Comparison of Numerically Predicted Response and Measured Response for Jacket Structures

Sammenligning av Målt og Beregnet Respons i en Fagverksplattform

Dilly S. Soemantri

Supervisors:

Prof. II. Sverre Haver (Statoil)

- Dr. Ing. Ole David Økland (Marintek)
- Dr. Thomas B-Johannessen (AkerSolutions)

June 2010

NTNU, Trondheim Norwegian University of Science and Technology Faculty of Engineering Science and Technology Department of Marine Technology Norway

Abstract

Previous studies on Kvitebjørn jacket have shown that there are discrepancies between the response obtained from numerical simulations and field measurement record. For some cases, numerical simulations under predict the response of the structure when measured wave elevation is used as input. The reason for these discrepancies is so far still in question.

In this study, the following efforts were done to asses other possibilities of discrepancy of the the response:

- 1. Modification of wave height.
- 2. Impact assessment due to breaking waves.
- 3. Observation on NORSOK N-003 recommended hydrodynamic coefficients.

The analyses include the following combinations of kinematics and surface properties:

- Airy kinematics combined with second order surface
- Wheeler stretching kinematics combined with second order surface
- Second order kinematics combined with linear surface

The simulation is done by using the latest updated model developed by MARINTEK (Økland O. D., 2009). The simulation results have shown that the wave crest at platform location is under predicted approximately for 3m. One possible cause for this is the occurrence of pyramid-shaped wave.

The impact assessments in this study are using the wave impact model proposed by Wienke & Oumeraci and by Campbell & Weynberg. Simulations then show that impact profile as proposed by Wienke and Oumeraci may not be suitable for assessing the response. By using this impact profile, the response of the structure is still under predicted. The quasi-static response resulted from this impact profile seems to have under predicted the real response at the estimated impact time. The dynamic response is under predicted too even though the behavior can be modeled pretty well. Impact model as proposed by Campbell and Weynberg was able to approximate the measured response better than the previous impact profile in this case. Total response and dynamic response can be represented pretty well and if the presence of caissons/riser between the legs of the platform is considered, the quasi-static response may be able to be approximated well too.

For the case of slender drag dominated structure like Kvitebjørn, simulations show that a bigger drag coefficient than the one proposed by NORSOK N-003 should be used to approximate the impact load on the structure.

Acknowledgement

This study has been done under the supervision of Prof. Sverre Haver (NTNU/STATOIL). I highly appreciate all discussions, guidance, advice, and reviews that I had with him since the thesis pre-work on autumn 2009 until the completion of this master thesis on June 2010. It has been a pleasure to work together with him and I am looking forward to have more cooperation in the future.

I would like to thank Dr. Ing. Ole David Økland (MARINTEK) for all his assistance. The discussions have been very helpful for me in starting my work and the knowledge that he shared has been very useful for the completion of this study. The analysis input and some computational tools that he gave me were very useful and his experience on Kvitebjørn analysis has helped me a lot in completing this study.

I am also grateful for the reviews by Dr. Thomas B-Johannessen (AkerSolutions) which have been very useful for me in presenting the result of my study better.

I am thankful to Per Erlend Voie for all discussions and guidance in using Matlab. His previous work has been useful as a reference for me in this study. The simdyn version that he had developed was useful in executing the analyses with second order kinematics.

I would also like to acknowledge the assistance from Dr. Gro S. Baarholm (MARINTEK) for her assistance in analyzing impact with simdyn and some other discussions which have also been pleasant and helpful. I would like to thank Mr. Naiquan Ye (MARINTEK) for his help on setting up NIRWANA and solving some installation problems with this software in my computer.

Statoil and Marintek are acknowleged for the permission and access to the data used in this study.

Last but not least, I would like to thank all of my office mates in Marinteknisk Senter: Arild, Line, Børge, Kjersti, Marianne and Jinping for the nice atmosphere and a very wonderful year in the office.

Trondheim, June 2010

Dilly S. Soemantri

Table of Content

Abstract		i
Acknowl	ledgement	iii
Table of	Content	V
List of Fi	igure	vii
List of Ta	able	xi
Nomenc	lature	xiii
Chapter	1. Introduction	1
1.1	Background	1
1.2	Motivation of Study	1
1.3	Scope of Work	2
Chapter	2. Structural Modeling	3
2.1	Previous Studies and Model Development	3
2.2	Introduction to Measured and Predicted Response Discrepancies	5
Chapter	3. Data Handling and Processing	7
3.1	Measurement Data	7
3.2	Second Order Random Wave Formulations	9
3.3	Identification of Linear Wave Content	10
3.4	Time Domain Simulation	12
3.4.	1 General	12
3.4.	2 The nature of time integration	13
3.4.	3 Method of integration	13
3.4.	4 Selection of time integration method	15
Chapter	4. Discussion on Odd Events	17
4.1	Identification of Odd Events	17
4.2	Possible Reasons for Discrepancies	19
4.2.	1. Radar measurement error	19
4.2.	2. Modeling error	19
4.2.3. Storm surge and tide effect		19
4.2.	4. Other possibilities of discrepancies	21
4.3	Observation on Odd Events	22
4.3.	1. Event 200401011200	22

4.3.2. Event 200401011400		Event 200401011400	. 29
4.4	Glo	bal Maxima Distribution of Response History	. 31
4.4	.1.	Global maxima distribution on 200401011200	. 32
4.4	.2.	Global maxima distribution on 200401011400	. 35
Chapter	r 5. A	n Insight to other Possible Causes of Odd Events	. 39
5.2	Wa	ve Height Modification	. 39
5.1	.1.	Crest and Trough Modification	. 39
5.1	.2.	Modification of Crest Height only	. 46
5.3	Imp	act Assessment due to Breaking Waves	. 49
5.2	.1.	Impact Assessment according to Wienke and Oumeraci Impact Model	. 52
5.2	.2.	Impact Assessment according to Campbell and Weynberg Impact Mode	I 69
5.4	Effe	ect of Damping Increase on the Structural Response	. 81
5.5	Cor	nment on the Utilization of NORSOK Coefficient in Simulations	. 86
Chapter	r 6. C	onclusions and Recommendations	. 93
6.1	Ger	neral	. 93
6.2	Cor	nclusions	. 94
6.3	6.3 Recommendations		. 96
Bibliogra	aphy		. 97
Append	ix	·······	101
A.1	The	sis Problem Description	101
A.2	A.2 Matlab Code – Impact Wienke & Oumeraci Calculation		105
A.3 Matlab Code – Impact Campbell & Weynberg Calculation		lab Code – Impact Campbell & Weynberg Calculation	109
A.4	Nirv	vana Input Code	111

List of Figure

Figure 3. 1 Illustration for the trapezoidal integration method	8
Figure 3. 2 Illustration for the Wilson- θ method – distribution of acceleration, as	adapted
from (Karunakaran, Brathaug, & Passano, 1990)	14
Figure 3. 3 Damping ratios and relative period errors for several integration	methods
(Hilber & Hughes, 1978)	16

Figure 4. 1 Measured versus simulated responses on wave tag 200401011200 – Axial Figure 4. 2 Measured versus simulated responses on wave tag 200401011400- Axial Figure 4. 6 Total axial response Leg A2 (-108 m) event 200401011200 (t = 600 - 750 Figure 4. 7 Quasi-static and resonance response A2 (-108 m) event 200401011200 (t = Figure 4. 8 Axial response Leg A2 (-108 m) event 200401011200 (t = 950 – 1000 sec)25 Figure 4. 9 Recorded (second order) wave elevation at sampling point (radar position) Figure 4. 11 Possible wave condition that causes over prediction at 200401011200.... 28 Figure 4. 12 Spectral plot for axial force at A2 (-108 m) event 200401011400......29 Figure 4. 14 Quasi-static and resonance response A2 (-108 m) event 200401011400. 30 Figure 4. 15 Measured axial force on leg B1 VS leg A2 - 200401011400 31 Figure 4. 17 Global maxima distribution (total axial response) leg A2 (-108m) Figure 4. 18 Global maxima distribution - Quasi-static plot - 200401011200 leg A2 (-Figure 4. 19 Global maxima distribution – Dynamic plot – 200401011200 leg A2 (-108m) Figure 4. 20 Global maxima distribution (total axial response) leg A2 (-108m) Figure 4. 21 Global maxima distribution - Quasi-static plot - 200401011400 leg A2 (-

Figure 4. 22 Global maxima distribution – Dynamic plot – 200401011400 leg A2 (-108m)

Figure 5. 1 Wave crest and trough modification 40
Figure 5. 2 Response due to wave modification on record 200401011200 - Leg A2 (-
108m) 41
Figure 5. 3 Response due to wave modification on record 200401011400 - Leg A2 (-
108m)
Figure 5. 4 Modified wave record at sampling point VS elevation at platform location
(Leg B1) – Second order wave
Figure 5. 5 3D Illustration of pyramid wave that is causing under prediction
Figure 5. 6 Possible wave condition that causes under prediction
Figure 5. 7 Wave crest modification
Figure 5. 8 Axial response leg A2 (-108m) due to wave crest modification
Figure 5. 9 Leg A2 (-108m) response: Case A VS Case B
Figure 5. 10 Horizontal asymmetry factor (Lader, Grytøyr, Myrhaug, & Pettersen, 1998)
Figure 5. 11 Range of horizontal asymmetry factor (Lader, Grytøyr, Myrhaug, &
Pettersen, 1998)
Figure 5. 12 Development of kinematics in the crest of breaking waves (Lader, Myrhaug,
& Pettersen, 2000)
Figure 5. 13 Illustration of breaking waves
Figure 5. 14 Illustration of breaking wave parameters (Wienke & Oumeraci, 2004) 53
Figure 5. 15 Impact pressure plane idealization by a flat plate (Wienke & Oumeraci,
2004)
Figure 5. 16 Impact on inclined cylinder (Wienke & Oumeraci, 2004) 55
Figure 5. 17 Wave height and period estimation from wave record
Figure 5. 18 Asymmetric wave properties (Myrhaug & Kjeldsen, 1978) 57
Figure 5. 19 Crest front steepness versus horizontal asymmetry factor (Myrhaug &
Kjeldsen, 1986)
Figure 5. 20 Impact force profile (in wave direction) – Wienke & Oumeraci model 58
Figure 5. 21 Impact force working point location and impact sequence
Figure 5. 22 Response of leg A2 (-108m) 200401011200 - Morison + Impact Force
(Wienke & Oumeraci impact profile)
Figure 5. 23 Response of leg B1 (-108m) 200401011200 - Morison + Impact Force
(Wienke & Oumeraci impact profile)
Figure 5. 24 Response of leg A2 (-108m) 200401011400 - Morison + Impact Force
(Wienke & Oumeraci impact profile)
Figure 5. 25 Response of leg B1 (-108m) 200401011400 - Morison + Impact Force
(Wienke & Oumeraci impact profile)
Figure 5. 26 Response due to impact only – Wienke & Oumeraci model
Figure 5. 27 Response due to impact only (impact force x 10) – Wienke & Oumeraci
model
Figure 5. 28 Response of leg A2 (-108m) 200401011200 – Morison + (Impact Force x
10)
Figure 5. 29 Response of leg B1 (-108m) 200401011200 – Morison + (Impact Force x
10)

Figure 5. 30 Change in <i>Cs</i> as a function of cylinder submergence
Figure 5. 31 Prediction of impact duration
Figure 5. 32 Impact force profile (in wave direction) – Campbell and Weynberg model 71
Figure 5. 33 Response of leg A2 (-108m) 200401011200 - Morison + Impact Force
(Campbell & Weynberg impact profile)72
Figure 5. 34 Response of leg B1 (-108m) 200401011200 - Morison + Impact Force
(Campbell & Weynberg impact profile)73
Figure 5. 35 Response of leg A2 (-108m) 200401011400 - Morison + Impact Force
(Campbell & Weynberg impact profile)74
Figure 5. 36 Response of leg B1 (-108m) 200401011400 - Morison + Impact Force
(Campbell & Weynberg impact profile)75
Figure 5. 37 Response due to impact only – Campbell & Weynberg model
Figure 5. 38 Response behavior with and without impact – Leg A2 (-108m)
200401011200
Figure 5. 39 Impact force profile (in wave direction) – Campbell and Weynberg model –
2 nd and 3 rd hit impact modification to account for load on caissons
Figure 5. 40 Response of leg A2 (-108m) 200401011200 - Morison + Impact Force
(Campbell & Weynberg impact profile) – with modified impact profile for leg A1 and B278
Figure 5. 41 Response of leg B1 (-108m) 200401011200 - Morison + Impact Force
(Campbell & Weynberg impact profile) – with modified impact profile for leg A1 and B279
Figure 5. 42 Response of leg A2 (-108m) 200401011400 - Morison + Impact Force
(Campbell & Weynberg impact profile) – with modified impact profile for leg A1 and B280
Figure 5. 43 Response of leg B1 (-108m) 200401011400 - Morison + Impact Force
(Campbell & Weynberg impact profile) – with modified impact profile for leg A1 and B281
Figure 5. 44 Response of leg A2 (-108m) 200401011200 - Morison + Impact Force
(Campbell & Weynberg impact profile) – damping ratio 5%
Figure 5. 45 Response of leg B1 (-108m) 200401011200 - Morison + Impact Force
(Campbell & Weynberg impact profile) – damping ratio 5%
Figure 5. 46 Response of leg A2 (-108m) 200401011400 - Morison + Impact Force
(Campbell & Weynberg impact profile) – damping ratio 5%
Figure 5. 47 Response of leg B1 (-108m) 200401011400 - Morison + Impact Force
(Campbell & Weynberg impact profile) – damping ratio 5%
Figure 5. 48 Quasi-static and dynamic response 200401011200 after C _D Modification 89
Figure 5. 49 Quasi-static and dynamic response 200401011400 after C_D Modification 90

List of Table

Table 3. 1 Newmark-β and Wilson-θ Parameters	15
Table 4. 1 Simulation scheme explanation	19
Table 4. 2 Maximum response change due to MWL change	
Table 5. 1 Wave crest and trough modification data	
Table 5. 2 Wave crest modification data	
Table 5. 3 Horizontal asymmetry factor (μ) for modified wave	
Table 5. 4 Structural damping modification parameters	
· •	

Nomenclature

The following are the list of symbols which are used in this report. Some symbols may be used for different purpose but explanation on that will be given on the report. The symbols below are the most common ones:

- *a* Amplitude of wave component
- d Water depth
- *dz* Segment length of cylinder strip
- f(x) General notation for function of x
- f (Wave) frequency
- g Gravity acceleration, normally 9.81 m/s²
- *h* Length of time step Δt
- k Wave number
- *s* Cylinder submergence
- t (Discrete point of) time
- *u* Wave particle velocity
- *u* Wave particle acceleration
- *x* Displacement or position in horizontal direction
- *x* Velocity
- *x* Acceleration
- *z* Vertical position of the system
- *C* Damping
 - Wave celerity in impact calculation
- *C_D* Drag coefficient
- *C_M* Inertia/mass coefficient
- C_s Slamming coefficient
- D Cylinder diameter
- F External force
- *F*₁ Complex Fourier transform of linear wave component
- F_1^* Complex conjugate of F_1
- F_D Drag force
- *F_I* Impact force
- F_M Inertia force
- *H* Wave height
- $H(f_1, f_2)$ Quadratic transfer function of positive and negative frequency (f_1, f_2) of Fourier component
 - K Stiffness
 - M Mass
 - *R* Radius of cylinder
 - T Wave period
 - T_0 Natural frequency of the system
- *T_{impact}* Duration of impact estimated from wave record

T_{wave} Zero crossing period of wave record

V Wave velocity

 \bullet

- $\alpha_1 \& \alpha_2$ Rayleigh damping coefficients
 - β Stability factor on Newmark β integration
 - γ Numerical damping factor on Newmark β integration
 - Member inclination angle in impact load calculation
 - θ Averaging parameter in Wilson θ integration
 - Δt Time step or increment of time
 - Δx (Horizontal) distance in x direction
 - Δy (Horizontal) distance in y direction
 - μ Horizontal asymmetry factor for breaking waves
 - η Surface elevation

 $\eta_1 \text{ or } \eta^{(1)}$ Linear (component of) surface elevation

- η_2 Second order component of surface elevation
- $\eta^{(2)}$ Second order correction to surface elevation
- $\eta^{(3)}$ Third order correction to surface elevation
- η_b Crest height of breaking wave
- η_c Crest height

λ

- τ Time increment in Wilson θ integration
 - Wave length
 - Curling factor in impact calculation due to breaking wave
- ho Sea water density
- ϵ Crest front steepness
- ξ Damping ratio

Chapter 1 Introduction

1.1 Background

Kvitebjørn, a four-legged jacket structure which was installed in 190 m of water depth, has a natural period which is considered large enough to induce considerable dynamic amplification. Being considered as a slender structure which is influenced by non-linear drag loading, a way to do the structural response analysis is by doing time domain simulation. In this study, the results from the time domain simulation will then be compared with measurement data.

Response measurement data for this platform is available in form of acceleration data at various locations as well as axial force on several structural members. The measurements began since the first winter season after the installation (2003) and lasted until summer 2007. In addition, the wave elevation time history is measured by a looking-down radar located at coordinate (-57.0, -22.0, 26) m relative to the platform origin (Fugro, 2006).

1.2 Motivation of Study

Some previous studies which were done for example by Karunakaran (2004) and by Marintek (Økland, 2009), show that there are discrepancies between the response obtained from numerical simulations and field measurement records. Most of the time, simulations show a reasonable agreement with the measurements. For some cases,

numerical simulations under predict the response of the structure when measured wave elevation is used as input. The very large discrepancies are exceptional to the rest of the simulations. The reason for these discrepancies is so far still in question. This master thesis is aimed to investigate possible reasons for the discrepancies found on this structure.

1.3 Scope of Work

This master thesis is preceded by a project thesis (Soemantri, 2009) as an introductory part to the problems which will be discussed herein. Literature study is essential to have better understanding on the problems and to give wider horizon when suggesting possible solutions. The outline of the study will include:

- 1. Description of previous studies related to the modeling of Kvitebjørn platform which leads to the discrepancies in terms of under and over predictions of the measured response compared to the simulation results.
- 2. Introduction to various formulations of time domain simulation.
- 3. Discussion on the method to shift the measured wave elevation from measuring point to the center of the jacket shall be presented.
- 4. Time domain comparison between numerical simulation and measured response for certain episodes of events shall be conducted. Total response, quasi-static response, and dynamic response shall be identified by using filtering method. As a first approach, the sea surface elevation will be assumed to be Gaussian and the kinematics can be modeled by Wheeler stretching. The next approach is to assume that the sea surface elevation can be modeled as a second order process.
- 5. An observation on NORSOK Standard N-003 coefficients shall be done with regards to the presence of dynamics on the structure. The design recipe in the standard is primarily provided for structures which behave quasi-statically, thus an investigation to see if the same value of coefficients can be used for dynamically behaving structures needs to be done.
- 6. Discussion on the possibility of breaking wave occurrence by the time discrepancies between measured and simulated response occur.

The time domain simulations are to be done by using computer program NIRWANA which was developed by Marintek (Karunakaran, Brathaug, Passano, Økland, & Baarholm, 2008). Simulations with specific kinematic models will be done by using the following version of NIRWANA:

- Airy kinematics and Wheeler stretching:

Original NIRWANA Version Voie NIRWANA Version Impact NIRWANA Version

- Second order kinematics:
- Impact simulation:

Chapter 2 Problem Definition

2.1 Previous Studies and Model Development

On May 16th, 2003, Kvitebjørn platform was installed in Northern North Sea. The platform itself is equipped with several sensors to measure the environmental condition as well as structural responses. Sampling of data is done by collecting 20-minute time history continuously with sampling rate of 7.6805 Hz. The wave sensor is located at a distance of 61 m from the center of jacket while the accelerometer and the strain sensor are located at -108m elevation. Figure 2.1 illustrates the position of the sensors on Kvitebjørn.

As a design basis for this platform, topside weight of 23000 tons was used. This together with the soil condition which is originally assumed, resulted in an estimated largest natural period of the structure of around 5 sec. Based on measurement in winter 2003/2004, it is observed that the natural period of the structure is much less than the estimated value in the design phase. A study which was done by 2005 (Karunakaran & Haver, 2005) utilizes topside weight of 18000 tons. In that study, the stiffness of the bottom nodes which simulate the pile-soil interaction was also increased 100 times. This gives an almost fixed support condition between soil and the structure. Other than this study, there are some investigations conducted on this platform as well. One of the findings is that there are some discrepancies between measured response values with numerical simulation result (Økland O. D., 2006).

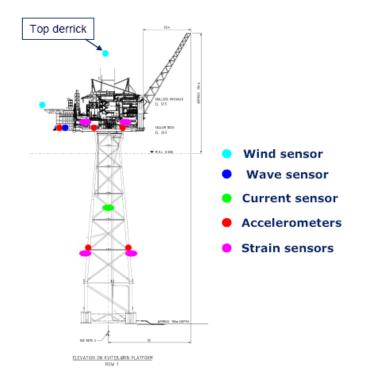


Figure 2. 1 Elevation view of Kvitebjørn including locations of sensors. (Courtesy of Statoil)

These findings lead to more investigation studies which resulted in the update of the model to be able to represent the actual condition. The latest investigation study which produces a more updated model of the platform was done by 2009 by Marintek (Økland O. D., 2009). This study also mentions some previous investigations which give impact to the structural model:

- 1. Global finite element model review (Stavanger 2006 and Trondheim 2007)
- 2. Assessment on topside mass distribution (Statoil)
- 3. Foundation stiffness re-evaluation by AkerSolutions (Akersolutions, 2006)
- 4. Natural period of Kvitebjørn (Wigaard, 2008) where it was mentioned that stiff joints modelling could be important for the jacket's global stiffness.

The latest model by Marintek (Økland O. D., 2009) incorporates all relevant information on the platform. The updates on the latest model include:

- 1. Soil stiffness, in terms of spring constants used in NIRWANA
- 2. Jacket structure stiffness, by changing the wall thickness and/or structural diameter of platform legs and vertical bracings so that the stiffness used in NIRWANA is the same with the SESAM model. The SESAM model was obtained from AkerSolutions from another study. Other modification is done by changing the configuration of some horizontal bracings to match the SESAM configuration.
- Topside weight of 20000 tons can be used based on Aibel (Aibel, 2008). Despite this, to obtain the corresponding measured natural period, Økland (Økland O. D., 2009), used topside weight of 19000 tons and increase the soil stiffness by 20%. This model will be used further on in our analyses.

- Steel density of 7800 kg/m3 is used for the vertical bracings and main legs. Density of horizontal bracings is modified to account for the existence of other detailing elements such as riser, conductor, joint stiffeners, etc.
- 5. Weight of pile-clusters and cans are accounted for by assigning point masses on the main legs.
- 6. Marine growth on main legs and vertical bracings is accounted for according to the recommendations in NORSOK Standard N-003. For horizontal bracings, equivalent hydrodynamic diameters for drag and mass force are assigned. The values represent the existence of appurtenances such as members supporting the conductors, risers, J-tube, and caissons.
- 7. Improvement on modeling detail by doing some model corrections which include better caisson, J-tube, conductor, and riser representation.

The topside configuration is not modeled in form of elements in the computer model. The topside is represented by adding the weight on a certain point on top of the jacket structure. This point corresponds to the center of gravity of the topside which is located at coordinate (-3.0, 0.5, 44.5). The weight is introduced as forces and moments to represent the real weight distribution of the topside. For this master thesis, the computer model which will be used is based on the latest modification mentioned above.

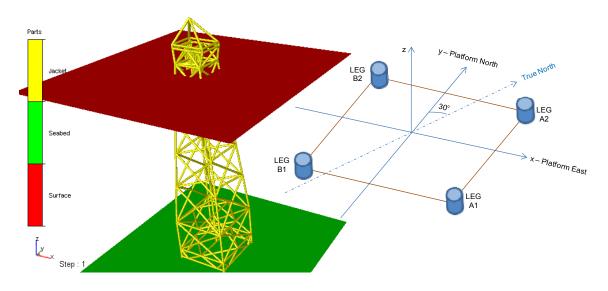


Figure 2. 2 Model representation with corresponding coordinate system

2.2 Introduction to Measured and Predicted Response Discrepancies

In doing a comparison between field measurement data with results obtained from numerical simulations, assumptions on several aspects are sometimes required. For full scale experiments, the input conditions which are related to the prediction of loads are

roughly known. Uncertainties occur in areas such as the prediction of wave direction, degree of short-crestedness, determination of current speed, and wave behavior such as the steepness and breaking possibility. Due to this, an exactly same result between measured and simulated response is impossible to obtain. However, a general impression can show whether numerical simulation is good enough in giving results. The results are said to be reasonably good when they are approximately at the same trend with the full scale measurement. This will be a good indication of the adequacy of the numerical calculation done in the design phase.

Previous studies have shown that there are some episodes of the response where numerical simulations under predict the real response of the platform (Karunakaran & Økland, 2004) and (Økland O. D., 2006). These events are known as the "odd events". The discrepancy between measured and simulated response is obtained after running 20-minute simulation and comparing the result with the corresponding 20-minute field measurement. Focus has been concentrated on two odd events which are (Økland O. D., 2009):

- Odd event 1:

Tag: 200401011200 (Measurement on 1 January 2004 at starting at 12:00 for 20 minute)

Detail: large measured response around t = 700 sec without any corresponding very large wave. Response from simulation is 50%-60% smaller that the real measured response (Voie, 2009).

- Odd event 2:

Tag: 200401011400 (Measurement on 1 January 2004 at starting at 14:00 for 20 minute)

Detail: ringing like response occur at around t = 170 sec where Wheeler kinematics under predict the response by 70% (Voie, 2009).

In this master thesis, these two odd events will be the main focus too. As an addition, there is another discrepancy where the simulation shows a high over prediction of the response. This odd event is found at time window 950-1000 sec of the 200401011200 event. This event will also be discussed in this report.

Chapter 3 Data Handling and Processing

3.1 Measurement Data

For this study, the response of the structure in terms of displacement which was deduced from acceleration data, and axial force (at el. -108m) which was deduced from strain measurement (ref. Fig. 2.1) will be observed. The measured data is recorded as continuous 20-minute time history record with sampling time interval 0.1302 sec (7.68 Hz). The data collection calculates axial load from strain measurement. Axial load on the structure can then be directly obtained from the measurement record data, but for the displacement, numerical integration has to be done because the available data is in form of acceleration.

Recording response in form of acceleration is a common practice especially in earthquake engineering. The displacement can be obtained by doing double integration of the acceleration data. As the records are in the form of discrete points in time, the integration may be approached by taking the area under the curve of acceleration-time graph to obtain the velocity. The same procedure is done to obtain the displacement from velocity data. This technique is commonly known as the trapezoidal rule. This method is advantageous to be used for integrating discrete sample with constant time step. A simple explanation on this method is that for a function, f(x), one can calculate the area under the function by approximating the shape of the area with a trapezium.

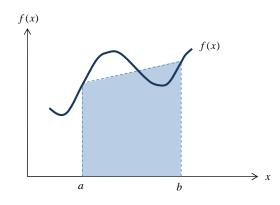


Figure 3. 1 Illustration for the trapezoidal integration method

As mentioned previously, the sampling interval for the acceleration data is 0.1302 sec, thus the distance of a-b represents the time interval of 0.1302 sec. In the above figure, f(x) is the acceleration as recorded by the measuring device. The area under the curve is approximated as the area of trapezium according to the following equation:

$$\int_{a}^{b} f(x)dx \approx (b-a)\frac{f(a)+f(b)}{2}$$
(3.1)

Introducing numbers into the above equation and having f(x) as the acceleration, the velocity can be obtained. Further on, by replacing f(x) with the velocity, the displacement will be obtained. If we denote the time interval, acceleration, velocity, and displacement respectively as Δt , \ddot{x} , \dot{x} , and x; the following formulas are the basic formulas to calculate displacement from acceleration:

$$\dot{x}_t = \dot{x}_{t-1} + \ddot{x}_t \cdot \Delta t \tag{3.2}$$

$$x_t = x_{t-1} + \dot{x}_t \cdot \Delta t \tag{3.3}$$

After doing the integration, low frequency result may pollute the displacement values. By applying a high pass filter, the low frequency component can be removed thus the reasonable displacement data can be obtained (Ref. Fig . 4.5 and 4.12 in Chapter 4 to see an illustration of frequency domain plot).

Data for wave elevation is also available in 20-minute record of same sampling frequency (7.68 Hz). As mentioned previously, the wave radar is installed at a coordinate of (-57.0, -22.0, 26) m relative to the center of platform. This denotes that there is a distance of approximately 61 meter between the sampling point and the center of platform. To obtain the corresponding wave elevation at the platform origin, prediction of the elevation by doing some elevation shift from the measurement location to the center of platform should be done. Voie (Voie P. E., 2008) discusses a method of shifting wave elevation in space. The prediction of spatial variations of wave heights is using the assumption that the wave is of linear order and that the wave components are dispersive and can be propagated. The sequence of procedure in shifting the wave in space is as follows:

- 1. First, the record in time domain is transformed into frequency domain by Fourier transformation.
- 2. In the frequency domain, the Fourier amplitudes are phase shifted by multiplying each of the amplitude with $e^{ik_n\Delta x}$, where k_n denotes the wave number of the n-th Fourier component, and Δx is the distance from observation point to new location. The wave number is obtained from the dispersion relation.
- 3. At this point, the wave is already propagated to a new position in frequency domain. Inverse Fourier transform is done to reconstruct the data into time domain.

For further details on this, interested readers may refer to the works done by Voie (Voie, 2008), (Voie, 2009). This feature has also been adopted in NIRWANA version modified by the same author. In using NIRWANA for this purpose, one has to input the linearized wave record together with the propagation distance of the wave. The program will do the routine as mentioned on the above procedure automatically. Note that the latest NIRWANA program cannot proceed with too many discrete points of time history to be analyzed. The limit is 2^{12} or 4096 discrete points. Adding more points will result in inaccurate result in the time domain integration. This "bug" shall be fixed in the future to give a more robust simulation tool.

In the measured data for wave elevation, non linear components are actually included. In order to use the above procedure in a consistent way, the non-linear contributions should be removed first. This is a complicated matter. An approximation can be done which is by assuming the surface to be a realization of a second order process. It is then possible separate the linear and second order components of the wave.

3.2 Second Order Random Wave Formulations

The measured data recorded by the wave radar contains the second order process of wave trace. Several studies by Stansberg have discussed the properties and basic formulations of the second order random waves. As an excerpt to that, the following formulation (Stansberg, 1998) can be used as a basis to our further step in modeling second order random wave. Let the measured wave record is composed as follows:

$$\eta = \eta_1(t) + \eta_2(t)$$
 (3.4)

On the above equation, the linear component, η_1 , can be regarded as:

$$\eta_1(t) = \int_{-\infty}^{\infty} F_1 e^{i2\pi ft} df$$
(3.5)

 F_1 is the complex Fourier transform of the linear wave elevation, and f is the wave frequency. The Fourier transform F_x shall at a given frequency f_x be statistically independent of F_y at frequency f_y and thus the resulting linear elevation will be normally distributed.

The second order component of the wave (η_2) can be expressed as:

$$\eta_2(t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_1^*(f_1) \cdot F_1(f_2) \cdot H(f_1, f_2) e^{i2\pi(f_2 - f_1)t} df_1 df_2$$
(3.6)

In the above equation, f_1 and f_2 are positive and negative frequencies of the Fourier component. F_1^* is the complex conjugate of F_1 and vice versa. $H(f_1, f_2)$ is known as the quadratic transfer function. When long crested wave and deep water are taken as assumptions, the quadratic transfer function can be expressed as:

$$H(f_1, f_2) = \frac{B}{2} |k_2 + B k_1| = \frac{B}{2g} (2\pi)^2 |f_2^2 + B f_1^2|$$
(3.7)

$$B = \begin{cases} +1 \text{ for } f_1 \cdot f_2 < 0 \text{ (sum - frequency)} \\ -1 \text{ for } f_1 \cdot f_2 > 0 \text{ (difference - frequency)} \end{cases}$$
(3.8)

Here, k is the wave number and g is the gravity acceleration. As deep water assumption is used, the parameters also fulfilled the deep water equations as can be found on Faltinsen's book page 16 (Faltinsen, 1990).

3.3 Identification of Linear Wave Content

The procedure to identify linear wave content has been presented by Stansberg (Stansberg, 2003), (Stansberg, 2008) and cited by Voie(2009). Briefly, the procedure is as follows:

- 1. Raw estimation of the second order component is established by firstly using the measured data record as the "linear" input. Ref. to equation (3.6)
- 2. Ref. to equation (3.4), find the linear component by substracting the second order component from previous step to the measured wave record.
- 3. Define an upper frequency limit (f_{max}) so that it fulfils k_{max} . $A_{max,R} > 2$ by using linear dispersion equation. k_{max} is the highest angular wave number and $A_{max,R}$ is the expected highest amplitude from Rayleigh theory.
- 4. Do a low pass filter for the result from 2. at the frequency f_{max} and high pass filter at an appropriate low frequency (typically 1/25 Hz full scale).

Note that the data available is a digitized data not a continuous one. The integral terms on the equations can be replaced by the summation function. For the detail of implementation of these theories mentioned so far in NIRWANA including the basics for second order kinematics, interested reader may refer to Voie's master thesis (Voie, 2009).

There are actually some other approaches in determining the linear wave content from a measured wave record for example as proposed in Johannessen (2009a and 2009b) and Winterstein et.al. (1999). Johannessen's method will be mentioned here briefly.

In his paper, Johannessen (2009b) proposes a linearization procedure which can be expressed by the following equation:

$$\eta - \eta'^{(2)} = \left(\eta^{(1)} + \eta^{(2)} + \cdots\right) - \left(\eta^{(2)} + O^{(3)}\right) = \eta^{(1)} + O^{(3)}$$
(3.9)

The above equation expresses the linear surface elevation correct to third order. $\eta'^{(2)}$ in the above equation denotes the measured wave elevation history. The third order error contains:

- Real third order wave components which have not been removed from the measured wave history
- Third order error introduced in $\eta'^{(2)}$.

The other symbols on the equation can be expressed as:

Surface elevation:

$$\eta = \eta^{(1)} + \eta^{(2)} + \eta^{(3)} + \cdots$$
 (3.10)

Linear surface elevation:

....

N7

$$\eta^{(1)} = \sum_{n=1}^{N} a_n \cos(\phi_n)$$
(3.11)

Second order correction to surface elevation:

$$\eta^{(2)} = \sum_{n=1}^{N} \left(\frac{1}{2} a_n^2 k_n \cos(2\phi_n) + \sum_{m=n+1}^{N} \frac{1}{2} a_n a_m ((k_n + k_m) \cos(\phi_n \phi_m) - (k_m - k_n) \cos(\phi_m - \phi_n)) \right)$$
(3.12)

Third order wavenumber sum correction to the free surface:

$$\eta^{+(3)} = \sum_{n=1}^{N} \frac{3}{8} a_n (a_n k_n)^2 \cos(3\phi_n) + \sum_{m=1}^{n-1} \frac{1}{8} a_n a_m (a_n (2k_n + k_m)^2 \cos(2\phi_n + \phi_m) + a_m (k_n + 2k_m)^2 \cos(\phi_n + 2\phi_m)) + \sum_{l=1}^{m-1} \frac{1}{4} a_m a_m a_l ((k_n + k_m + k_l)^2 \cos(\phi_n + \phi_m + \phi_l))$$
(3.13)

Where:

$$\omega_n^2 = gk_n \tag{3.14}$$

$$\phi_n = k_n x - \omega_n t + \varepsilon_n$$

The expression for the second order surface elevation (Eq. (3.12)) becomes inaccurate for interaction between long and short waves (Johannessen, 2009a). A maximum allowable bandwidth, $d\omega$, is introduced thus the interaction between wave components

with frequencies outside $d\omega$ is ignored. A bandwidth of $0.7\omega_1$ is then chosen, where ω_1 is the central frequency based on the zeroth and first spectral moments.

3.4 Time Domain Simulation

3.4.1 General

The dynamic response of a system due to time historical loading is obtained by doing the so called time domain simulation. Time domain simulation method can be divided into two major groups (Langen & Sigbjörnsson, 1979), which are:

- 1. Methods based on differential formulation.
- 2. Methods based on numerical integration.

The method based on differential formulation consists of the second central difference and the Houboult's method. These methods are based on Newton's equidistant interpolation formula based on backward differentiation. The second central difference method is conditionally stable which means that the result may deviate from the exact value or becomes unstable when time step is larger than certain critical value of time step. Houbolt's method is unconditionally stable (Johnson, 1966) but will give an artificial damping. This group of method will not be further discussed here, but interested readers are referred to (Langen & Sigbjörnsson, 1979) for further details.

The method based on numerical integration consists of several integration methods such as:

- 1. Euler's method
- 2. Euler-Gauss method
- 3. Newmark-β family
- 4. Runge-Kutta method
- 5. Bossak method
- 6. Hilber-Hughes-Taylor method
- 7. Park-Housner method
- 8. Wilson-θ method

Discussion in this report will be limited to the methods which are commonly used and will be considered for the simulations. Several text books are available for interested readers, but for a summary on several methods mentioned earlier, readers may refer to (Bajer, 2002). For the analysis by using NIRWANA, only the Newmark- β family and the Wilson- θ method which are the unconditionally stable methods will be considered. These two methods will be briefly discussed in this chapter.

For finite element analysis by using NIRWANA, direct numerical integration is done to the dynamic equation of motion. The integration demands a discretization of the load history so that the total duration of observed event is divided into time steps. By introducing the initial value of acceleration, velocity and displacement, one can predict the solution at the end of first step. Solution from the first time step will become the initial value for the next step, and this process is continued until the end of the load history. This way, the final solution for the equation of motion for the given load history can be obtained.

3.4.2 The nature of time integration

As a result of load discretization, the responses obtained by time integration will also be discrete. This means that the result will be correct at the discreted time position, but not necessarily correct at the position between those time points. Result will depend on the length of the time step and the assumption made on the distribution of acceleration, velocity, and displacement between the discrete points of time. Smaller time steps will give a more accurate result, but on the other hand cause a longer computation time especially for multi degree of freedom systems.

Another important aspect of time integration is the stability criteria. A stable calculation will give a similar result with the correct solution, but an unstable one will give solution with considerable deviation from the correct solution. An integration method is called *implicitly stable* when time step has no significant effect on the result (changing time step will not cause large deviation to the exact value). If an integration method is said to be *conditionally stable*.

3.4.3 Method of integration

Newmark-ß Family

For the equation of motion denoted by

$$M\ddot{x}_{t+1} + C\dot{x}_{t+1} + Kx_{t+1} = F_{t+1}$$
(3.15)

Newmark (Newmark, 1959) derived the general equation for velocity and displacement based on the utilization of Taylor series as:

$$\dot{x}_{t+1} = \dot{x}_t + h(1 - \gamma)\ddot{x}_t + \gamma h\ddot{x}_{t+1}$$
(3.16)

$$x_{t+1} = x_t + h\dot{x}_t + h^2 \left(\frac{1}{2} - \beta\right) \ddot{x}_t + \beta h^2 \ddot{x}_{t+1}$$
(3.17)

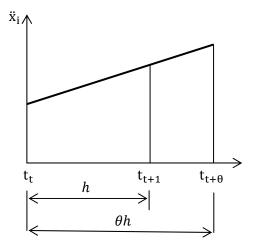
The aforementioned three equations will enable us to find the solutions for displacement, velocity, and acceleration at the end of a time step. The parameter *h* denotes the length of each time step Δt . The parameters β and γ are related to stability and accuracy of the method. γ is a parameter which appears in combination with damping term, *C*. This parameter controls the numerical damping in the solution algorithm by the following manner (Larsen, 2007):

- $\gamma = \frac{1}{2}$ no numerical damping
- $\gamma > \frac{1}{2}$ positive numerical damping will occur and amplitude decay will happen
- $\gamma < \frac{1}{2}$ negative numerical damping will occur and lead to instability

Based on the above condition, $\gamma = \frac{1}{2}$ is usually chosen and will be used in our analyses too. The Newmark method is said to be unconditionally stable if the following conditions are fulfilled:

$$\gamma \ge 1/2$$
 and $\beta \ge \frac{1}{4} \left(\gamma + \frac{1}{2}\right)^2$ (3.18)

The method becomes conditionally stable for β values which are smaller than stated on the above formula. The stability limit of this method is given by (Larsen, 2007):


$$h_{limit} = \frac{T_0}{2\pi} \cdot \frac{1}{\sqrt{\frac{1}{4}\left(\gamma + \frac{1}{2}\right)^2 - \beta}}$$
(3.19)

 T_0 denotes the natural frequency of the system (or the shortest eigenperiod in multidegree of freedom system). The above description of this method denotes that for unconditionally stable integration, the parameters should be $\gamma = \frac{1}{2}$ and $\beta = \frac{1}{4}$. There are other values of these parameters that can be used with a corresponding stability limit. This will be presented on Table 3.1, but it is a good practice to choose the unconditionally stable parameters to be used in NIRWANA. Thus, $\gamma = \frac{1}{2}$ and $\beta = \frac{1}{4}$ will be used in the simulations.

Wilson-0 Method

The Wilson- θ method (Bathe & Wilson, 1976) is a modification of Newmark's method with linear acceleration. This method is unconditionally stable with $\gamma = \frac{1}{2}$ and $\beta = \frac{1}{6}$. If we use τ as the time increase where the acceleration is linear within $0 < \tau < \theta h$; $\theta > 1$, then we will have the acceleration vector expressed as:

$$\ddot{x}_{\tau} = \ddot{x}_t + (\ddot{x}_{t+1} - \ddot{x}_t)\frac{\tau}{h}$$
(3.20)

Figure 3. 2 Illustration for the Wilson-θ method – distribution of acceleration, as adapted from (Karunakaran, Brathaug, & Passano, 1990)

Using the integration relationship between acceleration, velocity, and displacement, one will have the expressions for velocity and displacement as:

$$\dot{x}_{\tau} = \dot{x}_{t} + \ddot{x}_{t}\tau + (\ddot{x}_{t+1} - \ddot{x}_{t})\frac{\tau^{2}}{2h}$$
(3.21)

$$x_{\tau} = x_t + \dot{x}_t \tau + \ddot{x}_t \frac{\tau^2}{2} + (\ddot{x}_{t+1} - \ddot{x}_t) \frac{\tau^3}{6h}$$
(3.22)

Taking $\tau = \theta h$, for time $t_t + \theta h$, we will have:

$$\dot{x}_{t+\theta} = \dot{x}_t + \frac{\theta h}{2} (\ddot{x}_t + \ddot{x}_{t+\theta})$$
(3.23)

$$x_{t+\theta} = x_t + \theta h \dot{x}_t + (\theta h)^2 \left(\frac{1}{3} \ddot{x}_t + \frac{1}{6} \ddot{x}_{t+\theta}\right)$$
(3.24)

In this case, the equation of motion will be expressed in time $t_{t+\theta}$:

$$M\ddot{x}_{t+\theta} + C\dot{x}_{t+\theta} + Kx_{t+\theta} = F_{t+\theta}$$
(3.25)

Inserting $\ddot{x}_{t+\theta}$, $\dot{x}_{t+\theta}$, and $x_{t+\theta}$ expressions into the last equation, we will be able to express \ddot{x}_{t+1} . We can then solve for the acceleration \ddot{x}_{t+1} and by utilizing $\tau = h$ we will have:

$$\dot{x}_{t+1} = \dot{x}_t + \frac{h}{2}(\ddot{x}_t + \ddot{x}_{t+1})$$
(3.26)

$$x_{t+1} = x_t + h\dot{x}_t + \frac{h}{3}\ddot{x}_t + \frac{h^2}{6}\ddot{x}_{t+1}$$
(3.27)

The Wilson- θ method is unconditionally stable for $\theta > 1.37$ but we must note that the accuracy is decreasing with increasing θ . It is favorable to use $\theta = 1.4$ (Karunakaran, Brathaug, & Passano, 1990).

The following table presents the values of integration parameters with corresponding stability limit (Langen & Sigbjörnsson, 1979).

Table 3. 1 Newmark-β and Wilson-θ Parameters

Method	γ	β	θ	Stability
Second central difference	1/2	0	1	h < 0.318 T
Fox-Goodwin	1/2	1/12	1	h < 0.389 T
No Name	1/2	1/8	1	h < 0.450 T
Linear Acceleration	1/2	1/6	1	h < 0.551 T
No Name	1/2	1/5	1	h < 0.712 T
Constant average acceleration	1/2	1/4	1	Unconditional
Wilson-θ	1/2	1/6	1.4	Unconditional

3.4.4 Selection of time integration method

There are two kinds of error mainly known about time integration, i.e. the amplitude decay and period elongation error. The comparison of these errors can be seen on the following figures:

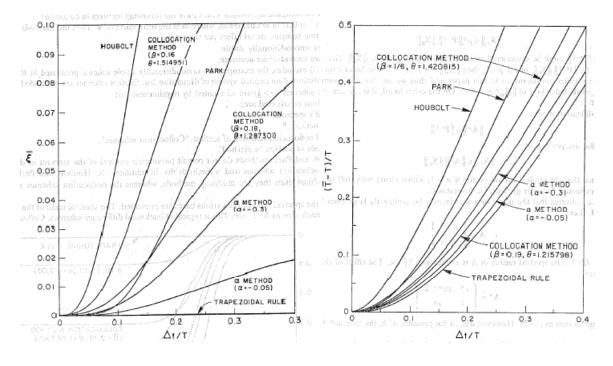


Figure 3. 3 Damping ratios and relative period errors for several integration methods (Hilber & Hughes, 1978)

The amplitude decay error is related to the generation of artificial damping in the integration method. This type of error is however can be managed by selecting γ value which brings no artificial damping as mentioned previously. From the above figure, it can be seen that for Wilson- θ method, both period elongation and amplitude decay will occur. For a given h/T, Wilson- θ method will give more error if compared to the Newmark- β method with $\beta = \frac{1}{4}$.

On a study by (Hilber & Hughes, 1978), it is mentioned that based on the finding of (Goudreau & Taylor, 1972) the Wilson- θ method tends to overshoot exact solutions significantly in the early steps. They also mention that the Newmark- β method (trapezoidal) displays no overshoot in displacements. Other literature also mentions that by utilizing the Wilson- θ method, for a given time step, the lower modes will be damped less than the higher ones (Langen & Sigbjörnsson, 1979).

Based on these properties of the two unconditionally stable methods mentioned here, the Newmark- β method will be used further on in the analyses due to simplicity, stability, and its property against error.

Chapter 4 Discussion on Odd Events

4.1 Identification of Odd Events

As mentioned in Chapter 2, three odd events will be discussed in this study. The term odd event here refers to the wave measurement tag 200401011200 and 200401011400 where at certain time windows there is discrepancy between measured and simulated response. The simulation is either under predict or over predict the measured response.

In the result by utilizing the wave measurement tag 200401011200, there are two discrepancies found. The first one is at the time window between t = 650 and t = 700 sec. In this time window, the measured axial response is under predicted by the simulations. The second odd event during the 20-minute period is located at the time window between 950 sec and 1000 sec. In this time window, the simulation over predicts the measured response.

For the 200401011400 event, discrepancy is found at time window t = 150 sec and t = 200 sec. In this time window, the simulation under predicts the real response on the platform.

The illustration of the odd events can be seen on the following figures:

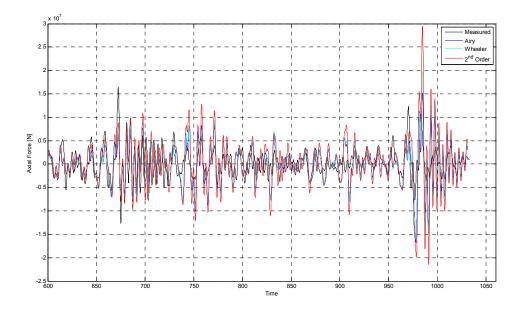


Figure 4. 1 Measured versus simulated responses on wave tag 200401011200 – Axial leg A2 (-108m)

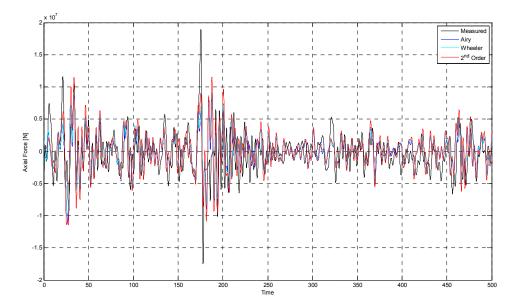


Figure 4. 2 Measured versus simulated responses on wave tag 200401011400- Axial leg A2 (-108m)

In this report, when reading the figures related to measured response VS simulated response, the following meanings of the graph's legends are used:

Legend	Wave Component	Kinematics
Airy	Second order	Airy
Wheeler	Second order	Wheeler Stretching
2 nd Order	Linear	Second order

Table 4.	1	Simulation	scheme	explanation
----------	---	------------	--------	-------------

4.2 Possible Reasons for Discrepancies

Regarding the discrepancies between the measured and simulated responses, several suggestions on the causes of discrepancies are proposed on some previous studies (Haver, 2004), (Karunakaran & Haver, 2005), (Økland O. D., 2009), (Voie, 2009):

- 1. Radar measurement error.
- 2. Modeling error.
- 3. Storm surge or tidal wave elevation effect may not be captured.
- 4. Spatial transformation error from the wave radar position to the position of the jacket legs.
- 5. Simplifications for example in the wave kinematics may give lower result.
- 6. Existence of short crested wave which brings large wave amplitude at platform location.

Some of these possibilities will be capture herein.

4.2.1. Radar measurement error

Based on verification work about the performance of wave radar on winter 2008/2009, it is confirmed that the radar which was used to measure wave elevation at the time of odd events was actually working properly (Voie, 2009).

4.2.2. Modeling error

Regarding the modeling error, an updated model is now available based on work done by Marintek (Økland O. D., 2009). Brief description about the updated model was also presented in Chapter 2 of this report.

4.2.3. Storm surge and tide effect

The effect of storm surge or tide may be observed by first looking at the behavior of water level variation from the available measurement data. Some error records were found thus these records are excluded from consideration. The error records are identified by the following tag numbers:

Winter 2003:

- 200401010700
- 200401011420

Winter 2004 – 2005:

- 200411081900
- 200411082040
- 200501110000

By saying error, it means that the data shows large discrepancies in measurement, for example large mean value difference and data incompleteness. The existence of these "errors" is deemed to be insignificant to the assessment of tidal effect.

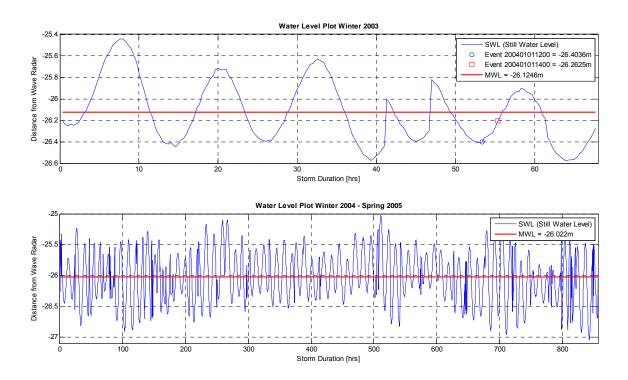


Figure 4. 3 Water level plots from winter 2003 to spring 2005

Both odd events which are being analyzed happened on winter 2003 and indicated in Figure 4.3. It can be seen that for winter 2003, the variation of SWL ranges from approximately -25.4 m to -26.6 m from the elevation of the radar. To see the effect of these changes comparison of simulation results in terms of axial force is done. Note that for this purpose, kinematics with Wheeler stretching combined with the second order surface is deemed sufficient to show the comparison. Tidal elevation of ±0.6 m is used for the analysis. Identifying the values of global maxima between zero upcrossings (Ref. Fig. 4.16), the result can be seen on the following figure:

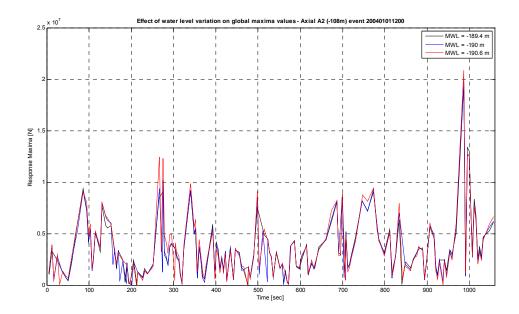


Figure 4. 4 Effect of mean water level variation on global maxima distribution

Figure 4.4 indicates that the effect of changes in mean water level to the structural response is within the range of 5.5% (see Table 4.2 also) which is not a significant value.

Event	200401011200					
MWL (m)	189.4	190		190.6		
Max Response (N)	19523580	19763106		20842784		
% Max Response Change	1.2	1.211986		3099		

This concludes that for the sea states being observed, even though the tidal variation is not included in our analysis, no significant difference should appear if compared to those analyses which incorporate tidal change. Increasing (or decreasing) the mean water level for approximately 0.6m will not give significant effect to the analysis. Thus, it can be concluded that storm or tide does not give a significant difference to the analyses.

4.2.4. Other possibilities of discrepancies

The other possible reasons are related to the wave treatment and modeling. The method of shifting wave elevation (Voie, 2008) as also mentioned in Chapter 3, has been verified with some lab measurement data. Based on that study, the method is said to give satisfactory result. Here, the same method is also applied in the modified version of NIRWANA.

The study by Voie in 2009 (Voie, 2009) incorporates second order modeling of wave kinematics. In general, the second order kinematic model gives higher predictions if compared to those using Wheeler stretching, but in some episodes still under predicts the measured responses. Despite that fact, statistically speaking, the second order

kinematic model represents the real events quite satisfactorily if compared to Wheeler stretching model.

The last possible reason is that the under prediction may be caused by some "additional loads" which cannot be captured by our model. This includes impact forces such as the one resulted by breaking waves. More on this matter will be discussed later on in this report.

4.3 Observation on Odd Events

4.3.1. Event 200401011200

This event is simulated with the estimated wave direction of 65 degrees (Økland O. D., 2009) relative to the positive x-axis (ref. Figure 2.2). For comparison purpose, the quasistatic and resonance response will be separated. To decide the separation point, one needs to observe the data in frequency domain. This involves Fourier transformation of the data. For further details on Fourier transform, interested readers may refer to e.g. Newland (Newland, 1974). For this event, the cut-off point between quasi-static and resonance response is taken to be 0.18 Hz. The cut-off point is taken based on visual observation on the spectrum, thus for different event, the cut-off point may differ. Band pass filter is utilized and the windows are:

- Quasi-static : 0.03 Hz 0.18 Hz
- Resonance : 0.18 Hz 0.5 Hz

Note that by choosing 0.03 Hz as a starting point for filtering, the noise from low frequency component of the response will be removed.

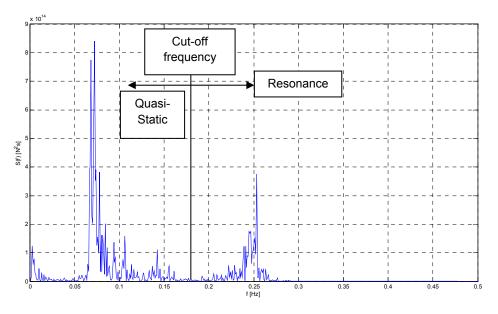


Figure 4. 5 Spectral plot for axial force at A2 (-108 m) event 200401011200

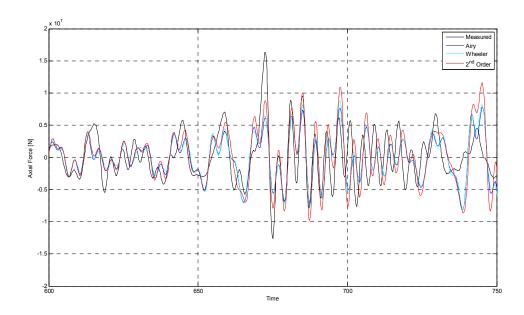


Figure 4. 6 Total axial response Leg A2 (-108 m) event 200401011200 (t = 600 - 750 sec)

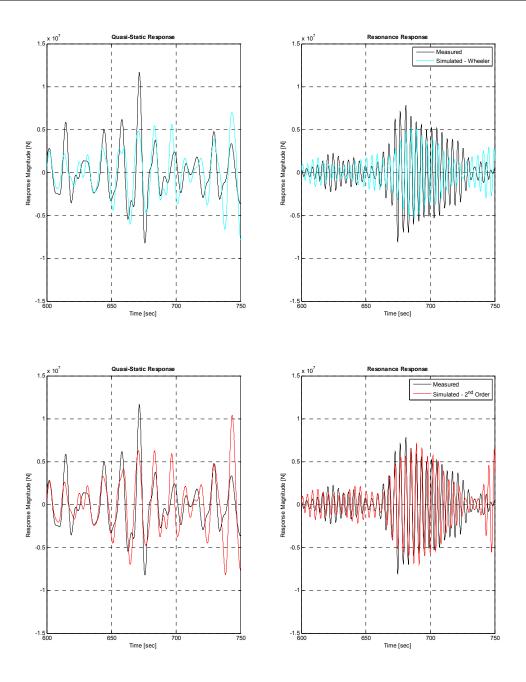


Figure 4. 7 Quasi-static and resonance response A2 (-108 m) event 200401011200 (t = 600 - 750 sec)

From the above figures, it can be seen that the total axial response is under predicted by all simulation models at t = 672.5 sec. After separating the quasi-static and resonance part of the response, it can be seen that the same phenomenon happens on the quasi-static part where the simulations under predict the response that occur. The dynamic response is represented considerably well by the second order model, while simulation using Wheeler kinematics still shows under prediction.

Another odd event on this 20-minute series appears at time window 950 - 1000 sec. In contrast with the previous odd event, this time the simulation yields a higher value of response than the one measured on field.

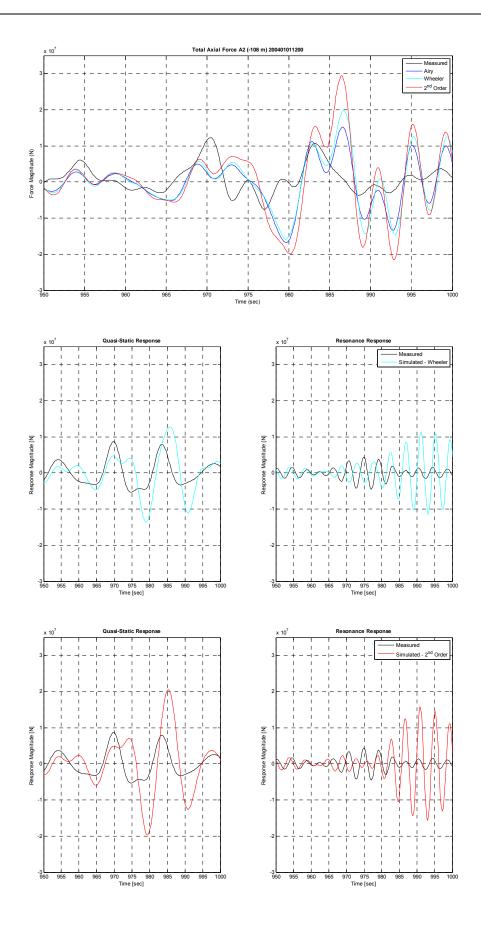


Figure 4. 8 Axial response Leg A2 (-108 m) event 200401011200 (t = 950 - 1000 sec)

From the above figure, it can be seen that the simulation highly under predicts the measured response. The most interesting part can be found on the dynamic response. Simulation shows a significant dynamic response of the structure, while the measurement not.

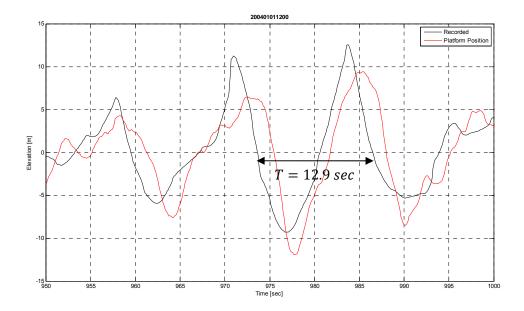
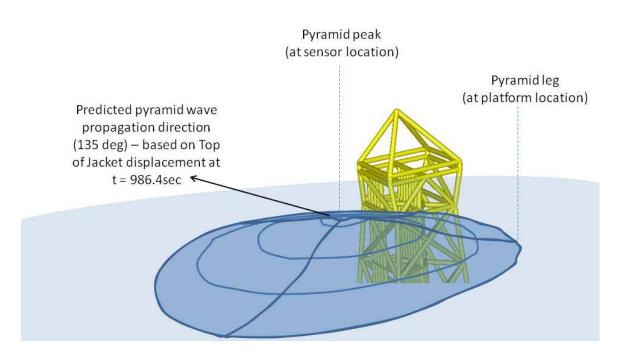



Figure 4. 9 Recorded (second order) wave elevation at sampling point (radar position) and predicted at platform location

The maximum over prediction happens at t = 986.4 sec. Predicting the wave elevation at platform location by using the aforementioned method, one can see that at time window 980-990 sec, the wave crest in the platform location should be lower than the measuring point. However, the predicted crest height is still more than 8m. The maximum measured wave crest at this time window is 12.53m while the predicted crest at platform location is 9.418m. In this condition, some horizontal bracings will be exposed to wave. It is then understandable if the result of simulation is high. This can also answer the highly dynamic behavior on the simulation. On the other hand, the real response is not that high. This may mean that the wave crest at the platform position is actually lower than predicted as a result of the irregular shape of wave.

There is randomness in the behavior of waves. This includes the shape and direction of the propagating wave which may depend on the wind, water depth, and obstructions (such as platform legs). For the over prediction case, wave in the shape of pyramid may have been occurred. In addition, at this point of time, the displacement of the top of the jacket is $\Delta x = -37.081$ m and $\Delta y = 36.31$ m which suggests that the wave that hits the platform is in the direction of 135.6° relative to the positive x-axis of the platform coordinate system (ref. Figure 2.2) not 65° as the analysis model assumes.

This may bring to a possible reason of over prediction which is that even though the elevation measured at the sampling point is high (high crest), the opposite happens at the platform location. Assuming long crested waves, the following illustration can be used to ease the comprehension. Note that the wave length predicted from the zero

crossing period (12.9 sec, Ref. Fig. 4.9) by using the formula $\lambda = gT^2/(2\pi)$ is predicted to be 260m.

Figure 4. 10 3D Illustration of pyramid wave that is causing over prediction

Despite this over prediction, focus will be emphasized on the under prediction of the real response of the platform. The following part of this chapter will discuss the statistical distribution of global maxima during the events where the response is under predicted.

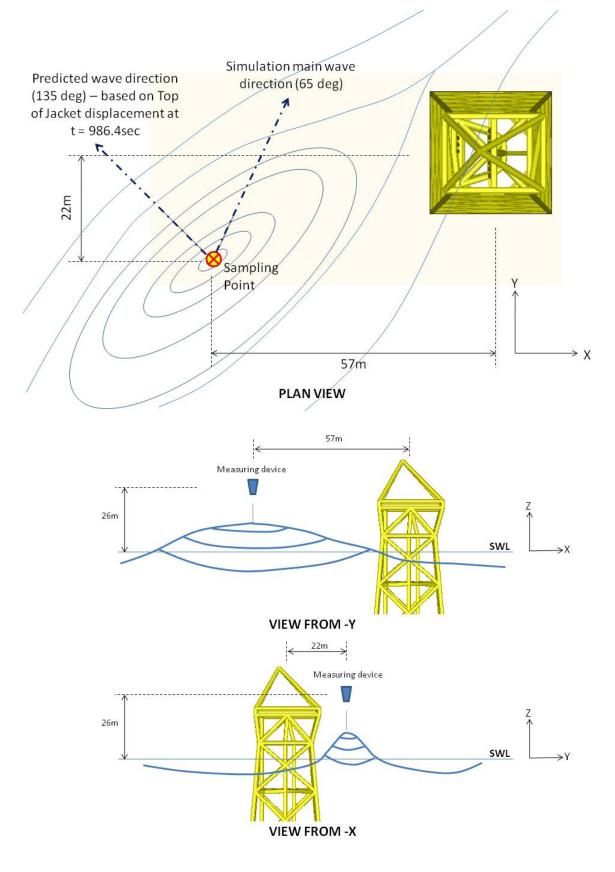


Figure 4. 11 Possible wave condition that causes over prediction at 200401011200

4.3.2. Event 200401011400

This event is simulated with the estimated wave direction of 75 degrees (Økland O. D., 2009) relative to the positive x-axis (ref. Figure 2.2). The cut-off frequency between quasistatic and dynamic force is 0.2 Hz. Band pass filter is utilized and the windows are:

- Quasi-static : 0.03 Hz 0.2 Hz
- Resonance : 0.2 Hz 0.5 Hz

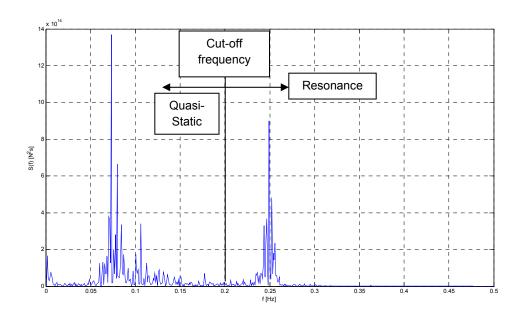


Figure 4. 12 Spectral plot for axial force at A2 (-108 m) event 200401011400

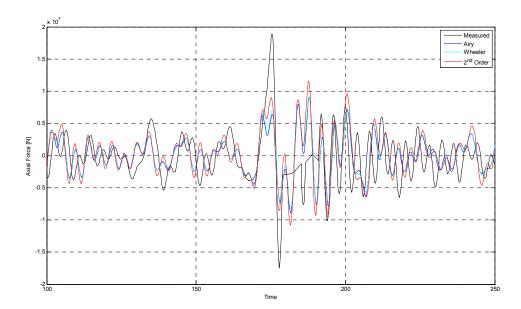


Figure 4. 13 Total axial response Leg A2 (-108 m) event 200401011400

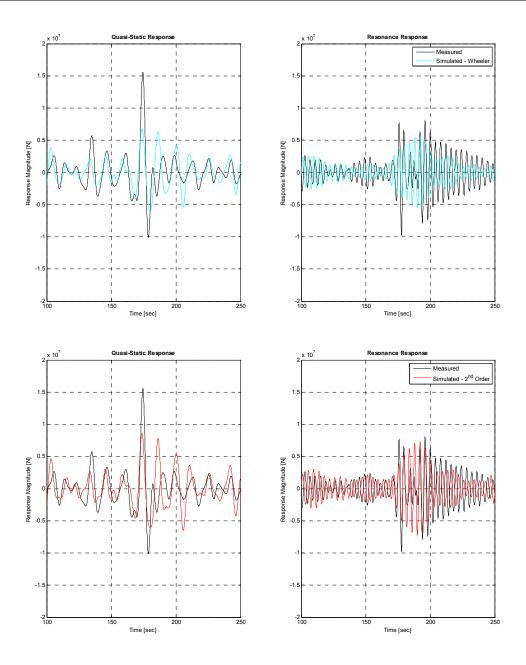


Figure 4. 14 Quasi-static and resonance response A2 (-108 m) event 200401011400

All simulation models under predict the total response. For this event, both Wheeler+second order surface and 2^{nd} order kinematics+linear surface do not represent the dynamic resonance response well enough. The measured dynamic response shows an impact-like response at t = 175.9 sec and t = 196 sec. For the quasi-static response, simulations under predict the measured response.

Observing the measured total axial response, it can be seen that the measurement record shows some odd values when the response is plotted against time. This is deemed as a local measurement error. The rest of the measured response in the time series is considered to be valid and not affected by this error which might be caused by equipment error. To verify this, the following figure as a comparison of measured axial force on leg A2 and B1 shows that the measured responses on both legs have similar

behavior apart from the local error at leg A2. Leg A2 and leg B1 is located in the opposite location so it is reasonable to see that the response on these legs mirrors each other. Response in the main wave direction should behave like this: if leg B1 is in tension, then leg A2 will be in compression, and vice versa. Refer to Fig. 2.2 to see the position of these legs.

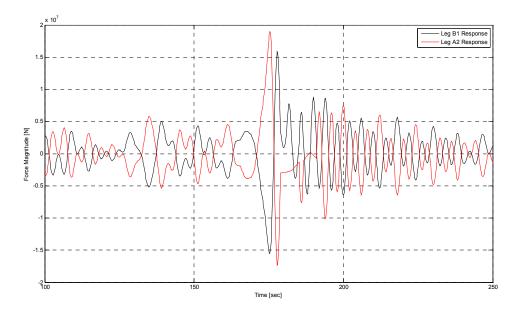


Figure 4. 15 Measured axial force on leg B1 VS leg A2 - 200401011400

4.4 Global Maxima Distribution of Response History

In order to determine whether simulations are statistically conservative or not, distribution of global maxima will be observed. Here, for the response time series, global maxima will be determined and the result from measured and simulated response will be compared. The term "global maxima" refers to the maximum response between zero upcrossing response values.

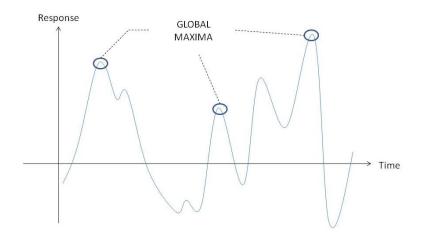


Figure 4. 16 Definition of global maxima

4.4.1. Global maxima distribution on 200401011200

The following figures show the distribution of maxima for event 200401011200. The data is fitted into Weibul paper which is deemed a good statistical model for the responses.

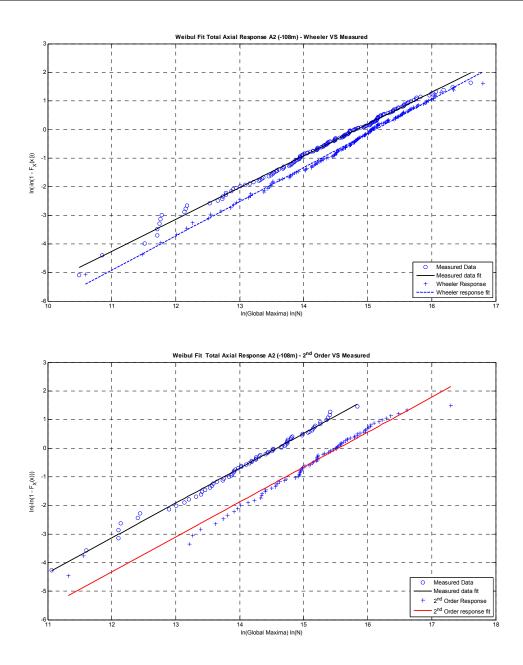


Figure 4. 17 Global maxima distribution (total axial response) leg A2 (-108m) 200401011200

From the above figure, it can be inferred that statistically speaking, simulation by using Wheeler kinematics and second order surface is conservative to be adapted. For a given percentile, the response obtained from simulation is higher than the measured one. Second order kinematics combined with linear surface condition even gives a more conservative result.

When the quasi-static and dynamic response of the structure is separated, the simulation result shows a conservative prediction of the dynamic response. Quasi-static response is under predicted on the upper tail of the Weibul plot. This constitutes that one should be careful in assessing the quasi-static response. This constitutes that there may be a loading mechanism that is causing quasi-static response which is not being captured in the simulation of this event. Quasi-static response can be caused by a steady load. For

offshore jacket, wave load without breaking may be considered as a steady load. Since the response is proportional to the wave crest height, there might be an under estimation of wave crest height on the platform location. Thus, under prediction of the response happens. In the next chapter, a modification of wave crest and/or trough is done to investigate the possibility of under estimated wave height on platform location.

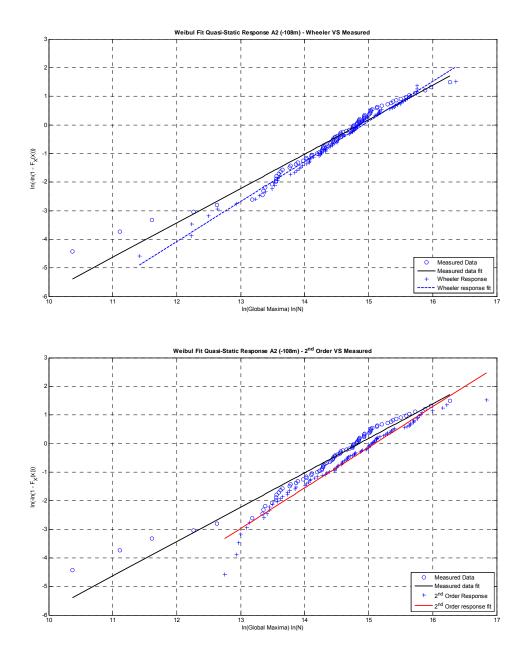


Figure 4. 18 Global maxima distribution – Quasi-static plot – 200401011200 leg A2 (-108m)

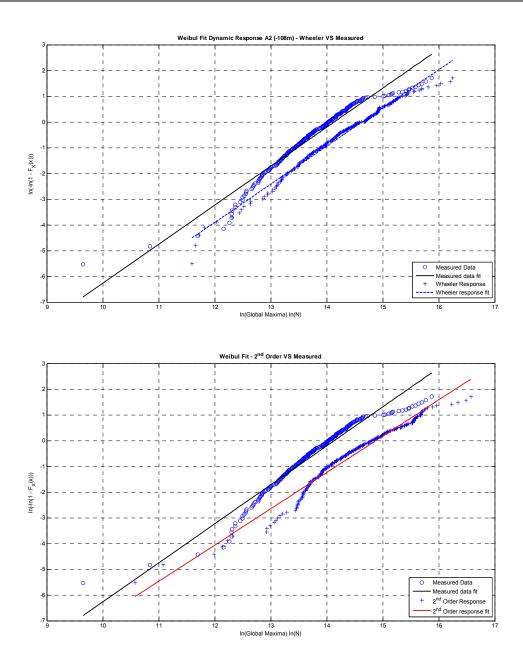


Figure 4. 19 Global maxima distribution – Dynamic plot – 200401011200 leg A2 (-108m)

4.4.2. Global maxima distribution on 200401011400

The following figures show the distribution of maxima for event 200401011400. The data is fitted into Weibul paper which is deemed a good statistical model for the responses. Wheeler stretching combined with second order surface will not be conservative in this case, but second order kinematics together with linear surface condition will give a conservative prediction in terms of the total response.

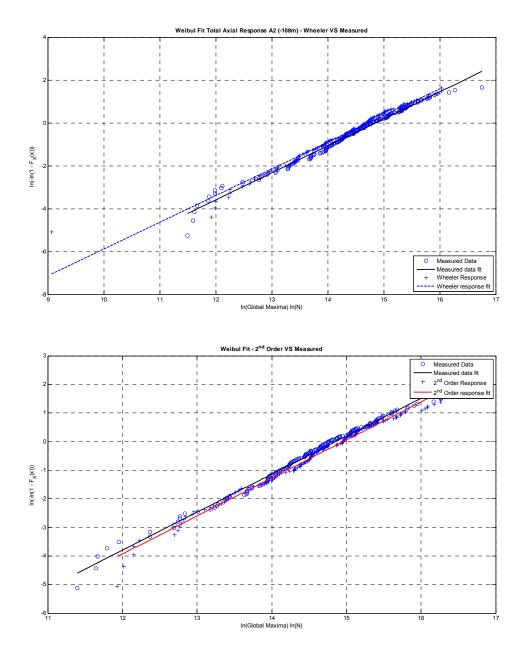
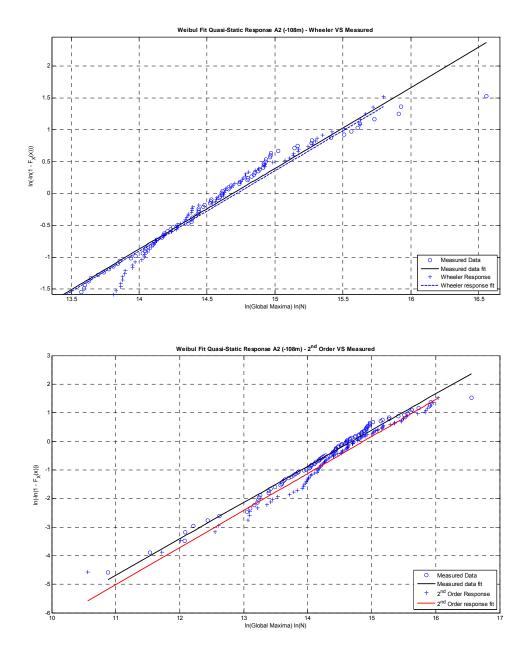



Figure 4. 20 Global maxima distribution (total axial response) leg A2 (-108m) 200401011400

When the quasi-static and dynamic response is separated, it can be seen that for the quasi-static force, both simulations are conservative. In this case, the second order kinematics combined with linear surface gives a more conservative result.

For the dynamic response, Wheeler stretching with second order surface gives a non conservative result. The simulation under predicts the response. The second order kinematics combined with linear surface condition gives a conservative result on the upper tail of the Weilbul distribution. Since the high fractile is the main interest in the analyses, using 2nd order kinematics is favorable in this case. The under prediction might be caused by the presence of dynamic loads which are not captured by the simulations. These loads may exist in form of impact from breaking waves. In the next chapter, a

discussion on response of the structure due to impact from breaking waves will be presented.

Figure 4. 21 Global maxima distribution – Quasi-static plot – 200401011400 leg A2 (-108m)

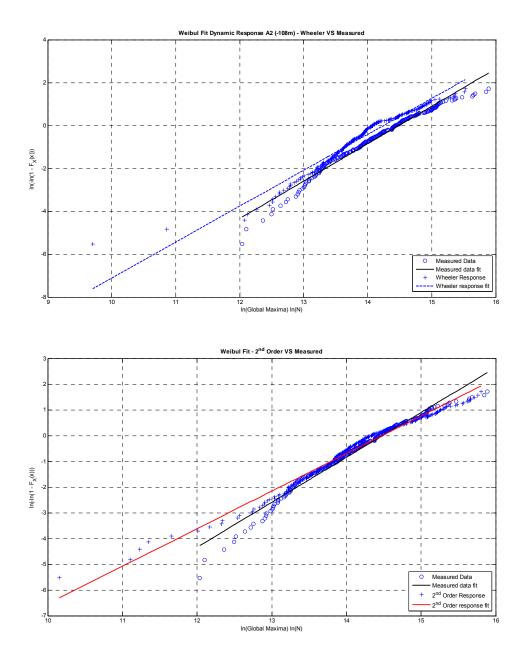


Figure 4. 22 Global maxima distribution – Dynamic plot – 200401011400 leg A2 (-108m)

Chapter 5 An Insight to other Possible Causes of Odd Events

5.2 Wave Height Modification

5.1.1. Crest and Trough Modification

The intent of this effort is to see the corresponding wave heights that give or approximate the measured response values. Modification is done by adding some meters of wave elevation to the measured wave elevation at a time frame when odd events occur. After some trials, the following wave modifications are obtained:

- Wave 200401011200
 Increase wave crest and decrease trough at time frame 668.6 sec to 680.7 sec as much as:
 - a. 3m (case 1)
 - b. 4m (case 2)
- Wave 200401011400
 Increase wave crest and decrease trough at time frame 172 sec to 184.2 sec as much as:
 - a. 2m (case 1)
 - b. 3m (case 2)

The modified wave profile can be seen on the following figure:

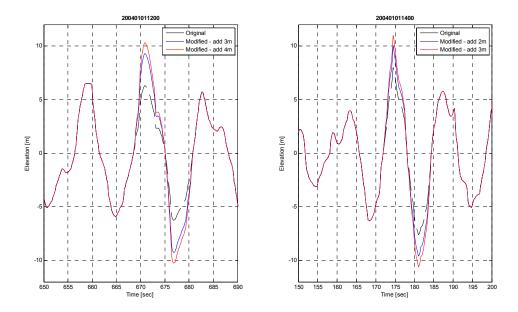


Figure 5. 1 Wave crest and trough modification

Such modification gives steeper waves if compared to the original data. The analysis result for the corresponding time instance has shown that higher response values are obtained. The results can be seen on the following figures:

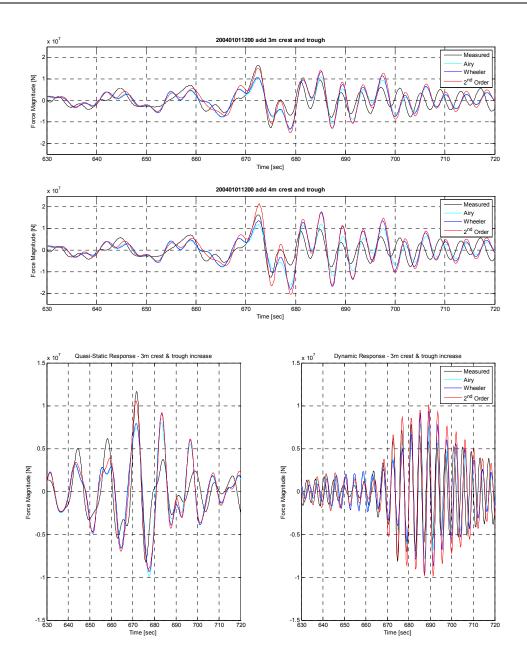


Figure 5. 2 Response due to wave modification on record 200401011200 - Leg A2 (-108m)

For the 200401011200 event, from the above figures, it is observed that to be able to reach the value of measured total axial response, there has to be an increase in the measured wave height in the range of 3 to 4 meter. With 4m increase, second order model will give higher result than the measured response, while Wheeler and Airy still under predict the response but approach the value of measured response quite well. The quasi-static response can be simulated by second order kinematics very well. The dynamic response is over predicted by both Wheeler and second order kinematics analysis, but the measured response behavior is resembled well enough by both Wheeler and second order analysis.

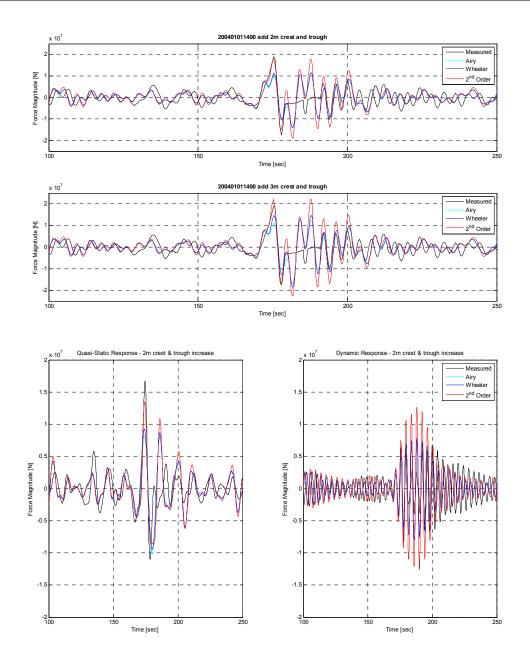


Figure 5. 3 Response due to wave modification on record 200401011400 - Leg A2 (-108m)

For the 200401011400 event, from the above figures, it can be seen that by modifying the measured wave crest and trough by 2 to 3m, the simulated total axial responses can represent the measured total axial response very well especially for the second order model which is just slightly different than the measured response. Similar with the previous event, quasi-static behavior is represented well by the second order kinematics simulation, while the dynamic behavior is over predicted by all kinematics models.

In general, it is observed that by modifying the wave crest and trough, the total and quasi-static response can be represented by the simulation very well. The dynamic response is over predicted but the behavior is represented reasonably well. There are uncertainties in the wave behavior thus dynamic accuracy is rather difficult to obtain when doing a comparison between measured and simulated response.

Increasing crest height and trough by 3-4 m on 200401011200 and by 2-3 m on 200401011400 results in wave crest of more 10 m height at the sampling point. For this situation, water hits the horizontal bracings which are located at el. +8m. This condition will add more resistance against the wave thus resulting higher response values. The following table presents the wave modification data that best simulates the measured response.

Wave Record	Original Elevation (m)		Increment (m)			Time Window	New Elevation (m)	
wave Record	Crest	Trough	Crest	Trough	Wave Height	(sec)	Crest	Trough
200401011200	6.28	-6.23	3	3	6	668.6- 680.7	9.28	-9.23
200401011400	7.97	-7.59	2	2	4	172.0- 184.2	9.97	-9.59

Table 5. 1 Wave crest and trough modification data

The effect of modifying the measured wave record on the predicted wave elevation on the platform position can be seen by observing the wave elevation at leg B1. Here, leg B1 is chosen due to estimated wave direction. By using the wave direction which is 65 deg for event 200401011200 and 75 deg for event 200401011400, the first leg which will be hit by the wave is leg B1. These wave directions are relative to the x-axis of the platform system as can be seen on Figure 2.2. The following figures show the wave elevation at platform location after adding 3m of crest and trough on the originally measured record.

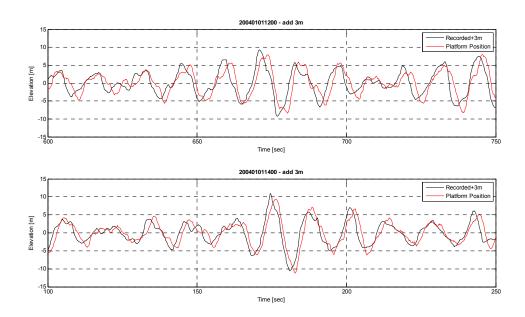


Figure 5. 4 Modified wave record at sampling point VS elevation at platform location (Leg B1) – Second order wave

The figure shows that the predicted wave elevations at platform location are (by the time odd events occur) lower than the wave elevation at sampling point. Even so, the wave crest at platform location is still around 8m which means that horizontal bracings will potentially be exposed to wave.

The wave pattern which is not captured by the measuring device in this case may be the reason why the odd events occur. Based on the discussion above, one can say that the wave crest measured at sampling point is approximately 3m lower than the elevation at platform location by the time odd events occur. The prediction of wave elevation by shifting the wave elevation from sampling point to platform location suggests that the wave elevation at platform location should be less than the one measured at sampling point. On the other hand, to obtain the value of measured response, higher wave crest should be imposed to the structure. This means that there is a highly irregular wave shape on this sea state where the wave crest at platform location is approximately 3m higher than the wave crest measured at sampling point.

A possible realization of wave profile is in form of a pyramid-shaped wave same as mentioned in the previous chapter. In this case, different scenario happens. The peak of the wave occurs on the platform location and not captured by the wave sensor. In propagating direction, wave height from sampling point decreases as predicted by shifting procedure, but on the platform position, there is a peak of wave happens. This is in the opposite scenario compared to the discussion on chapter 4. To ease the visualization of this kind of wave, the following figure gives an illustration.

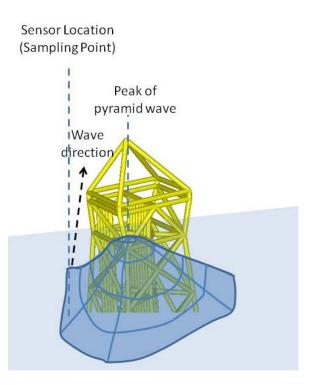


Figure 5. 5 3D Illustration of pyramid wave that is causing under prediction

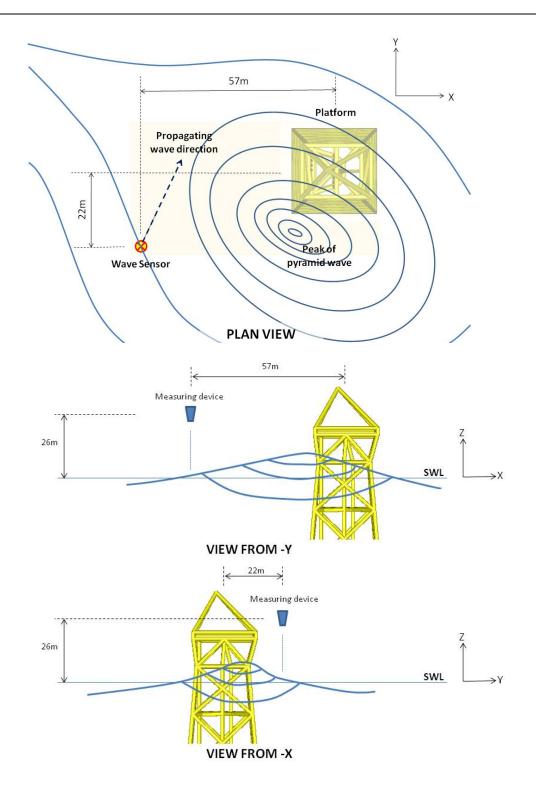


Figure 5. 6 Possible wave condition that causes under prediction

The wave behavior as illustrated on the above figure is so far hypothetical. By the time this thesis is written, the author did not find any literature related to the mentioned phenomenon. Future assessment and verification can be done on the existence of the mentioned wave phenomenon if deemed needed.

5.1.2. Modification of Crest Height only

On the above discussion, analyses are done based on adding some meters of wave height. Modifications were done to the crest height and trough elevation. In this part of the report, the effect of increasing the wave crest only will be discussed. Crest height of 3m will be added to wave record 200401011200 and crest height of 2m will be added to wave record 200401011400.

Wave Record	Original Elevation (m)		Increment (m)			Time Window	New Elevation (m)	
wave Record	Crest	Trough	Crest	Trough	Wave Height	(sec)	Crest	Trough
200401011200	6.28	-6.23	3	0	3	668.6- 675.0	9.28	-6.23
200401011400	7.97	-7.59	2	0	2	172.0- 178.1	9.97	-7.59

 Table 5. 2 Wave crest modification data

The modified wave record can be seen on the following figure:

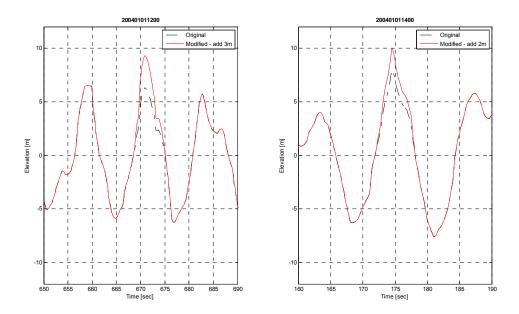


Figure 5. 7 Wave crest modification

The simulation results show that the second order kinematics can represent the total measured response very well. Even though the dynamic response is over predicted by the simulation, but the quasi-static responses are approximated very well by the simulations, even better than the previous effort of modifying both wave crest and trough. This means that the wave crest height is significant in predicting the structural response. The simulation results can be seen on the following figures:

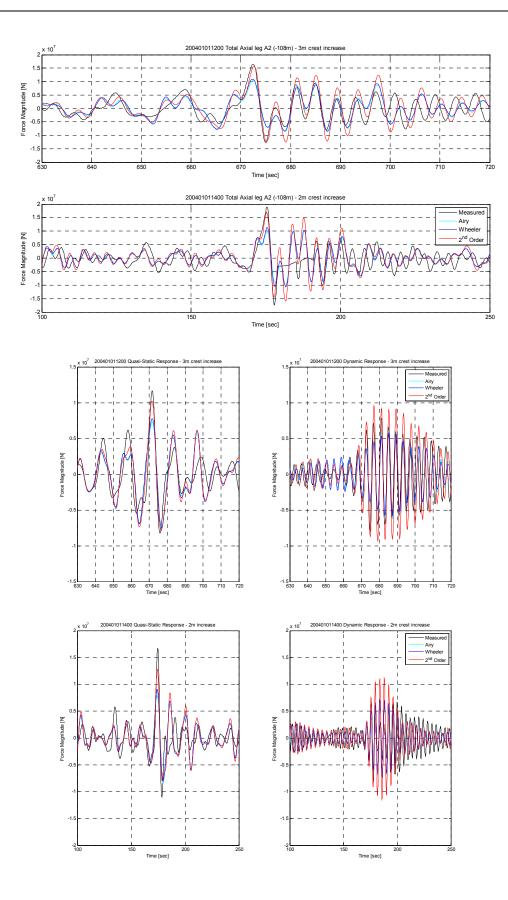


Figure 5. 8 Axial response leg A2 (-108m) due to wave crest modification

It is interesting to compare the result from the modification of crest and trough against the modification of crest only. Since the second order kinematics simulations are deemed to be representative in modeling the measured response, here the comparison of second order results is presented. Note that the following terms are used to address the wave modification scheme:

- Case A: Modification on wave crest only
- Case B: Modification on both wave crest and trough

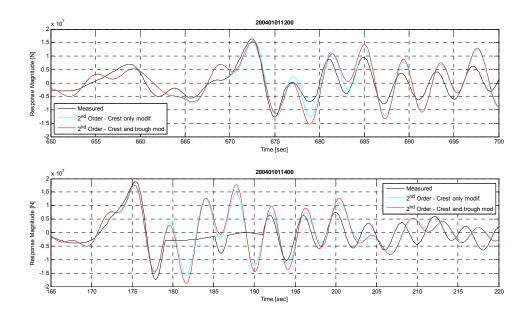


Figure 5. 9 Leg A2 (-108m) response: Case A VS Case B

It can be seen that the results from case A and B have no significant difference. However, modification of wave crest only gives a better estimation on the structural response. Increasing the crest height only may make the wave property similar to breaking waves where the horizontal asymmetry factor is high. Increasing both crest and trough keeps the horizontal asymmetry factor proportional with the original wave condition. More discussion about the horizontal asymmetry factor and other properties of breaking waves can be read in e.g. Bonmarin (1989) and Lader (1998). Just for illustration, the following figure explains what horizontal asymmetry (μ) factor is.

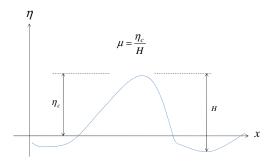


Figure 5. 10 Horizontal asymmetry factor (Lader, Grytøyr, Myrhaug, & Pettersen, 1998)

For the wave modification done in this study, the following wave horizontal asymmetry factor is obtained:

Case	η_c	Н	$\mu = \frac{\eta_c}{H}$	
200401011200	A	9.28	15.51	0.59
	В	9.28	18.51	0.50
200401011400	A	9.97	17.55	0.57
	В	9.97	19.55	0.51

Table 5. 3 Horizontal asymmetry factor (μ) for modified wave

For linear wave, the horizontal asymmetry factor, $\mu = 0.5$. It can be seen that case B in the analyses represents wave condition which is in similar form with linear wave. Case A shows an increase in wave horizontal asymmetry. However, the value of μ is still far from the breaking criteria for plunging breakers as indicated in the study done by Lader et.al. (1998). Lader's study indicates that the range of μ which is typical for breaking waves is around 0.85 to 0.95 (Ref. Fig. 5.11).

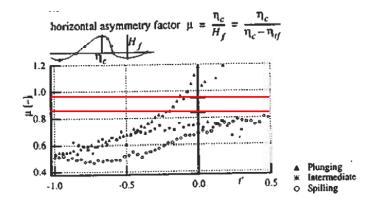


Figure 5. 11 Range of horizontal asymmetry factor (Lader, Grytøyr, Myrhaug, & Pettersen, 1998)

The red lines on the above figure indicate the interval that is typical for breaking waves (Lader, Grytøyr, Myrhaug, & Pettersen, 1998). Referring to Table 5.3. the horizontal asymmetry factors for the modified wave are not inside the range, thus breaking wave may not be the case here. However, impact assessment will be done for verification.

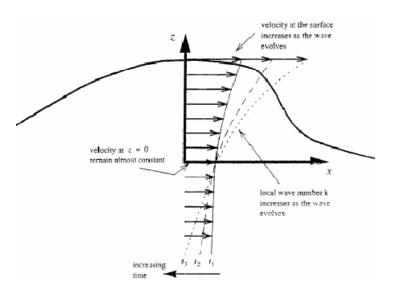
5.3 Impact Assessment due to Breaking Waves

When wave amplitude reaches certain critical level and steepness, there will be large amount of energy to dissipate. In this condition, the wave becomes unstable thus the so called breaking wave phenomenon happens. Since the wave particle on a wave crest is proportional to the height of the crest itself, increasing wave crest can make the particle velocity equals or even higher that the wave celerity. At the condition where the velocity of water particle is higher than the velocity of the wave profile, the wave starts to break.

There are four main types of breaking waves, which are (adapted from Wikipedia):

- Plunging breaker
- Spilling breaker
- Collapsing breaker
- Surging breaker

Plunging breaker is characterized by the existence of wave jet running from the wave crest. As the crest curls over and jet propagates on the wave direction, at some distance, the jet will hit the base of the wave and generate a considerable splashing effect. A lot of studies were done related to the behavior of plunging breaker due to the severity of its impact to offshore structures. This type of breaking wave is characterized by the steep and non symmetrical wave shape. For plunging breakers, the free surface velocity is expected to be higher than the phase velocity at the breaking point (Lader, Myrhaug, & Pettersen, 2000).


Spilling breaker or also known as whitecaps is characterized by the formation of foams on the front face of a wave crest. The process is gradual and the foam will last for considerable distance after the wave breaks. This type of breaker is the most common type happens in deep water. For this type of breaking wave, there is no significant change in wave symmetry. Surface velocity when approaching breaking point is increasing. The development of surface velocity for spilling breakers is pretty much the same with plunging breakers (Lader, Myrhaug, & Pettersen, 2000).

Collapsing breaker is the type of breaking wave which has a transitional characteristic between the spilling and plunging breaker. The wave front becomes steep but curls and jet are not created. As vertical wave front created, the wave breaks generating foams on the wave profile like spilling breaker does.

Surging breaker occurs on steep seabed profile, mostly on beaches. The waves do not break until they reach the shoreline. The form up process is pretty much like the plunging breaker but before the crest curls and jet falls, the wave toe surges to the beach forming foams.

For spilling and plunging breakers, as the wave propagates toward its breaking point, experiment (Lader, Myrhaug, & Pettersen, 2000) has shown the following properties of the particle velocity of breaking waves:

- Particle velocity increases at the surface
- Particle velocity at still water level is relatively constant

The following figure shows the development of wave kinematics for breaking waves:

Figure 5. 12 Development of kinematics in the crest of breaking waves (Lader, Myrhaug, & Pettersen, 2000)

Illustrations for the aforementioned types of breaking waves can be seen on the following figure – adapted from Capital Regional District of British Columbia, Canada website (<u>http://www.crd.bc.ca/watersheds/protection/geology-processes/Waves.htm</u>):

 \bullet

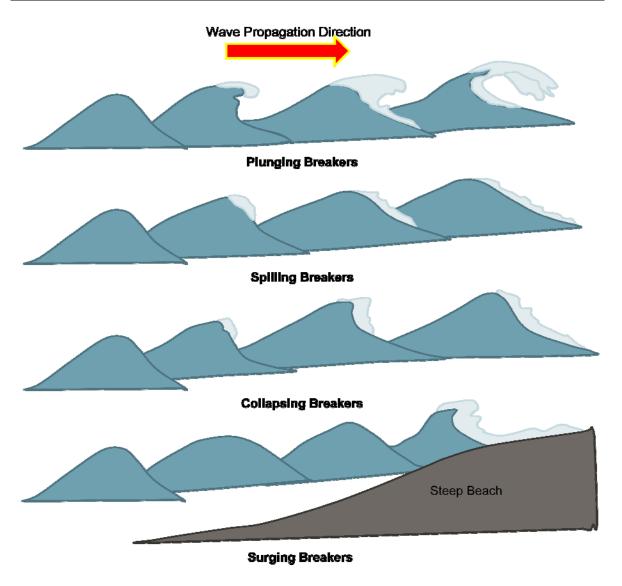


Figure 5. 13 Illustration of breaking waves

While near shore breaking waves may cause damage to coastal structure and enhance beach abrasion, offshore breaking wave may also cause damage to offshore structures due to the impact force. The impact is a rather localized phenomenon. Most of impact studies are related to the plunging breakers because this type of breaking wave is deemed to be more severe than the other types.

There are several criteria of breaking wave for example the global limiting wave steepness criteria (Massel, 2007). In this study, the selection of breaking wave on the wave record is merely based on location of wave record where response discrepancies happen. No other specific criteria were used.

5.2.1. Impact Assessment according to Wienke and Oumeraci Impact Model

The assessment of force on a cylinder mostly involved the utilization of Morison equation. This equation involves the contribution of forces from inertia and drag force. The inertia term of this equation related to the acceleration of the water particle while the

drag term is related to the quadratic value of the velocity of the particle. While it has been long used as an appropriate tool to predict load on a cylinder, the equation cannot represent the impact or slamming term which has been suspected to appear on the Kvitebjørn jacket structure. For this, Wienke and Oumeraci (Wienke & Oumeraci, 2004) mentioned that the impact term should be added to the original Morison equation as an additional term representing the short term load. Impact description in this subchapter will then be based on the proposed theory by Wienke and Oumeraci. The total wave force equation thus becomes:

$$F_{TOT} = F_M + F_D + F_I \tag{5.1}$$

The first two terms on the right hand side of the above equation are the terms taken from Morison equation while the last term represents the impact/slamming force. For a strip of the cylinder, dz, each term on the right hand side of the above equation is expressed by:

$$F_{M}(z) = \int_{-d}^{\eta} C_{M} \cdot \rho \cdot \frac{\pi D^{2}}{4} \dot{u}(z) dz$$
 (5.2)

$$F_D(z) = \int_{-d}^{\eta} C_D \cdot \rho \cdot \frac{D}{2} u(z) |u(z)| dz$$
 (5.3)

$$F_I(t) = \lambda . \eta_b . \rho . C_S . R . C^2 \left(1 - \frac{C}{R} t \right)$$
(5.4)

Here, C_M and C_D are the mass and drag coefficients. In the analysis of this study, these coefficients are taken based on NORSOK (NORSOK, 1999) recommendation. *R* is the radius of the cylinder and *D* is the diameter. *C* is wave celerity, u(z) is the water particle velocity, and $\dot{u}(z)$ is the water particle acceleration. dz denotes the length of cylinder strip being considered. C_S is the slamming coefficient and ρ is the density of sea water. The term λ . η_b represents the portion of wave height that is the breaker front or the impact area.

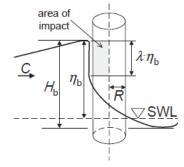


Figure 5. 14 Illustration of breaking wave parameters (Wienke & Oumeraci, 2004)

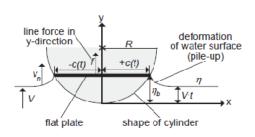


Figure 5. 15 Impact pressure plane idealization by a flat plate (Wienke & Oumeraci, 2004)

Equation (5.2) and (5.3) depend on the elevation while equation (5.4) is time dependent. The impact term (Eq. (5.4)) is developed from the theory proposed by Goda (Goda, Haranaka, & Kitahata, 1966) as cited by Wienke and Oumeraci (Wienke & Oumeraci, 2004). Goda's theory corresponds to the Von Karman theory by utilizing slamming coefficient, $C_{S} = \pi$. Wienke and Oumeraci propose a modification to Goda's theory by replacing Von Karman with Wagner slamming theory ($C_S = 2\pi$). Both theories assume that pressure plane can be represented by a flat plate (Ref. Fig. 5.15, V = C). It is assumed that for breaking waves, the water particle velocity at the crest is close to the phase velocity, thus V = C (Nestegård, Kalleklev, Hagatun, Wu, Haver, & Lehn, 2004). The modification is made because the original theory is formally not consistent with the flat plate approximation (Wienke & Oumeraci, 2004). Wagner theory considers the wave pile-up effect and as a final result, the force calculated by using this theory is twice of the one calculated using based on Von Karman theory. In their study, Wienke and Oumeraci assume that the fluid is frictionless and incompressible, and the flow is irrotational. The surface tension of water, damping effect and forces due to gravity were neglected. The theory proposed by Wienke and Oumeraci was verified by an experiment and shows a considerably good agreement with the experiment result.

In our structure, impact is considered to happen on the main legs. As can be seen on the structural plot (ref Fig. 2.2), the legs are not vertical, but has certain angle against vertical axis. Due to this, the impact area will be larger than impact which happens on vertical cylinder. The impact duration will also be larger because on the water plane, the leg section is no longer circular but ellipsoid, thus the travel time of the wave will be higher since ellipse has longer major axis than circle (see Fig. 5.16 where it can be seen that at Z=0, the section of the leg is ellipsoid for inclined members). In the calculation, this condition is considered by introducing a variable γ which is the inclination angle of the cylinder.

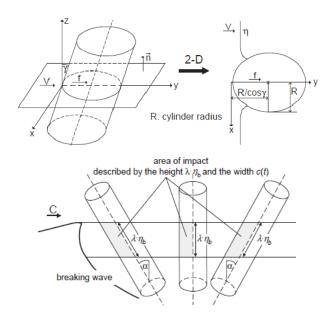


Figure 5. 16 Impact on inclined cylinder (Wienke & Oumeraci, 2004)

Taking $C_s = 2\pi$ and by incorporating the inclination angle γ to the equation, the expression of impact force on an inclined cylinder can be written as (Wienke & Oumeraci, 2004):

For
$$0 \leq t \leq \frac{1}{8} \frac{1}{\cos \gamma} \frac{R}{V}$$

$$F_{I}(t) = \lambda \cdot \eta_{b} \cdot \rho \cdot R \cdot V^{2} \cdot \cos \gamma \left(2\pi \cdot \cos \gamma \right) - 2 \cdot \sqrt{\cos \gamma} \frac{V}{R} t \cdot \operatorname{atanh} \sqrt{1 - \frac{1}{4} \cdot \frac{1}{\cos \gamma} \cdot \frac{V}{R} \cdot t} \right)$$
(5.5)
For $\frac{3}{32} \frac{1}{\cos \gamma} \frac{R}{V} \leq t' \leq \frac{12}{32} \frac{1}{\cos \gamma} \frac{R}{V}$ where $t' = t - \frac{1}{32} \frac{1}{\cos \gamma} \frac{R}{V}$

$$F_{I}(t) = \lambda \cdot \eta_{b} \cdot \rho \cdot R \cdot V^{2} \cdot \cos \gamma \left(\pi \cdot \sqrt{\frac{1}{6} \cos \gamma} \frac{1}{\frac{V}{R} t'} \right)$$
(5.6)

$$- \sqrt[4]{\frac{8}{3}} \cos \gamma \cdot \frac{V}{R} t' \cdot \operatorname{atanh} \sqrt{1 - \frac{V}{R} t' \sqrt{\frac{6}{\cos \gamma} \cdot \frac{V}{R} t}}$$

The total impact duration can be estimated by using the following expression:

$$T = \frac{13}{32} \frac{1}{\cos\gamma} \frac{R}{V}$$
(5.7)

The total impact duration used in this method is the duration starting from the immersion of front line of the cylinder until complete immersion of half cylinder (or ellipse in case of inclined members).

For our structure, the inclination angle to be $\gamma = 6.18^{\circ}$ for 200401011200 and $\gamma = 5.69^{\circ}$ for 200401011400. The difference occurs due to the different wave directions on both events.

The wave velocity is estimated from the wave record by observing the zero down crossing period (T_{wave}) where $V = gT/(2\pi)$. The particle velocity at the crest of the breaking wave will be close to the wave (phase) velocity/celerity (Nestegård, Kalleklev, Hagatun, Wu, Haver, & Lehn, 2004). For event 200401011200 and 200401011400 the wave velocity is consecutively 21.078 m/s and 19.2041 m/s. DNV's recommended practice mentions that the impact velocity should be taken as 1.2 times the phase velocity of the most probable highest breaking wave in n years (DNV-RP-C205, April 2007). Here, for our analysis, the wave velocity is also increased 20% accordingly to DNV recommendation.

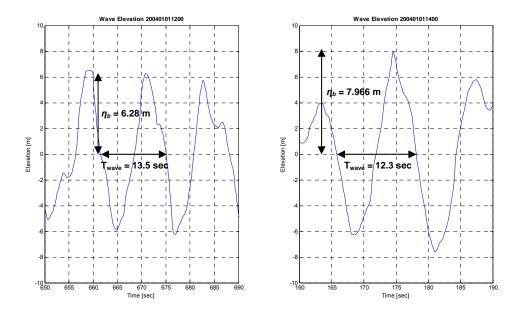


Figure 5. 17 Wave height and period estimation from wave record

The λ . η_b term on the impact formula is related to the type of breaking wave and wave horizontal asymmetry factor (μ). In this study, it is assumed that the breakers are in form of plunging break. This type of breaking wave is the severe type and will cause high impact value. For this, the curling factor, $\lambda = 0.5$ is taken (Wienke, Sparboom, & Oumeraci, 2004). The breaking wave crest (η_b) and wave height (H) is related to each other by the horizontal asymmetry factor (μ) such that $\mu = \frac{\eta_b}{H}$. Since the complete wave record is available, η_b will simply be determined by observing the wave record profile. In this case, the parameter μ will not be used. For the cases where only the wave height is known, μ should be used to determine the breaking wave crest height. Based on a study by Myrhaug and Kjeldsen (Myrhaug & Kjeldsen, 1986), one can see the values of μ . The following figure shows the plot of crest front steepness (ϵ) versus the horizontal asymmetry factor (μ). Here $\epsilon = \frac{\eta'}{\left(\frac{g}{2\pi}\right)T.T'}$. Reference can be made to the following figures for clarity of the parameters used, note that $\eta_b = \eta'$ in Fig. 5.18. From Fig. 5.19, it is deemed conservative to take $\mu = 0.9$.

Introducing numbers, the impact load profile can be created. This can be seen on Fig. 5.20. Note that the duration of impact is very short, thus a small time step of integration is required to capture the impact load profile.

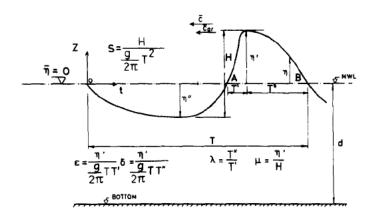


Figure 5. 18 Asymmetric wave properties (Myrhaug & Kjeldsen, 1978)

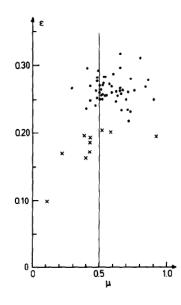


Figure 5. 19 Crest front steepness versus horizontal asymmetry factor (Myrhaug & Kjeldsen, 1986)

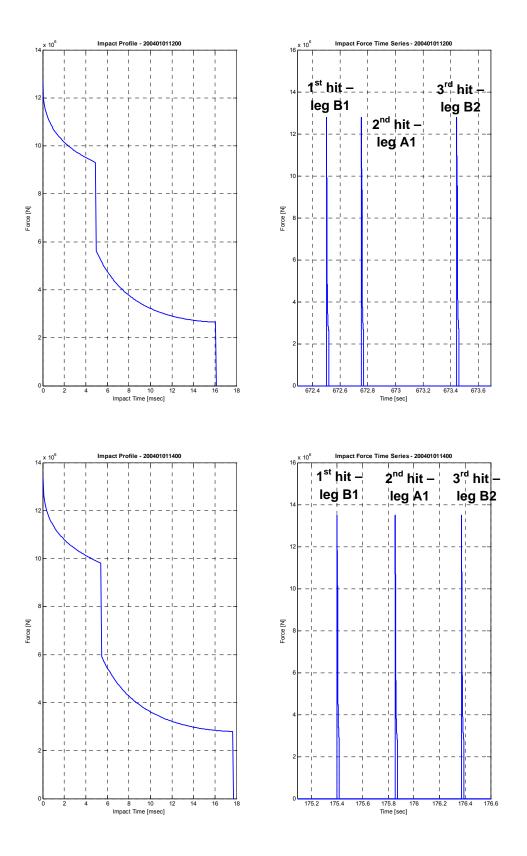
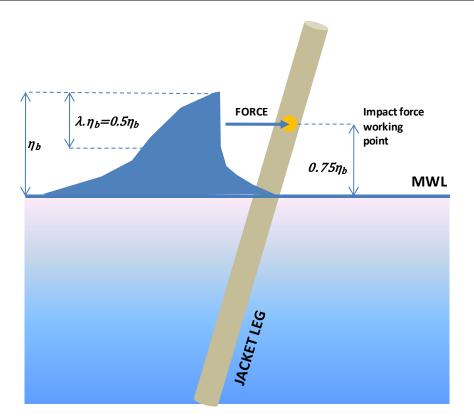



Figure 5. 20 Impact force profile (in wave direction) – Wienke & Oumeraci model

The impact force as can be seen on the left hand side of the above figure is applied to three legs of the structure. Not all legs are loaded with impact, only leg B1, A1, and B2. Due to the wave direction and structural configuration, it is assumed that leg A2 will not be imposed to the breaking wave. The force will decay as it hits conductors/risers before it reaches leg A2 (Ref. Fig. 5.21). It is also assumed that the same impact profile is applicable for the three loaded legs, only with different timing (Ref. Fig. 5.20). The working point of load is taken to be 0.75 times the breaking wave crest height. This is due to the assumption that $\lambda = 0.5$. The wave kinematics is simulated by using Wheeler stretching and second order surface is used.

Impact Force Working Point

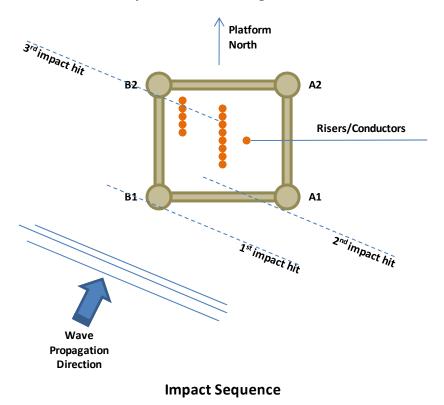
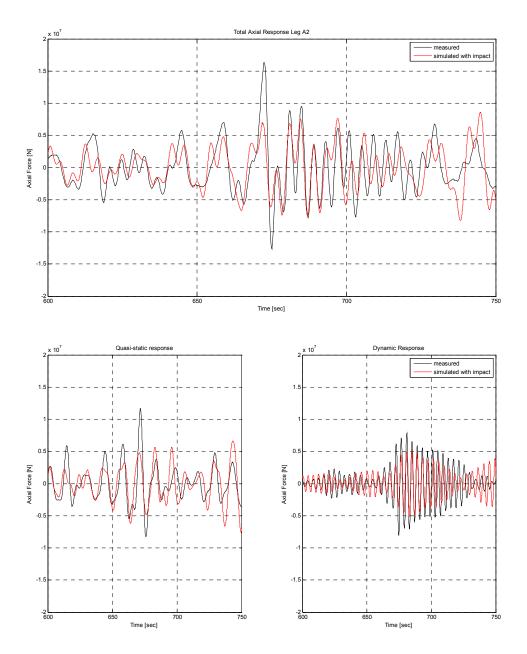



Figure 5. 21 Impact force working point location and impact sequence

Load from wave and impact will mostly be transferred to leg B1 and A2. The analysis result from combination of Morison force and impact force can be seen as the following:

Figure 5. 22 Response of leg A2 (-108m) 200401011200 – Morison + Impact Force (Wienke & Oumeraci impact profile)

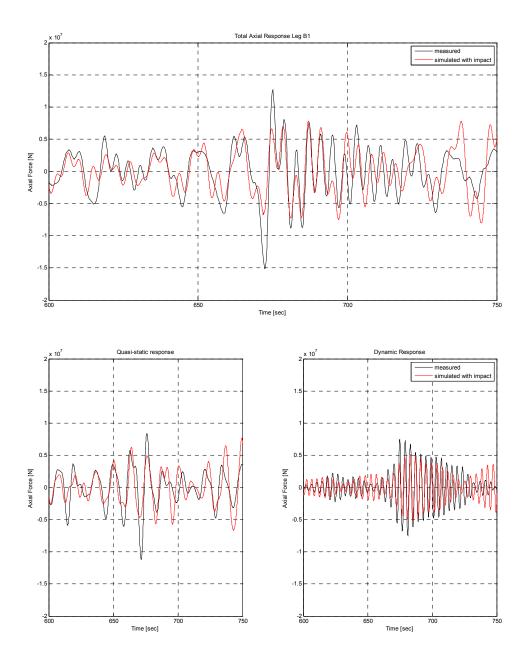


Figure 5. 23 Response of leg B1 (-108m) 200401011200 – Morison + Impact Force (Wienke & Oumeraci impact profile)

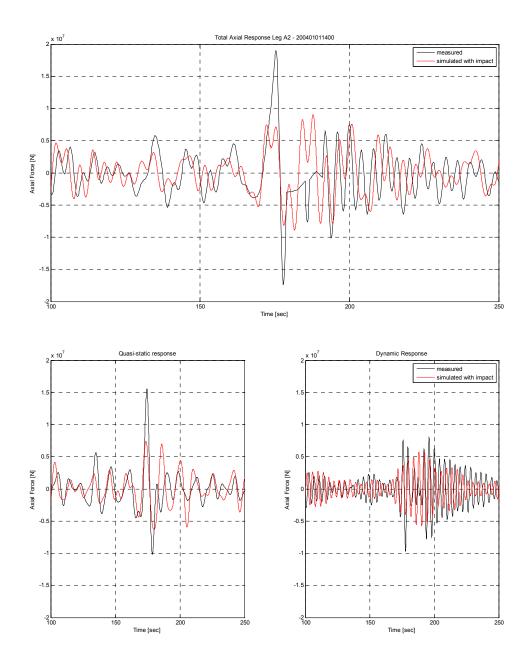


Figure 5. 24 Response of leg A2 (-108m) 200401011400 – Morison + Impact Force (Wienke & Oumeraci impact profile)

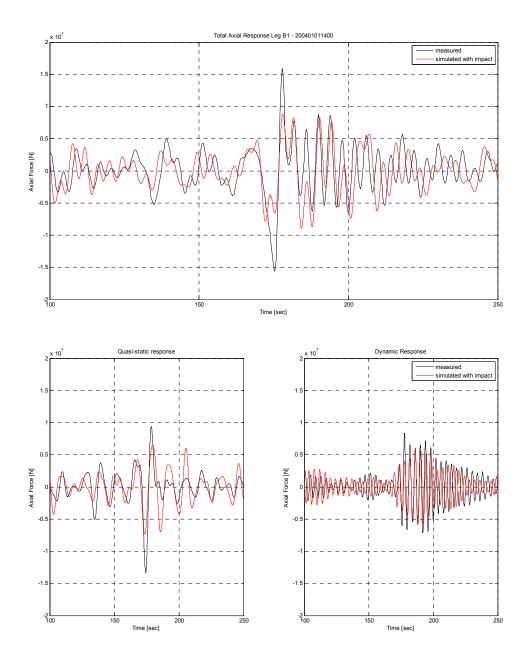


Figure 5. 25 Response of leg B1 (-108m) 200401011400 – Morison + Impact Force (Wienke & Oumeraci impact profile)

From Figure 5.22 to Figure 5.25, it can be seen that the impact does not contribute significantly to the total structural response. The simulated total axial response still shows an under prediction compared to the measured response. This is because of the response magnitude that is caused by impact is small if compared to the force from Morison. The impact magnitude is in the order of 10^5 while the response magnitude from Morison equation reaches the order of 10^7 . For the quasi-static response, by the time discrepancy happens, the response is still under predicted by the simulation, but for approximately 25 sec after that, simulation shows an over prediction. The dynamic response in general is under predicted. Simulated dynamic response shows different behavior compared to the measured response. The most distinct difference can be seen

on Fig. 5.24 where measurement data shows that there are two "shocks" happening on leg A2 where this is not represented by the simulated dynamic response. In reality, there might be two consecutive impacts happening on this time instant, locally on leg A2 only. The presence of only one shock on leg B1 and two shocks on leg A2, constitutes that there are dynamic phenomena happen as the wave passes trough the caissons/risers which are located among the legs of the jacket. This is difficult to simulate, but it can be said that caissons may work as wave obstructions which cause the wave to break more thus causing more frequent impact on leg A2.

These simulations show that it may be possible that the impact profile is not suitable for Kvitebjørn case where more dynamic events may occur between the legs of the jacket due to the presence of caissons. This impact profile as proposed by Wienke and Oumeraci is based on an experiment for single cylinder. The example of application of this impact profile (Wienke, Sparboom, & Oumeraci, 2004) also uses the offshore windmill structure which is basically a single cylinder structure in 25 m of water depth. The impact duration only considers the duration starting from the immersion of front line of the cylinder until complete immersion of half cylinder thus very short duration is predicted.

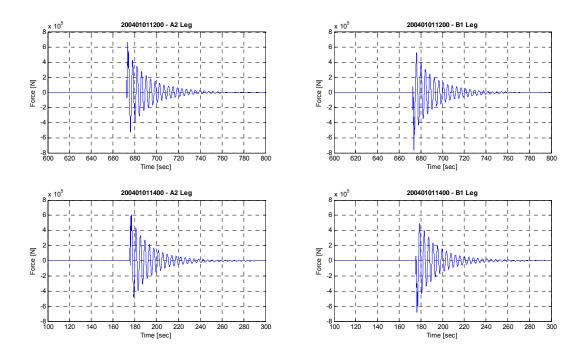


Figure 5. 26 Response due to impact only – Wienke & Oumeraci model

In an effort to distinguish how big the impact force should be so that the simulated response can approximate the measured response, it is found that if one multiplies the original impact force with a factor of 10, the simulated responses represent the measured response better than before. This constitutes that the total impact force will be 30 times higher that the original one and that the response due to impact only will be in the order of 10⁶. The results can be seen on the following figures:

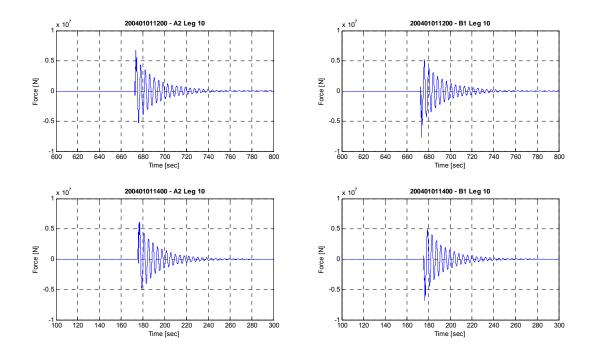


Figure 5. 27 Response due to impact only (impact force x 10) – Wienke & Oumeraci model

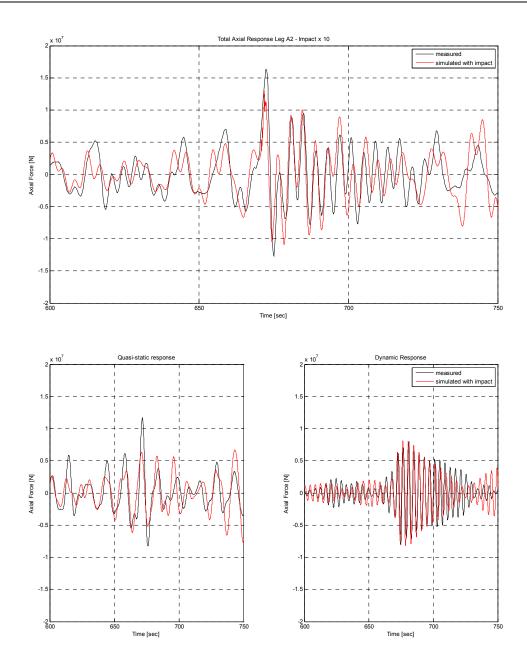


Figure 5. 28 Response of leg A2 (-108m) 200401011200 – Morison + (Impact Force x 10)

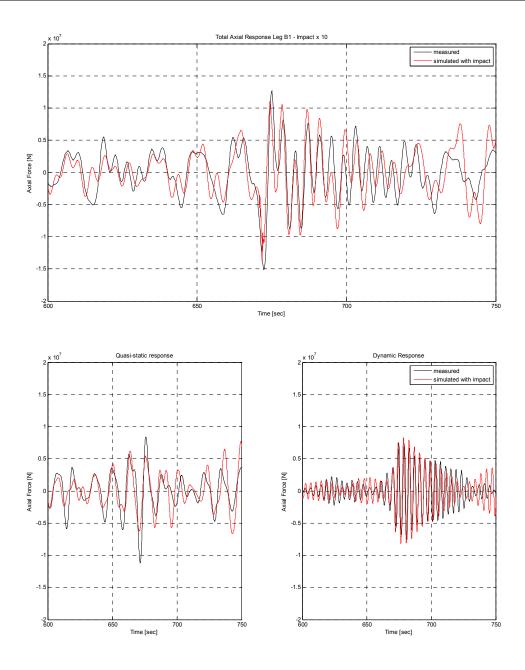


Figure 5. 29 Response of leg B1 (-108m) 200401011200 – Morison + (Impact Force x 10)

From Figure 5.28 and 5.29, after multiplying the impact force on the three legs with a factor of 10, it is observed that the dynamic response is represented by the simulation reasonably well. The magnitude of quasi-static response at the time of high measured response is represented better than when impact is not multiplied by 10 for each leg, especially for leg B1. The total axial response is predicted nicely by the simulation. However, multiplication factor of 10 for each leg seems unreasonable in our case. Even if the impact on risers and conductors are considered, the magnitude will not increase with a factor of $3 \times 10 = 30$.

5.2.2. Impact Assessment according to Campbell and Weynberg Impact Model

This impact model has been used in a study about impact load assessment on risers in a semisub (Nestegård, Kalleklev, Hagatun, Wu, Haver, & Lehn, 2004). It is assumed that for slender structural elements where the diameter is much smaller than the wave length, wave diffraction can be neglected and undisturbed wave velocity can be used as an input to the load model. The leg diameter of Kvitebjørn is 2 m and the wave length is predicted as 284.6m (200401011200) and 236.2m (200401011400). The existence of risers and bracings will be neglected thus it is deemed that the assumption of neglecting the diffraction of wave is valid in this case.

In Campbell and Weynberg model, impact is accounted for by modifying the drag term in Morison equation (Eq. (5.8)). Thus only the first two terms of Eq. (5.1) is used to calculate the force on the structure. The modification is done by introducing a slamming coefficient, C_s , whose values can be calculated by the following equation (Eq. (5.9)):

$$F_D(z,t) = \frac{1}{2}\rho.C_s.D.V^2$$
(5.8)

$$C_s(s) = 5.15 \left[\frac{D}{D+19s} + \frac{0.107s}{D} \right]$$
(5.9)

The slamming coefficient is equal to $C_D = 0.8085$ by the time the cylinder is fully submerged, $C_s(D) = C_D$, and s = s(t) is the function of cylinder submergence over time. Having the leg diameter of 2m, the following changes in C_s is observed as a function of submergence of cylinder:

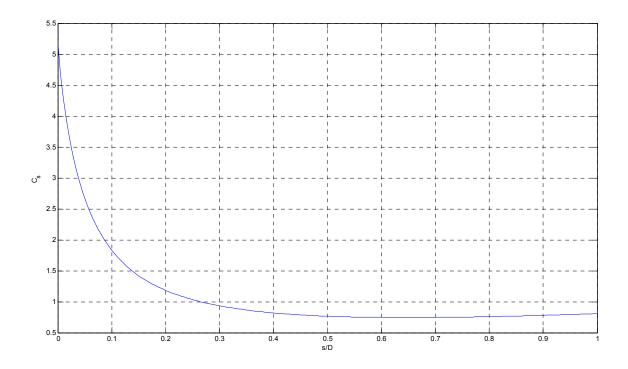


Figure 5. 30 Change in C_s as a function of cylinder submergence

The same assumption as the previous impact observation will be used. It is assumed that the breaker is of plunging type where $\lambda = 0.5$. The impact duration in this case is determined by observing the wave profile. As the working point of the force is at 0.75 times the crest height, then the duration of impact is the duration of wave passage through the cylinder at 0.75 times crest height elevation as can be seen on the following figure:

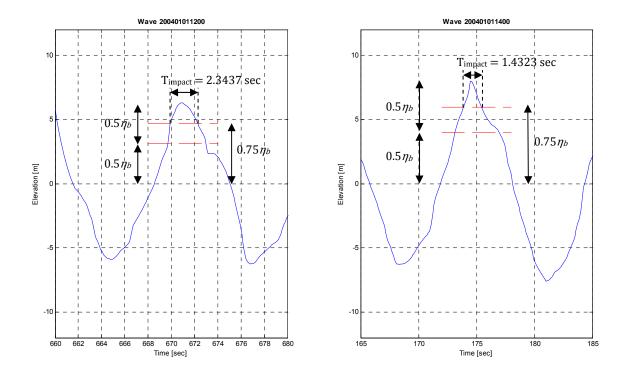


Figure 5. 31 Prediction of impact duration

Introducing numbers to Eq. (5.8) and (5.9), the impact force profile for leg B1, A1 and B2 can be obtained. Here, it is assumed that introducing the impact load to the three main legs will give representative result for the analysis. The existence of risers and bracings among the legs will in reality give additional impact area and thus larger impact force, but for this study, only the three main legs are loaded with impact. In this part of analysis, Wheeler stretching method is used to predict the particle velocity beneath the crest and second order surface is used.

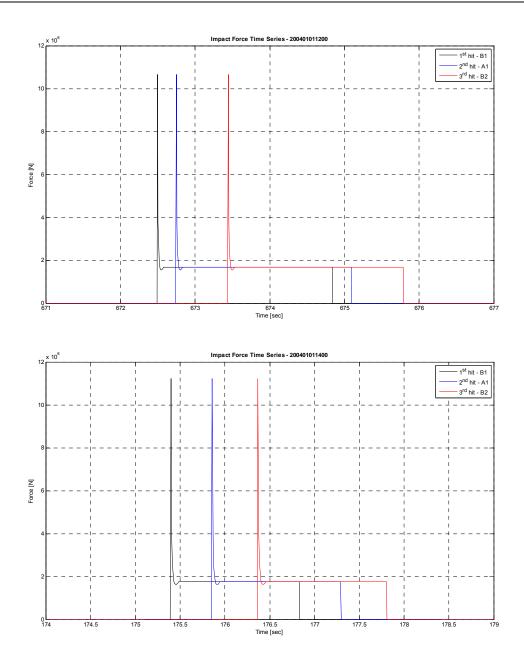


Figure 5. 32 Impact force profile (in wave direction) – Campbell and Weynberg model

Compared to the impact profile by using Wienke and Oumeraci calculation, Campbell and Weynberg impact profile lasts longer. The simulation results by using Campbell and Weynberg impact profile can be seen on the following figures:

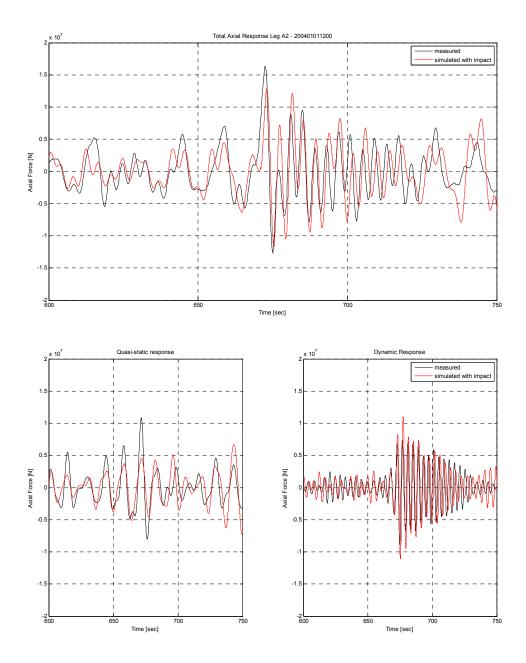


Figure 5. 33 Response of leg A2 (-108m) 200401011200 – Morison + Impact Force (Campbell & Weynberg impact profile)

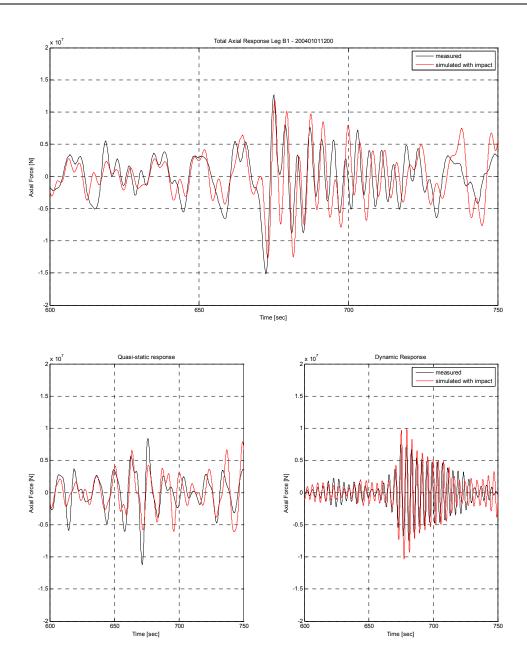


Figure 5. 34 Response of leg B1 (-108m) 200401011200 – Morison + Impact Force (Campbell & Weynberg impact profile)

For the 200401011200 event, the total axial response is to some extent approximated pretty well by the simulation. The quasi-static force is still under predicted and the dynamic response is over predicted at the beginning of the impact, but becomes a little under predicted after a while. However, the dynamic response is represented well enough by the simulation.

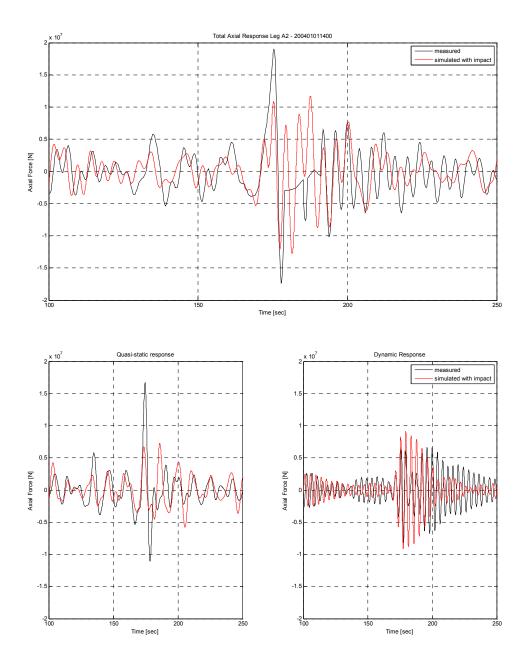


Figure 5. 35 Response of leg A2 (-108m) 200401011400 – Morison + Impact Force (Campbell & Weynberg impact profile)

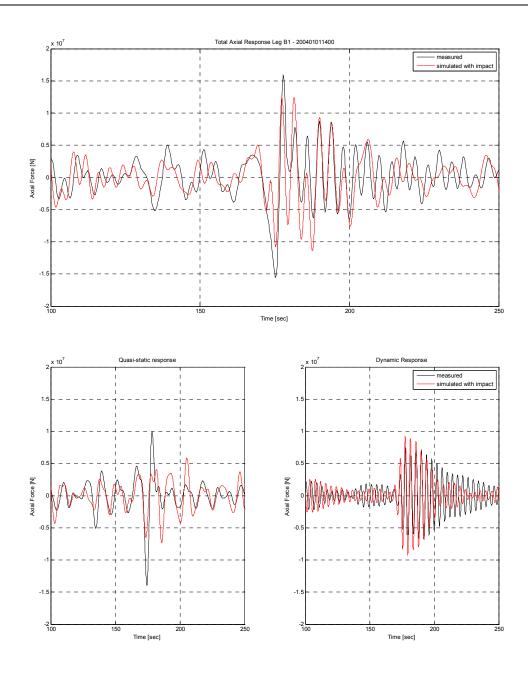


Figure 5. 36 Response of leg B1 (-108m) 200401011400 – Morison + Impact Force (Campbell & Weynberg impact profile)

For the 200401011400 event, the total axial response is still under predicted by the simulation. The quasi-static response is under predicted predicted too and the dynamic response is over predicted at the beginning of the impact, but becomes under predicted after a while.

By using the impact model by Campbell and Weynberg, simulations can approximate the measurement record directly without having to multiply the impact value with certain multiplication factor. This is due to the condition where the duration of the impact is longer. When the second impact happens, the first impact is still ongoing (ref. Fig. 5.32), and so as for the third impact, thus larger impact value in total is implied to the structure

during the estimated total impact duration. This results in total impact response in the order of 10^7 which is comparable to the response caused by Morison forces.

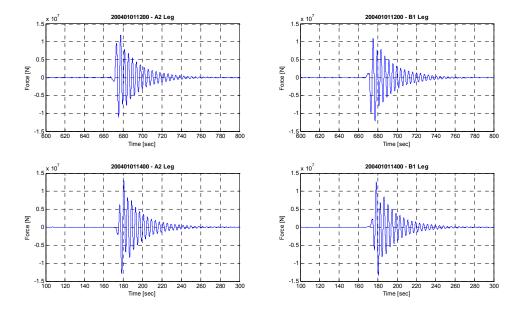


Figure 5. 37 Response due to impact only – Campbell & Weynberg model

The following figure shows the comparison between simulations with and without impact model. It can be seen that impact model increases the response so that the value approximates the measured response.

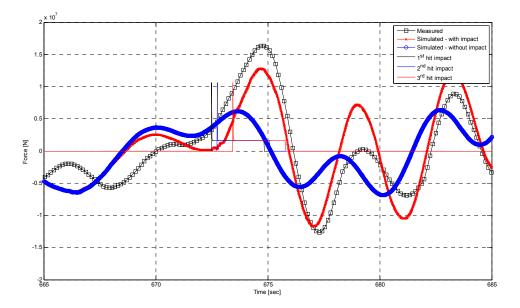
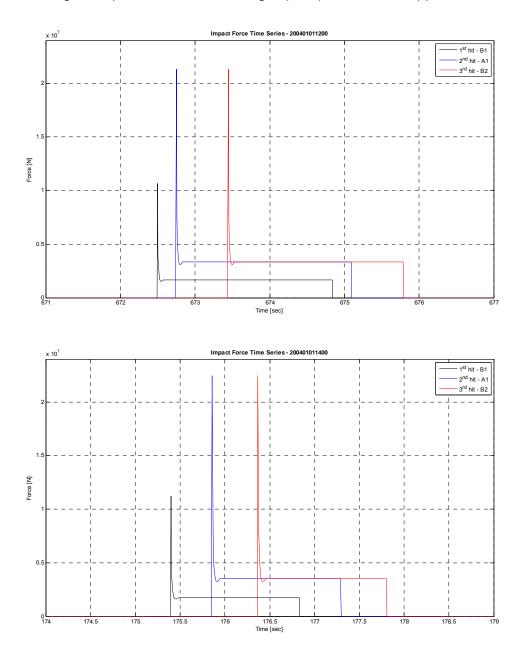



Figure 5. 38 Response behavior with and without impact - Leg A2 (-108m) 200401011200

Generally speaking about impact, after doing impact assessments based on the two impact profiles, it can be seen chosing the appropriate impact profile can be beneficial for the simulation. Under prediction in the impact analysis quasi-static result may be overcome by considering the impact force on risers/caissons on the jacket too. In this study, the impact profile proposed by Campbell and Weynberg is deemed to be most appropriate to be used in the simulations.

To simulate the contribution of caissons/risers between the legs of the jacket, an increase in impact load is introduced. Here, the impact load is multiplied by two and the load is applied to leg B2 and A1 (Ref. Fig. 2.2). This is of course just an approach to see the effect of higher impact load. The following impact profile is then applied to each case:

Figure 5. 39 Impact force profile (in wave direction) – Campbell and Weynberg model – 2nd and 3rd hit impact modification to account for load on caissons

For the 200401011200 event, the simulation results show that the total axial response is over predicted. A high increase in dynamic response is also observed that is causing over prediction in the response of the structure. The quasi-static response can be represented well by the simulations. However, this has shown that to reach the value of measured quasi-static axial response, simulations have to incorporate large impact loads which on the other hand is unlikely because by increasing the impact load, the total response and the dynamic response will be over predicted. The over prediction in the dynamic response even can be approximately 100% which is a large deviation from the measured dynamic response.

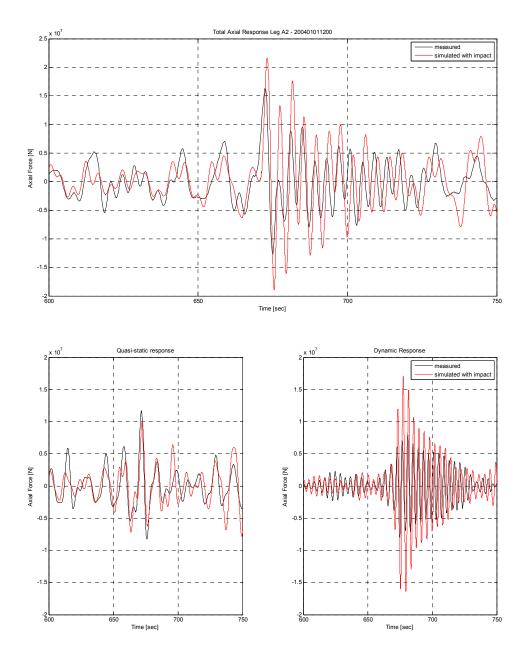


Figure 5. 40 Response of leg A2 (-108m) 200401011200 – Morison + Impact Force (Campbell & Weynberg impact profile) – with modified impact profile for leg A1 and B2

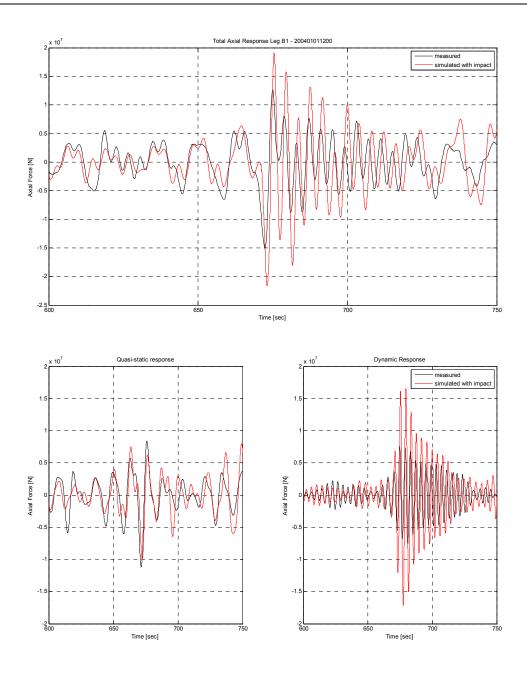


Figure 5. 41 Response of leg B1 (-108m) 200401011200 – Morison + Impact Force (Campbell & Weynberg impact profile) – with modified impact profile for leg A1 and B2

For the 200401011400 event, the simulation results show that the total response can be represented very well. The quasi-static response is still under predicted, and the dynamic response is highly over predicted. This also shows that the discrepancies might not be caused by impact force. Similar as before, to reach the value of measured quasi-static axial response, simulations have to incorporate larger impact loads which on the other hand is unlikely because by increasing the impact load, the total response and the dynamic response will be over predicted. The over prediction in the dynamic response even can be approximately 100% which is a large deviation from the measured dynamic response.

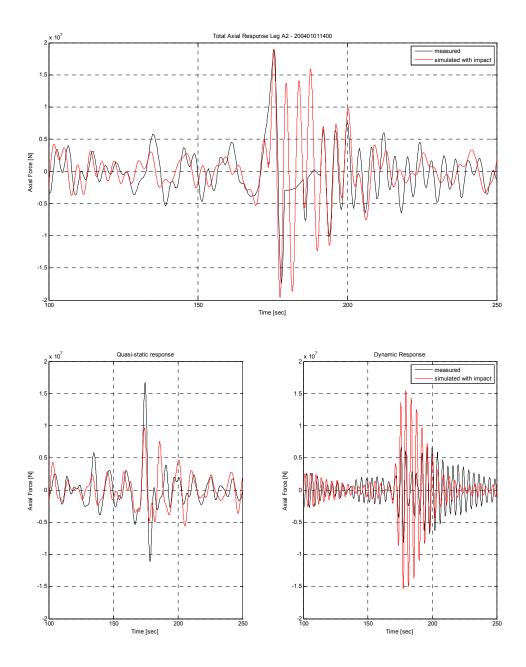


Figure 5. 42 Response of leg A2 (-108m) 200401011400 – Morison + Impact Force (Campbell & Weynberg impact profile) – with modified impact profile for leg A1 and B2

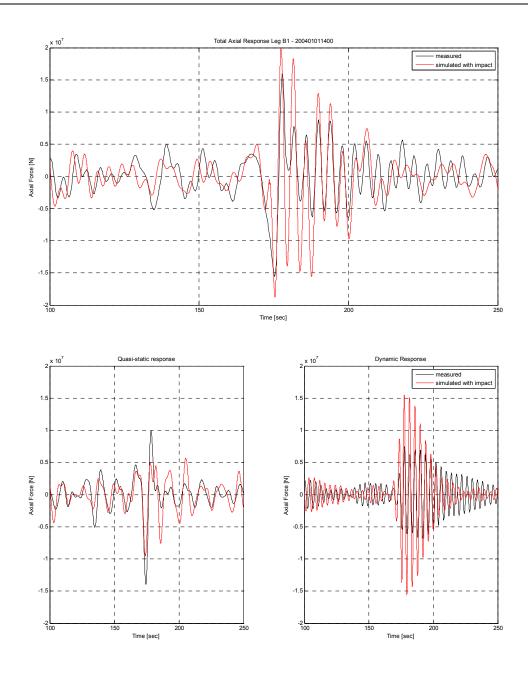


Figure 5. 43 Response of leg B1 (-108m) 200401011400 – Morison + Impact Force (Campbell & Weynberg impact profile) – with modified impact profile for leg A1 and B2

5.4 Effect of Damping Increase on the Structural Response

From the latest discussion above, it is identified that the dynamic response is in general over predicted. An increase in damping ratio of the structure will be introduced to see the effect of damping increase to the structural response. The simulation models so far have been using damping ratio of 2%. The damping ratio is influenced by the damping coefficient, mass, and eigen frequency of the structure. Exact damping value is actually difficult to obtain, thus the value of damping ratio used in the analysis is just an approximation and best practice. The damping ratio (ξ) is expressed as:

$$\xi = \frac{c}{2m\omega} \tag{5.10}$$

Where c, m, ω are respectively damping, mass and eigen frequency of the structure. In the analysis model being used in this study, proportional or Rayleigh damping has been used. Details about Rayleigh damping can be seen, among others, on NIRWANA user manual (Karunakaran D., Brathaug, Passano, Økland, & Baarholm, 2008). In Rayleigh damping, the damping matrix is proportional to either the mass matrix and/or the stiffness matrix.

$$C = \alpha_1 M + \alpha_2 K \tag{5.11}$$

To introduce the damping to the simulation model, the parameter α_1 and α_2 in the damping matrix equation should be determined first. These parameters are a function of the eigen frequency and the damping ratio for the first and second mode of displacement. They can be expressed as:

$$\alpha_1 = 2 \frac{\omega_1 \omega_2}{\omega_2^2 - \omega_1^2} (\xi_1 \omega_2 - \xi_2 \omega_1)$$
(5.12)

$$\alpha_{2} = 2 \frac{\omega_{1} \omega_{2}}{\omega_{2}^{2} - \omega_{1}^{2}} \left(\frac{\xi_{2}}{\omega_{1}} - \frac{\xi_{1}}{\omega_{2}} \right)$$
(5.13)

In this part of this study, the following modifications to the structural damping is introduced to see the effect of damping increase on structural response:

Table 5. 4 Structural damping modification parameters

Mode	T _{structure}	$\omega_{structure}$	ξ original	α original	ξ modified	α modified
1	4.09 sec	1.536 Hz	2%	0.0419	5%	0.076906
2	4.08 sec	1.539 Hz	2%	0.0008	5%	0.032507

Here, Wheeler stretching is used for the kinematic model, second order surface is used, and impact profile as proposed by Campbell and Weynberg is utilized. The simulation results show that the total axial response has less dynamic behavior. But by changing the damping ratio to 5%, the simulation not only under predicts total axial response at the beginning of the impact but also under predicts the response after that (time window 700-725 sec for 200401011200 and time window 180-250 sec for 200401011400). The simulation with 2% damping can simulate the total axial response better than the 5% damping model (Ref. Fig. 5.33, 5.34, 5.44, and 5.45). There is no difference in the quasistatic response. This proves that damping is essential to reduce dynamic response of the structure. The 5% damping model can simulate the dynamic/resonance response at the beginning of the impact very well. But then the response is under predicted. The 2% damping model (Ref. Fig. 5.33-5.36) over estimates the response at the beginning of the impact but then approximates the response after the impact starts pretty well. Thus, it can be said that having damping ratio of 2% is suitable for our simulations. 5% damping will give lower estimation of the response after the impact so that the result is less conservative. The simulation result can be seen on the following figures:

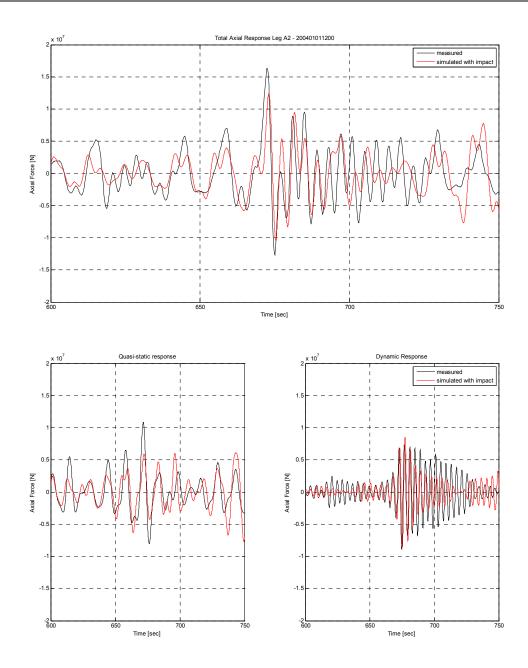


Figure 5. 44 Response of leg A2 (-108m) 200401011200 – Morison + Impact Force (Campbell & Weynberg impact profile) – damping ratio 5%

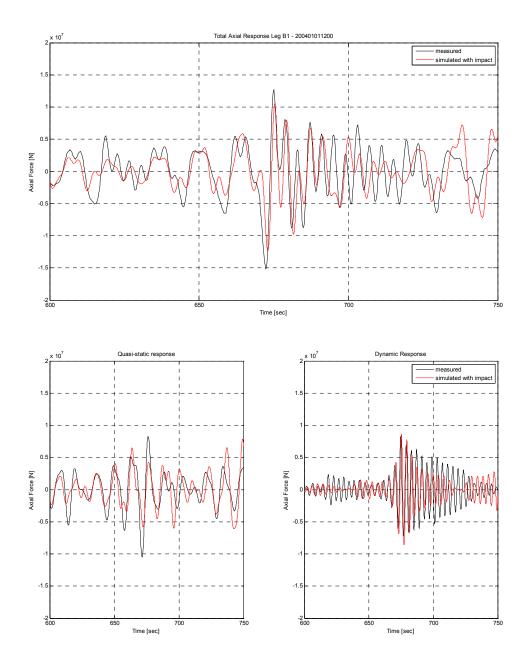


Figure 5. 45 Response of leg B1 (-108m) 200401011200 – Morison + Impact Force (Campbell & Weynberg impact profile) – damping ratio 5%

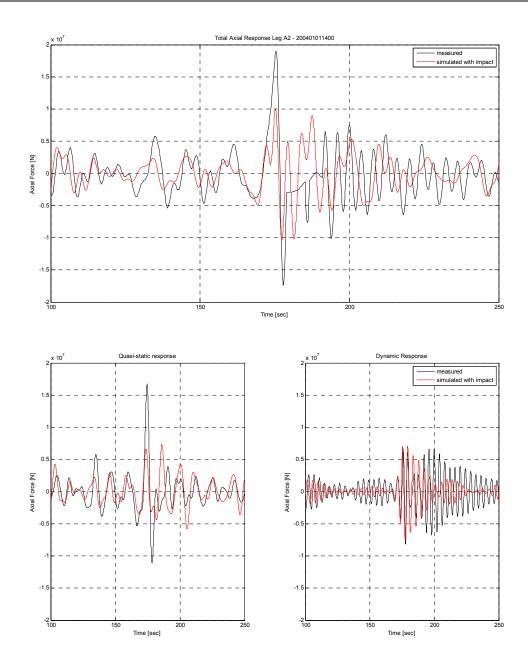


Figure 5. 46 Response of leg A2 (-108m) 200401011400 – Morison + Impact Force (Campbell & Weynberg impact profile) – damping ratio 5%

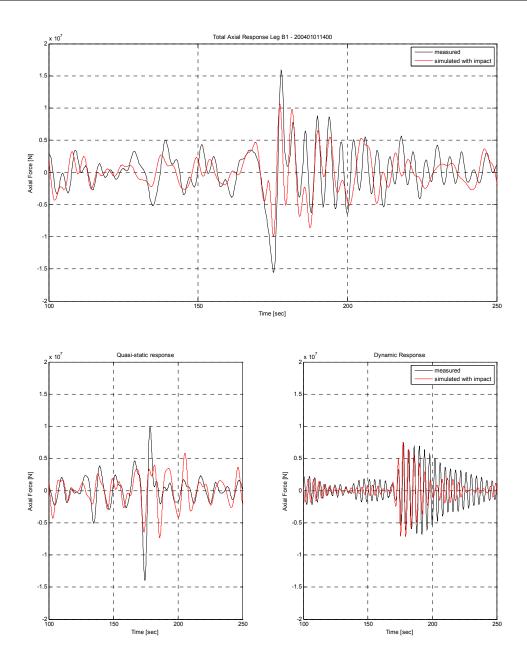


Figure 5. 47 Response of leg B1 (-108m) 200401011400 – Morison + Impact Force (Campbell & Weynberg impact profile) – damping ratio 5%

5.5 Comment on the Utilization of NORSOK Coefficient in Simulations

To some extent, it may not be practical to assess impact or slamming phenomenon in detail for design engineering. One common practice is to approximate slamming by modifying the original Morison equation. One way to do it is by modifying the hydrodynamic coefficients involved in the equation.

NORSOK N-003 recommends the following hydrodynamic values for tubular slender members whose acting forces calculated by Morison equation:

- $C_D = 0.65$ and $C_M = 1.60$ (smooth members)
- $C_D = 1.05$ and $C_M = 1.20$ (rough members)

The standard also mentions that during operations, members which are located 2m above MWL are considered smooth.

A sensitivity analysis on the hydrodynamic coefficients was done by Voie (Voie, 2009). In his study, several scenarios of mass and drag coefficients were looked through, which are:

- $C_D = 1.05$ and $C_M = 1.80$ (case 1)
- $C_D = 1.05$ and $C_M = 1.20$ (case 2)
- $C_D = 0.70$ and $C_M = 2.00$ (case 3)
- $C_D = 1.20$ and $C_M = 1.20$ (case 4)

The result mentions that based on those four cases, it can be concluded that the large under prediction is not caused by the application of inappropriate coefficients in the simulations. However, it can be seen that the four cases of simulation which were done by Voie did not represent major changes in drag coefficient but more on the mass coefficient. If wave impact is suspected to cause the discrepancies, more attention should be put on the drag coefficient.

In a study by Økland (Økland O. D., 2009), an increase of MWL of 2m was introduced and drag coefficient of 5.0 for horizontal bracings, legs, and risers/conductors starting from el. +8m up, was used. This is done to approximate the impact load which is caused by the wave crest higher than 8m. The result shows that by doing such modification, the dynamic response contribution becomes more similar to the measured response.

In the paper by Wienke and Oumeraci, it is cited that impact force may be approximated by multiplying the drag term on Morison equation by 2.5 (Wienke & Oumeraci, 2004). In order to do this, one can multiply the drag coefficient by the mentioned multiplication factor.

In the latest model developed by Marintek (Økland O. D., 2009), hydrodynamic coefficients $C_D = 0.85$ and $C_M = 1.40$ were used for members which are in the transition zone from rough to smooth. Members which are located between MWL and EL. +8m are assigned these hydrodynamic coefficients. These values are the average values for smooth and rough member coefficients suggested by NORSOK N-003. These coefficients are chosen as an approximation to the suggested NORSOK coefficients for simplicity of the model. By doing so, no additional nodes should be created at elevation +2m to be able to separate the smooth and rough members.

The measured wave profile (ref. Figure 5.1), during the occurrence of odd events, has a wave crest that can reach approximately +8m. Modification to analysis model is done by multiplying the drag coefficients to members (including risers, conductors and horizontal bracings) in the transition zone by 2.5 to see the applicability of the citation mentioned

above to our case. Thus, the following hydrodynamic coefficients are used for members in the transition zone:

- $C_D = 2.125$ and $C_M = 1.40$

Note that the same coefficients were used during the whole 20-minute simulation. Focus should be put on the time window where the impact is suspected to happen (t = 650-700s for 200401011200 event and t = 150-200s for 200401011400 event). In the analyses, the original damping ratio is used i.e. 2% of damping ratio. The following figures show the result of the simulations.

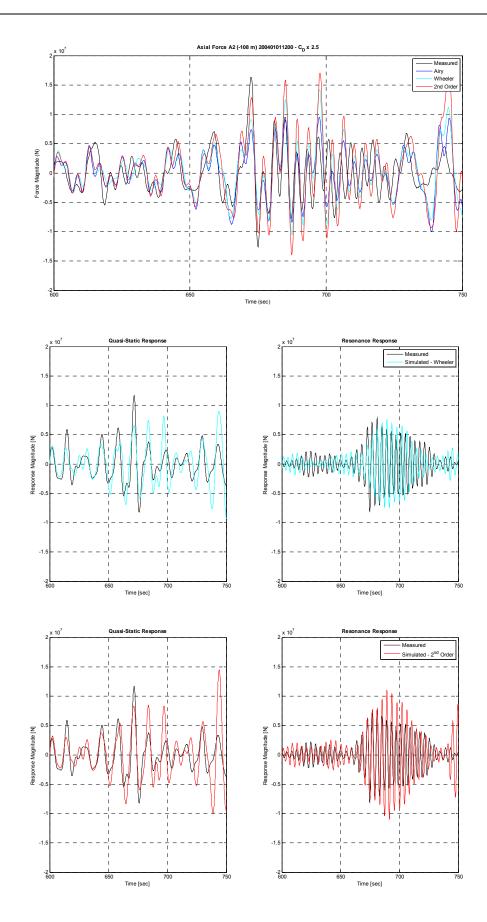


Figure 5. 48 Quasi-static and dynamic response 200401011200 after C_{D} Modification

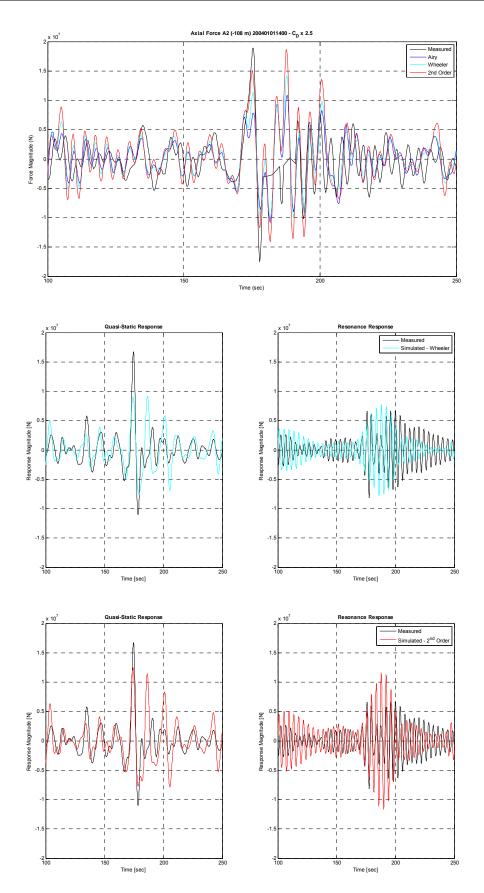


Figure 5. 49 Quasi-static and dynamic response 200401011400 after C_{D} Modification

From the above figures, it can be seen that increasing the drag coefficient to some extent reduce the gap between the measured response and the simulated ones. Increasing the drag coefficient 2.5 times the original value reduces the under prediction down to 14% from the original under prediction of up to 48%. The quasi-static response can be represented reasonably well by the second order simulation even though the measured response is still higher than the simulated values. Dynamic response can be simulated well enough by using Wheeler kinematics while second order model shows over prediction on the dynamic response. Despite the result on dynamic response, this constitutes that a higher multiplication factor of drag coefficient should be applied to a slender drag dominated structure like the one being observed in this study. To simulate impact phenomenon, an increase in the drag coefficient is needed.

Chapter 6 Conclusions and Recommendations

6.1 General

The present study has been done to explore the other possible causes of discrepancies between measured and simulated response on Kvitebjørn jacket. There are two main events which contain discrepancies between measurement and simulations, i.e. event 200401011200 and 200401011400. In event 200401011200, simulation shows an under prediction at time window 650 – 700 sec and an over prediction at time window 950-1000 sec. in event 200401011400, simulation shows an under prediction at time window 150-200 sec. The under predictions happen without the occurrence of very large wave. Some kinematics models are used in the simulations, which are:

- Airy kinematics combined with second order surface
- Wheeler stretching kinematics combined with second order surface
- Second order kinematics combined with linear surface

At the beginning of the study, statistical distributions of global maxima from the original simulations are being observed to see if the simulations are on conservative side. The structural model which is being used in this study was taken from the latest model update done by MARINTEK (Økland O. D., 2009).

Some efforts have been done in this study to determine the most possible cause of discrepancy of response in this jacket, including:

1. Modification of wave height.

This part of this study is related to modification of measured wave crest and/or trough. The measured crest height and/or trough is enlarged for some meters and then used as wave input for the simulations.

2. Impact assessment due to breaking waves.

Previous studies on this subject (Økland O. D., 2009), (Karunakaran & Økland, 2004) suggest that the odd events in terms of under prediction of responses may be caused of the impact force from breaking waves. Since original Morison equation cannot represent the impact, an additional impact force should be imposed on the structure. There are two impact profiles which are used in this study, i.e. impact profile proposed by Wienke and Oumeraci, and impact profile proposed by Campbell and Weynberg.

3. Observation on the influence of damping ratio of the structure to the response.

The original simulation model utilizes 2% of damping ratio for the analysis. An increase of damping ratio to 5% in introduced in the simulation to see the effect of damping to structural response. The background of this effort is that the dynamic response from impact profile as proposed by Campbell & Weynber is to some extent over predicted at the beginning of the impact.

4. Observation on NORSOK N-003 recommended hydrodynamic coefficients.

As an adaptation of NORSOK hydrodynamic coefficients, the latest model by MARINTEK utilizes the coefficients $C_D = 0.85$ and $C_M = 1.40$ for members which are in the transition zone from rough to smooth. Members which are located between MWL and EL. +8m are assigned these hydrodynamic coefficients. These values are the average values between the coefficients suggested by NORSOK N-003. These coefficients are chosen as an approximation to the suggested NORSOK coefficients for simplicity of the model. By doing so, no additional nodes should be created at elevation +2m to be able to separate the smooth and rough members.

6.2 Conclusions

Based on the above mentioned efforts, the following conclusions can be drawn:

- 1. Even though for some episodes the simulations show under predictions, in general, simulations are still statistically conservative. The distribution of global maxima in the 20-minute series shows that simulations are conservative enough to be used to estimate the real structural response.
- Separating the total response of the structure into quasi-static and dynamic response, it can be seen that the dynamic response in general is represented better than the quasi-static response. This may become an indication that impact-like additional forces may not be the reason of under prediction.

- 3. It seems that the wave crest at platform location is under predicted approximately for 3m. To be able to produce the simulated response which approximates the measured response, the wave crest at the platform location should be around 10 meter while the measured wave crest is only around 7m. One possible phenomenon for this is the occurrence of pyramid-shaped wave. Pyramid wave may cause under prediction if the wave is measured as the pyramid leg on the sensor location, but in platform location the peak of the pyramid occurs. On the other hand, the pyramid wave may cause over prediction if the wave is measured as peak on the sensor location, while in the platform location the leg of pyramid wave actually occurs. So far, this is the most possible cause of discrepancies on the response of this platform based on the simulation results.
- 4. Impact profile as proposed by Wienke and Oumeraci may not be the reason of under prediction. By using this impact profile, the response of the structure is still under predicted. The quasi-static response resulted from this impact profile seems to have under predicted the real response. The dynamic response is under predicted too even though the behavior can be modeled pretty well. One will have to multiply the impact force with a factor of 10 to be able to obtain the total axial measured response value. This condition is deemed to be unreal because even though the impact on risers and conductors are considered in the model, the magnitude of total impact force should not be that big.
- 5. Impact model as proposed by Campbell and Weynberg was able to approximate the measured response better than the previous impact profile in this case. Total response and dynamic response can be represented pretty well. The quasi-static response still under predicts the response but if the presence of risers/caissons between the legs of the platform, the quasi-static response may be able to be approximated better.

Since the exact impact calculation on the caissons is rather complicated, the impact on those members is approximated by increasing the original impact load with a multiplication factor (here = 2) and the loads are applied to leg A1 and B2 of the jacket. For the 200401011200 event, the results show a very good agreement in quasi-static load, but over predictions happen on the total and dynamic response. For the 200401011400 event, the total response can be represented very well. The quasi-static response is still under predicted, and the dynamic response is highly over predicted. This has shown that to reach the value of measured quasi-static axial response, simulations have to incorporate large impact loads which on the other hand is unlikely because by increasing the impact load, the total response and the dynamic response will be over predicted. For both events, the over prediction in the dynamic response even can be approximately 100% which is a large deviation from the measured dynamic response.

6. The presence of only one shock on leg B1 and two shocks on leg A2 on the measurement record at event 200401011400 at time window 150-200sec (Ref. Fig. 5.24 and 5.25), constitutes that there are dynamic phenomena happen as the wave passes trough the caissons/risers which are located among the legs of the jacket. This is difficult to simulate, but it can be said that caissons may work as wave obstructions which cause the wave to break more thus causing more frequent impact on leg A2.

- 7. Increasing the damping ratio of the structure (original = 2%, new = 5%) will reduce the dynamic response of the structure. The total response is represented better by the 2% damping model. The 5% damping simulation not only under predicts total axial response at the beginning of the impact but also under predicts the response after that (time window 700-725 sec for 200401011200 and time window 180-250 sec for 200401011400). The dynamic response at the beginning of the impact is represented very well by the 5% damping model, but shortly after the impact begins, the dynamic response is under predicted, unlike the 2% damping model which represents the dynamic behavior after the beginning of the impact better. This phenomenon may suggest that during the whole response of the structure, the damping value is not constant. Since simulating a structure with updated damping value over time is not a simple task, it is advisable to use damping ratio of 2% in this case.
- 8. For the case of slender drag dominated structure like Kvitebjørn, simulations show that a bigger drag coefficient than the one proposed by NORSOK N-003 should be used to represent impact.
- 9. In general, simulations by using second order kinematics have shown results that approach the values of measured response better than other kinematic models by the time under prediction happens. Innacuracies may be caused by spreading (directional) effect of the wave. For most simulations, the quasi-static response is under predicted. This may mean that there are quasi-static loads which are not captured by the simulations. Under prediction of wave crest may be one of the reason because simulations have shown that by increasing the wave crest, the response of the structure can be simulated well.

6.3 Recommendations

- 1. So far, the impact analysis in this study has been based on plunging breakers behavior of breaking waves. This is because more literatures were found on this type of breaking wave compared to the other types. Considering the effect from spilling breakers or the other types may be useful for comparison.
- 2. Using another method of identifying the linear wave content and shifting wave elevation in space may be beneficial for validation. Other methods are proposed by for example Johannessen (2009a and 2009b) and Winterstein et.al. (1999).
- 3. The term pyramid-shaped wave is so far hypothetical. More evidence of the existence of such wave should be made available.
- 4. The NIRWANA program to simulate the second order kinematics can only simulate 2¹² discrete points of integration. If more points to be simulated, the result will be wrong. An upgrade to the program may be useful for future use. Also, integration of several available versions of the program into one final version is favorable.

Aibel. (2008). Global Dynamic Re-Analysis. Aibel Report No. 004544-0012, Rev 01.

Akersolutions. (2006). *Kvitebjørn Jacket Re-evaluation of Foundation Stiffness.* Akersolutions.

Bajer, C. (2002). *Time integration methods - still questions.* Warsaw: Theoretical Foundations of Civil Engineering. W. Szcześniak, ed., v. 1. pp 45-54.

Bathe, K. J., & Wilson, E. (1976). *Numerical Methods in Finite Element Analysis.* New Jersey: Prentice Hall.

Bonmarin, P. (1989). Geometric properties of deep-water breaking waves. *Journal of fluid mechanics*, 405-433.

Campbell, I. M., & Weynberg, P. A. (1980). *Measurement of parameters affecting slamming.* Southampton University: Wolfson Unit for Marine Technology.

Capital Regional District - Waves. (n.d.). Retrieved from CRD: http://www.crd.bc.ca/watersheds/protection/geology-processes/Waves.htm

DNV-RP-C205. (April 2007). *Environmental Conditions and Environmental Loads*. Høvik, Norway: Det Norske Veritas.

Ergin, A. *CE 491 COASTAL ENGINEERING I Lecture Notes - Chapter 9.* Ankara, Turkey: Middle East Technical University.

Faltinsen, O. M. (1990). *Sea Loads on Ships and Offshore Structures.* Cambridge, United Kingdom: Cambridge University Press.

Fugro. (2006). *Ambient Vibration System Identification Analysis Kvitebjorn Platform.* Fugro Structural Monitoring. Report no C30173\R001\Issue.

Goda, Y., Haranaka, S., & Kitahata, M. (1966). *Study on impulsive breaking wave forces on piles.* Japan: Report Port and Harbour Technical Research Institute 6 (5), 1– 30 (in Japanese).

Goudreau, G. L., & Taylor, R. L. (1972). *Evaluation of Numerical Integration Methods in Elasto-dynamics*. Computer Methods in Applied Mechanics and Engineering, Vol.2, No.1, pp. 69-97.

Haver, S. (2004). *Kvitebjørn Jacket, Oppsummering av hva som er målt når det gjelder plattformoppførsel.* Tech. Report Statoil.

Hilber, H. M., & Hughes, T. J. (1978). Collocation, Dissipation, and 'Overshoot' for Time Integration Schemes in Structural Dynamics. *Earthquake Engineering and Structural Dynamics, Vol.* 6, 99-117.

Johannessen, T. B. (2009a). Calculations of kinematics underneath measured time histories of steep water waves. *Applied Ocean Research.*

Johannessen, T. B. (2009b). Nonlinear superposition methods applied to continuous ocean wave spectra. *JOMAE*.

Johnson, D. E. (1966). A Proof of the Stability of the Houbolt Method, AIAA Journal, Vol. 4. pp. 1450-1451.

Karunakaran, D. (2004). *Kvitebjørn Jacket - Analysis of Measured Platform Data and Comparison to Calculated Response.* Trondheim: Tech. Rep. Marintek.

Karunakaran, D., & Haver, S. (2005). *Dynamic Behaviour of Kvitebjørn Jacket Structure - Numerical Predictions versus Full-Scale Measurements*. Paris: Eurodyn Conference.

Karunakaran, D., & Haver, S. (2005). *Dynamic Behaviour of Kvitebjørn Jacket Structure -Numerical Predictions versus Full-Scale Measurements*. Tech. Report Statoil.

Karunakaran, D., & Økland, O. D. (2004). *Kvitebjørn Jacket - Analysis of Measured Platform Data and Comparison to Calculated Response*. Trondheim: Marintek Report MT70 F04-232.

Karunakaran, D., Brathaug, H. P., & Passano, E. (1990). *NIRWANA - User's Manual including Theoretical Basis.* Trondheim: SINTEF Report.

Karunakaran, D., Brathaug, H. P., Passano, E., Økland, O. D., & Baarholm, G. S. (2008). *NIRWANA Version 1.2 User Manual.* Trondheim: Marintek.

Lader, P. F., Grytøyr, G., Myrhaug, D., & Pettersen, B. (1998). Breaking wave geometry with emphasis on Steepness and Curvature. *Proceedings of the 1998 international OTRC symposium* (pp. 281-289). Houston, Texas: ASCE.

Lader, P. F., Myrhaug, D., & Pettersen, B. (2000). Wave crest kinematics of deep water breaking waves. *Coastal engineering 2000* (pp. 355-369). Sydney, Australia: ASCE.

Langen, I., & Sigbjörnsson, R. (1979). *Dynamisk Analyse av Konstruksjoner.* Trondheim: Tapir.

Larsen, C. M. (2007). TMR 4180 Marine Dynamics Compendium. Trondheim.

Massel, S. R. (2007). *Ocean Waves Breaking and Marine Aerosol Fluxes.* New York: Springer.

Myrhaug, D., & Kjeldsen, S. P. (1978). *Kinematics and Dynamics of Breaking Waves.* Trondheim, Norway: Report No. STF60 A78100, Ships in Rough Seas, Part 4. Norwegian Hydrodynamic Laboratories.

Myrhaug, D., & Kjeldsen, S. P. (1986). Steepness and Asymmetry of Extreme Waves and the Highest Waves in Deep Water. *Ocean Engineering* (pp. 549-568). Pergamon Journals Ltd.

Nestegård, A., Kalleklev, A. J., Hagatun, K., Wu, Y. L., Haver, S., & Lehn, E. (2004). Resonant vibrations of riser guide tubes due to wave impact. 23rd International Conference on Offshore Mechanics and Arctic Engineering.

Newland, D. E. (1974). *Random Vibrations, Spectral and Wavelet Analysis.* New York: John Wiley & Sons Inc.

Newmark, N. M. (1959). *A Method of Computation sor Structural Dynamics*. ASCE Journal of the Engineering Mechanics Division, Vol. 85 No. EM3.

NORSOK. (1999). Action and action effects. NORSOK N-003 Rev. 1.

Økland, O. D. (2009). *Kvitebjørn Jacket - Analysis of Extreme Responses.* Trondheim: Marintek Report.

Økland, O. D. (2006). *Kvitebjørn Jacket Analysis - Analysis of Full Scale Measurements and Comparison with Calculated Response for Storms in December 2003 and January 2004.* Trondheim: MARINTEK Report MT70 F06-042.

Soemantri, D. (2009). *Response of Slender Jacket Structure in Deep Water.* Trondheim, Norway: Project Thesis, NTNU.

Stansberg, C. T. (2008). A Wave Impact Parameter. *Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering.* Estoril, Portugal: OMAE2008.

Stansberg, C. T. (1998). Non-Gaussian Extremes in Numerically Generated Second-Order Random Waves on Deep Water. *Proc. of the 8th International Offshore and Polar Engineering Conference* (pp. 103-110). Montréal, Canada: ISOPE.

Stansberg, C. T. (2003). Second-Order Effects in Random. *Proc., 13th ISOPE Conference* (pp. 137-144). Honolulu, Hawaii, USA: ISOPE.

Voie, P. E. (2009). An Investigation of the Standard Approach for Calculation of Hydrodynamic Loads on Slender Structures. Trondheim: NTNU: Master Thesis.

Voie, P. E. (2008). *Investigating the Adequacy of the Standard Procedure for Calculating Loads on Slender Structures.* Trondheim: NTNU: Project Thesis:.

Wienke, J., & Oumeraci, H. (2004). Breaking Wave Impact Force on a Vertical and Inclined Slender Pile - Theoretical and Large-Scale Model Investigations. *Coastal Engineering Journal*, 435-462.

Wienke, J., Sparboom, U., & Oumeraci, H. (2004). Theoretical Formulae for Wave Slamming Loads on Slender Circular Cylinders and Application for Support Structures of Wind Turbines. *ICCE 2004.* Further details not known.

Wigaard, J. (2008). *Dynamic Analysis of Kvitebjørn*. Memo, Oct 2008 (As cited in Økland (2009)).

Wikipedia - Breaking Wave. (n.d.). Retrieved from Wikipedia: http://en.wikipedia.org/wiki/Breaking_wave

Winterstein, S. R., & Sweetman, B. (1999). Second-order random ocean waves: *Prediction of temporal and spatial variation from fixed and moving references.* Department of Civil Engineering, Stanford University.

Appendix

A.1 Thesis Problem Description

M.Sc. thesis 2009

for

Stud.techn. Dilly S. Soemantri

Comparison of numerically predicted response and measured response for jacket structures

(Sammenligning av målt og beregnet respons i en fagverksplattform)

A jacket structure, Kvitebjørn, installed in 190m of water is to be considered. A figure of the platform is included in Fig. 1. The natural period of the platform is so large that a considerable dynamic amplification is expected. This together with the non-linear drag loading make it necessary to base the design load calculations on time domain simulations. There is limited experience regarding time domain simulations of jackets heavily exposed to dynamics. It is therefore of interest to compare various formulations of the time domain simulations with available measurements.

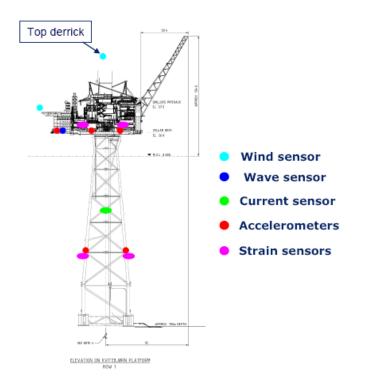


Fig. A.1 Kvitebjørn jacket and the locations of the various types of measurements.

For Kvitebjørn, platform response has been measured from installation in 2003 and until summer 2007. Accelerations at various locations as well as strain of several structural members are recorded. Time histories for the surface elevation are obtained using a down-looking radar device. Thus for a number of short term events, simultaneous measurements of the wave process and corresponding structural response are available.

When designing a platform at the Norwegian Continental Shelf, several limit states have to be considered: Serviceability Limit State (SLS), Fatigue Limit State (FLS), Ultimate Load Limit State (ULS) and Accidental Limit State (ALS). In the thesis one shall focus on a comparison of simulated platform response using measured wave train with simultaneously measured response. However, summarizing the work, consequences of findings in the thesis regarding ULS shall be discussed.

For full scale experiments like this, the input conditions of interest regarding load predictions are merely roughly known, e.g. for the Kvitebjørn case current speed is not known, degree of short crestedness of the waves is not known, etc.. Accordingly, we can not expect simulated and measured time histories exactly, but the general impression based on the results obtained by Marintek during their verification work is that in most cases a reasonable agreement is achieved.

However, for some few cases a significant under prediction is obtained for the simulations when using measured wave as input. These events are also among the most severe response events that have been measured. So far the reason for this discrepancy between measured and simulated response is not resolved. An aim of this work is to identify and review possible reasons for the observed difference.

The time domain simulation of platform behaviour for a given wave history is to be done using the computer program Nirwana. This will partly be done by the standard version of Nirwane, but some of the work is to be carried out the Nirwana version prepared in Voie (2009).

The work should be carried out in steps as follows:

- As an extended introduction various formulations of time domain simulations shall be discussed. It shall clearly be presented which approaches that will be adopted in the thesis. Effects of different assumptions shall as far as possible be indicated for the platform. For this part of the work, the input wave is simulated from a wave spectrum.
- 2. As an introduction to the episodes where a considerable underprediction of the measured response is indicated by previous studies, one shall discuss the results of previous investigations. A time domain comparison shall be done as well as a comparison of distribution of maxima. One shall look at total response, quasistatic response and resonant response by introducing adequate filters. One shall in particular investigate the simulated response in view of the simultaneous wave events. Focus is to be given to the storm still water level.
- 3. The standard Morrison equation shall briefly be discussed. In the Norsok Standard, N-003, a well defined recipe is found regarding the coefficients. This is primarily suggested for structures behaving quasi-statically. Will the same coefficient be adequate when considerable dynamics are present? Will the same coefficients be of adequate if second order wave kinematics is adopted.
- 4. A fact is that the wave elevation is measured about 60m from the centre of the jacket. It shall be demonstrated how one can calculate the corresponding surface elevation in platform centre. The shift of the time history shall be done both using a Gaussian stochastic process for the measured process as well as assuming the measured process to be a second order process.
- 5. Identify a number of 20-minute storm episodes for which both the history and the simultaneous response histories are available. These will be the reference response histories that the various time domain simulations will be compared against. The selection can be based on the work done by Marintek.
- 6. A first approach is to assume sea surface elevation to be Gaussian. Assume that kinematics can be calculated using Wheeler stretching. Comparison is to be made against measured response.
- 7. Next approach is to assume the sea surface can be modelled as a second order process. One shall then use to kinematics models: i) Wheeler stretching, ii) Second order kinematics. The kinematics shall be compared in connection with interesting wave events. Predicted response shall be compared with measured response.
- 8. It shall be considered if breaking waves can be of concern regarding response of jacket structures. How this is to be done is to be discussed with supervisors. A possibility is to identify possible breaking wave events and establish an additional

load to be introduced to the computer program.

9. Finally, the work is to be summarized. Findings shall be clearly pointed out. Recommendations for future work should also be included.

The work may show to be more extensive than anticipated. Some topics may therefore be left out after discussion with the supervisor without any negative influence on the grading.

The candidate should in his report give a personal contribution to the solution of the problem formulated in this text. All assumptions and conclusions must be supported by mathematical models and/or references to physical effects in a logical manner. The candidate should apply all available sources to find relevant literature and information on the actual problem.

The report should be well organised and give a clear presentation of the work and all conclusions. It is important that the text is well written and that tables and figures are used to support the verbal presentation. The report should be complete, but still as short as possible.

The final report must contain this text, an acknowledgement, summary, main body, conclusions, suggestions for further work, symbol list, references and appendices. All figures, tables and equations must be identified by numbers. References should be given by author and year in the text, and presented alphabetically in the reference list. The report must be submitted in two copies unless otherwise has been agreed with the supervisor.

The supervisor may require that the candidate should give a written plan that describes the progress of the work after having received this text. The plan may contain a table of content for the report and also assumed use of computer resources.

From the report it should be possible to identify the work carried out by the candidate and what has been found in the available literature. It is important to give references to the original source for theories and experimental results.

The report must be signed by the candidate, include this text, appear as a paperback, and - if needed - have a separate enclosure (binder, diskette or CD-ROM) with additional material.

The work will be carried out in cooperation with Statoil.

Supervisor:	Prof. Il Sverre Haver, Senior Spesialist, Statoil.
Co-supervisor:	Dr. Ing. Ole David Økland, Research Manager, Marintek.
Co-supervisor:	Dr. Thomas B-Johannessen, Chief Engineer, Aker Solutions

A.2 Matlab Code – Impact Wienke & Oumeraci Calculation

```
(1)
      close all;
      clear all;
      %% Impact Load Calculation (Wienke, Oumeraci (2005))
      % References:
      % - Wienke, J., Sparboom, U., Oumeraci, H. 2004. Theoretical formulae
          for wave slamming loads on slender circular cylinders and application
          for support structures of wind turbines
      0
      % - Wienke, J., Oumeraci, H. 2004. Breaking wave impact force on a vertical
(10)
      % and inclined slender pile - theoretical and large-scale model
          investigations
      % - Myrhaug, D., Kjeldsen, S. 1986. Steepness and asymmetry of extreme
         waves and the highest waves in deep water
      8
      D = 2.0:
                       %[m]
                              diameter of cylinder
                              radius of cylinder
      R = 0.5 * D;
                      %[m]
      h = 190;
                      %[m]
                              water depth
                      %[ms-2] gravity acceleration
      g = 9.81;
(20)
      rho = 1025;
                      %[kg/m3]
                                  sea water density
      %% Sea state 200401011200
      gamma = 6.18;
                              %[deg] cylinder inclination angle relative to vertical axis
      Twav = 675 - 661.5;
                              %[sec] wave period 200401011200
      H = 6.28 + 5.903;
                              %[m]
                                       wave height 200401011200
                              %[deg] wave angle 200401011200
      wave_angle = 65;
                              %[sec] time of top crest 200401011200
      t \, top = 672.5;
      t = 672.5 - 500;
      b1b2 = 23.877;
                               %[m]
                                       leg B1 - B2 distance
(30)
      b1a1 = 6.398;
                               %[m]
                                       leg B1 - A1 distance
      crest = 6.28;
      %% Sea state 200401011400
                               %[deg] 200401011400
      %gamma = 5,69:
                                %[sec] wave period 200401011400
      %Twav = 178.1-165.8;
      %H = 7.966+6.277;
                                 %[m]
                                         wave height 200401011400
      %wave_angle = 75;
                                %[deg] wave angle 200401011400
                                %[sec] time of top crest 200401011400
%[m] leg B1 - B2 distance
%[m] leg B1 - A1 distance
      t = 175.4;
      b1b2 = 22.4039:
(40)
      b1a1 = 10.4471;
                                %[m]
      %crest = 7.966;
      %% Use Deep Water Theory
      C = q*Twav/2/pi*1.2;
                                 %[m/s] 1.2 x wave celerity (DNV)
      miu = 0.90;
                                 Ŷ
                                         horizontal assymmetry factor (Myrhaug, Kjeldsen,
      1986)
                                  %[m]
      %eta_b = H*miu;
                                          breaking wave crest
      eta_b = crest;
(50)
      lambda = 0.5;
                                 °
                                         curling factor (plunging breakers)
      yy = \cos(gamma*pi/180);
      sinw = sin(wave_angle*pi/180);
      cosw = cos(wave_angle*pi/180);
      t = \frac{13}{32*(R/C)};
                                   %[sec] impact duration
      t_lim = 1/8*R/C;
                                   %[sec] time limit 1 for impact profile
%[sec] time increment on load
      %t_incr = t_impact/200;
      t incr = 0.0009637;
(60)
      him = eta_b*lambda;
                                   %[m]
                                         height of impact area
      count = 1;
      f(count) = rho*R*C*C*yy*(2*pi*yy); %[N] impact load at t = 0 sec
      waktu = 1000*(0:t incr:t impact+t incr);%[ms] time axis for plot
      for t = t_incr:t_incr:t_impact
          count = count+1;
          if t <= t lim</pre>
               f(count) = rho*R*C*C*yy*(2*pi*yy -
(70)
                   2*sqrt(yy*C*t/R)*atanh(sqrt(1-0.25*C*t/R/yy)));
           else
               t_aksen = t-R/32/C;
               f(count) = rho*R*C*C*yy*(pi*sqrt(1/6*yy*1/(C*t_aksen/R))-...
                   ((8/3*yy*C*t_aksen/R)^0.25)*...
```



```
atanh(sqrt(1-C*t aksen/R*sqrt(6*C*t aksen/R/yy))));
           end
       end
       f(count+1) = 0;
(80)
       F = f * him;
       display('F nol =')
       F(1)
       skala = 0:t_incr:1050;
                                            %for 200401011200
       %skala = 0:t_incr:550;
                                              %for 200401011400
       %% Force on B1
       Force_B1 = zeros(length(skala),1);
(90)
       lokasi_B1 = round(t_top/t_incr)+1;
       for j = 1:length(waktu)
           Force B1(lokasi B1) = F(j);
           lokasi_B1 = lokasi_B1 + 1;
       end
       Fx_B1 = Force_B1*cosw;
       Fy_B1 = Force_B1*sinw;
(100)
      Fz B1 = 0*Force B1;
       Mx_B1 = 0*Force_B1;
       My_B1 = 0*Force_B1;
       Mz_B1 = 0*Force_B1;
       %% Force on B2
       Force B2 = zeros(length(skala),1);
       lokasi_B2 = round((t_top+b1b2/C)/t_incr)+1;
       for j = 1:length(waktu)
(110)
           Force B2(lokasi B2) = F(j);
           lokasi_B2 = lokasi_B2 + 1;
       end
       Fx_B2 = Force_B2*cosw;
       Fy_B2 = Force_B2*sinw;
       Fz B2 = 0*Force B2;
       Mx B2 = 0*Force B2;
       My_B2 = 0*Force B2;
       Mz B2 = 0*Force B2;
(120)
       %% Force on A1
       Force_A1 = zeros(length(skala),1);
       lokasi_A1 = round((t_top+b1a1/C)/t_incr)+1;
       for j = 1:length(waktu)
           Force_A1(lokasi_A1) = F(j);
           lokasi_A1 = lokasi_A1 + 1;
       end
(130) Fx A1 = Force A1*cosw;
       Fy A1 = Force A1*sinw;
       Fz A1 = 0 * Force A1;
       Mx_A1 = 0*Force_A1;
       My_A1 = 0*Force_A1;
       Mz A1 = 0*Force A1;
       %% Force on Riser 1, 2, 3, 4
       %Force_R1234 = zeros(length(skala),1);
       %lokasi_R1234 = round((t_top+b1a1/C)/t_incr)+1;
(140)
       %for j = 1:length(waktu)
            Force_R1234(lokasi_R1234) = F(j);
       %
       ê
            lokasi_R1234 = lokasi_R1234 + 1;
       %end
       %Fx_R1234 = 0.75*1.22/2*Force_R1234*cosw;
       %Fy_R1234 = 0.75*1.22/2*Force_R1234*sinw;
       %Fz_R1234 = 0*Force_R1234;
       %Mx_R1234 = 0*Force_R1234;
%My_R1234 = 0*Force_R1234;
(150)
       %Mz_R1234 = 0*Force_R1234;
```

```
8
         %% Force on Riser 5
         %Force R5 = zeros(length(skala),1);
         %lokasi_R5 = round((t_top+b1a1/C)/t_incr)+1;
         %for j = 1:length(waktu)
         %
              Force_R5(lokasi_R5) = F(j);
         ê
               lokasi R5 = lokasi R5 + 1;
         %end
(160)
         8
         %Fx_R5 = 0.8*0.72/2*Force_R5*cosw;
         %Fy_R5 = 0.8*0.72/2*Force_R5*sinw;
         %Fz R5 = 0*Force R5;
         %Mx R5 = 0*Force R5;
         %My_R5 = 0*Force_R5;
%Mz_R5 = 0*Force_R5;
         %% Force on Riser 6 - 13
         %Force R613 = zeros(length(skala),1);
(170)
         %lokasi R613 = round((t top+bla1/C)/t incr)+1;
         %for j = 1:length(waktu)
         Ŷ
              Force R613(lokasi R613) = F(j);
               lokasi R613 = lokasi R613 + 1;
         8
         %end
         %Fx R613 = 0.75*0.76/2*Force R613*cosw;
        %Fy_R613 = 0.75*0.76/2*Force_R613*sinw;
%Fz_R613 = 0*Force_R613;
(180)
         %Mx_R613 = 0*Force_R613;
         %My R613 = 0*Force R613;
         %Mz R613 = 0*Force R613;
         ê
         %% Force on Conductor
         %Force con = zeros(length(skala),1);
         %lokasi con = round((t top+b1a1/C)/t incr)+1;
         %for j = 1:length(waktu)
(190)
               Force_con(lokasi_con) = F(j);
         %
         °
               lokasi_con = lokasi_con + 1;
         %end
         %Fx con = 0.6*1.65/2*Force con*cosw;
         %Fy con = 0.6*1.65/2*Force con*sinw;
         %Fz con = 0*Force con;
         %Mx_con = 0*Force_con;
         %My con = 0*Force con;
         %Mz con = 0*Force con;
(200)
         %% Graphs
         figure(1)
        plot(waktu,F,'b','LineWidth',2);
         grid on;
         title('Impact Profile','fontweight','bold');
         xlabel('Impact Time [msec]');
        ylabel('Force [N]');
(210)
        figure(2)
         plot(skala,Force_B2,'LineWidth',2);hold on;
        plot(skala,Force B1,'LineWidth',2);hold on;
         plot(skala,Force_A1,'LineWidth',2);
         axis([672.49 673.49 0 1600000]);
                                                         %for 200401011200
         %axis([175.39 176.6 0 1600000]);
                                                      %for 200401011400
         grid on;
         title('Impact Force Time Series', 'fontweight', 'bold');
        xlabel('Time [sec]');
ylabel('Force [N]');
(220)
         %y = [transpose(skala) Fx_B2 Fy_B2 Fz_B2 Mx_B2 My_B2 Mz_B2...
               Fx_B1 Fy_B1 Fz_B1 Mx_B1 My_B1 Mz_B1...
         °
               Fx_A1 Fy_A1 Fz_A1 Mx_A1 My_A1 Mz_A1];
         2
         <del>%</del>
                Fx_R1234 Fy_R1234 Fz_R1234 Mx_R1234 My_R1234 Mz_R1234... %R1

      Fx
      R1234
      Fy
      R1234
      Fz
      R1234
      My
      R1234
      Mz
      R1234...
      %R2

      Fx
      R1234
      Fy
      R1234
      Fz
      R1234
      My
      R1234
      Mz
      R1234...
      %R2

      Fx
      R1234
      Fy
      R1234
      Fz
      R1234
      My
      R1234
      Mz
      R1234...
      %R3

      Fx
      R1234
      Fy
      R1234
      Fz
      R1234
      My
      R1234
      Mz
      R1234...
      %R4

         %
         °
         °
         ê
               Fx R5 Fy R5 Fz R5 Mx R5 My R5 Mz R5...
                                                                                          2P5
```


	010	Fx_R613 Fy_R613 Fz_R613 Mx_R613 My_R613 Mz_R613
(230)	00	Fx_R613 Fy_R613 Fz_R613 Mx_R613 My_R613 Mz_R613
	010	Fx_R613 Fy_R613 Fz_R613 Mx_R613 My_R613 Mz_R613
	00	Fx_R613 Fy_R613 Fz_R613 Mx_R613 My_R613 Mz_R613
	00	Fx_R613 Fy_R613 Fz_R613 Mx_R613 My_R613 Mz_R613
	00	Fx_R613 Fy_R613 Fz_R613 Mx_R613 My_R613 Mz_R613
	00	Fx_R613 Fy_R613 Fz_R613 Mx_R613 My_R613 Mz_R613
	00	Fx_R613 Fy_R613 Fz_R613 Mx_R613 My_R613 Mz_R613
	010	Fx_con Fy_con Fz_con Mx_con My_con Mz_con];

%dlmwrite('C:\Users\soemantr\Documents\Trymatlab\ok\imp_200401011400bf525_10.txt',... (240) % y, '-append', 'precision', '%15.8f', 'delimiter',' ',... % 'newline','pc','roffset', 1);

%R6

%R7
%R8
%R9
%R10
%R11
%R12
%R13
%cond

%fid = fopen('C:\Users\soemantr\Documents\Try
matlab\New\impact_200401011400_500.txt', 'w');
%fprintf(fid,'%14.8f %15.8f %1

A.3 Matlab Code – Impact Campbell & Weynberg Calculation

```
(1)
      clear all;
      close all;
      %% Impact Load Calculation
       % Reference:
         - Campbell, Weynberg. 1980. Measurement of Parameters Affecting Slamming.
       ÷
         - Nestegård, Kalleklev, Hagatun, Wu, Haver, Lehn. 2004. Resonant
       °
           Vibrations of Riser Guide Tubes due to Wave Impact.
       °
      D = 2;
                       %[m] Leg diameter
(10)
      s = 0:0.01:D;
                      %[m] cylinder submergence
      rat = s/D;
      R = 0.5 * D;
                       %[m]
                               radius of cylinder
      h = 190;
                       %[m]
                               water depth
                       %[ms-2] gravity acceleration
      g = 9.81;
      rho = 1025;
                       %[kg/m3]
                                   sea water density
      %% Sea state 200401011200
(20)
                               %[deq] cylinder inclination angle relative to vertical
      qamma = 6.18;
      axis
      Twav = 675 - 661.5;
                               %[sec] wave period 200401011200
      Timpact = 2.3437;
                               %[sec]
                                       impact duration
      H = 6.28 + 5.903;
                                       wave height 200401011200
                               %[m]
      wave_angle = 65;
                               %[deg] wave angle 200401011200
       t_{top} = 672.5;
                               %[sec] time of top crest 200401011200
       t_{top} = 672.5-500;
      b1b2 = 23.877;
                               %[m]
                                        leg B1 - B2 distance
                                       leg B1 - A1 distance
      b1a1 = 6.398;
                               %[m]
(30)
      crest = 6.28;
       %% Sea state 200401011400
       %gamma = 5.69;
                                 %[deq]
                                         200401011400
                                          wave period 200401011400
       Twav = 178.1 - 165.8
                                 %[sec]
       %Timpact = 1.4323;
                                 %[sec]
                                         impact duration
       %H = 7.966+6.277;
                                 %[m]
                                          wave height 200401011400
       %wave_angle = 75;
                                 %[deg]
                                         wave angle 200401011400
                                         time of top crest 200401011400
leg B1 - B2 distance
leg B1 - A1 distance
       %t_top = 175.4;
                                 %[sec]
       b1b2 = 22.4039:
                                 %[m]
(40)
      b1a1 = 10.4471;
                                 %[m]
       %crest = 7.966;
      %% Use Deep Water Theory
      C = g*Twav/2/pi*1.2;
                                 %[m/s] 1.2 x wave celerity (DNV)
      dt = D/10/C;
                                  %[sec]
                                         time increment
      skala = 0:dt:dt*2^{17};
                                         time scaling on x-axis
                                 %[sec]
                                 %[m]
                                          impact crest height
      eta_b = crest;
      lambda = 0.5;
                                  °
                                          curling factor (plunging breakers)
(50)
      yy = \cos(gamma*pi/180);
      sinw = sin(wave_angle*pi/180);
      cosw = cos(wave_angle*pi/180);
       for st = 1: length(s)
          cs(st) = 5.15*((D/(D+19*s(st)))+(0.107*s(st)/D));
      end
      time = 0;
(60)
       for t = 1:round(Timpact/dt)+1
           if (t <= round(D/dt/C+1))
               Cs (t) = 5.15*((D/(D+19*C*time))+(0.107*C*time/D));
               time = time + dt;
          else
               Cs (t) = 5.15 * (1/20 + 0.107);
          end
      end
(70)
      %% Force at Leg B1
      Force_B1 = zeros(length(skala),1);
      lokasi_B1 = round(t_top/dt)+1;
      for j = 1:length(Cs)
```

```
Force B1(lokasi B1) = eta b*lambda/yy*Cs(j)*0.5*rho*D*C*C;
           lokasi_B1 = lokasi_B1 + 1;
       end
       Fx B1 = Force B1*cosw;
       Fy_B1 = Force_B1*sinw;
(80)
       Fz_B1 = 0*Force_B1;
       Mx B1 = 0*Force B1;
       My B1 = 0*Force B1;
       Mz_B1 = 0*Force B1;
       %% Force at Leg B2
       Force B2 = zeros(length(skala),1);
       lokasi_B2 = round((t_top+b1b2/C)/dt)+1;
(90)
       for j = 1:length(Cs)
           Force_B2(lokasi_B2) = eta_b*lambda/yy*Cs(j)*0.5*rho*D*C*C;
           lokasi_B2 = lokasi_B2 + 1;
       end
       Fx_B2 = Force_B2*cosw;
       Fy B2 = Force B2*sinw;
       Fz B2 = 0*Force B2;
       Mx B2 = 0 * Force B2;
       My_B2 = 0*Force_B2;
(100)
      Mz B2 = 0*Force B2;
       %% Force at Leg B3
       Force_A1 = zeros(length(skala),1);
       lokasi_A1 = round((t_top+b1a1/C)/dt)+1;
       for j = 1: length(Cs)
           Force_A1(lokasi_A1) = eta_b*lambda/yy*Cs(j)*0.5*rho*D*C*C;
           lokasi_A1 = lokasi_A1 + 1;
       end
(110)
       Fx_A1 = Force_A1*cosw;
       Fy_A1 = Force_A1*sinw;
       Fz_A1 = 0*Force_A1;
       Mx A1 = 0*Force A1;
       My_A1 = 0*Force_A1;
       Mz A1 = 0*Force A1;
       %% Plot figures
(120) figure(1)
       plot(rat,cs)
       %title('Drag/slamming Coefficient Change');
       xlabel('s/D');
       ylabel('C_s');
       grid on;
       figure(2)
       plot(skala,Force_B1,'k',skala,Force_A1,'b',skala,Force_B2,'r')
       grid on;
(130)
       axis([671 677 0 12*10^6]);
                                       % 200401011200
       %axis([174 179 0 12*10^6]);
                                        % 200401011400
       title('Impact Force Time Series - 200401011200', 'fontweight', 'bold');
       xlabel('Time [sec]');
       ylabel('Force [N]');
       legend('1^{st} hit - B1', '2^{nd} hit - A1', '3^{rd} hit - B2');
       %% Write File
       y = [transpose(skala) Fx B2 Fy B2 Fz B2 Mx B2 My B2 Mz B2...
           Fx B1 Fy B1 Fz B1 Mx B1 My B1 Mz B1..
(140)
           Fx_A1 Fy_A1 Fz_A1 Mx_A1 My_A1 Mz_A1];
       %dlmwrite('C:\Users\soemantr\Documents\Try
       matlab\ok\imp_200401011200af500_10.txt',...
           y, '-append', 'precision', '%15.8f', 'delimiter',' ',...
'newline','pc','roffset', 1);
       2
       2
```

A.4 Nirwana Input Code

L)	HEAD 2.1 Kvitebjor Author: D '				nesis						
	CONTROL										
	CONTROL ' NNOD CFLOA DT	NEL LOA	NAS	NMAT	MCOD	NDCOD	NDYN	IPLSTR	NPDEL	LSTORE	IBLFAC
0)	218 imp 20040	426 101120	4 0 ha 0.0	15 07907256	2 577650619	1	2	0	0	3	4
	' NNSPR 0	IDAMP 1	- NPUR 0	RE NUMSE 1	EA IRUN 2 -190						
	, ,										
	ACTI	IZNI	v	v	7	Ctatur	andra				
	' INOD 1	KN 0	X -25.000	Y -25.000	Z -190.000		codes (0 0			
	2	0			-190.000		0 0 0 0				
	3 4	0	25.000		-190.000 -190.000		0 0 0 0				
	5				-188.000		0 0 0 0				
	6				-188.000		0 0 0 0				
	7 8	0 0			-188.000 -188.000						
	9	0	25.000	-17.000	-188.000		0 0 0 0				
	10 11	0 0	25.000 25.000		-188.000 -188.000		0 0 0 0				
	12	0	17.000	25.000	-188.000		0 0 0 0				
	13				-188.000		0 0 0 0				
	14 15				-188.000 -188.000		0 0 0 0				
	16	0	-25.000	-17.000	-188.000	0	0 0 0	0 0			
	17 18	0			-179.000 -179.000		0 0 0 0				
	18	0			-179.000		0 0 0 0				
	20	0			-179.000		0 0 0 0				
	21 22	0 0	25.000 0.000		-179.000 -179.000		0 0 0 0				
	23	0	-25.000	25.000	-179.000	0	0 0 0 0	0 0			
	24 25	0	-25.000		-179.000 -179.000		0 0 0 0				
	26	0	0.000		-179.000		0 2 0 0				
	27	0	0.000		-179.000		0 0 0 0				
	28 29	0 0	0.000 25.000		-163.000 -163.000		0 0 0 0				
	30	0	0.000	25.000	-163.000	0	0 0 0 0	0 0			
	31 32		-25.000		-163.000 -147.000		0 0 0 0				
	33				-147.000		0 0 0 0				
	34	0			-147.000		0 0 0 0				
	35 36	0 0	25.000 25.000		-147.000 -147.000		0 0 0 0				
	37	0	0.000	25.000	-147.000	0	0 0 0 0	0 0			
	38 39		-25.000		-147.000		0 0 0 0				
	40	0		-17.000	-147.000		0 0 0 0				
	41	0	0.000		-147.000		0 0 0 0				
	42 43	0 0	0.000 0.000		-147.000 -124.500		0 0 0 0				
	44	0	23.440	0.000	-124.500	0	0 0 0	0 0			
	45 46	0	0.000		-124.500 -124.500		0 0 0 0				
	47				-108.000		0 0 0 0				
	48	0			-108.000		0 0 0 0				
	49 50	0	22.070 -22.070		-108.000 -108.000		0 0 0 0				
	51	0	0.000	0.000	-108.000	0	0 0 0 0	0 0			
	52 53	0 0	0.000 20.550	-20.550	-89.830 -89.830		0 0 0 0				
	54	0	0.000	20.550	-89.830		0 0 0 0				
	55		-20.550	0.000	-89.830		0 0 0 0				
	56 57	0		-19.220 -19.220	-74.000 -74.000		0 0 0 0				
	58	0	19.220	19.220	-74.000	0	0 0 0 0	0 0			

(80)	59 60 61 62 63 64 65 66 67 68 69	$\begin{array}{ccccccc} 0 & -19.220 & 19.220 \\ 0 & 0.000 & 0.000 \\ 0 & 0.000 & -17.930 \\ 0 & 17.930 & 0.000 \\ 0 & 0.000 & 17.930 \\ 0 & -17.930 & 0.000 \\ 0 & -16.790 & -16.790 \\ 0 & 16.790 & -16.790 \\ 0 & 16.790 & 16.790 \\ 0 & -16.790 & 16.790 \\ 0 & -10.000 & -10.000 \end{array}$	-74.000 -74.000 -58.520 -58.520 -58.520 -45.000 -45.000 -45.000 -45.000 -45.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(90)	70 71 72 73 74 75 76 77 78	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-45.000 -45.000 -45.000 -45.000 -28.790 -28.790 -28.790 -28.790 -28.790	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(100)	79 80 81 82 83 84 85 86 87 88	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -15.000 \\ -15.000 \\ -15.000 \\ -15.000 \\ -15.000 \\ -15.000 \\ -15.000 \\ -15.000 \\ -2.670 \\ -2.670 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(110)	89 90 91 92 93 94 95 96 97 98	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.670 -2.670 -2.670 -2.670 -2.670 -2.670 8.000 8.000 8.000 8.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(120)	99 100 101 102 103 104 105 106 107	0 12.360 12.360 0 0.000 12.360 0 -12.360 12.360 0 -12.360 0.000 0 -10.000 -10.000 0 -10.000 10.000 0 4.000 -4.000 0 4.000 4.000 0 0.000 0.000 0 -14.000 -11.250	8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(130)	108 109 110 111 112 113 114 115 116 117	$\begin{array}{c} 0 & -14.000 & -11.250 \\ 0 & -10.000 & -11.250 \\ 0 & 1.000 & -11.250 \\ 0 & 16.000 & -11.250 \\ 0 & 16.000 & 11.250 \\ 0 & -10.000 & 11.250 \\ 0 & -14.000 & 11.250 \\ 0 & -10.000 & -10.000 \\ 0 & -10.000 & 10.000 \\ \end{array}$	21.200 21.200 21.200 21.200 21.200 21.200 21.200 21.200 21.200 21.200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(140)	118 119 120 121 122 123 124 125 126	0 1.000 -10.000 0 1.000 0.000 0 -11.300 0.550 0 -11.300 2.750 0 -11.300 4.950 0 -11.300 7.150 0 -11.300 9.350 0 1.000 -7.000	21.200 21.200 21.200 21.200 21.200 21.200 21.200 21.200 21.200 21.200	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(150)	127 128 129 130 131 132 133 134 135	0 1.000 -5.000 0 1.000 -3.000 0 1.000 -1.000 0 1.000 3.000 0 1.000 5.000 0 1.000 7.000 0 -14.000 -11.250 0 1.000 -11.250	21.200 21.200 21.200 21.200 21.200 21.200 21.200 24.300 24.300	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

	136	0	16.000	-11.250	24.300	0 0 0 0 0 0
	137		14.000	11.250	24.300	0 0 0 0 0 0
	138	0	1.000	11.250	24.300	0 0 0 0 0 0
	139		16.000	11.150	24.300	0 0 0 0 0 0
	140		-3.000 11.300	0.500	44.500 -60.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	141 142		11.300	0.550 2.750	-60.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	143		11.300	4.950	-60.000	0 0 0 0 0 0
(160)	144	0 -	11.300	7.150	-60.000	0 0 0 0 0 0
	145		11.300	9.350	-60.000	0 0 0 0 0 0
	146		11.300	0.550	-45.000	0 0 0 0 0 0
	147 148		11.300 11.300	2.750 4.950	-45.000 -45.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	149		11.300	7.150	-45.000	0 0 0 0 0 0
	150	0 -	11.300	9.350	-45.000	0 0 0 0 0 0
	151	0	0.000	-7.000	-45.000	0 0 0 0 0 0
	152	0	0.000	-5.000	-45.000	0 0 0 0 0 0
(170)	153 154	0 0	0.000	-3.000 -1.000	-45.000 -45.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(1)0)	155	0	0.000	1.000	-45.000	0 0 0 0 0 0
	156	0	0.000	3.000	-45.000	0 0 0 0 0 0
	157	0	0.000	5.000	-45.000	0 0 0 0 0 0
	158	0	0.000	7.000	-45.000	0 0 0 0 0 0
	159 160	0 0 -	4.300	-1.500 0.550	-45.000 -28.790	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	161		11.300	2.750	-28.790	0 0 0 0 0 0
	162		11.300	4.950	-28.790	0 0 0 0 0 0
	163		11.300	7.150	-28.790	0 0 0 0 0 0
(180)	164		11.300	9.350	-28.790	0 0 0 0 0 0
	165 166	0 0	0.000	-7.000 -5.000	-28.790 -28.790	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	167	0	0.000	-3.000	-28.790	0 0 0 0 0 0
	168	0	0.000	-1.000	-28.790	0 0 0 0 0 0
	169	0	0.000	1.000	-28.790	0 0 0 0 0 0
	170	0	0.000	3.000	-28.790	0 0 0 0 0 0
	171 172	0 0	0.000	5.000 7.000	-28.790 -28.790	0 0 0 0 0 0 0 0 0 0 0 0
	172	0	4.300	-1.500	-28.790	0 0 0 0 0 0
(190)	174		11.300	0.550	-15.000	0 0 0 0 0 0
	175	0 -	11.300	2.750	-15.000	0 0 0 0 0 0
	176		11.300	4.950	-15.000	0 0 0 0 0 0
	177 178		11.300 11.300	7.150 9.350	-15.000 -15.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	179	0 -	0.000	-7.000	-15.000	0 0 0 0 0 0
	180	0	0.000	-5.000	-15.000	0 0 0 0 0 0
	181	0	0.000	-3.000	-15.000	0 0 0 0 0 0
	182	0	0.000	-1.000	-15.000	0 0 0 0 0 0
(200)	183 184	0 0	0.000	1.000 3.000	-15.000 -15.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(200)	185	0	0.000	5.000	-15.000	0 0 0 0 0 0
	186	0	0.000	7.000	-15.000	0 0 0 0 0 0
	187	0	4.300	-1.500	-15.000	0 0 0 0 0 0
	188		11.300	0.550	-2.670	0 0 0 0 0 0
	189 190		11.300 11.300	2.750 4.950	-2.670 -2.670	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	191		11.300	7.150	-2.670	0 0 0 0 0 0
	192		11.300	9.350	-2.670	0 0 0 0 0 0
(01.5)	193	0	0.000	-7.000	-2.670	0 0 0 0 0 0
(210)	194	0	0.000	-5.000	-2.670	0 0 0 0 0 0
	195 196	0 0	0.000	-3.000 -1.000	-2.670 -2.670	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	197	0	0.000	1.000	-2.670	0 0 0 0 0 0
	198	0	0.000	3.000	-2.670	0 0 0 0 0 0
	199	0	0.000	5.000	-2.670	0 0 0 0 0 0
	200	0	0.000	7.000	-2.670	0 0 0 0 0 0
	201 202	0 0 -	4.300 11.300	-1.500 0.550	-2.670 8.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	202		11.300	2.750	8.000	0 0 0 0 0 0
(220)	204		11.300	4.950	8.000	0 0 0 0 0 0
	205	0 -	11.300	7.150	8.000	0 0 0 0 0 0
	206		11.300	9.350	8.000	0 0 0 0 0 0
	207	0	0.000	-7.000	8.000	
	208 209	0 0	0.000	-5.000 -3.000	8.000 8.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	210	0	0.000	-1.000	8.000	0 0 0 0 0 0
	211	0	0.000	1.000	8.000	0 0 0 0 0 0
	212	0	0.000	3.000	8.000	0 0 0 0 0 0

(230)	213 214 215 216 217 218		0.000 0.000 4.300 -12.6341 -12.6341 12.6341	-12.634	4.71	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0
(240)	, ELEM 1 2 3 4 5 6 7 8	INOD1 1 5 17 32 47 56 65 78	INOD2 5 17 32 47 56 65 78 87	INOD3 2 8 19 34 48 57 66 79	NLOAD 1 1 1 1 2 3 3		
(250)	9 10 11 12 13 14 15 16 17	87 95 108 2 8 19 34 48 57	217 108 134 8 19 34 48 57 66	88 97 111 3 11 21 36 49 58	4 4 -2 1 1 1 1 2		
(260)	18 19 20 21 22 23 24 25 26	66 79 88 97 111 3 11 21 36	79 88 218 111 136 11 21 36 49	67 80 89 99 112 4 14 23 38	3 3 4 -2 1 1 1		
(270)	27 28 29 30 31 32 33 34 35	49 58 67 80 89 99 112 4 14	58 67 80 99 112 139 14 23	50 59 68 81 90 101 115 1 5	1 2 3 4 4 -2 1 1		
(280)	36 37 38 39 40 41 42 43 44 45 46	23 38 50 59 68 81 90 101 115 5 6	38 50 59 68 81 90 216 115 137 6 7	17 32 47 56 65 78 87 95 108 14 13	1 1 2 3 4 4 -2 1		
(290)	47 48 49 50 51 52 53 54 55 56 57	7 8 9 10 11 12 13 14 15 16 17	8 9 10 11 12 13 14 15 16 5 18	12 5 16 15 8 7 6 11 10 9 23	1 1 1 1 1 1 1 1 1 1		
(300)	58 59 60 61 62 63 64 65 66 67	18 19 20 21 22 23 24 18 20 22	19 20 21 22 23 24 17 20 22 24	22 17 24 19 18 21 20 26 26 26			

(310)	68 69 70 71 72 73 74 75 76 77	24 18 25 26 27 32 33 34 35 36	18 25 26 27 22 33 34 35 36 37	26 17 24 24 38 37 32 39 34	1 1 1 1 1 1 1
(320)	78 79 80 81 82 83 84 85 86 87 88 88	37 38 39 33 35 37 39 33 40 41 42 47	38 39 32 35 37 39 33 40 41 42 37 51	33 36 35 41 41 41 32 32 39 39 50	1 1 1 1 1 1 1 1 1 1
(330)	90 91 92 93 94 95 96 97 98 99	51 48 51 56 60 57 60 65 69 73	49 51 50 60 58 60 59 69 73 72	50 47 47 59 56 56 68 68 68 68	1 1 1 1 1 1 1 1 1
(340)	100 101 102 103 104 105 106 107 108 109	72 66 71 73 70 69 78 82 86 85	67 71 73 70 68 70 82 86 85 85	68 65 65 65 65 81 81 81 81	1 1 1 1 1 1 1 1
(350)	110 111 112 113 114 115 116 117 118 119 120	79 84 86 83 82 95 103 107 106 97 105	84 86 83 81 83 103 107 106 99 105 107	78 78 78 78 101 101 101 95 95	1 1 1 1 1 1 1 1 1
(360)	120 121 122 123 124 125 126 127 128 129 130	103 107 104 95 96 97 98 99 100 101 102	104 101 96 97 98 99 100 101 102 95	95 95 101 100 95 102 97 96 99 98	1 1 1 1 1 1 1 1 1
(370)	131 132 133 134 135 136 137 138 139 140	108 109 110 111 112 113 114 115 109 116	109 110 111 112 113 114 115 108 116 121	115 114 113 108 111 110 109 112 108 108	1 1 1 1 1 1 1 1 1
(380)	141 142 143 144	121 122 123 124	122 123 124 125	115 115 115 115	1 1 1 1

(390)	145 146 147 148 149 150 151 152 153 154 155 156 157	125 117 110 118 126 127 128 129 119 130 131 132 133	117 114 118 126 127 128 129 139 130 131 132 133 120	115 108 108 108 108 108 108 115 115 115 115 115	1 1 1 1 1 1 1 1 1
(400)	158 159 160 161 162 163 164 165 166 166 167 168 169	120 17 6 18 7 19 9 20 10 21 12 22	113 6 18 7 19 9 20 10 21 12 22 13	115 23 13 22 12 17 16 24 15 19 7 18	1 1 1 1 1 1 1 1 1 1
(410)	170 171 172 173 174 175 176 177 178 179 180	13 23 15 24 16 17 28 32 28 19 29	23 15 24 16 17 28 34 28 19 29 36	6 21 10 20 9 23 30 38 30 17 31	1 1 1 1 1 1 1 1
(420)	181 182 183 184 185 186 187 188 189 190	34 29 21 30 36 30 23 31 38 31	29 21 30 38 30 23 31 32 31 17	32 31 19 28 34 28 21 29 36 29	1 1 1 1 1 1 1
(430)	191 192 193 194 195 196 197 198 199 200	32 43 47 43 34 44 48 44 36 45	43 48 43 34 44 49 44 36 45 50	38 45 50 45 32 46 47 46 34 43	1 1 1 1 1 1 1
(440)	201 202 203 204 205 206 207 208 209 210 211	49 45 38 46 50 46 47 52 56 52 48	45 38 46 47 46 32 52 57 52 48 52	48 43 36 44 49 44 50 54 59 54	1 1 1 1 1 1 1
(450)	211 212 213 214 215 216 217 218 219 220 221	48 53 57 53 49 54 58 54 58 54 50 55 59	53 58 53 49 54 59 54 50 55 56 55	47 55 56 55 48 52 57 52 49 53 58	1 1 1 1 1 1 1 1 1

Appendix

(460)	222	55	47	53	1
(100)	223	56	61	59	1
	224	61	66	63	1
	225 226	65 61	61 57	68 63	1 1
	227	57	62	56	1
	228	62	67	64	1
	229	66	62	65	1
	230 231	62 58	58 63	64 57	1 1
(470)	232	63	68	61	1
	233	67	63	66	1
	234 235	63 59	59 64	61 58	1 1
	236	64	65	62	1
	237	68	64	67	1
	238 239	64 65	56 74	62 68	1 1
	240	74	79	76	1
	241	78	74	81	1
(480)	242	74	66 75	76 65	1 1
	243 244	66 75	75 80	65 77	1
	245	79	75	78	1
	246	75	67	77	1
	247 248	67 76	76 81	66 74	1 1
	249	80	76	79	1
	250	76	68	74	1
(490)	251 252	68 77	77 78	67 75	1 1
(490)	253	81	77	80	1
	254	77	65	75	1
	255 256	78 91	91 97	81 93	2 2
	250	95	91	101	2
	258	91	79	93	2
	259 260	79 92	92	78 94	2 2
	260 261	92 97	99 92	94 95	2
(500)	262	92	80	94	2
	263	80	93	79	2
	264 265	93 99	101 93	91 97	2 2
	266	93	81	91	2
	267	81	94	80	2
	268 269	94 101	95 94	92 99	2 2
	270	94	78	92	2
(271	95	110	101	3
(510)	272 273	110 97	97 112	113 95	3 3
	274	99	113	97	3
	275	113	101	110	3
	276 277	115 134	95 135	112 137	3 -2
	278	134	136	138	-2
	279	136	139	134	-2
	280 281	139 138	138 137	136 135	-2 -2
(520)	281 282	138	137	135	-2 -2
	283	134	140	139	-2
	284	136	140	137	-2
	285 286	139 137	140 140	134 136	-2 -2
	287	151	152	65	-2
	288	152	153 154	65 65	-2
	289 290	153 154	154 155	65 65	-2 -2
	291	155	156	68	-2
(530)	292	156	157	68	-2
	293 294	157 69	158 151	68 68	-2 -2
	295	151	71	68	-2
	296	72	158	68	-2
	297 298	158 71	70 159	67 67	-2 -2
	200			.,	-

(540)	299 300 301 302 303 304 305 306 307 308	159 146 147 148 149 69 150 179 180 181	72 147 148 149 150 146 70 180 181 182	68 68 68 68 65 65 68 78 78 78	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
(550)	309 310 311 312 313 314 315 316 317 318	182 183 184 185 82 179 85 186 84 187	183 184 185 186 179 84 186 83 187 85	78 81 81 81 81 81 80 80 80 81	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
(560)	319 320 321 322 323 324 325 326 327 328	174 175 176 177 82 178 207 208 209 210	175 176 177 178 174 83 208 209 210 211	81 81 81 78 81 95 95 95 95	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
(570)	329 330 331 332 333 334 335 336 337	211 212 213 103 207 106 214 105 215	212 213 214 207 105 214 104 215 106	101 101 101 101 101 101 99 99 99	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2
(580)	338 339 340 341 342 343 344 345 346 347	202 203 204 205 103 206 141 146 160 174	203 204 205 206 202 104 146 160 174 188	101 101 101 95 101 68 68 81 81	-2 -2 -2 -2 -2 1 1 2
(590)	348 349 350 351 352 353 354 355 356 357	188 202 142 147 161 175 189 203 143 148	202 121 147 161 175 189 203 122 148 162	101 115 68 81 81 101 115 68 68	2 0 1 1 2 2 0 1
(600)	358 359 360 361 362 363 364 365 366 366 367	162 176 190 204 144 149 163 177 191 205	176 190 204 123 149 163 177 191 205 124	81 81 101 115 68 68 81 81 101 115	1 2 0 1 1 2 2 0
(610)	368 369 370 371 372 373 374 375	145 150 164 178 192 206 151 165	150 164 178 192 206 125 165 179	68 68 81 101 115 65 78	1 1 2 2 0 1

	376	179	193	78	2
	377	193	207	95	2
	378	207	126	108	0
	379	152	166	65	1
	380	166	180	78	1
()	381	180	194	78	2
(620)	382	194	208	95	2
	383	208	127	108	0
	384	153	167	65	1
	385	167	181	78	1
	386	181	195	78	2
	387	195	209	95	2
	388	209	128	108	0
	389	154	168	65	1
	390	168	182	78	1
	391	182	196	78	2
(630)	392	196	210	95	2
	393	210	129	108	0
	394	155	169	68	1
	395	169	183	81	1
	396	183	197	81	2
	397	197	211	101	2
	398	211	130	115	0
	399	156	170	68	1
	400	170	184	81	1
	401	184	198	81	2
(640)	402	198	212	101	2
,	403	212	131	115	0
	404	157	171	68	1
	405	171	185	81	1
	406	185	199	81	2
	407	199	213	101	2
	408	213	132	115	0
	409	158	172	68	1
	410	172	186	81	1
	411	186	200	81	2
(650)	412	200	200	101	2
(050)	412	200	133	115	0
				68	1
	414	159	173		
	415	173	187	81	1
	416	187	201	81	2
	417	201	215	101	2
	418	215	119	115	0
	419	26	41	17	1
	420	41	51	32	1
()	421	51	60	47	2
(660)	422	60	73	56	0
	423	20	41	21	0
	424	216	101	87	4
	425	217	95	88	4
	426	218	97	89	4

' ' MATE

	MA'L'E						
	' IMAT	EMOD	POISS	ROSTRU	ALFA1	ALFA2	ROINSI
	ROOUT	CAM					
(670)	1	2.100e+011	3.000e-001	7.800e+003	4.189e-002	8.488e-003	0.000e+000
	0.000e+00	00 0.000e+000					
	2	2.100e+011	3.000e-001	7.800e+003	4.189e-002	8.488e-003	0.000e+000
	1.025e+00	03 1.000e+000					
	3	2.100e+011	3.000e-001	7.800e+003	4.189e-002	8.488e-003	1.025e+003
	0.000e+00	00 1.000e+000					
	4	2.100e+011	3.000e-001	7.800e+003	4.189e-002	8.488e-003	1.025e+003
	1.025e+00	03 1.000e+000					
	5	2.100e+011	3.000e-001	9.051e+003	4.189e-002	8.488e-003	0.000e+000
	0.000e+00	00 0.000e+000					
(680)	6	2.100e+011	3.000e-001	1.124e+004	4.189e-002	8.488e-003	0.000e+000
	0.000e+00	00 0.000e+000					
	7	2.100e+011	3.000e-001	1.288e+004	4.189e-002	8.488e-003	0.000e+000
	1.025e+00	03 1.000e+000					
	8	2.100e+011	3.000e-001	1.008e+004	4.189e-002	8.488e-003	0.000e+000
	1.025e+00	03 1.000e+000					
	9	2.100e+011	3.000e-001	1.202e+004	4.189e-002	8.488e-003	0.000e+000
	1.025e+00	03 1.000e+000					
	10	2.100e+011	3.000e-001	9.600e+003	4.189e-002	8.488e-003	0.000e+000
	1.025e+00	03 1.000e+000					
(690)	11	3.600e+011	3.000e-001	7.800e+003	4.189e-002	8.488e-003	1.025e+003

	1 025010	0210		000						
	1.025e+0 12		0e+01		000e-001	0.000e+00	0 4.	189e-002	8.488e-003	0.000e+000
	0.000e+0									
	13		0e+0		000e-001	1.560e+00	54.	189e-002	8.488e-003	0.000e+000
	1.025e+0				0000 001	7 9000 00	2 4	1000 000	0 4000 000	0.0000.000
	14 1.025e+0		0e+0:)00e+		000e-001	7.800e+00	5 4.	189e-002	8.488e-003	0.000e+000
	15		0e+01		000e-001	7.800e+00	3 4.	189e-002	8.488e-003	0.000e+000
()	0.000e+0	00 0.0	000e+	000						
(700)	1									
	CROS									
	' CRTY	ITYP	KN	IMAT	DIA	TH	CON			
	TUBE	1	0	11		.000e-001	0			
	TUBE TUBE	2 3	0 0	11 4		.000e-001 .000e-002	0 0			
	TUBE	4	0	4		.000e-002	0			
	TUBE	5	0	4		.000e-002	0			
(710)	TUBE	6	0	4		.000e-002	0			
(710)	TUBE TUBE	7 8	0 0	4 4		.500e-002 .500e-002	0 0			
	TUBE	9	0	1		.500e-002	0			
	TUBE	10	0	1		.000e-002	0			
	TUBE TUBE	11 12	0 0	1 11		.500e-002 .000e-001	0 0			
	TUBE	13	0	11		.000e-001	0			
	TUBE	14	0	4		.000e-002	0			
	TUBE	15	0	4		.000e-002	0			
(720)	TUBE TUBE	16 17	0 0	4 4		.000e-002 .000e-002	0 0			
(720)	TUBE	18	0	4		.500e-002	0			
	TUBE	19	0	4	2.000 8	.500e-002	0			
	TUBE	20	0	1		.500e-002	0			
	TUBE TUBE	21 22	0 0	1 1		.000e-002 .500e-002	0 0			
	TUBE	23	0	11		.000e-001	0			
	TUBE	24	0	11		.000e-001	0			
	TUBE	25 26	0	4 4		.000e-002	0			
(730)	TUBE TUBE	26 27	0 0	4		.000e-002 .000e-002	0 0			
	TUBE	28	0	4		.000e-002	0			
	TUBE	29	0	4		.500e-002	0			
	TUBE TUBE	30 31	0 0	4 1		.500e-002 .500e-002	0 0			
	TUBE	32	0	1		.000e-002	0			
	TUBE	33	0	1		.500e-002	0			
	TUBE TUBE	34 35	0 0	11 11		.000e-001 .000e-001	0 0			
	TUBE	36	0	4		.000e-002	0			
(740)	TUBE	37	0	4		.000e-002	0			
	TUBE TUBE	38 39	0 0	4 4		.000e-002 .000e-002	0 0			
	TUBE	40	0	4		.500e-002	0			
	TUBE	41	0	4	2.000 8	.500e-002	0			
	TUBE	42	0	1		.500e-002	0			
	TUBE TUBE	43 44	0 0	1 1		.000e-002 .500e-002	0 0			
	TUBE	45	0	2		.000e-002	0			
()	TUBE	46	0	2		.000e-002	0			
(750)	TUBE TUBE	47 48	0 0	2 2		.000e-002 .000e-002	0 0			
	TUBE	49	0	2		.000e-002	0			
	TUBE	50	0	2	0.900 3	.000e-002	0			
	TUBE	51	0	2		.000e-002	0			
	TUBE TUBE	52 53	0 0	2 2		.000e-002 .000e-002	0 0			
	TUBE	54	0	2		.000e-002	0			
	TUBE	55	0	2		.000e-002	0			
(760)	TUBE TUBE	56 57	0 0	2 2		.000e-002 .000e-002	0 0			
(,,	TUBE	58	0	2		.000e-002	0			
	TUBE	59	0	2	0.900 3	.000e-002	0			
	TUBE	60 61	0	2 2		.000e-002	0			
	TUBE TUBE	61 62	0 0	2		.000e-002 .000e-002	0 0			
	TUBE	63	0	2	0.900 3	.000e-002	0			
	TUBE	64	0	2	0.900 3	.000e-002	0			

(770)	TUBE TUBE TUBE TUBE TUBE TUBE TUBE TUBE	65 66 69 70 71 72 73 74 75	0 0 0 0 0 0 0 0 0 0	10 10 10 10 10 10 10 2 2 2 2	0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 1.000 3.000e-002	0 0 0 0 0 0 0 0 0 0 0 0
(780)	TUBE TUBE TUBE TUBE TUBE TUBE TUBE TUBE	76 77 78 79 80 81 82 83 84	0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 10	1.000 3.000e-002 1.000 3.000e-002 1.000 3.000e-002 1.000 3.000e-002 1.000 3.000e-002 1.000 3.000e-002 1.000 3.000e-002 1.000 3.000e-002	0 0 0 0 0 0 0 0 0
(790)	TUBE TUBE TUBE TUBE TUBE TUBE TUBE TUBE	85 86 87 88 90 91 92 93 94		10 10 9 9 9 9 9	0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.900 4.000e-002 0.900 4.000e-002 0.900 4.000e-002 0.900 4.000e-002 0.900 3.000e-002 0.900 3.000e-002	
(800)	TUBE TUBE TUBE TUBE TUBE TUBE TUBE TUBE	95 96 97 98 99 100 101 102 103 104		9 9 8 8 8 8 8 8 8 8 8 8	0.900 3.000e-002 0.900 4.000e-002 0.900 4.000e-002 0.900 4.000e-002 0.900 4.000e-002 0.900 4.000e-002 0.900 4.000e-002 0.900 4.000e-002 0.900 4.000e-002	
(810)	TUBE TUBE TUBE TUBE TUBE TUBE TUBE TUBE	105 106 107 108 109 110 111 112 113 114	0 0 0 0 0 0 0 0 0	8 7 7 7 7 7 7 7 7 7	0.900 5.000e-002 0.900 5.000e-002 0.900 5.000e-002 0.900 5.000e-002 0.900 5.000e-002 0.900 5.000e-002 0.900 5.000e-002 0.900 5.000e-002 0.900 5.000e-002	0 0 0 0 0 0 0 0 0 0
(820)	TUBE TUBE TUBE TUBE TUBE TUBE TUBE TUBE	115 116 117 118 119 120 121 122 123 124	0 0 0 0 0 0 0 0 0	6 6 6 6 6 1 1	0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.800 2.500e-002 0.900 6.000e-002	0 0 0 0 0 0 0 0 0 0 0 0
(830)	TUBE TUBE TUBE TUBE TUBE TUBE TUBE TUBE	125 126 127 128 129 130 131 132 133 134	0 0 0 0 0 0 0 0 0 0	1 1 1 1 5 5 5 5 5	0.900 6.000e-002 0.900 6.000e-002 0.900 6.000e-002 0.900 6.000e-002 0.900 6.000e-002 1.200 3.500e-002 1.200 3.500e-002 1.200 3.500e-002	0 0 0 0 0 0 0 0 0 0 0
(840)	TUBE TUBE TUBE TUBE TUBE TUBE	135 136 137 138 139 140 141	0 0 0 0 0	5 5 5 5 5 5 5 5	1.200 3.500e-002 1.200 3.500e-002 1.200 3.500e-002 1.200 3.500e-002 1.200 3.500e-002 1.200 3.500e-002	0 0 0 0 0 0

	שמוזיי	140	0	5	1 200	3 5000-002	0
	TUBE TUBE	142 143	0	5	1.200	3.500e-002 3.500e-002	0
	TUBE	144	0	5	1.200	3.500e-002	0
	TUBE	145	0	5	1.200	3.500e-002	0
(850)	TUBE TUBE	146 147	0 0	5 5	1.200	3.500e-002 3.500e-002	0 0
(850)	TUBE	147	0	5	1.200	3.500e-002	0
	TUBE	149	0	5	1.200	3.500e-002	0
	TUBE	150	0	5	1.200	3.500e-002	0
	TUBE	151	0	5	1.200	3.500e-002	0
	TUBE TUBE	152 153	0 0	5 5	1.200	3.500e-002 3.500e-002	0 0
	TUBE	154	0	5	1.200	3.500e-002	0
	TUBE	155	0	5	1.200	3.500e-002	0
	TUBE	156	0	5	1.200	3.500e-002	0
(860)	TUBE TUBE	157 158	0 0	5 5	1.200	3.500e-002 3.500e-002	0 0
	TUBE	159	0	4	0.900	3.000e-002	0
	TUBE	160	0	4	0.900	3.000e-002	0
	TUBE	161	0	4	0.900	3.000e-002	0
	TUBE TUBE	162 163	0 0	4 4	0.900 0.900	3.000e-002 3.000e-002	0 0
	TUBE	164	0	4	0.900	3.000e-002	0
	TUBE	165	0	4	0.900	3.000e-002	0
()	TUBE	166	0	4	0.900	3.000e-002	0
(870)	TUBE	167	0	4	0.900	3.000e-002	0
	TUBE TUBE	168 169	0 0	4 4	0.900 0.900	3.000e-002 3.000e-002	0 0
	TUBE	170	0	4	0.900	3.000e-002	0
	TUBE	171	0	4	0.900	3.000e-002	0
	TUBE	172	0	4	0.900	3.000e-002	0
	TUBE TUBE	173 174	0 0	4 4	0.900 0.900	3.000e-002 3.000e-002	0 0
	TUBE	175	0	4	1.600	2.500e-002	0
	TUBE	176	0	4	1.600	2.500e-002	0
(880)	TUBE	177	0	4	1.600		0
	TUBE TUBE	178 179	0 0	4 4	1.600	2.500e-002 2.500e-002	0 0
	TUBE	180	0	4	1.600	2.500e-002	0
	TUBE	181	0	4	1.600	2.500e-002	0
	TUBE	182	0	4		2.500e-002	0
	TUBE	183	0	4	1.600	2.500e-002	0
	TUBE TUBE	184 185	0 0	4 4	1.600	2.500e-002 2.500e-002	0 0
	TUBE	186	0	4	1.600		0
(890)	TUBE	187	0	4	1.600	2.500e-002	0
	TUBE	188	0	4		2.500e-002	0
	TUBE TUBE	189 190	0 0	4 4	1.600	2.500e-002 2.500e-002	0 0
	TUBE	191	0	2		3.000e-002	0
	TUBE	192	0	2	1.200		0
	TUBE	193	0	2	1.200	3.000e-002	0
	TUBE TUBE	194 195	0 0	2 2	1.200	3.000e-002 3.000e-002	0 0
	TUBE	195	0	2	1.200	3.000e-002	0
(900)	TUBE	197	0	2	1.200	3.000e-002	0
	TUBE	198	0	2	1.200	3.000e-002	0
	TUBE	199	0	2	1.200	3.000e-002	0
	TUBE TUBE	200 201	0 0	2 2	1.200	3.000e-002 3.000e-002	0 0
	TUBE	202	0	2	1.200	3.000e-002	0
	TUBE	203	0	2	1.200	3.000e-002	0
	TUBE	204	0	2	1.200	3.000e-002	0
	TUBE TUBE	205 206	0 0	2 2	1.200	3.000e-002 3.000e-002	0 0
(910)	TUBE	200	0	2	1.300	3.000e-002	0
	TUBE	208	0	2	1.300	3.000e-002	0
	TUBE	209	0	2	1.300	3.000e-002	0
	TUBE	210	0	2 2	1.300	3.000e-002	0
	TUBE TUBE	211 212	0 0	2	1.300	3.000e-002 3.000e-002	0 0
	TUBE	212	0	2	1.300	3.000e-002	0
	TUBE	214	0	2	1.300	3.000e-002	0
	TUBE	215	0	2	1.300	3.000e-002	0
(920)	TUBE TUBE	216 217	0 0	2 2	1.300	3.000e-002 3.000e-002	0 0
(220)	TUBE	218	0	2	1.300		0
	=	-	-				-

	TUBE	219	0	2	1 300	3.000e-002	0
	IUBE	219	0	2	1.300	3.000e-002	0
	TUBE	220	0	2	1.300	3.000e-002	0
		221	0	2		3.000e-002	
	TUBE	221	0				0
	TUBE	222	0	2	1.300	3.000e-002	0
	TUBE	223	0	2	1 200	2.500e-002	0
	TUBE	224	0	2	1.200	2.500e-002	0
	TUBE	225	0	2	1 200	2.500e-002	0
	TUBE	226	0	2	1.200	2.500e-002	0
(020)	TUBE	227	0	2		2.500e-002	0
(930)							
	TUBE	228	0	2	1.200	2.500e-002	0
	TUBE			2			
		229	0			2.500e-002	0
	TUBE	230	0	2	1.200	2.500e-002	0
	TUBE	231	0	2	1.200	2.500e-002	0
	TUBE	232	0	2	1.200	2.500e-002	0
	TUBE	233	0	2	1.200	2.500e-002	0
	TUBE	234	0	2	1.200	2.500e-002	0
	TUBE	235	0	2	1.200	2.500e-002	0
	TUBE	236	0	2	1.200	2.500e-002	0
(940)	TUBE	237	0	2	1.200	2.500e-002	0
(- · · /							
	TUBE	238	0	2	1.200	2.500e-002	0
	TUBE	239	0	2	1.200	2.500e-002	0
	TUBE	240	0	2		2.500e-002	0
	TUBE	241	0	2	1.200	2.500e-002	0
	TUBE	242	0	2		2.500e-002	0
	TUBE	243	0	2	1.200	2.500e-002	0
	TUBE	244	0	2		2.500e-002	0
	TUBE	245	0	2	1.200	2.500e-002	0
	TUBE	246	0	2		2.500e-002	0
(050)							
(950)	TUBE	247	0	2	1.200	2.500e-002	0
	TUBE	248	0	2	1.200	2.500e-002	0
	TUBE	249	0	2	1.200	2.500e-002	0
	TUBE	250	0	2	1,200	2.500e-002	0
	TUBE	251	0	2	1.200	2.500e-002	0
	TUBE	252	0	2	1.200	2.500e-002	0
				2			
	TUBE	253	0		1.200	2.500e-002	0
	TUBE	254	0	2	1.200	2.500e-002	0
	TUBE	255	0	2	0 000	6.500e-002	0
	TUBE	256	0	1	0.900	6.500e-002	0
(960)	TUBE	257	0	1	0.900	6.500e-002	0
	TUBE	258	0	2	0.900		0
	TUBE	259	0	2	0.900	6.500e-002	0
	TUBE	260	0	1	0.900	6.500e-002	0
	TUBE	261	0	1	0.900	6.500e-002	0
	TUBE	262	0	2	0.900	6.500e-002	0
	TUBE	263	0	2		6.500e-002	0
	TUBE	264	0	1	0.900	6.500e-002	0
	TUBE	265	0	1	0 900	6.500e-002	0
	TUBE	266	0	2		6.500e-002	0
(970)	TUBE	267	0	2	0.900	6.500e-002	0
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	TUBE	268	0	1		6.500e-002	0
	TUBE	269	0	1	0.900	6.500e-002	0
			0	2		6.500e-002	
	TUBE	270					0
	TUBE	271	0	1	1.000	5.500e-002	0
	TUBE	272	0	1	1.000		0
	TUBE	273	0	1	T.000	5.000e-002	0
	TUBE	274	0	1	1.000	5.500e-002	0
	TUBE	275	0	1		5.500e-002	0
	TUBE	276	0	1	1.000	5.000e-002	0
(980)			0	12	2.000		0
(000)	TUBE	277					
	TUBE	278	0	12	2.000	8.000e-002	0
	TUBE	279	0	12	2.000		0
	TUBE	280	0	12	2.000	8.000e-002	0
	TUBE	281	0	12	2.000	8.000e-002	0
	TUBE	282	0	12	2.000	8.000e-002	0
	TUBE	283	0	12	2.000	8.000e-002	0
	TUBE	284	0	12	2.000		0
	TUBE	285	0	12	2.000	8.000e-002	0
	TUBE	286	0	12	2.000		0
(00)							
(990)	TUBE	287	0	12	2.000	8.000e-002	0
	TUBE	288	0	12	2.000	8.000e-002	0
	TUBE	289	0	12	2.000	8.000e-002	0
	TUBE	290	0	12	2.000	8.000e-002	0
	TUBE		0	12	2.000		
		291					0
	TUBE	292	0	12	2.000	8.000e-002	0
	TUBE	293	0	12	2.000	8.000e-002	0
	TUBE	294	0	12		8.000e-002	0
	TUBE	295	0	12	2.000	8.000e-002	0
			-	-			5

	TUBE	296	0	12	2.000	8.000e-002	0
(1000)	TUBE	297	0	12	2.000	8.000e-002	0
,	TUBE	298	0	12	2.000	8.000e-002	0
	TUBE	299	0	12	2.000	8.000e-002	0
	TUBE	300	0	12	2.000	8.000e-002	0
				12			0
	TUBE	301	0		2.000	8.000e-002	
	TUBE	302	0	12	2.000	8.000e-002	0
	TUBE	303	0	12	2.000	8.000e-002	0
	TUBE	304	0	12	2.000	8.000e-002	0
	TUBE	305	0	12	2.000	8.000e-002	0
	TUBE	306	0	12	2.000	8.000e-002	0
(1010)	TUBE	307	0	12	2.000	8.000e-002	0
	TUBE	308	0	12	2.000	8.000e-002	0
	TUBE	309	0	12	2.000	8.000e-002	0
	TUBE	310	0	12	2.000	8.000e-002	0
	TUBE	311	0	12	2.000	8.000e-002	0
	TUBE	312	0	12	2.000	8.000e-002	0
	TUBE	313	0	12	2.000	8.000e-002	0
	TUBE	314	0	12	2.000	8.000e-002	0
	TUBE	315	0	12	2.000	8.000e-002	0
	TUBE	316	0	12	2.000	8.000e-002	0
(1020)	TUBE	317	0	12	2.000	8.000e-002	0
(1020)				12	2.000		0
	TUBE TUBE	318 319	0 0	12	2.000	8.000e-002 8.000e-002	0
	TUBE	320	0	12	2.000	8.000e-002	0
	TUBE	321	0	12	2.000	8.000e-002	0
	TUBE	322	0	12	2.000	8.000e-002	0
	TUBE	323	0	12	2.000	8.000e-002	0
	TUBE	324	0	12	2.000	8.000e-002	0
	TUBE	325	0	12	2.000	8.000e-002	0
	TUBE	326	0	12	2.000	8.000e-002	0
(1030)	TUBE	327	0	12	2.000	8.000e-002	0
	TUBE	328	0	12	2.000	8.000e-002	0
	TUBE	329	0	12	2.000	8.000e-002	0
	TUBE	330	0	12	2.000	8.000e-002	0
	TUBE	331	0	12	2.000	8.000e-002	0
	TUBE	332	0	12	2.000	8.000e-002	0
	TUBE	333	0	12	2.000	8.000e-002	0
	TUBE	334	0	12	2.000	8.000e-002	0
	TUBE	335	0	12	2.000	8.000e-002	0
	TUBE	336	0	12	2.000	8.000e-002	0
(1040)	TUBE	337	0	12	2.000	8.000e-002	0
(1040)	TUBE	338	0	12	2.000	8.000e-002	0
	TUBE	339	0	12	2.000	8.000e-002	0
	TUBE	340	0	12	2.000	8.000e-002	0
						8.000e-002	
	TUBE	341	0	12	2.000		0
	TUBE	342	0	12	2.000	8.000e-002	0
	TUBE	343	0	12	2.000	8.000e-002	0
	TUBE	344	0	14		2.500e-002	0
	TUBE	345	0	14		2.500e-002	0
	TUBE	346	0	14		2.500e-002	0
(1050)	TUBE	347	0	14		2.500e-002	0
	TUBE	348	0	15		2.500e-002	0
	TUBE	349	0	15		2.500e-002	0
	TUBE	350	0	14		2.500e-002	0
	TUBE	351	0	14	1.220	2.500e-002	0
	TUBE	352	0	14	1.220	2.500e-002	0
	TUBE	353	0	14	1.220	2.500e-002	0
	TUBE	354	0	15	1.220	2.500e-002	0
	TUBE	355	0	15	1.220	2.500e-002	0
	TUBE	356	0	14	1.220	2.500e-002	0
(1060)	TUBE	357	0	14	1.220	2.500e-002	0
	TUBE	358	0	14	1.220	2.500e-002	0
	TUBE	359	0	14		2.500e-002	0
	TUBE	360	0	15		2.500e-002	0
	TUBE	361	0	15		2.500e-002	0
	TUBE	362	0	14		2.500e-002	0
	TUBE	363	0	14		2.500e-002	0
	TUBE	364	0	14		2.500e-002	0
	TUBE	365	0	14		2.500e-002	0
	TUBE	366	0	14		2.500e-002	0
(1070)			0	15 15		2.500e-002 2.500e-002	0
(10/0)	TUBE	367 368					
	TUBE	368	0	14		2.500e-002	0
	TUBE	369	0	14		2.500e-002	0
	TUBE	370	0	14		2.500e-002	0
	TUBE	371	0	14		2.500e-002	0
	TUBE	372	0	15	1.220	2.500e-002	0

	TUBE	373	0	15	1.220 2.500	e-002	0			
	TUBE	374	0	14	0.760 2.540	e-002	0			
	TUBE	375	0	14	0.760 2.540		0			
	TUBE	376	0	14	0.760 2.540		0			
(1080)	TUBE	377	0	15	0.760 2.540	e-002	0			
	TUBE	378	0	15	0.760 2.540	e-002	0			
	TUBE	379	0	14	0.760 2.540	e-002	0			
	TUBE	380	0	14	0.760 2.540		0			
	TUBE	381	0	14	0.760 2.540	e-002	0			
	TUBE	382	0	15	0.760 2.540	e-002	0			
	TUBE	383	0	15	0.760 2.540	e-002	0			
	TUBE	384	0	14	0.760 2.540		0			
	TUBE	385	0	14	0.760 2.540	e-002	0			
	TUBE	386	0	14	0.760 2.540	e-002	0			
(1090)	TUBE	387	0	15	0.760 2.540	e-002	0			
	TUBE	388	0	15	0.760 2.540	e-002	0			
				14			0			
	TUBE	389	0		0.760 2.540					
	TUBE	390	0	14	0.760 2.540		0			
	TUBE	391	0	14	0.760 2.540	e-002	0			
	TUBE	392	0	15	0.760 2.540	e-002	0			
	TUBE	393	0	15	0.760 2.540		0			
	TUBE	394	0	14	0.760 2.540		0			
	TUBE	395	0	14	0.760 2.540	e-002	0			
	TUBE	396	0	14	0.760 2.540	e-002	0			
(1100)	TUBE	397	0	15	0.760 2.540	e-002	0			
	TUBE	398	0	15	0.760 2.540		0			
	TUBE				0.760 2.540					
		399	0	14			0			
	TUBE	400	0	14	0.760 2.540	e-002	0			
	TUBE	401	0	14	0.760 2.540	e-002	0			
	TUBE	402	0	15	0.760 2.540	e-002	0			
	TUBE	403	0	15	0.760 2.540		0			
	TUBE	404	0	14	0.760 2.540		0			
	TUBE	405	0	14	0.760 2.540		0			
	TUBE	406	0	14	0.760 2.540	e-002	0			
(1110)	TUBE	407	0	15	0.760 2.540	e-002	0			
	TUBE	408	0	15	0.760 2.540	e-002	0			
	TUBE	409	0	14	0.760 2.540		0			
	TUBE	410	0	14	0.760 2.540		0			
	TUBE	411	0	14	0.760 2.540	e-002	0			
	TUBE	412	0	15	0.760 2.540	e-002	0			
	TUBE	413	0	15	0.760 2.540	e-002	0			
		414	0	14	1.650 3.000		0			
	TUBE									
	TUBE	415	0	14	1.650 3.000		0			
	TUBE	416	0	14	1.650 3.000	e-002	0			
(1120)	TUBE	417	0	15	1.650 3.000	e-002	0			
	TUBE	418	0	15	1.650 3.000	e-002	0			
	TUBE	419	0	13	0.760 3.000		0			
	TUBE	420	0	13	0.760 3.000		0			
	TUBE	421	0	13	0.760 3.000	e-002	0			
	TUBE	422	0	13	0.760 3.000	e-002	0			
	TUBE	423	0	13	0.760 3.000	e-002	0			
	TUBE	424	0	1	2.000 8.500		0			
		425	0	1			0			
	TUBE				2.000 8.500					
	TUBE	426	0	1	2.000 8.500	e-002	0			
(1130)	'									
	SPRI									
	' INOD	SP1		SP2	SP3	SP4	SP5	SP6		
		6.65e+		6.65e+				7.03e+0	10 1.24e+0	10
	1						03e+010			
	2	6.65e+			+008 8.68e+		03e+010	7.03e+0		
	3	6.65e+	008	6.65e+	+008 8.68e+	009 7.	03e+010	7.03e+0	10 1.24e+0	10
	4	6.65e+	800	6.65e+	+008 8.68e+	009 7.	03e+010	7.03e+0	10 1.24e+0	10
	1									
	, ,									
()	ı			c 1						
(1140)	' 'Nodal p	oint ma	sses	for di	ry model					
(1140)	ı	oint ma	sses	for di	ry model					
(1140)	ı	oint ma	sses	for di	ry model					
(1140)	'Nodal p ' MASS	oint ma	sses	for di	ry model					
(1140)	'Nodal p ' MASS ' NNOD	oint ma	sses	for di	ry model					
(1140)	'Nodal p ' MASS ' NNOD 218				-		NZ			
(1140)	'Nodal p ' MASS 'NNOD 218 ' INOD			Mž	s my		MZ	MRX	MRY	MRZ
(1140)	'Nodal p ' MASS ' NNOD 218				s my			MRX 00e+000	MRY 0.00e+000	MRZ 0.00e+000
(1140)	'Nodal p ' MASS 'NNOD 218 ' INOD	KN	0.	Mž	C MY 0 0.00e+000	0.00e	+000 0.		0.00e+000	
(1140)	'Nodal p ' MASS 'NNOD 218 'INOD 1 2	KN 0 0	0.	MX 00e+000 00e+000	<pre>K MY 0 0.00e+000 0 0.00e+000</pre>	0.00e 0.00e	+000 0. +000 0.	00e+000 00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
(1140)	'Nodal p 'MASS 'NNOD 218 'INOD 1 2 3	KN 0 0 0	0. 0. 0.	M2 00e+000 00e+000 00e+000	<pre>K MY 0 0.00e+000 0 0.00e+000 0 0.00e+000</pre>	0.00e 0.00e 0.00e	+000 0. +000 0. +000 0.	00e+000 00e+000 00e+000	0.00e+000 0.00e+000 0.00e+000	0.00e+000 0.00e+000 0.00e+000
	'Nodal p 'MASS 'NNOD 218 'INOD 1 2 3 4	KN 0 0 0 0	0. 0. 0.	M2 00e+000 00e+000 00e+000 00e+000	<pre>K MY 0 0.00e+000 0 0.00e+000 0 0.00e+000 0 0.00e+000 0 0.00e+000</pre>	0.00e 0.00e 0.00e 0.00e	+000 0. +000 0. +000 0. +000 0.	00e+000 00e+000 00e+000 00e+000	0.00e+000 0.00e+000 0.00e+000 0.00e+000	0.00e+000 0.00e+000 0.00e+000 0.00e+000
(1140) (1150)	'Nodal p 'MASS 'NNOD 218 'INOD 1 2 3 4 5	KN 0 0 0 0 0	0. 0. 0. 2.	M2 00e+000 00e+000 00e+000 00e+000 86e+005	<pre>K MY 0 0.00e+000 0 0.00e+000 0 0.00e+000 0 0.00e+000 0 0.00e+000 0 2.86e+005</pre>	0.00e 0.00e 0.00e 0.00e 2.86e	+000 0. +000 0. +000 0. +000 0. +005 0.	00e+000 00e+000 00e+000 00e+000 00e+000	0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000	0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000
	'Nodal p 'MASS 'NNOD 218 'INOD 1 2 3 4 5 6	KN 0 0 0 0	0. 0. 0. 2.	M2 00e+000 00e+000 00e+000 00e+000	<pre>K MY 0 0.00e+000 0 0.00e+000 0 0.00e+000 0 0.00e+000 0 0.00e+000 0 2.86e+005</pre>	0.00e 0.00e 0.00e 0.00e 2.86e	+000 0. +000 0. +000 0. +000 0. +005 0.	00e+000 00e+000 00e+000 00e+000	0.00e+000 0.00e+000 0.00e+000 0.00e+000	0.00e+000 0.00e+000 0.00e+000 0.00e+000
	'Nodal p 'MASS 'NNOD 218 'INOD 1 2 3 4 5	KN 0 0 0 0 0	0. 0. 0. 2. 0.	M2 00e+000 00e+000 00e+000 00e+000 86e+005	<pre></pre>	0.00e 0.00e 0.00e 2.86e 0.00e	+000 0. +000 0. +000 0. +000 0. +005 0. +000 0.	00e+000 00e+000 00e+000 00e+000 00e+000	0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000	0.00e+000 0.00e+000 0.00e+000 0.00e+000 0.00e+000

	8	0	2.86e+005	2.86e+005	2.86e+005	0.00e+000	0.00e+000	0.00e+000
	9	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	10	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	11	0	2.86e+005	2.86e+005	2.86e+005	0.00e+000	0.00e+000	0.00e+000
	12	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	13	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	14	0	2.86e+005	2.86e+005	2.86e+005	0.00e+000	0.00e+000	0.00e+000
(1160)	15	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	16	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	17	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	18	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	19	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	20	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	21	0 0	5.00e+003 0.00e+000	5.00e+003	5.00e+003 0.00e+000	0.00e+000	0.00e+000	0.00e+000
	22 23	0	5.00e+003	0.00e+000 5.00e+003	5.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000
	23	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000 0.00e+000
(1170)	25	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(11/0)	26	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	27	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	28	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	29	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	30	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	31	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	32	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	33	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	34	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
(1180)	35	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	36	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	37	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	38	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	39	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	40	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	41	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	42	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	43	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1100)	44	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1190)	45	0 0	0.00e+000	0.00e+000	0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	46 47	0	0.00e+000 5.00e+003	0.00e+000 5.00e+003	0.00e+000 5.00e+003	0.00e+000	0.00e+000	0.00e+000
	48	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	49	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	50	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	51	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	52	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	53	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	54	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1200)	55	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	56	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	57	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	58	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	59	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	60	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	61	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	62	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	63	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1210)	64 65	0 0	0.00e+000 5.00e+003	0.00e+000 5.00e+003	0.00e+000 5.00e+003	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
(1210)	66	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	67	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	68	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	69	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	70	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	71	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	72	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	73	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	74	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1220)	75	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	76	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	77	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	78	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	79	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	80	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	81	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	82	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	83	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	84	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000

(1230)	85	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	86	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	87	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	88	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	89	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	90	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	91	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	92	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	93 94	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
(1240)	95	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
(1210)	96	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	97	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	98	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	99	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	100	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	101	0	5.00e+003	5.00e+003	5.00e+003	0.00e+000	0.00e+000	0.00e+000
	102	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	103	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1250)	104 105	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
(1250)	105	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	107	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	108	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	109	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	110	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	111	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	112	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	113	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
()	114	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1260)	115	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	116	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	117 118	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	119	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	120	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	121	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	122	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	123	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	124	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1270)	125	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	126	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	127 128	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	129	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	130	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	131	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	132	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	133	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	134	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1280)	135	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	136	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	137	0 0	0.00e+000	0.00e+000 0.00e+000	0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	138 139	0	0.00e+000 0.00e+000	0.00e+000	0.00e+000 0.00e+000	0.00e+000	0.00e+000	0.00e+000
	140	0	1.90e+007	1.90e+007	1.90e+007	2.91e+009	6.56e+009	6.07e+009
	141	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	142	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	143	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	144	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1290)	145	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	146	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	147	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	148	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000
	149 150	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000 0.00e+000
	151	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	152	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	153	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	154	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1300)	155	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	156	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	157	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	158	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	159 160	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	160 161	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	TO T	U	5.0001000	0.0001000	0.0007000	0.0001000	3.0001000	3.0001000

	1.60	0	0.00000	0.00-000	0.00-000	0.00-000	0.00-000	0.00000
	162	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	163	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1210)	164	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1310)	165 166	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	167	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	168	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	169	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	170	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	171	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	172	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	173	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	174	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1320)	175	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	176	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	177	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	178	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	179	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	180 181	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	182	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	183	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	184	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1330)	185	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	186	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	187	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	188	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	189	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	190	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	191	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	192	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	193	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
(1340)	194 195	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1340)	196	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	197	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	198	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	199	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	200	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	201	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	202	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	203	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1250)	204	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1350)	205	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	206 207	0 0	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	208	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	209	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	210	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	211	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	212	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	213	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	214	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
(1360)	215	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	216	0	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	217	0	0.00e+000 0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	218	0	0.000+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000	0.00e+000
	1							
	1							
	1							
	SELF							
	' G	WDE	NSITY SEL	FWEIGHT BU	JOYANCY			
(1370)	9.810e+000			1 1				
	1							
	I.							
	STAT							
	' IDEAD	ILIVE						
	. 0	0	0					
	1							
	OUTP ' NRNOD	NRELE	NDCAL					
(1380)	16	NRELE 8	NDCAL 0					
(/	1	0	Ŭ					
	NODR							
	' INOD	IDOF	ISCALE					

(1390)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(1400)	LER
(1410)	LLEK IDOF ISCALE 4 1 1 5 1 1 15 1 1 16 1 1 26 1 1 37 1 1 38 1 1
(1110)	1
(1420)	BOTM ' NBASE NOTM 4 4 ' IBASE RBASE 1 6.65e+008 2 6.65e+008 3 6.65e+008 4 6.65e+008 ' IOTM ROTM 5 -2.17e+011 6 2.17e+011 7 -2.17e+011 8 2.17e+011 COMB
(1430)	<pre>' NLCOMB 1 ' ICOMB CENVI CDEAD CLIVE 1 1.00e+000 1.00e+000 ' ' POST ' IEXMOD STORM 0 3.00e+000 '</pre>
(1440)	ILOSTA NFILT NTRREF FRQLO FRQHI PERIOD 0 1 78 4.00e-002 5.00e-001 4.00e+000 WAVE LOAD INPUT DATA
(1450)	LOAD ' IFEF ILOSS ILOAD NELIN DCD DCM RO FACLIN 1 0 0 426 1.05e+000 1.20e+000 1.03e+003 1.00e+000 ' ' IELEM DIADR DIAIN CCD CCM ACTDIA1 ACTDIA2 1 8.00e+000 8.00e+000 1.05e+000 1.20e+000 8.00e+000 8.00e+000 2 8.00e+000 8.00e+000 1.05e+000 1.20e+000 8.00e+000 8.00e+000 3 3.46e+000 3.46e+000 1.05e+000 1.20e+000 3.46e+000 3.46e+000 4 2.96e+000 2.96e+000 1.05e+000 1.20e+000 2.96e+000 2.96e+000 5 2.96e+000 2.96e+000 1.05e+000 1.20e+000 2.96e+000 2.96e+000 6 2.96e+000 2.96e+000 1.05e+000 1.20e+000 2.96e+000 2.96e+000 7 2.12e+000 2.12e+000 1.05e+000 1.20e+000 2.12e+000 2.12e+000 8 2.70e+000 2.20e+000 1.05e+000 1.20e+000 2.20e+000 2.20e+000 9 2.70e+000 2.20e+000 8.50e-001 1.40e+000 2.20e+000 2.20e+000
(1460)	10 2.46e+000 2.05e+000 6.50e-001 1.60e+000 2.05e+000 2.05e+000 11 0.00e+000 0.00e+000 6.50e-001 1.60e+000 0.00e+000 0.00e+000

	12	8.00e+000	8.00e+000	1.05e+000	1.20e+000	8.00e+000	8.00e+000
	13	8.00e+000	8.00e+000	1.05e+000	1.20e+000	8.00e+000	8.00e+000
	14	3.46e+000	3.46e+000	1.05e+000	1.20e+000	3.46e+000	3.46e+000
	15	2.96e+000	2.96e+000	1.05e+000	1.20e+000	2.96e+000	2.96e+000
	16	2.96e+000	2.96e+000	1.05e+000	1.20e+000	2.96e+000	2.96e+000
	17	2.96e+000 2.12e+000	2.96e+000 2.12e+000	1.05e+000	1.20e+000 1.20e+000	2.96e+000	2.96e+000
	18 19	2.12e+000 2.12e+000	2.12e+000 2.12e+000	1.05e+000 1.05e+000	1.20e+000	2.12e+000 2.12e+000	2.12e+000 2.12e+000
	20	2.12e+000	2.12e+000	8.50e-001	1.40e+000	2.12e+000	2.12e+000
(1470)	21	2.00e+000	2.00e+000	6.50e-001	1.60e+000	2.00e+000	2.00e+000
(,	22	0.00e+000	0.00e+000	6.50e-001	1.60e+000	0.00e+000	0.00e+000
	23	8.00e+000	8.00e+000	1.05e+000	1.20e+000	8.00e+000	8.00e+000
	24	8.00e+000	8.00e+000	1.05e+000	1.20e+000	8.00e+000	8.00e+000
	25	3.46e+000	3.46e+000	1.05e+000	1.20e+000	3.46e+000	3.46e+000
	26	2.96e+000	2.96e+000	1.05e+000	1.20e+000	2.96e+000	2.96e+000
	27	2.96e+000	2.96e+000	1.05e+000	1.20e+000	2.96e+000	2.96e+000
	28	2.96e+000	2.96e+000	1.05e+000	1.20e+000	2.96e+000	2.96e+000
	29	3.46e+000	2.51e+000	1.05e+000	1.20e+000	2.51e+000	2.51e+000
(1400)	30	3.46e+000	2.51e+000	1.05e+000	1.20e+000	2.51e+000	2.51e+000
(1480)	31 32	3.46e+000 3.22e+000	2.51e+000 2.34e+000	8.50e-001 6.50e-001	1.40e+000 1.60e+000	2.51e+000 2.34e+000	2.51e+000 2.34e+000
	33	0.00e+000	0.00e+000	6.50e-001	1.60e+000	0.00e+000	0.00e+000
	34	8.00e+000	8.00e+000	1.05e+000	1.20e+000	8.00e+000	8.00e+000
	35	8.00e+000	8.00e+000	1.05e+000	1.20e+000	8.00e+000	8.00e+000
	36	3.46e+000	3.46e+000	1.05e+000	1.20e+000	3.46e+000	3.46e+000
	37	2.96e+000	2.96e+000	1.05e+000	1.20e+000	2.96e+000	2.96e+000
	38	2.96e+000	2.96e+000	1.05e+000	1.20e+000	2.96e+000	2.96e+000
	39	2.96e+000	2.96e+000	1.05e+000	1.20e+000	2.96e+000	2.96e+000
	40	2.12e+000	2.12e+000	1.05e+000	1.20e+000	2.12e+000	2.12e+000
(1490)	41	2.12e+000	2.12e+000	1.05e+000	1.20e+000	2.12e+000	2.12e+000
	42	2.12e+000	2.12e+000	8.50e-001	1.40e+000	2.12e+000	2.12e+000
	43	2.00e+000	2.00e+000	6.50e-001	1.60e+000	2.00e+000	2.00e+000
	44 45	0.00e+000 9.00e-001	0.00e+000 9.00e-001	6.50e-001 1.05e+000	1.60e+000 1.20e+000	0.00e+000 9.00e-001	0.00e+000 9.00e-001
	46	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	47	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	48	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	49	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	50	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
(1500)	51	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	52	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	53	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	54	9.00e-001 9.00e-001	9.00e-001	1.05e+000	1.20e+000 1.20e+000	9.00e-001	9.00e-001
	55 56	9.00e-001 9.00e-001	9.00e-001 9.00e-001	1.05e+000 1.05e+000	1.20e+000 1.20e+000	9.00e-001 9.00e-001	9.00e-001 9.00e-001
	57	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	58	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	59	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	60	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
(1510)	61	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	62	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	63	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	64	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	65 66	8.00e-001 8.00e-001	8.00e-001 8.00e-001	1.05e+000 1.05e+000	1.20e+000 1.20e+000	8.00e-001 8.00e-001	8.00e-001 8.00e-001
	67	8.00e-001	8.00e-001	1.05e+000	1.20e+000	8.00e-001	8.00e-001
	68	8.00e-001	8.00e-001	1.05e+000	1.20e+000	8.00e-001	8.00e-001
	69	8.00e-001	8.00e-001	1.05e+000	1.20e+000	8.00e-001	8.00e-001
	70	8.00e-001	8.00e-001	1.05e+000	1.20e+000	8.00e-001	8.00e-001
(1520)	71	8.00e-001	8.00e-001	1.05e+000	1.20e+000	8.00e-001	8.00e-001
	72	8.00e-001	8.00e-001	1.05e+000	1.20e+000	8.00e-001	8.00e-001
	73	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
	74	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
	75	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
	76 77	1.00e+000 1.00e+000	1.00e+000 1.00e+000	1.05e+000 1.05e+000	1.20e+000 1.20e+000	1.00e+000 1.00e+000	1.00e+000 1.00e+000
	78	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
	79	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
	80	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
(1530)	81	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
	82	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
	83	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
	84	1.00e+000	1.00e+000	1.05e+000	1.20e+000	1.00e+000	1.00e+000
	85 86	8.00e-001 8.00e-001	8.00e-001 8.00e-001	1.05e+000 1.05e+000	1.20e+000	8.00e-001 8.00e-001	8.00e-001 8.00e-001
	86 87	8.00e-001 8.00e-001	8.00e-001 8.00e-001	1.05e+000 1.05e+000	1.20e+000 1.20e+000	8.00e-001 8.00e-001	8.00e-001 8.00e-001
	88	8.00e-001	8.00e-001	1.05e+000	1.20e+000	8.00e-001	8.00e-001
	20						

	89	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	90	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
(1540)	91	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
(1540)							
	92	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	93	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	94	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	95	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	96	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	97	1.52e+000	1.09e+000	1.05e+000	1.20e+000	1.09e+000	1.09e+000
	98	1.53e+000	1.09e+000	1.05e+000	1.20e+000	1.09e+000	1.09e+000
	99	1.53e+000	1.09e+000	1.05e+000	1.20e+000	1.09e+000	1.09e+000
	100	1.53e+000	1.09e+000	1.05e+000	1.20e+000	1.09e+000	1.09e+000
(1 0)							
(1550)	101	1.53e+000	1.09e+000	1.05e+000	1.20e+000	1.09e+000	1.09e+000
	102	1.53e+000	1.09e+000	1.05e+000	1.20e+000	1.09e+000	1.09e+000
	103	1.53e+000	1.09e+000	1.05e+000	1.20e+000	1.09e+000	1.09e+000
	104	1.53e+000	1.09e+000	1.05e+000	1.20e+000	1.09e+000	1.09e+000
	105	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	106	2.03e+000	1.23e+000	1.05e+000	1.20e+000	1.23e+000	1.23e+000
	107	2.03e+000	1.23e+000	1.05e+000	1.20e+000	1.23e+000	1.23e+000
	108	2.03e+000	1.23e+000	1.05e+000	1.20e+000	1.23e+000	1.23e+000
	109	2.03e+000	1.23e+000	1.05e+000	1.20e+000	1.23e+000	1.23e+000
		2.03e+000	1.23e+000	1.05e+000			
$(1 - \zeta_0)$	110				1.20e+000	1.23e+000	1.23e+000
(1560)	111	2.03e+000	1.23e+000	1.05e+000	1.20e+000	1.23e+000	1.23e+000
	112	2.03e+000	1.23e+000	1.05e+000	1.20e+000	1.23e+000	1.23e+000
	113	2.03e+000	1.23e+000	1.05e+000	1.20e+000	1.23e+000	1.23e+000
	114	9.00e-001	9.00e-001	1.05e+000	1.20e+000	9.00e-001	9.00e-001
	115	1.35e+000	1.03e+000	6.50e-001	1.60e+000	1.03e+000	1.03e+000
	116	1.35e+000	1.03e+000	6.50e-001	1.60e+000	1.03e+000	1.03e+000
	117	1.35e+000	1.03e+000	6.50e-001	1.60e+000	1.03e+000	1.03e+000
	118	1.35e+000	1.03e+000	6.50e-001	1.60e+000	1.03e+000	1.03e+000
	119	1.35e+000	1.03e+000	6.50e-001	1.60e+000	1.03e+000	1.03e+000
	120	1.35e+000	1.03e+000	6.50e-001	1.60e+000	1.03e+000	1.03e+000
(1570)	121	1.35e+000	1.03e+000	6.50e-001	1.60e+000	1.03e+000	1.03e+000
(1570)							
	122	1.35e+000	1.03e+000	6.50e-001	1.60e+000	1.03e+000	1.03e+000
	123	9.00e-001	9.00e-001	6.50e-001	1.60e+000	9.00e-001	9.00e-001
	124	9.00e-001	9.00e-001	6.50e-001	1.60e+000	9.00e-001	9.00e-001
	125	9.00e-001	9.00e-001	6.50e-001	1.60e+000	9.00e-001	9.00e-001
	126	9.00e-001	9.00e-001	6.50e-001	1.60e+000	9.00e-001	9.00e-001
	127	9.00e-001	9.00e-001	6.50e-001	1.60e+000	9.00e-001	9.00e-001
	128	9.00e-001	9.00e-001	6.50e-001	1.60e+000	9.00e-001	9.00e-001
	129	9.00e-001	9.00e-001	6.50e-001	1.60e+000	9.00e-001	9.00e-001
	130	9.00e-001	9.00e-001	6.50e-001	1.60e+000	9.00e-001	9.00e-001
(1580)	131	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
,	132	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	133	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	134	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	135	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	136	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	137	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	138	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	139	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	140	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
(1590)	141	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	142	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	143	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	144	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	145	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	146	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	147	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	148	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	149	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	150	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
(1600)	151	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	152	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	153	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	154	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	155	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	156	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	157	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	158	1.20e+000	1.20e+000	6.50e-001	1.60e+000	1.20e+000	1.20e+000
	159	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
(1)	160	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
(1610)	161	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	162	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	163	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	164	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	165	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001

	166	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	167	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	168	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	169	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
		9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
(1 (0 0)	170						
(1620)	171	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	172	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	173	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	174	9.60e-001	9.60e-001	1.05e+000	1.20e+000	9.60e-001	9.60e-001
	175	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	176	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	177	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	178	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	179	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
()	180	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
(1630)	181	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	182	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	183	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	184	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	185	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	186	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	187	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
		1.66e+000	1.66e+000	1.05e+000		1.66e+000	1.66e+000
	188				1.20e+000		
	189	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
	190	1.66e+000	1.66e+000	1.05e+000	1.20e+000	1.66e+000	1.66e+000
(1640)	191	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	192	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	193	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	194	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	195	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	196	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	197	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	198	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	199	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	200	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
(1650)	201	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	202	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	203	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	204	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	205	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	206	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	207	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	208	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
				1.05e+000			
	209	1.36e+000	1.36e+000		1.20e+000	1.36e+000	1.36e+000
(2550)	210	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
(1660)	211	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	212	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	213	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	214	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	215	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	216	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	217	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	218	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	219	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	220	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
(1670)		1.36e+000					1.36e+000
(1670)	221		1.36e+000	1.05e+000	1.20e+000	1.36e+000	
	222	1.36e+000	1.36e+000	1.05e+000	1.20e+000	1.36e+000	1.36e+000
	223	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	224	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	225	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	226	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	227	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	228	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	229	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	230	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
(1690)							
(1680)	231	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	232	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	233	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	234	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	235	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	236	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	237	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	238	1.26e+000	1.26e+000	1.05e+000	1.20e+000	1.26e+000	1.26e+000
	239	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	240	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
(1690)	241	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
(2000)	242	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	444	1.320+000	1.320+000	1.030+000	1.200+000	1.320+000	1.320+000

	243	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	244	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	245	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	246	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	247	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	248 249	1.32e+000 1.32e+000	1.32e+000 1.32e+000	1.05e+000 1.05e+000	1.20e+000 1.20e+000	1.32e+000 1.32e+000	1.32e+000 1.32e+000
	250	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
(1700)	251	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	252	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	253	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	254	1.32e+000	1.32e+000	1.05e+000	1.20e+000	1.32e+000	1.32e+000
	255	1.02e+000	1.02e+000	1.05e+000	1.20e+000	1.02e+000	1.02e+000
	256 257	1.02e+000 1.02e+000	1.02e+000 1.02e+000	8.50e-001 8.50e-001	1.40e+000 1.40e+000	1.02e+000 1.02e+000	1.02e+000 1.02e+000
	258	1.02e+000	1.02e+000	1.05e+000	1.20e+000	1.02e+000	1.02e+000
	259	1.02e+000	1.02e+000	1.05e+000	1.20e+000	1.02e+000	1.02e+000
	260	1.02e+000	1.02e+000	8.50e-001	1.40e+000	1.02e+000	1.02e+000
(1710)	261	1.02e+000	1.02e+000	8.50e-001	1.40e+000	1.02e+000	1.02e+000
	262	1.02e+000	1.02e+000	1.05e+000	1.20e+000	1.02e+000	1.02e+000
	263	1.02e+000	1.02e+000	1.05e+000	1.20e+000	1.02e+000	1.02e+000
	264	1.02e+000	1.02e+000	8.50e-001	1.40e+000	1.02e+000	1.02e+000
	265 266	1.02e+000 1.02e+000	1.02e+000 1.02e+000	8.50e-001 1.05e+000	1.40e+000 1.20e+000	1.02e+000 1.02e+000	1.02e+000 1.02e+000
	267	1.02e+000	1.02e+000	1.05e+000	1.20e+000	1.02e+000	1.02e+000
	268	1.02e+000	1.02e+000	8.50e-001	1.40e+000	1.02e+000	1.02e+000
	269	1.02e+000	1.02e+000	8.50e-001	1.40e+000	1.02e+000	1.02e+000
	270	1.02e+000	1.02e+000	1.05e+000	1.20e+000	1.02e+000	1.02e+000
(1720)	271	1.00e+000	1.00e+000	6.50e-001	1.60e+000	1.00e+000	1.00e+000
	272	1.00e+000	1.00e+000	6.50e-001	1.60e+000	1.00e+000	1.00e+000
	273 274	1.00e+000 1.00e+000	1.00e+000 1.00e+000	6.50e-001 6.50e-001	1.60e+000 1.60e+000	1.00e+000 1.00e+000	1.00e+000 1.00e+000
	274	1.00e+000	1.00e+000	6.50e-001	1.60e+000	1.00e+000	1.00e+000
	276	1.00e+000	1.00e+000	6.50e-001	1.60e+000	1.00e+000	1.00e+000
	277	2.00e+000	2.00e+000	0.00e+000	0.00e+000	2.00e+000	2.00e+000
	278	2.00e+000	2.00e+000	0.00e+000	0.00e+000	2.00e+000	2.00e+000
	279	2.00e+000	2.00e+000	0.00e+000	0.00e+000	2.00e+000	2.00e+000
(1 = 2 0)	280	2.00e+000	2.00e+000	0.00e+000	0.00e+000	2.00e+000	2.00e+000
(1730)	281	2.00e+000	2.00e+000	0.00e+000	0.00e+000	2.00e+000	2.00e+000
	282 283	2.00e+000 2.00e+000	2.00e+000 2.00e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000	2.00e+000 2.00e+000	2.00e+000 2.00e+000
	284	2.00e+000	2.00e+000	0.00e+000	0.00e+000	2.00e+000	2.00e+000
	285	2.00e+000	2.00e+000	0.00e+000	0.00e+000	2.00e+000	2.00e+000
	286	2.00e+000	2.00e+000	0.00e+000	0.00e+000	2.00e+000	2.00e+000
	287	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	288	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	289 290	0.00e+000 0.00e+000	0.00e+000 0.00e+000	1.05e+000 1.05e+000	1.20e+000 1.20e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
(1740)	291	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
(1)10)	292	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	293	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	294	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	295	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	296	0.00e+000 0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000 0.00e+000	0.00e+000
	297 298	0.00e+000	0.00e+000 0.00e+000	1.05e+000 1.05e+000	1.20e+000 1.20e+000	0.00e+000	0.00e+000 0.00e+000
	299	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	300	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
(1750)	301	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	302	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	303	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	304	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	305 306	0.00e+000 0.00e+000	0.00e+000 0.00e+000	1.05e+000 1.05e+000	1.20e+000 1.20e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	307	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	308	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	309	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	310	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
(1760)	311	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	312	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	313 314	0.00e+000 0.00e+000	0.00e+000 0.00e+000	1.05e+000 1.05e+000	1.20e+000 1.20e+000	0.00e+000 0.00e+000	0.00e+000 0.00e+000
	314 315	0.00e+000	0.00e+000 0.00e+000	1.05e+000 1.05e+000	1.20e+000 1.20e+000	0.00e+000 0.00e+000	0.00e+000
	316	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	317	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	318	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	319	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000

	320	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
(1770)	321	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	322	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	323	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	324	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	325	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	326	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	327	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	328	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	329	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	330	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
(1780)	331	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	332	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	333	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	334	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	335	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	336	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	337	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	338	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	339	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	340	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
(1790)	341	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
(1/90)							
	342	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	343	0.00e+000	0.00e+000	1.05e+000	1.20e+000	0.00e+000	0.00e+000
	344	8.40e-001	8.40e-001	1.05e+000	1.20e+000	8.40e-001	8.40e-001
	345	8.40e-001	8.40e-001	1.05e+000	1.20e+000	8.40e-001	8.40e-001
	346	8.40e-001	8.40e-001	1.05e+000	1.20e+000	8.40e-001	8.40e-001
	347	8.40e-001	8.40e-001	1.05e+000	1.20e+000	8.40e-001	8.40e-001
	348	8.40e-001	8.40e-001	8.50e-001	1.40e+000	8.40e-001	8.40e-001
	349	7.20e-001	7.20e-001	6.50e-001	1.60e+000	7.20e-001	7.20e-001
	350	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
(1800)	351	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	352	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	353	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	354	1.34e+000	1.34e+000	8.50e-001	1.40e+000	1.34e+000	1.34e+000
	355	1.22e+000	1.22e+000	6.50e-001	1.60e+000	1.22e+000	1.22e+000
	356	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	357	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	358	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	359	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	360	1.34e+000	1.34e+000	8.50e-001	1.40e+000	1.34e+000	1.34e+000
(1810)	361	1.22e+000	1.22e+000	6.50e-001	1.60e+000	1.22e+000	1.22e+000
(1010)	362	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	363	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	364	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	365	1.34e+000	1.34e+000	1.05e+000		1.34e+000	
		1.34e+000			1.20e+000	1.34e+000	1.34e+000
	366		1.34e+000	8.50e-001	1.40e+000		1.34e+000
	367	1.22e+000	1.22e+000	6.50e-001	1.60e+000	1.22e+000	1.22e+000
	368	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	369	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
(370	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
(1820)	371	1.34e+000	1.34e+000	1.05e+000	1.20e+000	1.34e+000	1.34e+000
	372	1.34e+000	1.34e+000	8.50e-001	1.40e+000	1.34e+000	1.34e+000
	373	1.22e+000	1.22e+000	6.50e-001	1.60e+000	1.22e+000	1.22e+000
	374	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	375	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	376	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	377	1.76e+000	1.24e+000	8.50e-001	1.40e+000	1.24e+000	1.24e+000
	378	1.52e+000	1.07e+000	6.50e-001	1.60e+000	1.07e+000	1.07e+000
	379	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	380	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
(1830)	381	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	382	1.76e+000	1.24e+000	8.50e-001	1.40e+000	1.24e+000	1.24e+000
	383	1.52e+000	1.07e+000	6.50e-001	1.60e+000	1.07e+000	1.07e+000
	384	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	385	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	386	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	387	1.76e+000	1.24e+000	8.50e-001	1.40e+000	1.24e+000	1.24e+000
	388	1.52e+000	1.07e+000	6.50e-001	1.60e+000	1.07e+000	1.07e+000
	389	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	390	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
(1840)	391	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
(=010)	392	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	393	1.52e+000	1.07e+000	1.05e+000	1.20e+000	1.07e+000	1.07e+000
	394	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000
	394 395			1.05e+000			
		1.76e+000	1.24e+0.00		1.20e+000	1.24e+000	1.24e+000
	396	1.76e+000	1.24e+000	1.05e+000	1.20e+000	1.24e+000	1.24e+000

(1850)	3971.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+0003981.52e+0001.07e+0006.50e-0011.60e+0001.07e+0001.07e+0003991.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+0004001.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+0004011.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+0004021.76e+0001.24e+0008.50e-0011.40e+0001.24e+0001.24e+0004031.52e+0001.07e+0006.50e-0011.60e+0001.07e+0001.07e+000
(1860)	4041.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+0004051.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+0004061.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+0004071.76e+0001.24e+0008.50e-0011.40e+0001.24e+0001.24e+0004081.52e+0001.07e+0006.50e-0011.60e+0001.07e+0001.07e+0004091.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+0004101.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+0004111.76e+0001.24e+0001.05e+0001.20e+0001.24e+0001.24e+000
	412 1.76e+000 1.24e+000 8.50e-001 1.40e+000 1.24e+000 1.24e+000 413 1.52e+000 1.07e+000 6.50e-001 1.60e+000 1.07e+000 1.07e+000 414 3.19e+000 2.04e+000 1.05e+000 1.20e+000 2.04e+000 2.04e+000 415 3.19e+000 2.04e+000 1.05e+000 1.20e+000 2.04e+000 2.04e+000 416 3.19e+000 2.04e+000 1.05e+000 1.20e+000 2.04e+000 2.04e+000 417 3.19e+000 2.04e+000 1.05e+000 1.20e+000 2.04e+000 2.04e+000 418 2.83e+000 1.86e+000 1.05e+000 1.20e+000 1.86e+000 1.86e+000 419 1.61e+001 3.50e+000 1.05e+000 1.20e+000 3.50e+000 3.50e+000
(1870)	420 1.61e+001 3.50e+000 1.05e+000 1.20e+000 3.50e+000 3.50e+000 421 1.61e+001 3.50e+000 1.05e+000 1.20e+000 3.50e+000 3.50e+000 422 1.61e+001 3.50e+000 1.05e+000 1.20e+000 3.50e+000 3.50e+000 423 1.61e+001 3.50e+000 1.05e+000 1.20e+000 3.50e+000 3.50e+000 424 2.12e+000 2.12e+000 8.50e-001 1.40e+000 2.12e+000 2.12e+000 425 2.70e+000 2.20e+000 8.50e-001 1.40e+000 2.20e+000 2.20e+000 426 2.12e+000 2.12e+000 8.50e-001 1.40e+000 2.12e+000 2.12e+000
(1880)	NRAFT ARAFT HRAFT ACCGRA 0 0.00e+000 0.00e+000 9.81e+000 WAVE CONTROL DATA
(1890)	CSEA Kvitebjorn CWAV 'IMODE IDIM ISEA IVEL IACC ISOW 1 3 1 1 1 0 'DEPTH SEACOR VELCOR ACCCOR 190 1.0 1.0 1.0 ' WAVE 'ITS NW FLOW FHIGH IEXCOD THETA ISURCH X0 Y0
(1900)	0 4096 0.00 3.30e-001 6 75 3 -5.70e+001 - 2.20e+001 ' 'SEFILE NRTS NVER wav200401011200-hv-mwl.ts 1 1 ' 'IDT ND EXPON 2 50 4 ' WTIM 'TLEN DT NSEED (1.3020e-001,0.1302047) 1066.5984 1.3020e-001 1
(1910)	' RAND 'IRAN IAMP 78246389 0 ' TIME ITSTOT DT ICO BT THETA DELTA ALEA EKADA TODED TODEL
(1920)	'TSTOT DT ICO BT THETA DELTA ALFA EKAPA TSREP TSDEL 1035.4688 0.0079 0 4.00 1.00 0.00 0.00 0.00 0.00 0.00 '1066.5984 1.3020e-001 0 4.00 1.00 0.00 0.00 0.00 0.00 0.00

