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Abstract 
 

A two-dimensional Quadratic Boundary Element Method (QBEM) and a three-dimensional cubic 
Higher-order Boundary Element Method (HOBEM) are developed to study respectively the two-
dimensional and three-dimensional weakly-nonlinear wave-body interactions with/without forward 
speed within potential flow theory of an incompressible liquid.  

A direct method based on a triangular polar-coordinate system transformation for the evaluation of the 
Cauchy Principle Value (CPV) integrals for the diagonal terms of the influence matrix in the 3D 
HOBEM is presented.  

A numerical module based on the Fast Multipole Method (FMM) is developed, which can be used as 
an option to speed up the present 3D HOBEM solver. Both the operation count and the required 
memory of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the 
unknowns. Suggestion on the selection of a proper matrix solver for a specific problem is given. 

A new approach based on domain decomposition using body-fixed coordinate system in the inner 
domain and the inertial reference frame in the outer domain is proposed for the weakly-nonlinear 
wave-body analysis. Consistent theoretical description of the new method based on second-order 
theory is presented. The new method does not require any derivatives on the right-hand sides of the 
body boundary conditions and thus avoid the mj-like terms and their derivatives. Furthermore, 
because the body boundary condition is formulated on the instantaneous position of the body, the 
resulting integral equations are valid for both smooth bodies and bodies with sharp corners. In order to 
improve the convergence of the second-order forces/moments on a body with sharp corners in the 
near-field approach, a re-formulation of the quadratic force is suggested. This re-formulation transfers 
the integrals on the body into the sum of two groups of integrals. The first group contains integrals on 
body surface with integrands whose singularities are weaker than that of the velocity square. The 
second group consists of regular integrals on the inner free surface and the control surface in the inner 
domain.  

A two-dimensional third-order numerical wave tank (NWT) is developed. The effect of the Stokes 
drift in the second-order solution is discussed. A two-time scale approach is proposed as a secularity 
(solvability) condition in order to avoid unphysical third-order results. The numerical results for the 
second-order diffraction/radiation of a horizontal semi-submerged circular cylinder are verified by 
some other analytical and numerical results. Comparisons with the experimental results are also made. 

The second-order wave-body interaction with/without the presence of a small forward speed for a 
three-dimensional floating body is studied by both the traditional method (if applicable) with a 
formulation in the inertial coordinate system and the new method with a formulation in the body-fixed 
coordinate system near the body. Both bodies without sharp corners and a truncated vertical circular 
cylinder with sharp corners are studied. Comparisons between the present numerical results with some 
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other analytical and numerical results (if any) show good agreement.  The influences of a small 
forward speed on the second-order wave loads on floating bodies are investigated.   

The complete third-order wave diffraction of a stationary three-dimensional body is studied by the 
time-domain HOBEM, which means that the solution contains not only the triple-harmonic effect but 
also the third-order contribution with fundamental frequencies of the incident waves. Careful 
convergence studies and alternative way of calculating the force have been made with very 
satisfactory results. 

ii 

 

other analytical and numerical results (if any) show good agreement.  The influences of a small 
forward speed on the second-order wave loads on floating bodies are investigated.   

The complete third-order wave diffraction of a stationary three-dimensional body is studied by the 
time-domain HOBEM, which means that the solution contains not only the triple-harmonic effect but 
also the third-order contribution with fundamental frequencies of the incident waves. Careful 
convergence studies and alternative way of calculating the force have been made with very 
satisfactory results. 

ii 

 

other analytical and numerical results (if any) show good agreement.  The influences of a small 
forward speed on the second-order wave loads on floating bodies are investigated.   

The complete third-order wave diffraction of a stationary three-dimensional body is studied by the 
time-domain HOBEM, which means that the solution contains not only the triple-harmonic effect but 
also the third-order contribution with fundamental frequencies of the incident waves. Careful 
convergence studies and alternative way of calculating the force have been made with very 
satisfactory results. 

ii 

 

other analytical and numerical results (if any) show good agreement.  The influences of a small 
forward speed on the second-order wave loads on floating bodies are investigated.   

The complete third-order wave diffraction of a stationary three-dimensional body is studied by the 
time-domain HOBEM, which means that the solution contains not only the triple-harmonic effect but 
also the third-order contribution with fundamental frequencies of the incident waves. Careful 
convergence studies and alternative way of calculating the force have been made with very 
satisfactory results. 



 

iii 
 

 

Acknowledgements 
 

Here, first and foremost I would like to express my sincere gratitude to my supervisor, professor Odd 
M. Faltinsen, for the great guidance, inspiration and supervision he has shown in helping me complete 
this research. It has been difficult for me with a background on structural mechanics to start a doctoral 
study on hydrodynamics.  It was his patience and encouragement which helped me make through in 
every way.  

I want to thank all the lecturers for their excellent courses that I have learnt during the first year. 
These courses laid helpful basis for me on marine hydrodynamics in the later stage of the PhD study. I 
also appreciate the important guidance provided by Prof. Greco Marilena during this work. 

I wish to thank Prof. Torgeir Moan, the director of Centre for Ships and Ocean Structures (CeSOS) 
where my study was carried out, for his successful creation of a scientific and pleasant environment in 
CeSOS.  

I also wish to thank the help from the staff at CeSOS and the Department of Marine Technology, in 
particular Sigrid Bakken Wold, Marianne Kjølås and Karelle Gilbert.  

It was my pleasure to work with all the other members in CeSOS and the Department of Marine 
Technology. Special thanks to Kota Ravikiran and Linlin Jiao for the fruitful discussions and talks. I 
also want to mention Dr. Wei Zhu, Dr. Hui Sun, Dr. Trygve Kristiansen and Dr. David Kristiansen for 
sharing the experiences from their research and providing valuable references. Csaba Pakozdi and 
Trygve Kristiansen are acknowledged for their help with the computer set up.  

My love and gratitude go to my wife, Huirong, whose endless understanding and support made this 
work possible. Her sacrifices for our small family during the past several years leave debts I can only 
hope to repay. I am very grateful to my parents. Without their love, constant support and prayer, I 
could never have come to this far. Through this work, I also wish to express my love to my dear 
daughter, Tingting.  

 

 

 

 

  

 

 

iii 
 

 

Acknowledgements 
 

Here, first and foremost I would like to express my sincere gratitude to my supervisor, professor Odd 
M. Faltinsen, for the great guidance, inspiration and supervision he has shown in helping me complete 
this research. It has been difficult for me with a background on structural mechanics to start a doctoral 
study on hydrodynamics.  It was his patience and encouragement which helped me make through in 
every way.  

I want to thank all the lecturers for their excellent courses that I have learnt during the first year. 
These courses laid helpful basis for me on marine hydrodynamics in the later stage of the PhD study. I 
also appreciate the important guidance provided by Prof. Greco Marilena during this work. 

I wish to thank Prof. Torgeir Moan, the director of Centre for Ships and Ocean Structures (CeSOS) 
where my study was carried out, for his successful creation of a scientific and pleasant environment in 
CeSOS.  

I also wish to thank the help from the staff at CeSOS and the Department of Marine Technology, in 
particular Sigrid Bakken Wold, Marianne Kjølås and Karelle Gilbert.  

It was my pleasure to work with all the other members in CeSOS and the Department of Marine 
Technology. Special thanks to Kota Ravikiran and Linlin Jiao for the fruitful discussions and talks. I 
also want to mention Dr. Wei Zhu, Dr. Hui Sun, Dr. Trygve Kristiansen and Dr. David Kristiansen for 
sharing the experiences from their research and providing valuable references. Csaba Pakozdi and 
Trygve Kristiansen are acknowledged for their help with the computer set up.  

My love and gratitude go to my wife, Huirong, whose endless understanding and support made this 
work possible. Her sacrifices for our small family during the past several years leave debts I can only 
hope to repay. I am very grateful to my parents. Without their love, constant support and prayer, I 
could never have come to this far. Through this work, I also wish to express my love to my dear 
daughter, Tingting.  

 

 

 

 

  

 

 

iii 
 

 

Acknowledgements 
 

Here, first and foremost I would like to express my sincere gratitude to my supervisor, professor Odd 
M. Faltinsen, for the great guidance, inspiration and supervision he has shown in helping me complete 
this research. It has been difficult for me with a background on structural mechanics to start a doctoral 
study on hydrodynamics.  It was his patience and encouragement which helped me make through in 
every way.  

I want to thank all the lecturers for their excellent courses that I have learnt during the first year. 
These courses laid helpful basis for me on marine hydrodynamics in the later stage of the PhD study. I 
also appreciate the important guidance provided by Prof. Greco Marilena during this work. 

I wish to thank Prof. Torgeir Moan, the director of Centre for Ships and Ocean Structures (CeSOS) 
where my study was carried out, for his successful creation of a scientific and pleasant environment in 
CeSOS.  

I also wish to thank the help from the staff at CeSOS and the Department of Marine Technology, in 
particular Sigrid Bakken Wold, Marianne Kjølås and Karelle Gilbert.  

It was my pleasure to work with all the other members in CeSOS and the Department of Marine 
Technology. Special thanks to Kota Ravikiran and Linlin Jiao for the fruitful discussions and talks. I 
also want to mention Dr. Wei Zhu, Dr. Hui Sun, Dr. Trygve Kristiansen and Dr. David Kristiansen for 
sharing the experiences from their research and providing valuable references. Csaba Pakozdi and 
Trygve Kristiansen are acknowledged for their help with the computer set up.  

My love and gratitude go to my wife, Huirong, whose endless understanding and support made this 
work possible. Her sacrifices for our small family during the past several years leave debts I can only 
hope to repay. I am very grateful to my parents. Without their love, constant support and prayer, I 
could never have come to this far. Through this work, I also wish to express my love to my dear 
daughter, Tingting.  

 

 

 

 

  

 

 

iii 
 

 

Acknowledgements 
 

Here, first and foremost I would like to express my sincere gratitude to my supervisor, professor Odd 
M. Faltinsen, for the great guidance, inspiration and supervision he has shown in helping me complete 
this research. It has been difficult for me with a background on structural mechanics to start a doctoral 
study on hydrodynamics.  It was his patience and encouragement which helped me make through in 
every way.  

I want to thank all the lecturers for their excellent courses that I have learnt during the first year. 
These courses laid helpful basis for me on marine hydrodynamics in the later stage of the PhD study. I 
also appreciate the important guidance provided by Prof. Greco Marilena during this work. 

I wish to thank Prof. Torgeir Moan, the director of Centre for Ships and Ocean Structures (CeSOS) 
where my study was carried out, for his successful creation of a scientific and pleasant environment in 
CeSOS.  

I also wish to thank the help from the staff at CeSOS and the Department of Marine Technology, in 
particular Sigrid Bakken Wold, Marianne Kjølås and Karelle Gilbert.  

It was my pleasure to work with all the other members in CeSOS and the Department of Marine 
Technology. Special thanks to Kota Ravikiran and Linlin Jiao for the fruitful discussions and talks. I 
also want to mention Dr. Wei Zhu, Dr. Hui Sun, Dr. Trygve Kristiansen and Dr. David Kristiansen for 
sharing the experiences from their research and providing valuable references. Csaba Pakozdi and 
Trygve Kristiansen are acknowledged for their help with the computer set up.  

My love and gratitude go to my wife, Huirong, whose endless understanding and support made this 
work possible. Her sacrifices for our small family during the past several years leave debts I can only 
hope to repay. I am very grateful to my parents. Without their love, constant support and prayer, I 
could never have come to this far. Through this work, I also wish to express my love to my dear 
daughter, Tingting.  

 

 

 

 

  

 



iv 

 

 

iv 

 

 

iv 

 

 

iv 

 

 



v 
 

 

Contents 
 

Abstract……………………………………………………….………………………………………i 
 
Acknowledgements…………………………………….……………………………………………iii 

 
Contents……………………………………………………………………………………………...v 
 
Nomenclature………………………………………………………………………………...……….ix 

 
1 Introduction...………………………………………………………………………………………1 
    1.1 Scope and objective………………………….…………………………………………………1 

1.2 Previous studies………………………………………………………………………………. 2 
1.3 Present study …………………………………………………………………………………… 9 

           1.3.1 Outline of the thesis......…..………………..…………………………………………….10 
           1.3.2 Major contributions of the present study......…..………...……………………………….12 

 
2 Theoretical Description……………………………………………………………………….…15 
     2.1 Introduction…………………………………………………………………………………..15 
     2.2 Coordinate systems…………………………………………………………………………….16 
     2.3 The definition of the motions…………………………………………………………………..17 
     2.4 Formulation of the second-order wave-body problem in the inertial coordinate system……...22 
            2.4.1 General description of the boundary conditions………………………………………...22 
            2.4.2 Second-order approximations of the boundary conditions……………………………...23 
            2.4.3 Forces and moments calculation………………………………………………………...25 
     2.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system……28 
            2.5.1 Free-surface conditions…………………………………………………………………28 
            2.5.2 Body boundary condition……………………………………………………………….29 
            2.5.3 Forces and moments calculation…………………………………………...…………...29 
     2.6 Formulation of the second-order wave-body problem in the body-fixed coordinate system….30 

        2.6.1 Free-surface conditions…………………………………………………………………30 
            2.6.2 Body boundary condition……………………………………………………………..33 
            2.6.3 Forces and moments calculation………………………………………………………..33 
     2.7 Governing equations of unsteady rigid-body motions………………………………………..35 

        2.7.1 Rigid-body motion equations in the inertial frame……………………………………..35 
            2.7.2 Rigid-body motion equations in the body-fixed frame………………………………….38 
     2.8 Incident wave field……………………………………………………………………………..39  
 
3 Basis of the Time-Domain HOBEM in 2D………………………………………………………..41 
     3.1 Boundary integral equation…………………………………………………………………….41 
     3.2 Quadratic boundary element method…………………………………………………………..42 
     3.3 Time marching of the free-surface conditions……………………………………………….45 
     3.4 Numerical damping zone and active wave absorber…………………………………………...45 

v 
 

 

Contents 
 

Abstract……………………………………………………….………………………………………i 
 
Acknowledgements…………………………………….……………………………………………iii 

 
Contents……………………………………………………………………………………………...v 
 
Nomenclature………………………………………………………………………………...……….ix 

 
1 Introduction...………………………………………………………………………………………1 
    1.1 Scope and objective………………………….…………………………………………………1 

1.2 Previous studies………………………………………………………………………………. 2 
1.3 Present study …………………………………………………………………………………… 9 

           1.3.1 Outline of the thesis......…..………………..…………………………………………….10 
           1.3.2 Major contributions of the present study......…..………...……………………………….12 

 
2 Theoretical Description……………………………………………………………………….…15 
     2.1 Introduction…………………………………………………………………………………..15 
     2.2 Coordinate systems…………………………………………………………………………….16 
     2.3 The definition of the motions…………………………………………………………………..17 
     2.4 Formulation of the second-order wave-body problem in the inertial coordinate system……...22 
            2.4.1 General description of the boundary conditions………………………………………...22 
            2.4.2 Second-order approximations of the boundary conditions……………………………...23 
            2.4.3 Forces and moments calculation………………………………………………………...25 
     2.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system……28 
            2.5.1 Free-surface conditions…………………………………………………………………28 
            2.5.2 Body boundary condition……………………………………………………………….29 
            2.5.3 Forces and moments calculation…………………………………………...…………...29 
     2.6 Formulation of the second-order wave-body problem in the body-fixed coordinate system….30 

        2.6.1 Free-surface conditions…………………………………………………………………30 
            2.6.2 Body boundary condition……………………………………………………………..33 
            2.6.3 Forces and moments calculation………………………………………………………..33 
     2.7 Governing equations of unsteady rigid-body motions………………………………………..35 

        2.7.1 Rigid-body motion equations in the inertial frame……………………………………..35 
            2.7.2 Rigid-body motion equations in the body-fixed frame………………………………….38 
     2.8 Incident wave field……………………………………………………………………………..39  
 
3 Basis of the Time-Domain HOBEM in 2D………………………………………………………..41 
     3.1 Boundary integral equation…………………………………………………………………….41 
     3.2 Quadratic boundary element method…………………………………………………………..42 
     3.3 Time marching of the free-surface conditions……………………………………………….45 
     3.4 Numerical damping zone and active wave absorber…………………………………………...45 

v 
 

 

Contents 
 

Abstract……………………………………………………….………………………………………i 
 
Acknowledgements…………………………………….……………………………………………iii 

 
Contents……………………………………………………………………………………………...v 
 
Nomenclature………………………………………………………………………………...……….ix 

 
1 Introduction...………………………………………………………………………………………1 
    1.1 Scope and objective………………………….…………………………………………………1 

1.2 Previous studies………………………………………………………………………………. 2 
1.3 Present study …………………………………………………………………………………… 9 

           1.3.1 Outline of the thesis......…..………………..…………………………………………….10 
           1.3.2 Major contributions of the present study......…..………...……………………………….12 

 
2 Theoretical Description……………………………………………………………………….…15 
     2.1 Introduction…………………………………………………………………………………..15 
     2.2 Coordinate systems…………………………………………………………………………….16 
     2.3 The definition of the motions…………………………………………………………………..17 
     2.4 Formulation of the second-order wave-body problem in the inertial coordinate system……...22 
            2.4.1 General description of the boundary conditions………………………………………...22 
            2.4.2 Second-order approximations of the boundary conditions……………………………...23 
            2.4.3 Forces and moments calculation………………………………………………………...25 
     2.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system……28 
            2.5.1 Free-surface conditions…………………………………………………………………28 
            2.5.2 Body boundary condition……………………………………………………………….29 
            2.5.3 Forces and moments calculation…………………………………………...…………...29 
     2.6 Formulation of the second-order wave-body problem in the body-fixed coordinate system….30 

        2.6.1 Free-surface conditions…………………………………………………………………30 
            2.6.2 Body boundary condition……………………………………………………………..33 
            2.6.3 Forces and moments calculation………………………………………………………..33 
     2.7 Governing equations of unsteady rigid-body motions………………………………………..35 

        2.7.1 Rigid-body motion equations in the inertial frame……………………………………..35 
            2.7.2 Rigid-body motion equations in the body-fixed frame………………………………….38 
     2.8 Incident wave field……………………………………………………………………………..39  
 
3 Basis of the Time-Domain HOBEM in 2D………………………………………………………..41 
     3.1 Boundary integral equation…………………………………………………………………….41 
     3.2 Quadratic boundary element method…………………………………………………………..42 
     3.3 Time marching of the free-surface conditions……………………………………………….45 
     3.4 Numerical damping zone and active wave absorber…………………………………………...45 

v 
 

 

Contents 
 

Abstract……………………………………………………….………………………………………i 
 
Acknowledgements…………………………………….……………………………………………iii 

 
Contents……………………………………………………………………………………………...v 
 
Nomenclature………………………………………………………………………………...……….ix 

 
1 Introduction...………………………………………………………………………………………1 
    1.1 Scope and objective………………………….…………………………………………………1 

1.2 Previous studies………………………………………………………………………………. 2 
1.3 Present study …………………………………………………………………………………… 9 

           1.3.1 Outline of the thesis......…..………………..…………………………………………….10 
           1.3.2 Major contributions of the present study......…..………...……………………………….12 

 
2 Theoretical Description……………………………………………………………………….…15 
     2.1 Introduction…………………………………………………………………………………..15 
     2.2 Coordinate systems…………………………………………………………………………….16 
     2.3 The definition of the motions…………………………………………………………………..17 
     2.4 Formulation of the second-order wave-body problem in the inertial coordinate system……...22 
            2.4.1 General description of the boundary conditions………………………………………...22 
            2.4.2 Second-order approximations of the boundary conditions……………………………...23 
            2.4.3 Forces and moments calculation………………………………………………………...25 
     2.5 Formulation of the third-order diffraction problem in the Earth-fixed coordinate system……28 
            2.5.1 Free-surface conditions…………………………………………………………………28 
            2.5.2 Body boundary condition……………………………………………………………….29 
            2.5.3 Forces and moments calculation…………………………………………...…………...29 
     2.6 Formulation of the second-order wave-body problem in the body-fixed coordinate system….30 

        2.6.1 Free-surface conditions…………………………………………………………………30 
            2.6.2 Body boundary condition……………………………………………………………..33 
            2.6.3 Forces and moments calculation………………………………………………………..33 
     2.7 Governing equations of unsteady rigid-body motions………………………………………..35 

        2.7.1 Rigid-body motion equations in the inertial frame……………………………………..35 
            2.7.2 Rigid-body motion equations in the body-fixed frame………………………………….38 
     2.8 Incident wave field……………………………………………………………………………..39  
 
3 Basis of the Time-Domain HOBEM in 2D………………………………………………………..41 
     3.1 Boundary integral equation…………………………………………………………………….41 
     3.2 Quadratic boundary element method…………………………………………………………..42 
     3.3 Time marching of the free-surface conditions……………………………………………….45 
     3.4 Numerical damping zone and active wave absorber…………………………………………...45 



vi                                                                                                                                                Contents 
 

     3.5 Solution of t …………………………………………………………………….…………….47 
     3.6 Calculation of the higher-order derivatives……………………………………………………49 
     3.7 Fourier analysis………………………………………………………………………………50 

 
4 Basis of the Time-Domain HOBEM in 3D……………………………………………………….51 
     4.1 Boundary integral equation…………………………………………………………………….51 
     4.2 HOBEM based on cubic shape functions……………………………………………………...52 
            4.2.1 Shape functions………………………………………………………………………….52 
            4.2.2 Solid angle and CPV integrals…………………………………………………………..54 
     4.3 Time marching of the free-surface conditions…………………………………………………59 
     4.4 Treatment of t -term and the time integration of body motion equations…………………….60 
     4.5 Low-pass filter on the free surface……………………………………………………………..62 
     4.6 Direct calculation of the higher-order derivatives……………………………………………..64 
     4.7 Types of grid on the free surface……………………………………………………………….69 
     4.8 Matrix Solver…………………………………………………………………………………..69 
            4.8.1 Why HOBEM? ………………………………………………………………………….70 
            4.8.2 Complexity of BEM solvers…………………………………………………………….70 
            4.8.3 Algorithm of FMM……………………………………………………………………...71 
            4.8.4 Selection of a proper solver……………………………………………………………..75 
 
5 Use of the Body-Fixed Coordinate System in Weakly-Nonlinear Wave-Body Problems……79 
     5.1 Comparison of the weakly-nonlinear formulations in inertial and body-fixed coordinate           
           systems…………………………………………………………………………………………79  
            5.1.1 Free-surface conditions………………………………………………………………….79 
            5.1.2 Body boundary conditions………………………………………………………………80 
     5.2 Domain-decomposition approach using body-fixed coordinate system in the near field ……..81 
     5.3 Generation of incident wave field in body-fixed coordinate system…………………………..87 
     5.4 The consistency between body-fixed coordinate system and inertial coordinate system……...88 
 
6 Studies on Two-Dimensional Weakly-Nonlinear Problems……………………………………...93 
     6.1 The steady-state third-order solution of sloshing in a rectangular tank………………………..93 
     6.2 Free oscillations and forced oscillations in a rectangular tank………………………………..98  
     6.3 Stokes-drift effect and numerical simulation of the Stokes second-order waves…………….101 
     6.4 Secularity condition and numerical simulation of the Stokes third-order waves…………….107 
     6.5 Second-order diffraction of a horizontal semi-submerged circular cylinder………...……….112 
     6.6 Second-order radiation of a horizontal semi-submerged circular cylinder… …………..……118 
 
7 Three-Dimensional Weakly-Nonlinear Problems with Zero Forward Speed ………………..123 
     7.1 Second-order and third-order wave diffraction on a fixed body……………………………..123 
            7.1.1 Second-order diffraction in monochromatic waves……………………………………123 
            7.1.2 Second-order diffraction in bichromatic waves………………………………………..133 
            7.1.3 Third-order diffraction in regular waves……………………………………………….135 
     7.2 Second-order studies of a body under forced oscillations……………………………………142 
            7.2.1. Linear hydrodynamic coefficients…………………………………………………….142 
            7.2.2. Second-order loads on forced oscillating bodies……………………………………...144 
 
8 Three-dimensional Weakly-Nonlinear Problems with Small Forward Speeds……………….155 
     8.1 Second-order wave diffraction………………………………………………………………..156 
     8.2 Second-order wave radiation…………………………………………………………………162 
     8.3 Freely-floating body in regular waves………………………………………………………..172 

 

vi                                                                                                                                                Contents 
 

     3.5 Solution of t …………………………………………………………………….…………….47 
     3.6 Calculation of the higher-order derivatives……………………………………………………49 
     3.7 Fourier analysis………………………………………………………………………………50 

 
4 Basis of the Time-Domain HOBEM in 3D……………………………………………………….51 
     4.1 Boundary integral equation…………………………………………………………………….51 
     4.2 HOBEM based on cubic shape functions……………………………………………………...52 
            4.2.1 Shape functions………………………………………………………………………….52 
            4.2.2 Solid angle and CPV integrals…………………………………………………………..54 
     4.3 Time marching of the free-surface conditions…………………………………………………59 
     4.4 Treatment of t -term and the time integration of body motion equations…………………….60 
     4.5 Low-pass filter on the free surface……………………………………………………………..62 
     4.6 Direct calculation of the higher-order derivatives……………………………………………..64 
     4.7 Types of grid on the free surface……………………………………………………………….69 
     4.8 Matrix Solver…………………………………………………………………………………..69 
            4.8.1 Why HOBEM? ………………………………………………………………………….70 
            4.8.2 Complexity of BEM solvers…………………………………………………………….70 
            4.8.3 Algorithm of FMM……………………………………………………………………...71 
            4.8.4 Selection of a proper solver……………………………………………………………..75 
 
5 Use of the Body-Fixed Coordinate System in Weakly-Nonlinear Wave-Body Problems……79 
     5.1 Comparison of the weakly-nonlinear formulations in inertial and body-fixed coordinate           
           systems…………………………………………………………………………………………79  
            5.1.1 Free-surface conditions………………………………………………………………….79 
            5.1.2 Body boundary conditions………………………………………………………………80 
     5.2 Domain-decomposition approach using body-fixed coordinate system in the near field ……..81 
     5.3 Generation of incident wave field in body-fixed coordinate system…………………………..87 
     5.4 The consistency between body-fixed coordinate system and inertial coordinate system……...88 
 
6 Studies on Two-Dimensional Weakly-Nonlinear Problems……………………………………...93 
     6.1 The steady-state third-order solution of sloshing in a rectangular tank………………………..93 
     6.2 Free oscillations and forced oscillations in a rectangular tank………………………………..98  
     6.3 Stokes-drift effect and numerical simulation of the Stokes second-order waves…………….101 
     6.4 Secularity condition and numerical simulation of the Stokes third-order waves…………….107 
     6.5 Second-order diffraction of a horizontal semi-submerged circular cylinder………...……….112 
     6.6 Second-order radiation of a horizontal semi-submerged circular cylinder… …………..……118 
 
7 Three-Dimensional Weakly-Nonlinear Problems with Zero Forward Speed ………………..123 
     7.1 Second-order and third-order wave diffraction on a fixed body……………………………..123 
            7.1.1 Second-order diffraction in monochromatic waves……………………………………123 
            7.1.2 Second-order diffraction in bichromatic waves………………………………………..133 
            7.1.3 Third-order diffraction in regular waves……………………………………………….135 
     7.2 Second-order studies of a body under forced oscillations……………………………………142 
            7.2.1. Linear hydrodynamic coefficients…………………………………………………….142 
            7.2.2. Second-order loads on forced oscillating bodies……………………………………...144 
 
8 Three-dimensional Weakly-Nonlinear Problems with Small Forward Speeds……………….155 
     8.1 Second-order wave diffraction………………………………………………………………..156 
     8.2 Second-order wave radiation…………………………………………………………………162 
     8.3 Freely-floating body in regular waves………………………………………………………..172 

 

vi                                                                                                                                                Contents 
 

     3.5 Solution of t …………………………………………………………………….…………….47 
     3.6 Calculation of the higher-order derivatives……………………………………………………49 
     3.7 Fourier analysis………………………………………………………………………………50 

 
4 Basis of the Time-Domain HOBEM in 3D……………………………………………………….51 
     4.1 Boundary integral equation…………………………………………………………………….51 
     4.2 HOBEM based on cubic shape functions……………………………………………………...52 
            4.2.1 Shape functions………………………………………………………………………….52 
            4.2.2 Solid angle and CPV integrals…………………………………………………………..54 
     4.3 Time marching of the free-surface conditions…………………………………………………59 
     4.4 Treatment of t -term and the time integration of body motion equations…………………….60 
     4.5 Low-pass filter on the free surface……………………………………………………………..62 
     4.6 Direct calculation of the higher-order derivatives……………………………………………..64 
     4.7 Types of grid on the free surface……………………………………………………………….69 
     4.8 Matrix Solver…………………………………………………………………………………..69 
            4.8.1 Why HOBEM? ………………………………………………………………………….70 
            4.8.2 Complexity of BEM solvers…………………………………………………………….70 
            4.8.3 Algorithm of FMM……………………………………………………………………...71 
            4.8.4 Selection of a proper solver……………………………………………………………..75 
 
5 Use of the Body-Fixed Coordinate System in Weakly-Nonlinear Wave-Body Problems……79 
     5.1 Comparison of the weakly-nonlinear formulations in inertial and body-fixed coordinate           
           systems…………………………………………………………………………………………79  
            5.1.1 Free-surface conditions………………………………………………………………….79 
            5.1.2 Body boundary conditions………………………………………………………………80 
     5.2 Domain-decomposition approach using body-fixed coordinate system in the near field ……..81 
     5.3 Generation of incident wave field in body-fixed coordinate system…………………………..87 
     5.4 The consistency between body-fixed coordinate system and inertial coordinate system……...88 
 
6 Studies on Two-Dimensional Weakly-Nonlinear Problems……………………………………...93 
     6.1 The steady-state third-order solution of sloshing in a rectangular tank………………………..93 
     6.2 Free oscillations and forced oscillations in a rectangular tank………………………………..98  
     6.3 Stokes-drift effect and numerical simulation of the Stokes second-order waves…………….101 
     6.4 Secularity condition and numerical simulation of the Stokes third-order waves…………….107 
     6.5 Second-order diffraction of a horizontal semi-submerged circular cylinder………...……….112 
     6.6 Second-order radiation of a horizontal semi-submerged circular cylinder… …………..……118 
 
7 Three-Dimensional Weakly-Nonlinear Problems with Zero Forward Speed ………………..123 
     7.1 Second-order and third-order wave diffraction on a fixed body……………………………..123 
            7.1.1 Second-order diffraction in monochromatic waves……………………………………123 
            7.1.2 Second-order diffraction in bichromatic waves………………………………………..133 
            7.1.3 Third-order diffraction in regular waves……………………………………………….135 
     7.2 Second-order studies of a body under forced oscillations……………………………………142 
            7.2.1. Linear hydrodynamic coefficients…………………………………………………….142 
            7.2.2. Second-order loads on forced oscillating bodies……………………………………...144 
 
8 Three-dimensional Weakly-Nonlinear Problems with Small Forward Speeds……………….155 
     8.1 Second-order wave diffraction………………………………………………………………..156 
     8.2 Second-order wave radiation…………………………………………………………………162 
     8.3 Freely-floating body in regular waves………………………………………………………..172 

 

vi                                                                                                                                                Contents 
 

     3.5 Solution of t …………………………………………………………………….…………….47 
     3.6 Calculation of the higher-order derivatives……………………………………………………49 
     3.7 Fourier analysis………………………………………………………………………………50 

 
4 Basis of the Time-Domain HOBEM in 3D……………………………………………………….51 
     4.1 Boundary integral equation…………………………………………………………………….51 
     4.2 HOBEM based on cubic shape functions……………………………………………………...52 
            4.2.1 Shape functions………………………………………………………………………….52 
            4.2.2 Solid angle and CPV integrals…………………………………………………………..54 
     4.3 Time marching of the free-surface conditions…………………………………………………59 
     4.4 Treatment of t -term and the time integration of body motion equations…………………….60 
     4.5 Low-pass filter on the free surface……………………………………………………………..62 
     4.6 Direct calculation of the higher-order derivatives……………………………………………..64 
     4.7 Types of grid on the free surface……………………………………………………………….69 
     4.8 Matrix Solver…………………………………………………………………………………..69 
            4.8.1 Why HOBEM? ………………………………………………………………………….70 
            4.8.2 Complexity of BEM solvers…………………………………………………………….70 
            4.8.3 Algorithm of FMM……………………………………………………………………...71 
            4.8.4 Selection of a proper solver……………………………………………………………..75 
 
5 Use of the Body-Fixed Coordinate System in Weakly-Nonlinear Wave-Body Problems……79 
     5.1 Comparison of the weakly-nonlinear formulations in inertial and body-fixed coordinate           
           systems…………………………………………………………………………………………79  
            5.1.1 Free-surface conditions………………………………………………………………….79 
            5.1.2 Body boundary conditions………………………………………………………………80 
     5.2 Domain-decomposition approach using body-fixed coordinate system in the near field ……..81 
     5.3 Generation of incident wave field in body-fixed coordinate system…………………………..87 
     5.4 The consistency between body-fixed coordinate system and inertial coordinate system……...88 
 
6 Studies on Two-Dimensional Weakly-Nonlinear Problems……………………………………...93 
     6.1 The steady-state third-order solution of sloshing in a rectangular tank………………………..93 
     6.2 Free oscillations and forced oscillations in a rectangular tank………………………………..98  
     6.3 Stokes-drift effect and numerical simulation of the Stokes second-order waves…………….101 
     6.4 Secularity condition and numerical simulation of the Stokes third-order waves…………….107 
     6.5 Second-order diffraction of a horizontal semi-submerged circular cylinder………...……….112 
     6.6 Second-order radiation of a horizontal semi-submerged circular cylinder… …………..……118 
 
7 Three-Dimensional Weakly-Nonlinear Problems with Zero Forward Speed ………………..123 
     7.1 Second-order and third-order wave diffraction on a fixed body……………………………..123 
            7.1.1 Second-order diffraction in monochromatic waves……………………………………123 
            7.1.2 Second-order diffraction in bichromatic waves………………………………………..133 
            7.1.3 Third-order diffraction in regular waves……………………………………………….135 
     7.2 Second-order studies of a body under forced oscillations……………………………………142 
            7.2.1. Linear hydrodynamic coefficients…………………………………………………….142 
            7.2.2. Second-order loads on forced oscillating bodies……………………………………...144 
 
8 Three-dimensional Weakly-Nonlinear Problems with Small Forward Speeds……………….155 
     8.1 Second-order wave diffraction………………………………………………………………..156 
     8.2 Second-order wave radiation…………………………………………………………………162 
     8.3 Freely-floating body in regular waves………………………………………………………..172 

 



Contents                                                                                                                                                vii 
 

9 Summary and future perspectives……………………….………………………………………179 
     9.1 Summary……………………………………………………………………………………...179 
     9.2 Future perspectives…………………………………………………………………………...183 

 
Appendix…………………………………………………………………………………………….187 
     Appendix A. The double-body basis flow………………………………………………………...187 
          A.1 The classical double-body basis flow in the inertial coordinate system………………….187 
          A.2 The 'double-body' basis flow used in the domain decomposition based method…………188 
     Appendix B. The second-order analytical solution of a circle under forced surging in an infinite  
                           fluid……...……………………………...…………...............................…………..190 
          B.1 Solution in the Earth-fixed coordinate system……………………………………………190 
          B.2 Solution in the body-fixed coordinate system…………………………………………….191 
     Appendix C. The second-order analytical solution for sloshing in a two-dimensional rectangular  
                           tank under forced surging…………….……………………………………………192 
          C.1 Solution in the Earth-fixed coordinate system……………………………………………192 
          C.2 Solution in the tank-fixed coordinate system……………………………………………..198 
     Appendix D. Elimination of the secular terms in the third-order free-surface conditions………..201 
     Appendix E. Indirect method for the evaluation of forces and moments due to the  t-term……203 
     Appendix F. Alternative formulas for the quadratic forces and moments………………………...205 
 
References…………………………………………………………………………………………209 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contents                                                                                                                                                vii 
 

9 Summary and future perspectives……………………….………………………………………179 
     9.1 Summary……………………………………………………………………………………...179 
     9.2 Future perspectives…………………………………………………………………………...183 

 
Appendix…………………………………………………………………………………………….187 
     Appendix A. The double-body basis flow………………………………………………………...187 
          A.1 The classical double-body basis flow in the inertial coordinate system………………….187 
          A.2 The 'double-body' basis flow used in the domain decomposition based method…………188 
     Appendix B. The second-order analytical solution of a circle under forced surging in an infinite  
                           fluid……...……………………………...…………...............................…………..190 
          B.1 Solution in the Earth-fixed coordinate system……………………………………………190 
          B.2 Solution in the body-fixed coordinate system…………………………………………….191 
     Appendix C. The second-order analytical solution for sloshing in a two-dimensional rectangular  
                           tank under forced surging…………….……………………………………………192 
          C.1 Solution in the Earth-fixed coordinate system……………………………………………192 
          C.2 Solution in the tank-fixed coordinate system……………………………………………..198 
     Appendix D. Elimination of the secular terms in the third-order free-surface conditions………..201 
     Appendix E. Indirect method for the evaluation of forces and moments due to the  t-term……203 
     Appendix F. Alternative formulas for the quadratic forces and moments………………………...205 
 
References…………………………………………………………………………………………209 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contents                                                                                                                                                vii 
 

9 Summary and future perspectives……………………….………………………………………179 
     9.1 Summary……………………………………………………………………………………...179 
     9.2 Future perspectives…………………………………………………………………………...183 

 
Appendix…………………………………………………………………………………………….187 
     Appendix A. The double-body basis flow………………………………………………………...187 
          A.1 The classical double-body basis flow in the inertial coordinate system………………….187 
          A.2 The 'double-body' basis flow used in the domain decomposition based method…………188 
     Appendix B. The second-order analytical solution of a circle under forced surging in an infinite  
                           fluid……...……………………………...…………...............................…………..190 
          B.1 Solution in the Earth-fixed coordinate system……………………………………………190 
          B.2 Solution in the body-fixed coordinate system…………………………………………….191 
     Appendix C. The second-order analytical solution for sloshing in a two-dimensional rectangular  
                           tank under forced surging…………….……………………………………………192 
          C.1 Solution in the Earth-fixed coordinate system……………………………………………192 
          C.2 Solution in the tank-fixed coordinate system……………………………………………..198 
     Appendix D. Elimination of the secular terms in the third-order free-surface conditions………..201 
     Appendix E. Indirect method for the evaluation of forces and moments due to the  t-term……203 
     Appendix F. Alternative formulas for the quadratic forces and moments………………………...205 
 
References…………………………………………………………………………………………209 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Contents                                                                                                                                                vii 
 

9 Summary and future perspectives……………………….………………………………………179 
     9.1 Summary……………………………………………………………………………………...179 
     9.2 Future perspectives…………………………………………………………………………...183 

 
Appendix…………………………………………………………………………………………….187 
     Appendix A. The double-body basis flow………………………………………………………...187 
          A.1 The classical double-body basis flow in the inertial coordinate system………………….187 
          A.2 The 'double-body' basis flow used in the domain decomposition based method…………188 
     Appendix B. The second-order analytical solution of a circle under forced surging in an infinite  
                           fluid……...……………………………...…………...............................…………..190 
          B.1 Solution in the Earth-fixed coordinate system……………………………………………190 
          B.2 Solution in the body-fixed coordinate system…………………………………………….191 
     Appendix C. The second-order analytical solution for sloshing in a two-dimensional rectangular  
                           tank under forced surging…………….……………………………………………192 
          C.1 Solution in the Earth-fixed coordinate system……………………………………………192 
          C.2 Solution in the tank-fixed coordinate system……………………………………………..198 
     Appendix D. Elimination of the secular terms in the third-order free-surface conditions………..201 
     Appendix E. Indirect method for the evaluation of forces and moments due to the  t-term……203 
     Appendix F. Alternative formulas for the quadratic forces and moments………………………...205 
 
References…………………………………………………………………………………………209 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



viii                                                                                                                                                Contents 
 

 
 
 
 
 
 

viii                                                                                                                                                Contents 
 

 
 
 
 
 
 

viii                                                                                                                                                Contents 
 

 
 
 
 
 
 

viii                                                                                                                                                Contents 
 

 
 
 
 
 
 



ix 
 

 

Nomenclature 
 

General rules 

 The symbols are defined in the text for the first time they appear 
 Only the most used symbols are declared here 
 The same symbol may have different interpretations in different problems 
 The vectors are represented by an arrow above the symbols 
 The matrices are represented by bold face characters 
 An overdot means time derivative 
 A vector with a prime is described in the body-fixed coordinate system 

 

Abbreviations 

2D   Two-dimensional        
3D   Three-dimensional  
BVP   Boundary Value Problem 
BIE   Boundary Integral Equation 
BEM   Boundary Element Method 
CPV   Cauchy Principle Value 
COG   Centre of Gravity         
FEM   Finite Element Method 
FDM   Finite Difference Method     
HOBEM  Higher-Order Boundary Element Method 
QTF   Quadratic Transfer Function 
RAO   Response Amplitude Operator 
 

Subscripts 

b i indicates the transformation matrix from body-fixed coordinate system to 
inertial coordinate system  

g indicates translatory and rotational motions with respect to a coordinate 
system with  origin at the Centre of Gravity 

i   i=1, …, 3. The i-th component of a vector 
i b indicates the transformation matrix from inertial coordinate system to body-

fixed coordinate system  
in   indicates variables for incident waves 

ix 
 

 

Nomenclature 
 

General rules 

 The symbols are defined in the text for the first time they appear 
 Only the most used symbols are declared here 
 The same symbol may have different interpretations in different problems 
 The vectors are represented by an arrow above the symbols 
 The matrices are represented by bold face characters 
 An overdot means time derivative 
 A vector with a prime is described in the body-fixed coordinate system 

 

Abbreviations 

2D   Two-dimensional        
3D   Three-dimensional  
BVP   Boundary Value Problem 
BIE   Boundary Integral Equation 
BEM   Boundary Element Method 
CPV   Cauchy Principle Value 
COG   Centre of Gravity         
FEM   Finite Element Method 
FDM   Finite Difference Method     
HOBEM  Higher-Order Boundary Element Method 
QTF   Quadratic Transfer Function 
RAO   Response Amplitude Operator 
 

Subscripts 

b i indicates the transformation matrix from body-fixed coordinate system to 
inertial coordinate system  

g indicates translatory and rotational motions with respect to a coordinate 
system with  origin at the Centre of Gravity 

i   i=1, …, 3. The i-th component of a vector 
i b indicates the transformation matrix from inertial coordinate system to body-

fixed coordinate system  
in   indicates variables for incident waves 

ix 
 

 

Nomenclature 
 

General rules 

 The symbols are defined in the text for the first time they appear 
 Only the most used symbols are declared here 
 The same symbol may have different interpretations in different problems 
 The vectors are represented by an arrow above the symbols 
 The matrices are represented by bold face characters 
 An overdot means time derivative 
 A vector with a prime is described in the body-fixed coordinate system 

 

Abbreviations 

2D   Two-dimensional        
3D   Three-dimensional  
BVP   Boundary Value Problem 
BIE   Boundary Integral Equation 
BEM   Boundary Element Method 
CPV   Cauchy Principle Value 
COG   Centre of Gravity         
FEM   Finite Element Method 
FDM   Finite Difference Method     
HOBEM  Higher-Order Boundary Element Method 
QTF   Quadratic Transfer Function 
RAO   Response Amplitude Operator 
 

Subscripts 

b i indicates the transformation matrix from body-fixed coordinate system to 
inertial coordinate system  

g indicates translatory and rotational motions with respect to a coordinate 
system with  origin at the Centre of Gravity 

i   i=1, …, 3. The i-th component of a vector 
i b indicates the transformation matrix from inertial coordinate system to body-

fixed coordinate system  
in   indicates variables for incident waves 

ix 
 

 

Nomenclature 
 

General rules 

 The symbols are defined in the text for the first time they appear 
 Only the most used symbols are declared here 
 The same symbol may have different interpretations in different problems 
 The vectors are represented by an arrow above the symbols 
 The matrices are represented by bold face characters 
 An overdot means time derivative 
 A vector with a prime is described in the body-fixed coordinate system 

 

Abbreviations 

2D   Two-dimensional        
3D   Three-dimensional  
BVP   Boundary Value Problem 
BIE   Boundary Integral Equation 
BEM   Boundary Element Method 
CPV   Cauchy Principle Value 
COG   Centre of Gravity         
FEM   Finite Element Method 
FDM   Finite Difference Method     
HOBEM  Higher-Order Boundary Element Method 
QTF   Quadratic Transfer Function 
RAO   Response Amplitude Operator 
 

Subscripts 

b i indicates the transformation matrix from body-fixed coordinate system to 
inertial coordinate system  

g indicates translatory and rotational motions with respect to a coordinate 
system with  origin at the Centre of Gravity 

i   i=1, …, 3. The i-th component of a vector 
i b indicates the transformation matrix from inertial coordinate system to body-

fixed coordinate system  
in   indicates variables for incident waves 



x                                                                                                                                         Nomenclature 

n   indicates normal derivative 
s   indicates variables related to scattered waves 
t   indicates time derivative 
x,y,z (X,Y,Z)  indicate derivatives along x(X), y(Y) and z(Z) directions, respectively 
  
 

Superscripts: 

(i)    indicates quantities of the i-th order (i=0, 1, 2, 3) 
T   indicates the transpose of the matrix 
(2 )   indicates double-harmonic 

+   indicates sum-frequency 

-   indicates difference-frequency 
 

Roman symbols: 

A   The linear wave amplitude  
ak   k=1,2, 3,4. Coefficients used in Adams-Bashforth-Moulton method 
b(m) Forcing term in the m-th order body-boundary conditions formulated in the 

body-fixed coordinate system 
B(m) Forcing term in the m-th order body-boundary conditions formulated in the 

inertial coordinate system 
bk   k=1,2, 3,4. Coefficients used in Adams-Bashforth-Moulton method 
c The strength of the low-pass filter 
C(x) Solid angle coefficient at a position x 
Ci  Solid angle coefficient at the i-th node Pi 
CW Water line 
CW0 Mean water line 
d Draft 
F  Forces vector 

( )
1

mF , ( )
2

mF  Forcing term in the m-th order free-surface conditions formulated in the 
inertial coordinate system. m=1, 2 

( )
1

mf , ( )
2

mf  Forcing term in the m-th order free-surface conditions formulated in the body-
fixed coordinate system. m=1, 2 

gF    External force vector acting on the body described in OXYZ system. 
G   Green function 

ikH , ikA   Influence coefficients 

gM     External moment vector with respect to COG acting on the body 
g gK   Gravity acceleration vector in the Earth-fixed coordinate system 
h   Water depth 

I    A 3×3 identity matrix 

x                                                                                                                                         Nomenclature 

n   indicates normal derivative 
s   indicates variables related to scattered waves 
t   indicates time derivative 
x,y,z (X,Y,Z)  indicate derivatives along x(X), y(Y) and z(Z) directions, respectively 
  
 

Superscripts: 

(i)    indicates quantities of the i-th order (i=0, 1, 2, 3) 
T   indicates the transpose of the matrix 
(2 )   indicates double-harmonic 

+   indicates sum-frequency 

-   indicates difference-frequency 
 

Roman symbols: 

A   The linear wave amplitude  
ak   k=1,2, 3,4. Coefficients used in Adams-Bashforth-Moulton method 
b(m) Forcing term in the m-th order body-boundary conditions formulated in the 

body-fixed coordinate system 
B(m) Forcing term in the m-th order body-boundary conditions formulated in the 

inertial coordinate system 
bk   k=1,2, 3,4. Coefficients used in Adams-Bashforth-Moulton method 
c The strength of the low-pass filter 
C(x) Solid angle coefficient at a position x 
Ci  Solid angle coefficient at the i-th node Pi 
CW Water line 
CW0 Mean water line 
d Draft 
F  Forces vector 

( )
1

mF , ( )
2

mF  Forcing term in the m-th order free-surface conditions formulated in the 
inertial coordinate system. m=1, 2 

( )
1

mf , ( )
2

mf  Forcing term in the m-th order free-surface conditions formulated in the body-
fixed coordinate system. m=1, 2 

gF    External force vector acting on the body described in OXYZ system. 
G   Green function 

ikH , ikA   Influence coefficients 

gM     External moment vector with respect to COG acting on the body 
g gK   Gravity acceleration vector in the Earth-fixed coordinate system 
h   Water depth 

I    A 3×3 identity matrix 

x                                                                                                                                         Nomenclature 

n   indicates normal derivative 
s   indicates variables related to scattered waves 
t   indicates time derivative 
x,y,z (X,Y,Z)  indicate derivatives along x(X), y(Y) and z(Z) directions, respectively 
  
 

Superscripts: 

(i)    indicates quantities of the i-th order (i=0, 1, 2, 3) 
T   indicates the transpose of the matrix 
(2 )   indicates double-harmonic 

+   indicates sum-frequency 

-   indicates difference-frequency 
 

Roman symbols: 

A   The linear wave amplitude  
ak   k=1,2, 3,4. Coefficients used in Adams-Bashforth-Moulton method 
b(m) Forcing term in the m-th order body-boundary conditions formulated in the 

body-fixed coordinate system 
B(m) Forcing term in the m-th order body-boundary conditions formulated in the 

inertial coordinate system 
bk   k=1,2, 3,4. Coefficients used in Adams-Bashforth-Moulton method 
c The strength of the low-pass filter 
C(x) Solid angle coefficient at a position x 
Ci  Solid angle coefficient at the i-th node Pi 
CW Water line 
CW0 Mean water line 
d Draft 
F  Forces vector 

( )
1

mF , ( )
2

mF  Forcing term in the m-th order free-surface conditions formulated in the 
inertial coordinate system. m=1, 2 

( )
1

mf , ( )
2

mf  Forcing term in the m-th order free-surface conditions formulated in the body-
fixed coordinate system. m=1, 2 

gF    External force vector acting on the body described in OXYZ system. 
G   Green function 

ikH , ikA   Influence coefficients 

gM     External moment vector with respect to COG acting on the body 
g gK   Gravity acceleration vector in the Earth-fixed coordinate system 
h   Water depth 

I    A 3×3 identity matrix 

x                                                                                                                                         Nomenclature 

n   indicates normal derivative 
s   indicates variables related to scattered waves 
t   indicates time derivative 
x,y,z (X,Y,Z)  indicate derivatives along x(X), y(Y) and z(Z) directions, respectively 
  
 

Superscripts: 

(i)    indicates quantities of the i-th order (i=0, 1, 2, 3) 
T   indicates the transpose of the matrix 
(2 )   indicates double-harmonic 

+   indicates sum-frequency 

-   indicates difference-frequency 
 

Roman symbols: 

A   The linear wave amplitude  
ak   k=1,2, 3,4. Coefficients used in Adams-Bashforth-Moulton method 
b(m) Forcing term in the m-th order body-boundary conditions formulated in the 

body-fixed coordinate system 
B(m) Forcing term in the m-th order body-boundary conditions formulated in the 

inertial coordinate system 
bk   k=1,2, 3,4. Coefficients used in Adams-Bashforth-Moulton method 
c The strength of the low-pass filter 
C(x) Solid angle coefficient at a position x 
Ci  Solid angle coefficient at the i-th node Pi 
CW Water line 
CW0 Mean water line 
d Draft 
F  Forces vector 

( )
1

mF , ( )
2

mF  Forcing term in the m-th order free-surface conditions formulated in the 
inertial coordinate system. m=1, 2 

( )
1

mf , ( )
2

mf  Forcing term in the m-th order free-surface conditions formulated in the body-
fixed coordinate system. m=1, 2 

gF    External force vector acting on the body described in OXYZ system. 
G   Green function 

ikH , ikA   Influence coefficients 

gM     External moment vector with respect to COG acting on the body 
g gK   Gravity acceleration vector in the Earth-fixed coordinate system 
h   Water depth 

I    A 3×3 identity matrix 



Nomenclature                                                                                                                                                       xi 
 

 
 

BI  Inertia matrix, its elements being the moments and products of inertia of the 
body 

k   Wave number 
M    Moment vector 
n    Normal vector on a surface  

kN    The k-th shape function 
NE   Total number of elements 
NOD   Total number of nodes 
OeXeYeZe   Earth-fixed coordinate system 
OXYZ   Inertial coordinate system moving with constant forward speed 
oxyz   Body-fixed coordinate system 
ogxgygzg   A body-fixed coordinate system with origin at COG 
p   Pressure 
r    Position vector  
t   Time 
T   Linear wave period 
R   Radius of an axisymmetric body, e.g. hemisphere, circular cylinder 

i bR   Transformation matrix from inertial coordinate system to body-fixed 
coordinate system 

b iR   Transformation matrix from body-fixed coordinate system to inertial 
coordinate system 

SB   Wetted body surface 

SB0   Mean wetted body surface 

Sbottom   Sea bottom 

SF   Free surface 

SF0   Calm water surface 

U    Forward speed vector in the inertial coordinate system 
( )kU  The k-th order component of forward speed vector described in the body-

fixed coordinate system 
kx  k-th order displacement of a point, with its components as 1 2,k kx x  and 3

kx  
ku  k-th order displacement of a point, with its components as 1 2,k ku u  and 3

ku  

BU     Translatory velocity of the body 
s=IEP(e, j) A coefficient of the connectivity matrix, which represents the global index of 

the j-th node of e-th element 

offsetL    Offset distance in the desingularized BEM. offset d mL l D  

 dl     A constant coefficient in the definition of offsetL  

mD   Size of the mesh which can be approximated by the square root of the area of 
the local element.  

   A constant coefficient in the definition of offsetL  
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xii                                                                                                                                         Nomenclature 

Greek symbols: 

   Velocity potential 
 Small parameter related to wave steepness and unsteady body motions 
   Small parameter related to the forward speed/current velocity 

,i k     Kronecker delta function  
   Total wave elevation  

The local intrinsic coordinates of the 3D boundary element in   
  computational domain 

 denotes the displacement of a point (x,y,0) on the oxy-plane due to the 
rigid-body motions 

   Wave elevation observed in the inertial coordinate system OXYZ 
 Translatory motion vector of the origin of OXYZ system, its components 

being 1 , 2  and 3  
 Local intrinsic coordinates of the boundary element in computational domain 

1,a, 2,a, 3,a Amplitude of 1 , 2  and 3  

 The angular motion of the body with respect to the origin of OXYZ system, 
its components being 4 5,  and 6  

4,a, 5,a, 6,a Amplitude of 4 5,  and 6  
   Angular velocity vector 
   Wave frequency; frequencies of the oscillations 

0  Fundamental frequency of incident wave without forward speed or current 

e    Frequency of encounter 
   The reduced frequency defined as = /eU g  

 Linear wave length 
 Non-uniformity coefficient in the mesh generation near the sharp corner 

   Fluid mass density 
eJ    Jacobian of the e-th element in 2D HOBEM 

,eJ   Jacobian of the e-th element in 3D HOBEM 

0    Non-dimensional damping coefficient in the numerical damping zone 
 Empirical coefficient in the damping coefficient of the numerical damping 

zone 

B     Rotational velocity of the body 

1
m , 2

m    Sub-problems of m
t  in the modal decomposition method  

 
 
Special symbols: 

    Spatial gradient  
   Spatial gradient in the horizontal plane 

S     The fluctuation of the wetted body surface due to of wave elevation 

t    Time increment in the time-domain simulations 
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CHAPTER 1 

Introduction 

 
1.1. Scope and objective 
 
Nonlinear free-surface body problems can be divided into strongly- and weakly-nonlinear problems. 
Slamming (e.g. Zhao & Faltinsen (1993) and Zhao et al. (1996)), green water on deck (e.g. Greco, 
2001), capsizing of ships (e.g. Kong, 2010) and violent sloshing (e.g. Faltinsen & Timokha, 2009) are 
examples on strongly nonlinear problems.  
 
A linear solution proportional to the incident wave amplitude is a basis of the weakly-nonlinear 
wave-body interaction problems for the exterior flow around a ship and an ocean structure. 
Second-order nonlinear effects according to potential flow theory cause mean, sum- and 
difference-frequency effects (Faltinsen, 1990). Examples on weakly-nonlinear problems are added 
resistance of ships, mean wave loads on floating sea structures, slow-drift motions of moored floating 
structures, resonant vertical sum-frequency loading of Tension Leg Platforms (TLPs).  
 
Super-harmonic ringing loads matter in survival conditions of offshore platforms with natural periods 
in the range of approximately 3 to 5 seconds (Faltinsen et al., 1995). Higher-order wave effects at an 
offshore platform can be significant, see for instance Büchmann (2000a), and must be considered in 
assessing the probability of slamming against the wetdeck. Higher-order springing loads on ships may 
strongly reduce the fatigue life of ships (see e.g. Storhaug, 2007). Wave-induced extreme hull girder 
loading causes important nonlinearities in the design wave bending moment amidships (Jensen et al., 
2000). 
 
The focus of this study is on the weakly-nonlinear wave-body interaction problems, which means that 
the strongly-nonlinear problems are out of the scope of this study. The fact that flow separation is 
neglected in this work implies that the present study is most appropriate for large-volume structures 
(Faltinsen, 1990). Potential flow theory will be used, by assuming that the water is incompressible and 
inviscid, and the flow is irrotational. The perturbation scheme will be used throughout the present 
study. A perturbation scheme makes the frequency-domain analysis possible. Another advantage of 
using the perturbation scheme is that the computational domain is invariant with time when a 
time-domain method is followed. Therefore, the influence matrices need only to be set up and 
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inverted once, and can be used in all the time steps.  
 
Using a perturbation scheme implies that the free-surface elevation is a single-valued function of the 
lateral coordinates, i.e. we cannot describe the effect of plunging breakers. The water entry of a body 
with non-vertical wall at the free surface creates a jet flow at the intersection between the body 
surface and free surface. The latter fact causes that the free surface is not a unique function of the 
horizontal coordinate. The general problem involves both a water entry and exit phase.  
 
The finite-order theory, e.g. second-order and third-order theory, based on perturbation scheme have 
been extensively studied in marine hydrodynamics in the last four decades. However, most of the 
studies are limited to zero Froude number. When the forward speed or current velocity is considered, 
only the studies on the second-order wave diffraction of a body restrained from unsteady body 
motions are reported in the literature. However, floating offshore structures experience unsteady body 
motions that must be accounted for. Recent studies (Storhaug, 2007) on nonlinear ship springing 
indicate that the second-order velocity potential may be an important excitation source, which is still 
ignored in the state-of-the-art nonlinear ship hull girder loads analysis. These necessitate the 
second-order analysis for floating bodies with the presence of forward speed or current effects, which 
is the objective of this study.       
 
An alternative to the perturbation scheme based method is the fully nonlinear time-domain analysis 
(see e.g. Ferrant (1998, 2001), Greco (2001), Bai & Eatock Taylor (2007, 2009)). The first-order, 
second-order and even higher-order results, e.g. the forces, can be obtained by Fourier analysis of the 
fully-nonlinear results. However, the fully nonlinear analysis is very time-consuming due to the fact 
that the computational domain changes with time. One has to build up the influence matrices at each 
time step and solve the matrix equation by a proper matrix solver.  
 

1.2. Previous studies 
 
When a weakly-nonlinear free-surface body problem is theoretically studied, the wave slope and the 
body motions are assumed asymptotically small. Irrotational flow of an incompressible liquid is 
considered. A perturbation scheme based on Taylor expansion of the free surface and body boundary 
condition about the mean position of the free surface and body surface is commonly applied. One can 
obtain the boundary value problems for any order of the velocity potential by expanding the velocity 
potential, wave elevation and body motions into perturbation series by Stokes expansion and 
consistently collecting terms at each order. This section reviews the analytical and numerical studies 
of the weakly-nonlinear wave-body interactions based on perturbation scheme, which is relevant to 
the study in this thesis.  
 

Maruo (1960) introduced the well-known formula of the drifting force which enables us to calculate it 
by the reflected wave amplitude of the linear solutions. Ogilvie (1963) obtained the second-order 
mean forces on a submerged circular cylinder, which could be achieved without explicitly solving the 
second-order boundary value problem. Parissis (1966) and Lee (1966) showed independently the 
complete solutions of the second-order forces on a cylindrical body heaving at the free surface, Lee by 
the method of multipole expansions, Parissis by the method of integral equations. Potash (1971) 
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working with the close-fit techniques, extended the studies to sway, heave and roll, including their 
coupling effects, and to arbitrary section shapes.  
 
Faltinsen (1976) and Faltinsen & Løken (1978) obtained the second-order force through a fictitious 
radiation potential without solving for the second-order velocity potential. The idea is the same as that 
of Lighthill (1979) and Molin (1979) for three-dimensional problems. Later, this idea was used by 
Kyozuka (1980, 1982) and Wu & Eatock Taylor (1989) in solving second-order diffraction/radiation 
problems of two-dimensional bodies in incident waves. It is understood that this method is a good 
choice only if one is interested in the integrated force on the body. However, this technique cannot be 
used for calculating other quantities such as the hydrodynamic pressure, the sectional force and 
bending moment or the wave elevation due to the second-order effects. These facts necessitate the 
complete second-order solution with the second-order velocity potential.  
 
In two dimensions, the second-order wave diffraction problem is more complicated than the radiation 
problems. The difficulty arises from the fact that the reflected waves by the body make partial 
standing waves with the interaction of the incident waves. Consequently, the forcing term in the 
second-order free-surface condition does not decay with horizontal distance away from the body on 
the weather side. Considering that the forcing terms in the inhomogeneous second-order free-surface 
condition can be regarded as a pressure distribution over the free surface, Miao & Liu (1989) 
constructed analytically a particular solution for the second-order velocity potential which satisfies the 
inhomogeneous free-surface condition. The solution was obtained in the frequency domain. A 
representation for the potential due to an arbitrary pressure distribution available in Wehausen & 
Laitone (1960) was used in their construction of the particular solution. To this particular solution, 
one can add a second-harmonic function which satisfies the homogeneous free-surface condition and 
a radiation condition and is constructed in such a way that the total potential satisfies the condition of 
no-flow through the body surface. An alternative particular solution was obtained by McIver (1994) 
based on the theory of analytic functions. Consequently, McIver (1994) was able to get the 
high-frequency approximations for the second-order results, e.g. the forces on an arbitrary 
two-dimensional body with vertical wall at the free-surface zone.  
 
A time-domain second-order model based on perturbation scheme was proposed by Isaacson and his 
associates to study the interactions between the waves and two-dimensional bodies (see e.g. Isaacson 
& Cheung (1990, 1991), Cheung & Isaacson (1993), Isaacson & Ng (1993a) and Ng & Isaacson 
(1993)). A constant Boundary Element Method (BEM) was adopted. The Sommerfeld-Orlanski 
radiation condition (Orlanski, 1976) was used to enforce the first-order and the second-order radiation 
conditions. Wang & Wu (2008) employed a second-order time-domain method to analyze the resonant 
oscillation of the liquid confined within two two-dimensional floating bodies. A finite element method 
(FEM) with quadratic shape functions was used as a numerical tool. The radiation conditions are 
satisfied through a combination of the damping-zone method and the Sommerfeld-Orlanski equation. 
A second-order wave tank was developed by Zhang & William (1996, 1999) based on a boundary 
element method. A novel second-order radiation condition was applied on a vertical control surface at 
the end of the wave tank.    
 

Third-order numerical wave tank (NWT) has been studied by, for instance Büchmann (1995), Molin 
& Stassen (1998) and Stassen et al. (1998) by using BEM. According to Molin & Stassen (1998) and 

Two-dimensional third-order studies, Fr=0.0 

1.2 Previous studies                                                                 3 

 
 

working with the close-fit techniques, extended the studies to sway, heave and roll, including their 
coupling effects, and to arbitrary section shapes.  
 
Faltinsen (1976) and Faltinsen & Løken (1978) obtained the second-order force through a fictitious 
radiation potential without solving for the second-order velocity potential. The idea is the same as that 
of Lighthill (1979) and Molin (1979) for three-dimensional problems. Later, this idea was used by 
Kyozuka (1980, 1982) and Wu & Eatock Taylor (1989) in solving second-order diffraction/radiation 
problems of two-dimensional bodies in incident waves. It is understood that this method is a good 
choice only if one is interested in the integrated force on the body. However, this technique cannot be 
used for calculating other quantities such as the hydrodynamic pressure, the sectional force and 
bending moment or the wave elevation due to the second-order effects. These facts necessitate the 
complete second-order solution with the second-order velocity potential.  
 
In two dimensions, the second-order wave diffraction problem is more complicated than the radiation 
problems. The difficulty arises from the fact that the reflected waves by the body make partial 
standing waves with the interaction of the incident waves. Consequently, the forcing term in the 
second-order free-surface condition does not decay with horizontal distance away from the body on 
the weather side. Considering that the forcing terms in the inhomogeneous second-order free-surface 
condition can be regarded as a pressure distribution over the free surface, Miao & Liu (1989) 
constructed analytically a particular solution for the second-order velocity potential which satisfies the 
inhomogeneous free-surface condition. The solution was obtained in the frequency domain. A 
representation for the potential due to an arbitrary pressure distribution available in Wehausen & 
Laitone (1960) was used in their construction of the particular solution. To this particular solution, 
one can add a second-harmonic function which satisfies the homogeneous free-surface condition and 
a radiation condition and is constructed in such a way that the total potential satisfies the condition of 
no-flow through the body surface. An alternative particular solution was obtained by McIver (1994) 
based on the theory of analytic functions. Consequently, McIver (1994) was able to get the 
high-frequency approximations for the second-order results, e.g. the forces on an arbitrary 
two-dimensional body with vertical wall at the free-surface zone.  
 
A time-domain second-order model based on perturbation scheme was proposed by Isaacson and his 
associates to study the interactions between the waves and two-dimensional bodies (see e.g. Isaacson 
& Cheung (1990, 1991), Cheung & Isaacson (1993), Isaacson & Ng (1993a) and Ng & Isaacson 
(1993)). A constant Boundary Element Method (BEM) was adopted. The Sommerfeld-Orlanski 
radiation condition (Orlanski, 1976) was used to enforce the first-order and the second-order radiation 
conditions. Wang & Wu (2008) employed a second-order time-domain method to analyze the resonant 
oscillation of the liquid confined within two two-dimensional floating bodies. A finite element method 
(FEM) with quadratic shape functions was used as a numerical tool. The radiation conditions are 
satisfied through a combination of the damping-zone method and the Sommerfeld-Orlanski equation. 
A second-order wave tank was developed by Zhang & William (1996, 1999) based on a boundary 
element method. A novel second-order radiation condition was applied on a vertical control surface at 
the end of the wave tank.    
 

Third-order numerical wave tank (NWT) has been studied by, for instance Büchmann (1995), Molin 
& Stassen (1998) and Stassen et al. (1998) by using BEM. According to Molin & Stassen (1998) and 

Two-dimensional third-order studies, Fr=0.0 

1.2 Previous studies                                                                 3 

 
 

working with the close-fit techniques, extended the studies to sway, heave and roll, including their 
coupling effects, and to arbitrary section shapes.  
 
Faltinsen (1976) and Faltinsen & Løken (1978) obtained the second-order force through a fictitious 
radiation potential without solving for the second-order velocity potential. The idea is the same as that 
of Lighthill (1979) and Molin (1979) for three-dimensional problems. Later, this idea was used by 
Kyozuka (1980, 1982) and Wu & Eatock Taylor (1989) in solving second-order diffraction/radiation 
problems of two-dimensional bodies in incident waves. It is understood that this method is a good 
choice only if one is interested in the integrated force on the body. However, this technique cannot be 
used for calculating other quantities such as the hydrodynamic pressure, the sectional force and 
bending moment or the wave elevation due to the second-order effects. These facts necessitate the 
complete second-order solution with the second-order velocity potential.  
 
In two dimensions, the second-order wave diffraction problem is more complicated than the radiation 
problems. The difficulty arises from the fact that the reflected waves by the body make partial 
standing waves with the interaction of the incident waves. Consequently, the forcing term in the 
second-order free-surface condition does not decay with horizontal distance away from the body on 
the weather side. Considering that the forcing terms in the inhomogeneous second-order free-surface 
condition can be regarded as a pressure distribution over the free surface, Miao & Liu (1989) 
constructed analytically a particular solution for the second-order velocity potential which satisfies the 
inhomogeneous free-surface condition. The solution was obtained in the frequency domain. A 
representation for the potential due to an arbitrary pressure distribution available in Wehausen & 
Laitone (1960) was used in their construction of the particular solution. To this particular solution, 
one can add a second-harmonic function which satisfies the homogeneous free-surface condition and 
a radiation condition and is constructed in such a way that the total potential satisfies the condition of 
no-flow through the body surface. An alternative particular solution was obtained by McIver (1994) 
based on the theory of analytic functions. Consequently, McIver (1994) was able to get the 
high-frequency approximations for the second-order results, e.g. the forces on an arbitrary 
two-dimensional body with vertical wall at the free-surface zone.  
 
A time-domain second-order model based on perturbation scheme was proposed by Isaacson and his 
associates to study the interactions between the waves and two-dimensional bodies (see e.g. Isaacson 
& Cheung (1990, 1991), Cheung & Isaacson (1993), Isaacson & Ng (1993a) and Ng & Isaacson 
(1993)). A constant Boundary Element Method (BEM) was adopted. The Sommerfeld-Orlanski 
radiation condition (Orlanski, 1976) was used to enforce the first-order and the second-order radiation 
conditions. Wang & Wu (2008) employed a second-order time-domain method to analyze the resonant 
oscillation of the liquid confined within two two-dimensional floating bodies. A finite element method 
(FEM) with quadratic shape functions was used as a numerical tool. The radiation conditions are 
satisfied through a combination of the damping-zone method and the Sommerfeld-Orlanski equation. 
A second-order wave tank was developed by Zhang & William (1996, 1999) based on a boundary 
element method. A novel second-order radiation condition was applied on a vertical control surface at 
the end of the wave tank.    
 

Third-order numerical wave tank (NWT) has been studied by, for instance Büchmann (1995), Molin 
& Stassen (1998) and Stassen et al. (1998) by using BEM. According to Molin & Stassen (1998) and 

Two-dimensional third-order studies, Fr=0.0 

1.2 Previous studies                                                                 3 

 
 

working with the close-fit techniques, extended the studies to sway, heave and roll, including their 
coupling effects, and to arbitrary section shapes.  
 
Faltinsen (1976) and Faltinsen & Løken (1978) obtained the second-order force through a fictitious 
radiation potential without solving for the second-order velocity potential. The idea is the same as that 
of Lighthill (1979) and Molin (1979) for three-dimensional problems. Later, this idea was used by 
Kyozuka (1980, 1982) and Wu & Eatock Taylor (1989) in solving second-order diffraction/radiation 
problems of two-dimensional bodies in incident waves. It is understood that this method is a good 
choice only if one is interested in the integrated force on the body. However, this technique cannot be 
used for calculating other quantities such as the hydrodynamic pressure, the sectional force and 
bending moment or the wave elevation due to the second-order effects. These facts necessitate the 
complete second-order solution with the second-order velocity potential.  
 
In two dimensions, the second-order wave diffraction problem is more complicated than the radiation 
problems. The difficulty arises from the fact that the reflected waves by the body make partial 
standing waves with the interaction of the incident waves. Consequently, the forcing term in the 
second-order free-surface condition does not decay with horizontal distance away from the body on 
the weather side. Considering that the forcing terms in the inhomogeneous second-order free-surface 
condition can be regarded as a pressure distribution over the free surface, Miao & Liu (1989) 
constructed analytically a particular solution for the second-order velocity potential which satisfies the 
inhomogeneous free-surface condition. The solution was obtained in the frequency domain. A 
representation for the potential due to an arbitrary pressure distribution available in Wehausen & 
Laitone (1960) was used in their construction of the particular solution. To this particular solution, 
one can add a second-harmonic function which satisfies the homogeneous free-surface condition and 
a radiation condition and is constructed in such a way that the total potential satisfies the condition of 
no-flow through the body surface. An alternative particular solution was obtained by McIver (1994) 
based on the theory of analytic functions. Consequently, McIver (1994) was able to get the 
high-frequency approximations for the second-order results, e.g. the forces on an arbitrary 
two-dimensional body with vertical wall at the free-surface zone.  
 
A time-domain second-order model based on perturbation scheme was proposed by Isaacson and his 
associates to study the interactions between the waves and two-dimensional bodies (see e.g. Isaacson 
& Cheung (1990, 1991), Cheung & Isaacson (1993), Isaacson & Ng (1993a) and Ng & Isaacson 
(1993)). A constant Boundary Element Method (BEM) was adopted. The Sommerfeld-Orlanski 
radiation condition (Orlanski, 1976) was used to enforce the first-order and the second-order radiation 
conditions. Wang & Wu (2008) employed a second-order time-domain method to analyze the resonant 
oscillation of the liquid confined within two two-dimensional floating bodies. A finite element method 
(FEM) with quadratic shape functions was used as a numerical tool. The radiation conditions are 
satisfied through a combination of the damping-zone method and the Sommerfeld-Orlanski equation. 
A second-order wave tank was developed by Zhang & William (1996, 1999) based on a boundary 
element method. A novel second-order radiation condition was applied on a vertical control surface at 
the end of the wave tank.    
 

Third-order numerical wave tank (NWT) has been studied by, for instance Büchmann (1995), Molin 
& Stassen (1998) and Stassen et al. (1998) by using BEM. According to Molin & Stassen (1998) and 

Two-dimensional third-order studies, Fr=0.0 



4                                                                Chapter 1 Introduction 

Stassen et al. (1998), the generated third-order waves are not physical if a secularity (solvability) 
condition is not used. Molin & Stassen (1998) proposed a technique with stretched coordinates in 
order to obtain a physical third-order solution. It was shown by Stassen et al. (1998) that the phase 
shift between the measurement and the second-order model can be significantly reduced by adopting 
the third-order model with the stretching technique of Molin & Stassen (1998).  
 

For simple geometries, for instance the bottom-mounted vertical circular cylinder and the truncated 
vertical circular cylinder, it is possible to find the second-order analytical/semi-analytical solutions.  
Among others, Eatock Taylor & Hung (1987), Chau & Eatock Taylor (1992), Eatock Taylor & Huang 
(1997) developed the semi-analytical solutions for the second-order diffraction of a bottom-mounted 
vertical circular cylinder. The semi-analytical solution for the second-order wave diffraction by an 
array of vertical circular cylinders was developed by e.g. Moubayed & Williams (1995) and Malenica 
et al. (1999). Huang & Eatock Taylor (1996, 1997) and Chatjigeorgiou & Mavrakos (2007) solved the 
second-order wave diffraction of a truncated vertical circular cylinder semi-analytically. A 
semi-analytical solution for the second-order wave diffraction by arrays of elliptical cylinders was 
obtained by Chatjigeorgiou & Mavrakos (2009). 

Three-dimensional second-order studies, Fr=0.0 or Fr  

 
For a floating body of arbitrary shape, it is not possible to find an analytical solution up to second 
order. We then have to rely on numerical methods. The numerical analysis for the second-order wave 
diffraction of three-dimensional bodies in the frequency domain can be found in, for instance Molin 
(1979), Løken (1986), Scolan (1989), Chau (1989), Kim & Yue (1989, 1990), Chen et al. (1995) and 
Choi et al. (2001). Isaacson & Cheung (1992) has investigated the second-order wave diffraction 
problems by means of time-domain boundary element methods. Wang & Wu (2007) studied the 
second-order diffraction of an array of bottom-mounted vertical circular cylinders by a Finite Element 
Method (FEM) in the time domain.  
 
The forced oscillations of a free-surface piercing body with no ambient flow have been studied up to 
second order by e.g. Teng (1995) in the frequency domain and by e.g. Isaacson & Ng (1993b), Bai 
(2001) and Teng et al.(2002) in the time domain. 
 
When the forward speed or the current effects are considered, only linear semi-analytical (e.g. 
Malenica et al., 1995) was found in the literature. The presence of the forward speed or the current 
velocity makes the second-order solution in the frequency domain complicated. It is more 
straightforward to apply a time-domain approach to study the second-order wave-body problem when 
the forward speed or the current effect is to be included. However, solving a second-order wave-body 
interaction problem with even a small forward speed is a non-trivial task, and most of the studies on 
the second-order wave loads are carried out without considering the forward speed or the current 
effect. However, it does not mean that the influence of forward speed on the second-order results, e.g. 
the second-order forces and moments, are not important. Zhao and Faltinsen (1989b) found that the 
wave drift forces are significantly affected even by a low current speed. Further, the influence on the 
wave elevation is important. Aanesland et al. (1990) showed experimentally that the presence of a 
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time-domain boundary element method (BEM). The numerical results indicate that the second-order 
loads can be strongly influenced by the current effects. However, to the author’s knowledge, for a 
floating body with forward speed, no study based on consistent second-order theory has been reported. 
This may partly be due to the numerical difficulties associated with the higher-order derivatives in 
both the free surface and the body boundary conditions. 
 

The analysis of the third-order problem has also been attempted by some researchers. Malenica & 
Molin (1995) made a pioneering study of the triple-harmonic part of the third-order diffraction 
problem for a bottom-mounted vertical circular cylinder. The triple-harmonic part of the third-order 
diffraction problem for the truncated vertical circular cylinders was investigated by Kinoshita & Bao 
(2000), who was able to reproduce Malenica & Molin’s (1995) results by studying a bottomless 
truncated cylinder with draft equal to the water depth. Malenica & Molin’s (1995) and Kinoshita & 
Bao’s (2000) approaches are analytically based. Faltinsen et al. (1995) obtained an asymptotic 
solution to the third-order diffraction problem with a long wave length approximation. Teng & Kato 
(1997) adopted a numerical approach and obtained the triple-harmonic solution of the third-order 
diffraction problem by solving the integral equations numerically. Without solving the third-order 
problem explicitly, Markiewicz et al. (1999) obtained the third-order hydrodynamic loads on an 
oscillating vertical circular cylinder by an indirect method with the assistance of the Green’s 2nd 
identity and an artificial radiation velocity potential. Zhu (1997) studied the third-harmonic diffraction 
problem by a 3D higher-order panel method. A few approximations have been made in her study in 
order to simplify the numerical procedure.  

Three-dimensional third-order studies, Fr=0.0 

 

One of the difficulties when solving the nonlinear problem, e.g. second-order or third-order problem 
is how to calculate the second-order or third-order derivatives of the velocity potentials or the wave 
elevations in the body-boundary and free-surface conditions.  

Considerations on the calculations of higher-order derivatives in the boundary conditions 

 
From a numerical point of view, the higher-order derivatives in the free-surface conditions are easier 
to deal with than that in the body boundary conditions, because the bodies are in general of complex 
geometries and maybe of high surface-curvatures. Wang & Wu (2007) solved the second-order 
diffraction problem for an array of cylinders by the Finite Element Method (FEM) in the time domain. 
They used a curve-fitting technique for the computation of the first-order and the second-order 
derivatives in the free-surface conditions. With a higher-order Boundary Element Method (BEM), Liu 
et al. (1995) obtained the first-order and second-order derivatives by means of higher-order shape 
functions. One can also use a conformal mapping technique from the physical plane to a 
computational plane with uniform meshes, and thus higher-order Finite Difference Method (FDM) 
can be applied to calculate the derivatives with high accuracy (see, for instance, Engsig-Karup & 
Bingham (2009) and Zhu & Faltinsen (2007)). Other possibilities for calculation of the derivatives on 
the free surface are, for instance, the B-spline based BEM (e.g. Maniar, 1995), the desingularized 
panel method (e.g. Cao et al., 1991) and the boundary patch method (e.g. Soding, 1993). In principal, 
all the methods mentioned above can also be used for the direct calculation of the derivatives on the 
mean body surface.  
 
The second-order derivatives in the body-boundary condition are analogous to the so-called mj-terms 
for the linear wave-induced ship motion problem at forward speed (e.g. Ogilvie & Tuck, 1969) and 
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the linear wave-current-body interaction problem (e.g. Zhao & Faltinsen, 1989a). When a 
wave-current-body problem is considered, the interaction of the local steady flow and unsteady wave 
field is taken into account by both the body boundary condition and the free-surface conditions. The 
so-called mj-terms in the linear wave-current-body analysis take into account partly the interaction of 
the local steady flow and the unsteady wave field through the body boundary condition. One should 
note that the mj-terms also contain the angle of attack effect due to the ambient steady flow for the 
unsteady pitch and yaw motions. This effect is always included through the mj-terms even when the 
local steady flow effect is neglected. The influence of the mj-terms was shown by Faltinsen (1974a), 
who studied numerically the added mass and damping coefficients of the ships by using both the 
formulas of Ogilvie & Tuck (1969) and Salvesen et al. (1970). The importance of the local steady 
flow in the forward-speed seakeeping calculation has been revealed by for instance Inglis & Price 
(1981), Iwashita & Ohkusu (1989), Iwashita & Bertram (1997), Iwashita & Ito (1998), Chen et al. 
(2000) and Duan & Price (2002). Inglis & Price (1981) and Iwashita & Ohkusu (1989) showed for a 
submerged prolate spheroid that the added mass and damping coefficients change significantly 
depending on the inclusion of the local steady flow. Iwashita & Bertram (1997) and Iwashita & Ito 
(1998) found a clear influence of the local steady flow on the wave pressure near the bow region. It 
was also mentioned by Chen et al. (2000) that the local steady flow could play a great role in the 
results of the added mass and damping coefficients, especially for a large Froude number. Duan & 
Price (2002) found that the local steady flow has significant contribution near the bow and stern 
regions, even for a submerged slender body. See also the summary of Kim (2005) on the importance 
of the local steady flow. 
 
There are basically two ways to handle the mj-terms, i.e. the indirect way and the direct way. The 
indirect way of treating the mj-terms is to use Stokes-like theorem. By assuming that the body surface 
is without sharp corner, the ship hull is wall-sided at the waterline, and the steady wave field can be 
approximated by the double-body flow, Ogilvie and Tuck (1969) used a modified Stokes theorem 
(which is referred as Ogilvie-Tuck theorem or Tuck’s theorem in the literature) to rewrite the effect of 
the second-order derivatives in the mj-term in terms of first-order derivatives in their studies of the 
forced heave and pitch of a ship of relevance for regular head sea waves. In a second-order radiation 
problem, Teng et al. (2002) used a similar technique to reduce the second-order derivatives of the 
velocity potential in the integral equation by one. The cost of doing so in Teng et al.’s (2002) analysis 
is an additional waterline integral and the evaluation of integrals involving the first-order derivative 
and the normal derivative of the first-order derivatives of the Green function.  
 
The direct calculation of mj-terms was early attempted by Zhao and Faltinsen (1989a). Based on the 
fact that the singularity of the Rankine sources is weakened away from the body surface, they firstly 
calculated the second-order derivatives on some points offset from the body. The mj-terms are then 
obtained through extrapolation. This technique has been shown to be accurate for smooth bodies 
without sharp corners. Wu (1991) proposed to solve a series of Dirichlet-type problems using the 
first-order derivatives of velocity potential as the right-hand-side term of the condition on the mean 
body surface. A similar method was suggested by Chen & Malenica (1998) based on the idea of Wu 
(1991). There are also successful examples by using a Higher-Order Boundary Element Method 
(HOBEM) for the calculations of the mj-terms, see for instance Bingham & Maniar (1996) and Chen 
et al. (2000). 
 
Considerations on the sharp corners/edges 
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For many kinds of floating marine structures there are often corners and edges at the intersections of 
different planes (e.g. the corners of pontoons in some semisubmersibles). Although in reality there 
may be a small bilge radius at a corner/edge, it is convenient to represent them as sharp corners or 
edges in a mathematical description of the body surface. However, theoretical and numerical 
difficulties arise in the linear/nonlinear wave-body interaction analysis with/without forward speed or 
current effects.  
 
At the sharp corner/edge, it is known that the fluid velocity is singular. Consequently the gradient of 
the fluid velocity is singular and not integrable. Therefore, the boundary integral equations for a linear 
wave-body interaction problem with forward speed (or current speed) or a nonlinear wave-body 
interaction problem are not integrable. This difficulty is not numerical but theoretical. In fact, it is 
wrong to take Taylor expansion of the body boundary conditions around the sharp corner/edges. In a 
linear wave-body-current problem, Zhao & Faltinsen (1989b) decomposed the velocity potential into 
two parts, with the first part satisfying the body boundary condition associated with the mj-terms, and 
the second part satisfying the body boundary condition with the mj-terms excluded. By doing that, 
they finally obtained an integral equation which is valid for cases with sharp corners. Eatock Taylor & 
Teng (1993) investigated the effect of corners on the diffraction/radiation forces and wave drift 
damping. Truncated vertical circular cylinders with the same radius and draft but different corner radii 
were studied. A small current speed was considered. The Ogilvie-Tuck theorem was applied to avoid 
direct calculation of the mj-terms. It was shown by Eatock Taylor & Teng (1993) that the most 
important hydrodynamic forces and amplitudes of the body motion do not change significantly when 
the radius of the corner approaches zero. Bai (2001) and Teng et al. (2002) studied the second-order 
radiation of a truncated vertical circular cylinder in otherwise calm water. A Stokes-like theorem was 
used to avoid direct calculation of the second-order derivatives in the second-order body boundary 
condition. Another possible way to handle the theoretical difficulties associated with the sharp corner 
is that one introduces a local solution consistent with the singular nature of the problem at the corner 
in the solution of the integral equation. 
 
When the nonlinear wave-body interaction with presence of forward speed/current is studied, the 
application of the Stokes-like theorems is not straightforward, due to the fact that third-order 
derivatives of the steady velocity potential are involved in the second-order body boundary conditions. 
The method proposed by Zhao & Faltinsen (1989b) may in principle be extended to get proper 
integral equations. However, we then have to divide the velocity potential into several parts since the 
second-order body boundary condition contains some terms similar to the mj-terms and terms 
involving the third-order derivatives. It may also be difficult to find the corresponding artificial 
velocity potential for all the mj-like terms. 
 
A numerical difficulty associated with the sharp corners is due to the fact that the normal vectors at 
the corners/edges are ill-defined. A double-node technique (e.g. Grilli & Svendsen, 1990) is often 
used in a boundary-element-method solution. Another numerical difficulty is how to get convergent 
quadratic forces/moments for a body with sharp corners. In theory, the quadratic terms in the 
Bernoulli’s equation are integrable. In reality, the convergence is very slow in the numerical 
calculations if a near-field method, which directly integrates the pressure on the body surface, is 
adopted. Zhao & Faltinsen (1989b) showed for a floating truncated vertical circular cylinder the 
difficulty of the near-field approach to get convergent mean wave forces, especially the vertical mean 
force. It is also shown that the far-field approach based on momentum and energy relationships is 
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more robust and efficient. The same problem was re-investigated by Liu et al. (1993) in the frequency 
domain by the near-field method which resulted in uniform convergence giving a unique result. A 
Higher-Order BEM (HOBEM) was used. However, their results confirmed neither the near-field nor 
the far-field results of Zhao & Faltinsen (1989b). A re-investigation of the same problem using a 
time-domain HOBEM by the near-field method in this thesis (see Chapter 8) will be shown to support 
the far-field results of Zhao & Faltinsen (1989b). Actually, it has been pointed out by Newman & Lee 
(2002) and Lee et al. (2002) that the HOBEM is more sensitive to the singularity at the sharp corner in 
the near-field approach. In order to minimize this problem, they suggested a nonuniform geometric 
mapping near the corner for the HOBEMs. This idea is similar to the nonuniform spacing of the 
panels near the corner adopted by Newman & Lee (1992) in the low-order panel method. 
Unfortunately, the computational results can still be inaccurate especially when the bodies experience 
large motions.  
 
The momentum analysis based on time-averaging has been shown in the literature to be very accurate 
and efficient for the calculation of the mean wave forces/moments on a single body. However, the 
momentum approach is not limited to the mean wave loads analysis. Actually, the momentum analysis 
can still be powerful for the general purpose of the forces/moments calculations. See for instance 
Faltinsen (1977), Lee (2007) and Xiang & Faltinsen (2010). 
 
By using the variants of the Stokes’s theorem given by Dai (1998), Chen (2004), Dai et al. (2005) and 
Chen (2007) proposed to use the middle-field formulation, which results in much faster convergence 
than the original near-field approach in the calculation of nonlinear wave forces. The middle-field 
formulation rewrites the integral of the pressure on the body surface into the sum of a set of integrals 
on the free surface as well on an artificial control surface. In principle, the middle-field approach is 
applicable for not only the mean wave loads but also the sum-frequency and difference-frequency 
forces/moments. Lee (2007) obtained consistent expressions for the quadratic forces/moments with 
that of Dai et al. (2005) by using the conservation of momentum. 
 

Zhao & Faltinsen (1988) studied a two-dimensional linear wave-body-current interaction problem in 
the frequency domain. The bodies studied by them are vertical in the free-surface zone. Two different 
free-surface conditions with the free-stream flow and the double-body flow as the basis flow 
respectively have been used in the near field close to the body. It was found that the free-surface 
condition with double-body basis flow is a much better choice than that with a free-stream basis flow. 
The reason was that the free-stream basis flow implies a steady flow through the body, while there in 
reality is a stagnation point at the intersection between the body and the mean free surface. The 
mathematical consequence of using a free-surface condition with a free-stream basis flow is likely to 
be singularities at the intersection points. 

Considerations on the singularities at the intersection between the free surface and body surface 

 
Isaacson (1977) considered the second-order diffraction theory for a bottom-mounted vertical circular 
cylinder without current. Taking the radial-derivative of the second-order free-surface condition, 
Isaacson (1977) found an inconsistency of the body boundary condition and the second-order 
free-surface condition. He concluded that a nonlinear theory does not exist and one has to rely 
primarily on the empirical or semi-empirical approach. It was later shown by Hunt & Baddour (1980) 
that Isaacson’s apparent inconsistency follows from a non-analytic property of the solution at the 
intersection of the body surface and the mean free surface. Hunt & Baddour (1980) concluded that the 
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inconsistency at the intersection does not invalidate the Stokes’s expansion method. Miloh (1980) 
indicated that Wehausen (1980) has also used a similar argument to refute the Isaacson assertion.  
 
The inconsistency is actually due to the confluence of the boundary conditions at the intersection. For 
a vertical (wall-sided) intersection, it was shown that the linear potential for horizontal motions has a 
weak, r2ln(r)-type singularity, while those for vertical motions or wave diffraction are regular at the 
intersection point. See e.g. Kravtchenko (1954), Miloh (1980) and Sclavounos (1988). Here r is the 
distance to the intersection position. For a two-dimensional flow in the vicinity of a body section with 
the free surface, Sclavounos (1988) showed that leading-order singularity of the second-order velocity 
potential is rln(r). The analysis was made for a wall-sided intersection. Taking the zero-frequency 
limit of Sclavounos’ (1988) analysis, it can be shown that the flow is analytic at the intersection. This 
is relevant to the double-body basis flow used in this thesis. One should note that the second-order 
derivatives of the linear velocity potential (e.g. surge radiation potentials) and the first-order 
derivatives of the second-order velocity potential are integrable. Therefore, the evaluating of the 
integrals on the computational boundaries in the boundary integral equation (BIE) presents no 
theoretical difficulties. Alternatively, in order to avoid the direct evaluation of the second-order 
derivatives at the intersection in the free-surface integral of the BIE, one may use a weak formulation 
after integrating by parts (see e.g. Chau & Eatock Taylor, 1988). 
 
The applications of the second-order theory based on perturbation scheme to bodies with non-vertical 
wall in the free-surface zone have also been attempted numerically by, for instance, Papanikolaou & 
Nowacki (1980), Kim (1989) and Kim & Yue (1989). Papanikolaou & Nowacki (1980) studied the 
forced oscillations of a two-dimensional triangular section with large positive flare at the waterline. 
Kim (1989) and Kim & Yue (1989) considered the second-order wave diffraction on a fixed truncated 
vertical cone. The excitation forces, overturning moments and the wave elevation along the waterline 
of the cone are presented. It was mentioned in Kim (1989) that the validity of his results for 
non-vertical intersection cases was established through careful convergence tests.  
 
For a non-vertical intersection case, the validity of the general second-order diffraction/radiation 
theory seems still to be unknown to the author of this thesis. This needs a dedicated theoretical study 
of the local behavior of the first-order and the second-order solution in the vicinity of the intersection. 
For an interior problem, Faltinsen & Timokha (2010a, 2010b) has found the analytical approximate 
natural sloshing mode in a two-dimensional circular tank and discussed how the singularities are at 
the intersections of the mean free surface and the body surface for a linear free-surface problem.  
 
 

1.3. Present study 
 
In the present work, the weakly-nonlinear wave-body interaction problems are solved by using 
HOBEMs in the time domain. The perturbation scheme is used. A small forward speed or current 
effect is considered. Numerical codes based on 3-node 2D quadratic BEM and 12-node 3D cubic 
BEM have been developed for the 2D and 3D studies, respectively. The problem is solved up to 
second order in wave slope (and/or unsteady body motions) and first order in forward speed. For zero 
Froude number, the problem is solved to third order in wave steepness. The bodies studied in this 
thesis are wall-sided at the intersection of the mean free surface and body surface when the body is at 
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its mean oscillatory position.  
 
1.3.1. Outline of the thesis 
Chapter 2 gives the theoretical descriptions. The definitions of body motions in different coordinate 
systems and their relationships are described. The formulations of the second-order Boundary Value 
Problem (BVP) in both the inertial coordinate system and the body-fixed coordinate system are 
presented. A small forward speed effect is included. The formulations are based on a perturbation 
scheme, which are accurate to second order of the wave slope or the unsteady body motions and first 
order of the forward speed. The BVP for the third-order diffraction of a fixed body in incident waves 
is also provided. The rigid-body motion equations in both the inertial and body-fixed reference frame 
are given.   
 
Chapter 3 describes the basis of the time-domain HOBEM in two dimensions. The discretization of 
the Boundary Integral Equations (BIEs) by using 3-node quadratic boundary elements is introduced. 
The evaluation of the influence coefficients is briefly discussed. Other numerical details are also given: 
the time marching of the free-surface conditions, the mechanisms of the numerical damping zone and 
the wave absorber, the evaluation of t-term in the Bernoulli’s equation, calculation of higher-order 
derivatives in the boundary conditions and the Fourier analysis of the time domain results.    
 
Chapter 4 describes the basis of the time-domain HOBEM in three dimensions. The discretization of 
the BIEs by using 12-node cubic boundary elements is introduced. Different methods for the 
evaluation of the solid angle and Cauchy Principle Value (CPV) integrals are presented. Other 
numerical details include: numerical schemes for the time-evolution of the free-surface conditions, the 
treatment of t-term and the time integration of body motion equations, the low-pass filter applied on 
the free surface in order to suppress the numerical instabilities, methods of direct calculation of the 
higher-order derivatives and the selection of the grid types and a proper matrix solver.  
 
In Chapter 5, the advantages and disadvantages of the formulations of BVP in the inertial and 
body-fixed coordinate systems are discussed. Then we propose a domain decomposition based method 
taking advantages of the body-fixed coordinate system in the inner domain in order to avoid 
evaluating the higher-order derivatives in the body boundary condition of the second-order wave-body 
problem with a small forward speed. The inertial reference frame is used in the outer domain. Taking 
the HOBEM as an example, the discretized BIEs in the inner and outer domain are shown. In order to 
demonstrate the consistency between the body-fixed and inertial coordinate system, we have derived 
analytical (semi-analytical) second-order results for two simple cases, i.e. the forced oscillation of a 
circle in infinite fluid and the forced oscillation of a 2D rectangular tank with a free surface. The 
analytical (semi-analytical) results obtained in the body-fixed coordinate system and that in the inertial 
coordinate system are consistent. 
 
In Chapter 6, with the purpose of verification, studies were carried out in some two-dimensional cases, 
including: the third-order steady-state solution of a sloshing tank, the free oscillations and forced 
oscillations in a rectangular tank, reproduction of the Stokes second-order and third-order waves in a 
Numerical Wave Tank (NWT), and the second-order diffraction and radiation of a horizontal cylinder. 
All the studied are based on the formulation in the inertial coordinate system. The robustness and 
accuracy of the numerical methods are demonstrated by the comparisons between the present 
numerical results and the some other analytical, numerical or experimental results.   
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Problem (BVP) in both the inertial coordinate system and the body-fixed coordinate system are 
presented. A small forward speed effect is included. The formulations are based on a perturbation 
scheme, which are accurate to second order of the wave slope or the unsteady body motions and first 
order of the forward speed. The BVP for the third-order diffraction of a fixed body in incident waves 
is also provided. The rigid-body motion equations in both the inertial and body-fixed reference frame 
are given.   
 
Chapter 3 describes the basis of the time-domain HOBEM in two dimensions. The discretization of 
the Boundary Integral Equations (BIEs) by using 3-node quadratic boundary elements is introduced. 
The evaluation of the influence coefficients is briefly discussed. Other numerical details are also given: 
the time marching of the free-surface conditions, the mechanisms of the numerical damping zone and 
the wave absorber, the evaluation of t-term in the Bernoulli’s equation, calculation of higher-order 
derivatives in the boundary conditions and the Fourier analysis of the time domain results.    
 
Chapter 4 describes the basis of the time-domain HOBEM in three dimensions. The discretization of 
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the free surface in order to suppress the numerical instabilities, methods of direct calculation of the 
higher-order derivatives and the selection of the grid types and a proper matrix solver.  
 
In Chapter 5, the advantages and disadvantages of the formulations of BVP in the inertial and 
body-fixed coordinate systems are discussed. Then we propose a domain decomposition based method 
taking advantages of the body-fixed coordinate system in the inner domain in order to avoid 
evaluating the higher-order derivatives in the body boundary condition of the second-order wave-body 
problem with a small forward speed. The inertial reference frame is used in the outer domain. Taking 
the HOBEM as an example, the discretized BIEs in the inner and outer domain are shown. In order to 
demonstrate the consistency between the body-fixed and inertial coordinate system, we have derived 
analytical (semi-analytical) second-order results for two simple cases, i.e. the forced oscillation of a 
circle in infinite fluid and the forced oscillation of a 2D rectangular tank with a free surface. The 
analytical (semi-analytical) results obtained in the body-fixed coordinate system and that in the inertial 
coordinate system are consistent. 
 
In Chapter 6, with the purpose of verification, studies were carried out in some two-dimensional cases, 
including: the third-order steady-state solution of a sloshing tank, the free oscillations and forced 
oscillations in a rectangular tank, reproduction of the Stokes second-order and third-order waves in a 
Numerical Wave Tank (NWT), and the second-order diffraction and radiation of a horizontal cylinder. 
All the studied are based on the formulation in the inertial coordinate system. The robustness and 
accuracy of the numerical methods are demonstrated by the comparisons between the present 
numerical results and the some other analytical, numerical or experimental results.   
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In Chapter 7, the numerical methods are verified in three dimensions. Zero Froude number is 
considered. Both the traditional method based on a formulation in the inertial coordinate system and 
the new method with a body-fixed coordinate system in the near field are used. The second-order 
diffraction of a bottom-mounted vertical circular cylinder, a hemisphere and a truncated vertical 
circular cylinder in monochromatic waves are studied, with good agreement with the other 
semi-analytical or numerical results. The Quadratic Transfer Functions (QTFs) of the sum-frequency 
forces and difference-frequency diffraction forces on a bottom-mounted vertical circular cylinder are 
recovered from the present time-domain results. Third-order wave diffraction of a bottom-mounted 
vertical circular cylinder is also investigated by the present time-domain HOBEM. The third-order 
forces on the bottom-mounted vertical circular cylinder contributed by the first-order and 
second-order velocity potentials are consistent with the semi-analytical results, while differences were 
observed for the component due to the third-order velocity potential. Careful convergence studies and 
alternative way of calculating the force have been made with very satisfactory results, indicating that 
the present results are convergent. Forced oscillations of some floating bodies in otherwise calm water 
are also investigated. For a vertical circular cylinder with the draft equal to the water depth, the linear 
hydrodynamic coefficients, e.g. added mass and damping, are obtained from the Fourier analysis of 
the time-domain results. For an axisymmetric body without sharp corner, the results based on the 
inertial coordinate-system formulation and that of the body-fixed coordinate system are compared 
with the purpose of cross-verification. For the forced oscillating of a truncated vertical circular 
cylinder with sharp corners, our second-order results based on a formulation in the body-fixed 
coordinate system agrees fairly well with two other studies, in which the second-order derivatives in 
the body boundary condition are handled by a Stokes-like theorem. Another study by Isaacson & Ng 
(1993b) calculating the second-order derivatives in the second-order boundary condition gave quite 
different results.      
 
In Chapter 8, a small forward speed is considered in the second-order wave-body analysis. Only the 
leading order of the forward speed effect is included, with its higher-order effects neglected. This 
makes possible for us to use the ‘double-body’ flow as the basis flow. The interactions between the 
steady flow and the first- and second-order unsteady flows are included in the present model. The 
second-order wave diffraction on a vertical circular cylinder with draft (d) equal to water depth (h) is 
studied and compared with some other numerical results. The domain decomposition method from 
Chapter 5 is used. Sensitivities on the strength of the low-pass filter and the frequency of the 
application of the filter are studied. The forced oscillations of a vertical circular cylinder with d=h and 
a truncated vertical circular cylinder are studied up to second order in wave slope or unsteady body 
motions. The importance of the small forward speed is discussed. For the forced oscillation of an 
axisymmetric body without any sharp corner, the new method with body-fixed coordinate system 
gives consistent results with the traditional method with a formulation in the inertial coordinate system. 
A floating vertical circular cylinder with d=h, free to respond in only surge motion, is studied with 
different Froude numbers. The Response Amplitude Operators (RAOs) of the surge motions are 
compared with the semi-analytical results. Then a truncated vertical circular cylinder free to surge and 
heave in the incident waves is studied. The second-order forces/moments due to the quadratic terms in 
the Bernoulli’s equation are calculated by a re-formulation based on a formula given by Newman 
(1977) and another similar formula. The vertical mean wave force near the heave resonance agrees 
very well with Zhao & Faltinsen’s (1989b) near-field results. The effects of a small forward speed on 
the horizontal and vertical mean forces are investigated.     
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1.3.2. Major contributions of the present study 
We summarize main contributions of the present work as follows.  
 

 The direct evaluation of solid angle and CPV terms in the 3D HOBEM 
In the HOBEMs, when the field point is in the same element as the singularity point, a singular 
integrand is present in the integrals of the influence coefficients. In the present study, the solid angle is 
calculated according to Montic (1993). A triangular polar-coordinate system transformation proposed 
by Li et al. (1985) is used to eliminate the singularity when the field point is at a node other than the 
singularity point. When the field point coincides with the singularity point, a special argument is made 
in order to make the CPV integral terms exist. Calculating the solid angles and CPV terms directly is 
more efficient in terms of CPU time compared with the indirect method, which for instance relates the 
diagonal terms of the influence matrix with the off-diagonal terms.  
 

 Combination of the 3D cubic HOBEM with the fast multipole method (FMM) 
A numerical module based on the Fast Multipole Method (FMM) is developed, which can be used as 
an option to speed up the present HOBEM solver. Both the operation count and the required memory 
of a FMM accelerated BEM is asymptotically O(N), where N is the total number of the unknowns. 
Suggestion on the selection of a proper matrix solver for a specific problem is given. The FMM 
accelerated HOBEM will dramatically reduce the required CPU time and memory in the fully 
nonlinear time domain simulations and the frequency-domain analysis.   
 

 The second-order and third-order numerical wave tank in two dimensions 
The Stokes second-order and third-order waves are reproduced in a 2D Numerical Wave Tank (NWT) 
by feeding the velocity profile based on Stokes wave theory on a control surface. It was found that the 
Stokes drift through the control surface may destroy the second-order result. Therefore, a numerical 
damping zone which is able to ‘drain’ water out of the tank is suggested to minimize the effect of the 
second-order mass transport. It is also found that a secularity (solvability) condition is needed in order 
to get physical third-order waves in a third-order NWT. A two-time scale approach is proposed to 
eliminate the secular terms in the free-surface conditions.   
 

 The complete third-order wave diffraction by time-domain HOBEM 
The complete third-order wave diffraction of a stationary three-dimensional body is studied by a 
time-domain HOBEM, which means that the solution contains not only the triple-harmonic effect but 
also the third-order contribution with fundamental frequency of the incident waves. A time-domain 
third-order diffraction model was mentioned in Sclavounos & Kim (1995), where only the 
second-order results were shown. However, no published third-order results based on their model 
were found.   
 

 A new method based on domain decomposition using body-fixed coordinate system in 
the inner domain 

Inspired by the work in ship maneuvering and sloshing (Faltinsen & Timokha, 2009), where the 
body-fixed coordinate systems are commonly applied, a new approach based on domain 
decomposition using body-fixed coordinate system in the inner domain and the inertial reference 
frame in the outer domain is proposed. Consistent theoretical description of the new method based on 
second-order theory is presented. The highlight of this new method is twofold. Firstly, no higher-order 
derivatives appear in the body boundary conditions and thus the mj-like terms and their derivatives are 
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avoided. Secondly, because the body boundary condition is formulated on the instantaneous position 
of the body, the resulting integral equation is valid for both smooth bodies and bodies with sharp 
corners. In order to improve the convergence of the second-order forces/moments on a body with 
sharp corners in the near-field approach, a re-formulation of the quadratic force is presented. This 
re-formulation transfers the integrals on the body into the sum of two groups of integrals. The first 
group contains integrals on the body surface with integrands whose singularities are weaker than that 
of the velocity square. The second group consists of regular integrals on the inner free surface and the 
control surface in the inner domain. 
 

 Second-order wave-body analysis with the presence of a small forward speed for a 
floating body with or without sharp corners 

The second-order wave-body interaction with the presence of a small forward speed for a floating 
body is studied by both the traditional method with a formulation in the inertial coordinate system and 
the new method with a formulation in the body-fixed coordinate system. The formulation in the 
inertial coordinate system is only applicable for a body without sharp corners. The study in the inertial 
coordinate system may be considered as a generalization of the work by Skourup et al. (2000), who 
only studied the second-order diffraction problem with small current speed. The new method based on 
domain decomposition (in Chapter 5) is applicable for bodies with or without sharp corners, and has 
been applied in the second-order wave loads analysis of truncated vertical circular cylinder with sharp 
corners.   
 
Parts of the contents and the results have been published in the following papers Shao & Faltinsen 
(2008, 2010a, 2010b, 2010c), which are listed in the references.  
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CHAPTER 2  

Theoretical Description 

 

2.1 Introduction 

When the water is assumed incompressible and inviscid, and the flow is irrotational, the motion of the 
water can be described by the velocity potential  satisfying the Laplace equation 

2 0     in the water domain.            (2.1) 

The Laplace equation holds no matter an inertial reference frame or an accelerated coordinate system 
is used.  
 
If the amplitudes of the incident waves, scattered waves, and the body motions relative to the 
characteristic body dimensions are asymptotically small, we can assume that the velocity potential of 
the flow and all quantities derivable from the flow may be expanded in a power series with respect to 
a small parameter , which is a measure of the wave slope, the angular body motions and the 
translatory body motions relative to the characteristic cross-sectional body length in this study. For 
instance, the velocity potential, wave elevation, the unsteady translatory body motions, the unsteady 
angular body motions, the forces and moments are expanded respectively as follows 

0 (0) 1 (1) 2 (2) 3 (3)+              (2.2) 
0 (0) 1 (1) 2 (2) 3 (3)+              (2.3) 
1 (1) 2 (2) 3 (3)               (2.4) 
1 (1) 2 (2) 3 (3)                (2.5) 
0 (0) 1 (1) 2 (2) 3 (3)+F F F F F            (2.6) 
0 (0) 1 (1) 2 (2) 3 (3)+M M M M M  .          (2.7) 

Strictly speaking we must require the solution to be analytic which means that the expansion is not 
valid near a sharp corner with interior angle less than  radians on the body surface. In Eq.(2.2) - 
Eq.(2.7), the superscript (0) indicates the steady effect, (1) and (2) denote the first-order and 
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second-order variations, respectively. The zeroth-order terms (0)  and (0)  are the steady velocity 
potential and steady wave elevation, which are the consequence of the steady forward speed of the 
body and/or a steady current. 
 
A two-parameter expansion may at a first-glance seem to be a more appropriate choice for the 
perturbation expansion, i.e. a perturbation parameter  as described above and a parameter  
related to the Froude number in case of small Froude numbers U gL where U is the steady 
forward speed and/or current speed. However, one has to solve the linear wave diffraction/radiation 
problem without a current (or forward speed) and then solve the coupling problem of wave and 
current (or forward speed). The same applies for the second-order problem. In this study, the 
one-parameter perturbation expansion is used. Basically, we assume the Froude number to be of O(1) 
in the series expansion of the flow parameters. However, the boundary value problem may become 
simpler with a small parameter related to the Froude number. Approximations of the boundary 
conditions can then be made after the introduction of the one-parameter perturbation expansion into 
the free-surface and body-boundary conditions. As a result of using the one-parameter perturbation 
expansion, the mathematical formulation becomes simpler and only one solution is needed at each 
order.  
 
The assumption of the smallness of the amplitude of the incident wave is violated in extreme wave 
conditions, in which the wave amplitude and body motions are not small. Another assumption behind 
the series expansion of Eq.(2.2) - Eq.(2.7) is that the higher-order quantities are much smaller than the 
low-order ones. This is violated in some cases. One example is the low-frequency lateral translatory 
and yaw motions in the horizontal plane of a moored ship induced by the low-frequency second-order 
wave loads. From measurements of low-frequency motions of moored vessels, it is known that in the 
range of practical wave heights this assumption is in some cases strictly speaking incorrect. See 
Pinkster (1981). It was pointed out by Faltinsen (1994) that the normal way to calculate the slow-drift 
motions does not recognize that the second-order motions can affect the linear wave frequency 
motions. This assumption may also be violated for the large resonant heave, pitch and roll motions for 
bodies with small waterline area. 
 
The resonant behavior of sloshing can also not be described by the weakly-nonlinear theory adopted 
in this study. Potential theory without thin free shear layer effects gives zero damping in the sloshing 
problem. If the weakly-nonlinear assumption which assumes that the liquid motion in tank is of the 
same order or higher order of the excitation is used, the predicted wave motion at resonance is infinite. 
In reality it is not infinite because of the viscous damping effect in the tank and the energy transferring 
between lower and higher modes. The damping sources in the tank are associated with, for instance, 
the boundary layer on the tank surface, the interior structures and wave breaking. Different ordering 
of the terms should be used in the analysis of the resonant sloshing. See for instance Faltinsen & 
Timokha (2009).  
 

2.2 Coordinate systems 

As shown in Fig. 2.1, we define four right-handed Cartesian coordinate systems, i.e. OeXeYeZe, 
OXYZ, oxyz and ogxgygzg. OeXeYeZe is Earth-fixed with OeXeYe -plane on the calm water surface and 
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the OeZe axis positive upwards. OXYZ is an inertial coordinate system moving with the steady 
forward speed of the body. The OXY-plane coincides with the OeXeYe -plane and the OZ axis parallel 
to the OeZe axis. oxyz is a body-fixed coordinate system which moves with not only the steady 
forward speed but also the unsteady rigid-body motions of the body. The oz-axis goes through the 
center of gravity (COG). When the body is without unsteady motions, oxyz coincides with OXYZ 
with the origin on the mean free surface. The ogxgygzg is an inertial coordinate system with origin 
located on the COG, with its axis parallel to that of OXYZ. The body is normally assumed to have the 
oxz-plane as a plane of symmetry.  

X

YZ

O

Ze Ye

Xe

Oe

z y

xo

og

zg yg
xg

 
Fig.2.1. Definition of different coordinate systems. 

 

2.3 The definition of the motions 

Let us define the translatory motion vector of the origin of oxyz relative to the origin of OXYZ, i.e. 
Oo , be 1 2 3= , ,  so that 1  is the surge, 2  is the sway and 3  is the heave. In addition, 
we define the Euler angles 4 , 5  and 6  about the X-, Y- and Z-axis respectively so that 4  is 
the roll, 5  is the pitch and 6  is the yaw. The centre of the angular motions 4 , 5  and 6  is 
the origin of OXYZ system. Here 1 2 3= , ,  and 4 5 6= , ,  are described in the inertial 
coordinate system OXYZ.  
  

 
(a) Rotation in yaw ( 6 )       (b) Rotation in pitch ( 5 )      (c) Rotation in roll ( 4 ) 

Fig.2.2. The order of the rotation of the Euler angles 4 , 5  and 6 . The rotations in (b) and (c) are taken 
respectively with respect to the updated YB- and XB-axis due to the previous rotations. 
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system relative to the origin of OXYZ. 1,g  is the surge, 2,g  is the sway and 3,g  is the heave. 
The vector g  is defined with respect to OXYZ reference frame. Furthermore, an angular motion 
vector 4,g 5,g 6,g= , ,g  is defined. 4,g , 5,g  and 6,g  are the roll, pitch and yaw angle 
about the X-, Y- and Z-axis respectively. Here 4,g , 5,g  and 6,g  are defined with respect to 
COG of the body.  
 
Now consider a point with position vector Ar  in the A A A AO X Y Z  coordinate system and Br  in the 

B B B BO X Y Z  coordinate system. See Fig. 2.2. A A A AO X Y Z  and B B B BO X Y Z  can be any of the 
coordinate systems defined in Fig.2.1. Ar  and Br  have the following relationship 

B B A A B Ar O O rR  .                       (2.8) 

B AO O  is the vector from BO  to AO . A BR  is the transformation matrix, which is dependent on 
the Euler angles and the order of the Euler angles. A BR  can be determined as follows. First of all, 
we let A A A AO X Y Z  and B B B BO X Y Z  coincide. After that, B B B BO X Y Z  is rotated an angle 6  in yaw 
about ZB-axis, then an angle in pitch 5  about its updated YB-axis, and finally an angle 4  in roll 
about the updated XB-axis. See Fig.2.2 as an illustration. With the yaw-pitch-roll Euler angle order, 

A BR  can be expressed as 
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Here sini is  and cosi ic  with i=4, 5, 6.  
 
According to Ogilvie (1983), the transformation matrix A BR  can be interpolated in two ways: 
Interpretation 1:  

It transforms the representation of vector Ar  in A A A AO X Y Z  system into its representation in 

B B B BO X Y Z  by A B ArR ; 
Interpretation 2:  

It changes a vector Ar  into another vector Br , both in the same reference frame. 
Both the interpretations will be used in the later derivations. Note that the product of the 
transformation matrix A BR  and B AR  is an identity matrix. That means, if a vector Ar  has been 
transformed into another vector by B A ArR , one can recover it by using another transformation 
matrix A BR , i.e. A B B A A Ar rR R . 
 
If we take A A A AO X Y Z  as the body-fixed reference frame oxyz in Fig.2.1 and B B B BO X Y Z  as the 
inertial reference frame OXYZ in Fig.2.1, and assume that the Euler angles are small, we have the 
following approximation of the transformation matrix 
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Here the superscript (1) and (2) indicate the first-order and second-order quantities, respectively. The 
‘b’ in the subscript is the shorthand of the ‘body-fixed’ and ‘i’ means ‘inertial’. Similarly, the inverse 
transformation matrix i bR  can be approximated as 

(1) (2) 3
i b i b i bI OR R R ,                     (2.15) 

where  

( ) ( ) Tk k
i b b iR R  , k=1, 2.                     (2.16) 

The superscript ‘T’ means the transpose of the matrix. 
 
We will now define some vectors related to the rigid-body motions, gravitational acceleration, 
forward speed and the normal direction of a point on the body surface. These definitions will be used 
later in this chapter. Both the descriptions in the inertial coordinate system OXYZ and the body-fixed 
coordinate system oxyz are given. In order to distinguish the vectors in different coordinate systems, a 
prime will be used if a vector is described in the body-fixed coordinate system. A vector without a 
prime shall be considered as a description in the inertial reference frame. 
 
(1) Translatory and angular velocity vectors  
The translatory velocity vector  and angular velocity vector  in the inertial coordinate system 
OXYZ can be obtained directly by time differentiation. They can be written respectively as 

1 2 3O                       (2.17) 

1 2 3O                      (2.18) 
with 

1 2 3, ,k k k k T , k=1, 2,                   (2.19) 
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Here the superscript (1) and (2) indicate the first-order and second-order quantities, respectively. The 
‘b’ in the subscript is the shorthand of the ‘body-fixed’ and ‘i’ means ‘inertial’. Similarly, the inverse 
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The superscript ‘T’ means the transpose of the matrix. 
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4 5 6, ,k k k k T , k=1, 2.                    (2.20) 
Using the Interpretation 1 of the transformation matrix, we can obtain the representations of the 
translatory velocity vector  in oxyz system as 

1 2 3
i b OR                           (2.21) 

with  
1 1 ,                                 (2.22) 

2 2 1 1
i bR .                         (2.23) 

According to the definition of the Euler angles in Fig.2.2, the angular velocity  in the body-fixed 
coordinate system can be expressed as 

4 1 5 2 6 3e e e .                     (2.24) 

Here 1e , 2e  and 3e  are unit vectors along the XB-axis in Fig.2.2c, the YB-axis in Fig.2.2b and 
ZB-axis in Fig.2.2a, respectively. Putting  
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T Te C B                     (2.25) 

into Eq.(2.24), we have that  
1 2 3O ,                     (2.26) 

with 
1

4

1 1
5

1
6
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2 (1) (1)
4 6 5

2 2 (1) (1)
5 6 4

2 (1) (1)
6 6 4

.                (2.27) 

 
(2) Displacement and velocity of a point on the body 
Using the Interpretation 2 of A BR  described associated with Eq.(2.9), we can express the 
displacement vector x  and the velocity vector u  of a point due to the unsteady rigid-body motions 
as 

1 2 3x x x O ,                 (2.28) 
1 2 3u u u O ,                    (2.29) 

with 
( )

1 2 3, ,
Tk k k k k k

b ix x x x rR , k=1, 2,           (2.30) 
( )

1 2 3, ,
Tk k k k k k

b iu u u u rR , k=1, 2.            (2.31) 
The overdots in Eq.(2.31) indicate time differentiation. 1 2 3, ,k k k k  is the k-th order 
translatory motion vector. , ,r x y z  is the position vector of the point in the body-fixed 
coordinate system. x  and u  are vectors described in the inertial coordinate system OXYZ. Their 
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corresponding representations in the body-fixed coordinate system can be obtained by using the 
Interpretation 1 of the transformation matrix  

1 2 3
i bx x x x OR ,            (2.32) 

1 2 3
i bu u u u OR ,            (2.33) 

with  
1 1x x ,                 (2.34) 
2 2 1 1

i bx x xR ,               (2.35) 
1 1u u ,                  (2.36) 
2 2 1 1

i bu u uR .               (2.37) 
 
(3) Gravitational acceleration vector 
The description of the gravitational acceleration vector g gK  in the body-fixed coordinate 
system oxyz can be approximated as 

(0) (1) (2) 3
i bg g g g g OR ,            (2.38) 

with (0)g , (1)g , (2)g  defined respectively as  

(0)

0
0
1

g g ,  
1

2

3

(1) (1)
5

(1) (1) (1)
4

(1) 0

g

g g g

g

,  
1

2

3

(2) (2)
5

(2) (2) (2)
4

(1) 2 (1) 2(2)
4 5

2

2
2

( ) ( )

g
gg g

g

.   (2.39) 

K  is the unit directional vector along the Z-axis of the OXYZ system. 
 
(4) Forward speed vector 
In this study, the forward speed is assumed to be always parallel to the X-axis. In the inertial 
coordinate system OXYZ, the forward vector is =U UI  with I  the unit directional vector along 
the X-axis. However, when observed in the body-fixed coordinate system, it has components in x-, y- 
and z-directions due to the angular motions of the body. The forward speed vector in the body-fixed 
coordinate system U  can be obtained by using the Interpretation 1 of the transformation matrix in 
Eq.(2.9) as 

0 1 2 3
i bU U U U U OR ,               (2.40) 

where  

(0)

1
0
0

U U , 

1
1

1(1) (1)
2 6

(1)1
53

0U

U U U

U

, 

(1) 2 (1) 22 5 6
1

2(2) (2) (1) (1)
2 6 4 5

(2) (1) (1)3
5 4 63

1 [( ) ( ) ]
2U

U U U

U

. (2.41) 

 
(5) Normal vector on the body surface 
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The normal vector on the body surface observed in the inertial coordinate system OXYZ can be 
approximated as 

0 1 2 3n n n n O ,              (2.42) 
with 

0( )k k
b in nR , k=1, 2.            (2.43) 

Here 0n  is the normal vector when the body is at rest. It is the same as the normal vector of the 
body surface described in the body-fixed coordinate system, i.e. n . In this study, the normal vector 
is defined as positive pointing out of the water domain. 
 
 

2.4 Formulation of the second-order wave-body problem in the 
inertial coordinate system 

The formulation of the second-order wave-body problem in the inertial coordinate system OXYZ (see 
Fig.2.1) will be presented. A small forward speed is taken into account. We will in this section denote 
the instantaneous free surface as SF and the body surface as SB, with their mean position as SF0 and 
SB0. The seabed is assumed horizontally along the plane Z=-h.  
 
The governing equation is the Laplace equation as it is stated at the beginning of this chapter. A 
general description of the free-surface conditions and the body boundary condition is given in Section 
2.4.1. In section 2.4.2, we will present the first-order and second-order free-surface conditions 
together with corresponding body boundary conditions. The formulation is accurate to second order in 
wave steepness (and the unsteady body motions) and to first order in Froude number.  
 
2.4.1 General description of the boundary conditions 
The kinematic free-surface condition states that the fluid particles on the free surface remain on the 
free surface. Because we are interested in the weakly-nonlinear wave-body problems in this study, the 
free-surface elevation will be assumed to be a single-valued function of the two horizontal coordinates 
X and Y in the inertial coordinate system OXYZ. Thus the kinematic free-surface condition takes the 
following form 

Z X X Y YU
t

 on Z= , ,X Y t ,              (2.44) 

where  is the wave elevation. = ,0,0 TU U  is the forward speed vector. The U  term in 
Eq.(2.44) is a consequence of applying the Lorentz transformation between (X, Y, Z) in the inertial 
coordinate system moving with the forward speed and (Xe, Ye, Ze) in the Earth-fixed coordinate 
system (see the definitions of (X, Y, Z) and (Xe, Ye, Ze) in Fig.2.1), i.e. / /t t U . 
Eq.(2.44) is not valid when a plunging breaker occurs. The wave elevation of the plunging breaker 
cannot be described by a single-valued function of the horizontal coordinates. In that case, one needs 
a formulation which tracks the free surface according to the fluid velocity of the free surface particles. 
See for instance Greco (2001).  
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X and Y in the inertial coordinate system OXYZ. Thus the kinematic free-surface condition takes the 
following form 

Z X X Y YU
t

 on Z= , ,X Y t ,              (2.44) 

where  is the wave elevation. = ,0,0 TU U  is the forward speed vector. The U  term in 
Eq.(2.44) is a consequence of applying the Lorentz transformation between (X, Y, Z) in the inertial 
coordinate system moving with the forward speed and (Xe, Ye, Ze) in the Earth-fixed coordinate 
system (see the definitions of (X, Y, Z) and (Xe, Ye, Ze) in Fig.2.1), i.e. / /t t U . 
Eq.(2.44) is not valid when a plunging breaker occurs. The wave elevation of the plunging breaker 
cannot be described by a single-valued function of the horizontal coordinates. In that case, one needs 
a formulation which tracks the free surface according to the fluid velocity of the free surface particles. 
See for instance Greco (2001).  
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The dynamic free-surface condition follows by imposing the Bernoulli’s equation on the free surface 
and requiring the hydrodynamic pressure to be equal to the atmospheric pressure, i.e. 

1 0
2

U g
t

 on Z= , ,X Y t .         (2.45) 

Here g is the acceleration of gravity. The U  term in Eq.(2.45) is due to the Lorentz 
transformation between the inertial coordinate system OXYZ and the Earth-fixed coordinate system 
(Xe, Ye, Ze).  
 
The body boundary condition 

( )n U u r
n

 on SB                  (2.46) 

ensures that fluid particles cannot penetrate the body surface. Here all the vectors are defined in the 
inertial coordinate system OXYZ. In this work, the forward speed is assumed positive in the 
X-direction. Rigid-body motions are assumed with u  as the unsteady translational velocity of the 
origin of the body-fixed coordinate system oxyz (see Fig.2.1) and  as the rotational velocity of the 
body with respect to the origin of the body-fixed coordinate system oxyz. n  is the normal vector on 
the body surface, which is defined positive pointing out of the water domain. r  is the position 
vector of a point on the body surface relative to the origin of the body-fixed reference frame oxyz.  
 
2.4.2 Second-order approximations of the boundary conditions 
If the amplitudes of the incident waves and the body motions relative to the characteristic body 
dimensions are asymptotically small, we can Taylor expand the free-surface conditions and body 
boundary condition about the mean free surface and the mean body position, respectively. Strictly 
speaking we must require the solution to be analytic which means that the expansion is not valid near 
a sharp corner with interior angle less than  radians on the body surface.  
 
In Section 2.1, we have presented the series expansions of the velocity potential and the wave 
elevation. The expansions were made with respect to a perturbation parameter  related to the wave 
steepness and the unsteady body motions. No approximation has been made with respect to the 
forward speed. In order to simplify the analysis, we will only consider a small forward speed.  
 
The leading order of the wave elevation, i.e. (0)  in Eq.(2.3), is of O(U2). This can be understood by 
putting (0)  and (0)  into the dynamic free-surface condition (2.45). The 0

t  term is zero 
because (0)  is time-independent. In this work, we only consider a small forward speed. 
Approximation will be made correct to O  and 2O . Here  is a small parameter related to 
the Froude number and  is a parameter measuring the smallness of the wave slope and the 
unsteady body motions. That means the steady wave elevation (0)  is neglected in the following 
derivations, i.e. 

1 (1) 2 (2) 3 (3) .                 (2.47) 

The steady velocity potential (0)  can be determined as the solution of the so-called ‘double-body’ 
flow with no steady waves effects included.  
 
Introducing the following series expansions Eq.(2.2) and Eq.(2.47) into Eq.(2.44) and Eq.(2.45), 
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Taylor expanding Eq.(2.44) and Eq.(2.45) about Z=0 and collecting consistent terms of the same order, 
we can obtain the free-surface conditions at each order as 

( ) ( ) ( ) ( )
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ms s in in F

t Z Z t
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with the forcing terms ( )
1

mF , ( )
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The superscript indicates the order of quantity and the subscript means partial differentiation. For 
instance, (0) is the steady velocity potential, which reflects the effect of the small parameter 
to the Froude number. In Eq.(2.48) and Eq.(2.49), the subscript ‘s’ and ‘in’ denote the scattered and 
incident part of the solution, respectively. The gradient operators  and  are defined respectively 
as 

=I J K
X Y Z

,               (2.54) 

=I J
X Y

 .                  (2.55) 

I , J  and K  are unit vector along X-, Y- and Z-axis, respectively.  
 
The body boundary conditions at each order follow by the Taylor expansion of the body boundary 
condition Eq.(2.46)  

( )
m

ms B
n

  on SB0                         (2.56) 

with  

 1(1) (0) (1) (1) (0) (1) (0)
inB n u x n Ui  ,         (2.57) 
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Here ( )kn (k=0, 1, 2) is the normal vector. ( )kx  and ( )ku  (k=1, 2) are the unsteady displacement 
and velocity of a point on the body, respectively. See the definitions in Section 2.3.  
 
The double-gradient term in the first-order body boundary condition, i.e. Eq.(2.57), is associated with 
the so-called mj-terms in the literature, which was introduced by Ogilvie & Tuck (1969). The 
second-order body boundary condition, i.e. Eq.(2.58), is more complicated since it involves three 
double-gradient terms and a triple-gradient term. The double and triple gradient terms in the body 
boundary conditions represent great numerical difficulties for marine structures with high-curvature 
surface.  
 
The body boundary conditions in Eq.(2.56) are based on Taylor expansion about the mean body 
surface. This indicates that the fluid velocity has been assumed to be analytic at the mean body 
surface. This assumption is violated near the sharp corners. The consequence of applying the body 
boundary conditions Eq.(2.56) with the forcing terms defined in Eq.(2.57) and Eq.(2.58) in the 
wave-body analysis with forward speed effect is that the resulting boundary integral equations (BIEs) 
are not integrable. Why the BIEs are not integrable can be partly understood by a two-dimensional 
corner flow. See Chapter 5 for the details. 
 
One should note that we have neglected some of the O(U2) terms in the formulation of the boundary 
conditions. In order to access for how large forward speed or current velocity the present theory can 
be applied, one has to consider the parameter = /eU g , which is simply the product of the Froude 
number and the non-dimensional frequency of encounter. Here U is the forward speed in either the 
same or the opposite direction as the heading of the incident wave. e is the encounter frequency. In a 
linear problem, 0=e kU 0 is the fundamental frequency of the incident wave. In a 
second-order problem with regular incident waves e is interoperated as 02 kU . Theoretically, 
it is known that important changes happen in the linear body- There 
is no upstream wave system w  while both upstream and downstream wave exist with 
<0.25. It was reported by Zhao & Faltinsen (1988) who used a similar theory correct to O  and 

O  in a two-dimensional linear wave-body-current interaction problem that, the body generated 
both upstream waves and downstream waves   0.25. In all the cases studies in this thesis, we 
have limited ourselves to 0.25 .  
 
2.4.3 Forces and moments calculation 
Integrating properly the pressure on the instantaneous body surface gives the forces and moments, 
which may either be defined with respect to the inertial coordinate system OXYZ or the body-fixed 
coordinate system oxyz (see Fig.2.1). When the forces and moments are defined with respect to 
OXYZ, they can be expressed respectively as 

SB
F pn ds ,                   (2.59) 

cSB
M p r r n ds .                (2.60) 
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boundary conditions Eq.(2.56) with the forcing terms defined in Eq.(2.57) and Eq.(2.58) in the 
wave-body analysis with forward speed effect is that the resulting boundary integral equations (BIEs) 
are not integrable. Why the BIEs are not integrable can be partly understood by a two-dimensional 
corner flow. See Chapter 5 for the details. 
 
One should note that we have neglected some of the O(U2) terms in the formulation of the boundary 
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same or the opposite direction as the heading of the incident wave. e is the encounter frequency. In a 
linear problem, 0=e kU 0 is the fundamental frequency of the incident wave. In a 
second-order problem with regular incident waves e is interoperated as 02 kU . Theoretically, 
it is known that important changes happen in the linear body- There 
is no upstream wave system w  while both upstream and downstream wave exist with 
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2.4.3 Forces and moments calculation 
Integrating properly the pressure on the instantaneous body surface gives the forces and moments, 
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coordinate system oxyz (see Fig.2.1). When the forces and moments are defined with respect to 
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Here p is the pressure on the instantaneous wetted body surface SB(t). n  is the normal vector on 
SB(t), which is defined to be positive pointing out of the fluid domain. = X, Y, Zr  is the position 
vector of a point on the body. c c c= X , Y , Zcr  is the position vector of a point, to which the moments 
are defined with respect. All the vectors in Eq.(2.59) and Eq.(2.60) are defined with respect to OXYZ 
system. 

When the problem is solved with the formulation in the inertial coordinate system, i.e. the free-surface 
conditions Eq.(2.48), Eq.(2.49) and the body boundary condition Eq.(2.56) are used, the solution, for 
instance the pressure, is obtained at the mean position of the body surface. The pressure on the 
instantaneous body surface is then approximated by Taylor expansion about the mean body surface, 
i.e.
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Here (1)
3x  and (2)

3x  are the first-order and second-order rigid-body displacement in Z-direction of a 
point on the body, respectively. See the definitions in Eq.(2.30). 

Applying Eq.(2.61) and Eq.(2.42) in Eq.(2.59) and Eq.(2.60) leads us to the following approximation 
of F  and M
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Here CW0 is the mean waterline. The body surface in its static equilibrium position is assumed to be 
vertical in the free surface zone. The waterline integrals in Eq.(2.69) and Eq.(2.72) are caused by the 
fluctuation of the wetted body surface due to the relative motion between the wave profile and the 
body. (1) (1) (1)

3 4 5Y X  in Eq.(2.69) and Eq.(2.72) is related to the change of vertical position 
of the intersection between the mean body surface and the mean water surface due to unsteady 
rigid-body motions. Details of the derivations of the first-order and second-order forces/moments 
without considering the forward speed (or current) effect can be found, for instance, Standing et al. 
(1981), Pinkster (1981) and Ogilvie (1983). Faltinsen et al. (1981) included the steady forward speed 
effect. Our analysis here is similar to their derivations with the steady velocity potential effects 
included. The derivation of Eq.(2.69) and Eq.(2.72) is lengthy but straightforward, and will not be 
shown here.  

One can alternatively define the forces and moments with respect to the body-fixed reference frame, 
i.e. oxyz. The results can be obtained by replacing r  and cr  in Eq.(2.67) - Eq.(2.72) by r  and 

cr  respectively, and setting the terms associated with (1)n  or (2)n to be zero. , ,r x y z  and 
c c c= x , y , zcr  are the position vectors of points described in the body-fixed coordinate system 

corresponding to r  and cr , respectively.  

One should note that the Taylor expansion of the pressure about the mean body surface is only valid if 
the pressure is analytic near the mean body surface. For body with sharp corners, it is not suggested to 
use the formulation in the inertial coordinate system for wave-body analysis with presence of forward 
speed effects.  

Using a formulation in the inertial coordinate system, Zhao & Faltinsen (1989b) reported that the 
two-dimensional added mass coefficients obtained by pressure integration on a body with sharp 
corner in a current are unphysical. Because the last term in Eq.(2.63), i.e. (1)

3gx , only contributes 
to the restoring forces, it was not included in the calculation of the added mass coefficients. In Zhao & 
Faltinsen (1989b), the solution for (1)  was divided into two parts. The first part takes care of the 
mj-terms in the linear body boundary condition and it is singular at the sharp corner. The other part is 
regular, which takes care of the rest of the boundary conditions. Following Zhao & Faltinsen’s (1989b) 
analysis, it can be shown that (1)  is not integrable at the sharp corner, because it includes singular 
terms of O(U2). U is a small current speed in Zhao & Faltinsen’s (1989b) study. Those singular terms 
involve the second-order derivatives of the steady velocity potential (0)  and therefore are not 
integrable. In order to get physical results, Zhao & Faltinsen (1989b) has to include an additional term 
of O(U2) in the Bernoulli’s equation to cancel out the singular part in (1) . See Zhao & Faltinsen 
(1989b) for the details. 
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2.5 Formulation of the third-order diffraction problem in the 
Earth-fixed coordinate system 
 
In Section 2.4.2, we have presented the first-order and second-order approximation of the free-surface 
and the body boundary conditions formulated in the inertial coordinate system. A small forward speed 
was taken into account. In this section, the third-order boundary conditions for a diffraction problem 
will be given. No forward speed or current effect is included. The body is restrained from oscillating 
in the incident waves. The first- and second-order boundary conditions and the corresponding 
formulas for forces and moments calculation can be obtained by setting all the terms associated with 
the forward speed U and steady velocity potential (0) in the corresponding equations in Section 2.4.2 
to be zero. In this section, only the third-order free-surface conditions, body boundary condition and 
formulas for third-order forces and moments will be given. In this case, the Earth-fixed coordinate 
system OeXeYeZe, the inertial coordinate system OXYZ and the body-fixed coordinate system oxyz 
coincide with each other.  
 
2.5.1 Free-surface conditions 
The third-order free-surface conditions satisfied at Z=0 are written as 
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Here the operators  and  are defined in Eq.(2.54) and Eq.(2.55), respectively. 
 
The third-order free-surface conditions in Eq.(2.73) and Eq.(2.74) do not require explicit expressions 
of the third-order velocity potential and wave elevation of the incident wave. Note that Eq.(2.73) and 
Eq.(2.74) contains an effect leading to that a secularity condition must be imposed in order to solve 
the problem. Discussion on the secularity effect will be made in Section 6.4 and Appendix D. The 
third-order time-domain simulations will be studied in Section 6.4 by using a two-dimensional wave 
tank. A two-time scales approach presented in Appendix D is used to eliminate the secular terms in a 
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third-order numerical wave tank (NWT).  
 
2.5.2 Body boundary condition 
The third-order body boundary condition for the diffraction of a stationary body takes the following 
simple form  

3 3
s in

n n
  on SB0 .                         (2.75) 

3
in  is the third-order velocity potential of the incident wave. SB0 is the mean wetted body surface. 

 
2.5.3 Forces and moments calculation 
The third-order force vector is divided into three parts with the first part due to the first-order solution, 
the second part contributed by the product of the first-order and second-order quantities, and the third 
part by the third-order velocity potentials, i.e. 

(3) (3) (3) (3)
1 2 3F F F F ,                (2.76) 

where 
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0(1) 2 (1) (1) (1) (1)
1

1 1( ) ( )
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2 tSB CW

F n ds n dl ,           (2.78) 

0

0(3)
3 tSB

F n ds .                  (2.79) 

Here we have assumed that the body surface in its static equilibrium position is vertical in the free 
surface zone. The derivation of Eq.(2.77) - Eq.(2.79) is tedious and only the final results are shown 
here. Basically, one starts with integrating the pressure on the instantaneous wetted body surface. The 
instantaneous wetted body surface is then considered as the sum of two parts, i.e. 0SB S . SB0 is 
the mean wetted body surface. S  is the fluctuation of the wetted body surface due to of wave 
elevation. The velocity potential is assumed to be independent on Z-coordinate in the free surface 
zone. Introducing the Stokes series expansion of the velocity potential and wave elevation and 
colleting consistently the third-order terms, we can get Eq.(2.77) - Eq.(2.79). Note that 2F  
contains other two integrals along the mean waterline CW0, i.e. 

0

0(2) (1)
tCW

n dl  and 

0

0(1) (2)

CW
g n dl , which do not show up in Eq.(2.78) because they cancel out with each other. 

This is obvious if the first-order dynamic free-surface condition, i.e. 1(1)
t g , is considered. 

 
Similarly, the third-order moment about the origin of the coordinate system OXYZ can be expressed 
as 

(3) (3) (3) (3)
1 2 3M M M M ,               (2.80) 

where (3)
1M , (3)

2M  and (3)
3M  can be obtained by replacing 0n  with 0r n  in Eq.(2.77), 

Eq.(2.78) and Eq.(2.79), respectively.  
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2.6 Formulation of the second-order wave-body problem in the 
body-fixed coordinate system 

Inertial coordinate systems are traditionally used in weakly-nonlinear wave-body problems whilst 
body-fixed coordinate systems are commonly applied in analysis of ship maneuvering and sloshing 
(Faltinsen & Timokha, 2009). The Laplace equation for the velocity potential still holds in an 
accelerated coordinate system while the free-surface conditions and body boundary conditions change. 
A vector with a prime is expressed in the body-fixed coordinate system, i.e. oxyz. Otherwise, it is 
described in the inertial frame. See Section 2.2 for the definitions of different coordinate systems. 
 
2.6.1 Free-surface conditions 
The fully-nonlinear formulation of the free-surface conditions in a non-inertial coordinate system can 
be found in, for instance Faltinsen &Timokha (2009), as  

z x y ( ) ( , ,1)t x y x yU r   on z= (x,y,t) ,    (2.81) 

t
1 ( )
2 gU r U    on z= (x,y,t) .    (2.82) 

Here the subscripts x, y, z, and t indicates partial differentiation. , ,r x y  is the position vector 
of a point on the free surface. All the vectors are described in the body-fixed coordinate system, i.e. 
oxyz. The gradients are taken with respect to x, y and z, i.e. i j k

x y z
. 

 
Ug is the gravity potential. For a point , ,r x y  on the free surface, Ug can be expressed as 

gU  = b ig rR  ,                        (2.83) 

where g gK . 1 2 3I J K  is the translatory motion vector of the origin of oxyz 
relative to the origin of OXYZ. See also the definition in Section 2.3. The second-order approximation 
of Ug can be obtained by using the second-order approximations of b iR (see Eq.(2.11) - Eq.(2.14)), 

 and g , i.e.  
(1) (2) 3

g g gU U U O ,                       (2.84) 

with  

1 2

(1) (1) (1) (1) (1)
3gU g g x g y ,                (2.85) 

1 2

(2) (2) (2) (2) (2)
3gU g g x g y .                (2.86) 

 
The free-surface elevation observed in the body-fixed coordinate system has two contributions. The 
first part is due to the rigid-body motions. It can be understood as follows. When the water is calm, i.e. 
no incoming or scattered waves, the calm water surface has a relative motion observed in the 
body-fixed reference frame due to the unsteady body motions. The other contribution is associated 
with the wave motion with the mentioned rigid-body motion effect excluded. Fig.2.3 shows a 
two-dimensional sketch of the definition of the wave elevation  observed in the inertial coordinate 
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2 gU r U    on z= (x,y,t) .    (2.82) 

Here the subscripts x, y, z, and t indicates partial differentiation. , ,r x y  is the position vector 
of a point on the free surface. All the vectors are described in the body-fixed coordinate system, i.e. 
oxyz. The gradients are taken with respect to x, y and z, i.e. i j k

x y z
. 

 
Ug is the gravity potential. For a point , ,r x y  on the free surface, Ug can be expressed as 

gU  = b ig rR  ,                        (2.83) 

where g gK . 1 2 3I J K  is the translatory motion vector of the origin of oxyz 
relative to the origin of OXYZ. See also the definition in Section 2.3. The second-order approximation 
of Ug can be obtained by using the second-order approximations of b iR (see Eq.(2.11) - Eq.(2.14)), 

 and g , i.e.  
(1) (2) 3

g g gU U U O ,                       (2.84) 

with  

1 2

(1) (1) (1) (1) (1)
3gU g g x g y ,                (2.85) 

1 2

(2) (2) (2) (2) (2)
3gU g g x g y .                (2.86) 

 
The free-surface elevation observed in the body-fixed coordinate system has two contributions. The 
first part is due to the rigid-body motions. It can be understood as follows. When the water is calm, i.e. 
no incoming or scattered waves, the calm water surface has a relative motion observed in the 
body-fixed reference frame due to the unsteady body motions. The other contribution is associated 
with the wave motion with the mentioned rigid-body motion effect excluded. Fig.2.3 shows a 
two-dimensional sketch of the definition of the wave elevation  observed in the inertial coordinate 
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system OXYZ and the wave elevation  observed in the body-fixed coordinate system oxyz. 
,P x  is a point on the instantaneous free surface.  is the displacement of a point (x,y,0) on 

the oxy-plane due to the rigid-body motions. 5  is the pitch angle of the body. Keeping in mind that 
the rigid-body motions and the wave elevation are small, we can approximate the relationship 
between  and  as 

3O .                     (2.87) 

From numerical point of view, it was found to be advantageous to use the decomposition in Eq.(2.87) 
and to operate with i  instead of i  in the free-surface conditions.  

 
Fig.2.3. Definition of the wave elevations observed in the body-fixed coordinate system oxyz and the inertial 
coordinate system OXYZ.  
                    
Assuming the free-surface elevation  to be asymptotically small, we can similarly as shown in the 
inertial coordinate system, Taylor expand about the oxy-plane and collect consistent terms at each 
order. The resulting free-surface conditions can then be written as 
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Here (1)  is the first-order velocity of a point on the free surface due to rigid-body motion, which is 
defined as  

(1) (1) (1) (1)
1 2 3, ,  (1) (1) (1) (1) (1) (1) (1)

1 6 2 6 3 4 5( ) ( ) ( )y i x j y x k .  (2.94) 

The forward speed vector ( )kU (k=1, 2) and its components ( )k
jU (k=1, 2; j=1, 2, 3) have been 

defined in Eq.(2.41). 
 
In the derivation of the forcing terms in Eq.(2.90) - Eq.(2.93), the following equalities have been used 
in order to simplify the expressions 

(1) (1)
3t ,                  (2.95) 

(1) (1) (1) (1)
3 1 2[ ] 0g g x g y ,          (2.96) 

(2) (1) (1) (1) (1) (2)
1 2 3( )t x y ,          (2.97) 

(2) (2) (2) (2)
3 1 2[ ] 0g g x g y .          (2.98) 

( )
1

ig , ( )
2

ig (i=1, 2) have been defined in Eq.(2.39). The detailed derivation of Eq.(2.90) - Eq.(2.93) 
is very lengthy and will not be provided here.  
 
Note that the terms associated with the rigid-body motions come into the free-surface conditions 
formulated in the body-fixed system. These terms disappear in the free-surface conditions of the 
inertial coordinate system.  
 
By assuming  as small, we have implicitly assumed that both  and  are small and can be 
written in the form of the Stokes expansions  

1 (1) 2 (2)  ,              (2.99) 

1 (1) 2 (2) ,             (2.100) 

with  
( ) ( ) ( ) ( )

3 5 4( )i i i ix y , i=1, 2.          (2.101) 

 
Eq.(2.101) is valid for the yaw-pitch-roll Euler angle order. We note from Eq.(2.101) that the 
application of Eq.(2.99) is limited by the values of the x- and y-coordinates. It can only be used when 
x- and y-coordinates are not very large. If the distance between the origin of the coordinate system 
oxyz to the point (x, y, 0) is too large, the resulting ( )i  (i=1, 2) may become of the same order as 
the characteristic length of the body, which violates the assumption that  is small. In Chapter 5, we 
will decompose the whole fluid domain into two parts, namely an inner domain and an outer domain. 
The body-fixed coordinate system is used in the inner domain and the coordinate system remains 
inertial in the outer domain. Having a body-fixed coordinate system in the inner domain results in 
much simpler the body boundary conditions, which will be shown in Section 2.6.2. More discussion 
on the advantages associated with the simpler body boundary conditions will be given Chapter 5. 

32                                                    Chapter 2 Theoretical description 

 

Here (1)  is the first-order velocity of a point on the free surface due to rigid-body motion, which is 
defined as  

(1) (1) (1) (1)
1 2 3, ,  (1) (1) (1) (1) (1) (1) (1)

1 6 2 6 3 4 5( ) ( ) ( )y i x j y x k .  (2.94) 

The forward speed vector ( )kU (k=1, 2) and its components ( )k
jU (k=1, 2; j=1, 2, 3) have been 

defined in Eq.(2.41). 
 
In the derivation of the forcing terms in Eq.(2.90) - Eq.(2.93), the following equalities have been used 
in order to simplify the expressions 

(1) (1)
3t ,                  (2.95) 

(1) (1) (1) (1)
3 1 2[ ] 0g g x g y ,          (2.96) 

(2) (1) (1) (1) (1) (2)
1 2 3( )t x y ,          (2.97) 

(2) (2) (2) (2)
3 1 2[ ] 0g g x g y .          (2.98) 

( )
1

ig , ( )
2

ig (i=1, 2) have been defined in Eq.(2.39). The detailed derivation of Eq.(2.90) - Eq.(2.93) 
is very lengthy and will not be provided here.  
 
Note that the terms associated with the rigid-body motions come into the free-surface conditions 
formulated in the body-fixed system. These terms disappear in the free-surface conditions of the 
inertial coordinate system.  
 
By assuming  as small, we have implicitly assumed that both  and  are small and can be 
written in the form of the Stokes expansions  

1 (1) 2 (2)  ,              (2.99) 

1 (1) 2 (2) ,             (2.100) 

with  
( ) ( ) ( ) ( )

3 5 4( )i i i ix y , i=1, 2.          (2.101) 

 
Eq.(2.101) is valid for the yaw-pitch-roll Euler angle order. We note from Eq.(2.101) that the 
application of Eq.(2.99) is limited by the values of the x- and y-coordinates. It can only be used when 
x- and y-coordinates are not very large. If the distance between the origin of the coordinate system 
oxyz to the point (x, y, 0) is too large, the resulting ( )i  (i=1, 2) may become of the same order as 
the characteristic length of the body, which violates the assumption that  is small. In Chapter 5, we 
will decompose the whole fluid domain into two parts, namely an inner domain and an outer domain. 
The body-fixed coordinate system is used in the inner domain and the coordinate system remains 
inertial in the outer domain. Having a body-fixed coordinate system in the inner domain results in 
much simpler the body boundary conditions, which will be shown in Section 2.6.2. More discussion 
on the advantages associated with the simpler body boundary conditions will be given Chapter 5. 

32                                                    Chapter 2 Theoretical description 

 

Here (1)  is the first-order velocity of a point on the free surface due to rigid-body motion, which is 
defined as  

(1) (1) (1) (1)
1 2 3, ,  (1) (1) (1) (1) (1) (1) (1)

1 6 2 6 3 4 5( ) ( ) ( )y i x j y x k .  (2.94) 

The forward speed vector ( )kU (k=1, 2) and its components ( )k
jU (k=1, 2; j=1, 2, 3) have been 

defined in Eq.(2.41). 
 
In the derivation of the forcing terms in Eq.(2.90) - Eq.(2.93), the following equalities have been used 
in order to simplify the expressions 

(1) (1)
3t ,                  (2.95) 

(1) (1) (1) (1)
3 1 2[ ] 0g g x g y ,          (2.96) 

(2) (1) (1) (1) (1) (2)
1 2 3( )t x y ,          (2.97) 

(2) (2) (2) (2)
3 1 2[ ] 0g g x g y .          (2.98) 

( )
1

ig , ( )
2

ig (i=1, 2) have been defined in Eq.(2.39). The detailed derivation of Eq.(2.90) - Eq.(2.93) 
is very lengthy and will not be provided here.  
 
Note that the terms associated with the rigid-body motions come into the free-surface conditions 
formulated in the body-fixed system. These terms disappear in the free-surface conditions of the 
inertial coordinate system.  
 
By assuming  as small, we have implicitly assumed that both  and  are small and can be 
written in the form of the Stokes expansions  

1 (1) 2 (2)  ,              (2.99) 

1 (1) 2 (2) ,             (2.100) 

with  
( ) ( ) ( ) ( )

3 5 4( )i i i ix y , i=1, 2.          (2.101) 

 
Eq.(2.101) is valid for the yaw-pitch-roll Euler angle order. We note from Eq.(2.101) that the 
application of Eq.(2.99) is limited by the values of the x- and y-coordinates. It can only be used when 
x- and y-coordinates are not very large. If the distance between the origin of the coordinate system 
oxyz to the point (x, y, 0) is too large, the resulting ( )i  (i=1, 2) may become of the same order as 
the characteristic length of the body, which violates the assumption that  is small. In Chapter 5, we 
will decompose the whole fluid domain into two parts, namely an inner domain and an outer domain. 
The body-fixed coordinate system is used in the inner domain and the coordinate system remains 
inertial in the outer domain. Having a body-fixed coordinate system in the inner domain results in 
much simpler the body boundary conditions, which will be shown in Section 2.6.2. More discussion 
on the advantages associated with the simpler body boundary conditions will be given Chapter 5. 

32                                                    Chapter 2 Theoretical description 

 

Here (1)  is the first-order velocity of a point on the free surface due to rigid-body motion, which is 
defined as  

(1) (1) (1) (1)
1 2 3, ,  (1) (1) (1) (1) (1) (1) (1)

1 6 2 6 3 4 5( ) ( ) ( )y i x j y x k .  (2.94) 

The forward speed vector ( )kU (k=1, 2) and its components ( )k
jU (k=1, 2; j=1, 2, 3) have been 

defined in Eq.(2.41). 
 
In the derivation of the forcing terms in Eq.(2.90) - Eq.(2.93), the following equalities have been used 
in order to simplify the expressions 

(1) (1)
3t ,                  (2.95) 

(1) (1) (1) (1)
3 1 2[ ] 0g g x g y ,          (2.96) 

(2) (1) (1) (1) (1) (2)
1 2 3( )t x y ,          (2.97) 

(2) (2) (2) (2)
3 1 2[ ] 0g g x g y .          (2.98) 

( )
1

ig , ( )
2

ig (i=1, 2) have been defined in Eq.(2.39). The detailed derivation of Eq.(2.90) - Eq.(2.93) 
is very lengthy and will not be provided here.  
 
Note that the terms associated with the rigid-body motions come into the free-surface conditions 
formulated in the body-fixed system. These terms disappear in the free-surface conditions of the 
inertial coordinate system.  
 
By assuming  as small, we have implicitly assumed that both  and  are small and can be 
written in the form of the Stokes expansions  

1 (1) 2 (2)  ,              (2.99) 

1 (1) 2 (2) ,             (2.100) 

with  
( ) ( ) ( ) ( )

3 5 4( )i i i ix y , i=1, 2.          (2.101) 

 
Eq.(2.101) is valid for the yaw-pitch-roll Euler angle order. We note from Eq.(2.101) that the 
application of Eq.(2.99) is limited by the values of the x- and y-coordinates. It can only be used when 
x- and y-coordinates are not very large. If the distance between the origin of the coordinate system 
oxyz to the point (x, y, 0) is too large, the resulting ( )i  (i=1, 2) may become of the same order as 
the characteristic length of the body, which violates the assumption that  is small. In Chapter 5, we 
will decompose the whole fluid domain into two parts, namely an inner domain and an outer domain. 
The body-fixed coordinate system is used in the inner domain and the coordinate system remains 
inertial in the outer domain. Having a body-fixed coordinate system in the inner domain results in 
much simpler the body boundary conditions, which will be shown in Section 2.6.2. More discussion 
on the advantages associated with the simpler body boundary conditions will be given Chapter 5. 



2.6. Formulation of the second-order wave-body problem in the body-fixed coordinate system    33 

 

(0)  in the forcing terms of the free-surface conditions (see Eq.(2.90) - Eq.(2.93)) is the zeroth-order 
basis flow. More discussion about the relationship between the basis flow in the body-fixed 
formulation and that in the inertial formulation will be given in Appendix A and Section 5.2.  
 
 
2.6.2 Body boundary condition 
The body boundary condition in the body-fixed coordinate system is  

( ) ( )m m
n b , m=1, 2,  on SB.           (2.102)  

SB is the body surface at the instantaneous position of the body. Only the mean wetted part of the 
body surface is used in the formulation. The effect of small variation of the wetted body surface due 
to the wave elevation and body motion will be handled by the Taylor expansion about the oxy-plane 
of the body-fixed coordinate system. This is valid as long as the body motion is small relative to the 
body’s cross-dimensional lengths. 
 
The forcing term ( )mb (m=1, 2) is defined as  

(1) (1) (1) (1)b n r U  ,            (2.103) 

(2) (2) (2) (2)b n r U ,                 (2.104) 

where ( )i  and ( )i  (i=1, 2) are the translatory and angular velocity vectors of the body 
expressed in the body-fixed coordinate system. ( )kU (k=1, 2) is the steady forward speed vector in 
the body-fixed coordinate system. n  is the normal vector on the body surface. , ,r x y z  is a 
position vector of a point on the body surface. See the definitions in Section 2.3. 
 
The body boundary condition is formulated on the instantaneous position of the body surface. The 
velocity potential  in this section is the absolute velocity potential, which is different from the 
relative velocity potential. If  were defined as the relative velocity potential, the right-hand-side 
terms of Eq.(2.102) become zero. 
 
 
2.6.3 Forces and moments calculation 
Pressure integration is used to get the hydrodynamic forces and moments acting on the body. The 
pressure needed is given by the Bernoulli’s equation. However, the Bernoulli’s equation is a result of 
integrating the Euler equations, which are only valid in an inertial system, so we can not directly 
apply it to an accelerated system. It is important to keep in mind that the / t term in the inertial 
coordinate system means the time derivative of  for a fixed point with coordinate (X, Y, Z) in the 
inertial coordinate system. However, in the body-fixed coordinate system we want to operate with the 
time derivative of  for a fixed point (x, y, z) in the body-fixed system. The relationship between the 
time derivative in body-fixed system and that in the inertial system can according to Faltinsen & 
Timokha (2009) be written as 

b
in noninertial oxyz in inertial OXYZ

v
t t

,       (2.105) 

where bv r  is the velocity at a point (x, y, z) due to rigid-body motions.  and  
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are the translatory and angular velocity, respectively. See the definition in Section 2.3.  means 
spatial gradient. Note that Eq.(2.105) has also been used in the derivation of the free-surface 
conditions in the body-fixed coordinate system, i.e. Eq.(2.88) - Eq.(2.93). 

Transforming the time derivative in the inertial coordinate system into the time derivative in the 
body-fixed reference frame, and integrating the pressure on the body surface, we can express the 
forces F  and moments M (i=0, 1, 2) in either the inertial coordinate system or body-fixed 
coordinate system. They can be expressed with respect to the inertial coordinate system respectively 
as 

0 1 2 3F F F F O ,                    (2.106) 

0 1 2 3M M M M O .                (2.107) 

with  
(0) (0) (0)

SB
F p n ds ,               (2.108) 

(1) (1) (0) (0) (1)

SB
F p n p n ds ,                  (2.109) 

0

2(2) (2) (0) (1) (1) (0) (2) (1) (0)1
2SB CW

F p n p n p n ds g n dl ,             (2.110) 

(0) (0) (0)
cSB

M p r r n ds ,                (2.111) 

1 0(1) (0) (1)
c cSB

M p r r n p r r n ds ,                (2.112) 

0

2 1 0(2) (0) (1) (2)

2(1) (0)1
2

c c cSB

cCW

M p r r n p r r n p r r n ds

g r r n dl
.     (2.113) 

Here CW0 is the mean waterline. r  and cr  have been defined in the texts associated with Eq.(2.60). 
The waterline integrals in Eq.(2.110) and Eq.(2.113) are caused by the fluctuation of the wetted body 
surface due to the relative motion between the wave profile and the body.  

Eq.(2.106) - Eq.(2.113) are valid no matter the body has sharp corner or not. This is due to the fact 
that the solution is obtained at the instantaneous body position when the formulation in the body-fixed 
coordinate system is used, and that no Taylor expansion about the mean body surface is needed.  

The pressure p has been divided into three parts, i.e.  
(0) (1) (2)p p p p          (2.114) 

(0)p , (1)p  and (2)p  are pressure components giving zeroth-order, first-order and second-order 
contributions to the forces and moments. They are defined respectively as  

(0)p gz ,                             (2.115) 
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1 1 0(1) (1) (1) (1) (1)
3t xp U u U gx ,       (2.116) 

1 1 1 2 2 0(2) (2) (2) (1) (2)

(1) (1) (2)
3

1
2

t xp U u U u U

gx
. (2.117) 

(1)
3x , (2)

3x  and (1)u  have been defined in Section 2.3. p(0) is a consequence of the hydrostatic 
pressure. It is noted that the expression for the pressure (2)p  is different from what was given in 
Section 2.4.3 due to the fact that the Bernoulli’s equation takes a different form in an accelerated 
coordinate system. The time derivatives in Eq.(2.116) and Eq.(2.117) are taken with respect to a fixed 
point (x, y, z) in the body-fixed coordinate system. One should note that the superscripts (0), (1) and 
(2) of the pressure do not necessarily indicate the order of magnitude of the pressure itself. Instead, it 
means that integral of the pressure effect, e.g. forces and moments are of zeroth order, first order and 
second order, respectively. An example is the pressure at the sharp corner. Within the context of 
potential theory without flow separation, the (1) (1)1/ 2  term of (2)p is singular, which 
means (1) (1)1/ 2  and thus (2)p  is by no means of 2O . However, 

(1) (1)1/ 2  is integrable at the sharp corner. And its contribution to the forces or the 
moments is of 2O .

Similarly, if we define the forces and moments with respect to oxyz system, the force vector F  and 
moment vector M  can be obtained by replacing r  and cr  Eq.(2.108) - Eq.(2.113) by r  and 

cr  respectively, and setting the terms associated with (1)n  or (2)n to be zero. , ,r x y z  and 
c c c= x , y , zcr  are the position vectors of points in the oxyz system corresponding to r  and cr

respectively. 

2.7 Governing equations of unsteady rigid-body motions 

The detailed derivation of the rigid-body motion equations can be found for instance in Ogilvie (1983), 
Etkin & Reid (1996) and Faltinsen (2005). In this section, a brief description of the general motion 
equations without any approximations will be given, followed by their first-order and second-order 
approximations by assuming that all the unsteady motions are small. The rigid-body motion equations 
will be presented in both the inertial coordinate system and the body-fixed coordinate system.  

The rigid-body motion equations are derived for the motions with respect to the Centre of the Gravity 
(COG) of the body, which is a moving point observed in the inertial coordinate system OXYZ and the 
Earth-fixed coordinate system OeXeYeZe. In this section, a vector with prime is considered as a 
description in the body-fixed coordinate system, i.e. oxyz, otherwise it is a vector in the inertial 
reference frame, i.e. OXYZ. See Fig.2.1 for the definitions of the coordinate systems. 

2.7.1 Rigid-body motion equations in the inertial frame 
The rigid-body motion equations can be derived from the first principles, that is to say, we apply 
Newton’s laws to an element dm of the body, and then integrate over all elements. The velocities and 
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acceleration must of course be relative to an inertial reference frame. The consequence of applying 
Newton’s laws is  

g gmu F .               (2.118) 

Here m is the total mass of the body. gu  is the translatory acceleration of COG described in the 
inertial coordinate system (e.g. OXYZ). gF  is the external force vector acting on the body described 
in OXYZ.  

Eq.(2.118) relates the external force on the body to the motion of COG. We need also the relation 
between the external moment and the rotation of the body. It is obtained from a consideration of 
moment of momentum, which states in the inertial coordinate system that the time derivative of the 
angular momentum is equal to the external moments acting on the body, i.e. 

c g
d r r u dm M
dt

 .           (2.119) 

Here , ,r x y z  is the position vector of an arbitrary point on the body relative to the origin of the 
body-fixed coordinate system oxyz. , ,c c c cr x y z  is the COG. u  denotes the velocity of a point 
on the body. gM  is the external moment vector with respect to COG acting on the body. It can be 
shown that the vector r  will be associated with the moments and products of inertia. If the inertial 
coordinate system is used, the inertias will be time-dependent. Therefore, they become variables in the 
body-motion equations. This is most undesirable and can be avoided by writing Eq.(2.119) in the 
body-fixed coordinate system, i.e. 

b i c b i c b i g
d dr r u dm r r u dm M
dt dt

R R R .   (2.120) 

Here r , cr , u  and gM  are the corresponding descriptions of the vectors of r , cr , u  and in 
gM  the body-fixed coordinate system, respectively.  

Noticing that  

c c g c B gr r u dm r r r r dm I     (2.121) 

and that, for an arbitrary vector s , the following equality holds (Etkin & Reid (1996), Appendix A.4) 

b i b i gs sR R ,          (2.122) 

we can rewrite Eq.(2.120) as 

B g g B g i b gMI I R .            (2.123) 

Here BI  is the inertia matrix, its elements being the moments and products of inertia of the body, i.e. 

x xy xz

B yx y yz

zx zy z

I I I
I I I
I I I

I           (2.124) 

and
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When the oxz-plane is a plane of symmetry, which is the usual assumption, then we have 

0xy yzI I  and the only off-diagonal terms are xzI  and zxI . If the direction of the x-axis is so 
chosen that this product of inertia also vanishes, which is always possible in principle, then the axes 
are principal axes. See Etkin & Reid (1996). g is the angular velocity with respect to COG, which is 
located at , ,c c cx y z . g is the time differentiation of g . The transformation matrices i bR  
and b iR  have been defined in Section 2.3. 
 
Eq.(2.118) and Eq.(2.123) are exact, which means they are valid for large-amplitude body motions. 
The force vector gF  and moment vector gM  include all the external loads effects, such as the 
gravitational, the buoyancy effects, the hydrodynamic loads and loads from to the mooring lines.  
 
We will now assume that the unsteady rigid-body motions are small and introduce the series 
expansion of the translatory and angular motions into Eq.(2.118) and Eq.(2.123). The first-order and 
second-order rigid-body motion equations are  

First-order: 
1 1

1 1

g g

B g g

F

M

m

I
,                (2.126) 

Second-order: 
2 2

2 1 1 1 1 2

g g

B g g B g i b g g

F

M M

m

I I R
.     (2.127) 

Here the transformation matrix 1
i bR  have been defined in Section 2.3. k

gF  and k
gM  are forces 

and moments with respect to OXYZ system (see Section 2.4.3). The centre of moments is the 
structure’s instantaneous COG. Note that our definition of the moments is different from that given by 
Ogilvie (1983), in which the moment centre was chosen to be origin of the inertial coordinate system. 
Eq.(2.126) and Eq.(2.127) are given for the freely-floating bodies. However, it is straightforward to 
extend them by adding additional forces and moments terms due to, e.g., the mooring line and DP 
system. The zeroth-order equations are not shown here. The zeroth-order steady loads effects are 
important for the equilibrium position of the structure. For a freely-floating body, the zeroth-order 
buoyancy force, i.e. the hydrostatic pressure integrated on the mean body surface, cancels out each 
other with the gravity force. And the centre of the buoyancy automatically drops in the same vertical 
line as COG.     
 
The translatory motion vector of COG, i.e. k

g , is defined as 

,1 ,2 ,3, ,k k k k
g g g g  , k=1, 2,         (2.128) 

with ,1
k

g , ,2
k

g  and ,3
k

g  as the components in surge, sway and heave, respectively. The angular 
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The translatory motion vector of COG, i.e. k

g , is defined as 

,1 ,2 ,3, ,k k k k
g g g g  , k=1, 2,         (2.128) 

with ,1
k

g , ,2
k

g  and ,3
k

g  as the components in surge, sway and heave, respectively. The angular 
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velocity vector k
g (k=1, 2) with respect to COG in the body-fixed reference frame can according to 

Eq.(2.27) be defined as 
1
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1 1
4,

1
4,

g

g g

g
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4, 6, 5,

2 2 (1) (1)
5, 6, 4,

2 (1) (1)
6, 6, 4,

g g g

g g g g

g g g
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Here 4,
k
g , 5,

k
g  and 6,

k
g  are the Euler angles with respect to COG, respectively. The overhead 

dots indicate that time differentiation is taken.  
 
Note that, we have in Section 2.3 and Section 2.4 defined k  and k with respect to the origin of 
OXYZ as the translatory and angular motions, respectively. The relationship between the body motion 

k
g , ( ) ( ) ( )

4, 5, 6,, ,k k k k
g g g g  and k , k  can be obtained by using the transformation matrix 

in Section 2.3 as 

, 1, 2,

, 1, 2.

k k k
g b i c

k k
g

r k

k

R
         (2.130) 

Here k
b iR (k=1, 2) is the transformation matrix. , , T

c c c cr x y z  is the position vector of COG in 
the body-fixed reference frame oxyz. In this study, the oxyz system is defined so that oz-axis goes 
through COG, so that cx =0 and cy =0.   
 
The right-hand of the rigid-body motion equations (2.126) and (2.127) includes all the hydrodynamic 
loads. The fact that the hydrodynamic load contains an instantaneous added-mass term prevents a 
stable numerical integration in time. Generally numerical stability theory for ordinary differential 
equations requires that the highest derivatives must be isolated for stability. The numerical instability 
when solving the motion equations can be avoided by moving all the terms that are explicitly 
dependent on the body accelerations to the left-hands of Eq.(2.126) and Eq.(2.127). This will be 
elaborated in details in Section 4.4 of Chapter 4.    
 
2.7.2 Rigid-body motion equations in the body-fixed frame 
The motion equations formulated in the inertial coordinate system is commonly used in the ship 
seakeeping analysis, however, the body-fixed formulation of the motion equations is preferred in the 
maneuvering analysis of ships.  
 
Similar to what we did in Eq.(2.120), we can rewrite Eq.(2.118) as 

b i g b i g b i g b i g
dm u m u u F
dt

R R R R .      (2.131) 

Applying Eq.(2.122) in Eq.(2.131) lead us to 

g g g gm u u F .         (2.132) 

 
From Eq.(2.123), we have that 

B g g B g gMI I .        (2.133) 
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2.7 Governing equations of unsteady rigid-body motions                                  39 

 

Eq.(2.132) and Eq.(2.133) serve as the general governing equations for the traslatory and angular 
motions of the body in body-fixed coordinate system. If the body motions can be assumed small, we 
can introduce series expansions to the body motions and get the first-order and second-order motions 
equations similar to Eq.(2.126) and Eq.(2.127). 
 

2.8 Incident wave field 

Considering that the incident wave propagates with a heading angle  with respect to the Xe-axis of 
the Earth-fixed coordinate system defined in Fig.2.1, the first-order, second-order and third-order 
velocity potential of the regular wave can be written respectively as  

(1) cosh
sin

cosh
e

in

k Z hgA
kh

,          (2.134) 

2 2 2
(2) 3( 1) cosh[2 ( )]sin 2

8in e
kA g k Z h ,          (2.135) 

3 2
(3) 2 2 2 cosh[3 ( )]1 ( 1)( 3)(9 13) sin 3

64 cosh 3
e

in
k Z hA k g

kh
,   (2.136) 

with  

cos sine ek X Y t ,          (2.137) 

and  

coth kh .                (2.138) 

Here A is the linear wave amplitude. k is the wave number. h is the water depth.  is the frequency 
of the incident wave. The following nonlinear dispersion relationship holds 

22 2 2 2 29tanh( ) 1 1
8

gk kh k A  .       (2.139) 

 
The corresponding first-order, second-order and third-order wave elevations are respectively 

1 cosin A ,                     (2.140) 

2 2 21 (3 1) cos 2
4in kA ,                       (2.141) 

3 4 2 2 2 2 6 2 2 3 23 1 3= 1 ( 3 3) cos cos 2 8 ( 1) cos3
8 2 64in A k A kA A k .      (2.142) 

 
The description of the second-order irregular waves in the Earth-fixed coordinate system with finite 
water depth can be found in, for instance Dalzell (1999). A third-order stochastic wave model was 
proposed by Stokka (1994) to simulate the third-order deep-water waves.  
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Let , ,e e e eX X Y Z  be the position vector of a point in the Earth-fixed coordinate system, i.e. 
OeXeYeZe in Fig.2.1, and , ,X X Y Z  as the corresponding position vector in the inertial 
coordinate system moving the steady forward speed, i.e. OXYZ system. The incident wave field 
observed from the OXYZ system is obtained by substituting the relationship between eX  and X , 
i.e. 

eX X Ut               (2.143) 

into the expressions in the Earth-fixed frame, e.g. Eq.(2.134) - Eq.(2.137) and Eq.(2.140) - Eq.(2.142).  
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CHAPTER 3 

Basis of the Time-Domain HOBEM in 2D 

This chapter describes the basis of the two-dimensional higher-order boundary element method 
(HOBEM) in the time domain. All the discussions in this chapter are based on the formulation of the 
Boundary Value Problem (BVP) in the inertial coordinate system, which has been described in 
Chapter 2. We start with the boundary integral equation. The higher-order boundary elements are then 
used to discretize the boundary integral equation. Numerical issues associated with the time stepping 
of the free-surface conditions, the numerical damping zone and active wave absorber, the accurate 
way of getting the time differentiation of the velocity potential, i.e. t , and the numerical calculation 
of the higher-order derivatives on both the free surface and body surface, will be discussed.  
 

3.1 Boundary integral equation 

 
Fig.3.1. Sketch of the water domain and the enclosing boundaries. 

 
As shown in Fig.3.1, a water domain  is enclosed by the instantaneous free surface SF, the wetted 
part of the instantaneous body surface SB, the sea bottom Sbottom, the vertical surfaces SW1 and SW2 
away from the body. We denote SF0 as the calm water surface and SB0 as the wetted body surface 
when the body is at rest in calm water. The mean positions of SW1 and SW2 are denoted as SW10 and 
SW20. By mean position of a surface, it is meant the position around which the surface is oscillating. 
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The sea bottom is assumed to be stationary and horizontal. Applying the modified Green’s third 
identity to the fluid domain enclosed by SF0, SB0, SW10 and SW20 and Sbottom, we obtain the 
following integral equation 

0 0 0
0

( )
( ) ( )

1
2

( ) ( ) ( ) ( , ) ( ) ( , )

bottom

k
k k

SF SB SW
SW S

GC P P Q G P Q Q P Q ds
n n

.      (3.1) 

Here ( )k (k=1, 2, 3) is the k-th order velocity potential. P denotes a field point and Q denotes the 
singularity position. C(P) is the solid angle coefficient to be discussed below. We call it a coefficient, 
because its value depends on the definition of the normal vector and the choice of Green function 
G(P,Q). In this study, n  is the normal vector defined as positive pointing out of the fluid domain. 
The Green function G(P, Q) used in this study is  

G(P,Q)=ln r =ln PQ ,              (3.2) 

where r is the distance between P and Q. Therefore, C(P) is 2  when P is in the fluid and away 
from the boundaries, and P  when P is on the boundary. Here P  is the exterior angle 
(solid angle) of the boundaries within the fluid domain.   

When the field point P approaches the singularity located at Q, the integral of the normal derivative of 
the Green function only exists in a Cauchy principal value (CPV) sense. In a constant or linear 
boundary element method, this term becomes zero. However, it is not necessary to be zero if a 
HOBEM is used.   

3.2 Quadratic boundary element method 

The first step to solve the integral equation by using the higher-order BEM is to discretize the 
boundary surfaces with a number of higher-order elements. In the present study, we use 3-node 
isoparametric quadratic elements. The isoparametric elements were first studied by Zienkiewicz and 
his associates (See Zienkiewicz, 1971). The name ‘isoparametric’ is due to the fact that the ‘same’ 
parametric function which describes the geometry may be used for interpolating spatial variations of a 
variable within an element (see also Chung, 2002). The 3-node element is considered as quadratic, 
because the corresponding shape functions used for the description of the geometry and other 
variables are 2nd-order polynomials. Fig.3.2a shows an example of the 3-node quadratic element in the 
physical plane with its mapping in -plane shown in Fig.3.2b. Within each element, the boundary 
surfaces, the velocity potential and its normal derivatives are approximated by the same shape 
function Nj:
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n  are the velocity potential and its normal derivative at the j-th node 

of the reference element, respectively. The superscript k indicates the order of the magnitude. The 
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quadratic shape function Nj is given, for instance, by Brebbia & Dominguez (1992) as 

1
1 1
2

N , 2 1 1N , 3
1 1
2

N ,         (3.6) 

with  as the local intrinsic coordinate of the reference element. The transformed coordinates ( j,0) 
corresponding to the coordinates (xj, zj) in the physical plane are defined in Fig.3.2b.  

 
    (a)            (b) 

Fig.3.2 (a) The quadratic element in the xz-plane. (b)The quadratic element in the - plane. 
 
After the discretization, the integrals on the boundary surfaces in Eq.(3.1) can thus be converted into a 
sum on the elements, each being calculated on the reference element. Eq.(3.1) can be rewritten as 
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NE is the total number of elements on the boundaries of the fluid domain. By assuming that the 
discretized equations are satisfied exactly at a set of collocation points, we obtain a system of 
equations.  
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NOD is the total number of the nodes. ,i k  is the Kronecker delta function. s=IEP(e, j) is a 
coefficient of the connectivity matrix, which represents the global index of the j-th node of e-th 
element. NE is the total number of elements. Ci is the solid angle coefficient at the i-th node Pi. ˆ e

ijH  
and ˆ e

ijA  are defined respectively as 
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The Jacobian of the e-th element, i.e. eJ , is defined as  
2 2

e x yJ .                (3.13) 
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In this study, the collocation points are chosen as the nodes of the quadratic elements. The influence 
coefficients ikH  and ikA  are evaluated according to Brebbia & Dominguez (1992). The diagonal 
terms Hii are obtained indirectly by a ‘rigid-mode’ method (Brebbia & Dominguez 1992), i.e.  

1,

NOD

ii ik
k k i

H H .                     (3.14) 

This method was referred as ‘rigid-mode’ method by analogy with structural analysis problems (see 
e.g. Brebbia, 1978). In the structural elasticity problems, a similar equation to Eq.(3.8) can be derived, 
except that k  on the left-hand side should be replaced by the displacement on the k-th node of the 
boundaries and 

k
n  on the right-hand side be replaced by the tractions (surface force 

intensities) on the same node. If the structure suffers from interior forces, one has to add additional 
terms to Eq.(3.8) associated with the volume integral of the interior forces. By assuming unit 
rigid-body displacements of the body without tractions and interior forces, Brebbia (1978) obtained 
the following relationship relating the diagonal terms Hii and the off-diagonal terms Hik (k=1,…,NOD; 
k i) 

1
0

NOD

ik
k

H , i=1, 2, … , NOD.                     (3.15) 

By isolating the diagonal terms in the left-hand side of Eq.(3.15), we see that Eq.(3.14) holds. 
 
Similarly in the potential flow problems, if we consider an uniform velocity potential field with 

constant 0 and 0 , and apply constant 0 and / n =0 over the whole boundaries 
enclosing the water domain, we can obtain the same relationship as Eq.(3.15). Physically, for potential 
flows the rigid-mode method corresponds to numerically specifying that the discretized problem 
exactly satisfies a zero global mass flux condition when there is no flow motion.  
 
When the collocation point is at a node other than any of those three in an element, the integrals for 

ikH  and ikA  are obtained by standard Gauss quadrature. If the collocation point is at the end nodes 
of the element with 1 (see Fig.3.2b), the straight line [ 1,1]  is stretched by using a 
transformation 1 / 2 . The resulting integral then gives two parts, one with a singular term 
ln 1/  and the other one with no singularity. The first part is integrated by means of a 
one-dimensional logarithmic Gaussian Quadrature with respect to the variable . The second part is 
integrated by the standard Gauss quadrature formula in terms of the variable . When the collocation 
point is at the middle node of the element, i.e. at 2= 0 , we divide the straight line into two parts 
with [ 1, 0]  and [0,1] , respectively. Each part is then mapped into a straight line with 

[0,1]  in the -plane. Again, the resulting integrals contain a regular part which can be 
obtained by standard Gauss quadrature and a logarithmic singular part which is evaluated by a 
logarithmic Gaussian Quadrature. Interested readers are referred to Brebbia & Dominguez (1992) for 
more details.  
 
At the intersection points of different surfaces, the normal vectors may be ill-defined. The 
double-node technique is used to enforce the continuity of velocity potential at the intersection points 
of different surfaces (see Grilli & Svendsen, 1990). In the double-node method, two nodes with the 
same coordinates are used at the intersection of different surfaces. Applying Eq.(3.7) at the 
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with [ 1, 0]  and [0,1] , respectively. Each part is then mapped into a straight line with 

[0,1]  in the -plane. Again, the resulting integrals contain a regular part which can be 
obtained by standard Gauss quadrature and a logarithmic singular part which is evaluated by a 
logarithmic Gaussian Quadrature. Interested readers are referred to Brebbia & Dominguez (1992) for 
more details.  
 
At the intersection points of different surfaces, the normal vectors may be ill-defined. The 
double-node technique is used to enforce the continuity of velocity potential at the intersection points 
of different surfaces (see Grilli & Svendsen, 1990). In the double-node method, two nodes with the 
same coordinates are used at the intersection of different surfaces. Applying Eq.(3.7) at the 
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This method was referred as ‘rigid-mode’ method by analogy with structural analysis problems (see 
e.g. Brebbia, 1978). In the structural elasticity problems, a similar equation to Eq.(3.8) can be derived, 
except that k  on the left-hand side should be replaced by the displacement on the k-th node of the 
boundaries and 

k
n  on the right-hand side be replaced by the tractions (surface force 

intensities) on the same node. If the structure suffers from interior forces, one has to add additional 
terms to Eq.(3.8) associated with the volume integral of the interior forces. By assuming unit 
rigid-body displacements of the body without tractions and interior forces, Brebbia (1978) obtained 
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k i) 
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By isolating the diagonal terms in the left-hand side of Eq.(3.15), we see that Eq.(3.14) holds. 
 
Similarly in the potential flow problems, if we consider an uniform velocity potential field with 

constant 0 and 0 , and apply constant 0 and / n =0 over the whole boundaries 
enclosing the water domain, we can obtain the same relationship as Eq.(3.15). Physically, for potential 
flows the rigid-mode method corresponds to numerically specifying that the discretized problem 
exactly satisfies a zero global mass flux condition when there is no flow motion.  
 
When the collocation point is at a node other than any of those three in an element, the integrals for 
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intersection can only give one equation (the other one is identical). The continuity of the velocity 
potential acts as another equation at the intersection point. Consequently, there is only one unknown at 
the intersection point. For example, at the intersection points of the free surface and the body surface, 
the normal velocity of the intersection point is taken as known on the body surface but unknown on 
the free surface. The velocity potential at the intersection on the body is the same as that on the free 
surface, which is known. The normal velocity at the intersection on the free surface side is obtained 
by solving the boundary integral equation.  
 
 

3.3 Time marching of the free-surface conditions 

When a time-domain solution is pursued, the problem is considered as an initial value problem. The 
initial conditions used in this study are that the scattered wave elevation, the scattered velocity 
potential on the free surface and the body motion are zero. In the two-dimensional studies, we used an 
explicit fourth-order Runge-Kutta method to update the wave elevation and velocity potential on the 
free surface. Free-surface conditions, e.g. Eq.(2.48) and Eq.(2.49), are used as the evolution equations. 
 
According to the explicit fourth-order Runge-Kutta method, the solution for a first-order ordinary 
equation ,y f y t  takes the following form (Riley et al., 2006) 
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1 2 2
6i iy y c c c c ,                (3.16) 

where 

1

2 1

3 2

4 3

, ,

0.5 , 0.5 ,

0.5 , 0.5 ,

, .

i i

i i

i i

i i

c t f y t

c t f y c t t

c t f y c t t

c t f y c t t

              (3.17) 

 

3.4 Numerical damping zone and active wave absorber  

The simple source, i.e. a source in infinite fluid, is chosen as the Green function in this work. Using 
the simple source as the Green function allows the solutions of linear as well as nonlinear formulation 
of wave-body interaction problems. Because the simple source does not satisfy the radiation condition, 
one has to truncate the computational domain at a finite distance and absorb the outgoing waves 
before the waves approach the end of the computational domain. A comprehensive review of the 
numerical techniques can be found in Romate (1992).  
 
The most commonly used techniques in the time-domain wave-body analysis are the Orlanski’s 
condition (Orlanski, 1976) and the numerical damping zone. The use of the Orlanski’s condition is 
restricted to the cases of regular incident waves of known frequency, or to very long waves (see 
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Clement, 1996). The numerical damping zone (DZ) is very efficient for high frequency waves, 
provided that the damping zone length is longer than the typical wavelength. Clement (1996) 
proposed to use the combination of a piston-like absorbing boundary condition (PABC) which is 
effective for low frequencies and a numerical damping zone. In the 2D studies of this work, the 
coupling of DZ and PABC suggested by Clement (1996) is used.  
 
The mechanism of the numerical beach used here is similar to that of Greco (2001). In the damping 
zone, artificial damping terms are introduced into the free-surface conditions. In general, the 
kinematic and dynamic free-surface conditions take the following form 
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s  (m=1, 2, 3) are the scattered part of the wave elevation and velocity potential, 

respectively. The damping coefficient ( )r  is defined as 
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Fig.3.3. The sketch of the damping coefficient ( )r . 
 

Here r is the horizontal distance of a point in the damping zone relative to the starting point of the 
damping zone. L is the length of the damping zone (see the definitions in Fig.3.3). In the present study 
we have chosen L=2 , where  is the linear wave length. The empirical damping coefficient 0  
in Eq.(3.20) is defined as  

0
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where  is equal to the fundamental wave frequency in the first-order problem and twice of the 
fundamental wave frequency in the second-order problem. The non-dimensional empirical coefficient 

 was set to be 50.5 10  in all the calculations. Within the range of the wave frequencies studied 
in this work, the numerical tests show that the results are not sensitive to this parameter when  is 
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chosen between 10-6 and 10-5. Note that in the second-order problem, the numerical damping zone 
mechanism, i.e. Eq.(3.18) and Eq.(3.19), is expected to damp out not only the free waves but also the 
locked waves following from the inhomogeneous part of the free-surface condition. This type of 
damping zone mechanism was used by Greco (2001) in two-dimensional fully-nonlinear analysis of 
wave-body interaction. Kim et al. (1997) has applied the same damping zone mechanism to 
second-order diffraction in 3D.  
 
When the body is present and the incident wave field is prescribed, the piston-like active absorber is 
applied to the vertical control surfaces SW1 and SW2 (Fig.3.1). The damping zones are applied near 
SW1 and SW2. Fig 3.1 can also represent a numerical wave tank (NWT). In that case, the surface 
SW1 acts as a wave maker and SW2 is the piston-like wave absorber. Further, only the damping zone 
near SW2 is switched on. The non-dimensional horizontal velocity applied on the piston-like wave 
absorber in a fully-nonlinear NWT was given by Clement (1996) as 

1
dZ

X t
,                 (3.22) 

where the length is nondimensionalized with respect to water depth h and the time is 
nondimensionalized by /h g . Based on Eq.(3.22), we use the following normal velocity on the 
piston-like wave absorbers SW1 and SW2 (Fig.3.1) 

01 1
h

dZ
n gh h t

.                 (3.23) 

 
The position of the wave absorber is assumed to be fixed throughout the analysis and only a flux is 
given on the wave absorber. The / t  term in Eq.(3.23) can be obtained in different ways (see 
Section 3.5). The mode-decomposition method (Vinje & Brevig (1981a, 1981b)) is used in the 2D 
studies of this work. 
 
 

3.5 Solution of t 

The accurate calculation of the time derivative of the velocity potential, i.e. t , is essential in 
obtaining correct pressure and forces/moments on the body surface at each time step. If the body is 
fixed or the body motion is prescribed, the calculation of t  can be achieved as a post-processing 
task by a finite difference scheme from the solution of the  problem. Strictly speaking, for a freely 
floating body, solving the coupled fluid motion and body motion simultaneously is the most accurate 
way.  
 
In the 2D studies of this work, a boundary value problem for t  is solved. The formulation for the 

t  problem is based on that of Wu (1998). The governing equation for t  is still the Laplace 
equation, i.e. 

2 0t .              (3.24) 
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where the length is nondimensionalized with respect to water depth h and the time is 
nondimensionalized by /h g . Based on Eq.(3.22), we use the following normal velocity on the 
piston-like wave absorbers SW1 and SW2 (Fig.3.1) 
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The position of the wave absorber is assumed to be fixed throughout the analysis and only a flux is 
given on the wave absorber. The / t  term in Eq.(3.23) can be obtained in different ways (see 
Section 3.5). The mode-decomposition method (Vinje & Brevig (1981a, 1981b)) is used in the 2D 
studies of this work. 
 
 

3.5 Solution of t 

The accurate calculation of the time derivative of the velocity potential, i.e. t , is essential in 
obtaining correct pressure and forces/moments on the body surface at each time step. If the body is 
fixed or the body motion is prescribed, the calculation of t  can be achieved as a post-processing 
task by a finite difference scheme from the solution of the  problem. Strictly speaking, for a freely 
floating body, solving the coupled fluid motion and body motion simultaneously is the most accurate 
way.  
 
In the 2D studies of this work, a boundary value problem for t  is solved. The formulation for the 

t  problem is based on that of Wu (1998). The governing equation for t  is still the Laplace 
equation, i.e. 
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This can be seen from the Bernoulli’s equation and that  and its derivatives satisfy the Laplace 
equation.  
 

t  can be expanded into series expansions by neglecting the higher-order terms 
1 2 3 4

t t t t O .             (3.25) 

The free-surface conditions for m
t  can be found in Section 2.4 and Section 2.5 of Chapter 2. One 

should note that the formulations presented in Chapter 2 are for general three-dimensional cases. One 
has to neglect the y-dependent terms in order to use them in the 2D analysis.  
 
Wu (1998) has given the body boundary condition for t  at the instantaneous position of the body 
surface. We will start from Wu’s (1998) formula 

t B B B B BU r n U r U
n n n

,       (3.26) 

where BU  and B  are the translatory and rotational velocity of the body. r  is the position vector 
of a point on the body with respect to the body-fixed coordinate system. An overhead dot indicates 
time differentiation. By introducing the series expansions of the body motions and the velocity 
potential, and Taylor expanding the body boundary condition at the mean body surface, we obtain the 
following body boundary conditions for m

t (m=1, 2) for the zero forward speed case  
1 0 0 1 1

t n n r ,             (3.27) 
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The definitions of the variables in Eq.(3.27) and Eq.(3.28) have been given in Section 2.3. The 
overhead double dots means that time differentiation has been taken twice.  
 
As seen from Eq.(3.27) and Eq.(3.28), the accelerations of the body motion, i.e. m  and m , are 
required as the input of the BVP for m

t . In order to evaluate the accelerations, one needs the forces 
and moments acting on the body, which can be obtained by integrating the pressure over the wetted 
body surface. However, according to the Bernoulli’s equation, m

t  is needed when calculating the 
pressure. It means that the solutions of m

t  and the body motion have to be obtained by solving an 
implicit loop. Tanizawa (2000) has given a thorough review of existing methods which can be used to 
solve this implicit loop, i.e. the iterative method (Cao et al. (1994) and Sen (1994)), the modal 
decomposition method (Vinje & Brevig (1981a, 1981b) and Cointe et al. (1990)), the indirect method 
(Wu & Eatock Taylor (1996) and Kashiwagi (1998)) and the implicit boundary condition method 
(Tanizawa & Sawada (1990) and Tanizawa (1995)).  
 
The modal decomposition method is used in the 2D cases studied in this thesis. We will briefly show 
how we can use this method to solve the motions of the piston wave absorber SW2 of a NWT without 
considering the presence of the body. In the NWT, the boundary SW1 acts as the wave generator. The 
idea for solving the problem of a general freely floating body is the same and no further details will be 
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given due to the limited space. Interested readers should be referred to for instance Vinje & Brevig 
(1981a, 1981b), Cointe et al. (1990) and Tanizawa (2000). 
 
Firstly we decompose m

t  into two parts 

1 2=m m m
t a .                (3.29) 

Here a is the amplitude of the ‘mode’ of the piston motion of active wave absorber, which is unknown. 
1

m  and 2
m  satisfy the following BVP respectively:  

2
1

1

1

1 0

1

0

1, 2
:

=0

0, 1

m

m

m

m

bottom

on SW
n

on SF

on S and SW
n

    

2
2

2

2

2 2 0

2

0

0, 2
:

+ ,

, 1

m

m

bottom
m

m m m

m
m

wm

on SW and S
n

g F on SF

V on SW
n

  (3.30) 

where the forcing term 2
mF (m=1, 2, 3) is defined in Section 2.4 and Section 2.5. m

wmV (m=1, 2, 3) is 
the prescribed normal velocity at the wave maker SW1. m  is the wave elevation.  
 
From Eq.(3.23) the normal velocity applied on SW2 can be expressed as 

0

1 2
1 1 a m m

h
dZ

n h gh
.           (3.31) 

Eq.(3.31) acts as a governing equation of the motion of the piston wave absorber, which plays a 
similar role as the Newton’s 2nd law for the body motions of a freely floating body. The Runge-Kutta 
scheme also gives a prediction of the normal velocity ,

m
n apu of SW2 for each sub time step, which has 

to be consistent with Eq.(3.31). So the unknown amplitude of the ‘mode’ of piston motion of SW2 can 
be expressed as 

0

, 2

0

1

m m
n ap h

m

h

h gh u dZ
a

dZ
.            (3.32) 

When the amplitude of the ‘mode’ of the piston motion of active wave absorber, i.e. a, is obtained,  
m

t  can be obtained through Eq.(3.29).  
 
 

3.6 Calculation of the higher-order derivatives 

One of the difficulties in solving a weakly-nonlinear problem by the perturbation scheme is associated 
with the higher-order derivatives in both the free-surface conditions and the body boundary conditions. 
The derivatives can in theory be obtained through the differentiation of the shape functions. However, 
the accuracy is usually not sufficient when the order of the shape function is low and the results 
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When the amplitude of the ‘mode’ of the piston motion of active wave absorber, i.e. a, is obtained,  
m

t  can be obtained through Eq.(3.29).  
 
 

3.6 Calculation of the higher-order derivatives 

One of the difficulties in solving a weakly-nonlinear problem by the perturbation scheme is associated 
with the higher-order derivatives in both the free-surface conditions and the body boundary conditions. 
The derivatives can in theory be obtained through the differentiation of the shape functions. However, 
the accuracy is usually not sufficient when the order of the shape function is low and the results 
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become zero when the order of the derivative is higher than that of the shape function. In this study, 
the curve fitting technique is adopted in the 2D studies. The one-dimensional cubic B-spline is used to 
fit the variables on the free surface or the body surface with respect to the arc-length (Wang & Wu, 
2006). These variables could be the spatial coordinates, the potential or the velocities on the free 
surface or the body surface. The first-order and the second-order derivatives are then obtained by 
taking the derivatives of the cubic B-spline functions.  
 
 

3.7 Fourier analysis  

What one obtains from the time-domain solution are the time histories of, for instance the forces and 
moments acting on the body. Fourier transform is often needed in order to get the amplitudes and the 
phases for the Fourier components from the time histories. A fast Fourier transform (FFT) is not used 
since the component frequencies are a function of the time interval and will not be easily applicable to 
arbitrary, unequal frequency intervals. A direct integration of the Fourier series suggested by Kim et al. 
(1997) is adopted in this study. It takes the following form 

2 2

1 11
in m n

Nt ti t i t i t
R It t

m
f t e dt F F e e dt , n=1,…, N.          (3.33) 

Here m  is a basis frequency of the time history f(t) with a complex amplitude iR IF F . n  is a 
test frequency. Eq.(3.33) is valid for arbitrary test frequencies and there is no restriction on the 
selection of the basis and test frequencies. The application of N test frequencies to this integral 
equation gives us a linear system of equations for iR IF F . The integral on the left-hand side of 
Eq.(3.33) is performed numerically. Specifically, we firstly interpolate every 4 neighboring points of 
the time history f(t) by cubic polynomials and numerical integrals are then performed within each 
cubic polynomials. This scheme gives an accuracy of O( 3t ).  
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CHAPTER 4 

Basis of the Time-Domain HOBEM in 3D 

This chapter describes the basis of the three-dimensional Higher-Order Boundary Element Method 
(HOBEM) in the time domain. The 3D HOBEM adopted in this study is based on the cubic shape 
functions. The direct computation of the solid angles and the Cauchy principal value (CPV) integrals 
will be addressed. The method for the calculation of higher-order derivatives of the velocity potential 
and wave elevation is also presented. Other numerical issues, such as the time stepping of free surface 
conditions, numerical damping zone and the low-pass filter will also be discussed. The Fast Multipole 
Method (FMM) is also implemented combined with the cubic HOBEM. Suggestions for the selection 
of a proper matrix solver in 3D wave-body problem will also be given.    
 

4.1 Boundary integral equation 

 

Fig.4.1. Sketch of the water domain and the enclosing boundaries. 
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We define a water domain  that is enclosed by the free surface SF, the wetted part of body surface 
SB, the sea bottom Sbottom, the vertical surfaces Sinf away from the body. We denote SF0 as the calm 
water surface and SB0 as the wetted body surface when the body is at rest in calm water.  
 
The sea bottom is assumed to be stationary and horizontal. See Fig.4.1 for the definitions. A modified 
Green’s third identity gives the following integral equation 

0 0
inf

( )
( ) ( )( ) ( ) ( ) ( , ) ( ) ( , )

bottom

k
k k

SF SB
S S

GC G dS
n n

x x y x y y x y y .          (4.1) 

Here ( )k (k=1, 2, 3) is the k-th order velocity potential. x  and y  are the location vectors of the 
field point and the singularity point, respectively. ( )C x  is the solid angle coefficient. n  is the 
normal vector defined as positive pointing out of the fluid domain. The Rankine source is chosen as 
the Green function, i.e.  

1 1( , )G
r

x y
x y

.                      (4.2) 

 

4.2 HOBEM based on cubic shape functions 

4.2.1 Shape functions 
The 12-node cubic higher-order boundary elements are used to discretize the boundary surfaces 
enclosing the fluid domain. An example of the element is shown in Fig.4.2a with its mapping in 

 plane in Fig.4.2b. The boundary geometry, the velocity potential and its normal derivative are 
approximated by  

12

1
, , , , ,j j j j

j
x y z N x y z ,                (4.3) 

12
( ) ( )

1
( ) ( , )m m

j j
j

Nx , m=1, 2, 3,              (4.4) 
( ) ( )12

1
( ) ( , )

m m

j
j j

N
n n

x  , m=1, 2, 3.             (4.5) 

Here ( )m
j  and ( )m

j
n  are the velocity potential and its normal derivative at the j-th node 

of the reference element, respectively. The superscript m indicates the order of the magnitude. The 
shape function Nj can be found in, for instance, Chung (2002): 

2 2

2

2

1 1 1 9 10 , 1,4,7,10
32
9, 1 1 1 9 , 5,6,11,12
32
9 1 1 1 9 , 2,3,8,9
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 and  are the local intrinsic coordinates of the reference element. The transformed coordinates 
, ,0j j  corresponding to the coordinates , ,j j jx y z .  
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                     (a)                                     (b) 
Fig.4.2. (a) The 12-node cubic element in the physical plane. (b) The 12-node cubic element in the -  plane. 
The numbers are indices for the transformed coordinates , ,0j j corresponding to the coordinates 

, ,j j jx y z  in the physical plane. The lengths of the four sides are identical and equal to 2. 
 
Due to the discretization, the integral equation (4.1) can be rewritten as 

12 1 1( ) ( )
j1 1

1 1

( )12 1 1

j1 1
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( ) ( ) , , , ,

, , , , , 1, 2,3.

NE
m m e

j
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mNE
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GC N d d
n

N G d d m
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x x y x J

y x J
       (4.7) 

NE is the total number of elements.  
 

,eJ  is the Jacobian on the e-th element, defined as 

,e r rJ  ,              (4.8) 

where , ,r x y z . The Jacobian allows us to describe the differentials of surface in the Cartesian 
system in terms of the curvilinear coordinates. A differential of area , ,ds x y z  will be given by   

, , ,ds x y z d dJ .             (4.9) 

We should note that ,J  is simply the magnitude of the normal vector , ,n x y z , i.e.  

, , r r r rn x y z .            (4.10) 

 
Choosing the collocation points at the nodes of the elements leads us to the following equations 
system  

1 1

mNOD NOD
m

ik k ik
k k k

H A
n

, i=1, 2,…, NOD.                  (4.11) 
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where , ,r x y z . The Jacobian allows us to describe the differentials of surface in the Cartesian 
system in terms of the curvilinear coordinates. A differential of area , ,ds x y z  will be given by   
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NOD is the total number of the nodes. ,i k  is the Kronecker delta function. s=IEP(e, j) is a 
coefficient of the connectivity matrix, which represents the global index of the j-th node of the e-th 
element. Ci is the solid angle coefficient at the i-th node. The superscript e indicates that the integrals 
are taken on the e-th element.  
 
The double-node technique (see for instance Grilli & Svendsen, 1990) is used at the intersection lines 
of different surfaces where the normal vector is ill-defined. See also Section 3.2. This brings 
modifications to the corresponding lines of equations in Eq.(4.11) and gives us the final algebraic 
equation system.  
 
4.2.2 Solid angle and CPV integrals 
When the field point ix  is on the surface of the element, the field point and singularity point may 
coincide to generate singularities 1/ , ir x x  and 21/ , ir x x . Most of the singularities 
can be removed by using polar coordinate system on the local element and locating the coordinate 
origin at the singular point. However, this transformation yields still another singularity 1/  in the 
term ˆ e

ijH  when IEP(e, j) = i. Here  is the radial coordinate (see for instance Liu et al. (1991)). 
Either the indirect method or the direct method can be adopted for the evaluation of the diagonal 
terms iiH (i=1,…,NOD). 
 
Indirect method 
In order to solve the 1/  singularity, an indirect procedure was suggested by Liu et al. (1991). The 
unknown velocity potential  in Eq.(4.1) is replaced by a chosen (known) velocity potential 1 . 
The consequence is that a relationship between the diagonal term and the off-diagonal terms can be 
established, which avoids the direct calculation of the solid angle term and the CPV integrals. When 

1 =constant 0 and 1 0n , this method is the same as the rigid-mode method that we have 
described in Section 3.2, i.e.   

1,

NOD

ii ik
k k i

H H .                 (4.16) 

 
Direct calculation of the solid angles 
When Hii is evaluated directly, we need to calculate the solid angle term Ci and the CPV terms ˆ e

ijH  
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directly. The method for the calculation of the solid angles presented here is based on Montic (1993). 
This method has also been used by Teng et al. (2006) and Ning et al. (2010) in the analysis of the 
wave-body interactions by HOBEM. Interested readers are referred to Montic (1993), Teng et al. 
(2006) and Ning et al. (2010). 
 
In the integral process, singularity can exist if the field source point ix  approaches the source/dipole 
point x . Generally, there exists a sphere with a radius  near to ix  by taking ix  as the origin of 
the sphere. The solid angle is defined as the angle occupied by the fluid domain, which can be related 
to the ratio of the spherical surface in the fluid domain to the whole spherical surface, i.e. 

2 24
4i

S SC ,                   (4.17) 

where S  is the spherical surface in the fluid domain. 
 
Based on the relation of the spherical geometry, the spherical surface interpolated by N fluid boundary 
element boundary elements as shown in Fig.4.3 can be expressed by  

2

1
2

N

j
j

S N ,             (4.18) 

where j  is the included angle between the fluid boundary elements and the spherical surface. See 
Fig.4.3 for the definition. The angle j  can according to Montic (1993) be expressed as  

1, , 1 1, , 1sgn arccosj j j j j i j j j jn n n n ,         (4.19) 

where  

1, 0,
sgn 0, 0,

1, 0.

x
x x

x
                     (4.20) 

j  is the unit vector superposed on the intersecting element edges and directs into the sphere center. 
, 1j jn  is the unit normal vector on the element.  

 

 
Fig.4.3. The definitions of ,j kn , j  and j . The radius of the spherical surface is . 
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Direct calculation of the CPV integrals 
When the field point ix  coincides with the j-th node in the e-th element, the integral for ˆ e

ijH  is still 
singular which contributes to the diagonal term Hii. The other singular integrals on the same element 
can be shown to be integrable by a transformation to polar coordinate system (Liu et al., 1991) or the 
triangular polar-coordinate transformation technique (see Li et al. (1985) and Eatock Taylor & Chau 
(1992)) adopted in this study. We will in the following text show how the ˆ e

ijH  term can be handled 
combined with the triangular polar-coordinate transformation.  
 
If the field point ix  is located on a corner point (local point 1, 4, 7, 10), we split the element in the 

-  plane into two triangles. Otherwise, if ix  drops on an edge point (local point 2, 3, 5, 6, 8, 9, 
11, 12), the cubic element in the -  plane is divided into three triangles. Fig.4.4a and Fig.4.4b 
show how the element is splitted when ix  coincides with the corner point 1 and the edge point 2,  
respectively.  
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  (a)                        (b) 

Fig.4.4. The cubic element in -  plane splitted into triangles. (a) The field point is superposed on a corner 
point. (b) The field point is superposed on an edge point.  

 
                 (a)                                       (b) 
Fig.4.5. (a) The m-th triangle of an element in the -  plane. The first node 1 1,m m  of the triangle is the 
singularity point. (b) The square 1 0 1  and 2 0 1  in the 1 2-  plane, which is the mapping of 
the triangle in part (a).  
 
We will firstly re-number the three nodes of each triangle by an anti-clockwise rule and take the 
singularity point as the first node. See Fig.4.5a. Then the following transformation can be used to map 
the triangles in -  plane into a 1 2-  plane 
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1 2 3

1 2
1 2 3
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1
= 1

m m m

m m m .                  (4.21) 

Here the superscript m means the m-th triangle of the square element after splitting (see Fig.4.4). j
m  

and j
m  (j=1, 2, 3) are the  and the  coordinates of the j-th node of the m-th triangle. After the 

transformation (4.21), the triangle is stretched into a square in the 1 2-  plane, with the length of 
the four edges equal to 1. See Fig.4.5b. The first node 1 1,m m  where the singularity point is 
located has been stretched to a line 1 4  in the 1 2-  plane.  
 
The integrals in Eq.(4.14) and Eq.(4.15) can be expressed as the sum of the integrals over the triangle 
areas. In the following text, we will take the case depicted in Fig.4.4a as an example, i.e. the 
singularity locates at a corner point, and show how we can rewrite the integrals in Eq.(4.14) and 
Eq.(4.15). The consideration for the case when the singularity is at an edge point is very similar and 
will not be repeated.  
 
The transformation (4.21) for the first triangle in Fig.4.4a is  

1 1 21 2 1 2 .                 (4.22) 

Plugging Eq.(4.22) into Eq.(4.6), the shape function ,jN  can be written as a function of 1  
and 2 , i.e. 

,jN = 1 2,jN 1 1 2

1 1 2

1 , , 1

, , 1
j

j

H j

H j
.          (4.23)  

The expressions for 1 2,jH , j=1,…,12, are lengthy and thus not provided here. However, it is 
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Note that 1 21/ ,R  with 10 1  and 20 1  is regular. Thus the singularity in the 
integral of Eq.(4.15) has been removed through the transformation Eq.(4.21).       
 
Similarly, we can rewrite ˆ e

ijH  in Eq.(4.14) as  
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where we have used  
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If 1j , i.e. the j-th node is not a singularity, Eq.(4.27) can be further simplified by using the second 
formula in Eq.(4.23) as 

2 1 1 1 2 1 2 3
1 230 0
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,ˆ 2
,
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H j R j R j R
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It is seen from Eq.(4.29) that the singularity in ˆ e
ijH  has been eliminated if the j-th node of the 

element is not at the same position of the field point i. Standard numerical procedure, e.g. 
Gauss-Legendre quadrature can be used to evaluate the integration.   
 
However, when j=1, ˆ e

ijH  contains a 11/ -type singularity. Let us define 
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and add and subtract the singular kernel in Eq.(4.27) 

1

1 2

2 21 1 1 11 2 2 2
1 2 1 20 0 001 11 1

, 0, 0,ˆ e
ij

m m

I I

f f f
H d d d dlim .   (4.31) 

The two terms in the first integral I1 in Eq.(4.31) include the same singular kernel and they can be 
counteracted during integral. Then the standard numerical integration can be performed.  is the radius 
of the sphere which is defined in the calculation of the solid angle. See the text associated with 
Eq.(4.17) and Eq.(4.18). 1  is the value of 1 corresponding to the intersection line of the sphere 
and the boundary element. 1  is approximated as 

=
1

1/222 2 2 2
1 1 1 1 2 1

0
( ) ( 0, ) ( )x y zR R R O R O .     

 (4.32) 
Taylor expansion of Eq.(4.26) with respect to 1=0 was used in the derivation of Eq.(4.32). R( 1, 2) 
is defined in Eq.(4.25). The second integral I2 can be rewritten by putting Eq.(4.32) into Eq.(4.31) as 
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m m
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The limit of the first term in I2 does not exist. However, the sum of the integrals in all the elements 
surrounding the singularity point must equal to zero. That means the first term in Eq.(4.33) does not 
contribute in the diagonal terms of Hii. This is due to the fact that Hii contains all the contributions 
from the elements adjacent to the source point. The line integral in the second term of Eq.(4.33) can 
be calculated by standard numerical integration.  
 
Eq.(4.24), Eq.(4.27) and Eq.(4.31) are obtained when the singularity is located at a corner point of the 
element (see Fig.4.4a). The derivation is similar when the singularity is at an edge point (see Fig.4.4b) 
and will not be repeated here.  
 
Teng et al. (2006) have proposed a similar technique for the evaluation of CPV integrals. A 
transformation to polar coordinate system with the origin at the singularity was used. Terms similar to 
that of I1 and I2 in Eq.(4.32) were obtained.  
 

4.3 Time marching of the free-surface conditions 

In the time-domain simulations, the method for the time integrating is very important to keep its 
accuracy and stability. In many practical time-domain analyses, the higher-order time integral 
schemes are used such as the fourth-order Runge-Kutta method (RK4), the fifth-order 
Runge-Kutta-Gil method (RKG5) and the fourth-order Adams-Bashforth-Moulton method (ABM4). 
RK4 and ABM4 have 4O t  accuracy. RKG5 has 5O t  accuracy for short time simulations 
but 4O t  accuracy for long time simulations. See for instance Tanizawa (2000). 
 
The ABM4 method used by Skourup et al. (2000) in their time-domain analysis of second-order wave 
diffraction forces on fixed bodies is adopted in all the three-dimensional studies in this thesis. In the 
3D time-domain BEM, we have to solve the matrix equation with fully-populated matrices at each 
time step. Even though the computational boundaries are invariant in time and the influence matrix 
only needs to be evaluated (and inverted) once when the perturbation method is adopted, any 
possibility to reduce the CPU time while retaining the accuracy is welcomed in the 3D time-domain 
analysis. ABM4 has the same accuracy as RK4. However, the AMB4 only needs to call the BEM 
solver two times at each time step while the RK4 needs four calls of the BEM solver. That is why the 
ABM4 is adopted in the 3D studies instead of RK4 which was applied in the two-dimensional cases 
(see Chapter 3).  
 
Firstly, an explicit fourth-order Adams-Bashforth predictor is used for the updating of the scattered 
part of the velocity potential m

s  and the wave elevation m
s  from time t to time t t , i.e. 

4

1

m
m m s

s s k
k

t t t t a t t k t
t

,          (4.34) 
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solver two times at each time step while the RK4 needs four calls of the BEM solver. That is why the 
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The limit of the first term in I2 does not exist. However, the sum of the integrals in all the elements 
surrounding the singularity point must equal to zero. That means the first term in Eq.(4.33) does not 
contribute in the diagonal terms of Hii. This is due to the fact that Hii contains all the contributions 
from the elements adjacent to the source point. The line integral in the second term of Eq.(4.33) can 
be calculated by standard numerical integration.  
 
Eq.(4.24), Eq.(4.27) and Eq.(4.31) are obtained when the singularity is located at a corner point of the 
element (see Fig.4.4a). The derivation is similar when the singularity is at an edge point (see Fig.4.4b) 
and will not be repeated here.  
 
Teng et al. (2006) have proposed a similar technique for the evaluation of CPV integrals. A 
transformation to polar coordinate system with the origin at the singularity was used. Terms similar to 
that of I1 and I2 in Eq.(4.32) were obtained.  
 

4.3 Time marching of the free-surface conditions 

In the time-domain simulations, the method for the time integrating is very important to keep its 
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where (a1, a2, a3, a4) = (55/24, -59/24, 37/24, -9/24). 
 
Then the updated values of m

s  and m
s  and the dynamic free-surface condition are used to 

approximate the /m
s t  at time t t . This value is used as predictor in a fourth-order 

Adams-Moulton corrector method for the semi-implicit updating of m
s  from time t to time t t  
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where (b1, b2, b3, b4) = (9/24, 19/24, -5/24, 1/24). Using the updated value of m
s  and the dynamic 

free-surface condition, this semi-implicit updating can be repeated until a sufficient convergence has 
been achieved. A similar iterative semi-implicit updating of the wave elevation is expensive since the 
normal derivative of the velocity potential on the free surface at time t t  requires another call of 
the BEM solver.  
 
The numerical damping zone presented in Section 3.4 without active wave absorber is applied in the 
three-dimensional analysis.  
 
 

4.4 Treatment of t-term and the time integration of body motion 
equations 

In order to be robust and efficient, the time-domain simulation of body motions require a stable 
numerical integration scheme for the solution of Newton’s rigid-body equations of motion (see e.g. 
Eq.(2.126) and Eq.(2.127)) excited by wave forces which depend on not only the displacement and 
velocity but also the acceleration of the body. It is known that most ordinary differential equation 
(ODE) solvers are designed for cases where the highest order of differentiation occurs on the left-hand 
side of the equation only, e.g. 

,d t
dt
y f y .                 (4.37) 

However, the Eq.(2.126) and Eq.(2.127) take the following form 

, ,d d t
dt dt
y yf y  ,              (4.38) 

which means that iterations are needed in order to get accurate and stable results. However, this 
indicates the increase of CPU time in the time-domain analysis, because each iteration needs a call of 
the BEM solver.  
 
A natural modification to Eq.(4.38) is to move the dy/dt terms on the right-hand side to the left. 
Inspired by the canonical form of the equation of the equations of motion as proposed by Cummins 
(1962) and Ogilvie (1964) which by virtue of the physics of the free-surface flow are stable, Kring 
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(1994) decomposed the hydrodynamic loads into an instantaneous or ‘time localized’ part and a 
‘memory’ component. The result of such decomposition is that the body acceleration appears 
explicitly and linearly in the left-hand side of motion equations, while the forcing in the right-hand 
side which accounts for memory effects is shown to depend upon the ship displacement and velocity. 
The stability of the rigid-body motion equations is well prescribed in Kring & Sclavounos (1995). The 
decomposition method proposed by Kring (1994) is valid not only for the linear but also the nonlinear 
seakeeping analysis. This was later demonstrated by Huang (1996) using a weak scatter model.    
 
Based on the understanding that the instability of body motion equations is due to the impulsive term 
in the hydrodynamic force proportional to the acceleration, Kim et al. (2008) obtained a stable form of 
the motion equations by merely adding an infinite-frequency added mass ( m ) on both sides of the 
equation. Taking the first equation of Eq.(2.126) as an example, we have 

1 1 1
g g gm m F m .             (4.39) 

 
Let us look at the first component of Eq.(4.39), explain why it is a stable form, and show how we 
handle the integral of t . The merit of the way we handle the t  term is that part of the influence of 

t  has been moved to the left-hand side of the motion equation and the rest parts of its contribution 
may be approximated by a backward finite difference scheme.  
 
The first component of Eq.(4.39) becomes 

6 6
1 1 1 1

1, 1 , 1, 1 ,
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g k k g g k k g
k k

m m F m .          (4.40) 

 
We will now decompose the scattered velocity potential into two parts 

1 1 1
1 2s .              (4.41) 

The first part 1
1  satisfies the Laplace equation and the following boundary conditions 

1
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1
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while the second part 1
2  takes care of the rest of the boundary conditions. According to the 

definition of the infinite-frequency added mass, we know that  

0
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k

n ds m
t

.           (4.43) 

 
Considering Eq.(4.41), Eq.(4.43) and the expressions for the forces and moments in Section 2.4.3, we 
notice that the terms associated with the body accelerations on the right-hand size of Eq.(4.40) cancel 
out with each other. So Eq.(4.40) takes a similar form to Eq.(4.37) instead of Eq.(4.38). We can do the 
similar to the other components of the body motion equations. Thus a standard procedure, for instance 
the Adams-Bsshforth-Moulton predictor-corrector method or the Runge-Kutta method, can be used 
for the time integral to get the velocity and displacement of the body motion. In this work, the 
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fourth-order Adams-Bashforth-Moulton method is used for the time integration. Note that the 
contribution of t  term to the right-hand side of the motion equations Eq.(4.39), which depends 
merely on the body displacement and velocity, is approximated by a fourth-order backward finite 
difference scheme. In order to reduce the errors in doing that, it is suggested that one firstly integrates 

 on the mean wetted body surface and takes the time differentiation afterwards. This is simply due 
to the fact that 

0 0

0 0m m
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dn dS n dS
dt

, m=1, 2.       (4.44) 
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observation, Büchmann (2000b) conjectured that the instabilities are in fact due to the non-uniformity 
in the spatially discretized models.  
 
Another different argument was made by Prins (1995): The Laplace equation has harmonic functions 
as its solution. The boundary conditions serve to determine what harmonic function is the overall 
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can be viewed as satisfying the boundary condition with a harmonic forcing function. The solution 
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numerical experiments that the new algorithm was stable in all the studies considered in his thesis. 
However, no analytical analysis supports that his scheme is unconditionally stable. 
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In the wave-body analysis with the presence of forward speed or current effect, a practical option is to 
use the smoothing or low-pass filter to suppress the short-wave instabilities. The upwind difference 
scheme for the tangential derivatives in the convective terms has also been shown to be efficient to 
stabilize the calculation. Bunnik (1999) suggested that the second-order upwind difference scheme is 
the best among some others. However, the upwind difference scheme can introduce artificial damping 
to the system through the free surface condition. Thus it is essentially the same technique as the 
low-pass filter or the smoothing technique.  
 
In all the cases without forward speed studied in this study, no instability was observed. However, we 
saw strong instability when taking into account the forward speed effect in the free-surface conditions. 
It was noted from the simulations that the instabilities are located close to the waterline of the body. 
We have attempted other time integration schemes of the free-surface conditions, such as the 
fourth-order Runge- Kutta scheme, the same instabilities were still there.   
 
Consequently, in the cases with forward speeds, a low-pass filter is implemented and applied on the 
collocation points at the waterline and on points adjacent to these. In this study, a three-point low-pass 
filter used by Büchmann (2000a) in the linear BEM based numerical wave tank (NWT) is adopted  

j j-1 j j+1w w 1 2 w wc c c .          (4.45) 

Here j is a local numbering of the collocation points in azimuthal or radial direction and 0 0.5c  
is the strength of the filter. jw  and jw  are the qualities before and after smoothing. jw  could be 
the velocity potential or the wave elevation. Büchmann (2000a) has successfully applied this low-pass 
filter in the second-order wave diffraction of a bottom-mounted vertical cylinder with the presence of 
a weak current.  
 
The filter is only applied to the wave elevation k (k=1, 2). Its smoothing effect will come into the 
velocity potential indirectly through the dynamic free-surface condition. It is suggested that the 
smoothing should not be applied directly on the velocity potential, because this may introduce a 
‘shock’ to the pressure field and consequently the body changes its motion behavior suddenly. At each 
time step the filter is first applied in the azimuthal direction for all points on the water line of the body 
of interest and subsequently the filter is applied in the radial direction to the points adjacent to the 
waterline points. To avoid that the amount of the smoothing (filtering) depends on the time step size, 
the filter strength is given as a function of the time step size as  

4 tc
T

 ,             (4.46) 

where t  is the time increment, T is the wave period. The filter should be able to remove the 
instabilities without affecting the physical solution. On the other hand, the solution should not depend 
on the chosen value of c as long as it is small enough. We will in Chapter 8 show that the obtained 
solutions are in fact invariant in a large range of the filtering strength.  
 
 

4.6 Direct calculation of the higher-order derivatives 

It is seen from the free-surface conditions and the body boundary conditions formulated in the inertial 
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coordinate system in Section 2.4 and Section 2.5 that higher-order derivatives occur. The highest 
derivatives in the second-order free surface conditions (Eq.(2.48) and Eq.(2.49)) with the presence of 
a small forward speed is of second order, while the third-order derivative appear in the third-order 
kinematic free-surface conditions (Eq.(2.73) and Eq.(2.74)). However, the third-order derivative term 
can be rewritten by applying the Laplace equation as 

1 1 1 1 13 2 2 2 2

3 2 2 2 2Z Z X Y X Z Y Z
.     (4.47) 

Therefore, the third-order term 13 3/ Z  can be considered as the sum of two second-order 
derivatives of 1 / Z in the horizontal OXY-plane. At each time step, 1 / Z  on OXY-plane 
is obtained as a solution of the boundary integral equation. 
 
The derivatives in the body boundary conditions are more difficult to deal with from numerical point 
of view. In the linear body boundary condition with the forward speed effect, the double-gradient term 
in Eq.(2.57) is associated with the mj-terms in the seakeeping analysis of ship with forward speed. We 
also note from Eq.(2.56) and Eq.(2.58) that the second-order body boundary condition is very 
complicated due to the fact that it involves a triple gradient of the steady velocity potential 0  and 
three double-gradient terms. In reality, it may represent great numerical difficulties for typical marine 
structures with high curvatures, e.g. ships.  
 
The indirect way of treating the mj-terms is to use Stokes-like theorem. By assuming that the body 
surface is without sharp corner, the ship hull is wall-sided at the waterline, and the steady wave field 
can be approximated by the double-body flow, Ogilvie & Tuck (1969) used the Stokes theorem to 
reduce the second-order derivative of velocity potential in the integral equation by one in their studies 
of forced heave and pitch of a ship of relevance for regular head sea waves. The cost of doing so is the 
evaluation of integrals involving the first-order derivatives and the normal derivative of the first-order 
derivatives of the Green function. However, it is not straightforward to generalize the indirect method 
using Stokes theorem for the integral of third-order derivatives on the body surface.  
 
Because the cubic HOBEM is adopted in this study, the first-order and second-order derivatives can 
be calculated directly by using the higher-order shape functions, as it was suggested by Liu et al. 
(1995) and Kim & Kim (1997). The tangential derivative of the velocity potential along  and  
in the -  plane, i.e. /  and / , and the normal derivative / n  are expressed in 
the matrix form: 

1 2 3

x

y

n z

x y z
x y z
n n n

.               (4.48) 

Here 1 2 3, ,n n n n  is the normal vector of the boundary surface. The subscripts indicate partial 
differentiation. The gradient of the velocity potential  can thus be obtained by simply using 
Eq.(4.48). At each time step,  and n  are known either from the boundary condition or the 
solution of Laplace equation. The tangential derivatives with respect to  and  are obtained by 
taking the derivatives of the shape functions.  
Once the velocity vector is obtained, one uses the shape functions to represent its distribution on each 
element as 
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Eq.(4.48). At each time step,  and n  are known either from the boundary condition or the 
solution of Laplace equation. The tangential derivatives with respect to  and  are obtained by 
taking the derivatives of the shape functions.  
Once the velocity vector is obtained, one uses the shape functions to represent its distribution on each 
element as 
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The derivatives in the body boundary conditions are more difficult to deal with from numerical point 
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in Eq.(2.57) is associated with the mj-terms in the seakeeping analysis of ship with forward speed. We 
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Then the tangential derivatives of the velocity vector  along  and  coordinates can be 
obtained by differentiating the shape function in the form 

r
,  

r
,        (4.50) 

where , ,r x y z  is the position vector.  
 
Considering the Laplace equation for the velocity potential, one obtain the following matrix equation 
for the second-order derivatives of the velocity potential 
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Then the second-order derivatives of the velocity potential are expressed as 

1

xxx
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yT Txz
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zz z

S S S ,        (4.52) 

where the tangential derivatives of x , y  and z  along  and  on the right-hand side of 
Eq.(4.52) can be obtained by the differentiation of Eq.(4.49) in terms of  and .  
 
The direct calculation of the third-order derivatives with desired accuracy seems to be very difficult 
for typical marine structures, e.g. ships. In Chapter 5, we will present a new approach which does not 
require any derivatives on the right-hand side of the body boundary conditions. The feature of this 
new approach is that the formulation in the body-fixed coordinate system is used in the near field and 
we keep a formulation in the inertial reference frame in the outer domain. Unfortunately, we are not 
able to find any analytical results to validate the new method. Therefore, we will use the traditional 
formulation in the inertial coordinate system for the validation purpose. The comparison between the 
results of the traditional method and that of the new method will be presented in Chapter 8. Only a 
smooth body with simple geometry is considered in the comparisons. With this smooth and simple 
geometry, we are able to apply the desingularized BEM (see Cao et al., 1991) to solve the basis flow 
and the higher-order derivatives of the basis flow. In the calculations based on the traditional 
formulation, we use the desingularized BEM only for the basis flow 0  and the HOBEM is used 

4.6 Direct calculation of the higher-order derivatives                                     65 

 

12

1
,jj

j
N .              (4.49) 

Then the tangential derivatives of the velocity vector  along  and  coordinates can be 
obtained by differentiating the shape function in the form 

r
,  

r
,        (4.50) 

where , ,r x y z  is the position vector.  
 
Considering the Laplace equation for the velocity potential, one obtain the following matrix equation 
for the second-order derivatives of the velocity potential 

0 0
0 0

0 0
0 0

0
0

x xx xx

x xy xy

y xz xz

yy yyy

yz yzz

zz zzz

x y z
x y z

x y z
S

x y z
z x z y
z x z y

 .      (4.51) 

Then the second-order derivatives of the velocity potential are expressed as 

1

xxx

xxy

yT Txz

yy y

yz z

zz z

S S S ,        (4.52) 

where the tangential derivatives of x , y  and z  along  and  on the right-hand side of 
Eq.(4.52) can be obtained by the differentiation of Eq.(4.49) in terms of  and .  
 
The direct calculation of the third-order derivatives with desired accuracy seems to be very difficult 
for typical marine structures, e.g. ships. In Chapter 5, we will present a new approach which does not 
require any derivatives on the right-hand side of the body boundary conditions. The feature of this 
new approach is that the formulation in the body-fixed coordinate system is used in the near field and 
we keep a formulation in the inertial reference frame in the outer domain. Unfortunately, we are not 
able to find any analytical results to validate the new method. Therefore, we will use the traditional 
formulation in the inertial coordinate system for the validation purpose. The comparison between the 
results of the traditional method and that of the new method will be presented in Chapter 8. Only a 
smooth body with simple geometry is considered in the comparisons. With this smooth and simple 
geometry, we are able to apply the desingularized BEM (see Cao et al., 1991) to solve the basis flow 
and the higher-order derivatives of the basis flow. In the calculations based on the traditional 
formulation, we use the desingularized BEM only for the basis flow 0  and the HOBEM is used 

4.6 Direct calculation of the higher-order derivatives                                     65 

 

12

1
,jj

j
N .              (4.49) 

Then the tangential derivatives of the velocity vector  along  and  coordinates can be 
obtained by differentiating the shape function in the form 

r
,  

r
,        (4.50) 

where , ,r x y z  is the position vector.  
 
Considering the Laplace equation for the velocity potential, one obtain the following matrix equation 
for the second-order derivatives of the velocity potential 

0 0
0 0

0 0
0 0

0
0

x xx xx

x xy xy

y xz xz

yy yyy

yz yzz

zz zzz

x y z
x y z

x y z
S

x y z
z x z y
z x z y

 .      (4.51) 

Then the second-order derivatives of the velocity potential are expressed as 

1

xxx

xxy

yT Txz

yy y

yz z

zz z

S S S ,        (4.52) 

where the tangential derivatives of x , y  and z  along  and  on the right-hand side of 
Eq.(4.52) can be obtained by the differentiation of Eq.(4.49) in terms of  and .  
 
The direct calculation of the third-order derivatives with desired accuracy seems to be very difficult 
for typical marine structures, e.g. ships. In Chapter 5, we will present a new approach which does not 
require any derivatives on the right-hand side of the body boundary conditions. The feature of this 
new approach is that the formulation in the body-fixed coordinate system is used in the near field and 
we keep a formulation in the inertial reference frame in the outer domain. Unfortunately, we are not 
able to find any analytical results to validate the new method. Therefore, we will use the traditional 
formulation in the inertial coordinate system for the validation purpose. The comparison between the 
results of the traditional method and that of the new method will be presented in Chapter 8. Only a 
smooth body with simple geometry is considered in the comparisons. With this smooth and simple 
geometry, we are able to apply the desingularized BEM (see Cao et al., 1991) to solve the basis flow 
and the higher-order derivatives of the basis flow. In the calculations based on the traditional 
formulation, we use the desingularized BEM only for the basis flow 0  and the HOBEM is used 

4.6 Direct calculation of the higher-order derivatives                                     65 

 

12

1
,jj

j
N .              (4.49) 

Then the tangential derivatives of the velocity vector  along  and  coordinates can be 
obtained by differentiating the shape function in the form 

r
,  

r
,        (4.50) 

where , ,r x y z  is the position vector.  
 
Considering the Laplace equation for the velocity potential, one obtain the following matrix equation 
for the second-order derivatives of the velocity potential 

0 0
0 0

0 0
0 0

0
0

x xx xx

x xy xy

y xz xz

yy yyy

yz yzz

zz zzz

x y z
x y z

x y z
S

x y z
z x z y
z x z y

 .      (4.51) 

Then the second-order derivatives of the velocity potential are expressed as 

1

xxx

xxy

yT Txz

yy y

yz z

zz z

S S S ,        (4.52) 

where the tangential derivatives of x , y  and z  along  and  on the right-hand side of 
Eq.(4.52) can be obtained by the differentiation of Eq.(4.49) in terms of  and .  
 
The direct calculation of the third-order derivatives with desired accuracy seems to be very difficult 
for typical marine structures, e.g. ships. In Chapter 5, we will present a new approach which does not 
require any derivatives on the right-hand side of the body boundary conditions. The feature of this 
new approach is that the formulation in the body-fixed coordinate system is used in the near field and 
we keep a formulation in the inertial reference frame in the outer domain. Unfortunately, we are not 
able to find any analytical results to validate the new method. Therefore, we will use the traditional 
formulation in the inertial coordinate system for the validation purpose. The comparison between the 
results of the traditional method and that of the new method will be presented in Chapter 8. Only a 
smooth body with simple geometry is considered in the comparisons. With this smooth and simple 
geometry, we are able to apply the desingularized BEM (see Cao et al., 1991) to solve the basis flow 
and the higher-order derivatives of the basis flow. In the calculations based on the traditional 
formulation, we use the desingularized BEM only for the basis flow 0  and the HOBEM is used 



66                                      Chapter 4 Basis of the time-domain HOBEM in 3D 

 

for solution of the unsteady flow. One should note that the desingularized BEMs are not applicable for 
wave-body interactions with sharp corners. 
 
In the desingularized BEM, the singularities are offset outside of the water domain, so that the 
difficulty associated with the singular behavior of the Green function is avoided. Once the strength of 
the sources is obtained, the derivatives of the velocity potential can be evaluated by differentiating the 
Green functions. However, one has to be careful when choosing the offset distance. If the offset 
distance is too large from the collocation points, the resulting solution will not be able to represent 
arbitrary local flow patterns. If the distance is too small, an irregular highly oscillatory behavior of the 
flow is seen. This numerical error is due to the discontinuity between the individual elements (see the 
summary made by Bertram (2000)). The desingularized BEM need special efforts for instance for 
very slender ship bows. However, for a body with smooth and simple geometry, the desingularized 
BEM is expected to give acceptable results. A variant of the desingularized BEM is the raised panel 
method (Raven, 1996). The desingularized raised panel method uses connected elements instead of 
the isolated singularities. Examples of the desingularized isolated sources and the desingularized 
raised panels are shown in Fig.4.6a and Fig.4.6b, respectively.    

 

              (a)                                           (b) 
Fig. 4.6. (a) Desingularized isolated sources. (b) Desingularized raised panels. 

 
The following empirical formula is used to calculate the offset distance  

, 0, 1offset d m dL l D l             (4.53) 

where dl  is a constant coefficient. mD  is the size of the mesh which can be approximated by the 
square root of the area of the local element. =0.5 is used in this study. 
 
We have firstly applied the desingularized BEM to a sphere moving in infinite fluid. The analytical 
solution of the moving sphere is known as a dipole in infinite fluid with direction in the ambient flow 
direction. Studying a moving body in infinite fluid is relevant to the double-body basis flow. Because 
the double-body flow satisfies the rigid-wall free-surface condition, we can then take an image of the 
mean wetted body surface about the mean water plane. The consequence is that the double-body flow 
problem is equivalent to a moving body in infinite fluid. By testing with different offset distances and 
comparing with the analytical results of the velocity potential and its first-order, second-order and 
third-order derivatives, we obtain an optimal offset distance. Numerical results showed that 
1.6 2.5dl  gives quite accurate results for both the velocity potential and its higher-order 
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derivatives. The experience will then be applied in the case of an axisymmetric body without sharp 
corner studied in Chapter 8 when we solve a second-order problem with forward speed effect by using 
the formulation in the inertial reference frame.  
 
Fig.4.7 - Fig.4.10 show respectively the velocity potential, first-order, second-order and third-order 
derivatives of the velocity potential on the surface of a moving sphere (radius R=1.0) in infinite fluid 
with unit velocity in positive X-direction. The results are for / 2  and only the nonzero terms 
are presented. Here , ,r  is the spherical coordinates. 1.8dl  was used in the calculations.  
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Fig. 4.7. Velocity potential of a moving sphere in infinite fluid. The results are for / 2 . The radius 
R=1.0. Forward speed U=1.0.  
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Fig. 4.8. First-order derivatives of the velocity potential of a moving sphere in infinite fluid. The results are for 

/ 2 . The radius R=1.0. Forward speed U=1.0.  
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R=1.0. Forward speed U=1.0.  
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Fig. 4.8. First-order derivatives of the velocity potential of a moving sphere in infinite fluid. The results are for 
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R=1.0. Forward speed U=1.0.  
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Fig. 4.9. Second-order derivatives of the velocity potential of a moving sphere in infinite fluid. The results are 
for / 2 . The radius R=1.0. Forward speed U=1.0.  
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Fig. 4.10. Third-order derivatives of the velocity potential of a moving sphere in infinite fluid. The results are 
for / 2 . The radius R=1.0. Forward speed U=1.0.  
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Fig. 4.10. Third-order derivatives of the velocity potential of a moving sphere in infinite fluid. The results are 
for / 2 . The radius R=1.0. Forward speed U=1.0.  
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4.7 Types of grid on the free surface 

Two types of meshes on the free surface are popular in the application of panel methods for the ship 
motion analysis, i.e. the rectangular grid and the oval grid. A special case of the oval grid is the 
circular grid. In this study, the oval grid is adopted. Fig.4.11 shows an example of the oval grid on the 
free surface. Only half of the mesh is shown due to symmetry.  

 
Fig.4.11. An example of the oval grid on the free surface. 

 
It was shown in Huang (1996) by using a weak scatter model that the two types of the grids virtually 
give the same predictions in terms of forces on the ship exerted by the flow, which justified the use of 
the oval-type grid. It was observed by Kim & Kim (2008) in the time-domain seakeeping analysis of a 
ship with forward speed that the oval grid generally provides smoother and more reasonable solutions 
for diffraction and radiation problems. Since the disturbed waves due to the existence and the motion 
of a body propagate in the radial direction eventually, the oval grid type seems to have generally 
better prediction of radiating wave. They also pointed that the rectangular meshes would be a right 
choice if a wave-resistance problem becomes more important. This may be associated with the fact 
that the configuration of the rectangular grid is more close to the stream lines of the steady flow.  
 
The main reason why the oval grid is chosen in this study is that, in order to obtain the same accuracy 
in the solution, fewer panels are needed in the oval grid than that in the rectangular grid. Therefore, 
the selection of the oval grid can greatly reduce the CPU time. On the other hand, the oval grid 
requires less memory. This has also been discussed in Huang (1996).  
 
 

4.8 Matrix Solver 

One of the biggest problems related to the BEM is that in general the CPU time and the memory 
requirements needed to solve a problem increase rapidly with the number of the unknowns in the 
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problem. The memory required is proportional to N2 with N as the number of unknowns. Before 
proceeding to the numerical calculations, we have to choose a robust and time-efficient method based 
on the computer sources at hand. 
 
4.8.1 Why HOBEM? 
The BEM solver is adopted as the tool of solving the Laplace equation through the boundary integral 
equations. Unlike the field solver, e.g. Finite Element Method (FEM) and Finite Difference Method 
(FDM), BEM needs unknowns only on the boundaries enclosing the fluid domain, and thus reduces 
the dimensions of the problem by one. On the other hand, it is easier to generate mesh required in the 
BEM analysis compared that in the field solvers. The bottleneck of the BEM appears when the 
number of the unknowns increases. It was argued by Wu & Eatock Taylor (1995) and Ma et al. (2001a, 
2001b) that although the BEM has far fewer unknowns, for the nonlinear wave-body interaction 
problem it usually requires much more memory because at each time step the unknowns are coupled 
by a fully populated matrix. By contrast, the FEM needs less memory and is computationally far more 
efficient. However, the bottleneck of the BEMs will no longer exist if the accelerated methods, e.g. 
the predictor-FFT method (p-FFT) and the fast multipole method (FMM), are combined with the 
BEM solvers. Asymptotically, the p-FFT method needs O(NlogN) memory and O(NlogN) CPU time, 
and the FMM needs O(NlogN) memory and O(N) CPU time. According to the author’s knowledge 
that in the field of marine hydrodynamic, no comparative study has been made between the field 
solvers and the accelerated BEM solvers regarding to memory and CPU time requirements. However, 
we found from other fields that, for large-scale problems, the accelerated BEM has advantage over the 
field solvers from the computational point of view, and that the memory requirement is acceptable on 
a PC. Liu (2009) conducted a thermal analysis and compared the results obtained with FEM and the 
constant BEM accelerated by FMM. With the FEM using the commercial software ANSYS, more 
than 363,000 volume elements are applied. With the BEM, only about 42,000 triangular constant 
surface elements are applied with the same number of DOFs. On a desktop PC, the FEM solution took 
about 50 minutes to finish, whereas the BEM solution took about only 16 minutes. Considering the 
possibility that the numerical codes developed during this doctoral study could be modified to study 
the large-scale problems, for instance Very Large Floating Structure (VLFS) and Mobile Offshore 
Base (MOB), and fully-nonlinear wave-body problems, the author decided to use BEM as the 
numerical tool.  
 
The cubic HOBEM is adopted instead of lower-order ones. The advantage of the HOBEM over the 
lower-order BEM was reported by Liu & Kim (1991).  
 
4.8.2 Complexity of BEM solvers 
In the conventional BEMs, setting up the influence matrices takes O(N2) operations and thus O(N2) 
time usage. Different methods can be used for solving a matrix equation. A direct method such as the 
Gaussian elimination or LU-factorization needs O(N3) operations. In the time-domain simulations, if 
the matrices remain the same with the evolution of time, the direct method may be a good choice. This 
is the case in the weakly-nonlinear hydrodynamic problems when the perturbation method is adopted. 
One only needs to invert the matrix once and use it later in all the time steps. The solution at each time 
step is obtained by multiplying the inverse of the matrix and a known vector, which takes only O(N2) 
operations.  
 
Alternatively, one can use the iterative solvers. Typical iterative solvers, e.g. the Gauss-Seidel method 
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and the Krylov subspace Generalized Minimal Residual (GMRES) method, yield O(N2) CPU time. 
Major CPU time is spent in the matrix-vector product during the iterations. The number of the 
iterations needed to get a convergent result strongly depends on the condition number of the matrix. 
Among the BEMs, the constant BEM has in general better conditioning than that of the higher-order 
BEMs. It was noted by Maniar (1995) that the conditioning may worsen dramatically as the order of 
the basis function increases. The conditioning of the desingularized method is very sensitive to the 
offset distance. If the offset of the singularity is too large from the collocation point, the resulting 
equation system may be of very poor condition. The preconditioners can be used to speed up the 
convergence.  
 
4.8.3 Algorithm of FMM 
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contributions of groups of sources/dipoles belonging to a same cell. The regular portioning 
automatically gives distance criteria to determine the cells for which it is possible to use the multipole 
expansions. Therefore interaction lists are created for each cell. Interactions between well-separated 
pairs can then be computed by multipole expansions. Fig.4.12 shows an example of the 2D 
representation of the tree structure. The rectangulars with the filled circles as the nodes are the 
boundary elements. The other rectangulars with unfilled circles as the nodes are the cells.   

 
Fig 4.12. Schematic representation of fast multipole algorithm. 

 
After the oc-tree structure is built up, the algorithm of the FMM consists of the following steps: 

 Preparing the multipole expansions referred to as P2M; 
 Moving the multipole expansion point of the leaf cell to the center of the parent cell and by 

gathering all of the multipole expansion coefficients of the child cells, we obtain the multipole 
expansion coefficients for the parent cell. This is referred to as M2M.  

 If two well-separated cells A and B are in the same level and that the parent cell of A and that of 
B are neighbors, we convert the multipole coefficients of the cell A(or B) to the local expansion 
coefficients of cell B(or A). Gathering the local expansion coefficients, we obtain the local 
expansion coefficients from the far cells belonging to the parent cell. This procedure is referred to 
as M2L.  

 If the parent cell has local expansion coefficients, by moving the local expansion points to the 
center of the child cells, we obtain the local expansion coefficients of the specified cell. We refer 
this step as L2L. 

 Evaluating the contribution from far field via the coefficients of the local expansion. This is 
called L2P. The total contribution is obtained by adding the far-field contribution and the 
contribution from boundary elements in adjacent cells via direct integration. 

72                                      Chapter 4 Basis of the time-domain HOBEM in 3D 

 

contributions of groups of sources/dipoles belonging to a same cell. The regular portioning 
automatically gives distance criteria to determine the cells for which it is possible to use the multipole 
expansions. Therefore interaction lists are created for each cell. Interactions between well-separated 
pairs can then be computed by multipole expansions. Fig.4.12 shows an example of the 2D 
representation of the tree structure. The rectangulars with the filled circles as the nodes are the 
boundary elements. The other rectangulars with unfilled circles as the nodes are the cells.   

 
Fig 4.12. Schematic representation of fast multipole algorithm. 

 
After the oc-tree structure is built up, the algorithm of the FMM consists of the following steps: 

 Preparing the multipole expansions referred to as P2M; 
 Moving the multipole expansion point of the leaf cell to the center of the parent cell and by 

gathering all of the multipole expansion coefficients of the child cells, we obtain the multipole 
expansion coefficients for the parent cell. This is referred to as M2M.  

 If two well-separated cells A and B are in the same level and that the parent cell of A and that of 
B are neighbors, we convert the multipole coefficients of the cell A(or B) to the local expansion 
coefficients of cell B(or A). Gathering the local expansion coefficients, we obtain the local 
expansion coefficients from the far cells belonging to the parent cell. This procedure is referred to 
as M2L.  

 If the parent cell has local expansion coefficients, by moving the local expansion points to the 
center of the child cells, we obtain the local expansion coefficients of the specified cell. We refer 
this step as L2L. 

 Evaluating the contribution from far field via the coefficients of the local expansion. This is 
called L2P. The total contribution is obtained by adding the far-field contribution and the 
contribution from boundary elements in adjacent cells via direct integration. 

72                                      Chapter 4 Basis of the time-domain HOBEM in 3D 

 

contributions of groups of sources/dipoles belonging to a same cell. The regular portioning 
automatically gives distance criteria to determine the cells for which it is possible to use the multipole 
expansions. Therefore interaction lists are created for each cell. Interactions between well-separated 
pairs can then be computed by multipole expansions. Fig.4.12 shows an example of the 2D 
representation of the tree structure. The rectangulars with the filled circles as the nodes are the 
boundary elements. The other rectangulars with unfilled circles as the nodes are the cells.   

 
Fig 4.12. Schematic representation of fast multipole algorithm. 

 
After the oc-tree structure is built up, the algorithm of the FMM consists of the following steps: 

 Preparing the multipole expansions referred to as P2M; 
 Moving the multipole expansion point of the leaf cell to the center of the parent cell and by 

gathering all of the multipole expansion coefficients of the child cells, we obtain the multipole 
expansion coefficients for the parent cell. This is referred to as M2M.  

 If two well-separated cells A and B are in the same level and that the parent cell of A and that of 
B are neighbors, we convert the multipole coefficients of the cell A(or B) to the local expansion 
coefficients of cell B(or A). Gathering the local expansion coefficients, we obtain the local 
expansion coefficients from the far cells belonging to the parent cell. This procedure is referred to 
as M2L.  

 If the parent cell has local expansion coefficients, by moving the local expansion points to the 
center of the child cells, we obtain the local expansion coefficients of the specified cell. We refer 
this step as L2L. 

 Evaluating the contribution from far field via the coefficients of the local expansion. This is 
called L2P. The total contribution is obtained by adding the far-field contribution and the 
contribution from boundary elements in adjacent cells via direct integration. 

72                                      Chapter 4 Basis of the time-domain HOBEM in 3D 

 

contributions of groups of sources/dipoles belonging to a same cell. The regular portioning 
automatically gives distance criteria to determine the cells for which it is possible to use the multipole 
expansions. Therefore interaction lists are created for each cell. Interactions between well-separated 
pairs can then be computed by multipole expansions. Fig.4.12 shows an example of the 2D 
representation of the tree structure. The rectangulars with the filled circles as the nodes are the 
boundary elements. The other rectangulars with unfilled circles as the nodes are the cells.   

 
Fig 4.12. Schematic representation of fast multipole algorithm. 

 
After the oc-tree structure is built up, the algorithm of the FMM consists of the following steps: 

 Preparing the multipole expansions referred to as P2M; 
 Moving the multipole expansion point of the leaf cell to the center of the parent cell and by 

gathering all of the multipole expansion coefficients of the child cells, we obtain the multipole 
expansion coefficients for the parent cell. This is referred to as M2M.  

 If two well-separated cells A and B are in the same level and that the parent cell of A and that of 
B are neighbors, we convert the multipole coefficients of the cell A(or B) to the local expansion 
coefficients of cell B(or A). Gathering the local expansion coefficients, we obtain the local 
expansion coefficients from the far cells belonging to the parent cell. This procedure is referred to 
as M2L.  

 If the parent cell has local expansion coefficients, by moving the local expansion points to the 
center of the child cells, we obtain the local expansion coefficients of the specified cell. We refer 
this step as L2L. 

 Evaluating the contribution from far field via the coefficients of the local expansion. This is 
called L2P. The total contribution is obtained by adding the far-field contribution and the 
contribution from boundary elements in adjacent cells via direct integration. 



4.8 Matrix Solver                                                                 73 

 

See also the illustration of P2M, M2M, M2L, L2L and L2P in Fig. 4.12. 
 

The kernels 
P2M 

( , )G x y  and ( , )G n x y  in Eq.(4.1) can be expanded respectively as (see for 
instance Nishimura (2002), Shen & Liu (2007) and Yoshida (2001)) 
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Here yc is the expansion center close to singularity point y and the overbar indicates the complex 
conjugate. The functions Rn,m and Sn,m are called solid harmonic functions, given as 
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where , ,  are the spherical coordinates of vector x. m
nP  is the associated Legendre function.  

 
The merit of expanding the kernels ( , )G x y  and ( , )G n x y  by the solid harmonic functions is 
that the dependence of the kernel on x and y are separated. If the expansions of the kernels are 
plugged into the boundary integral equation, the integrals explicitly associated y are only needed to be 
calculated once and can be used for any far-away field point x. Consequently the amount of work is 
O(Np) where p is the number of terms kept in the summation of the expansions. This estimate is based 
on the far field expansion and is therefore related to only one part of the distribution of 
sources/dipoles. For singularities that are close to each other, direct computations of the interactions 
are necessary.  
 
The integrals on the right-hand side of Eq.(4.1) over a subset of the integral surface denoted by Sy for 
x which is away from Sy can now be evaluated as 
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where ,n mM  and ,n mM  are the multiple moments centered at cy  and defined respectively as 
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The moments for a certain cell are obtained by adding the contributions of all the boundary elements 
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x which is away from Sy can now be evaluated as 
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The moments for a certain cell are obtained by adding the contributions of all the boundary elements 
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Here yc is the expansion center close to singularity point y and the overbar indicates the complex 
conjugate. The functions Rn,m and Sn,m are called solid harmonic functions, given as 
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where , ,  are the spherical coordinates of vector x. m
nP  is the associated Legendre function.  
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in that cell. An element is considered to be within the cell if the center point of the element drops in 
the cell. Only the moments in the leaf cells are calculated. The moments in a non-leaf cell is obtained 
by adding the contributions of children cells together. However, the moments in each child cell are 
expressed with respect to its own center cy . We therefore need to transfer the moment at cy  to the 
center of the parent cell cy .   
 

When the multipole expansion center is moved from 
M2M 

cy  to cy , we apply the following M2M 
translation 
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which is also valid for ,n mM . The M2M translations are used recursively from the lowest-level cells,  
i.e. the leaf cells, to the top levels.   
 

The local expansion at the field point x for the kernel 
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The coefficients ,n m LL x  are given by the following M2L translation 
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Here Lx  is the center of the local expansion. A similar expansion for the moment involving the 
integral of ( , )G n x y  is also valid. 
 
For a considered cell A, the M2L translations are only applied to the well-separated cells at the same 
level which belong to the neighborhood of the parent cell of A. The contributions from even further 
cells are inherited from its parent cell by using the L2L translations.  
 

By using the following L2L translations, a parent cell passes down its moments to its children cells 
L2L 
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where Lx  is the center of a mother cell and Lx  is the center of one of its children cell.  
 
The L2L translations are applied recursively from the top cells to the lower-level cells. The moments 
of a certain cell are obtained by summing up the contributions of the M2L translations and that of 
L2L.     
 

After the M2L and L2L operations, the moments in the leaf cells are all known. For a field point x, the 
contribution of the well-separated boundary elements in the boundary integral equation can be 

L2P 
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obtained by local expansions. For example, we have for /G n  kernel integral that 
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where Lx  is the center of the leaf cell. x  is the location of a field point in the cell. A similar 
expansion for the G kernel integral exists. The contributions from the nearby elements are obtained by 
the direct calculation. See Section 4.2.   
 
4.8.4 Selection of a proper solver 
 
Consideration on memory 
For an ordinary type of BEM, setting up the fully populated matrices needs 2O N  memory. The 
memory needed for the storage of a N N matrix with double precision is 
8 1024 1024 1024N N  Giga Bytes (GBs). In the wave-body analysis by the ordinary type of 
BEMs, we need at least two N N matrices. This is obvious from Eq.(4.11). That means we are 
limited to problems with 20000 unknowns for a PC with 4 GBs memory and to problems with 

30000 unknowns for a workstation with 8 GBs memory, considering that some additional memory 
is needed for the storage of other variables for instance the velocity potential and velocities on the 
body surface and the free surface. When the number of the unknowns is beyond the memory capacity 
of the computer source at hand, it is suggested that one choose the field solvers, e.g. the FEM, or the 
combination of FMM and BEMs.  
 
Consideration on CPU time 
As illustration, a linear NWT without the presence of structure was studied by different matrix solvers. 
Fig.4.13 shows the comparison of CPU time spent in the first time step of the calculation. The 
iterative HOBEM in the comparison uses the diagonal pre-conditioner (Saad & Schultz, 1986) which 
was widely used in the fully-nonlinear NWT analysis (see e.g. Kim et al.(1999) and Tanizawa (2000)) 
The block diagonal pre-conditioner (see e.g. Nishida & Hayami (1997) and Wang et al. (2005)) was 
used in the iterative FMM+HOBEM. Fig.4.14 shows an example of the boundary elements of the 
NWT and the oc-tree structures. The results in Fig.4.13 confirm that the FMM accelerated BEM is an 
asymptotically O(N) method while the ordinary iterative BEM is an O(N2) method.  
 
The CPU time by HOBEM shown in Fig.4.13 consists of setting up the fully-populated matrices and 
solving the matrix equation iteratively by GMRES. The CPU time by FMM+BEM includes setting up 
the diagonal and near-diagonal terms of the matrices, the multipole expansion coefficients and solving 
the matrix equation iteratively by GMRES. In the FMM+BEM used in Fig.4.13, we have used 100 
terms in the multipole expansions and the maximum number of sources/dipoles in a leaf cell was 200. 
A convergence criterion of O(10-4) was used in the iterative solvers of HOBEM and FMM+HOBEM.  
 
Even though the comparison shown in Fig.4.13 is made for only one time step, it gives indication of 
the CPU time for the frequency-domain and fully-nonlinear wave-body analysis. In the 
fully-nonlinear wave-body analysis, because the computational boundary is moving with the 
evolution of the solution, one needs to calculate the influence coefficients and solve the resulting 
equation system at each time step.  
 
It was also seen from the comparison that the FMM+HOBEM is faster than the HOBEM as long 
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as 1000N , which is in most cases true in 3D studies. That means the FMM+HOBEM is always 
preferred compared with iterative HOBEM solvers in both the frequency-domain analysis and the 
fully-nonlinear analysis.  
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Fig.4.13. Comparison of CPU time of the ordinary iterative HOBEM solver and that of the FMM accelerated 
HOBEM in the first step of a linear NWT analysis. The results are shown for different numbers of unknowns.  

 
Fig.4.14. An example of the meshes on the surfaces of numerical wave tank and the octree structure used in the 
FMM algorithm. 
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the influence matrix is not needed to be set up and invert once and can be used later on in all the time 
steps. Our numerical experiments on a workstation with 8GB memory showed that this strategy is 
even more time-efficient than the FMM+HOBEM solver for 20000N . However, this strategy 
needs more memory since the LU factors (or the inverse of the influence matrix) need some additional 
memory. It is suggested to use the FMM accelerated HOBEM for problems with unknowns more than 
20000. Suggestion on selection of the matrix solvers is listed in Table 4.1 based on our numerical 
experience. This may not always be true depending on the computer sources at hand. However, one 
should always consider a similar procedure here and choose an efficient and practical way of solving 
the large matrix system for 3D studies.  
 
Table 4.1 Empirical suggestion on selection of the matrix solvers for fully-nonlinear, frequency-domain and 
perturbation-based time-domain wave-body analysis. N is the number of unknowns. The LU-factorization used 
in the perturbation-based time-domain analysis requires that one calculates the influence matrices (and the 
inverse if necessary) and uses these matrices later in all the time steps. 
1: This number depends on the computer source at hand, especially the memory of the computer. 
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CHAPTER 5  

Use of the Body-Fixed Coordinate System in 

Weakly-Nonlinear Wave-Body Problems 

When a weakly-nonlinear wave-body problem is considered in an inertial coordinate system, 
high-order derivatives appear in the higher-order body boundary conditions and make it difficult to 
get convergent and accurate results, especially for bodies with sharp corners or high surface 
curvatures. In this chapter, a new method taking the advantage of the accelerated body-fixed 
coordinate system is proposed to avoid derivatives of the velocity potential on the right-hand side of 
the body boundary conditions. A domain decomposition method is applied with the use of the 
body-fixed coordinate system in the inner domain and the inertial coordinate system in the outer 
domain. The resulting boundary integral equation of the new method is valid for cases with and 
without sharp corners.  
 

5.1 Comparison of the weakly-nonlinear formulations in inertial 
and body-fixed coordinate systems 

5.1.1 Free-surface conditions 
The formulations of a weakly-nonlinear wave-body problem considering a small forward speed have 
been presented in Chapter 2 in both the inertial coordinate system and body-fixed coordinate system. 
In this section, we will discuss the difficulties associated with the inertial coordinate system and with 
body-fixed coordinate system, respectively. 
 
The free-surface conditions formulated in the inertial coordinate system (see Eq.(2.48) and Eq.(2.49)) 
are simpler than that in the body-fixed coordinate system (see Eq.(2.88) and Eq.(2.89)). The 
free-surface conditions in the inertial frame do not depend on the instantaneous rigid-body motions, 
while the body motions come into the free-surface conditions in the body-fixed coordinate system. 
This indicates that when the seakeeping of a ship with forward speed is considered by a 
frequency-domain approach, the solution procedure in the body-fixed coordinate system is more 
complicated than that in inertial coordinate system.  
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As it was mentioned in Section 2.6.1, the free-surface conditions based on Taylor expansion about z=0 
of the body-fixed coordinate system are only valid near the body when the distance between the origin 
of the coordinate system oxyz and the point (x, y, 0) is not too large.  
 
5.1.2 Body boundary conditions 
The body boundary conditions formulated in the inertial coordinate system is very complicated (see 
Eq.(2.56)- Eq.(2.58)). The second-order derivatives of the steady velocity potential in the first-order 
body boundary condition are associated with the so-called mj-terms. The mj-terms are important in the 
linear seakeeping analysis of ships with forward speed. For ships with point ends, the effects of 
mj-terms are more important at the ship ends. This may be explained by the fact that the ship ends are 
stagnation points in potential flow theory without flow separation, and that the mj-terms are associated 
with the first-order derivatives of the velocity of the basis flow at the mean body surface. This fact 
increases the complexity of the direct calculation of the mj-terms for ships without sharp corners, 
because the ships bows and sterns are normally with high surface curvatures. For ships with the 
transom stern, the stern cannot be considered as a point end. The fact that the flow leaves tangentially 
from the transom stern causes hull-lift damping (Faltinsen, 2005), which can be understood from the 
fact that the ship is a low-aspect ratio lifting surface beyond a Froude number based on the transom 
draft. 
  
The indirect way of treating the mj-terms is to use Stokes-like theorem. By assuming that the body 
surface is without sharp corner, the ship hull is wall-sided at the waterline, and the steady wave field 
can be approximated by the double-body flow, Ogilvie & Tuck (1969) used the Stokes theorem to 
reduce the second-order derivative of velocity potential in the integral equation by one in their studies 
of the forced heave and pitch of a ship of relevance for regular head sea waves. The cost of doing so is 
the evaluation of integrals involving the first-order derivatives and the normal derivative of the 
first-order derivatives of the Green function.  
 
The direct calculation of mj-terms was early attempted by Zhao & Faltinsen (1989a). Based on the 
fact that the singularity of the Rankine sources is weakened away from the body surface, they firstly 
calculated the second-order derivatives on some points offset from the body. The mj-terms are then 
obtained through extrapolation. This technique has been shown to be accurate for smooth bodies 
without sharp corners. Wu (1991) proposed to solve a series of Dirichlet-type problems using the 
first-order derivatives of velocity potential as the right-hand-side term of the condition on the mean 
body surface. A similar method was suggested by Chen & Malenica (1998) based on the idea of Wu 
(1991). There are also successful examples by using a higher-order boundary element method 
(HOBEM) for the calculations of the mj-terms, see for instance Bingham & Maniar (1996) and Chen 
et al. (2000).  
 
When the body is with sharp corners, the Taylor expansion about the mean body surface is invalid and 
the integral equation used for the smooth bodies is not applicable any more. This is associated with 
the fact that mj-terms are not integrable on the body surface. The leading order of the local solution 
near the sharp corner can be explained by a 2D corner flow (see Newman, 1977). The corner flow 
solution in the vicinity of the sharp corner can be written as  

1/
1( )W C Cz z ,              (5.1) 

where C1 and C are constants.  is defined as 2 /  with 0, 2  as the interior angle 
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of the body at the corner. The leading-order first-order and second-order derivatives of the velocity 
potential are 1/ 1( )O z  and 1/ 2( )O z . This indicates that the velocity at the sharp corner is always 
integrable. However, the derivatives of the velocity are integrable only when , which explains 
why the mj-terms at the sharp corners are not integrable. The reason why the integrals are not 
integrable when the body boundary condition is satisfied on the mean position of the body boundary 
is that the formulation of the body boundary condition is wrong with the presence of the sharp corner. 
The double-gradient term in the body boundary condition (see Eq.(2.56) - Eq.(2.58)) has been derived 
by a Taylor expansion about the mean body surface. This is not valid at a sharp corner.  
 
In order to avoid this difficulty, Zhao & Faltinsen (1989b) decomposed the velocity potential into two 
parts, with the first part satisfying the body boundary condition associated with the mj-terms, and the 
second part satisfying the body boundary condition with the mj-terms excluded. By doing that, they 
finally obtained an integral equation which is valid for cases with sharp corners.  
 
When the second-order solution is pursued, it involves the second-order derivatives of the first-order 
unsteady velocity potential and the second-order and third-order derivatives of the steady velocity 
potential on the body (see Section 2.4.2). It is not straightforward to generalize the indirect method 
using Stokes theorem for the integral of third-order derivatives on the body surface without sharp 
corners. Furthermore, if the body is with sharp corner, the method proposed by Zhao & Faltinsen 
(1989b) may in principle be extended to get a proper integral equation. However, we then have to 
divide the velocity potential into several parts since the second-order body boundary condition 
contains some terms similar to the mj-terms and terms involving the third-order derivatives. It may 
also be difficult to find the corresponding artificial velocity potential for all the mj-like terms. 
 
However, body boundary conditions described in the body-fixed coordinate system is very simple and 
without any derivatives on the right-hand sides. Therefore, the resulting boundary integral equation is 
valid for bodies with and without sharp corners. 
 
 

5.2 Domain-decomposition approach using body-fixed coordinate 
system in the near field 

The formulation in the body-fixed coordinate system presented in Section 2.6 can be directly applied 
to an interior problem, e.g. sloshing in tank, as long as the tank motion and the liquid motion in the 
tank are small. For a 2D tank under forced surge motion, Wu (2007) formulated the second-order 
sloshing problem in the body-fixed coordinate system and obtained a time-domain solution based on 
modal expansion. The purpose of his study was to identify the second-order sloshing resonance in a 
tank, i.e. a possible resonance occurring when the forcing frequency is half of a natural frequency. 
When it comes to an exterior problem, e.g. seakeeping of ships, the free-surface conditions Eq.(2.88) 
and Eq.(2.89) are only applicable to a small portion of the free surface near the body.  
 
In order to avoid derivatives on the right-hand side of the body boundary conditions of 
weakly-nonlinear wave-body problems, a new method based on domain decomposition and 
body-fixed coordinate system in the inner domain (near-field) was proposed by Shao & Faltinsen 
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82     Chapter 5 Use of the body-fixed coordinate system in weakly-nonlinear wave-body problems 

(2010a, 2010b) to avoid derivatives on the right-hand side of the body boundary conditions of 
weakly-nonlinear wave-body problems with/without forward speed. An inertial coordinate system is 
used in the outer domain. This section reviews the basis of the new method. Part of the materials 
presented in this section can also be found in Shao & Faltinsen (2010a, 2010b).  
 
As shown in Fig.5.1, a control surface (SC) is introduced to divide the computational domain into two 
parts, i.e. the inner domain and the outer domain. The inner domain is enclosed by a projection of the 
free surface on the oxy-plane near the body (SF1), the body surface (SB) and the control surface (SC). 
See also Fig.5.2. The outer domain contains the mean free surface away from the body (SF20), the 
mean position of the control surface SC0, the sea bottom Sbottom and the vertical surface connecting the 
free surface and the sea bottom. See also Fig.5.3. In the inner domain close to the body, the problem 
was solved in a body-fixed coordinate system, while the solution in the outer domain was obtained in 
an inertial coordinate system. The solutions of the inner and outer domains are then matched at the 
control surface. The body boundary condition based on this formulation is 'body exact' so that no 
derivatives are required on the right hand side of the body boundary conditions. The free-surface 
condition remains as a second-order approximation. It is called 'body exact' because the body 
boundary condition is formulated at the instantaneous position but only the mean wetted body surface 
area is considered. That means that the effect of the small variations of the wetted body surface due to 
the wave elevation and body motion will be handled by the Taylor expansion about the oxy-plane. The 
velocity potential and its normal derivative on SC are also related to those on SC0 by Taylor 
expansions, which will be used as matching condition between the inner domain solution and the 
outer domain solution. 
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Fig.5.1. Definition of the coordinate systems and the illustration of fluid domain, body boundary, free surfaces, 
control surface, bottom surface and damping zone.  
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We will show how the domain decomposition strategy works by taking the higher-order BEM as an 
example. A time-domain approach is followed which means that the scattered part of the velocity 
potential and wave elevation are zero at the initial time t=0. Applying the modified Green’s 3rd 
identity in the inner domain and the outer domain respectively, we obtain the following boundary 
integral equations relating the velocity potential, the Green function G(P, Q) and their derivatives   
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Here ( ) ( )k P  and ( ) ( )k P  are the velocity potential in the inner and outer domain, respectively. 
The superscript indicates the order of the solution. k=1 and k=2 mean the first-order and second-order 
solution, respectively. P denotes a field point and Q denotes the singularity position. The subscript I 
indicates the inner domain and II the outer domain. C(P) is the solid angle coefficient. n  is the 
normal vector defined as positive pointing out of the fluid domain.  
 
The first step to solve the integral equation by using the higher-order BEM is to discretize the 
boundary surfaces with a number of higher-order elements and use Eq.(4.3) - Eq.(4.5) to approximate 
the geometry, velocity potential, and the velocities on the boundaries by shape functions. The cubic 
shape functions in Eq.(4.6) will be used. 
 
After the discretization, the integrals on the boundary surfaces in Eq.(5.2) and Eq.(5.3) can thus be 
converted into a sum on the elements, each being calculated on the reference element. Eq.(5.2) can be 
rewritten as 

121 1( ) ( )
j1 1

1 1

( )121 1

j1 1
1 1

( ) ( ) , , ( , ) ,

, , ( , ) , , 1, 2.

NE
k k i

j
i j

NE k
i

i j j

GC P P N P Q d d
n

N G P Q d d k
n

J

J
    (5.4) 

NE  is the total number of elements on the boundaries of the outer domain. By assuming that the 
discretized equations are satisfied exactly at a set of collocation points, we obtain a system of 
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identity in the inner domain and the outer domain respectively, we obtain the following boundary 
integral equations relating the velocity potential, the Green function G(P, Q) and their derivatives   
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Here ( ) ( )k P  and ( ) ( )k P  are the velocity potential in the inner and outer domain, respectively. 
The superscript indicates the order of the solution. k=1 and k=2 mean the first-order and second-order 
solution, respectively. P denotes a field point and Q denotes the singularity position. The subscript I 
indicates the inner domain and II the outer domain. C(P) is the solid angle coefficient. n  is the 
normal vector defined as positive pointing out of the fluid domain.  
 
The first step to solve the integral equation by using the higher-order BEM is to discretize the 
boundary surfaces with a number of higher-order elements and use Eq.(4.3) - Eq.(4.5) to approximate 
the geometry, velocity potential, and the velocities on the boundaries by shape functions. The cubic 
shape functions in Eq.(4.6) will be used. 
 
After the discretization, the integrals on the boundary surfaces in Eq.(5.2) and Eq.(5.3) can thus be 
converted into a sum on the elements, each being calculated on the reference element. Eq.(5.2) can be 
rewritten as 
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NE  is the total number of elements on the boundaries of the outer domain. By assuming that the 
discretized equations are satisfied exactly at a set of collocation points, we obtain a system of 
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Here ijA  and ijH  are the influence coefficients. In Eq.(5.5), we have dropped the integrals on Sinf 
because the wave motion there is assumed to be very small. This is true if an efficient damping zone is 
used at the outer layer of the free surface so that most of the energy of the wave is damped out when it 
reaches Sinf. It is also a good approximation if Sinf is chosen sufficiently far away from the body, so 
that the wave motion has not reached Sinf, see Faltinsen (1977). The integrals on Sbottom do not 
explicitly show up in Eq.(5.5). Their influences are considered by choosing a Green function 
satisfying the sea bed condition. It implicitly means that a horizontally sea bed is assumed, because in 
general it is difficult to find a Green function satisfying the boundary condition for an uneven sea bed.  
 
Similarly we can get a set of equations for the inner domain 
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with NE being the total number of elements on the boundaries of the inner domain.  
 
In Eq.(5.5) and Eq.(5.6), both the velocity potential and its normal derivative on the control surfaces 
(SC0 in the outer domain and SC in the inner domain) are considered as unknowns. However, the 
quantities on SC0 in the outer domain can be related to those on SC in the inner domain. These 
relationships are the matching conditions of the inner-domain solution and the outer-domain solution. 
Because the body motions are assumed to be small and that the control surface is chosen to be not too 
far from the body (see Fig.5.1), we can take Taylor expansion from SC to SC0, which gives 
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Here (0)  is the zeroth-order velocity potential in the outer domain. Its corresponding part in the 
inner domain is (0) . Physically, (0) and (0)  can not be interpreted as exactly the same as the 
classical double-body basis flow (0)  defined in the inertial coordinate system. However, it is shown 
in Appendix A that, the solution of 0  and 0  to zeroth-order are the same as the inner and outer 
part of 0  respectively. Therefore, we can use 0  as the solutions of 0  and 0 .  
 
By putting Eq.(5.7) and Eq.(5.8) into Eq.(5.6), we get 
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                     (5.13) 
The double-node technique (e.g. Grilli & Svendsen, 1990) is used at the intersection lines of different 
surfaces where the normal vector is ill-defined. This brings modifications to the corresponding lines 
of equations in Eq.(5.5) and Eq.(5.13) and gives us the final algebraic equation system. A 
consequence of the described procedure is that the surface elements are time-independent.  
 
It is noticed that the dimension of the matrix equation is increased because of the introduction of the 
control surface and the boundary elements on it. However, the number of the elements on the control 
surface is small compared with that on the free surface. Furthermore, because a simple smooth 
geometry is used as the control surface, one can distribute fewer elements than that on the body 
without losing any accuracy.  

 
Fig.5.4. An example of the meshes on SB, SF1 and SC of the inner domain.  
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In principle, the control surface used in the method based on domain decomposition can be chosen 
arbitrarily. However simple and smooth geometries without sharp corner are always preferred. An 
example of the control surface is shown in Fig.5.4. Typical meshes on the free surfaces are shown in 
Fig.5.5. 

 

 
Fig.5.5. An example of meshes on the free surfaces SF1 and SF20. 

 
It is noticed from Eq.(5.9) - Eq.(5.12) that we still have to calculate higher-order derivatives of (0)  
on the control surface SC0. However, when the basis flow (0)  is being solved, the domain 
decomposition solver is switched off and no source/dipole distribution is distributed on the control 
surface. Since the control surface is enclosed by the computational boundaries of the water domain, 
the velocity potential (0)  and its high-order derivatives there can be calculated very accurately by 
using the boundary integral equation (BIE) and the spatial derivatives of the BIE. The first-order and 
second-order derivatives of (1)  on the control surface are much easier to calculate compared with 
that on the body, because we are free to construct relatively simpler geometry as the control surface. 
On the other hand, the solution at the control surface will always be regular even though it may be 
singular at the body surface. The integrals of the higher-order derivatives of steady velocity potential 
on the control surface are less important than that on the body surface. The values of these integrals 
decay depending on the distance between the control surface and the body surface. A qualitative 
estimation of the decay can be made by taking a hemisphere as an example and assuming the 
double-body flow as the basis flow. The double-body flow of a moving hemisphere can be obtained 
analytically (see also Section 4.6). The control surface is chosen as a hemisphere with radius R1. See 
Fig. 5.6 for illustration. The integrals of the first-order, second-order and third-order derivatives of 

(0)  on the control surface decay with 0 1/R R , 2
0 1/R R  and 3

0 1/R R , respectively. Assume 

0 1/R R  is small, then the results are what should be expected by the far-field expansions (see e.g. 
Newman, 1977) for a body in infinite fluid. In a case with general free-surface conditions, the decay 
of the velocity potential and its derivatives is slower than that of the double-body flow due to the 
wave effect.   
 
The domain decomposition based method with body-fixed coordinate system described in this section 
does not need any derivatives on the right-hand side of the body boundary conditions, and thus the 
resulting BIEs are integrable for bodies without submerged sharp corners. In principle, this method 
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can be generalized to multi-body interaction problems. However, increased complexity obviously 
occurs by using the body-fixed coordinate system for multi-body problems. The practicality of the 
procedure for multi-body interactions will need a dedicated investigation and it is not the focus of this 
study.  
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Fig. 5.6. Sketch of a hemispherical body and hemispherical type of control surface. 

 
 

5.3 Generation of incident wave field in body-fixed coordinate 
system 

The expressions for Stokes second-order wave can be found in many text books, for instance Dean & 
Dalrymple (1991). See also the introduction in Section 2.8 of Chapter 2. The description of the 
incident wave field in the body-fixed coordinate system is not straightforward. However, it is not 
necessary to separate the velocity potential and the wave elevation into the known incident part and 
the unknown scattered part, as it was done by for instance B chmann (2000) and Wang & Wu (2007). 
In the new method based on domain decomposition, the incident wave is only specified in the outer 
domain which has a formulation in the inertial coordinate system. In the inner domain, the total 
velocity potential and the total wave elevation are solved through the free-surface conditions Eq.(2.88) 
and Eq.(2.89) in Section 2.6. Physically the free-surface conditions in the outer domain act as a wave 
generator. The generated incident wave enters the inner domain and is then influenced by the body. A 
damping zone will be used in the outer layer of the free surface in the outer domain. The damping 
zone applies only for the scattered part of the waves and its nonlinear interactions with the incident 
waves.  
 
The boundary integral equations Eq.(5.5) and Eq.(5.13) are formulated by using the total velocity 
potentials in the outer and inner domain, respectively. When the incident wave is prescribed in the 
outer domain, the contributions of the incident part of the velocity potential ( )k  should be moved to 
the right-hand sides of Eq.(5.5) and Eq.(5.13) and treated explicitly.
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5.4 The consistency between body-fixed coordinate system and 
inertial coordinate system  

The coordinate systems are nothing but mathematical tools used to facilitate the analysis of a physical 
problem. That means the method using the body-fixed coordinate system should be able to give 
consistent results with the methods in inertial coordinate systems. In a weakly-nonlinear problem, the 
difference between the results of the body-fixed coordinate system and the inertial coordinate system 
are expected be of higher order. In order to demonstrate the consistency between body-fixed 
coordinate system and inertial coordinate system, we will firstly consider two simple cases with 
analytical solutions. Both of them are 2D cases. For the purpose of verifying the 
domain-decomposition based method presented in Section 5.2, more time-domain results on the 
first-order and second-order forces/moments on floating bodies in waves will be shown in Chapter 7 
and Chapter 8. 
 
Case 1: Forced oscillation of an infinitely long circular cylinder 
The first case considered here is an infinitely long horizontal circular cylinder under forced sinusoidal 
surging motion. Infinite fluid domain is assumed. This case rules out the influence of the free surface. 
All the nonlinearities in the solution are due to the body boundary conditions. The definition of the 
problem is shown in Fig.5.7.  

 

Fig.5.7. Definition of a circle under forced sinusoidal surge motion. 
  
The first-order and second-order body boundary conditions (Eq.(B.4) and Eq.(B.5)) formulated in the 
inertial coordinate system is based on Taylor expanding the exact body boundary condition about the 
mean body position. Thus we have implicitly assumed that the amplitude of the sinusoidal surge 
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motion is small. However, the body boundary condition formulated in the body-fixed coordinate 
system is body exact and valid for large body motions.  
 
The boundary value problems are solved analytically both in the inertial coordinate system and the 
body-fixed coordinate system. The details of the derivation are given in Appendix B. The strategy of 
solving the boundary integral equation analytically has been applied in the solution of a moving circle 
in infinite fluid with constant speed (see e.g. Faltinsen & Timokha (2009) and Shao (2009)). It has 
also been used by Shao & Faltinsen (2008) to study the surging and heaving of a semicircle with 
infinite-frequency free-surface condition (see also Section 6.5).  
 
It is seen from Eq.(B.11) and Eq.(B.14) that the second-order approximation of the hydrodynamic 
pressure is the same as the exact solution. This indicates the consistency of the body-fixed coordinate 
system and the inertial coordinate system.  
 
Case 2: Forced oscillation of a 2D rectangular tank 
The second case considered is a 2D rectangular sloshing tank under forced sinusoidal surge motion. 
See Fig.5.8 for the definition. The problem is solved up to second order in both the inertial coordinate 
system and body-fixed coordinate system by assuming a steady-state solution, which means the 
transient effects are not considered. The response is assumed to be O  where the small parameter 

 characterizes the order of magnitude of the forced surge amplitude relative to the breadth of the 
tank. The general formulation of the problem in inertial coordinate system can be found in Section 2.4, 
while the formulation in body-fixed reference frame was given in Section 2.6. 

 
Fig.5.8. Definition of a 2D rectangular tank under sinusoidal surge motion. 

 
In reality, the transient effects are very important in the sloshing tank. This is due to the fact the 
damping in a sloshing tank is very small. The potential damping which is associated with the radiated 
wave in an exterior problem is zero in a tank. The damping sources in a sloshing tank are discussed in 
Faltinsen & Timokha (2009). A distinct feature of the sloshing motion was modulated (or beating) 
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waves as a consequence of interaction between transient and forced oscillations of the free surface 
flow. A frequency analysis by Rognebakke & Faltinsen (1999) showed the presence of both the lowest 
natural frequency and the forced oscillation frequency. Therefore, a steady-state solution would not 
capture this behavior. Faltinsen (1978) presents a linear initial value solution for 2D sloshing in a 
harmonically oscillating rectangular tank. See also Faltinsen & Timokha (2009) and Shao (2009). A 
second-order initial value problem was solved by Rognebakke & Faltinsen (1999) using a formulation 
in the inertial coordinate system. However, in their derivation of the second-order solution, only the 
first mode in the first-order solution was considered in the forcing term of second-order free-surface 
condition. Later, the same problem was solved by Wu (2007) to second order in the time domain by 
using a formulation in the body-fixed coordinate system. The complete first-order solution was 
considered in the second-order forcing terms.  
 
On the other hand, strong nonlinear effects matter in many cases, indicating that it is not valid to 
assume the response to be of O . This occurs in cases, for instance, at resonance frequency, with 
large forcing amplitude or relatively shallow liquid depth. Then one needs a proper nonlinear 
multimodal theory (e.g. Faltinsen & Timokha, 2009) which is out of the scope of this thesis.   
 
The purpose of solving the steady-state sloshing problem by assuming the fluid response to be O  
is just to show the consistency between the body-fixed coordinate system and the inertial coordinate 
system. The details of the derivations are given in Appendix C. The solutions obtained are 
semi-analytical based on modal expansions.  
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CHAPTER 6 

Studies on Two-Dimensional Weakly-Nonlinear 

Problems 

The accuracy of the numerical method is an important issue. With the purpose of verification, studies 
were carried out in some two-dimensional cases, including  

 The steady-state third-order solution of a sloshing tank 
 Free oscillations and forced oscillations in a rectangular tank  
 Stokes-drift effect and numerical simulation of the Stokes second-order waves 
 Secularity conditions and numerical simulation of the Stokes third-order waves 
 Second-order diffraction of a horizontal cylinder  
 Second-order radiation of a horizontal cylinder 

 
The numerical results based on the 2D quadratic boundary element method (QBEM) are compared 
with some existing theoretical results and experimental results. Good agreements have been obtained. 
All the studies carried out in the time domain are based on the formulation in the inertial coordinate 
system (see Chapter 4). Parts of the results shown in this chapter have been presented in the 23rd 
International Workshop on Water Wave and Floating Bodies (IWWWFB). See Shao & Faltinsen 
(2008).  
 
The study in this chapter is relevant for cases when the two-dimensional effects are dominant and the 
nonlinearity matters. One example is a long barge or flexible tube in the beam sea. When combined 
with a proper strip theory, the analysis in this chapter may also be extended to study the second-order 
wave loads on a slender ship.  
 

6.1 The steady-state third-order solution of sloshing in a 
rectangular tank 

One of the difficulties in solving a weakly-nonlinear hydrodynamic problem is associated with the 
higher-order derivatives in the boundary conditions. In this section, the sloshing in a two-dimensional 
rectangular tank is studied to third order by using a combined numerical and analytical approach, 
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which was proposed by Solaas (1995) and Solaas & Faltinsen (1997) for two-dimensional tanks with 
arbitrary tank shapes. In this method, the natural frequencies and corresponding natural modes are 
obtained by a boundary element formulation. The higher-order derivatives appear in the nonlinear 
free-surface conditions will be calculated by the curve-fitting technique described in Section 3.6. The 
steady-state third-order analytical results for the two-dimensional rectangular tank can be found in 
Faltinsen (1974b) and Solaas (1995). We will compare the numerical results with the analytical results 
in order to demonstrate the accuracy of our 2D QBEM solver and that the higher-order derivatives in 
the free-surface conditions can be obtained accurately by standard numerical methods.   
 
The tank was assumed to be oscillating harmonically with small amplitudes 1 1 sina t  in the 
transverse/surge direction. See the definition in Fig.5.8. The general formulation of the third-order 
steady-state sloshing problem by Faltinsen (1974b), Solaas (1995) and Solaas & Faltinsen (1997) is 
used. A Moiseev (1958) type of ordering is followed for forced oscillations near resonance, which 
means the fluid response is of the same as or lower orders than the forcing. This formulation is 
essentially different with the ordering adopted in the weakly-nonlinear formulation presented in 
Chapter 2, where the responses are assumed to be as the same as or higher orders than the forcing. 
The reason why we have to use a different ordering for sloshing near the resonance, e.g. Moiseev type 
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and the velocity potential for the tank motion is  
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The constant N will be determined in the third-order problem.  
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forced oscillation is equal to the first natural frequency, i.e. 1 . In Table 6.1, the first 10 of the 
analytically obtained eigenperiods are compared with the eigenperiods obtained from the numerical 
method with 40, 80, 160 quadratic elements on the free surface. The element length is taken to be 
constant over both the free surface and the tank surface. With 160 elements on the free surface, the 
total number of element is 480 and the length of the elements is 1/160 m. It is seen from Table 6.1 that 
the values of the natural frequencies are getting closer to the analytical results when the number of the 
elements increases. The most accurate result is obtained for n=1, i.e. the first natural period, while the 
difference between the numerical results and the analytical results increase with increasing n. This can 
be understood that higher modes correspond to shorter wave length and the number of the boundary 
elements distributed within each wave length is smaller in higher modes.  
 
Table 6.1. Comparison between analytically and numerically obtained eigenperiods for a rectangular tank with 
breadth 2a=1.0m and water depth h=0.5m. Numerical results are given for the cases with 40, 80 and 160 
quadratic elements on the free surface. 

n Tn analytical Tn numerical 
Nfree=40 

Tn numerical 
Nfree=80 

Tn numerical 
Nfree=160 

1 1.182017 1.181971 1.182010 1.182016 
2 0.801937 0.801815 0.801918 0.801933 
3 0.653610 0.653381 0.653574 0.653601 
4 0.566000 0.565644 0.565942 0.565985 
5 0.506244 0.505744 0.506163 0.506224 
6 0.462135 0.461479 0.462029 0.462108 
7 0.427854 0.427027 0.427720 0.427820 
8 0.400221 0.399212 0.400057 0.400180 
9 0.377332 0.376130 0.377136 0.377282 
10 0.357968 0.356565 0.357739 0.357911 

 
The first-order, second-order and third-order solutions are also compared with the analytical results. 
Fig.6.1 and Fig.6.2 show the results for 1  and 2  in the first-order and second-order velocity 
potential, respectively. The results for 0

3 , 1
3  and 3

3  in the third-order solution are presented 
in Fig.6.3, Fig.6.4 and Fig.6.5, respectively. 0

3  and 1
3  are associated with the cos t  terms 

of the third-order results. 3
3  is associated with the cos 3 t  terms. The numerical results in 

Fig.6.1 - Fig.6.5 are given for Nfree=80 and 160. It is seen from Fig.6.1 that Nfree=80 is sufficient for 
the first-order results. However, some small differences between the numerical results with Nfree=80 
and the analytical results are observed in the second-order and third-order results. The results were 
improved by using a finer mesh resolution with Nfree=160.  
 
The author of this thesis has also tried to study the same problem by using both the constant boundary 
element method (CBEM) and the linear boundary element method (LBEM). It turned out that the 
first-order results based on CBEM show small wiggles near the intersections between the free surface 
and the tank walls. The consequence was that large errors occur in the second-order and third-order 
results near the intersections, because the higher-order derivatives in the forcing terms in the 
second-order and third-order free surface conditions are calculated numerically based on the 
lower-order solutions. The reason for the wiggles near the intersections is probably that the CBEM 
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satisfies the boundary conditions at the mid-point of the element, therefore the continuity of the 
velocity potential at the intersection points are not guaranteed. The wiggles disappeared when the 
LBEM or the QBEM was used. In the LBEM and QBEM, the double-node technique has been used to 
enforce the continuity of the velocity potential at the intersection points between the free surface and 
the body surface. See Section 3.2 for the details of the double-node technique. The higher-order 
methods, e.g. QBEM, are preferred, because the convergences of higher-order methods are much 
faster than that of the lower-order ones.  
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Fig.6.1. Comparison between the analytical and the numerical results for 1  in the first-order solution (see 
Eq.(6.3)) for a rectangular tank with breadth 2a=1.0m and water depth h=0.5m. The oscillation frequency is 

1 . Numerical results are given for the cases with 80 and 160 quadratic elements on the free surface. 
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Fig.6.2. Comparison between the analytical and the numerical results for 2  in the second-order solution (see 
Eq.(6.3)) for a rectangular tank with breadth 2a=1.0m and water depth h=0.5m. The oscillation frequency is 

1 . Numerical results are given for the cases with 80 and 160 quadratic elements on the free surface. 
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velocity potential at the intersection points are not guaranteed. The wiggles disappeared when the 
LBEM or the QBEM was used. In the LBEM and QBEM, the double-node technique has been used to 
enforce the continuity of the velocity potential at the intersection points between the free surface and 
the body surface. See Section 3.2 for the details of the double-node technique. The higher-order 
methods, e.g. QBEM, are preferred, because the convergences of higher-order methods are much 
faster than that of the lower-order ones.  
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Fig.6.5. Comparison between the analytical and the numerical results for 3

3  in the third-order solution (see 
Eq.(6.3)) for a rectangular tank with breadth 2a=1.0m and water depth h=0.5m. 1 .  
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6.2 Free oscillations and forced oscillations in a rectangular tank 

The problem the author wish to analyze in this section is the time-evolution of transient waves in a 
two-dimensional rectangular tank. Keeping in mind that the final goal of this study is to simulate the 
nonlinear wave-body interactions, the simple test cases studied here permit us to concentrate on the 
difficulties associated with the presence of free-surface piercing bodies. The free oscillation and 
forced oscillations studied by Cointe et al. (1988) are re-investigated in this section.  
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Fig.6.6. Sketch of the rectangular tank. 

 
In the free oscillation problem, there is no energy supplied into the fluid domain. For simplicity, we 
assumed the velocity potential and its time derivative are zero at t=0. The motion of the liquid is, 
therefore, only due to its initial elevation. The analytical solution up to second order of this initial 
boundary value problem can be found in, for instance Cointe et al. (1988).  
 
The free oscillation in the 2D rectangular tank is studied in time domain by using the time-domain 
QBEM presented in Chapter 3. In the numerical simulation, L=1.0m, h=0.2m and 0 =0.02cos( )Z x  
m are used, where L is the length of the tank. h is the water depth and 0Z  is the initial displacement 
of free surface. See the definitions in Fig.6.6.  
 
The nonlinear free-surface conditions formulated in the inertial coordinate system, i.e. Eq.(2.48) and 
Eq.(2.49) are used. Note that Eq.(2.48) and Eq.(2.49) are expressed in three dimensions with a small 
forward speed effect included. Therefore, when applied to a two-dimensional case without forward 
speed, the y-dependent terms and the terms associated with the forward speed have to be dropped. For 
free oscillations, the first-order and second-order body boundary conditions are zero-Neumann 
conditions. The fourth-order Runge-Kutta method described in Section 3.3 is used for the time 
stepping of the free-surface conditions. The time increment /100t T  is used in the numerical 
calculations. Here T is the first natural period of the tank.  
 
Fig.6.7 and Fig.6.8 show the first-order and second-order components of the wave elevation at x=L/8, 
respectively. Very good agreement between the numerical results and analytical results has been 
obtained.  
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Fig.6.7. The first-order component of the wave elevation at x=L/8. L=1.0m, h=0.2m and 0 =0.02cos( )Z x  m 
are used in the numerical simulations. 
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Fig.6.8. The second-order component of the wave elevation at x=L/8. L=1.0m, h=0.2m and 0 =0.02cos( )Z x  
m are used in the numerical simulations. 
 
In the forced oscillation problem (wave maker problem), the fluid is assumed to be at equilibrium and 
that the energy is supplied for 0t  through the motion of the left vertical wall, i.e. SW1 in Fig.6.6.  
 
As a useful test to check the accuracy of the second-order numerical results, Cointe et al. (1988) 
suggest the following second order equation to control the mass conservation: 

(2) (1)
10

( , ) ( ) (0, )
L

x t dx l t t .                 (6.5) 

Here L is the length of the tank. (1) (0, t) is the first-order wave elevation at SW1. (2) (x,t) is the 
second-order component of the wave elevation. 1( )l t  is the displacement of SW1. In this study we 
have used 1( )l t =F(t) 1 sin( )wA t . F(t) is a sinusoidal ramp function applied over the first two wave 
periods. 1wA  is the amplitude of the displacement of SW1.  
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Eq.(6.5) expresses that the volume of fluid scanned by the wave maker (SW1) above the x-axis is 
distributed over the whole second-order free-surface elevation. The conservation of mass correctly to 
first order can be checked by  

(1)
10

( , ) ( )
L

x t dx l t h ,               (6.6) 

where h is the mean water depth.  
 
The first-order and second-order free-surface conditions in the forced oscillations are the same as that 
of the free oscillations. The general formulation of the first-order and second-order body boundary 
conditions was given in Eq.(2.56) - Eq.(2.58). The body boundary conditions on SW2 and the tank 
bottom are homogeneous Neumann conditions. The first-order and second-order body boundary 
condition on SW1 are respectively 

1
1dl t

x dt
,                   (6.7) 

2 12

1 2l t
x x

.                (6.8) 

 
The fourth-order Runge-Kutta method described in Section 3.3 is used for the time evolution of the 
free-surface flow. The time increment /100t T  is used in the numerical calculations. 

2 /T  is the period of the forced oscillation.  
 
The relative errors of the first-order and second-order mass conservation at t 2.15T are plotted in 
Fig.6.9, showing the convergence with the increasing number of elements on the free surface. The 
relative errors at first-order and second-order, i.e. 1err  and 2err  in Fig.6.9, are defined 
respectively as  

(1)
11 0

1

( ) ( , )

( )

L
l t h x t dx

err
l t h

,               (6.9) 

(1) (2)
12 0
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the other hand, the sum-frequency components, i.e. i j and i  components, of the 
second-order waves have much shorter wave lengths, which means that higher-resolution meshes are 
needed in order to achieve the results of the same accuracy as the first-order results. Here i  (i=1, 2, 
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distributed over the whole second-order free-surface elevation. The conservation of mass correctly to 
first order can be checked by  
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Fig.6.9. The first-order and second-order relative errors of the mass conservation versus the 1/N. N is the 
number of nodes on the free surface. 
 
 

6.3 Stokes-drift effect and numerical simulation of the Stokes 
second-order waves 

The numerical wave tank (NWT) has received a lot of interest and exhaustive review of the progress 
in the development of numerical wave tank can be found in, for instance, Kim et al. (1999) and 
Tanizawa (2000). Most of the numerical wave tanks are developed following a fully nonlinear 
formulation. There also exist some studies on the numerical wave tanks by using a finite-order Stokes 
theory, e.g. Büchmann (1995), Zhang & William (1996, 1999) and Stassen et al.(1998).  
 
In this section, a two-dimensional numerical wave tank is implemented by using the time-domain 
QBEM presented in Chapter 3. The purpose is to reproduce the Stokes second-order waves. The 
formulation of the boundary conditions based on finite-order Stokes theory in the inertial coordinate 
system is used.  
 
The first-order and second-order free surface conditions follow Eq.(2.48) and Eq.(2.49). In order to 
make use of Eq.(2.48) and Eq.(2.49), we have to ignore the terms associated with y-coordinates and 
the forward speed (and steady velocity potential). Furthermore, ( )m

in  and ( )m
in  (m=1, 2) are zero in 

this wave-maker problem.  
 
In order to generate Stokes waves, the velocity profile from Stokes wave theory is introduced on the 
mean position of the SW1. See Fig.6.6 for the definition of SW1. There are other kinds of the wave 
makers, such as the piton-type and flap-type wave makers which are used in the physical tanks. The 
submerged sources have also been to generate waves, e.g. Brorsen & Larsen (1987). The explanation 
of the linear wave-maker theory for the piston-type and flap-type wave makers can be found in Dean 
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& Dalrymple (1991). The complete second-order wave-maker theory can be found in, for instance, 
Schäffer (1996). One problem associated with the piston or flap wave makers is the generation of the 
spurious free waves. A second-order signal has to be given to the wave maker to suppress the spurious 
free-wave generation. See for instance Madsen (1971) and Schäffer (1996). If the Stokes wave 
velocity profile is input to the control surface at SW1, no second-order free waves will be generated. 
However, it does not mean that the way of generating Stokes waves by feeding velocity profile at the 
control surface (SW1) is without problems. The second-order mass transport known as the Stokes drift 
leads to the increase of the mass in the numerical wave tank, and therefore increase the mean water 
level. This is not a problem if one is only interested in the first-order waves. However, the influence of 
this mass transport to the second-order component of the wave elevation is not ignorable since they 
are of the same order of magnitude. The second-order rate of the mass transport can according to, for 
instance Dean & Dalrymple (1991), be predicted as  

2

2
gA kD .                      (6.11) 

where g is the gravity acceleration. k is the wave number.  is the wave frequency. A is the linear 
wave amplitude.   
 
In order to exam the effect of mass transport through SW1, we have firstly switched off the numerical 
damping zone and the active wave absorber. That means the body boundary condition at the tank wall 
SW2 and the tank bottom are all zero-Neumann conditions. The following parameters have been used:  

0.5 m ; 0.1A m ; 15 23.562L m ; 5h m ,       (6.12) 

where  and A are the linear wave length and the linear wave amplitude, respectively. L and h are 
the tank length and water depth, respectively.  
 
A sinusoidal ramp function over the first four wave periods is applied to the velocity profile feed on 
SW1. The estimated time Te for the wave front to arrive at SW2 can be estimated by the group velocity 

/gc d dk , regardless of the effect of the ramp function. It gives Te=30T. The simulation is 
stopped at t=20T, so that the waves generated by the wave maker have not arrived at SW2 and that the 
wave reflect from SW2 is sufficiently small. 20 quadratic elements per linear wave length are used in 
the QBEM solver and /100t T  is adopted in the time marching of the free surface conditions. 
The numerical techniques associated with the two-dimensional time-domain QBEM have been 
discussed in Chapter 3 and will not be repeated here. The resolution of the meshes and the time 
increment was seen to be sufficient for a second-order problem by performing the spatial and 
temporal convergence study, which will not be shown here. 
 
Fig.6.10 and Fig.6.11 show the first-order and second-order component of the wave profile at t=20T. 
The numerical results are compared with the analytical results by Stokes second-order wave theory. 
The first-order numerical results agree well with that of the given by Stokes theory, while large 
difference was found between the second-order numerical and theoretical results. A close look at the 
time history of the second-order wave elevation indicates that the mean water level (or mass) in the 
tank is approximately linearly increasing with time, and the total second-order results were destroyed 
due to this increasing of mass. The mean water level is defined as the integral of the wave elevation 
along the tank divided by the tank length, i.e. 
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stopped at t=20T, so that the waves generated by the wave maker have not arrived at SW2 and that the 
wave reflect from SW2 is sufficiently small. 20 quadratic elements per linear wave length are used in 
the QBEM solver and /100t T  is adopted in the time marching of the free surface conditions. 
The numerical techniques associated with the two-dimensional time-domain QBEM have been 
discussed in Chapter 3 and will not be repeated here. The resolution of the meshes and the time 
increment was seen to be sufficient for a second-order problem by performing the spatial and 
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Fig.6.10 and Fig.6.11 show the first-order and second-order component of the wave profile at t=20T. 
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difference was found between the second-order numerical and theoretical results. A close look at the 
time history of the second-order wave elevation indicates that the mean water level (or mass) in the 
tank is approximately linearly increasing with time, and the total second-order results were destroyed 
due to this increasing of mass. The mean water level is defined as the integral of the wave elevation 
along the tank divided by the tank length, i.e. 
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Fig.6.10. Comparison of the first-order component of the wave profile at t=20T. T is the linear wave period. The 
size of the tank and the wave parameters in Eq.(6.12) are used in the numerical simulation.  
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Fig.6.11. Comparison of the second-order component of the wave profile at t=20T. T is the linear wave period. 
The size of the tank and the wave parameters in Eq.(6.12) are used in the numerical simulation.  
 
However, examination of the net flux showed that net flux through all the computational boundaries 
enclosing the computational water domain are negligible and the mass increasing observed in the 
second-order results is not due to the errors of the QBEM solver. See Fig.6.12 and Fig.13 for the time 
history of the first-order and the second-order net flux through the boundaries. The net flux through 
all the computational surfaces is defined as  
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It is also believed that the mass increase observed in the second-order results is not due to the set 
down effect. According to Stokes second-order wave theory, the set down of the mean water level is 
zero for deepwater regular waves. The wave studied here can be considered as a deepwater case, since 
the ratio between the water depth and the wave length is / 3.0h . See e.g. Faltinsen (1990). 
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Fig.6.12. Time history of the first-order mass flux through the computational boundaries enclosing the 
computational water domain. The size of the tank and the wave parameters in Eq.(6.12) are used in the 
numerical simulations.   
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Fig.6.13. Time history of the second-order mass flux through the computational boundaries enclosing the 
computational water domain. The size of the tank and the wave parameters in Eq.(6.12) are used in the 
numerical simulations. 
 
In Fig.6.14, the mass change observed in the second-order results is compared with the mass transport 
through SW1 due to Stokes drift (see Eq.(6.11)). The dash line representing the numerical results is 
parallel to the solid line showing the analytical prediction. The mass change shown in Fig.6.14 has 
been divided by 2 / 2gA k , therefore the solid line is a straight line through (0, 0) with slope equal 
to 1. It is seen from Fig.6.14 that, the mass change observed in the second-order simulation can be 
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explained by the Stokes drift in Eq.(6.11). Note that the offset of the two curves is due to the ramp 
function which is used to give a smooth start of the flow. 
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Fig.6.14. The mass change m  due to the second-order mass transport through SW1. The size of the tank and 
the wave parameters in Eq.(6.12) are used in the numerical simulations.  
 
In order to simulate the Stokes second-order waves in a numerical wave tank by feeding the velocity 
profile at the control surface SW1, we have to minimize the effect of the mass transport. The strategy 
adopted in this study is to use a damping zone mechanism that can take mass out of the system. A 
damping zone is applied at the end of the tank (near to SW2 in Fig.6.6). The damping zone mechanism 
is described in Section 3.4. From Eq.(3.18), we see that an important feature of this damping zone 
mechanism is that it can ‘drain’ water out of the tank. Numerical experiments showed that both the 
first-order and the second-order results are not sensitive to the damping coefficients as long as the 
coefficient  (see Eq.(3.21)) is chosen between 10-6 and 10-5. An active wave absorber is applied on 
SW2, which is coupled with the damping zone. See details in Section 3.4 for the combined numerical 
damping zone and the active wave absorber.  
 
After the activation of the damping zone and the wave absorber, the numerical results agree well with 
the analytical results given by the Stokes second-order wave theory. See the comparisons in Fig.6.15 - 
Fig.6.18. In order to reduce the computational cost, the tank size is chosen to be 6L  and h=1m. 
The length of the damping zone is 2 . The following parameters are used in the calculations  

0.5 m ; 0.1A m ; 6 9.425L m ; 1h m .       (6.15) 

The duration of the numerical simulation is 200T, with T the linear wave period. Fig.6.15 and Fig.6.16 
show respectively the time histories of the first-order and the second-order wave elevations at a 
position 3x , i.e. the mid of the tank. Only the results in the last 10 periods are shown. It is seen 
that even though the simulation was made over a very long period, there is no visible wave reflection 
from the numerical damping zone and the vertical surface SW2. In Fig.6.17 and Fig.6.18, the linear and 
second-order wave profiles at the end of the simulation, i.e. t=200T, are shown. Comparisons are 
made with the analytical results. The good agreement between the numerical and analytical results 
indicates the capability of the time-domain QBEM solver presented in Chapter 3 in solving the 
second-order wave-body problems.   
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The experience obtained here also applies to the fully-nonlinear numerical wave tank which generates 
waves by feeding the Stokes wave velocity profile at control surface. One would expect second-order 
and higher-order mass transports through the control surface. The mass transport would not cause 
numerical problems associated with mass increase in the tank if a real wave maker, e.g. the piston or 
flap wave maker, is used. In that case, the returning current will occur due to the second-order mass 
transport.  
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Fig.6.15. Time history of the first-order component of wave elevation of a point with a distance to the wave 
maker 3x . Only the result for the last 10 linear wave period is shown. The size of the tank and the wave 
parameters in Eq.(6.15) are used in the numerical simulations.  
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Fig.6.16. Time history of the second-order component of wave elevation of a point with a distance to the wave 
maker 3x . Only the result for the last 10 linear wave period is shown. The size of the tank and the wave 
parameters in Eq.(6.15) are used in the numerical simulations.  
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The experience obtained here also applies to the fully-nonlinear numerical wave tank which generates 
waves by feeding the Stokes wave velocity profile at control surface. One would expect second-order 
and higher-order mass transports through the control surface. The mass transport would not cause 
numerical problems associated with mass increase in the tank if a real wave maker, e.g. the piston or 
flap wave maker, is used. In that case, the returning current will occur due to the second-order mass 
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Fig.6.17. The linear component of the wave profile at t=200T. The size of the tank and the wave parameters in 
Eq.(6.15) are used in the numerical simulations.  

 
Fig.6.18. The second-order component of the wave profile at t=200T. The size of the tank and the wave 
parameters in Eq.(6.15) are used in the numerical simulations. 
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It was shown in the previous section that the present time-domain HOBEM is able to reproduce the 
Stokes second-order waves with satisfactory accuracy. This makes it possible for us to pursue an even 
higher-order solution, i.e. the third-order solution. The third-order problem represents one of the most 
challenge problems in the weakly-nonlinear analysis. Another difficult problem in the 
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108                      Chapter 6 Studies on two-dimensional weakly-nonlinear problems 

weakly-nonlinear analysis is the second-order problem with the presence of the forward speed or 
current effect, which we will look into in Chapter 8. 
 
It is known (Whitham (1999), Section 13.13) that, in order to get physical result, one has to impose a 
secularity condition at third-order in the regular perturbation expansion of the velocity potential for a 
propagating wave. The secularity condition acts as a solvability condition. A correction must be done 
to the wave length or wave frequency to avoid unphysical results. Otherwise the wave amplitude 
would slowly vary with time t or with the horizontal distance x. In the two-dimensional numerical 
wave tank, if no secularity condition is enforced, the consequence would be that the third-order 
component of the wave amplitude increases steadily as the wave travels down the wave tank. 
Therefore the third-order wave amplitude may become of the same order of magnitude as the 
second-order or even the first-order wave amplitude. This violates the assumption of the Stokes 
expansion that the third-order component of wave elevation and velocity potential are of higher order 
than that of the second order and first order. A typical result of the third-order component of wave 
elevation without secularity condition is shown in Fig.6.19. It is seen that the third-order wave 
amplitude increases linearly with the horizontal coordinate x. This phenomenon was also observed in 
the third-order numerical wave tank by Stassen et al. (1998). Büchmann (1995) in his master thesis 
developed a third-order numerical wave tank in order to simulate weakly-nonlinear waves. However, 
nothing was reported whether he has used a solvability condition in the third-order solution. 
 
By taking the deepwater third-order wave as an example, Stassen et al. (1998) explained the reason 
why the third-order wave amplitude is linearly increasing with the horizontal coordinate. We will 
explain the increasing of the third-order wave amplitude with the horizontal coordinate in Fig.6.19 by 
starting with a general case with finite water depth. The analytical solution of the third-order problems 
formulated in an unbounded domain for the case of the regular waves in finite depth is (see Section 
2.8): 
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Comparison between Eq.(6.21) and Eq.(6.22) suggests that  
2 2 31 ( )k k k A C O ,             (6.23) 

with C as a constant.  is the small parameter associated with the wave slope.  
 
Plugging Eq.(6.23) into Eq.(6.21) and neglecting the terms higher than 2( )O , we can explicitly 
express C as 
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C
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where  is defined in Eq.(6.19).  
 
In deepwater cases, we have 1  and C=1. Therefore, Eq.(6.21) and Eq.(6.23) becomes 
respectively  

2 2 21k g k A ,              (6.25) 

and  
2 2 31 ( )k k A k O .             (6.26) 

 
The expression of 3 ,x t  can be obtained by subtracting Eq.(6.16) and Eq.(6.17) from Eq.(6.18). 
Note that we have not replaced k by k  in Eq.(6.16) and Eq.(6.17). Making use of Eq.(6.23) and 
Taylor expanding the resulting 3 ,x t  around x=0, we obtain for the wave in finite water depth 
that 
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where C is given by Eq.(6.24).  
 
Although Eq.(6.27) is valid only for small values of x, it shows under this restriction that the 
third-order solution grows linearly with the horizontal coordinate x and the slope is Ck3A3. 
 
Fig.6.19 shows the third-order component of wave profile at a time step when the steady-state 
solution has been obtained. The solid line represents the numerical wave profile. The dash line is the 
theoretical envelope of the third-order component of the wave amplitude, which can according to 
Eq.(6.27) be written as 

3 3( ) , 0.f x Ck A x x              (6.28) 

The following parameters are used in the calculations:  

2 m ; 0.04A m ; 8 16L m ; 3 6h m .         (6.29) 
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The water depth was chosen as three times the wave length in order to simulate the deep-water wave 
cases. The two-dimensional version of the third-order free surface conditions Eq.(2.73) and Eq.(2.74) 
are used. The prescribed incident wave velocity potential m

in  and wave elevation m
in  are set to 

be zero. The wave profile shown in Fig.6.19 is for t=80T, where T is the linear wave period. Twenty 
quadratic elements are used per wave length. The increment of time step is /100t T . A numerical 
damping zone was applied at the end of the tank and 12,16x , i.e. twice the linear wave length. A 
sinusoidal ramp function was used in the first 8 wave periods. The other numerical details can be 
found in Chapter 3. 
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Fig.6.19. Numerical wave profile along the tank at t=80T and the envelope of the third-order wave amplitude. 
No secularity condition is applied. The size of the tank and the wave parameters in Eq.(6.29) are used in the 
numerical simulation.  
 
As seen in Fig.6.19, the numerical results for the maximum third-order wave amplitude become the 
same order of magnitude of the first-order wave amplitude (A=0.04m). Further, it is much larger than 
the second-order wave amplitude, which can be seen by comparing the second-order wave amplitude 
in Fig.6.21 with the third-order wave amplitudes in Fig.6.19 without secularity condition. This 
violates the assumption behind the Stokes expansions. If the tank has an infinitely long length, it is 
expected from Fig.6.19 that the third-order wave amplitude is infinite near the end of the tank. 
Obviously, the numerical result in Fig.6.19 is not physical. Therefore, a solvability (secularity) 
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Fig.6.19. Numerical wave profile along the tank at t=80T and the envelope of the third-order wave amplitude. 
No secularity condition is applied. The size of the tank and the wave parameters in Eq.(6.29) are used in the 
numerical simulation.  
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given wave frequency. If we keep the wave length as unchanged, it means that the time scale has to be 
modified correspondingly. In this study, an approach based on two time scales is adopted. Therefore, 
the third-order free surface conditions (Eq.(2.73) and Eq.(2.74)) will be modified by replacing t  
by 2 21 0.5Ck A t . Taking a deep-water regular wave as an example, we show in Appendix D 
that this modification is able to cancel out the secular term contained in the third-order free-surface 
conditions. Note that we have implicitly assumed that only the steady-state solutions are of interest.  
 
Fig.6.20 compared the time history of the third-order wave elevations at 3x  with and without 
secularity conditions. The result with secularity condition is based on the two-time scale model. It is 
seen that steady state has been obtained for both the results with and without secularity conditions. 
The third-order wave amplitude at 3x  without secularity condition is about 0.012m which is 
expected from Eq.(6.28). We have also compared the numerical second-order and third-order wave 
elevations with the analytical results of Stokes third-order wave theory. The comparison for the time 
history is shown in Fig.6.21. Good agreement has been achieved when the secularity condition is 
applied. 

85 86 87 88 89 90
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

 

 (3
)  (m

)

t(sec)

 3rd order,Without secularity condition
 3rd order,With secularity condition

 
Fig.6.20 The time history of the third-order wave elevation at 3x  with and without secularity condition. 
The size of the tank and the wave parameters in Eq.(6.29) are used in the numerical simulation. 
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Fig.6.21. The time history of the second-order and the third-order wave elevation at 3x . The size of the 
tank and the wave parameters in Eq.(6.29) are used in the numerical simulation.  
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6.5 Second-order diffraction of a horizontal semi-submerged 
circular cylinder 

The time-domain second-order method described in Chapter 3 was developed for a surface piecing 
body with arbitrary shapes. In order to verify and validate the numerical method, the second-order 
diffraction of a stationary horizontal cylinder is studied numerically in the time domain. This case has 
been studied by for instance Kyozuka (1980), Miao & Liu (1989) and Wu & Eatock Taylor (1989) in 
the frequency domain and Isaacson & Cheung (1991) in the time domain. Comparisons will be made 
between the present numerical results and some of the existing theoretical and experimental results. 
 
The definition of the problem can be found in Fig.3.1. The second-order formulation in the inertial 
coordinate system is used (see Section 2.4 for details). The wave field is separated into the prescribed 
incident wave field and the unknown scattered wave field. The incident wave field is given as the 
Stokes second-order wave and only the scattered part of the wave field is solved. The cylinder is 
located at the center of the tank shown in Fig.3.1. Half of the cylinder is submerged. Two numerical 
damping zones are applied at the ends of the tank. The length of the damping zone is chosen as twice 
of the incident wave length. The mechanism of the damping zone is described in Section 3.4. A 
sinusoidal ramp function is applied in the first three wave periods to allow for a gentle start of the 
fluid motion. 20 quadratic elements are used per wave length. The time increment /100t T  is 
used in all the simulations.  
 
The amplitudes of the first-order horizontal and vertical forces are presented in Fig.6.22 and Fig.6.23, 
respectively. The present numerical results are compared with the theoretical and experimental results 
by Kyozuka (1980). The amplitudes of forces are obtained by the Fourier integral method presented in 
Section 3.7. The present method agrees well with Kyozuka’s theoretical and experimental results.  
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Fig.6.22. Comparisons of non-dimensional amplitude of the first-order horizontal wave force on a horizontal 
semi-submerged circular cylinder with Kyozuka’s (1980) theoretical and experimental results. The cylinder is 
fixed in the incident wave. Deep water condition is assumed. k is the wave number. R is the radius of the 
cylinder. A is the linear wave amplitude of the incident wave. 
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Fig.6.22. Comparisons of non-dimensional amplitude of the first-order horizontal wave force on a horizontal 
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Fig.6.23. Comparisons of non-dimensional amplitude of the first-order vertical wave force on a horizontal 
semi-submerged circular cylinder with Kyozuka’s (1980) theoretical and experimental results. The cylinder is 
fixed in the incident wave. Deep water condition is assumed. k is the wave number. R is the radius of the 
cylinder. A is the linear wave amplitude of the incident wave. 
 
The second-order mean forces in the horizontal and vertical directions are presented in Fig.6.24. 
Comparison is made with the numerical results of Isaacson & Cheung (1991). Good agreement has 
been obtained. In the range of the wave numbers considered in this study, it was seen that the 
horizontal mean drift force is always positive, while the vertical mean drift force is always negative. It 
can be shown by using the momentum conservation and energy conservation that the horizontal 
wave-drift force according to second-order potential flow theory with no current or constant forward 
speed is always acting in the wave propagating direction, provided that the body is not an active wave 
power device. See for instance Faltinsen (1990). The horizontal mean drift force is a special case of 
the low-frequency force in irregular waves, which is relevant to the analysis of the mooring systems. 
A stationary surface-piercing body with finite draft in waves experiences a frequency-dependent mean 
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the mean vertical force can be either positive or negative depending on the wave frequency and the 
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The near-field method for the force calculation is adopted in this study. Near-field method means 
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Fig.6.23. Comparisons of non-dimensional amplitude of the first-order vertical wave force on a horizontal 
semi-submerged circular cylinder with Kyozuka’s (1980) theoretical and experimental results. The cylinder is 
fixed in the incident wave. Deep water condition is assumed. k is the wave number. R is the radius of the 
cylinder. A is the linear wave amplitude of the incident wave. 
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are connected with the body’s ability to cause waves. For long wavelengths relative to the 
cross-sectional dimensions the body will not disturb the incident wave field. This means the reflected 
wave amplitude AR and the wave drift force become negligible. When the wavelengths are very short, 
the incident waves are totally reflected from a surface-piercing body with vertical hull surface in the 
wave zone. This means that AR is equal to the linear amplitude of the incident wave and 

2 2
0XF gA =0.5. See also the discussions in e.g. Faltinsen (1990), Chapter 5. For intermediate 

wavelengths, parts of the wave are transmitted to the downstream and the other parts reflected to the 
upstream. Therefore, AR is smaller than the linear incident wave amplitude and 2 2

0XF gA <0.5. This 
has been confirmed in the numerical results in Fig.6.25. 
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Fig.6.24. Comparisons of the non-dimensional amplitude of the mean wave forces on a horizontal 
semi-submerged circular cylinder with Isaacson & Cheung’s (1991) results. Both the horizontal and vertical 
mean wave forces are presented. The cylinder is fixed in the incident wave. Deep water condition is assumed. k 
is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the incident wave. 
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Fig.6.25. Comparison of the calculated horizontal mean drift force for a horizontal semi-submerged circular 
cylinder with that predicted by Maruo’s formula (1960). The cylinder is fixed in the incident wave. Deep water 
condition is assumed. k is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the 
incident wave.  
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is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the incident wave. 
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Fig.6.25. Comparison of the calculated horizontal mean drift force for a horizontal semi-submerged circular 
cylinder with that predicted by Maruo’s formula (1960). The cylinder is fixed in the incident wave. Deep water 
condition is assumed. k is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the 
incident wave.  
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Fig.6.25. Comparison of the calculated horizontal mean drift force for a horizontal semi-submerged circular 
cylinder with that predicted by Maruo’s formula (1960). The cylinder is fixed in the incident wave. Deep water 
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Fig.6.25. Comparison of the calculated horizontal mean drift force for a horizontal semi-submerged circular 
cylinder with that predicted by Maruo’s formula (1960). The cylinder is fixed in the incident wave. Deep water 
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The comparisons of the second-order oscillatory force components have been made with the 
frequency-domain numerical results of Wu & Eatock Taylor (1989) and those obtained by the 
numerical and experimental study of Kyozuka (1980). See Fig.6.26 and Fig.6.27 for the horizontal 
and vertical sum-frequency forces, respectively. The present results agree well with that of Wu & 
Eatock Taylor (1989), while Kyozuka’s (1980) numerical results show relatively large difference. 
Kyozuka’s experimental results exhibit some scatter but have the same trend as the present results and 
the numerical results of Kyozuka (1980) and Wu & Eatock Taylor (1989). It is shown from both the 
experimental results and different numerical results that, the amplitudes of the horizontal and vertical 
sum-frequency forces in the high-frequency region increase monotonically with the increasing 
non-dimensional wave numbers. This can be explained by the asymptotic behavior of the 
sum-frequency forces on a two-dimensional stationary body in the incident waves. McIver (1994) 
obtained the high-frequency approximations of the horizontal and vertical forces on a 
two-dimensional body, which are accurate to O(ka). Here k is the incident wave number. a is the 
characteristic cross-sectional dimension of the body. According to McIver’s (1994) high-frequency 
approximations, the amplitude of the sum-frequency vertical force is proportional to ka, while the 
amplitude of the sum-frequency horizontal force contains a component that increases linearly with the 
increasing ka.    
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Fig.6.26. Comparisons of non-dimensional amplitude of the second-order horizontal wave force on a horizontal 
semi-submerged circular cylinder with the numerical results of Wu & Eatock Taylor’s (1989) and Kyozuka’s 
(1980) numerical and experimental results. The cylinder is fixed in the incident wave. Deep water condition is 
assumed. k is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the incident 
wave. 
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Fig.6.26. Comparisons of non-dimensional amplitude of the second-order horizontal wave force on a horizontal 
semi-submerged circular cylinder with the numerical results of Wu & Eatock Taylor’s (1989) and Kyozuka’s 
(1980) numerical and experimental results. The cylinder is fixed in the incident wave. Deep water condition is 
assumed. k is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the incident 
wave. 
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Fig.6.26. Comparisons of non-dimensional amplitude of the second-order horizontal wave force on a horizontal 
semi-submerged circular cylinder with the numerical results of Wu & Eatock Taylor’s (1989) and Kyozuka’s 
(1980) numerical and experimental results. The cylinder is fixed in the incident wave. Deep water condition is 
assumed. k is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the incident 
wave. 
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Fig.6.26. Comparisons of non-dimensional amplitude of the second-order horizontal wave force on a horizontal 
semi-submerged circular cylinder with the numerical results of Wu & Eatock Taylor’s (1989) and Kyozuka’s 
(1980) numerical and experimental results. The cylinder is fixed in the incident wave. Deep water condition is 
assumed. k is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the incident 
wave. 
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Fig.6.27. Comparisons of non-dimensional amplitude of the second-order vertical wave force on a horizontal 
semi-submerged circular cylinder with the numerical results of Wu & Eatock Taylor’s (1989) and Kyozuka’s 
(1980) numerical and experimental results. The cylinder is fixed in the incident wave. Deep water condition is 
assumed. k is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the incident 
wave. 
 
In order to further validate the second-order sum-frequency results, we have used an alternative 
approach to calculate the second-order oscillatory forces due to the scattered velocity potential 2

s . 
This approach is based on the Green’s 2nd identity, which does not need the solution of second-order 
velocity potential. Instead, one introduces an artificial problem boundary value problem. In the 
frequency-domain analysis, an auxiliary radiation problem can be used to avoid the direct solution of 
second-order velocity potential. See for instance Faltinsen (1976). In the present time-domain study, 
an artificial velocity potential i  is introduced which satisfies the Laplace equation in the fluid 
domain, i 0  on the mean free surface, i =n in  on the mean body surface, i =n 0  on 
the sea bottom and 0i  on a control surface at infinity. The details of the formulation of the 
artificial velocity potential are given in Appendix E. This approach has been used by for instance by 
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The derivations of Eq.(6.31) can be found in Appendix E.  
 
In general, the solution for i  can be solved numerically by for instance a BEM solver. However, 
for the special case we are studying, i.e. a semi-circle, it is possible to find an analytical solution for 

i . The analytical solution enables us to explain the logarithmic singularity of, for instance 1 / z , 
at the intersection between the body surface and free surface. It also explains that 1 / z  is 
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Fig.6.27. Comparisons of non-dimensional amplitude of the second-order vertical wave force on a horizontal 
semi-submerged circular cylinder with the numerical results of Wu & Eatock Taylor’s (1989) and Kyozuka’s 
(1980) numerical and experimental results. The cylinder is fixed in the incident wave. Deep water condition is 
assumed. k is the wave number. R is the radius of the cylinder. A is the linear wave amplitude of the incident 
wave. 
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integrable, even though it may be singular at the intersection points.  
 
The first step to solve i  analytically is to take an image of the semicircle about z=0 and therefore 
the influence of the free surface is taken into account by the image of the body. See the illustration in 
Fig.6.28. i =0 (i=1 or 3) on the mean free surface means the flow is antisymmetric about z=0 for 
both the artificial surge and heave problems. Then a boundary integral equation can be set up with 
unknowns on only the body surface. The strategy of solving the boundary integral equation 
analytically is similar to that given in Appendix B when solving an oscillating circle in infinite fluid 
domain and will not be elaborated here. Only the final results will be given. The expression for 

/i z  on the free surface is found to be 
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Here /x R . R is the radius of the cylinder. x is the horizontal coordinate of a point. See Fig.6.28 
for the definitions.  
 
The solution for 1  is logarithmically singular at the intersection point of the body surface and z=0 
plane. The consequence of the high-frequency free surface condition 1 0  is that the horizontal 
velocities of the fluid particle on the free surface are zero and they can only move vertically. However, 
the body boundary condition for 1  says that all the points on the body surface have to move 
horizontally. This causes an inconsistency at the intersection points of the body surface and the free 
surface. One should note that the 1  problem exists only in a mathematical sense. In reality, spray 
will occur at the intersections of the body surface and the water surface as a consequence, with 
subsequent dissipation of kinetic and potential energy.  
 
Fig.6.29 shows the comparison of the second-order oscillatory forces due to second-order scattered 
velocity potential 2

s  by direct pressure integration and the indirect method based on Green’s 2nd 
identity. Both the amplitude of the horizontal and vertical sum-frequency forces are presented. The 
agreement is very good.  
 

 
(a)                                               (b) 

Fig.6.28. Definition of the coordinates for the problem of i . (a) Definition of the original problem. (b) 
Problem after taking image of the semicircle about z=0.  
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Fig.6.29. The non-dimensional amplitude of the second-order oscillatory forces due to the scattered velocity 
potential 2

s  for a stationary horizontal semi-submerged circular cylinder in waves. Comparisons are made 
between the results of the direct method and that of the indirect method based on Green’s 2nd identity. k is the 
wave number. R is the radius of the cylinder
 

6.6 Second-order radiation of a horizontal semi-submerged 

circular cylinder 

The forced surging and heaving of the horizontal semi-submerged circular cylinder are studied up to 
second order. Infinite water depth is assumed. No incident wave effect is included.  
 
The forced surge and heave motions are defined respectively as  

(1)
1 1( ) sinaRm t t , (2)

1 0 ,            (6.33) 

and 
(1)
3 3( ) sinaRm t t , (2)

3 0  .           (6.34) 

Here Rm(t) is a ramp function used to allows for the gentle start of the flow.  is the circular 
frequency of the oscillation. 1a  and 3a are the amplitudes of the surge and heaving motion 
respectively.  
 
Fig.6.30 shows the magnitude of the vertical mean force on a semi-submerged circular cylinder in 
surge motion compared with the theoretical and experimental results by Kyozuka (1982). Good 
agreement has been obtained between the present results and the numerical results of Kyozuka (1982). 
On the other hand, Kyozuka’s (1982) experimental results are found to exhibit some scatter. Actually, 
Kyozuka (1982) has four groups of experimental results with different ratios between the amplitude of 
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the forced surging motion and the radius of the cylinder, i.e. 1a /R=0.1, 0.2, 0.3 and 0.4. Only the 
results for 1a/R=0.1 and 0.2 are used in the comparisons in Fig.6.30. The experimental data of 
Kyozuka (1982) for 1a /R=0.3 and 0.4 was only given for very limited non-dimensional wave 
numbers, and therefore was not included in the comparisons. The reason for the scatter of the 
experimental results is unknown.  
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Fig.6.30. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced 
sinusoidal surging motion. No incident wave is present. R is the radius of the horizontal circular cylinder. 
 
The magnitude of the vertical mean force on the horizontal cylinder in forced heaving motion is 
shown in Fig.6.31. The present numerical result is compared with the theoretical results by Potash 
(1971) with good agreement. The horizontal drift forces are zero in theory for the horizontal cylinder 
under forced surging and heaving, and will not be shown here.  
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Fig.6.31. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced 
sinusoidal heaving motion. No incident wave is present. R is the radius of the horizontal circular cylinder. 
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Fig.6.30. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced 
sinusoidal surging motion. No incident wave is present. R is the radius of the horizontal circular cylinder. 
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under forced surging and heaving, and will not be shown here.  
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Fig.6.31. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced 
sinusoidal heaving motion. No incident wave is present. R is the radius of the horizontal circular cylinder. 
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the forced surging motion and the radius of the cylinder, i.e. 1a /R=0.1, 0.2, 0.3 and 0.4. Only the 
results for 1a/R=0.1 and 0.2 are used in the comparisons in Fig.6.30. The experimental data of 
Kyozuka (1982) for 1a /R=0.3 and 0.4 was only given for very limited non-dimensional wave 
numbers, and therefore was not included in the comparisons. The reason for the scatter of the 
experimental results is unknown.  
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Fig.6.30. The non-dimensional vertical mean force on a horizontal semi-submerged cylinder under forced 
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The magnitude of the vertical mean force on the horizontal cylinder in forced heaving motion is 
shown in Fig.6.31. The present numerical result is compared with the theoretical results by Potash 
(1971) with good agreement. The horizontal drift forces are zero in theory for the horizontal cylinder 
under forced surging and heaving, and will not be shown here.  
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Fig.6.32 shows the magnitude of the second-order oscillatory force in the z-direction on a forced 
surging cylinder. It is seen that the second-order oscillatory force in the z-direction appears to increase 
steadily at high frequencies and Kyozuka’s (1982) theoretical solution tends to give higher predictions 
than the present results. Kyozuka’s (1982) experimental results show the same order of magnitude of 
the second-order oscillatory force in z-direction but with some scatter. Only the experimental results 
for 1a /R=0.1 and 0.2 are used in the comparisons in Fig.6.32.  
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Fig.6.32. The non-dimensional amplitude of sum-frequency force in z-direction on a horizontal semi-submerged 
cylinder under forced sinusoidal surging motion. No incident wave is present. R is the radius of the horizontal 
circular cylinder. 
 
The magnitude of the vertical sum-frequency force on the horizontal cylinder under forced heaving 
cylinder is presented in Fig.6.33. The present results agree well with theoretical and experimental 
results of Yamashita (1977). Yamashita’s (1977) theoretical results at higher frequencies tend to be 
lower than the present results and Yamashita’s (1977) experimental results. 
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Fig.6.33. The non-dimensional amplitude of sum-frequency force in the z-direction on a horizontal 
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The indirect method based on Green’s 2nd identity is also used here to verify the second-order 
oscillatory force in z-direction due to the second-order velocity potential. The details of the indirect 
method have been presented in Section 6.5. Fig.6.34 shows the comparison of the results by the direct 
method and the indirect method based on Green’s 2nd identity. Excellent agreement has been obtained.  
  

0.0 0.4 0.8 1.2 1.6 2.0
0

1

2

3

4

2R/g

F Z,
a(2

) /
g

1a
2 ,  

   
F Z,

a(2
) /

g
3a

2              Direct method   Green's 2nd  identity
Heave                          
Sway                           

 
Fig.6.34. The non-dimensional amplitude of the sum-frequency force in the z-direction of a horizontal 
semi-submerged circular cylinder under forced sinusoidal surging and heaving motions. No incident wave is 
present. Comparisons are made between the results of the direct method and that of the indirect method based on 
Green’s 2nd identity. k is the wave number. R is the radius of the cylinder. 
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CHAPTER 7 

Three-Dimensional Weakly-Nonlinear 

Problems with Zero Forward Speed 

This chapter is considered as the first step to verify the 3D time-domain HOBEMs in the inertial 
coordinate system (see Chapter 4) and the new method using body-fixed coordinate system in the near 
field (see Chapter 5). We will hereafter call the method using the formulation in the inertial coordinate 
system the ‘traditional method’, and the domain decomposition based method using body-fixed 
reference frame near the body the ‘new method’. When the body with sharp corners has unsteady 
motions, the traditional method using the Taylor expansions for both the free-surface conditions and 
the body boundary conditions is only applicable for a linear wave-body problem without forward 
speed. However, the new method proposed in Chapter 5 is valid for any order nonlinear wave-body 
problem with the presence of forward speed effects, no matter the body is with or without sharp 
corners. The nonlinear diffraction and radiation problems are studied and verified. The forward speed 
effect which is not considered in this chapter will be discussed in Chapter 8.  
 

7.1  Second-order and third-order wave diffraction on a fixed 
body 

7.1.1 Second-order diffraction in monochromatic waves 
This section studies the second-order diffraction of a fixed body in monochromatic waves. A 
bottom-mounted vertical circular cylinder, a hemisphere and a truncated vertical circular cylinder are 
studied by using the domain decomposition based method presented in Chapter 5. As described in 
Section 5.3, the incident wave is prescribed and only the scattered wave is solved in the outer domain. 
In the inner domain, the total velocity potential and wave elevation are solved. Comparisons of the 
present numerical results with some existing analytical/semi-analytical and numerical results will be 
made.  
 
For the fixed bodies, since the body-fixed coordinate system oxyz is the same as the inertial 
coordinate system OXYZ, it is expected that the traditional method using the inertial coordinate 
system works as well as the new method based on domain decomposition. In fact, the numerical 
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results show that the new method gives the same steady-state results as the traditional method using 
inertial coordinate system. Only small difference was observed in the initial stage of the time history 
of the results, e.g. forces. This is believed to be caused by the fact that we have in the traditional 
method separated the incident waves from the total wave field in the whole fluid domain, whereas the 
new method solves the whole velocity potential in the inner domain and the incident wave field is 
only prescribed in the outer domain.  
 
Due to the symmetry of the body surface and the incident wave, only unknowns on half of the fluid 
domain are needed in the computations. The sensitivity on the position of the control surface is also 
studied for the nonlinear diffraction of a bottom-mounted vertical circular cylinder.  
 
Bottom-mounted vertical circular cylinder 
 
The second-order diffraction in monochromatic waves without forward speed is studied for a 
bottom-mounted vertical circular cylinder. In this section, only the numerical results obtained by the 
new method based on domain decomposition are presented and compared with the existing analytical 
or semi-analytical results. The present numerical results are compared with the linear analytical result 
of MacCamy & Fuchs (1954) and the second-order semi-analytical results of Eatock Taylor & Hung 
(1987). The bottom-mounted vertical circular cylinder considered in this section has a draft h=R with 
R as the radius of the cylinder. An example of the meshes on the body surface (SB), mean free surface 
(SF1) and the cylindrical control surface (SC) of the inner domain is shown in Fig.7.1. Fig7.2 shows 
an example of the bird-view of the grids on the inner and outer free surfaces.  

 
Fig.7.1. An example of the meshes on the body surface (SB), mean free surface (SF1) and the cylindrical control 
surface (SC) of the inner domain. 
 
The amplitudes of the linear wave run-up around a cylinder with kR=1.0 is presented in Fig.7.3 
together with the analytical results based on MacCamy & Fuchs’s (1954) theory. The amplitudes of 
the run-up were obtained by Fourier analysis of the time history of the wave elevations. The 
comparison of the amplitude of the linear in-line force is also presented in Fig.7.4. Approximately,  8 
cubic elements per linear wave length were used in order to get the linear results presented in Fig.7.3 
and Fig.7.4. The time increment /100t T  is adopted in the time-domain simulations. T is the 
linear wave period of the incident wave. The radius of the cylindrical control surface RC=2.0R is used 
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in the numerical calculations. It is seen from Fig.7.3 and Fig.7.4 that the present linear numerical 
results agree very well with the analytical results of MacCamy & Fuchs (1954).  

 
Fig.7.2. A bird-view of the meshes on the free surfaces SF1 and SF20. 

 
Fig.7.3. Comparison of the non-dimensional amplitudes of first-order run-up around the bottom-mounted 
circular cylinder. The solid line is based on the analytical result by MacCamy & Fuchs (1954). The circles are 
the present numerical results. A is the incident wave amplitude. kR=1.0, h=R.  
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Fig.7.4. Comparison of the non-dimensional amplitude of first-order in-line diffraction force with the analytical 
results based on MacCamy & Fuchs’s (1954) theory. A is the incident wave amplitude. h=R. 
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Fig.7.4. Comparison of the non-dimensional amplitude of first-order in-line diffraction force with the analytical 
results based on MacCamy & Fuchs’s (1954) theory. A is the incident wave amplitude. h=R. 
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Fig.7.4. Comparison of the non-dimensional amplitude of first-order in-line diffraction force with the analytical 
results based on MacCamy & Fuchs’s (1954) theory. A is the incident wave amplitude. h=R. 
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Eatock Taylor & Hung (1987) have developed a semi-analytical solution for the second-order 
diffraction of a bottom-mounted vertical circular cylinder. The comparison of the present 
second-order results and that of Eatock Taylor & Hung (1987) are presented in Fig.7.5 - Fig.7.7. 30 
cubic elements per linear wave length are used and a time increment / 200t T  is adopted in the 
time-domain simulations. The radius of the cylindrical control surface RC=2.0R is used in the 
numerical calculations. Fig.7.5 shows the non-dimensional horizontal mean-drift forces with different 
wave numbers. The comparisons of the amplitude of the second-order oscillatory force 2

,x aF  and 
the corresponding phase angle  are given in Fig.7.6 and Fig.7.7, respectively. Good agreement has 
been obtained in the studied wave number region.  
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Fig.7.5. Comparison of the non-dimensional mean-drift force on a bottom-mounted circular cylinder. A is the 
incident wave amplitude. h=R. 
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Fig.7.7. Comparison of the phase of the sum-frequency force in x-direction on a bottom-mounted circular 
cylinder. A is the incident wave amplitude. h=R. 
 
The phase angle is defined relative to the incident wave at the origin of the OXYZ coordinate system, 
i.e. the oscillatory part of the second-order force is expressed as 2

, cos 2x aF t . The 
expressions for the first-order and second-order velocity potential of the incident waves are obtained 
by replacing (Xe,Ye,Ze) with (X,Y,Z) and setting =0  in Eq.(2.134) and Eq.(2.135), respectively.  
 
In order to investigate the influence of the size of the inner domain on the numerical results, the 
author has studied the second-order diffraction of a bottom-mounted vertical circular cylinder with 
kR=1.0 and h=R by varying the radius of the inner domain (RC) from 1.25R to 2.0R. R is the radius of 
the bottom-mounted cylinder. An artificial bottom-mounted cylinder is used as the control surface. 
Fig.7.8 and Fig.7.9 show respectively the time histories of the linear and second-order horizontal 
forces with different radius of the control surface. 35 cubic elements per linear wave length are used 
near the water line. The meshes away from the water line are stretched in a smooth way. In the case of 
RC=1.25R, the body surface and the control surface are very close to each other. Only 2 cubic 
elements are distributed on the part of the free surface between SB and SC along the radial direction 
and no numerical problem was encountered. 
 
It is seen from Fig.7.8 and Fig.7.9 that only small differences occur in the time histories of the linear 
and second-order forces at very initial stage with different ‘radius’ of the inner domain. This is 
thought to be caused by the different treatment of the free-surface conditions in the inner domain and 
the outer domain. The velocity potential and wave elevation are decomposed into the prescribed 
incident part and the unknown scattered part in the outer domain, whereas in the inner domain the 
total velocity potential and wave elevations are solved. The steady-state first-order and second-order 
numerical results did not show any clear dependence on the choice of the ‘radius’ of the inner domain.  
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Fig.7.8. The time histories of the linear horizontal force of a bottom-mounted vertical circular cylinder in regular 
wave. T is the linear wave period. A is the incident wave amplitude. RC is the radius of the cylindrical control 
surface SC in Fig.7.1. kR=1.0, h=R.  
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Fig.7.9. The time histories of the total second-order horizontal force of a bottom-mounted vertical circular 
cylinder in regular wave. T is the linear wave period. A is the incident wave amplitude. RC is the radius of the 
cylindrical control surface SC in Fig.7.1. kR=1.0, h=R.  
 
Hemisphere 
A hemisphere in regular waves is also studied by the domain decomposition based method in Chapter 
5. The water depth is chosen to be h=3R, with R being the radius of the hemisphere. The cylindrical 
control surface like the one shown in Fig.7.1 is used as the control surface. The radius of the control 
surface is taken as RC=1.5R. Approximately 30 cubic elements are used on both the free surface and 
the body surface near the water line. The same diffraction problem was studied by Kim & Yue (1989) 
and Choi et al. (2001). Kim & Yue (1989) solved the problem in the frequency domain by using a ring 
source distribution. Choi et al. (2001) obtained the frequency-domain results based on a 3D quadratic 
HOBEM.  
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Fig.7.8. The time histories of the linear horizontal force of a bottom-mounted vertical circular cylinder in regular 
wave. T is the linear wave period. A is the incident wave amplitude. RC is the radius of the cylindrical control 
surface SC in Fig.7.1. kR=1.0, h=R.  
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Fig.7.9. The time histories of the total second-order horizontal force of a bottom-mounted vertical circular 
cylinder in regular wave. T is the linear wave period. A is the incident wave amplitude. RC is the radius of the 
cylindrical control surface SC in Fig.7.1. kR=1.0, h=R.  
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The forces are divided into different parts according to Kim & Yue (1989). In Fig.7.10 and Fig.7.11, 
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the sum-frequency forces caused by the quadratic terms of first order quantities and the second-order 
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The comparison shows that the present results are very close to the results by Kim & Yue (1989) for 
all the components and the total forces. The results by Choi et al. (2001) show some differences 
especially for the forces component due to the second-order potential. As mentioned by Choi et al. 
(2001), this might be caused by the oscillations of the auxiliary surge potential used near the body 
surface in their numerical study.  
 
It is seen from Fig.7.10 that the quadratic force part qF  and the second-order velocity part pF  have 
strong cancellation effect on the total horizontal sum-frequency force with the non-dimensional wave 
frequency regime studied. Ignoring pF  part and approximating the total horizontal sum-frequency 
force by the qF  part give overestimated results.  
 
For the vertical sum-frequency force, we see from Fig.7.11 that the pF  part dominates over the qF  
over the whole frequency range studied. For relatively short waves, e.g. 2 / 1.6R g , most of the 
contribution to the total vertical sum-frequency force is from the second-order velocity potential. That 
means one must take into account of the second-order velocity potential effect and can not simply 
approximate the total vertical sum-frequency force by the quadratic component, especially for short 
waves. Here  is the frequency of the incident waves. 
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Fig.7.10. The amplitude of the non-dimensional sum-frequency force in the X-direction of a stationary 
hemisphere. h=3R. h is the water depth, R is the radius of the hemisphere. (2)

aF  indicates the amplitude of the 
total second-order sum-frequency force, while qF  and pF  are the sum-frequency forces caused by the 
quadratic terms of first order quantities and the second-order velocity potential, respectively. 
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Fig.7.11. The amplitude of the non-dimensional the sum-frequency force in the Z-direction of a stationary 
hemisphere. h=3R. h is the water depth, R is the radius of the hemisphere. (2)

aF  indicates the amplitude of the 
total second-order sum-frequency force, while qF  and pF  are the sum-frequency forces caused by the 
quadratic terms of first order quantities and the second-order velocity potential, respectively. 
 
Truncated vertical circular cylinder 
The diffraction of a truncated vertical circular cylinder with radius R and draft d=R is studied in order 
to study the linear and second-order wave excitation forces. The considered water depth is h=2R. The 
same cylinder has been studied numerically by Kinoshita et al. (1997) in the frequency domain with a 
quadratic HOBEM.  
 
In this study, the so-called near-field method is used for the forces calculation, i.e. the hydrodynamic 
forces are obtained by integrating the hydrodynamic pressure on the instantaneous wetted body 
surface. If only the mean drift forces are of interest, the far-field approach which applies the 
momentum conservation to the entire fluid domain can be used. The far-field method is known as 
more robust and efficient than the near-field method in calculating the mean wave forces. Our interest 
in the present work is not only on the mean forces but also the higher-order oscillatory forces, and 
therefore the near-field approach is adopted.  
 
One of the problems associated with the near-field method is that it requires a high degree of 
numerical precision of the solution on the body surface. This difficulty is especially significant for 
bodies with sharp corner, where the flow is singular with infinite velocity. See also the discussion 
associated with Eq.(5.1). The integration of the quadratic term of the velocity at the sharp corner is 
still integrable. However, the convergence could be very slow. In the low-order panel method, 
non-uniform spacing of the panels near the corner improves the accuracy of the near-field analysis, as 
shown by Newman & Lee (1992). The higher-order panel method was reported by for instance Lee et 
al. (2002) to be more sensitive to this singularity in the near-field approach. To minimize this problem, 
a non-uniform geometric mapping near the corner used by Newman & Lee (2002) is adopted. This is 
based on the local two-dimensional flow around the corner. If r is the distance from the corner and  
is the interior angle of the body at the corner, the leading-order corner flow velocity potential in the 
vicinity of the sharp corner can be expressed by Eq.(5.1). The velocity near the corner is proportional 
to 1/ 1r , where 2 / . Since the velocity potential  is assumed to be regular in the 
parametric variable in the same direction, say u, the inverse mapping of u(r) should have the same 
singularity as the solution at the corner so that /d dr = / /d du du dr 1/ 1r . This suggests 
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using a mapping with the local non-uniformity with r u . For a truncated vertical circular cylinder 
with a right-angle corner, we have 1.5 . Fig.7.12. shows an example of the meshes on half of the 
truncated vertical circular cylinder with draft d=2R. Non-uniform meshes with the non-uniformity 
coefficient =1.5 are used at the corner and the waterline.  

 
Fig.7.12. Meshes on half of the truncated vertical circular cylinder with draft d=2R. Non-uniform meshes with 
the non-uniformity coefficient =1.5 are used at the corner and the waterline.  
 
Presented in Fig.7.13 and Fig.7.14 are the amplitudes of the linear wave excitation forces in surge and 
heave directions, respectively. The present time-domain results are compared with numerical results 
of Kinoshita et al. (1997) with favorable agreement. The horizontal wave drift forces in X-direction 
are plotted in Fig.7.15. Comparison is made between the present results and the frequency-domain 
numerical results of Kinoshita et al. (1997) and the semi-analytical results of Kinoshita & Bao (1996). 
Good agreement is observed. The present mean drift forces are slightly higher than Kinoshita et al.’s 
(1997) numerical result. However, it can be seen that the present results are more closer to Kinoshita 
& Bao’s (1996) semi-analytical results, even though they are not presented at the same wave number 
kR. All the results of Kinoshita et al. (1997) and Kinoshita & Bao (1996) shown in Fig.7.13 - Fig.7.15 
are digitalized data from Kinoshita et al. (1997).  
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Fig.7.14. The amplitude of the linear excitation force on a truncated circular cylinder in heave direction. h=2R, 
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Fig.7.15. The horizontal wave drift force on a fixed truncated circular cylinder. h=2R, d=R. k is the wave 
number of the incident waves. 
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Fig.7.16. The amplitude of the sum-frequency forces on a fixed truncated circular cylinder in both the horizontal 
and vertical directions. h=10R. d=4R. k is the wave number of the incident waves. 
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Fig.7.16 presents the horizontal and vertical sum-frequency forces for a truncated vertical circular 
cylinder with draft d=4R. The water depth is h=10R. The numerical results are compared with the 
semi-analytical results of Kinoshita & Bao (2000). Good agreement has been obtained.  
 
 
7.1.2 Second-order diffraction in bichromatic waves 
We have also studied the second-order diffraction of the stationary bottom-mounted vertical circular 
cylinder in bichromatic waves. The domain decomposition based method in Chapter 5 is used. The 
radius of the control surface is taken as RC=1.5R with R as the radius of the cylinder.  
 
The sum-frequency and difference-frequency Quadratic Transfer Functions (QTFs) of the horizontal 
forces are recovered from the numerical time history of the forces by Fourier analysis. The details of 
the Fourier analysis used in this study were given in Section 3.7. The sum-frequency QTF ( ijF ) and 
difference-frequency QTF ( ijF ) are defined respectively as  
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where F  and F  are total sum-frequency and difference frequency horizontal forces, 
respectively.  
 
Comparisons are made with the semi-analytical results by Eatock Taylor & Huang (1997) and 
Moubayed & Williams (1995) and the numerical results of Kim & Yue (1990). Table 7.1 shows the 
comparison of the sum-frequency surge force QTF for a bottom-mounted circular cylinder with h=R. 
h is the water depth and R is the radius of the cylinder. The sum-frequency and difference-frequency 
QTF are presented in Table 7.2 for a bottom-mounted circular cylinder with h=4R. Good agreement 
has been achieved for both the sum-frequency and difference-frequency forces.  
 
Table 7.1. Comparison of the sum-frequency surge force QTF for a bottom-mounted circular cylinder with h=R. 
h is the water depth and R is the radius of the cylinder. i  is defined as 2 /i R g . i and j are the 
frequencies of the two components of the bichromatic wave. At each frequency pair, three numbers are given, 
corresponding successively from the top line to the present results, those of Eatock Taylor & Huang (1997), and 
those of Kim & Yue (1990).  
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Table 7.2. Comparison of the sum-frequency and difference-frequency surge force QTF for a bottom-mounted 
circular cylinder with h=4R. h is the water depth and R is the radius of the cylinder. i  is defined as 2 /i R g . 

i and j are the frequencies of the two components of the bichromatic wave. At each frequency pair, four 
numbers are given, corresponding successively from the top line to the present results, those of Kim & Yue 
(1990), Eatock Taylor & Huang (1997) and Moubayed & Williams (1995).  

i =1.0; j =1.6 i =1.2; j =1.8 i =1.4; j =2.0 

sum-freq. diff-freq. sum-freq. diff-freq. sum-freq. diff-freq. 
1.868 0.861 2.190 0.788 2.088 0.759 
1.853 0.856 2.182 0.788 2.094 0.765 
1.883 0.849 2.294 0.769 2.114 0.777 
1.783 0.840 2.091 0.761 1.998 0.734 

 
Some important numerical issues of the time-domain simulation of bichromatic waves are associated 
with the selection of the meshes sizes and how to efficiently enforce the radiation conditions for both 
the long waves and short waves. Taking the second-order diffraction problem as an example, the total 
wave system contains different components of waves. The shorted waves are the sum-frequency 
waves with frequency i + j (i=1,2; j=1,2). Here i (i=1, 2) is the frequency of one component of 
the bichromatic wave. The longest wave is the difference-frequency waves with frequency 

i j (i=1, 2; j=1, 2; i j ) if i and j are very close to each other. It can partly be 
understood from the dispersion relationship of the second-order free waves, i.e.  

2

i j k g tanh k h .                  (7.2) 

Here k  and k  are the wave numbers of the high-frequency and difference-frequency free waves, 
respectively.  
 
The maximum panel size depends on shortest wave length. It is suggested by Faltinsen (1990) based 
on the experience on constant boundary element method that the characteristic length of an element 
ought to be at most 1/8 of the wave length. Around a vertical column with a circular cross-section 
there ought to be 15-20 circumferential elements at any height. If there is a conflict between these two 
recommendations, the more conservative is required. A similar criterion holds for the HOBEM 
depending on the required accuracy on the results.  
 
In the time-domain studies, the fluid domain is truncated at a certain distance away from the body. 
The ‘length’ of the computational domain depends on both the characteristic dimension of the body 
and the maximum length of the incident and scattered wave. The artificial damping zone is often used 
to enforce the radiations of the outgoing waves generated by the body. The length of the numerical 
damping zone is typically chosen as 1-3 times the wave length of the waves that are of interest. The 
numerical damping zone is known to be less efficient for waves with low frequencies than for 
high-frequency waves. The combination of the numerical damping zone with, for instance, the 
Sommerfeld-Orlanski condition (Orlanski, 1976) would allow us to use a relatively shorter damping 
zone.  
 
In this section, the numerical damping zone is used without Sommerfeld-Orlanski condition. The 
length of the damping zone is chosen as twice the wavelength of the difference-frequency free waves. 
The mesh size is selected based on the shorter linear wave. Approximately 25 cubic elements are used 
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per wavelength of the shorter wave near the waterline. Smoothly stretched meshes are used on both 
free surface and body surface away from the waterline.  
 
The non-dimensional wave numbers studied here do not include cases where i  and j  ( i j ) are 
very close. These cases require very large computational domain relative to the characteristic body 
length and result in huge-dimension matrix equation system. This is a common issue in the numerical 
computations when multi-scale problems are considered. However, one can on one hand use the 
combination of the numerical damping zone with, for instance, the Sommerfeld-Orlanski condition to 
reduce the size of the computational domain. On the other hand, one has to always keep in mind what 
physical effects are of interest. For instance, if the difference-frequency effect is a major concern, 
larger mesh sizes can be used compared to that in a problem where sum-frequency effects are 
dominant. If the sum-frequency effects are of more interest, a much smaller computational domain 
can be designed compared to that in a difference frequency dominant problem.  
 
 
7.1.3 Third-order diffraction in regular waves 
It has been shown in the previous sections that the present time-domain HOBEM is able to predict 
accurately the linear and second-order wave diffraction effect on the stationary bodies. In this section, 
we will try to study the third-order diffraction effect on a fixed body in regular waves by the 
time-domain HOBEM described in Chapter 4. The free-surface conditions and the body boundary 
conditions for the third-order diffraction problem have been given in Section 2.5.  
 
The triple-harmonic part of the third-order diffraction problem was studied by, for instance Malenica 
& Molin (1995) and Teng & Kato (1997) in the frequency domain. Faltinsen et al. (1995) obtained an 
asymptotic solution to the third-order diffraction problem with a long wave length approximation. In 
the present study, we study the complete third-order diffraction, which means that the solution 
contains not only the triple-harmonic effect but also the third-order contribution with fundamental 
frequency. The third-order wave loads are, in most cases of small magnitudes compared with the 
linear part of the wave loads. However, the triple-harmonic third-order wave loads may be an 
important excitation source of the ringing response of the TLPs and deep-water gravity-based 
platforms. The first-harmonic third-order wave force is not as important as its triple-harmonic 
counterpart for conventional offshore structures.  
 
According to Malenica & Molin (1995), we decompose the total third-order forces into three parts 
(see also Section 2.5.3) 

(3) (3) (3) (3)
1 2 3F F F F ,                (7.3) 
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The first part 3
1F  is contributed by the products of the first-order quantities. 2F  consists the 

products of the first-order and second-order quantities, whereas 3
3F  is the consequence of the 
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third-order velocity potential. CW0 and SB0 are the mean waterline and the mean wetted body surface, 
respectively. We will hereafter in this section denote the third-order horizontal force in the direction of 
wave heading as F  with its three components as 3

1F , 3
2F  and 3

3F  corresponding to the 
decomposition in Eq.(7.3).  
 
The third-order diffraction of a bottom-mounted vertical circular cylinder with draft d=10R studied by 
both Malenica & Molin (1995) and Teng & Kato (1997) is re-investigated in this section. Here R is 
the radius of the cylinder. The triple-harmonic forces obtained from the present time-domain method 
will be compared with that of Malenica & Molin (1995) and Teng & Kato (1997). The comparisons 
are shown in Fig.7.17 - Fig.7.20. 3

1F , 3
2F  and 3

3F  in Fig.7.17 - Fig.7.20 are the 
triple-harmonic parts of the third-order forces, i.e. 3

1F , 2F  and 3
3F  respectively. Fig.7.17 

presents the amplitudes of the real and the imaginary parts of 3
1F , whereas these of 3

2F  are 
depicted in Fig.7.18. Comparisons are made with the results of Malenica & Molin (1995) showing 
very good agreement. This is not surprising since 3

1F  and 3
2F  are contributed only by the 

first-order and second-order solutions, which have been shown to be accurate in the previous sections 
of this chapter. Differences were observed for 3

3F  between the present results and results of 
Malenica & Molin (1995) and Teng & Kato (1997). See the comparison of the amplitude of the real 
and imaginary parts of 3

3F  in Fig.7.19 and Fig.7.20, respectively.  
 
Some numerical details for the results in Fig.7.17 - Fig.7.20 are summarized as follows: The density 
of mesh near the waterline was selected as NE0=40, where NE0 represents the number of cubic 
elements per linear wavelength. The meshes near the waterline are finer and become coarser in a 
smooth way away from the waterline. The time increment / 300t T  was used in the time 
stepping of the fluid motion. Here T is the linear wave period. The lengths of damping zones in the 
first-, second- and third-order solution are twice the linear wavelength. The numerical damping zone 
described in Section 3.4 without active wave absorber was used to enforce the radiations conditions. 
The empirical coefficient  in Eq.(3.21) was set to be 50.5 10  in all the calculations. In order to 
absorb the third-order wave with the fundamental frequency, the damping zone used in the third-order 
problem is the same as that in the first-order problem. The first-order and second-order derivatives on 
both the free surface and body boundary are calculated with the assistance of the cubic shape 
functions of the higher-order boundary elements. The third-order derivative term 13 3/ Z  in the 
third-order kinematic free-surface conditions (see Eq.(2.73)) was rewritten as the second-order 
derivatives of the vertical velocity on the free surface. See Section 4.6 for the discussion of the direct 
calculation of higher-order derivatives. Other numerical details can be found in the related sections in 
Chapter 4.  
 
Sensitivity studies on the mesh density and the size of time increment have been made in order to 
show that the present numerical results in Fig.7.19 and Fig.7.20 are convergent results. Fig.7.21 
shows the time records of the third-order wave force component (3)

3F  with different mesh densities 
for the bottom-mounted circular cylinder (d=10R) in regular wave with non-dimensional wave 
number kR=1.0. NE0 is the number of cubic elements per linear wavelength near the waterline. The 
three curves with NE0=30, 40 and 45 respectively are almost identical, indicating that the meshes 
used in the previous analysis (see Fig.7.19 and Fig.7.20) are sufficient. Time records of the total 
third-order wave force (3)F  with different time increments for the same bottom-mounted circular 
cylinder in regular waves (kR=1.0) are presented in Fig.7.22. Four results with /T t =200, 400, 600 
and 800 respectively are shown. Because it is sufficient with /T t =200 to get convergent results, 
the four curves actually coincide with each other.  
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Fig.7.17. The amplitude of the real and the imaginary part of 3

1F  on a bottom-mounted circular cylinder 
with draft d=10R. A is the linear incident wave amplitude. k is the wave number.  

0.2 0.4 0.6 0.8 1.0 1.2
-6

-4

-2

0

2

kR

F 2(3
 

) /
gA

3

  

 Re[F2
(3 )], Malenica & Molin(1995)

 Re[F2
(3 )], Present

 Im[F2
(3 )], Malenica & Molin(1995)

 Im[F2
(3 )], Present

 
Fig.7.18. The amplitude of the real and the imaginary part of 3

2F on a bottom-mounted circular cylinder with 
draft d=10R. A is the linear incident wave amplitude. k is the wave number.  

0.2 0.4 0.6 0.8 1.0 1.2

-2

0

2

4

kR

F 3(3
) /

gA
3

 Re[F3
(3 )], Malenica & Molin(1995)

 Re[F3
(3 )], Teng & Kato(1997)

 Re[F3
(3 )], Present

 
Fig.7.19. The amplitude of the real part of 3

3F on a bottom-mounted circular cylinder with draft d=10R. A is 
the linear incident wave amplitude. k is the wave number.  
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Fig.7.18. The amplitude of the real and the imaginary part of 3

2F on a bottom-mounted circular cylinder with 
draft d=10R. A is the linear incident wave amplitude. k is the wave number.  
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Fig.7.19. The amplitude of the real part of 3

3F on a bottom-mounted circular cylinder with draft d=10R. A is 
the linear incident wave amplitude. k is the wave number.  
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Fig.7.19. The amplitude of the real part of 3

3F on a bottom-mounted circular cylinder with draft d=10R. A is 
the linear incident wave amplitude. k is the wave number.  
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Fig.7.17. The amplitude of the real and the imaginary part of 3
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Fig.7.18. The amplitude of the real and the imaginary part of 3

2F on a bottom-mounted circular cylinder with 
draft d=10R. A is the linear incident wave amplitude. k is the wave number.  
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Fig.7.19. The amplitude of the real part of 3

3F on a bottom-mounted circular cylinder with draft d=10R. A is 
the linear incident wave amplitude. k is the wave number.  
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Fig.7.20. The amplitude of the imaginary part of 3

3F on a bottom-mounted circular cylinder with draft 
d=10R. A is the linear incident wave amplitude. k is the wave number.  
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Fig.7.21. Time records of the third-order wave force component (3)

3F  with different meshes densities for a 
bottom-mounted circular cylinder in regular wave. d=10R. kR=1.0.  
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Fig.7.22. Time records of the total third-order wave force (3)F  with different time increments for a 
bottom-mounted circular cylinder in regular wave. d=10R. kR=1.0.  
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Fig.7.20. The amplitude of the imaginary part of 3

3F on a bottom-mounted circular cylinder with draft 
d=10R. A is the linear incident wave amplitude. k is the wave number.  
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Fig.7.21. Time records of the third-order wave force component (3)

3F  with different meshes densities for a 
bottom-mounted circular cylinder in regular wave. d=10R. kR=1.0.  
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Fig.7.22. Time records of the total third-order wave force (3)F  with different time increments for a 
bottom-mounted circular cylinder in regular wave. d=10R. kR=1.0.  
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Fig.7.20. The amplitude of the imaginary part of 3

3F on a bottom-mounted circular cylinder with draft 
d=10R. A is the linear incident wave amplitude. k is the wave number.  
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In order to exam the effect of the numerical damping zone on the third-order results, we have studied 
the sensitivity of the results on the lengths of the damping zones and the empirical coefficients in the 
dissipative terms in the numerical damping zone.  
 
The length of the free surface, defined as the distance from the waterline to the end of the free surface 
along the radial direction, is kept as three times the linear wave length, i.e. L=3 . Here  is the 
linear wavelength. The length of the damping zone is defined as L2, whereas the length of the free 
surface part with the damping zone excluded is defined as L1. See Fig.7.23 for the illustration of L1, 
L2 and L. Three different damping zone lengths have been considered, i.e. L2=1.5 , 2  and 2.5  
with corresponding L1=1.5 ,  and 0.5 , respectively. Because we have kept the total free 
surface length as a constant, the change of the damping zone length results in the change of relative 
position of the damping zone to the body (L1). The empirical coefficient 50.5 10=  is used in the 
formula of the damping coefficient, see Eq.(3.21). The different damping zone lengths have to be 
substitute into Eq.(3.21) in order to get the damping coefficient.  
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Fig.7.23. Definition the length of the damping zone (L2), the total length of the free surface (L) and the length of 
the free surface part with the damping zone excluded (L1).  
 
Fig.7.24 shows the time history of the total horizontal second-order wave force on the 
bottom-mounted cylinder with d=10R in regular wave. The non-dimensional wave number is kR=1.0. 
The time history of the third-order wave force due to the third-order velocity potential, i.e. 3

3F , is 
plotted in Fig.7.25. Both Fig.7.24 and Fig.7.25 consist of three curves with different damping-zone 
lengths. It is difficult to find any differences between the curves since they are very close. It is seen 
from Fig.7.24 and Fig.7.25 that the present numerical results are not sensitive to the location and the 
length of the damping zone as long as it is well designed so that it can sufficiently damp out most of 
the energy of the scattered waves.   
 
Our numerical tests also showed a clear lack of sensitivity on the damping coefficient  in Eq.(3.21) 
when it is selected in between 10-5 and 10-6 and the length of the damping zone is chosen to be larger 
than about 1.5 . The results will not be shown here.  
 
The 3

3F -component in Eq.(7.6) can be further divided into the sum of two parts, with the first part 
3

3,inF  due to the third-order incident wave velocity potential (3)
in  and the other part 3

3,sF  due to the 
third-order scattered wave velocity potential (3)

s . As an alternative way of obtaining the third-order 
force contributed by the third-order scattered velocity potential, i.e. 3

3,sF , the indirect method based on 
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Fig.7.24 shows the time history of the total horizontal second-order wave force on the 
bottom-mounted cylinder with d=10R in regular wave. The non-dimensional wave number is kR=1.0. 
The time history of the third-order wave force due to the third-order velocity potential, i.e. 3

3F , is 
plotted in Fig.7.25. Both Fig.7.24 and Fig.7.25 consist of three curves with different damping-zone 
lengths. It is difficult to find any differences between the curves since they are very close. It is seen 
from Fig.7.24 and Fig.7.25 that the present numerical results are not sensitive to the location and the 
length of the damping zone as long as it is well designed so that it can sufficiently damp out most of 
the energy of the scattered waves.   
 
Our numerical tests also showed a clear lack of sensitivity on the damping coefficient  in Eq.(3.21) 
when it is selected in between 10-5 and 10-6 and the length of the damping zone is chosen to be larger 
than about 1.5 . The results will not be shown here.  
 
The 3

3F -component in Eq.(7.6) can be further divided into the sum of two parts, with the first part 
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Green’s 2nd identity is also used here to validate the numerical results for 3
3,sF . We introduce an 

artificial velocity potential 1  satisfying the Laplace equation in the fluid domain, 1=0  on the 
mean free surface, 11 =/ n n  on the mean body surface, 1 =/ n 0  on the sea bottom and 

1 0  on a control surface at infinity. 1n  is the X-component of the unit normal vector on the 
body surface. The consequence of using the indirect method is that the third-order force contributed 
by the third-order velocity potential can be obtained without solving the third-order problem. The 
details of the indirect method can be found in Appendix E. It has also been used in the Chapter 6 as an 
alternative approach to get second-order diffraction and radiation forces in two-dimensional problems.  
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Fig.7.24. The time history of the total horizontal second-order wave force on a bottom-mounted circular 
cylinder in regular wave. Different lengths of damping zone (L2) are considered. The total length of the free 
surface is kept as 3  with  as the linear wavelength. The draft of the cylinder is d=10R. The 
non-dimensional wave number is kR=1.0. 
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Fig.7.25. The time history of the third-order wave force due to the third-order velocity potential on a 
bottom-mounted circular cylinder in regular wave. Different lengths of damping zone (L2) are considered. The 
total length of the free surface is kept as 3  with  as the linear wavelength. The draft of the cylinder is 
d=10R. The non-dimensional wave number is kR=1.0. 
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d=10R. The non-dimensional wave number is kR=1.0. 
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d=10R. The non-dimensional wave number is kR=1.0. 
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Presented in Fig.7.26 are the time histories of 3
3,sF  on the bottom-mounted vertical circular cylinder 

with h=10R in a regular wave (kR=1.0) calculated by the direct pressure integration method and the 
indirect method based on Green’s 2nd identity. With kR=1.0 and h=10R, we are actually studying a 
deep-water case, since h>1.5  (see e.g. Faltinsen, 1990). Therefore, the third-order velocity potential 
is negligible, i.e. (3)

in 0. The results of the direct method and the indirect method are consistent. 
Here the free surface length L=5  is used with the damping zone length L2= 2  and L1=3 . One 
should note that the vertical velocity of 1  at the waterline is singular but still integrable. A similar 
singularity for the artificial 1  problem was found analytically for a two-dimensional semi-circle. 
See Section 6.5 and Section 6.6.  
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Fig.7.26. The time history of the third-order wave force due to the third-order scattered velocity potential on a 
bottom-mounted circular cylinder in regular wave. Comparison is made between the results by the direct method 
and that of the indirect method based on Green’s 2nd identity. kR=1.0. h=10R.  
 
The sensitivity studies on the discretization, the time increment of time stepping of the free-surface 
conditions, the empirical damping coefficients in the numerical damping zone, the location and length 
of the damping zone suggest that the numerical results presented in Fig.7.19 - Fig.7.20 are 
convergent.  
 
Theoretically speaking, the third-order free-surface conditions Eq.(2.73) and Eq.(2.74) used in the 
present study contain secular terms. That means the secularity (solvability) conditions are needed. See 
more discussions on the secularity (solvability) condition in Section 6.4. Unfortunately, there is no 
rational way to impose a secularity condition in the time-domain simulations for a general 
three-dimensional problem. Our experiences with the third-order time-domain studies in two 
dimensions suggest that the third-order solution without a secularity condition shows an increase of 
the third-order wave amplitude with the increase of the distance to the body. However, the results 
close to the body should still be reliable, which indicates that integrating the pressure on the body 
would give the correct results for e.g. the forces and moments. No obviously strong secular effects 
have been observed in the three-dimensional numerical results of the third-order wave field. This was 
not true in the two-dimensional studies. See the discussion in Section 6.4.  
 
The third-order results of Malenica & Molin (1995) in Fig.7.19 and Fig.7.20 are considered as the 
most accurate since they have been confirmed by some other frequency-domain studies for instance 
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Kinoshita & Bao (2000). At the present work, we were not able to explain the differences between the 
present numerical results and that of Malenica & Molin (1995). We cannot, of course, exclude the 
possibility of a bug in the numerical code developed during this study even though careful 
convergence studies and alternative way of calculating the force have been made with very 
satisfactory results. 
 
 

7.2  Second-order studies of a body under forced oscillations 

This section studies the linear and second-order wave loads on floating bodies under forced 
oscillations. For a vertical circular cylinder and a hemisphere, the linear hydrodynamic coefficients, 
i.e. the added mass and damping coefficients, obtained from the Fourier transformation of the time 
history of the first-order numerical results are compared with the analytical results. For a vertical 
axisymmetric body without sharp corners, the forced surge, heave and pitch are studied by both the 
traditional method with the formulation in the inertial coordinate system and the new method based on 
domain decomposition. Consistent results of the two methods are obtained. The forced surging and 
heaving of a truncated vertical circular cylinder with sharp corner in otherwise calm water are studied 
up to second order by the new method. The present results agree well with some of the existing 
numerical results. Attempt has been made to study the same truncated cylinder by the traditional 
method and calculating the second-order derivatives in the second-order boundary conditions directly. 
It turns out that no convergent second-order results are obtained with very fine mesh resolution.  
 
7.2.1. Linear hydrodynamic coefficients  
A vertical circular cylinder under forced surge is first studied. The draft of the cylinder is equal to the 
water depth. Malenica et al. (1995) provided the linear hydrodynamic coefficients with zero or small 
Froude number within the context of potential flow theory. The way that they solved the problem is 
analytically based. The surge added mass A11 and damping coefficients B11 for Fr=0.0 are presented in 
Fig.7.27 and Fig.7.28, respectively. The present time-domain results agree well with the 
semi-analytical result by Malenica et al. (1995).  
 
The definitions of variables in Fig.7.27 and Fig.7.28 are given as follows. R is the radius of the 
cylinder. The frequency of encounter e , which should be interpreted as the frequency of oscillations 
in our case, was defined by Malenica et al. (1995) as  

0 cose kU ,                (7.7) 

with 0  as the fundamental frequency of incoming wave. U is the forward speed defined positively 
in X-direction.  is the angle between the wave direction and the x-axis. The results shown in 
Fig.7.27 and Fig.7.28 correspond to =0. k as the wave number of the incident waves, which is the 
real root of the dispersion relationship for the incident waves 

22
0 tanhe kU kg kh ,             (7.8) 

where g is the gravity acceleration and h is the water depth. 
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Fig.7.27. The non-dimensional surge added mass for a vertical circular cylinder compared with the 
semi-analytical results by Malenica et al. (1995). The draft is equal to the water depth h and the radius R. 
Fr=0.0.  

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.5

1.0

1.5

2.0

2.5
 

 

 kR

B 11
/

R3
e

Fr=0.0
 Malenica et al.(1995)
 Present

 
Fig.7.28. The non-dimensional surge damping coefficient for a vertical circular cylinder compared with the 
semi-analytical results by Malenica et al. (1995). The draft is equal to the water depth h and the radius R. 
Fr=0.0.  
 
The added mass and damping coefficients of a hemisphere have also been studied by 
Fourier-analyzing the time-domain results. The water depth is infinite. Comparisons are made with 
Hulme’s (1982) analytical results. Fig.7.29 shows the surge added mass and damping coefficients. The 
heaving added mass and damping coefficients are shown in Fig.7.30. It is immediately apparent that 
there is a satisfactory correspondence between the present numerical results and the analytical results 
by Hulme (1982).  
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Fig.7.29. (a) Surge added mass coefficients of a hemisphere. (b) Surge damping coefficients of a hemisphere. 
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Fig.7.30. (a) Heave added mass coefficients of a hemisphere. (b) Heave damping coefficients of a hemisphere. 
 
7.2.2. Second-order loads on forced oscillating bodies 
 
Vertical axisymmetric body without sharp corner 

We firstly study the forced oscillation of a vertical axisymmetric body without sharp corners. Both the 
traditional method formulated in the inertial coordinate system and the new method with a body-fixed 
frame near the body have been used. In the traditional method, the second-order boundary condition 
contains second-order derivatives of the linear velocity potential. The derivatives of the velocity 
potential on the body surface and the derivatives of the velocity potential and wave elevation are 
numerically calculated with the differentiation with respect to the cubic shape functions of the 
higher-order boundary elements. The details have been given in Section 4.6.  
 
The dimensions of a cross-section of the body in the oxz-plane are shown in Fig.7.31. The center of 
gravity (COG) is located at (0, 0, -0.25R) with R=1.0. The water depth h is chosen as 1.5R.  
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Fig.7.31. Sketch of the cross-section of the vertical axisymmetric body in the oxz-plane. 
 
The forced sinusoidal surge, heave and pitch of the axisymmetric body in otherwise still water are 
considered, i.e. the influence of the incident wave is excluded here. The surge, heave and pitch about 
the COG of the body are defined as 

(1)
1, 1( ) sing aRm t t , (2)

1, 0g ,            (7.9) 
(1)
3, 3( ) sing aRm t t , (2)

3, 0g ,           (7.10) 
(1)
5, 5( ) sing aRm t t , (2)

5, 0g ,               (7.11) 
where ( )Rm t  is a ramp function used to allow for the gentle start of the flow.  is the circular 
frequency of the oscillations. 1a , 3a  and 5a  are the amplitudes of surge, heave and pitch 
motions, respectively. In the present study, we have used 1 0.05a R , 3 0.05a R  and 

5 0.05a  radians. ( )
1,

i
g , ( )

3,
i
g  and ( )

5,
i
g (i=1, 2) may not be the same as ( )

1
i , ( )

3
i  and ( )

5
i  

respectively, which are defined with respect to the origin of the coordinate system OXYZ (see Section 
2.3 for the definitions). With our choice of the position of COG, the pure pitching about the COG 
represents the coupled surge and pitch if the motions are defined with respect to the origin of the 
reference frame, which is the case when we are formulating the free-surface conditions and body 
boundary conditions in Chapter 2. 
 
In order to make the comparison between the results of the traditional method and that of the new 
method possible, one has to define the forces and moments consistently. The formulas for the forces 
and moments in Eq.(2.67) - Eq.(2.72) and Eq.(2.108) - Eq.(2.113) were defined with respect to the 
inertial coordinate system OXYZ. In this section, the forces and moments will be presented with 
respect to the body-fixed coordinate system oxyz. That means we have replace r  and cr  in 
Eq.(2.67) - Eq.(2.72) and Eq.(2.108) - Eq.(2.113) by r  and cr  respectively, and setting the terms 
associated with (1)n  or (2)n to be zero. , ,r x y z  and c c c= x , y , zcr  are the position vectors 
of points corresponding to r  and cr  respectively. 
 
Fig.7.32 shows the time history of the non-dimensional first-order force in x-direction for the 
axisymmetric body undergoing sinusoidal pitching motion about COG. The non-dimensional wave 
number is kR=1.0. The corresponding non-dimensional second-order component of the force in 
z-direction is shown in Fig.7.33. Both the results of the traditional method and the new method are 
presented.  
 
It is seen that the hydrodynamic forces start to reach the steady state when the ramp function is over at 
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The forced sinusoidal surge, heave and pitch of the axisymmetric body in otherwise still water are 
considered, i.e. the influence of the incident wave is excluded here. The surge, heave and pitch about 
the COG of the body are defined as 

(1)
1, 1( ) sing aRm t t , (2)
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(1)
3, 3( ) sing aRm t t , (2)
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5, 5( ) sing aRm t t , (2)

5, 0g ,               (7.11) 
where ( )Rm t  is a ramp function used to allow for the gentle start of the flow.  is the circular 
frequency of the oscillations. 1a , 3a  and 5a  are the amplitudes of surge, heave and pitch 
motions, respectively. In the present study, we have used 1 0.05a R , 3 0.05a R  and 

5 0.05a  radians. ( )
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respectively, which are defined with respect to the origin of the coordinate system OXYZ (see Section 
2.3 for the definitions). With our choice of the position of COG, the pure pitching about the COG 
represents the coupled surge and pitch if the motions are defined with respect to the origin of the 
reference frame, which is the case when we are formulating the free-surface conditions and body 
boundary conditions in Chapter 2. 
 
In order to make the comparison between the results of the traditional method and that of the new 
method possible, one has to define the forces and moments consistently. The formulas for the forces 
and moments in Eq.(2.67) - Eq.(2.72) and Eq.(2.108) - Eq.(2.113) were defined with respect to the 
inertial coordinate system OXYZ. In this section, the forces and moments will be presented with 
respect to the body-fixed coordinate system oxyz. That means we have replace r  and cr  in 
Eq.(2.67) - Eq.(2.72) and Eq.(2.108) - Eq.(2.113) by r  and cr  respectively, and setting the terms 
associated with (1)n  or (2)n to be zero. , ,r x y z  and c c c= x , y , zcr  are the position vectors 
of points corresponding to r  and cr  respectively. 
 
Fig.7.32 shows the time history of the non-dimensional first-order force in x-direction for the 
axisymmetric body undergoing sinusoidal pitching motion about COG. The non-dimensional wave 
number is kR=1.0. The corresponding non-dimensional second-order component of the force in 
z-direction is shown in Fig.7.33. Both the results of the traditional method and the new method are 
presented.  
 
It is seen that the hydrodynamic forces start to reach the steady state when the ramp function is over at 
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t=3T, with T as the period of the body motion. There appears a difference of the second-order results 
between the new method and the traditional method in the first three periods, during which the ramp 
function is applied. This can partly be explained from the free-surface conditions. The second-order 
free-surface condition used by the new method in the inner domain involves the rigid-body motions 
(see Eq.(2.88) - Eq.(2.93)), while the second-order free-surface condition formulated in the inertial 
coordinate system do not contain any body motions (see Eq.(2.48) - Eq.(2.53)). The first-order results 
of the two methods do not show similar difference because the corresponding free-surface conditions 
are homogeneous and do not have any forcing from the rigid-body motions.  
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Fig.7.32. Time history of the non-dimensional first-order force in x-direction for a vertical axisymmetric body 
defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 5 0.05a radians. 
Comparison is made between the results of the new method and that of the traditional method. kR=1.0. 
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Fig.7.33. Time history of the non-dimensional second-order force in z-direction for a vertical axisymmetric body 
defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 5 0.05a radians. 
Comparison is made between the results of the new method and that of the traditional method. kR=1.0.  
 

146             Chapter 7 Three-dimensional weakly-nonlinear problems with zero forward speed 

 

t=3T, with T as the period of the body motion. There appears a difference of the second-order results 
between the new method and the traditional method in the first three periods, during which the ramp 
function is applied. This can partly be explained from the free-surface conditions. The second-order 
free-surface condition used by the new method in the inner domain involves the rigid-body motions 
(see Eq.(2.88) - Eq.(2.93)), while the second-order free-surface condition formulated in the inertial 
coordinate system do not contain any body motions (see Eq.(2.48) - Eq.(2.53)). The first-order results 
of the two methods do not show similar difference because the corresponding free-surface conditions 
are homogeneous and do not have any forcing from the rigid-body motions.  

0 2 4 6 8

-1.2

-0.8

-0.4

0.0

0.4

0.8

1.2

 
F x(1

) /
gR

3
5a

t/T

 Present       Traditional

 
Fig.7.32. Time history of the non-dimensional first-order force in x-direction for a vertical axisymmetric body 
defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 5 0.05a radians. 
Comparison is made between the results of the new method and that of the traditional method. kR=1.0. 

0 2 4 6 8

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3  Present       Traditional

 

 t/T

F z(2
) /

gR
3

5a
2

 
Fig.7.33. Time history of the non-dimensional second-order force in z-direction for a vertical axisymmetric body 
defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 5 0.05a radians. 
Comparison is made between the results of the new method and that of the traditional method. kR=1.0.  
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Fig.7.32. Time history of the non-dimensional first-order force in x-direction for a vertical axisymmetric body 
defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 5 0.05a radians. 
Comparison is made between the results of the new method and that of the traditional method. kR=1.0. 
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Fig.7.33. Time history of the non-dimensional second-order force in z-direction for a vertical axisymmetric body 
defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 5 0.05a radians. 
Comparison is made between the results of the new method and that of the traditional method. kR=1.0.  
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Fig.7.32. Time history of the non-dimensional first-order force in x-direction for a vertical axisymmetric body 
defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 5 0.05a radians. 
Comparison is made between the results of the new method and that of the traditional method. kR=1.0. 
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Fig.7.33. Time history of the non-dimensional second-order force in z-direction for a vertical axisymmetric body 
defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 5 0.05a radians. 
Comparison is made between the results of the new method and that of the traditional method. kR=1.0.  
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In Fig.7.34 - Fig.7.36, the amplitudes of the non-dimensional steady-state sum-frequency vertical 
force versus non-dimensional wave number are shown for the forced pitch, heave and surge motion, 
respectively. The second-order horizontal force and pitch moment are zero due to symmetry properties. 
Comparison is made between the results of the present and traditional method showing that consistent 
results have been obtained by the two methods.  
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Fig.7.34. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 

5 0.05a radians. Comparison is made between the results of the new method and that of the traditional 
method. 
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Fig.7.35. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced heave motion with steady-state amplitude 3 0.05a R . 
Comparison is made between the results of the new method and that of the traditional method. 
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Fig.7.34. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced pitch motion about COG with steady-state amplitude 

5 0.05a radians. Comparison is made between the results of the new method and that of the traditional 
method. 
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Fig.7.35. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced heave motion with steady-state amplitude 3 0.05a R . 
Comparison is made between the results of the new method and that of the traditional method. 
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Fig.7.35. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced heave motion with steady-state amplitude 3 0.05a R . 
Comparison is made between the results of the new method and that of the traditional method. 
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Fig.7.35. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced heave motion with steady-state amplitude 3 0.05a R . 
Comparison is made between the results of the new method and that of the traditional method. 
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Fig.7.36. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced surge motion with steady-state amplitude 1 0.05a R . 
Comparison is made between the results of the new method and that of the traditional method. 
 
Truncated vertical circular cylinder with sharp corners 

A truncated vertical circular cylinder under forced sinusoidal surge and heave motion is studied. The 
radius of the cylinder is chosen as R=1.0 with draft d=0.5R. The water depth considered here is 
h=1.5R. This problem has been solved to second order by Isaacson & Ng (1993b) by a time-domain 
lower-order panel method.  
 
Because the second-order results of Isaacson & Ng (1993b) will be shown to have large difference 
compared with that of the present new method and some other existing numerical results, some 
important features of Isaacson & Ng’s (1993b) numerical method is summarized as follows: They 
have used the traditional method based on the formulation in the inertial coordinate system was used. 
See Section 2.4. The second-order derivatives in the second-order body boundary condition are 
calculated directly by using a standard numerical method. The Sommerfeld-Orlanski radiation 
condition (see also Orlanski, 1976) is used at a control surface to enforce the first-order and 
second-order radiation conditions. A first-order Adams-Bashforth-Moulton predictor-corrector method 
was used for the time evolution of the free-surface conditions. The hydrodynamic forces were 
calculated by a direct integration of the pressure over the wetted body surface.  
 
Teng (1995) studied the same problem in the frequency domain by a higher-order BEM, while Bai 
(2001) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the 
Earth-fixed coordinate system was used. However, they avoid calculating the second-order derivatives 
in the second-order body boundary condition by using a Stokes-like theorem. The cost of doing so is 
an additional integral on the mean waterline and the evaluation of integrals involving the first-order 
derivatives and the normal derivative of the first-order derivatives of the Green function. The results 
by Bai (2001) show large difference when compared with those of Isaacson & Ng (1993b), but are 
much closer to Teng’s (1995) results.  
 
In this section, we firstly re-investigate the same problem by using the domain decomposition based 
method presented in Chapter 5. The higher-order BEM in the time domain is used. Fig.7.37 shows the 
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Fig.7.36. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced surge motion with steady-state amplitude 1 0.05a R . 
Comparison is made between the results of the new method and that of the traditional method. 
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Fig.7.36. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced surge motion with steady-state amplitude 1 0.05a R . 
Comparison is made between the results of the new method and that of the traditional method. 
 
Truncated vertical circular cylinder with sharp corners 

A truncated vertical circular cylinder under forced sinusoidal surge and heave motion is studied. The 
radius of the cylinder is chosen as R=1.0 with draft d=0.5R. The water depth considered here is 
h=1.5R. This problem has been solved to second order by Isaacson & Ng (1993b) by a time-domain 
lower-order panel method.  
 
Because the second-order results of Isaacson & Ng (1993b) will be shown to have large difference 
compared with that of the present new method and some other existing numerical results, some 
important features of Isaacson & Ng’s (1993b) numerical method is summarized as follows: They 
have used the traditional method based on the formulation in the inertial coordinate system was used. 
See Section 2.4. The second-order derivatives in the second-order body boundary condition are 
calculated directly by using a standard numerical method. The Sommerfeld-Orlanski radiation 
condition (see also Orlanski, 1976) is used at a control surface to enforce the first-order and 
second-order radiation conditions. A first-order Adams-Bashforth-Moulton predictor-corrector method 
was used for the time evolution of the free-surface conditions. The hydrodynamic forces were 
calculated by a direct integration of the pressure over the wetted body surface.  
 
Teng (1995) studied the same problem in the frequency domain by a higher-order BEM, while Bai 
(2001) and Teng et al. (2002) applied a time-domain B-spline based BEM. The formulation in the 
Earth-fixed coordinate system was used. However, they avoid calculating the second-order derivatives 
in the second-order body boundary condition by using a Stokes-like theorem. The cost of doing so is 
an additional integral on the mean waterline and the evaluation of integrals involving the first-order 
derivatives and the normal derivative of the first-order derivatives of the Green function. The results 
by Bai (2001) show large difference when compared with those of Isaacson & Ng (1993b), but are 
much closer to Teng’s (1995) results.  
 
In this section, we firstly re-investigate the same problem by using the domain decomposition based 
method presented in Chapter 5. The higher-order BEM in the time domain is used. Fig.7.37 shows the 

148             Chapter 7 Three-dimensional weakly-nonlinear problems with zero forward speed 

 

0.4 0.8 1.2 1.6 2.0
0.0

0.5

1.0

1.5

2.0

 Present
 Traditional

 kR

F z,
a(2

) /
gR

1a
2

 
Fig.7.36. The non-dimensional amplitude of the second-order force in z-direction versus kR for a vertical 
axisymmetric body defined in Fig.7.31 under forced surge motion with steady-state amplitude 1 0.05a R . 
Comparison is made between the results of the new method and that of the traditional method. 
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amplitude of the non-dimensional vertical sum-frequency forces for the surging truncated cylinder. 
Comparison is made between results of the new method and the other numerical results mentioned 
above. The comparison for heaving motion is shown in Fig.7.38. It is seen that our results are 
consistent with those of Bai (2001) and large differences with Isaacson & Ng (1993b) is observed. Bai 
(2001) attributed the difference to the fact that Isaacson & Ng (1993b) were using a constant panel 
method, which causes difficulties in getting accurate results of the second-order derivatives in the 
second-order boundary condition. Teng et al. (2002) also pointed out that, the computation of the 
second-order potential needs higher accuracy approaches, and care has to be paid in the computation 
of the first-order and second-order derivatives of the velocity potentials.  
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Fig.7.37. The non-dimensional amplitude of the vertical sum-frequency force versus non-dimensional wave 
number for a surging truncated vertical circular cylinder with amplitude 1 0.05a R . d=0.5R. h=1.5R. 
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Fig.7.38. The non-dimensional amplitude of second-order vertical force versus non-dimensional wave number 
for a heaving truncated vertical circular cylinder with amplitude 3 0.05a R . d=0.5R. h=1.5R. 
 
Convergence study of the amplitude of the vertical sum-frequency force with different element 
numbers for the surging truncated cylinder with kR=1.0 is listed in Table 7.1. The vertical 
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sum-frequency force defined with respect to oxyz system is divided into different components  
(2) (2) (2) (2)
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Due to the fact that the truncated cylinder is wall-sided at the mean waterline, a waterline integral 
which takes care of the fluctuation of the wave elevation is not included here. From Table 7.1, it is 
seen that the convergence is achieved for all the three components when NE0 is about 40. In reality, 
NE0=35 does not give much visible different results with NE=50. It is noted that the component due 
to the second-order velocity potential (2)

, 2z pF  has even faster convergence rate than that of the other 
two components, which are the contributions of the first-order velocity potential.  
 
Table 1. Convergence study on the element number for the amplitude of the vertical sum-frequency force 
calculated by the new method. The forced surging with amplitude 1 0.05a R  of a truncated vertical circular 
cylinder with kR=1.0, h=1.5R and d=0.5R is studied. The absolute value sign means the amplitude. NE0 is the 
element number distributed in one wavelength.  

(2 ) 2
, 2 1/z p aF gR (2 ) 2

, 1 1/z q aF gR (2 ) 2
, 2 1/z q aF gR

NE0=20 0.424  0.140  0.479 
NE0=30 0.423  0.146  0.482 
NE0=35 0.424 0.148  0.483 
NE0=40 0.424  0.150  0.482 
NE0=45 0.424 0.151 0.483 
NE0=50 0.423  0.151  0.483  

 
We have also attempted to study the same problem by the traditional method with the second-order 
derivatives in the second-order body boundary condition calculated directly. This is similar to what 
was done by Issacson & Ng (1993b). Representing the velocity potential on each element by the shape 
functions, we can obtain the first-order derivative through the first-order derivative of the shape 
functions. Again, one uses shape functions to interpolate the distribution of the velocity, i.e. the 
first-order derivative of the velocity potential, and gets the second-order derivatives by differentiating 
the shape functions. See the details in Section 4.6. This approach has been shown by Liu et al. (1995) 
to be accurate for the calculation of the second-order derivatives. For the surging of the truncated 
cylinder, the result of the convergence study for different components of the vertical sum-frequency 
force is presented in Table 7.2. We decompose the vertical sum-frequency force into three parts: 

(2) (2) (2) (2)
z , 2 , 1 , 2z p z q z qF F F F              (7.16) 

where  
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Convergence has been achieved for (2)
, 1z qF  and (2)

, 2z qF  when NE0 is about 40. However, (2)
, 2z pF  

shows very slow convergence. No convergence was achieved even at NE0=50, which means a very 
fine mesh resolution. The time history of (2)

, 2z pF  calculated by the traditional method is plotted in 
Fig.7.39 showing the differences when different element numbers are used.  
 
In Fig.7.40, the time history of the total second-order force calculated by the new method and the 
traditional method are plotted. Solutions for NE0=40 and NE0=50 are presented. It is observed that 
the traditional method is neither able to capture the amplitude nor the phase of the second-order force. 
Increasing the element number does not show any trend that the result is going to be closer to that of 
the new method.  
 
For an axisymmetric body without sharp corner (defined in Fig.7.31) studied in the beginning of 
Section 7.2.2, we have obtained consistent results with the new method by using the traditional 
method. This indicates that the higher-order method we used for calculating the second-order 
derivatives are accurate. The difference of the results between the new method and the traditional 
method, and probably the difference of the results between Bai (2001) (or the new method in this 
article) and Isaacson & Ng (1993b) do not have too much to do with whether the higher-order 
methods are used or not. However, a higher-order method is always preferred compared with the 
lower-order methods, because the resulting equation system will be much smaller if a higher-order 
method is used.  
 
The differences are more likely to be due to the singular behavior of the flow velocity at the sharp 
corner. It is known that the solution at the sharp corner may be singular depending on the orientation 
of the incident flow. We will take the heaving of the truncated cylinder as an example and make 
analogy of our problem to the wave-current-body problem with sharp corner (see e.g. Zhao & 
Faltinsen, 1989b). The leading order of the local solution near the sharp corner can be partly explained 
by a 2D corner flow (see e.g. Newman, 1977). The corner flow solution can be represented by 
Eq.(5.1). Therefore the leading order of the first-order and second-order derivatives of the velocity 
potential are 1/3( )O r  and 4/3( )O r  respectively. Here r is the distance to the sharp corner. The 
consequence is that the integral of the double-gradient terms, e.g. (0) (1) (1)n x  (see 
Eq.(2.57) and Eq.(2.58)) on the mean body surface SB0 is not integrable. The reason why the integrals 
are not integrable when the body-boundary condition is satisfied on the mean position of the body 
boundary is that, the formulation of the body boundary condition for a body with unsteady motions is 
wrong with the presence of the sharp corner. The double-gradient terms in Eq.(2.57) and Eq.(2.58) 
have been derived by a Taylor expansion about the mean body surface. This is not valid at a sharp 
corner. However, the body boundary conditions of the new method are formulated on the exact body 
position, and no Taylor expansion is needed. Therefore, the integral equations of the new method are 
valid for cases with and without sharp corners.  
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Fig.7.39. The time history of the second-order vertical force (2)

, 2z pF  due to the second-order velocity potential 
(2) . The calculation is for forced surging with steady-state amplitude 1 0.05a R  of a truncated vertical 

circular cylinder with kR=1.0, d=0.5R, h=1.5R. The traditional method calculating the second-order derivative 
in the second-order body boundary condition is used. NE0 is the number of the elements per wavelength.  
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Fig.7.40. Comparison of the time history of total second-order vertical force. The calculation is for forced 
surging with steady-state amplitude 1 0.05a R  of a truncated vertical circular cylinder with kR=1.0, 
D=0.5R, h=1.5R. ‘Pres.’ means the new method presented in Chapter 5 is used. The ‘Trad.’ analysis calculates 
the second-order derivatives in the second-order boundary condition Eq.(2.58) directly. 
 
Another way of handling the sharp corner cases may be that one introduces a finite bilge radius R at 
the corner. Then one can use a Stokes-like theorem to reduce the second-order derivatives to 
first-order derivatives. Afterwards one let R 0. This may explain that the results by Bai (2001) and 
Teng et al. (2002) are consistent with our results by the new method.  
 
Special care has to be shown when the direct pressure integration is used for the calculation of the 
forces and moments. It was shown that the leading order of the first-order derivative of the velocity 
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potential is 1/3( )O r . Thus the (1) (1)
31/ 2 n  term in Eq.(7.14) is 2 /3( )O r  and the 

(1) (1)
3u n  term in Eq.(7.15) is 1/3( )O r . This indicates that the integrals in Eq.(7.14) and 

Eq.(7.15) are still integrable even though the convergence rate may be slow. The ordering of the 
singularity behavior may also explain the fact that (2 )

, 2z qF  in Table 7.1 has faster convergence rate 
than (2 )

, 1z qF . Eq.(7.13) does not have any singularity in the integrand, thus one should not be 
surprised that (2 )

, 2z pF  shows even faster convergence than (2 )
, 1z qF  and (2 )

, 2z qF , see Table 7.1.  
 
Table 2. Convergence study on the element number for the vertical sum-frequency force calculated by the 
traditional method. The forced surging with amplitude 1 0.05a R   of a truncated vertical circular cylinder 
with kR=1.0, h=1.5R and d=0.5R is studied. The absolute value sign means the amplitude. NE0 is the element 
number distributed in one wavelength.  

(2 ) 2
, 2 1/z p aF gR (2 ) 2

, 1 1/z q aF gR (2 ) 2
, 2 1/z q aF gR

NE0=20 0.952  0.140 0.481  
NE0=30 1.121  0.146  0.481  
NE0=40 1.282  0.150  0.482 
NE0=50 1.399  0.151  0.482 
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CHAPTER 8  

Three-Dimensional Weakly-Nonlinear 

Problems with Small Forward Speeds 

In Chapter 7, the nonlinear wave-body problems have been studied by using both the traditional 
method with a formulation in the inertial coordinate system and the new method using body-fixed 
coordinate system in the near field. No forward speed effect was included.  
 
In this chapter, a small forward speed will be considered in the nonlinear wave-body analysis. Only 
the leading order of the forward speed effect is included in the present study, with its higher-order 
effects neglected. This makes possible for us to use the ‘double-body’ flow as the basis flow. The 
interactions between the steady flow and the first- and second-order unsteady flows are included in 
the present model. The details of the formulations of the boundary conditions in inertial and 
body-fixed coordinate system considering small forward speeds have been given in Chapter 2. In all 
the studies, the = /eU g  parameter which is the product of the Froude number and 
non-dimensional encounter wave frequency is less than 0.25.  
 
The wave diffraction on fixed bodies, bodies under forced oscillations and freely-floating bodies in 
waves will be studied with the consideration of a small forward speed. The bodies studied are 
free-surface piercing. Both the traditional method (if applicable) and the domain decomposition based 
method will be used. The domain decomposition based method using body-fixed coordinate system in 
the near field is valid for all the weakly-nonlinear problems of bodies with or without sharp corners 
with forward speed effects included. However, the traditional method is only applicable for a linear 
wave-body problem without forward speed, if the higher-order derivatives of the steady velocity 
potential are calculated directly. It is not straightforward to apply the Stokes-like theorems (see for 
instance Bai (2001) and Teng et al. (2002)) to the second-order wave-body problems when the 
forward-speed effect is included. The reason is associated with the third-order derivatives of the basis 
flow in the second-order body boundary condition. 
 
The work in this chapter is relevant for the analysis of second-order wave effect on the offshore 
structures, e.g. TLP, in a weak current. The state-of-the-art nonlinear wave loads analysis for offshore 
structures does not include the influence of the current on the second-order wave loads. However, it 
does not mean the current effect is not important. This will be illustrated by our numerical results 
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presented in this chapter. The study may also be important for the evaluation of nonlinear hull-girder 
loads on ships with small forward speeds. The sum-frequency excitation hull-girder loads on a ship 
may be very small compared with the linear wave excitation loads. However, when the sum 
frequencies are in the resonant frequency regions of the ship hull girder, nonlinear springing occurs. 
The fatigue damage induced by the nonlinear wave excitation may be as important as that of the linear 
wave loads due to rigid-body motions. Linear springing may also occur when the encounter 
frequencies of the waves are equal to the lowest structural natural frequency. Because springing is a 
resonant phenomenon, the damping is important for both linear and nonlinear springing.  
 
 

8.1 Second-order wave diffraction 
 
Second-order wave diffraction of a body moving with a small forward speed is studied in this section. 
The domain-decomposition based time-domain HOBEM presented in Chapter 5 is adopted. The 
method described in Section 5.3 for the generation of incident wave in the inner domain is used to 
study the diffraction problem with a small forward speed.  
 
In all the studies presented in Chapter 7, no forward speed or current effects are considered, and no 
short-wave instabilities were encountered. Therefore, we did not use any smoothing or low-pass filter 
for those studies. However, when the forward speed is included, we have observed obvious 
short-wave instabilities. The instabilities occur firstly close to the waterline and their influences 
propagate into the whole free surface if no smoothing is used to suppress the instabilities. The 
consequence is that the whole solution will be destroyed by the propagation of the instabilities. It was 
seen from our numerical tests that the instabilities increase with increasing forward speed or with finer 
mesh resolution. The reason for the instabilities when the forward speed effect is included has not 
been fully understood. See the discussions in Section 4.5. In the present work, a low-pass filter is 
applied to the wave elevation near the waterline in order to suppress the growth of the instabilities. 
The low-pass filter takes the form of Eq.(4.45), which has been used by Büchmann (2000a) in his 
linear BEM based numerical wave tank. The filter strength given in Eq.(4.46) is used throughout the 
cases studies in this section. The filter is applied every time step. More details of this low-pass filter 
can be found in Section 4.5. The results of the sensitivity study of the first- and second-order results 
on the filter strength and the time interval of smoothing will be shown for a bottom-mounted vertical 
circular cylinder. 
 
Bottom-mounted vertical circular cylinder 
A bottom-mounted vertical circular cylinder which has been studied by many others is chosen as a 
reference body. Taking into account a small current, Teng et al. (2008) and Cheung et al. (1996) have 
studied a linear diffraction problem by time-domain BEMs. Skourup et al. (2000) has studied the 
same wave-current-body problem up to second order in wave steepness and first order in current 
speed. One should note that the wave-current-body problem is essentially the same as the wave-body 
problem with forward speed with a negative sign of the current speed.  
 
The cylinder studied has a radius R=1.0 and draft d=h. The water depth h=R is used in the 
calculations. The Froude number is defined as Fr = / gRU  with U as the forward speed. The radius 
of the control surface introduced in the domain decomposition based method was chosen as RC=1.5R. 
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We have shown in Section 7.1.1 for the diffraction of a fixed bottom-mounted vertical circular 
cylinder that, the steady-state first- and second-order results are not sensitive to the distance of the 
control surface to the body as long as the distance is not very large. This was shown to be true as well 
in our numerical tests (not shown here) for the wave-body analysis with a forward speed. 30 cubic 
elements are used per linear wave length in the calculations. The time increment for the updating the 
velocity potential on the free surface and wave elevation is / 200et T . Here 2 /e eT  with 

e  as the encounter frequency.  
 
The analytical solution of the double-body basis flow velocity potential 0  is used for the 
bottom-mounted surface-piercing vertical circular cylinder moving with forward speed U in X 
direction, i.e. 

2
0 0

2 2
0 0

, ,
U X X R

X Y Z
X X Y Y

            (8.1) 

where (X0, Y0) is the position of the cylinder axis in the horizontal plane.  
 
Comparisons are made between the present numerical results and some existing numerical results in 
the literature, showing good agreement. Fig 8.1 and Fig.8.2 show the amplitude of the first-order 
wave run-up around the cylinder for Fr=0.1 and Fr=-0.1, respectively. The present results agree well 
with the other numerical studies based on time-domain BEMs by Kim & Kim (1997), Büchmann et al. 
(1998) and Teng et al. (2008). In the figures,  denotes the angle of the location on the cylinder with 
respect to the X-axis. A is linear amplitude of the incident wave. 1  is the total first-order wave 
elevation including the incident wave and scattered wave. 
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Fig.8.1. The first-order wave run-up around the bottom-mounted vertical circular cylinder. kR=1.0, h=R, Fr=0.1.  
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Fig.8.2. The first-order wave run-up around the bottom-mounted vertical circular cylinder. kR=1.0, h=R, 
Fr=-0.1.  
 
In Fig.8.3 and Fig.8.4, the amplitude of the non-dimensional first-order horizontal force is plotted 
against non-dimensional wave number kR for Fr=0.1 and Fr=-0.1, respectively. In the figures, k is the 
wave number of the incident wave. The present results agree well with that of Teng et al. (2008) and 
Skourup et al. (2000). Our numerical results of the mean drift force for the cylinder with Fr=-0.1 is 
shown in Fig.8.5, together with the results by Cheung et al. (1996) and Skourup et al. (2000). In 
Fig.8.6, comparison for the amplitude of the in-line sum-frequency force is shown for Fr=0.05 and 
Fr= -0.05. The present results agree well with that of Skourup et al. (2000). The result for Fr=0.0 is in 
between that of Fr =0.05 and Fr =-0.05 and it is not shown here. It is noted that, even though the 
studied forward speed is not high, the sum-frequency force for kR 1.2 changes significantly from a 
positive current to a negative current with the same strength.  
 

0.4 0.8 1.2 1.6 2.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

F X,
a(1

) gR
2 A

 

 

kR

 Fr= + 0.1
 Teng et al. (2008)
 Skourup et al. (2000)
 Present

 
Fig.8.3. The amplitude of the non-dimensional first-order in-line force on a vertical circular cylinder versus kR. 
A is the wave amplitude. d=h=R, Fr=0.1. k is the incident wave number. 
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Fr= -0.05. The present results agree well with that of Skourup et al. (2000). The result for Fr=0.0 is in 
between that of Fr =0.05 and Fr =-0.05 and it is not shown here. It is noted that, even though the 
studied forward speed is not high, the sum-frequency force for kR 1.2 changes significantly from a 
positive current to a negative current with the same strength.  
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Fig.8.3. The amplitude of the non-dimensional first-order in-line force on a vertical circular cylinder versus kR. 
A is the wave amplitude. d=h=R, Fr=0.1. k is the incident wave number. 
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A is the wave amplitude. d=h=R, Fr=-0.1. k is the incident wavenumber. 
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Fig.8.5. Non-dimensional horizontal mean drift force on a vertical circular cylinder versus kR. A is the wave 
amplitude. d=h=R, Fr =-0.1. k is the incident wavenumber. 
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Fig.8.6. The non-dimensional amplitude of sum-frequency in-line force on a vertical circular cylinder versus kR. 
d=h=R. k is the incident wave number. 
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160           Chapter 8 Three-dimensional weakly-nonlinear problems with small forward speeds 

The low-pass filter should on one hand be able to remove energy of the spurious short-wavelength 
disturbance which is the source of the instability. On the other hand, the energy taken out by the 
filtering process should be kept at a minimum. In other words, the smart filter should retain the 
physical waves, which are accurately presented by the numerical solution, and weed out numerical 
noise, which is detrimental to the numerical solutions. The influence of low-pass filter used in the 
present work (Eq.(4.45)) has been studied by choosing different strengths of the low-pass filter and 
different frequencies of the application of the smoothing.  
 
The Fig.8.7 and Fig.8.8 show the time histories of the linear and second-order horizontal wave forces 
on a moving circular cylinder with three different filter strengths ( c 4 /t T , 6 /t T , 8 /t T  
respectively in Eq.(4.46)). The cylinder has a draft d=R, which is equal to the water depth, i.e. d=h=R. 
The non-dimensional wavenumber of the incident wave is kR=1.2. The incident wave propagates in 
the X-direction. The Froude number considered is Fr=-0.08, which means that we are in head-sea 
conditions. The mesh density near the waterline NE0=35 and time increment / 200et T  have 
been used in the numerical calculations. Here 2 /e eT  with e  as the encounter frequency. It 
is seen that both the first-order and second-order results are not sensitive to the strength of the filter. 
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Fig.8.7. The first-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr= -0.08. Different filter strengths are studied. The filter is applied every time step.  
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Fig.8.8. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr=-0.08. Different filter strengths are studied. The filter is applied every time step.  
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Fig.8.8. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr=-0.08. Different filter strengths are studied. The filter is applied every time step.  
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Fig.8.8. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr=-0.08. Different filter strengths are studied. The filter is applied every time step.  
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Fig.8.8. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr=-0.08. Different filter strengths are studied. The filter is applied every time step.  
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Presented in Fig.8.9 and Fig.8.10 are the time histories of the linear and second-order horizontal 
forces on the cylinder for different frequencies of application of the filter. The strength of the low-pass 
filter 4 /c t T  is used. It is seen from the results without using the low-pass filter that the 
instability occurs earlier in the second-order simulation than in the first order. Applying the low-pass 
filter with 4 /c t T  every 5 time steps is sufficient to suppress the instabilities in the first-order 
simulations within the first 15 wave periods. However, small ‘noises’ are observed in the second-order 
results during the first 15 wave periods, followed by strong eruption of the instabilities. Applying the 
low-pass filter with 4 /c t T  every time step is able to minimize the influence of the short-wave 
instabilities in both the first-order and second-order solutions and retain the physical wave solutions.  
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Fig.8.9. The first-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr=-0.08. Different frequencies of applying the filter are investigated. The filter strength 4 /c t T  
is used. 
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Fig.8.10. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr=-0.08. Different frequencies of applying the filter are investigated. The filter strength 4 /c t T  
is used. 
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is used. 
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Fig.8.10. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr=-0.08. Different frequencies of applying the filter are investigated. The filter strength 4 /c t T  
is used. 
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Fig.8.9. The first-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
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Fig.8.10. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr=-0.08. Different frequencies of applying the filter are investigated. The filter strength 4 /c t T  
is used. 
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Fig.8.10. The second-order horizontal diffraction force on a vertical circular cylinder in regular wave. h=d=R. 
kR=1.2. Fr=-0.08. Different frequencies of applying the filter are investigated. The filter strength 4 /c t T  
is used. 
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8.2 Second-order wave radiation 
 
In this section, the forced oscillations of bodies moving with small forward speeds will be studied up 
to second order of the wave slope (and the unsteady body motions) and first order of the forward 
speed. A vertical circular cylinder, a vertical axisymmetric body and a truncated vertical circular 
cylinder are considered.  
 
A vertical circular cylinder with draft equal to water depth 
A moving vertical circular cylinder with a small forward speed under forced surge motion is studied. 
The draft of the cylinder is equal to the water depth. The same cylinder without forward speed has 
been studied in Section 7.1.1.     
 
Fig.8.11 and Fig.8.12 show respectively the comparison for the surge added mass and damping 
coefficients with that of Malenica et al. (1995) when a small Froude number Fr= / gRU =-0.05 is 
considered. U is the forward speed. R is the radius of the cylinder. The frequency of encounter e  
was defined by Malenica et al. (1995) as e = 0 coskU , with 0  as the fundamental 
frequency of incoming wave, k as the wave number of the incident waves and  as the angle between 
the wave direction and the x-axis. The results shown in Fig.8.11 and Fig.8.12 correspond to =0. Our 
numerical results agree well with that of Malenica et al. (1995). However, exactly the same results 
should not be expected. This is due to the fact that different formulations have been used. In the 
perturbation procedure of Malenica et al. (1995), both the wave slope parameter  and the current 
parameter  proportional to U are used. How  is precisely defined does not matter since it is just 
a measurement of the smallness of the forward speed. The ( )O  problem without current effects is 
firstly solved and then the ( )O  problem considering the wave-current interaction is solved based 
on the result of ( )O  problem. This formulation is strictly accurate to ( )O  and ( )O  with 
terms of ( )O  included. The formulation adopted in this article is also accurate to ( )O  and 

( )O . However, some higher order effects in  have been included (see also e.g. Zhao & Faltinsen 
(1989a) and B chmann (2000a)). 
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Fig.8.12. The non-dimensional surge damping coefficient for a vertical circular cylinder compared with the 
analytical results by Malenica et al. (1995). The draft is equal to the water depth h and the radius R. Fr=-0.05. 
 
To the author’s knowledge, no study on the second-order radiation problem considering the forward 
speed effect has been reported in the literature. This may be due to fact that the second-order body 
boundary condition in the traditional method using an inertial system (see Section 2.4) requires 
higher-order derivatives of both the steady velocity potential and the first-order solutions. However, 
the new method presented in Chapter 5 based on a body-fixed coordinate system in the near-field is 
free of derivatives on the right-hand side of the body boundary conditions.  
 
In order to verify this new method, we studied the forced surge of the vertical circular cylinder up to 
second order. A small constant forward speed is considered. The forced surge motion is defined as  

(1)
1 1( ) sin ,aRm t t (2)

1 0 .                      (8.2) 

Here Rm(t) is a ramp function used to allow for the gentle start of the flow.  is the circular 
frequency of the oscillation. 1a  is the amplitude of the surge motion. 1 0.05a R  is used in the 
calculations. 
 
Both the traditional method and the new method are used for cross verification. The traditional 
method we used here for a forced oscillating body may be considered as a generalization of the work 
by Skourup et al. (2000), who only studied the second-order diffraction problem with a weak current 
effect.  
 
For a vertical circular cylinder with the draft equal to the water depth, the solution for the 
double-body steady flow is analytically known (e.g. Skourup et al., 2000). In this study, the analytical 
expressions for the steady velocity potential (see Eq.(8.1)) and its derivatives are used in the 
numerical calculations. The amplitude of the mean drift force and the amplitude of the sum-frequency 
force are given in Fig.8.13 for different non-dimensional wave numbers. The wave number k in 
Fig.8.13 is defined as the real root of 2 tanhkg kh , with g as the gravity acceleration and h the 
water depth. Consistent results have been obtained by the traditional method and the new method. 
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Fig.8.13. The mean drift force and the amplitude of the sum-frequency force on a vertical circular cylinder 
versus kR. The draft is equal to the water depth h and the radius R. Fr=0.05. The surge amplitude is 0.05R. 
 
One should note that for the forced surging of the vertical circular cylinder without the presence of 
incident waves, if the Froude number is zero, i.e. no forward speed or current speed, the total 
second-order wave field is symmetric. So the second-order velocity potential gives no contribution to 
the second-order horizontal forces on the cylinder. Furthermore, the quadratic terms of the first-order 
solutions in the calculation of the second-order forces are also symmetric about the oyz-plane (see 
Eq.(2.110) and Eq.(2.117)), which result in zero quadratic forces on the cylinder. Therefore, both the 
sum-frequency and the mean-drift horizontal forces on the forced surging vertical circular cylinder 
with zero Froude number are zero. The presence of the forward speed makes the flow asymmetric and 
the resulting second-order horizontal forces are not zero. The importance of the forward speed effect 
on the second-order horizontal forces is evident from Fig.8.13.  
 
A vertical axisymmetric body without sharp corners 
The forced pitching oscillation of an axisymmetric body without sharp corners moving with small 
constant forward speed is studied. For this case, both the traditional method based on a formulation in 
the inertial coordinate system and the new method (Chapter 5) with body-fixed coordinate system 
near the body are applicable.  
 
The draft of the axisymmetric body considered is 0.5R with R as the maximum radius of the 
axisymmetric body. The water depth is infinite. The dimensions of a cross-section of the body in 
oxz-plane are shown in Fig.7.31. The center of gravity (COG) is located at (0, 0, -0.25R) with R=1.0. 
The pitch motion with respect to the COG of the body is defined as 

(1)
5, 5( ) sinCOG aRm t t , (2)

5, 0COG                 (8.3) 

where ( )Rm t  is the ramp function used to allow for the gentle start of the flow.  is the circular 
frequency of the oscillations. 5a  is the amplitude pitch motion. In the present study, we have used 

5 0.05a  radians. One should note that with our choice of the position of COG, the pure pitching 
about COG represents the coupled surge and pitch motion if the motions are defined with respect to 
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the origin of the reference frame, which is the case when we are formulating the free surface 
conditions and the body boundary conditions in Section 2.4 and Section 2.6 in Chapter 2.  
 
We use both the traditional method based on a formulation in the inertial coordinate system and the 
new method (Chapter 5) with body-fixed coordinate system to study this problem up to second order 
of the wave slope and to first order of the forward speed. We are not able to find an analytical solution 
for the steady double-body flow for this case. Therefore, a numerical solution will be used. 
 
In the traditional formulation in the inertial frame, the second-order body boundary condition contains 
second-order and third-order derivatives of the steady velocity potential. It is not straightforward to 
apply a Stokes-like theorem to the third-order derivatives as it was done for the second-order 
derivatives. In this study, the steady velocity potential and its derivatives in the traditional formulation 
are calculated by using a desingularized BEM, which can only be used for cases without sharp 
corners. The desingularized BEM offsets the singularities out of the fluid domain and thus avoids the 
singular behavior of the Green functions on the body surface when the collocation points coincide 
with the singularities. An optimal distance was obtained by applying the desingularized BEM to a 
sphere moving in infinite fluid. See Section 4.6. The experience is then applied in the case of the 
axisymmetric body. The first-order and second-order derivatives of the unsteady velocity potentials 
are calculated with the assistance of the cubic shape functions of the higher-order boundary elements. 
The details have been given in Section 4.6.  
 
In the calculations based on the domain decomposition method, both the steady velocity potential 

0  and the unsteady velocity potentials k (k=1, 2) are solved by using the HOBEM. Because we 
use a double-body flow as the basis flow, it is sufficient to only distribute singularities on the body 
surface and its image about oxy-plane when solving the 0 -problem. The domain decomposition is 
switched off for 0 -problem. 0 and its derivatives of 0 on both the free surface and control 
surface are obtained directly by the boundary integral equation. The first-order derivatives of 0  on 
the body and the derivatives of k (k=1, 2) on all the boundary surfaces are calculated with the help 
of the cubic shape functions. Note that the double-body flow used in the domain decomposition based 
method has different interpretation with the classical double-body flow with a formulation in the 
inertial coordinate system. See the discussion in Appendix A.  
 
The comparison of the wave forces calculated by the domain decomposition based method and the 
traditional method is made in Fig.8.14 - Fig.8.18. In order to make the comparison possible, we have 
defined the forces and moments with respect to the axes of the body-fixed coordinate system oxyz. 
The moments are with respect to COG. Observed on an inertial coordinate system, these axes change 
orientations if the body has angular motions. Fig.8.14 and Fig.8.15 show the time history of the 
first-order force in x- and z-directions, respectively. kR=1.2 is used in the calculations for the time 
histories. Due to the symmetry of the body, the first-order vertical force will be zero if the Froude 
number is zero. However, with the presence of the forward speed, the resulting wave field will not be 
anti-symmetric about the oyz-plane and thus the linear vertical force is not zero, as shown in Fig.8.15. 
The time history of the first-order pitch moment about an axis through COG is shown in Fig.8.16. The 
time history of the total second-order force in z-direction is presented in Fig.8.17 for the same 
non-dimensional wave number kR=1.2. Fig.8.18 shows the amplitude of the non-dimensional 
sum-frequency force for different non-dimensional wave numbers. Consistent results have been 
obtained by the traditional method and the new method based on domain decomposition. 
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Fig.8.14. Time history of the first-order wave force in the x-direction on the axisymmetric body defined in 
Fig.7.31 under forced pitching about COG. Fr= / gRU =0.05, kR=1.2. The water depth is infinite. 

0 2 4 6 8
-0.08

-0.04

0.00

0.04

0.08

t/T

 

 

Fr=0.05
 Traditional        Present

F z(1
) /

gR
3

5a

 
Fig.8.15. Time history of the first-order wave force in the z-direction on the axisymmetric body defined in 
Fig.7.31 under forced pitching about COG. Fr= / gRU =0.05, kR=1.2. The water depth is infinite. 
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Fig.8.16. Time history of the first-order pitch moment about an axis through COG for the axisymmetric body 
defined in Fig.7.31 under forced pitching about COG. Fr= / gRU =0.05, kR=1.2. The water depth is infinite. 
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Fig.8.16. Time history of the first-order pitch moment about an axis through COG for the axisymmetric body 
defined in Fig.7.31 under forced pitching about COG. Fr= / gRU =0.05, kR=1.2. The water depth is infinite. 
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Fig.8.16. Time history of the first-order pitch moment about an axis through COG for the axisymmetric body 
defined in Fig.7.31 under forced pitching about COG. Fr= / gRU =0.05, kR=1.2. The water depth is infinite. 
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Fig.8.16. Time history of the first-order pitch moment about an axis through COG for the axisymmetric body 
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Fig.8.17. Time history of the second-order wave force in z-direction on the axisymmetric body defined in 
Fig.7.31 under forced pitching about COG. Fr= / gRU =0.05, kR=1.2. The water depth is infinite. 
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Fig.8.18. Amplitude of the sum-frequency force in z-direction versus kR for an axisymmetric body defined in 
Fig.7.31 under forced pitch motion about COG. Fr= / gRU =0.05. The water depth is infinite. 
 
A truncated vertical circular cylinder with sharp corner 
A truncated vertical circular cylinder with sharp corner under forced surging and heaving has also 
been studied. The surge and heave motions are defined respectively as  

(1)
1 1( ) sinaRm t t , (2)

1 0 ,            (8.4) 

(1)
3 3( ) sinaRm t t , (2)

3 0 ,              (8.5) 

where ( )Rm t  is a ramp function.  is the circular frequency of the oscillations. 1a  and 3a   
are the amplitude of surge and heave, respectively.  
 
No incident wave is considered. The draft of the cylinder d=0.5R with R as the radius of the cylinder. 
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Fig.8.17. Time history of the second-order wave force in z-direction on the axisymmetric body defined in 
Fig.7.31 under forced pitching about COG. Fr= / gRU =0.05, kR=1.2. The water depth is infinite. 
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Fig.8.18. Amplitude of the sum-frequency force in z-direction versus kR for an axisymmetric body defined in 
Fig.7.31 under forced pitch motion about COG. Fr= / gRU =0.05. The water depth is infinite. 
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Fig.7.31 under forced pitch motion about COG. Fr= / gRU =0.05. The water depth is infinite. 
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The water depth is infinite. A small constant forward speed with Froude number Fr= / gRU =0.05 
is considered. U is the forward speed. R is the radius of the cylinder. g is the acceleration of gravity.  
 
The domain decomposition based method using body-fixed coordinate system in the inner domain 
(see Chapter 5) is used. For this case, it is not suggested to use the formulation in the inertial 
coordinate system, because the resulting boundary integral equations (BIEs) are not integrable. Even 
though the domain decomposition based method gives BIEs which are integrable for the sharp corner 
cases, it is still difficult for the near-field approach to get convergent results for the second-order 
forces and moments. This is associated with the slow convergence rate of the integral of the velocity 
square terms. By near-field approach, it is meant the direct integration of the pressure on the body 
surface.  
 
In order to improve the convergence rate, we will propose alternative formulas for the forces and 
moments contributed by the velocity square terms. Details are provided in Appendix F. These 
formulas are based on an equality (Eq.(F.3)) given by Newman (1977) and another similar equality 
(Eq.(F.7)). As a consequence, the integral of velocity square term on the body surface is transferred to 
the sum of two groups of integrals. See Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9). The first group 
contains integrals on body surface with integrands whose singularities are weaker than that of the 
velocity square. The second group consists of regular integrals on the inner free surface and the 
control surface. Numerical tests show that the alternative formulas Eq.(F.5), Eq.(F.6), Eq.(F.8) and 
Eq.(F.9) give much faster convergence rate than the original ones, i.e. (F.1) and (F.2).  
 
Fig.8.19 shows the amplitudes of the first-order forces in x- and z-directions on the truncated vertical 
circular cylinder under forced heaving. The results with Fr=0.05 are presented together with that of 
zero Froude number. The first-order horizontal force is zero when the forward speed is zero, which is 
expected due to the symmetry properties about oyz-plane. The first-order vertical force becomes 
nonzero because the presence of the forward speed makes the flow not anti-symmetric.  

0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.5

1.0

1.5

2.0

2.5
 

 Fz,a
(1), Fr=0.05

 Fz,a
(1), Fr=0.00

F z,
a(1

) /
gA

R2 ,  
 F

x,
a(1

) /
gA

R2

2R/g

 Fx,a
(1), Fr=0.05

 Fx,a
(1), Fr=0.00

 
Fig.8.19. First-order forces in x- and z-directions of a forced heaving truncated vertical circular cylinder with 
draft d=R. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and Fr=0.05 are considered.  
 
It is also noticed in Fig.8.19 that the small forward speed considered has negligible influence on the 

168           Chapter 8 Three-dimensional weakly-nonlinear problems with small forward speeds 

The water depth is infinite. A small constant forward speed with Froude number Fr= / gRU =0.05 
is considered. U is the forward speed. R is the radius of the cylinder. g is the acceleration of gravity.  
 
The domain decomposition based method using body-fixed coordinate system in the inner domain 
(see Chapter 5) is used. For this case, it is not suggested to use the formulation in the inertial 
coordinate system, because the resulting boundary integral equations (BIEs) are not integrable. Even 
though the domain decomposition based method gives BIEs which are integrable for the sharp corner 
cases, it is still difficult for the near-field approach to get convergent results for the second-order 
forces and moments. This is associated with the slow convergence rate of the integral of the velocity 
square terms. By near-field approach, it is meant the direct integration of the pressure on the body 
surface.  
 
In order to improve the convergence rate, we will propose alternative formulas for the forces and 
moments contributed by the velocity square terms. Details are provided in Appendix F. These 
formulas are based on an equality (Eq.(F.3)) given by Newman (1977) and another similar equality 
(Eq.(F.7)). As a consequence, the integral of velocity square term on the body surface is transferred to 
the sum of two groups of integrals. See Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9). The first group 
contains integrals on body surface with integrands whose singularities are weaker than that of the 
velocity square. The second group consists of regular integrals on the inner free surface and the 
control surface. Numerical tests show that the alternative formulas Eq.(F.5), Eq.(F.6), Eq.(F.8) and 
Eq.(F.9) give much faster convergence rate than the original ones, i.e. (F.1) and (F.2).  
 
Fig.8.19 shows the amplitudes of the first-order forces in x- and z-directions on the truncated vertical 
circular cylinder under forced heaving. The results with Fr=0.05 are presented together with that of 
zero Froude number. The first-order horizontal force is zero when the forward speed is zero, which is 
expected due to the symmetry properties about oyz-plane. The first-order vertical force becomes 
nonzero because the presence of the forward speed makes the flow not anti-symmetric.  

0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.5

1.0

1.5

2.0

2.5
 

 Fz,a
(1), Fr=0.05

 Fz,a
(1), Fr=0.00

F z,
a(1

) /
gA

R2 ,  
 F

x,
a(1

) /
gA

R2

2R/g

 Fx,a
(1), Fr=0.05

 Fx,a
(1), Fr=0.00

 
Fig.8.19. First-order forces in x- and z-directions of a forced heaving truncated vertical circular cylinder with 
draft d=R. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and Fr=0.05 are considered.  
 
It is also noticed in Fig.8.19 that the small forward speed considered has negligible influence on the 

168           Chapter 8 Three-dimensional weakly-nonlinear problems with small forward speeds 

The water depth is infinite. A small constant forward speed with Froude number Fr= / gRU =0.05 
is considered. U is the forward speed. R is the radius of the cylinder. g is the acceleration of gravity.  
 
The domain decomposition based method using body-fixed coordinate system in the inner domain 
(see Chapter 5) is used. For this case, it is not suggested to use the formulation in the inertial 
coordinate system, because the resulting boundary integral equations (BIEs) are not integrable. Even 
though the domain decomposition based method gives BIEs which are integrable for the sharp corner 
cases, it is still difficult for the near-field approach to get convergent results for the second-order 
forces and moments. This is associated with the slow convergence rate of the integral of the velocity 
square terms. By near-field approach, it is meant the direct integration of the pressure on the body 
surface.  
 
In order to improve the convergence rate, we will propose alternative formulas for the forces and 
moments contributed by the velocity square terms. Details are provided in Appendix F. These 
formulas are based on an equality (Eq.(F.3)) given by Newman (1977) and another similar equality 
(Eq.(F.7)). As a consequence, the integral of velocity square term on the body surface is transferred to 
the sum of two groups of integrals. See Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9). The first group 
contains integrals on body surface with integrands whose singularities are weaker than that of the 
velocity square. The second group consists of regular integrals on the inner free surface and the 
control surface. Numerical tests show that the alternative formulas Eq.(F.5), Eq.(F.6), Eq.(F.8) and 
Eq.(F.9) give much faster convergence rate than the original ones, i.e. (F.1) and (F.2).  
 
Fig.8.19 shows the amplitudes of the first-order forces in x- and z-directions on the truncated vertical 
circular cylinder under forced heaving. The results with Fr=0.05 are presented together with that of 
zero Froude number. The first-order horizontal force is zero when the forward speed is zero, which is 
expected due to the symmetry properties about oyz-plane. The first-order vertical force becomes 
nonzero because the presence of the forward speed makes the flow not anti-symmetric.  

0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.5

1.0

1.5

2.0

2.5
 

 Fz,a
(1), Fr=0.05

 Fz,a
(1), Fr=0.00

F z,
a(1

) /
gA

R2 ,  
 F

x,
a(1

) /
gA

R2

2R/g

 Fx,a
(1), Fr=0.05

 Fx,a
(1), Fr=0.00

 
Fig.8.19. First-order forces in x- and z-directions of a forced heaving truncated vertical circular cylinder with 
draft d=R. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and Fr=0.05 are considered.  
 
It is also noticed in Fig.8.19 that the small forward speed considered has negligible influence on the 

168           Chapter 8 Three-dimensional weakly-nonlinear problems with small forward speeds 

The water depth is infinite. A small constant forward speed with Froude number Fr= / gRU =0.05 
is considered. U is the forward speed. R is the radius of the cylinder. g is the acceleration of gravity.  
 
The domain decomposition based method using body-fixed coordinate system in the inner domain 
(see Chapter 5) is used. For this case, it is not suggested to use the formulation in the inertial 
coordinate system, because the resulting boundary integral equations (BIEs) are not integrable. Even 
though the domain decomposition based method gives BIEs which are integrable for the sharp corner 
cases, it is still difficult for the near-field approach to get convergent results for the second-order 
forces and moments. This is associated with the slow convergence rate of the integral of the velocity 
square terms. By near-field approach, it is meant the direct integration of the pressure on the body 
surface.  
 
In order to improve the convergence rate, we will propose alternative formulas for the forces and 
moments contributed by the velocity square terms. Details are provided in Appendix F. These 
formulas are based on an equality (Eq.(F.3)) given by Newman (1977) and another similar equality 
(Eq.(F.7)). As a consequence, the integral of velocity square term on the body surface is transferred to 
the sum of two groups of integrals. See Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9). The first group 
contains integrals on body surface with integrands whose singularities are weaker than that of the 
velocity square. The second group consists of regular integrals on the inner free surface and the 
control surface. Numerical tests show that the alternative formulas Eq.(F.5), Eq.(F.6), Eq.(F.8) and 
Eq.(F.9) give much faster convergence rate than the original ones, i.e. (F.1) and (F.2).  
 
Fig.8.19 shows the amplitudes of the first-order forces in x- and z-directions on the truncated vertical 
circular cylinder under forced heaving. The results with Fr=0.05 are presented together with that of 
zero Froude number. The first-order horizontal force is zero when the forward speed is zero, which is 
expected due to the symmetry properties about oyz-plane. The first-order vertical force becomes 
nonzero because the presence of the forward speed makes the flow not anti-symmetric.  

0.0 0.4 0.8 1.2 1.6 2.0

0.0

0.5

1.0

1.5

2.0

2.5
 

 Fz,a
(1), Fr=0.05

 Fz,a
(1), Fr=0.00

F z,
a(1

) /
gA

R2 ,  
 F

x,
a(1

) /
gA

R2

2R/g

 Fx,a
(1), Fr=0.05

 Fx,a
(1), Fr=0.00

 
Fig.8.19. First-order forces in x- and z-directions of a forced heaving truncated vertical circular cylinder with 
draft d=R. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and Fr=0.05 are considered.  
 
It is also noticed in Fig.8.19 that the small forward speed considered has negligible influence on the 



8.2 Second-order wave radiation                                                    169 

amplitude of the linear vertical forces of the heaving truncated cylinder. Numerical results also show 
that the small forward speed has very small effect on the phase of the linear vertical force on the 
heaving truncated vertical circular cylinder. Fig.8.20 shows the time histories of the linear vertical 
force on a forced heaving cylinder with 2 /R g =1.0 for Fr=0.0 and Fr=0.05.  is the frequency of 
forced oscillations. g is the gravitational acceleration.  
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Fig.8.20. Time histories of linear vertical force of a forced heaving truncated vertical circular cylinder with draft 
d=R and 2 /R g =1.0. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and Fr=0.05 are 
considered. 2 /T .  is the frequency of forced heaving. 
 
The negligible forward speed effect on the linear vertical force can be explained from the boundary 
conditions by decomposing the flow as the superposition of a symmetric part and an anti-symmetric 
part. For the forced heaving of a body symmetric about oyz-plane in otherwise calm water, the forcing 
terms in the first-order free surface conditions (2.88) and (2.89) can be simplified respectively as:  
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Let us further express the first-order solutions by series expansion in terms of a small parameter  
related to the Froude number, i.e.  
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Putting Eq.(8.8) and Eq.(8.9) into Eq.(8.6) and Eq.(8.7) and collecting consistent terms at the same 
order with respect to , we have that  
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The 0O  approximation solution of (1)  and (1) , i.e. (1)
0  and (1)

0 , satisfy the 
homogenous free surface conditions. The body boundary condition for (1)
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oyz-plane, i.e.  
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Here 3n  is the z-component of the normal vector on body surface. Therefore, the flow represented 
by (1)

0  and (1)
0  is symmetric about oyz-plane. The 1O  approximation solution of (1)  and 

(1) , i.e. (1)
1  and (1)

1 , satisfy the inhomogeneous free surface conditions with forcing terms given 
in Eq.(8.10) and Eq.(8.11). (1)

1  satisfies zero-Neumann body boundary condition. Because the basis 
flow (0)  is anti-symmetric and the flow represented by (1)

0  and (1)
0  is symmetric about 

oyz-plane, it is obvious that the solutions for (1)
1  and (1)

1  are anti-symmetric. That means the 
1O  solution does not contribute to the first-order vertical force on the heaving truncated circular 

cylinder. Therefore, the difference between the results of the linear vertical forces with and without 
forward speed is of 2O  and is negligible if the forward considered is small. Similar analysis can 
be made for the second-order problem. And the same conclusion holds. That is, if the geometry and 
the forced unsteady motions of a body with steady forward speed parallel to x-axis are symmetric 
about oyz-plane, the effect of a small forward speed on the second-order vertical force is of 2O . 

 is a measurement of the smallness of the forward speed. This is also confirmed by our 
second-order numerical results. Fig.8.21 shows the amplitudes of the second-order vertical forces. The 
results for Fr=0.0 and Fr=0.05 are almost the same. Presented in Fig.8.22 are the time histories of the 
second-order vertical forces of the forced heaving truncated cylinder with Fr=0.0 and Fr=0.05. It is 
immediately obvious to us that the small forward speed has negligible effect on the second-order 
vertical force on the forced heaving truncated circular cylinder.  
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Fig.8.21. Second-order force in z-directions of a forced heaving truncated vertical circular cylinder with draft 
d=R. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and Fr=0.05 are considered.  
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Here 3n  is the z-component of the normal vector on body surface. Therefore, the flow represented 
by (1)

0  and (1)
0  is symmetric about oyz-plane. The 1O  approximation solution of (1)  and 

(1) , i.e. (1)
1  and (1)

1 , satisfy the inhomogeneous free surface conditions with forcing terms given 
in Eq.(8.10) and Eq.(8.11). (1)

1  satisfies zero-Neumann body boundary condition. Because the basis 
flow (0)  is anti-symmetric and the flow represented by (1)

0  and (1)
0  is symmetric about 

oyz-plane, it is obvious that the solutions for (1)
1  and (1)

1  are anti-symmetric. That means the 
1O  solution does not contribute to the first-order vertical force on the heaving truncated circular 

cylinder. Therefore, the difference between the results of the linear vertical forces with and without 
forward speed is of 2O  and is negligible if the forward considered is small. Similar analysis can 
be made for the second-order problem. And the same conclusion holds. That is, if the geometry and 
the forced unsteady motions of a body with steady forward speed parallel to x-axis are symmetric 
about oyz-plane, the effect of a small forward speed on the second-order vertical force is of 2O . 

 is a measurement of the smallness of the forward speed. This is also confirmed by our 
second-order numerical results. Fig.8.21 shows the amplitudes of the second-order vertical forces. The 
results for Fr=0.0 and Fr=0.05 are almost the same. Presented in Fig.8.22 are the time histories of the 
second-order vertical forces of the forced heaving truncated cylinder with Fr=0.0 and Fr=0.05. It is 
immediately obvious to us that the small forward speed has negligible effect on the second-order 
vertical force on the forced heaving truncated circular cylinder.  
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Fig.8.21. Second-order force in z-directions of a forced heaving truncated vertical circular cylinder with draft 
d=R. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and Fr=0.05 are considered.  
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Fig.8.22. Time histories of second-order vertical force of a forced heaving truncated vertical circular cylinder 
with draft d=R and 2 /R g =1.0. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and 
Fr=0.05 are considered. 2 /T .  is the frequency of forced heaving. 
 
By performing a similar analysis to Eq.(8.6) – Eq.(8.12), one can also show that for a forced surging 
body with oyz-plane as the symmetric plane, the forward speed effect on the first-order horizontal 
force and the second-order vertical force is of 2O . Due to the presence of the forward speed, the 
wave field generated by the body is not anti-symmetric anymore and consequently the first-order and 
second-order horizontal forces become nonzero. These have been confirmed by our numerical results 
for the truncated vertical circular cylinder shown in Fig.8.23 – Fig.8.25. In Fig.8.23, the amplitudes of 
the first-order forces in x-direction and z-direction are presented for different wave numbers. 
Comparisons are made between Fr=0.0 and Fr=0.05. Fig.8.24 shows the comparison for the 
second-order vertical force of the forced surging truncated cylinder. The time histories of the 
second-order vertical forces on the truncated vertical circular cylinder (kR=1.0, d=R) for Fr=0.0 and 
Fr=0.05 are shown in Fig.8.25.    
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Fig.8.23. First-order forces in x- and z-directions of a forced surging truncated vertical circular cylinder with 
draft d=R. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and Fr=0.05 are considered.  
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Fig.8.23. First-order forces in x- and z-directions of a forced surging truncated vertical circular cylinder with 
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Fig.8.24. Second-order forces z-directions of a forced surging truncated vertical circular cylinder with draft d=R. 
R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and Fr=0.05 are considered.  
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Fig.8.25. Time histories of second-order vertical force of a forced surging truncated vertical circular cylinder 
with draft d=R and 2 /R g =1.0. R is the radius. Infinite water depth is assumed. Fr= / gRU =0.0 and 
Fr=0.05 are considered. 2 /T .  is the frequency of forced heaving.
 
 

8.3 Freely-floating body in regular waves 
 
In the previous sections of this chapter, we have studied the nonlinear wave diffraction and forced 
oscillation problems by considering a small constant forward speed. In this section, the bodies studied 
will be free to response to the incident waves.  
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A vertical circular cylinder studied by Malenica et al. (1995) 
In order to demonstrate the robustness and accuracy of the numerical method, we firstly consider a 
vertical circular cylinder with d=h=R in waves. Here h is the water depth. d and R are the draft and 
radius of the cylinder, respectively. A small forward speed will be considered. Only the surge motion 
is allowed in the numerical studies, with the other five degrees of freedom restrained.  
 
The linear solution of this problem was obtained by Malenica et al. (1995) by a semi-analytical 
approach in the frequency domain. Difficulties arise in order for the time-domain method to get 
consistent results with the frequency-domain approaches. One of the difficulties is the existence of the 
homogeneous solution of the motion equations. Due to the damping effects, the homogeneous 
solution will die out with time. However, in the case we are considering, because there is no restoring 
in the horizontal motion, the cylinder may experience drifting away from its original position due to 
the transient effects. The frequency-domain solution contains only the steady-state inhomogeneous 
solutions. One may use the so-called shooting technique to eliminate the effect of homogeneous 
solution. That is, one chooses a special phase between the incident wave and the body motions in the 
initial conditions so that the homogeneous solution of the body motion is zero. In the present study, a 
ramp function is applied over a long period for the gentle start of the flow. This is also expected to 
minimize the influence of the homogeneous solution of the motion equations. In the present study, a 
sinusoidal ramp function is applied in the first 6 linear wave periods.  
 
The surge motion amplitudes for different Froude numbers Fr= / gRU =0.05, 0.0 and -0.05 are shown 
in Fig.8.26. Comparisons are made with Malenica et al.’s (1995) semi-analytical results in the 
frequency domain. U is the forward speed in x-direction. g is gravitational acceleration. The incident 
wave propagates in positive x-direction. The ‘present’ results shown in the Fig.8.26 were obtained by 
Fourier analysis of the time history of the surge motion of the cylinder. The present time-domain 
numerical results agree well with Malenica et al.’s (1995) results. The domain decomposition based 
method is adopted in the numerical analysis. A cylindrical surface is used as the control surface. The 
body motion equation is solved based on the method presented in Section 4.4. The key point of the 
method is that one has to move all the terms explicitly depending on the accelerations of the body to 
the left-hand side of the motion equations. Numerical tests show that this scheme is very stable. For a 
vertical circular cylinder free to surge in waves, the scheme even works when the mass of the cylinder 
is set to be zero. Zero mass may not be physical for the typical marine structures. But it is relevant to 
the dynamics of the air bubbles in the fluid. The indication is that the scheme may work even well for 
cases where the added mass terms are much larger than the corresponding mass terms, e.g. water entry 
and exit of high-speed objects. 
 
Fig.8.27 shows the time history of the surge motion with kR=1.0 and Fr=0.05. k is the incident wave 
number. It is seen that, as the response to the incident waves, the cylinder oscillates about its initial 
position, i.e. 1

1 0 0t . This also demonstrates that using the ramp function was able to 
minimize the effect of the homogeneous solutions of the first-order body motion equations.  
 
The time history of the second-order surge motion of a cylinder with kR=1.0 and Fr=-0.05 is shown in 
Fig.8.28a. It is seen that the cylinder is drifting away from its initial position at t=0. This can be partly 
understood from the surge velocity in Fig.8.28b and surge acceleration in Fig.8.28c. Due to the mean 
drift force and the sum-frequency forces effects, the second-order surge acceleration contains a 
positive mean value as well as an unsteady contribution with sum-frequency. Therefore, the surge 
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velocity will on one hand oscillate with the sum-frequency, and on the other hand increase linearly 
with time. The consequence is the drifting of the cylinder. In the reality of marine structures, this 
would not happen because of the presence of mooring system or dynamic positioning (DP) system. 
However, for a moored ship in irregular waves, the difference-frequency effects may cause large 
second-order horizontal motions of the ship, i.e. slow-drift motions, which may be of the same order 
of the first-order motions. In this case, the assumption behind Stokes expansion that higher-order 
terms should be much smaller than the lower-order quantities is violated. Actually, the large slow-drift 
motions may give feedbacks to the first-order solution and thus modify the second-order results. 
However, this is not the end of the world for the second-order theory. We will in Chapter 9 briefly 
discuss how to extend the domain decomposition based method in Chapter 5 to handle this problem 
by considering all the horizontal motions as O(1) instead of O( ) or O( 2 ).  
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Fig.8.26. First-order surge motion amplitudes of a vertical circular cylinder with d=h=R. The cylinder is free to 
respond only in surge direction. Different Froude numbers Fr= / gRU =0.05, 0.0 and -0.05 are studied. U is the 
forward speed in X-direction. The incident wave propagates in positive X-direction. R and d are the radius and 
draft of the cylinder, respectively. h is the water depth. g is the gravitational acceleration. k is the incident wave 
number. A is the linear wave amplitude.  
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Fig.8.27. Time history of first-order surge motion of a vertical circular cylinder with d=h=R. Fr= / gRU =0.05. 
The notations are the same as that in Fig.8.26. kR=1.0. 
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Fig.8.28. Time histories of the second-order surge response of a vertical circular cylinder with d=h=R. kR=1.0. 
Fr= / gRU =-0.05. 2 /e eT . e  is the frequency of encounter. (a) Surge motion. (b) Surge velocity. (c) 
Surge acceleration. 
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Truncated vertical circular cylinder studied by Zhao & Faltinsen (1989b) 
Zhao & Faltinsen (1989b) studied a truncated vertical circular cylinder that is free to oscillate in surge 
and heave and restrained from oscillating in pitch. A constant panel method (CPM) in the frequency 
domain was adopted. For zero forward speed case, they obtained the mean wave forces by using both 
the near-field approach based on direct pressure integration on the body surface and the far-field 
approach based on momentum relationship. A large discrepancy was found between these methods, 
which Zhao & Faltinen (1989b) attributed to the effect of CPM applied to the edge between the 
bottom and cylinder surface. In theory, the far-field result is much less sensitive to the meshing details 
on the body surface and is in general more reliable. Liu et al. (1993) computed the same problem 
employing a frequency-domain HOBEM based on the near-field approach which resulted in uniform 
convergence giving an unique result. However, Liu et al.’s (1993) results confirmed neither the 
far-field result nor the near-field results of Zhao & Faltinsen (1989b). In fact, their results were in 
between the two results of Zhao & Faltinsen (1989b). See also the text book of Kim (2008, 
pp.369-370).  
 
The same problem is revisited in this thesis by using the domain decomposition based method 
proposed in Chapter 5. The force is obtained by the pressure integration on the body surface, i.e. the 
near-field approach, except that the quadratic force due to the velocity square is re-formulated based 
on a formula given in Newman (1977). See Appendix F for details. This re-formulation improves very 
much the convergence rate of the quadratic force. The cylinder has a draft equal to the radius, i.e. d=R. 
The water depth is 1.2 times the linear incident wave length. 
 
The time-domain numerical results almost perfectly confirmed the far-field results of Zhao & 
Faltinsen (1989b). See the comparison in Fig.8.29. In the numerical calculations, uniform meshes are 
used on the cylindrical surface of the cylinder. 6 cubic elements are used in the vertical direction. 30 
elements per linear wave length are distributed azimuthally. The elements on the bottom of the 
cylinder in the vicinity of the corner are of the same size of the elements on the cylinder wall. The 
mean wave forces shown in Fig.8.29 are obtained by time-averaging the quadratic forces acting on the 
body, without solving the second-order problem.  
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Fig.8.29. The numerical results of vertical mean wave force. The quadratic part of the second-order force is 
calculated by the re-formulation in Eq.(F.5). Comparisons with the near-field and far-field results of Zhao & 
Fatltinsen (1989b) are made. 0  is the frequency of the incident wave. R is the radius of the cylinder. g is 
gravitational acceleration. 
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The influence of the small forward speed effect on the horizontal and vertical mean wave forces 
acting on the truncated vertical circular cylinder is also investigated. The cylinder is free to oscillate in 
surge and heave and restrained from oscillating in pitch. Fig.8.30 shows the comparison for the 
horizontal mean drift forces for Fr=-0.05 and Fr=0.05. The vertical mean forces for Fr=-0.05 and 
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CHAPTER 9 

Summary and Future Perspectives 

 

9.1 Summary 
 
A two-dimensional Quadratic Boundary Element Method (QBEM) and a three-dimensional cubic 
Higher-order Boundary Element Method (HOBEM) are developed to study respectively the 
two-dimensional and three-dimensional weakly-nonlinear wave-body interactions with/without 
forward speed within potential flow theory of an incompressible liquid. The basis of the 2D QBEM 
and 3D cubic HOBEM in the time domain are given. The necessary numerical issues are addressed. 
 
A direct method for the evaluation of the Cauchy Principal Value (CPV) integral of the influence 
coefficients is proposed, which is based on a triangular-polar coordinate transformation. The 
numerical schemes for the time marching of the free-surface conditions are presented. In the 2D 
time-domain analysis, the fourth-order Runge-Kutta method is used, while the fourth-order 
Adams-Bashforth-Moulton method is adopted in the 3D analysis. A numerical damping zone is used 
to enforce the radiation conditions for the scattered waves. The mechanism of the combination of the 
piston wave absorber and the numerical damping zone is explained in the two-dimensional numerical 
wave tank.  
 
In the 3D analysis, suggestions on the selection of the types of the grid on the free surface are given. 
In order to investigate to what extent the accelerated methods, e.g. the Fast Multipole Method (FMM), 
can speed up the calculation and to see if the accelerated method is applicable to the weakly-nonlinear 
wave-body analysis based on perturbation scheme, a numerical module based on the FMM has been 
developed to accelerate the cubic HOBEM. Guidelines on how to select a proper matrix solver for a 
particular 3D problem are provided.   
 
Different methods for the direct calculation of the higher-order derivatives on the boundaries, e.g. the 
body surface and free surface, are given. In the 2D studies, a curve-fitting technique based on the 
arc-length is used. In the 3D problems, the first-order and second-order derivatives on the boundaries 
can be obtained accurately with the assistance of the cubic shape functions of the cubic HOBEM. For 
smooth and simple geometries, the desingularied BEM (DBEM) or the raised panel method (RPM) 
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can also be used. However, the DBEM and RPM cannot be used for bodies with sharp corners. 
 
In the time-domain wave-body analysis without forward speed, no short wave instabilities were 
observed. The short wave instabilities occur in the cases with forward speed. The reason for the 
instability has not been completely understood. The low-pass filter is applied to the wave elevation on 
the free surface to suppress the short wave instabilities. Another possible numerical instability 
reported in the literature is associated with the time integration of the body motion equations. The 
motion equations are rewritten by moving all the terms explicitly dependent on the rigid-body 
accelerations to the left-hand sides. This results in a stable form of the rigid-body motion equation 
system.   
 
A perturbation scheme is used in the studies. Stokes expansion of the velocity potential, wave 
elevation, translatory and rotational body motions are adopted. The formulations of the 
weakly-nonlinear Boundary Value Problem (BVP) in both the inertial coordinate system and the 
body-fixed reference frame are presented. The consequence of the perturbation scheme is that the 
computational domain does not change with time.  
 
The body boundary conditions formulated in the inertial coordinate system contains higher-order 
derivatives, which are difficult to calculate for bodies with high surface-curvature. Because of the 
higher-order derivatives in the body boundary conditions, the resulting Boundary Integral Equations 
(BIEs) are not integrable for bodies with sharp corners. A new method based on domain 
decomposition is proposed to avoid derivatives on the right-hand side of the body boundary 
conditions. In order to demonstrate that the formulations in the body-fixed coordinate system and the 
inertial coordinate system shall give consistent results, we have derived the analytical (semi-analytical) 
second-order results for a two simple cases, i.e. the forced oscillation of a circle in infinite fluid and 
the forced oscillation of a 2D rectangular tank with a free surface. The analytical (semi-analytical) 
results obtained in the body-fixed coordinate system and the inertial coordinate system are consistent. 
The consistency of the formulations in the body-fixed coordinate system and the inertial frame has 
later been confirmed in our three-dimensional time-domain studies for a smooth body without sharp 
corners.  
 
Another difficulty associated with wave-body interaction analysis of the sharp corner, which is 
numerical, is how to get convergent result of the quadratic forces/moments. A re-formulation of the 
integral of the quadratic forces/moments based on a formula (see Appendix F) given in Newman 
(1977) and another similar equality is proposed to achieve faster convergence of the second-order 
forces on bodies with sharp corners.     
 
The numerical methods developed during this study have been applied to several 2D and 3D weakly 
nonlinear wave-body interaction problems with/without a small forward speed (or current) effect. 
Comparisons between the present numerical results and the other existing theoretical and 
experimental results showed very good agreement.  
 
Two-dimensional studies 
 
The accuracy of the 2D QBEM solver is verified by the following two-dimensional cases: 

 The steady-state third-order solution of a sloshing tank 
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 Free oscillations and forced oscillations in a rectangular tank  
 Numerical simulation of the Stokes second-order waves 
 Numerical simulation of the Stokes third-order waves 
 Second-order diffraction of a horizontal semi-submerged circular cylinder  
 Second-order radiation of a horizontal semi-submerged circular cylinder 

 
The sloshing in a two-dimensional rectangular tank is studied up to third order by using a combined 
numerical and analytical approach. The numerical part is based on the QBEM developed in this study. 
The comparison between the numerical results and the analytical results demonstrated the accuracy of 
our 2D QBEM solver and that the higher-order derivatives in the free-surface conditions can be 
obtained accurately by standard numerical methods.   
 
The free oscillations and forced oscillations in a rectangular tank are studied in the time domain. The 
numerical results are verified by the first-order and second-order analytical results. The mass 
conservations of the first-order and second-order solutions are checked. 
 
The Stokes second-order and third-order waves are reproduced in a 2D numerical wave tank (NWT) 
by feeding the velocity profile based on Stokes wave theory on a control surface. It was found that the 
Stokes drift causes the mass increase in the NWT, and a numerical damping zone which is able to 
‘drain’ water out of the tank was used to minimize the effect of the second-order mass transport. The 
third-order solution in a NWT without secularity (solvability) conditions shows that the third-order 
component of the wave amplitude increases linearly with the horizontal distance to the wave maker. A 
two-time scale approach was proposed to eliminate the secular terms in the free-surface conditions.   
 
Second-order diffraction and radiation of a horizontal semi-submerged circular cylinder are studied 
numerically in the time domain. The results are verified with other theoretical results and are validated 
by some existing experimental results. An indirect method based on Green’s 2nd identity was used to 
check the accuracy of the second-order forces due to the second-order scattered velocity potential. 
The indirect method does not need a second-order solution.  
 
Three-dimensional studies 
 
The three-dimensional time-domain HOBEM was carefully verified by studying the nonlinear 
diffraction, nonlinear radiation and freely floating bodies in waves. Both the traditional method using 
the formulation in the inertial coordinate system and the new method with body-fixed frame near the 
body are used. The present study considered either a small forward speed or zero forward speed. 
 

 Nonlinear diffraction with Fr=0.0 
For zero Froude number, the second-order and third-order wave diffraction are studied. The 
second-order sum-frequency forces on a stationary hemisphere obtained by the present numerical 
results agree favorably with the other numerical results. For a bottom-mounted vertical circular 
cylinder in monochromatic waves, the first-order, second-order and third-order wave forces are 
calculated and compared with the analytical or semi-analytical results. The comparisons for the 
first-order and second-order results showed very good agreement. The third-order forces contributed 
on the bottom-mounted vertical circular cylinder by the first-order and second-order are consistent 
with the semi-analytical results, while differences were observed for the component due to the 
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numerical and analytical approach. The numerical part is based on the QBEM developed in this study. 
The comparison between the numerical results and the analytical results demonstrated the accuracy of 
our 2D QBEM solver and that the higher-order derivatives in the free-surface conditions can be 
obtained accurately by standard numerical methods.   
 
The free oscillations and forced oscillations in a rectangular tank are studied in the time domain. The 
numerical results are verified by the first-order and second-order analytical results. The mass 
conservations of the first-order and second-order solutions are checked. 
 
The Stokes second-order and third-order waves are reproduced in a 2D numerical wave tank (NWT) 
by feeding the velocity profile based on Stokes wave theory on a control surface. It was found that the 
Stokes drift causes the mass increase in the NWT, and a numerical damping zone which is able to 
‘drain’ water out of the tank was used to minimize the effect of the second-order mass transport. The 
third-order solution in a NWT without secularity (solvability) conditions shows that the third-order 
component of the wave amplitude increases linearly with the horizontal distance to the wave maker. A 
two-time scale approach was proposed to eliminate the secular terms in the free-surface conditions.   
 
Second-order diffraction and radiation of a horizontal semi-submerged circular cylinder are studied 
numerically in the time domain. The results are verified with other theoretical results and are validated 
by some existing experimental results. An indirect method based on Green’s 2nd identity was used to 
check the accuracy of the second-order forces due to the second-order scattered velocity potential. 
The indirect method does not need a second-order solution.  
 
Three-dimensional studies 
 
The three-dimensional time-domain HOBEM was carefully verified by studying the nonlinear 
diffraction, nonlinear radiation and freely floating bodies in waves. Both the traditional method using 
the formulation in the inertial coordinate system and the new method with body-fixed frame near the 
body are used. The present study considered either a small forward speed or zero forward speed. 
 

 Nonlinear diffraction with Fr=0.0 
For zero Froude number, the second-order and third-order wave diffraction are studied. The 
second-order sum-frequency forces on a stationary hemisphere obtained by the present numerical 
results agree favorably with the other numerical results. For a bottom-mounted vertical circular 
cylinder in monochromatic waves, the first-order, second-order and third-order wave forces are 
calculated and compared with the analytical or semi-analytical results. The comparisons for the 
first-order and second-order results showed very good agreement. The third-order forces contributed 
on the bottom-mounted vertical circular cylinder by the first-order and second-order are consistent 
with the semi-analytical results, while differences were observed for the component due to the 
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third-order velocity potential. Sensitivity studies on the discretization, the time increment of time 
stepping of the free-surface conditions, the empirical damping coefficients in the numerical damping 
zone, the location and length of the damping zone suggested that our numerical results are convergent. 
An indirect method based on Green’s 2nd identity has also been used as an alternative to calculate the 
forces. The results obtained by the direct method and the indirect method are consistent. Second-order 
diffraction of a bottom-mounted vertical circular cylinder in bichromatic waves has been studied. The 
Quadratic Transfer Functions (QTFs) of the sum-frequency forces and difference-frequency forces are 
recovered from the present time-domain results. The comparison of the QTFs with the other 
numerical and semi-analytical results showed the potential of the present method in the analysis of the 
second-order wave loads on floating bodies in irregular waves.    
  

 Nonlinear radiation with Fr=0.0 
The forced oscillations of free surface piercing bodies have been investigated. The hydrodynamic 
coefficients, i.e. the added mass and damping, for a vertical circular cylinder with draft equal to the 
radius and a hemisphere, have been obtained by Fourier analyzing the time-domain results. Good 
agreements were obtained when compared with the semi-analytical results.  
 
For an axisymmetric body without sharp corner, we have shown that the first-order and second-order 
results obtained by the domain-decomposition based method are consistent with that of the traditional 
method with a formulation in the inertial coordinate system.  
 
For a truncated vertical circular cylinder with sharp corners, the second-order forces obtained by the 
domain-decomposition based method agree fairly well with two of three existing numerical results. 
Those numerical results were obtained by a formulation in inertial reference frame, with the 
second-order derivatives in the second-order body boundary condition treated by a Stokes-like 
theorem. For a body with sharp corner, we also pointed out that, with a formulation in inertial 
reference frame, it is wrong to calculate the second-order derivatives in the second-order body 
boundary condition directly. This is associated with the fact that the second-order derivatives of the 
velocity potential at the sharp corner are not integrable. This may explain why Isaacson & Ng’s 
(1993b) results show relatively large differences.     
 

 Nonlinear diffraction with Fr 0.0 
For a vertical circular cylinder with draft equal to the radius with a small forward speed, the 
first-order and second-order in-line forces are calculated and verified by comparing with the other 
numerical results. Short-wave instabilities have been observed in both the first-order and second-order 
solutions. A low-pass filter was used to suppress the instabilities. Sensitivities on the strength of the 
filter and the frequency of the application of the filter have been investigated.  
 

 Nonlinear radiation with Fr 0.0 
By studying the forced oscillations of a vertical circular cylinder with draft equal to the radius with a 
small forward speed, the hydrodynamic coefficients, i.e. added mass and damping, were obtained. The 
results were in good agreement with the frequency-domain results. The second-order forces on the 
same cylinder are calculated by both the traditional method and the new method based on domain 
decomposition. Consistent results were achieved. The consistency between the traditional method and 
the new method was further demonstrated by the study of a forced-oscillating axisymmetric body 
without sharp corner.   
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The forced oscillating of a truncated vertical circular cylinder is studied up to second order in wave 
steepness and unsteady body motions by using the new method in Chapter 5. A formulation in the 
inertial coordinate system is not valid for this case. It was found that the forward speed has negligible 
effect on the first-order and second-order vertical forces, whereas its influences on the first-order and 
second-order horizontal forces have linear dependence on the Froude number and are not negligible. 
Those observations are based on the analysis with small Froude numbers. Similarly, for a forced 
surging truncated circular cylinder, the forward speed effects on the first-order horizontal force and 
the second-order vertical force are negligible.  
 

 Freely floating bodies with Fr=0.0 or Fr 0.0 
A freely floating vertical circular cylinder in waves was studied. The cylinder was free to response in 
only the surge motion. The Response Amplitude Operators (RAOs) of the first-order responses for 
different Froude numbers agree well with the semi-analytical results in the frequency domain. Drifting 
of the cylinder was observed in the second-order response of the cylinder. This is partly due to the fact 
that the cylinder has no restoring mechanism in the horizontal plane and that the second-order force 
contains a mean drift force. 
 
The vertical mean wave force on a truncated vertical circular cylinder free to response in surge and 
heave was calculated. Near-field method was used in the force calculation except that the quadratic 
forces are re-formulated based on an equality (see Appendix F) given in Newman (1977). The present 
results for the zero forward speed case confirmed the far-field results by Zhao & Faltinsen (1989b), 
while the near-field results of Zhao & Faltinsen (1989b) and Liu et al.(1993) showed large difference. 
The forward speed effects on the horizontal and vertical mean drift forces are discussed.  
 
 

9.2 Future perspectives 
 
The numerical methods have been shown to be robust and able to handle a lot of weakly nonlinear 
wave-body interaction problems with or without a small forward speed. The numerical schemes 
adopted in study are workable but may not be the optimum choices.  
Possible improvement of the present methods in the future 

 The combination of the damping zone with, for instance the Sommerfeld-Orlanski condition 
would allow us to use a relatively smaller damping zone length. As a consequence, it will result in 
fewer unknowns and smaller matrices in the final matrix equation.   
 

 For cases with forward speed, the low-pass filter was applied in this study. The strength of the 
filter was determined empirically. When the forward speed increases, the strength of the 
instabilities increases and one has to increase the strength of the low-pass filter. More work should 
be done on the understanding of the short wave instabilities. A question is: Can we come up with 
a numerical scheme that is free of the short wave instabilities without introducing any numerical 
damping or smoothing effects? 

 
 A proper B-Spline based HOBEM is believed to have faster convergence than the present 

HOBEMs based on shape functions. Therefore, it is suggested to apply the B-Spline based 
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 A proper B-Spline based HOBEM is believed to have faster convergence than the present 

HOBEMs based on shape functions. Therefore, it is suggested to apply the B-Spline based 
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HOBEM on the free surface and the control surface in the domain decomposition based method in 
Chapter 5. The author of this thesis does not prefer to use the B-Spline based HOBEM on the 
body surface. One reason is that the boundary elements based on shape functions can be shared in 
the Finite Element Analysis (FEA) of the structural responses.  

 
 The second-order horizontal and yaw motions of, for instance a moored ship, can be very large 

and it may be wrong to consider them as small. However, it is possible to extend the 
decomposition based method in Chapter 5 to handle this problem by re-ordering the horizontal 
and yaw motions as O(1) instead of O( ) or O( 2 ). The idea is that one use a ‘body-fixed’ 
coordinate system in the outer domain as well. It is called ‘body-fixed’ coordinate system, 
because it has the same horizontal translatory and angular velocities as the body. However, it does 
not have any vertical motions. The coordinate system in the inner domain remains the same 
body-fixed coordinate system as used in this thesis. The derivation of the free-surface conditions 
in the outer domain is similar to what we have done in the inner domain (see Section 2.6.4). The 
difference is that the horizontal motions will be order of O(1). The incident wave field in the outer 
domain has to be described in the ‘body-fixed’ coordinate system as well. This is straightforward 
by considering the vector U  in Eq.(2.144) as the total horizontal velocity of the body. On the 
other hand, one has to solve the body motion equations in the body-fixed coordinate system. The 
description of the rigid-body motion equations in the body-fixed coordinate system can be found 
in Section 2.7.2.    
  

 The present work includes only small forward effects. In practice, it may be appropriate for 
Fr<~0.2.When the forward speed increases and cannot be considered as a small parameter, i.e. 
U~O(1), the steady wave elevation is not negligible. Therefore, in theory one cannot use the 
double-body flow as the basis flow for large forward speeds. One may need to solve the 
fully-nonlinear steady wave (see e.g. Raven, 1996). Furthermore, if one still wants to use the 
perturbation scheme, the free-surface conditions should be approximated by Taylor expansion 
about the steady wave elevation. The steady wave elevation also changes the mean wetted body 
surface that has been used in this thesis.  

 
Future work and possible applications 
In the literature, there are very limited theoretical second-order results with the presence of a forward 
speed. This may be associated with the difficulties that we have discussed in the formulation in the 
inertial coordinate system. In order to further validate the present numerical methods and to see to 
what extent we can apply a second-order or third-order theory, more comparisons should be made 
with the experimental results (if any).   
 
Because we are solving a general second-order (or third-order for zero forward speed) problem, the 
possible applications of the present methods would be, for instance, the higher-harmonic wave loads, 
the difference-frequency wave loads and the mean drift forces on ships and offshore structures.  
 
The sum-frequency loads are relevant for the nonlinear springing of ships and TLPs. The 
third-harmonic forces may also be an important source of the ringing of the TLPs and deep-water 
gravity based platforms. Difference-frequency and mean drift wave loads are important in the 
stationkeeping analysis of moored ships or platforms. The mean drift force is also responsible for the 
added wave resistance of a ship traveling in the seaway. A byproduct of the numerical analysis 
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presented in this thesis is the nonlinear run-up along the offshore structures. The nonlinear run-up is 
not the focus of this thesis. However, it does not mean it is not important. When the domain 
decomposition based method (in Chapter 5) is extended by considering all the horizontal and yaw 
motions as O(1), the method can also be applied to the combined problem of seakeeping and 
maneuvering.  
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Appendix 

 

Appendix A. The double-body basis flow 

A.1 The classical double-body basis flow in the inertial coordinate system  
 
The classical basis double-body flow velocity potential (0)  satisfies the following boundary value 
problem defined in the inertial coordinate system OXYZ: 
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         (A.1) 

Here SB0 is the mean wetted body surface. U  is the forward speed vector described in the inertial 
coordinate system.  
 
In the formulation of the free-surface and body boundary conditions in the inertial coordinate system 
(see Section 2.4), we have used the velocity potential (0)  described in Eq.(A.1) as the basis flow.  
 
The rigid-wall free-surface condition at the mean free surface, i.e. OXY-plane, means that we have 
ignored the steady wave system due to the steady motion of the body. The body boundary condition 
satisfied at the mean position of the body surface indicates that the basis flow described in Eq.(A.1) 
cannot be used for large body motions.  
 
When the body boundary condition is formulated in the inertial coordinate system, and in order to 
approximately satisfy the body boundary condition at the instantaneous body position, one has to 
Taylor expand the basis flow (0)  about the mean body position. See for instance Timman & 
Newman (1962) for the linear boundary conditions and Section 2.4 for the linear and second-order 
boundary conditions. When the body has sharp corners, the solution of (0)  is singular and it is not 
valid to make Taylor expansions.  
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A.2 The ‘double-body’ basis flow used in the domain decomposition based method  
 
Let’s now explain how we can find the zeroth-order velocity potential (0) used in the domain 
decomposition based method using a body-fixed coordinate system in the near field. See Chapter 5. 
Physically, it can not be interpreted as exactly the same as the classical double-body basis flow 
defined in the inertial coordinate system (see Appendix A.1). However, it can be shown that the 
solution of 0  and 0  to zeroth order are the same as the inner and outer part of 0 (defined in 
Eq.(A.1)) respectively.  
 
We introduce another zeroth-order velocity potential 0  satisfying all the conditions in Eq.(A.1) 
except that the body boundary condition is satisfied on the instantaneous position, i.e.  
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n
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              (A.2) 

Here SB  is the instantaneous wetted body surface under the calm water surface Z=0, i.e. the shaded 
area in Fig.(A.2).  
 
Taylor expanding the free-surface condition about the oxy-plane of the body-fixed coordinate system 
in the inner domain, and keeping only the leading order terms, we have that  
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with 
0

0 O                   (A.4) 

 
0  is the leading order approximation of 0  in the inner domain.  is the small parameter as the 

measurement of the unsteady rigid-body motions. 0U  is the zeroth-order component of the 
forward speed vector in the body-fixed coordinate system. In this study, we have assumed the forward 
speed to be always in the X-direction of the inertial coordinate system. The definition of 0U  was 
given in Eq.(2.41). n  is the normal vector of the body surface defined in the body-fixed coordinate 
system.  
 
Note that the Taylor expansion of the free-surface conditions about oxy-plane is only valid in the inner 
domain. This reason has been explained in the text associated with Eq.(2.101). In the outer domain, 
the following free-surface condition holds 

0

0 0on Z
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defined in the inertial coordinate system (see Appendix A.1). However, it can be shown that the 
solution of 0  and 0  to zeroth order are the same as the inner and outer part of 0 (defined in 
Eq.(A.1)) respectively.  
 
We introduce another zeroth-order velocity potential 0  satisfying all the conditions in Eq.(A.1) 
except that the body boundary condition is satisfied on the instantaneous position, i.e.  
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              (A.2) 

Here SB  is the instantaneous wetted body surface under the calm water surface Z=0, i.e. the shaded 
area in Fig.(A.2).  
 
Taylor expanding the free-surface condition about the oxy-plane of the body-fixed coordinate system 
in the inner domain, and keeping only the leading order terms, we have that  
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0

0

0
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in the inner fluid domain

U n on SB
n

on z
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               (A.3) 

with 
0

0 O                   (A.4) 

 
0  is the leading order approximation of 0  in the inner domain.  is the small parameter as the 

measurement of the unsteady rigid-body motions. 0U  is the zeroth-order component of the 
forward speed vector in the body-fixed coordinate system. In this study, we have assumed the forward 
speed to be always in the X-direction of the inertial coordinate system. The definition of 0U  was 
given in Eq.(2.41). n  is the normal vector of the body surface defined in the body-fixed coordinate 
system.  
 
Note that the Taylor expansion of the free-surface conditions about oxy-plane is only valid in the inner 
domain. This reason has been explained in the text associated with Eq.(2.101). In the outer domain, 
the following free-surface condition holds 

0

0 0on Z
Z

               (A.5) 
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0  is the zeroth-order velocity potential in the outer domain.  
 
The difference between the 0 (or 0 n ) at the control surface SC and 0 (or 0 n ) on 
SC0 is of O , and thus can be ignored if only the zeroth-order quantities are of interest. That is  

0

0 0

SC SC
O , 

0

0 0

SC SC

O
n n

        (A.6) 

The definition of control surface SC and its mean position SC0 can be found in Fig.5.1 - Fig.5.3.  
 
Considering Eq.(A.6), Eq.(A.1), Eq.(A.3) and noticing that 0U U , 0n n , we find that, the 
solution of 0  and 0  to zeroth order are the same as the inner and outer part of 0 (defined in 
Eq.(A.1)), respectively. Therefore, we can use 0  as the solutions of 0  and 0 .  
 
For a double-body flow, when (0)  is being solved, the domain decomposition solver is switched off  
and no source/dipole distribution is distributed on the control surface. Since the control surface is 
enclosed by the computational boundaries of the water domain, the velocity potential (0)  and its 
high-order derivatives there can be calculated very accurately by using the boundary integral equation 
(BIE) and the spatial derivatives of the BIE.  
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Fig.A.1. Definition of the scenario of 0  problem in Eq.(A.2). The shaded area is the wetted surface SB  in 
Eq.(A.2). 
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Appendix B. The second-order analytical solution of a circle 

under forced surging in an infinite fluid 

 
B.1. Solution in the Earth-fixed coordinate system 
 
The surge motion of the circle is assumed to be 

1 1a= sin t                                                                 (B.1) 

with the velocity expressed as 

1 1a= cos t .                                                           (B.2) 

Here 1a  is the amplitude of the surge motion.  is the frequency of the oscillation.  
 
We will assume that the body motion is small compared with the radius of the circle R0. Therefore the 
velocity potential  can be written as the series expansion 

= (1) + (2) .                                                           (B.3) 

Taylor expanding the body boundary condition about the mean oscillatory body position, we can get 
the first-order and second-order body boundary conditions, which can be written respectively as  

(1) (1)

1 1 1a 1cosn t n
n r

    on SB0,                               (B.4) 

(2) (2)
(1)

1 Xn
n r

   on SB0.                                         (B.5) 

Here 1 2 3, ,n n n n  is the normal vector on the mean position of the body surface SB0. n  is 
defined as positive pointing into the fluid domain. The subscript X in Eq.(B.5) indicates the partial 
differentiation with respect to the X-coordinate. r  means the radial direction.  
 
The first-order solution is known as a 2D dipole with its normal in the X-direction 

2
(1) 0

1 cosR
R

                                                         (B.6) 

where ,R  is a point in the fluid domain expressed in the polar coordinate system. We can rewrite 
Eq.(B.5) by putting Eq.(B.6), Eq.(B.1) and Eq.(B.2) into Eq.(B.5) as 

(2)
2

1 1 1
0 0

2 1cos 2 sin 2 cos 2a t
n R R

.                         (B.7) 

The elementary solutions of the Laplace equation in the polar coordinate system can be found in for 
instance Newman (1977, Eq.(70), page 125). We can formally write the solution of (2) as the 
combination of the elementary solutions, i.e. 
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(2)
0 0

1
, , ln( ) cos / sin 2n n

n n
n

R t B A R n B R A R t .     (B.8) 

Here A0, B0, An, Bn are constants. The reason we have used sin(2 t) as the time-dependence of the 
solution is that the body boundary condition in Eq.(B.7).is sin(2 t)-dependent. 
 
The coefficients A0, B0, and Bn should be all zero in order to satisfy the radiation condition, which 
requires that (2) 0 at infinity. Furthermore, the body boundary condition Eq.(B.7) suggests that  

2 2
0 1

0, 2
1 , 2
2

n
a

n
A

R n
           (B.9) 

Therefore, the solution of (2) is found as 
2

(2) 2 0
1

1, , sin 2 cos 2
2 a

RR t t
R

.      (B.10) 

The second-order approximation of the hydrodynamic pressure on the body (R=R0) can be expressed 
as 

(1) (2)p p p
(1) (2) 2 (1)

(1) (1)
1t t t X

 

  2 2
1

1 11 cos 2 cos 2
2 2a t                                      (B.11) 

 
B.2. Solution in the body-fixed coordinate system 
 
In the solution in the body-fixed coordinate system, we do not assume that the body motion is small. 
Instead the solution derived here is valid also for large-amplitude motions.  
 
The body boundary condition satisfied on the instantaneous position of the body is  

1 1 1a 1cosn t n
n r

    on SB.                                  (B.12) 

The solution of  is the same as (1)  given in Eq.(B.6), i.e. 
2
0

1 cosR
R

.                                                          (B.13) 

Applying the Bernoulli’s equation in the body-fixed coordinate system, the hydrodynamic pressure on 
the instantaneous body surface can be expressed as 

(1)
(1) (1)

1

2 2
1

1 11 cos 2 cos 2
2 2a

p
t x

t
                                      (B.14) 
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Appendix C. The second-order analytical solution for sloshing in 

a two-dimensional rectangular tank under forced surging 

 
C.1 Solution in the Earth-fixed coordinate system 
 
A 2D rectangular tank under forced sinusoidal surge motion is considered. We will show how we can 
find the second-order analytical solution of this problem in the Earth-fixed coordinate system by 
assuming a steady-state condition. By steady-state condition, it is meant that we will neglect the 
transient effects in the tank. Rognebakke & Faltinsen (1999) has obtained a transient solution up to 
second order for the same problem. The solution was also analytically based. However, in the 
second-order solution, Rognebakke & Faltinsen (1999) simplified their analysis by only including the 
contribution of the first mode in the second-order forcing terms. In the present solution, we have 
included the contribution from all the modes. In practice, we have to truncate the series since the high 
modes are highly-damped.  
 
The surge motion of the rectangular tank is assumed to be 

1 1a= sin t ,                                                (C.1)  

with the velocity as 

1 1a= cosu t .                                           (C.2) 

Here 1a  is the amplitude of the surge motion.  is the frequency of the oscillation. The over dot 
means time derivative. 
 
When the tank motion and the fluid motion in the tank are small compared with the characteristic 
dimension of the tank, the velocity potential  can be expressed by the series expansion 

= (1) + (2) .                                              (C.3) 

The first-order and second-order free-surface conditions can be expressed respectively as  
2 (1) (1)

2 0g
t Z

 on Z = 0,                                                (C.4) 

2 22 (2) (2) (1) (1) (1) 2 (1) (1)

2 2

(1) 2 (1) (1) 2 (1) (1) 3 (1) (1) 3 (1)

2 2

1

12 2 on Z= 0,

g g
t Z t X Z g t Z t Z

X X t Z Z t g t Z t t Z t

            (C.5) 

 
The corresponding first-order and second-order body boundary conditions are 
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find the second-order analytical solution of this problem in the Earth-fixed coordinate system by 
assuming a steady-state condition. By steady-state condition, it is meant that we will neglect the 
transient effects in the tank. Rognebakke & Faltinsen (1999) has obtained a transient solution up to 
second order for the same problem. The solution was also analytically based. However, in the 
second-order solution, Rognebakke & Faltinsen (1999) simplified their analysis by only including the 
contribution of the first mode in the second-order forcing terms. In the present solution, we have 
included the contribution from all the modes. In practice, we have to truncate the series since the high 
modes are highly-damped.  
 
The surge motion of the rectangular tank is assumed to be 

1 1a= sin t ,                                                (C.1)  

with the velocity as 

1 1a= cosu t .                                           (C.2) 

Here 1a  is the amplitude of the surge motion.  is the frequency of the oscillation. The over dot 
means time derivative. 
 
When the tank motion and the fluid motion in the tank are small compared with the characteristic 
dimension of the tank, the velocity potential  can be expressed by the series expansion 

= (1) + (2) .                                              (C.3) 

The first-order and second-order free-surface conditions can be expressed respectively as  
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(1)

1a cos
X a

t
X

                                                     (C.6) 

(2) 2 (1)

1a 2sin
X a X a

t
X X

                                           (C.7) 

Here a is half of the breath of the tank. See the definition in Fig.5.8. 
 
The time-domain solution for (1)  was given by Faltinsen (1978). The steady-state solution can be 
obtained by neglecting the transient terms in Faltinsen’s (1978) solution and can be written as 

(1)
1

1

cosh
cos( ) cos

cosh
n

n n
n n

k Z h
X A t k X a

k h
,                     (C.8) 

where   

3
1a2 2 2

1 11
n

n
n n

A
k a

,                                               (C.9)              

2n
nk

a
.                                                               (C.10) 

Here h is the water depth. 
 
We define  

cosh
( , ) cos( )

cosh
n

n n
n

k Z h
B Z t A t

k h
                                      (C.11) 

and rewrite Eq. (C.8) becomes  
(1)

1
1

( , ) cosn n
n

X B Z t k X a .                                      (C.12) 

 
We will evaluate the forcing term on the right-hand side of Eq. (C.5) term by term by using Eq.(C.12).  

(1) 2 (1)

1,
1 10

1, 1
1
2 3

1

2 sin sin sin 2

sin sin 2

sin 2

m n m n m n
m nZ

n n a n n
n
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A C k k k X a k X a t
X X t

C A k k X a t

t

       (C.13) 

(1) 2 (1)

2, 4,
1 10

2 cos cos sin 2m n m n
m nZ

C C k X a k X a t
X X t

    (C.14) 
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(1) 3 (1)

1, 52
1 10

1 5,
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sin 21 1 cos cos
2

1 cos cos

m n m n
m nZ

n n
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C C k X a k X a

g t Z t g
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(1) 3 (1)
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sin 2
cos cos

2

cos cos
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C C k X a k X a

t Z t

C X k X a t

     (C.16) 

where 1,nC , 2,nC , 3,nC , 4,nC  and 5,nC   are defined respectively as 

1,n nC A ,                                                        (C.17) 
2

2, tanh n
n n n n nC A k k h A

g
,                                          (C.18) 

2
3,n n nC A k ,                                                       (C.19) 

2

4,
n

n nC A
g

,                                         (C.20) 
2

2
5,

n
n nC A

g
.                                      (C.21) 

Noticing that 3,nC =0 and 5,nC =0 when n is an even number, we can rewrite the single summation in 
Eq. (C.15) and Eq. (C.16) respectively as 

1 5,
1

2 2
1 5, 0 1 5,

1 1 1

1 cos cos

1 1sin 2 cos sin 2
2 2

n n
n

a n n a n nm m
n n m

C X k X a t
g

C D t C D k X a t
g g

,   (C.22) 

and 

1 3,
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2 2
1 3, 0 1 3,

1 1 1

cos cos

1 1= sin 2 cos sin 2
2 2

n n
n

a n n a n nm m
n n m

C X k X a t

C D t C D k X a t

 ,  (C.23) 

where  

0 2 2

2 1 1 n

n

a
D

n
,               (C.24) 

2 2 2

2 2 2 2

0;

4 1 1
; &

n

nm

m is odd

a n mD
n m m is even

n m

.           (C.25) 

 
Plugging (C.13) - (C.16) and (C.22) - (C.23) into Eq. (C.5), we have that 
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2 (2) (2)

2
0Z

g
t Z

 

1,
1 1

sin sin sin 2m n m n m n
m n

A C k k k X a k X a t  

2 3
1, 1 1

1
sin sin 2 sin 2n n a n n a

n
C A k k X a t t  

2, 4,
1 1

cos cos sin 2m n m n
m n

C C k X a k X a t  

1, 5,
1 1

sin 21 cos cos
2m n m n

m n

t
C C k X a k X a

g
 

2 2
1 5, 0 1 5,

1 1 1

1 1sin 2 cos sin 2
2 2a n n a n nm m

n n m
C D t C D k X a t

g g
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1 1

sin 2
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2m n m n
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C C k X a k X a

2 2
1 3, 0 1 3,

1 1 1

1 1sin 2 cos sin 2
2 2a n n a n nm m

n n m
C D t C D k X a t             (C.26) 

 
One should note that in Rognebakke & Faltinsen’s (1999) analysis, there is no summation in the 
second-order forcing term, i.e. on the right-hand side of Eq. (C.26). The reason is that only the first 
mode has been used by Rognebakke & Faltinsen (1999) in the second-order forcing term. The 
presence of the double-summations in Eq.(C.26) makes the analytical solution very complicated. 
Fortunately, these double-summations can be transferred to single summations, which will result in a 
much simpler analytical solution. Eq. (C.26) can be rewritten in the following form  

2 (2) (2)

02
1 10

cos sin sin 2n n n n
n nZ

g q q k X a p k X a t
t Z

.  (C.27) 

The derivation of 0q , nq  and np  is lengthy and we only give the final results as 

2 2 3
0 1, 2, 4 1, 5, 1, 3, 1

1

1 1 1
2 2 2n n n n n n n n n a

n
q A C k C C C C C C

g
      (C.28) 
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1, 2, 4, 1, 5, 1, 3,

1 1 1
2 2 2

1 1 1
2 2 2

2 1 1
4 2 2

n m n m m n m m n m m n m m n m
m n

m n m m n m m n m m n m m n m
m

n m m n m m n m m n m m n m m
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1

5,2
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1
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n
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m
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C
D C

g

  (C.29) 
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One should note that in Rognebakke & Faltinsen’s (1999) analysis, there is no summation in the 
second-order forcing term, i.e. on the right-hand side of Eq. (C.26). The reason is that only the first 
mode has been used by Rognebakke & Faltinsen (1999) in the second-order forcing term. The 
presence of the double-summations in Eq.(C.26) makes the analytical solution very complicated. 
Fortunately, these double-summations can be transferred to single summations, which will result in a 
much simpler analytical solution. Eq. (C.26) can be rewritten in the following form  

2 (2) (2)

02
1 10

cos sin sin 2n n n n
n nZ

g q q k X a p k X a t
t Z

.  (C.27) 

The derivation of 0q , nq  and np  is lengthy and we only give the final results as 
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1, 1n n n a np C A k .              (C.30) 

In order to find the solution to (2) , we will divide it into two parts 
(2) *

2 2= .                 (C.31) 

2  satisfies Laplace equation and the following boundary conditions 

2

2

2
2 2

02
1 1

0, ;

0, ;

cos sin sin 2 , 0.n n n n
n n

X a
X

Z h
Z

g q q k X a p k X a t o nZ
t Z

 

(C.32) 
The boundary conditions for *

2  are 
* 2 (1)

22
1a 12

1

*
2

2 * *
2 2

02
1 1

cosh sin
sin sin , ;

cosh 2

0, ;

cos sin sin 2 , 0.

n
a n n n

n n

n n n n
n n

k Z h t
t A k k X a X a

X X k h

Z h
Z

g q q k X a p k X a t o nZ
t Z

  

                 (C.33) 
Thus the sum of *

2  and 2 , i.e. (2)  satisfies the second-order body boundary condition at the tank 
walls Eq (C.7), the zero-Neumann bottom condition and the second-order free-surface condition 
Eq.(C.27).  
 

2Solution for  

We assume  

2 0
1

cosh
cos

cosh
n

n n
n n

k Z h
E t E t k X a

k h
,           (C.34) 

which automatically satisfies the homogeneous Neumann condition at the walls and the bottom of the 
tank. 0E t  and nE t  are determined by putting Eq.(C.34) into the free-surface condition in 
Eq.(C.33) as 

0
0 2 2

1

1 11 sin 2
4 8

n

n
n n

qE t p t
a k

,         (C.35) 

2 2 2 2
1,

2 1 1 11 sin 2
4 +

n m

n n m
m m nn

m
E t q p t

n m
.      (C.36) 
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*
2Solution for  

The body boundary condition in (C.33) for *
2  suggests the following part of the solution 

*
21 1

1

cosh sin
sin

cosh 2
n

a n n n
n n

k Z h t
A k k X a

k h
,       (C.37) 

which satisfies the body boundary conditions. 
 
However, *

21  does not satisfy the free-surface condition in Eq.(C.33), thus we need another part of 
the solution *

22  satisfying the following free-surface condition 
2 * * 2 * *

22 22 21 21
2 2

10 0

sin sinn n
nZ Z

g g F k X a t
t Z t Z

    (C.38) 

with  
2 2

1
1 4
2n a n n nF k A .           (C.39) 

The solution to *
22  can be assumed as 

*
22 0

1

cosh
sin 2 sin 2 cos

cosh
n

n n
n n

k Z h
G t G t k X a

k h
,    (C.40) 

which satisfies the homogeneous Neumann condition on the tank surface.  
 
It follows by plugging Eq.(C.40) into Eq.(C.38) and using the orthogonality of the natural sloshing 
modes that 

0 2
1

1 11
8

n

n
n n

G t F
a k

,            (C.41) 

2 2 2 2
1,

2 1 1 11
4

m n

n m
m m nn

m
G t F

n m
.        (C.42) 

 
When the velocity potential is obtained, the hydrodynamic pressure in the fluid can be obtained from 
the Bernoulli’s equation expressed in the inertial coordinate system. The first-order and second-order 
hydrodynamic pressure can respectively be written as  

1 1
tp ,               (C.43) 

2 12
2 1 1

1
1
2

p
t X t

.        (C.44) 
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C.2 Solution in the tank-fixed coordinate system 
 
The first-order free-surface condition is the same as (C.4) with Z replaced by z in the body-fixed 
coordinate system, i.e. 

2 (1) (1)

2 0g
t z

 on z=0.                                         (C.45) 

The first-order body boundary condition  
(1)

1a cos
x a

t
x

                                        (C.46) 

is the same as Eq.(C.6) with X replaced by x. Here (1)  is the first-order absolute velocity potential. 

Thus the solution to (1)  in the body-fixed coordinate system can be obtained by simply replacing X 

and Z in (C.12) by x and z respectively, i.e. 
(1)

1
1

( , ) cosn n
n

x B z t k z a .                                 (C.47) 

with ( , )nB z t  and nk  defined in section Eq.(C.11) and Eq.(C.10), respectively. 
 
The second-order body boundary condition can be expressed as 

(2)

(2)

0, ;

0, ;

x a
x

z h
x

             (C.48) 

 
The second-order kinematic and dynamic free-surface condition can be written respectively as 

(2) (2) (1) (1) (1) 2 (1)
(1)

1 2z t t x x z
,        (C.49) 

(2) 2 (1) (1)
(2) (1) (1) (1)

1
1
2

g
t z t x

.        (C.50) 

The combined second-order free surface can be expressed as 
2 22 (2) (2) (1) (1) (1) 2 (1) (1)

2 2

(1) (1)

1 1

1

0.

g g
t z t x z g t z t z

g on z
t t x

         (C.51) 

 
We notice that the last two terms are additional terms compared with the second-order free-surface 
condition Eq.(C.5) in the Earth-fixed coordinate system. Therefore, we will divide the solution to 

(2)  into two parts, i.e. 
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We notice that the last two terms are additional terms compared with the second-order free-surface 
condition Eq.(C.5) in the Earth-fixed coordinate system. Therefore, we will divide the solution to 

(2)  into two parts, i.e. 
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The first-order body boundary condition  
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t
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is the same as Eq.(C.6) with X replaced by x. Here (1)  is the first-order absolute velocity potential. 

Thus the solution to (1)  in the body-fixed coordinate system can be obtained by simply replacing X 
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(2) **
2 2 .                 (C.52) 

2  satisfies the homogeneous Neumann condition on the tank surface and part of the free-surface 
condition  

2 22 (2) (2) (1) (1) (1) 2 (1) (1)

2 2

1 0g g on z
t z t x z g t z t z

.   (C.53) 

Thus the solution for 2  is the same as 2  in Eq.(C.34) expect that we have replace X and Z by x 
and z respectively, i.e. 

2 0
1

cosh
cos

cosh
n

n n
n n

k z h
E t E t k x a

k h
.         (C.54) 

with 0E t  and nE t  given in Eq. (C.35) and Eq. (C.36) respectively. 
 

**
2  satisfies the following boundary conditions 

**
2

**
2

2 ** ** (1) (1)
2 2

1 12

0
1

0, ;

0, ;

sin sin 2 0n n
n

x a
x

z h
x

g g
t z t t x

q p k x a t on z

    (C.55) 

where 0q  and np  are defined respectively as 
2 3

0 1
3
2 aq ,                (C.56) 

1, 1
1
2n n n a np C A k .             (C.57) 

Here the coefficients 1,nC  and nA  have been defined in the last section. 
 
The solution to **

2  is found to be 

**
2 0

1

cosh
cos sin 2

cosh
n

n n
n n

k z h
E E k x a t

k h
      (C.58) 

with  

0
0 2 2

1

1 11
4 8

n

n
n n

qE p
a k

            (C.59) 
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0
2 2 2 2

1,

2 1 1 1

4

m n

n m
m m nn

mqE p
n m

.         (C.60) 

 
According to the Bernoulli’s equation in the body-fixed coordinate system, the first-order and 
second-order hydrodynamic pressure can be written respectively as  

1 1
tp                  (C.61) 

2 1
2 1 1

1
1
2

p
t X

         (C.62)
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Appendix D. Elimination of the secular terms in the third-order 

free-surface conditions  

The third-order kinematic and dynamic free-surface conditions can according to Eq.(2.73) and 
Eq.(2.74) be written respectively as  

(3) (3)
3

1 , ,f x z t
t z

  on z=0,                                     (D.1) 

and 
3

3 3
2 , ,g f x z t

t
  on z=0,             (D.2) 

where the forcing terms are defined as 
2 1 1 1 2 2 1 1 12 2 3 2

3 1 1(1) (2) 2
1 2 2 3

1 ( )
2

f
z z z x x x x x x z

,(D.3) 

1 2 1 12 2 323 (1) (2) (1) (1) (1) (2) (1)
2 2

1+
2

f
z z t z t z t

.  (D.4) 

The combination of the kinematic and dynamic free-surface condition can be obtained as 
3 32

3
2 , ,g q x z t

t z
 on z=0,                (D.5) 

with  

3
3 32

1
fq gf
t

.                 (D.6) 

 
Taking the deepwater wave as an example, we have  

1

2

cosh
sin

cosh

0

k z hgA kx t
kh             (D.7) 

and 
1

2 2

cos
1 cos 2
2

A kx t

kA kx t
.               (D.8) 

 
Applying Eq.(D.3), Eq.(D.4) and Eq.(D.6) - Eq.(D.8) in Eq.(D.5) and evaluating the forcing term on 
z=0, we obtain 

3 32

1 32 sin sin 3g A kx t A kx t
t z

,             (D.9) 
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where 
2 3

1A k A g , 3 0A .                  (D.10) 

 
For deepwater case, we have that A3=0. This explains 3 0  for the Stokes third-order wave in 
deep water. The forcing term associated with A1 on the right-hand side of Eq.(D.9) is the source of 
secularity. In the frequency-domain analysis of Stokes third-order wave, this term is eliminated by 
enforcing a nonlinear dispersion relationship (see e.g. Eq.(6.21)). However, in the time-domain 
analysis where the problem is treated as an initial value problem, there is no rational way to modify 
the dispersion relationship.  
 
Let’s show how the two timescale approach described in Section 6.4 eliminate the secular term. 
Replacing / t  by 2 21 0.5 /Ck A t  in Eq.(D.1) and Eq.(D.2) and keeping terms of 3O , 
we have  

(3) (3) (1)
3 2 2

1
1
2

f k A
t z t

 on z=0                                   (D.11) 

and 
3 1

3 3 2 2
2

1
2

g f k A
t t

  on z=0.          (D.12) 

 
Combination of Eq.(D.11) and Eq.(D.12) gives 

3 3 1 12 2
3 2 2

2 2

1
2

g q k A g
t z t t

 on z=0,        (D.13) 

where 3q  is defined in Eq.(D.6). Substituting 3q , 1  and 1  into Eq.(D.13) leads us to a 
homogenous third-order free-surface condition, i.e. 

3 32

2 0g
t z

.                (D.14) 

This means the two additional terms in Eq.(D.11) and Eq.(D.12) give a contribution that cancels out 
the secular term in Eq.(D.9), which explains why the two-time scale model succeeds in the 
reproducing of Stokes third-order waves. It can also be shown that the two-time scale model works for 
cases with finite water depth by following a similar procedure presented in this appendix. It will not 
be elaborated here.  
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Appendix E. Indirect method for the evaluation of forces and 

moments due to the t-term 

 
In this appendix, we will show how to calculate the forces/moments due to the t  term, i.e. 

i i
SB

F n dS
t

.                 (E.1) 

Here Fi (i=1…6) is the component of the force or moment. SB is the body surface. It can be the mean 
body surface or the instantaneous body surface. This means the method presented here is applicable 
for both the fully-nonlinear analysis and the weakly-nonlinear analysis based on perturbation scheme. 
In the weakly-nonlinear problem,  will be replaced by m (m=1, 2, 3) in the corresponding order 
of problems. in  is the i-th component of the generalized normal vector on the body surface with 

4 5 6 1 2 3, , , ,cn n n r r n n n .                (E.2) 
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Using the boundary conditions for t  and i  and Eq.(E.3), we obtain 

i
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       (E.4) 

 
It is seen from Eq.(E.4) that the indirect method for the forces/moments evaluation does not require 
the solution for t  on the body surface. The t  needed on the free surface can be obtained from the 
free-surface condition. For a freely floating body, the /t n  term on the body surface are 
associated with the acceleration of the body and must be moved to the left-hand side of the body 
motion equations, otherwise one needs an iterative loop to take into account the coupling between the 
body motions and the fluid motion. In the forced oscillation or the diffraction problems, this term is 
known in prior from the body boundary condition. The i  term on the body surface and /i n  
on the free surface are obtained from the solution of the i  problem defined in Fig.E.1. 
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Appendix F. Alternative formulas for the quadratic forces and 

moments 

 
We consider the term 

1
2SB

F n dS                 (F.1) 

1
2SB

M r n dS                (F.2) 

Here n  is the normal vector on the body surface defined with respect to the body-fixed reference 
frame oxyz. r  is the position vector of a point relative to the center of moment.   
 
By using the following formula given by Newman (1977)  

1 0
2

n dS
n

,               (F.3) 

we can rewrite Eq. (F.1) as 

1

1
2SB

SF SC

F dS n dS
n n

.           (F.4) 

Here SF1 is the plane with z=0 in the inner domain. SC is the control surface in the inner domain. See 
Fig.5.1 and Fig.5.2 for the illustration. 
 
Introducing the Stokes expansion of , e.g. Eq.(2.2), into Eq.(F.4), we have the first-order and the 
second-order forces described in the body-fixed coordinate system respectively as   
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Similarly, if we apply the following equality  
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in Eq.(F.2) and introduce the Stokes expansion for the velocity potential, the first-order and 
second-order moments can be obtained respectively as 
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Note that the forces and moments in Eq.(F.5), Eq.(F.6), Eq.(F.8) and Eq.(F.9) are defined with respect 
to the body-fixed coordinate system. One can always use the transformation matrices defined in 
Section 2.3 to obtain the corresponding expressions of forces and moments in the inertial coordinate 
system. 
 
Let’s briefly show the derivation of Eq.(F.7) according to Faltinsen (2010). By using the following 
two equalities  

2 2
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and the generalized Gauss theorem, the we can rewrite on the left-hand side of Eq.(F.7) as 
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The integrand of the integral of 1I  in Eq.(F.12) can be rewritten as 
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Here ie , je , ke  and me  (i, k, m =1, 2, 3) are unit vectors along the i-th, j-th, k-th and m-th axis, 
respectively. iV , jV , kV  and mV  are the i-th, j-th, k-th and m-th components of . ix , jx , kx  
and mx  are the i-th, j-th, k-th and m-th components of r .  
 
The integrand of the integral of 2I  in Eq.(F.12) can be rewritten as 
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Considering Eq.(F.13) and Eq.(F.14) in Eq.(F.12), it is immediately apparent to us that the equality of 
Eq.(E.7) holds.  
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Eq.(E.7) holds.  
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