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Abstract 

In this thesis, an Inertia-Capacitance (IC) beam substructure formulation based on bond 
graph terminology is developed. The IC beam is formulated in the centre of mass body 
fixed coordinate system which allows for easy interfacing of the IC beam in a multibody 
system setting. This multibody floating frame approach is also computationally cheaper 
than nonlinear finite element methods. Elastic deformations in the IC beam are assumed 
to be small and described by modal superposition. The formulation couples rigid body 
motions and elastic deformations in a nonlinear fashion. Detailed derivations for a two-
dimensional planar IC beam with bending modes are presented. Brief derivations are also 
presented for the two-dimensional IC beam with both bending and axial modes and for 
the three-dimensional IC beam with bending modes. A modal acceleration method via the 
decoupling of modes is developed for use in the IC beam. The Karnopp-Margolis method 
is used in the model set-ups to ensure complete integral causality. This results in an 
efficient numerical system.  

The large deflection cantilevered beam and the rotating beam spin-up maneuver problems 
are solved. Convergence studies of various model parameters are performed. The effects 
of axial modes in the spin-up maneuver problem are also investigated. Investigations are 
also made on the hinges used for the substructure interconnections. The IC beam is 
shown to be capable of solving these problems accurately and efficiently. Lastly, the 
methodology to apply the IC beam formulation to the wind turbine rotor blades is 
presented.  
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1. Introduction 

 

 

1.1. Background 

There has been interest in the design of very large wind turbines in the 10 MW range in 
recent years. These wind turbines will have large rotor diameters of approximately 175m 
which employ long slender blades. These long slender blades will exhibit large geometric 
deformations behavior and thus geometric nonlinear effects should not be ignored. Most 
of today’s existing commercial wind turbine simulation software use relatively simplified 
linear structural models and cannot model geometric nonlinearity. There are some 
software codes that are based on nonlinear finite element methods and can model 
geometric nonlinear effects. However, finite element methods are slow in solving wind 
turbine structural dynamics problems which consists of large rigid body motions. 
Efficiency is particularly important in wind turbines simulations when a large number of 
load cases are to be simulated, for example when performing fatigue assessments.  

 

 

1.2. Problem Formulation 

In this thesis, the motivation is to develop accurate and efficient flexible beam models 
that can model the nonlinear dynamics of wind turbine blades. Note that the flexible 
beam is essentially the basic template model for building wind turbine structural 
dynamics models.  

Efficiency is a key decision making factor in the model development. The beam 
formulation will be based on the inertia-capacitance (IC) field representation from the 
bond graph method and thus named the IC beam. The IC field representation provides a 
compact formulation in integral causality. Integral causality ensures an efficient 
numerical system. The formulation will describe both rigid body motions and elastic 
deformations in a coupled fashion. The multibody floating frame approach will be used 
as this approach is computationally cheaper than the finite element methods. The method 
of assumed mode shapes will be adopted to provide reduced order descriptions of the 
elastic deformations. To further increase the efficiency, a specifically developed modal 
acceleration method will also be proposed. The IC beam will be used in combination with 
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the geometric substructuring technique (discussed in subsection 2.5) to model geometric 
nonlinear effects. The Karnopp-Margolis method [1] which enforces complete integral 
causality will be used at the substructure interconnections.  

Special focus will be placed on solving the rotating beam problem which is essentially a 
simplification of the wind turbine rotor problem. Extensive and detailed numerical 
studies will be performed solving the transient spin-up maneuver problem. Methods to 
apply the IC beam to the wind turbine rotor blade problem will also be proposed.  

 

 

1.3. Main Contributions 

The main contributions in this thesis are: 

i. The formulation of an IC beam substructure based on bond graph terminology.   
ii. Proposed and tested a modal acceleration method specifically for the IC beam. 

iii. Rigorous testing of IC beam for two-dimensional planar problems. The tests 
include static bending of a cantilevered beam and the rotating beam spin-up 
maneuver problem.  

iv. Detailed investigations into the hinges used at the IC beam substructure 
interconnections. 

v. Proposed the methodology to apply the IC beam for wind turbine rotor blades. 

 

 

1.4. Outline of Thesis 

In chapter 2, the literature review of this thesis is presented.  

In chapter 3, a two-dimensional planar IC beam substructure is derived in detail for an IC 
beam with two bending modes. The method to include structural damping and modal 
acceleration is also discussed.  

In chapter 4, the procedure of setting up the model including its solution process for the 
rotating beam problem is presented. Each individual component model that makes up the 
complete model is also discussed in detail.  
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In chapter 5, static small and large deflection convergence studies of a cantilevered beam 
modeled using the IC beam is performed. The large deflection tests include bending of 
the beam into a complete circle by a tip moment.  

In chapter 6, a cantilevered beam modeled using the IC beam is loaded with a time 
varying point force at its fixed end. The purpose is to highlight the elastic modes coupling 
feature of the IC beam formulations. 

In chapter 7, the rotating beam spin-up maneuver problem is solved using the IC beam. 
Detailed convergence studies of the model parameters are carried out. These include 
important parameters such as number of substructures and number of modes prescribed. 
The modal acceleration technique introduced in this thesis is also applied.  

In chapter 8, the IC beam is extended to include axial modes. The spin-up maneuver 
problem is solved again using the new IC beam and compared against the previous IC 
beam without axial modes included.  

In chapter 9, the effects when using dampers in place of springs and a combination of 
dampers and springs at the interconnecting hinges are investigated.  

In chapter 10, the methodology to apply the IC beam to wind turbine rotor blades is 
discussed.  

In chapter 11, the conclusions of this thesis are made and possible future work proposed.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK. 

 

 

 

 



Chapter 2: Literature Review 
 

5 
 

2. Literature Review 

Wind turbine structural dynamics involve solving a nonlinear flexible multibody 
problem. Blade dynamics is essentially a rotating beam problem. Also, modeling the 
blade flexibility correctly is particularly important. As such, the literature study in this 
thesis is targeted mainly at these issues. A brief overview of the bond graph method and 
its application to flexible body modeling is also presented. 

 

 

2.1. Importance of Blade Model Flexibility 

Modeling the blade flexibility correctly is important in wind turbine dynamics problem. 
The effect of blade model flexibility on the dynamics of the 5MW NREL baseline wind 
turbine [2] was investigated in Xing [3]. In this investigation, the wind turbine research 
software HAWC2 [4] was used. The capability of the blade model to capture geometric 
nonlinearity was controlled by varying the number of blade bodies within the blade 
model. Within each blade body, the deflections are linear. Prescribing more than one 
blade body allows the blade to model geometric nonlinear effects. It was found out that it 
is extremely important to correctly represent the blade model flexibility. A rigid blade 
assumption produces erroneous solutions of as much as 20% errors for both the local and 
global responses. A linear elastic blade achieves below 5% error for the global responses 
however there will still be more than 10% errors in the local blade responses. Finally, it 
was shown that below 5% errors will be achieved when just three blade bodies are 
prescribed. In Ahlstrom [5], the influence of wind turbine flexibility on the loads and 
power productions were investigated. The wind turbine blade stiffness and mass were 
proportionally scaled together to vary its slenderness while keeping the natural 
frequencies intact. It was found out that large blade deflections have a significant 
influence on both the power production and the resulting structural loads. These 
influences are as much as 50% in some cases.  

 

 

2.2.  Nonlinear Dynamics of Wind Turbine 

In Larsen, et.al. [6], the nonlinear couplings between the fundamental flapwise and 
edgewise modes of wind turbine blades were identified and investigated. Internal 
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resonances between these modes have also been studied. In another of their work [7], the 
numerical stability of the wind turbine blade based on a nonlinear model was investigated 
through the Lyapunov exponent approach. In Holm-Jørgensen’s PhD thesis [8], the 
nonlinear dynamics of wind turbines were investigated. Model reductions based on 
component mode synthesis were also performed on a nonlinear model of the wind 
turbine.  

 

 

2.3. The Rotating Beam Problem 

The rotating beam problem has been investigated by a number of researchers.  In linear 
structural theory, the transverse vibrations of the beam are not coupled to the axial forces. 
However, the presence of centrifugal forces in a rotating beam gives rise to geometric or 
stress stiffening effect. This makes the beam stiffer in bending as would be predicted by 
linear theory.  In Ryu, et.al. [9], a criterion on inclusion of stress stiffening effects in 
flexible multibody systems was presented. This criterion is based on the eigenvalue 
variation of the total modal stiffness. If the variation is large, then stress stiffening effects 
must be included. The coupling of the bending stiffness of the beam to the axial forces 
makes the rotating beam a nonlinear problem.   

In Yang, Jiang and Chen [10], the complete set of ordinary differential equations for a 
rotating Euler-Bernoulli beam was derived and presented. There are also other various 
works [11], [12], [13], [14] that focus on analysis of the rotating cantilevered beam 
problem.  

 

 

2.4. Nonlinear Flexible Multibody Modeling 

There has been extensive research into modeling of nonlinear flexible multibody 
dynamics over the last few decades. Wasfy and Noor [15] performed a review of the 
status and progress in the research of flexible multibody dynamics. In their paper, they 
classified and compared three types of reference frames approach: floating frame, 
corotational frame and inertia frame.  
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Pierre, Jiang, Shaw, Pesheck and Legrand used the method of nonlinear modes based on 
the invariant manifold approach to perform a series of nonlinear structural dynamics 
modeling. This included the modeling of flexible multibody systems. Their various works 
can be found in [16], [17], [18], [19], [20], [21], [22], [23]. An overview of nonlinear 
modes and their applications in vibration problems can be found in Vakakis [24]. 

 

 

2.5. Geometric Substructuring Technique 

In this technique, each body is divided into a number of substructures. In each 
substructure, the displacements are small and thus linear theory can be applied. The 
substructures together allow the body to model large deflections. This technique allows 
the use of modal reduction and floating reference frames to model large deflection 
problems. This technique is discussed in Wu and Hang [25], [26] and Liu and Liew [27] 
and applied in HAWC2 [4]. 

 

 

2.6. Mode Superposition Method 

Mode superposition in structural dynamic analysis can be applied in two forms: the 
modal displacement method and the modal acceleration method.   

The modal displacement method is the widely known classical method for mode 
superposition. In this method, the structural displacements are calculated based on the 
response from a selected group of modal coordinates; the rest are truncated. These can be 
based on eigenmodes, Ritz modes or any other types of assumed mode shapes. In general, 
satisfactory accuracy is obtained for the displacements if only a few modal coordinates 
are selected. More modes must be used in order to attain the same accuracy for internal 
forces and stress [28]. In general, it is recommended that modes are retained up to a 
frequency of at least a factor of 2 but not more than 5 higher than the highest frequency 
of interest, section 10.3 Karnopp, Margolis and Rosenberg [29]. 

This process of mode truncation introduces error in the responses. This is particularly true 
if the response of the structure is stiffness controlled. This error can be minimized by the 
modal acceleration method where the static responses of the truncated modes are 
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considered in the total responses instead of being totally eliminated. This was introduced 
by Williams [30] and Bisplinghoff, et.al. [31]. In Soriano, et.al. [28], three 
mathematically equivalent versions of the modal acceleration method were presented. 
These are the Maddox [32], Hanstenn and Bell [33] and Cornweel, Craig and Johnson 
[34] versions. Modal acceleration was also applied in Ryu, et.al. [35] to improve the 
dynamic solutions of flexible multibody dynamics. 

The Maddox [32] version of modal acceleration is presented here. First, the total response 
v and the force vector F are divided into two portions: 

MDM MAM

MDM MDM MAM MAM

v v v

q qφ φ

= +

= +

  

 

   
(2.1) 

MDM MAM

MDM MDM MAM MAM

F F F

Q Qφ φ

= +

= +

  

     
(2.2) 

The vectors subscripts MDM and MAM in equations (2.1) and (2.2) denote vectors 
associated with the mode displacement method and mode acceleration method 
respectively. Here, mode displacement method is applied on modes i = 1, m and mode 
acceleration method is applied on the remaining higher modes i = m+1, N. The equations 
to solve for are: 

, 1,..., ( )

, 1,..., ( )
j j j j j j j

j j j

m q c q k q Q j m MDM

k q Q j m N MAM

+ + = =

= = +

 

 
(2.3) 

 

 

2.7. The Bond Graph Method 

The bond graph method is an intuitive representation of the physical system. It consists of 
an energy-conserving network of bonds (represented by lines) and lumped parameter 
elements of resistance, capacitance and inductance (represented by symbols). Energy is 
exchanged between the elements through the bonds as a combination of effort (force) and 
flow (velocity). The system equations are then derived automatically from the bond graph 
representation and then used for the simulation process. Some fundamental aspects of the 
bond graph method are presented in this subsection. For an extensive and detailed 
overview of this method, see Karnopp, Margolis and Rosenberg [29] and Pedersen and 
Engja [36]. 
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The energy is interchanged via the power conjugate of effort and flow variables. There is 
a pair of power conjugate variables in every engineering domain; refer to Table 1.  

Table 1: Power Conjugate Variables of Some Engineering Domains 

Domain Effort Flow 
Electric Voltage Current 

Translational Mechanics Force Velocity 
Rotational Mechanics Torque Angular velocity 

Hydraulics Pressure Volumetric flow rate 
Thermal Temperate Entropy flow 

 

The bond graph method utilizes nine basic elements. They are listed in Table 2. Energy is 
supplied to a system by efforts and flow sources. The capacitor and inductor elements 
perform energy storage. Resistor elements dissipate energy away from the system. The 
transformer and gyrator elements perform energy transmission. The relationships 
between the efforts and flows in the system are represented by the 0- and 1-junctions. All 
elements except the junctions can represent nonlinearity.  

The computational causality in bond graphs is indicated by causal strokes. A casual 
stroke is added to one end of a power bond to indicate that the effort/flow signal is 
directed towards/away from this end. For the energy storage elements, the causality can 
be integral or differential. Integral causality means that the output of the element is 
obtained from the integration of the input. And, differential causality means that the 
output of the element is obtained from the differentiation of the input. Differential 
causalities often lead to inefficient numerical systems. Therefore complete integral 
causality is preferred. The causality of all the elements in a bond graph model must also 
be assignable. The causal strokes associated with the nine basic elements are presented in 
Table 2. Differential causality strokes are denoted in red.  
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Table 2: Basic Bond Graph Elements 

Element Symbol Equation 
Effort source 

 
( )e e t=  

Flow source 
 

( )f f t=  

Capacitor 
 

 

 

1
C

t

e f dt−  
= Φ  

 
∫  

( )C
df e
dt

= Φ  

Inductor 
 

 

 

1
I

t

f edt−  
= Φ  

 
∫  

( )I
de f
dt

= Φ  

Resistor 
 

 

 

( )Re f= Φ  
 
 

( )1
Rf e−= Φ  

Transformer 
 

 

 

1 2 2 1,e me f mf= =  
 
 

1 2 2 1/ , /f f m e e m= =  

Gyrator 
 

 

 

1 2 2 1,e rf e rf= =  
 
 

1 2 2 1/ , /f e r f e r= =  

0-junction 

 ( )

2 1

3 1

1 2 3

e e
e e
f f f

=
=

= − +

 

1-junction 

 ( )

2 1

3 1

1 2 3

f f
f f
e e e

=
=

= − +
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2.7.1. The Bond Graph Force-Free Beam Model 

The force-free beam bond graph model refers to the formulations discussed in section 
10.2, Karnopp, Margolis and Rosenberg [29] and Margolis [37]. The motion of the beam 
is described by the superposition of decoupled rigid body motions and elastic 
deformations. Also, the elastic deformations are represented by the sum of assumed mode 
shapes. The force-free beam has been applied in a number of cases, for example, the bond 
graph models of a wind turbine rotor in Xing [38] and vehicle A-frame structure in 
Margolis [37]. 

A bond graph force-free beam model with two elastic modes is presented in Figure 1. 
Inductor elements represent the masses (translational, rotational and modal). Capacitor 
elements represent the modal stiffness and resistor elements represent the modal 
damping. The transformer elements represent the calculations of the contributions from 
the point forces to the generalized forces to the rigid body and elastic modes. 

 

Figure 1: The Bond Graph Force-Free Beam Model 
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The mode shape deflection and slope must nonzero at a connection point to have nonzero 
generalized force contributions to the elastic modes from forces and/or moments at that 
point. This means that the mode shape deflection and slope at the fixed end of the 
rotating beam must be nonzero. Otherwise, there is no energy transfer from the forces 
and/or moments from the fixed end to the elastic modes. This represents a serious 
drawback for this formulation. This is because the force-free mode shapes which are non 
optimum mode shapes would have to be employed. This leads to slow modal 
convergence.  
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3. The Inertia-Capacitance Beam Substructure 

In this section, the proposed Inertia-Capacitance (IC) beam substructure formulation 
will be derived. Details of the IC-field formulation procedure is discussed in section 
9.2.3 Karnopp, Margolis and Rosenberg [29] and Karnopp [39]. This procedure was 
also used in Xing [38] for a single blade wind turbine rotor system.   

Axial deformation is assumed to be small and thus neglected, i.e. the beam exhibits 
only lateral deformations. The validity of this assumption will be investigated in 
section 8, where the IC beam will be extended to include axial modes, and numerical 
studies performed to investigate the effect when axial modes are included for the 
rotating beam problem.  

The elastic deformations within the IC beam substructure are assumed to be small. 
Thus linear theory is valid and modal superposition is used. The total motion of the 
IC beam substructure will be the sum of the rigid body motions and the elastic 
vibrations. The centre of mass body fixed coordinate system is used. The rotational 
inertial properties remain invariant and the products of inertia are zero in this 
coordinate system. Also, a body fixed coordinate system allows for easy mating of 
the IC beam to other bodies in a multibody system setting. For the ease of 
understanding, the IC beam will be formulated for two-dimensional planar motions, 
i.e. translations in the X-Y plane and rotations about the Z-axis. The formulation 
presented herein can be easily further extended to account for full three-dimensional 
motions. The IC beam formulation uses displacements and momentums as state 
variables. It is also a model in complete integral causality which means that its 
numerical system is efficient and easy to solve for.  

First, the generalized form of the equations for the IC beam will be derived. Next, the 
full set of equations will be further developed for an example of the IC beam with two 
elastic modes. Lastly, a modal acceleration technique relating specifically to the IC 
beam will be introduced.   
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3.1. Derivation of the Equations for the 2D Planar IC Beam 

 

 

3.1.1. Preliminaries 

Consider a vibrating two-dimensional planar beam translating and rotating in space as 
illustrated in Figure 2. The coordinate system a1–a2 is fixed to the centre of mass. 
Note that all formulations refer to this body-fixed coordinate system. Notice that a 
point P0 on the beam in the un-deformed state will move to point P after deformation.   

 

Figure 2: 2D Planar IC Beam Substructure 

Expression for velocities along the beam 

Velocity of point P:  

( ) ( )0 0 1 0 2PV V v a x v aθ θ= + − + +
 

 

 

  
(3.1) 

Velocity of centre of mass: 

0 0 1 0 2V x a y a= +


 

   
(3.2) 

Therefore velocity of point P: 

( ) ( )0 0 1 0 0 2PV x v a y x v aθ θ= − + + +


 

 

    
(3.3) 
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3.1.2. Expressions for Kinetic and Potential Energies 

Expression for kinetic energy 

Kinetic energy of the IC beam: 

( )

( )

2
2

2

2 2 2 22
0 0 0 0 0

2

2 2 22
0 0 0 0 0

2

1
2

1 2
2

1 2 2 2
2

L

L P

L

L

L

L

T m V dx

m x y x xy dx

m vx v v vy xv dx

θ θ

θ θ θ

−

−

−

=

= + + +

+ − + + + +

∫

∫

∫



 

  

  

   

 

(3.4) 

The first group of terms on the RHS of equation (3.4) is associated to the rigid body 
motions. The second group of terms is associated to both the rigid body motions and 
the elastic vibrations.  

The first group of terms: 

( ) ( )

( )

2 2 2 2 2 2 22
0 0 0 0 0 0 0

2

2
0 0

2

1 1 1
2 2 2

1 2 0
2

L

L

L

L

m x y x d x M x y J

m xy dx

θ θ

θ

−

−

+ + = + +

=

∫

∫

 

   





 

(3.5) 

The result in the second line in equation (3.5) is zero due to the fact that the 
coordinate system is fixed at the centre of mass. This term relates to the cross 
products of inertia which are zero in a centre of mass body fixed coordinate system.  

The elastic deformations are then described using the method of assumed modes: 

1

1

N

j j
j

N

j j
j

v Y v

v Y v

=

=

=

=

∑

∑ 

 

(3.6) 

Using equation (3.6) in the second group of terms in equation (3.4): 
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( )2 2
0 0 0 0

12 2

2
0 0

1 2

, 0 0
1

1 2
2

L L N

L L j j
j

LN

L j j
j

N

v j j
j

m vx dx m Y v dx x

mY dx v x

m v x

θ θ

θ

θ

− − =

−=

=

 
− = −  

 
 

= −  
 

= −

∑∫ ∫

∑ ∫

∑

 

 









 

(3.7) 

( )2 2 22 2
0 0

1 12 2

2 2 22
0

1 2

2 2
, 0

1

1 1
2 2

1
2

1
2

L L N N

L L j k j k
j k

LN

L j j
j

N

vv j j
j

m v dx m Y Y v v dx

mY dx v

m v

θ θ

θ

θ

− − = =

−=

=

 
=  

 
 

=  
 

=

∑∑∫ ∫

∑∫

∑

 





 

(3.8) 

( )22 2

1 12 2

2 22

1 2

2
,

1

1 1
2 2

1
2

1
2

L L N N

L L j k j k
j k

LN

L j j
j

N

vv j j
j

m v dx m Y Y v v dx

mY dx v

m v

− − = =

−=

=

 
=  

 
 

=  
 

=

∑∑∫ ∫

∑∫

∑

  





 

(3.9) 

( )2 2
0 0

12 2

2
0

1 2

, 0
1

1 2
2

L L N

L L j j
j

LN

L j j
j

N

v j j
j

m vy dx m Y v dx y

mY dx v y

m v y

− − =

−=

=

 
=  
 
 

=  
 

=

∑∫ ∫

∑∫

∑

  

 

 

 

(3.10) 

( )2 2
0 0

12 2

2
0

1 2

, 0
1

1 2
2

L L N

L L j j
j

LN

L j j
j

N

xv j j
j

m xv dx mx Y v dx

mxY dx v

m v

θ θ

θ

θ

− − =

−=

=

 
=  
 
 

=  
 

=

∑∫ ∫

∑∫

∑

 

 









 

(3.11) 

Re-expressing equation (3.4) using equations (3.7) to (3.11): 
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2 2 2
0 0 0 0

2 2 2
, 0 0 , 0 , , 0 , 0

1 1 1 1 1

1 1 1
2 2 2

1 1
2 2

N N N N N

v j j vv j j vv j j v j j xv j j
j j j j j

T Mx My J

m v x m v m v m v y m v

θ

θ θ θ
= = = = =

= + +

− + + + +∑ ∑ ∑ ∑ ∑



 

  

    

 

(3.12) 

Where, 

2
,

2

22
,

2

2
,

2

L

Lv j j

L

Lvv j j

L

Lxv j j

m mY dx

m mY dx

m mxY dx

−

−

−

=

=

=

∫

∫

∫

 

(3.13) 

A quick inspection into the second line of equation (3.12) reveals that the elastic 
kinetic energy is a combination of coupled energy contributions from both rigid body 
motions and elastic deformations. Obviously, this is physically correct.  

This is different from the bond graph model of the force-free beam described in 
section 10.2, Karnopp, Margolis and Rosenberg [29] and Margolis [37] where the 
rigid body motions are completely decoupled from the elastic vibrations. This 
formulation and its disadvantages were discussed in subsection 2.7.1. 

 

Expression for potential energy 

Potential energy of the IC beam: 

( )

22
2

2
2

2

1 12

2 22

1 2

2
,

1

1
2

1
2

1
2

1
2

L

L

L N N

L j k j k
j k

LN

L j j
j

N

v j j
j

vV EI dx
x

EI Y Y v v dx

EI Y dx v

k v

−

− = =

−=

=

 ∂
=  ∂ 

 
′′ ′′=  

 
 

′′=  
 

=

∫

∑∑∫

∑∫

∑

 

(3.14) 

Where, 
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( )2
2

,
2

L

Lv j jk EI Y dx
−

′′= ∫  
(3.15) 

Unlike the elastic kinetic energy, the elastic potential energy depends solely on the 
elastic deformations.  

 

 

3.1.3. Applying the Lagrange equations 

The Lagrange equations in quasi-coordinates as described in Meriovitch [40], [41] 
will be applied for the rigid body motion variables. This is because the IC beam is 
formulated in the body fixed coordinate system. These equations have also been 
applied for the bond graph model for rotor dynamics problems in Pedersen [42]. On 
the other hand, the usual generalized form of Lagrange equations will be applied for 
the elastic deformation variables as they are described in the local body-fixed 
coordinates.  

The Lagrange equations in quasi-coordinates: 

x

c

d T T F
dt x x

d T T Tr F
dt x θ

θ

θ
θ θ

∂ ∂  + × = ∂ ∂ 
 ∂ ∂ ∂

+ × + × =  ∂∂ ∂ 

 



 

 

 





  

  

 

(3.16) 

The usual generalized form of Lagrange equations: 

k
k k

d L L Q
dt q q
 ∂ ∂

− = ∂ ∂   
(3.17) 

Where the Lagrangian is given by: 

L T V= −  (3.18) 
From equation (3.14), as the potential energy V is only a function of the generalized 
displacements related to the elastic deformations of the beam, this means that: 
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0

0

0
k

V
x
V

V
q

θ

∂
=

∂
∂

=
∂
∂

=
∂











 

(3.19) 

Therefore, equations (3.16) and (3.17) can be simplified to: 

x

c

d T T F
dt x x

d T T Tr F
dt x θ

θ

θ
θ θ

∂ ∂  + × = ∂ ∂ 
 ∂ ∂ ∂

+ × + × =  ∂∂ ∂ 

 



 

 

 





  

  

 

(3.20) 

k
k k k

d T T V Q
dt q q q
 ∂ ∂ ∂

− + = ∂ ∂ ∂   
(3.21) 

Furthermore as this is a two-dimensional planar beam with its coordinate system 
fixed to the centre of mass, equations (3.20) and (3.21) can be further simplified to: 

0

0

0
0 0

0
0 0

0

j

x

y

v
j j j

d T T F
dt x y

d T T F
dt y x

d T F
dt

d T T V F
dt v v v

θ

θ

θ

θ

 ∂ ∂
− = ∂ ∂ 

 ∂ ∂
+ = ∂ ∂ 
 ∂

= ∂ 
 ∂ ∂ ∂

− + =  ∂ ∂ ∂ 



 



 





 

(3.22) 

The first three lines in equation (3.22) correspond to the rigid body motions while the 
last line corresponds to the elastic deformation. 

Equation (3.22) is then re-written in the form suitable for the IC-field 
implementation: 
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0 0

0 0

0 0 0

0
0 0

0
0 0

0

j j j

x x x

y y y

q v v
j j j

d T TF F e
dt x y

d T TF F e
dt y x

d T F F e
dt

d T T VF F e
dt v v v

θ θ θ

θ

θ

θ

 ∂ ∂ ′= + = + ∂ ∂ 
 ∂ ∂ ′= − = + ∂ ∂ 
 ∂ ′= = + ∂ 
 ∂ ∂ ∂ ′= + − = +  ∂ ∂ ∂ 



 



 





 

(3.23) 

Where, 

0

0

0

0
0

0
0

0

j

x

y

v
j j

Te
y

Te
x

e

T Ve
v v

θ

θ

θ

∂′ =
∂
∂′ = −
∂

′ =

∂ ∂′ = −
∂ ∂









 

(3.24) 

Recognize that the LHS of equation (3.23) are the time derivatives of the generalized 
momentums, thus the equation can be further simplified to: 

0 0

0 0

0 0 0

j j j

x x x

y y y

v v v

P F e

P F e

P F e

P F e
θ θ θ

′= +

′= +

′= +

′= +









 

(3.25) 

 

 

3.2. Derivation of IC beam Equations using Two Elastic Modes 

The derivation in subsection 3.1 is further developed here using only two elastic 
modes. This is for the ease of presenting and understanding the subsequent 
derivations of the equations. It will be straight forward to extend the derived 
formulations presented here to incorporate any additional number of modes desired.  
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Expressions for the kinetic and potential energies 

2 2 2
0 0 0 0

2 2 2
,1 1 0 0 ,1 1 0 ,1 1 ,1 1 0 ,1 1 0

2 2 2
,2 2 0 0 ,2 2 0 ,2 2 ,2 2 0 ,2 2 0

1 1 1
2 2 2

1 1
2 2
1 1
2 2

v vv vv v xv

v vv vv v xv

T Mx My J

m v x m v m v m v y m v

m v x m v m v m v y m v

θ

θ θ θ

θ θ θ

= + +

− + + + +

− + + + +



 

  

    

  

    

 

(3.26) 

2 2
,1 1 ,2 2

1 1
2 2v vV k v k v= +  

(3.27) 

 

Rigid body terms in equation (3.23) 

0 ,1 1 0 ,2 2 0
0

0 ,1 1 ,2 2
0

2 2
0 0 ,1 1 0 ,1 1 0 ,1 1

0

2 2
,2 2 0 ,2 2 0 ,2 2

v v

v v

v vv xv

v vv xv

T Mx m v m v
x
T My m v m v
y
T J m v x m v m v

m v x m v m v

θ θ

θ θ
θ

θ

∂
= − −

∂
∂

= + +
∂
∂

= − + +
∂

− + +

 





  



 

 





 

 

(3.28) 

 

Elastic deformation terms in equation (3.23) 

, , 0 , 0

2
, 0 0 , 0

,

; 1, 2vv j j v j xv j
j

v j vv j j
j

v j j
j

T m v m y m j
v
T m x m v
v
V k v
v

θ

θ θ

∂
= + + =

∂

∂
= − +

∂

∂
=

∂



 



 

  

(3.29) 

 

Equations for IC-field implementation 

Momentums are related to the kinetic energies by: 

0 0 0 1 2
0 0 0 1 2

T
T

x y v v
T T T T T P P P P P
x y v v θθ

 ∂ ∂ ∂ ∂ ∂  =   ∂ ∂ ∂ ∂ ∂ 

   

 
(3.30) 
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Therefore the momentum of the IC beam can be expressed by the following matrix 
equation: 

( )

( ) ( )

0

0

0

1

2

,1 1 ,2 2 0

,1 ,2 0
2 2

0,1 1 ,2 2 0 ,1 1 ,2 2 ,1 ,2
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0 0 0
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







 

(3.31) 

The velocities can then be calculated by the product of the momentum and the inverse 
of the square matrix. 

Representing this in matrix form, 

( )1q A q P−= ⋅
 

 



 
(3.32) 

The remaining terms necessary to establish the IC-field representations: 
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(3.33) 

Notice that the elastic deformations are nonlinearly coupled to the rigid body motions 
in both equations (3.31) and (3.33). 

From equation (3.25), 

0 0 0

0 0 0

0 0 0

; 1, 2
j j j

x x x

y y y
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P F e

P F e j
θ θ θ
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







 

(3.34) 

This can be re-written in matrix form: 

( ),P F e q q′= +
 

  





 
(3.35) 

At this point, it is mentioned again that the state variables for the IC beam are 
displacements and momentums. Therefore equations (3.32) and (3.35) are the two 
sets of equations required to describe the IC beam. Writing them together here: 
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( )

( )

1

,

q A q P

P F e q q

−= ⋅

′= +

 

 



 

  





 

(3.36) 

Equation (3.36) represents the final complete set of nonlinear coupled equations of 
the IC beam substructure. The elastic deformations terms are nonlinearly coupled to 
the rigid body motion terms, while the elastic deformations within the substructure 
are linear.  

It is interesting to note that the time derivatives of the momentum depend on the 
velocities. This means that the velocities need to be computed first before the time 
derivatives of the momentum can be computed. This requirement will be highlighted 
further in subsection 4.2.2 where the solution process for the rotating beam problem 
is presented.  

The resulting bond graph model representation of the IC beam is illustrated in Figure 
3. 

 

Figure 3: Bond Graph Model of the IC Beam with Two Elastic Modes 
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3.3. Structural Damping 

Structural damping of the IC beam can be included in the form of modal damping. In 
modal damping, the modal damping coefficient is related to the modal damping ratio, 
modal stiffness and modal mass by the following formula: 

, ,2 ; 1, 2j j v j vv jc k m jζ= =  
(3.37) 

The modal damping force for mode j is then given by: 

, ; 1, 2damping j j jF c v j= − =  (3.38) 

The modal damping force is implemented as a modification in the fourth line of 
equation (3.33): 

2
, 0 0 , 0 , ; 1, 2

jv v j vv j j v j j j je m x m v k v c v jθ θ′ = − + − − = 

   
(3.39) 

The effect of modal damping on the solution of the IC beam in the rotating beam 
problem will be investigated and discussed in greater detail in subsection 7.8. 

 

 

3.4. Difficulties in Introducing Conventional Modal Acceleration  

The conventional modal acceleration discussed in subsection 2.6 gives rise to 
numerical difficulties in the equation system even though it can be easily introduced 
in the IC beam formulations. Instead, modal acceleration will be performed by 
decoupling a portion of the highest modes away from the rigid body motions. This 
will be presented in subsection 3.5. In this subsection, the modification to the IC 
beam formulation using conventional modal acceleration will be presented and the 
corresponding numerical difficulties discussed. 

In conventional modal acceleration, the static responses of truncated modes are 
considered in the total response instead of being totally eliminated.  These modes are 
termed here as ‘static correction modes’. In order to add additional static correction 
modes in the IC beam, additional generalized variables need to be defined; one 
additional variable for each additional mode.  

The modification of the IC beam from subsection 3.2 to include one additional static 
correction mode is illustrated here. It is straight forward to further extend this to 
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include more static correction modes. The additional static correction mode, i.e. mode 
3, has no dynamics and thus does not have any kinetic energy and momentum.  

3

3

0

0
v

v

P

P

=

=  
(3.40) 

The first line in equation (3.36) remains unmodified and stays as a 5 by 5 matrix 
system. Therefore the computational effort required to do the matrix inversions stay 
the same. The second line of the equation needs to be modified to incorporate the 
generalized variable for the additional static correction mode. From the expansion of 
the second line in equation (3.36), the corresponding equation for mode 3 would be: 

3 3 3
0v v vP F e′= = +

 (3.41) 

And using the fourth line of equation (3.33) in equation (3.41), 

3

2
,3 0 0 ,3 3 0 ,3 3 0v v vv vF m x m v k vθ θ− + − = 

  (3.42) 

Re-writing equation (3.42), 

3,3 0 0
3 2

,3 0 ,3

v v

vv v

m x F
v

m k
θ
θ

−
=

−





  
(3.43) 

The velocity output will be: 

3,3 0 0
3 2

,3 0 ,3

v v

vv v

m x Fdv
dt m k

θ
θ

 −
=   − 







  
(3.44) 

The resulting bond graph model is presented in Figure 4. 
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Figure 4: Bond Graph Model of IC Beam with Two Elastic Modes and One Static Correction 
Mode 

From equation (3.43), it is observed that the solution of the response for mode 3 is a 
direct algebraic representation of the rigid body velocities and its generalized force. 
Therefore, the response at a time step is calculated based on the velocities and its 
generalized force at the same time step. It might seem that this is extremely simple to 
solve for. However, notice the differential causality assignment (denoted as a red line) 
at the last port corresponding to mode 3 at the IC element in Figure 4. The output of 
this port is the generalized velocity of mode 3 which is calculated by equation (3.44), 
i.e. derivative of some variables. This means that conventional modal acceleration 
introduces differential causality into the system. Differential causalities give rise to 
inefficient numerical systems. This is especially true for nonlinear models such as the 
IC beam. The approach in this thesis is to keep the models in complete integral 
causality for efficient numerical systems. Therefore, the conventional modal 
acceleration method will not be applied in the IC beam formulation.  
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3.5. Modal Acceleration by Decoupling Modes 

As discussed in subsection 3.4, conventional modal acceleration results in numerical 
difficulties. Instead, modal acceleration will be introduced in the IC beam by 
decoupling a portion of the highest modes away from the rigid body motions. The 
assumption is that the highest modes do not transfer significant amounts of energy 
between the rigid body motions. Complete integral causality will still be maintained. 
An example of an IC beam with two fully coupled modes and one decoupled mode 
will be illustrated here. 

Consider the expansion of equation (3.31) for the addition of one decoupled mode: 
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(3.45) 

Observe that the third generalized mode velocity is decoupled from the rigid body 
momentums. Also the size of the square matrix remains the same. Therefore, the 
computational efforts required to perform the matrix inversions stay the same. This is 
the computational savings of the modal acceleration method presented herein.  

The remaining modifications are to equation (3.33) where the contributions from the 
rigid body motions to the third mode’s generalized force are removed: 

( )
( )

0

0

3

0 0 ,1 1 ,2 2 0

2 2 2
0 0 ,1 1 ,2 2 0

2
, 0 0 , 0 ,

,3 3

0

; 1, 2
j

x v v

y v v

v v j vv j j v j j

v v

e My m v m v

e Mx m v m v

e

e m x m v k v j

e k v

θ

θ θ

θ θ

θ θ

′ = + +

′ = − + +

′ =

′ = − + − =

′ = −

 

  

 

  

 



 

(3.46) 

The structure of the bond graph model for the resulting IC beam will remain the same 
as in Figure 3 with the exception of an additional mode, i.e. mode 3.  

This modal acceleration method will be applied and investigated in greater detail for 
the rotating beam problem in subsection 7.9. 
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4. Models for Numerical Tests 

 

 

4.1. Problem Description  

The rotating beam problem as described in Wu and Haug [25] will be used here for 
numerical tests of the IC beam substructure. This is a beam that is fixed onto a rotating 
rigid shaft. This is illustrated in Figure 5. The beam properties are listed in Table 3. 

 

Figure 5: The Rotating Beam Problem  

 

Table 3: Rotating Beam Properties 

Length 8.0 m 
Material density 2766.67 kg/m3 

Material elastic modulus 68.95 MPa 
Width, b 0.03675m 
Height, h 0.001986m 

 

The rigid shaft is given an angular displacement θ about the z-axis which is defined as: 

2
21 2cos 1 ,

2 2

,
2

s s
s

s s

s
s s

T tt t T
T T

Tt t T

ω π
π

θ

ω

     + − <             = 
  − ≥   

 

(4.1) 
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The rotating beam problem is chosen as a basis for numerical tests of the IC beam as the 
ultimate purpose of the IC beam is to model wind turbine rotor blades, which by 
themselves are non-uniform rotating beams.  

 

 

4.2. Bond Graph Models for Numerical Tests 

 

 

4.2.1. Bond Graph Component Models Required 

The schematic of the rotating beam problem as would be solved by a two substructure IC 
beam model is presented in Figure 6. Note that multi substructures IC beam models are 
capable of modeling geometric nonlinearity. On the other hand, single substructure IC 
beam models are inherently geometrically linear models. 

 

Figure 6: Schematic of the Rotating Beam Bond Graph Model 
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Four types of component models, namely, IC beam, coordinate transformation, rotating 
hinge and interconnecting hinge, are required to model the rotating beam problem.  They 
will be presented individually in subsections 4.2.1.1 to 0. These are illustrated in Figure 6 
as boxes with the corresponding component model names. The flow of the power 
variables, i.e. velocities and forces are also presented in the figure. The output paths and 
variables are denoted in blue, while the input paths and variables are denoted in red. 
These paths illustrate the variables flow between the individual component models in the 
solution process. The solution process will be presented in subsection 4.2.2. The state 
variables are denoted in black and written next to the models that possess them, i.e. IC 
beam and hinges.  The input into the system, i.e. the prescribed rotational velocity, is 
directed into the rotating hinge component model.  

 

 

4.2.1.1. IC Beam Model 

The IC beam model was presented in section 3. The bond graph model where two elastic 
modes were considered was presented in Figure 3. It is straight forward to further extend 
this model to include additional elastic modes. One additional mode being considered 
would mean an extra generalized variable in the equation system. The mode shapes used 
for most of the numerical tests performed in this thesis are the fixed-free mode shapes; 
fixed on the left end and free on the right end. It is obvious that fixed-fixed mode shapes 
are the best choice here. Other types of mode shapes, for example the free-free mode 
shapes can be used. However, as will be shown in the static analysis results of the tip load 
on a cantilevered beam presented in subsection 5.1, the free-free mode shapes will lead to 
slow modal convergence.  

Note that the IC beam formulation, given in equation (3.36), accepts forces as inputs and 
provides velocities as outputs. This presents modeling difficulties when using the IC 
beam for the rotating beam problem, for example, the input into the system is prescribed 
rotational velocity of the beam. This difficulty can be overcome by passing the prescribed 
velocity through a rotational damper/spring that in turn provides the necessary force as 
input into the IC beam. This will be further discussed in subsection 4.2.1.3. Note that in 
principle, it is possible to force the IC beam to accept velocities as inputs. However, this 
will lead to differential causalities and results in an inefficient numerical system.  
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4.2.1.2. Coordinate Transformations Models 

There are two types of coordinate transformation models required for the rotating beam 
problem. The first is the transformation from the IC beam origin to the left or right end of 
the beam. The second is the transformation of local coordinates at the left end of the first 
substructure to the global coordinate system.   

 

Transformation from IC Beam Origin to Left or Right End 

The transformations of the IC beam with fixed-free modes will be presented as these are 
the modes mostly applied in this thesis. This means that the transformations to the left 
and right end are different. There are no power connections at the left end to the elastic 
modes as deflections and slopes of the mode shapes at this end is zero.  

The bond graph model of the transformations to the left end and its corresponding 
equations are presented in Figure 7 and equations (4.2) and (4.3) respectively. And, the 
bond graph model and equations of the transformation to the right end are presented in 
Figure 8 and equations (4.4) and (4.5) respectively. For ease of presentation, this bond 
graph model will only use one elastic mode. Once again, it is straight forward to further 
extend the models to add more modes.  

It is to be noted that, the subscripts ‘0’, ‘1’, and ‘2’ denote the IC beam origin, the left 
and right ends respectively. 

 

Figure 7: Bond Graph Model of the Coordinate Transformation from the IC Beam Origin to the Left 
End 
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(4.3) 

 

Figure 8: Bond Graph Model of the Coordinate Transformation from the IC Beam Origin to the 
Right End 
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The total forces to the IC beam will then be the sum of forces at the IC beam origin 
equations transformed from both the left and right ends.  
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(4.6) 

 

Transformation from Local Coordinates of Left End of First Substructure to Global 
Coordinate System 

The rotating hinge model is formulated in the global coordinate system; therefore a 
coordinate transformation from local to global coordinates of the left end of the first 
substructure (where the rotating hinge is located) is required. The bond graph model of 
this transformation is presented in Figure 9. The corresponding equations are presented in 
equation (4.7).  Note that small letters represent local coordinates and large letters 
represent global coordinates. Also, the subscript ‘1’ represents the left end of the 
substructure.  

 

Figure 9: Bond Graph Model of the Coordinate Transformation of Left End of First Substructure to 
Global Coordinate System  
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(4.7) 

 

 

4.2.1.3. Rotating Hinge Model 

The bond graph model and its corresponding equations of the rotating hinge are presented 
in Figure 10 and equation (4.8) respectively. This model is formulated in the global 
coordinate system.  

It was mentioned in subsection 4.2.1.1 that the IC beam model accepts forces as inputs 
and provides velocities as outputs. However, the input to the rotating beam problem is 
prescribed rotational velocity. Therefore, a resistor element (damper) is placed together 
with the flow source (prescribed rotational velocity) at a zero junction. This resistor 
accepts the difference between the actual and prescribed rotational velocity at the rotating 
hinge as input and provides a torque as output. This output torque is then used as input 
for the IC beam. The resistance of the resistor must be large to minimize the energy flow 
into it. An alternative way to argue is that the resistance value must be large to ensure a 
small difference between the actual and prescribed rotational velocity. This introduces a 
very small error as energy flowing into the resistor will be dissipated.  

Direct connection of the left end of the beam to the ground will introduce differential 
causalities into the system. Therefore, springs are used for this connection. This is also 
known as the Karnopp-Margolis method [1]. These springs accept velocities as inputs 
and provide forces as outputs. These outputs are the inputs to the IC beam. Introducing 
springs will add additional state variables which are the displacements of the springs. The 
stiffness of these springs must be large to ensure negligible relative motions between the 
left end of the beam and the ground.  
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Figure 10: Bond Graph Model of the Rotating Hinge 

The equations for the forces calculated by the rotating hinge model are: 
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
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(4.8) 

 

 

4.2.1.4. Interconnecting Hinge Model 

The bond graph model and its corresponding equations of the interconnecting hinge are 
presented in Figure 11 and equations (4.9) and (4.10) respectively. This model is 
formulated in the local IC beam coordinate system.   

To ensure complete integral causality, springs are used to interconnect the IC beam 
substructures, i.e. the Karnopp-Margolis method [1]. The interconnecting hinge model 
accepts velocities as inputs and provides forces as outputs. The relative displacements 
between the two interconnected IC beam substructures are the state variables. Once 
again, the stiffness values must be large to ensure negligible relative displacements 
between the two interconnected IC beam substructures. Note that subscripts ‘1’ and ‘2’ 
denote the velocities at the left and right sides of the hinge respectively. The left side of 
the hinge is connected to the right end of the previous IC beam substructure and the right 
side of the hinge is connected to the left end of the next adjacent IC beam substructure.  
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Figure 11: Bond Graph Model of Interconnecting Hinge 
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4.2.2. Solution Process 

The equation system, equation (4.11), consists of three sets of first order nonlinear 
ordinary differential equations that must be solved together.  
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(4.11) 

The first line in equation (4.11) is the equation for the velocities of all IC beams. The 
second line is the equation for the velocities at all hinges. It is the various coordinate 
transformations presented in subsection 4.2.1.2. Also, it requires the velocities calculated 
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from the first line as inputs. The third line is the equation for the time derivatives of 
momentum of all IC beams. It requires velocities calculated from both the first and 
second lines as inputs. Note that the first and the third lines were also presented in 
subsection 3.2.  

The process of calculating the time derivatives is: 

i. Calculate the velocities at the IC beams using the first line. 

ii. Transform velocities at IC beams to the corresponding velocities at the hinges 
using the second line. 

iii. Calculate forces at the hinges. 
iv. Transform the forces at the hinges to the corresponding forces at the IC beams. 
v. Calculate the time derivatives of the momentum at the IC beams using the third 

line.  

Equation (4.11) is programmed into Matlab and solved using the ODE15s function. This 
is an implicit variable order solver based on the numerical differential formulas (NDFs) 
[43], [44]. The reason for choosing an integration method based on NDFs is that the 
numerical system is stiff and thus difficult to integrate using explicit integrators such as 
the Runga-Kutta methods. The experience using explicit methods on the IC beam model 
has revealed that the numerical system will break down unless extremely small step sizes 
in the order of 1e-8 were specified.  
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5. Static Deflection of Cantilevered Beam 

In this section, static analysis of the rotating beam described in subsection 4.1 will be 
performed. The beam will be cantilevered at one end. The modal parameters used in this 
section are calculated from an eigenvalue analysis of a finite element model of the IC 
beam substructure using 20 planar two-node linear beam elements. There is one lateral 
and one rotational degree of freedom at each node. This means that there is a total of 40 
eigenmodes calculated.  

 

 

5.1. Linear Case – Small Deflection by a Tip Load 

The cantilevered beam will be subjected to a 1 N tip load. This is a small load that results 
in a small displacement. A single IC beam substructure will be used to construct the beam 
model, i.e. the resulting beam model is geometrically linear. The analytical solution is: 

3

3tip
PLv
EI

=  
(5.1) 

Two different sets of mode shapes will be used: free-free and fixed-free. Obviously, since 
the beam is cantilevered, the optimum mode shapes will be the fixed-free ones. The 
purpose is to illustrate the importance of selecting the optimum mode shapes. The modal 
convergence of the tip deflection and slope are plotted in Figure 12 and Figure 13 
respectively.  
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Figure 12: Modal Convergence, Free-Free Mode Shapes, Cantilevered Beam, 1 N Tip Load, Linear 
Analysis 

 

Figure 13: Modal Convergence, Fixed-Free Mode Shapes, Cantilevered Beam, 1 N Tip Load, Linear 
Analysis 

The modal convergence of the free-free modes is significantly slower than the fixed-free 
modes. It is observed that just a couple of fixed-free modes will be sufficient to achieve 
errors below 5% while as many as 20 to 25 free-free modes are required to achieve 
similar accuracy. This highlights the importance of selecting the optimum mode shapes. 
Similarly, the bond graph model of the force-free beam described in section 10.2, 
Karnopp, Margolis and Rosenberg [29] and Margolis [37] will lead to slow modal 
convergence if one end of the beam is fixed.  
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It is also observed that the modal convergence of the tip slope for the fixed-free modes is 
slower than the modal convergence for the tip deflection. Accurate rotational 
displacement is important when multi substructures are used. This is because the tip slope 
of one substructure will affect the global tip deflection of the adjacent substructure that it 
connects to.  

 

 

5.2. Nonlinear Cases 

In this subsection, the multi IC beam substructures will be used for some nonlinear test 
cases. The purpose is to investigate the performance of the IC beam in solving geometric 
nonlinear problems.  

 

 

5.2.1. Models Used 

Five different models constructed using 2, 4, 8, 16 and 32 IC beam substructures 
respectively are used in this study. In addition, the number of modes was varied 
individually for each of these five models. The purpose is to observe the number of 
substructures and modes required to describe the various nonlinear problems. Fixed-free 
mode shapes are employed.  

 

 

5.2.2. Nonlinear Case – Large Deflection by a Tip Moment 

In this subsection, the beam is subjected to a tip moment of 100 Nm, large enough to 
result in a large deflection. 

The analytical solution of the tip deflection of a linear cantilevered beam is given by: 

2

2tip
MLv

EI
=  

(5.2) 
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The exact nonlinear solution is calculated via a nonlinear finite beam element model 
consisting of 20 linear beam elements in ABAQUS. The exact solutions of the tip 
deflection and slope of both the linear and nonlinear analysis are presented in Table 4.  

Table 4: Exact Solutions of Cantilevered Beam Subjected to a Tip Moment of 100 Nm 

 Linear Nonlinear 
Tip deflection (m) 5.650 4.772 

Tip slope (rad) 1.412 1.412 
 

Observe in Table 4 that the tip deflection calculated from linear analysis is significantly 
larger (about 18.4%) than the tip deflection calculated from nonlinear analysis. However, 
the calculated tip slopes are the same for both analyses.  This is because the tip slope is a 
linear function of the concentrated tip moment. Figure 14 and Figure 15 plots the modal 
convergence of the tip deflection and slope respectively.  

 

Figure 14: Modal Convergence of Tip Deflection, Nonlinear Analysis, Bending of Cantilevered Beam 
by a 100 Nm Tip Moment 
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Figure 15: Modal Convergence of Tip Slope, Nonlinear Analysis, Bending of Cantilevered Beam by a 
100 Nm Tip Moment 

Prescribing too few substructures will result in the wrong converged solution. For 
example, in the two substructure case, the tip deflection converges to a value about 6-7% 
higher than the exact solution. Prescribing at least four substructures is sufficient to 
achieve less than 5% error. It is also observed that the modal convergence of the tip slope 
is not affected by the number of substructures prescribed. This is because the tip slope is 
a linear function of the concentrated tip moment.  

It is important to prescribe a sufficient number of modes. Prescribing at least 5 modes 
achieves less than 5% and 10% errors for the tip deflection and slope respectively for all 
models with at least four substructures. Prescribing at least 10 modes achieves less than 
5% errors for both tip deflection and slope for all models. Similar to subsection 5.1, the 
modal convergence of the tip slope is slower than the tip deflection.  

Figure 16 and Figure 17 illustrate the deflection shapes of some of the models used. 

The following notations are used:  

• s – no. of substructures 
• m – no. of modes 
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Figure 16: Bending of Cantilevered Beam by a 100 Nm Tip Moment, 32 Substructures with Different 
Number of Mode Shapes Used 

 

Figure 17: Bending of Cantilevered Beam by a 100 Nm Tip Moment, 40 Mode Shapes with Different 
Number of Substructures Used 
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5.3. Extremely Nonlinear Case – Bending of Cantilevered Beam into Complete 
Circle by a Tip Moment 

In this subsection, the ability of the IC beam substructure to handle extreme geometric 
nonlinearity is investigated. The classical test case of bending the beam into a complete 
circle by a concentrated tip moment is used for this investigation.  

 

The analytical solution  

For a cantilevered beam with a uniform cross-section, flexural rigidity EI and length L 
subjected to a tip moment M, the Euler-Bernoulli beam theory [45] states that: 

1 M
R EI
=  

(5.3) 

Where R is the radius of the resulting circle due to the tip moment.  

For bending into a complete circle, the radius R must be: 

2
LR
π

=  
(5.4) 

 Therefore, the tip moment required to bend the beam into a complete circle is: 

2 EIM
L
π

=  
(5.5) 

For the rotating beam described in subsection 4.1, this will correspond to a concentrated 
tip moment of 444.83 Nm.  

Figure 18 to Figure 23 plot the deflection shapes of the various different models. The 
circular points represent the left end of each individual substructure. Figure 24 plots the 
modal convergences of the circular radius at the deflected state of the various models 
presented. 
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Figure 18: Bending of Cantilevered Beam into Complete Circle by a Tip Moment, 2 Substructures 
with Different Number of Mode Shapes Used 

 

Figure 19: Bending of Cantilevered Beam into Complete Circle by a Tip Moment, 4 Substructures 
with Different Number of Mode Shapes Used 



Chapter 5: Static Deflection of Cantilevered Beam 

47 
 

 

Figure 20: Bending of Cantilevered Beam into Complete Circle by a Tip Moment, 8 Substructures 
with Different Number of Mode Shapes Used 

 

Figure 21: Bending of Cantilevered Beam into Complete Circle by a Tip Moment, 16 Substructures 
with Different Number of Mode Shapes Used 
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Figure 22: Bending of Cantilevered Beam into Complete Circle by a Tip Moment, 32 Substructures 
with Different Number of Mode Shapes Used 

 

Figure 23: Bending of Cantilevered Beam into Complete Circle by a Tip Moment, 40 Mode Shapes 
with Different Number of Substructures Used 
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Figure 24: Modal Convergence of Circular Radius, Nonlinear Analysis, Bending of Cantilevered 
Beam into Complete Circle by Tip Moment 

At least 8 substructures are needed to describe a circular deflected shape. Prescribing too 
little number of substructures will result in a noncircular deflected shape. This was 
observed for the models with 2 and 4 substructures (Figure 18, Figure 19 and Figure 23). 
It is further observed that in the modal convergence plot of the circular radius (Figure 24) 
that the results of 2 and 4 substructures will not converge even if all the modes i.e. all 40 
modes were used.  

The deflections also depend significantly on the number of modes used. Prescribing too 
little modes will result in a severe underestimation of the deflections. It is interesting to 
note that prescribing all the 40 modes will result in the tip of the beam returning to the 
origin, no matter how many substructures are used. The tip returning to the origin is the 
exact solution for this nonlinear bending problem. Prescribing lesser number of modes 
results in the tip going further away from the origin. When a sufficient number of 
substructures are already employed, insufficient number of modes will result in a larger 
circular radius. Also, the number of modes used does not significantly affect the deflected 
shape, i.e. prescribing insufficient number of modes will not cause the circle to be out of 
shape. 

It is observed that prescribing at least 16 substructures with at least 5 modes will be 
sufficient to achieve less than 10% error in the circular radius. Increasing the number of 
modes to 10 further reduces the error to less than 5%. 
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6. Dynamic Analysis – Time Varying Point Excitation of Cantilevered Beam 

In this section, the rigid body-elastic modes coupling feature of the IC beam will 
highlighted. This is illustrated using a cantilevered beam subjected to a unit time varying 
sinusoidal point excitation at its fixed end; refer to Figure 25.  

 

Figure 25: Cantilevered Beam Subjected to a Unit Time Varying Sinusoidal Point Excitation at Fixed 
End 

A single IC beam substructure with two modes will be employed. This is simple enough 
to highlight the essential elastic mode couplings but not refined enough to calculate an 
accurate result. The construction of the model is similar to the rotating beam model 
presented in subsection 4.2. The exception is that the rotating hinge component model is 
replaced by a model that provides the point excitation at the fixed end of the beam. This 
replacement model is illustrated in Figure 26. 

 

Figure 26: Bond Graph Model of Point Excitation at Fixed End of Beam 

The corresponding equations are: 
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(6.1) 

The beam is excited at a frequency of 10 rad/s. This frequency falls in between the first 
and second natural frequencies of the beam which is 4.6 rad/s and 25 rad/s respectively. 
The modal damping ratio is 0.01. The simulation run time is 50 s with zero initial 
conditions. The solution will contain both transient and steady state responses. Other 
important model parameters are hinge stiffness value of 10e10, relative tolerance of 1e-3 
and absolute tolerance of 5e-5. The frequency spectrums of the elastic modes responses, 
i.e. v1 & v2 are plotted in Figure 27.  

 

Figure 27: Frequency Spectrums of v1 & v2 

The frequency spectrums of both the elastic modes peak at three distinct frequencies, 
namely the excitation frequency and the first two eigenfrequencies. The fact that the 
second mode’s frequency spectrum peaks at the first mode’s eigenfrequency means that 
there is energy transfer from the first mode to the second mode and vice versa. This 
highlights the elastic mode couplings in the IC beam. In a fully decoupled model such as 
the force-free beam bond graph model discussed in section 10.2, Karnopp, Margolis and 
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Rosenberg [29] and Margolis [37], the frequency spectrum for elastic mode response will 
only peak at two distinct frequencies, namely the excitation frequency and its own 
eigenfrequency. It is impossible for energy transfer between the modes to occur.  
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7. Dynamic Analysis – Spin-up Maneuver of Rotating Beam 

In this section, the dynamics analysis of the spin-up maneuver is performed. The problem 
description was presented in subsection 4.1. Similar to section 5, the modal parameters in 
this section are also calculated from an eigenvalue analysis of a finite element model of 
the IC beam substructure using 20 planar two-node linear beam elements. The axial 
shortening, tip deflection and tip slope are used as basis for comparison throughout this 
section. 

First, in subsection 7.1, the IC beam will be verified against the numerical results 
presented in Wu, et.al. [25]. 

Second, from subsections 7.2 to 7.7, detailed convergence studies are performed. The 
following important model parameters were studied: 

• Resistance value of resistor at rotating hinge, R_rot 
• Stiffness value of all hinges, k_hinge 
• Absolute error tolerance, AbsTol 
• Relative error tolerance, RelTol 
• Number of substructures 
• Number of modes 

Third, in subsection 7.8, the effect of structural damping on the solutions is investigated.  

Fourth, in subsection 7.9, the modal acceleration method proposed in subsection 3.5 will 
be applied and its benefits evaluated.  

Otherwise specified, the following default model parameters will be used: k_hinge = 
1e10, R_rot = 1e3, RelTol = 1e3, AbsTol = 5e5. The simulations were performed in 
Matlab 7.8.0.347, 64 bit version on an Intel Core 2 Duo T9400 2.53 GHz machine with 8 
GB of memory.  

 

 

7.1. Results Verification 

The IC beam is verified against the results presented in table 1 in Wu, et.al. [25]. The 
results comparisons are presented in Table 5. The time histories of the tip deflection are 
plotted in Figure 28 and Figure 29. 10 modes are employed. 
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The following notations are used: 

• Wu – results from Wu, et.al. [25] 
• IC – results from IC beam 
• 1S, 4S, 6S – 2, 4, 6 substructures respectively 

The results from IC beam generally agree very well with the results presented in Wu, 
et.al. [25]. However, notice the small discrepancies in the results of the ωs = 4 rad/s case. 
This is a more nonlinear load case. Therefore, the results are more sensitive to the 
differences in modeling techniques and model parameters. It is accepted that the below 
3% maximum difference in the ωs = 4 rad/s and 6 substructure case is sufficient for 
verification. These slight differences in results will not be further investigated. 

Table 5: Verification of IC Beam against Results from Table 1 in Wu, et.al. [25] 

ωs = 1 rad/s 
No. Substructures Wu, et.al. (28) {a} IC beam {b} ({b} – {a}) / {a} x 100% 

1 -0.148 -0.148 0.0000 
4 -0.143 -0.1424 -0.4196 
6 -0.1425 -0.1422 -0.2105 

ωs = 2 rad/s       
No. Substructures Wu, et.al. (28) {a} IC beam {b} ({b} – {a}) / {a} x 100% 

1 -0.345 -0.3423 -0.7826 
4 -0.284 -0.2817 -0.8099 
6 -0.282 -0.2818 -0.0709 

ωs = 4 rad/s       
No. Substructures Wu, et.al. (28) {a} IC beam {b} ({b} – {a}) / {a} x 100% 

1 ∞ ∞ - 
4 -0.556 -0.5632 1.2950 
6 -0.543 -0.5586 2.8729 
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Figure 28: Time History of Tip Deflection: Verification at ωs = 2 rad/s 

 

Figure 29: Time History of Tip Deflection: Verification at ωs = 4 rad/s 
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7.2. Resistance Value of Resistor at the Rotating Hinge 

In this subsection, a convergence study of the resistance value of the resistor at the 
rotating hinge (denoted ‘R_rot’) is performed. Refer to subsection 4.2.1.3 for the 
definition of this resistor. As previously mentioned, the purpose of this resistor is to 
ensure that the model remains in complete integral causality. A large R_rot value is 
preferred to ensure a small difference in the actual and prescribed rotational velocities 
(third line of equation (4.8)). This minimizes error in the solution.  

The six substructure, 10 modes, ωs = 4 rad/s case will be discussed. The time histories of 
the axial shortening, tip deflection and tip slope are plotted in Figure 30, Figure 31 and 
Figure 32 respectively.  The percentage errors of the minimum tip displacements for the 
different R_rot values used are plotted in Figure 33. Figure 34 plots the computation 
times required for the different R_rot values used.  

 

Figure 30: Time History of Axial Shortening, R_rot Convergence, 6 Substructures, 10 Modes, ωs = 4 
rad/s 
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Figure 31: Time History of Tip Deflection, R_rot Convergence, 6 Substructures, 10 Modes, ωs = 4 
rad/s 

 

Figure 32: Time History of Tip Slope, R_rot Convergence, 6 Substructures, 10 Modes, ωs = 4 rad/s 
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Figure 33: R_rot Convergence, 6 Substructures, 10 Modes ωs = 4 rad/s 

 

Figure 34: Computational Time, R_rot Convergence, 6 Substructures, 10 Modes, ωs = 4 rad/s 

Using R_rot = 1e1 results in erroneous solutions. There will be errors of approximately -
42% for the minimum axial shortening and approximately -24% for the minimum tip 
deflection and slope. Using R_rot >= 1e2 is sufficient to achieve errors below 5% for all 
minimum tip displacements. However, using R_rot = 1e-2 would still result in a small 
error in the form of a leading phase difference (Figure 30, Figure 31 and Figure 32). On 
the other hand, using R_rot = 1e-3 will yield solutions of virtually no errors. In general, 
using different R_rot values do not significantly affect the computational times required.  
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7.3. Stiffness Value of Springs at All Hinges 

In this subsection, a convergence study of the stiffness value of the springs at all hinges 
(denoted ‘k_hinge’) is performed. Refer to subsections 4.2.1.3 and 0 for the definition of 
this spring. As previously mentioned, the purpose of this spring is to ensure that the 
model remains in complete integral causality. A large k_hinge value is preferred to ensure 
small relative displacements between two interconnecting IC beams substructures and 
small translational displacements at the rotating hinge. This minimizes error in the 
solution.  

The six substructure, 10 modes, ωs = 4 rad/s case is discussed. The errors are measured 
as the percentage difference between the solutions at the current k_hinge value and 
k_hinge = 1e15. The percentage errors of the minimum tip displacements for the different 
k_hinge values used are plotted in Figure 35. Figure 36 plots the computation times 
required for the different k_hinge values used.  

 

Figure 35: k_hinge Convergence, 6 Substructures, ωs = 4 rad/s 
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Figure 36: Computational Time, k_hinge Convergence, 6 Substructures, ωs = 4 rad/s 

The solutions take too long to converge for k_hinge < 1e9 and thus discarded here. The 
reason might be that insufficiently large k_hinge values result in large relative motions 
between the interconnected substructures and require extremely small times steps to solve 
for. There are virtually no differences in the solutions for the rest of the k_hinge values. 
This is because these k_hinge values are large enough to ensure accurate solutions. In 
general, increasing k_hinge increases the computational time required. However, this 
increase is not significant.  

 

 

7.4. Absolute Error Tolerance  

In this subsection, a convergence study of the absolute error tolerance value (denoted 
‘AbsTol’) is performed. AbsTol is a threshold below which the i-th solution component is 
unimportant. For more details, refer to help on ‘odeset’ in Matlab. A small AbsTol value 
results in higher accuracy.   

The six substructures, 10 modes, ωs = 4 rad/s case is discussed. The errors are measured 
as the percentage difference between the solutions at the current AbsTol value and AbsTol 
= 1e-6. Note that the solutions are in the order of 0.1 m. The time histories of the axial 
shortening, tip deflection and tip slope are plotted in Figure 37, Figure 38 and Figure 39 
respectively.  The percentage errors of the minimum tip displacements for the different 
AbsTol values used are plotted in Figure 40. Figure 41 plots the computation times 
required for the different AbsTol values used.  
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Figure 37: Time History of Axial Shortening, AbsTol Convergence, 6 Substructures, 10 Modes, ωs = 4 
rad/s 

 

 

Figure 38: Time History of Tip Deflection, AbsTol Convergence, 6 Substructures, 10 Modes, ωs = 4 
rad/s 
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Figure 39: Time History of Tip Slope, AbsTol Convergence, 6 Substructures, 10 Modes, ωs = 4 rad/s 

 

Figure 40: AbsTol Convergence, 6 Substructures, 10 Modes, ωs = 4 rad/s 
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Figure 41: Computational Time, AbsTol Convergence, 6 Substructures, 10 Modes, ωs = 4 rad/s 

Using AbsTol <= 1e-2 result in erroneous solutions. Incorrect high frequency oscillations 
will appear in the tip displacement time histories. The errors for the minimum axial 
shortening will be more than 15% and the errors for the minimum tip deflection and slope 
will be more than 5%. Using AbsTol = 1e-3 achieves less than 3% errors for all minimum 
tip displacements. Using AbsTol >= 1e4 will virtually eliminate all errors. It is also 
observed that the convergence rate for minimum axial shortening is slower than the 
minimum tip deflection and slope. In general, there are no significant differences in the 
computational times required when different AbsTol values are used. This means that 
specifying smaller AbsTol values will not increase the computational times required. This 
indifference in computational times is also mentioned in the ‘odeset’ help documentation 
in Matlab.  

 

 

7.5. Relative Error Tolerance  

In this subsection, a convergence study of the relative error tolerance value (denoted 
‘RelTol’) is performed. This is a measure of the error relative to the size of each solution 
component. It controls the number of correct digits in all solution components, except 
those which are smaller than the thresholds AbsTol. RelTol = 1e-3 means 0.01% 
accuracy. For more details, refer to help on ‘odeset’ in Matlab. A smaller RelTol value 
results in higher accuracy.   
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The six substructures, 10 modes case, ωs = 4 rad/s case is discussed. Also, AbsTol = 1e3 
is chosen as it is small enough to ensure a sufficiently accurate solution (refer to 
subsection 7.4) and yet not too small to result in too many of the solution components not 
being controlled by RelTol. This is to better observe the effect of the RelTol value. The 
errors are measured as the percentage difference between the solutions at the current 
RelTol value and RelTol = 1e-6. Once again, note that the solutions are in the order of 0.1 
m. The time histories of the axial shortening, tip deflection and tip slope are plotted in 
Figure 42, Figure 43 and Figure 44 respectively. The percentage errors of the minimum 
tip displacements for the different RelTol values used are plotted in Figure 45. Figure 46 
plots the computation times required for the different RelTol values used.  

 

Figure 42: Time History of Axial Shortening, RelTol Convergence, 6 Substructures, 10 Modes, ωs = 4 
rad/s 
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Figure 43: Time History of Tip Deflection, RelTol Convergence, 6 Substructures, 10 Modes, ωs = 4 
rad/s 

 

Figure 44: Time History of Tip Slope, RelTol Convergence, 6 Substructures, 10 Modes, ωs = 4 rad/s 
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Figure 45: RelTol Convergence, 6 Substructures, 10 Modes, ωs = 4 rad/s 

 

Figure 46: Computational Time, RelTol Convergence, 6 Substructures, 10 Modes, ωs = 4 rad/s 

The RelTol value does not significantly affect the solution. This suggests that the AbsTol 
control dominates the accuracy control of the solution. It is also observed that specifying 
a smaller value of RelTol increases the computational time required. This is in contrast to 
AbsTol where using different AbsTol values do not affect the computational time 
required. 
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7.6. Number of Substructures 

In this subsection, a convergence study of the number of substructures is performed.  10 
modes are employed. The errors are measured as the percentage difference between the 
solutions at the current number of substructures used and eight substructures. Figure 47 
plots the substructure convergence for the various ωs cases and Figure 48 plots the 
computational times required. Only the time history plots for the ωs = 8 rad/s case will be 
presented.  

The following notations are used: 

• min. AS – minimum axial shortening 
• min. TD – minimum tip deflection 
• min. TS – minimum tip slope 
• The rotational velocity after AD, TD or TS specifies the ωs used.  
• 1S, 2S, 4S, 8S – 1, 2, 4 and 8 substructures respectively. 

 

Figure 47: Substructure Convergence, Nonlinear Rotating Beam 
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Figure 48: Computational Time, Nonlinear Rotating Beam 

 

Figure 49: Time History of Axial Shortening, Substructure Convergence, 10 Modes, ωs = 8 rad/s 
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Figure 50: Time History of Tip Deflection, Substructure Convergence, 10 Modes, ωs = 8 rad/s 

 

 Figure 51: Time History of Tip Slope, Substructure Convergence, 10 Modes, ωs = 8 rad/s 

The ωs = 1 rad/s is a relatively linear case. Using just one substructure, i.e. linear beam is 
sufficient to achieve accurate results with less than 5% errors for minimum tip deflection 
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and slope. However, there is no axial shortening when one substructure is used. This 
explains the asymptotic behavior of the axial shortening convergence curves. Multi 
substructure models must be used to account for axial shortening. For the slightly 
nonlinear case of ωs = 2 rad/s, the linear model will give rise to errors of about 22% in 
the minimum tip deflection and slope. The tip displacements will be unbounded if just 
one substructure is employed for the high nonlinearity cases, i.e. ωs = 4 & 8 rad/s. This 
explains the asymptotic behavior of the minimum tip deflection and slope convergence 
curves. In general, with the exception of the ωs = 8 rad/s case, specifying at least two 
substructures is sufficient achieve below 5% errors for the minimum tip deflection and 
slope.  

The convergence rate for the minimum axial shortening is significantly slower than the 
minimum tip deflection and slope. In general, with the exception of the ωs = 8 rad/s case, 
at least 5 substructures are required to achieve below 5% error for the minimum axial 
shortening for all ωs. The convergence rates for all deflections are not adversely affected 
when different ωs values are specified. 

The convergence rates for the ωs = 8 rad/s case are significantly different from the rest of 
the ωs cases. For the minimum tip deflection and slope, the convergence is significant 
slower than the ωs = 1, 2 & 4 rad/s cases, requiring at least four substructures to achieve 
below 5% errors. For the minimum axial shortening, the trend of the convergence curve 
is significantly different. The value of the minimum axial shortening computed is larger 
than the converged value when insufficient numbers of substructures are used. This is 
opposite to the trends observed for the ωs = 1, 2 & 4 rad/s cases. It will be interesting to 
investigate the trend for even higher rotational speeds. However, this will not be 
performed as the IC beam is targeted specifically at wind turbine rotor blades. Wind 
turbine rotors do not spin at extremely high rotational speeds. Therefore, the behavior of 
the IC beam at extremely high rotational speeds is out of the scope of this thesis.  

The computational time required increases with the number of substructures specified. 
This increase is more pronounced at higher values of ωs and larger numbers of 
substructures. Also, notice that more computational time is required for a one 
substructure model as compared to a two substructure model for the ωs = 4 rad/s case. 
This might be due to that the solution of this case is unbounded for the one substructure 
model and thus require more efforts to solve for.  
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7.7. Modal Convergence 

In this subsection, a convergence study of the number of modes is performed. The errors 
are measured as the percentage difference between the solutions at the current number of 
modes used and the maximum number of modes, i.e. 40 modes. The notations used in 
this subsection follow from subsection 7.6. 

 

Modal Convergence of Linear Model 

The linear cases are dominated by the first mode. There are virtually no improvements in 
the solution when more modes are used. This has also been observed in Wu, et.al. [25]. 
The ωs = 2 rad/s case requires more computational efforts. Employing more modes will 
also increase the computational times required. This increase is more pronounced for the 
ωs = 2 rad/s case. However, these are very little amounts of computational times as 
compared to the nonlinear cases (presented later). The solution for the ωs = 4 rad/s case 
is unbounded and this discarded here. Once again, note that there is no axial shortening 
for the linear model.  

 

Figure 52: Modal Convergence, Linear Rotating Beam, 1 Substructure 
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Figure 53: Computational Time, Linear Rotating Beam, 1 Substructure 
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Modal Convergence of Nonlinear Models at Different Number of Substructures 

Modal convergence is slower when more substructures are employed. More modes are 
required to attain the same accuracy when more substructures are employed. Using too 
little modes in the multi substructure cases lead to erroneous solutions. The deflections 
will be significantly smaller than the converged solution. Modal convergence is slower 
for the minimum axial shortening as compared to the minimum tip deflection and slope.  
In general, using 10 modes will be sufficient to achieve below 5% errors for the 
minimum tip deflection and slope. For the minimum axial shortening, 15 modes are 
required for 5% accuracy.   

 

Figure 54: Modal Convergence, Nonlinear Rotating Beam, ωs = 1 rad/s 
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Figure 55: Modal Convergence, Nonlinear Rotating Beam, ωs = 2 rad/s 

 

Figure 56: Modal Convergence, Nonlinear Rotating Beam, ωs = 4 rad/s 
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Figure 57, Figure 58 and Figure 59 present the time history plots of the axial shortening, 
tip deflection and tip slope of the 6 substructure, ωs = 4 rad/s case for different number 
of modes employed.  

 

Figure 57: Time History of Axial Shortening, Modal Convergence, 6 Substructures, ωs = 4 rad/s 
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Figure 58: Time History of Tip Deflection, Modal Convergence, 6 Substructures, ωs = 4 rad/s 

 

Figure 59: Time History of Tip Slope, Modal Convergence, 6 Substructures, ωs = 4 rad/s 
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Modal Convergence of Nonlinear Models at Different ωs 

Different values of ωs do not significantly affect the rate of modal convergence.  

 

Figure 60: Modal Convergence, Nonlinear Rotating Beam, 2 Substructures 
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Figure 61: Modal Convergence, Nonlinear Rotating Beam, 4 Substructures 

 

Figure 62: Modal Convergence, Nonlinear Rotating Beam, 6 Substructures 
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Computational Time of Nonlinear Models at Different Number of Substructures 

Increasing the number of modes and/or substructures will lead to an increase in the 
computational time. This increase becomes more pronounced at larger number of modes 
and at larger number of substructures. 

 

Figure 63: Computational Time, Nonlinear Rotating Beam, ωs = 1 rad/s 

 

Figure 64: Computational Time, Nonlinear Rotating Beam, ωs = 2 rad/s 
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Figure 65: Computational Time, Nonlinear Rotating Beam, ωs = 4 rad/s 

 

Computational Time of Nonlinear Models at Different ωs 

A higher ωs will lead to an increase in the computational time. This increase becomes 
more pronounced at higher ωs and larger number of modes. 

 

Figure 66: Computational Time, Nonlinear Rotating Beam, 2 Substructures 
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Figure 67: Computational Time, Nonlinear Rotating Beam, 4 Substructures 

 

Figure 68: Computational Time, Nonlinear Rotating Beam, 6 Substructures 

 

 

7.8. Structural Damping 

In this subsection, the effect of the value of structural damping in the form of modal 
damping on the solution of the rotating beam will be investigated.  

The six substructures, 10 modes, ωs = 4 rad/s case is discussed. Comparisons are made 
based on the percentage difference between the solutions at the current modal damping 
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ratio and no damping. The time histories of the axial shortening, tip deflection and tip 
slope are plotted in Figure 69, Figure 70 and Figure 71 respectively.  The percentage 
differences of the minimum tip displacements for the different modal damping values 
used are plotted in Figure 72. Figure 73 plots the computation times required for the 
different modal damping values used.  

 

Figure 69: Time History of Axial Shortening, Modal Damping Ratios, 6 Substructures, 10 Modes, ωs 
= 4 rad/s 
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Figure 70: Time History of Tip Deflection, Modal Damping Ratios, 6 Substructures, 10 Modes, ωs = 4 
rad/s 

 

Figure 71: Time History of Tip Slope, Modal Damping Ratios, 6 Substructures, 10 Modes, ωs = 4 
rad/s 
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Figure 72: Modal Damping Ratios, 6 Substructures, 10 Modes, ωs = 4 rad/s 

 

Figure 73: Computational Time, Damping Ratios, 6 Substructures, 10 Modes, ωs = 4 rad/s 

There are virtually no differences in the solutions when different modal damping ratios 
are applied. This is also the observation made for the computational times required.   

Modal damping can be applied to ensure success in solving the numerical solutions when 
there are evidently high frequency vibrations as the beam returns to its mean position 
after passing the minimum deflection point. This occurs approximately at the 12 to 20 
seconds portion of the simulation run. An example is the 6 substructures, 10 modes, ωs = 
8 rad/s case. The time increment at the 13.71651 seconds mark becomes excessively 
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small and the solution is not able to proceed when zero modal damping is prescribed. A 
successful solution is achieved when a modal damping ratio of 0.01 is applied. There are 
also other similar instances but will not be presented here. Also, no further investigation 
will be carried out. This is because the specification of modal damping for this purpose is 
rather a trial and error type of problem.  

 

 

7.9. Modal Acceleration 

In this subsection, the modal acceleration technique discussed in subsection 3.5 will be 
applied. The six substructures, 10 modes and 40 modes, ωs = 4 rad/s cases are discussed. 
Only the proportion of fully coupled and decoupled modes within the total number of 
modes is varied, i.e. the total number of modes remains the same. The errors are 
measured as the percentage difference between the solutions at the current number of 
fully coupled modes (the rest of the modes are decoupled) and the full set of coupled 
modes (no decoupled modes).  

Figure 74 and Figure 76 plot the errors and computational times required for the 10 mode 
case respectively. And, Figure 75 and Figure 77 plot for the 40 mode case.  

 

Figure 74: Modal Acceleration, Nonlinear Rotating Beam, 6 Substructures, 10 Modes, ωs = 4 rad/s 
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Figure 75: Modal Acceleration, Nonlinear Rotating Beam, 6 Substructures, 40 Modes, ωs = 4 rad/s 

 

Figure 76: Computational Time, Modal Acceleration, Nonlinear Rotating Beam, 6 Substructures, 10 
Modes, ωs = 4 rad/s 
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Figure 77: Computational Time, Modal Acceleration, Nonlinear Rotating Beam, 6 Substructures, 40 
Modes, ωs = 4 rad/s 

There are virtually no differences in the solutions when the proportion of fully coupled 
modes is increased. This strongly suggests that only the first mode is dominantly coupled 
to the rigid body motions and other elastic modes. Increasing the number of fully coupled 
modes and at the same time keeping the total number of modes constant does not 
improve the results. The results are improved by specifying a larger total number of 
modes (subsection 7.7).  

Changing the proportion of fully coupled and decoupled modes for the 10 modes case 
does not adversely affect the computational time required. However, for the 40 modes 
case, increasing the number of fully coupled modes significantly increases the 
computational times required. There is significant computational time savings from using 
less fully coupled modes. The explanation for this is as follow. For the 10 modes case, 
the computational time savings from the size reduction of the square matrix inversion in 
the first line in equation (3.36) is not significant as compared to the computational time 
required for other parts of the computation. However, for the 40 modes case, the benefits 
are higher as the original square matrix to reduce from is much larger; 43x43 vs. 13x13.  
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8. Extension of IC Beam to Include Axial Modes 

The IC beam formulation presented in section 3 does not include axial modes. The 
assumption is that axial deformations are small and thus neglected. The validity of this 
assumption is investigated here where the IC beam is extended to include axial modes 
and numerical tests performed to observe the effect of including axial modes.   

 

 

8.1. IC Beam with Axial Modes Formulation 

In this subsection, the extension of the IC beam formulation to include axial modes will 
be presented. The procedure of deriving the equations follows from section 3 and will not 
be repeated here. Only the key equations and formulations will be highlighted.  

Consider the new IC beam substructure with axial modes in Figure 78. Notice that a point 
P0 on the beam in the un-deformed state will move to point P after deformation.   

 

 

Figure 78: 2D Planar IC Beam Substructure with Axial Modes 

With reference to equations (3.1) to (3.3), the velocity of point P is: 

( ) ( )( )0 0 1 0 0 2PV x v u a y x u v aθ θ= − + + + + +


 

 

     
(8.1) 

With reference to equation (3.6), i.e. using the method of assumed mode shapes: 
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(8.2) 

With reference to equations (3.4) to (3.13), the kinetic energy of the IC beam is: 
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Where, 
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With reference to equations (3.14) to (3.15), the potential energy of the IC beam is: 
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With reference to subsection 3.1.3 and 3.2 and considering two axial modes and two 
edgewise bending modes, the equations relating momentum and velocities are: 
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And the remaining of the equations required for the IC beam implementation is: 
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(8.9) 

Equations (8.7) and (8.9) are crucial parts of the final equations required for the IC beam 
implementation shown in equation (3.36). The bond graph model of the IC beam with 
axial modes is similar to the model with two bending modes as illustrated in Figure 3. 
The only modification is that two new axial modes generalized variables are added. This 
modification is straight forward and will not be presented. Also notice that the rigid body 
motions, axial and bending deformations are nonlinearly coupled in the formulation. 
However the elastic deformations within the substructure are still linear and described by 
modal superposition.  

All but except the bond graph component model presented in subsection 4.2.1 remain 
useable. The component model that performs coordinate transformation from the IC 
beam origin to the right end of the beam requires modification (Figure 8). This 
modification is straight forward and will not be presented. Also, the equations (4.4) and 
(4.5) need to be modified as follow: 
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(8.11) 

 

 

8.2. Effect of Including Axial Modes 

In this subsection, the effect of including axial modes is investigated in detail. The 
number of axial modes is varied (0 to 10) at different number of substructures (1, 2, 4, 6 
and 8) for the different ωs cases (1, 2, 4 and 8 rad/s). All cases employ 10 bending 
modes. The errors are measured as the percentage difference between the solutions at the 
current number of axial modes employed and when 10 axial modes are employed.  

The results from one linear case (1 substructure, ωs = 1 rad/s) and one nonlinear case (8 
substructures, ωs = 8 rad/s) are presented. The portion of axial shortening time history 
near to the steady state region for the nonlinear case is also presented in Figure 83. Note 
that maxial denotes the number of axial modes employed. 
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Results from Linear Case 

 

Figure 79: Axial Modal Acceleration, Linear Rotating Beam, 1 Substructure, 10 Bending Modes, ωs 
= 1 rad/s 

 

Figure 80: Computational Time, Axial Modal Convergence, Nonlinear Rotating Beam, 1 
Substructure, 10 Bending Modes, ωs = 1 rad/s 

  



Chapter 8: Extension of IC Beam to Include Axial Modes 

96 
 

Results from Nonlinear Case 

 

Figure 81: Axial Modal Acceleration, Nonlinear Rotating Beam, 8 Substructures, 10 Bending Modes, 
ωs = 8 rad/s 

 

Figure 82: Computational Time, Axial Modal Convergence, Nonlinear Rotating Beam, 8 
Substructures, 10 Bending Modes, ωs = 8 rad/s 
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Figure 83: Time History of Axial Shortening, Axial Modal Convergence, 8 Substructures, 10 Bending 
Modes, ωs = 8 rad/s 

Including axial modes do not improve the results. The time histories of the axial 
shortening, tip deflection and tip slope remain virtually unchanged as compared to when 
no axial modes are included. The only benefit is the steady state axial tip displacements 
are correctly modeled when axial modes are used. Obviously there are steady state tip 
axial displacements only when axial modes included. However, these displacements are 
small and might not be as essential as compared to the minimum axial shortening and tip 
deflections. For example, for 8 substructures and ωs = 8 rad/s case, the steady state axial 
tip displacement is 0.000432 m while the minimum axial shortening is 0.08804m, i.e. 
factor of 200 times larger. The minimum tip deflection is 1.11m which is a factor of 2600 
times larger. Therefore, in the author’s opinion, the incentive for including axial modes 
for the rotating beam spin-up maneuver case is rather small and does not justify the 
additional computational times required. 

The axial modal convergence for the steady state axial displacement in the linear case is 
significantly faster than for the nonlinear case. Using one axial mode in the linear case is 
sufficient to achieve converged solutions, however about 3 to 4 axial modes are required 
in the nonlinear case to achieve below 5% errors. Recall that this is similar to the modal 
convergence results presented in subsection 7.7; just one bending mode is required for 
convergence in the linear case and about 10 and 15 bending modes are required to 
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achieve below 5% errors for the minimum tip deflection and slope and minimum axial 
shortening respectively.  Also, the computational time required increases significantly for 
nonlinear cases, particularly for the higher number of substructures cases.  
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9. More Investigations into the Interconnecting Hinges 

In sections 7 and 8, the IC beam substructures were connected using the Karnopp-
Margolis method [1], i.e. using springs (capacitor elements). In subsections 4.2.1.3 and 0, 
dampers (resistor elements) were also included in the component models for the rotating 
hinge and interconnecting hinge but their resistance values (denoted ‘R_hinge’) are set 
equal to zero. It was also presented in subsection 7.3 that the stiffness values of these 
springs (denoted ‘k_hinge’) must be large. Too small a value will lead to extremely long 
computational times. Also, larger k_hinge values require more computational efforts.  

In this section, the previously unutilized dampers will be used. Using dampers in place of 
springs will still ensure that the system stays in complete integral causality. However, 
dampers do not relate as well as springs to the physical problem; springs are the natural 
interfaces between the multibodies. Furthermore, dampers dissipate energy away from 
the system. While using dampers do not seem to be the correct representation of physical 
problem, it is still interesting to investigate their use. The reason is that using dampers in 
place of springs will not introduce any additional high stiffness terms and state variables 
into the system. Also using a combination of dampers and springs allows the use of a 
lower k_hinge value. This yields significant benefits in the computational efforts 
required.    

The six substructures, 10 modes, ωs = 4 rad/s case is discussed. The solution when 
R_hinge = 0 and k_hinge = 1e10 is used is taken to be the converged solution.  

 

 

9.1. k_hinge = 0 and Varying R_hinge 

In this subsection, R_hinge is varied from 1e1 to 1e10. The errors are measured as the 
percentage difference between the solutions at the current R_hinge and the converged 
solution, i.e. R_hinge = 0 and k_hinge = 1e10.  

 The time histories of the axial shortening, tip deflection and tip slope are plotted in 
Figure 84, Figure 85 and Figure 86, and Figure 87 respectively. The percentage errors of 
the minimum tip displacements for the different R_hinge values used are plotted in 
Figure 88. Figure 89 plots the computation times required for the different R_hinge 
values used.  
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Figure 84: Time History of Axial Shortening, R_hinge Convergence, 6 Substructures, 10 Modes, ωs = 
4 rad/s 

 

Figure 85: Time History of Tip Deflection (1), R_hinge Convergence, 6 Substructures, 10 Modes, ωs = 
4 rad/s 
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Figure 86: Time History of Tip Deflection (2), R_hinge Convergence, 6 Substructures, 10 Modes, ωs = 
4 rad/s 

 

Figure 87: Time History of Tip Slope, R_hinge Convergence, 6 Substructures, 10 Modes, ωs = 4 rad/s 
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Figure 88: R_hinge Convergence, 6 Substructures, ωs = 4 rad/s, k_hinge = 0 

 

Figure 89: Computational Time, R_hinge Convergence, 6 Substructures, ωs = 4 rad/s, k_hinge = 0 

Using R_hinge <= 5e3 lead to erroneous solutions. It is observed in Figure 86 that the tip 
will be far away from the undeflected position at steady state. This explains the large 
errors for small R_hinge values in Figure 88. In general, accurate minimum tip 
displacements are obtained when R_hinge >= 5e3 is used. However, the steady state tip 
displacements for R_hinge = 5e3 is 0.06m lower than the converged solution. Using 
R_hinge >= 1e6 results in solutions very close to the converged solution for both 
minimum and steady state tip displacements. However, the minimum tip displacements 
will not converge to the converged solution for the largest R_hinge values; there is 
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consistently a small error. This is about 1.5% for axial shortening and 0.75% for tip 
deflection and slope. Also the oscillations at steady state die out slower as compared to 
when k_hinge = 1e10 is used. This observation is probably unimportant as these small 
oscillations are not crucial in the spin-up maneuver problem. 

Using dampers in place of springs decreases the computational efforts required by a 
factor of five. Also, using different R_hinge values do not affect the computational time 
required. This was also observed in subsection 7.2 for the case of resistance value of the 
resistor at the rotating hinge. 

 

 

9.2. Varying k_hinge and Varying R_hinge 

In this subsection, both k_hinge and R_hinge are varied from 1e1 to 1e10. The results of 
the investigations performed in this subsection are presented in Table 6.  

Table 6: Summary of Varying k_hinge and Varying R_hinge Investigation 

 R_hinge value 
k_hinge value Improved 

computational 
time 

Accurate 
minimum tip 
displacements 

Accurate steady 
tip 

displacements 
1e1 1e2 5e3 1e6 
1e2 1e2 5e3 1e6 
1e3 5e3 5e3 1e6 
1e4 1e5 5e3 1e6 
1e5 1e6 5e3 1e6 
1e6 1e6 5e3 1e6 
1e7 1e8 1e6 

(Too long 
computations 
for R_hinge < 

1e6) 

1e6 
(Too long 

computations 
for R_hinge < 

1e6) 
1e8 1e8 1e1 1e1 
1e9 1e9 0 0 
1e10 5e10 0 0 
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‘Improved computational time’ means the R_hinge value above which the computational 
time required will be below 10 seconds.  

‘Accurate minimum tip displacement’ means the R_hinge value above which the 
percentage error in the minimum tip displacements will be below 5%.  

‘Accurate steady state tip displacement’ means the R_hinge value above which the 
percentage error in the steady state tip displacements will be less than 0.01m from the 
converged solution.  

When R_hinge is specified in combination with k_hinge, it was observed that the solution 
proceeds for small k_hinge values. This is in contrast to the results observed in subsection 
7.3, where the numerical solution takes an extremely long time to proceed for k_hinge < 
1e9. To achieve significant savings in computational time, the R_hinge value specified 
will have to be in the order of the same magnitude as the k_hinge value used.  

For smaller k_hinge values, R_hinge >= 5e3 and R_hinge >= 1e6 are required to achieve 
accurate minimum and steady state tip displacements respectively. These are the same 
R_hinge values required in subsection 9.1. For larger k_hinge values, no R_hinge is 
required for convergence. In the case of k_hinge = 1e8, R_hinge = 1e1 is required to 
ensure that the numerical solution proceeds. This suggests that if k_hinge is small, the 
criterion for convergence of the minimum tip displacements will rely on R_hinge. Also a 
small R_hinge value can be specified to ensure that the numerical solution proceeds when 
borderline insufficiently large k_hinge values are specified. 

The steady state tip oscillations die out slower when large R_hinge values are used. This 
slower decay of the tip oscillations was also observed in subsection 9.1. Also notice that 
the solution takes a long time to compute for k_hinge = 1e7 when R_hinge < 1e6. This is 
not investigated further as detailed numerical investigations are out of the scope of this 
thesis.   

 

 

9.3. Summary 

In summary, using dampers in place of springs or a combination of dampers and springs 
offer drastic improvements in the computational times required and do not adversely 
affect the solutions.  
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10. Modeling of Wind Turbine Rotor Blades using the IC Beam 

In this section, the methodology to model the wind turbine rotor blade using the IC beam 
substructure formulation will be presented. The methodology is similar to the bond graph 
model of the NREL 5MW wind turbine rotor developed in Xing [38]. The only difference 
is that the blade model in Xing [38] is developed using the linear force-free beam bond 
graph model as described in Karnopp, Margolis and Rosenberg [29] and Margolis [37].  

First, the three-dimensional IC beam will be derived in subsection 10.1. The wind turbine 
blade has a complex geometry and has to be described in full three-dimensional space. 
Second, the appropriate interfaces to link the blade model to the aerodynamic model will 
be presented in subsection 10.2. Lastly, in subsection 10.3, the methodology to connect 
the blade model to a wind turbine rotor hub model will be presented.    

 

 

10.1. Extension to Three-Dimensional IC Beam 

In this subsection, the two-dimensional IC beam presented in section 3 will be extended 
to a full three-dimensional IC beam. Similar to section 8, only the key equations and 
formulations will be highlighted here.  

Consider the new IC beam substructure with axial modes in Figure 90. A point P0 on the 
beam in the un-deformed state moves to point P after deformation.   

 

Figure 90: 3D IC Beam 
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Figure 91 illustrates views of the deflection point P from the three different two-
dimensional planes.  

 

Figure 91: Views of Point P from Three Different Two-Dimensional Planes – 3D IC Beam 

 

With reference to equations (3.1) to (3.3), the velocity of point P is: 
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(10.1) 

With reference to equation (3.6), i.e. using the method of assumed mode shapes: 
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(10.2) 

With reference to equations (3.4) to (3.13), the kinetic energy of the IC beam is: 
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(10.3) 

Where, 
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With reference to equations (3.14) to (3.15), the potential energy of the IC beam is: 
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Where, 
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With reference to subsection 3.1.3 and 3.2 and considering two flapwise bending modes 
and two edgewise bending modes, the equations relating momentum and velocities are: 
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Where, 
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And the remaining of the equations required for the IC beam implementation is: 
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Where, 
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Equations (10.7) and (10.9) are crucial parts of the final equations required for the IC 
beam implementation shown in equation (3.36). The bond graph model of the three-
dimensional IC beam is similar to the model with two bending modes as illustrated in 
Figure 3. The only modifications are the addition of the three additional rigid body motion 
variables and two additional flapwise bending modes generalized variables. These 
modifications are straight forward and will not be presented here. Also notice that the 
rigid body motions, flapwise and edgewise bending deformations are nonlinearly coupled 
in the formulation. However the elastic deformations within the substructure are still 
linear and described by modal superposition.  

 

 

10.2. Blade – Aerodynamics Models Interface 

In this subsection, the appropriate bond graph component model to interface the blade 
model to the aerodynamics model will be presented. Since the elastic deformations within 
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the IC beam substructure are described by the method of assumed modes, the 
aerodynamic forces on the blade will thus be described by modal forces. Also since the 
IC beam is formulated in the centre of mass body fixed coordinate system, the 
aerodynamic forces will also give contributions to the rigid body modes. The model that 
performs the calculation of modal forces and rigid body contributions is the blade-
aerodynamics models interface.  

The aerodynamic loading on the blade is first discretized into a number of segments. 
Then, the aerodynamic load within each segment is then integrated together with the 
mode shape of the IC beam substructure the segment is in over the segment length. The 
result is the modal load that acts at the mid-point of each segment. The modal load can be 
also approximated by product of the value of the mode shape function at the mid-point 
and the averaged aerodynamic load in the segment. The rigid body contribution from a 
segment is the averaged aerodynamic load in that segment and acts through the segment’s 
mid-point. Figure 92 illustrates a blade modeled by two substructures each with four 
modal loading points.  

 

Figure 92: Blade Modeled by Two Substructures each with Four Modal Loading Points  

The number of modal loading points or aerodynamic calculation points is important in 
ensuring the correct aerodynamic loads are calculated for the blade. In De Vaal and Xing 
[46], approximately 20 aerodynamic calculation sections are required to obtain converged 
solutions for the global responses, e.g. tower bottom bending moment, of the NREL 
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5MW wind turbine. While for the local responses, e.g. blade tip deflection, 
approximately 40 to 50 aerodynamic calculation sections are required. 

The modal loads due to the second aerodynamic segment in the first substructure are: 
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Where, 

, ,v mn jF  
Modal force in the ‘v’ direction (m-th substructure, n-th modal loading point, 
j-th mode) 

, ,w mn kF  
Modal force in the ‘w’ direction (m-th substructure, n-th modal loading 
point, k-th mode) 

2, ( )aero aF x

 
Aerodynamic force in the ‘a2’ direction along the substructure 

2, ( )aero aM x

 
Aerodynamic moment about the ‘a2’ direction along the substructure 

3, ( )aero aF x

 
Aerodynamic force in the ‘a3’ direction along the substructure 

3, ( )aero aM x

 
Aerodynamic moment about the ‘a3’ direction along the substructure 

The rigid body contributions due to the second aerodynamic segment in the first 
substructure are: 
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Where, 

0 ,y mnF  
Rigid body contribution in the ‘y0’ direction (m-th substructure, n-th modal 
loading point) 

,z mnMθ  
Rigid body contribution in the ‘θz’ direction (m-th substructure, n-th modal 
loading point) 

0 ,z mnF  
Rigid body contribution in the ‘z0’ direction (m-th substructure, n-th modal 
loading point) 

,y mnMθ  Rigid body contribution in the ‘θy’ direction (m-th substructure, n-th modal 
loading point) 

l  Length of substructure 
Similarly, the modal loads and rigid body contributions due to the third aerodynamic 
segment in the second substructure are: 
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An equivalent bond graph model of the interface between the first IC beam substructure 
and the second aerodynamic segment is presented in Figure 93. This IC beam has two 
flapwise and two edgewise bending modes. It is straight forward to extend this model to 
incorporate additional bending modes and/or more aerodynamics segments. 
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Figure 93: Example of Blade-Aerodynamic Models Interface  
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10.3. Connection of Blade Model to Rigid Hub Model  

The Karnopp-Margolis method [1] can be used for the connection of the blade to the rigid 
hub model. This method has also been applied for connecting the elastic blade body to 
the rigid hub body in the bond graph model of the wind turbine rotor in Xing [38]. As 
mentioned in subsections 4.2.1.3 and 4.2.1.4, differential causalities will occur when two 
bodies are connected directly together. The Karnopp-Margolis method ensures that the 
system will remain in complete integral causality. A system in complete integral causality 
yields a much more efficient numerical system than a system with differential causality. 
The model implementation of this connection is similar to the interconnecting hinge 
model presented in subsection 4.2.1.4. It is straight forward to modify the interconnecting 
hinge model into the connection model for the blade and hub. Therefore, no further 
details will be presented here.  
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11. Conclusions and Future Work 

 

 

11.1. Conclusions 

In this thesis, an Inertia-Capacitance (IC) beam substructure formulation based on bond 
graph terminology was developed. The IC beam is formulated in the centre of mass body 
fixed coordinate system. This coordinate system allows for easy interfacing of the IC 
beam in a multibody system setting. This multibody floating frame approach is also much 
faster than nonlinear finite element methods. Elastic deformations in the IC beam are 
assumed to be small and described by the method of assumed mode shapes. The 
formulation couples rigid body motions and elastic deformations in a nonlinear fashion. 
Detailed derivations for a two-dimensional planar IC beam with bending modes were 
presented. Brief derivations were also presented for the two-dimensional IC beam with 
both bending and axial modes and for the three-dimensional IC beam with bending 
modes. A modal acceleration method via the decoupling of modes was also developed as 
the conventional modal acceleration method is not suitable for use in the IC beam.  

Extensive linear and nonlinear numerical tests were performed on the two-dimensional 
planar IC beam using the model description of the rotating beam problem in Wu and 
Haug [25]. The IC beam was also verified against the numerical results presented in Wu 
and Haug [25]. The Karnopp-Margolis method [1] was used in the model set-ups to 
ensure complete integral causality in the system. This results in an efficient numerical 
system. 

The static tests show that the IC beam substructure is capable in solving nonlinear static 
problems. Also, it was shown that the use of unsuitable mode shapes e.g. the free-free 
modes will lead to slow modal convergence.  

The spin-up maneuver problem is solved in the dynamic tests. Convergence studies of 
various model parameters were performed. More substructures are required to ensure 
accuracy in the more nonlinear cases, i.e. ωs = 4 & 8 rad/s. For these cases, the solution 
for the tip displacements will be unbounded if only a single substructure is prescribed. 
Prescribing insufficient number of substructures will result in an overestimation of the tip 
displacements. A small absolute error tolerance value must also be specified. 
Insufficiently small values give rise to incorrect high frequency oscillations. The 
resistance value of the resistor in the rotating hinge must be large to ensure accurate 
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results. Using different resistance values do not affect the amount of computational time 
required. The stiffness values of the springs in all hinges must large to ensure accuracy 
and that the numerical solutions will proceed. Using larger stiffness values lead to 
increased computational requirements. The modal acceleration tests show that only the 
first mode is strongly coupled to the rigid body motions and the rest of the modes can be 
decoupled and yet yield virtually the same solution. There are significant computational 
savings if a large number of modes can be decoupled.  

10 to 15 modes are required for convergence in the multi substructure cases for both the 
static and dynamics tests. Prescribing too little number of modes will result in an 
underestimation of the tip displacements. For the single substructure case, the solution is 
entirely dominated by the first mode. 

The additional of axial modes in the two-dimensional planar IC beam does not improve 
the solution for the spin-up maneuver problem. The only additional benefit is that the 
steady state axial lengthening is modeled correctly. However, this displacement is 
significantly smaller than the minimum axial shortening, tip deflection and slope 
experienced during the spin-up maneuver. Therefore, including axial modes does not 
justify the additional computational times required.  

In general, more computational efforts are required when more modes, more 
substructures and/or higher ωs values are used. Using dampers in place of springs or a 
combination of dampers and springs at the hinges can drastically improve the 
computational times required.  

Lastly, the methodology to apply the IC beam formulation to the wind turbine rotor 
blades was presented. The model to interface the blade and aerodynamic models was 
presented in detail. The method to connect the blade model to the rigid hub model was 
also discussed.    

In conclusion, an efficient IC beam substructure formulation based on bond graph 
terminology was developed. The IC beam was shown to perform well for large deflection 
static problems and rotating beam problems. The IC beam looks promising to be further 
developed for application in wind turbine structural dynamics problems.  
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11.2. Future Work 

The IC beam formulation developed in this thesis provides a framework to solve wind 
turbine structural dynamics problems. The IC beam can be applied to the wind turbine 
problem to further understand its applicability and capability. The IC beam can be used to 
construct the wind turbine model and then interfaced with preexisting aerodynamic 
software such as AeroDyn [47]. Detailed numerical investigations should be also 
performed to fully understand its numerical behavior.  
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