060.max: PeakValue for DynRes   2 : 8,93E+06 8,49E+06 8,54E+06 9,19E+06 [N] 

H=12.0_T=14_Seed=070.max: PeakValue for DynRes   2 : 7,59E+06 9,73E+06 8,24E+06 8,35E+06 [N] 

H=12.0_T=14_Seed=080.max: PeakValue for DynRes   2 : 7,14E+06 7,98E+06 9,59E+06 7,90E+06 [N] 

H=12.0_T=14_Seed=090.max: PeakValue for DynRes   2 : 7,16E+06 9,22E+06 8,45E+06 9,07E+06 [N] 

H=12.0_T=14_Seed=100.max: PeakValue for DynRes   2 : 8,45E+06 9,49E+06 8,37E+06 9,19E+06 [N] 

H=12.0_T=14_Seed=110.max: PeakValue for DynRes   2 : 8,54E+06 7,71E+06 9,38E+06 8,09E+06 [N] 

H=12.0_T=14_Seed=120.max: PeakValue for DynRes   2 : 9,18E+06 9,56E+06 9,37E+06 9,02E+06 [N] 

H=12.0_T=14_Seed=130.max: PeakValue for DynRes   2 : 9,29E+06 7,26E+06 9,18E+06 8,34E+06 [N] 

H=12.0_T=14_Seed=140.max: PeakValue for DynRes   2 : 8,55E+06 9,25E+06 8,28E+06 7,60E+06 [N] 

H=12.0_T=14_Seed=150.max: PeakValue for DynRes   2 : 8,12E+06 1,09E+07 8,61E+06 7,58E+06 [N] 

H=12.0_T=14_Seed=160.max: PeakValue for DynRes   2 : 7,33E+06 8,45E+06 9,34E+06 9,68E+06 [N] 

H=12.0_T=14_Seed=170.max: PeakValue for DynRes   2 : 8,05E+06 1,08E+07 8,54E+06 8,33E+06 [N] 

H=12.0_T=14_Seed=180.max: PeakValue for DynRes   2 : 6,92E+06 8,00E+06 7,81E+06 8,52E+06 [N] 

H=12.0_T=14_Seed=190.max: PeakValue for DynRes   2 : 7,16E+06 8,59E+06 8,01E+06 9,98E+06 [N] 

      
                                                   Standard Deviation 7,93E+05 1,03E+06 6,06E+05 7,38E+05 [N] 

                                                                       Mean 8,09E+06 8,89E+06 8,66E+06 8,73E+06 [N] 

 

Table C-6 Drag dominated Wave Loads on fixed Cylinder for all Samples 

Sample Name 
FFT, 1000 

comp 

EAP, 30 

comp 

EAP, 60 

comp 

EAP, 90 

comp 

Force 

H=12.0_T=14_Seed=000.max: PeakValue for DynRes   2 : 1,40E+05 1,60E+05 1,82E+05 1,83E+05 [N] 

H=12.0_T=14_Seed=010.max: PeakValue for DynRes   2 : 1,91E+05 1,98E+05 1,71E+05 1,85E+05 [N] 

H=12.0_T=14_Seed=020.max: PeakValue for DynRes   2 : 1,94E+05 1,79E+05 1,72E+05 2,20E+05 [N] 

H=12.0_T=14_Seed=030.max: PeakValue for DynRes   2 : 1,61E+05 1,69E+05 1,99E+05 2,31E+05 [N] 

H=12.0_T=14_Seed=040.max: PeakValue for DynRes   2 : 1,91E+05 2,47E+05 2,24E+05 1,99E+05 [N] 

H=12.0_T=14_Seed=050.max: PeakValue for DynRes   2 : 1,66E+05 2,46E+05 2,16E+05 2,28E+05 [N] 

H=12.0_T=14_Seed=060.max: PeakValue for DynRes   2 : 1,72E+05 1,71E+05 2,27E+05 2,00E+05 [N] 

H=12.0_T=14_Seed=070.max: PeakValue for DynRes   2 : 1,45E+05 2,00E+05 1,62E+05 2,22E+05 [N] 

H=12.0_T=14_Seed=080.max: PeakValue for DynRes   2 : 1,40E+05 1,73E+05 2,21E+05 1,60E+05 [N] 

H=12.0_T=14_Seed=090.max: PeakValue for DynRes   2 : 1,46E+05 2,46E+05 1,79E+05 1,86E+05 [N] 

H=12.0_T=14_Seed=100.max: PeakValue for DynRes   2 : 1,48E+05 2,38E+05 1,98E+05 2,08E+05 [N] 

H=12.0_T=14_Seed=110.max: PeakValue for DynRes   2 : 1,84E+05 1,63E+05 2,16E+05 1,42E+05 [N] 

H=12.0_T=14_Seed=120.max: PeakValue for DynRes   2 : 1,80E+05 2,07E+05 2,18E+05 1,89E+05 [N] 

H=12.0_T=14_Seed=130.max: PeakValue for DynRes   2 : 2,22E+05 1,85E+05 2,04E+05 2,20E+05 [N] 

H=12.0_T=14_Seed=140.max: PeakValue for DynRes   2 : 1,99E+05 2,54E+05 2,13E+05 1,68E+05 [N] 

H=12.0_T=14_Seed=150.max: PeakValue for DynRes   2 : 1,54E+05 2,18E+05 2,28E+05 1,78E+05 [N] 

H=12.0_T=14_Seed=160.max: PeakValue for DynRes   2 : 1,48E+05 1,97E+05 2,00E+05 2,52E+05 [N] 

H=12.0_T=14_Seed=170.max: PeakValue for DynRes   2 : 2,05E+05 2,28E+05 1,46E+05 1,94E+05 [N] 

H=12.0_T=14_Seed=180.max: PeakValue for DynRes   2 : 1,42E+05 1,70E+05 1,54E+05 1,68E+05 [N] 

H=12.0_T=14_Seed=190.max: PeakValue for DynRes   2 : 1,45E+05 1,54E+05 1,67E+05 2,05E+05 [N] 

      

                                                                 Standard Deviation 2,52E+04 3,33E+04 2,61E+04 2,71E+04 [N] 

                                                                                        Mean 1,69E+05 2,00E+05 1,95E+05 1,97E+05 [N] 
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C.3 Results from Dynamic Analysis 
The dynamic analyses on the fixed cylinder were performed three times with varying natural period. 

The wave loads were both mass – and drag dominated. Following tables shows the results for all these 

analyses, and is divided into subchapters for each of the natural periods.  

 

C.3.1 Results when Tn=4.4s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table C-8 Drag dominated wave loads and OVTM when Tn=4.4s 
 Drag dominated wave loads [N] Overturning Moment [Nm] 

Case FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 90comp FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 

H12_T14_Seed000.max: PeakValue for DynRes 1,63E+05 2,72E+05 1,76E+05 1,55E+05  2,36E+07 3,71E+07 2,20E+07 1,89E+07 

H12_T14_Seed010.max: PeakValue for DynRes 1,58E+05 1,96E+05 2,05E+05 2,45E+05  2,20E+07 2,19E+07 2,42E+07 2,71E+07 

H12_T14_Seed020.max: PeakValue for DynRes 1,62E+05 1,82E+05 1,72E+05 1,80E+05  2,07E+07 2,18E+07 2,31E+07 1,78E+07 

H12_T14_Seed030.max: PeakValue for DynRes 2,12E+05 2,26E+05 2,01E+05 2,28E+05  3,24E+07 2,12E+07 2,36E+07 2,22E+07 

H12_T14_Seed040.max: PeakValue for DynRes 1,66E+05 2,04E+05 2,40E+05 1,62E+05  2,34E+07 3,36E+07 2,40E+07 1,77E+07 

H12_T14_Seed050.max: PeakValue for DynRes 1,68E+05 1,84E+05 2,34E+05 2,33E+05  2,12E+07 2,30E+07 2,63E+07 3,28E+07 

H12_T14_Seed060.max: PeakValue for DynRes 1,69E+05 1,64E+05 2,14E+05 1,99E+05  2,02E+07 1,74E+07 2,69E+07 2,04E+07 

H12_T14_Seed070.max: PeakValue for DynRes 1,39E+05 2,25E+05 2,09E+05 2,30E+05  1,98E+07 3,35E+07 2,49E+07 1,67E+07 

H12_T14_Seed080.max: PeakValue for DynRes 1,42E+05 1,59E+05 2,07E+05 2,52E+05  2,26E+07 1,70E+07 2,11E+07 2,55E+07 

H12_T14_Seed090.max: PeakValue for DynRes 1,47E+05 2,54E+05 1,71E+05 1,66E+05  2,05E+07 2,17E+07 3,17E+07 2,65E+07 

H12_T14_Seed100.max: PeakValue for DynRes 1,81E+05 2,35E+05 1,44E+05 2,92E+05  2,78E+07 2,64E+07 1,68E+07 2,70E+07 

H12_T14_Seed110.max: PeakValue for DynRes 1,56E+05 1,84E+05 1,76E+05 2,33E+05  2,29E+07 2,39E+07 1,93E+07 1,77E+07 

H12_T14_Seed120.max: PeakValue for DynRes 1,82E+05 1,47E+05 1,95E+05 1,93E+05  2,29E+07 2,32E+07 2,55E+07 1,91E+07 

H12_T14_Seed130.max: PeakValue for DynRes 2,14E+05 1,59E+05 2,09E+05 3,18E+05  2,28E+07 1,88E+07 1,88E+07 2,68E+07 

H12_T14_Seed140.max: PeakValue for DynRes 1,90E+05 1,81E+05 1,61E+05 1,78E+05  2,46E+07 2,31E+07 1,91E+07 1,85E+07 

H12_T14_Seed150.max: PeakValue for DynRes 1,78E+05 2,30E+05 2,34E+05 2,46E+05  2,33E+07 2,18E+07 2,19E+07 3,29E+07 

H12_T14_Seed160.max: PeakValue for DynRes 2,09E+05 2,38E+05 1,40E+05 2,13E+05  2,58E+07 2,78E+07 2,15E+07 2,20E+07 

H12_T14_Seed170.max: PeakValue for DynRes 1,88E+05 2,22E+05 1,78E+05 1,50E+05  1,97E+07 2,96E+07 2,25E+07 2,03E+07 

H12_T14_Seed180.max: PeakValue for DynRes 2,04E+05 1,72E+05 2,41E+05 3,14E+05  2,61E+07 1,90E+07 2,64E+07 2,82E+07 

H12_T14_Seed190.max: PeakValue for DynRes 1,60E+05 1,67E+05 1,89E+05 2,13E+05  2,22E+07 2,09E+07 2,83E+07 1,76E+07 

          

Standard Deviation 2,30E+04 3,55E+04 2,99E+04 4,94E+04  3,05E+06 5,56E+06 3,59E+06 5,16E+06 

Mean 1,74E+05 2,00E+05 1,95E+05 2,20E+05  2,32E+07 2,41E+07 2,34E+07 2,28E+07 

 

Table C-7 Mass dominated wave loads and OVTM when Tn=4.4s 
  Mass dominated wave loads [N]   Overturning Moment [Nm] 

Case FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 
  FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 

H12_T14_Seed000.max: PeakValue for DynRes 8,11E+06 1,04E+07 8,62E+06 8,02E+06  1,38E+09 1,06E+09 8,67E+08 7,82E+08 

H12_T14_Seed010.max: PeakValue for DynRes 7,86E+06 8,86E+06 8,05E+06 9,39E+06  1,09E+09 8,51E+08 8,15E+08 9,10E+08 

H12_T14_Seed020.max: PeakValue for DynRes 8,33E+06 8,98E+06 8,83E+06 8,54E+06  1,30E+09 9,76E+08 9,52E+08 7,20E+08 

H12_T14_Seed030.max: PeakValue for DynRes 8,80E+06 9,73E+06 8,87E+06 9,77E+06  1,23E+09 9,37E+08 9,19E+08 8,67E+08 

H12_T14_Seed040.max: PeakValue for DynRes 8,31E+06 9,31E+06 8,80E+06 7,21E+06  1,13E+09 1,04E+09 9,95E+08 7,22E+08 

H12_T14_Seed050.max: PeakValue for DynRes 8,21E+06 8,84E+06 9,53E+06 1,03E+07  1,36E+09 1,01E+09 1,05E+09 1,39E+09 

H12_T14_Seed060.max: PeakValue for DynRes 7,61E+06 8,89E+06 8,52E+06 8,99E+06  1,01E+09 7,86E+08 1,07E+09 8,36E+08 

H12_T14_Seed070.max: PeakValue for DynRes 7,15E+06 9,73E+06 9,10E+06 8,40E+06  1,23E+09 9,75E+08 9,01E+08 7,49E+08 

H12_T14_Seed080.max: PeakValue for DynRes 7,04E+06 8,44E+06 7,56E+06 1,05E+07  1,29E+09 9,40E+08 8,85E+08 9,19E+08 

H12_T14_Seed090.max: PeakValue for DynRes 6,99E+06 9,28E+06 7,85E+06 7,60E+06  1,21E+09 8,94E+08 8,97E+08 7,76E+08 

H12_T14_Seed100.max: PeakValue for DynRes 8,59E+06 8,32E+06 8,08E+06 1,04E+07  1,14E+09 1,01E+09 7,21E+08 1,07E+09 

H12_T14_Seed110.max: PeakValue for DynRes 8,01E+06 7,60E+06 9,41E+06 9,53E+06  1,18E+09 9,84E+08 8,56E+08 9,49E+08 

H12_T14_Seed120.max: PeakValue for DynRes 8,64E+06 7,59E+06 9,13E+06 9,06E+06  1,30E+09 8,64E+08 1,00E+09 8,42E+08 

H12_T14_Seed130.max: PeakValue for DynRes 9,33E+06 8,07E+06 9,29E+06 1,00E+07  1,13E+09 8,30E+08 9,16E+08 9,99E+08 

H12_T14_Seed140.max: PeakValue for DynRes 7,95E+06 8,01E+06 8,09E+06 8,41E+06   1,18E+09 1,02E+09 8,33E+08 7,75E+08 

H12_T14_Seed150.max: PeakValue for DynRes 8,24E+06 1,06E+07 8,63E+06 9,92E+06   1,23E+09 9,26E+08 9,06E+08 9,97E+08 

H12_T14_Seed160.max: PeakValue for DynRes 8,99E+06 9,96E+06 7,80E+06 9,29E+06   1,42E+09 1,12E+09 7,98E+08 9,26E+08 

H12_T14_Seed170.max: PeakValue for DynRes 8,24E+06 9,01E+06 8,54E+06 7,67E+06   1,17E+09 1,09E+09 8,98E+08 7,63E+08 

H12_T14_Seed180.max: PeakValue for DynRes 8,57E+06 8,35E+06 8,86E+06 9,97E+06   1,38E+09 8,23E+08 1,06E+09 1,10E+09 

H12_T14_Seed190.max: PeakValue for DynRes 8,11E+06 7,48E+06 9,25E+06 1,01E+07   1,28E+09 8,46E+08 8,71E+08 8,16E+08 

                    

Standard Deviation 6,17E+05 9,11E+05 5,76E+05 1,00E+06   1,07E+08 9,59E+07 9,09E+07 1,62E+08 

Mean 8,15E+06 8,87E+06 8,64E+06 9,15E+06   1,23E+09 9,50E+08 9,11E+08 8,95E+08 
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C.3.2 Results when Tn=8.5s 

 

  Table C-9 Mass dominated wave loads and OVTM when Tn=8.5s 
  Mass dominated wave loads [N]   Overturning Moment [Nm] 

Case FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 
  FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 

H12_T14_Seed000.max: PeakValue for DynRes 8,11E+06 1,04E+07 8,61E+06 8,18E+06   2,98E+09 2,17E+09 2,31E+09 2,52E+09 

H12_T14_Seed010.max: PeakValue for DynRes 7,84E+06 8,92E+06 8,03E+06 9,45E+06   2,56E+09 1,88E+09 2,32E+09 2,27E+09 

H12_T14_Seed020.max: PeakValue for DynRes 8,32E+06 8,92E+06 8,83E+06 8,46E+06   2,49E+09 1,93E+09 2,21E+09 2,60E+09 

H12_T14_Seed030.max: PeakValue for DynRes 8,88E+06 9,77E+06 9,04E+06 9,77E+06   2,04E+09 2,26E+09 2,57E+09 2,55E+09 

H12_T14_Seed040.max: PeakValue for DynRes 8,30E+06 9,30E+06 8,85E+06 7,18E+06   2,56E+09 2,06E+09 2,57E+09 2,34E+09 

H12_T14_Seed050.max: PeakValue for DynRes 8,28E+06 8,80E+06 9,53E+06 1,06E+07   2,43E+09 2,33E+09 2,37E+09 2,83E+09 

H12_T14_Seed060.max: PeakValue for DynRes 7,61E+06 8,77E+06 8,75E+06 8,99E+06   2,12E+09 1,97E+09 2,69E+09 2,56E+09 

H12_T14_Seed070.max: PeakValue for DynRes 6,95E+06 9,75E+06 9,05E+06 8,34E+06   2,81E+09 2,01E+09 2,91E+09 2,65E+09 

H12_T14_Seed080.max: PeakValue for DynRes 7,09E+06 8,45E+06 7,56E+06 1,05E+07   2,82E+09 2,15E+09 2,41E+09 2,58E+09 

H12_T14_Seed090.max: PeakValue for DynRes 6,97E+06 9,11E+06 7,76E+06 7,65E+06   2,99E+09 2,13E+09 2,28E+09 3,02E+09 

H12_T14_Seed100.max: PeakValue for DynRes 8,58E+06 8,32E+06 8,05E+06 1,04E+07   2,25E+09 2,04E+09 2,50E+09 2,90E+09 

H12_T14_Seed110.max: PeakValue for DynRes 8,04E+06 7,63E+06 9,36E+06 9,47E+06   2,33E+09 1,96E+09 2,61E+09 2,62E+09 

H12_T14_Seed120.max: PeakValue for DynRes 8,63E+06 7,63E+06 9,09E+06 9,03E+06   2,57E+09 2,00E+09 2,18E+09 2,16E+09 

H12_T14_Seed130.max: PeakValue for DynRes 9,29E+06 8,06E+06 9,30E+06 1,00E+07   2,49E+09 2,00E+09 2,33E+09 2,96E+09 

H12_T14_Seed140.max: PeakValue for DynRes 7,92E+06 7,92E+06 8,10E+06 8,45E+06   2,42E+09 2,04E+09 2,53E+09 2,54E+09 

H12_T14_Seed150.max: PeakValue for DynRes 8,21E+06 1,06E+07 8,61E+06 9,82E+06   2,55E+09 2,08E+09 2,40E+09 2,70E+09 

H12_T14_Seed160.max: PeakValue for DynRes 8,99E+06 9,99E+06 7,84E+06 9,24E+06   2,60E+09 2,72E+09 2,33E+09 2,71E+09 

H12_T14_Seed170.max: PeakValue for DynRes 8,49E+06 9,06E+06 8,44E+06 7,59E+06   2,83E+09 1,82E+09 2,34E+09 2,70E+09 

H12_T14_Seed180.max: PeakValue for DynRes 8,53E+06 8,36E+06 8,80E+06 9,96E+06   2,81E+09 2,05E+09 2,48E+09 3,15E+09 

H12_T14_Seed190.max: PeakValue for DynRes 8,09E+06 7,47E+06 9,32E+06 1,01E+07   2,97E+09 1,82E+09 2,30E+09 2,68E+09 

                    

Standard Deviation 6,36E+05 9,07E+05 5,85E+05 1,02E+06   2,76E+08 2,01E+08 1,77E+08 2,44E+08 

Mean 8,16E+06 8,86E+06 8,65E+06 9,16E+06   2,58E+09 2,07E+09 2,43E+09 2,65E+09 

 

Table C-10 Drag dominated wave loads and OVTM when Tn=8.5s 
  Drag dominated wave loads [N]   Overturning Moment [Nm] 

Case FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 
  FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 

H12_T14_Seed000.max: PeakValue for DynRes 1,66E+05 2,31E+05 1,58E+05 1,47E+05   4,35E+07 5,62E+07 4,31E+07 3,91E+07 

H12_T14_Seed010.max: PeakValue for DynRes 1,56E+05 1,98E+05 2,23E+05 2,70E+05   3,66E+07 3,62E+07 4,18E+07 3,55E+07 

H12_T14_Seed020.max: PeakValue for DynRes 1,68E+05 1,71E+05 1,78E+05 1,63E+05   3,62E+07 3,52E+07 3,55E+07 4,37E+07 

H12_T14_Seed030.max: PeakValue for DynRes 2,10E+05 2,05E+05 1,93E+05 2,18E+05   4,28E+07 4,27E+07 3,87E+07 4,27E+07 

H12_T14_Seed040.max: PeakValue for DynRes 1,67E+05 1,80E+05 2,10E+05 1,43E+05   3,96E+07 4,02E+07 5,06E+07 3,69E+07 

H12_T14_Seed050.max: PeakValue for DynRes 1,73E+05 2,01E+05 2,11E+05 2,50E+05   3,91E+07 4,14E+07 4,46E+07 4,45E+07 

H12_T14_Seed060.max: PeakValue for DynRes 1,76E+05 1,62E+05 2,36E+05 1,95E+05   3,46E+07 3,08E+07 4,02E+07 4,14E+07 

H12_T14_Seed070.max: PeakValue for DynRes 1,36E+05 2,07E+05 1,95E+05 2,06E+05   4,09E+07 3,99E+07 4,73E+07 4,25E+07 

H12_T14_Seed080.max: PeakValue for DynRes 1,37E+05 1,61E+05 1,92E+05 2,27E+05   4,61E+07 3,43E+07 3,89E+07 4,77E+07 

H12_T14_Seed090.max: PeakValue for DynRes 1,47E+05 2,36E+05 1,75E+05 1,58E+05   4,26E+07 3,83E+07 4,01E+07 4,61E+07 

H12_T14_Seed100.max: PeakValue for DynRes 1,97E+05 2,25E+05 1,40E+05 2,84E+05   3,60E+07 3,18E+07 3,86E+07 4,85E+07 

H12_T14_Seed110.max: PeakValue for DynRes 1,67E+05 1,74E+05 1,55E+05 2,10E+05   3,83E+07 3,99E+07 4,55E+07 4,41E+07 

H12_T14_Seed120.max: PeakValue for DynRes 1,78E+05 1,45E+05 2,30E+05 1,92E+05   3,70E+07 3,54E+07 4,01E+07 3,48E+07 

H12_T14_Seed130.max: PeakValue for DynRes 2,13E+05 1,70E+05 2,11E+05 2,89E+05   3,94E+07 3,52E+07 3,92E+07 5,27E+07 

H12_T14_Seed140.max: PeakValue for DynRes 1,91E+05 1,77E+05 1,49E+05 1,67E+05   4,23E+07 3,48E+07 4,01E+07 3,67E+07 

H12_T14_Seed150.max: PeakValue for DynRes 1,97E+05 2,15E+05 2,18E+05 2,35E+05   4,16E+07 3,25E+07 4,15E+07 5,30E+07 

H12_T14_Seed160.max: PeakValue for DynRes 2,13E+05 2,52E+05 1,35E+05 1,93E+05   4,18E+07 4,94E+07 4,07E+07 4,92E+07 

H12_T14_Seed170.max: PeakValue for DynRes 1,92E+05 2,27E+05 1,54E+05 1,50E+05   4,13E+07 3,61E+07 4,37E+07 4,02E+07 

H12_T14_Seed180.max: PeakValue for DynRes 2,23E+05 1,69E+05 2,48E+05 2,81E+05   4,29E+07 3,47E+07 3,91E+07 6,09E+07 

H12_T14_Seed190.max: PeakValue for DynRes 1,61E+05 1,58E+05 1,83E+05 1,88E+05   4,05E+07 3,20E+07 4,92E+07 4,16E+07 

                    

Standard Deviation 2,55E+04 3,05E+04 3,35E+04 4,75E+04   2,99E+06 6,20E+06 3,86E+06 6,58E+06 

Mean 1,78E+05 1,93E+05 1,90E+05 2,08E+05   4,02E+07 3,79E+07 4,19E+07 4,41E+07 
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C.3.3 Results when Tn=14

Table C-11 Mass dominated wave loads and OVTM when Tn=14s 
  Mass dominated wave loads [N]   Overturning Moment [Nm] 

Case FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 
  FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 

H12_T14_Seed000.max: PeakValue for DynRes 8,02E+06 1,03E+07 8,74E+06 8,16E+06   4,43E+09 3,55E+09 3,82E+09 3,27E+09 

H12_T14_Seed010.max: PeakValue for DynRes 7,86E+06 8,67E+06 8,01E+06 9,49E+06   4,15E+09 4,17E+09 3,42E+09 3,97E+09 

H12_T14_Seed020.max: PeakValue for DynRes 8,37E+06 8,86E+06 9,19E+06 8,67E+06   4,69E+09 3,57E+09 3,62E+09 3,73E+09 

H12_T14_Seed030.max: PeakValue for DynRes 8,84E+06 9,54E+06 8,99E+06 9,69E+06   4,80E+09 4,22E+09 5,14E+09 3,83E+09 

H12_T14_Seed040.max: PeakValue for DynRes 8,16E+06 9,24E+06 8,85E+06 7,17E+06   3,93E+09 3,27E+09 3,54E+09 3,93E+09 

H12_T14_Seed050.max: PeakValue for DynRes 8,22E+06 8,75E+06 9,76E+06 1,03E+07   4,00E+09 4,19E+09 4,91E+09 4,73E+09 

H12_T14_Seed060.max: PeakValue for DynRes 7,66E+06 8,87E+06 8,75E+06 8,98E+06   4,19E+09 3,77E+09 4,34E+09 5,40E+09 

H12_T14_Seed070.max: PeakValue for DynRes 7,13E+06 9,71E+06 9,08E+06 8,34E+06   3,71E+09 4,26E+09 5,04E+09 3,19E+09 

H12_T14_Seed080.max: PeakValue for DynRes 7,07E+06 8,30E+06 7,52E+06 1,07E+07   3,34E+09 3,63E+09 3,68E+09 3,98E+09 

H12_T14_Seed090.max: PeakValue for DynRes 6,90E+06 9,26E+06 7,73E+06 7,63E+06   4,19E+09 4,00E+09 3,85E+09 4,12E+09 

H12_T14_Seed100.max: PeakValue for DynRes 8,56E+06 8,34E+06 8,03E+06 1,01E+07   4,44E+09 4,14E+09 3,58E+09 3,69E+09 

H12_T14_Seed110.max: PeakValue for DynRes 8,02E+06 7,62E+06 9,38E+06 9,55E+06   4,06E+09 3,72E+09 4,76E+09 4,37E+09 

H12_T14_Seed120.max: PeakValue for DynRes 8,62E+06 7,51E+06 9,21E+06 8,97E+06   4,45E+09 3,73E+09 4,95E+09 4,09E+09 

H12_T14_Seed130.max: PeakValue for DynRes 9,22E+06 8,05E+06 9,30E+06 9,98E+06   4,08E+09 4,44E+09 5,42E+09 5,67E+09 

H12_T14_Seed140.max: PeakValue for DynRes 8,01E+06 7,99E+06 8,20E+06 8,57E+06   4,31E+09 4,37E+09 4,11E+09 4,63E+09 

H12_T14_Seed150.max: PeakValue for DynRes 8,34E+06 1,07E+07 8,77E+06 9,84E+06   3,67E+09 3,47E+09 3,52E+09 3,84E+09 

H12_T14_Seed160.max: PeakValue for DynRes 9,29E+06 9,80E+06 7,92E+06 9,08E+06   4,52E+09 3,49E+09 3,62E+09 4,21E+09 

H12_T14_Seed170.max: PeakValue for DynRes 8,24E+06 9,07E+06 8,49E+06 7,57E+06   4,96E+09 4,25E+09 3,51E+09 2,99E+09 

H12_T14_Seed180.max: PeakValue for DynRes 8,55E+06 8,33E+06 8,84E+06 9,98E+06   4,51E+09 4,68E+09 4,46E+09 3,64E+09 

H12_T14_Seed190.max: PeakValue for DynRes 8,03E+06 7,65E+06 9,35E+06 1,00E+07   4,36E+09 3,81E+09 4,95E+09 3,47E+09 

                    

Standard Deviation 6,39E+05 8,89E+05 6,21E+05 9,99E+05   3,95E+08 3,86E+08 6,76E+08 6,77E+08 

Mean 8,16E+06 8,83E+06 8,70E+06 9,14E+06   4,24E+09 3,94E+09 4,21E+09 4,04E+09 

 

Table C-12 Drag dominated wave loads and OVTM when Tn=14s 
  Drag dominated wave loads [N]   Overturning Moment [Nm] 

Case FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 
  FFT EAP, 

30comp 

EAP, 

60comp 

EAP, 

90comp 

H12_T14_Seed000.max: PeakValue for DynRes 1,78E+05 2,22E+05 1,67E+05 1,45E+05   7,26E+07 6,92E+07 6,99E+07 5,29E+07 

H12_T14_Seed010.max: PeakValue for DynRes 1,78E+05 1,69E+05 1,91E+05 2,35E+05   6,89E+07 7,14E+07 5,98E+07 7,27E+07 

H12_T14_Seed020.max: PeakValue for DynRes 1,79E+05 1,69E+05 1,63E+05 1,67E+05   7,95E+07 5,97E+07 6,26E+07 6,24E+07 

H12_T14_Seed030.max: PeakValue for DynRes 1,98E+05 1,92E+05 1,63E+05 1,98E+05   9,12E+07 7,08E+07 8,78E+07 6,89E+07 

H12_T14_Seed040.max: PeakValue for DynRes 1,96E+05 1,77E+05 2,12E+05 1,38E+05   6,74E+07 6,01E+07 6,02E+07 7,09E+07 

H12_T14_Seed050.max: PeakValue for DynRes 1,85E+05 1,54E+05 1,79E+05 2,19E+05   7,07E+07 6,75E+07 8,37E+07 9,30E+07 

H12_T14_Seed060.max: PeakValue for DynRes 1,62E+05 1,51E+05 1,88E+05 1,88E+05   7,18E+07 6,43E+07 8,38E+07 9,79E+07 

H12_T14_Seed070.max: PeakValue for DynRes 1,77E+05 1,83E+05 1,94E+05 2,13E+05   6,73E+07 7,29E+07 9,82E+07 5,79E+07 

H12_T14_Seed080.max: PeakValue for DynRes 1,78E+05 1,50E+05 1,67E+05 2,15E+05   5,59E+07 5,71E+07 6,57E+07 6,60E+07 

H12_T14_Seed090.max: PeakValue for DynRes 1,68E+05 2,21E+05 1,57E+05 1,43E+05   7,02E+07 7,65E+07 6,66E+07 7,74E+07 

H12_T14_Seed100.max: PeakValue for DynRes 1,94E+05 2,07E+05 1,48E+05 2,63E+05   8,57E+07 7,09E+07 6,47E+07 6,86E+07 

H12_T14_Seed110.max: PeakValue for DynRes 1,96E+05 1,53E+05 1,57E+05 2,10E+05   7,23E+07 7,08E+07 7,64E+07 7,10E+07 

H12_T14_Seed120.max: PeakValue for DynRes 1,33E+05 1,37E+05 1,71E+05 1,85E+05   7,97E+07 6,51E+07 8,81E+07 7,50E+07 

H12_T14_Seed130.max: PeakValue for DynRes 1,44E+05 1,51E+05 1,79E+05 2,92E+05   8,33E+07 7,61E+07 9,00E+07 1,01E+08 

H12_T14_Seed140.max: PeakValue for DynRes 1,93E+05 1,53E+05 1,44E+05 1,55E+05   7,47E+07 7,38E+07 6,98E+07 7,16E+07 

H12_T14_Seed150.max: PeakValue for DynRes 1,96E+05 1,92E+05 2,14E+05 1,92E+05   6,99E+07 6,38E+07 5,89E+07 7,49E+07 

H12_T14_Seed160.max: PeakValue for DynRes 2,11E+05 2,05E+05 1,33E+05 2,02E+05   8,66E+07 6,77E+07 6,00E+07 7,13E+07 

H12_T14_Seed170.max: PeakValue for DynRes 1,91E+05 1,87E+05 1,50E+05 1,36E+05   9,05E+07 8,17E+07 6,01E+07 4,99E+07 

H12_T14_Seed180.max: PeakValue for DynRes 1,91E+05 1,64E+05 1,92E+05 2,62E+05   8,31E+07 7,69E+07 8,58E+07 6,61E+07 

H12_T14_Seed190.max: PeakValue for DynRes 1,66E+05 1,48E+05 1,92E+05 1,98E+05   7,50E+07 6,68E+07 8,81E+07 6,49E+07 

                    

Standard Deviation 1,90E+04 2,57E+04 2,22E+04 4,35E+04   8,96E+06 6,34E+06 1,29E+07 1,31E+07 

Mean 1,81E+05 1,74E+05 1,73E+05 1,98E+05   7,58E+07 6,92E+07 7,40E+07 7,17E+07 
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D 90 Percentile estimates from Gumbel Distributions 
This Appendix contains tables of all relevant 90 percentile estimates from the Gumbel distributions in 

the rapport. These values may be important for deciding adequate safety factors if using the equal area 

method.   

 

The parameter estimation, α and b is done in WAFO. Then the 90 percentile estimates are found by 

equation D-1. 

 

 
    

   
             ))

 
     (D-1) 

D.1 90 Percentile estimates for Fixed Cylinder 
 
Table D-1 90 Percentile estimates for Surface elevation (static analysis) 

Method Number of comp Mean [m] 90percentile [m] Ratio 

Equal Area 30 9,97 12,15 1,03 

Equal Area 60 9,83 12,42 1,05 

Equal Area 90 9,75 12,53 1,06 

Equal Omega 1000 9,00 11,83 1,00 

 

 
Table D-2 90 percentile estimates for static mass - and drag dominated wave loads 

 Method Number of 

comp 

Mean 

 

90percentile Ratio 

Mass 

dominated 

[N] 

Equal Area 30 8,89E+06 1,02E+07 1,12 

Equal Area 60 8,66E+06 9,45E+06 1,04 

Equal Area 90 8,73E+06 9,70E+06 1,06 

Equal Omega 1000 8,09E+06 9,13E+06 1,00 

Drag 

Dominated 

[N] 

Equal Area 30 2,00E+05 2,44E+05 1,21 

Equal Area 60 1,95E+05 2,29E+05 1,13 

Equal Area 90 1,97E+05 2,33E+05 1,15 

Equal Omega 1000 1,69E+05 2,02E+05 1,00 

 

Table D-3 90 percentile estimates for OVTM when wave loads are mass dominated 

OVTM [Nm] Method Number 

of comp. 

Mean 90 percentile Ratio 

Tn=4,4s 

Equal Area 30 9,50E+08 1,08E+09 0,78 

Equal Area 60 9,11E+08 1,03E+09 0,75 

Equal Area 90 8,95E+08 1,11E+09 0,80 

Equal Omega 1000 1,23E+09 1,38E+09 1,00 

      

Tn=8,5s 

Equal Area 30 2,07E+09 2,34E+09 0,79 

Equal Area 60 2,43E+09 2,67E+09 0,91 

Equal Area 90 2,65E+09 2,97E+09 1,01 

Equal Omega 1000 2,58E+09 2,95E+09 1,00 

      

Tn=14s 

Equal Area 30 3,94E+09 4,45E+09 0,93 

Equal Area 60 4,21E+09 5,10E+09 1,07 

Equal Area 90 4,04E+09 4,93E+09 1,04 

Equal Omega 1000 4,24E+09 4,76E+09 1,00 
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Table D-4 90 percentile estimates for OVTM when wave loads are drag dominated 

OVTM [Nm] Method Number 

of comp. 

Mean 90 percentile Ratio 

Tn=4,4s 

Equal Area 30 2,41E+07 3,14E+07 1,15 

Equal Area 60 2,34E+07 2,81E+07 1,03 

Equal Area 90 2,28E+07 2,96E+07 1,08 

Equal Omega 1000 2,32E+07 2,73E+07 1,00 

      

Tn=8,5s 

Equal Area 30 3,79E+07 4,60E+07 1,04 

Equal Area 60 4,19E+07 4,70E+07 1,07 

Equal Area 90 4,41E+07 5,27E+07 1,20 

Equal Omega 1000 4,02E+07 4,41E+07 1,00 

      

Tn=14s 

Equal Area 30 6,92E+07 7,75E+07 0,88 

Equal Area 60 7,40E+07 9,09E+07 1,04 

Equal Area 90 7,17E+07 8,89E+07 1,01 

Equal Omega 1000 7,58E+07 8,76E+07 1,00 

 

 

D.2 90 percentile estimates on SWAY when using SPOOLWAVE 
 
Table D-5 90 percentile estimates for cardan force, full - and spoolwave analysis 

Method 
Cardan Force [N] 

mean 90percentile Ratio 

Spoolwave, min crest 4,10E+06 4,34E+06 0,98 

Best results with Spoolwave 4,26E+06 4,48E+06 1,01 

Full analysis 4,29E+06 4,45E+06 1,00 

 

 
Table D-6 90 percentile estimates for Moment at sea surface, full - and spoolwave analysis 

Method 
Moment at Sea surface [Nm] 

mean 90percentile Ratio 

Spoolwave, max crest 2,49E+08 2,89E+08 1,02 

Full analysis 2,50E+08 2,83E+08 1,00 



E-1 

 

E Results from analyses on SWAY 
Here, one finds the response quantities for all analyses performed on SWAY. 

 

This Appendix gives the summary from all responses for each sample considering the analysis on the 

SWAY turbine
Table E-1 SWAY Responses when using EAP, 30 components 

Case Disp top 

tower [m] 

Acc top tower 

[m/s^2] 

Cardan Force 

(top) [N] 

Mz at sea surface 

[Nm] 

Surface 

elevation [m] 

Wave load [N] 

H=16.4_T=17_Seed=000_0030.max: 50,62 4,61 4,47E+06 2,77E+08 11,09 1,23E+07 

H=16.4_T=17_Seed=010_0030.max: 45,64 4,76 4,35E+06 2,69E+08 12,50 1,32E+07 

H=16.4_T=17_Seed=020_0030.max: 49,84 5,36 4,50E+06 2,72E+08 11,24 1,58E+07 

H=16.4_T=17_Seed=030_0030.max: 43,66 4,92 4,25E+06 2,60E+08 11,33 1,38E+07 

H=16.4_T=17_Seed=040_0030.max: 54,72 5,49 4,33E+06 2,73E+08 14,81 1,78E+07 

H=16.4_T=17_Seed=050_0030.max: 48,63 6,38 4,41E+06 2,48E+08 14,82 1,98E+07 

H=16.4_T=17_Seed=060_0030.max: 49,76 4,94 4,35E+06 2,79E+08 12,69 1,49E+07 

H=16.4_T=17_Seed=070_0030.max: 45,75 5,33 4,34E+06 2,81E+08 12,42 1,45E+07 

H=16.4_T=17_Seed=080_0030.max: 39,25 5,21 4,11E+06 2,57E+08 12,06 1,55E+07 

H=16.4_T=17_Seed=090_0030.max: 47,82 5,15 4,30E+06 2,75E+08 11,52 1,43E+07 

H=16.4_T=17_Seed=100_0030.max: 66,18 6,28 4,90E+06 3,57E+08 14,82 1,61E+07 

H=16.4_T=17_Seed=110_0030.max: 48,07 5,65 4,19E+06 2,20E+08 12,40 1,54E+07 

H=16.4_T=17_Seed=120_0030.max: 50,76 6,13 4,29E+06 2,59E+08 12,45 1,72E+07 

H=16.4_T=17_Seed=130_0030.max: 47,93 5,50 4,19E+06 2,94E+08 12,46 1,49E+07 

H=16.4_T=17_Seed=140_0030.max: 48,44 6,54 4,42E+06 2,79E+08 15,47 1,92E+07 

H=16.4_T=17_Seed=150_0030.max: 54,88 5,07 4,27E+06 2,88E+08 11,78 1,36E+07 

H=16.4_T=17_Seed=160_0030.max: 48,83 6,01 4,24E+06 2,57E+08 14,88 1,66E+07 

H=16.4_T=17_Seed=170_0030.max: 57,17 6,55 4,46E+06 2,95E+08 16,58 2,08E+07 

H=16.4_T=17_Seed=180_0030.max: 45,37 5,20 4,38E+06 2,76E+08 11,57 1,39E+07 

H=16.4_T=17_Seed=190_0030.max: 56,74 4,94 4,66E+06 2,82E+08 12,48 1,44E+07 

       

Max 66,18 6,55 4,90E+06 3,57E+08 16,58 2,08E+07 

Min 39,25 4,61 4,11E+06 2,20E+08 11,09 1,23E+07 

Standard Deviation 5,80 0,61 1,76E+05 2,57E+07 1,63 2,27E+06 

Mean 50,00 5,50 4,37E+06 2,75E+08 12,97 1,57E+07 

 

Table E-2 SWAY Responses when using EAP, 60 components 
Case Disp top 

tower [m] 

Acc top tower 

[m/s^2] 

Cardan Force 

(top) [N] 

Mz at sea surface 

[Nm] 

Surface 

elevation [m] 

Wave load [N] 

H=16.4_T=17_Seed=000_0060.max: 40,08 5,09E+00 4,25E+06 2,58E+08 1,30E+01 1,43E+07 

H=16.4_T=17_Seed=010_0060.max: 32,83 4,64E+00 4,29E+06 2,12E+08 1,29E+01 1,41E+07 

H=16.4_T=17_Seed=020_0060.max: 43,91 5,03E+00 4,23E+06 2,61E+08 1,24E+01 1,57E+07 

H=16.4_T=17_Seed=030_0060.max: 47,62 5,19E+00 4,19E+06 2,63E+08 1,40E+01 1,59E+07 

H=16.4_T=17_Seed=040_0060.max: 41,22 5,00E+00 4,43E+06 2,71E+08 1,19E+01 1,26E+07 

H=16.4_T=17_Seed=050_0060.max: 50,45 5,62E+00 4,15E+06 2,73E+08 1,62E+01 1,78E+07 

H=16.4_T=17_Seed=060_0060.max: 52,83 6,55E+00 4,44E+06 2,66E+08 1,44E+01 1,93E+07 

H=16.4_T=17_Seed=070_0060.max: 39,92 4,58E+00 4,08E+06 2,41E+08 1,15E+01 1,30E+07 

H=16.4_T=17_Seed=080_0060.max: 45,52 5,83E+00 4,41E+06 2,63E+08 1,43E+01 1,91E+07 

H=16.4_T=17_Seed=090_0060.max: 41,33 5,04E+00 4,44E+06 2,64E+08 1,27E+01 1,56E+07 

H=16.4_T=17_Seed=100_0060.max: 39,75 4,73E+00 4,16E+06 2,55E+08 1,10E+01 1,40E+07 

H=16.4_T=17_Seed=110_0060.max: 55,47 6,77E+00 4,46E+06 3,60E+08 1,53E+01 1,73E+07 

H=16.4_T=17_Seed=120_0060.max: 51,01 5,80E+00 4,38E+06 3,14E+08 1,48E+01 1,66E+07 

H=16.4_T=17_Seed=130_0060.max: 43,85 4,60E+00 4,23E+06 2,36E+08 1,26E+01 1,51E+07 

H=16.4_T=17_Seed=140_0060.max: 46,67 5,95E+00 4,58E+06 2,82E+08 1,31E+01 1,78E+07 

H=16.4_T=17_Seed=150_0060.max: 60,60 6,06E+00 4,41E+06 3,42E+08 1,40E+01 1,56E+07 

H=16.4_T=17_Seed=160_0060.max: 48,85 6,00E+00 4,26E+06 3,14E+08 1,29E+01 1,63E+07 

H=16.4_T=17_Seed=170_0060.max: 44,18 5,93E+00 4,29E+06 2,43E+08 1,25E+01 1,61E+07 

H=16.4_T=17_Seed=180_0060.max: 37,03 5,00E+00 4,12E+06 2,46E+08 1,31E+01 1,58E+07 

H=16.4_T=17_Seed=190_0060.max: 48,65 5,05E+00 4,28E+06 2,83E+08 1,24E+01 1,46E+07 

       

Max 60,60 6,77 4,58E+06 3,60E+08 16,19 1,93E+07 

Min 32,83 4,58 4,08E+06 2,12E+08 11,05 1,26E+07 

Standard Deviation 6,61 0,65 1,33E+05 3,60E+07 1,29 1,82E+06 

Mean 45,59 5,42 4,30E+06 2,72E+08 13,25 1,58E+07 
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Table E-3 SWAY Responses when using EAP, 90 components 
Case Disp top 

tower [m] 

Acc top tower 

[m/s^2] 

Cardan Force 

(top) [N] 

Mz at sea surface 

[Nm] 

Surface 

elevation [m] 

Wave load 

[N] 

H=16.4_T=17_Seed=000_0090.max: 49,20 5,60 4,50E+06 2,80E+08 12,15 1,72E+07 

H=16.4_T=17_Seed=010_0090.max: 51,82 5,68 4,35E+06 2,82E+08 13,93 1,69E+07 

H=16.4_T=17_Seed=020_0090.max: 41,11 4,70 4,19E+06 2,18E+08 10,16 1,31E+07 

H=16.4_T=17_Seed=030_0090.max: 46,49 5,41 4,31E+06 2,34E+08 14,04 1,82E+07 

H=16.4_T=17_Seed=040_0090.max: 40,65 5,48 4,13E+06 2,49E+08 12,64 1,58E+07 

H=16.4_T=17_Seed=050_0090.max: 36,26 6,50 4,29E+06 2,67E+08 14,12 1,76E+07 

H=16.4_T=17_Seed=060_0090.max: 40,87 5,42 4,54E+06 2,34E+08 13,14 1,69E+07 

H=16.4_T=17_Seed=070_0090.max: 37,52 5,49 4,25E+06 2,83E+08 11,85 1,48E+07 

H=16.4_T=17_Seed=080_0090.max: 44,83 4,80 4,22E+06 2,39E+08 11,69 1,43E+07 

H=16.4_T=17_Seed=090_0090.max: 48,21 5,84 4,33E+06 3,07E+08 13,35 1,75E+07 

H=16.4_T=17_Seed=100_0090.max: 44,53 6,12 4,24E+06 2,52E+08 13,08 1,80E+07 

H=16.4_T=17_Seed=110_0090.max: 38,38 5,37 4,21E+06 2,50E+08 11,92 1,54E+07 

H=16.4_T=17_Seed=120_0090.max: 52,02 6,14 4,42E+06 3,37E+08 12,70 1,52E+07 

H=16.4_T=17_Seed=130_0090.max: 41,83 5,39 4,23E+06 2,78E+08 13,34 1,67E+07 

H=16.4_T=17_Seed=140_0090.max: 41,39 5,05 4,14E+06 2,26E+08 11,49 1,41E+07 

H=16.4_T=17_Seed=150_0090.max: 52,84 5,16 4,23E+06 2,87E+08 12,99 1,44E+07 

H=16.4_T=17_Seed=160_0090.max: 57,89 5,22 4,29E+06 2,87E+08 14,56 1,61E+07 

H=16.4_T=17_Seed=170_0090.max: 35,65 5,34 4,08E+06 2,17E+08 12,27 1,61E+07 

H=16.4_T=17_Seed=180_0090.max: 40,47 5,10 4,08E+06 2,39E+08 12,96 1,46E+07 

H=16.4_T=17_Seed=190_0090.max: 44,91 5,73 4,26E+06 2,21E+08 11,56 1,70E+07 

       

Max 57,89 6,50 4,54E+06 3,37E+08 14,56 1,82E+07 

Min 35,65 4,70 4,08E+06 2,17E+08 10,16 1,31E+07 

Standard Deviation 6,09 0,44 1,22E+05 3,25E+07 1,08 1,46E+06 

Mean 44,34 5,48 4,26E+06 2,59E+08 12,70 1,60E+07 

 

Table E-4 SWAY Responses when using FFT, 1000 components 
Case Disp top 

tower [m] 

Acc top tower 

[m/s^2] 

Cardan Force 

(top) [N] 

Mz at sea surface 

[Nm] 

Surface 

elevation [m] 

Wave load 

[N] 

H=16.4_T=17_Seed=000_1000.max: 36,35 4,57 4,11E+06 2,31E+08 11,68 1,30E+07 

H=16.4_T=17_Seed=010_1000.max: 49,48 5,77 4,40E+06 2,65E+08 15,10 1,77E+07 

H=16.4_T=17_Seed=020_1000.max: 49,97 4,91 4,30E+06 2,56E+08 12,40 1,52E+07 

H=16.4_T=17_Seed=030_1000.max: 42,38 4,74 4,12E+06 2,47E+08 12,57 1,46E+07 

H=16.4_T=17_Seed=040_1000.max: 42,12 4,72 4,48E+06 2,55E+08 13,61 1,45E+07 

H=16.4_T=17_Seed=050_1000.max: 40,88 4,49 4,16E+06 2,43E+08 11,17 1,21E+07 

H=16.4_T=17_Seed=060_1000.max: 42,37 5,14 4,17E+06 2,56E+08 13,13 1,56E+07 

H=16.4_T=17_Seed=070_1000.max: 38,46 4,14 4,15E+06 2,19E+08 11,93 1,28E+07 

H=16.4_T=17_Seed=080_1000.max: 40,64 4,52 4,20E+06 2,41E+08 10,73 1,38E+07 

H=16.4_T=17_Seed=090_1000.max: 36,48 4,51 4,12E+06 2,38E+08 10,94 1,35E+07 

H=16.4_T=17_Seed=100_1000.max: 37,19 4,96 4,24E+06 2,55E+08 11,28 1,52E+07 

H=16.4_T=17_Seed=110_1000.max: 45,45 4,82 4,23E+06 2,63E+08 11,96 1,39E+07 

H=16.4_T=17_Seed=120_1000.max: 42,69 5,11 4,18E+06 2,32E+08 11,29 1,60E+07 

H=16.4_T=17_Seed=130_1000.max: 52,75 5,13 4,41E+06 2,75E+08 15,02 1,53E+07 

H=16.4_T=17_Seed=140_1000.max: 48,00 5,09 4,29E+06 2,57E+08 12,35 1,54E+07 

H=16.4_T=17_Seed=150_1000.max: 43,50 4,79 4,23E+06 2,33E+08 12,15 1,52E+07 

H=16.4_T=17_Seed=160_1000.max: 40,56 5,09 4,34E+06 2,70E+08 10,98 1,34E+07 

H=16.4_T=17_Seed=170_1000.max: 47,26 5,01 4,18E+06 2,54E+08 12,16 1,57E+07 

H=16.4_T=17_Seed=180_1000.max: 36,72 4,75 4,27E+06 2,07E+08 11,23 1,50E+07 

H=16.4_T=17_Seed=190_1000.max: 36,57 4,91 4,19E+06 2,35E+08 11,72 1,39E+07 

       

Max 52,75 5,77 4,48E+06 2,75E+08 15,10 1,77E+07 

Min 36,35 4,14 4,11E+06 2,07E+08 10,73 1,21E+07 

Standard Deviation 4,97 0,34 1,06E+05 1,72E+07 1,23 1,31E+06 

Mean 42,49 4,86 4,24E+06 2,47E+08 12,17 1,46E+07 
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F Additional Results from Analyses with Spoolwave 
The responses; the cardan force, moment in the tower at sea surface, and acceleration at tower top are 

considered the most interesting response quantities and is displayed and discussed in the rapport. 

However, the results from wave load and tower top displacement may also be of importance, and are 

therefore given in this Appendix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table F-1 Overview of Wave Load results from Full and Spoolwave Analysis 

Case Full Analysis Spoolwave, 

Max Crest 

Ratio Best Result with 

Spoolwave 

Ratio Order 

H=16.4_T=17_Seed=000_0090.max: 1,72E+07 1,72E+07 1,00 1,72E+07 1,00 1 

H=16.4_T=17_Seed=030_0090.max: 1,82E+07 1,82E+07 1,00 1,82E+07 1,00 1 

H=16.4_T=17_Seed=060_0090.max: 1,69E+07 1,28E+07 0,76 1,69E+07 1,00 -1 

H=16.4_T=17_Seed=080_0090.max: 1,43E+07 1,41E+07 0,99 1,41E+07 0,99 1 

H=16.4_T=17_Seed=100_0090.max: 1,80E+07 1,44E+07 0,80 1,65E+07 0,92 -1 

H=16.4_T=17_Seed=110_0090.max: 1,54E+07 1,36E+07 0,88 1,54E+07 1,00 -1 

H=16.4_T=17_Seed=130_0090.max: 1,67E+07 1,67E+07 1,00 1,67E+07 1,00 1 

H=16.4_T=17_Seed=140_0090.max: 1,41E+07 1,50E+07 1,06 1,50E+07 1,06 1 

H=16.4_T=17_Seed=150_0090.max: 1,44E+07 1,43E+07 0,99 1,43E+07 0,99 1 

H=16.4_T=17_Seed=160_0090.max: 1,61E+07 1,61E+07 1,00 1,61E+07 1,00 1 

H=16.4_T=17_Seed=170_0090.max: 1,61E+07 1,61E+07 1,00 1,61E+07 1,00 1 

H=16.4_T=17_Seed=180_0090.max: 1,46E+07 1,47E+07 1,01 1,47E+07 1,01 1 

H=16.4_T=17_Seed=190_0090.max: 1,70E+07 1,32E+07 0,78 1,70E+07 1,00 -1 

       

Max 1,82E+07 1,82E+07 1,06 1,82E+07 1,06  

Min 1,41E+07 1,28E+07 0,76 1,41E+07 0,92  

Standard Deviation 1,42E+06 1,63E+06 0,10 1,25E+06 0,03  

Mean 1,61E+07 1,51E+07 0,94 1,60E+07 1,00  

 

 

Table F-2 Overview of Tower top Displacement results from Full and Spoolwave Analysis 

Case 

 

Full Analysis Spoolwave, 

Max Crest 

Ratio Best Result 

with 

Spoolwave 

Ratio Order 

H=16.4_T=17_Seed=000_0090.max: 49,20 50,61 1,03 50,61 1,03 1 

H=16.4_T=17_Seed=030_0090.max: 46,49 46,15 0,99 46,15 0,99 1 

H=16.4_T=17_Seed=060_0090.max: 40,87 40,42 0,99 40,42 0,99 1 

H=16.4_T=17_Seed=080_0090.max: 44,83 40,40 0,90 44,87 1,00 -1 

H=16.4_T=17_Seed=100_0090.max: 44,53 42,67 0,96 42,67 0,96 1 

H=16.4_T=17_Seed=110_0090.max:       38,38              40,97  1,07                 40,97    1,07  1 

H=16.4_T=17_Seed=130_0090.max:       41,83              42,24  1,01                   42,24  1,01  1 

H=16.4_T=17_Seed=140_0090.max:       41,39              43,85  1,06           43,85     1,06  1 

H=16.4_T=17_Seed=150_0090.max:       52,84              53,25  1,01            53,25     1,01  1 

H=16.4_T=17_Seed=160_0090.max:       57,89              57,89    1,00               57,89  1,00  1 

H=16.4_T=17_Seed=170_0090.max:      35,65             35,65  1,00                  35,65  1,00  1 

H=16.4_T=17_Seed=180_0090.max:      40,47             35,80   0,88                35,80      0,88  1 

H=16.4_T=17_Seed=190_0090.max:      44,91      42,27  0,94               44,18  0,98  -1 

       

Max       57,89          57,89    1,07             57,89    1,07    

Min 35,65             35,65  0,88             35,65    0,88   

Standard Deviation     6,04            6,50    0,05                6,38    0,05   

Mean 44,56            44,01  0,99          44,50      1,00    

 


