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The motivation for this thesis is reduction of hydraulic emissions, minimizing of process 
emergency shutdowns, exploitation of intervention capacity, and reduction of costs. Today, 
monitoring of hydraulic leakages is scarce and the main way to detect leakage is the constant need 
for filling of hydraulic fluid to the Hydraulic Power Unit (HPU). Leakage detection and diagnosis 
has potential, which would be adressed in this thesis.  

 
A strategy towards leakage detection and diagnosis is given. The strategy defines three 
approaches, define an approach, explore the approach and propose a solution. Relevant 
instrumentation, both existing and additional instrumentation is discussed. Relevant methods 
towards leakage detection and diagnosis are presented. An overview of a bewidering amount of 
methods is given, and basics towards application. An example from pipelines of state-of-the –art 
leakage detection and diagnosis is also given. 

 
A solution proposal for a simple and available leakage method with fair detectability and limited 
diagnostics is proposed. There tends to be a connection between performance of application and 
complexity. For today’s solution it would be preferable to scarify some overall performance for 
simplicity, considering the alternative. 
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Terminology 
Definition given according to IFAC SAFEPROCESS Technical Committee: 
Failure:  A permanent interruption of a system's ability to perform a required 

function under specified operating conditions. 
 
Fault detection: Determination of the faults present in a system and the time of detection. 
 
Fault diagnosis:  Determination of the kind, size, location and time of detection of a fault. 

Follows fault detection. Includes fault isolation and identification. 
 
Fault: An unpermitted deviation of at least one characteristic property or 

parameter of the system from the acceptable / usual / standard condition. 
 
Monitoring:  A continuous real-time task of determining the conditions of a physical 

system, by recording information, recognizing and indicating anomalies in 
the behaviour. 

 
Other report specific terminology 
Black box model: A model with no need for knowledge about the system. 
 
Condition monitoring: The process of monitoring one or more parameters of condition for an 

item or system to detect deviations that might be the result of an 
initiating failure. 

 
Grey box model: A combination of white box and back box models.  
 
Leakage detection: Determination of the leakage present in a system and the time of 

detection 
 
Leakage diagnosis: Determination primarily of the leakage location and size. 
 
Leakage A leakage in this context is all fluid loss, either internally or to 

surrounding environment, which is not used for normal operation.  

Leakage system An organized product for leakage detection and diagnosis. 

Method: Referred to as a way to perform monitoring to achieve detection, 
diagnosis or both. 

 
Steady state:  The partial derivative is zero with respect to time. 
 
White box model: A model in need of detail knowledge about the system.  
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Summary 
This thesis deals with subsea hydraulic leakage detection and diagnosis. Hydraulic fluid is used 

in most of the subsea control systems today. Electric actuated systems are emerging, but 

hydraulic systems will be important in years to come. The main function of the system is to 

control the oil producing wells. Normally, one single system provides all wells on a field with 

control fluid; this is also the case at Norne.  

Project limitations, basic condition monitoring and motivation are presented. The project is 

limited to Norne and its subsea production control system. Condition monitoring theory is said 

to apply also for monitoring leakages, though the basic definition may be somewhat different. 

The motivation for this thesis is reduction of hydraulic emissions, minimizing of process 

emergency shutdowns, exploitation of intervention capacity, and reduction of costs. 

A basic of theory is presented, both for a general hydraulic system and Norne specific 

equipment. Flow through the system is given with a process flow diagram. Common failures 

with the subsea control system were faults with Directional Control Valves, which accounted for 

98% of the leakages. Possible causes were reviled to be corrosion due to seawater ingress 

during installation and biodegradation. 

An example of leakage detection and diagnosis from pipelines is given. It is state-of-the-art 

within leakage detection and diagnosis. Although there distinct differences, the methods used 

for pipelines can be applied for the subsea control system as well. Performance criteria, 

determining the quality of the detection and diagnosis are given. There tends to be a connection 

between complexity and performance. It may therefore be preferable to scarify some overall 

performance for simplicity. This is because monitoring today is very scarce. 

There exist measurements which can be monitored today, and an additional amount of sensors 

which have the potential for further improvement. Additional sensors are not proposed subsea, 

due to high cost of sensor, installation and replacement. However, design improvements of 

subsea control module flow meters could be interesting. 

Bewildering types of methods are organized with respect to description. Qualitative and 

quantitative methods have to distinct differences, which are used in this thesis. It is given an 

illustration of the connection between information amount and value, concerns and application. 

It illustrates the way towards automatization, and concerns when choosing methods and 

application to subsea installations. 

Finally, a strategy towards leakage detection and diagnosis is given. The strategy defines three 

approaches: define an approach, explore the approach and propose a solution. It reviled that 

valuable information is available by looking at process data; however it would be preferable to 

automate. A solution for a simple, available detection method with fair detectability and 

diagnostics is proposed. The solution is to monitor steady state pressure drop using 

instrumentation and operational data. By monitoring the accumulator skid pressure and 

operations simultaneous, the transients could be ignored. When the transient period was over, 

monitoring and comparison would be executed until a new operation took place. Operations is 

therefore important to integrate. The excel sheet demonstrates that this is possible. 
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1 Introduction 
This thesis is divided into five main chapters. The first chapter gives an introduction to the 

project limitations, general introduction to condition monitoring, and the motivation. The 

project is limited to the subsea control system. The main feature of this system is to control oil 

producing wells. Condition monitoring is a branch within maintenance, and is used to determine 

condition by monitoring of equipment. This theory is also applicable for leakages. The 

motivation is reduction of hydraulic emissions, minimizing of process emergency shutdowns, 

exploitation of intervention capacity, and reduction of costs. 

In the second chapter a basic description of a hydraulic system is given, with respect to subsea 

components. Basics of fluids and phenomena like volumetric expansion, compressibility, 

resistance and contamination is briefly presented. An understanding of how components may 

interact when put together is also given. 

Norne is presented with main focus towards Norne subsea control system. It describes some 

Norne specific details of equipment. The information flow and fluid flow through the subsea 

control system, and a process flow diagram are presented. In the latter part of the chapter, 

failure and causes of the control system are discussed. 

The fourth chapter discusses basics of leakage detection and diagnosis. First a description is 

given. Then an example is gathered from pipelines, which would turn out to be very valuable. In 

general it is state-of-the-art within leakage detection and diagnosis. It is positive that it can 

directly benefit subsea hydraulic leakage detection and diagnosis. Dedicated state-of-the-art 

within subsea leakage detection and diagnosis is also presented, although this is scarce. It is 

mainly related to valves and actuators. General Electric and FMC Technologies are the only one 

discovered to have dedicated systems, but the detailed and interesting part of leakage detection 

and diagnosis is not available. 

Relevant instrumentation, existing and additional is discussed. It should be possible to detect 

leakages in the system by monitoring of existing instrumentation. One of the biggest 

disappointments were the sensitivity of flow meters in the SCM, this is also confirmed in the fifth 

chapter. It is also found that some additional topside measurements would be of current 

interest.  

Relevant methods towards leakage detection and diagnosis are also presented. Definitions are 

many, and congruent. Therefore an overview is given with respect to different methods, and 

then presented. Qualitative and quantitative methods are general terms used to distinguish 

between two distinct differences in methodology. The basics towards application are also given. 

This is done to clarify the need for both data and knowledge before applying methods. Important 

considerations when choosing methods and applicability towards subsea leakage detection and 

diagnosis are given. 

The final chapter puts forward a strategy towards detection and diagnosis. It has three steps: 

Define an approach, explore and learn, and finally seek a solution. It is chosen to look at process 

data, and use of qualitative and quantitative approaches. In addition, an excel sheet provided by 

Norne organization is presented. 
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Looking at process data, combined with knowledge and expectations of behaviour from earlier 

explained theory turns out to be very valuable. In the other approaches problems are 

encountered. The excel sheet does not have the input needed, the qualitative approach needs too 

comprehensive amount of input, and data was too independent and sporadic to exploit EFDD 

potential. 

Valuable experience is gained, and the excel sheet demonstrates that data of operations executed 

can be added; information which should turn out to be essential for subsea leakage detection 

and diagnosis. This would at least be the case if qualitative approaches as simulation models 

would be avoided due to complexity.  

A proposal for solution is given with respect of today. Some point of views worth considering for 

tomorrow and the future is also given. The proposal for solution seems promising. This is 

because it is simple, available, and has a fair performance.  

1.1 Project Limitations 
As for all projects, also this one has boundaries. First off all this project is limited to Norne field. 

This is one of Statoil’s installation located in the Norwegian Sea, Vest of Helgeland. Data used is 

mainly collected from Alve, which is one subsea template tied back to Norne. Even though this 

demarcation is taken, it does not mean that discoveries in this report are irrelevant for other 

similar installations. 

Figure 1 illustrates the project boundaries. It covers the subsea control system, which has one 

part subsea and another topside.  

 

Figure 1 A sketch showing the project boundaries 

The Low pressure (LP) side of the subsea control module (SCM) has been in focus. This is a 

logical isolation because the LP side has the most valves used in daily operation. The high 

pressure (HP) on the other hand acts as one out of two safety barriers, and controls the surface 

controlled sub surface safety valve (SCSSV) or down hole safety valve (DHSV). 
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The report is also limited to subsea operational phase. This implies that intervention and drilling 

modes are not considered. This does not mean that it is not of interest; on the contrary, it might 

be highly relevant for both intervention and drilling. As an example one of the faults on the 

Blowout Preventer (BOP) from the disaster taking place in the Gulf of Mexico was said to be 

hydraulic leakage1. Deepwater Horizon exploded 20th of April 2010. 11 workers lost their lives, 

and the rig sank. The following oil spill is not completely stopped as of 14th June 2010. 

1.2 Condition Monitoring 
Condition monitoring (CM) is the process of monitoring one or more parameters of condition for 
an item or system to detect deviations that might be the result of an initiating failure. By 
detecting a failure at an early stage, maintenance can be planned and scheduled and CM is hence 
an important part of preventive maintenance and predictive maintenance as shown in figure 2. 
And is basis for Condition Based Maintenance (CBM) 

 

Figure 2 Different types of maintenance and their strategic operational categories[8] 

CM does not predict failure; it only helps predicting the time to failure. Nevertheless, a deviation 
from a reference value (e.g. temperature or vibration behaviour) must occur to identify 
impeding failures. These limits will either come from quantitative or qualitative methods, or 
experience alone. This will be further discussed later on. 

Normally CM is preferable for components which have an unclear failure distribution, hence, an 
optimal interval for maintenance is difficult to achieve. The CM process consists of three core 
processes, observation, analyzing, and decision-making as shown in Figure 3.  

                                                             
1 7. Sæbø, S.H., Bildet oljegiganten ikke ville at noen skulle se, in Dagbladet.no. 2010 OSLO. 



   

4 
 

 

 

Figure 3 The different condition monitoring process [3] 

Observation can be performed in several ways, both manually and automatically, online and 
offline. Every method gives some kind of indication of condition. However, there are 
considerable differences between the methods. The main difference is the time from detection to 
failure. There tends to be a connection between complexity of the observation and analysis and 
warning time as indicated in figure 5.  

In process industries in general, processes are widely monitored, but gives a small or no 
particular warning of an initiating fault. This may be due to the complexity of the data 
monitored. A systematic use of these data could give us the desired warning. As stated in [8] 
(5.8) there is a blurred transition between monitoring itself and condition monitoring.  

It is important to have in mind that not every component is ageing. A component may be as good 
as new even after several years. Replacing such a component could actually degrade our system. 
This is so because different components have different failure modes. These modes are 
important to have in mind when choosing maintenance strategy, such as CM. If a component 
suddenly fails, CM would not serve any predictive function.  

Main parameters which need to be covered in order to make use of CM[8]. 

 The failure evolves slow enough to be able to do a maintenance 
action/intervention2 before breakdown. 

 An adequate control method exist. 

 

Figure 4 The impact of effort on warning capability[8] 

                                                             
2Intervention includes system going in”safe-mode”/”shut down”. 
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When it comes to how often measures of condition should be done, and choosing type of method 
it depends on: 

 Criticality (health/safety, environment, economy) 

 Common damages and consequences 

 That a suitable method for the given failure exists 

 Condition progressiveness and control frequency 

1.2.1 KPI and TCI 

KPI (Key Performance Indicator) and TCI (Technical condition Index) are measurements of the 
components actual state as an easy understandable unit. It is a specific number between 0-
100%, where zero equals a failed component, and hundred percent is a perfect component. It is 
often used in the industry, because of its simplicity. However, it is not easy to estimate this 
parameter3 which may take use of several of the measurements. The KPI and TCI function will 
literally tell you when to do a maintenance action.  

1.2.2 Condition Monitoring and Leakage 

The word leakage often implies that a failure already has occurred. Why should something be 

condition monitored if it already has failed? It was just stated that if CM suddenly failed it would 

not serve any predictive function. 

A leakage in the SCS can normally have three impacts on production: 

 Normal production may be continued 

 Reduced production 

 Stopped production  

Depending on cause, leakages may happen suddenly or evolve over time. When a leakage is 

present, it is important to detect it as soon as possible, and diagnose the problem. It is also 

possible to trend leakage rates, to detect whether it is escalating. Generally, the longer time from 

a leakage to a repair, the bigger is the consequences, as illustrated in Figure 5. As mentioned 

earlier there is a blurred transition between monitoring itself and condition monitoring. The 

same advantages can be said to yield for leakage detection as for condition monitoring, even 

though the basic definition may be somewhat different. 

 

Figure 5 A bow-tie model with leakage as event.  

                                                             
3 It may be a combination of several methods, algorithms, measurements etc. The value of the 
parameter is highly dependent on the underlying work. 
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1.3 Motivation 
What is the motivation for detecting and diagnosing subsea hydraulic leakages? 

The answer is reduction of consequences from a leakage, and added confidence to the process. 

The consequence of leakage can be divided into four main groups  

 Reduce hydraulic emissions 

 Minimize impact of process emergency shutdown 

 Use available intervention capacity 

 Reduced costs 

Reduction of hydraulic fluid pollution of the environment is important. Even if hydraulic fluid is 

allowed to be discharged to sea, it is unfortunate. It may also have has spill over effects. As an 

example it would be bad for the company’s reputation to pollute. Conservationists and 

organizations as Bellona would surely not appreciate it. Also, Statoil needs to report to the 

Climate and Pollution Agency and Petroleum Safety Authority of Norway  if the discharge is 

higher than the set limits. If crossing these limits frequently, it may be a paradox when 

bargaining for petroleum activity in delicate areas in Norway as Lofoten and Vesterålen, where 

oil production is prohibited today. Especially since regulatory authorities have a vision of zero 

emission.  

As more direct consequence of control system leakage is production halt. If a leakage is big 

enough, the process will shut down due to fail-safe mechanisms. In worst case scenario it would 

shut the entire field, or several templates. An extensive troubleshooting and testing of hydraulic 

lines is then initiated to isolate the cause. With leakage monitoring, troubleshooting and 

isolating times could be reduced, and the healthy wells could be back on stream faster.  

As stated by Anders Valland it is important to exploit available intervention capacity when an 

intervention is executed. A developing hydraulic leakage in a SCM is important to detect, since it 

then would be intervened at the first scheduled intervention action, even if it might be small for 

now. The alternative could be a rush action. Modules with minor defects can be replaced when 

other intervention actions take place. 

By a systematic approach towards leakage detection and diagnose, manual troubleshooting may 

be considerably reduced. Use of specialists may also be reduced, which implies cost savings. The 

cost of extra hydraulic fluid needed to maintain operability may also be an issue. 

Today, monitoring of hydraulic leakage in Statoil is scarce; the main way to detect leakage is the 

constant need for filling of hydraulic fluid to the hydraulic power unit (HPU). Leakage detection 

and diagnosis has potential. A look at Figure 6 also agrees. It is gathered from a workshop at 

MARINTEK [9], showing the value of work on the vertical axis and ease of implementation on the 

horizontal. Hydraulic leakage is placed marked with red, which is the motivation for the work 

presented in this report. 
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Figure 6 Hydraulic leakage detection and some other challenges [9] 
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2 A Basic Description of a Subsea Hydraulic System  
Almost every subsea control system is a hydraulic system. Field proven electrical actuators exist 

today[10], and one may argue that the future control system will be electrical, due to lower 

umbilical costs, no hydraulic fluid emission and other. Anyhow, the operation and maintenance 

of hydraulic control systems will be important in the future, simply because hydraulic systems 

are installed onsite today, and will endure for years to come.  

2.1 A Hydraulic Power System 
A hydraulic power system is one type of power system used to transmit and control power. A 

hydraulic power system has the same basic function as electric or mechanical system. In 

appendix II, Rabie [2] has classified the different power transmission systems. Rabie has 

compared the different power transmissions of the different power systems. It is not difficult to 

acknowledge the similarities between the different systems.  

This is something to remember for those who know a lot more of one power system than others. 

Of course there are differences as well, and this thesis will only look into the details of hydraulic 

systems. A comparison of analogy is given in Table 1. Rabie has also a table of comparison of the 

different power systems, which can be found in appendix III. 

In a hydraulic power system, the power is normally transmitted by controlling the pressure of 

the liquid. When a flow is initiated, power is dissipated. Hydraulic power in addition to 

pneumatic power systems is referred to as fluid power systems in engineering where the main 

difference is the fluid properties.  

 

Table 1 Element analogies in several domains[11] 

In order to be able to interpret data from our system it is important to know something of how 

the system behaves. To understand the basics of a system is emphasized. Increased complexity 

in combination with increased automation often put basic understanding in the shade. 

Often when systems become more complex, it is preferable to use simplifications rather than the 

application of detailed system physics and dynamics. These are in most cases good estimates, 

but may give wrong results. 

As an example Curtiss [12] stated a concern of BOP accumulator reliance using conventional 

sizing calculation in water depths above 2000 meters, due to assumptions of adiabatic 

processes. This is a relative basic understanding of physics, but where the general assumptions 

for calculation were forgotten.  

The first step towards understanding the system is to understand how the components work 

individually, and then apply methods for how the different components interact. A typical 

hydraulic system consists of the components given in Figure 7. A motor drives a hydraulic pump. 

Hydraulic fluid is then transmitted from a tank via pipes to a directional control valve which 
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decides whether to open or close the actuator. Fluid is then transmitted to a hydraulic cylinder 

which drives a load, for example a valve. The safety valve prevents to high pressure in the case of 

pressure build up in the circuit. The throttle check valve controls the flow. The filter ensures a 

fluid with minimal of derbies. 

 

Figure 7 A hydraulic system and schematics 

 

There are three types of hydraulic energy [13]: 

1. Potential or pressure energy 

2. Kinetic energy, the energy of moving liquids 

3. Heat energy, the energy of resistance to flow. 
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2.2 Hydraulic Components 

2.2.1 Hydraulic Pumps 

The pump is the heart of the subsea control system. It provides power to the system in terms of 

flow and pressure. It is said that the pump creates flow, and the pressure is caused by resistance 

to flow. 

The general expression of fluid power is mass. 

            (2-1) 

The power generated by the pump would be the differential pressure across the pump times the 

flow. This would require some torque and velocity from a motor. The power output from the 

pump could then be written: 

           (2-2) 

Where T equals torque, ω equals angular velocity, and    equals pump overall efficiency. The 

efficiency of our component would be output power divided by input power. 

The efficiency is always lower than 1, which is due to volumetric, mechanical and hydraulic 

losses. The overall efficiency is often divided into these three products. This means that the 

actual flow rate is less than the theoretical flow rate. The main reasons are[14]: 

 Internal leakage 

 Pump cavitation and aeration 

 Fluid compressibility 

 Partial filling of the pump due to fluid inertia 

Pressure is always measured according to a reference. This could either be a pressure drop 

across an element, or, if measuring at a point, it would in most cases be according to gage 

pressure. This means the pressure relative to the atmospheric pressure of 101.32 kPa. Pressure 

given in this report is always gage pressures unless other stated. 

There are many types of hydraulic pumps. The most common are displacement pumps. An 

overview different types can be found in Figure 8. An example of a P&ID symbol of a pump is 

given in Figure 9. The arrow shows direction of flow. 
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Figure 8 Classification of different hydraulic pumps [2] 

 

Figure 9 P&ID symbol of a pump 

2.2.2 Hydraulic Fluid 

The fluid is the transporter of energy in the system. Different types of hydraulic fluid exist, which 

are mineral oils, synthetic oils, oil/water emulsion or water-glycol fluids. All fluids have different 

properties. Subsea control system usually uses water-glycol fluids. This is mainly due to 

dumping of the fluid at sea. Subsea control systems using hydraulic oils exist as well, an example 

is Ormen Lange, but the oils are routed back onshore.  

Pros and cons exist to both solutions. As an example, oils are better lubricators, but the closed 

loop tends to be negative impact on the return pressure, causing valves to float in intermediate 

position. In water-glycol fluids the same problem is addressed by the DCVs getting stuck, where 

lack of lubrication may be a problem.  

From an environmental point of view there are also pros and cons. While a closed loop system 

provides no emissions to the environment, the consequences if leakage should occur would be 

much greater. This is due to the harmful effect of oils, compared to water-glycol fluids.  

Additives are an important part of the fluids. They are added to gain certain effects. They might 

also address environmental concerns. Some types of additives might be[14]: 

 Oxidation inhibitors 

 Corrosion inhibitors 

 Antifoaming agents 

 Anti-wear 

 Viscosity index improvers 

 Pour point depressants 

 Friction modifiers 
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 Detergents 

Fluid engineering is not straight forward, but a basic concept of classical fluid mechanics is the 

continuum assumption. This means that each fluid has a definite value in every point of space, 

besides properties such as density, temperature, etc. It is not the aim of this report to quote fluid 

mechanics and dynamics. A lot of literature are available if one wants to go into details.  

Fluid dynamics is one of the most advanced challenges of modern technology. As an example 

modern Computational Fluid Dynamics (CFD) is based upon Navier-Stokes equations which yet 

have minimal understanding. As a digression, a reward is given to the person reviles the secrets 

behind the Navier-Stokes equations4. 

Some of the fundamental concepts of fluid mechanics[4]: 

 How to describe flows (timelines, path lines, streamlines, streak lines) 

 Forces (surface, body) and stresses (shear, normal) 

 Type of fluid (Newtonian, non newtoninan-dilatant, pseudoplastic, thixotrophic, 

rheopectic, Bingham plastic) and viscosity (Kinematic, dynamic, apparent) 

 Type of flow (Turbulent/laminar, Viscous/inviscid, compressible/incompressible, 

internal/external) 

 

2.2.2.1 Viscosity 

Fluid characteristics are given mainly by fluid viscosity. The viscosity describe resistant to 

laminar movement between two parallel plates, see Figure 10. The viscosity for oils is highly 

dependent on temperature, but water-based fluids are not as dependent as oils.  

 

 

Figure 10 Difference between a solid and a fluid 

2.2.2.2 Head Loss 

Head loss is the sum of the major losses, and a major head loss contributor is resistance to flow 

or friction. Friction is dependent on wall roughness, pipe size and others. One of the most 

important friction factors is related to the type of flow. There are mainly two types of flow, 

Laminar and turbulent. Whether a flow is laminar or turbulent can be determined by calculation 

of Reynolds Number: 

                                                             
4 Millennium Prize Problems, Available: http://www.claymath.org/millennium/Navier-
Stokes_Equations/ 
 

http://www.claymath.org/millennium/Navier-Stokes_Equations/
http://www.claymath.org/millennium/Navier-Stokes_Equations/
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       (2-3) 

V is given as flow velocity, D is the diameter of the pipe, and v is the viscosity of the fluid. To 

determine whether a flow is turbulent or not may be done by looking at a Moody chart. This is 

shown in appendix V.  

Obviously, Reynolds Number is not constant trough the process. Dynamic variations cause 

movement in the fluid which may be laminar or turbulent; the velocity of fluid is dependent on 

pressure and pressure frequency pulsations. A typical variation of Reynolds Number in a subsea 

control cable is in the range 100 to 10000 [15]. The friction causes energy loss. In many ways 

these dynamics can be compared with reactive power in electronics. 

2.2.2.3 Volumetric Expansion 

The hydraulic fluids are subjected to volumetric expansion when exposed to temperature 

change. An example of this might be a boiler, where transition of the fluid to vapour may start. 

This is especially important for water-based fluids. If a process of volumetric expansion or 

compression occurs slowly enough, an isothermal process can be assumed, due to the heat 

transfer to the environment. If it happens rapidly, it cannot. The basic ideal processes are: 

- Isochor process (V = constant) 

- Isobar process (P = constant) 

- Isothermal process (T = constant) 

- Isentropic process (ΔQ = 0) 

- Polytrophic process 

 

2.2.2.4 Compressibility 

It is also important to know that even if fluids most often is referred to as incompressible, they 

are in fact not. This is not that important for systems where the distance between source and 

consumer are short. For systems with long distances such as subsea control system it makes a 

difference. When the fluid is compressed, the pressure increases. If a valve suddenly closes, it 

will cause a rapid pressure build up and pulsation. For fluid dynamics, fluid capacitance and 

inertance are important terms. 

The bulk modulus is an expression for compressibility in the fluid, and this parameter may not 

be constant. 

Accumulators and line expansion are the main contributors to compressibility; these can also 

absorb pulsations mentioned above. Though it is not the fluid that is compressed, rather gas and 

elastic modulus of pipes, the hydraulic system “feel” the compression.  

 

2.2.2.5 Contamination 

Air contamination will influence the fluid with drastically changes in fluid properties. It will 

reduce the bulk modulus of the fluid, and reduce density and increase viscosity. It is possible 

that air will cause unreliable operation, noise and possible damage. If air is trapped in the 
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system, large temperature variations can be generated by the pressure increase. This is 

especially undesirable in water-based fluids. Air contamination can be caused by[14]: 

 Liberation of dissolved air due to local pressure drop 

 Air leakages in suction lines, pipe connections, glands and others 

 Returning fluid or tank filling which may contain free air, splashing freely down into fluid 

reservoir. 

 Low fluid level in tank, insufficient residence time 

 Bad design of tank 

 Incorrect maintenance activity 

The fluid may also carry debris. Debris contamination may damage components in the system, 

causing sticking and others. 

2.2.3 Transmission Line/Piping 

The main concern with transmission lines are resistance and volumetric expansion.  

The tie-back distances may be very long, which implies major energy losses through the line. 

Long transmission lines generally imply slower dynamic response due to resistance.  

The volumetric expansion caused by elastic volume expansion of for example steel pipes, makes 

pipes act as accumulators. The expansion of the lines diameter helps to store energy, which is 

released when pressure drops.  

2.2.4 Accumulators 

The main function of an accumulator is energy storage. It is used topside and at the sea bottom 

to provide consumers with the amount of energy needed, when it is needed. After a system 

operation is executed the system charges. After some time it is ready for new operations at full 

capacity.  

If accumulators were not used topside, bigger pumps may be needed and these pumps would 

also have undesirable working conditions. Subsea, operation of multiple valves would be 

considerably slower.  

Accumulators also have the characteristic of damping dynamic pressure variations often 

referred to as fluid/water hammering. 

Different types of accumulators exist, but the once used in the subsea control system are 

normally nitrogen filled. Generally an accumulator uses the principle of Boyle’s law. When oil is 

entering an accumulator from a hydraulic line, it will displace an equal amount of nitrogen. 

When the pressure in the line drops, the fluid is forced back into the line. This process can be 

calculated using Boyle’s law, given that the process is slow, and thereby can be considered 

isothermal. In addition, the nitrogen gas is here considered to be ideal.  

Boyle’s law: 

       (2-4 ) 

         (2-5 ) 

Where,  V = Volume  P = Pressure  k = Constant 
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An accumulator is however not perfect and there exists a pressure drop from a filled to an empty 

accumulator. If the pressure drops below a certain value, the pumps will start and try to 

compensate. When a certain pressure is reached the pump will stop. A typical efficiency is 0.95. 

This can be estimated by calculating a compressibility factor for the real gasses. For nitrogen 

there exist tables which can be used. 

Symbol of an accumulator is shown in Figure 11 

 

Figure 11 P&ID symbol of an accumulator 

 

2.2.5 Directional Control Valves 

Control valves are an important part of the subsea control system. Several types of control 

valves exist, but there are basically three elements: poppet valves, sliding spool and rotary spool 

valves. They may function as relief valves, pressure reduction valves, sequence valves etc. 

Control valve are often also used for valves which control a process loop. This could be a choke 

valve, because it controls the process flow. That is not the definition used here. 

The main interest is directional control valves (DCVs). These valves are also often referred to as 

solenoid valves, if the direction is electrically controlled. DCV will be the reference throughout 

the report. 

The DCV is used to supply pressure to either side of an actuator6. This is done by a basic control 

device, which may be manual by a hand leveller, hydraulic or electric. Subsea uses electric 

control to operate the control valves. The operation is done by creating a magnetic field, by 

energizing a coil with a certain amount of windings.  

The DCV may be pilot operated, where the electrics control the pilot flow. An amount of 

hydraulic fluid is used to switch the DCV. This is done to reduce the size of the solenoids and 

simultaneously increase the response time. A self explaining function of a DCV is given in 

appendix VIII provided from [5]. The pressure supplied to the DCV is called pilot, while the flow 

going through the DCV when opened is called supply. Both are supplied from the umbilical.  

The solenoids may be redundant. An example of real life DCV is given in Figure 12. Redundancy 

in solenoids and symbol is shown in Figure 13.  

                                                             
5 Source Hydac.com downloaded 04.04.2010 Available p 10: 
http://www.hydac.com/fileadmin/pdb/pdf/PRO0000000000000000000003000000011.pdf 
 
6 There exist DCVs with a greater number of functions 

http://www.hydac.com/fileadmin/pdb/pdf/PRO0000000000000000000003000000011.pdf
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Figure 12 A Directional Control Valve DCV[16] 

 

 

Figure 13 Redundancy in solenoids, and following P&ID symbol[5] 

2.2.6 Actuators 

A Typical subsea actuator consumes from 0.3 to 7 litres. The actuator is the component driving 

the gate valves on a Xmas tree, also referred to as cylinder. It converts the hydraulic power to 

mechanical power. When an actuator is operated, fluid is injected at one side of a piston forcing 

the piston in opposite direction. An actuator can create linear or rotary motion. An actuator may 

be single or double acting, meaning that pressure can be applied only at one side or both. In case 

of a push only, a spring may cause the actuator to retract by pressure bleed down.  

The SCSSCV supplied by HP lines are typical single acting, where constant pressurizing is needed 

in order to keep the valve open. A choke valve may be an example of double acting, where 

pressure can be applied on both sides for open/close functions. 

There are two main differences in an actuator, that is the rod end and the cap end. The rod end 

has less surface area than the cap end, meaning that higher force can be applied at the cap end 

with the same pressure. This also means that an actuator will use more fluid opening than 

closing if it is double acting, or vice versa. The general expressing for an ideal, friction-free, leak 

less cylinder is: 

      (2-6) 

When doing dynamic simulations, friction and leakage will be accounted for. The efficiency may 

vary with pressure and operating conditions. As stated by Rabie[14]: 

Leakage is inversely proportional to viscosity and directly proportional to the cube of radial 

clearance. 
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 As an example if the clearance should be doubled, the leakage rate would increase by a factor of 

8. There will always be some internal leakage in a hydraulic system. Figure 14 shows normal 

internal leakage due to clearance between piston and housing. Figure 16 show a symbol of a gate 

valve and actuator. 

 

 

Figure 14 Internal leakage  a) a leakage flow b) laminar fluid velocity profile [2] 

2.2.7 Gate Valves 

When talking about valves, the first thought is the mechanical barrier from a source of flow. It is 

where the mechanical power generated by the actuator is used. The valves perform the 

operation wanted, either it is to close a production line, open it, or manage it.  

This is referred to in this report as gate valves, which is common for Xmas tree valves. The gate 

valve itself is actually not a part of the hydraulic components, because in the actuator the 

hydraulically power is converted to mechanical.  

However, the main valves function normally influences the hydraulic system. A sticky valve may 

cause additional friction and cause pressure pulsations in the system. Changed well properties 

may cause the gate valves to actuate faster, due to reduced counter force. This depends on 

whether the gate valve has a balanced or unbalanced design. The main valves influence the 

hydraulic system, and process data may be one way to determine if the main valves operation 

commands have been executed.  

Figure 15 shows a balanced gate valve with actuator. The actuator is shown to the left. It is easy 

to see that with some pressure measures, spring properties and seal frictions a representation of 

stem force could be estimated. 

Figure 16 shows the symbol of a gate valve with actuator. It also contains a bit more information. 

A black gate valve for example implies a normally closed gate valve. The spring in the actuator 

indicates the spring retractable function. 
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Figure 15 A Balanced Gate Valve with Actuator[5] 

 

Figure 16 P&ID symbol of a gate valve with actuator 

Some important influences of valves to be aware of: 

 Dead band, mainly due to friction and backlash 
 Valve type and sizing and performance 
 Hysteresis 
 Spring range 
 Pressure 
 Leakage 
 Flow 

2.2.8 Filters 

Filters are important to ensure a clean fluid and smooth operations. Filters topside are often 

placed in parallel, while subsea, filters may have a bypass. Filter bypass is secondary path past 

the filter. The bypass has higher cracking pressure than the filter side, often made possible by 

check valves. This way flow is directed through the filter. If the filter gets jammed, a pressure is 

build up, and flow passes through the bypass. 

 

Figure 17 P&ID symbol of a filter 
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2.2.9 Check Valves 

Check valves typically has a certain cracking pressure to open. This is done by controlling 

stiffness of a spring, which keeps the valve closed. At a certain “crack pressure” fluid is allowed 

to flow. In addition allows flow in just one direction. Symbol of a ball type check valve is shown 

in Figure 18. 

 

Figure 18 P&ID symbol of a ball type check valve 

 

2.3 Understanding The System as a Whole 
Now, a brief description of important components in the system is given. So how do the 

components interact? First of all that depends on how the pieces are put together, but generally 

there are three approaches for understanding the system. 

- Make static calculations with reasonable assumptions. 

- Model the process with reasonable assumptions.  

- Look at the process, and try to understand why. 

Static calculations are fast and easy, and may give interesting results. Static calculations are 

often used when dimensioning the system. However, static calculations do not tell anything 

about the dynamics. While algebraic equations are used for static system, differential equations 

are used for dynamic systems. When generating dynamic equations, fluid capacitance and 

inertance are inherent. Different methods and approaches on generating the equations exist. 

One method, which is used in this thesis, is simulation using dedicated software, presented in 

5.6. The reason why this was used is that even simple systems can become very complex when 

doing time domain calculations. 

When new subsea system is being designed, one of the design criteria is that hydraulic response 

analysis is executed. When the system is installed, it is possible to learn the system, by looking at 

process data. 

Dynamic modelling provides a physical presentation, which can help us understand how more 

complex systems work together. This especially yields for looking at start up, shut down, and 

emergency conditions. 

Subsea systems are relative simple systems. However, the combination of dynamic dependence, 

and number of operation possibilities of a complete system makes it advanced. Some of the 

influences are provided in Figure 19. 
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Figure 19 The domain of Fluid Power Control [17]  
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3 Norne  

3.1 Norne General Information  
The Norne field is located in the Norwegian Sea, in block 6608/10 and 6608/11, seen in 

appendix I. The license was awarded in 1986 and Norne came on stream in November 1997. 

Norne has in the later years expanded with step-out to Urd-field with Stær and Svale which came 

on stream in 2005, and Alve in 2009. This has extended lifetime. In addition, planned 

developments such as Marulk and Fossekall will increase lifetime even more.  

The subsea layout can be seen in Figure 20. Marulk is located about 30 km south west of Norne 

FPSO. Fossekall is located 15 km south east of Norne FPSO.  

The water depth is the area is approximately 350-380 meters. 

Norne is an FPSO, which means Floating Production Storage and Offloading Vessel. A turret in 

the ships allows it to rotate, and production lines, umbilicals mooring lines etc. are connected to 

the turret. The ship can be disconnected in case of bad weather. Oil is stored in the ship for 

offloading, but gas from Norne is exported via Norne gas export pipeline to Åsgard transport and 

from there to Kårstø in Rogaland.  

It should also be mentioned that Norne has 12 electrical actuated chokes. 

 

Figure 20 Layout of Norne FPSO and appurtenant templates 

3.2 Alve 
The reason for describing Alve is because easier to get hold of production data to analyze. The 

reason why it is easier to get a hold of data is that Alve is a new development. In addition, Alve is 

producing from only one well on the template. This is advantageous, because it limits the 

amount of data. 

Alve is located 16 km south west of Norne. Alve is expected to extend the lifetime of Norne from 

2016 to 2021 and produces gas and condensate. The Xmas tree is horizontal type, which is 

mainly used on this field. Even if Alve is a new development, Alve use the same subsea control 

modules as on the other templates on the field7. 

                                                             
7 MKII E150 
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3.3 Norne Subsea Control System 
When talking about Norne control system it implies the control of not only the Norne satellites8, 

but also Norne M and K, Urd and Alve. The reason is that these other fields are tied back to 

Norne FPSO. All wells have the same HPU unit located onboard Norne FPSO. Different umbilicals 

transport hydraulic fluid, power and communication to the subsea wells.  

The most common used subsea control system is multiplexed electro-hydraulic systems. The 

main components in multiplexed systems are hydraulic, electrical, and control features. The 

equipment on Alve is provided from FMC Technologies, and a general FMC Technologies SCS can 

be found in appendix IV. 

3.3.1 Xmas Tree 

In Figure 21 a typical horizontal subsea Xmas tree is shown. The tree function acts as one of two 
independent well barriers needed to maintain production. In addition the choke valve located in 
the tree regulates the flow from the well into the subsea manifold.  

There are different types of subsea threes, and particularly two main differences. That is 
horizontal and vertical trees. The main advantage of a horizontal tree is that it is possible to do 
intervention without pulling the tree. The main advantage with a vertical tree is that you can pull 
the tubing without pulling the tree. Design and type varies somewhat from field to field. 

The Xmas tree consists of a lot of valves, thereby its name. Some of the most important can be 
features can be seen in Figure 21. The valves are run mainly by the SCS, or they can be manually 
overridden by an ROV. On the Xmas tree the SCM is located.  

 

Figure 21 Main features of a horizontal Xmas tree[5] 

3.3.2 Subsea Manifold 

The manifold also contains a lot of valves. The manifolds task is to receive and manage 
production fluid from several satellite wells or template wells9, in order to deliver a controlled 
flow to the flow lines, often with lower pressure rating. It also normally consists of a test line and 
water injection line. Since the pressure rating of flow lines may be lower, HIPPS valves may be 

                                                             
8 The first development at Norne is often referred to as Norne satellites, even though it really is 
templates. 
9 Some installations may have the manifold on the template 
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installed to cope for this by rapidly shutting down and protect the flow line, as seen in figure 13 
to the right. 

The manifold valves are normally operated manually, but Norne K has hydraulically and D has 
electrical operated valves. The valves shown in Figure 22 are in other words not part of the 
subsea control system given.  

 

Figure 22 A subsea manifold[5] 

3.3.3 Subsea Information Flow 

 

Figure 23 FMC Subsea control system information flow [3] 

Figure 23 shows an example of the data flow from a subsea electronic module (SEM) located 
within the subsea control module (SCM) by FMC Technologies. 

There is a big arrow between the subsea and topside electronic module. From there are two 
arrows, one as big as the first, and another considerably smaller. The idea behind this picture is 
to show the importance of extracting the raw data from the SCM.  

These data are then stored, which may be used later for monitoring purposes, and thereby 
stored in a historical database. Data interesting for the operator are shown in the little arrow. He 
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only needs to know some certain parameters of the wellbore and the annulus, making it easier to 
get the overview when reducing the data to the information needed. 

The same flow also implies when connecting additional applications. 

Today, a sampling rate from subsea installations is normally given by 1 minute middle values. 

3.3.4 Hydraulic Fluid Used 

Hydraulic fluid is needed to operate subsea valves. Emission of chemicals from offshore 

installations needs to be approved by The Climate and Pollution Agency of Norway. The agency 

has classified different chemicals used offshore in four different categories, green, yellow, red 

and black. Green chemicals are considered natural to saltwater environment, or do not have any 

environmental impact. Yellow chemicals are considered acceptable, while red and black 

chemicals are considered hazardous towards environment, and allowed only under special 

considerations. From 1997 to 2008, red and black emissions have been reduced with more than 

99.5 %10. 

The hydraulic fluid used at Norne is a water-glycol based fluid that contains chemicals 

considered yellow by SFT. It is referred to as HW443. Fluid properties can be found in [18]. The 

HW443 at Norne earlier had a fluorescent added, which base function was to detect subsea 

leakages with ease by ROV. Due to hazardous impact on the environment stated by The Climate 

and Pollution Agency Norway, this is no longer used. 

3.3.5 Fluid Flow Through the SCS 

In Figure 24 a description of the fluid travel through the system is given. The different main 

parts of the system is shown. The information is gathered from P&ID drawings and Raymond 

Nilsen has provided supplementary information where needed. 

We begin filling the system with hydraulic fluid, as shown by a big arrow in the HPU in the upper 

right part of Figure 24. The fluid then enters the return tank. Filling the supply tank is done by 

pumps from the return tank (not shown). These pumps also act as circulation for fluid filtering.  

When the fluid is in the supply tank, it has four different paths further, two LP pumps and two 

HP pumps. Further guide trough the system is done on the LP side of the system. 

When fluid leaves the pump it enters the accumulator skid for storage, assuring that pressure is 

kept within certain limits, and preventing pumps from constant start/stop. The fluid is then 

directed to different umbilicals. When the fluid has arrived subsea, it is directed to a given 

template, and to a given Xmas tree. When arriving at the three, it enters the SCM, as shown in the 

lower right in Figure 24. 

In the SCM fluid is diverted into a supply and pilot stage. The pilot stage supply the directional 

control valves with a small amount of actuating fluid, which opens and closes the valves. When 

opened, fluid from the supply stage routes fluid to the valve actuator located on the Xmas tree, as 

shown on the bottom left on Figure 24. This makes the tree valve to open or close. Return fluid 

from the Xmas tree valve actuator, and the directional control valve, are directed to the return 

line. From the common return line fluid leaves the control module and enters the sea. 

                                                             
10 Available: http://www.klif.no/publikasjoner/2637/ta2637.pdf, page 5 Downloaded 
02.04.2010 
 

http://www.klif.no/publikasjoner/2637/ta2637.pdf
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Figure 24 Norne SCS hydraulic system schematic 

3.3.6 Hydraulic Pump Unit (HPU) 

There is one Hydraulic Power Unit (HPU) delivering hydraulic control fluid to all the subsea 

wells. The HPU is located in a container in the turret aboard Norne. The data and information 

here is mainly gathered from technical documents, such as HPU technical document and 

Hydraulic response calculation reports available at Statoil. 

The hydraulic pump unit is the heart of the system, securing hydraulic fluid to the consumers. 

The HPU has two supplies, low pressure (LP) and high pressure (HP). The HPU is redundant, 

that means that there are two pumps for both LP and HP supply. There are two low pressure 

(LP) circuits at 250 and 345 bar, and two high pressure (HP) circuits at 540 and 690 bar. The 

low pressure circuit act as secondary by adjusting a regulator. If pressure drops below the lower 

pressure, the second pump start, which insures a redundant circuit. If the pressure drops below 

210 and 480 bar all the pumps shut down. 

The LP hydraulic pump delivers 6,7l/min at 345 bar and 3.5l/min for HP pump at 690 bar. The 

electro motors are 5.5kW for LP and 7.5 kW for HP. Both are 690V, 50Hz and have three phases. 

By looking at process data an average filling time is about seven minutes, which implies that the 

capacity of the accumulators is not fully utilized. 

The accumulator skids are 300 litres for LP, and 92 litres for HP. In case of emergency quick 

dump valves ensure that the umbilical and accumulator skid has no influence in the bleed down. 

It is a requirement that there should be room for a total stop of the pumps in 12 hours. This is 

done with a compensated leakage of 36.5 litre on the LP system over 12 hours.  
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Response of the HPU and operation is important. What is for example the response time for 

filing an LP system from a ventilated umbilical? From looking at hydraulic response calculations, 

it may take half an hour to gain 95% of steady state pressure at SCM, and an additional half an 

hour before steady state. This requires that pressure is kept within limits in the topside 

accumulator skid. These delays are important to be aware of, especially since it take an 

additional 30 minutes from 95%-100% of steady state. The last 5% only implies a total fluid 

consumption of 3 litres. During the first 30 minutes 54 litres is consumed. The curvature of the 

pressure over time may be seen as a horizontal asymptotic curve tending towards the charge 

pressure. 

3.3.7 Umbilical 

There are mainly two types of umbilicals used, dynamical and static. Dynamic umbilicals are 

used from topside to subsea. Subsea, static umbilicals are used via a connection on the sea 

bottom. If looking at the cross section of the static umbilical it can be seen that it consists of a 

Methanol injection, inhibitor injection LP and HP supply lines, power and communication. The 

structure of umbilicals varies. An example of a static umbilical is shown in Figure 25.  

There are five umbilical leaving the Norne FPSO, one to template B, C and M, one to Alve, one to 

E and F, one to D and K, and finally one to Svale and Stær. Notice how the templates are 

connected in series. The umbilicals to Alve have two redundant pipes for both LP and HP. 

 

 

Figure 25 Example of a static umbilical 

 

3.3.8 Subsea Control Module (SCM) 

The SCM is in many ways the brain of the Xmas tree. It interprets signals, and distributes 
electrical and hydraulic power. In Figure 26 there are some pictures of a subsea control module 
(SCM). The construction is shown in a sketch to the left. In the lower right shows the Subsea 
Electronic Modules (SEM). The SCM consists of two identical separate electronic parts, making 
the module redundant with respect to failure, SEM A and B. The SCM are mounted to the subsea 
control module mounting base (SCMMB), and are retrievable. 

The SEM interprets topside commands, and distributes electric power to the DCV solenoids. In 
addition it can manage permanent and additional sensors.  

The DCVs used at Alve are 3 way 2 positions DCVs. This means that it has three ports, two 

positions (on/off). They are normally closed and spring retractable and have redundant 

solenoids. DCVs are shown in a rack in the middle of the SCM in left Figure 26. 
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For fluid power storage near the SCM, accumulators may be placed on the outer can. Normally 

this may be 25 litres, but this varies. Some may even not have a subsea accumulator. 

 

Figure 26 Subsea control module (SCM)[5] 

 

3.4 Failures 
When doing feasibility study for this master thesis, one of the statements made was SCMs failing 

a lot. Since it consists of signals, electronics and hydraulics the failure modes could be many. In 

order to reveal the vital few causes for leakage subsea, a Pareto analysis was on the agenda. 

Raymond Nilsen however stated that 98% of all leakages in the hydraulic system were caused by 

DCV problems. 98% could surely be characterized as vital few in a Pareto. Because of Nilsen’s 

statement, DCV have been focused upon in this report, more than other failure modes causing 

leakages.  

Why so high failure rate?  

Zeng [19] states some interesting remarks from a case study in 1999 at Schiehallion Fields west 

of Shetland. After subsequent investigation, component damage was found on DCVs. This was a 

consequence of long term seawater presence due to seawater ingress during installation. In 

addition, the hydraulic fluid caused biodegradation, which resulted in DCV leakage. An 

individual leakage of 35 litres/hour and combined maximum leakage rate of 70 litres/hour were 

observed.  

Zeng also states that a closed circuit system has proven more reliable than open circuit systems. 

One of the reasons is seawater ingress; another may be that closed system uses hydraulic oils, 

instead of water based fluids. As mentioned earlier, increased cost, and potentially increased 

environmental risks in case of leakage may be drawbacks of closed systems. 
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It should however not be forgotten that there are a lot of other failure modes. This might be 

electrical power problems, signal/data electronics, as well as hydraulic. They may be external as 

well as internal problems, due to degradation or due to external influence. It might be desirable 

to get an overview. 

This is possible by using Failure Mode, Effect and Criticality Analysis, or FMECA. The FMECA is 

broken down in system functions, so it is clear which function that is lost in case of faults. Other 

tools are Fault Tree Analysis (FTA) and Event Tree analysis (ETA), determining causes and risk 

for a top event in addition to consequences of that event. This is part of the Reliability-Centred 

Maintenance11 (RCM) e strategy. It is a time consuming process to make these overviews, and 

this is not part of this report.  

Example of other possible leakages not considered, although a leakage detection system may 
detect these as well: 

 Valve leakage, seat, rod, piston 
 Couplings and connectors 
 Static and dynamic umbilicals  
 Topside, HPU 
 And more 

A collection of failure and causes in hydraulic systems is summarized by [20]. It is also possible 

to get more detailed information about statistic of faults in Sintef Industrial Management’s 

OREDA.   

                                                             
11 As stated in [2]the RCM (Reliability based maintenance) is a method to enable maintenance strategies for all the 
components in a process based on internal and external criteria related to safety, environment, operation and 
economy. RCM sees the components in a system perspective based upon the demands of a specific function, 
functionality problems, and prevention of functionality problems 
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4 Basis of Detection and Diagnosis 

4.1 What is a Leakage? 
A leakage in this context is all fluid loss, either internally or to surrounding environment, which 

is not used for normal operation.  

What is normal operation? It is dependent on a number of factors. First of all there is always 

some leakage from the hydraulic actuators. An estimated 5-6litres12 for LP and HP per hour is 

considered normal, without any operation taking place.  

A leakage has a leakage rate, which defines quantity. As an example, leakage rates have reached 

over 30 litres an hour before being detected. While leakage rates in the order 3-4 litres an hour 

would most probably not be detected at all13. As a comment 3-4 litre is equivalent to an increase 

of 50% of the normal leakage rate without operation. 

4.1.1 Leakage Detection: 

Question: Is the system leaking?  

Answer:  Yes / No.  

The answer maybe not as easy as one should think. The most important feature when 

monitoring any system is to know whether the system is OK or not. This may be done visually, 

but that is not easy subsea. On-line flow sensors or/and pressure sensors, may indicate flow 

losses via systems analysis. Automatic detection would be a great advantage, rather than manual 

observation of data. This is why we apply methods. 

A detection method for leakages should at least consider actual and allowable leakage rate, 

compensated for deviation uncertainties. In addition it should robust. Frequent false alarms 

would undermine the system, and should be avoided, or at least fixed when encountered. 

Performance criteria for leakage detection can be found in Table 3. 

When the system is not OK, the diagnose starts. 

4.1.2 Leakage Diagnosis 

Question:  Where is it leaking, how big is it, what is leaking, when did it start?  

Answer: It might be complicated. 

Diagnosis is all about information. It is desirable to know in details what caused the system to 

leak. In this case, it is known that a leakage is taking place. How much the system is leaking, 

where, what, and when is unknown.  

It is important to determine to what degree diagnosis is preferable. The diagnosis may very well 

be automated, but often it requires some kind of service when considering details.  

4.1.3 SCS Leakage Detection and Diagnosis. 

There may be similarities between detection and diagnosis. Leakage detection in a SCM based on 

SCM instrumentation, would provide diagnostics as well. This is in spite of the fact that a 

                                                             
12 Assuming an average leakage rate of 0.3ml/min for HP and 0.25ml/min for LP, which according to the 
HPU technical document is a fair suggestion. 32 HP valves and 320 LP valves is assumed. 
13 As stated by Raymond Nilsen 
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detection method was used rather than a diagnostic method. The reason for this is the 

hierarchical structure of the SCS. By knowing which tree that causes leakage, diagnosis is 

provided to some extent. Figure 27 describes the structure. To the left, a possible number of 

branches are shown. If the model for detection detects leakages far down in the system 

hierarchy, an automated diagnose would also be given. 

 

Figure 27 The hierarchical structure of the SCS 

 

First of all, to provide good leakage systems for detection are normally first priority. This is 

because systems normally are operational, and since diagnosing a healthy system would have no 

value.  

Diagnosis of systems is important as well, and the fact that detection may provide diagnostics, is 

interesting. Some methods may even provide both detection and diagnosis features. Diagnostic 

systems are scarce.  

The following statement by Michelsen [21] may explain why the status is as it is: 

In general, the literature references on industrial applications of diagnostic systems are not 

many. There are no case studies that analyze the specific benefits that can be attained 

trough the implementation of diagnostic systems. This could be due to the proprietary 

nature of the development of in-house systems. Also, there seems to be a general lack of 

overall penetration of diagnostic systems in process industries. This might be due to the gap 

between academic research and industrial practice.  

It would be more relevant to manually look at process data for diagnosis purposes, than 

detection. This might be a reason why system diagnosis is done in diagnostic centres, like the GE 

subsea centre. This also seems to be the trend within other diagnostic areas like subsea pumps  

An impression from the operation departments is that the normal workload does not allow them 

to be dedicated towards detecting and diagnostic methods. It might be necessary implement it to 

a long time strategy, and provide dedicated work towards detection and diagnosis. 
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4.2 An Example from Pipelines 

4.2.1 Instrumentation relevant for leakage detection of pipelines 

An American Petroleum Institute (API) report[22], chapter 5.4 present nine steps for 

establishing leak detection potential. The first of these steps are the collection of data. Four main 

data areas are given. 

1. Pipeline data (subsea control system data) 

2. Fluid Data 

3. Operational data 

4. Uncertainties of process variable measurements 

Pipeline data is property data of the pipeline, which can be viewed as system data for subsea 

hydraulic systems. Operational data is important, especially for subsea hydraulic systems, due to 

vast number of operation combinations, and the appurtenant response. Uncertainties of process 

variable measurements are sensors like pressure, temperature etc. Which are current, not a stet 

value. Certain methods may need additional certainty and sampling rate than others. 

 

4.2.2 Methods for Pipeline Leakage Detection and Diagnosis 

API has recommended practice for state-of-the-art leakage detection and diagnosis for pipelines. 

In Computational Pipeline Monitoring for liquids, the following methods are described [23]: 

1. Line balance calculation 

The conservation of mass ideology is used, which means that the sum of the fluid entering the 

system is the same which exit the system. These calculations are done over some time for 

pipelines, typically more than 15 minutes periods. 

2. Real time transient model 

This method uses a simulation model for the given pipeline, is a more sophisticated method of 

mass balance, capable of comparing transients in the pipeline against measured data by applying 

equations of motion. Normally, pressure and flow are the most interesting variables. This is 

mainly referred to as a qualitative method. 

3. Statistical analysis 

This method may be able to tell us something about the probability that a leakage occurs. By 

using defined pressure and flow of historical data, a constant comparison for deviations is 

executed. A leakage can then be defined with a given certainty, if pattern deviation increases. In 

addition to conservation of mass, signature recognition techniques may be used. This is mainly 

referred to as a qualitative approach. 

4. Pressure/flow monitoring 

This method looks at the relationship between different sensor output and an applied algorithm 

to determine abnormalities. 

5. Acoustic/Negative Pressure Wave 
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When a leakage suddenly appears in a pipeline, an appurtenant pressure drop is created. By 

measuring time between a sensor feels the drop, an estimation of leakage can be extracted. This 

is a type of method in need for a very high sapling rate of data, where leakage size and location is 

provided.  

Table 2 shows a comparison between method and data. The comparison yields for SCS as well. 

The “x” equals not needed, “v” equals needed, and “?” equals case dependent. As we can see, a 

real time transient method needs all the data, while a statistical approach may not need any data 

at all. 

  

Pipeline data  
Fluid 
Data 

Operational 
data 

Uncertainties 
of process 
variable 

measurements 

DATA 

Method 

Line balance calculation x x v v 

Real time transient model v v v v 

Statistical analysis x x ? x 

Pressure/flow monitoring ? x x v 

Acoustic/Negative 
Pressure Wave x x x v 

     Table 2 Comparison of data, method. 

 

4.2.3 Performance Criteria for Leakage Detection and Diagnosis. 

There are four main performance criteria for leakage detection and diagnosis: 

1. Reliability 

2. Sensitivity 

3. Accuracy 

4. Robustness 

These criteria are important to have in mind. The criteria influence the quality of leakage 

detection and diagnosis. If certain sensitivity is required, it may not be satisfactory if a leakage is 

below the minimum detectable leak rate. This is obvious. The table is inspired from[22]: 

Performance Metric Qualitative Performance Criteria Specification 
Sensitivity Minimum detectable leak rate 

Minimum detectable leak volume 
Maximum volume loss prior to alarm 
Response time for large leak 
Response time for small leak 
 

Reliability Incorrect leak alarm declaration rate (overall) 
Incorrect leak alarm declaration rate (steady state flow) 
Incorrect leak alarm declaration rate (transient conditions) 
Incorrect leak alarm declaration rate (static Conditions) 
 

Robustness Loss of function due to pressure outage(s) 
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Loss of function due to temperature outage(s) 
Loss of function due to flow measurement outage(s) 
Loss of function due to pump state changes 
Loss of function due to valve state changes 
Loss of sensitivity due to pump changes  
Loss of sensitivity due to valve state changes 
Start up stabilization period 
 

Accuracy Leak location error 
Leak flow rate error 
Leak volume error 
 

Table 3 Performance criteria specifications of leakage detection and diagnosis 

 

4.2.4 Pipeline Monitoring Systems Today 

Monitoring of tools exist within pipeline and water plant systems for leakage detection and 

localization. These are systems utilizing both static and dynamic behaviour to detect leakages, 

which is done with the aid of computers, online data and in real time.  

Example of such a system is GALILEO from Krohne. The system (model based pipeline leak 

detection and localization) has proven itself suitable for the industry[24]. The systems have 

shown great potential in detecting leaks during run-up and run-down. Another advantage with 

the model based approach is that it is possible to detect where the leak is located. This is for 

example done by using gradient intersection of pressure sensors along the pipeline, as point 5 in 

4.2.2  

A model of the GALILEO system is shown in Figure 28. 

 

Figure 28 Model-based Pipeline Leak Detection and Localization by GALILEO, Krohne[24] 

Also other types of system exist, which has shown great potential within leakage detection. 

ATMOS Pipe by ATMOSI has under a implementation on the Wilhelmshaven to Köln (the NWO 

Pipeline) and Hamburg (the NDO pipeline)[25] shown that leakages were detected even under 

severe transient conditions without generation of false alarms. 
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Mass conservation and hypothesis leak against leak free are used. Key feature of this system is 
comprehensive validation of data, and the combination of: 

 Modified volume balance  (1) 
 Pressure and flow monitoring (4) 
 Statistical analysis   (3) 

It has shown potential applying all three methods simultaneous. Notice that the Real time 
transient model is not a part of this system. It is also worth noticing the estimation of certainty, 
based on statics. Bottlenecks mentioned were mainly bandwidth and the importance of 
instrument reliability. 

 

4.3 State-of-the-art, What is Available Subsea Today? 
To begin with, very little exist when it comes to monitoring of hydraulic control systems subsea. 

The systems are monitored to some degree, but the data are not used actively. Today, leakages 

are detected by a constant need for hydraulic filling on the HPU. Leakages are diagnosed by 

closing of parts of the systems, and monitor the pressure head.  

Topside more has been done and some systems provide leakage detection and diagnosis tools. 

These systems require more sensors than available subsea today. An example of hardware used 

by ValveWatch is given [26]: 

 Dynamic Pressure Transducers 

 Strain Gage 

 Static Pressure Sensor 

 Ultrasonic Leak Sensor 

Most of the systems seem to use qualitative approaches, where comparisons of valve signatures 

are done manually. In addition the tools which will be presented here are mainly concerned with 

valves and actuators. Seen from a SCS leakage point of view, the actuator leakage would only be 

of interest, since production flow is outside the SCS boundaries. The SCS may function perfectly 

even if a gate valve has an internal leakage.  

ValveWatch 

ValveWatch by Crane inc. is an on-line condition monitoring and leak detection program for 

critical valves and actuators. ValveWatch collects data, and uses patented algorithms which run 

automatically for leakage calculation. Valve signatures are identified and analyzed, and a simple 

web interface ensures access to system status. 

Some conditions may be analysed by partial stroke testing or even with open valves. A common 

strategy used is comparison of valve characteristics of a valve in good condition with valves with 

faults. 

Fisher ValveLink 

Fisher ValveLink by Emerson Process Management is another example. The program performs 

valve and actuator diagnosis. This is done mainly in three steps[27]: 

 Performance diagnostics 
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 Dabbling diagnostics 

 Diagnostics interpretation services 

Performance diagnostics provides diagnostics while valves are in service. In addition to showing 

valve performance, it makes advices. However it requires that someone watches the data. 

Dabbling diagnostics is a diagnostic data interpretation feature. Actuator leak inspections are 

one among other signatures investigated.14 The diagnostics interpretation services allow 

Emerson engineers to interpret valve data. 

A promising solution which is being used within actuator and valve monitoring is acoustics. 

Even though it is influenced by noise, placement, process conditions, turbulent flow etc. [28]. 

Such sensors may be mounted on an ROV for inspection or permanently installed. An example of 

a permanent sensor may be the leakage detector by Clampon [29]. Another example may be an 

acoustic system as the NCM 4 system by Bjørge Naxys[30]. 

If this is relevant for the SCS might be discussed. It is not probable that acoustics are available 

for SCS hydraulic leakages at least not internal leakages. The ability to distinguish abnormal 

leakages from normal and the limited possibilities for changes inside SCM may be some reasons. 

For gate valves and actuator relevance may also be discussed. They may very well fail due to a 

bunch of factors, but it is not the dominating cause of leakage in the SCS. 

Another approach is to use leak tracing fluorescent dye for external leakages, but since the use of 

dye is prohibited at Norne (3.3.4) it is not considered. 

 

4.3.1 GE SmartCentre 

The Smart Centre is part of General Electric (GE) overall remote monitoring and diagnostics 

tactics, and is located at Nailsea in UK. The centre officially opened in October 2009, with Ove 

Magne Kallestad (Vice President of Subsea Technology and Operations at Statoil) present. It all 

started with time consuming commission of subsea completions. The main task of the centre is 

to monitor and gather data from subsea fields from around the world, and then interpret the 

data in order to extract knowledge for decision purposes. It is not only the subsea control system 

which is monitored. The motivation is increased efficiency, uptime, production rates and 

maximizing lifetime. 

Rod Tester said in an article in the OTC 3-6 May2010[31]:  

 

We can look at all the data such as tracking insulation resistance, hydraulic leaks and valve 

signatures to provide useful information to customers that can greatly improve the effectiveness 

of all maintenance activities. 

 

Historical data may also be gathered and run trough simulators in order to study past events and 

gain insight. Tester also explained that the centre solved a problem at Snøhvit gas field in two 

hours, which normally could take a week.  

                                                             
14 Available: http://www2.emersonprocess.com/en-
US/brands/fisher/DigitalValveControllers/FIELDVUESolutions/ValveDiagnostics/Pages/Actuat
orLeakInspection.aspx Downloaded:20.05.2010 
 

http://www2.emersonprocess.com/en-US/brands/fisher/DigitalValveControllers/FIELDVUESolutions/ValveDiagnostics/Pages/ActuatorLeakInspection.aspx
http://www2.emersonprocess.com/en-US/brands/fisher/DigitalValveControllers/FIELDVUESolutions/ValveDiagnostics/Pages/ActuatorLeakInspection.aspx
http://www2.emersonprocess.com/en-US/brands/fisher/DigitalValveControllers/FIELDVUESolutions/ValveDiagnostics/Pages/ActuatorLeakInspection.aspx
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It would have been interesting to know more about this centre. A lot of questions about 

methods, implementation etc. remains unanswered. 

 

4.3.2 FMC Technologies CPM 

In an FMC Technologies brochure on Condition and Performance Maintenance (CPM) [32] one of 

the monitored systems are the SCS. The system collects raw data from the SCM and sensors, 

giving an indication of condition using Technical Condition Index (TCI)15. The idea is to gather 

key information, validate it, and then process it, leaving decision makers with the data they need, 

when they need it. Its core function is to get as much knowledge as possible with the data at 

hand, in addition to build up a system of expert network and historical data. 

The details of what methods are used are not available. According to Guttorm Røed at FMC 

Technologies Ågotnes, this information is kept internally because patenting is ongoing. 

 

                                                             
15 TCI is similar to KPI 
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4.4 Instrumentation Relevant for Leakage Detection and Diagnosis 

4.4.1 Example of a SCS Sensor Setup 

By studying the P&ID’s of Norne, these are the measures chosen of interest. In Figure 29 sensors 

have been added to Figure 24. The different sensors are numbered and explained in 4.4.2. 

Electrical instrumentation, signal and consumption have not been addressed. Although electrical 

energy balance of solenoids may be very interesting area to pursue. 
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Figure 29 SCS sensors setup 

 

Sensor  Description 

LT 1, LT2 Tank level measurement supply and return 

P 1, P 2 Accumulator skid pressure for LP and HP 

FT 1, FT 3 SCM inlet and outlet flow 

P4, P5, P6, P7 SCM inlet pressure and pressure after DCVs 
for LP and HP 

XY 1 Choke valve actuation 

P 8 Well pressure 

P 3 Umbilical inlet pressure 
Table 4 Sensor description for Figure 29 

4.4.2 Comments to Instrumentation (Table 4): 

The tank level measurements (LT1, LT2) are done by pressure differential measures. The 

measure tends to be very rough. This may be due to relative large tank compared with 
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accumulator skid loading capacity, only being 4%16 of total tank volume. Wave motion on the 

vessel may also be a contributor, making it difficult to use this measure to accurately calculate 

the amount of fluid entering the system. Trending over some time would however give accurate 

results. So fluid content changes in the tank must be seen over time.  

When it comes to motor or pump data, the pumps are either off or on. The pumps run at 

constant speeds. Pump data was not available, but could be interesting to look at. It is however 

possible to register pump start/stop by looking at the charging of the system. The pumps start 

when the accumulator skid pressure (P1, P2) drops to a certain level, and stop when a certain 

pressure level is reached. This way if assuming no variation in nitrogen charge pressure from 

accumulators each time, a certain amount of fluid will enter each time the pumps run. Some 

variations may however be present, if the system is delivering fluid to its consumers while filling 

the accumulators.  

In Figure 30 pump operating region is shown, with respect to accumulator pressure. The green 

line represents the accumulator skid pressure topside. When accumulators are completely 

empty, pressure drops rapidly, or when the accumulators reach max volume, the pressure rises 

rapidly. The relation is here given as linear for illustration purposes. In reality it is close to 

linear, but not linear.  

The relation between start and stop are normally only affected by operation and normal leakage. 

A pump fill up without operations may take six and a half minute. With operation the time might 

be seven minutes. Of course, this is dependent upon number and type of operations. The relation 

between stop and start is highly dependent on operation. A period without operation could 

easily exceed 12 hours due to normal leakage rate. 

 

Figure 30 Pump operating region seen from P1 and P2 

By watching the accumulator skid pressure (P1, P2), it is possible to know the amount of times 

the pump has run, and time used for filling. It is logical that if the pump should run constantly, or 

with greater frequency than normal, an abnormal situation would be present, that is leakage 

somewhere in the system, or constant dumping back to return tank from the HPU. The 

accumulator skid pressure is very interesting, because it will shape after different operations. In 

addition this pressure is measured by two identical transmitters, which increases the reliability 

of the measurement itself. 

                                                             
16 Assuming a tank size of equals 1500l, and accumulator skid charge equals 75l 
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If looking at the flow meters (FT1, FT2, FT3), it should be a great measure for suggesting 

leakages. If a flow from the SCM is greater than anticipated it could indicate leakage. Also, the 

tree causing the trouble would be revealed. Another consideration is that a leakage is normally 

internal, which means it will not be detected by the meters. This is because the internal leakage 

will be part of the flow meter measure both in and out. If considering operation it could be 

detected. 

Not every SCM has flow meters. In addition, Anders Valland stated a concern regarding the 

measurement sensitivity. The flow meters may not register leakages. This should prove to be a 

valid concern. The flow meter used is turbine flow meter17. The value of the meters is in other 

words reduced.  

The SCM pressure measurements (P4, P6) are also of interest. In the same manner as the 

accumulator skid pressure, the pressure at the SCM will vary within some range before the 

accumulator is empty. If valves should be operated a lot over a short period of time, the 

accumulator would empty, and a significant pressure drop would occur. Also the nature of check 

valves and or filter bypasses is interesting, requiring a certain crack pressure to open.  

The pressure is measured over all DCVs (P5, P7). This is interesting, because the pressure drop 

over the DCV would be more or less zero. An increase in this pressure drop could indicate an 

actuator leakage. 

The main interest of the choke valve actuation (XY1) and well pressure (P8) was to represent 

the operation. The umbilical inlet pressure (P3) was of interest because of the ability to diagnose 

a leaking umbilical. P3 is also used when umbilicals are tested for leakages today. Unfortunately, 

it was not able to extract the data from this sensor. 

 

4.4.3 Additional Measurements 

If looking towards monitored valves by software as ValveLink or ValveWatch, a considerable 

additional amount of sensors is available, compared to what existing subsea. As mentioned this 

could be dynamic pressure transducers, strain gages, ultrasonic leak sensors, piston travel etc. 

As stated at the ValveWatch homepage[33]: 

Strain sensors and actuator pressure sensors monitor valve & actuator performance during 

operation, while dynamic pressure sensors and acoustic sensors monitor the valve for 

internal seat leaks.  Together, these sensors provide operators an automated checkup on 

the condition of the valve and actuator package. 

And as stated in[34]: 

… a large part of critical control valve conditions will most certainly be significantly 
reduced alone through self-adjusting, integrated, digital positioners without the utilization 
of additional diagnostic options.  

                                                             
17 Vortex meters and positive-displacement have shown great accuracy13. Hehn, A.H., Fluid 
power troubleshooting. 2nd ed. 1995, New York: M. Dekker. xiii, 647 p.. However, it is not easy to 
make changes to the SCM from a Statoil point of view. Changes may also address new problems. 
Possible design improvements of the SCS would not be addressed here. 
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When looking at subsea leakage and additional measurements, it would first of all be sensible to 

use information available. The SCS is not made specifically for monitoring purposes, therefore 

limitations apply. When information already at hand has been exploited, additional data may be 

added to increase accuracy and robustness of the monitoring scheme. 

It is not always easy to extract additional information. Topside, the implementation of sensors 

has been expensive. This is due to cabling costs, ex-requirements, calibration18 etc. This has 

however improved with wireless sensors[35]. Topside wireless monitoring has made a huge 

impact, drastically reducing the overall cost of sensor implementation. 

Subsea it has been even more difficult due to high installation costs, high sensor costs, limited 

bandwidth19, and limited interfaces made possible. 

This might be a fact to consider for increasing robustness and accuracy in the monitoring 

system. Generally it would be much easier to defend additional instrumentation topside, 

compared with subsea. An example of such a sensor could be a topside flow meter and pressure 

sensor placed before the pump. The flow meter could verify tank level measurements, and a 

pressure sensor could provide accurate pressure difference across the pump, which could be 

compared with pump data from manufacturer or new condition. The pump efficiency could then 

also be calculated. This would also better the performance criteria in a leakage detection and 

diagnosis system.  

This idea was also addressed in [36]: 

A few additional, basic subsea measurements would enable more precise fault 

detection and source identification than is possible with most systems today. For 

example, more accurate hydraulic flow rate measurement from the hydraulic power 

unit would improve the fluid consumption algorithms used to detect leakage. 

Additional pressure sensors combined with strategic isolation valves within the 

subsea hydraulic distribution termination assemblies would permit isolation of 

hydraulic anomalies associated with blockage or fluid leaks in complex subsea 

system architecture. 

A lot of measurements are relevant for leakage detection and especially diagnosis. And there are 

other measurements available not considered here, like electric consumption of subsea DCVs, 

which may be very interesting in terms of DCVs performance. 

To get information of events and operations parallel to data information is probably the most 

important single additional information to current measurements, and the information is 

available. As an example it is extracted into the excel sheet in 5.4, which we will take a look at 

soon. It is just a question of information handling. A collaboration of information given in the 

time domain could provide a good diagnostic tool in itself for operators. Generally it is all about 

knowing what to expect from the process.  

                                                             
18 Calibration will normally not influence the condition monitoring. However, it might be 
important when modelling.   
19 The SCM is normally the limitation. (Newer SEMs may however have these possibilities like 
“semstar5” by GE and Aker) 
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4.5 Methods for Fault Detection and Diagnosis 
A method is referred to as a way to perform monitoring to achieve detection, diagnosis or both. 

Myriad definitions exist, and it is easy to lose control. The methods does not have distinct 

differences, rather they describe the same with respect to different areas. There are four types of 

methods presented in this thesis: 

1. Method with respect to solution   (4.2.2.) 

2. Method with respect to ways of implementation (4.5.2) 

3. Method with respect to information   (4.5.3) 

4. Method with respect to model    (4.5.4)  

An example of methods with respect solution may be a “line balance calculation method”. This 

simply tells us that the detection task is solved by line balance calculations. These are presented 

in the pipeline example in 4.2.2. 

An example of methods with respect to ways of implementation may be a qualitative method. 

This method describe that a qualitative approach is used for implementation. It does not tell 

what solution it is based upon, information or model. Even though it indirectly might be a 

transient method for solution, change detection method regarding information or white box 

model method applied. 

A method with respect to model tells us something about the system analysed and its input. For 

example a black box model method tell us that a black box model is used, which does not need 

system detailed input. The solution may be statistical, implementation quantitative, and change 

detection used. 

The many methods available may have different identities, but they may very well have the same 

basis. It is not easy to get an overview in the vast amount of different terms used. However, it is 

important to be aware since literature may refer to many different methods. It is then vital to get 

to the core of the methods, and try to relate it to known relations. Otherwise good methods 

could be abandoned and poor methods pursued. 

 

4.5.1 Basics Towards Application of Methods 

The use of any method in a system mainly has the same motivation: 

 Information amount decrease 

 Information value increase 

Figure 31 is illustrating the connection between information amount and value, concerns and 

application. This is a representation of an experience gained while working with this thesis. 

Notice how the information value increases with knowledge and systemization. Notice also how 

information decreases, meaning reduced amount of data and increased amount of value of 

information. The goal is to get to the top of this pyramid. 

First of all we need to require data, and to store these data. Important considerations here are 

where to locate sensors, availability, quality of data needed. This is not possible without 

understanding the system. 
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Secondly, sound knowledge of the system is required. It is not possible to apply methods and 

tools without considering components in the system, system interaction, properties, and other 

information. This implies application of purely quantitative methods as well as qualitative 

methods. Indeed detail information about process physical properties may be left out, but if 

sound knowledge is lacking, it would become a problem when tuning the leakage detection tool.  

In order to know what methods and tools to use, a systemization of information output and 

input is needed. What do we want to know, and how can we get it? All methods imply ways of 

“automating” detection and diagnosis, compared to logic reasoning by an expert looking at data. 

Sound knowledge may be valuable input to or basis for a application of a particular method or 

tool.  

Thirdly, the application of methods and tools are executed. This is made possible by data 

acquisition and storage, understanding, sound knowledge and systemization of information. 

Also, concerns like performance criteria and interface arise, concerns which may require 

starting over at the bottom of the pyramid for improvements. An example may be that the 

needed quality was not satisfactory for method application.  

 

Figure 31 Information amount and value, concerns and application 

4.5.2 Methods with Respect to Implementation: 

The methods with respect to implementation can be divided into three main categories:  

 Quantitative model methods 

o Use of history data to make models; rely on redundancy to make residuals. 

 Qualitative model based methods 

o A process requiring fundamental knowledge of a system. 

 Process history based methods 

o Only a large quantity of statistical data needed. 

These methods are reviewed in three articles [37-39], and broken down in the following 

classification of diagnostic algorithms shown in Figure 32. These articles provided a very good 

overview in a wilderness of methods. Notice how process history based methods also has 

qualitative and quantitative approaches. The top event is given as diagnostic methods, and it was 

chosen to illustrate the broad spectre of alternatives within diagnostics. Surely the methods 

given could be used for fault detection as well as diagnosis. 
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Figure 32 Classification of diagnostic algorithms [37] 

The different methods will have strengths and weaknesses. One method does not have all the 

features. While a detailed qualitative approach may give great knowledge about the system, it is 

very system specific. It might need to be done from scratch when implementing it to a similar 

system. A comparison of various diagnostic methods is given in Table 5. 

 

Table 5 Comparison of various diagnostic methods [39] 

The table only show a few representative methods covered by the classification given. The check 

mark indicates satisfactory. The cross indicates unsatisfactory, and the question mark indicates 

that the method is case dependent. Consider for example the observer and PCA. While the 

observer method is qualitative, and provides an explanation of occurred fault, PCA does not. This 

is due to the fact that PCA only look at relation between variables.  

 

4.5.3 Methods with Respect to Information 

A report on state-of-the-art fault detection – with emphasis on topside experiences by 

Michelsen[21], has defined methods for fault detection and diagnosis. The methods are based 

upon information to the operator. 

Michelsen define of early fault detection (EFD): 

By early fault detection we mean ways of performing systematic and, preferably continuous, 

monitoring of the condition of a process with the objective of determination of the faults present in 

the process and the time of detection. By determination of faults we mean detection of whether a 

fault has occurred.  
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Michelsen [21] summer ices the methods available for fault detection and diagnosis. In addition, 

explanations and references to industry applications are given. The methods here are defined by 

information to the operator, inspired by [40]. The methods are also classified into detection and 

diagnostic methods. 

Process model based  
 Parameter estimation  

State and output observers 
Parity equations 

Signal model based  
 Frequency analysis (FFT and band filters) 

Parametric signal models 
Data reconciliation 
Data redundancy 

Change detection methods  
 Statistical process control  

Control performance Monitoring 
 

Table 6 Three main methods of fault detection  

 

Classification method  
 Statistical classifiers (geometrical distance 

and probabilistic methods 
Artificial neural networks 

Other reasoning methods  
 Forward and backward chaining, with 

Boolean algebra for binary facts 
Possibility reasoning with fuzzy logic 
(approximate reasoning) 
Diagraphs 
Fault trees 
Qualitative physics 
Abstraction hierarchies 
Qualitative trend analysis 
Expert systems 

Table 7 Two main methods of diagnosis.  

It was chosen not to describe every method presented here in detail. A quick search in the 

library or on the internet would give lots of hits, but the idea is to provide an overview. Short 

descriptions are given in [21]. 

4.5.4 Methods with Respect to Model 

The type of method used is dependent upon system; methods are therefore often described by 

system identification. Generally all systems can be treated as black boxes. Input and output is 

known, but what happens inside is unknown. There are three main types of model methods 

which will be briefly presented. In literature, commonly used system identification models are: 

 Black box models 

 White box models 

 Grey box models 
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Black box models use quantitative approaches. Details of systems are not important in order to 

extract information. Black box model are very popular in process industries because it is simple 

and robust. Simple because tools are available and robust because it is based on real process 

behaviour.  

White box models use qualitative approaches, where the models are based on theory, and may 

be represented by models which try to adapt to the real process behaviour using first principles. 

Advantages are within diagnosis, system training, and as an active comparison with real process. 

Drawbacks are quite logical; time used to acquire detailed process data, modelling, and 

adjustment and adaptability of model. 

Grey box models are a combination of both white and black box models. Not all system 

properties are known in the process, but some are. Often the models are based on experiments, 

or history data. The model may describe process behaviour within appurtenant boundary 

conditions.  

 

4.6 When Selecting a Method 
There are many considerations to take when choosing a detection and/or diagnosing method. 

The most important considerations: 

 Understanding the methods. Determine importance of adaptability to system changes, 

cost of modelling and implementation. Importance of detection or diagnosis etc. 

 Data and data related issues as reliability, sampling rate20 etc. 

 System knowledge. 

 Available tools. 

 

4.7 Application towards Subsea Installations 
It is not easy to determine which methods to use for a given problem. If one method is 

understood, it might cast doubt upon methods that are not understood. As stated in [37] 

Such a collection of bewildering array of methodologies and alternatives often pose a 
difficult challenge to any aspirant who is not a specialist in these techniques. Some of these 
ideas seem so far apart from one another that a non-expert researcher or practitioner is 
often left wondering about the suitability of a method for his or her diagnostic situation. 
While there have been some excellent reviews in this filed in the past, they often focused on 
a particular branch, such as analytical models, of this broad discipline.  

This statement is very important, since the author of this thesis is an aspirant within the field. To 
insist that some method is the best suited for subsea leakage detection and diagnosis, would be a 
paradox. 

Rather, mainly two methods were chosen for further investigation. By choosing two completely 
different approaches, the author was able to experience the theory’s advantages and 

                                                             
20As an example a one minute middle value will not be sufficient to actively diagnose 

valve status which has an average open/close time of about 30 seconds. 
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disadvantages from different points of view. A completely quantitative approach by EFDD (5.5), 
and a completely qualitative approach by Simulation X (5.6). In addition the Excel sheet (5.4) 
using a simple hypothesis and test method was presented.  

EFDD possibilities, and thereby PCA quantitative approach was weighted. This was mainly 
because it is the most used, simple, and robust method. It was also proposed by Statoil in the 
thesis description. The highly qualitative simulation approach was too comprehensive to use in 
comparison with process data, but on the other hand gave invaluable experience. 

In the methods given for pipelines, are interesting for SCS as well. There are however some main 

differences: 

 Pipelines do only consider flow in a pipe, not trough a system with lots of branches, and 

additional equipment. An example may be that accumulators and volume expansions 

tend to smoothen out sensor signatures. 

 Detailed measures of what enters and exits the line are not available, and application of 

additional instrumentation subsea is not straight forward. 

 More operations and thereby transients which can be compared to pipeline start up/run 

down. 

If looking at the methods with respect to solutions presented in Table 2, generally all methods 

could be applicable subsea. However, some are more suited than others, mainly due to 

availability and applicability. The line balance calculation method utilizes the principal of mass 

conservation, and the pressure/flow monitoring use available instrumentation and information. 

A real time transient model would require a quite complex, which may not be practically 

possible yet. However, it is interesting for subsea as well, because this would provide a very high 

performance of a leakage system. 
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5 Strategy for Leakage Detection and Diagnosis  
Today, no monitoring is done of the SCS. Leakage of the SCS is as mentioned mainly detected by a 

constant need for filling on the HPU, and small leakages are often overlooked (4.1). When a 

leakage is detected, a testing of different supply lines is executed to isolating the faulty branches.  

The excel sheet (5.4) provided from Norne organization is a simple but smart tool for leakage 

detection. It can be seen as state-of-the-art within this particular field at Statoil today. The sheet 

is also an indication of a need proposed by those who work close to the process. It is a highly 

relevant topic, and a good solution could benefit the whole organization. 

 

5.1 Strategy 
I. Define an approach. 

II. Explore different approaches. 

III. Propose a solution for leakage detection and diagnosis for the SCS. 

 

5.2 I. Approach towards Problem. 
The approach to the problem was to look at the methods for pipeline leakage detection in 4.2.2. 

By looking at the mass conservation, we are able to extract the important influences on out 

system.  

Figure 33 show the mass conservation principle. It is simply a measurement of what goes into 

our system and a measurement of what comes out. If a leakage should occur, the measured 

output would be less than the input, and the leakage flow would be the difference between input 

and output.  

 

 

Figure 33 The Mass Conservation Principle 

The system boundary is shown in Figure 24. 
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The mass balance can be written as: 

                                   (5-1) 

This formula is meant only as a summary of important contributing elements within 

leakage detection of SCS, which is explained below. Since the HP system is seldom 

operated, the focus here is given on LP. 

       is the flow pumped into our system. It may be given by supply tank volume 

change, compensated for filling and returning fluid. This might be LP as well as HP pump. 

Each time a pump is run, also gives an estimation of either HP or LP consumption, since 

they are approximately the same amount as delivered each run. In addition, the time 

used filling up the accumulators can be an indication of each pump’s condition.  

Let us say operating conditions are the same (power, RPM, inlet pressure, pre charge 

pressure of accumulators etc.), and fluid leaving the accumulator skid equals zero. If a 

pump uses longer time to fill up the accumulators than before, a head loss of the pump 

can be a fair conclusion, i.e. the pump is degraded. The pump degradation may be a 

parameter relevant for KPI monitoring as well as leakage. 

     is normal leakage. This is a leakage which cannot be avoided in a hydraulic 

system. It is difficult to accurately achieve this parameter. However, estimations are 

available on the basis of new condition. The parameter can also act as tolerated 

boundaries in a leakage plot. 

   is normal consumption due to operation of valves on the Xmas tree. There are 32 

trees at Norne, which is controlled by the SCS. This is in the excel sheet (5.4) referred to 

as operation times valve consumption. 

       is the return fluid from the SCS. This might be due to subsea bleed off, or guided 

to return topside. It is important that this is not considered a leak. However, slow 

increases can be a sign of topside leakage to return, which is not desirable.   

    is a compensating term for the fact that the system stores fluid. It is a highly dynamic 

parameter. It accounts for accumulator storing and dissipation, compressibility of the 

fluid, and pipe expansion etc. This parameter is mainly pressure dependent. It causes 

time delays in the system and smoothen the system response. When doing pipeline mass 

conservation calculations, one of the main uncertainties is fluid stored in the system.  

This parameter is probably the most difficult to accurately account for. It may be used as 

a motivation towards steady state analysis instead of dynamic models. As an example of 

some of the facts a dynamic model has to account for: 

 Friction causes pressure loss along the pipe, so that pipe expansion is not straight 

forward. It is also influenced by the hydrostatic column and temperature. 

 Even though accumulators and pipe expansion provide damping to pressure 

pulsations, does not mean that they are not present. 

 The lower pressure differential the lower flow rate, this time delay is also a 

problem when doing static calculations. 
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 Simultaneous operations of consumers tied up to the same umbilical. 

Geographical position between consumers, consumption size of consumers etc.  

     is the parameter which we want to extract from all the measurements and 

estimations.  

   is given because of uncertainties and limitations, which will affect performance. 

A mass calculation principle can be modelled for the SCS as described for pipelines in point 1 in 

4.2.2 . Accurate estimations of all the variables are however a challenge. An exploration of the 

approach is given in 5.4, but also 5.3. 

Adding the equations of motion to equation 4-2 would provide real-time transient leakage 

detection model as described point 2 in chapter 4.2.2. Transients describe the dynamical nature 

of a system. This is essential if detecting leakage when running valves21, start-up and other 

changes in the time domain. This could be provided by an accurate simulation model, which will 

be discussed later in 5.6 

Point 3 in 4.2.2 proposes to use statistical response data for different operating states and 

ranges, and compare those to the present situation. This will be discussed later in 5.5. Point 4 in 

4.2.2 proposes to use pressure and flow meter relations, is part of 5.5, but also 5.3 

 

5.3 II. Process History 
The SCS process is somewhat slow, making it possible to see changes directly by looking at data. 

Some overall understanding of the system components is however needed in order to be able to 

explain why the process is behaving as it does. This is described in the previous chapters. 

A selection of system tags (4.4.1) has been plotted and presented on graphs in appendix VI. The 

data presented are from real processes at Norne. The time interval chosen has been dependent 

on operation. Operation information has been gathered by conversation with Raymond Nilsen, 

and information from SAP22.  

Alve was originally chosen because of its easily available data, being a new development. This 

should however prove to be a disadvantage as well. Unfortunately, Alve has had no leakages. 

This is “unfortunate” because then it is not possible to gather data from a healthy state for 

comparison with a faulty state.  

Information of operations is a key to success when determining process behaviour. With 

operations, we mean all the input commands to the system. If we know that two or more similar 

operations were taken on the same basis, it would actually be possible to study the operation in 

greater detail. 

 

                                                             
21 I.e. under operation of the system 
22 A decision-support tool 
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5.3.1 System Response 

An executed operation is initiated and consumes fluid. Pressure drops slightly due to 

accumulator supply. A pressure difference is created, and fluid starts to move in the umbilical, 

and then causes topside pressure to drop. If the pressure drops below a limit, the pump starts to 

maintain pressure. The pressure gradually reaches steady state again. Note that Figure 34 is only 

meant for illustrative purposes. Graphs and scales will differ from reality. 

If looking at the top of Figure 34, actuator and DCV consumption is shown after an operation of a 

tree valve. The     for the execution is short, for example thirty seconds. Due to system 

dynamics, resistance accumulation etc as explained in 5.2, the corresponding flow topside has a 

time lag and is smoothened. It therefore has an increased   , which for example may be an hour.  

The topside accumulators are filled with a certain time interval. When the pressure reaches a 

certain value, the pumps start to fill the accumulators. An operation may not trigger a pump start 

instantly, as illustrated. It will however, reduce the time between two pump runs. Therefore, a 

   may be even longer. The time without an operation may be twelve hours. When operated, 

time is reduced. Reduction depends on valve operation. The pump start is more “random”, and 

may as well be before or in between a valve operation, depending on accumulator pressure. 

If looking at the lower graph, the pressure has a linear slope, until the flow due to the valve 

operation. This is due to steady state, with normal leakage rate. When the system re-enters the 

steady state, the same linear slope is back.  

What is a steady state? A steady state is a state where the change of fluid flow in time is constant. 

The partial derivative is said to be zero with respect to time. It is the opposite of a transient or 

dynamic state. 
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Figure 34 Illustration of system influence from operation of a tree vale. 

 

5.3.2 Comments to Process Cases 

Now, let us take a look at the data in appendix VI. 

A. This picture shows the coherence between accumulator skid pressure (green) and 

supply tank level (red). Notice that return tank (blue) is stable, meaning that the supply 

tank is not receiving any fluid during this period. The green graph has to top points. At 

each of these the pump is started to supply the accumulator skid. This is done when the 

pressure reaches a certain value, explained in 4.4.2 

The accumulator skid pressure tells us quite a lot about the process. Assume that the 

charge pressure of accumulators is constant, and has a constant temperature. Frequent 

running of the pump without operations of valves, would imply leakage somewhere in 

the system. Longer time used filling up, i.e. time from bottom to top, could indicate a 

degrading pump, since these pumps are on/off with and with one speed setting. 

Curvature between top-top would be dependent on subsea operations. 

Monitoring only this pressure with operations, would surely be beneficial in terms of 

both leakage detection and diagnosis. Detection of leakage would of course mean that the 

top-bottom slope would elapse more rapid. A rough diagnosis could also be made, since 
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most leakages are connected with operation23. A leakage occurring after an operation 

would make it the most probable cause. Details concerning the leakage would not be as 

intuitively, and other faults such as umbilical leakage location would not be that easy.  

This picture also shows us that the level indicators of the tanks are a bit noisy. This is 

due to sea motion among others for the higher frequencies. The average value is not bad, 

but for more instant monitoring this might be an issue, like more detailed pump 

efficiency estimation. 

 

B. This picture shows us a pump operating three times, due to different operating 

conditions. To illustrate that filling of accumulators take place, the supply tank level is 

also included. The return tank level is not shown, but is stable, and not supplying the 

supply tank. Clearly there are operations taking place here, but exactly which operations 

is not known. This behaviour is quite normal for the accumulator skid pressure. The 

variation of possible combinations of the accumulator pressure is almost limitless24. This 

makes the information almost useless, when not considering operation. The pressure is 

falling because of normal leakage and operation; an additional leakage would make the 

pressure drop faster. Notice how the same slope is repeated after transition. 

 

C. In this picture a subsea steady state process can be seen. The top graph in purple shows 

the flow entering the SCM, as we can see it is steady. The two graphs at the bottom, in 

blue and green, are the well flow and the choke opening. Here we know that the other 

valves on the Xmas tree are not operated. The red graph in the middle shows the inlet 

pressure to the SCM. As can be seen, the pressure gradually decreases, before “jumping” 

up again, the sequence is repeated. 

Why this happens might have several explanations, but let us make a hypothesis. Before 

the pressure sensor, poppet valves are installed. If these require a certain differential 

pressure to pop open and allow flow to pass, this might explain the behaviour. The 

subsea accumulator provides flow, up to a certain point. Then the accumulator is filled by 

fluid from the umbilical. 

It was stated that a normal average leakage rate for a LP system would be 0.25ml/hour 

(4.1). If assuming 10 LP valves, and a period of 60 hours, we get an estimated 9 litres 

fluid, this could very well be within working range of a 25 litre accumulator. The slope 

between the jumps on the red graph could be an indication of internal leakage rate. This 

may be caused by check valves crack pressure as stated in 2.2.9.  

Why is not this showing on the flow meter? The fact is, as stated earlier, that the flow 

meter requires a certain speed of the fluid passing, meaning that it might just not detect 

it. 

D. This picture is a complementary to C. Legends are the same. Here the plot is from a 

different time span, and the choke is operated. Notice the flow registered by the flow 

                                                             
23 DCV in intermediate position, gate/seat leakages in actuators etc. 
24 If the different valves are considered unique, and the valves being dependent on each other, it 

would imply        possibilities. This can of course be reduced by practical assumptions, but 
hopefully point is made. 
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meter, when an operation is executed. The operation does not require a lot of fluid, only 

a couple of litres. Still it is registered by the flow meter, which is due to a higher fluid 

velocity over the meter.  

 

If you look closely, it is possible to see the correlation between well pressure, choke, inlet 

pressure and inlet flow correlation. By drawing vertical lines it is easier to see the 

correlation. Notice how the slope of the red graph slowly decreases after reaching 

equilibrium after operation, which is the same slope as defined and seen in C. 

 

E. Like the picture above we have now zoomed into more details concerning operation of 

the choke. The graphs acting almost as one line at the top are the SCM inlet pressure and 

respective pressure after DCVs for PMV and MIV. They are of course dependent on the 

inlet pressure. The purple line crossing the picture is the fluid flow; this is not merged 

with the other axis. The axes are however not that important, the physical nature is what 

we want to get a closer look at. The two counteracting graphs are choke position and 

well pressure. The graphs at the bottom of the picture are showing the pressure after 

DCVs for the closed valves, which sense the sea pressure. 

It is quite interesting to see the distinct properties between flow and pressure, even 

though this is not a surprise. If you take a closer look at the largest closure it is possible 

to register pulsations or vibrations on the pressure curve. By studying such phenomena 

more closely one could use the data to for example determine choke friction. The time 

span in this case is however large, and the data is averaged.  

The time it takes from the last amount of flow is registered to pressure reaches 

equilibrium is 6 hours. That is quite some time, and not expected, since a complete filling 

was stated to be an hour in the response analysis (3.3.6). This time is very important 

when looking at accumulator skid pressure topside. The system needs to reach its 

equilibrium before assuming leakages based on steady state. The flow rate will decline 

when approaching equilibrium, but is important to be aware of. A model would have the 

ability to determine a deviation before an equilibrium is reached, because topside 

response to subsea operation could then be foreseen.  

F. This picture is included to highlight difficulties when looking at SCM inlet pressure. Alve 

is more or less an isolated case. The same principals may not yield for multiple well 

templates, or templates connected with the same umbilical in parallel or series. 

Therefore an example was gathered from Urd. At Urd the Svale template is connected in 

series with the Stær template. The figure shows inlet pressure of four SCMs, both at Stær, 

and Svale. Earlier when looking at Alve, it was easy to keep track. In this figure it might 

be more difficult to determine what happens.  

As can be seen on the figure, the correlation between the pressures is self-evident. One 

should however not deter this challenge. There is just dependence between the 

variables. If accounted for operation, more information could probably be extracted. A 

registration of the inherent behaviour of multiple wells connected together in series and 

parallel is acknowledged.  
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5.4 II. Excel Sheet 
The excel sheet is a qualitative method approach, which uses the mass conservation principle. 

The excel sheet poses a hypothesis of consumption, and the value is compared with real process 

consumption. The hypothesis method for implementation is generally described in [38]. The 

excel sheet can been run once a day or once a week to detect abnormalities, but the comparison 

is done manually. The excel sheet has been made because of a present need, which is to know 

whether the system is leaking or not. The excel sheet is though not yet complete, which means 

that it has not been used in active comparison with topside tank level data.  

Smart ideas evolve from the people working with problems on an everyday basis. The excel 

sheet is made by the Norne organization is an example. But the idea was actually proposed back 

in 1982 [41]. 

Leak rates, when understood and monitored on a periodic basis can be used to give an 

indication of the system condition. In addition to particle and biological analysis, seal 

performance can be determined by actual leak rates and the monitoring of reservoir levels 

can indicate whether or not an external leak exists. 

A point to bear in mind in systems where these leak rates may be experienced is the 

problem likely to be incurred if a water based fluid vented to sea is used as it will 

necessitate regular topping up of the fluid reservoirs. 

An example from the sheet: 

   

Figure 35 Example from one well Alve in the excel sheet. 

As we can see in Figure 35 the different consumers are shown to the left. The number of 

operations of these consumers is multiplied with the consumption of each, and a time range is 

chosen. Then, consumption from all templates is added into one total estimate of consumption 

within the time span. This is shown in the bottom right. The consumption entered in Figure 35 is 

not real, just illustrative. One of the remaining tasks is to get the right valve consumptions into 

the sheet. 

The main interesting feature with the excel sheet is the use of operation data. The sheet uses SQL 

code to gather valve operations data, adding it to the sheet.  
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The excel sheet does not have diagnose features, because it compares the sum of all the 

consumers. However, it could show which operations that had been operated since leakage was 

registered. This could be a great start for further diagnosis.  

The excel sheet does not consider normal leakage rates, HP operation or dynamic variations. 

Some of the influences are discussed in 5.2. It should be possible to add this and more to the 

model, and make it more complete. Somewhere there has to be an estimate of aspects not 

considered. Surely the hypothesis would deviate. However, the time from a leakage occur, to the 

time of detection might become longer. It is in other words a question of performance (4.2.3). 

Another issue is that the models needs input for every valve. The characteristics may not be the 

same on the next one, which means about 6900 input parameters, if considering 460 Statoil 

subsea wells, and an average of 15 valves per tree. These are issues which quantitative, 

statistical methods try to avoid. 
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5.5 II. Early Fault and Disturbance Detection (EFDD) 
Early fault and disturbance detection (EFDD) is a quantitative process history based tool. It is 

computer aided and is used to process data from plant components. The tool is under 

development, and it is part of TAIL IO, which is collaboration between Statoil R&D and the 

industry companies ABB, IBM, SKF, and Aker Kværner.  

Statoil has a lot of data, and tools as EFDD may help to provide valuable information from the 

data. Processing gives a better understanding and overview of system condition. The amount of 

data to analyze can become vast, and it is not easy to control. One of the key motivations for 

EFDD has been to reduce information, as illustrated in 4.5.1, without need for system detailed 

input. In addition we have inaccessible systems and obscure data.  

EFDD utilize the correlation between measures, meaning that processes with physical 

relationships monitored by sensors may be of interest. A pump may be an example, where it is 

an obvious relation between pressure, flow, RPM and power. EFDD has the ability to detect 

deviations from a defined normal operation and real time process using Principal Component 

Analysis (PCA). In addition, EFDD can look at different sensors trough a process and determine 

where a fault is accruing using Plant wide Disturbance Analysis (PDA).  

Lunde [42] has published a general overview of EFDD, and an example of a screenshot from the 

program is given: 

 

Figure 36 Screenshot of EFDD tool[42] 
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EFDD has a hierarchical functional structure, which means that a plant is broken down to 

systems functions and sub systems functions. This provides a great overview of the plant. Fault 

indications are shown all the way to the top level with a red dot. This can be seen in the 

navigation status in Figure 36.  

Models are made in the configuration menu. EFDD consists of two different modules. Fault 

Detection and Plant Wide Disturbance Analysis. The fault detection module uses either PCA 

model or a Tag Monitoring (TM) model. Regimes are made to represent a normal case, and 

process data may be compared. It is also possible to visualize the different tags data sets. A view 

of the correlation between the different tags can also be visualized (not shown). 

Meland [6]describes an intuitive waterfall model of EFDD shown in appendix IX. He also 

describes the different modules in the program and a case example. References are given to 

underlying theory of program functions, like PCA and Plant wide Disturbance Analysis (PDA). 

 

5.5.1.1  Principal Component Analysis (PCA) 

PCA can be seen as a black-box model, which means that it is possible to extract useful 

information from a process, without knowing all the details. It describes the real process, which 

is great for comparison.  

Michelsen describes PCA: 
Principal Component Analysis (PCA) and Projection to Latent Structures (PLS) are two 
common multivariate SPC methods. The main objective with these techniques is to 
transform (by projection) correlated data into a fewer number of relevant uncorrelated 
variables to monitor. By projecting new observations onto the plane defined by the PCA 
variables (called loading vectors), multivariate control charts based on Hotellings T2 
statistic can in turn be plotted, and a decision can be made whether the observation is 
normal or not. 

 
First off all, the algebraic mathematics governing PCA will not be explained here. This can be 

found in a numerous of articles. For example [43]. The main interest is to get an understanding 

of what PCA is, and use of PCA trough EFDD. 

PCA require a linear relation between the measurements, or at least approximately linear. 

Nonlinearity can be compensated by the use of regimes. Kernel PCA has also the ability to 

compensate for nonlinearity, but is not part of the program at the time being. 

 

5.5.1.2 Tag Monitoring (TM) 

The tag monitoring models are used to monitor a simple tag. It looks at mean value and 

deviations. Basically the tag needs to operate within preset limits. It is related to statistical 

process control given in the pipeline example 4.2.4. It is used for tags within small operating 

ranges.  
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Virtual tag is a feature in EFDD, which makes it possible to make tags which consists of four 

tags25 and operators like +,-,*,/. 

5.5.1.3 Plant wide Disturbance Analysis(PDA) 

PDA is the diagnosis part of EFDD, and is often used in control loops, and detects oscillations and 

localization of contributors. A control loop ensures that a certain variable is kept within limits, 

for example motor speed by a governor. Different loads, inputs etc. may cause different 

oscillations. 

It investigates upsets and disturbances in processes. Lunde summarize PDA significance for the 

following reasons: 

- It supports the control engineer in making a rapid and semi-automated assessment 
of operation of the process and control systems 

- It provides a means of diagnosing the root causes of poor performance during 
normal operation without taking control loops offline for special tests. 

- It distinguishes between primary sources of disturbance and secondary propagated 
disturbances. 

Root cause analysis compares time delays between, or smoothening of, oscillations. 

Smoothening uses the phenomena that a process disturbance will smoothen out when further 

from the source. This may help to track down the most likely source of a fault plant wide. 

 

5.5.2 The EFDD Process:  

The condition monitoring data is acquired from a dedicated database at Statoil. By looking at 

P&ID’s desirable tags26 can be found and added to the EFDD database. This is shown in Figure 

37. After a search in the database for the exact tag string, all the desirable tags are written down 

in a file. When the database is updated, the tags are available in the program, and can be added 

as datasets27.  

 

Figure 37 The system’s three main components 

When the data is in the program, fault detection or plant wide disturbance is chosen. In the fault 

detection module, pre processing and clustering are available before making a regime. Pre 

                                                             
25 It is however possible to add virtual tags into a virtual tag, meaning that there is no theoretical 
limit, rather a practical. 
26 Unique identification labels for components, instruments etc. 
27 A dataset is raw data from the chosen tags 
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processing can manipulate data or apply different filters. It is also possible to create virtual tags. 

This is a tag that can be dependent on other tags.  

A fault detection model is then made by defining a regime. A regime is a representation of a PCA 

model within a certain range, and restriction of certain variations in data. A regime uses selected 

data in order to generate a model. The data is gathered from process history, and a fault 

detecting model needs fault free input data.  

If the physics of the actual process is non-linear, it is possible to add several simple regimes 

within certain boundaries to counteract. This is required because validity and applicability is 

limited to linear processes. This is illustrated in Figure 38. Two different regime models are 

applied in two different operating domains. It is easy to see that a single domain covering the 

whole process would be a bad representation of physical coherence. 

 

Figure 38 Compensation for PCA linearity using regimes 

A regime may allow all data from the dataset to pass, define a boundary where a certain 

percentage of the data is within, or it may be defined by standard deviations. An example of the 

relation between two different measurements is given in Figure 39. As shown, the boundaries 

are defined by standard deviations. If data from the process exceeds the given limits, a deviation 

or fault contribution may be indicated. Weighting and sensitivity can be adjusted, which is a very 

important part of the modelling. Skill is needed to be able to get sensitive detection of faults and 

to avoid false alarms.  

Figure 39 represents the mean value of the dataset in the middle, the regime axes are Y1 and Y2. 

Y1 represent deviation and Y2 the principal component coherence. The standard deviations 

represent the allowed data within the regime it may be given by a percentage. When comparing 

with process data, correlations outside the defined regime will give a system alarm. It is possible 

to add features like delay to require that the process is outside the defined regime for a certain 

time.  
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Figure 39 Defining standard deviation limits between two parameters 

For representation purposes relations are given between two parameters. It is of course possible 

to add multiple correlations. Example of a three dimension correlation is given in Figure 40. 

 

Figure 40 Three dimensional correlation between process parameters [21] 

EFDD also had a diagnose feature using PDA. When utilizing PDA, there are four main steps 

needed for the analysis: 

- Data Pre-processing 
- Filtering 
- Clustering 
- Root cause analysis 

As explained by Meland [6], data pre processing is similar to the fault detection module. After 

choosing tags and intervals, data is compressed, and frequency spectra are calculated. In the 

filtering part, disturbances can be removed to isolate certain frequencies. Clustering of groups of 

data is based on oscillation periods in the frequency spectra, or identification of groups with 

similar power spectra. And the Root Cause Analysis finds the most probable source of 

disturbance in each of the clusters discovered, by oscillations, time delay or transfer entropy. 
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The PDA part of EFDD was not used for subsea leakage detection diagnosis. The subsea control 

system is an open loop system. This could however be interesting for a pipeline, with the method 

defined as acoustic/negative pressure wave in 4.2.2.  

 

5.5.3 Subsea Control System and EFDD using The Fault Detection Module. 

When using PCA trough EFDD, it was not as easy to apply it to the chosen process data. Even 
though a fair understanding of EFDD was obtained, the fact that the author is an aspirant within 
the field may be a cause in itself, which should be accounted for. 

The problems encountered made it difficult to exploit EFDD potential, and utilize it towards 

subsea control system. Main problems: 

 There are relative few tags available with strong correlations between each other. This 
makes it difficult to analyse correlations between parameters. System components like 
pipes and accumulators smoothens signals, affecting relation, and repeatability 
dependent on operation. 

 It is highly nonlinear processes. It is a challenge choosing reasonable models, data and 
ranges. This is why sound knowledge of process is the basis for application of models 
and tools, as illustrated in Figure 31. 

 Processes may have large time delays between dependencies of variables. 
 Lack of operational data available made it difficult to find relations, and utilization of the 

steady state relations found. 
 

KPI/TCI using Tag Monitoring (TM): 

Another idea was to use tag monitoring in the fault detection module. A comparison of the 

amount of fluid entering the system and leaving the system could be established. This could be 

done by summarizing all the flow meter tags in the SCM and compare it to tank level changes. 

This would be compensated by an estimate for normal leakage rate. The idea was to calculate 

consumption and look at drift over time. If the parameter exceeded certain limits, an alarm 

would be generated. Not every exit point had flow meters as stated in 5.3.2. In addition the 

sensitivity of the meters was poor, so it was rejected. 

Additional ideas were generated, and example of ideas can be found in 5.3. Because limited 

possibilities to manipulate the virtual tags, they were not possible to execute. The possibility to 

do some more advanced calculations here concerning the virtual tag would be desirable. The tag 

monitoring function has a great potential towards monitoring of KPIs/TCIs. TM would also 

visualize trends in the virtual tag. An idea could be to add this possibility. 

As mentioned in 4.5 no method has all the desirable features. Since the intention with EFDD is to 

act a single tool for the operator towards monitoring, it would be an advantage to add simple 

qualitative possibilities. It would however conflict the interest of a purely quantitative approach. 
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5.6 II. Simulation X -An approach towards Qualitative Method 
Venkatasubramanian et al [38] describes simulation as the inverse of diagnosis. While the main 

function of simulation is to represent the true nature of a process, diagnosis is concerned with 

the deducting structure from the behaviour. It is also the opposite of the quantitative EFDD 

approach. 

Evaluation of programs criteria for transient behaviour, such as changing Reynolds numbers has 

not been done, but would be an important part of a program evaluation. 

Even though, a simulation model can help us provide a basis for cause and effect relationships 

changes. Especially when process history is dependent of a variation of process input, so that 

cause and effects are not consistent each time, which was a problem encountered in 5.5 

The reason for looking at simulation has three main reasons: 

 Learning effect 

 Sensitive 

 Available 

First of all, simulation of systems gives insight to the underlying physic relationship. Sometimes 

when looking at real process history data, the process has too many dependencies, so that it is 

difficult to extract clear physical relations. The system provides learning capabilities. “How does 

it work?”, “What happens if...?”. This provided knowledge of system behaviour.  

In addition, a good simulation model could be very sensitive to leakages in the system, providing 

faster and better quality of detection, especially during operation. In addition no prior 

knowledge about the faulty behaviour of the system is needed. At last, simulation programs and 

computers are available, and system models may already been made in the design stage of 

development. A problem which seemed impossible decades ago, or at least extremely time 

consuming, is now done in seconds. The making of the model would however be time-

consuming. 

Sometimes when simulating, is preferable to describe the system from basic relations. The bond 

graph method is one method to extract physical connections by differential equations of motion 

from a system. One of the main advantages with this method is the close connection between a 

system and its creator. In a systematic manner, effort or flow out of “junctions” is defined 

building up a model. Lots of literature related to bond graph modelling is available. Simulation 

tools are available having bond graph input possibilities. 20sim by Controllab Products is an 

example. It is, however, a time consuming process to define physical relations from scratch. 

Today, dedicated user friendly tools may be available. This makes system modelling much easier 

than before. This is the main reason for choosing Simulation X by ITI Germany. The product has 

a dedicated subsea control system library made by Agito AS. Here it is possible to “drag and 

drop” desired components into the model and then define their properties, for example a HPU.  

It is important to remember that the model is not better than the ones who made it. By handing 

over basic modelling to software providers, control of basics is somewhat lost. On the other 

hand, simulation software suppliers may add confidence, having verified their basic models, and 

being able to determine accuracy of the model. In this thesis the emphasis has not been laid on 

program documentation, but rather possibilities and limitations of use. It is however important 
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to be aware. Limitations will always apply. A model is not the reality, and comparison with 

logical reasoning is important. One should always be critical. As it was said in [44] 

Inaccurate simulation of the equations of a useful model is better than an accurate 

simulation of a poor model. 

Data was not available before later in this project and Simulation X provided understanding of 

system behaviour before looking at process data. A model was provided by Rune Lien at Agito 

AS. The model is given in appendix VII-CD. A similar model was also made from scratch. It was 

relative easy to build the model, but to get all the data input right was not. Even though this 

program makes it simpler to model the subsea system, still a lot of input is needed. This confirms 

the statements given in literature on the use of qualitative approaches, and discussed in 4.5. 

Main drawbacks:  

 Making a good model 

 Limited adaptability 

Generally a considerable effort is needed to make a good model. A large amount of input is 

needed, and all the influences are normally impossible to account for. In addition, the complexity 

of the system may become a limitation. This means looking at simplified subsystems, instead of 

complete systems. This might impose difficulties when actively comparison towards a real 

process is initiated.  

Simulation models also have very limited adaptability. A perfect model on one system will be 

useless on another, even though some parts may be re-used and knowledge may be transferred. 

  

5.6.1 Subsea Control System and Simulation X 

The library explorer in the program contains all the defined physical components. As seen in 

appendix VII-A the subsea library is opened, showing the defined subsea components. To add 

the components they are simply dragged and dropped into the model window. When added to 

the model window, the components are easily connected by the click and drag. 

The next step, and challenging step, is to add the data input. As an example HPU input are shown 

in appendix VII-B. To the left the HPU is marked, meaning that it is the one being displayed. The 

other components shown below will also need to be defined. The upper right window show 

some of the input needed for the HPU. The right lower window shows some possible output 

parameters from the HPU.  

When all input is defined, it is possible to confirm an analysis. The details of the different 

analysis approaches and configurations are not given here. The analysis executed was done on 

default program settings provided by Agito, and manipulation of these. As mentioned the 

analyses was primarily used for learning purpose, and not for used comparison with a case data.  

Rune Lien wrote an article [45] which goes through the different elements in the simulation 

model.  
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5.6.2 Use a Combination of Methods? 

A requirement when designing subsea systems is that a response analysis has been carried out. 

The supplier, for example FMC Technologies, provides this information to Statoil. FMC 

Technologies uses a program called HYSDSIM by AVL. The fact that models are made when 

system is designed is important. An idea is that these models could be integrated and used for 

learning and understanding for the operator as well. In addition, this could be the basis for a 

condition monitoring model based approach28. This way one could kill two birds with one stone.  

In addition to the physical understanding of the system, the comparison between a real process 

and a physical model could be interesting. By providing real process input to a model parallel to 

the real process, it would be possible to compare expected output with actual output. These data 

streams could then be input to EFDD for comparison (PCA), and deviation (TM).  

This is not a new concept; there have been several studies for utilizing white box models, in 

addition to PCA. This may be referred to as model-based PCA, or MBPCA. In [46]the ability of 

MBPCA was confirmed using a simple model on an ethylene compressor. The following Is also 

concluded[46]: 

MBPCA can deal with batch29 processes, since the method is robust to a different 
batch length, and nonlinear processes, since it can handle the nonlinearity in the 
process, and it’s relatively insensitive to changes in the operation point. 

A model parallel to the process could be used to describe the normal behaviour. If a leakage 

happens, it is detected by mismatch between the two. An example is shown Figure 41. The 

simulator models could also provide estimated tags. This could provide interesting information 

based on process input. If a sensitive and accurate model was available, the general sampling 

interval of 1 minute middle as stated in Subsea Information Flow (3.3.3) is clearly insufficient. 

This of course represents an ideal case. 

 

Figure 41 A simulation model in parallel with the real process 

  

                                                             
28 When both the real process and the model are available, one of the main advantages seen by Rune Lien 
was the ability to tune the model by real process data. This could provide very accurate models.  
29 Batch means a group of data that are dealt with at the same time. These batches are the root for 
comparison in PCA. Batch length was also considered a problem for purely PCA analysis (5.5.3) 
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5.7 III. Solution Proposal 
This proposal for solution for subsea leakage detection and diagnosis is a result of the strategy 

given in 5.1. The reason for seeking a solution to the problem is that it triggers solution-oriented 

thinking, which may be valuable for Statoil. In addition it communicates the author’s opinion. Of 

course some may disagree, which is preferable. A discussion will normally intercept weaknesses, 

and amplify the advantages. This is why this chapter is a solution proposal and not a solution. 

The proposal is based on the information and experience gained through this thesis. 

The proposal is divided into three parts. First of all it considers what should be done today, 

which is considered bottom line. Here all the information is available. The proposal only 

requires a verification and implementation. 

Interesting points of view for tomorrow and the future is given. 

 

5.7.1 Today 

Today, almost no dedicated monitoring of subsea control system leakage exists. The constant 

need for filling of topside tank has been mentioned. As stated in 1.2, there tends to be a 

connection between warning time and complexity. The same can be said to yield within leakage, 

with a twist. There tends to be a connection between performance and complexity. For today’s 

solution it would be preferable to scarify some overall performance for simplicity, considering 

the alternative.  

The proposal is highly connected with comments in 4.4.2 and observations in 5.3. 

Is it possible to detect leakages in the SCS? 

It is possible to tell which tree is leaking? 

Leakage detection has been the main focus for the solution proposal, as detection is done prior 

diagnosis. It should be mentioned that looking at process data should not be underestimated; 

findings by looking at process data are very useful. It may also be a great advantage when 

considering quantitative statistical methods in EFDD. It is an advantage to know what we want 

to extract. 

When talking about SCM pressures and flow, the main motivation is isolation of leakages, or 

leakage diagnosis.  

In 4.1 it was stated that a leakage may be in the order of 30 litres an hour before being detected, 

and leakages of 3-4 litres would most likely not be detected at all, which is equivalent to 50% 

increase of the normal leakage rate.  

Monitoring using subsea flow meters was turned down due to sensitivity and uncertainty issues 

as stated in 4.4.2. 
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In 5.3.1 Figure 34 show an illustration of system influence when operating a valve. It shows 

where the system enters a dynamic state and where it leaves. For the SCS operations are rather 

seldom. Therefore the system will enter a steady state most often after operation. As stated in 

3.3.6 it might take at least an hour before the system has reached steady state after operation.  

There is an endless amount of operating combinations which would generate different shapes 

on the in the accumulator skid pressure. Monitoring frequency of pump runs without regarding 

operation would cause many false alarms, and thereby destroy reliability of the method. 

Operation is the largest contributor to system variations and should of course be considered 

when looking at process data. This information is also available. In the excel sheet presented in 

5.4 the operation data was gathered. This implies that there is a solution for this problem.  

Information needed: 

1. Accumulator skid pressure. 

2. Operations. 

How can we use this information to detect leakage? 

1. By monitoring the slope of the accumulator skid pressure. 

2. Compensate for the operations when entering transient state. 

3. Measure changes in accumulator skid pressure slope during steady state. 

This is illustrated in Appendix VI B, and commented in 5.3.2 B. To refresh the memory, the 

pressure would not keep falling if there had not been any leakage in the system. An additional 

leakage would make the pressure drop faster. But every now and then the process is operated, 

and the pressure rapidly decreases. When an operation was executed the leakage detection was 

ignored for an hour or so. This way the steady state was the only one being considered for 

leakage.  

If looking at Appendix VI B clearly linear slopes appear between dynamic variations. This is the 

steady state. A method for implementation of this proposal is not evaluated, since difficulties 

were encountered when using the methods. However, it should be possible to use statistical 

methods when compensated for operation. 

Both the accumulator and the operational data could be input to a statistical tool as EFDD. This 

could be done by looking at relations of operation and accumulator pressure, and adding a 

certain delay. This would require Norne SCS operation as one tag, or it could be provided in 

terms of a TCI/KPI. EFDD could be used if the tag monitoring feature was expanded. 

If this information was available, it would look like Figure 42. Notice that it would also give a 

diagnostic indication of probable cause. 
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Figure 42 The solution proposal for a SCS leakage system. 

Why to use this proposal: 

 Simple. 

 Data is available. 

 Detect leakages which today are not detectable30. 

 Diagnose a probable cause. 

And some detailed benefits: 

 The method could also identify pump condition based on time used filling the 

accumulator skid. 

 To parallel tags are available for sensing accumulator skid pressure, this could be used to 

increase measurement reliability. 

 Only a few tags needed topside in addition to operational data. Input of valve 

consumptions could be left out. 

 Completely adaptable. 

 In addition, the time used filling up the accumulators can be an indication of pump 

condition.  

Why not to use this proposal: 

 Need for systemization of operational data. 

 Reduced performance of leakage detection compared to other methods. 

 Poor diagnosing feature compared with other methods. 

An important concern is that 5.3.2 E states that a time of six hours is passed before the process 

enters steady state, compared to the anticipated time of one hour stated in 3.3.6. This would 

surely affect performance of this proposal. Further investigation is needed to reveal cause. 

                                                             
30 A leakage rate of 3-4 litres, or referred to as a change of 50%.  
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In addition, the behaviour of multiple wells connected together in series and parallel was not so 

clear as the Alve isolated case, discussed in 5.3.2 F. 

5.7.2 Tomorrow 

If proposal today was a verified success, it should be implement for all SCS. One of the 

advantages with this method is that it requires no adaptation, even if using KPI/TCI. 

Tomorrow it would be interesting to look at possibilities to add topside wireless sensors 

discussed in 4.4.3 for additional performance of proposal for today, including pump degradation. 

Further investigation of SCM inlet pressure as discussed in 5.3.2C, for possible isolation of 

leaking Xmas tree, providing better diagnosis. 

5.7.3 Future 

In the future it might be interesting to utilize simulation models made when designing the SCS. 

These models could be used for condition monitoring purposes, in parallel to the process as 

discussed in 5.6.2. This would enable detection and diagnosis during transient, and generally 

improve performance. Sampling rate of today’s instrumentation will need to be increased. 
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6 Conclusion 
Monitoring of subsea control systems is very scarce and has a great potential for improvement. 

State-of-the-art within leakage detection and diagnosis is monitoring of pipelines, and the 

methodology is directly applicable to subsea installations, though they have distinct differences.  

Monitoring and storing of operations is a key issue towards monitoring of a subsea control 

systems. Any approach for a leakage system requires data, knowledge and an applicable method. 

Knowledge can be acquired by learning system basics, simulation and to look at history process 

data. No method has all the benefits, and a combination of methods has shown great potential 

from pipelines. 

A solution proposal given has potential to discover leakages which today would be overlooked, 

and indicate a probable cause. All the data for detection is available. Operational data is however 

not integrated, but the excel sheet from Norne demonstrates that this is possible. A deviation 

between response analysis and discovery is however a concern, and application towards 

multiple well umbilical supplies. 

Possible improvements exist by adding other parts of the system and additional instrumentation 

topside. A notable future proposal is to utilize design models for operational purposes. It tends 

to be a close relation between simplicity and performance. A simple approach would therefore 

be first priority, laying the basis for further development. The solution proposed for today is 

therefore recommended.  
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7 Further Work 
 Organize information. Make operation data available parallel to process data, as 

demonstrated in the excel sheet from Norne, and illustrated in Figure 42. This would 

be beneficial both for operators looking at process data, and in a leakage system. 

 Evaluate whether to expand the virtual tag in EFDD, for monitoring of KPI/TCI. 

 Explain why there is a five hour time difference between response analysis and 

discoveries. 

 Establish a case to verify benefit of solution proposal. Evaluate what methods to use 

for implementation, effect of implementation and possible improvements. Consider 

implementation.  
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