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1 Preface

This M.Sc. thesis has been produced at Departnidviaone Technology, NTNU in the
period from February"to June 14, 2010.

The subject of the project was proposed by AkeutBwis after | worked there as a summer
intern the summer of 2009. | found the subjectragng and relevant for learning more
about hydrodynamics, statistics and calculatiorhwds used in marine operations.

At first, the plan was to use only SESAM Softwaeenie and HydroD for modelling and
hydrodynamics and Postresp for postprocessing. Mewnvé turned out that Postresp could
not produce the final design accelerations, oslgdmponents. Thus, further processing was
performed in Matlab to avoid time-consuming mareatulations. This proved an advantage
with respect to workload as there were many casbs tinalysed and it proved a more
flexible tool for representing results.

Introducing viscous roll damping required that @éamount of data had to be processed and
combined, thus this would probably not have beesside without Matlab. The creation of

the Matlab code however, and some numerical prablsitin the viscous roll damping in
WADAM, delayed the work and thus viscous roll dangpwas only included for one case.

In the theoretical review, the subjects that ladyehad a good insight in were less
emphasized as opposed to the newer areas i.eedegfmique and understanding the
software.

| would like to thank Professors Dag Myrhaug, Bekniteira and Asle Natskar at NTNU and
Eirik Engevik and Gunnar Gjerde at Aker Solutioasduidance.

Kristiansand, June 12010

Stefan Hjgnnevag Karlsen
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Abbreviations
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COB — Center of buoyancy
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RAO — Response Amplitude Operator

STR — Short Term Response

STS — Short Term Statistics
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4 Summary

The topic for this master thesis is transportatibheavy platform modules on barges. The
goal is to find the short-term extreme acceleratjam design accelerations, that are limiting
for the feasibility of the transportation operatidfotion response analyses have been
performed for six different combinations of bargesl module weights as follows:

Barge Module

300 feet 1000 tonnes
300 feet 3000 tonnes
400 feet 1000 tonnes
400 feet 5000 tonnes
600 feet 5000 tonnes
600 feet 8000 tonnes

It has been observed that the roll accelerati@vésestimated in non-viscous motion analyses
of barge type vessels. Thus for the first casedalitianal analysis including viscous roll
damping has been performed.

The software used to perform the analyses anchdry used has been reviewed. The
following programs are described:

* Genie — modelling of the barge (hull, ballast tgnks

* HydroD (WADAM) — modelling of environment, hydrodgmic analysis by source
technique

* Postresp — combination and printing of motion cbenastics

* Matlab — statistical postprocessing, calculatiodesign accelerations

The founding theories are linear potential wavetii@nd source technique. The viscous roll
damping, which in reality is non-linear, was estietbin a linearised form using strip theory
and empirical data. Based on the calculated mati@macteristics, the design accelerations
are estimated by short-term statistics, meanin@ttieme accelerations are estimated in 3
hour seastates. This was performed for four diffesggnificant wave heights and all relevant
wave periods.

The accelerations are calculated in the systemieenhgravity, module centre of gravity and
top and bottom corners of the module. The limitnidgerion of a barge transportation is
normally the forces the seafastening can withstdmg the acceleration on the seafastening
has been examined closer. Aker Solutions have tgulgiined the seafastening capacity by
setting absolute limits for the accelerations i ltmgitudinal, transverse and vertical
direction.

Compared to the criteria for accelerations giverdkgr Solutions, the results proved that the
acceleration in the transverse direction is thetilng factor. Beam seas close to the roll
eigenperiod gave the highest accelerations onghiastening both in the transverse and
vertical direction, suggesting that these accetaratare governed by the roll motion.

When viscous roll damping was included, there waigaificant reduction in the transverse
acceleration, and a slightly smaller reductiorhia Yertical acceleration on the seafastening
compared to the non-viscous case. However, theuvesse acceleration was still the most



critical with respect to the given criteria. Thevas little or no effect of viscous roll damping
on longitudinal design accelerations.

Design accelerations for a 1000 tonne module wared for two different barges, a 300 feet
barge and a 400 feet barge. The accelerations gigaificantly smaller on the 400 feet
barge, especially in the transverse direction. B®Bnne module was also tested on two
different barges, a 400 feet barge and a 600 fgieb As in the preceding comparison, the
accelerations were significantly larger on the $enddarge. Thus, for a given load, switching
to a larger barge can give a large reduction iratteeleration.

There are indications that the results achieved¢amservative, including the case with
viscous roll damping. However, this is only an gation. The viscous roll damping is
difficult to estimate correctly and therefore agestion could be to investigate the validity of
the viscous roll damping model through model tests.

A certain reduction in the roll acceleration was@iyed when the load was increased for the
300 feet barge, without giving an increase in tileangle extremes. This indicates that for
some cases a decrease in the metacentric heightrcanded that the stability is sufficient,
contribute to a decrease in the roll acceleratidhout increasing the extreme roll angle.

In high sea states, non-linear effects can becagméisant. The resulting effect on roll
acceleration is unknown. Hence, it could be adgeuas to investigate the extent of these
effects using a non-linear calculation model.



5 Introduction

Both with respect to installation and decommissigrof topside installations, barge transport
of heavy objects, such as platform modules, isrgortant part. The problem of this M.Sc.
thesis is to find the short-term design accelenatiae. on the seafastening, for a selection of
barges, stretching from 300 feet to 600 feet lenigémsporting platform modules reaching
from 1000 tonnes to 8000 tonnes. The goal is w tiire short-term extreme accelerations, and
thus the design forces on the seafastening. Hémedimiting seastate for a transportation
operation can be found.

In addition, design accelerations for a given meduaced on different barges are to be
compared and one of the cases is to be analyskdling viscous roll damping.

The software used in the hydrodynamic and statstadyses will be described, and the theory
used will be reviewed.

Thus, the scope for the present work include

* A general description of the software applied

* An outline of the theory used by the programs &iablishing and solving the
equation of motion and finding extreme responsas fshort-term statistics

¢ Non-viscous motion response analyses for six cases

* Motion response analysis for one case includingotis roll damping

e Comparison of responses for a given module placedifterent barges

* Comparison of responses with and without viscolsleamping

The numerical methods used by the computer progcam$e very complex, thus the main
focus will be on the founding hydrodynamic andistetal theory.

The absolute design accelerations for a transggréid on the loading condition. For future
similar motion response analyses, the loading ¢mmdi will probably differ. Still, this work
can present an approximation of the expected desigelerations, and the relative variation
in response due to change in load or barge size.



6 Theoretical review

6.1 Response analysis software

In the present section follows a general descpbithe software used in this work. For
more details about the tasks performed by eachranoge and the connection between them,
see section 8.

6.1.1 Genie

Genie is a platform tool for structural analysisl @esign of offshore and maritime structures
made of beams and plates. Modelling, analysis esudlts processing are performed in the
same graphical user interface. Hydrodynamic armglgsiength calculations and evaluation of
results can be done within Genie for fixed struesur

Genie can perform static and dynamic linear ansiligsi structures subjected to wave, wind,
current and the equipment layout. It is also pdedibinclude the effects from non-linear
pile/soil behaviour.

The wind and wave loads create input to fatiguessaents that can be based on a
deterministic or stochastic approach. The analgs®galso be performed based on user
defined source concentration factors from localymms It is also possible to perform
progressive collapse analysis considering the effeesidual strength in the structure.

Genie can be used to produce the panel model angtrilctural model that are input in
HydroD for hydrodynamic analysis. For the panel slpthis includes creating the geometry
of the structure as well as creating the panel naeshassigning hydro pressure. The
structural model is in principle the same as thaepanodel but it includes tank walls with
defined specific hydro pressure on the surfacesoh tank.

6.1.2 HydroD(Wadam)

HydroD is a platform combining the different SESAdvbgrams for hydrostatic/stability
analysis and hydrodynamic analysis. Earlier, thnegee one pre-processor for each program,
but with HydroD one can perform the pre-processamgractively and then run the relevant
program through HydroD.

The possible applications are stability and hydrashyic response of floating structures and
loads on fixed structures. Using the loads caledlane can transfer these to a structural
model and perform structural analyses with resfmestrength or fatigue. To determine the
floating position, trim and draught, one can useabtual mass and buoyancy or one can
define the desired floating position and then auwttically fill compartments to achieve that
floating condition.

The hydrodynamic analysis may be performed usiagtitual floating position and
independent of the panel model to determine woeslihg conditions to be used in structural
strength analysis. These analyses are normallpimeed in the frequency domain, but it is
also possible to do it in time domain (Linear adl @we non-linear).



The loads (pressure and accelerations) can be atitaty transferred to a structural
analysis. The response and loads may be represgnagltically in animations.

For a vessel with forward speed, a module calledSIWAis used. For a vessel without
forward speed, the relevant program executed bydlyavill be WADAM.

In this case, forward speed will be neglected. TMADAM, which stands for “Wave
Analysis by Diffraction And Morison theory”, willéused. This program uses potential Airy
wave theory (see section 6.2) and sink-source tqubr(see section 0) to describe the fluid
motion and pressure. Second order-, sum- and €liféer frequency forces can be included if
desired. From this the resulting forces on a flgabody of arbitrary shape are calculated.

For large-volume bodies (or body parts), radiatidffraction theory is employed since it
gives a good prediction of mass forces, which araidating. For slender bodies the Morison
equation in linearised form is used due to thedangportance of viscous terms. These two
methods can be combined in a dual model where Wag#aunts the most appropriate method
depending on the body dimension (diameter) comparéte wavelength. For the vessels
analysed in this case and in the thesis howevéy radiation-diffraction theory will be used.

WADAM is based on linear methods for marine hydmaiyics and uses 3-D radiation-
diffraction theory developed at the Massachusetistute of Technology. The required input
for WADAM is a panel model, mass/buyoancy data emdronmental data. If a structural
analysis is to be performed or ballast tanks ateetoncluded, a structural model is also
required. This input data can be produced in teegpocessors Prefem and Prewad, or it can
be modelled in HydroD. In this work, the panel maated the structural model for each barge
are produced in Genie.

6.1.3 Postresp

Postresp is a graphical postprocessor for stalgtiocessing and presentation of response in
frequency and time domain.

Given the transfer functions of a vessel, the m@ogcan do statistical processing of general
response from short term statistics of one sea sidbng-term response statistics. The
transfer functions are normally produced by a hgigilnamic program as i.e. WADAM.

The features in Postresp vary from displaying tiemsinctions and response spectra, through
short term statistics, e.g.:

- standard deviation and mean zero-upcrossing period
+ significant/expected values
- probability of exceedance and extremes of long t&atistics

- fatigue
« extremes
« workability

The following features are available in the frequedomain

« Any transfer function — wave loads and global resgataken from a hydrodynamic
analysis, and stresses/forces taken from a stal@unalysis — may be processed
statistically



« User defined transfer functions may be enteredpaodessed
- Forward speed/doppler shift is handled
+ Response variables (transfer functions) may be awedb

The initial purpose with Postresp in this work waperform the full postprocessing of the
barge motions. However, due to limitations in ckdtion and the inclusion of viscous roll
damping, Postresp was only used to create the poaateration transfer functions and print
them to a file.

6.1.4 Matlab

Short for Matrix Laboratory, Matlab is a technicaimputing environment for high-
performance numeric computation and visualizatibis. based on C++ programming code,
but it is easier to use. It integrates numericalyss, matrix computation, signal processing,
and graphics in an easy-to-use environment whedglggns and solutions are expressed just
as they are written mathematically, without tramhfal programming. Typical uses include
general-purpose numeric computation, algorithmatyping, and special-purpose problem
solving with matrix formulations that arise in dgmes such as linear algebra, structural
analysis, statistics, and digital signal processing

In the present work, a Matlab code has been prabiiccereate the wave spectra, read the
RAO files printed by Postresp, calculate short-teesponse and short-term statistics and
combine the extreme values to find the design acagbns (see Figure 8-1).

6.2 Potential wave theory

Wave potential theory is the basis for calculativaye loads on structures and structure
motion in fluid. Realistic fluid behaviour is vehard to calculate exactly, thus by idealising
the fluid we can perform calculations which prodgoed results.

Using potential theory we can describe the entine fvith a velocity potentiaky. From the
velocity potential we can find:

* Velocity of fluid

* Acceleration of fluid

» Pressure in the fluid through Bernoulli’'s equation
» Surface elevatiorg,

To be able to use potential theory we need to asghefollowing

* Incompressible fluidy = constant)
* Inviscid fluid
* Irrotational flow

These are in some cases rough approximationsitleregpect to finding forces on slender
structures, roll damping, slamming pressure etbgrey viscous terms, vortex shedding or
compressibility have a significant effect. Howewsme of these effects can be taken into
account by adding viscous terms which can be fahraugh the velocity potential.



The assumption of incompressible and irrotatiohatlfyields that the velocity potential must
satisfy the Laplace equation

2 2 2
DN:af+aZ)+af:O (7.5)
ox~ ody- oz

For a floating oscillating body this is one of saleonditions the velocity potential must
satisfy. These conditions are shown in Figure 6-1.

The reason for this is that the velocity potensalefined so that it describes the fluid
velocity:

-0p 0@ -0@
V=0Og=1 —+]—+k—=|u,v,w 7.1
¢ ox Jay 0z [ ] (7.1)

Where i, j and k are unit vectors in x-, y- andiections respectively. The acceleration can

then be found by time derivation

a=—(0¢) (7.2)

ot

The Bernoulli equation finds the pressure as falow
0p 1,-p2
=—p|—+=|V| +0gz |+ 7.3
p p(at zHnga (7.3)

Wherep is water density, g is the gravity constant apis phe atmospheric pressure. The

. . o . 0 .
atmospheric pressure is neglected as we are itedrgsrelative pressureaa—? describes the

dynamic pressure (normally due to wave motipgy, is the hydrostatic pressure apéziMZ

is the velocity pressure.

Using the linearised Bernoulli, we remove the higbreler terms, meaning we keep only
terms proportional to the wave amplitude of firsder. Thus we can find the pressure as

0
= 0—- Z 7.4
p=-p 3t yols) (7.4)

6.2.1 Boundary conditions

As mentioned, knowing the pressure distributiothim fluid we can find the forces on
floating and fixed ocean structures. However, i@ a velocity potential that describes the



fluid correctly we need to implement some physhaindary conditions. These will be
explained in this chapter.

§2¢6t2+ga¢fo‘z=ﬂ

T
= I S ="
v
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Figure 6-1: Boundary conditions for floating body with potential theory

6.2.1.1 Free-surface conditions

On the free surface there are two boundary comdifithe dynamic boundary condition and
the kinematic boundary condition. The dynamic baugaondition is found from Bernoulli’'s
linearised equation using that the pressure ofrgi@esurface must be equal to the
atmospheric pressure, or that relative pressugqusl to zero. Using the linear assumption of
small wave amplitudes we can write

99(+%—?:O, on z=0 (7.6)

A fluid particle on the free-surface will remain tre free-surface. From this condition we
can derive the kinematic boundary condition ushgdubstantial derivative of a functibn

DF _oF \vmr 7.7)
Dt ot

We can describe the surface elevation as
z={(xY,t)

And define the function



F(x,y,zt)=z-{(X,y,t)=0 (7.8)

By removing higher order terms and approximatirgftee surface to z = 0 we can write

%:6_40 on z=0 (7.9)
ot o0z

By combining the kinematic boundary condition wiitle dynamic boundary condition we can
write

’p, dp
—+9g—=0 on z=0 6.10
ot? gaz ( )

If the velocity potential is oscillating harmonityaWith a frequencyn, we can write

—afqo+gg¢—0 on z=0 (6.11)

z

6.2.1.2 Body boundary condition

Another condition is that we can have no fluid mantthrough the body surface. This yields
the kinematic body boundary condition

a—¢=ﬁw75 on S, (6.12)
n

Whereni is the normal vector of the body surface pointitg the fluid and\7S is the local

velocity of the body surface. If the body is assdrteehave no motion then the condition
becomes

0
—=0 on 6.13
an S (6.13)

6.2.1.3 Sea bottom boundary condition

As there can be no fluid motion through the seatith is assumed horizontal at a depth h,
the sea bottom condition becomes

0
hth o =0
a‘zﬂ‘zz_h (6.14)

6.2.2 Linear wave potential theory

Linear wave theory assumes low waves and dencaéstiy terms proportional to the wave
amplitude(, are included. This means i.e. that the Bernoglliagion and boundary conditions
can be simplified as explained previously. The dassumptions are



* Wave amplitudes are small
* Floating body oscillations are small

Because the wave amplitude is small it is not lsoeable to neglect terms proportional to
the wave amplitude of higher order. As the bodyllagions are small, we can calculate the
forces on the body in the mean position instead tfe actual position. The free-surface
conditions are set to apply on z = 0 instead of.z =

6.2.2.1 Regular first order wave loads

Regular waves are waves with only one amplitudefeegiency. Using the first order
(linear) wave potential with linearised Bernoultichboundary conditions we can divide the
problem into two subproblems as shown in Figure 6-2

DIFFR ACTION
FROBLEM FLOATING
BODY
— OSCILLATING
S I TN INCIDENT
WAVES
7
;
RADIATION — TS >
PROBLEM %

BN NES
e

Figure 6-2: Superposition of floating body subprobdms

In the diffraction problem the body is assumedéarbincident regular waves and constrained
from oscillating. From this problem we can find thave excitation loads. The excitation
forces and moments are found from two contributions

* Froude-Kriloff load
+ Diffraction load

The Froude-Kiriloff load is derived from the pressof the wave field with no body present.
The diffraction load is the change in load dueh® s$tructure’s effect on the fluid. The
structures presence will change the fluid presBate.

In the radiation problem there are no incident vgaaned the body is forced to oscillate with
the wave excitation frequency. In the mode of ¢etodn, added mass, damping and restoring
terms are found. These terms will be explainechrrin chapter 0. As a consequence of the
superposition of subproblems we can write the titwed potential as
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P=4+%* % (6.15)

Whereg, is the incident wave potentidilp is the diffraction potential angk is the radiation
potential.

In reality, higher order terms of the wave ampléug to &' order have been proven to have
an effect in several cases, but the magnitude dseserapidly with increasing order.
Potentials of higher order thafi*ire rarely used. For a motion response analysislofting
vessel, linear theory is normally considered sigfit, while 2 order theory is necessary to
include mean and slowly varying drift forces frone twvaves. However, in some cases,
especially for high sea state&? @rder theory or Stoke’s wave theory is used iswating
dynamic response of vessels, but this will notrbated here. The higher order wave will
appear more realistic with a higher crest and dshear trough.

6.2.3 Irregular waves

6.2.3.1 Long crested waves

In reality, waves are not regular and consistingrd amplitude and frequency, but can be
considered a superposition of many waves of diffef@quency and amplitude as seen in
Figure 6-3 from “Kompendium | Marin Teknikk 3, Hymtiynamikk”. The resulting surface
elevation can be expressed as follows for an itegguave propagating in the positive x-
direction

Z:ZN:Ai sin(wt-kx+&,) (6.16)
j=1

per square meter and wave amplitude WhereAk; andg; are respectively the wave
amplitude, circular frequency, wave number and camgphase angle of wave component
number j. The wave is assumed long-crested, meatlitige waves are in the same direction.

Toid iSA:mﬂmﬁ'“Im,u, fa1=cos (@) +8)
—__—._;:- _--h""'l——_.-.-ll'

Pllss THIS =AL +
’f/-\\_/ /"""‘\- wry. My Ca-’z: Cog {0:.2 + @}
l-uvn'rnu\""/ =A3 \\-/

+
'%%%L; - faz= cos (o3 + =)
AND THIS Say e e +
36':‘:'@@@@&‘@#@‘2“@@—' Cat= cos (@4 + &)

COMBINED 4 =
VHU_/-\\/A-"\ = g:lglﬁa,i cos (g + &)

PAQDLICES THISE

Figure 6-3: Superposition of regular waves
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An irregular wave can be represented by a wavetspeshowing the energy density as a
function of wave frequency. Using the relation betw wave energy

E 31
i=1

The wave spectrum (wave energy distribution) caddseribed as follows

1.0_
EAj —S(a)j)Aa) (6.18)
WhereS(a)j) is the wave spectrum value at the circular frequgnThis means the total area

under the wave spectrum curve is the total waveggrneer square meter.

24T 7" Specirdl density Wavedave treq) T o T o

217
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1.57

1.27

0.97

0.67

Wave Spectral Density m*2iradfz)

0.37

o 0.3 06 0.9 1.2 15 1.8 21
Wave, Encounter Frequency radfs

Figure 6-4: Wave spectrum

There are several types of wave spectra desigmatifferent geographic areas, i.e. Pierson-
Moskovitz or JONSWAP. The type, or shape, of theesgectrum is selected so that the
energy distribution over the wave frequencies ddex with statistical wave data from the
area where the ship/structure is to be operatihgnTadditional parameters such as significant
wave height and zero crossing periods are set.

6.2.3.2 Short-crested waves

In reality, waves are not only long-crested bue#idimensional not only with different
frequencies and amplitudes but also different timas. The short-crestedness can be taken
into account by adding another dimension to theeaspectrum

S(w,0) =S(w) f (6) (6.19)

Wheref is the wave propagation angle of the wave compisnélsing equations (6.16) and
(6.19), the surface elevation of short crestedcagebe described as
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Z:ii\/zs(wj 8.) B A8, sin@t -k x cod), —k, si, +&,, (6.20)

j=1 k=1

6.3 Source technique

The methods used by Wadam for solving linear wadetied motions and loads on structures
with zero Froude number (no forward speed) are

« Diffraction theory - large-volume structures (shipemi-submersible platforms)
* Morison theory — slender structures (risers, jaxlegt.)

As the subject of the thesis is a floating bargey ®iffraction theory will be treated here.

To describe the fluid correctly with a velocity patial we need to implement the boundary
conditions described in chapter 6.2. There exitisé numerical methods to solve this
problem. Wadam uses a panel method to describe-lanigime structures. This means using a
mixed distribution of potential sources, sinks aodmal dipoles distributed over the mean
wetted body surface to fulfil the condition of Hoifl penetration of the body surface. This
makes the method suitable for arbitrary body shapes method is based on potential theory,
meaning oscillations are assumed small relativbeéaross-sectional dimensions of the body.

In short, through implementing the body boundanydition with a finite number of elements
with constant source density, the method finds

« The added mass, damping and restoring forces fnemaidiation problem
9% _ i on s, (eq. (6.12)

on
* The excitation forces from the diffraction problem
0% __0q
—==——— 0n 6.21
on on > ( )

Whereg, is the incident wave potential atd is the diffraction potential (see eq.(6.15))

A source is a point from which fluid is imaginedftow out uniformly in all directions. The
total flux, or the strength of the source, is dedd®. A sink is simply a negative source,
meaning Q is negative, thus the fluid flows unifortowards the point of the sink. The
velocity potential of a three-dimensional point sauin still water and infinite fluid can be
written

- Q
Q= yp (6.22)

Where r is the radial distance of a point P fromdburce point. This gives a radial flow from

the point, and if ds is a surface element of a sphlesurface with its centre at the source, the
velocity flux through the spherical surface canidten as

13



H 9 S———4nr =Q (6.23)

6.3.1 Fundamental 2D-theory

At first we will look at a simplified two-dimensi@hcase of a body in infinite fluid forced to
oscillate in the heave direction (radiation problem

A two-dimensional point source can be written

qo—glog r (6.24)

The source velocity become infinite at r = 0, bwte use a continuous distribution of sources
over a surface the velocity will be finite in thetiee fluid.

To find the velocity potential we distribute souwsaaver the body surface. This means we
write the source velocity potential as

«y.2) = [a(©)log/(y-7 ) + (2= (5)))ds (6.25)

Where (n(s) ,{(s) ) are coordinates on the body surface, s iatagration variable along the
body surface and (y,z) are coordinates in the flachain. S is the body surface and q(s) is a
source density determined by the integration végiabThe source density q(s) is found from
satisfying the body boundary condition. The totlbeity potential must satisfy all boundary
conditions, but in this case, with infinite fluithe only condition is the body boundary
condition. We solve the boundary problem numenctitough the following steps

1. Approximate the surface into N straight elements

14
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Figure 6-5: Element subdivision (coordinates (y,zare in element mid-position)

2. Assume constant source density over each element
We can now solve the integral in equation (6.25phercally by summarizing the
contributions from all the elements

9=0,[logy(y-17())* + (z— (8)))dis
oo (6.26)
+00[ 10gy ((y=77())* + (2= ¢ (5))*)ds

3. Separate out time-dependence and satisfy the bodpundary condition on the
mid position (y;,z) of each element
As the body is oscillating harmonically, we canidefthe normalised source density

q(s) = -q(8)/7; ,uc0Sck (6.27)

This means we separate out the time-dependencidanthknown heave motion.

Further, through the body geometry, we can sehappbdy boundary condition (see
eg. (6.12)), which becomes a linear equation system

Ad =B (6.28)

Wherei andj run from 1 to the number of elements, 10. The matis a 10x10
matrix containing the surface integrals over edement surface (logarithmic

expression in eq. (6.25)) for coordinateZy differentiated by the normal vector
The G-vector contains the normalized source densitiestla@ B-vector contains the
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body geometric condition so that the normal velofiivm the source in (yz) is
opposite equal to the normal velocity found froroilbation, giving no penetration.

4. Define the normalised velocity potential and solvéhe equation system in point 3
for @, thus finding the normalised radiation velocity potential

@=@), = —@n), ,wCoSut (6.29)

5. Having achieved the normalised velocity potential @ can find the dynamic
pressure through Bernoulli

p= —p%—? =—pgn, &7 sinat (6.30)

With the pressure distribution for the radiationldem we can find the added mass and
damping terms. In this case, where we have infpatential fluid, there is no damping. How
to find these terms will be explained closer inputea 6.4.3.

The integrals described in equation (6.25) andg)can be solved analytically. This can be
shown by analysing the influence from a sourceibistion along a unit element length.

constant source density g

[T I IIT1 1111
1 ¥

¥

Table 6-1: Source distribution over unit length

The normalised velocity potential can be written
1
Ay, 2) = [logy ((y-7) +2°)ds (6.31)
0
Where ds is a length element. The correspondingitis can be written
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1, 2, 2
99 [ YN _gp=Liog- Y12 (6.32)
Y 0o

(y-n) 2 T (y-1i+2
a—w= Jl.% d/7=—£{arctgy—_l— arctgl} (6.33)
z o(y-n)’+z E E E

When we plot the vertical velocit)%io as a function of z along the line y = 1/2 we ¢et t
z

graph shown in Figure 6-6 (from Faltinsen (1998)%0 plotted is an approximation with a
single source iny = %.
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Figure 6-6: Vertical velocity at midpoint of unit source length

We see that the distributed source velo%g - 7T as we approach the element, while for the
Z

single source approximatio%q—o - oo when we approach the velocity goes to infiniteselto
z

the element. From the equations for velocity wetkaethe velocity approach infinite at the
endpoints of the segment. This is not a probleneilvave a continuous distribution of
elements but it can present a problem howevertfarscorners etc., thus one should be
careful when examining velocities close to the body

Symmetry and antisymmetry properties of the sodesesity can be used with great
advantage in sink-source technique. For the exaofglee oscillating body in infinite fluid

the source density is symmetric about the z-axtb@$low is symmetric about the z-axis.
This is due to that the body is symmetric aboutztaeis and the body is oscillating in heave.
It can be shown that the source densities havartoet each other at the z-axis. By using this
we halve the number of equations. Further we carthes antisymmetry about the y-axis to
halve the equations once more.
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6.3.2 Three-dimensional source technique with wave effects

When analysing linear wave-induced motions anddaadlarge-volume structures, three-
dimensional source technique is used. In this wasdo not have an infinite fluid, thus we
have more boundary conditions the velocity poténgds to satisfy.

As an example, we will look at the radiation poiginfsee chapter 6.2.2) in heave for a ship
with zero forward speed. The velocity potentialasrid from the following conditions

0°p 0°p 0°p _ . .
o + Y + e in the fluid (as eq. (6.1)) U]

-+ gg— =0 onz =0 outside body mean pos. (mean free-<seirfas eq. (6.11)) (I)
z

3_40: ng% body boundary condition on mean position opshirface (eq. (6.12)) (Il
n
Z—j =0 on the sea bottom (for finite depth) (as edL4p. (Iv)
z=-h
|O0g -0 when z- - forinfinite water depth V)

The first conditions listed above are the three-disnenal Laplace-equation (1), the linear
free-surface condition for harmonic oscillation) @hd the body boundary condition. For deep
water the infinite water depth sea bottom condifighis used. The boundary conditions are
explained in more detail in chapter 6.2.1.

For a three-dimensional radiation problem we hauvadlude the radiation condition as well
to ensure that the waves propagate away from fipe Ah example of an outgoing wave
potential is

AC” intr —at +) (6.34)

I

Wherer =./y*+ 7 is a large distance from the body. Wee see tleatvtive amplitude

decay with a factor orfi :

T

As we have three dimensions we represent the hollenically with quadrilateral panels
instead of two-dimensional straight elements. The@ostrength is constant over the panel
(see point 1 and 2 chapter 6.3.1).

However, the source potential is not the sameigdhse as for infinite fluid (point 3 chapter

6.3.1). It is more complicated to find. We needdorect the potential so that it satisfies
conditions (I1), (V) and the radiation conditionhd strength of the source density is found
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from the body boundary condition to ensure no ftoyugh the body surface. Havelock
(1942, 1955) showed that the velocity potentialifdinite water depth can be written as the
real part of

K (kr)

GOy, Z:E ™ = [t = 7j[vcosk e+ ykosirk g+ ) 25 dk (6.35)

R R
—2mve’ Y (vr)+i2me’ I, vr) '

Wherei is the complex unit, & n , {) are coordinates on the body surface sisoan
integration variable along the body surface. Furthe have

R=\(x=&) +(y=n)*+(2-0)* (6.36)

=J(x=&)? +(y-n)* +(z+{)? (6.37)

r=(x=&72+(y-n)? (6.38)

v & (6.39)
g

J - Bessel function of the first kind of zero ard@ughly described as an oscillating

function that decays with the ratiﬁz in this case, whene is the input variable.

Yo - Bessel function of the second kind of zero ordaroscillating function that is singular
forvr =0.

Ko - modified Bessel function of zero order, an@xgntially decaying function of kr in this
case

In “Abramowitz & Stegun, 1964” the Bessel functicare explained further. The same work
explains how the Green function (eq. (6.35)) siatssthe radiation condition by using
asymptotic expansions for the Bessel functiondogé r-values.

We can write

Re{ =Y, r)+id, (Vr) —Iax = Re{[- / SIV’(VI’——JH / py co{,/r_%j aict
=- /i sin(vr —at —’—TJ (6.40)
wr 4

We know that the two first terms in (6.35) decapaxentially withkr since they are

proportional to k, which is real, while the two last terms, seemfr(®.40) decay withi.

N

Thus we can neglect the first two terms for large r
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Thus we have an oscillating outgoing wave decawittly % meaning we satisfy the
vr

radiation condition for large r.

It can also be shown that the free-surface comtissatisfied by image sources/sinks. It is
possible to show that equation (6.35) when theukeqy goes to zero becomes

i} e’ forw- 0 (6.41)

. | L
G(X,y,Z,f,/],Z)e _|:R+R|

This equation expresses the source potential amaination of a source in infinite fluid and
an image source above the free-surface.

For infinite frequency of oscillation the sourceftion (6.35) becomes

. S I S ) Cw
G(x,v,z,&,n,{)e {R Rle for w (6.42)

This equation expresses the source potential asraespotential and an image sink above the
free surface, thus the equation satisfies the sairdanditionp = 0 on z = 0 whemw—o.

The solution for the velocity potential for the kieaadiation problem can be written as a
distribution of sources over the mean wetted hgll S

wX,y,z,t)= Re{HdSQ 6G(xyz£E6)16) 6 )e_m} (6.43)
S

Where the Green function (source function) is gikgrequation (6.35) for infinite water
depth. The source function Q(s) is complex andusél by satisfying the body boundary
condition. We continue the procedure as in poiimt éhapter 6.3.1 and define the normalised
source potential to separate out the time depemdamnd the heave motion

Q(s)e™ =Q(s) s 6™ (6.44)

The integral equation foQ(s) is solved numerically by dividing the hull intorpes and we

get a linear equation similar to that of the baaynifinite fluid which can be solved. Thus we
can find the resulting radiation velocity potentdiich in turn can give us added mass and
damping.

For the diffraction problem, the body boundary dtind is satisfied by setting

99__0q
n n on §; (aseq.(6.21))
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6.3.3 Considerations

The procedure of solution for the three-dimensidresd-surface heave oscillation problem
described in chapter 6.3.2 can be generalisedytadegree of freedom. The method is in
principle equal to that of the two-dimensional it fluid example. However, there are a few
considerations to be made regarding use of thneemsional source technique

* More boundary conditions to satisfy

» Complex source densities

* Far more complicated source expression (Greendifum

* The normal velocity induced on an element by as®distribution over the same
element is different in 2D and 3D

» Occurrence of irregular frequencies (numerical fEot)

* Poor representation of velocities close to the lahaly to singularities

* Poor representation of sharp corners as there filslidoseparation

Other ways of solving the source potential candumndl in Wehausen & Laitone or Newman
(1985). This includes solutions for finite wateptle which Wadam uses. This will however
not be treated in this review.

6.3.4 Grid density

The panel grid on the hull surface has an impacdheraccuracy of the calculations and may
have a large effect on the predicted responsectiergl, the panel density should be larger in
areas where we have large changes in the flowarceind sharp corners and edges.

For a dense grid, the computational time can by kagge. The ideal grid is therefore one that
produces good enough results without using an soredble amount of time. Looking at
different grid densities, one can examine the cayamce of the results. If one increases the
density from a coarse grid, one can expect a rattleemprovement in the results. However,
as we refine the mesh, we should eventually semaetgence towards the correct result. One
way of determining the right mesh can thereforéobeary the grid density and plot the
respective results.

6.4 Equations of motion in the frequency domain

To find the dynamic motion characteristics of aflng body we have to solve the dynamic
equilibrium equation for regular waves at differaratve frequencies (and wavelengths). The
dynamic equations of motion are established frowtse’s 2 law and d’Alemberts
principle.

For a floating body in waves the general dynamiglégium equation for all six modes of
motion can be written

6 _ _
Z[(M kT Ajk)’7k + Bjk’?k +Cjk’7k] = Fje_ma ]=1,...,6 (6.45)
k=1

Where
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1, - motion in mode k

1, - velocity in mode k

fj, - acceleration in mode k

M, - generalized mass(inertia) matrix component ilejalue to motion in modk
Ay
B, - damping matrix component in mogdéue to motion in modk

- added mass(inertia) matrix component in mjodige to motion in modke

C,. - restoring matrix component in mogéue to motion in modk

F, - complex amplitude of exciting force in mgdeith the force/moment components

given by the real part of e
® - wave excitation frequency

As we have six degrees of freedom we get 6x6 negtfior the mass, added mass, damping
and restoring forces and a 6x1 vector for the axom force. Normally the matrices are not
diagonal, meaning we have coupling, or interacéffacts, between the different modes of
motion.

We want to solve the equation system for the respdor different frequencies so that we can
achieve the transfer functions (RAOSs) of the vefsedll the relevant modes of motion. E.g.
the heave transfer function expresses the bodgjsorese amplitude divided by wave
amplitude in the frequency domain, thus for a waitl a given frequency and amplitude we
can find the body’s response.

Thus we have to find the mass-, added mass-, dgmaind restoring matrices as well as the
excitation forces.

6.4.1 Excitation forces
This chapter will review the theory used to fine #xcitation forces on a floating large-

volume body. Slender-structure theory will not tEated. The excitation forces come from
the waves which create a harmonic oscillating fancehe body.

There exist different methods of calculating exaitaforces for a floating body. The two
most frequently used are

» Diffraction theory — forces are computed directiymh pressure distribution
» Haskind relation — forces are computed from radrapotential

Most hydrodynamic programs use diffraction theargalculate the wave excitation force,
because it finds the distributed load (pressuraf) ¢an be used for load transfer to a structural
analysis. However, the global excitation forces aso be calculated from the Haskind
relation that uses the radiation potential.

6.4.1.1 Diffraction theory

As explained in chapter 6.2.2.1, we can find thetakon forces on a large-volume body by
the diffraction problem, where the body is in iremd waves and restrained from oscillating.
To find the fluid pressure we need to know the shtbed wave potential and the body
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diffraction potential from when the body is consted in the mean position in incident
waves. In Wadam, this potential is found by sousmique as explained in section 6.3.

The resulting dynamic pressure on the body in teamposition from incident waves and
diffraction can be written

__ 0p__ (0g 6%}
= 9P _,[94 %% 6.46
P="P% p( at ot (6-46)

Knowing the Froude-Kriloff pressure and the diftian pressure, we can find the excitation
forces and moments by integrating over the bodfasar

6.4.1.2 Haskind relation

For a body with zero forward speed, which is a negoient in Wadam, we can use the
Haskind relation to calculate the excitation forCEsis calculation method uses Green's
second identity to derive excitation forces frora tadiation problem instead of the
diffraction problem. However, we do not find thegsure distribution with this method, only
global forces.

With complex velocity potentials, we can write tiéfraction force in direction k as

Fp =iwjga,%—‘fdA for k0{1,2,3 (6.47)
Se

Whereg is the complex diffraction potential defined py=€“@() anddx is the complex
radiation potential in direction k.g3s the surface of the body.

Using Green’s second identity over a closed suréackthe Laplace condition we can write
the integral as

J {@%_ﬁ‘@%_ﬂd“: [llleva -a0%g Jav =0 (6.48)
S v
We can then write
— 0@ . _- 0@,
F? _.wg@EdA_wg@EdA (6.49)

Using the body boundary condition

0_@ = _0_% (6.50)
on on

Where ¢ is the incident wave potential, we can write tifeaction force independent of the
diffraction potential

23



= —ia)g(& %—ﬁdA ong (6.51)

The Froude-Kriloff force can be written as

" = [ p(-mda=~-| 9% _myaa (6.52)
5 3 ot
If we insertg - 9% f(2€“™ and use thag, [Ti :%—@ we can write the Froude-Kriloff
w n
force as
FK =iapj¢6a—¢ﬁdA (6.53)
3 on

Combining with the diffraction force we can writgettotal excitation force as
F¥=F" +F°= |cqu' [%——@—%}dA (6.54)
on

As mentioned, the Haskind relation does not fireldstribution of the pressure, thus it is
often used to check for numerical error. Howeviewnd are only interested in global
responses, it is a valid method.

6.4.2 Mass matrix

The mass matrix consists of the generalized massnantia terms which multiplied by
acceleration creates the inertia force or moment.

For a body that is symmetric about the X-Z plané laas its centre of gravity in (0,@)ave
can write the mass matrix as

0 0 0 Mz O
M 0 -Mz, O 0
0 M 0 0
-Mz; 0 |, 0
Mz, O 0 0 I 0
0 0 0 -~y 0 I

oo o<

M, =

The mass is found from the body density or madsiloligion

M=Ijjpbdvzim (6.55)
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Where g, and V are respectively the density and the volofrtee body and ims a mass

component. In a computer program such as Wadanmass, COG and the mass distribution
(inertia data) need to be defined before any catmiis can be made. From the mass data and
the hull shape the program can calculate the figgtosition and thus the inertia forces from
the following relation

I :H p,orzdvzrimri2 (6.56)
v i=1

Where r is the distance from the axis of rotatipis the distance from the axis of rotation to
the local COG of a point mass.r&.g. the pitch inertia (about the y-axis) is

Iss=prb(xz+22)dV=§lm(&2+#) (6.57)

Where x and z are the coordinates in the X-Z plane of the |&@iG of m. In Wadam,
alternatively, the radii of gyration can be inpuredtly for a specific load condition. In this
case we use the following relation to find the fizer

r= il (6.58)

Wherer, | andM are as explained above. In any case, the masibdigin over the body
must be known. If we know the total mass, but hetdistribution, we can perform a rough
approximation by setting the body density as caonista

6.4.3 Damping and Added mass

Added mass is defined as an addition to the baagss or inertia due to that the body will
accelerate the fluid it is oscillating in. The wadluid is accelerated but the acceleration
decreases rapidly at a further distance from ty pbilhus the added mass can be represented
with a finite addition of the mass. The added mas®t necessarily of unit [kg]. E.g. the
added mass in pitch will be an added inertia abiweiy-axis of unit [fi. In strip theory the

pitch added mass would be found from the two-dintersd added mass in heave, but by use
of Wadam, it is found from the radiation potential.

The damping is the dissipation of energy for tHeation. For a free, damped oscillation, the
response will decay exponentially (subcritical damgp The damping coefficient can be
found from the critical damping. The critical damgiis when we have zero in the root of the
2" order equation, meaning we have maximum one zessing. The damping ratio is
defined as the ratio of critical damping

B _ B
Bcritical 2(M + A)a)n

&= (6.59)

Often, the damping ratio is known or it can be agpnated for a type of dynamic system.
Then the damping coefficient is found from the tielabetween critical damping and

25



damping ratio. For Wadam however, the dampingusdofrom the radiation velocity
potential, except for viscous roll damping, whisifound from strip theory.

6.4.3.1 Potential damping

As mentioned, the damping componenjsadd the added mass componenjisafe found by
solving the radiation problem. We can write theuoeldd hydrodynamic force in degree of
freedomk on the body by the forced harmonic motion mgdas

d’n, dr.
F = A, dtzj_ 'd_t] (6.60)

Knowing the radiation potential we can find the fodiynamic force on the body. The
radiation potential can be found through sourclnege as seen in chapter 6.3. We can use
the two-dimensional body from chapter 6.3.1 asxamgle. The dynamic pressure has been
found to be

p:—,oa—w:—,oq?r/s‘aaf sinat (6.61)

ot

Where g is the normalised velocity potential independdrtirne and motionys 4 is the
amplitude of the forced heave motion amd the frequency of oscillation. From the
numerical division into elements with constant sewstrength, the hydrodynamic force in
heave becomes

F,= —I pnds = —{i[f q_ongds]} a'n,, sinat (6.62)

S 1| s

WhereSis the surface of the body apdenotes the element number. Thus, by using equatio
(6.60) and knowing that there is no damping inniéi potential fluid we can set the added
mass to

ACD) ;pf[ [ &nadSI (6.63)

S;

In general, for a floating body on the free-surfabe damping and added mass can be found
by using fluid energy relations, the equation oftimmand using the control surfaces shown
in Figure 6-7. The figure shows a forced heave omoéis an example. The damping can be
linked to the amplitude of the radiated wave.
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Figure 6-7: Control surfaces for radiation problem

For the case to be studied, a rectangular bargbawe no forward speed and no current. The
barge is also symmetric about the X-Z and the Manes. In this case we should have
symmetry about the diagonal for the damping aneédddass matrices as well as no coupling
between sway, roll and yaw and surge, heave anM,piteaning

Bjk = Bkj , Ajk = Akj (6.64)

6.4.3.2 Viscous roll damping

In roll, the viscous effects can increase the dagpignificantly, thus giving a significant
decrease in the roll response, especially aroumdalheigenfrequency. The radiation
potential does not include viscous effects, thesvibcous roll damping must be included in
another way. This is normally done by adding asiscroll damping term in addition to the
potential damping term, represented as follows:

R = B,/7.0n (6.65)

However, as seen in equation (6.65), the viscoogpd®y term is non-linear. In order to use
the viscous-damping in the linear equation of nmgtive need to linearise the term. Thus, we
introduce the linear viscous damping coefficientai®ws

o™ =B/, (6.66)
Where the linearised damping coefficient takesfofiewing form

B = K4 max (6.67)
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K is a constant depending on encounter frequendlyfdnn and bilge keel dimensions. It is
found so that the linearization gives minimal ermy, . is the most probable largest roll

amplitude in a seastate, typically of three hownsation (see section 6.6.4). The linearised
roll damping is dependent on the maximum roll atagk, which is found from the transfer
function following the solution of the equationrabtion. As the viscous damping is part of
the equation of motion, we need to iterate to fimelcorrect damping. This in turn means that
we get a different transfer function for each ssta@stiue to the variation in the viscous
damping. The variation will be large or small degieg on the magnitude of the viscous
damping.

WADAM calculates the viscous roll damping coeffitiédrom the following contributions:

» Skin-friction — found through strip theory, Kata®@6)
» Eddy-making from bilge keel — Kato(1966)
* Eddy-making from the naked hull — Empirical datd atrip theory, Tanaka (1961)

In this work, no bilge keel will be included, thie relevant components are skin-friction and
eddy-making from the hull. Due to the rectangulalt form of a barge, the viscous roll
damping will be dominated by the hull eddy-makimgnponent, but for a conventional ship
hull the skin-friction component will dominate. Bathe skin-friction component and the
eddy-making component are found using strip theleuyther, the skin-friction term is
calculated according to Kato (1966), while the eddking component is found trough
empirical data, Tanaka (1961).

In short, strip theory divides the hull into 2Digfr over the vessel length and neglects water
flow in the longitudinal direction. In this mannéhge calculations are simplified significantly
and we only need to find wave motion and excitafaue on each strip. Hydrodynamic
coefficients such as damping and added mass cloubé using experimental 2D-data. In

this case, strip theory will only be used to fihe wiscous roll damping components. They are
found using experimental data for 2D-sections f¥0ato(1966) and Tanaka(1961). There are
some limitations to the use of strip theory, thusfollowing assumptions apply in calculation
of the viscous roll damping term:

» Slender body, L/B>>1 (L/B>2 normally produce goedults)
e Low Froude number, Fn
» Linear relation between wave amplitude and vessgianse

All the conditions listed are satisfied in the &nlling analyses, as the barges have an L/B-
ratio between 3 and 4, and zero forward speedadalirelation between wave amplitude and
response is already assumed as we are using Viraear potential theory.

6.4.4 Restoring forces

The dynamic restoring forces or moments are indibgeal change in buoyancy or buoyancy
distribution and thus proportional to the vessetioro We will take a look at restoring forces
in heave and pitch as examples of how to find &s¢oring coefficient.

E.g. for a rectangular barge in heave moving ihefluid the static fluid pressure will give an
increase in the buoyancy from the neutral levelingi a net restoring force opposite of the
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motion. The same decrease in buoyancy occurs wigebarge is moving out of the fluid. It
can be written

F3R =-C,{], (6.68)
Where
Css = P9AL (6.69)

Where Ay is the vessel waterline area. For a normal bodyatiea of the waterline will vary
with changing submergence as the hull gets narrtavearrds the keel. This means that the
restoring coefficient will be a function of motionhis is often neglected for small motions.

E.g. for a positive pitch motion the buoyancy cemtroves forward due the increased
buoyancy at the bow and the decreased buoyanbg atern, creating a righting arm GZ
The righting arm can be expressed through the fodigial metacentric height

GZ, =GM| sinz; (6.70)

Wherer, is the pitch angle. For small angles we have siay, = 7., thus we can express
the righting moment as

FSR =-pglGZ, =-pglGM 775 = -Cy474 (6.71)

Wherep is the water density, g is the gravity constamt &his the volume displacement of
the ship. Thus the restoring coefficient becomes

C,, = pglIGM (6.72)

We can have coupling of restoring in different modémotion.

6.4.4.1 Linearised roll restoring

In roll, the restoring coefficient is found in sam@nner as for the pitch motion (shown in the
section above), except the distance between theeoaigravity and the transverse
metacentre is used instead of the longitudinal osetiie. However, the roll motion poses a
new problem as the roll angles can become quigelarhis means that the roll angles exceed
the linear part of the GZ-curve, which is the bésighe roll restoring moment.
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Figure 6-8: Linearised roll restoring moment from the GZ-curve

Using the area under the estimated GZ-curyg dAd the area under the initial GZ-curve
(Ar), as defined in Figure 6-8, the roll restoringfticent can be linearised by introducing a
factor,f. First, assuming small angles, we expand thenagtavork in a Taylor series:

W, = pglGZ® = pglA (6.73)

Thus we can find the relation between the worlhefrieal restoring and the initial restoring as
the factorf:

p=M oA 2A . A (6.74)

Thus we can write the restoring moment in rollaajé angles as
C,. = f [pbgdGM+ (6.75)
6.4.5 Transfer functions

Having achieved the equation terms, there arerdiftevays of solving the problem for a
forced vibration. The frequency response methoth semplex numbers, is frequently used.

The principle of finding the transfer function da@ explained as follows. We have a dynamic
equilibrium function
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(M + A)/j+Bry+Cn =Fe™ (6.76)
We can write the response
n=ne' = FR(w)Fe'“ (6.77)

Wherer is the complex amplitude of motion (the real pautnplied) and FRY) is the

complex frequency-response function. Thus we cuaidelithe equation of motion by
and we get an equation that can be divided intbare@imaginary parts.

-/ (M + AT +iwBi7 +CiT =F (6.78)

We can write the frequency-response function asnbion amplitude per unit excitation
force

1
—a*(M + A)+iwB+C

mezg: (6.79)

In linear theory we assume a linear relation behweave excitation force and wave
amplitude. Using this we can find the transfer fiorcdefined as

1

H =
el

(6.80)

For the full six degree of freedom system the dqunatare more complicated. For a body
symmetric about the X-Z axis, we can utilize tlnere is no coupling of surge, heave and
pitch with sway, roll and yaw. Thus we get two sdtthree coupled equations for the
imaginary and real parts. We write

N =ne'™ = FRw)F e (6.81)

6

Z[_Q)Z(M i AT HiwBy g +Cyp ] =F;, =16 (6.82)
k=1

We can then find the frequency-response functiomfr
6 -1

FR (w) = [Z[_af(M i ¥ AT HiaB g +Cyi] :| , 1=1..,6 (6.83)
k=1

By taking the absolute-value of the complex fregquyeresponse function, we find the
mechanical transfer function. The hydrodynamicgfanfunction is found by finding the
motion per unit wave amplitude instead of per toite.
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6.5 Design accelerations

In order to find the maximum accelerations on #a&fastening and the uplift acceleration, we
need to change the accelerations from an eartt tmerdinate system (x,y,z) to a body fixed
coordinate system (X,Y,Z). This will give us accaleons for X and Y in the deck plane, as
well as Z-acceleration normal to the deck planes tie can estimate the forces on the
seafastening equipment. Both systems have origjeeigentre of rotation.

We start by combining the global accelerations@fer functions) into point accelerations for
a random point P = (¥/p,2p).

Z

[
\

L

Figure 6-9: Calculation of acceleration in a pointP

Looking at Figure 6-9, assuming small motions, cae see that the motion in an arbitrary
point P on the barge in the earth fixed coordisgttem can be found from the following
expressions:

S =Mt Zf1s~Ylle

S, =11, = Zy/14* X/ (6.84)

% :,73+yp,74_xp,75

Global motions and accelerations are given in #ssgl centre of rotation. Thus, using the

complex transfer functions for the harmonic motie, can find the transfer functions for
acceleration of P in the global coordinate systerfohows:

a, :,71+Z,75_y,76:_a)2[| Hl(w)l"'Zle(w)l_y |H6@)|]
a, :’72_2’74+X’76:_(‘)2[| Hz(a)) |_Z|H4(w) |+x |H 6@) 1] (6.85)
a, =15+ Yy, ~x75== | Hy(@) |+y [H @) |-x [H, @) ]
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Figure 6-10: Body fixed (X,Y,Z) and earth fixed (xy,z) coordinate system

To convert the accelerations to the body fixed dowte system, we include pitch and roll
angles due to waves and decompose the translatioocelerations. Due to the angles we have
to include the gravity componegt Static angle due to wind is not considered arntasefore
neglected. We can now write the accelerationserbtidy-fixed coordinate system as

A =a,cos]; — g simy—a, sim,
A =a,cos], +g sim,-a, sim, (6.86)
A, =a,C09]; C0g),+J COg; COpta, Sin+a, s

Assuming small pitch and roll angles we can wadtey7 = 1and sim =7 . This means we
can simplify equation (6.86) to the following:

AS( =a, —0/]; —af]s
A =a+ 97, -a, (6.87)
A =a,tgtasnstayj,

Having obtained these expressions, meaning RAOkéoaccelerations in the body-fixed
coordinate system, we only need to use the thefosliart-term statistics (as in section 6.6.4)
to find the design accelerations, the extreme watiidy, Ay andAz. However, Postresp
cannot only calculate the two first terms of theederations in equation (6.87) as the
remaining terms are non-linear with respect to wawglitude.

In the Z-direction, these two non-linear termsguation (6.87) can be neglected due to their
small magnitude. However, to find the extreme valunethe X- and Y-direction, we need to
combine the extreme value from Postresp (the tvgbd terms ofAx andAy in equation (6.87))
with the extreme values for heave acceleratiochpind roll. This means the design
accelerations are calculated as follows:
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— postresp
A(,max - i( ,max + aS,mag 5,ma)

(6.88)
A\(,max =t (N’ﬁ;isp + aS,mag 4,ma)
Where the terms calculated by Postresp are:
posresp — o _
A a, — /s (6.89)

N =a, +g1,

As the purpose of checking acceleration in ther2ation is to check for uplift force, the
gravity component is not included for this compandihus the Z-component of the
acceleration is calculated directly from the RA@ated in Postresp.
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6.6 Statistical analysis

After the transfer functions are calculated fortl# relevant degrees of freedom, the response
of the vessel can be calculated in a longer teenfar a sea-state of 3 hours duration to find
extreme responses. For the case-study and the,th@siwill be done in the program

Postresp. In this chapter we will look at the tlyagsed to calculate the statistical responses.

6.6.1 Basic assumptions

* Linear relation between wave amplitude and vessganse

* Waves are assumed long-crested. This means thveavespreading function is
included in this analysis. Long-crestedness isidened to give slightly conservative
results

* The wave-spectrum is considered narrow-banded. allow's the use of Rayleigh
distribution of the wave heights instead of Ricgtribution

6.6.2 Wave spectrum

For this case, regarding a barge to be used fospi@at operations in the North Sea, a
JONSWAP spectrum will be used. It is assumed natranded, meaning that the energy is
assumed concentrated around a narrow band of inegase JONSWAP stands for Joint North
Sea Wave Project and is derived from a Pierson-BlWwik spectrum. The Pierson-
Moskowitz spectrum is based on North-Atlantic statidata and is governed by wind
velocity for low frequency waves and gravity foghivelocity waves. The Pierson-
Moskowitz spectrum can be written:

A )
SM(w)=—e ¢ 6.90
(w) 5 (6.90)
Where

A=0.0084%, B= o.74§‘)

w- wave frequency (rad/s)

U - wind velocity (m/s)

g - gravity constant (m7s

By introducing the following parameters we creatFOWNSWAP spectrum:

a - parameter describing the spectrum in the highuency area (0.0081 for PM)

a, = O.87Ug - peak frequency

_|a, forwsaw,
- o, forw>w,

If we use a PM spectrum and a JONSWAP spectrunedoribe the same sea state, then the
total energy, the area under the spectrum curdebaithe same. The difference is that the
JONSWAP uses a peak parametewhich is described by:
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SJONSNAP,max |]: (691)
SDM ,max

Thus they describes the peakedness of the JONSWAP spectienlONSWAP spectrum is
designed for areas close to the shore and sea tateare not as fully developed as the PM
spectra. The spectra for these sea states haverpnoare concentrated around the peak
frequency, which is represented in JONSWAP withghemetey .

y:

The spectrum can then be written

gz 5@y —%(“;T“:’)

S(w)

W
Figure 6-11: JONSWAP and Pierson-Moskowitz spectra

Among others, Hasselmann established the followiegn values for the JONSWAP
parameters:
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y=3.3
og,=0.07and g, = 0.0¢

-0.22
_ gx
a-O.O?{F)
a=ror 8 &)
T lu J\lu?

Where U is the wind velocity (m/s) and x is thecke{m), the effective distance the wind
excites the sea.

However, it is more convenient to establish thepeaters kKland T, to describe the spectrum.
These are respectively significant wave height éberage of the 1/3 highest waves) and the
average zero crossing period. Thus, using Hassalsiaalues fol, andocy,, we express, y
andwyp as functions of Hand T, with the approximations seen in Figure 6-12.

_ -'H'] 4 \
« = (Hs) [T ) - 0287100 ))
(J;:—jfTT
B
11+ p
T.
po=3 for o 27
E
| 573 r
y = e o for LI € 2 <37
E H:
T
! = Jor = > 3.7

Figure 6-12: Wave spectrum conditions

Hs and T, can be expressed by the wave spectral momentdl@asihg

H, =4J/m, (6.93)

T :Tm02: 21 =277 ﬂ (694)
m2
m, = j 'S(w)dw (6.95)
0
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Thus we have a JONSWAP wave spectrum that canidescsea state wave energy
distribution for a given Kand T, combination.

6.6.3 Short-term response and response spectrum

A sea state is the time interval where we havenatemt wave spectrum, i.e. constagHd

T,. Given the wave spectrum for a sea state anddhsfer functions (RAOSs) for a floating
vessel we can find the vessels response specttiadiosea state in all modes of motion. This
is based on the assumption that there is a lidation between the wave amplitude and the
vessel response. This can be derived as follows aviteave motion as an example

"7&1‘
H, e (@) = (6.96)
h j Za,j

1 2
S, (w, )Aa)zz ’73,1‘ (6.97)

S(w, )Aa):%@j (6.98)

Wherensj and (. are the response- and wave amplitude for frequencs, («) and S(w,)

are respectively heave response- and wave spe@trinequencyw;. By dividing equation
(6.97) by equation (6.98) and inserting equatioAgHwe get the expression for the response
spectrum

S'73 (a)i):Hheave(a)j)ZS(a)j) (699)
Thus from the response spectri@y(w) of a response x, we can find the significant respo

height (double amplitude), equivalent of finding ignificant wave height for a wave
spectrum, and the zero-crossing period for theoesp

X, =4y (6.100)

sz:Tm02x: on =2r ﬂ; (6101)
’ oW \/ mj

'm02,x

Where the response spectral moments are given as:
' = [ of'S (w)dw (6.102)
0

The variance of the response is given by fhsyectral moment
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Jf:rrﬁ:TSX(a))da) (6.103)

The short term response or significant respongdsXormally plotted against, Tor a

constant | Significant response is the double amplitudehefdaverage of the 1/3 highest
responses in a sea state. Further, as shown me#tesection, the variance of the response can
be used to calculate extreme response in a seastate

6.6.4 Short-term statistics, design accelerations

Given a criteria for maximum allowed response, care find the limiting sea state, the sea
state that gives maximum allowed response. As wealculating a transport phase, the
relevant statistical analysis will be a short tegsponse statistics analysis.

Assuming that the wave amplitudes, and thus th@orese amplitudes, can be described by a
standard normal (Gaussian) distribution around,zberesponse height can be described by
a Rayleigh or Rice distribution. This distributigives us i.e. the probability of exceeding a
given response value. The cumulative probabilitycfion gives the probability that a
response is equal to or smaller than a given respealue X. The Rice cumulative

distribution function is given by:

F.(X) :q:(i) —\/1—5%( vi-¢” l] e_E[?*) (6.104)
0, £ O

X

Where®d() is the normal cumulative probability integral,ande is the spectral parameter
given by

(6.105)

Where m, m, and m are spectral moments for the response spectruaurinase we have a
narrow-banded process. This means thai0, or thatm? = mym, = w'S(w)®. Thus the
cumulative distribution function becomes

> F(X) =P () - P () e_%(?xxJ = 1—e_%(%J (6.106)

Thus the probability of exceeding a given resposadee X is
_%(L]Z
P(X = x)=1-F,(x)=e (6.107)

In a sea state of duratioRelstate the number of response cycles can be calculated the
response zero-crossing period which is the samedlve zero-crossing period
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N = (6.108)

z

We can calculate the most probable largest respgonsetting the probability of exceeding
response Xaxequal to 1/N (only one wave exceeds.

1-F.(X_ )=+ (6.109)
N
1 X}’
> e 2( o J =1 (6.110)
N
> X =v20,,/InN (6.111)

With respect to design accelerations (see sectinwe need to find the most probable
largest response&fay for all the components of the design acceleratesmdemonstrated
above.

Alternatively, by setting a maximum probability @tceeding a given limiting vertical

acceleration, one can find the limiting sea statdHle transport. In this case the response
standard deviation (or variance) will be the unknosariable. We can write

e_%[%ax) =p (6.112)

e P (6.113)

X, max m

WhereP,__, is the maximum probability of exceeding the givieniting response Xax
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7 Analysis setup

There will be a total of six different cases examoimn this work, consisting of selected
combinations of barges and module weights. Thex¢haee different barges and four
different module weights. The cases to be analgsedisted in Table 7-1.

Annotation Barge Module weight
B3L1 300 ft (UR109) 1000 t
B3L3 300 ft (UR109) 3000 t
B4L1 400 ft (H404) 3000 t
B4L5 400 ft (H404) 5000 t
B6L5 600 ft (S600) 5000 t
B6L8 600 ft (S600) 8000 t

Table 7-1: Case analyses

The modules are assumed to have an evenly disgtdbutass. The module dimensions and
required grillage heights are shown in Table 7-2.

Module weight Length [m] Breadth [m] Height [m] Grillage height
[tonnes] [m]

1000 30 12 14 1.5

3000 40 25 17 3.0

5000 45 30 20 4.0

8000 50 35 25 5.0

Table 7-2: Module weights and dimensions

The modules are assumed to have an evenly digdbugass. In all cases they are placed with
their own COG 0.1koqueaft of the midship, meaning they have 60% of thength aft of the
midship. As a given module weight has the same so@s and grillage height independent
of which barge it is applied to, the vertical pmsitof the module bottom from the keel
baseline depends only on the barge depth. Theganaent of the modules can be seen in
Table 7-3 and Figure 7-16.

Barge MO(_JIuIe Module COG
weight X [m] Y [m] Z[m]
300 ft 1000t 3 0 14.60
300 ft 3000 t 4 0 17.60
400 ft 1000t 3 0 16.10
400 ft 5000t 4.5 0 21.60
600 ft 5000 t 4.5 0 25.58
600 ft 8000 t 5 0 29.08

Table 7-3: Module positions for all cases

7.1 Barge geometry

The barge geometry is modelled through a panel mogfgesenting the shape of the barge
hull. The panel model defining the hull geometrgrsated in Genie and then exported to
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HydroD through a .FEM file. The structural modetisated and exported in the same
manner, except the structural model includes thk wealls and internal tank pressures as well
as the hull to define the ballast tanks.

The 300 feet barge is based on the standard Ne#dtb&ge UR109, property of Ugland
Shipping. The 400 feet barge is based on the bawg@4 of Heerema Marine Contractors,
while the 600 feet barge is modelled as Saipem@)3%Girge. The dimensions and lightship
data for the three barges can be seen in Appendix A

7.2 Mass modelling

The complete mass model for the system is found ftoee contributions:
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» Lightship model — given by Aker Solutions
* Module weight - calculated manually (own inertiaplan Genie (global inertia)
e Ballast - calculated in HydroD

The mass and inertia data for the lightship anditaes data for the modules are provided by
Aker Solutions. The inertia moments for the modalescalculated using the evenly
distributed mass assumption. The given barge lghisertia moments are also calculated in
this manner. However, to account for concentradioweight along the sides and aft/forward,
the barge lightship radii of gyration are multiplieith a factor of 1.2. This means that the
iner22tia moments calculated from the evenly massiligion assumption are multiplied by

1.2 =1.44.

The mass model for the lightship and the modulecambined in Genie. The module mass is
added as a generic point mass in the module COGitsibwn inertia calculated manually.
The combined lightship/module mass model is catedland input in HydroD. The mass and
inertia of the ballast is added in HydroD and tthesloading condition can be determined.

It would have been sufficient to calculate the comatd barge/module mass model in i.e.
Microsoft Excel, but due to an initial misunderstary regarding mass model input in
HydroD, the Genie model was modelled with corre©GCand inertia. In Aker Solutions’
calculations, no coupling inertia is calculatedr #as analysis however, a small coupling
moment of inertia,x}, calculated from the Genie model, was included.

7.3 Coordinate systems

The input coordinate system for the model in Gemié HydroD has origo placed midship at
the keel on the centreline. The X-axis is positivehe aft direction, the Y-axis is positive in
the starboard direction and the Z-axis is positivihe vertical upwards direction. All input
data are given in the input coordinate system ebfoephe points for calculation of
acceleration RAOs in Postresp.
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The result coordinate system, giving motion respenkas origo in the projection of the COG
at the waterline, thus meaning the COG is in mbgt@present cases just shifted slightly aft
of midship and up from the keel to the waterlineeém draught).

7.4 Loading conditions

Stability calculations are not part of the scopetiiics work. However, hydrostatic
calculations are needed to find a reasonable virsgest loading condition to use in the
hydrodynamic calculation. Factors such as draugtit@M may have a large effect on
accelerations and motions of the barge, thusimrtant that these values are realistic. The
loading conditions used in this work are basedxan®les provided by Aker Solutions. A
small positive trim (0.2— 0.4) is desirable.

The hydrostatic calculations were performed in KRjrusing mass- and inertia data for the

barge lightship and the module weight combinegractice, as the mass model is given, the
ballast determines the equilibrium position. Thekiawere either set to be full or to have 2%
filling, and from trying different combinations,raasonable loading condition was achieved.
The 2% filling of the remaining tanks is to accotortresidual water and adds a free surface
effect.

The ballast is placed aft, forward and on the safdke barge as that increases the system
mass moment of inertia, thus making the rotatiacaklerations (roll, pitch, yaw) slower.
This is also a safer alternative with respect fbston and potential flooding of tanks, as the
tanks inflicted by a collision will already be &l and there will be no additional
heeling/trimming moment.

The load is assumed to have an evenly distributgssrand is placed with 40% of the length

forward of the midship and 60% of the length afthed midship, thus the load COG is located
0.1Lmodule aft of the midship

Using the complete model of the lightship with tamkangement, the .FEM file for the panel

model and tank configuration is produced. This &ilong with the mass data calculated in
Excel will represent the barge in HydroD.

7.4.1 300 feet barge

7.4.1.1 1000 tonne load
The resulting loading condition can be seen in @&@b#t and Figure 7-4.
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Figure 7-3: HydroD view, case B3L1

Total displacement/A 6263 t
Lightship weight, Ws 1830 t
Ballast Weight, VaLLasT 3433t
Module weight, Wiop 1000 t

System centre of gravity, CQG&

(1.48 m, 0 m, 4.98 m)

Mean draught, Rea

2.78 m=45.6 %

Trim 0.36°
Draught at stern, 3.07m
Draught at bow, R 2.49m
Radius of gyration about X-axis K 10.63 m
Radius of gyration about Y-axis K 28.47m
Radius of gyration about Z-axis ;K 29.49 m

Table 7-4: Loading condition, B3L1
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Figure 7-4: Loading condition for case B3L1

7.4.1.2 3000 tonne load
The resulting loading condition can be seen in @akb and Figure 7-6.

Figure 7-5: HydroD view, case B3L3
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Total displacementA 8263t

Lightship weight, Ws 1830 t

Ballast Weight, WaLLasT 3433t

Module weight, Wiop 3000t

System centre of gravity, CQ& (2.244 m, 0 m, 8.402 m)
GM 11.83 m

Mean draught, Rea 3.59 m =58.85 %
Trim 0.66°

Draught at stern, 413 m

Draught at bow, R 3.07m

LCF 1.05m

Table 7-5: Loading condition, B3L3
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Figure 7-6: Loading condition for case B3L3
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7.4.2 400 feet barge

7.4.2.1 1000 tonne load
The resulting loading condition can be seen in @&@bb and Figure 7-8.

ChmLCCE i LT ODEm 0@k 1 C D K C i e o

Figure 7-7: HydroD view, case B4L1

Total displacementA 16128.7 t
Lightship weight, Ws 3960 t

Ballast W8|ght, WaLLasT 11168.7 t
Module weight, Wiop 1000t

System centre of gravity, CQ& (3.46 m, 0 m, 4.59 m)
Mean draught, Rea 3.67m=48.3%
Trim 0.20°

Draught at stern, 2, 3.88 m

Draught at bow, R, 3.45m

LCF (aft of midship) 1.05m

GM 25m

Table 7-6: Loading condition, case B4L1
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Figure 7-8: Loading condition for case B4L1

7.4.2.2 5000 tonne load
The resulting loading condition can be seen in @bV and Figure 7-10.

Figure 7-9: HydroD view, case B4L5

50



Total displacementA 20129t
Lightship weight, Ws 3960 t
Ballast Weight, VAL LasT 11169t
Module WEight, Wiop 5000t
System centre of gravity, CQ& (3.751 m, 0 m, 8.241 m)
Mean draught, Rea 4.56 m = 60 %
Trim 0.38°
Draught at stern, 2, 497 m
Draught at bow, R, 416 m
LCF 0.50m
GM 16.49 m
Table 7-7: Loading condition, case B4L5
P 45 m n
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i : 20 m
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5.241m| XJ Vi
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Figure 7-10: Loading condition for case B4L5

7.4.3 600 feet barge

7.4.3.1 5000 tonne load

The resulting loading condition can be seen in @&b8 and Figure 7-12.
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Figure 7-11: HydroD view, case B6L5

Total displacementA 50436.3 t
Lightship weight, Ws 10870.2 t
Ballast WEight, WaLLasT 34566.1t
Module weight, Wiop 5000 t

System centre of gravity, CQ&

(8.464 m, 0 m, 7.927 m)

Mean draught, Rea

6.06 m =52.3 %

Trim 0.41°
Draught at stern, 2, 6.69 m
Draught at bow, R, 5.38 m
LCF 3.41m
GM 24.56 m

Table 7-8: Loading condition, case B6L5
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Figure 7-12: Loading condition for case B6L5

7.4.3.2 8000 tonne load
The resulting loading condition can be seen in &9 and Figure 7-14.

Figure 7-13: HydroD view, case B6L8
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Total displacementA 56405.5 t
Lightship weight, Ws 10870.2 t
Ballast Weight, WaLLasT 37535.3t
Module weight, Wiop 8000 t

System centre of gravity, CQ& (7.110 m, 0.004 m, 9.256 m)
Mean draught, Rea 6.76 m =55.3 %
Trim 0.30°

Draught at stern, 2, 7.22m

Draught at bow, R, 6.27 m

LCF 2.84m

GM 20.64 m

Table 7-9: Loading condition, case B6L8
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Figure 7-14: Loading condition for case B6L8

7.5 Environmental conditions (Wadam/HydroD)

7.5.1 Waveheading interval

The transfer functions of the barge are calculatighl a 30 spacing between the
waveheadings, starting at -£8nd ending at 15@see Figure 7-15). This is considered
sufficient to find the maximum accelerations.
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Figure 7-15: Waveheadings for calculation of motion

7.5.2 Frequency interval

-60°

The response due to single linear waves are cédclitd 52 wave frequencies in the interval
®=0.3-2.4rad/s (T =2.62-20.94 s). The daltbon density is higher in the area= 0.8 —

1.0 rad/s (T =6.28 — 7.85 s) where most of tisemance effects occur.

For the cases with high eigenperiods<0.8 rad/s) it should be noted that the dendity o
frequencies may be slightly scarce with steps @ @ad/s.

7.5.3 Water and location properties

Water densityg) 1025 kg/mi
Water kinematic viscosityo} 1.19x10° m‘/s
Water depth (h) 300 m

Table 7-10: Water environment

7.6 Module arrangement and points for response calc

The modules are in all cases placed with 60 %aif tength aft of midship, meaning the
module COG is 10 % of the module length aft ofriidship as we assume the module

density evenly distributed.

ulation
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The accelerations are calculated in six pointssélae the system COG, the module COG
and the top and bottom corners of the module ompdineside (see Table 7-11 and Figure
7-16).

Point notation Description

Al System centre of gravity (CQ&x)

Bl Module centre of gravity(COfmp)

CAP Lower aft module corner, port side
CFP Lower forward module corner, port side
DAP Upper aft module corner, port side
DFP Upper forward module corner, port side

Table 7-11: Points for calculating accelerations

A Zinp
3LMOD/5 2LMOD/5
t———p——»
! : Zpap,orp =Hbarget Hgrin + Huop
DAP — DFP =+
v B1
Huoo A LT
CAP ( | B CFP Zcap,.crp= Hoargd+ Hyi
Zpn = KGsys Hai [ I | A
x N )
Xinp & : E LEA [
LI2 R L2
DAP/CAP | i ! DFP/CFP
Xinp P BMOD/Z i Aj_: Bl: :
Buion/2 I L
Xa1 = XCdgsysi ' Yinp

Xg1 = Lyop/10

Figure 7-16: Module arrangement and points for calalation of accelerations

The vertical acceleration in the system centreratity (Al) is used as global heave
acceleration when finding the design acceleratiorise body-fixed coordinate system.

Points CAP and CFP are the relevant points wheonites to seafastening, placed between
the grillage and the module. As the top of the ud@@an be situated high above the centre of
rotation, it is convenient to include point DAP d&dBP in the calculation of accelerations.

It should be noted that the points for calculatbdmacceleration are input in Postresp using the
result coordinate system (see section 7.3).
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7.7 Viscous roll damping — Case B3L1

The first case (B3L1) is to be tested with viscoalsdamping, as this damping may have a
significant effect on the accelerations and motioinhe barge. Including viscous roll
damping may thus give more realistic results.

7.8 Mesh density

To find a reasonable mesh density, a convergestetacceleration values was performed
for the first case (B3L1). The barge was analysedHree different meshes as listed in Table
7-12. These are all consisting of quadrilaterainelets.

Annotation Input element size WADAM computational
time [s]

Coarse mesh 5mx5m 30

Medium mesh 2mx2m 60

Fine mesh 0.5mx0.5m 11500

Table 7-12: Meshes densities in convergence test

Figure 7-17: Genie model with coarse mesh

The mesh densities listed in Table 7-12 are thatingesh densities. The actual mesh in the

panel model exported to HydroD is modified by Geboiét the model. This normally means

that the actual elements are smaller than the ieleatent size. Figure 7-19, Figure 7-20 and
Figure 7-21 show the convergence for acceleraiioiXs,Y- and Z-direction in the point
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CAP. The result of the mesh sensitivity analysrsabthe design accelerations are shown in
Table 7-13.

Figure 7-18: Genie model with finest mesh

A-design accelerations as function of Tz for case B3L1, point CAP, for three different meshes
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Figure 7-19: Mesh convergence for X-design acceldgrans in CAP, Hs =2.0 m
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As seen from Figure 7-19, the accelerations inktugrection are poorly represented with an
element size of 5m x 5m. The maximum X-acceleraitigmoint CAP for H= 2.0 m for the
coarse mesh is only 70 % of the same acceleratitntke fine mesh. It seems that the coarse
mesh switches to being more conservative for higbes-crossing periods, but as the
maximum accelerations occur for the loweiithe interval, a finer mesh is desirable.

Comparing the two finer meshes however, we havestliabsolute convergence. There is
virtually no difference in X-acceleration betweemgters and 0.5 meters element side length.
Considering the significant increase in computatidime for the finest mesh, this is a great
advantage.

f-design accelerations as function of Tz for case B3L1, point CAP, for three different meshes
5 T T T T T T T T T

0.5m % 0.5 m elements
—20m % 2.0m elements
5.0m = 5.0 m elements

$=
M
T

La
m
T

DE 1 | | | | | | | |

T [s]

Figure 7-20: Mesh convergence for Y-design acceldrans in CAP, Hs =2.0 m

Regarding the Y-accelerations, we see that a coarsgh is consistently more conservative
than a finer mesh. The coarse mesh seem to givgearstimation of the maximum
acceleration by approximately 30 %, while the madimesh only overestimates by 0.7 %
compared to the finest mesh. Thus the medium nmesminsto give a satisfactory
representation of the Y-accelerations, still sligloih the conservative side.
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L-design accelerations as function of Tz for case B3L1, point CAP, for three different meshes
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Figure 7-21: Mesh convergence for Z-design acceldians in CAP, Hs = 2.0 m

Looking at Figure 7-21, we see that the Z-accdlmmahaximum seems to be significantly
lower for the coarse mesh, thus a sufficient firssnie required to avoid underestimating the
vertical acceleration. However, we see that theiomedanesh and the fine mesh have a very
good convergence in this direction as well, meatiregmedium mesh density should be
sufficient.

Looking at all the accelerations for all the pojnte see that the reasoning above seem to
apply for the rest of the point accelerations. €hee some small deviations where the
acceleration is slightly larger for the fine mekhrt for the medium mesh, but these
differences are so small that they can be congideegligible.

Element Acceleration Units

size [mxm] component

X m/ 0.7220 | 0.4786| 0.2660 0.2660 0.7239 0.7239
5x5 Y m/s |2.0100 | 6.7235] 4.9993 4.9159 8.5633 8.4753
Z m/S | 1.3044 | 1.3103] 2.1203 2.1468 2.1202 2.1468
X m/ss |0.3777 | 0.5859| 0.378§ 0.3788 0.9173 0.9173
2x2 Y m/s |1.1978 | 5.8514| 3.9574 3.914p 7.7982 7.7494
Z m/S | 1.2215| 1.2216] 2.6451 2.6478 2.64%1 2.6478
X m/ss [0.3779 | 0.5851] 0.3780 0.3780 0.91%9 0.9159
0.5x0.5 Y m/s |1.1993 | 5.8171| 3.9284 3.8857 7.7580 7.7095
Z m/s | 1.2224 | 1.2225| 2.6446 2.6460 2.6446 2.6469

Table 7-13: Design accelerations for different mesls, case B3L1
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The coarse mesh gave results that in some casedetkes lot from the finest mesh. The
medium mesh gave almost exactly the same resultedse mesh with an immense
reduction in computational time. Thus the clearichovas the mesh with 2m x 2m elements.
As this case represents the smallest barge, ustnggime mesh density for the larger barges
should only increase the accuracy of the mesh.

7.9 Statistical analysis (Postresp/MATLAB)

Having written the relevant RAOs to files for Mdtlto read, we can calculate the short term
response for 3 hour sea states (see chapter 83uByoal is to find the design accelerations
as a function of sea stateivith a goal of determining the limiting sea stiiethe
transportation.

T, —interval [s] Number of spectra (T,) per
H.
2.0 4.3-13.8 25
2.5 4.3-13.8 25
3.0 4.3-13.8 25
4.0 4.3-13.8 25

Figure 7-22: Wave spectra used in short-term statis

The JONSWAP wave spectre (see chapter 6.6.2), lmasBidrth Sea data, will be used in
these analyses. The wave spectra are narrow-bamdiedf wind sea type, meaning no swell
is taken into consideration. The swell is consideren-critical as the eigenperiods of the
barges are relatively low {Jo1 = 6 —10 s). Long-crested waves are used for alkdastates.

To find the maximum seastate for a transportatorio design the seafastening for a given
transport, the accelerations in the deck planedafastening height) are the determining
factors. In addition, uplift can cause disengagihthe seafastening if it relies on positive

downward gravity force. The following criteria froAker Solutions are to be checked against
the design accelerations at the seafastening GAP and CFP, Figure 7-16):

« Maximum acceleration in longitudinal directioA, . = 0.1g=0.98%;
' S
* Maximum acceleration in transverse directi@y:, . = 0.259= 2.45£2
’ S

. Uplift: A, =1.0g= 9.8102—2
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8 Analysis procedure

-Environmental data
-Barge/module mass data

l Motion

-Panel model characteristics

Gen|e -Structural model , HydrOD (RAOS) . POStreSp
(WADAM)

- Global motion RAOs
- Acceleration RAOs in selected
points

Wave spectra
Matlab @

Figure 8-1: Data flow chart

A

First the panel model (hull geometry) and the stmad model (ballast tank arrangement) are
produced in Genie. Dummy hydro pressures are defiogh for the outer hull and each of the
ballast tanks. The mesh is then created with tkeatkdensity and the panel model and the
structural model are exported to .FEM files. Thagdanodel is superelement number one,
while the structural model is superelement number t

HydroD imports the panel model and the structuratleh, giving us the barge geometry and
ballast tank arrangement. In addition the followpagameters are defined in HydroD:

* Wauve frequencies for calculation of single wavepoese

» Wave headings for calculation of response

» Water depth, density and viscosity

* Permeability and filling of ballast tanks

* Mass model for the combined lightship/module system

» Create wave spectra, seastates and estimated nmaxiotiLangles for iteration of
viscous roll damping (when viscous roll dampingniduded)

From the mass model and the ballast tank fillingd(permeability) the loading condition is
determined. Using the panel model created in Géméeharge is then analysed using source
technique to produce the transfer functions, meatiia response is calculated for single
linear waves in the frequency interval specifiede Tesult data from Wadam is opened in
Postresp, which combines RAOSs to form point aceéilem RAOs. RAOs for all modes of
motion and point accelerations in x-, y- and z-ctien for all the wave directions are then
printed to a file. The printed file is then impatt® Matlab where a script analyse the barge
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motions in various seastates of 3 hours duratibar{germ statistical analysis) and combine
the extreme accelerations to form the design aatedaes. Excluding viscous effects, one file
is produced per case, but when viscous roll damigimgcluded, one file is printed for each
seastate in and close to the roll resonance area.

Statistical calculation of design accelerationMatlab was compared with a statistical
calculation in Postresp where the design acceteraiivere calculated manually. The results
matched, thus the calculation method in Matlab khba in accordance with the Postresp
short-term statistics theory.
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9 Results

9.1 Results for non-viscous cases

The design accelerations were calculated in theaixts as defined in section 7.6. In this
section, the extreme accelerations in all poinésrepresented for all significant wave heights
for each of the cases.

In general, the accelerations at CAP and CFP axesimilar. The same applies for DAP and
DFP. The acceleration characteristics of DAP an® @Fe also very similar to CAP and CFP,
although the magnitude is increased due to theasad distance from the centre of rotation.
Due to this, and the focus on seafastening, polfR 6as been examined closer with respect
to wave period and wave direction.

Further, it must be commented that the frequenogitieis lower for the lower frequencies
(o < 0.8 s), thus the resonance frequency for thescasth a higher eigenperiod may be
underestimated.

9.1.1 Case B3L1 - 300 feet barge, 1000 tonne module

Acceleration Units

Component
X m/ 0.38 | 0.59 | 0.38 0.38 0.92 0.92
2.0 Y m/s 1.20 | 585 | 3.96 3.91 7.79 7.75
Z m/< 122 | 122 | 2.65 2.65 2.65 2.65
X m/s” 0.48 | 0.78 | 0.51 0.51 1.22 1.22
2.5 Y m/s 168 | 7.99 | 5.45 5.40 10.59 10.53
Z m/< 159 | 159 | 3.58 3.58 3.58 3.58
X m/s’ 058 | 097 | 0.64 0.64 1.51 1.51
3.0 Y m/s” 222 | 1044 7.16 7.08 13.80 13.72
Z m/< 196 | 196 | 4.46 4.46 4.46 | 4.46
X m/s’ 078 | 1.38 | 0.91 0.91 2.10 2.10
4.0 Y m/s” 355 | 15.29| 10.63 | 10.52| 20.0%5 19.95
z m/s 2.66 266 | 6.19 6.19 6.19 6.19

Table 9-1: Design accelerations, case B3L1

The analysis of the first case gave the designl@@t®ns shown in Table 9-1. As we can see,
the accelerations are quite large in the Y-directlbwe compare to the given criteria for
accelerations in the Y-direction at CAP and CFPR @ction 7.9), the limit is breached
already at = 2.0 m with Y-accelerations of about §.4 he accelerations in the longitudinal
direction are relatively small, not breaching thigecion of 0.1g even at 4.0 m significant

wave height. The vertical accelerations seem teoddebelow the limit of 3, thus the risk of
uplift forces is small.
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#-design accelerations [mfsz] for case B3LT1 point CAF

14

8

H, [m] 277y B

T, 5]

Figure 9-1: X-design acceleration in CAP, case B3L1

As seen in Figure 9-1, the maximum X-acceleratiotues for T =4.5-5.5s. Thisis
equivalent to a peak period of about 6.6 seconks.ZEro-crossing period for maxima shifts
slightly to the right with increasingsHThis is due to the change in peakedngssefeaning
the difference between, &ind T, decreases with increasing (3ee section 6.6.2). The value
of the design acceleration seems to increase almestly with H.
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#-design accelerations in point CAP for Hs = 2.0m
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Figure 9-2: X-design acceleration for all waveheadgs, case B3L1, Hs =2.0 m

The acceleration in the X-direction is assumedaaurge, pitch and yaw dominated. The
peak period that gives maximum response is nedthite surge resonance, nor at the pitch
resonance, but close to the yaw resonance peredAspendix B). This, and looking at

Figure 9-2, where wave direction giving maximumedecation in X-direction varies with
period, understates that the maximum accelerasiancomplex combination of surge, yaw
and pitch motion. Looking at the wave directiongmy the largest response, it seems that the
yaw motion (-126) dominates for lower periods while the pitch ancge motion (&-18C,
head/following sea) dominate for higher periods.
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Y-design accelerations [mfsz] for case B3L1 point CAF
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Figure 9-3: Y-design acceleration in CAP, case B3L1

f-design accelerations in point CAP far Hs = 2.0m
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Figure 9-4: Y-design acceleration for all waveheadgs in CAP, Hs =2.0 m
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As seen in Figure 9-3, the Y- acceleration maximai@AP is highest for J=4.5-5.5s,
same as the X-accelerations. The Y-acceleratiole&gly dominated by beam sea (see Figure
9-4), and the spectrum peak period giving highesponse is the roll eigenperiod. In this case
the roll period is 6.68 seconds. Due to the shithie T-Tp-relation for different i the wave
spectrum peak period hits the roll eigenfrequer@baut T = 4.8 s for = 2.0 m, and at
about T, = 5.3 s for H= 4.0 m, which concurs well with Figure 9-3.

Z-design accelerations [mfsz] for case B3L1 point CAP

14
g8

T, [s]
Figure 9-5: Z-design acceleration in CAP, case B3L1

2
H, [m] 4 6

68



Z-design accelerations in point CFF for Hs = 2.0m
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Figure 9-6: Z-acceleration for all waveheadings ilfCFP, Hs = 2.0 m, case B3L1

Same as the Y-acceleration, the maximum Z-accearatcur when [is close to the roll
eigenfrequency. Looking at Figure 9-4, it seems titva Z-acceleration is also dominated by
the roll acceleration. However, it should be ndteat the heave RAO has a peak in the same
frequency interval as the roll motion. However, whee look at the wavedirection giving
maximum response, we see that the response f8r(w@@es from port side) is significantly
larger than for -90(waves from starboard side). As the point CF@ésted on the port side,
this indicates that there is a significant “scregreffect” when the waves are coming from
the starboard side. This effect occurs for allghits, except A1 and B1 that are placed on
the centerline. Due to the high response in bea® ged the significant screening effect, it
can be concluded that the vertical acceleratiotiferpoints CAP, CFP, DAP and DFP
largely due to the roll acceleration.
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Most probable largest roll angle as function of Tz for case B3L1
45 T T T T T T T T T
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Figure 9-7: Maximum roll angles for case B3L1

In addition to accelerations, the maximum roll &niglalso an important parameter for
transport of heavy objects on barges. Due to tgle BiD-ratio, the deck immersion angles
can be relatively small compared to a conventishgl. In addition, large roll angles will
introduce non-linearities that may increase theresf the linear calculations. Thus, it is
convenient to also check the maximum roll anglezifjure 9-7, the maximum roll angle is
plotted for all sea states for the current caseofescan see, the roll angles become relatively
large, up to almost 45 degrees farH4.0 m, which is above what any barge transportas
designed for. However, including viscous roll dangpmay reduce the responses in roll
significantly (see section 9.2).
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9.1.2 Case B3L3 - 300 feet barge, 3000 tonne module

Acceleration Units

Component
X m/ 0.36 | 0.56 | 0.41 0.41 1.04 1.04
2.0 Y m/s” 115 | 526 | 3.82 3.74 6.78 6.69
z m/s 121 | 121 | 2.77 2.75 2.77 2.75
X m/s” 0.45 | 0.75 | 0.55 0.55 1.38 1.38
2.5 Y m/s 1.55 6.69 | 4.90 4.79 8.59 8.48
z m/s 157 | 1.57 | 3.46 3.44 3.46 3.44
X m/s” 055 | 0.95 | 0.69 0.69 1.72 1.72
3.0 Y m/s’ 2.00 | 8.48 | 6.25 6.12 10.84 10.71
Z m/< 194 | 195 | 4.30 4.27 430 4.27
X m/s” 0.78 | 1.35 | 0.97 0.97 2.40 2.40
4.0 Y m/s 3.12 12.89 | 9.59 9.40 16.39 16.19
Z m/< 268 | 268 | 6.17 6.13 6.17 6.13

Table 9-2: Design accelerations, case B3L3

Comparing the results (Table 9-2) with the critgiNgen in section 7.9, as in case B3L1, the
limit for Y-acceleration is breached already at#2.0 m. However, although the grillage is
higher than for the 1000 tonne load, the transvacselerations are slightly smaller. This may
be due to the reduced GM, as the ballast condsiamaltered from the first case while the
module weight is increased. The acceleration indhgitudinal direction (X-direction) does
not exceed the limit at seafastening height (CA® @RP) and is about the same as for case
B3L1. The vertical acceleration is belog fbr all seastates, almost equal to case B3L1, thus
no uplift occurs.
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#-design accelerations as function of Tz for case B3L3, point CAP
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Figure 9-8: X-design accelerations in CAP, case B3L
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Figure 9-9: X-design accelerations for all waveheangs in CFP, Hs = 2.0 m
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The frequency interval giving the highest accelerain the X-direction is about the same as
with the 1000 tonne load (B3L1). However, the yawmection seems to be more dominating
than for the lighter load as the worst wave dimtdiare -69and -120 for most of the T
interval.

Y-design accelerations as function of Tz for case B3L3, point CAP
1|:| T T T T T T T T T
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Figure 9-10: Y-design accelerations in CAP, case B3

The transverse accelerations occur in the intéfyal 6.0 — 6.6 s, which is the interval where
the peak period coincides with the roll eigenpefalaout 9 seconds). As for the first case,
beam seas give the highest acceleration.
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Z-design accelerations as function of Tz for case B3L3, point CAP
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Figure 9-11: Z-design acceleration in CAP, case B3L

The highest vertical accelerations in the pointPCE&FP, DAP and DFP occur in beam sea
from the port side at the roll eigenperiod, ascase B3L1. Thus, the roll acceleration is
dominating in this case as well.
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bost probable largest roll angle as function of Tz for case B3L3
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Figure 9-12: Maximum roll angle, case B3L3

The maximum roll angle does not change much fromfitkt case (B3L1), with extreme
angles still quite large. Thus, the reduced GMd&mingly not lead to increased roll
amplitudes, though it has decreased the roll aciea.

9.1.3 Case B4L1 — 400 feet barge, 1000 tonne module

Acceleration Units Al B1
Component
X m/ 024 | 0.42 | 0.33 0.33 0.58 0.58
2.0 Y m/s’ 0.81 | 353 | 2.60 2.57 4.55 4.52
Z m/< 0.88 | 0.88 | 1.55 1.56 1.55 1.56
X m/s’ 0.30 | 052 | 0.42 0.42 0.76 0.76
2.5 Y m/s’ 1.07 | 465 | 3.44 3.41 5.98 5.94
z m/s 1.10 1.10 | 2.02 2.04 2.02 2.04
X m/s’ 0.37 | 065 | 051 0.51 0.94 0.94
3.0 Y m/s” 1.37 | 5.98 | 4.45 4.40 7.68 7.63
z m/s 1.35 1.35 | 2.53 2.54 2.53 2.54
X m/s’ 051 | 092 | 0.72 0.72 1.33 1.33
4.0 Y m/s 2.09 | 879 | 6.59 6.52 11.23 11.14
z m/s 1.85 | 1.85 | 3.56 3.58 3.56 3.58

Table 9-3: Design accelerations, case B4L1

The accelerations for case B4L1 are, as seen ileBaB, smaller than for the two preceding
cases. Comparing to the criteria in section 78 Xhand Z-acceleration limits are still not

75



breached for any of the seastates, while the Yla@t®n exceeds the limit already afH
2.0m.

#-design accelerations [mfsg] for case B4L1 paint CAF
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Figure 9-13: X-design acceleration in CAP, case B4L

#-design accelerations in point CAPR for Hs = 2.0m
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Figure 9-14: X-design acceleration for all waveheadgs in CAP, case B4L1
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As seen in Figure 9-14, the longitudinal accelerais for case B4L1 dominated by following
sea (-180). This indicates that the surge and pitch motidmsinate in CAP, contrary to the
two preceding cases, where the yaw acceleratigreg@la more important part. Judging by
Figure 9-13, the maximum acceleration occurs gieatsal peak period of about 7 seconds.

Y-design accelerations [mfsz] for case B4L1 point CAP
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Figure 9-15: Y-design acceleration in CAP, case B4L
As in the other cases, the transverse accelenaamhes its maximum for beam seas when the

spectral peak period reaches the roll eigenpehiothis case the roll eigenperiod is about 7.6
seconds.
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Z-design accelerations [mfsz] for case B4L1 point CAP
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Figure 9-16: Z-design acceleration in CAP, case B4L

H, [ 4 °

The vertical acceleration is dominated by the eaenperiod and reaches the highest values
for the same Jas the transverse acceleration.

Moast prabable largest roll angle as function of Tz for case B4AL1
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Figure 9-17: Maximum roll angle, case B4L1
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The extreme roll angle is still relatively highaohing from about 12 degrees foy H2.0 m
to about 27 degrees for;H 4.0 m. However, this is still significantly lowthan for case
B3L1 and B3L3.

9.1.4 Case B4L5 — 400 feet barge, 5000 tonne module

Acceleration Units
Component
X m/ 0.23 | 0.48 | 0.39 0.40 0.61 0.62
2.0 Y m/s” 084 | 474 | 3.49 3.40 5.16 5.07
z m/s 0.87 | 0.87 | 2.48 2.47 2.48 2.47
X m/s’ 0.30 | 062 | 051 0.51 0.80 0.81
2.5 Y m/s 1.13 6.00 | 4.44 4.34 6.52 6.42
z m/s 1.09 | 1.09 | 3.10 3.09 3.10 3.09
X m/s’ 0.36 | 0.78 | 0.64 0.64 1.00 1.01
3.0 Y m/s 1.45 7.30 | 5.43 5.30 7.92 7.79
z m/s 1.33 | 1.33 | 3.73 3.70 3.73 3.70
X m/s” 050 | 1.11 | 0.90 0.91 1.42 1.43
4.0 Y m/s 2.22 | 10.70| 8.02 7.83 11.58 11.4d
z m/s 1.83 | 1.83 | 5.28 5.24 5.28 5.24

Table 9-4: Design accelerations, case B4L5

As for the preceding cases, the longitudinal articad accelerations in CAP/CFP do not
exceed the limits specified by Aker Solutions (get¥.9), while the transverse accelerations
exceed the limit already at;H# 2.0 m. Compared to the preceding case, with08 1nne

load, the accelerations in the transverse andcaédirections increase, but this is probably
largely due to the increase in grillage height (QAd&ted higher) as the global accelerations
(Al) are about the same.
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#-design accelerations [mfsz] for case B4ALS point CAF
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Figure 9-18: X-design accelerations in CAP, case B3

#-design accelerations in point CAPR for Hs = 2.0m
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Figure 9-19: X-design accelerations for all wavehelings in CAP, Hs = 2.0 m, case B4L5



The T-interval giving maximum longitudinal accelerati@figure 9-18) is equivalent to a
peak period of about 7.6 seconds. In Figure 9-18eecthat the yaw acceleration seem to
determine the maximum acceleration in CAP, as tigges from the centre line giving the
highest response are quite large.

f-design accelerations [mfsg] for case B4LS point CAP
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T, [s]
Figure 9-20: Y-design acceleration in CAP, case B&L
The highest transverse acceleration occurs clogeetmll eigenperiod, which in this case is

about 9.6 seconds. The peaks of the transverséeeoan are quite smooth for the lower
significant wave heights. ForsH 4.0 m, the peak become more distinct.
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Z-design accelerations [mfsz] for case B4LS point CAP
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Figure 9-21: Z-design acceleration in CAP, case B&4_

The highest vertical acceleration in CAP occurthatroll eigenperiod. As for the transverse
acceleration, the peak does not become very distimd the significant wave height reaches

4.0 meters.
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bost probable largest roll angle as function of Tz for case BALS
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Figure 9-22: Maximum roll angle, case B4L5

As seen in Figure 9-22 and Figure 9-17, the maximaolirangle increases from the case with
the lighter load (B4L1). The GM is decreased arnsl ¢buld be the cause of the increase. In

general, the roll angles observed are still reddyiviigh, though smaller than for the both the
cases for the 300 feet barge (case B3L1 and B3L3).

9.1.5 Case B6L5 — 600 feet barge, 5000 tonne module

Acceleration

Component
X m/ 0.16 | 0.33 | 0.29 0.29 0.47 0.47
2.0 Y m/s 0.57 291 | 2.20 2.16 3.68 3.63
Z m/< 0.67 | 067 | 1.62 1.64 1.62 1.64
X m/s” 020 | 041 | 0.36 0.36 0.59 0.59
2.5 Y m/s 0.74 | 3.67 | 2.78 2.72 4.63 4.57
Z m/< 0.84 | 084 | 2.02 2.05 2.02 2.05
X m/s 024 | 050 | 0.44 0.44 0.70 0.70
3.0 Y m/s’ 093 | 450 | 3.38 3.30 5.60 5.53
Z m/< 1.01 | 101 | 2.43 2.46 2.43 2.46
X m/s’ 0.32 | 068 | 0.60 0.60 0.96 0.96
4.0 Y m/s” 136 | 6.43 | 4.90 4.79 8.07 7.96
z m/s 1.35 1.35 | 3.44 3.49 3.44 3.49

Table 9-5: Design accelerations, case B6L5

Comparing the accelerations to the criteria (secti®), case B6L5 is the first case where the
transverse acceleration limit in CAP/CFP is noteeded for J = 2.0 m. For H= 2.5 m the
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limit is exceeded, though only slightly. Thus, aghe other cases, the transverse acceleration
seems to be the limiting criteria, while the longdinal and vertical accelerations are within
the limits even for K= 4.0 m.

#-design accelerations [mfsz] for case BELS point CAP
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Figure 9-23: X-design acceleration in CAP, case BGL
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#-design accelerations in point CAP for Hs = 2.0m
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Figure 9-24: X-design acceleration for all waveheandgs in CAP, Hs = 2.0 m, case B5L6

As seen from Figure 9-23, the peak of the longitablacceleration is not very distinct. It
reaches its maximum for a spectral peak periodofin9.4 seconds. A waveheading of 120
gives the highest acceleration (Figure 9-24), ssijyg that the yaw acceleration is

dominating for the longitudinal acceleration in CAP
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Y-design accelerations [mfsz] for case BELS point CAF
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Figure 9-25: Y-design acceleration in CAP, case BGL

The maximum transverse acceleration occurs in ssas when the spectral peak period
reaches the roll eigenperiod. For this case (B6i®) roll eigenperiod is about 9.6 seconds.

86



Z-design accelerations [mfsz] for case BELS point CAF
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Figure 9-26: Z-design acceleration in CAP, case B&L

As for the transverse acceleration, the maximurticatracceleration in CAP occurs at roll
resonance.
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bost probable largest roll angle as function of Tz for case BELS
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Figure 9-27: Maximum roll angle, case B6L5

The maximum roll angle for case B6L5 is lower thanall the cases with smaller barges,
indicating that a larger barge is beneficial focré@sing both roll acceleration and extreme
roll angles.

9.1.6 Case B6L8 — 600 feet barge, 8000 tonne module

Acceleration Units Al B1
Component
X m/ 0.15 | 0.35 | 0.29 0.29 0.52 0.52
2.0 Y m/s’ 059 | 361 | 2.65 2.60 4.61 4.55
z m/s 0.67 | 0.67 1.83 1.83 1.83 1.83
X m/s 0.19 | 0.44 | 0.37 0.37 0.65 0.65
2.5 Y m/s’ 0.78 | 456 | 3.36 3.29 5.81 5.74
Z m/< 0.83 | 0.83 | 2.29 2.29 2.29 2.29
X m/s’ 023 | 054 | 0.45 0.45 0.78 0.78
3.0 Y m/s” 099 | 552 | 4.09 4.00 7.02 6.94
z m/s 1.00 1.00 | 2.74 2.75 2.74 2.75
X m/s’ 0.32 | 073 | 061 0.61 1.07 1.07
4.0 Y m/s 1.46 750 | 5.59 5.48 9.50 9.39
z m/s 134 | 1.34 | 3.66 3.68 3.66 3.68

Table 9-6: Design accelerations, case B6L8

For the 8000 load, the accelerations increasetsligpmpared with the 5000 tonne load (case
B6L5), but compared to the rest of the cases, ¢helarations are quite low. The limit for
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transverse acceleration is still exceededsat B.0 m. The longitudinal and vertical
accelerations are well within the limits.

#-design accelerations [mfsg] for case BELS paint CAF
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Figure 9-28: X-design acceleration in CAP, case BGL

#-design accelerations in point CAPR for Hs = 2.0m
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Figure 9-29: X-design acceleration in CAP for all vaveheadings, Hs = 2.0 m, case B6L8



The peak of the longitudinal acceleration is, ansa Figure 9-28, not very distinct, and the
acceleration stays at about the maximum valuednriterval T = 8.5 -11.0 s. The
dominating wave direction is -12Gsuggesting that the longitudinal acceleratioGAP is
dominated by the yaw acceleration.

Y-design accelerations [mfsz] for case BELS point CAF

g g
T, [5]
Figure 9-30: Y-design acceleration in CAP, case BGL
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As for the longitudinal acceleration, the transeeaisceleration does not have a very distinct
peak, and the maximum transverse acceleratione&aaid to occur in the interva) ¥ 9.8 —
11.7 s.
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Z-design accelerations [mfsz] for case BELE point CAP
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Figure 9-31: Z-design acceleration in CAP, case B&L

The vertical acceleration is dominated by the aotieleration, thus the peak value occurs in
the same interval as for the transverse acceletatieaning f=9.8 - 11.7 s.

Most probable largest roll angle as function of Tz far case BELS
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Figure 9-32: Maximum roll angle, case B6L8
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The maximum roll angle of the 600 feet barge ihbrgor the 8000 tonne load than for the
5000 tonne load, which is expected due to the dseeGM. In general however, the roll
angle is lower than for the smaller barges.

9.2 Results including viscous roll damping

9.2.1 Case B3L1 — 300 feet, 1000 tonne module

As the roll motions are of little importance foethaccelerations in the longitudinal direction,
only accelerations in the transverse and the \&ndicection are commented in this section
(see section 9.1.1 for longitudinal accelerations).

Acceleration Units Al

Component

2.0 Y m/ 1.04 4.26 2.91 2.88 5.64 5.61

' z m/s 1.22 1.22 2.56 2.56 2.56 2.56
95 Y m/s’ 1.48 6.41 4.40 4.36 8.47 8.42

' z m/s 1.59 1.59 3.18 3.18 3.18 3.18
3.0 Y m/s’ 1.90 7.95 5.49 5.43 10.47| 10.42

' z m/< 1.96 1.96 3.87 3.88 3.87 3.88
4.0 Y m/s’ 2.97 12.08 | 8.44 8.35 15.81| 15.73

' z m/s 2.66 2.66 5.45 5.45 5.45 5.45
Table 9-7: Design accelerations, case B3L1 with VRD

Comparing the Y-accelerations with the criterior0dfdy maximum acceleration, we see that
this limit is still exceeded atd+ 2.0 m, as was the case without the viscousdestiping.
The accelerations, both in the transverse andcatdirection, are smaller however.
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Y-design accelerations as function of Tz for case B3L1, point CAP

H T

H, = 2.0m
H,=2.5m
H_ = 3.0m
H, = 4.0m

T, 5]

Figure 9-33: Y-design accelerations, case B3L1, ppiCAP, VRD included

As seen from Figure 9-33, the maximum transverselaration in CAP occurs at the roll

eigenfrequency, which seems to be unaltered byiteus roll damping.

Z-design accelerations as function of Tz for case B3L1, point CAP
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Figure 9-34: Z-design accelerations, case 1, poi@AP, VRD included
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Same as for the transverse acceleration, the maxiveutical acceleration occurs at the roll
eigenfrequency.

Wost probable largest roll angle as function of Tz for case B3L1
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Figure 9-35: Maximum roll angles, case B3L1, poinCAP, VRD included

The maximum roll angle for case B3L1 with viscoal damping is reduced compared to the
non-viscous case. However, the roll angle is salftively high. According to Professor Asle
Natskar at NTNU, who has performed model tests oriiNSea barges exactly like the 300
feet barge in this case with respect to extremeargles, the roll angles seem conservative.
This was also the case when the viscous roll dagnpas included. However, this can only
be taken as an indication, and is not conclusive.

Increasing the zero-crossing period towards tHe@sbnance area, there was a clear change
in the roll RAO when the spectral peak period apphed the roll resonance period. The
absolute peak of the RAO (radians) decreased wihieemnieg the resonance area. Within a
relatively large area around the resonance petfiedpeak value of the roll RAO remained
decreased and almost constant. When the spectialpeeiod approached the end of the
resonance area, the peak value of the RAO starteeasing, and this continued until the
relative response was significantly higher thathemresonance area. This indicates that the
viscous roll damping has a large effect on rollism&nd acceleration in the roll resonance
area. A change in significant wave height did r@rge the RAOs, the governing parameter
for change in the roll RAO was the peak periodhafwave spectrum. Plots of the roll RAOs
for three selected sea states can be seen in Append
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9.3 Considerations

9.3.1 1000 tonne module

Two cases have been analysed with a 1000 tonneleai@me of the reason for this is to
compare the design accelerations for the two caseédinding out which case is more

beneficial. The way to determine this is to seecwluase that gives the smallest

accelerations. The result of the motion responséyais for the two cases can be seen in

Table 9-8.
He [m] Acceleration | Case B3L1 Case B4L1

component | Al Bl CAP Al Bl CAP
X 0.38 0.59 0.38 0.24 0.42 0.33

2.0 Y 1.20 5.85 3.96 0.81 3.53 2.60
Z 1.22 1.22 2.65 0.88 0.88 1.55
X 0.48 0.78 0.51 0.30 0.52 0.42

2.5 Y 1.68 7.99 5.45 1.07 4.65 3.44
Z 1.59 1.59 3.58 1.10 1.10 2.02
X 0.58 0.97 0.64 0.37 0.65 0.51

3.0 Y 2.22 10.44 7.16 1.37 5.98 4.45
Z 1.96 1.96 4.46 1.35 1.35 2.53
X 0.78 1.38 0.91 0.51 0.92 0.72

4.0 Y 3.55 15.29 10.63 2.09 8.79 6.59
Z 2.66 2.66 6.19 1.85 1.85 3.56

Table 9-8: Case B3L1 and B4L1 compared

As seen from Table 9-8, there is a significant odidm in the maximum accelerations on the
400 feet barge compared to the 300 feet bargerdthection of the transverse and vertical
accelerations is larger than for the longitudiraeerations. For example, in CAP, the
acceleration in the transverse direction for B4¢ abhout 60-65% of that of B3L1 for alkH

while the longitudinal acceleration for case B4kB0-90% of that of case B3L1.
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#-design accelerations for case B3L1 and B4L1, point CAP, Hs =2.0m
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Figure 9-36: Comparison of X-design acceleration foB3L1 and B4L1, Hs =2.0 m

14

Looking past the maximum values for the longitutiaxeeleration, we see in Figure 9-36 that
the reduced acceleration for the 400 feet bargemnttgpstrongly on the seastate. As the zero-
crossing period increases, the accelerations beocoone similar until the acceleration
becomes larger for the 400 feet barge at abpet7.3 s. For seastates with a higher zero-
crossing period, the longitudinal accelerationivgags larger for the 400 feet barge.
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‘f-design accelerations for case B3L1 and B4LT, paoint CAF, HS =2.0m
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Figure 9-37: Comparison of Y-design acceleration foB3L1 and B4L1, Hs =2.0 m
As for the longitudinal acceleration, the differenn the transverse acceleration (Figure 9-37)
is largest for small zero-crossing periods. Asntreases, the difference decreases. Eor T

s there is virtually no difference between the tvaoges. For lower ;Thowever, where the
highest accelerations occur, the difference isitogmt.
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f-design accelerations for case B3L1 and B4L1, point CAP, Hs =2.0m
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Figure 9-38: Comparison of Z-design acceleration foB3L1 and B4L1, Hs =2.0 m

The decrease in difference between the two modutésincreasing Tis not as distinct for
the vertical acceleration. Although the verticateleration decreases faster withfdr the
300 feet barge after the peak zero-crossing pesipdssed, the acceleration is always
noticeably higher for the 300 feet barge than lier400 feet barge.

9.3.2 5000 tonne module

Two cases have been analysed with a 5000 tonneleyamhe case with a 400 feet barge
(B4L5) and one case with a 600 feet barge (B6L&E dim is to determine is to see which
case that gives the smallest accelerations, andoiptie difference is. The result of the
motion response analysis for the two cases caedreia Table 9-9. None of the cases
include viscous roll damping.
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Acceleration Case B4L5 Case B6L5

component Units Al B1 CAP Al Bl CAP
X m/ 0.23 | 0.48 0.39 | 0.16| 0.33] 0.29
20 |Y m/s 084 | 4.74 3.49 057 | 291 220
Z m/< 0.87 | 0.87 248 | 0.67| 067 1.62
X m/s’ 0.30 | 0.62 051 | 0.20| 0.41] 0.36
25 |Y m/s 1.13 | 6.00 444 | 0.74| 3.67| 278
Z m/< 1.09 | 1.09 3.10 | 0.84| 0.84] 202
X m/s’ 0.36 | 0.78 064 | 0.24| 050| 0.44
30 |Y m/s’ 1.45 | 7.30 5.43 0.93| 450 3.38
Z m/< 1.33 | 1.33 3.73 1.01| 1.01] 243
X m/s’ 050 | 1.11 090 | 0.32| 0.68| 0.60
40 Y m/s 222 | 10.70 | 8.02 1.36| 6.43] 4.90
Z m/< 1.83 | 1.83 5.28 135 1.35] 3.44

Table 9-9: Case B4L5 and B6L5 compared

As seen from Table 9-9, the increased barge seddsya significant reduction in the

maximum accelerations for the same load, as seeiprevious section. The reductions are

of the same magnitude. The accelerations in tlmswexse direction (in all points) on the 600
feet barge are about 60-65% of those on the 4Qb&rge, for all H As in the previous

section, the longitudinal accelerations do not dase as much as the transverse accelerations.

#-design accelerations for case B4LAS and BBLS, point CARP, Hs =2.0m
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Figure 9-39: Comparison of X-design acceleration i€CAP for B4L5 and B6L5, Hs =2.0 m

Looking at the variation of the longitudinal aceel®on with T,, we see in that the reduced
acceleration for the 600 feet barge depends osdhstate as in the previous comparison.
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However, the difference is significant up to quitgh zero-crossing periods. At abouytF12

s, there is no difference between the two barges.

‘f-design accelerations for case B4LS and BBELS, paoint CAR, HS =2.0m

3.4 . T

245

[rris?]

desy

15F

0.5
4 5 G 7 o
T, [s]

Figure 9-40: Comparison of Y-design acceleration i€AP for B4L5 and B6L5, Hs =2.0 m

As seen in Figure 9-40, the largest differenceimil in the transverse acceleration. The

difference is actually smaller for the lowest zerossing periods, but even here, the reduction

in acceleration for the larger barge is considerabl

10C



f-design accelerations for case B4LA and BBLS, point CARP, Hs =2.0m
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Figure 9-41: Comparison of Z-design acceleration i€AP for B4L5 and B6L5, Hs =2.0 m

As for the transverse acceleration, the reductiahe vertical acceleration in CAP is
significant for the whole wave period interval.

9.3.3 Effect of viscous roll damping

The first case, a 300 feet barge with a 1000 tonodule, has been analysed once more with
viscous roll damping included. As the RAO in ralldasway may vary for different seastates
when viscous roll damping is included, such anayss become quite extensive. Thus,
analysing the effect of viscous roll damping onecBSL1 may give an estimate of the
viscous damping’s effect on all the cases. Destgelarations for case B3L1 in the
transverse and vertical direction, with and withastous roll damping, can be seen in Table
9-10.

Acceleration Case B3L1, non-viscous Case B3L1, with VRD
component Al Bl CAP Al Bl CAP
20 Y m/ 1.20 5.85 3.96 1.04 4.26 2.91
' Z m/< 1.22 1.22 2.65 1.22 1.22 2.56
o5 Y m/s’ 1.68 7.99 5.45 1.48 6.41 4.40
' Z m/< 1.59 1.59 3.58 1.59 1.59 3.18
3.0 Y m/s’ 2.22 10.44 | 7.16 1.90 7.95 5.49
' Z m/s 1.96 1.96 4.46 1.96 1.96 3.87
4.0 Y m/s’ 3.55 15.29 10.63 2.97 12.08 8.44
' Z m/s 2.66 2.66 6.19 2.66 2.66 5.45

Table 9-10: Case B3L1, with and without VRD compare
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As seen in Table 9-10, there is a significant réidadn both the transverse and vertical
accelerations when viscous roll damping is includedCAP, the transverse acceleration with
VRD is 75-80% of that without VRD for allHThe vertical acceleration is in the range 86 —
97 % of the non-viscous case.

In point B1, the transverse accelerations with ViIR®uded were about 80% of those without
VRD.

Y-design accelerations with and without %'RD for case B3L1, point CAP, H_ = 2.0m
'lll T 1 1 1 1 1 1 1 1
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—With “RED
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Figure 9-42: Y-design acceleration with and withoulRD, point CAP, Hs = 2.0 m, case B3L1

As seen from Figure 9-42 showing the transverselations, the effect of viscous roll
damping is larger in the roll resonance area, tn@nnains significant also outside this area.
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L-design accelerations with and without %RD for case B3L1, paint CAP, HS =2.0m
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Figure 9-43: Z-design acceleration with and withouRD, point CAP, Hs = 2.0 m, case B3L1

In vertical direction, the same applies for theedexation as in the transverse direction except
the relative reduction in acceleration is smaller.

9.3.4 Effect of metacentric height

As the points of calculation are changed in eade cthis effect is difficult to analyse.
However, some effects occurred that should be cantede

For the 300 feet barge, the transverse accelesaitio@AP are actually smaller with the 3000
tonne load, than with the 1000 tonne load, althahghvertical distance from CAP to the
centre of rotation is larger with the largest loAd.the ballast condition is equal for the two
cases, the reduction in acceleration is probabéytduhe reduction in the metacentric height.
This gives a lower stiffness of the system in ratid thus smoother movements. For the 300
feet barge, there is no increase in the extrenh@angles when the metacentric height is
decreased.

For the other two barges, the results are morecdiffto interpret. The significant increase in
load for the 400 feet barge, from 1000 tonnes @050nnes makes it difficult to compare.
For the 600 feet barge, the accelerations aretbligtiger in CAP for the 8000 tonne load
than for the 5000 tonne load. The maximum roll aaglre larger with the heavier load.

Judging by the cases analysed, it seems that ie sases it can be beneficial to reduce the
metacentric height to get smoother roll motions simdller accelerations. However, it
depends largely on the case and presupposes ¢hstiathility and extreme roll angles are well
within accepted boundaries.
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10 Conclusion

Motion response analyses with the aim of findingigie accelerations in selected critical
points have been performed for six different combons of barges and platform modules.

One of the cases have further been analysed vatdous roll damping.
The following computer programs have been usedlemtodelling and calculations:

* Genie — modelling of the barge (hull and ballask&)

* HydroD (Wadam) — modelling of environment, hydrodgmc analysis by source
technique

» Postresp — Combination of motion characteristiog, teansfer of Wadam results to
Matlab

* Matlab — Statistical postprocessing and calculatibdesign accelerations

The main theoretical elements reviewed are

» Potential linear wave theory and the radiationrddtion problem — foundation of
calculations

» Source technique — finding fluid velocity potential

* Dynamic equilibrium equation — finding motion chetexistics

» Short-term statistics — significant and extrem@oeses for 3 hour sea states

The results of the motion response analysis fon eathe six cases have been represented.
The results show that the transverse acceleratieriaroll acceleration is the limiting factor.
The criterion given by Aker Solutions for transweesceleration is breached in the lowest
seastate analysed {H 2.0 m) for most of the cases in beam seas.Heo8®0 feet barge with
a 5000 tonne module (case B6L5), the transversaegation criterion is breached a #2.5
m.

The case including viscous damping showed a céghration in transverse and vertical
accelerations (roll acceleration). However, thdtliior transverse acceleration was still
exceeded at H= 2.0 m in beam seas.

The comparison between the different barges cayryia same module weight proved that
the design accelerations can be significantly redury using a larger barge.
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11 Further work

11.1Viscous roll damping

The viscous roll damping gave, as expected, afsgni reduction in the roll motion and
acceleration for the case tested. The roll acasberalso proved to be the most critical
variable limiting the seastate of operation. Ugimg results for this case, the effect of viscous
roll damping can be roughly approximated for thmaaing cases by assuming an equivalent
reduction ratio compared to the non-viscous resHlitsvever, this is an uncertain method as
the viscous roll damping term depends heavily onynariables, i.e. cross-section shape and
bilge radius. Thus a natural step further woulddimclude the viscous roll damping for the
remaining cases.

11.2Validating the results

The results obtained in this work without the useiscous roll damping are clearly
conservative. However, the correctness of the uscoll damping model applied in Wadam
is not necessarily satisfying, as the viscousdathping can be difficult to determine. Few
model tests have been performed with a focus oel@ations. In addition, a change in the
properties of the barge or the loading conditicdemimakes it difficult to compare with
previous model tests. Thus, an alternative coultblerform specific model tests measuring
accelerations in simulations of relevant seastatesfinding a more correct estimate for the
viscous roll damping.

11.3Optimize metacentric height

All the barges were tested with two different madul For some barges, when the module
weight was increased and the GM reduced, smadlasterse accelerations were observed.
This is most likely because of the reduced rollaesg due to reduced GM. Thus, an
alternative can be to investigate the effect orl@cations when reducing the ballast, leading
to a decreased roll restoring moment. Howeverglargll angles were often observed as
another consequence. This should only be donengsa® the criteria for maximum roll
angles and stability are satisfied by a good margin

11.4 Non-linear effects in high sea states

In linear theory, hydrodynamic forces are only aédted up to the mean waterline. The effect
of the hydrodynamic forces between the actual waigace and the actual waterline is
unknown, and could produce either higher or lovoeeerations.
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13 Appendices

APPENDIX A — BARGE DIMENSIONS AND LIGHTSHIP DATA

Appendix A1 — 300 feet barge

Lightship weight, Ws 1830 t
Lightship centre of gravity, CO@ (.26 m, 0 m, 3.47 m)
Length, L 91.44 m
Beam, B 27.44 m
Depth, D 6.10 m
Maximum draught, ga, 4.85m
Bilge radius 0.4m
Radius of gyration about X-axis K 10.09 m
Radius of gyration about Y-axis( 31.43 m
Radius of gyration about Z-axis ;K 32.87 m
Coupling inertia X- and Z-axis, 6= K 1.79m*

*Coupling inertia is found from the Genie model

Appendix A2 — 400 feet barge

Lightship weight, Ws 3960 t
Lightship centre of gravity, COG@ (-1.80m, 0m, 4.22 m)
Length, L 122.00 m
Beam, B 36.60 m
Depth, D 7.60m
Maximum draught, ga, 6.00 m
Bilge radius 0.6 m
Radius of gyration about X-axis K 1297 m
Radius of gyration about Y-axis( 41.40 m
Radius of gyration about Z-axis ;K 43.16 m
Coupling inertia X- and Z-axis, 6= K 1.29m*

*Coupling inertia is found from the Genie model
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Appendix A3 — 600 feet barge

Lightship weight, Ws

10870 t

Lightship centre of gravity, COG@

(5.02m, 0 m, 6.55 m)

Length, L 183.00 m
Beam, B 47.24 m
Depth, D 11.58 m
Maximum draught, g, -

Bilge radius 1.0m

10¢




APPENDIX B — MOTION RAO’S FOR CASE B3L1, NON-VISCOUS

[ —)]

gy (o)

0.9

0.9

0.7

0.5

0.5

0.4

0.3

0.2

0.1

1.4

1.2

0.9

0.6

0.4

0.2

SURGE RAD FOR CASE B3L1

=180 deg
-150 deg [
-120 deg
90 deg
B0 deg
—-30 degq
—+—0 deg

30 deg

B0 deg [
—#—00 deg

120 deg
—&— 150 deg

- .. % 1.5 iy _ e e
o [radis]

SWWAY  RAQ FOR CASE B3L1

=180 deg
=150 deg
-120 deg ||
80 deg
&0 deg |4
-30 deg
—+—0 deg

30 deg |1

B0 deg
—#—00 deq

120 deg
—&—150 deg

o [radis]

10¢



Hoeae (@)

ooy, (@)

0.9

0.9

0.7

0.5

0.5

0.4

0.3

0.2

0.1

0.35

0.3

0.24

0.2

0.1

0.05

HEAYE RAD FOR CASE B3L1

=180 deg
-150 deg [
-120 deg
90 deg
B0 deg
—-30 degq
—+—0 deg

30 deg

B0 deg [
—#—00 deg

120 deg
—&— 150 deg

o [radis]

ROLL RAD FOR CASE B3LY

o [radis]

=180 deg
=150 deg
-120 deg ||
80 deg
&0 deg |4
-30 deg
—+—0 deg

30 deg |1

B0 deg
—#—00 deq

120 deg
—&—150 deg
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Hoiren (all

(el

Py sy

0.04

0.035

0.03

0.025

0.015

0.01

0.005

0oz

0.01

0.00s

0.006

0.004

0.00z

FITCH RAD FOR CASE B3L1

=180 deg

-150 deg ||

-120 deg
90 deg

G0 deg ||

—-30 degq
—+—0 deg
30 deg
B0 deg
—#—00 deg

120 deg ||

—&— 150 deg

0.5

Ay RAD FOR CASE B3L1

o [radis]

o [radis]

=180 deg
-150 deg
-120 deg
90 deg
B0 deg
—-30 degq
—+—0 deg

30 deg

B0 deg
—#—00 deg

120 deg
—&— 150 deg
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APPENDIX C — SELECTED ROLL RAO’S FOR CASE B3L1 INCL UDING VISCOUS
ROLL DAMPING

0.25

0.2

0.15

oo ()

0.1

0.05

ROLL EAQFOR CASE B3L1 FOR He =2 m and Tz =4.35 WITH vRED

m [radis]

-180 deg
-150 deg
-120 deg
B0 degy
B0 degy
-30 deg
—+—0 deg

30 deg

B0 deg
—#—00 deg

120 deg
—& — 160 deg

11z



ooy, (@)

ooy, (@)

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0.24

0.2

0.14

0.1

0.05

ROLL RADFOR CASE B3L1 FOR Hs = 2 m and Tz =5.05s ¥WITH %RD

=180 deg
-150 deg [
-120 deg
90 deg
B0 deg
—-30 degq
—+—0 deg

30 deg

B0 deg [
—#—00 deg

120 deg
—&— 150 deg

o [radis]

ROLL RADFOR CASE B3L1 FOR Hs =2 m and Tz =8.3s WITH “RD

=180 deg
-150 deg
-120 deg
90 deg
B0 deg
—-30 degq
—+—0 deg

30 deg

B0 deg
—#—00 deg

120 deg
—&— 150 deg

o [radis]
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