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Background

Development of offshore fields in arctic waters may include the use of moored structures. These

structures may then have to operate year round and thus interact with sea ice features. The

interaction of sea ice on the vessel is dynamic and will causea dynamic response of the vessel.

Estimation or measurements of the dynamic ice loads acting on the vessel is difficult. The vessel

response is however easier to observe and is usually reported. It is then possible to back-calculate

the ice actions on the vessel. However it is then needed to asses properly the hydrodynamic loads

applying on the vessel. The moored vessel in ice is a body experiencing forced oscillations. The

hydrodynamic loads applying on the body are probably affected by the presence of sea ice around

the vessel. The sea ice will affect the added mass and damping. The study in the master thesis is

a step in the understanding of the hydrodynamic ship ice problem.

Scope and main activities

The candidate should presumably cover the following,

• The candidate should do experimental 2D tests with a cross-section of a ship model that

is forced to oscillate in heave. The tests should be performed in an open water condition,

a set-up with ice on one side of the section and ice on both sides of the section. The ship

model is to be tested at a range of frequencies determined by the student and the distance

from the ice to the ship model is to be varied. The ice should bemade of a synthetic

material and the dimensions of the ship and ice models is to bedetermined by the student.

• Comparison should be made with the linear BEM, developed in Dr.Trygve Kristiansens

PhD. Discrepancies between numerical and experimental results are to be discussed. An

analysis and discussion of error sources in the experimentsare also to be discussed.



• Calculation routines to find added mass and damping from experimental and numerical

simulations are to be developed in Matlab. The calculation routines should be verified to

check its validity.

The report shall be written in English and edited as a research report including literature sur-

vey, description of numerical models, discussion and conclusion including a proposal for further

work. Source code in Matlab shall be provided on a CD. It is supposed that Department of

Marine Technology, NTNU, can use the results freely in its research work by referring to the

students work.

The thesis should be submitted in two copies within the 14th of June 2010.
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Abstract

A two-dimensional study of a ship section forced to heave in open water and surrounded by plates

representing ice have been performed. The setting is a ship moored in ice infested waters. The

ice is modeled as a stiff rigid body and is not allowed to move or bend in any degrees of freedom

nor modes. The distance between the ship section and ice havebeen varied and added mass and

damping have been calculated in a frequency range includingresonance. The investigation is

carried out by means of model tests as well by a linear wave tank based on the boundary element

method.

In the study it was found that around resonance with ice present an abrupt and steep change

in added mass occurs. In the numerical results for the case with two ice-floes the maximum

values for added mass it is seen that it becomes larger fromb= 0.01mbefore it becomes smaller

afterb= 0.02m. For the experiments with the same geometric set up the maximum values show

a similar trend. The maximum values for added mass shows a growing trend fromb = 0.01 m

and peaks atb = 0.08 m and get a smaller value forb = 0.10 m. For the case with one ice-floe

the same maximum values decrease a the ship section gets further away from the ice. The model

tests show an discrepancy of when resonance occurs comparedto the numerical simulation and

difference in the maximum and minimum values. In general thenumerical program predicts a

higher added mass and damping compared to the model tests when ice is present. For the tests

without ice present the numerical and experimental resultscorrelate well.
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The work of moving the ice-floes was a cumbersome and time consuming task as the results

relied on precision with respect to the distance between theice and ship section and that the ice

was level. This work turned out to be a task more suitable for two persons.

Through the study I have had the opportunity to take theory from courses given within hydrody-

namics and put them into practice and learned how to use results published in journals. However

it have been hard to find relevant literature on the subject athand, which made the theoretical
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spect to a vessel in ice with an emphasis on the hydrodynamic coefficients.

Trondheim, 14 June 2010

Tommy Olsen.
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Summary

As oil and gas exploration seems to be moving towards Arctic regions, research is taking place to

outline possible solutions on how this can be done in a safe and efficient manner. Development

of offshore fields in the Arctic may include the use of moored structures. The interaction of sea-

ice on a vessel is dynamic and will cause a dynamic response. Such behavior have been devoted

a lot of research with emphasis on a structural point of view but not so much with respect to

the hydrodynamics involved. The hydrodynamic loads applied on the vessel are affected by the

presence of sea-ice surrounding the vessel.

To investigate how the hydrodynamic coefficients are affected by the sea-ice presence a two-

dimensional study have been performed. The hydrodynamic coefficients are added mass and

damping. The two-dimensional problem consists of a ship section in forced heave motions in

three cases. In the first case the ship section is oscillatingin open water with no ice present,

in the second there is a long ice-floe in close proximity to theoscillating section and in the last

the section is surrounded by ice of two sides. This have been investigated both by numerical

simulations and model tests.

A model test series of scale1:100 have been performed in a wave flume with a length of 13

m, breadth 0.6 m and a depth of 1m. The ship-section have a breadth/depth,B/D ratio of 2.67

whereB = 0.32 m andD = 0.12 m. The ship section is forced to heave by an actuator and pro-

hibited to move an any other degree of freedom. The forcing amplitudes tested are 2.5 mmand 5

mm. The ice is modeled by 3.60m long divinycell plates with a draught of 0.04m. The ice is not

allowed to move or bend in any degree of freedom nor mode. The tests have been done with the

distance between the oscillating ship section and the ice asa variable. This distance varies from

1 cmto 10cm.

The results from the experiments have been compared to a linear time domain boundary ele-

ment method code. Different limitations of both models are discussed and results are presented

for an oscillation period range from 0.4 s to 2.0 s.

In the numerical results for the case with two ice-floes the maximum values for added mass

it is seen that it becomes larger fromb = 0.01mbefore it becomes smaller afterb = 0.02m. For

the experiments with the same geometric set up the maximum values show a similar trend. The
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maximum values for added mass shows a growing trend fromb = 0.01 m and peaks atb = 0.08

m and get a smaller value forb = 0.10 m. For the case with one ice-floe the same maximum

values decrease a the ship section gets further away from theice. The model tests show an dis-

crepancy of when resonance occurs compared to the numericalsimulation and difference in the

maximum and minimum values. In general the numerical program predicts a higher added mass

and damping compared to the model tests when ice is present. For the tests without ice present

the numerical and experimental results correlate well.
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Chapter 1

Introduction

Development of offshore fields in arctic waters may include the use of moored structures. These

structures may have to operate year round and thus interact with sea ice features. Experience

with moored structures in ice infected seas is limited. The main full scale experience is from the

operation of the conical drilling vessel Kulluk in the Beaufort Sea, see [23]. In addition, some

ice basin model test studies have been performed studying challenges linked to the operation of

moored vessels in ice are reported e.g. [15] and [3].

The interaction of sea ice on the vessel is dynamic and will cause a dynamic response of the

vessel. Estimation or measurements of the dynamic ice loadsacting on the vessel is difficult.

The vessel response is however easier to observe and is usually reported. It is then possible to

back-calculate the ice actions on the vessel as reported by e.g. [19]. However it is then needed

to assess properly the hydrodynamic loads applying on the vessel.

The moored vessel in ice is a body experiencing forced oscillations. The hydrodynamic loads

applying on the body are probably affected by the presence ofsea ice around the vessel. The

sea ice will affect the fluid boundary conditions and the added mass or hydrodynamic potential

damping in the different DOF will differ from the open water case.

For a case where a ship is found in frozen sea-ice one can imagine that the ship is surrounded by

infinite ice. In the present work this is not been investigated due to physical limitations. Instead

the ice will be considered big compared to the ship.
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The goal of the work in the thesis is to investigate the hydrodynamic coefficients by perform-

ing a two-dimensional study with a ship-section. In the workthe two-dimensional ship-section

is forced to heave in open water and between one and two platesrepresenting ice.

1.1 Present situation

Due to expectations that large reserves of undiscovered oiland gas might be found in Arctic areas

and waning opportunities for exploration elsewhere makes this region interesting. As technol-

ogy and solutions are improving the challenges related to Arctic petroleum exploration might be

overcome in the near future. Also the melting of sea-ice is making the Arctic a more attractive

option. Some examples already exists of activity in harsh Arctic climate like the developments

in the sea of Okhotsk and on the Sakhalin Shelf. However thereis yet more research to be done

to explore such regions in an efficient and safe manner.

There are several examples related to the development of solutions for Arctic operation. Some

of these presents e.g. a tandem offloading terminal with mooring lines see [4] and the subsurface

interaction under a moored offloading icebreaker, [5]. Alsoanother system with an Arctic shuttle

barge system for loading of oil in ice can be seen in [18].

1.2 Previous work

For the case of a vessel in ice many publications have been released, but mainly concerned with

structural loads for various ice conditions and dynamic behavior, like e.g. [7], [6] and [14]. Also

for waves propagating through a Marginal Ice Zone (MIZ) manypublications can be found like

e.g. [12]. But the hydrodynamic problem with a vessel operating in sea-ice features or model

tests of such vessels to study the hydrodynamic coefficientshave not as far as the author’s knowl-

edge been published.

However when considering a vessel in motion close to level sea-ice it may be broken down

to something that resembles a gap problem. Such gap problemsthat is referred to are two-
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dimensional studies related to moonpools as found in the publication of B. Molin in [21] and

Odd M. Faltinen in [9]. The gap problem can also be related to studies performed for ships and

fixed terminals as Kristiansen have done in [17] and further discussed in his Phd. thesis. Other

studies that are interesting in relation to the problem is another publication from B. Molin where

he looks into wave propagation and decay in a channel througha rigid ice-sheet and McIver’s

study of complex resonances in the water-wave problem for a floating structure.

Common for all the above publications are the coupled motion of a structure and fluid in a

confined space. By studying the theory provided in these papers it is possible to relate it to the

ship-ice system, which is described in chapter 2.

1.3 Outline

The work in this thesis is outlined in the different chaptersas the following:

• Chapter 2 gives a description of the physical problem that is to be investigated and physi-

cal effects to be expected.

• Chapter 3 presents the Numerical wave tank with the theoretical principles behind it and

the parameters related to the numerical model.

• Chapter 4 provides a discussion related to the hydrodynamic coefficients and how they

can be calculated.

• Chapter 5 presents a description of the experimental test set-up, routines , measuring

equipment and an uncertainty analysis.

• Chapter 6 presents the results from the experiments and numerical simulations.

• Chapter 7 provides a discussion of the the results and the main differences between the

numerical calculation scheme and the physical model.

• Chapter 8 concludes this work and suggests future work.
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Chapter 2

The physical problem

This work is concerned with the two-dimensional motion of a structure in an incompressible and

inviscid fluid with the objective of studying the fluid interaction with a two dimensional ship

section forced to heave in open water and between one and two ice-floes with a specified gap.

The work is done in order to try and further understand the howthe hydrodynamic coefficients

behaves.

The work is conducted with the assumption that theory related to piston-mode problems is valid

and hence it will be treated thereafter. As a consequence literature related to such problems have

been consulted to understand the physics involved.

The problem with a two-dimensional ship-section in ice resembles the principles in [11] chapter

3.7 Sloshing in external flow. The problem is also analogous to Dr. Trygve Kristiansens work in

his PhD. [16], who’s thesis is used as the main source for the following description in the present

work. The theory has been adapted to fit the ship-ice system.

2.1 Formulation of the basic two-dimensional problem

Throughout the study the ship and ice floes have been considered to be of simple rectangular

shape with sharp corners. A rectangle with sharp corners will resemble a simplified version of

a vessel. In this case the vessel is meant to be operating in ice infested waters. In the study the

5



effect of round corners or bilge keels have not been investigated i.e. only a ship section with

90◦corner is considered. The details of the separated flow around the different bilge geometries

mentioned will be different. The imagined flow pattern that would occur round the three differ-

ent geometries are illustrated in figure 2.1. For more details regarding bilge keels the reader can

consult e.g. [10].

Figure 2.1: Instantaneous scenarios of flow around bilges. The flow will always separate around
a sharp corner. Left: No bilge keel. The flow will still separate at sufficiently largeKC-numbers,
but not in the illustrated case. Middle: Bilge keel. Right: Sharp corner with bilge keel superim-
posed for illustration purposes.

The ship beam is defined by Bship and and the draft by Dship as seen in figure 2.2. Ice floes are

defined by Bice and Dice. In the figure both ship and ice floes are represented with the ship in the

middle. The distance between the ship and the ice floe is denotedb and will throughout the work

also be referred to as gap, ice gap or ship ice gap. Due to symmetry only b is needed to describe

the gap distance. The still water depth is denotedh.

The ice is modeled as a stiff rigid structure that is restricted to move in any degrees of free-

dom and bending modes. This means that the ice can be considered as a horizontal wall with

a draftDice in the mean free-surface of the water in the tank. The ice is modeled with a more

significant draught compared to real level sea-ice and equally large freeboard. This have been

done in order to as a large as possible way create comparable environments for comparing nu-

merical an experimental results. This is due to that the numerical calculation scheme is based on

linear theory and effects like e.g. green water is not included nor dry spots under the due to the

oscillating water column.

The amount of parameters to consider in the problem are many.The beam-to-draft ratioB/D

is the main parameter for the ship section itself. In this case this parameter isB/D=2.67. The

reason to the somewhat odd ratio number is due to an error in the fabrication of the model for

the experiments. The ratio between the beam and the water depth B/h is a relevant parameter

when considering finite water depth effects on ship section motion. When considering the ship
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h

bb

Bship

Bice

Dship

Bice

Dice

Figure 2.2: Dimensions in the problem of a ship section by twoice-floes: Water depthh, ship
section beam or breadthBship, ice floe beamBice, ship section draftDship, ice floe draftDice and
the gap between the ship and ice floeb

ice system, the ratios between the gap width and the ship section beam and ice floe draft,b/Band

b/D, are relevant. These parameters describe the ship sectionsability to to disturb the fluid in the

ice gap when the section is forced to oscillate in heave.

The main parameter mostly used to define the problem is the ship beam,Bship, because it de-

fines the relative extent of the gap and an important variablerelated to added mass.

Most of the analysis will be done with the previous mentionsB/D ratio of2.67which have been

used during the experiments. However a variation in the B/D ratio will be tested numerically in

addition to a few variations of the beam of the ice floe. The ship section will be forced to oscillate

in a sinusoidal motion in heave. In the experiments with alsoa varying heave amplitude. The

results will in general be presented as a function of non dimensional frequencyω
√

B/2g.

2.2 Resonant behavior

The basic principle in the present work can be related to a gapresonance problem. In theory

there is an infinite number of resonance frequencies in the gap. Most of these are associated

with modes of the free surface localized in the gap between the ice and the ship. These localized

modes are referred to as sloshing modes. Note that there is a distinction between the sloshing

modes and the piston mode, which is of a more global character.
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The approach used in the study is to solve the linear problem by means of the Boundary Ele-

ment Method (BEM) and not of a modal method. Hence modes are notseparated and only the

full problem is solved.

It should be noted that there will also be other disturbancesin the gap, they are evanescent-

like disturbances.

In addition to the sloshing modes, there is a zeroth mode which is usually referred to as the

piston mode. The piston mode is characterized by that the fluid entrained in the ship-ice gap un-

dergoes near uniform vertical oscillatory motion with a flat, horizontal free surface. The piston

mode has an amplitude which is called the piston-mode amplitude and is denoted by Ag. The

amplitude is definedAg=Hg/2 whereHg is the trough-to-crest height of the free surface averaged

over the gap. Associated with the piston-mode is a resonancefrequency which is denoted the

piston-mode resonance frequency. This frequency is typically lower than those of the sloshing

modes. This means that if the excitation frequency is in the vicinity of the piston mode-mode

resonance frequency, the dominating part of the fluid motionis that of the piston-mode. This is

called piston-like behavior. The piston-like behavior is illustrated in figure 2.3.

��������������������������������������������������������������������������������������
������������������������������������������������������������������������������������

��

Communication

Piston mode

Communication

Hg

Figure 2.3: Illustration of the piston-mode motion. Piston-mode motion isHg/2 whereHg is the
crest-to-trough height of the free-surface elevation averaged over the gap. Due to continuity of
mass the piston mode must communicate with the outer flow.

Associated with the piston mode is a resonance frequency which is denoted the piston-mode res-

onance frequency.

8



It is the piston-like behavior that will be treated in the study, no sloshing behavior that might

include run-up and wave breaking is going to be treated. The geometrical set-up with the ship

forced to oscillate in close proximity to the ice-floes represent an external problem, which means

the following. In the the external problem there exists a piston mode as previously discussed.

As a consequence of mass conservation this does not exist in the internal problem. By internal

problem it is meant that of a tank partially filled with fluid. Under forced heave of such a tank,

linear theory predict zero sloshing. Another difference between the internal and external prob-

lem is that in the external problem energy may escape via radiated waves. The radiated waves

generated by the fluid motion in the ice-gap introduces damping, and by that keeping the motion

at a finite level.

The damping effect due to the radiated waves in the external problem applies in principle to

all modes in the ice-gap, although most pronounced for the piston mode, since the basic nature

of the piston mode is such that it communicates with the external flow outside of the ice floe due

to continuity of mass. This is illustrated as communicationin figure 2.4 and 2.3.
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CommunicationCommunication

Piston mode

Ice Floe Ship Ice Floe

Figure 2.4: Illustration of the piston-mode motion but withtwo ice-floes.

As previously mentioned the ship section is forced to oscillate, which means it is a part of the

usual diffraction and radiation sub-problems, see e.g. [8]. One can also imagine that the ship

could be moving freely and then oscillate and hence the resonant piston-like motion will be

triggered whether excited by waves entering the system or byforced ship section motions. So

disregarding which sub-problem, there is one single frequency of the piston-mode motion, which

is denotedωp. This resonance frequency have also been referred to as the piston-mode resonance

frequency, and terms like ice-gap resonance and piston-mode resonance will be used interchange-

ably.
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In the following chapter a description on how to obtain the piston-mode resonance frequency,

ωp. A discussion on the dependence of the geometric parametersas well as the overall behavior

of the system is included. In addition throughout the reportthe term resonance period will be

used,Tp =2π/ωp.

2.3 Piston-mode resonance

An approximate method to estimate natural periods in gaps similar to the situation under consid-

eration was derived within linear theory by [21] for the caseof infinite water depth. The problem

for finite water depth was treated by [9]. In the mentioned references a frequency domain ap-

proach have been utilized, but in this work a time domain approach have been used.

The resonance frequency of the piston modeωp is found by performing forced motion of the

ship section for a range of frequencies using the linear time-domain numerical wave tank which

will be described in a later chapter. The simulations are rununtil they reach steady state. How-

ever it it was discovered that not all cases was solvable withthe present code, this is discussed in

chapter 6. The resonance frequency of the piston mode ,ωp, is taken as the frequency for which

the averaged amplitude of the free surface in the gap betweenthe ship and the ice-floe attains a

local maximum when plotted versus frequency.

Piston body reasoning

The existence of a natural period of the piston mode is a consequence of the mass-spring type

behavior of the piston mode. This can be illustrated by a simplified linear analysis. The problem

is similar to that of a moonpool see e.g. [8] page 99 and the procedure is translated to fit the

current problem. The fluid motion in the ice gap is assumed to be uniform, e.g. the fluid in

the shaded area in figure 2.4. The flat free surface is denotedη(t) as illustrated in figure 2.5.

This means that all the fluid in the shaded area denotedΩp in the figure oscillates vertically with

velocity ηt . Under the assumption of uniform fluid motion withinΩp, the fluid inΩp will act as

a rigid body on the surrounding fluid. The equation of motion in heave of the piston bodyΩp

10



can then be written as,

(ρDb+Ap)ηtt +Bpηt +ρgbη = FD (2.1)
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Figure 2.5: Simplified, linear hydrodynamical problem of piston-mode motion. The fluid motion
within Ωp is assumed uniform, so the shaded mass acts like a rigid body.Sp is the dashed
(horizontal) line only.

whereAp(ω) andBp(ω) are the added mass and damping coefficients of the piston body, respec-

tively, andFD is the excitation force. The draftD is the draft of the ice-floe,Dice, but just denoted

D here for simplicity. If the motion in equation 2.1 is assumedto be harmonic,η = ηaeiωt , the

homogeneous problem can be solved to find the body’s natural period T̃p. The homogeneous

equation isω2
(

ρDb+ Ã(ω)
)

+ iωB̃(ω)+gb= 0. The undamped natural period is found to be,

T̃p =
1

2π

√

ρDb+ Ãp

ρgb
(2.2)

whereÃp is the added mass at the natural period. From equation 2.2 it is observed that the natu-

ral period increases with the square root of the draftD. However as the ship is the driver in the

system the draught would be more correct if the mean value of the ship and ice draught is used.

It further depends on the added mass termÃp. The added mass term depends on all geometric

variablesB for ice and ship,D for ice and ship andh. The behavior of the added massÃ is a
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variable that is not easy to quantify as it varies appreciably in gap problems. It should also be

noted that the fluid flow along the lower parts ofΩp will not behave as the assumed uniform

flow. An in depth study of the simplified problem have not been performed in this work but this

example illustrates that the piston mode can be, to a certainextent, be thought of as a rigid body.

In the present work the ship-ice system is the main focus. An explicit approximate formula for

Tp is given by Molin [21] for the case of deep water and smallb/B ratio. In the following chapter

a study of the relative importance of the calculation paramters is presented. It is observed that the

resonance frequency change significantly with the ship-beam ratio. This implies thatb/B ratio

mentioned above is not always small and hence the Molin approximation is strictly not valid for

the ship-ice problem.

2.3.1 Relative importance of calculation parameters

As previously mentioned the added mass varies appreciably in gap problems. To aid in the under-

standing of the relative importance of the variables in the problem, a set of numerical simulations

were done to establish this. The simulations were done in thenumerical wave tank that is ex-

plained in 3. The calculations were done with the symmetrical set-up of the ship-section in the

middle of two ice-floes, as seen in figure 2.4. In these simulations thebeam-draftratios,B/D, of

the ship section and and ice-floes were tested and the importance of the tank depthh.

For the simulation to test the importance of theB/D for the ship all other parameters were kept

the same as used in the experimental and numerical calculations. For the other parameter tests

the procedure were similar, only the parameter that were to be tested were changed. The results

can be seen in figures 2.6 to 2.11.From the results it is observed that the most significant change

in the resonance frequency and added mass is related to theB/D ratio of the ship. This also

indirectly indicate that for the gap problem theb/B is the dominating parameter in the system.

When theB/D ratio for the ship is small e.g. 1 as seen in figure 2.6 and 2.7 italso means that

theb/B ratio is bigger because the gap width,b have been kept constant while the ship-section

beam,B has become smaller. Thus the most important parameter in theship-ice system is the

gap width and ship beam ratiob/B.

For the results related to the ship section parameters it is seen that the water elevation ampli-

tude in the gapAg is linearly dependent on the ships beamB. It is also observed in the plots for

12



the beam-draught ratios for the ice that the resonance frequency is dependent on the beam of the

ice-floe and there is a peak at a frequency corresponding to approximately the width of the ice.
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Figure 2.6:Ag/η3a for B/D = 1, B/D = 2 and
B/D = 4 for ship-section
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Figure 2.7:A33/ρA for B/D = 1, B/D = 2 and
B/D = 4 for ship-section
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Figure 2.8:Ag/η3a for B/D = 60,B/D = 90 and
B/D = 120 for ice-floe

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−40

−30

−20

−10

0

10

20

30

ω(B/2g)0.5

A
33

/(
ρA

)

 

 

B/D = 60
B/D = 90
B/D = 120

Figure 2.9: A33/ρA for B/D = 60, B/D = 90
andB/D = 120 for ice-floe

13



0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

ω(B/2g)0.5

A
g/η

 3a

 

 

h = 0.90 m
h = 1.0 m
h = 1.10 m

Figure 2.10:Ag/η3a for depths ofh = 0.90 m,
h = 1.00mandh = 1.10m

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−25

−20

−15

−10

−5

0

5

10

15

20

25

ω(B/2g)0.5

A
33

/(
ρ 

A
L)

 

 

h = 0.90 m
h = 1.0 m
h = 1.10 m

Figure 2.11:A33/ρA for depths ofh = 0.90 m,
h = 1.00mandh = 1.10m

14



2.3.2 Coupled ship and piston-mode resonance

The presence of ice, as used in this study, introduces coupling between the flow of the fluid and

the rigid body motions of the ship section. The couplings arein sway, heave and roll. If an open

water problem is considered, no ice presence in proximity ofthe ship, there is only a coupling

between sway and roll, for a symmetric shaped ship. In this study only heave is considered. With

the ship set up, the coupling between the motion of the ship and the piston-mode is an essential

feature.

In the paper written by McIver [20] he investigates the gap problem for both the radiation,

diffraction and freely oscillating problem by a linear potential flow analysis. In his study of

the homogeneous solution of the equations of motion (added mass, damping and exciting forces

included) he finds that for a freely floating body thatωp do not exist. An exception exists if the

ship section is fixed in one or two degrees of freedom. The system may then retain piston-mode,

ωp, resonance. He also shows that in general that the piston-mode resonance is different from the

system resonance,ωp 6= ωn. He describes this as a shift in resonance frequency, fromωp to ωn.

This means that the coupled ship and piston-mode resonance,when the ship is free to oscillate

in all degrees of freedom, will be significant aroundωn only. There is in particular no pure heave

resonant-motion, only that of the coupled ship section and fluid motion.

In the same paper from McIver he also discuss the occurrence of negative added mass. When

sloshing is considered or as in this study a special case of sloshing, previously referred to as the

zeroth mode denoted piston-mode, resonances are found. In the gap problem with the ship forced

to oscillate in heave characteristic rapid changes are observed in the added mass and damping

coefficients near resonance frequency. This means that in the present case with the ship-ice sys-

tem the phenomenon of negative added mass is observed.

When no moorings are assumed in the set-up there is one resonant frequency for each varia-

tion of the gapb in heave. If the heave motion is coupled with sway, two resonant frequencies

exist for the asymmetric set-up with onc ice-floe with the ship section oscillating next to it, see

figure 2.3.

In the present work, the required added mass and damping coefficients is found from forced

heave oscillations of the ship section in ice by a numerical wave tank and from experiments. The
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numerical wave tank is explained in chapter 3 and the model tests are explained in chapter 5.

The simulations are run to steady-state and the hydrodynamic coefficients extracted from steady

parts of the time-series.

The main driving mechanism for the piston-mode motion is theforced heave oscillation of the

ship-section and the communication with the external domain. The external domain means the

fluid outside of the ice-floes.

The system that determines the level of response in in the ship-ice gap, i.e. the achieved steady-

state piston-mode amplitudeAg is the amount of fluid needed, hence the gap widthb is of im-

portance. When the gap is small i.e.b = 0.01m resonance appear at a high oscillating period

which means longer wave lengths then when the gap is bigger,b = 0.10m the resonance effect

happens at lower periods i.e. shorter wavelengths. Thus more fluid must be accelerated beneath

the ice-floe and into the gap.

At resonance, the amplitude of the ship motion is proportional to the net force and also inversely

proportional to the damping. Waves radiated as a consequence of the ship section motion and the

piston-mode motion contribute to the potential damping.

2.4 Effect of flow separation

In the chapter is the piston-mode behavior in the ship-ice gap described like a damped, linear har-

monic oscillator. Therefore, the response level relative to the level of excitation is at resonance

directly dependent on the level of damping, where linearly,damping is manifested through wave

radiation only. This is the potential flow damping. In reality the flow separates at the sharp cor-

ners of the ship and ice-floe. This means that vorticity is shed into the bulk of the fluid with the

main consequence that circulation is introduced, illustrated in figure 2.12. The circulation is in

such a phase relative to the ambient flow, such that that the phase creates a back-flow acting as

a damping factor. This is further conceptually illustratedin figure 2.13. Kristiansen, [16], found

that the damping effect of flow separation on the piston-modeamplitude due to forced heave of

the ship is significant.
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Figure 2.12: Illustration of the circulation introduced bythe shed vorticity.

As only linear theory is considered in the numerical calculations it do not predict well the reso-

nant behavior in the ship-ice gap system. This is most likelyrelated to non-linear effects from

flow separation.

2.5 Three-dimensional effects and hydroelasticity

In the study of the ship-section in forced heave with the ice-floes present, only the two-dimensional

problem is considered. All realistic situations are in three dimensions, meaning that the fluid will

have the opportunity to flow in all directions. Also green water on the top of the ice is expected.

Also for the case of a ship in open water, waves will be scattered in all directions around the

ship and in particular radiate from the fore- and aft ends of the structure, see e.g. [8] page 196.

When real ice is considered it will show elastic properties. If ice is floating in close proximity to

a floating structure that is oscillating one can imagine thatbecause of the acceleration of the fluid

will induce a vertical motion in the flexible ice. In figure 2.14 this effects is illustrated. When

the structure is moving upwards there is an immediate deformation of the ice downwards and

opposite when the structure has a motion downwards.

17



��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Ice−Floe

Ship section

Figure 2.13: Schematic of the effect of circulation.

In hydroelastic problems the hydrodynamic forces are influenced by the elastic deformation of

the structure. This deformation is governed by inertia forces and elastic forces in the struc-

ture. The modeling of the elastic properties of structures will therefore give several additional

problems compared to the modeling of wave induced dynamic response of rigid structures. Re-

quirements to an elastic model can be summarized as follows:

• Correctly scaled global structure stiffness

• Structural damping must be similar to full scale values

• The mass distribution must be similar

Geometrical similarity between model and full scale for an elastic structure will require that the

elastic deformation is similar, [1].
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(a) Ship moving downwards.
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(b) Ship moving upwards.

Figure 2.14: Illustration of flexible level ice showing hydroelastic behavior.

2.6 Boundary layer

The boundary layer is of importance of the ship-ice problem in this study. When the ship section

is oscillating close to the thickness of the boundary layer is important to determine how close

the ice floe can be allowed to be and not provoke unphysical behavior. Note that the numerical

calculations are performed according to linear theory and hence no boundary layer is found in

them, i.e. the boundary layer is relevant for the model tests.

When flow around corners are considered, some turbulence is tobe expected. The level of

turbulence can be quantified with the Reynolds number and can be written as,

Rn=
2ωa2

ν
(2.3)

Now, the flow around a ship section corner will behave similarto that around one corner rectan-
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gle in infinite fluid. This applies at least if the vortical structures confined to the vicinity of the

corner such that the bottom, ice-floe corner and free surfaceare considered to be in the far-field.

In all the investigated cases a steady state have been reached and the observed piston-mode mo-

tion of the fluid are quite sinusoidal. This means that the piston-mode amplitude can be used as

a relevant measure of the ambient flow amplitudea in 2.3, [16].

According to Kristiansen [16] a measure of the boundary layer thickness can be found by saying

the distanceδ from a wall, i.e. Ship side, where the actual flow differs fromthe outer flow by 1%.

For a laminar boundary layer this isδ ≃ 4.6
√

2ν/ω. For the open water where the ship section

is oscillating without any ice-floes this is valid. For the cases with ice-floes located close to the

oscillating ship the flow might be considered turbulent. At resonance the Reynold’s number is in

the order ofo(105). In an oscillatory flow over a smooth surface, the critical Reynold’s number

for transition between laminar and turbulent boundary layer flow is actuallyo(105). This means

that the boundary layer must be estimated in a different manner. For a turbulent boundary layer

the thickness can be estimated byδ = 0.093aRn−0.11,[16]. The latter estimation yields a bound-

ary layer of about 2.3 mm, assuming the boundary layer has the same thickness at the ice-floe

the total boundary layer is in the order of 5mm. With this in mind the ice-floes were not placed

closer to the oscillating ship section than 1cm, the effect of surface tension is also considered in

this choice as such effects are not relevant for full scale vessels.

2.6.1 Scaling

In the study a model with sharp corners i.e. 90◦have been used. This creates vortex shedding,

due to this no significant scaling effects is expected. The beam of the model is 0.32 m and the

draught is 0.12m. A real ship might have a beam of 32mand a draught of 12m, this means that

the scaling can be said to be1:100. Further the ice is modeled with a beam of 3.6 m, which gives

a full scale beam of 360m and is considered large compared to the ship, the ratio between the

ship beam and ice beam is then 11.25.
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Chapter 3

Numerical calculation method

In the work of obtaining values for the hydrodynamic coefficients by numerical calculations the

method, commonly known as the Boundary Element Method (BEM), have been used.

The code is developed by Dr. Trygve Kristiansen as part of hisPhD and recently modified

for multibody problems. The following text is based on Kristiansens thesis [16], and is included

here for easy reference to the theory and numerical method which has been utilized.

The boundary element method, also sometimes referred to as panel method, is a very economical

method used for two-dimensional potential flow problems. The calculations have been carried

out within a closed tank as illustrated in figure 3.1. The domain of the tank is denoted byΩ
and its boundaryS. In thisS is defined to consist of the solid surfacesS0+SB as well as the free

surfaceSF such thatS=SF+SW+S0+SB.

An Earth-fixed right-handed coordinate system is defined with Cartesian coordinates(x,y) where

y is positive upwards, and the horizontal axis defined byy = 0 in the mean water line. The sur-

faceSB represents a ship section, whileS0 typically represents the tank wall and bottom andSW

is the surface of a flap type wave maker. In the current settingthe wave maker is inactive and is

considered as a wall, likeS0. The domainΩ bounded by the closed surfaceS is hereafter usually

referred to as the numerical wave tank.

The numerical wave tank is created after linear theory whichmeans that the domain and its

boundary are fixed in time. The free-surface elevation is denotedζ (x, t).
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Figure 3.1: Illustration of the closed linear tank considered in the work. The domain is denoted
Ω and its boundaryS=SF+SW+S0+SB. The cartesian coordinate system denoted(x,y) is defined
so thaty= 0 is in the mean water line. The unit normal vectorn is defined positive into the water.

3.1 Governing equation

The fluid is assumed incompressible and inviscid. The governing equation for the fluid motion

is the Laplace equation.

∇2ϕ = 0 in Ω (3.1)

Because the fluid is assumed inviscid the velocity may be represented by the gradient of a veloc-

itypotentialϕ, such thatu = ∇ϕ.

Conservation of mass is described by the divergence of the velocity ∇u = 0, whereu is the

fluid velocity at any point and at any time, and∇ = (∂/∂x,∂/∂y).

The unknownϕ is solved over the domainΩ defined by the closed surfaceS= SF ∪SW∪S0∪SB.

The Laplace equation implies that this is an elliptic problem. The consequence of this is that at

any point in the domain the solution depends the solution everywhere else in the domain. Hence

boundary conditions along the boundarySare needed.
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3.2 Representation of a solution by surface singularity

The use of a surface singularity as outlined by [13] and [8]. Asource in two dimensions can be

written as

ϕ = qlogr (3.2)

In higher dimensions it can be written as

ϕ = qrn−2 (3.3)

Wherer is the radial distance from the source point given asr =
√

∑n
i x2

i , andq is the source

strength andn is the dimension of the space. Ifq < 0, the source is negative, then the previous

equations 3.2 and3.3 are referred to as sinks.

Potential flow problems can be solved by distributing sources along the boundaries of the fluid

and solving for the source strengths q by applying proper boundary conditions. By assuming a

continuous representation of sources over the boundary thevelocity potential can be written as

ϕ (x,y) =
∫

S

q(s) ln
(

(x−ξ (s))2 +(y−η (s))2
)

1
2
ds (3.4)

Where(ξ (s),η(s))are the coordinates along the boundary and s is an integration variable over

the boundary. To make a numerical approximation the boundary can be divided intoN straight

lines and it is assumed a constant source density over each segment.

ϕ (x,y) = q1

∫

S

(s) ln
(

(x−ξ (s))2 +(y−η (s))2
)

1
2
ds

= + . . . (3.5)

= qN

∫

S

(s) ln
(

(x−ξ (s))2 +(y−η (s))2
)

1
2
ds
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3.2.1 Boundary conditions

When boundary conditions are introduced a matrix system for solving the unknown source

strengths can be established.

Along SF the boundary conditions comprise the dynamic and kinematicfree-surface conditions,

while alongS0 +SB there is the zero-penetration boundary condition.

For the free surfaceSF

∂ϕ
∂ t

= −gζ ony = 0 (3.6)

∂ϕ
∂ t

= −∂ϕ
∂n

ony = 0 (3.7)

Where byy = 0 is the mean waterline outside the body andn is the normal vector pointing in to

the fluid.

On the solid boundaries of the wave tank the zero penetrationis imposed

∂ϕ
∂n

= 0 onS0 (3.8)

And for the boundary of the ship section and ice floes, when they are applied;

∂ϕ
∂n

= UBn onSB (3.9)

HereUB is the velocity along the ship and ice floe.

3.2.2 Boundary integral equation

In the program sources and dipoles are distributed all alongthe boundary. Them BEM is based

on Greens second identity. For any pointx in the fluid domain including its boundaries, we have

24



θ (x)ϕ (x) = −
∫

S

ϕ (ξ )
∂ψ (ξ ,x)

∂nζ
ds−

∫

S

ψ (ξ ,x)
∂ϕ (ξ )

∂nξ
ds (3.10)

Where the first integral is defined as a principal value integral, is analytic everywhere, and the

source term is

ψ (ξ ,x) = ln r (3.11)

r =
(

(x−ξ )2 +(y−η)2
)

1/2 (3.12)

The positive direction of integration is counterclockwise, and n is the unit normal to vector point-

ing into the fluid, see figure 3.1. The internal angleθ(x)is measured counterclockwise and is,

e.g.,−π whenx is on a flat part of the boundary. The field point isx = (x,y), andξ = (ξ ,η) is

the integration parameter. Furthermore∂/

∂nξ
= n1

∂/

∂ξ +n2
∂/

∂η is the normal derivative with

respect to the integration parameterξ .

3.2.3 Boundary element method

The Boundary Element Method (BEM) is the discretized version of the boundary integral equa-

tion. The boundary of the fluid domain,S, is divided into elements of some prescribed shape, and

the variation of the unknowns over each element assumed to beof a certain order. The program

used in the work use a linear variation of the unknowns over each element.

The boundary element program works by dividing the full boundary S into a total ofN (free

surface)+M (solid boundaries) straight elements and assume thatϕ andϕn vary linearly over

each element. It is chosenN+M collocation points to be the end points of the elements. The in-

tegral equation then reduces to a set ofN+M linear equations in the same number of unknowns.

The resulting linear system of equations is dense and is solved by a direct solver. With the bound-

ary conditions forϕ on the free surface andϕn on the solid boundary, theM−2 unknownsϕ on

the solid boundaries and theN+2 unknowns on the free surface are calculated.
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3.2.4 Numerical beach

A numerical damping zone is used to damp out waves in the far-field. The damping is introduced

by artificial dissipation terms that are added in the free surface conditions which are chosen to be

proportional to the vertical coordinate of the free surfacey and the potentialϕ in the kinematic

free-surface conditions, respectively,

Dx
Dt

= ∇ϕ −νζ onSF (3.13)

Dϕ
Dt

=
1
2

(

∂ϕ
∂x

+
∂ϕ
∂y

)

−gζ −νϕ onSF (3.14)

hereν = ν (x) is typically a smooth function, which is nonzero in the damping zone, and zero

elsewhere. See figure 3.2. It is taken such it is smoothly increasing up toνmax. The interval over

whichν = ν (x) is nonzero is denotedLd. Because the function is smooth to minimize reflections

it varies withx.

Damping zone Damping zone
LdLd

xd

ν(x)

Figure 3.2: Illustration of numerical damping zone parameter ν(x) with the scenario of a body
in forced heave motion.

3.3 Formulation of forces

When the velocity potential is known at every location of the wave tank the pressure along a

body can be found, and by integration of the pressure along the bodys boundary gives the forces

acting on it.
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F = −
∫

SB

pnds (3.15)

where the normal vector(n = (nx,ny,nθ )) points into the fluid, wherenθ = xany− yanx andxa

andya are the distance from the center of gravity inx- andy-direction. The pressurep for any

point in the fluid is found using theBernoulliequation

p
ρ

+
∂ϕ
∂ t

+
1
2

(

∂ϕ
∂x

)2

+
1
2

(

∂ϕ
∂y

)2

+gy= c (3.16)

Wherec is a constant and is set to zero. Inserting the Bernoulli equation in equation 3.15 for the

pressure yields

F = ρ
∫

SB

∂ϕ
∂ t

nds+ρ
∫

SB

1
2
|∇ϕ |nds+ρg

∫

SB

ynds (3.17)

B A

S0

S2 S1

SF

x

y

s

n

S3

S0

S0

Figure 3.3: Path of integration, point A and B are to be taken to be a ship breadth from the ship
ends. Note thatSF is now the free surface between point A and B.

The equation can be rewritten to eliminate theϕt terms and a control surface is introduced as

shown in figure 3.3. The expression for the force can now be written as

F = −
∫

SB

pnds= −
∫

S

pnds+
∫

SB+SC

pnds (3.18)
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Where the integrals on the free surfaceSF is zero, as the pressure is zero andSC is defined as

equal toS1 +S2 +S3. Similar equation 3.17 can be rewritten as

F = ρ
∫

S

pnds+ρ
∫

SB+SF

1
2
|∇ϕ|2nds+ρg

∫

SB+SF

ynds−ρ
∫

SC

pnds (3.19)

The integration ofϕt over the surfaceS is not trivial and has been completely removed from the

calculation scheme. This is achieved by first usingGausstheorem

I1 = −∂ϕ
∂ t

nds= −
∫

Ω

∇ϕtdΩ (3.20)

and next using the Transport theorem is utilized

I1 = − d
dt

∫

Ω

∇ϕtdΩ−
∫

S

∇ϕUnds (3.21)

WhereUn is the normal velocity of the boundary. And again usingGausstheorem and that and

thatUn = 0 onSC andUn = ϕn onSB +SF

I1 =
d
dt

∫

S

ϕnds−
∫

SB+SF

∇ϕϕnds (3.22)

inserted into equation 3.19 gives the following expression

F = ρ
d
dt

∫

S

ϕnds+ρ
∫

SB+SF

(

1
2
|∇ϕ|2n−∇ϕϕn

)

ds+ρg
∫

SB+SF

ynds−ρ
∫

SC

∂ϕ
∂ t

nds (3.23)

The expression in the second integral can be rewritten, and the partial derivative with respect to

time in the last integral can be eliminated using the non-dimensional equivalent of the Transport

theorem. See [16] for the complete derivation of the force terms.

The resulting equation for the force terms can be written as

F = ρ
d
dt

∫

SB+SF

ϕnds+ρ
∫

SB+SF

(

1
2

(

ϕ2
s −ϕ2

n

)

n−ϕϕns
)

ds+ρg
∫

SB+SF

ynds+ρ[uϕs]a+ρ[uϕs]b

(3.24)
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Here the first integral (only considering integral overS B ) represents added mass and damping,

and the third integral is the restoring force.

3.4 Limitations

During calculations with an asymmetric geometric layout with one ice floe on one side of the

oscillating ship it was shown that it was not possible to retrieve good results for all cases to be

evaluated numerically. For all situations where the ice-floe is located closer than 4cm for the

asymmetric configuration the calculations either broke down or the solution go towards infinity

and also some times heavily influenced by beating. A short description of beating is given below.

It should also be noted that as the numerical wave tank is based on linear theory effects like

vortex shedding are hence not included in the solution. One consequence of this is that it will in

general over predict the hydrodynamic forces the ship section is experiencing.

Beating was observed in the vicinity of the resonance frequency whenthe ice-floes was included

in the calculations. Beating is provoked due to transient behavior when starting from

initially calm conditions. This is a result from small damping. Therefore, steady state may

in general not be reached within the time of simulation.

3.5 Parameters and numerical model

Because the numerical calculations are performed in two dimensions all quantities are taken per

length in the xy-plane. All parameters from the experimentsare therefore scaled in such a way

that they are comparable to the two dimensional values from the numerical calculations.

To model the setups that were to be evaluated, three models was used in the numerical code

presented. The three geometrical discretized setups used are shown in figure 7.1b, the models

are a open water setup, the ship and one ice floe and the ship in the middle of two ice floes
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The length of the tank was set byL = 12ambda+Bship for the open water case. For the geometri-

cal set up with one and two ice-floes the length was set, respectively, byL = 12λ +Bship+b+Bice

andL = 12λ +Bship+2b+2Bice. A sinusoidal signal with linear initial ramp of ten periodswas

used to, as a large extent as possible, avoid beating. The simulations were run for 60 to 100

oscillation periods to achieve steady state and the number of time stepsNp per period is set to

80.

3.6 Convergency and accuracy

A convergence test was performed to test the effect of the number of elements per wavelength

on the free surface and the number of elements used on the oscillating ship. The result of the

convergency test at resonance is seen in figure fig:konvagl. The results from the test with the

highest density of elements to the lowest is about 0.2 %, hence the number of elements used in

most of the calculated cases are 15/λ .
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Free surface (external + gap left + gap right)NF = 180+8 = 188
Ship section (side + bottom + side) NB,ship = 12+32+12= 56
Ice-floe (side + bottom + side), min. value NB,ice = 3+15/λ +3
Bottom of wave tank NBOT = 80
Far end of damping zone NWM = 8/λ
Tank length, open water L = 12λ +Bship

Tank length, one ice-floe L = 12λ +Bship+b+Bice

Tank length, two ice-floes L = 12λ +Bship+2b+2Bice

Numerical beach length 3λ
Dissipation parameter νmax= 0.4
No. of time steps per period Np = 80
No. of oscillation periods NT = 60,80 and 100
Forcing amplitude (steep) η3a = 0.01m

Table 3.1: Numerical parameters in the simulations.
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(c) Ship with two ice-floes

Figure 3.4: Overview of the numerical models used in the workwith grid. Note that the axis are
not equally scaled.
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Figure 3.5: Results from a convergency test done in the numerical wave tank with from 15 to 20
elements per wave lengthλ . The results differ with only 0.2% from the simulations with15/λ
to the simulations with 20/λ .
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Chapter 4

Hydrodynamic coefficients

The present work is concerned with the two-dimensional motion of a structure in an incompress-

ible and inviscid fluid with the main objective of studying the fluid interaction with a ship section

that is oscillating in close proximity of one and two ice-floes.

In the study linear theory is used for the theoretical considerations. A steady state condition

is assumed, which means that no no transient effects are present due to initial conditions. This

condition implies that the linear dynamic motions and loadson the ship are harmonically oscil-

lating with the same frequency as the wave loads that excitesthe ship, or in this case the opposite

as the ship section is operating in forced oscillations. This is the second of the usual two sub-

problems as described in [8] and [11].

In the second sub-problem the forces and moments are found onthe body when the structure

is forced to oscillate in calm water with the wave excitationfrequency in any rigid-body motion

mode. Incident waves are not present, but the oscillating body causes causes radiating waves.

The hydrodynamic loads are identified asadded mass, dampingandrestoring forces, and mo-

ments. This subproblem is often denoted theradiation problem. With this in mind the equations

of motion will be looked into.
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4.0.1 Equations of motion

For a steady state sinusoidal motion the equations of rigid-body motions may be can be written as

6

∑
k=1

[(

M jk +A jk
)

η̈k +B jkη̇k +Cjkηk
]

= Fje
iωt ( j = 1, ...,6) (4.1)

whereM jk, A jk, B jk andCjk are, respectively, the components of the generalized mass,added

mass, damping and restoring for the ship.Fj are the complex amplitudes of the exciting force

and moment components. The subscripts in e.g.A jkη̈k refer to force (moment) component in the

j-direction because of motion in thek-direction. As only heave is consideredj andk is equal to 3.

The added mass and damping loads are considered to be to be steady-state hydrodynamic forces

and moments due to forced harmonic rigid-body motions, as discussed in relation to the second

sub-problem. No incident waves are present but the forced motion generates outgoing waves.

The forced motion results in oscillating fluid pressure on the exterior wetted hull surface. As

the ship has no forward speed the dynamic pressure is writtenasPD = −ρ∂φ/

∂ t, which is to

be considered in the equation of added mass and damping loads. The velocty potentialϕ is

linearly dependent on the forced motion amplitude and harmonically oscillates with the forcing

frequency. Integration of these pressure loads over the mean position of the ship’s wetted surface

gives the resulting forces and moments on the ship. In general the hydrodynamic added mass

and damping loads due to an harmonic motion modeηk can be written as

Fj = −A jkη̈k−B jkη̇k (4.2)

whereFj is the total hydrodynamic force in the direction of the motion. With this it is implicitly

said that added mass has nothing to do with a finite mass of water that is oscillating. In this prob-

lem when resonant response is considered the main sources ofdamping are from wave radiation

and viscous damping. Where the most important effect in viscous damping is associated with

vortex shedding from the sharp bilges and the resulting influence on the pressure distribution on

the hull. Eddy making damping could also be a significant factor due to the rectangular cross-

section.

The restoring force can be found by integration of the hydrostatic pressure loads on the ship
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hull (i.e. the term−ρgz). It is necessary to integrate over the instantaneous position of the ship.

The linear restoring force may in general be written as

Fj = −Cjkηk (4.3)

And for the heave motion the coefficientCjk is C33 = ρgAwm whereAw is the waterplane area.

However, to demonstrate how equation 4.2 behaves in the current gap problem numerical time-

series of the hydrodynamic, added mass and damping forces are plotted in figures 4.1 to 4.4 for

b= 0.10m. Because the numerical wave tank is based on linear theory theplots show results for

inviscid fluid. Because heave motion is considered equation 4.2 is written as

F3 = −A33η̈3−B33η̇3 (4.4)

The plots are from different oscillating frequencies for the ship-section. In figure 4.1 the oscil-

lating frequency is far from the non-dimensional resonancefrequency and the added mass and

damping forces are not very different. In the next figure, 4.2, the plot shows the forces just be-

fore the resonance frequency and it is observed that the damping forces is starting to become the

dominant force. In figure 4.3 the results are in the immediateproximity of the non-dimensional

resonance frequency and because of the nature of the gap problem the added mass is getting

smaller, hence a lot of the hydrodynamic force is damping. Inthe last plot, figure 4.4 the added

mass has become negative as the non-dimensional resonance frequency have been passed.
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4.0.2 Calculation of the hydrodynamic coefficients

To find values for the added mass and damping from forced oscillations of the ship section the

starting point is from equation 4.2. By first multiplying the entire equation with the acceleration

termη̈k and then integrate over an integer amount of periods equation 4.5 is found.

nT
∫

0

Fj η̈kdt = −
nT
∫

0

A jkη̈2
k dt−

nT
∫

0

B jkη̈kη̇kdt (4.5)

By now using the orthogonality properties ofcosineandsinean expression without the damping

term is found

nT
∫

0

Fj η̈kdt = −
nT
∫

0

A jkη̈2
k dt (4.6)

Because the integration is performed in the time domain and the added mass is a function of

frequency an expression for added mass can be written as in equation 4.7

A jk = −

nT
∫

0
Fj η̈kdt

nT
∫

0
η̈2

k dt

(4.7)

The same procedure is applied to get an expression for the damping, but in this case equation 4.2

is multiplied by the velocitẏηk

nT
∫

0

Fj η̈kdt = −
nT
∫

0

A jkη̈kη̇kdt−
nT
∫

0

B jkη̇2
k dt = −

nT
∫

0

B jkη̇2
k dt (4.8)

an expression for the damping is found as seen in equation 4.9

B jk = −

nT
∫

0
Fj η̇kdt

nT
∫

0
η̇2

k dt

(4.9)
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Calculation of the coefficients from the numerical wave tank

In the numerical wave tank the force is found asFj = ρ
∫

SB

ϕtnkds, where the force is due to the

unsteady term in the Bernoulli equation,ϕt , in thek′th direction due to a forced motion in the

j ′th degree of freedom andnk is the corresponding component of the normal vector. Here,SB

is the fixed mean boundary of the ship section.ϕt is estimated by numerical differentiation of

ϕ, in the present taken as
(

ϕn+1−ϕn
)

/∆t, wheren is main time-step number. The added mass

and damping are calculated by equation 4.7 and 4.9. The velocity and acceleration is found by

numerical differentiation of the displacement of the ship.The restoring force is not included in

the calculated result from the wave tank, but if it was it would be have to subtracted to be left

with only the hydrodynamic force.

The added mass and damping are made non-dimensional in the following way

b33 =
B33

ρA

√

B
2g

a33 =
A33

ρA

(4.10)

whereA is the area of the wetted cross-section.

Calculation of the coefficients from model tests

In the model-tests the hydrodynamic force is not directly found from the measurements. The

measured force includes hydrostatic forces from the restoring term as well as inertia forces from

the mass of the rig itself, which means that

Fmeasured= Fhydrodynamic+Fhydrostatic+Finertia

= F3−ρgAwη3−Mrigη̈3

(4.11)

hence the hydrodynamic force is found by

F3 = ρgAwη3 +Mrigη̈3−Fmeasured (4.12)

The velocity and acceleration is found by differentiation of the forced displacement of the model.
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The added mass and damping are made non-dimensional in the following way

b33 =
B33

ρAL

√

B
2g

a33 =
A33

ρAL

(4.13)

whereA is the area of the wetted cross-section andL is the length of the model, as the model is

a three dimensional volume.

Damping from the radiation problem

As the oscillating ship generates waves there is also damping related to far-field wave generation.

There are waves outside the ice-floes, when present, and wavegeneration when the ship is forced

to oscillate in open water. Due to the propagating waves energy transported away from the sys-

tem and causes damping. By considering energy transport the damping can also be calculated by

using the wave amplitudes far away from the oscillating ship-section with equation 4.14, see [8]

page 47. The reason far-field waves is used to calculate the damping caused by radiating waves

is because of the fluid close to the ship is accelerated in a much higher degree, hence close to the

ship added mass is dominating. The water rise-up is higher inthe immediate vicinity of the ship

is thus higher then the wave height itself, this effect decrease exponentially as the water travels

away from the ship until the actual wave height is achieved.

B33 = ρ
(

A3

|η3a|

)2 g2

ω3 (4.14)

whereA3 is the wav amplitude far away andη3a is the heave amplitude of the ship section. Again

the damping is made non-dimensional as

b33 =
B33

ρA

√

B
2g

(4.15)
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4.0.3 Viscous damping

In chapter 2.4 the effect of flow separation is discussed in a qualitative way. As the ship section

is oscillating it produces vortices that add to the damping in addition to potential damping.

The contribution from the drag force experienced in heave caused by vortices being shed at the

corners may be written as,

FD =
ρ
2

ACDη̇3 |η̇3| (4.16)

whereA is the projected area,CD is the drag coefficient,ρ the density of water anḋη3 the heave

velocity.

In [8] there is a presentation on how to calculate the drag coefficient from experiments, an ex-

pression for the drag coefficient can be written as,

CD =
3
8

1
1
2ρU2

AA

2π
∫

0

Fysin(θ)dθ (4.17)

whereθ is

θ =
2πt
T

(4.18)

For an oscillating flowU is found by

U = UAsin

(

2πt
T

)

(4.19)

From model tests the measured hydrodynamic force will include damping contributions from

both potential and viscous forces. If equation 4.17 is rewritten as an intgral in the time domain

and the potential damping force is subtracted equation 4.20is the result.

CD =
3
8

1
1
2ρU2

AD

2π
nT

nT
∫

0

(Fy−B33η̇3)sin(ωt)dt (4.20)

and
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U = UAsin(ωt) (4.21)

whereB33 is potential damping calculated by linear theory,Fy is the measured vertical hydrody-

namic force andω is the oscillation frequency of the ship section andUA = η̇3aω.

When evaluating the drag coefficient it should be done in connection with theKC number. The

KC number is defined as follows,

KC =
UAT

D
(4.22)

whereD is the ship draught and used as a characteristic length in theKC number. TheKC num-

ber says something on how much the respective structure moves in a fluid relative to itself , which

is of importance when looking into the effect of vortex shedding. Berthelsen has shown in [2]

that for lowKC numbers high values for the drag coefficient,CD, is to be expected. For the open

water situation with the ship section forced to oscillate with 2.5 mmand at resonance, which is at

a period of aboutT = 1.1 s theKC number is 0.13 which is considered to be very small. Hence

large values forCD is expected to be found. Note in practice with the ship in forced oscillations

the parameters in theKC number is the forcing amplitudeη3a and ship draughtD see equation

4.23.

KC =
η3a2π

D
(4.23)
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Chapter 5

Model tests

The model tests were performed in the Ladertank at Marine Technology Center, NTNU Trond-

heim during week 9, 10, 11, 12 and 13. The first week was spent arranging the set-up and

calibrating measurement equipment. The rest of the time wasdevoted to doing test runs.

5.1 Set-up and instrumentation

An overview of the model test set up is presented in figure 5.1 .The model of the ship section

and ice-floes used in the model tests have the same geometry asthe model used in the numerical

calculations. This means that the draught of the ship section is 12cm and the beam is 32 cm,

the draught of the ice-floes are 4cmand the beam is 3.6 m. The total height of the ship-section

model is 36cmand the height of the ice-floes are 8cm. The length of the ship model is 59.5 cm,

5 mmshorter than the breadth of the tank, this is to avoid friction from the tank glass walls. The

ship-model and ice can be seen in figure 5.2.

Both the ship section and the ice-floes were made from divinycell, a hard foam material. The

ship model was also painted to make it more robust. The model is connected to the actuator and

force-gauge through an aluminum frame. The set-up do not allow the model to move freely in

any degrees of freedom, the actuator impose a forced heave motion. The force gauge measures

the force in shear, meaning that it only registers force in vertical direction. The force gauge was

produced by MARINTEK and of high quality. The actuator with the force gauge mounted can

45



�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������
�����������������������������������������������������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

���� ��������������������������������������������������������������������

Carriage

Actuator

Accelerometer

Force gauge

Wave gauges

Artificial ice Artificial ice

Damping beachDamping beach

Tank

Model

w8

w7 w6

w5w2

w1 w3

w4

4.07 m 4.07 m

Figure 5.1: Illustration of the general model test set-up. Upper: the test set up seen from the side.
Lower: The location of the wave gauges denoted w1 to w8.

be seen in figure 5.4. In addition there is a displacement monitor on the actuator to register the

actual actuator displacement.

The actuator is automated in the way that it is possible to load a test program in to the actuator

control unit. With this it is possible to define a test programin such a way that for a geometric

set up the actuator can continually run tests with a given amplitude and frequency on its own. It

was found that a test run of 60secondsand a pause of 60secondsto let the water calm down was

sufficient. In all test-runs two forcing amplitudes were tested, 2.5 mmand 5mm.

The ice was to be modeled as a rigid body, meaning that it is notallowed to move or bend

in any degrees of freedom. To achieve this the ice-floes was hold in place by wooden frames and

wedges, seen in figure 5.3. The frames were fastened to the tank by clamps.

Both the ice and ship model was constructed by workers at MARINTEK.
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There are in total eight wave gauges in the tank located at four different locations in the tank

to measure the free-surface elevation. The wave gauges are placed in pairs so it is possible to

average the water elevation in the width of the tank. There isa pair of wave gauges outside the

ice-floes on both sides of the tank as indicated in figure 5.1and on the ship model. The wave

gauges used to measure the far field wave elevation were of standard capacitance type with two

metal bars. The wave gauges located on the ship model are alsoof a capacitance type but differ-

ent in the way that they are made up of copper tape. In total there were 8 wave gauges, and an

amplifier shown in figure 5.4 were used to generate the signals.

On top of the ship model an accelerometer capable of measuring acceleration in 3 degrees of

freedom was mounted. The accelerometer measures the rigid body acceleration in the x, y and

z direction, analogue to a ordinary coordinate system. The accelerometer was used as an indi-

cation to whether the model were feeling any friction from the glass walls, and also calculate

the velocity of the model to find damping and use the measured acceleration to find added mass.

Later during the analysis it was found that the approach withthe accelerometer did not give good

values for velocity and acceleration so only the measured displacement from the actuator was

used.

In total, with all the measurement gauges there were 12 channels to be logged in each run.

To sum it up; 8wave gauges, one for the displacement of the actuator, one for the force gauge

and three for the accelerometer.

An amplifier of type Hottinger MGCplus received all the signals in the end, the amplifier can

be seen in figure 5.4. The signal from all of the channels were acquired at a sampling frequency

of Fs = 200Hz.

At each end of the tank a parabolic beach was placed to preventreflection of generated waves

from the oscillating ship model, the beach is illustrated infigure 5.1.

In addition to the measurement equipment mentioned a control PC for the actuator and a logging

PC was used. The logging program used to log the measured datawas MARINTEKs version of

Catman. All the equipment was provided by MARINTEK.
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5.2 Calibration

All of the output signals from the sensors are in volt. The sensors are linear, meaning e.g. A

higher load gives a bigger output that is linearly proportional to the loading. This means that the

calibration factors found are in the form ofm/V, N/V andm/s2/V. For the calibration of the

wave gauges and the force gauge a calibration program provided by MARINTEK was used. The

calibration factors are found by a MARINTEK program and then fed into the MGC amplifier.

The program calculates the linear slope number, which is thecalibration factor.

5.2.1 Force transducer

The force can be registered as eitherKg/V or N/V, for the use in this study the latter was chosen.

The calibration factor was found by placing known weights onthe aluminum frame, without the

model mounted, and measure the signal from the force gauge. The procedure is to start with no

load, log the result and then put on a load and do another measurement, when done with the last

weight another zero-load case is measured and the averaged zero level is used. In total 5 mea-

surement points was found in a range from 0 to 58.84 N. It was not possible to calibrate the the

gauge after the initial calibration but it was frequently inspected by placing known weights on

the model and check the offset in the measured force. This procedure revealed any discrepancies

between the extra load and the measured load.

5.2.2 Wave gauges

At the first week the model was not available but the aluminum frame was, hence an easy way

to do the calibration of the far field wave gauges to mount themto the actuator and do the cali-

bration. This was done by imposing a displacement on the actuator, thus lowering the gauges a

known distance and then log the output. When the ship model wasmounted to the actuator the

procedure was repeated for the copper tape wave gauges placed on . The procedure to calibrate

the wave gauges are similar to that of the force gauge. Start with a zero level, impose a known

displacement for a wanted number of times and then do the zerolevel measurement again, the

average zero-level measurement is then used.
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The wave gauges on the model was calibrated every morning, but the far field gauges were

not due to practical reasons and available time. To keep the gauges drifting they were cleaned

every morning in their positions to keep the oxidation levelas constant as possible. They could

have been calibrated by tapping and filling the tank by known quantities but to achieve a steady

water temperature throughout the entire tank takes about one night and hence not practical.

5.2.3 Accelerometer

The accelerometer mounted on the model measures the acceleration in three directions, and reg-

isters a positive or negative acceleration depending on themotion and defined positive direction.

The accelerometer was calibrated in the following manner, the zero level is found by placing

the accelerometer on a still surface with the measuring direction pointing upwards, for one of its

degrees of freedom and measure the output. The calibration factor is then found by turning the

accelerometer in such a way that the measuring direction is in horizontal direction. The differ-

ence between the two cases is then the gravity constantg = 9.81 m/s2. This was done in all the

three degrees of freedom of the accelerometer.

5.2.4 Documentation

All the measured data is stored as.bin files and the time-series analyzed by the help of Matlab

routines. Several photos were taken to document the set up and a high speed camera was used to

be able to study the fluid behavior in the gap between the modeland ice-floe. The spread sheets

with the calibration data were stored on a hard drive with themeasurement data and also printed.

5.3 Routines

The test runs were done in the following manner.
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Open water test

For the set up with only the ship model in the tank,

1. Calibration of the wave gauges on the model (not before every single run)

2. Check that the model is clear of the tank glass wall

3. Define a frequency range and wanted oscillating amplitudeand feed it into the actuator

control unit, the input for the control unit isf = 1/T

4. Check that the water in the tank is calm i.e. still water surface

5. Set the length of the test in Catman

6. Take zero settings of the sensors and store them

7. Start the actuator and check the live feed from Catman to seeif the measured data oscillates

symmetrically around zero level

8. Start logging of data

9. When a series of automated tests was done Catman automatically stops the login

10. Save timeseries

11. Run an analysis to check the results to see if re-runs is needed

Ship and one ice-floe

For the set up with one ice-floe in the tank the routine is similar but the model have to be placed at

a wanted distance away from the divinycell plate representing the ice. The ice-flow was placed to

the right of the model, when seen from the front side as seen infigure 5.3. For practical reasons

the model was moved instead of the ice floe. Once the ice-floe isplaced in the tank the following

procedure is done,

1. Move the carriage to place the model in the wanted positionrelative to the ice-floe

2. Check that the draught of the ice is correct and that it is level
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3. Double check the distance along the ship side has an even distance to the ice-floe

4. Check that the model is clear of the tank glass wall

5. Calibration of the wave gauges on the model (not before every single run)

6. Define a frequency range and wanted oscillating amplitudeand feed it into the actuator

control unit, the input for the control unit isf = 1/T

7. Check that the water in the tank is calm i.e. still water surface

8. Set the length of the test in Catman

9. Take zero settings of the sensors and store them

10. Start the actuator and check the live feed from Catman to see if the measured data oscillates

symmetrically around zero level

11. Start logging of data

12. When a series of automated tests was done Catman automatically stops the loging

13. Save time-series

14. Run an analysis to check the results to see if re-runs is needed

Ship and two ice-floes

For the tests with two ice-floes in the tank the ice-floe that was in the tank for the above configu-

ration was held permanently in the same position while the model and the new ice-floe, located

on the left side of the model was moved to regulate the gap distance. For the case with two

ice-floes the following routine was followed,

1. Move the left ice-floe to next position

2. Move the carriage to place the model in the wanted positionrelative to the two ice-floes

3. Check that the draught of the ice is correct and that it is level

4. Double check the distance along the ship side has an even distance to the ice-floes
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5. Check that the model is clear of the tank glass wall

6. Calibration of the wave gauges on the model (not before every single run)

7. Define a frequency range and wanted oscillating amplitudeand feed it into the actuator

control unit, the input for the control unit isf = 1/T

8. Check that the water in the tank is calm i.e. still water surface

9. Set the length of the test in Catman

10. Take zero settings of the sensors and store them

11. Start the actuator and check the live feed from Catman to see if the measured data oscillates

symmetrically around zero level

12. Start logging of data

13. When a series of automated tests was done Catman automatically stops the loging

14. Save time-series

15. Run an analysis to check the results to see if re-runs is needed

5.4 Error sources

To be able to evaluate the quality of the results from the experiments an identification of possible

error sources have been done. Also an attempt to quantify them have been performed. Basically

there are two kinds of error; random error and bias error. Therandom errors may be quanti-

fied by repetition tests. Other means of investigation methods are needed to identify potential

bias errors. The process of identifying possible sources for bias errors includes actions such as

quantifying limitations of the equipment and utilizing theexperience of others, as the authors

experience with model testing is very limited, as well as careful observation during the model

testing.

During the model testing, continues efforts were made to observe and identify artifacts of po-

tential significance to the results.
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A parabolic beach , or any shaped beach, will not in general be a perfect wave absorber. The

strategy of the beach is to induce wave breaking. It is not possible to remove all the energy

in a wave with this damper, in particular for shallow water waves, [16]. In figure 5.6 is a

plot indicating when the waves are to be considered as shallow water waves, this happens

at an oscillating period of the ship model of approximatelyT = 1.6 s. A wave is to be

considered a shallow water wave whenλ/4 > h, i.e. the tank depth. In total the tests

performed cover a periodic range ofT = 0.4 s to T = 2.15 s. Hence reflections are to be

expected but, however no reflections of significance were found to hit the oscillating ship

model.

Capacitance type wave gaugesconsists in general of two parallel steel wires penetratingthe

free surface. Bias error may be introduced through nonlinearity in the voltage created.

This might be caused by that the water climb on the steel wires, this is also known as

the meniscus effect or by drifting over time. A semi-quantitative estimate of the error

introduced by the latter effect is said to be in the order of the diameter of the steel wires,

[16], which were about 3mmin diameter. However experience have shown that this type

of error source can be neglected. In addition to steel wire wave gauges, copper tape were

used as a capacitance type wave gauge on the ship model, a meniscus effect is not believed

to have a significant effect but water film on top of the tape might yield a higher output

then what it suppose to give. A quantified value for this was not achieved. Drifting of the

far-field wave gauges might have occurred, but not to a big extent as it was not possible to

do recalibration of them.

A slight motion of the ship was observed during the tests with the ship model and one ice-floe

in the tank. The aluminum frame that was originally constructed to mount the model to the

actuator was found to be to weak with respect to horizontal forces applied on the model.

This was seen as an horizontal rigid body motion in combination with a small rotation of

the model. There was also another source for the horizontal motion, this was found to

originate from the actuator mounting as it was mounting withabout one degree off relative

to a vertical axis. The aluminum frame was modified until it was considered strong enough

for the purpose. However a small horizontal motion was stillobserved, and measured to

be of an amplitude of approximately 2mm.

Seiching is a low-frequncy oscillation of the fluid corresponding to the first longitudinal eigen-

period of the basin, meaning a standing shallow water wave. This is in theory always

triggered in any flume or basin. Typically the standing wave has a very low amplitude but
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might result in a significant horizontal motion of the fluid, [16]. From close observations

it was found that a stop of about 60secondswas enough time to adequately damp out this

effect, hence it is not believed to influence the results in a significant way.

Transverse sloshingis the corresponding transverse standing wave of the first eigenperiod in

the transverse direction of the wave flume, [16]. The breadthof the flume is about 0.60m,

this gives a resonant period of about 0.88 s, assuming the deep water dispersion relation.

Transverse sloshing was observed in the tests around this period of oscillation. The trigger

for this is believed to be caused by small three dimensional effects from the model and

perturbations when the ice was present in the tank.

Glass wall gap. To avoid friction from the tank glass wall on the model the ship section was

constructed with a 5mmmargin with respect to the tank width, hereby denoted the glass

wall gap. The gap was a necessity in connection with force measurements. The ship

section had to be denied any mechanical contact except through the force gauge. This gave

room for a standing wave between the model and the glass wall on both sides of the model.

Slight tilt. When the model was observed from above, birds eye view, it was found that is was

not mounted completely orthogonal with respect to the tank wall. This means that the

glass wall gap was not constant on both sides. In the runs withthe ice it was possible to

observe a slight transverse variation of the distanceb between the ice and ship of about 1

mmon the right side and approximately 2mmon the left side A picture of the ship-model

and ice as seen from above is found in figure 5.7. In the test runs when the gap was small

i.e. 1cm this becomes important. It was observed that the wave elevation in the gap was

sensitive to this tilt as the elevation was not constant throughout the width of the tank.

When analyzing the time series the amplitude at the location where the gap was relatively

bigger the elevation was bigger.

Presence of ice.The rigging of the divinycell plates representing the ice was a cumbersome

process that required high precession fitting to achieve thecorrect draught, location relative

to the ship model and to get it level over its entire length. Similar to the ship model, it was

for the ice a glass wall gap, though slightly smaller it gave room for a standing wave along

the side of the plate. It was found that the results with respect to the resonance period was

sensitive to this water elevation. To mitigate this a rubberlist was taped to the tank glass

wall to prevent the water from flowing freely up and down, later thin plastic bags were

forced down in addition to the rubber lists, see figure 5.8 and5.9. These actions prevented
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the water to run up the side of the ice-floe to a certain extent but it did not stop this from

happening completely. In addition the ice-floes experienced some flexing but this was

small and the exact effect of it is not known.

Slight flexing if the ice, could sometimes be observed in the tests. Even if this was notalways

possible to see in such an extent that it was possible to measure an amplitude it is expected

to give a damping effect on the piston mode motion in the ship-ice gap and perhaps a

slightly smaller hydrodynamic force.

Force measurements.The graph from the calibration of the force gauge is seen in figure 5.5

. The graph shows that the calibrated range is from zero to approximately 60N and the

measured force during the experiments range from approximately 3 N to about 80N. The

accuracy of the of the force measurements is questionable when the oscillating period is

high. This means that the dominating force is the restoring term, measurements from the

open water tests show a spring like result for low frequencies. The ship model was meant

to have space milled out to fit weights so it would float with thewanted draught, but the

milling machine was not available and this was not done. As a consequence of this the

force gauge had to operate with e pre tension and this could possbile have affected the

sensitivity of the measurements.

The actuator forcing amplitude was not able to keep up with the correct displacement for os-

cillating periods below approximatelyT = 0.6 s, for these frequencies the actual amplitude

is lover than it was meant to be, this does not effect non dimensional values in a very sig-

nificant extent as the actual forcing amplitude is used in theanalysis and calculations.

Accelerometer. The accelerometer have not been thoroughly analyzed as the measured signal

from it was not used.

5.5 Analysis of the experimental data

The raw data was analyzed using Matlab where time series fromthe tests were plotted as well as

reduced data. The time seres that were plotted was the wave elevation inside the gap and the far

field wave elevation, the actuator displacement and the measured force. The reduced data com-

prise the non dimensional wave elevation inside the gap and far field plotted against oscillating

period in addition non dimensional added mass and damping iscalculated and plotted against a
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Object Mass
Outer plate of force gauge 3367g
Model and aluminum frame 12113g
Accelerometer 56g
Nuts and screws 177g
Total 15713g

Table 5.1: List of structural masses felt by the force gague.

non dimensional frequency.

To find the hydrodynamic force the hydrostatic force was subtracted and the inertia force from

the force gauge. The analytic procedure on how this is done isdiscussed in chapter 4.0.2. The

masses that is used when determining the inertia force is listed in table 5.1.

5.5.1 Filtering

To be able to do an analysis of the measurements the raw data had to be filtered. This was done

in Matlab using a bandpass filter on the logged force signal and the wave gauges. The upper

and lower frequency set for the band pass filter wereflow = 0.2 Hz and fhigh = 2.5 Hz. The

displacement data for the actuator did not need filtering.

5.5.2 Uncertainty

During the model tests repetition tests was performed to check the repeatability of the measured

results. Every repetition showed good that the results was nearly the same, the standard deviation

and mean value for such tests for the open water, one ice-floe and two ice-floe configurations are

showed in figure 5.10, 5.11 and 5.12. The plots show results for the measured force and wave

elevation to the right of the ship, denotedAg.
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Figure 5.2: Upper: Ship-section model, on the left it is seenfrom the front and the right from
the side, the copper tape makes a wave-gauge in two pairs i.e.two wave-gauges. Lower: the two
divinycell plates that makes the artificial ice.
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Figure 5.3: Left: the ice seen in the tank from above, fixed with wooden frames and wedges.
Right: The model and ice-floe seen from the side through the tank glass wall.
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Figure 5.4: Upper: To the left the actuator with the force gauge mounted and a aluminum frame
to hold a model. To the right the actuator control unit with emergency stop button on top. Lower:
on the left wave-gauge for far-field wave elevation registration and in the lower right wave gauge
amplifier (right) and signal amplifier for all measurement devices.
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Figure 5.5: Calibration curve for the force
gauge.
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Figure 5.6: The graph displays when a wave is
to be considered as a shallow water wave in the
tank, the curved line isλ/4 and the straight line
is the depth of the tankh = 1 m, the waves at an
oscillation period ofT = 1.6 s is to be consid-
ered as shallow water waves.

Figure 5.7: A view of the gap between the ship and ice seen fromabove.
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Figure 5.8: Rubber list taped on the tank wall
with ice-floe and ship model.

Figure 5.9: Rubber list and plastic bags forced
between the ice and glass wall.
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Figure 5.10: Repetition tests for the open water configuration where the horizontal axis ticks
1-8 correspond to tests 20090, 20130, 20160, 20190, 20230, 20260, 20290 and 20330 and their
respective two respitions. Bars represents mean values and the error bar on top represent 2 times
the standard deviation, the numbers is one time the standarddeviation
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Figure 5.11: Repetition tests for the one ice-floe configuration where the horizontal axis ticks 1-8
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Figure 5.12: Repetition tests for the two ice-floe configuration where the horizontal axis ticks
1-8 correspond to tests 10030, 10060, 10090, 10130, 10160, 10190, 10230 and 10260 and their
respective two respitions. Bars represents mean values and the error bar on top represent 2 times
the standard deviation, the numbers is one time the standarddeviation
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Chapter 6

Results from experiments and numerical

calculations

In this chapter condensed data retrieved from the numericalsimulations and model tests are pre-

sented in the same plots. In the plots the experimental results are from a forcing amplitude of

2.5 mm. This is done for easy comparisment of the results for added mass, damping and the gap

amplitudes. First the open water results are presented where the two-dimensional ship section is

in forced heave oscillations without any ice present. Next the results for the tests where there is

two ice-floes in addition to the ship. The last results are from the tests done with one ice-floe is

placed next to the oscillating ship.

In appendix A and B separated plots of experimental and numerical, respectively, results are

plotted. In the plots for the experimental results in appendix A the graphs show the results for a

forcing amplitude of 2.5 mmand 5mm.

Unless specified the added mass and damping have been calculated according to equation 4.7

and 4.9 as shown in chapter 4.0.2. Where it is specified the damping have been calculated by the

principle of damping from radiating waves as shown in chapter 4.0.2.

For the geometrical set-ups where there is ice present, results for the non-dimensional waater

elevation in the gap between the ship-section and the ice is also presented and refered to asAg.

Also the non-dimensional far-field wave elevation amplitudes,Af , are included in those results.

As previously shown the added mass and damping have been madenon-dimensional the follow-

ing way for the numerical results
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b33 =
B33

ρA

√

B
2g

a33 =
A33

ρA

(6.1)

the results from the modeltests are made non-dimensional inthe following manner

b33 =
B33

ρAL

√

B
2g

a33 =
A33

ρAL

(6.2)

6.1 Open water test

Numerical and experimental results for the case when the ship is forced to oscillate in heave

without any ice-floes present in the wave flume and numerical wave tank are found in figure 6.3.

The first results shows the results for the drag coefficientCD.
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Figure 6.2: Drag coefficientCD, forcing ampli-
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Figure 6.3: Ship-section in open water.
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6.2 Ship in middle of two ice-floes

Numerical and experimental results for the case when the ship is forced to oscillate in heave with

two ice-floes present in the wave flume and numerical wave tank. The ship and the two ice-floes

makes a symmetrical set-up where thegapvaries from 0.1 m to 0.10 m. The condensed results

for the non-dimensional added massb33, dampinga33 and non-dimensional gap amplitudeAg

are presented in the following figures.
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Figure 6.6:Ag andAf . b = 0.01m.
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Figure 6.7:Ag andAf . b = 0.02m.
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Figure 6.8:Ag andAf . b = 0.04m.
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Figure 6.9:Ag andAf . b = 0.06m.
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Figure 6.10:Ag andAf . b = 0.08m.
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Figure 6.11:Ag andAf . b = 0.10m.
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Figure 6.12:a33, b = 0.01m.
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Figure 6.13:b33, b = 0.01m.
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Figure 6.14:b33 from radiating waves.b = 0.01m.
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Figure 6.15:a33, b = 0.02m.
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Figure 6.16:b33, b = 0.02m.
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Figure 6.17:b33 from radiating waves.b = 0.02m.
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Figure 6.18:a33, b = 0.04m.
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Figure 6.19:b33, b = 0.04m.
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Figure 6.20:b33 from radiating waves.b = 0.04m.
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Figure 6.21:a33, b = 0.06m.
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Figure 6.22:b33, b = 0.06m.
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Figure 6.23:b33 from radiating waves.b = 0.06m.
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Figure 6.24:a33, b = 0.08m.
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Figure 6.25:b33, b = 0.08m.
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Figure 6.26:b33 from radiating waves.b = 0.08m.
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Figure 6.27:a33, b = 0.10m.
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Figure 6.28:b33, b = 0.10m.
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Figure 6.29:b33 from radiating waves.b = 0.10m.
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6.3 Ship and one ice-floe

Numerical and experimental results for the case when the ship is forced to oscillate in heave with

one ice-floe present in the wave flume and the numerical wave tank. The ship and the two ice-

floes makes an anti-symmetrical set-up where thegapvaries from 1cmto 10cm. The condensed

results presented here range fromb = 0.04 m to b = 0.10 m. And again the results given are the

non-dimensional added massb33, dampinga33 and non-dimensional gap amplitudeAg presented

in the following figures.
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Figure 6.30: Maximum values ofa33.
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Figure 6.31: Max. valuesAg.
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Figure 6.32:Ag andAf . b = 0.04m.
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Figure 6.33:Ag andAf . b = 0.06m.
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Figure 6.34:Ag andAf . b = 0.08m.
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Figure 6.35:Ag andAf . b = 0.10m.
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Figure 6.36:a33, b = 0.04m.
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Figure 6.37:b33, b = 0.04m.
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Figure 6.38:a33, b = 0.06m.
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Figure 6.39:b33, b = 0.06m.
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Figure 6.40:a33, b = 0.08m.
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Figure 6.41:b33, b = 0.08m.
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Figure 6.42:a33, b = 0.10m.
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Figure 6.43:b33, b = 0.10m.
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Chapter 7

Experiments versus numerical modeling

In the results presented in chapter 6 it is observed discrepancies between the numerical and ex-

perimental results for the cases where ice is present. For the open water case the numerical and

experimental results correlate well. The latter shows thatthe calculation routines to find added

mass and damping are valid. In addition results from Ir. Vugts, [22], report on on hydrodynamic

coefficients for swaying, heaving and rolling cylinders in afree surface was consulted for this

purpose.

The drag coefficient have also been estimated for the open water case. The results shows large

values for this coefficient. This is to be expected for small values of theKC number, this is shown

in [2]. From the results it is seen that for the forcing amplitude of 5mmthe values for the drag

coefficient gets smaller, this can be seen in connection withthat theKC number is larger as the

oscillation amplitude is larger.

The discrepancies that can be seen in the comparison plots inchapter 6 are at what frequency

resonance occur in the experiments and numerical calculations and the hydrodynamic force i.e.

the values of added mass and damping and the non-dimensionalgap amplitudes. For the one

ice-floe set up the difference of when the resonance frequency occurs is about 5% forb= 0.04m

and approximately 3% forb= 0.10m. For the symmetric set up with two ice-floes the difference

is about 20% forb = 0.01mand 6% forb = 0.10m.

Even though there are differences in the results both the numerical and experimental show the

same trend. The results for when one and two ice-floes are present show an abrupt and steep
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change in the added mass occur close to and at resonance frequency where added mass change

sign. As the ice-floes are moved away from the ship section it was found that the resonance occur

at a lower frequency. The added mass shows a tendency to show smaller maximum value as the

ship-ice gap gets wider.

This is an interesting observation. If one think intuitively of how the added mass would be from

the ships pint of view it is to be expected to find that it would be at its highest when the ship-ice

gapb is smallest. The latter would be expected because the ship would have to accelerate more

mass to communicate with the outer flow i.e. more water is needed to be pushed by the ship to

make a wave outside the ice-floes. From this reasoning, a further investigation to check if this is

correct would be favorable. If the result do not come from experimental and numerical artefacts

it might be triggered by that the piston-mode motion introduce an increased communication with

the external flow.

Another importent comment is that in the results there is a significant difference in the damping

from radiated waves. They should have been more equal, this discrepancy might caused by a

mistake from the author when performing the calculations orfrom wrong measurements during

the experiments.

In appendix A the experimental results are presented. From those results it is observed that

the smallest forcing amplitudes gives the largest added mass and largest damping. This is be-

lieved to be caused by viscous effects.

7.1 Physics versus linear theory

To be able to achieve results that are somewhat comparable between the linear numerical simula-

tions and the model tests the ice-floes were modeled as stiff rigid bodies with a significant draught

and freeboard. This provides an environment that is expected to provoke less non-linearities for

the water to oscillate in. The intention with giving the draught and freeboard. In linear theory

effects of green water (water on deck) nor dry spots under theice is taken into account. For this

reason the height of the ice flow at the gap had to be built up to twice the total height as the rise

of the water column was found to move above the ice freeboard of 4 cm. The modified ice can
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be seen in figure 7.1c.

While doing the model tests non-linearities was observed, especially near and at resonance fre-

quency of the ship-ice system. A series of snapshots from thehigh speed camera is shown in

figure 7.1, the snapshots are from resonance frequency with two ice-floes with a gap ofb = 0.04

m and a forcing amplitude of 5mm. From this a series of non-linearities are revealed. The most

dramatic is that the water level actually becomes so low thata part of the ice becomes clear of

the water column. As the water is rising again, air is trappedand as the water is rising beyond

the bottom of the ice, air bubbles is escaping and disturbs the free surface. When the water has a

vertical velocity upwards and hits the ice flow it also gets anhorizontal velocity towards the ship

model where it is then ricochet back towards the ice and crashes. The latter gives an appearance

of a sloshing mode. In addition when the water column is moving upwards it is disturbed by

vortex shedding from the ship model itself but especially the sharp corner of the ice-floe. The

effect of flow separation is also discussed in chapter 2.4.

An illustration of the difference between the physical model and the linear numerical model

is seen in figure 7.1a and 7.1c. In linear theory inviscid fluidis assumed, meaning that there

is no effect of vorticity, trapped air, boundary layers and there is of course no water oscillating

between the model and the tank wall and the gap between the iceand the wall, hence it is more

simplified and ideal. All these effects increase the dampingin the physical system. From the

results it can be seen that the frequency where resonance occur change significantly the closer

the ice floes are to the ship section.
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Figure 7.1: Resonance with two ice-floes andb = 0.04 m. Top: (left) Water at lowest point,
(right) water level is rising and air trapped under ice . Middle: (left) Water level with ice again,
(right) water risen above ice bottom and ricochet off the ship model while air bubbles escape.
Bottom: (left) The free surface is disturbed by air bubbles and vortices, (right) water hits the wall
of the ice again with disturbed free surface.103
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Chapter 8

Conclusion

In the study performed in this master thesis the hydrodynamic interaction between an oscillating

two dimensional ship section and ice have been investigatedwith emphasis on the hydrodynamic

coefficients. The study includes numerical calculations and model tests where added mass and

damping in heave have been calculated using Matlab and compared.

The work have been conducted with the assumption that theoryrelated to piston-mode problems

is valid and hence been treated thereafter. As a consequenceliterature related to such problems

have been consulted to understand the physics.

Numerical tests of the geometric parameters have been performed to establish what relation-

ships that will be dominating. It was found that the gap breadth b and ship beamB ratio,b/B, is

the dominating factor with respect to change in resonance period and added mass.

The calculation routines to find added mass and damping basedon measured force have been

validated with open water tests and qualitative comparisonfrom Ir. Vugts’ results published in

[22]. The open water experiments correlate well with the numerical calculations.

In both the experimental and numerical study of the ship-iceproblem the results showed same

tendencies but discrepancies were discovered. The discrepancies are believed to be mainly due

to linear theory being applied in the numerical wave tank. The nonlinearities considered to give

a significant effect being mainly vortex shedding and the effect of air being trapped beneath the

ice floe. In addition the physical modeling of the ice-floes gave room for water elevation between
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the ice-floe and the glass wall in the tank. The tests showed that the measured force was sensitive

for this behavior.

In the numerical results for the case with two ice-floes the maximum values for added mass

it is seen that it becomes larger fromb = 0.01mbefore it becomes smaller afterb = 0.02m. For

the experiments with the same geometric set up the maximum values show a similar trend. The

maximum values for added mass shows a growing trend fromb = 0.01 m and peaks atb = 0.08

m and get a smaller value forb = 0.10 m. For the case with one ice-floe the same maximum

values decrease a the ship section gets further away from theice. In general the numerical pro-

gram predicts a higher added mass and damping compared to themodel tests when ice is present.

8.1 Suggestions for further work

Due to the discrepancies discovered between the model testsand the linear numerical simulations

another approach can possible be taken to include nonlinearities. And also a study to further in-

vestigate if it is correct that the maximum values of the added mass should rise as the ice-floes

gets further away from the ship section. In addition the damping from radiating waves should be

checked for mistakes in the calculations and experiments.

The force gauge used in the experiments might be considered to be to robust and stiff relative

to the measure forces. Another model of the ship section where it is hollow so it is possible to

place weights inside can be constructed. A model with room for weights is possible to be floating

at the correct draught instead of applying a pretension on the force gauge. In this case a softer

force gauge can be used and that will be more sensitive and be able to measure the forces more

correctly at lover oscillation frequencies. With a model floating freely with the correct draught

it is possible to do free decay tests to estimate the sectionsnatural frequency and estimate added

mass at resonance.

During the model tests a water elevation between the ice-floes and the tank glass wall was

observed. It was found that this effect influenced the measured hydrodynamic force and the

frequency at when resonance occurred. Instead of using divynicell for the modeling of the ice-

floes they could be constructed by stiffened aluminum plateswith a rubber gasket on the sides to
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prevent water elevation between the tank wall and ice structure. Also the effect of the ice darught

can be further investigated. In connection with the water elevation on the side 3D effects in the

model scale tests can be looked into.

Different ways of modeling the ice can be undertaken. In the present study the ice-floes have

been modeled as stiff rigid bodies which are not allowed to move or bend in any degrees of

freedom. Similar model tests could be performed in a wave flume with real model ice or use a

backbone model with the correct scaled stiffness to achievea more correct hydroelastic behavior.

The ice can be anchored with springs or another adequate solution to keep it from drifting.

A less complicated way of modeling an elastic ice-floe could be to design it as an Euler beam.

This could be done by clamping the end furthest away from the ship section and let the other

end, close to the ship be free.

When considering what would be possible to model numericallythe latter is possibly the most

feasible to include in a code. With the beam approximation different bending modes can be al-

lowed to contribute in the solution and in that way include various effects of hydroelaticity. The

use of flexible modes in the free surface can also be a way to approach the problem.
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Tests with one ice-floe
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(a) Added massa33, b = 0.10m.
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(a) Added massa33, b = 0.04m.
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(a) Added massa33, b = 0.05m.
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(a) Added massa33, b = 0.06m.
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(a) Added massa33, b = 0.07m.
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(a) Added massa33, b = 0.08m.
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(a) Added massa33, b = 0.09m.
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Appendix C

Attached CD

The attached CD contains a folder with the matlab files used to do the calculations. If there is

questions about the matlab files or data files is wanter the author may be contacted. In addition

Trygve Kristiansen has back up of all data files.

XLVII



Folder Matlab
Filename Description
CreateInp.m Make input files for numerical wave tank
common.m Read datafile from numerical calculation. Used by A33andB33.m, plotzeta.m analyzeRuns.m
analyzeRuns.m Plot time series from numerical wave tank
plotzeta.m Plot the numerical calculation time step by time step (by Trygve Kristiansen)
konvergens.m Plot convergency test for the numerical wave tank
FindCD.m Calculate the drag coefficientCD

uncertainty.m Calculate the standard deviation in the experiments
createActuatorfile.m Create the test program for the actuator in the experiemnts (by Trygve Kristiansen)
splitCatmanfiles.m Split logging data from experiments into one file for each tested frequency (by Trygv
analyzeExperiments.mPlot measured time series from experiments (by MARINTEK)
bpass.m Band pass filter (by Trygve Kristiansen)
findK.m Find wave numberk (by Trygve Kristiansen)
ShallowWater.m Plot wavelengths divided by 4 to find shallow water waves
findA33andB33 Calculate added mass and damping from experiments
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