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Summary 
 

The topic of my individual Master Thesis study is the expansion of the Technical Condition Index (TCI) 

concept, developed at the Department of Marine Technology at NTNU, as to encompass the following 

Ship Engine Auxiliary Systems; Fuel Oil System, Lubricating Oil System and Cooling Water System. 

The first chapter is a literature study on condition monitoring techniques, including an introduction on 

the role of TCI’s and condition monitoring within a successful maintenance organization.  

FMECA analysis concluded during the candidate’s Specialization Project revealed three major common 

component groups subject to condition monitoring for the purpose of establishing TCI’; valves, pumps 

and heat exchangers. In order to reduce complexity and cost implications, TCI’s and the condition 

monitoring techniques providing input data should be based on standardized methods, applicable to all 

components within one such major group.  

For valves in the systems studied such standardized methods generally applicable to all valves could not 

be identified. The variety of valve types is vast, while common root-cause failure mechanisms are few, 

indicating that if valves truly are considered sufficiently critical to justify condition monitoring based on 

TCI’s, methods must be developed individually each system to be monitored. 

For pumps, TCI’s are proposed to be based on a combination of vibration monitoring and process 

parameter analysis. Vibration monitoring should be based on measurement of vibration velocity, given in 

mm/s-RMS at bearings. ISO standards classification threshold values are proposed utilized in the transfer 

functions for calculating TCI’s.  TCI’s based on process parameter analysis of pumps should utilize the 

Head – flow test at duty point. This method requires repeatable measurements flow rate and pressure 

difference over the pump.   

TCI’s for heat exchangers are proposed to be based exclusively on process parameter analysis, where the 

parameter to be monitored is the reduction in the overall heat transfer coefficient. The heat transfer 

coefficient is calculated from measurement of inlet and outlet temperature of both mediums flowing 

through the heat exchanger as well as mass flow rate and knowledge of the specific heat capacity of at 

least one of the two mediums.  

Technical Condition Indexes proposed have been implemented into TeCoMan software for the Engine 

Fuel Oil System, and exemplified by calculation of aggregated higher level TCI’s using fabricated data. 

Detailed description of the TeCoMan software and how to efficiently include a planned condition 

monitoring programme to calculate TCI’s is included. 
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1 Introduction 
The goal of this Master Thesis is to develop Technical Condition Indexes (TCI’s) for Ship Auxiliary Systems: 

 Engine Fuel Oil System 

 Engine Cooling System 

 Engine Lubricating System 

As preparation for the Master Thesis, these three systems were investigated during the Specialization 

Project. The Specialization Project was focused at familiarization with the systems under study, and 

previous development of TCI’s for Ship Main Engines, Auxiliary Engines and Tunnel Thrusters from the 

FLAGSHIP Project (2007-2009). Detail system descriptions of the systems under study were made, and a 

Failure Modes Effect and Criticality Analysis (FMECA) was concluded to assist the selection of 

components subject to development of TCI’s. 

The assignment text defines six tasks to be concluded for the successful development of TCI’s for these 

systems: 

“1. Conclude a literature study on the topic of Condition Monitoring. Emphasis should be on component 

types which were identified as especially important for the systems under consideration during the 

Specialization Project FMECA analysis, and at uncovering whether new CM methods have been 

developed recently which could/should be utilized in this TCI development.  

2. Identify explicitly which components or sub-systems from each of the gross systems under 

consideration should be included in a condition monitoring program.  

3. Inspection data could be additional information to establish a more reliable TCI for some of the 

systems components. The inspection program for these systems should be listed based on a ship owners’ 

maintenance program. How such inspection data should be reported and included in the TCIs estimation 

should be proposed. 

4. Develop proposals for TCIs for components and systems identified in 2, with corresponding 

measurements and condition monitoring methods.  

5. Implement the TCI concept for one or more systems into the existing TeCoMan software, including 

aggregating diagram, equations and calculation of TCIs, etc. 

6. Exemplify the concept for at least one of the system by TCI calculations and aggregation.” 

The tasks to be executed are defined rather specific in nature, and I plan to work with answering each 

task and presenting the results chronologically throughout this Master Thesis. Although the assignment 

text dictates the literature study to emphasize component types relevant to the systems in study, I 

would like to make this study a through investigation of all generic condition monitoring techniques. 
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Identifying components subject to the condition monitoring programme will be fully based on the 

FMECA analysis results from the previous project work, and I expect this to be the least time consuming 

task. 

In order to propose how to include inspection data, I will first study the feasibility of organizing such data 

acquisition techniques into the current TCI concept. In addition I will try to investigate the standard 

reporting procedures of one or more ship owners to identify what amount of data are readily available 

from maintenance activities which has the potential of being utilized for TCI’s. Otherwise I will not 

emphasize this task unless investigation of task four dictates such inspection data to be used extensively 

in order to establish reliable TCI’s, as this will be the main effort. 

Implementation of the proposed TCI concept into the TeCoMan software will be necessary in order to 

demonstrate that indices proposed produce valid and practicable TCI’s in line with the TCI concept. As no 

explicit system is under study, data for the demonstration and exemplifications will have to be assumed 

based on literature.  

During course of work with the thesis, I expect to educate myself in further detail on the specific 

machinery systems under study. Also I would like to create for myself a thorough understanding of the 

underlying principle technologies have been developed under the umbrella of condition monitoring, the 

nature of sensors and transducers utilized and the signal processing which is utilized in condition 

monitoring and more detailed failure diagnostics. 

Sources of information on condition monitoring in general will be sought for in the library at the 

Department of Marine Technology, as well as taking use of all curriculum and knowledge acquired from 

previous courses. In addition of course the internet will serve as a source of information. The DNV 

Superintendents Manual Online was a great tool for assistance during the Specialization Project and will 

probably be consulted for guidance on the specifics of the systems under study. 

MARINTEK staff working with the TeCoMan software will be consulted for assistance with the installation 

of TeCoMan and for instructions on how to use the software. 
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2 Literature Study on Condition Monitoring 
Technical Condition Indexes (TCI’s) are the topic of this Master Thesis; the concept was briefly explained 

in the Project Thesis (1) and will be elaborated in further detail in this and subsequent chapters. In order 

to highlight the scope of work to be concluded in my Thesis, I find it relevant first to explain some of the 

framework for any successful condition monitoring programme, and the role of TCI’s linked to such 

programmes.  

2.1 CM Position in Maintenance and Management 
The term Condition Monitoring has several meanings within the realm of maintenance engineering and 

management. First of all it is vital to have an understanding of the maintenance functions. According to 

(2 p. 43) “the mission of the maintenance department in a world-class organization is to achieve and 

sustain the following: 

 Optimum availability 

 Optimum operating conditions 

 Maximum utilization of maintenance resources 

 Minimum spares inventory 

 Ability to react quickly” 

In order to ensure that all these functions are maintained, maintenance work needs to be planned, 

executed and evaluated. Efforts put into maintenance work will have several characters, ranging from 

routine work like tightening, cleaning and lubricating (TCL), to repairing equipment which fails suddenly 

and catastrophically. A classic illustration which describes the different efforts put into maintenance 

effectively is included below. 

 

Figure 1: Structure of maintenance activities, Source: Adapted from (2 p. 46) 

Maintenance

Improvement

Reliability driven

Preventive

Equipment 
driven

Predictive Time-driven

Corrective

Event-driven
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Maintenance improvement are efforts with the aim of reducing the need to perform maintenance work, 

and includes designing robust systems and components for minimum maintenance requirements, while 

at the same time optimizing maintainability, meaning the ability or ease of a component to be 

maintained. Maintenance improvement includes retrofitting and redesign of existing systems in order to 

improve these characteristics. Corrective maintenance is the reactive maintenance, repairs or 

replacement of components which have already failed. A maintenance philosophy based on “run-to-

failure”-principles will be dominated by corrective maintenance efforts. Corrective maintenance will tend 

to produce high lead time to produce spare parts or replacements, which will reduce overall system 

availability. Also, running components to failure will often result in adverse conditions for other 

components in a system, reducing output quality and possibly damaging other system components. 

Preventive maintenance denotes the activities performed with the aim of reducing unscheduled 

downtime of existing equipment, and could be broken down into three blocks. Often most of the 

preventive tasks will be time-based activities which are scheduled routine tasks; this is the baseline of 

preventive maintenance. Equipment driven tasks are done when it is obvious that the equipment is in 

need of service, based on observations of defects, either by humans or if machinery is equipped with a 

its own thresholds or scheduling of maintenance work.  

Finally, we have the predictive maintenance efforts, which is the relevant realm of maintenance work 

for this Thesis. Predictive maintenance work is dictated by condition monitoring activities, which provide 

information on the actual operating condition of the system, through investigations such as statistical 

analysis and trending of key parameters.  

Having identified CM as a prerequisite for performing predictive maintenance work, it should be obvious 

that CM could be used as a maintenance management tool, used for scheduling and prioritizing 

predictive maintenance actions. Too often it is forgotten however, that the application of having a CM 

programme has the potential of stretching much wider. According to (2 p. 61) the implementation of a 

CM programme is typically implemented in order to be utilized as a: 

 Maintenance management tool 

 Plant optimization tool 

 Reliability improvement tool 

The ability to of CM function as a plant optimization tool should be emphasized. Results from CM 

activities are well suited to establish best routines and practices for operation of systems. Most plants 

will during its lifetime operate under conditions deviating from the intended profile used as basis for 

dimensioning in the design phase. In such instances the information on the actual operating condition 

may help in establishing adapted production routines which takes these new conditions into account. 

Also, if CM is performed on a large range of similar plants or components operating under varying 

conditions, or from different equipment suppliers, data retrieved on the response of the components 

may prove a valuable base of information in order to make future business decisions. CM could also ease 

verification of compliance to contractual agreements with respect to technical performance of 
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equipment purchased from vendors, ensuring that the desired product quality is received from such 

suppliers.  

If properly utilized, CM will also function very well as a reliability improvement tool. If deviances from 

normal operation are detected in advance, minor adjustments or retro-fits may be performed in a timely 

manner, thus increasing reliability of components and systems. Specific data of physical properties like 

pressure and temperatures may also serve as an efficient tool in evaluating the design of components, 

comparing the real world with simulated or assumed values. Such information may prove vital in future 

design for optimum reliability and maintainability. 

In a survey referred to by (2), 1500 companies which had implemented a CM programme reported the 

following arguments for choosing to implement such programme: 

 Product quality    77% 

 Asset protection  60% 

 ISO certification   36% 

 Management directives  31% 

 Lower insurance rates  25% 

As we can observe, many of these factors are not strictly maintenance issues. For example, the primary 

focus of those who reported “ISO certification” was compliance with ISO 9000 standards, which is not 

directly directed at maintenance, but rather of product quality. Compliance with this standard will 

typically be forced upon companies for commercial purposes, in effect customers request 

documentation stating their products are produced with a high degree of quality.  

2.2 Structure of an Efficient CM Programme   
As I understand it, the concept of TCI’s could be seen as an explicit method of unifying, processing, 

analysing and aggregating data from the total Condition Monitoring (CM) activities undertaken on a 

number of individual technical plants which operate in relation to each other. This relation could be 

between components, between components and sub-system, between sub-systems and an entire 

producing facility (ship, offshore vessel or other technical plant) or between several individual producing 

facilities. TCI’s are thus a tool enabling data to be processed to produce selected, relevant and simple 

information suitable for being communicated to relevant decision makers, when condition monitoring 

data are available. 

Condition Monitoring (CM) encompasses a number of different methods and techniques, the common 

ground for these are that they provide information which can be used to make decisions in order to 

control and improve performance. 

According to Alan Davies’ Handbook of Condition Monitoring such “monitoring methods cover the 

following areas: 

 Measuring the variations in, and or the absolute values of system output in terms of quality and 

quantity. 
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 Measuring the system’s input/output relationship. 

 Measuring and simultaneously comparing two output parameters with a standard set of 

operating conditions” (1 p. 20) 

From these points it should be evident that measuring is the very essence of Condition Monitoring, and 

at present there is a vast variation of mechanical, optical, thermal and environmental transducers which 

provide measurements of an even greater number of physical properties. Properties provided by such 

sensors represent what we call data, as confirmed by (1 p. 36): “The output of a condition monitoring 

programme is data”. In addition to information gathered from sensors, one may also take into account 

the subjective opinion given by a maintenance operator or equipment expert from operating or 

inspecting equipment and use this information as data as well. We may call such information inspection 

data. Care should be taken if planning to take use of such inspection data and one should strive to 

remove some of the subjective element of the assessment in order to make the information accurate 

and relevant. Standardizing the method of collecting and incorporating such data is thus an important 

issue, if inspection data is to be utilized. The complete set of activities undertaken to collect such hard 

data and inspection data, may be labelled as the “data acquisition” activities. 

The data acquisition activities refers to data collected during operative CM activities, while in the initial 

phase planning a specific CM program, all relevant equipment data and documentation should be 

collected and structured into databases accessible for the CM system. At an initial point, such data 

should include component and system specification as well as any recorded performance testing from 

suppliers, sea trials or similar activities which could be used as a reference basis. We may label such 

information the system data. Such information is crucial in order to have control of the specific 

equipment installed at the plant under consideration, and for future failure diagnostics. The system data 

should preferably be continuously updated to include historical and current system condition. 

For further assistance, the relevant rule base, which includes standards and regulations to which the 

plant or equipment should comply, is relevant information. Such information should be collected and 

incorporated into a similar database in the initial phase of establishing a CM-system. The level of detail 

and accessibility of the information should preferably be as extensive as possible, but due to the nature 

of such documentation being rather comprehensive, having all such data incorporated into a CM-system 

may prove practically impossible. However, current developments increasing focus on proper 

documentation, corporate governance and transparency in the industries, as well as technology 

advances in the IT-sector providing ever greater speeds and capacities for storing, sharing and accessing 

data should have potential to improve detail and accessibility of such information. If the actual rule base 

is not incorporated into the CM-system, reference to where it could be found should at least be stated. It 

is imperative that provisions are made to keep both equipment and system documentation and the rule 

base up to date, adjusting for equipment upgrades or regulatory changes.  

Data alone represents very limited value unless organized, analysed and interpreted into useful 

information, and therefore these activities are an inherent part of CM. Organizing data should be an 

activity which in today’s computerized world is pre-programmed process, which makes data collected 

from data acquisition activities readily organized and available for analysis throughout the CM-system. 
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Manual reporting of input and implementation outside a digital format must be regarded as obsolete, 

but limitation may exist with respect to capability of transferring data between marine installations 

operating globally at sea and CM facilities located on shore, or if data for CM is limited to make readings 

from gauges or sensors which are not digital in their nature. 

Analysis and diagnostics are the activities where all the information collected is utilized in order to 

provide useful information to act upon. Analysis and diagnostics will in any circumstance involve input 

from experts. A trade-off will however exist between the level of detail which is put into the CM-system 

at an initial point, and the need to conclude analysis and diagnostics work on a continuous basis by 

experts. Analysis may be programmed to be executed automatically, and may be linked to diagnosis 

tools which incorporate the knowledge of diagnosis experts, without need to conclude manual analysis 

and/or diagnosing.  The goal is of course for the automation of analysis and diagnostics to be as 

complete and cost efficient as possible, in order to reduce staff employed within this field, which is very 

costly. Analysis and diagnosing is a broad field encompassing numerous analytical task and logic 

reasoning, varying based on the condition monitoring method utilized.  

It is important that results of diagnostics are communicated to all relevant parties, if not; the CM-

programme will simply represent a huge investment in infrastructure, hardware and software, without 

making a difference in controlling and improving performance. The presentation of results from 

diagnosis through an efficient user interface is critical. The user interface should facilitate correct 

information to be distributed to relevant parties, enabling them to make correct decisions. Such 

information is typically alarms or notifications to operators of the technical plant; notifying them of 

deviances from optimum performance, probable causes of malfunction, and procedures to restore or 

adjust capabilities as appropriate. 

I believe having computer software which include and combine all the above identified elements would 

provide a very powerful framework for utilizing CM activities actively in both plant operation and 

maintenance decisions. The idea is inspired by “Expert Systems” or “Knowledge Based Systems”, as 

described and illustrated in unnumbered introductory chapter “The Role of Expert Systems In Condition 

Monitoring” written by Mr. Robert Milne as presented in (2). According to Wikipedia article (5); such 

expert systems are a subdivision within the field of Artificial Intelligence (AI). AI and expert systems and 

their application to condition monitoring was according to Christian Steinebach, Senior Research 

Engineer of MARINTEK, heavily discussed during the 1980’s, but never took of within the industry. I 

would like to highlight that I do not mean that effective software for CM activities necessarily should be 

an expert system utilizing AI concepts, but I find the elements and interaction within an expert system is 



- 8 - 
 

similar to those elements I consider relevant to for a CM programme, as depictured below.

 

Figure 2: Elements of a complete CM programme software, Source: Authors own 

The nature of the sensors providing data and the CM programme, and their interface with the CM 

programme, can be arranged in several ways, depending on sensor types. For very critical machinery, it 

may be applicable to install fixed sensors which monitor important parameters continuously and report 

them on-line at any time. Such systems are usually part of emergency shut down or machine control 

processes. Data for less critical machinery subject to condition monitoring will typically be monitored by 

portable measurement equipment, which may be shared for several components, thus reducing cost 

implications. Some portable equipment provides means of simple analysis, while for more advanced 

analysis; data will have to be loaded into a computer system for more thorough analysis. In any case, 

there will be a trade-off between high frequencies of data and analysis, which will provide more 

powerful failure prediction, and lower frequencies of reporting data which will be less costly. The 

frequencies of data acquisition and analysis should be related to how fast wear mechanisms will progress 

for different kinds of machinery, and the prospected savings from avoiding failure. Of course this also is 

true for the collection of inspection data, but in this case the workload possible for the crew must also be 

taken into consideration as their capabilities are limited. 

2.3 Role of Flagship, TOCC and the TeCoMan Software 
The introduction on the Flagship official webpage (6) reads: 

“FLAGSHIP is a 42 month, part EU-funded project, focusing on improvement of safety, environmental 

friendliness and competitiveness of European maritime transport. The project will contribute to a further 

increase in the capacity and reliability of freight and passenger services and to a reduction of negative 

impact from accidents and emissions. 
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The emphasis of the project is on on-board systems and procedures, ship management systems on shore, 

impact of new technology on present ship-, owner- and operator organisations, effective and efficient 

communication interfaces and impact of standards and regulations”.  

The Flagship project partners list is included below in Table 1: 

Project Co-Ordinator ECSA European Community Shipowners' Associations 

Project Partners   

Aker Yards SA MJC2 Limited 

Altair Special Maritime Enterprise National Technical University of Athens 

Autronica Fire and Security AS Niederelbe Schiffahrtsgesellschaft mbH & Co. KG 

BMT Group Ltd Norwegian Shipowners' Association 

Bureau Veritas Norwegian University of Science and Technology 

Cardiff University Perseveranza SpA di Navigazione 

Carnival plc Port Authority of Valencia 

China Shipping Agency SA PORTLINE - Transportes Marítimos Internacionais, SA 

Community of European Shipyards Associations Regs4ships Ltd 

CONS.A.R RINA SPA 

Danaos Shipping Co. Ltd Rolls Royce Plc 

EMEC European Marine Equipment Council SAM Electronics GmbH 

Germanischer Lloyd AG Shipbuilders & Shiprepairers Association 

Ingenieria de Sistemas para la Defensa de España S.A Sirehna 

Instituto Superior Tecnico Spanish Depot Service, S.A. 

Kongsberg Maritime Superfast Ferries S.A. 

Koninklijke Vereniging van Nederlandse Reders Teekay Shipping 

Kursiu Linija Ltd Temis SA 

Lodic AS  Trans-Base Soler, S.L. 

Lyngsø Marine A/S University of Strathclyde 

MARINTEK V. Ships 

Meyer Werft WEGEMT 

Minoan Lines Wärtsilä Finland Oy  

Table 1: Flagship project partners: Source: (6) 

As highlighted in red, the partnership list includes my university NTNU and the Norwegian Marine 

Technology Research Institute MARINTEK, which located and working together constitutes the Marine 

Technology Centre in Trondheim. 

Within the umbrella of the Flagship project, the Technical Condition Index (TCI) methodology (as 

developed under previous “EUREKA Aging Management” project (’96-’99)) has been developed further 

under industry projects in Norway, most notably the Technical Operation Competence Centre (TOCC) to 

provide a “dimensionless measure of the condition, it could be for a Fleet, Vessel, System, or 

Component, taking into account the long-term degradation and the influences of operation and 

maintenance” (7 p. 3). For demonstration of the functionality of TCI’s, the following systems were 

selected for demonstration: 

 2-stroke main engines 

 4-stroke auxiliary engines 

 Tunnel thrusters 

At TOCC the application for ship diesel main engine has been developed, tested and proven fit for its 

purpose. This has been achieved by establishing the theory and practices of collecting measurements 
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from relevant components and applying the TCI concept to these data in computer software created, 

maintained and evaluated by TOCC.  

TOCC Membership Organizations 

DNV 

MARINTEK 

NTNU 

LEIF HÖEGH & CO. 

THE THORVALD KLAVENESS GRUOP 

THE RESEARCH COUNCIL OF NORWAY 
Table 2: TOCC membership organizations, Source: (8) 

Data have been reported for selected ships in the fleet of the two ship owning companies being partners 

of TOCC, while the maintenance of the TOCC database has been facilitated by MARINTEK in Trondheim. 

TeCoMan is the name of the software which has been developed to handle and analyse the extensive 

amount of data produced to utilize the TCI concept. The software is based on a Java platform, while 

imported and produce data are stored in databases. The software is intended to easily facilitate users to 

add and modify functionality, and thus being a general platform for any system which should be 

evaluated using the TCI concept. While TeCoMan is the intended platform for super users to set up, 

configure and update algorithms for the calculation and display of relevant information from the TCI 

system, another derivative computer application TeCoView has been developed to act as a live and 

accessible portal to display results via intranet or the internet to clients, without the possibility of 

manipulating the algorithms of calculation. 

In previous chapter 2.2, I tried to define what I think are the inherent activities and ideal prerequisites 

necessary for an efficient condition monitoring programme, by investigating sources on the topic of 

condition monitoring and preventive maintenance. Remembering Figure 2 of section 2.2, I would like to 

compare the current use of TeCoMan software to the system I described as ideal. 

 The practise in the TOCC demonstration project is that data acquisition is done manually, pdf 

input forms are filled out by crew on board once pr month and emailed to operators at TOCC, 

which convert the PDF to an .xml file on their computers and upload the .xml file into the 

system.  

 Detail equipment data which I would include in an ideal system (e.g. serial numbers and 

documentation from suppliers) are not stored in the system. 

 Neither relevant regulations nor standards used are displayed or incorporated in the software, 

only algorithms and parameters for the index calculations are specified. Having standards and 

regulations subject to compliance would probably enhance functionality. 

 Otherwise TeCoMan is seemingly a principally functional platform for intended analysis. 

 A user interface is developed through the TeCoView application. This prerequisite is thus met by 

the TOCC system. 

 Historical system data of all the monitored parameters are stored in the databases. This is vital 

in order to learn from equipment failure statistics.  
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2.4 Condition Monitoring Techniques  
This chapter will be focused at looking not into the TCI concept, but at methods of conducting Condition 

Monitoring, which is the underlying fundamental activity which must be present in order to utilize the 

TCI method. The intention is to create and describe a general understanding of the technologies 

available to produce CM data. That said, I would like to point out that I will focus my effort at 

understanding this topic in a marine perspective, sources of information will predominantly be those 

describing Condition Monitoring of Marine Systems, and with extra emphasis on those systems which 

are the scope of this Thesis. 

2.4.1 Vibration Analysis (VA) Theory  

Vibration analysis is according to (1 p. 39) “the dominant technique used for CM programmes. 

Consequently, since the greatest population of typical plant equipment is mechanical, this technique has 

the widest application and benefits in a total plant programme.” Today the theory of this science, along 

with equipment and a number of different analysis methods are fully developed. 

Vibration is usually defined simply as “The motion of a machine, or machine part, back and forth from its 

position of rest” (1 p. 269). 

Vibrations are caused by an exciting force, which is either changing in magnitude or direction. However, 

the resulting vibration characteristic also depends on three other elements particular to the vibrating 

system: 

 Mass 

 Stiffness 

 Damping characteristics 

Any rotating mechanical machine will have an inherent level of vibration and noise, which is regarded as 

normal and acceptable, however deviations from this inherent vibration characteristic will usually stem 

from some mechanical defect or operating problem. Typically problems causing vibration changes can be 

related to some variation of the following phenomena’s: imbalance, misalignment, loose parts, 

eccentricity or external forces. Different types of mechanical failures will manifest themselves in their 

unique way in terms of change of vibration characteristic. These are the facts which facilitate the use of 

CM and failure diagnostics based on data from vibration monitoring.  

2.4.1.1 Characteristics, Measuring Parameters and Severity 

The three descriptive characteristics defining any vibration are: 

 Amplitude; represented by displacement, velocity or acceleration 

 Frequency 

 Phase  

We may illustrate some of the theory in vibration by representing a vibration signal x as a standard 

sinusoidal signal. In this case represented by the equation ( ) sin( )X t A t   , where 
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Figure 3: Example of harmonic vibration signal showing some relevant characteristics 

The mean and RMS values are defined by the following equations: 

0

1
( )

T

Mean X t dt
T

  , which for a simple harmonic signal reduces to:

2
Mean =  Peak amlitude = 63.66% of the Peak amplitude

π
. 

2

0

1
( )

T

RMS X t dt
T

  , which similarly for a harmonic signal reduces to: 

1
  70.71% of the Peak amplitude

2 2 2
RMS Mean Peak


    

Equation 1: Equations for Mean and RMS values of a signal x 
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Frequency is the inverse of the Period, one period being the time to conclude one cycle of the vibration. 

The SI unit used for frequency is Hertz (HZ) and is this number of cycle’s per second (CPS) [s-1]. Very often 

the rotational speed of rotating machinery is given in terms of rounds/cycles per minute (RPM/CPM), 

and in some cases it is perhaps easier or more appropriate to use CPM when comparing vibration 

frequencies and rotational speed of the machine. The fundamental unit is undoubtedly Hz though, and 

the conversion is naturally done by the simple factor 60 [s/min]. 

Phase is “the angle between the instantaneous position of a vibrating part and a fixed reference position, 

or the fractional part of the vibration cycle through which the part has advanced relative to the fixed 

reference”. If we are looking at two moving parts the definition of phase is “the fractional part of a cycle 

through which one part has advanced relative to the fractional part of the cycle through which the other 

part has advanced, expressed as an angular difference” (1 p. 276). 

If displacement is the measured value, amplitude is usually stated in microns, 1 micron = 10-6 m, or 

thousands of millimetres (0,001mm), and presented as the “peak-to-peak” value giving distance 

between the two extreme limits of travel to either side of the reference rest position. 

Velocity measurements usually record the very highest speed, usually given as “millimetres per second 

peak” *mm/s+, but could also be represented as velocity RMS (Root Mean Square). 

Acceleration denotes the rate of change in velocity, and is usually expressed in g’s peak, where 1 g is the 

normal acceleration caused by gravity at the surface of the earth equal to 9.81 [m/s2].  

Displacement, velocity and acceleration are of course mathematically related through the relation that 

displacement or stretch is the integral of velocity with respect to time, and that velocity is the integral of 

the acceleration with respect to time, and combined or written into Newton’s 2nd law they describe 

most motion physics. 

 s ,  Velocity ,  Newtons 2nd: 
Fres

Displacement v dt v a dt a
m

     
 

As a result, velocity is always phase shifted 90 degrees (or π/2 rad) ahead of displacement, while 

acceleration is phase shifted another 90 degrees ahead of displacement. To illustrate this, along with the 

mathematical infliction of the phase angle φ, we may look at the equations and graphs below, showing 

indicatively the typical pattern for how displacement x(t), velocity v(t) and acceleration a(t) are related to 

each other for a simple harmonic sinusoidal vibration. 
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Figure 4: Displacement, velocity and acceleration for a simple harmonic sinusoidal vibration.

 

x(t)=10sin(2πt+0),                                  v(t)=10sin(2πt+
𝜋

2
),                      a(t)=10sin(2πt+π)    

Equation 2: Example of mathematical representation of harmonic sinusoidal vibration signal as charted in above figure. 

According to (1 pp. 277-278); “A measure of vibration velocity is a direct measure of vibration severity”, 

and is the overall preferred amplitude indicator of machine health. Acceleration or displacement can also 

be helpful information, but can not be used without cross referencing with frequency, which is typically 

done in “severity charts”. When measuring overall vibration levels, not knowing the frequencies, velocity 

is thus the only parameter which can be applied directly to scale severity.  

General guidelines for vibration severity can among other places be found in ISO Standards, and were 

first defined in 1974 by ISO standard 2372. This standard also introduced velocity RMS as the standard 

unit of measurement as the best unit applicable for indicating vibration severity in most cases, due to the 

fact that RMS is basically a measure of average vibration amplitude as a function of time, and thus 

representing the damaging energy of the vibration (1 p. 288). According to (9 pp. 89-92), later ISO 

3945:1997and ISO 10816-3:1998 standard provides guidelines for classification of severity for overall 

vibration of machines in general and for centrifugal pumps, respectively. ISO 3945 provides guidelines for 

vibrations in any direction, horizontal, vertical or axial, while ISO 10816-3 is based on radial vibrations of 

bearings or bearing housings, both measured in the broadband frequency range 10-1000 Hz. 

There is however a weakness using RMS-values for some applications, such as gears and rolling element 

bearings, because vibration problems with such equipment will predominantly produce considerable, 

but very short duration pulses. Due to the short time, and nature of the RMS-value taking into account 

the time elapsed by a signal, the RMS-values of such vibrations become very low, although their spike 

amplitude may be damaging and reveal failure on the machinery. The solution for such appliances is of 

course to measure the peak, or peak-to-peak, amplitude of these short duration pulses, as described by 

(4 pp. 7.8 and 7.24-7.25) and (1 pp. 288-294). 

To have a complete understanding og nomenclature used for significant frequency components of 

vibration signals I include the following definitions, as adopted from (1 pp. 285-286): 

 Predominant frequency – frequency of vibration having the highest amplitude or magnitude 
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 Synchronous frequency – vibration frequency that occurs at 1 x RPM 

 Sub synchronous frequency – vibration occurring at a frequency below 1 x RPM 

 Fundamental frequency – the lowest frequency normally associated with a specific failure or 

cause. 

 Harmonic Frequency – an exact, whole number multiple of a fundamental frequency. 

 Order frequency – same as above 

 Sub harmonic frequency – exact sub-multiple (1/2, 1/3, 1/4) of a fundamental frequency  

2.4.1.2 Analysis Techniques  

Analysis methods for analysing data collected from vibration monitoring activities are divided into three 

different domains; the time domain, the frequency domain and the quefrency domain, as illustrated in 

Figure 5 below. 

 

Figure 5: Domains of vibration monitoring techniques, as presented in page 306 in (1). 

Time domain 

The time domain is the simplest, most basic and intuitive realm of analysing vibration signals, as it is 

based on looking at the vibration signal the way we are used to see most signals represented, as some 

sort of magnitude plotted against time.  Various techniques of highlighting characteristics, which are not 

readily observed at a first glance of a simple table or plot of such signals exist though, and could be 

organized as seen below. 
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Figure 6: Time domain analysis techniques, as presented on page 307 in (1) 

Waveform analysis is the basic time domain analysis method, displaying the time history of the signal on 

an oscilloscope or a computer analysis showing the equivalent representation, as exemplified in Figure 3 

above. The application is basically to recognize periodicity or randomness of the signal, and the 

application is considered specifically useful in highlighting transient conditions or short impulses. 

Indices include such quantities as peak level, RMS-level as well as their ratio, the Crest factor, and the 

Kurtosis factor. Peak and RMS-levels have been discussed above, and we remember that general severity 

is best characterized by velocity RMS-level. The ratio between these two values have been named Crest 

factor 
peak

f

rms

A
C

A
 , and has been proposed as a trending parameter which could be used for detecting 

incipient failure in rolling element bearings as this will resulting in an increase in the crest factor. 

However, the application of the Crest factor is disputed by (1), at least unless continuously or at least 

frequently checked, as progressed failure usually results in an increased RMS-value, the parameter will 

only have a short duration increase during incipient failure, before it will decrease to values not 

significantly different from baseline references.   

Synchronous averaging is done by averaging the time signal over a larger number of cycles at the running 

speed of the machinery. The method is mostly used for diagnosing gears, as background noise and 

periodic events are removed. 

Lissagous figures are produced by showing time waveforms collected from two sensors being 90˚ phase 

shifted in relation to each other, where the time base is substituted with the signal from one of the two 

sensors. If one does this on signals from two sensors measuring shaft relative displacement, the resulting 

diagram is depicting the shaft orbit. Shaft orbit is used to indicate such failures as misalignment, bent 
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shafts, journal or sliding bearing wear, instability in hydrodynamic bearings and rub between rotor and 

housing. Displacement probes could be of magnetic spool type, or eddy current transducers.   

Statistical methods comprise plotting probability density, probability of exceedance or investigating the 

moments of the probability density function (PDF). “The probability density is the probability of finding 

instantaneous values within a certain amplitude interval, divided by the size of the interval” (1 p. 309), 

and will have a certain characteristic for any vibration signal. For condition monitoring purposes it is 

necessary to produce a reference curve for comparison with monitored values. This type of analysis 

could be used for high-speed rolling element bearings. The probability density is expressed 

logarithmically, and plotted against a normalized axis of amplitude. Failures will result in a change in 

waveform relative to the reference probability density function, and the logarithmic scaling helps alter 

the shape of the PDF. For trending purposes, three-dimensional cascading or “waterfall” plots can be a 

useful tool in order to help illustrate the developing alteration in the PDF as a function of time.  

Probability of exceedance is another statistical analysis method, and is basically the integral of the 

probability density function, depicting the probability that the instantaneous vibration amplitude is 

exceeding any particular amplitude. This method is similarly used to detect bearing failure. 

Finally, when investigating time domain signals through use of statistical methods there are the 

investigation of moments of the PDF curve.  A PDF curve as a stochastic variable could be described by a 

series of single-number indices or factors. The first moment is the mean value, and the second is the 

variance. Central moments of order n of a stochastic variable x are defined by the equation: 

( ) ( ) ( )n

x x Xx f x dx 




 
  

Equation 3: Central moments of order n, as defined in page 2.27 in (5) 

The skewness coefficient, saying something about the position of the peak value relative to median value 

is defined by:  

(3) (3)

1 3 3
(2)2

Skewness coefficient: 

( )

x x

x
x

 





 

 

Equation 4: Skewness coefficient, from page 2.27 in (5) 

While the 4th order coefficient is defined as the: 

(4) (4)

2 4 4
(2)2

Flatness coefficient, Kurtosis factor: 

( )

x x
f

x
x

K
 






    

Equation 5: Flatness, or Kurtosis coefficient, as found on page 2.28 in (5) 
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(2 ) (2 )

2
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Or general for coefficients of order above 2: 

( )

n n

x x
n n n

x
x

 





 


    

Equation 6: General higher order moment coefficient, authors own. 

For moments of higher order and odd values of n, the coefficient is close to zero, while even values of n 

relate to description of shorter and shorter impulsive behaviours of the signal. The Kurtosis coefficient 

has been proposed as a trending parameter for detecting failures in rolling element bearings, being a 

compromise between high-frequency impulse-sensitivity and insensitive lower moments. However, 

similar to the Crest factor, the Kurtosis parameter used for trending “could not be relied on as a trending 

parameter for the purposes of prognosticating bearing condition”. Based on the fact that tests have 

shown that the ability to predict failure from Kurtosis or Crest-factor trending are quite similar, the much 

cheaper Crest factor meters can be used for monitoring of rolling element bearings.  

Frequency domain 

The frequency domain analysis techniques, as recognized by (1), and their relation to each other can be 

illustrated as seen below in Figure 7. 

 

Figure 7: Frequency domain analysis techniques, as presented on page 314 in (1) 

Previously, deriving the frequency domain signal was done by utilizing analogue filter sets which were 

tuned to provide information only from frequency bands of interest. Today, however, digital (real-time) 

Fast Fourier Analysis (FFA) is the modern method of doing this. Since the local environment and the 

history of assembly and installation will inflict the vibration response, one should obtain signature 

spectrum from trial condition as reference. This is especially true for marine applications, where the 
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foundation and the background vibration from the structure to which the machine is mounted may play 

a role as well.  

Spectral comparison is perhaps the most basic form of analysing in the frequency domain. Vibration 

level is plotted against frequency, and compared to the baseline spectrum collected at sea-trials or 

similar reference measurement. This is a simple two-dimensional plot, and increases in general or 

distinct frequencies will probably indicate a fault or wear condition. Today’s equipment for spectral 

comparison is based on “portable microprocessor instrumentation which has both memory and 

intelligence” according to (1 p. 315). Similar to what was described for time domain analysis, frequency 

domain spectra collected at different point in time may be plotted in three-dimensional cascade plots, 

where the development of deviances can be illustrated better.  

In (1), the use of cascade plots are said to be applicable for plotting displacement or acceleration levels, 

however it is indicated that the broad frequency response and large harmonic  content usually provided 

by acceleration transducers may result in signals which simply contain too much information to provide 

useful cascading plots. Nothing is said of plotting velocity levels, but I assume this is possible as well. 

Indices may be useful to reduce the amount of information, and according to (1 p. 316) “the amount of 

information present in a cascade plot can be reduced if each spectral change that occurred is expressed 

by a single number”. It is said that indices based on such spectral frequencies have proven much more 

sensitive than similar time domain indices, as described above, in detecting failure in rolling element and 

journal bearings and gears.  The proposed and exemplified index parameter in (1) is the Matched Filter 

RMS: 
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Figure 8: Matched Filter RMS index definition, as from page 323 in (1). 

Applying spectral masks is another method of evaluating the spectral change. This is done by defining 

allowable tolerance limits outside the reference spectrum. If the measured signal is within the mask, 

then the situation is deemed ok. Masks could be broad or narrow, depending on the anticipated speed 

variation, as this has to be compensated for. Masks could be either constant percentages in regions, or 

more complex functions where relative mask width varies with varying frequency, depending on notion 

of critical frequency regions on the machinery. Expertise on the equipment and its vibration response 

throughout the frequency spectrum is necessary to create mask widths which balance the need to avoid 

spurious alerts or shut-downs with the need to have early fault detection. 
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Enveloped, or demodulated, spectrum analysis is done by first applying a high-pass filtering stage, 

removing low-frequency components in the spectrum, which will often dominate in magnitude. Next, 

the signal is rectified, and a signature spectrum is derived in same manner as usual by a real-time FFA or 

computer processing of the data. If computer analysis is used to create the spectrum, then an extra low-

pass filtering is included. The reason for this extra filter is that it will avoid aliasing of the signal, which 

means an incorrect reconstruction of a sampled signal due too low sampling frequency, relative to the 

highest frequency carried by the signal, according to the Nyquist-Shannon Sampling Theorem (12). 

Enveloped spectrum analysis is said by (1) to have proven useful detecting damage in complex 

machinery, but failure in high-speed rolling element bearings with a progressed failure mode may not be 

detectable, because the high-frequency impulses from such failure is usually not within the data 

collected from transducer commonly used for such bearings. None the less, the applicability of 

enveloped spectral analysis is for relatively short duration pulses, given that the frequencies of such 

pulses in fact are picked up by the transducer utilized. 

Pass band analysis means monitoring only a band of frequencies, broad or narrow, in which defect 

frequencies of components are anticipated to dominate, or change significantly upon failure. A narrow-

pass band monitoring is often referred to as discrete frequency monitoring. The weakness with such 

monitoring is of course all the frequency which one omits in the analysis. I would say that such analysis 

should not be an overall condition monitoring method, but a more specified failure diagnosis 

supplementary check if condition monitoring not including frequency spectral analysis has been done, 

and one knows anticipated frequencies for different typical failure modes. 

The shock pulse method is a specialized application of characteristic frequency monitoring, and utilizes 

the fact that high-speed rolling element bearing failure produces energy omitted at frequencies in the 

ultrasonic frequency range. Basically, the trick is to use a transducer which is tuned to pick up these high 

frequencies, and then analyse the signal using similar methods as described above, for instance spectral 

analysis.  

Quefrency domain analysis 

“Quefrency is the abscissa for the cepstrum which is defined as the spectrum of the logarithm of the 

power spectrum” according to (1 p. 318), the derivation of the cepstrum is not a trivial matter, and is 

predominantly used for gearbox vibrations. Since my systems to my notion does not include gearboxes, I 

will not go further into this particular domain of vibration analysis, other than to acknowledge its 

position as a useful, though fairly complicated, analysis technique used on gears. 

2.4.1.3 Vibration Sensors 

As identified in above chapter 2.4.1.1, there are basically three different amplitudes which are measured 

in order to evaluate vibrations for CM appliances; displacement, velocity and acceleration. In this chapter 

I would like to present the fundamentals of different vibration sensors, their working method and basic 

design, and their limitations as presented in (2 pp. 152-159). 

Displacement (or proximity) probes are predominantly used to ascertain relative displacement of shafts, 

expressed as microns peak-to-peak. The probes are non-contact devices, either based on capacitive or 
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eddy current principles. An eddy current probe will consist of a pick-up coil which will introduce a 

magnetic field around it. The interaction of the nearby shaft on the magnetic field induced by the coil will 

be detectable, either in a secondary pick-up coil or as deviations from the forced current in the primary 

coil, thus utilizing the eddy current principle to ascertain the gap between the sensor and the shaft. 

Capacitive probes will instead utilize the change in an electric field introduced, as opposed to a magnetic 

field. Generally, capacitive probes will have higher resolution, while eddy current probes tend to perform 

better in dirty or hostile environments (13). Relevant standards for proximity measurement are API 6710 

and ISO 7919 (14).  

Probes must be mounted on a rigid and stationary structure close to the shaft, in order to provide valid 

and repeatable data. The working frequency range is usually 10-1000 Hz (2 p. 153). As we remember, 

two such sensors mounted with 90˚ angle between them will produce information which will provide 

sufficient information to depict the shaft orbit. The major limitation to the use of displacement sensors is 

the cost of installation, which for a fixed sensor is reported by (2 p. 154) to be approximately 1000 USD 

pr installation. 

Below is an illustration of such displacement sensor and subsequent signal processing equipment: 

 

Figure 9: Principle illustration of an eddy current proximity probe, Source: (14) 

Velocity transducers are electromechanical sensors used to measure housing/casing or relative 

vibration, which consist of three key components; a permanent magnet, a coiled wire and a spring 

supported mass. The coiled wire is fixed to the spring supported mass, which will be forced by vibrations 

to move through the magnetic field, thus inducing a current. The velocity of the current will depend on 

the vibration speed, and thus the principle is viable in order to measure vibration velocity.  

Velocity transducers will typically have similar frequency range as displacement probes (10-1000 Hz); 

however, their major limitation is sensitivity to thermal or mechanical damage. Velocity transducers 

must therefore be subject to frequent calibration in order to produce valid and repeatable data (2 p. 

154).  
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Figure 10: Principal drawing of velocity transducer, Source: (14) 

Today, velocity sensors have to a large degree been replaced with accelerometers equipped with 

electronic integrators. In effect, most accelerometers may display both acceleration and velocity 

readings. 

Accelerometers are the most popular type of vibration sensor for casing/housing measurements. Most 

common accelerometers use piezoelectric crystals or films to convert mechanical energy into electric 

signals in piezoelectric accelerometers. A piezoelectric material is a material which demonstrates the 

ability to generate an electric field or potential, in response to applied mechanical strain. A piezoelectric 

accelerometer consists of a seismic mass preloaded onto a section made from piezoelectric crystals or a 

piezoelectric ceramic, accompanied by wiring to measure the voltage over the piezoelectric material, all 

suspended within a casing. As the mass is accelerated by the vibration, the applied force of the mass 

onto the piezoelectric layer will vary proportional to the acceleration following Newton’s 2.nd law, which 

in turn will result in a voltage potential over the piezoelectric element which is the measured signal. 

Piezoelectric ceramics provide greater sensitivity and are cheaper to produce than piezoelectric crystal 

accelerometers; however their sensitivity will decay with time, thus reducing their longevity (17).  

 

Figure 11: Schematic representation of piezoelectric accelerometer, Source: (14) 
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Effective range of general-purpose accelerometers is typically 1-10000 Hz, while the same principle is 

utilized for Ultrasonic range measurements up to frequencies of 100 kHz or more. As previously stated, 

the usual representation value from most accelerometers is in terms of the gravitational constant 

g=9,81m/s2. 

Accelerometers usually do not bring forth the need for frequent recalibration. Although the piezoelectric 

materials are prone to thermal damage, the exposure is limited at least for transducers not mounted in a 

fixed position, as data acquisition can be performed within less than a minute (2 p. 155). 

Piezoresistive accelerometers are similar to piezoelectric, but the piezoeffect of the material used in 

these sensors is that their electrical resistance will change if mechanical strain is applied. Piezoresistive 

accelerometers are preferred in applications where shock impacts are expected (19). Other principles in 

addition to piezoelectric and piezoresistive accelerometer types are available, a full list of technologies 

used for accelerometers, as presented in (14) is given below, however piezoelectric or –resistive 

technologies dominate the current market. 

- Capacitive 

- Piezoelectric 

- Piezoresistive 

- Hall effect 

- Magneto-resistive 

- Heat transfer 

- MEMS (MicroElectroMechanical Systems) 

- Future nano technological advances NEMS (NanoElectroMechanical Systems) 

Especially the last two types, MEMS and NEMS represent very interesting recent developments which 

may evolve further to dominate the future market of accelerometers. MEMS accelerometers are already 

implemented in numerous consumer applications, such as airbag sensors in automotive industry and 

within consumer electronics included in such items as Nintendo Wii, Iphone, various HTC phones and 

Canon Ixus digital photo cameras (15). The potential of MEMS and NEMS is vast, although at present 

rather expensive in development cost, they may in the future lead to significantly smaller and cheaper 

sensor equipment. 

According to (14), usual specification of accelerometers includes such variables as: 

 Dynamic range – maximum/minimum amplitude which can be measured, given in g’s. 

 Sensitivity – Scale factor in terms of output signal change per input, given in mV/g’s. 

 Frequency response – frequency range given in Hz where the sensor will produce correct value. 

 Sensitive axis – sensors range from being of single-axis to tri-axial.  

 Size and mass – for sensitive systems, the size and mass of the accelerometer may inflict on 
quality of measurement. 

2.4.1.4 Applicability 

VA is typically applicable for rotating machinery, such as pumps, compressors, centrifuges and electric 

motors amongst others, which all are machines we recognize from the systems under study in this 

Thesis. Also taking into account that VA is dominant technique for most CM-programmes, and has the 
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widest applicability; it is therefore very likely that vibration monitoring will be a vital element of the CM-

programme for these systems. 

A diagram of typical failures on different types of rotating machinery can be seen in Figure 12.  

 

Figure 12: Typical failure on rotating and adjacent equipment, Source: (4 p. 7.18) 

0 shows typical vibration characteristics for different types of failure, combined with relevant 

measurement method to discover these failures. The diagram sums up a lot of what we have learnt from 

this chapter on VA in condition monitoring. 

We have learnt that generally, condition monitoring with the aim of indicating overall vibration severity 

in most machinery should be concluded by measuring velocity-RMS value, and compare this value with 

Rotors

• Imbalance

• Bent shaft

• Loose wheel

• Rub between rotor/housing

Couplings

• Misalignment

• Eccentricity

• Imbalance

• Thrust force effect

Sliding bearings

• Wear

• Instability

• Loose thrust disc/bearing cups

Rollling element bearings

• Wear

• Instability

• Loose thrust disc/bearing cups

Seals

• Rub between rotating and stationary parts

Balancing pistons

• Error in balancing mechanism

Structures

• Change in alignment

• Vibrations in fundamentation

• Loose bolts

Piping

• Vibrations

Gears

• Wear

• Broken gearing teeth

• Misaligned gear

• Torsional vibration

Compressors

• Surge

• Additionaly, phenomena as described for rotors and bearings above

Pumps

• Cavitation

• Additionaly, phenomena as described for rotors and bearings above



- 25 - 
 

relevant severity charts, which are given in standards. For rolling element bearings, which will produce 

very high frequency pulses, there are problems with using this method. First, regular transducers may 

not be tuned to pick up signals in this frequency range. Secondly, the increase in RMS value due to a 

short duration vibration signal is often insignificant relative to the lower frequencies whose contributing 

energy is much greater in most cases. Therefore, rolling element bearings must either be monitored 

continuously or very frequently using Crest-factor or Kurtosis coefficient trending, which are methods 

sensitive to show incipient failure in such bearings. Alternatively, and probably more effectively, such 

bearings should be monitored using the spike energy, or shock pulse, method. This method involves 

using a transducer tuned to pick up high-frequency vibrations in the ultrasonic region, and in stead of 

using RMS values the peak amplitude is preferred as an indicator. 

The equipment needed for most vibration monitoring activities is off-the-shelf and readily available, 

usually portable for operators to use on several machines on board. Some have integrated analysers, 

while others may store data which needs transferring into a computer with software for further post-

processing. I assume that the cost of equipping a ship with analysing equipment for operators to use on 

board will not impose a vast economical burden, relative to other maintenance and monitoring 

equipment in total. However, the time available for operators to actually conclude measurement and 

analysing activities may be an issue. If this is the case, it would be natural to look to mount fixed 

vibration sensors to machines of interest, and have automated feed of signals to the CM-system, to 

reduce time consumption for the crew. This would likely impose significantly larger investments in 

equipment. As no emphasis is put on the economical implication of the CM-programme in the 

assignment text of this Thesis, I will not conclude analysis of equipment cost. 

2.4.2 Ultrasonic’s (UlS) 

Ultrasonic’s utilizes the same principles as those used for VA, however for higher frequencies. 

“Frequencies capable of being heard by humans are called audio or sonic. The range is typically 

considered to be between 20 Hz and 20 000 Hz” (22). The word ultrasonic means “beyond sonic”, 

beyond having reference to frequency. Ultrasonic’s is therefore the investigation of signals having 

frequencies above that of the audible range of frequencies. Some inconsistency was found as for the 

exact definition of the interval from different sources: 20-100 kHz proposed in (1 p. 51), 25-100 kHz in (8 

p. 13 and 29) 30-100 kHz according to (11 p. 111), I will assume 20-100 kHz as the representative 

interval. 

There are two principle types of ultrasonic equipment: those observing airborne ultrasonic’s and those 

observing structural borne ultrasonic’s. Furthermore, ultrasonic methods are mainly utilized in three 

applications in a predictive maintenance perspective (9 p. 256): 

 Airborne noise analysis 

 Leak detection 

 Materials testing 

Airborne noise analysis is used to verify that ambient noise levels are within rules of occupational health 

and safety regulations, as specified by governing authorities relevant to the industries. This has little or 
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no application for CM activities. However, both airborne and structural ultrasonic detectors can be used 

for leak detection, as turbulent flow will produce high-frequency noise, ideal for detecting leaks in 

valves, steam traps, piping and other process equipment. Airborne detectors can be operated in 

scanning mode, or contact mode. In scanning mode, they will simply monitor the ultrasonic frequency 

range of the air in its surroundings and this mode is typically used for gas leak detection. Operated in 

contact mode, a contacting rod will be placed at a surface, while airborne ultrasonic activity transmitted 

by the surface from the other side can be observed. 

Structural borne ultrasonic’s could be used in somewhat different applications. One is the monitoring of 

structural integrity by measuring acoustic emission in materials from propagating cracks. This method 

involves a very high number of transducers as signals at these high frequencies will usually be damped 

very rapidly, and thus proximity of transducers are important. Structural borne ultrasonic’s has also been 

proposed as an alternative to VA for some appliances, like bearing monitoring. Sources investigated have 

been deviating with respect to whether such use of ultrasonic’s is a viable in CM. 

In (1 p. 52) it is stated that “…the only reliable method of determining the condition of specific machine 

component including bearings, is vibration analysis. The use of ultrasonic’s to monitor condition is thus 

not recommended”. Furthermore, this view is supported by the following consideration: “...ultrasonic’s 

should be limited to detection of abnormally high ambient noise levels and leaks. Attempting to replace 

vibration monitoring with ultrasonic’s simply will not work”, as stated in (11 p. 111). 

On the contrary, in one source (8) which is looking more detailed at structure borne ultrasonic and 

acoustic emission than at CM in general, several advantages of structure borne UlS over vibration 

monitoring are presented. First of all, high frequency measurement (UlS) offers “improved resolution in 

the time domain” (8 pp. 60-61), although most energy is released at lower frequencies (typically those 

covered by VA transducers). As a result of this, UlS monitoring must be more sensitive with high gain and 

low noise, thus resulting in the need to operate in a narrow band of frequencies compared to VA. The 

fact that most energy released from failure processes are at lower frequencies than those monitored by 

UlS is however compensated for as “ at high frequencies it is virtually always the case that the 

background noise signals are very much lower” (8 p. 61), thus resulting in a net increase in Signal-to-

Noise Ratio (SNR). The point made in chapter 3.5 of (8), comparing structure borne UlS to VA, is that VA 

is a very powerful tool for diagnosis, but typically in need of analysis in the frequency domain, which 

represents a complicated signal processing and analysis method. Since UlS has such improved resolution 

in the time-domain, which is a simpler analysis, “it seems likely that the near term trend for rotating 

machinery will be increasingly for AE techniques to provide the ‘front-line’ of instrumented CM. In this 

role it can quickly categorize machinery as ‘OK’ or ‘Suspect’ and provide easily interpreted trend plots 

indicating the rate of degradation…In particular, as knowledge spreads of the true capabilities of AE, the 

present situation where unnecessarily complex, costly and slow vibration based instruments are used as 

front-line CM instruments, must surely change”.  

Ultrasonic’s is also one of the primary Non-Destructive material testing (NDT) procedures. In materials 

testing using ultrasonic’s, even higher frequencies are utilized, typically in the range between 250 kHz – 
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250 MHz (9 p. 257). Ultrasonic’s used in materials testing can be used to monitor corrosion through 

thickness measurements, and to locate cracks or erroneous welds.  

2.4.2.1 Applicability 

Sources investigated have been deviating with respect to the applicability of ultrasonic’s, especially 

compared to, or used for applications which usually have been monitored by VA. It seems as if 

developed ultrasonic methods are typically protected by patents or trademarks, which make it hard to 

assess their correctness as limited information of the signal processing and trending methods is 

available. Since sources have been found to be deviating with respect to applicability of such monitoring, 

I will be most cautious with utilizing such methods for the CM programme to be developed. 

The applicability of airborne ultrasound used for noise monitoring is of little importance for CM activities.  

2.4.3 Thermal Monitoring Theory - Thermography (TG)  

“Thermal monitoring determines the temperature of a surface or substance, by direct contact or 

remotely” (7 p. 8). Thermal monitoring would therefore include such monitoring as using a thermometer 

to measure temperature of a surface or fluid, which is not to be considered a unique branch within 

condition monitoring techniques. It is important to remember that temperature energy may be 

transmitted in three essentially different ways: 

 Conduction – direct transfer through matter 

 Convection – indirect heat transfer through circulating liquid or gas medium  

 Radiation – direct heat transfer across space, not demanding any medium 

Thermal monitoring as a technique within the context of condition monitoring is done through devices 

which are non-contact, meaning they only take into account radiation information in order to ascertain 

the temperature of a surface, unlike thermometers which need to be placed in contact or proximity with 

the surface or medium whose temperature we would like to measure.  

The fact that all objects at a temperature above absolute zero will emit radiation energy is utilized in 

infrared thermal monitoring. This electromagnetic thermal radiation is located in the infrared (IR), visible 

light and ultraviolet (UV) regions of the electromagnetic spectrum (7 p. 20).  

Radiation region Wavelength [μm] Frequency [THz] 

Infrared 100-0,8 3,0-375 THz 

Visible 0,8-0,4 375-750 THz 

Ultraviolet 0,4-0,1 750-3000 
Table 3: Electromagnetic wave categories where thermal radiation is present. 

We recognize the thermal radiation in the visible region from watching glowing coal or wood from a 

bonfire or the frying pan glowing red if we forget to turn of the stove in our kitchen, while most of the 

thermal radiation is invisible to us humans. Thermal monitoring equipment detects radiation within the 

infrared region, typically in the wavelength range 0,9-14 μm (25). As we will see, the intensity of the 

radiation is a function of the surface temperature of the object, and from the measurement of this 

energy the surface temperature can be deduced.  
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A black-body is a term for an ideal object with regards to temperature measurement by means of 

thermography, which is characterized  “as an object that absorbs all the radiation that approaches it at 

any wavelength”, while at the same time “…being equally capable of emitting radiation”  (7 p. 22). 

Three well known formulas describe the radiation from black-body radiation from an object; 

 Planck’s radiation law describing, at any wavelength, the spectral radiance, or energy per 

unit time per unit surface area per unit solid angle per unit wavelength radiated by the body as 

function of temperature of the black body.  
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arithm = 2.718..[-], k = Boltzmann constant = 1.38 10 [J / K]

  

 Wien’s displacement law, which is the result of differentiating Planck’s radiation law with 

respect to , yielding: 

max

C

T
 

   

Equation 7: Wien's displacement law (7 p. 25) 

where max wavelength at which maximum intensity of radiation occurs [m], 

T = temperature of body, and C = Wien’s displacement constant = 2.89×10−3 [m·K].  

Wien’s displacement law describes how the colour of a radiating object is depending on temperature of 

the object, as the perception of colour will relate to the wavelength at which radiating intensity is the 

highest. The intensity as function of wavelength is illustrated in Figure 13 below. 

http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Time
http://en.wikipedia.org/wiki/Surface
http://en.wikipedia.org/wiki/Solid_angle


- 29 - 
 

 

Figure 13: Black body thermal emission intensity as a function of wavelength for various temperatures, Source: (26) 

 Stefan-Boltzmann formula, which is the result of integrating Planck’s radiation law from λ=0 to 

λ= , to find the total radiant energy (black-body irradiance or emissive power) of a black body 

pr unit time: 
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Equation 8: Stefan-Boltzmann formula, Source (7 p. 25) 

This is the actual equation which most radiation thermometers are based upon, but the fact that most 

objects are not black-body objects has a complicating influence. The thermal radiation observed from an 

object may arise not only from energy emitted by the object, but also radiation reflected and/or 

transmitted by the object, which are not indicative of the objects itself, but rather of incident thermal 

energy from the environment surrounding the object, as illustrated in Figure 14.  

 

Figure 14: Incident thermal radiation on object, Source: (9). 
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These factors are dealt with in Kirchoff’s law of thermal radiation, stating that absorption, reflectance 

and transmittance must always sum up to unity at any wavelength: 

Equation 9: Kirchoff's law of thermal radiation (7 p. 26) 

1

spectral absorption [-], fraction of incident radiation absorbed by object

spectral reflectance [-], fraction of incident radiation reflected by object

spectral transmittance [-], fra
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Notice should be taken that according to the definition of a black-body, absorption is equal to emittance. 

Introducing for any object the emissivity (or spectral emittance), ε, describing the fraction of radiant 

emittance at wavelength λ of a black-body (bb) produced by an object (o) at a specific temperature: 
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  ,  

we arrive at the expression of the Stefan-Boltzmann formula of radiation from practical bodies: 

4( , ) ( )E T T     

 Equation 10: Stefan-Boltzmann formula for general radiating body 

Radiation from objects can be divided into three categories, depending on the nature of their emissivity. 

Emissivity for a black-body is of course equal to unity, while most bodies observed in CM appliances will 

be so-called grey-bodies, where the emissivity is a constant, less than unity, independent on wavelength

( ) a    . The third category consists of selective radiating bodies, where emissivity varies with 

wavelength (7 p. 27). To utilize thermography to accurately assess temperature, one must therefore 

know the emissivity of the material being scanned. In addition to material, variations in coating or paint, 

surface condition and several other variables may inflict the emissivity (11 p. 173). 

In addition to uncertainty related to emissivity of objects subject to thermography, there are 

environmental factors which need to be taken into account. Carbon dioxide and water content in air 

absorbs radiation strongly in the wavelength regions 4,2-4,4 μm and 2,6-2,9 μm, respectively, thus these 

regions should be avoided (7 p. 29), if not, calibration of equipment taking into account humidity and 

concentration of CO2 in the local environment. 

There are basically three different non-contact thermal monitoring instruments: 

 Infrared thermometer – provides measurement of actual temperature at a small point 

 Line scanner – provides lines of comparative radiation 

 Infrared thermal imaging – creates a picture of temperature, not only a single point 

Infrared thermometers are useful in making detail measurements of hot spots on specific machine 

details. One application of infrared thermometers within condition monitoring is used in conjunction 
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with vibration monitoring to take temperature readings of critical spots, typically bearing caps. Other 

applications are electrical motor windings and piping, according to (1 p. 42) . Line scanners are used for 

“temperature processes at speed, e.g. steel strip or kiln temperatures” (7 p. 9). According to (1 p. 42), 

the application of line scanners is limited within condition monitoring. Thermal imaging, better known as 

thermography, “is a way of redefining the appearance of an object (system or components) in terms of 

temperature” (7 p. 10). Basically, we can produce and store a picture of a component or complete 

machinery, showing the surface temperature at all locations within the picture. This is of course useful 

wherever increased friction forces from machinery damage will manifest in exposed surfaces with 

increased temperature, or where an insulating wall is damaged giving leakage. Perhaps the most 

important application of thermal imaging is within detecting faulty electrical equipment, where bad 

electrical wiring will result in larger resistance and therefore produce hot surfaces. Therefore the largest 

consumer of thermal imaging services is the power generation and distribution industry, where thermal 

imaging cameras are flown by helicopters to inspect power lines (1 p. 88). 

Relevant standards providing guidelines for the use of thermography in CM activities are: 

 ISO 18434-1, Condition monitoring and diagnostics of machines - Thermography - Part 1: General 

procedures 

 ISO 18436-7, Condition monitoring and diagnostics of machines - Requirements for qualification 

and assessment of personnel - Part 7: Thermography” (25) 

2.4.3.1 Applicability 

From the sources investigated on the topic of thermography, the following applications for CM purposes 

have been mentioned: 

 Electrical machines – poor insulation will result in increased resistance and thus overheating of 

electrical wiring. 

 Faulty bearings – as inadequate lubrication, misalignment, misuse or normal wear are some of 

the problems which can cause bearing overheating and failure.  

 Other rotating equipment such as gears, shafts, couplings, V-belts, pulleys, chain drive systems, 

conveyors’ air compressors, vacuum pumps and clutches are amongst the common components 

to fail due to overheating.  

 Refractory and insulation materials in “ovens, furnaces, dryers, kilns, boilers, ladles, hot storage 

tanks and insulated pipes.” (24 p. 93) 

 Valves – controlling heat loss in valves for steam systems. 

Methods of utilizing indexing based on thermographic measurements have not been located in the 

sources investigated. This may be based on the stated fact that “in most applications, infrared 

thermography is used to pinpoint a problem area while other inspection techniques such as vibrational 

analysis are used to find the cause of the problem” (1 p. 94).  
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2.4.4 Tribology (TB) 

“Tribology is the general term referring to the design and operating dynamics of the bearing, lubrication 

and rotor support structure of machinery (1 p. 43)”. Lubricating oil analysis and wear particle collection 

are the two main tribological techniques which are used within predictive maintenance.  

Lubricating oil analysis determines the condition of lubricating oil used in machinery. This is done by 

sampling and analysing the oil which is circulating in the machinery. Although lube oil analysis 

determines the condition of the lubricating oil it self, “it is not a tool for determining the operating 

condition of machinery or detecting potential failure modes” (11 p. 108). The applications for lube oil 

analysis are rather quality checking the lubricants and optimizing intervals between oil changes, thus 

reducing operating cost of the plant. In light of this, I believe the application of lubricating oil analysis is 

limited with respect to this Thesis.  

2.4.4.1 Wear Particle Analysis 

Wear particle analysis is a technique where the solids which are found in samples of collected oil or 

lubricating oil are investigated. In opposition to oil analysis which determines the condition of the oil it 

self, wear particle analysis can “provide significant information about the condition of the machine” (1 p. 

46). Parameters such as shape, composition, size and quantity of particles in the oil are studied and 

determined through wear particle analysis. 

There are basically two main analysing methods within wear particle analysis; spectrographic and 

ferrographic analysis. 

In spectrographic analysis, several filters are used to separate solids by size, and this method is normally 

limited to detect contaminants with a maximum size of 10 microns (11 p. 109). The purpose of 

spectrographic analysis is to determine the concentration of the different elements present in the oil as 

wear particles. Typically the result is presented as parts per million (PPM), based on weight, for different 

elements, such as iron, copper, zinc, tin and others, and could be compared to reference concentrations 

measured at new-condition. Notion of the chemical composition of the wear particles is a powerful 

diagnosis tool, as chemical composition of components may be recognized, and thus the origin of wear 

particles may be determined. There are several types of spectrometric analysis, which differ to some 

extent in their principle mechanism utilized, and in analysing apparatus.  

Atomic Absorption technologies: 

Atomic Absorption Spectrometry (AAS) is a method which utilizes the principle that free atoms of 

different elements will absorb a set of given quant’s of energy, in effect light at specific wavelengths, 

according to their orbital electron distribution. The sample is diluted and atomized in either an acetylene 

burner or a high temperature inert-gas environment, while a photon detector will measure the 

absorption of the free atoms of light which is directed at the sample. The technique will provide 

information about both particle concentration and chemical composition. Particle size cannot exceed 

1μm. 
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Infrared Fourier Transformation (FT-IR) Spectrometry is used for oil analysis only, and uses infrared 

spectroanalysis to measure the amount of molecular compounds in an oil sample. The output is based on 

Fourier transformation of infrared absorbance versus wavelength, presented as cascade plots.  

Atomic Emission Technologies 

Atomic Emission Spectrometry (AES) is a method working on very similar principles as the AAS method, 

however instead of measuring absorption, one measures emission from excited atoms. The excitation of 

atoms is done by adding thermal energy, rather than directing (white) light at the specimen, thus the 

emission observed from the atoms are at wavelengths characteristic for the atom orbital distribution. 

Thermal energy quant’s will initially be absorbed by the atom similar to what is observed when using 

AAS, but as we know, the excited atom will be in an instable state, and the energy quant will be emitted 

after very short time while leaving the atom at the initial stable state. Particle size is limited to a 

maximum of 5 μm; along with AAS this method is slow but accurate. 

The Rotating Disc Electrode (RDE) method has evolved from AES. The specimen is lifted from a sampling 

cup by a rotating graphite electrode, then atoms are excited by a high-temperature discharging arc. 

Emitted wavelengths are detected by directing the radiation from the specimen through prisms onto 

photon detectors. The method is relatively quicker to perform than the above mentioned methods, 

because samples need no preparation before analysis. Size is limited to max. 8 μm. The principle is 

illustrated in Figure 15 below. 

 

Figure 15: Rotating Disc Electrode illustration, source (14) 

Inductive Coupled Plasma (ICP) is another method based on atomic emission. An electrically conducting 

gas is ionized and made into a high-temperature plasma source, by transferring power from a strong 

radio frequency source. The sample is introduced to the high temperature plasma torch by means of a 

nebulizer, spraying the sample oil into the plasma area. The technique is quite fast and has a large 

dynamic range, sensitive to both wear debris and additives in the oil. Maximum particle size is 5 μm. 

Direct Current Plasma (DCP) has a significantly lower plasma temperature, but is otherwise very similar 

to ICP. The plasma generation is done using two graphite anodes and a tungsten cathode in stead of 

inductive heating of a gas. Cost of analysis is lower, has the same size-restriction on particles, but not 

equally large dynamical range. 
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Fluorescence Technologies: 

X-ray Fluorescence (XRF) is an analysis method which can be utilized for liquid or solid samples taken 

from the oil, independent of size and without destroying the sample. Fluorescence is similar to atomic 

emission, in that an atom will absorb one amount of energy producing an instable exited state, then 

return to a more stable state while emitting energy. In atomic absorption the energy absorbed and 

emitted is equal, while in cases of fluorescence, the energy (i.e. wavelength of the radiation) is different 

from the absorbed energy. X-rays are radiated onto the sample to produce fluorescence, and elements 

are detected by the intensity of emitted radiation.  

Energy Dispersive X-ray Analysis (EDX) is used on dry samples containing solids only. The sample is 

covered in a conductive coating and using a scanning electron microscope, the electron beam of the 

microscope is directed onto the sample, resulting in fluorescence, equally capable of detection as in the 

previous method. The method is fairly slow, but applicable for any particle size.  

Description of all above spectrometric methods have been based on the more thorough descriptions 

found in (3 pp. 397-401). 

Ferrographic analysis utilises a magnet to separate particles. Particles from non-ferrous materials such as 

e.g. copper and aluminium will thus not be detected by this analysis technique. An advantage over 

spectrography of normal ferrographic equipment is that their measurements can detect particles in the 

range of ca 1-100 microns, and thus they incorporate more of the larger debris which may result from 

wear. 

According to (4), most ferrographic equipment is based on a two-stage analysis. The first is a Direct 

Reading Ferrography (DRF) device, which provides a quantitative analysis of wear particle size 

distribution. A strong magnet separates particles by size, and the density of particles of different size are 

measured by obscuration of beams of light directed through the particles. According to the same source, 

particle size is divided in two: large particles (˃5 μm) and small particles (1-2 μm). As wear particles from 

normal wear predominantly produce small wear particles, while more severe wear will normally produce 

larger wear particles, the distribution of particle size taken from the DRF may be used to indicate severe 

and abnormal wear. The severity of wear index is based on this fact. If DL denotes the concentration of 

large particles, and DS denotes the concentration of small particles then (DL+DS) is proportional to the 

total sum of wear particles, while (DL-DS) is a measure of severity of the wear mechanism observed. The 

product of these two measures is called the severity of wear index (IS): 

2 2( )( )S L S L S L SI D D D D D D    
   

Equation 11: Severity of wear Index, Source: (4 p. 8.10) 

The second analysis stage of a ferrograph is qualitative in nature. The analyser consists of a pump 

delivering precise flow of oil onto specially treated glass surface, mounted at a given inclination relative 

to the horizontal plane, and equipped with a magnet. The oil sample is diluted and offset on the top of 

the glass surface, and will be affected by forces from both gravity and the magnet, and their distance 
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covered down on the surface until at rest will be inversely related to the size of the particles. Large 

particles will almost instantly stop and fall to rest on top of the ferrogram, while the smallest 

(submicrosopic) particles will be offset at the bottom of the ferrogram.  

“Wear particle analysis is an excellent failure analysis tool and can be used to understand the root-cause 

of catastrophic failures (11 p. 109)”. From sources investigated on wear particle analysis ( (1) and (11)), it 

is evident that lubricating oil analysis can be used for condition monitoring purposes. However, tribology 

in general is stated to have some disadvantageous limitations when it comes to cost of equipment, 

difficulty of collecting correct and relevant samples, along with the demand for very high level of 

expertise needed from the people responsible for interpreting data into useful information. 

The conclusion drawn by Mr. Davies in (1 p. 467) is therefore that “…the methods of wear debris analysis 

should be seen as a complementary to the other techniques involved in condition monitoring”. My 

interpretation of this fact, relevant to this thesis, is that wear debris analysis is not the best indicator for 

general degradation of machinery, but perhaps more typically called for when other CM activities are 

indicating deviances from normal operation. For the purpose of producing indices describing the general 

degradation of equipment, I therefore assume that utilizing wear debris analysis data alone will not be 

sufficient for any component or machinery system; however some indices could require input from 

several CM technology types, where wear debris analysis could be one out of several technologies 

utilized.  

2.4.5 Visual Inspection (VI) 

“Visual inspection is probably the simplest and most cost-effective method of condition monitoring”, 

according to (1 p. 57). In its most basic form, visual inspection is done by the bare and un-aided human 

eye, and is thus a highly subjective method. However, the term visual inspection for CM appliances 

seems to have evolved into incorporating many aids which have been developed to aid the human eye in 

sensing changes in behaviour of a machinery or system. Typically, maintenance personnel will for one 

not only use their sight in inspecting equipment, they will in fact use all their human body senses: sight, 

smell, sound, taste and touch. Also, different kinds of practical and scientific aids to extend the reach of 

the human senses seem to have been encompassed into the definition of visual inspection, thus labelling 

these activities “visual inspection” in fact seems not very descriptive. The common feature of activities 

mentioned under the topic visual inspection in literature, are rather that these are activities which 

require a human operator to perform them. Categorizing them as “human intervention inspection 

techniques” or something similar would probably have been more precise.  

Basic aids for visual inspection would encompass such equipment as lamps or mirrors to access 

inaccessible spaces, while many of the complex methods mentioned for other CM techniques in chapters 

above are classified as visual inspection methods as long as they are used by an operator as opposed to 

being mounted at a fixed place and operated automatically. This is typically because many of these 

methods were developed as an aid for operators in their inspections, while the principle later has been 

developed further and automated, either to reduce cost or because of the possibility of more objective 

evaluation if analytic interpretation of data is utilized, as opposed to the subjective opinion of an 

operator. 
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Simple aids include such equipment as: 

 Borescope – optical rigid tube with eyepiece on one end and lens on the other for visual 

inspection in inaccessible areas, but accessible in a straight line (15). 

 Fibrescope – flexible borescope with bundle of optical fibres dividing the image into pixels, used 

for inaccessible areas around corners and bends. Less accurate image than rigid borescope. Both 

borescopes and fibrescopes may be equipped with magnifiers, lighting possibilities and  

photo/video equipment (15). 

 Stroboscopes – lamp producing a light flickering at adjustable rate. Helpful to make rotating 

equipment appear stationary, used to detect vibrations, imbalance or gaps (1 p. 58). 

 Dye Penetrant Inspection (DPI) – used for detecting surface cracks.  1. The surface is cleaned and 

penetrant added, 2. excess penetrant is removed, 3. a developer is added to draw the penetrant 

out of the crack to make it visible, 4. inspection using white light or ultraviolet depending on 

fluorescence or visibility of the penetrant to identify cracks, before 5 the surface is cleaned after 

inspection procedure is finished (30). 

 Magnetic flux leakage – method used for detection of corrosion, pitting or cracks, predominantly 

used for pipelines and storage tanks. The metal is magnetized by a strong magnet and a 

magnetic field detector is able to identify areas of abnormalities by the fact that the magnetic 

fields will “leak” out at these areas resulting in a weaker magnetic field (17). 

 Eddy current testing – used for detection of both surface and sub-surface cracks in electrically 

conductive materials only. The principle is based on the fact that a circular coil with an 

alternating current will induce a variable magnetic field around it. The variable magnetic field will 

induce so-called eddy currents in the specimen. The eddy currents will change in case of varying 

electrical conductivity or magnetic permeability in the specimen, and these changes are 

identified either by a secondary search-coil or by measuring variations in the current in the 

primary excitation coil (32) . 

 Corrosometer - low-cost electrical potentiometer used to detect corrosion. Detection level 

claimed to be in the range of 1 micron (1 p. 59). 

 Visual temperature measurement - conducted by use of thermographic paints, crayons or tapes 

(1 p. 59). 

More sophisticated aids presented as visual inspections methods in (1) are such methods as: 

 Thermography 

 Radiography, by X-ray or gamma-ray inspection 

 Laser systems (for accurate distance and angle measurements) 

 Imaging (humans have low memory for exact colours) 

 Microscopes 

 MRI Magnetic resonance imaging (very expensive) 

 Ultrasonic’s 

Thermography and ultrasonic’s have been investigated in other chapters, while radiographic 

examination was mentioned as one of the methods within tribological wear particle analysis, however, 
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radiography could be used to produce images, e.g. of welds, in addition to be used for spectrometric 

analysis. Radiographic imaging is for probably most known for its application within medicine, to produce 

images of fractured bones or dental damage. Laser equipment could be used for precise geometrical 

survey of machine parts, because it can very accurately measure distance and angle. The equipment is 

portable, but expensive and demands a trained operator to use it. In automated visual inspection 

appliances, several techniques of imaging have been developed. One which may be very useful is colour 

imaging, because the human perception of colour is very objective, it is helpful to make judgement on 

the basis of analysing images rather than to rely on the human interpretation of the observed colour. 

Microscopes are of course a well-known tool to aid visual inspection, when information of materials 

down to a micro-level is needed. MRI-technology is a very expensive analysis method, and applicability 

for industrial purposes seems limited today, according to (1 p. 74).  

2.4.6 Process Dynamics Parameter Analysis 

Process dynamic parameter analysis, unlike other CM methods explained above, is not directed at 

detecting root-cause problems using explicit scientific methods, but rather at monitoring the calculated 

efficiency with which a system or component is observed to be performing its function. Such analysis 

could be vital to flag key parameters inflicting especially plant economy which are not normal, indicating 

that problems not detected by other CM methods are present. 

For the purpose of this thesis, taking into account the FMECA analysis from the Project Thesis, the 

thermodynamical efficiency of heat exchangers and the efficiency of the numerous pumps and perhaps 

filters found to be critical could be monitored effectively using this concept. Review of the theory of 

process parameter analysis applicable to such component types are done in this chapter. 

2.4.6.1 Thermodynamical Process Parameter Analysis for Heat Exchangers 

In Appendix C, a fault tree describing typical failure causes for heat exchangers as presented by (9) can 

be inspected. Reduced heat transfer capability, typically a result of clogging, air entrapment or reduced 

foreign objects into heat exchangers, is one of the two main adverse effects which may lead to 

inadequate performance of heat exchangers. The other as we can see is leakage from material defects. 

Heat exchangers are however usually equipped with control systems, using by-passing or restricting flow 

principles, to ensure correct temperature on the target flow. Thus, heat exchangers may be operating 

with severe inefficiencies without it showing on the temperature of the target outflow. In effect, we 

have to monitor the thermal efficiency of the heat exchanger in order to uncover such problems. This 

can be done relatively easy by means of process parameter analysis, given that we have sufficient and 

calibrated measurements of the correct parameters. 

The parameter best describing the change in heat transfer efficiency is the heat transfer coefficient, 
defined by: 

2[ / ]
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Equation 12: Heat transfer coefficient k, Source: (4) 
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For unified parallel flow directions, either upstream or downstream, the logarithmic temperature 

difference is utilized. In case of other types of geometry it may be more applicable to use the arithmetic 

temperature difference, depending on the specific flow geometry. The formulas for these two 

temperature differences are given as follows: 
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Equation 13: Logarithmic and arithmetic temperature differences for heat exchangers, Source: (4)  

Below Figure 16 gives an illustration of the correct temperature locations for upstream and downstream 

configuration of heat exchangers. 
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Figure 16: Temperature locations for formula of temperature difference in heat exchangers, Source: (10) 

The condition parameter to be monitored for heat exchangers, as proposed by (10) is: 

Cond.
ref meas
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k k
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Equation 14: TCI parameter for heat exchangers, source (4) 

where refk is the measured reference value, while meask is the measured value. 

In effect, the surface area is a constant, and the absolute value is of little interest since the condition 

parameter is a relative comparison, and it could be set to equal to any constant. If the surface area or the 

heat exchange coefficient of new condition is given in documentation, the correct value of A should be 

used to provide the correct heat transfer coefficient. 
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The heat added to (or withdrawn from) mediums must be known or calculated from the temperature 

change in either medium, or as a mean of the two, by the formula: 

,pQ m c T  
 

Equation 15: Heat input or loss Q from temperature difference, Source: (4)  

Where m is the mass flow of the medium [kg/s], 
pc is mean specific heat capacity at constant pressure, 

and T is the temperature difference of the medium. For comparison at equal flow rates, this index can 

be used without corrections. Therefore, measurements must either be taken at similar flow rates or 

corrections must be made. 

In order to perform condition monitoring activities on heat exchangers we therefore have to measure: 

 T1, T2, T3, T4 - Temperature of both mediums entering and exiting the heat exchanger 

 m - mass flow of at least one of the two mediums, preferably both 

In addition, we need to know the specific heat capacity 
pc  of at least one, preferably both of the 

mediums. 

2.4.6.2 Process Parameter Analysis of Pumps 

A number of root-cause failures of pumps may be detected by vibration monitoring, however the 

efficiency of a pump may also provide vital indications of deviations from ideal operating conditions for 

pumps. Specific pump internal wear mechanisms such as corrosion, erosion, fouling and worn seals may 

inflict pumps negatively (9 p. 6.33), without it necessarily being detected by vibration monitoring 

equipment. This is where the importance of process parameter analysis comes into play. 

Process parameter analysis of pumps could be performed in several ways, according to (9) using such 

methods as: 

 Pump efficiency, by head-flow-power measurement 

 Full head-flow testing  

 Simplified head-flow test at duty point 

 Shut-off Head method 

 

The most extensive method is done by monitoring the pump efficiency, through head-flow-power 

measurements, as pump efficiency is given by the formula:  

P

Q gH

P


 

 

 Equation 16: Pump efficiency formula; Source (32 p. 47) 

where; 
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Monitoring and trending the efficiency is the most complete and best indicator of pump performance. 

Complete Head-Flow-Power test are usually part of standard acceptance testing of new equipment, 

where Pref -diagrams are established, while rarely needed for monitoring (32 p. 56) as less requiring 

methods may also provide useful information on pump internal conditions. 

Head-Flow testing is a simpler method where power consumption is removed from the consideration. In 

a full head-flow test the complete datum curve for a pump may be established. The pump is set to 

manual control and throttled by the discharge valve to obtain a full series of readings/measurements of 

pressure difference (Head) vs. flow rate of the pump. Comparisons of head flow curves of worn pumps to 

new condition will demonstrate a lowering of the head-flow curve. For equal flow rate, the worn pump 

will produce smaller differential pressure, whereas for equal head the flow rate will be reduced if worn. 

 

Figure 17: Illustration of head flow characteristic of worn pump vs. new pump, Source: (33) 

Using a full head flow comparison for condition monitoring purposes has two adverse consequences. If 

the pumps are part of a continuous running process system, the system most likely will have to be shut 

down, as output from the pump is varied during the test. Also, the method is said to be unpopular with 

operators who had to work the discharge valve (32 p. 57), as this for several pumps is time-consuming 

and very un-inspiring work. 

Head Flow test at duty point is considered to be the most useful condition monitoring method, because it 

will detect both internal deterioration and change in system resistance (33). Such testing is done by 

comparing differential pressure over the pump with the reference differential pressure at equal flow at 

3
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the duty point, i.e. at a constant pump speed. A reference head-flow curve is established using similar 

procedures as for a complete head flow test, however not in the full operating range of the pump, but 

limited to 10-15 points within an area close to the normal operating condition of the pump. Future 

registrations of head and flow at the same pump speed as the established reference curve are sufficient 

to perform CM. For the measured flow rate, the ratio of differential pressure measured to reference 

differential pressure is used as an indicator. In order to perform such monitoring it is needed to measure: 

- Flow rate, either mass flow [kg/s] or volumetric flow [L/h], [m3/h] or similar 

- Differential pressure over the pump [kPa] 

If such sensors are permanently fitted, or flanges to mount gauges or sensors during operation of the 

pumps, then the pumps may be monitored without being taken out of service and with minimum work 

for operators.  

Care should be taken, however, to ensure that establishing the flow rate is done in a correct manner. If 

the measured value is the volumetric flow, than differences in density due to changing mediums, or 

temperature differences (affecting density) may have to be taken into consideration. With reference to 

systems under study in this Thesis, this is of course an issue especially within the fuel system, as fuels will 

vary in chemical composition and thus vary in density. 

Shut-off head method (or dead-head) measurement is yet another technique for pump monitoring, 

where the discharge valve of the pump is closed during the test, allowing zero flow from the pump. 

Suction and discharge pressures along with temperature are registered and compared to reference 

testing. This method has severe limitations; for obvious reasons the test will require shut down of 

adjacent process systems, but also some high-energy pumps cannot be tolerated to operate at zero flow. 

More importantly, the test does not reveal the condition of the system (32 p. 60). Therefore, I find that 

the shut-off head method is not worthy of further investigation in this study, as applicability as a general 

CM indicator seems limited. 
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3 Identification of Components Subject to Condition Monitoring 
For the purpose of this chapter, it is especially important for the reader to be well acquainted with the 

prior Project Thesis (19) concluded as a preparation study for this Thesis, where detailed system 

descriptions, brake-down of systems into sub-systems and criticality analysis were made. I assume the 

reader has access and knowledge of the content of this document.  

The FMECA results from chapter 4.8 in (19) will provide the basis for the selection of components which 

are to be subject of CM. The result of the FMECA was a list of component criticality for all components 

sub-system by sub-system, for all eight defined sub-systems in study for this Thesis. The 

comprehensiveness of the CM will have implications both economically, and with respect to the impact 

the program will have for crewmembers on board who will have to perform tasks induced by the CM 

programme. With respect to number of components to be monitored, agreement was made with the 

Supervisor that 2-4 components per sub-system should be a reasonable estimate for the 

comprehensiveness of the CM programme. 

Since the criticality of the components have been thoroughly investigated in the FMECA analysis, and is 

the best criterion by which to prioritize the activities and resources spent on CM, I do not feel the need 

to make this decision process very comprehensible. The process of making the selection will thus be 

based on investigating the results from the FMECA analysis, and making selection of components which I 

believe will be sufficient to monitor.  

The proposed list of components to be monitored is seen below in Table 4: 
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System Sub-system Component Name No. of comp. Sys. Importance Agg Criticality 

Fuel Oil Transfer Settling Tank Pre-heater 1 0,5 5 

    Feed Pumps 2 0,5 3 

    Settling Tank Heating 1 0,5 3 

  Purification Control Valve Sep. Water Outlet 2 1 18 

    Regulating Valve Sep. oil outlet 2 1 18 

    Heater 2 1 14,5 

    Inlet Control Valve 2 1 14 

    Separator 2 1 13 

    Feed Pump 2 1 11,5 

  Circulation Supply Pressure Control Valve 1 2 26 

    Fuel Oil Heaters 2 2 20 

    Circulation Pumps 2 2 18 

    Fuel Selection Changeo. Valve 1 2 14 

    Flow Transmitter Bypass Valve 1 2 12 

    Supply Pumps 2 2 12 

Lubricating Oil Circulation Piston Lube Oil Cooler* 1 1,5 33 

    3-way flow split valve 1 1,5 25,5 

    Lube Oil Pumps 2 1,5 16,5 

    Other Lube Oil Cooler* 1 1,5 16,5 

  Cleaning Control Valve Separated Water Outlet 1 1 21 

    Regulating Valve Separator Oil Outlet 1 1 20 

    Inlet Control Valve 1 1 17 

    Separator 1 1 17 

Cooling Water Seawater Inlet Control Valve 2 1 16 

    Filters 2 1 23 

    Central Coolers* 2 1 11 

    Central Cooler Selection Valve 2 1 10 

    Seawater Pump Selection Valve 2 1 8 

    Seawater Pumps 2 1 6 

  Freshwater 3-way Pneumatic  Reg. Valve 1 1 11 

    Freshwater Pumps 2 1 8 

  Jacket 3-way Regulating Valve 1 1 11 

    Jacket Water Cooler* 1 1 11 

    Jacket Water Pump Selection Valves 2 1 10 

    Jacket Water Cooling Pumps 2 1 9 

All systems in total 35 component types 55 individual components 

Table 4: Components subject to CM, note that component criticality is not directly comparable between systems. 

*Component is part of more than one individual sub-system. 

This selection has in all essence been done by collecting the 2-4 most critical components for each sub-

system, although a few notable exceptions have been made: 

 Scavenge air cooler from the Central Cooling Freshwater system is not included, because it is 

considered to be part of the engine. Also this item is included in the TCI concept applied to Main 

Engines in previous Flagship and TeCoMan work (7). 

 For the Fuel Oil Purification System, I felt that it was logic to extend the amount of components 

to six, to include feed pumps and the main component itself, the separator. 
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 In the Fuel Oil Circulation System, the list was similarly extended to six components to include 

the supply pumps, as I believe these are relevant for CM. As Flow Transmitter Bypass Valve 

showed higher criticality than the pumps, this item was also included. 

 Similar to the two elements above, the number of components monitored for the Seawater 

Cooling system was extended to include the seawater pumps and their selection valves. The low 

criticality of these pumps seems unlikely, because without a functioning seawater pumping 

capacity, the entire cooling system will cease to function. 

As for the number of components included for the cooling water system, I chose to include only the 

pumps dimensioned for operation at sea, as this system both with respect to freshwater and seawater 

pumps are provided with 2x100% capacity plus an extra pump intended for operation in port. Of course, 

any pump could be utilized in any mode, and this is probably the reason why the pumps show their 

surprisingly low level of criticality in the FMECA analysis. I believe the most important thing, especially 

with regards to economy, is that the larger pumps used for operation at sea are condition monitored. 

I find that the amount of components subject to CM is vast by this selection, but I have problems 

reducing it. The criticality assessment of the different components produced in the Project Thesis was in-

depth in terms of methodology, but the frequencies of failure which were used were rather rough, and 

therefore I do not like the thought of keeping central components out of the scope of CM. Another 

important element, which I have limited knowledge on, is what kind of minimum maintenance and/or 

test regime these components are subject to by default through existing procedures. A more practically 

experienced analyst would probably be able to take such concerns into consideration in order to make a 

more sound judgement.  

For the purpose of planning CM activities, I find it relevant to organize the components subject to CM by 

component type, rather than by system as done above. This rather large amount of components to 

monitor will require standardized procedures based on component type rather than individual CM 

methods for each component. Below Table 5 shows the largest category of components, the valves. 

Component type Component name  System Sub-system No. of Comp. 

Valves Control Sep. Water Out Fuel Purification 2 

 

Regulating Sep Oil Out  Fuel Purification 2 

 

Inlet Control Valve Fuel Purification 2 

 

Supply Pressure Control Fuel Circulation 1 

 

Fuel Selection Changeover Fuel Circulation 1 

 

Flow Transmitter Bypass Fuel Circulation 1 

 

3-way Flow Split Lubricating Circulation 1 

 

Control Sep. Water Out Lubricating Cleaning 1 

 

Regulating Sep Oil Out  Lubricating Cleaning 1 

 

Inlet Control Valve Lubricating Cleaning 1 

 

Inlet Control Valve Cooling Seawater 2 

 

Central Cooler Selection Cooling Seawater 2 

 

Seawater Pump Selection Cooling Seawater 2 

 

3-way Pneumatic Regulating Cooling Freshwater 1 

 

3-way Regulating Cooling Jacket 1 

 

Jacket Water  Pump Selection Cooling Jacket 2 

Total Valves 16 types individuals: 23 

Table 5: Valves to be condition monitored 
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The second largest category of components is the pumps, summarized below in Table 6. 

Component type Component name  System Sub-system No. of Comp. 

Pumps Fuel Transfer Feed Pumps Fuel Transfer 2 

 

Separator Feed Pumps Fuel Purification 2 

 

Supply Pumps Fuel Circulation 2 

 

Circulation (Booster) Pumps Fuel Circulation 2 

 

Lube Oil Pumps Lubricating Circulation 2 

 

Seawater Pumps Cooling Seawater 2 

 

Freshwater Pumps Cooling Freshwater 2 

 

Jacket Water Cooling  Cooling Jacket 2 

Total Pumps 8 types individuals: 16 

Table 6: Pumps to be condition monitored 

The third and last main group of components which will be subject of condition monitoring are the heat 

exchangers, as seen below. 

Component type Component name  System Sub-system No. of Comp. 

Heat exchangers Settling Tank Preheater Fuel Transfer 1 

 

Separator Pre-heater Fuel Purification 2 

 

Fuel Oil Heaters Fuel Circulation 2 

 

Piston Lube Oil Cooler Cooling&Lubricating Freshwater/Circulation 1 

 

Other Lube Oil Cooler Cooling&Lubricating Freshwater/Circulation 1 

 

Central Cooler Cooling Seawater/Freshwater 2 

 

Jacket Water Cooler Cooling Jacket/Freshwater 1 

Total Heat exchangers 7 types individuals: 10 

Table 7: Heat exchangers to be condition monitored 

In addition to these three major units there are four other components to be condition monitored: 

Component type Component name  System Sub-system No. of Comp. 

Separator Fuel Oil Separators Fuel Purification 2 

Separator Lubricating Oil Separator Lubricating Cleaning 1 

Filters Seawater Intake Filters Cooling Seawater 2 

Heating Coil Settling Tank Heating Fuel Transfer/Purification 1 

Total Other 4 types individuals: 6 

Table 8: Other components to be condition monitored 

Fuel oil and Lubricating oil separators should in all essence be considered as identical component types 

and condition monitoring activities for these two components should be identical. Condition Monitoring 

of the settling tank heating coil was proven vital in the FMECA analysis; it seems unlikely however to 

condition monitor only one single heating coil when we know that also bunker tanks are equipped with 

such equipment. Similar holds for the filters. In addition to being paralleled, I’ve since work with the 

Project Thesis FMECA found out that most seawater intake filters today are automatic back flush filters 

where pressure drop over the filters are monitored and clogging is prevented by applying a high pressure 

flow in opposite of the normal direction. Since the “other components” category in light of the above 

seems much less important than the three major component groups, emphasis will be put into 

developing TCI’s for these three component groups.  
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4 Collecting and Incorporating Inspections Data into TCI’s  
In the current practice within the TOCC pilot programs utilizing TeCoMan with the TCI concept, all data 

acquisition is reported to TOCC from the ship on a monthly basis. The process is not automated as it 

depends on operators to fill in designated forms provided by TOCC. The forms, however, are 

computerized as they consist of pdf documents where tables containing the designated parameters to 

be monitored are filled in on a computer by operators on board. When the form is completed, it is 

emailed as a .pdf file to TOCC, where it is converted to a .xml file (which is the input file format which 

TeCoMan requires) by a TOCC employee and uploaded to the TOCC database.  

To my knowledge, all data reported to TeCoMan are thus inspection data in the sense that no data is 

transmitted directly from sensors on board into the TeCoMan system, but has been referenced by an 

operator on board who may have read it from data collectors, gauges or other instruments on board.  

From what I understand, most shipowner’s ship management and maintenance programs include 

monthly reports of data considered to be relevant to manage consumption of consumables and forecast 

maintenance needs. From one shipowner I have received what they call an “Engine Report” which 

includes the data which is monthly reported from the ship to the shore-based organization. The 

document is included in 0 , but has been made anonymous by request from the company. From 

inspecting this report, we can observe that large amounts of data relevant to engine performance 

including fuel and lubricating oil properties are already reported within a ship owning company which 

does not utilize the TeCoMan TCI system. According to the technical employee who presented me with 

this information, most of these values were readily available from instruments on board, and many of 

the important variables are checked much more frequently by crew, without being reported.  

From this observation I draw the conclusion that collecting data from technical systems relevant for vital 

machinery on a monthly basis is a common practice, undertaken by most ship owning companies, and 

probably this is also the reason why reporting to TeCoMan currently is done on a monthly basis; for 

convenience. If the systems studied in this Thesis should be included in similar pilot program to prove 

the validity of methods used, I would suggest reporting be done similar to the current reporting scheme 

within TeCoMan, simply by adding the desired measurements and variables relevant for these systems 

into current TeCoMan reporting forms. 

I have not been granted access to the software to produce such TeCoMan registration forms, and in 

agreement with the Supervisor, producing such forms for the proposed CM programme is not 

considered within the scope of work in this Thesis. 

As a comment, however, I would like to point out that if the TCI concept should be applied to numerous 

other systems, not only machinery systems but generally all relevant ship systems, then the data 

acquisition process must be automated to a greater extent. Otherwise, the amount of labour placed at 

the crew of the ships will not be sustainable. Being no computer engineer, exactly how this process could 

be automated is not a question I know the answer to. However, as illustrated in chapter 2.2, I believe 

integrating information from the ship system databases into TeCoMan should be possible, allowing 

TeCoMan to access relevant information already recorded by ship systems without the need to input 
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these manually into a form and emailing it to TOCC. If export of measurements already recorded and 

available in the ship system were automatically exported to TeCoMan, then the only attention the crew 

would need to have of CM activities would be the collection of true inspection data. By true inspection 

data I mean data collected where the human element cannot be replaced. This is the case where data 

are not logged electronically, typically readings of analogue gauges or similar, or where CM is performed 

by assessing the objective observations made by a human operator inspecting a component.  

  



- 48 - 
 

5 Condition Monitoring Programme 
This chapter will be concentrated at describing the proposed CM programme for the systems studied 

during Project and Master Thesis. As indicated in chapter 0, I intend to group similar components 

together and select methods which are generically applicable to all components within each such 

component category. Standardizing the procedures is critical in order to reduce complexity of the CM 

efforts and investments. Standardizing CM methods will ease performance comparisons, reduce the 

need to educate operators to perform CM related tasks, reduce investments in sensor equipment and 

implementation into TeCoMan or similar applications will be simplified.  

Defining the CM program implicates for each component type the evaluation of such items as: 

 Selection of relevant CM technologies for component groups 

 Description of parameter to be used as TCI 

 Measurement procedures and equipment required 

5.1 Valves 

5.1.1 Condition Monitoring Technology Selection 

The component group which includes the largest number of units are the valves, totalling at 16 types 

comprising 23 individual valves. Due to the large number of units found to be critical and thus selected 

for CM, one would expect it to be important to find efficient methods of performing CM for this group. 

Yet I have significant problems finding out how, or in fact even whether or not, to perform CM on the 

valves, mainly for two reasons: 

 During my literature study on CM technologies, very few of the investigated sources have 

described applicable methods of performing CM on valves.  

 

 Also, the nature of this Thesis complicates the matter, since the intention is to develop TCI’s for 

generic systems, meaning that I am not looking at one real life existing system, but at a general 

system. Detail data of the equipment to be monitored is thus not available. Valves come in a 

great number of configurations and designs, and from the sources investigated in the Project 

thesis (1) where I tried to define the typical generic systems, valves were either not described in 

detail or they were simply said to vary in configuration within a number of options.  

Due to these facts, I find myself insecure of whether or not the conclusion drawn in chapter 0 to perform 

condition monitoring of valves on these system was correct. If TCI’s are to be established, they need to 

rely on collection of repeatable data which are relevant for predicting the development of typical root-

cause failure mechanisms.  

Most valves defined as candidates for CM in chapter 0 are regulating or control valves. According to (2 p. 

249), control valves have limited common failure modes, however it is indicated that most failures relate 

to leakage or problems with the actuator mechanisms. Actuators vary in operating principle between 

mainly pneumatic, hydraulic or electrical actuators in addition to manually operated control valves. With 

such variation in actuators, it is difficult to identify a general methodology which would apply to all 
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actuator types. The integrity of valves with respect to leakage is documented through pressure testing at 

manufacturer or client final acceptance tests upon delivery. However, I have not been able to find that 

such test can be proven viable as a condition monitoring method. This is probably due to the fact that 

such test would demand the valve to be taken out of service, either dismounted and put into a testing 

environment or that the local environment at one or both sides of the valve would be pressurized.  

If TCI’s should be created for valves, the parameters will probably have to be tailor made for different 

valve types, but typically would have to rely inspection or non-destructive test methods which would 

involve such elements as: 

 Taking the pump out of service 

 Function testing of the actuator mechanism 

 Pressure testing for leak detection 

 Inspecting material wear on internal components 

Having discussed the difficulty of performing CM on valves with the Supervisor, my view that this is not 

an easy task to be done cost effectively was too a large degree confirmed. We agreed that TCI’s for 

valves, if applicable, would have to rely on inspection data, which will require valves to be taken out of 

operation. Taking into consideration the number of valves to be monitored for the mere 3 systems in 

study in this Thesis, I highly doubt such CM procedures will prove beneficial. Therefore, I have decided 

not to recommend involving valves into the TCI parameter monitoring of the systems in study.  

5.2 Pumps 

5.2.1 Condition Monitoring Technology Selection 

In chapter 0 it was identified in total eight pump types, all paralleled, thus resulting in totally 16 pumps 

to be condition monitored. To my knowledge, all pumps within the three systems studied are typically of 

centrifugal fixed speed type, and therefore quite similar in working principle. The main differences 

between the pumps are the mediums they are used to pump, and their physical size and capacities.  

Pumps are rotating machinery, and from investigations made in chapter 2.4.1 they are obvious 

candidates for vibration monitoring. Of the methods investigated during the literature study on vibration 

monitoring, ISO standards were found to be applicable to classify general vibration severity specific to 

centrifugal pumps, and I believe TCI parameters should be based on the methodology and threshold 

values presented in such standards. The standards presents threshold values for vibration measured on 

bearings or bearing housings, presented in velocity-RMS value, where machines are classified by their 

foundation, either rigid or flexible, and power range. Vibration severity monitoring should be able to 

indicate such machine train failures as imbalance, misalignment, bent shafts or loose bolts according to 

0, and I propose this method is included in the CM programme for all pumps. 

Although such vibration severity is measured on the bearings, detection of damage to rolling element 

bearings themselves are generally not detected by such low-frequency vibration measurement using 

RMS values, as rolling element bearing failures will produce shock-like high frequency vibrations. 

Detection of rolling element bearing degrading using trending of parameters like the Crest-factor or 
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Kurtosis factors have been mentioned, but necessitates continuous or at least very frequent monitoring, 

as they only will provide a short increase during incipient failure. Due to the current nature of the 

reporting scheme within TeCoMan based on monthly reports, such methods would probably provide 

limited value, and I will not recommend Crest-factor or Kurtosis-factor trending used as TCI parameter 

within the current TOCC reporting scheme. 

Alternatively, TCI’s for prediction of bearing failure could be based on higher frequency range structure 

borne ultrasonic techniques, as indicated in chapter 2.4.2. Remembering the contents of this chapter, 

however, developing TCI’s based on this technology is problematic for two reasons: 

 The use of ultrasonic’s as an alternative to vibration monitoring is disputed by several sources 

investigated.  

 The technologies developed seem to vary in signal processing method, each technique being 

protected by trademarks, which makes complicated to ascertain the exact analysis method 

utilized. 

Therefore, I propose to limit the CM activities undertaken on pump bearings to vibration monitoring, 

where guidelines and threshold values are given in ISO-standards, which assures that the technology is 

proven. 

In addition to the such vibration monitoring, aimed at identifying machine train problems related to the 

pump, the process parameter analysis method described in chapter 2.4.6.2 is chosen as basis for pump 

TCI’s. This method of CM of pumps will verify that the efficiency of the internals of the pump is 

maintained. 

Technologies selected to make basis for TCI’s for pumps are therefore: 

 Vibration monitoring, based on ISO 103945, ISO 10816-3 or similar methods 

 Process parameter analysis, based on Head-flow test at duty point  

5.2.2 TCI Parameter for Pump Vibration Monitoring 

For the vibration monitoring of pumps, applicable ISO standards are chosen as basis for TCI calculation. 

ISO 3945 provides threshold values for measured RMS-value of vibration velocity for general machines, 

while ISO standard 10816-3 is dedicated for centrifugal pumps. Vibration severity classifications based on 

ISO 2945 is included in Appendix A. Assuming pumps are single speed, the TCI parameter for each 

bearing will simply be the measured vibration velocity RMS value. The threshold values from standards 

will therefore be utilized in the transfer function in TeCoMan, which relates parameters to TCI’s, rather 

than to calculate the parameter itself. The severity threshold values are applicable to all bearings or 

bearing housings associated with the pump. 

5.2.3 Measurements for Pump Vibration Monitoring 

A pump drive train will typically include bearings on each end of the electric motor, plus two bearings, 

one located where the shaft enters the pump unit, and another bearing position in between the 

aforementioned bearing and the rotor. For most cases I believe that on the pump side, only the bearing 
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located at the end is accessible for measurements. Thus, for the standard pump, there will be three 

bearings to be measured.  

 

Figure 18: Centrifugal pump vibration measurement locations, Source: Authors own 

The sensor to be used must be capable of recording vibration velocity in the 10-1000 Hz frequency range 

and displaying the mm/s-RMS value. In practice, most piezo-electric accelerometers for the intended 

frequency range equipped with an integrator will be able to display this value, and could be utilized. For 

such monthly sampling as required for the application in this study, the only reasonable solution is to use 

a single portable transducer for all measurements. According to (2 p. 348), handheld transducers, or 

even magnetically fixed ones should be avoided at all times. The best solution ensuring measurements 

are repeatable is to install quick-connection mounts at each measurement point. 

5.2.4 TCI Parameter for Pump Process Parameter Analysis 

The proposed TCI parameter for the head flow test at duty point is the percentage drop in pump head 

(differential pressure over the pump) at volumetric flow through the pump relevant to the reference 

condition: 
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Equation 17: TCI parameter for head flow test at duty point for pumps. 

In order to calculate ( )ref measp vflow the reference head – flow curve as function of the volume flow 

must be established during reference testing. Assuming any head flow curve could be described by a 2nd 

degree polynomial, regression analysis must be performed on data collected during such reference 

testing to establish the reference constants (a, b and c) for this polynomial:   

2( )ref ref ref refp vflow a vflow b vflow c        

Equation 18: Reference head-flow polynomial 

Effectively, the complete representation of the TCI parameter formula is therefore: 

2
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TCIparam headflow p vflow a b c
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Equation 19: Complete TCI parameter formula 

Where constants a, b and c are established based on regression analysis of Equation 18 using reference 

data. The constants represent input parameters for the TCI, while measp and measvflow are input 

variables. 

5.2.5 Measurements for Pump Process Parameter Analysis 

As indicated above, the pressure difference p [kPa] over the pump and the accompanying flow vflow  

[L/s] through the pump are the measurements which are necessary in order to calculate the TCI 

parameter. Regression analysis to find parameters a, b and c to be included are based on measurements 

of these same two variables. If the pump is not equipped with a reliable mass flow or volume flow 

measurement, one proven method of providing this information is by mounting either an orifice plate or 

a venturi, and calculating the mass flow by formula provided in ISO 5167, as described further in 

Appendix E. According to (9 p. 38), pressure readings can be facilitated by mounting tapping’s for 

pressure gauges at both pump suction and discharge flanges, if electronic transducers have not already 

been mounted. NB! Attention must be kept at whether suction pressure is negative (below atmospheric) 

or not at the pressure reading on the suction side of the pump! 
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5.3 Heat Exchangers 

5.3.1 Condition Monitoring Technology selection 

Heat exchangers are a major component group, as I have identified seven different heat exchanger types 

to be monitored, totalling at 10 heat exchangers for the three systems studied. Remembering the fault 

tree in Appendix C, the desire is to monitor the heat exchanger in order to detect development of any of 

the two failure major failure modes: 

 Fouling resulting in reduced heat transfer 

 Material defect resulting in leaks 

Process parameter analysis, by calculating the overall heat transfer coefficient, as presented in chapter 

2.4.6.1, is ideal to monitor the overall efficiency of a heat exchanger. Therefore, I will apply this method 

to the heat exchangers.  

Leakage in a heat exchanger will typically be due to corrosion. If the heat exchanger is leaking, this is 

failure will probably materialize in obvious adverse conditions; an external leak will show spillage from 

the heat exchanger, while internal leaks will affect the heat transfer coefficient as well as mixing the 

mediums. Therefore, I believe that detection of a leakage situation itself should not be the intention of 

CM of the heat exchanger. CM methods relating to leaks, if applied, should be aimed at uncovering the 

root-cause of material defects, which in most cases would be corrosion. However, performing trending 

of the corrosion situation in a heat exchanger is a complex matter. Both galvanic corrosion and corrosion 

due to turbulence flow would typically develop in a local area of the heat exchanger which is not easily 

identified, as a heat exchanger is designed to provide a maximum heat exchange area in the smallest 

volume possible. In order to predict with some certainty the integrity of materials in a heat exchanger, it 

would be necessary to perform inspection or thickness measurements of the entire surface of the 

essential tubes, which would necessitate the system to be taken out of operation for a considerable 

period of time. I believe such actions would be much to elaborate just in order to establish an indicator 

of condition, and therefore I will limit CM of heat exchangers to encompass process parameter analysis 

for detection of reduced heat transfer coefficient. 

5.3.2 TCI Parameter for Heat Exchanger Process Parameter Analysis  

The proposed condition parameter using process parameter analysis for heat exchangers to indicate 

overall heat exchanger degradation is the drop in heat transfer coefficient compared to the reference 

value in new condition, as presented previously in Equation 14 chapter 2.4.6.1:  

 

For simplicity and to more intuitively relate to a range from 0-100, which is the range of TCI’s, I would 

like to modify the parameter slightly from the “relative degradation” above, into “percentage drop” TCI 

parameter by multiplying the expression by -100: 

Cond.
ref meas

heatex
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k k
parameter
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Equation 20: Heat exchanger TCI parameter 

Since a number of heat exchangers are to be monitored, establishing a TeCoMan user function which 

takes in the relevant static parameters along with measurement variables to produce this condition 

indicator will be useful. This will be described further in chapter 0. 

5.3.3 Measurements for Heat Exchanger Process Parameter Analysis 

From the equations in 2.4.6.1, it is obvious that we need to monitor the four different temperatures 

going into and out of the heat exchanger. In addition we need to know the mass flow of one of the 

mediums. Since the target flow in a heat exchanger may be temperature regulated by by-passing some 

of the flow, it is important to measure the local temperature at the inlet and outlet flow of the heat 

exchanger, thus measuring the temperature fluid which actually travels through it, and not the bulk 

temperature or mass flow which partially may by-pass the heat exchanger.  

The reference value has to be calculated based on similar measurements according to the formula and 

preferably knowledge of the heat transfer area. If heat transfer area is not known, it is adequate to 

calculate reference heat transfer coefficient using an arbitrary constant for the area, as long as the same 

constant set as the parameter for heat transfer area. 

5.4 Other Components 
As indicated in chapter 3, the main focus of the development of the CM programme and TCI’s was at the 

aforementioned three component groups. Seawater inlet filters of recent date have in (34) been found 

to typically be automatic back flush filters which in effect already are equipped with sensors which 

indicate when filters are clogged and in need of being flushed. Therefore I consider development of TCI’s 

for these not important. 

The settling tank heating is one out of numerous tank heating coils, as all heavy fuels have to be 

continuously heated to prevent them from solidifying within tanks. Heating coil systems may be based 

on electricity, thermal oil, hot water or steam. Therefore there is no obvious and readily available 

method of performing general condition monitoring of such equipment, but it would have to be assessed 

individually with the system at hand. 

Separators are rotating machinery, and therefore candidates for vibration monitoring. A separator is in 

fact quite similar to a pump when looking at the machine train configuration. The shaft rotating in the 

separator is driven by an electric motor, and with or without gears, it has to be supported by a bearing in 

the bottom section of the separator. I assume similar vibration monitoring as utilized for pumps can be 

applied to separators. This will include measurement of vibration levels at the motor driving end, motor 

non driving end and on the driven end of the separator. The TCI parameter is the measured vibration 

velocity (mm/s-RMS), and the thresholds for general machinery vibrations given in ISO 3945 are assumed 

to be applicable to be utilized in the TCI transfer function. 
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6 Implementation into TeCoMan 

6.1 Software Overview 
The TeCoMan software is best described by investigating the main platform window where icons to open 

subsequent task dedicated windows are shown. In order to give the reader a short overview below 

Figure 19 is included, showing a print screen illustration where the main platform window and perhaps 

the most frequently used menu window, the explorer window, are open. The print screen has been 

manipulated with numbers below icons of some important sub-menus. 

 

Figure 19: Overview of TeCoMan program window, including the higher level system hierarchy. 

The main window is seen as the top section of Figure 19: Overview of TeCoMan program window, 

including the higher level system hierarchy.. The most important windows have been numbered, and a 

short description of the functionality of these tools according to numbering from Figure 19 is given 

below: 

1. Explorer Window – This window is used to define and navigate within the hierarchies which are 

included in the current database. The system hierarchy is the basic hierarchy, and this hierarchy 

category is created by default, and is intended for depicting the system under consideration.  

The system hierarchy is developed by adding nodes, either aggregation nodes or measurement 

nodes. Measurement nodes are at the bottom of the hierarchy, while all higher level parent 

nodes are aggregation nodes. A number of additional measurement hierarchies, may be defined 

using the explorer window. Measurement hierarchies are developed by adding the desired 

nodes from the system hierarchy. 
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2. Node Properties Window – The node properties menu is used for investigating and configuring 

each specific node. The menu is applied to nodes within both the system hierarchy and the 

measurement hierarchies. In the system hierarchy, the node property menu is used to select 

appropriate user function at each measurement node at the bottom of the hierarchy. A user 

function is a mathematical formula which calculates the node measurement parameter from 

input variables and parameters. In the measurement hierarchy, the menu is utilized for both 

measurement nodes and aggregation nodes. At aggregation nodes, the menu is used to 

configure the aggregation at the current node from child nodes, while at measurement nodes in 

the measurement hierarchies; the menu is used to specify the transfer function to be utilized to 

relate the measurement parameter to TCI values. 

3. Graphic Tool Windows – These 5 windows are not used for configuring TeCoMan, but to exploit 

and analyse historic developments derived from collected data. From left to right in numbered 3 

in Figure 19, here is a short description of each graphic tool: 

 TCI Graphs – displays TCI graphs for the current navigated node in the explorer window. 

 Benchmark Chart –can be used to benchmark (compare) TCI or user function value of 

current navigated node in the explorer window against another chosen parameter.  

 Input Data – This tool is used to display the value of navigated measurement node 

within a measurement hierarchy. The tool shows a graph of the historical development 

of the raw values of the user function applied to the measurement node.  

 Relative Contribution – This tool is applicable only to aggregation nodes within a 

measurement hierarchy. It will display the relative contribution to reduction in TCI value 

at the node from nodes at one lower level in the hierarchy. If data is recorded for a long 

period of time, this could be a very powerful management tool to identify improvement 

potential and plan future replacements or system upgrades. 

 Absolute Contribution – this window is similar to the above, only the absolute 

contribution instead of relative contribution is displayed. 

4. Inspector Tool Windows – These four windows are helpful to inspect values in a table format. 

There are four different inspector tools, each whose function and application is described below: 

 TCI Inspector - The TCI inspector is applicable to any node within a measurement 

hierarchy, and will display historical TCI values on the navigated node in a table format. 

This could be useful in order to inspect or export data from TeCoMan at a table format. 

 User Function Inspector – This is similar to the input data graphic tool, only in a table 

format rather than a graphic chart. 

 Measurement Inspector – The measurement inspector is a general tool, not taking in 

regard which hierarchy or node is currently navigated in the explorer window. It could be 

used to inspect all the basic measurement variables in a table format by tag name. The 

tool includes a search function, and for the chosen tag name, it will display the historical 

values registered.    

 Tag inspector – Similar to the measurement inspector, this is a general tool, applicable at 

any time when connected to a database. The tool is used to inspect tags registered 

within the database, and is searchable. 
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5. Function Editor Window – The function editor is used to define and configure user functions. 

User functions are applicable to measurement nodes within the system hierarchy only. A 

measurement node will always be represented by a user function value. A user function is a 

definition of the measurement node value, as a mathematical function of a set of input variables 

and parameters. Input variables are individual measurement values which are named by unique 

tags, while user function input parameters basically are constants for the mathematical function.  

6. Data Source Configuration Window – This tool is used to configure the sources where input data 

are stored. Data sources range from simple text files, via designated TOCC mail import files to 

entire databases. 

7. Aggregation Tool Window – this tool is utilized at any navigated node level within a 

measurement hierarchy. The tool will calculate historical and aggregated TCI values from a start 

date set by the operator in the window until the current date. In effect, the aggregation tool is 

used to update calculated data displayed in TeCoMan after updating input data. 

8. Report Setup Window – As the name indicates, this window is used to configure the production 

and export of reports with results from TeCoMan.   

In my opinion, these are the most basic and important features of the software, and predominantly 

those which I have been configuring and inspecting during my work with TeCoMan. 

6.2 Configuring TeCoMan for a CM programme 
In this chapter I will try to describe the basic procedure for configuring TeCoMan for a CM programme 

application. I will try to describe in chronologic order what I believe is an efficient approach, exemplified 

by the implementation of the CM programme defined in chapter 0. 

6.2.1 System hierarchy  

The first objective is to define and develop a complete system hierarchy. This hierarchy is the base 

hierarchy which is intended to depict the system down to measurement node level. Any subsequent 

measurement hierarchies, where aggregations of TCI’s are to be performed, must import selected 

elements from the system hierarchy.  

The system hierarchy may take different forms for any given system to be implemented, based on the 

philosophy and the detail level chosen by the analyst, and there may be no saying which hierarchy is 

correct for any system. The system hierarchy should however reflect the natural dependency between 

systems, functions and hardware (components) subject to evaluation. 

The three systems studied in this Thesis are the Fuel Oil System, the Lubricating Oil System and the 

Cooling Water System. During the FMECA analysis from the Project Thesis (1) these three systems were 

found to consist of in total eight sub-systems, and in the hierarchy established for the FMECA analysis, 

where all system components were to be investigated, the hierarchical structure was divided into the 

following categories as illustrated below: 
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Figure 20: Systems breakdown from FMECA analysis in Project Thesis 

For the system hierarchy within TeCoMan where condition monitoring activities define the system 

hierarchy, I find it better to remove functions as a hierarchical level, and rather group similar component 

types together. This better reflects the choice made in chapter 0, where condition monitoring activities 

for equal components types are standardized. For the system hierarchy in TeCoMan I propose that below 

individual machines (or components) the next hierarchical level to be the CM method or principle 

utilized, and below that any individual measurements. Thus resulting in a hierarchical breakdown like 

indicated in Figure 21 below: 

 

Figure 21: Proposed TeCoMan system hierarchy breakdown for systems subject to CM  

Brackets have been added for the individual measurements because where a user function is used, such 

as typically would be the case for Process Parameter Analysis, all individual measurements will be 

directly included into the one user function being the measurement node. 

Systems
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System

Sub-systems

Component Types

Individual components

CM Principle Method

(Individual measurements)
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The complete system hierarchy for all three systems in study was imported into TeCoMan down to 

component level. However, only the fuel oil system was developed further in full detail down to 

measurement level.  Appendix F gives an overview of the system hierarchy structure as well as showing 

the entire fuel oil sub-system hierarchies, as implemented and shown in the TeCoMan Explorer view.  

6.2.2 User Functions  

Next, the user functions included in TeCoMan should be investigated. When a user function has been 

created, it can be used several times for several different components or measurements. If user 

functions already included in TeCoMan are found sufficient to calculate the proposed theoretical 

condition parameters applicable to CM program to be implemented, no action is needed. If additional 

user functions are required, these should be added to the TeCoMan user function library through the 

Function Editor. 

For my proposed Process Parameter Analysis methods for pumps and heat exchangers, no applicable 

user function was included in TeCoMan. 

6.2.2.1 Pump Process Parameter Analysis User Function 

A user function was created in order to calculate the TCI parameter proposed for pumps, given in 

Equation 19. As required by the formula, the user function takes in parameters representing the 

constants describing a 2nd degree polynomial for the pump head as function if the mass flow. Measured 

pump head and mass flow are the input variables into the user function as shown below: 

 

Figure 22: User function for pump degradation from heat-flow testing at duty point 
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6.2.2.2 Heat Exchanger Process Parameter Analysis User Function 

For calculating the TCI parameter for heat exchangers proposed in chapter 5.3.2 described by 

TCI 100 100
meas ref ref meas

heatex

ref ref

k k k k
parameter

k k

 
    

 

Equation 20, with contents further elaborated in Equation 12 and Equation 13, I created a user function. 

The user function calculates the proposed parameter for a heat exchanger with logarithmic temperature 

difference as applicable to a heat exchanger with counter flow using measured mass flow and specific 

heat capacity of the medium whose temperature is increased through the heat exchanger, along with 

input temperature measurements denoted by the same temperature numbering as presented for such 

counter flow heat exchangers in Figure 16, chapter 2.4.6.2. 

 

Figure 23: User function for TCI parameter for heat exchangers with counterflow measuring Cp and mass flow of the heated 
medium 

Similar user functions could be added for downstream flow directions, and/or taking in either mass flow 

and specific heat capacity of the medium which is cooled in the heat exchanger, or possibly using the 

mean value of the heat lost/absorbed by the two mediums. 

6.2.3 Data Import Configuration 

The next step is to configure the data sources to identify where files or databases containing 

measurement data are kept. For the application of this Thesis, no measurement data were available, as 

the study is theoretic in nature and not applicable to a specific ship or ship system. Therefore, in order to 
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exemplify the functionality of the implemented measurement hierarchy and user functions, data were 

fabricated. The text file import module was chosen, where file location and structure of the text file is 

defined, the text file import module is shown in Figure 24:  

 

Figure 24: Print screen showing TeCoMan Data source configuration, text file import module. 

Measurement data were fabricated in a simple .txt file using standard Microsoft Notepad software, 

where measurement data were defined by text strings containing tag name, date, value and unit as 

specified in the text file import module shown above, and each text line will therefore look like this: 

tagname;dd.MM.yyyy;value;unit; 

The full input file can be found in Appendix G. 

6.2.4 Measurement Hierarchy Configuration  

In order to utilize the TeCoMan software and TCI principle the desired measurement hierarchies must be 

established. This is done within the explorer window. Numerous measurement hierarchies can be 

created based on one system hierarchy, this could be useful if TCI’s should be used to quantify the 

performance of a technical system with respect to different objectives. According to (34) such objectives 

could typically be: 

 Technical degradation 

 Efficiency 

 Productiveness 

 Losses 

 Waste 

 Uptime 

For the purpose of this Thesis, in agreement with the Supervisor, it was decided only to include only one 

measurement category, which is intended to reflect the technical degradation. This measurement 

category was called TCI and established as the only measurement hierarchy. 
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Aggregation of TCI’s are defined in the measurement hierarchy. First, relevant nodes from the system 

hierarchy are imported. At measurement nodes, the transfer function relating user function parameters 

to TCI values must be established. In addition, the status indication traffic lights can be configured for TCI 

values at turnover from green to yellow, and from yellow to red may be defined. These were set at TCI = 

90 and TCI = 80 respectively for all applications in this Thesis. Finally, comments can be defined to 

provide additional information to the values. Comments are text messages displayed based on TCI or 

user function values, and could be relating to diagnostic help messages, maintenance instructions or 

similar. At aggregation nodes, the aggregation of child nodes is defined. Aggregation may be based on 

such functions as mean value, worst case, weighted sum and several others. In addition, status traffic 

lights and comments must be defined also at aggregation node level. 

The structure of the measurement hierarchy can be inspected in Appendix H. 

Further discussion of aggregation functions and weighting is done in chapter 0.  

6.2.5 Aggregation 

If all the above steps have been executed and data have been recorded, the basic steps which needs 

configuration in order to start exploiting the TeCoMan software have been finished. In order to calculate 

TCI’s the final step is to utilize the Aggregation Tool. If done on the top level aggregation node at a 

measurement hierarchy, then the full set of TCI’s for this hierarchy from the bottom measurement nodes 

to the top node will be calculated. When this is done, the graphic and measurement tools will display 

correct historical values at all node levels from the desired start date of aggregation, and in the 

measurement hierarchies the status traffic lights will display the current status, based on the latest 

recorded data. 

6.2.6 Reports  

When aggregation of latest data set has been concluded, the possibility of communicating the current 

system status outside TeCoMan is present. Client users of the TOCC system will be able to view the 

status indication, graph and inspector tools through their TeCoView application. For communicating 

information on the current and historical system status to parties without access to TeCoMan or 

TeCoView, the reporting tool should be utilized. This tool can be used to generate reports configured in 

TeCoMan. Reports may be printed, emailed or automatically sent to other databases as applicable. 

The report tool was not investigated in detail or configured within my work with TeCoMan.   
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7 Exemplification of TCI Calculations and Aggregation 5 
Task 6 in the assignment text specifies that exemplification of the TCI calculations and aggregation for at 

least one system must be demonstrated. The Fuel Oil System has been selected for this purpose, and this 

chapter will demonstrate the full TCI calculations and aggregation for this system, as executed in 

TeCoMan.   

In order to perform calculations of TCI’s the following items must be in defined in detail: 

 Reference data, necessary for input into user functions or transfer functions 

 Measurement data, as input to user functions 

 User functions 

 Transfer functions 

 Aggregation functions and settings 

The user functions applicable to the TCI’s proposed for my system have been described in detail in 

chapter 6.2.2; however I needed to fabricate plausible reference and measurement data in order to 

perform calculation of TCI’s. 

7.1 Reference and Measurement Data Fabrication 
In order to fabricate a set of plausible reference and measurement data, I chose to set up an excel sheet 

where I made assumptions for capacities of the Fuel Oil System, based on formulas and typical values 

stated in literature. From (35) I found that the maximum fuel oil consumption is the dimensioning factor 

for the fuel oil system, taking into account the most viscous fuel to be burnt. Furthermore, the fuel oil 

purification system should be capable of handling the maximum daily fuel consumption within 20-22 

hours. Transfer pump system is said to be dimensioned with capability of emptying one bunker tank and 

filling another within “reasonable time” (35). I assume twelve hours is reasonable time. With such 

dimensioning criterions in mind, I started by defining the basis for the Fuel Oil System, assuming the 

following: 

Fuel Oil System Specification Symbol Value Unit Comment 

Engine Power P 10000 kW Assumed value  

Specific fuel consumption SFOC 0,18 kg/kWh Assumed, typical value 

Fuel Spec Fuel RMH45 - Assumed fuel 

Viscosity of fuel  νf 45 cSt  Source: (36 p. p 510) 

Temperature for above viscosity - 100 degC Source: (36 p. p 510) 

Fuel Density (at 15 deg C) ρf
15 degC 991 kg/m^3 Source: (36 p. p 510) 

Fuel cons at full power mfuel 0,50 kg/s Calculated: mfuel = P * SFOC / 3600 

Fuel consumption pr day Cons 43,2 ton Calculated: Cons = P * SFOC *24 /1000 

Range at full speed Range 30 days Assumed approximately one month 

Bunker tanks capacity Mtank 1296 ton Calculated from above consumption and range 

Number bunker tanks n 4 - Assumed  

Table 9: Fuel Oil System Specification 
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In (36), practical thresholds values for kinematic viscosity of fuels for pumping, separation and fuel 

injection and atomizing are given: 

Viscosity Thresholds Symbol Value Unit Comment 

Pumping νf
pump ≤ 500 cSt  Source: Diesel Engines Volume 3: Combustion p 513 

Separating in centrifuge  νf
sep ≤ 40 cSt  Source: Diesel Engines Volume 3: Combustion p 513 

Fuel injection and atomizing  νf
injct ≤ 15 cSt  Source: Diesel Engines Volume 3: Combustion p 513 

Equation 21: Viscosity thresholds for various applications, Source: (36 p. 513) 

These values can be utilized to identify temperatures at important locations in the Fuel Oil System, as 

temperature (θ) and kinematic viscosity ( f ) are related in through the formula:  

log log( 0,85) log( 273,15)f p m      

 Equation 22: Fuel temperature - viscosity relation, Source: (36 p. 513)  

where m is nearly constant at m =3,32, while p is fuel dependent (36 p. 513). Using the known viscosity 

of the specified RMH fuel I found p = 8,759. Using this information I could now calculate threshold 

temperatures for pumping, separating and injecting the fuels: 

Calculated Temperatures Symbol Value Unit Comment 

Temperature for pumping viscosity Tf 
pump ≥ 49,2 degC I assume 50 for simplicity 

Temperature for separation viscosity Tf 
sep ≥ 103,5 degC Theoretic value, I assume 98 from (36 p. 527) 

Temperature for injection viscosity Tf 
injct ≥ 138,4 degC I assume 140 for simplicity 

Equation 23: Calculated threshold fuel temperatures for pumping, separating and injection. 

In the comment field I chose some simplified temperatures which I will assume to be the intended 

system temperatures at bunker tanks, separator inlets, and fuel oil final heater outlet, respectively. Also, 

I assumed for the settling tank an intended temperature of 80 degrees, and for the mixing tank 130 

degrees. The complete set of intended temperatures at locations interesting with respect to the CM 

programme will therefore be: 

Assumed intended temperatures in system Temp [deg C] Unit 

T fuel transfer feed pump 50 degC 

T fuel settling tank preheater in 50 degC 

T fuel settling tank preheater out 80 degC 

T fuel separator feed pump 80 degC 

T fuel Separator preheater in 80 degC 

T fuel Separator preheater out 98 degC 

T fuel circ supply pump 98 degC 

T fuel circ booster pump 130 degC 

T fuel circ fuel oil heater in 130 degC 

T fuel circ fuel oil heater out 140 degC 

Table 10: Chosen reference fuel temperature at points of interest for CM 

In order to have a complete specification of the fuel at all locations, density and specific heat capacity of 

the fuel oil at these temperatures were calculated, as these properties will be input for the various user 

functions. Density was calculated by formula: 
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15 0,68( 15)f f

    
  

Equation 24: Fuel density ρ as function of temperature θ, Source: (36 p. 512) 

Specific heat capacities at relevant locations were calculated from: 

1
(0,402 0,00081 )[ / ]fCp kcal kg K

d

    

 

Equation 25: Specific heat capacity of fuel oil as function of temp. (θ) and specific gravity at 15 deg C (d), Source: (37) 

Tables showing these calculated values are included below, specific heat capacities were converted to 

unit J/kg K by factor 1 kcal = 4186.8 J, as the aware reader will identify: 

Densities Density [kg/m^3] Unit 

 ρ fuel transfer feed pump 967,2 kg/m^3 

ρ fuel settling tank preheater in 967,2 kg/m^3 

ρ fuel settling tank preheater out 946,8 kg/m^3 

ρ fuel separator feed pump 946,8 kg/m^3 

ρ fuel Separator preheater in 946,8 kg/m^3 

ρ fuel Separator preheater out 934,6 kg/m^3 

ρ fuel circ supply pump 934,6 kg/m^3 

ρ fuel circ booster pump 912,8 kg/m^3 

ρ fuel circ fuel oil heater in 912,8 kg/m^3 

 ρ fuel circ fuel oil heater out 906,0 kg/m^3 

 

Table 11: Fuel Oil density and specific heat capacity at locations of interest  

Having established this set of fuel properties, I made excel sheets for all components to be condition 

monitored where I established plausible reference and measurement data through iteration. As these 

calculations and tables are extensive, they have been placed in the appendices. 

All calculations and measurement data for head – flow testing pumps can be found in Appendix I. 

Similar calculations and measurement data for heat exchangers are included in Appendix J. 

Complete vibration data for all components subject to such monitoring are given in Appendix K. 

Notice should be taken that in order to demonstrate the aggregation and functionality of the TeCoMan 

software, for all paralleled components to be monitored data for component numbered “1” were set 

according to tables in the aforementioned appendices, while for components numbered “2”, data for all 

dates were set equal to the those of component 1 at date 01.02.2010. All data for this date should 

produce TCI=100. 

7.2 Transfer Functions 
Transfer functions were defined in the measurement hierarchy at lowest node level for all user 

functions. In order to reduce time consumption, all transfer functions for similar TCI parameters were 

chosen equal. Since user function values for head flow testing of pumps and heat exchangers are both % 

Calculated Fuel Specific Heat values Temp, [degC] Cpfuel
(Temp) [J/kgK] 

Specific heat at bunker tanks 50 1852,96 

Average spes. heat in settling tank preheater 65 1903,84 

Specific heat  at settling tank 80 1954,72 

Average spes. heat in separator preheaters 89 1985,25 

Specific heat at day tank and supply pumps 98 2015,77 

Specific heat at mixing tank 130 2124,31 

Average specific heat in fuel oil heaters 135 2141,27 

average specific heat of fuel at T = 140 deg C 140 2158,23 
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decrease relevant to reference conditions, transfer functions were made equal for both these user 

functions. 

7.2.1 Head –Flow Test and Heat Exchanger Degradation Transfer Functions 

Transfer functions defined for both these user functions were configured using a six point saddle curve 

transfer function, using identical values for all items. The user function parameters both express % 

degradation relative to the reference condition.  

Decision was made to keep the transfer function simple. In the region of the user function degradation 

between -20% and 0, a 1:1 translation of user function value to TCI reduction was desired.  The point of 

total degradation (TCI = 0) was chosen to translate to a - 50 % user function value. In principle, there is 

no reason why measurements should produce positive values, i.e. improved condition from reference 

measurements. A margin of 2 % increase of user function value was however allowed to translate to TCI 

= 100, followed by a linear drop to TCI = 0 for positive 20 %. This should produce a low TCI indicating that 

measurements are probably erroneous. The desired translation was produced by inserting values shown 

in Figure 25 below. 

 

 Figure 25: Transfer function for pump head - flow test and heat exchanger degradation 

With “Top-low” at -10, this means that any pump or heat exchanger with less than 1% decrease in their 

parameter will have a TCI = 100, and that the translation is not exactly 1:1 in the user function interval 0 

– (-20). 
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7.2.2 Vibration Monitoring Transfer Function 

For vibration monitoring, the simple user function “pass through” was utilized, which means that the 

user function value is equal to the measurement value. The intention was to incorporate threshold 

values for vibrations according to ISO standards within the transfer function directly, as described in 

5.2.2. As the threshold values are classified by machine size and rigidity of mounting, the calculated 

indicated pump power from Appendix I are helpful. All pumps have an indicated power of less than 15 

kW, which means all pumps are within machinery “Type 1 - Small machines” in the vibration severity 

chart of ISO 39545 which can be found in Appendix A. All small machines with vibration velocity in mm/s-

RMS less than 0,71 are placed in Category A “Good to excellent”. I assume all vibration levels less than 

0,71 therefore should produce TCI = 100. Vibration levels above 1.8 are classified as “Not Satisfactory”. 

As the TCI classification in TOCC applications as defined in (7 p. 28) has been based on categorizing TCI’s 

below 80 as the red “alarm condition”, which I interpret similar to “not satisfactory”, I assume values 

above 1.8 to translate to TCI’s less than 80. I therefore utilized the linear conversion transfer function, 

defining these two data points only: 

 

Figure 26: Transfer function definition for vibration monitoring user functions 

7.3 Aggregation Functions and Weighting 
The structure of aggregation within the measurement hierarchy was briefly mentioned in chapter 6.2.4 

and can be seen in Appendix H. The aggregation function chosen, however, is not evident from the 

structure. 



- 68 - 
 

7.3.1 Aggregation Function Selection 

Aggregation functions are defined at all aggregation nodes within the measurement hierarchy. A number 

of aggregation functions are available within TeCoMan, but comment fields describing their working 

principle were not filled out. Therefore I was limited to choose from the aggregation functions whose 

name could not be mistaken. These are “mean”, “weighted sum” and “worst case”. Weighted sum was 

chosen for all aggregation nodes except for vibration monitoring nodes. As it seems likely that bearing 

vibration and the accompanying damaging energy at one bearing will produce increased vibration levels 

and distribute increased damaging loads at other bearings connected to the same machinery, the 

bearing worst off for each machine train was considered the best indicator. Therefore, the worst case 

aggregation function was considered applicable to vibration aggregation nodes. 

7.3.2 Aggregation Function Weighting 

Not much time was attributed to propose “correct” or documented weighting within aggregation 

functions. Since only the fuel oil system was fully implemented into TeCoMan, weighting between fuel 

oil system, lubricating oil system and fuel oil system was not considered an issue and therefore weight of 

lubricating oil system and cooling water system was set to 0. 

Weighting should be based on either expert judgement or complete FMECA utilizing detail historical 

data. I only have the FMECA analysis from the Project Thesis (1) to rely on in this respect, and although 

considered detailed in method, the data input to the FMECA was not detailed. Therefore I feel reluctant 

to propose weighting to be based on the “aggregated component criticality” and “sub-system 

importance” values proposed in the Project thesis.  

Therefore, I used evenly distributed weighting at all aggregation nodes except for at two locations were I 

felt the assumptions and results from the FMECA analysis in (1) indicate that weight should not be 

distributed equally: 

At Fuel Oil System aggregation node, the following weighting between the three sub-systems was 

chosen 

 Fuel Oil Supply and Circulation system was attributed 50 % weight 

 Fuel Oil Transfer and Fuel Oil Purification was both attributed 25% weight 

This is based on the fact that failure in the fuel oil supply and circulation system will result in need of 

shutting down the engine in relatively short time, typically a matter of seconds or hours. If the fuel oil 

transfer system should shut down, however, the engine may still run for quite some time on fuel already 

contained within the settling tank and the day tank, with greater probability of being able to reach the 

closest safe haven or navigate out of harms way in tight spots like harbours or canals. 

For similar reasons, at the “pumps” aggregation node within the fuel oil supply and circulation sub-

system, the fuel oil circulation pumps were given 75 % weight, while supply pumps were given 25%, as 

failure in the fuel oil circulation pumps will result in engine shut-down within a matter of seconds. 

An illustration of the complete aggregation diagram, illustrating the aggregation function and weighting 

can be seen in Figure 27 on the next page. 
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Figure 27: Aggregation Diagram for TCI's 



- 70 - 
 

7.4 Demonstration of Results in TeCoMan 
Using the reference and measurement data, transfer functions and aggregation as defined in above 

chapters, the TeCoMan Aggregation Tool was used to update the TCI values to display current status. 

In order to verify that calculations of TCI’s were similar to the intended values, a comparison between 

values calculated in Excel and the values displayed in TeCoMan was performed for date 01.05.2010. 

Below table shows the user function and TCI values for all user functions at bottom level in the Fuel Oil 

System as calculated using the Excel spreadsheet and values collected by inspecting these nodes after 

having ran aggregation in TeCoMan.  

User function Excel UF Excel TCI TeCoMan UF TeCoMan TCI 

% deg k_st_preheater -13,591 86,409 -13,593 86,740 
Head Flow Test TP1 -3,411 96,589 -3,410 97,460 

Worst vib Transfer Pump1 0,890 96,697 0,889 96,700 

Head Flow Test TP2 -0,039 100,000 -0,437 100,000 

Worst vib Transfer Pump2 0,520 100,000 0,519 100,000 

% deg k_sep1_preheater -16,640 83,360 -16,641 83,540 

% deg k_sep2_preheater 0,001 100,001 0,001 100,000 

Head Flow Test Sep FP1 -1,535 98,465 -1,600 100,000 

Worst vib Sep Fp1 0,580 100,000 0,579 100,000 

Head Flow Test Sep FP2 0,005 100,000 0,041 100,000 

Worst vib Sep Fp2 0,620 100,000 0,620 100,000 

Worst vib Sep 1 3,690 45,321 3,690 45,320 

Worst vib Sep 2 0,490 100,000 0,490 100,000 

% deg k_fuel_heater1 -0,925 100,000 -0,923 100,000 

% deg k_fuel_heater2 0,001 100,000 0,002 100,000 

Head Flow Test Supply P1 -0,267 100,000 -0,267 100,000 

Worst vib Supply P1 0,440 100,000 0,439 100,000 

Head Flow Test Supply P2 -0,600 100,000 -0,599 100,000 

Worst vib Supply P2 0,520 100,000 0,519 100,000 

Head Flow Test Circ P1 -6,752 93,248 -6,751 93,950 

Worst vib Circ P1 1,150 91,927 1,149 91,930 

Head Flow Test Circ P2 0,035 100,000 0,003 100,000 

Worst vib Circ P2 0,650 100,000 0,649 100,000 
Table 12: Comparison of values from Excel sheet and TeCoMan for user function and TCI values. 

As we can see, most values are practically identical. This should verify that the implementation into 

TeCoMan has been correct. For some reason I cannot understand, some of the worst case vibration user 

functions show a value which is 0,001 less than the value of the input file, which is a bit strange, since 

these user function values should be simply “pass through” values displaying the same value as the input 

file dictates for that tag. Of course these rounded values for vibration data does not provide any 

difference in TCI since the deviation was much less than the 1% needed to get a TCI value less than 100. 

The largest differences between the excel and the TCI values are most likely from the fact that the 

transfer functions for heat exchangers and pump head flow testing does not give an exact 1:1 relation 
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between % change in user function value and TCI value, as the “top-low” value was set at -1%. However, 

I believe the comparison confirms that the input into TeCoMan has been correct, and that the CM 

methods defined in chapter 5, are possible to utilize within the TeCoMan software. 

In addition to looking at user function values and transfer functions at bottom level, I calculated the TCI 

value at the top node of the fuel oil system in excel using the defined aggregation, using weighting as 

specified in Figure 27, for values at the same date. The value calculated in excel was 94,393, while the 

value displayed in TeCoMan was 94,53; nearly identical values.   

In addition to these checks verifying the TCI calculations are plausible using the latest values dated 

01.05.2010, we may look at the historical development of TCI at the any of the pumps, like for instance 

the  pumps. Both vibration and head flow test data were meant to simulate a gradual decrease in 

condition from good at the first date (01.02.2010) to an unacceptable level in the third month 

(01.04.2010), followed by a repair or similar action, which would restore the system to normal 

conditions. This description is clearly recognizable looking at the absolute contribution to TCI reduction 

at the aggregation node of the two supply pumps: 

 

Figure 28: Absolute contribution to reduction of TCI for Supply Pumps. 

Knowing also that the data for all components numbered “2” were not varied between dates, it should 

be obvious from Figure 28 that TCI’s displays correct historical contribution to reduction in TCI’s given 

the data input. 

As the data inserted into TeCoMan have been randomly fabricated, I see no reason to present the results 

from TeCoMan in further detail, but an image showing how the explorer window will look when fully 

configured with status indicator lights after aggregation of data:  
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Figure 29: Print screen showing traffic indicator lights denoting TCI status after aggregation. 

The indicator lights will serve to help operators or analysts to easily identify where TCI’s show significant 

reduction, and navigating down to identify the root component(s) who contribute to the reduced value  
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8 Conclusions and Further Work 
Technical Condition Indexes must be based on reliable and repeatable data collected through condition 

monitoring activities. Ideally, the condition monitoring techniques utilized should be aimed at revealing 

typical root-cause failure mechanisms of machinery considered critical for safe, efficient and profitable 

operation. Condition monitoring techniques includes such methods as vibration monitoring, ultrasonic 

monitoring, thermography, tribological wear particle analysis, visual inspection and process parameter 

analysis, and literature study describing theory of such elementary condition monitoring disciplines has 

been concluded.  

All data currently reported within the ongoing TOCC demonstration projects utilizing the TCI concept for 

TeCoMan are inspection data in the sense that they are not reported automatically, but involve human 

intervention. For TCI’s established in this Thesis, all inputs requested are hard measurable data. The 

human subjective opinion used as input for TCI’s is not considered to ensure reliable and repeatable 

data.  

For the Ship Engine Auxiliary Systems “Engine Fuel Oil System”, “Engine Cooling System” and “Engine 

Lubricating Oil System” studied, FMECA analysis concluded during the candidate’s Specialization Project 

revealed three major common component groups subject to condition monitoring for the purpose of 

establishing TCI’s: 

 16 valve types, in total 23 individuals 

 8 sets of pumps, in total 16  

 7 Heat exchangers, in total 10 individual units 

In order to reduce complexity and cost implications, TCI’s and the condition monitoring techniques 

providing input data for similar components should be based on standardized methods, applicable to all 

components within one such major group.  

For valves in the systems studied such standardized methods generally applicable to all valves could not 

be identified. The variety of valve types is vast, while common root-cause failure mechanisms are few, 

indicating that if valves truly are considered sufficiently critical to justify condition monitoring based on 

TCI’s, methods must be developed individually for the actual system studied. 

For pumps, TCI’s are proposed to be based on a combination of vibration monitoring and process 

parameter analysis. Vibration monitoring should be based on measurement of the most powerful 

indicator of the damaging energy of vibrations at machine train bearing locations; the vibration velocity 

given in mm/s-RMS. ISO standards give classification threshold values for such measured vibrations 

based on machine type, rigidity of foundations and power. Such classification threshold values should be 

utilized in the transfer functions for calculating TCI’s.  TCI’s based on process parameter analysis of 

pumps are proposed to utilize the Head – flow test at duty point method. This method requires 

repeatable measurements of pressure difference over the pump, as well as flow rate, either expressed 

by volumetric or mass flow rate.  
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TCI’s for heat exchangers are proposed to be based exclusively on process parameter analysis, where the 

parameter to be monitored is the reduction in the overall heat transfer coefficient. The heat transfer 

coefficient is calculated from measurement of inlet and outlet temperature of both mediums flowing 

through the heat exchanger as well as mass flow rate and knowledge of the specific heat capacity of at 

least one of the two mediums.  

For separators, TCI’s based on similar measurements and principles as utilized for vibration monitoring of 

pumps are assumed to be applicable. 

Technical Condition Indexes proposed have been implemented into the TeCoMan software for the 

Engine Fuel Oil System, and exemplification of the functionality of TCI’s using fabricated data for an 

assumed typical system has been performed, verifying that the proposed TCI’s could very well be 

calculated within this software environment. Detail description of the TeCoMan software and how to 

configure this software to calculate TCI’s for a proposed condition monitoring programme has been 

made. The description could be used as a contribution to the software instruction manual for new users 

of the program. 

For further work with the development of TCI’s for the systems studied, the most important aspect 

would be to investigate whether condition monitoring of valves are justified by their criticality. This 

should be done by analysing the presumed total costs and benefits of necessary activities to perform 

condition monitoring of valves.  

TCI’s implemented for the three systems in TeCoMan are not complete. Measurement hierarchies of 

sub-systems Engine Lubricating System and Engine cooling Water System aggregation were not fully 

implemented into TeCoMan, as time did not allow for this.  

Finally, weighting factors used in the aggregation functions for different systems, sub-systems and 

components has only been done for the Engine Fuel Oil System. Factors have predominantly been based 

on the FMECA analysis from the Specialization Project, where sources of reliable input failure data were 

not located. Expert judgement based on experience with the systems or FMECA using reliable failure 

data are necessary in order to assume sound weighting of the contributors to TCI’s.  
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Appendices 

Appendix A. ISO 3945 Severity Classification 
 

Vibration Velocity 

(bearing, 

maximum H, A 

and V directions) 

mm/s-RMS 

Small 

machines up 

to 15kW 

Medium 

Machines < 75 

kW and to 

300kW on 

special 

foundations 

Large Machines 

'Rigid' 

foundations 

(resonance 

above service 

speed) 

Large machines 

'Flexible' 

foundations 

(resonance below 

service speed) 

Reciprocating 

machines, rigid in 

direction of 

measurement 

Recoprocating 

machines, 

flexible in 

direction of 

measurement 

  Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

0,71             

1,12             

1,8     

Category A: 

Good to 

excellent       

2,8             

4,5     

Category B: 

Satisfactory       

7,1             

11,2     

Category C: Not 

satisfactory       

18             

28     

Category D: 

Unacceptable       

45             

71             

Table 13: ISO 3945 General Machine Vibration Severity Classification, Source: (9 p. 90) 

Chart applies to machines with rotational speeds between 600 and 1200 RPM’s. 
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Appendix B. Vibration Failure Characteristics in Rotating Machinery  
Failure/Cause Measuring 

Method 
Total 
level 

Frequency 
components  
(n = RPM) 

Orbit 
(shaft 
vibration) 

Phase Other information 

Imbalance 

 Misalignment 

 Growth, wear on 
rotor 

 Damaged rotor 

 Displaced parts on 
rotor 

Bearing housing 
or shaft 
vibration 

Severe 
increase 
 

     ↑ 

1 x n radial Circular 
       ○ 

90˚ 
between x 
and y 
probe 

 

Bent shaft 

 Cooled of too fast 
during shut down 

 Over-heated bearing 
or similar 

Bearing housing 
or shaft 
vibration 

Severe 
increase 
 

    ↑ 

1 x n radial Circular 
       ○ 

90˚ 
between x 
and y 
probe 

 
 
NB! Shaft vibration will give 
readings also at low RPMs. 

Misalignment 

 Erroneous 
mounting/ overhaul 

 Uneven heating of 
machinery 

 Forces from adjacent 
piping 

 Weak foundations, 
sliding, sagging 

Bearing housing 
or shaft 
vibrations 

Moderate 
increase 
 

      ↑ 
 

1 x n  
2 x n 
(3 x n) 
(4 x n) 
Radial and 
axial 

Flat or figure 8-
looking  orbit 
 

 

Random 
angle 
between 
x- and y-
probe. 
 
Approx. 
180˚ phase 
angle 
between 
adjacent 
bearings. 

 

Rotor/Housing Rub 

 Bent axel 

 Touching seals 

 Axial displacement 

 Foreign objects 

 Inaccurate mounting 

Bearing housing 
or shaft 
vibrations 

No severe 
increase 
(could in 
some cases 
even 
decrease) 

Sub-harmonical 
(n/2, n/3..) 
 
If heavy rubbing; also 
higher order 
harmonics, 
occasionally also a 
coherent increase in 
the frequency 
spectrum. 

Extra loops in 
orbit; 

 
or multiple orbits; 

 

  

Wear Sliding bearings 

 Normal, from high 
hour count 

 Insufficient 
lubrication 

 Debris in lubricating 
oil 

 Electrostatic erosion 
(steam  turbines) 

Overload 

Shaft vibration Increase 
 

     ↑ 

Usually 
1 x n 

Unstable orbit 
 

 

  Usually 
increase in 
bearing  temp 
and/or lub. Oil 
temp 
 

 Axial 
displacement if 
thrust bearing  

Loose bolts Bearing housing 
vibration 

Increase 
 

     ↑ 

Usually  
1 x n, 
 
but often higher 
order harmonics as 
well 

   

Cavitation in pump 

 Insufficient suction 
pressure 

 Air in flow 

Bearing housing 
vibration 

No 
significant 
increase 

Increase in higher 
frequency 
components 

  Noise 
(crackling sound from 
pump) 

Damaged rolling element 
bearing 

 Fatigue 

 Insufficient 
lubrication 

 Overload, 
misalignment etc. 

Bearing housing 
vibration 

No 
significant 
increase 

Some resonance 
frequencies in the 
housing in range 
500Hz up to 10-30 
kHz 
 
Frequencies of rolling 
elements may be 
recognize-able 

  Alternative equipment 
exists: 
 
Spike energy method 
should be used for such 
equipment. 

Damaged gears 

 Pitting 

Bearing housing 
vibration 

No 
significant 

Frequency of 
contacting teeth and 
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 Fatigue increase higher orders of it. 

Table 14: Vibration characteristics for failure in rotating machinery, Source: adapted from (4 pp. 7.19-7.20)   
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Appendix C. Failure Causes of Heat Exchangers 

 

Figure 30: Fault Tree showing common failure causes of heat exchangers, Source: (10) 
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Appendix D. Shipowner Engine Report 
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Appendix E. Mass flow measurements by use of orifice plate or a venturi 
Mass flow measurements can be done by installing an orifice plate or a venturi into the flow. Guidelines 

for how to conduct such flow measurements are governed by ISO 5167, which includes a formula for 

calculating the mass flow, given in Equation 26 below.  Figure 31 shows the principle of an orifice plate, 

while Figure 31 shows similar venturi installation. The principle is basically the same. 

 Orifice Plate    Venturi 

 

Figure 31: Illustration of Orifice plate and Venturi, Source: Wikipedia   

The formula is on Bernoulli, and calculated the 

2

12
4

mq CE d p


  
 

Equation 26: ISO 5167 Mass flow calculation formula: Source (32) 

Symbol Description Unit Comment 

qm Mass flow kg/s 

 

Desired quantity to calculate by the formula  

 

E Velocity of Approach Factor - Calculated from formula : 

β Diameter ratio, throat to upstream - 

d/D, where D is the diameter of the pipe upstream 

of the flow element, while d is the diameter of the 

restricted flow 

ε Expansion factor - unity for liquids 

d 

diameter of throat, at temperature 

condition in service m   

Δp pressure difference over flow element Pa   

ρ1 density of fluid at upstream tapping kg/m3   

Table 15: Description of parameters in ISO 5167 mass flow formula, Source: (32) 

4

1

(1 )
E
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Appendix F. System Hierarchies 
All systems were defined down to component level in TeCoMan. First, system hierarchy top structure, 

showing the three main systems and sub-systems: 

 

Figure 32: Print screen showing top level system hierarchy. 

Fuel Oil System was developed in detail down to measurement node level. Due to screen limits, 

“vibration” CM aggregation node are not expanded fully except in the Fuel Oil Transfer System, however 

structure is similar for all pumps and separators. 

 

Figure 33:  Print screen showing expanded system hierarchies for Fuel Oil Transfer, Fuel Oil Purification and Fuel Oil Supply- 
and Circulation Sub-systems. 
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Appendix G. Input Data File 
The full input.txt file, containing all fabricated measurement data used to calculate TCI’s and 
demonstrate the functionality of TeCoMan is included below.  
vflow_fuel_tfp_1;01.02.2010;97500;L/h; 
vflow_fuel_tfp_1;01.03.2010;100000;L/h; 
vflow_fuel_tfp_1;01.04.2010;101500;L/h; 
vflow_fuel_tfp_1;01.05.2010;103000;L/h; 
dp_fuel_tfp_1;01.02.2010;142.3;kPa; 
dp_fuel_tfp_1;01.03.2010;140.0;kPa; 
dp_fuel_tfp_1;01.04.2010;120.5;kPa; 
dp_fuel_tfp_1;01.05.2010;138.5;kPa; 
vibv_fuel_tfp_1_mde;01.02.2010;0.45;mm/s-RMS; 
vibv_fuel_tfp_1_mde;01.03.2010;1.75;mm/s-RMS; 
vibv_fuel_tfp_1_mde;01.04.2010;3.40;mm/s-RMS; 
vibv_fuel_tfp_1_mde;01.05.2010;0.89;mm/s-RMS; 
vibv_fuel_tfp_1_mnde;01.02.2010;0.52;mm/s-RMS; 
vibv_fuel_tfp_1_mnde;01.03.2010;1.89;mm/s-RMS; 
vibv_fuel_tfp_1_mnde;01.04.2010;4.06;mm/s-RMS; 
vibv_fuel_tfp_1_mnde;01.05.2010;0.67;mm/s-RMS; 
vibv_fuel_tfp_1_pde;01.02.2010;0.36;mm/s-RMS; 
vibv_fuel_tfp_1_pde;01.02.2010;1.13;mm/s-RMS; 
vibv_fuel_tfp_1_pde;01.02.2010;3.04;mm/s-RMS; 
vibv_fuel_tfp_1_pde;01.02.2010;0.55;mm/s-RMS; 
 
vflow_fuel_tfp_2;01.02.2010;97500;L/h; 
vflow_fuel_tfp_2;01.03.2010;97500;L/h; 
vflow_fuel_tfp_2;01.04.2010;97500;L/h; 
vflow_fuel_tfp_2;01.05.2010;97500;L/h; 
dp_fuel_tfp_2;01.02.2010;142.3;kPa; 
dp_fuel_tfp_2;01.03.2010;142.3;kPa; 
dp_fuel_tfp_2;01.04.2010;142.3;kPa; 
dp_fuel_tfp_2;01.05.2010;142.3;kPa; 
vibv_fuel_tfp_2_mde;01.02.2010;0.45;mm/s-RMS; 
vibv_fuel_tfp_2_mde;01.03.2010;0.45;mm/s-RMS; 
vibv_fuel_tfp_2_mde;01.04.2010;0.45;mm/s-RMS; 
vibv_fuel_tfp_2_mde;01.05.2010;0.45;mm/s-RMS; 
vibv_fuel_tfp_2_mnde;01.02.2010;0.52;mm/s-RMS; 
vibv_fuel_tfp_2_mnde;01.03.2010;0.52;mm/s-RMS; 
vibv_fuel_tfp_2_mnde;01.04.2010;0.52;mm/s-RMS; 
vibv_fuel_tfp_2_mnde;01.05.2010;0.52;mm/s-RMS; 
vibv_fuel_tfp_2_pde;01.02.2010;0.36;mm/s-RMS; 
vibv_fuel_tfp_2_pde;01.03.2010;0.36;mm/s-RMS; 
vibv_fuel_tfp_2_pde;01.04.2010;0.36;mm/s-RMS; 
vibv_fuel_tfp_2_pde;01.05.2010;0.36;mm/s-RMS; 
 
vflow_fuel_sep1fp;01.02.2010;2100;L/h; 
vflow_fuel_sep1fp;01.03.2010;2200;L/h; 
vflow_fuel_sep1fp;01.04.2010;2300;L/h; 
vflow_fuel_sep1fp;01.05.2010;2400;L/h; 
dp_fuel_sep1fp;01.02.2010;475;L/h; 
dp_fuel_sep1fp;01.03.2010;455;L/h; 
dp_fuel_sep1fp;01.04.2010;405;L/h; 
dp_fuel_sep1fp;01.05.2010;430;L/h; 
vibv_fuel_sep1fp_mde;01.02.2010;0.62;mm/s-RMS; 
vibv_fuel_sep1fp_mde;01.03.2010;1.28;mm/s-RMS; 
vibv_fuel_sep1fp_mde;01.04.2010;4.45;mm/s-RMS; 
vibv_fuel_sep1fp_mde;01.05.2010;0.58;mm/s-RMS; 
vibv_fuel_sep1fp_mnde;01.02.2010;0.55;mm/s-RMS; 
vibv_fuel_sep1fp_mnde;01.03.2010;1.33;mm/s-RMS; 
vibv_fuel_sep1fp_mnde;01.04.2010;4.01;mm/s-RMS; 
vibv_fuel_sep1fp_mnde;01.05.2010;0.49;mm/s-RMS; 
vibv_fuel_sep1fp_pde;01.02.2010;0.42;mm/s-RMS; 
vibv_fuel_sep1fp_pde;01.03.2010;1.45;mm/s-RMS; 
vibv_fuel_sep1fp_pde;01.04.2010;3.88;mm/s-RMS; 
vibv_fuel_sep1fp_pde;01.05.2010;0.47;mm/s-RMS; 
 
vflow_fuel_sep2fp;01.02.2010;2100;L/h; 
vflow_fuel_sep2fp;01.03.2010;2100;L/h; 
vflow_fuel_sep2fp;01.04.2010;2100;L/h; 
vflow_fuel_sep2fp;01.05.2010;2100;L/h; 
dp_fuel_sep2fp;01.02.2010;475;L/h; 
dp_fuel_sep2fp;01.03.2010;475;L/h; 
dp_fuel_sep2fp;01.04.2010;475;L/h; 
dp_fuel_sep2fp;01.05.2010;475;L/h; 
vibv_fuel_sep2fp_mde;01.02.2010;0.62;mm/s-RMS; 
vibv_fuel_sep2fp_mde;01.03.2010;0.62;mm/s-RMS; 
vibv_fuel_sep2fp_mde;01.04.2010;0.62;mm/s-RMS; 
vibv_fuel_sep2fp_mde;01.05.2010;0.62;mm/s-RMS; 
vibv_fuel_sep2fp_mnde;01.02.2010;0.55;mm/s-RMS; 

vibv_fuel_sep2fp_mnde;01.03.2010;0.55;mm/s-RMS; 
vibv_fuel_sep2fp_mnde;01.04.2010;0.55;mm/s-RMS; 
vibv_fuel_sep2fp_mnde;01.05.2010;0.55;mm/s-RMS; 
vibv_fuel_sep2fp_pde;01.02.2010;0.42;mm/s-RMS; 
vibv_fuel_sep2fp_pde;01.03.2010;0.42;mm/s-RMS; 
vibv_fuel_sep2fp_pde;01.04.2010;0.42;mm/s-RMS; 
vibv_fuel_sep2fp_pde;01.05.2010;0.42;mm/s-RMS; 
 
vflow_fuel_sp_1;01.02.2010;2150;L/h; 
vflow_fuel_sp_1;01.03.2010;2200;L/h; 
vflow_fuel_sp_1;01.04.2010;2300;L/h; 
vflow_fuel_sp_1;01.05.2010;2380;L/h; 
dp_fuel_sp_1;01.02.2010;1852;L/h; 
dp_fuel_sp_1;01.03.2010;1800;L/h; 
dp_fuel_sp_1;01.04.2010;1650;L/h; 
dp_fuel_sp_1;01.05.2010;1760;L/h; 
vibv_fuel_sp_1_mde;01.02.2010;0.24;mm/s-RMS; 
vibv_fuel_sp_1_mde;01.03.2010;1.13;mm/s-RMS; 
vibv_fuel_sp_1_mde;01.04.2010;2.18;mm/s-RMS; 
vibv_fuel_sp_1_mde;01.05.2010;0.21;mm/s-RMS; 
vibv_fuel_sp_1_mnde;01.02.2010;0.32;mm/s-RMS; 
vibv_fuel_sp_1_mnde;01.03.2010;1.40;mm/s-RMS; 
vibv_fuel_sp_1_mnde;01.04.2010;1.89;mm/s-RMS; 
vibv_fuel_sp_1_mnde;01.05.2010;0.35;mm/s-RMS; 
vibv_fuel_sp_1_pde;01.02.2010;0.52;mm/s-RMS; 
vibv_fuel_sp_1_pde;01.03.2010;1.87;mm/s-RMS; 
vibv_fuel_sp_1_pde;01.04.2010;5.02;mm/s-RMS; 
vibv_fuel_sp_1_pde;01.05.2010;0.44;mm/s-RMS; 
 
vflow_fuel_sp_2;01.02.2010;2150;L/h; 
vflow_fuel_sp_2;01.03.2010;2150;L/h; 
vflow_fuel_sp_2;01.04.2010;2150;L/h; 
vflow_fuel_sp_2;01.05.2010;2150;L/h; 
dp_fuel_sp_2;01.02.2010;1852;L/h; 
dp_fuel_sp_2;01.03.2010;1852;L/h; 
dp_fuel_sp_2;01.04.2010;1852;L/h; 
dp_fuel_sp_2;01.05.2010;1852;L/h; 
vibv_fuel_sp_2_mde;01.02.2010;0.24;mm/s-RMS; 
vibv_fuel_sp_2_mde;01.03.2010;0.24;mm/s-RMS; 
vibv_fuel_sp_2_mde;01.04.2010;0.24;mm/s-RMS; 
vibv_fuel_sp_2_mde;01.05.2010;0.24;mm/s-RMS; 
vibv_fuel_sp_2_mnde;01.02.2010;0.32;mm/s-RMS; 
vibv_fuel_sp_2_mnde;01.03.2010;0.32;mm/s-RMS; 
vibv_fuel_sp_2_mnde;01.04.2010;0.32;mm/s-RMS; 
vibv_fuel_sp_2_mnde;01.05.2010;0.32;mm/s-RMS; 
vibv_fuel_sp_2_pde;01.02.2010;0.52;mm/s-RMS; 
vibv_fuel_sp_2_pde;01.03.2010;0.52;mm/s-RMS; 
vibv_fuel_sp_2_pde;01.04.2010;0.52;mm/s-RMS; 
vibv_fuel_sp_2_pde;01.05.2010;0.52;mm/s-RMS; 
 
vflow_fuel_circp_1;01.02.2010;5600;L/h; 
vflow_fuel_circp_1;01.03.2010;5900;L/h; 
vflow_fuel_circp_1;01.04.2010;5950;L/h; 
vflow_fuel_circp_1;01.05.2010;6200;L/h; 
dp_fuel_circp_1;01.02.2010;465;L/h; 
dp_fuel_circp_1;01.03.2010;450;L/h; 
dp_fuel_circp_1;01.04.2010;440;L/h; 
dp_fuel_circp_1;01.05.2010;405;L/h; 
vibv_fuel_circp_1_mde;01.02.2010;0.65;mm/s-RMS; 
vibv_fuel_circp_1_mde;01.03.2010;0.67;mm/s-RMS; 
vibv_fuel_circp_1_mde;01.04.2010;0.71;mm/s-RMS; 
vibv_fuel_circp_1_mde;01.05.2010;0.89;mm/s-RMS; 
vibv_fuel_circp_1_mnde;01.02.2010;0.63;mm/s-RMS; 
vibv_fuel_circp_1_mnde;01.03.2010;0.68;mm/s-RMS; 
vibv_fuel_circp_1_mnde;01.04.2010;0.69;mm/s-RMS; 
vibv_fuel_circp_1_mnde;01.05.2010;1.15;mm/s-RMS; 
vibv_fuel_circp_1_pde;01.02.2010;0.55;mm/s-RMS; 
vibv_fuel_circp_1_pde;01.03.2010;1.59;mm/s-RMS; 
vibv_fuel_circp_1_pde;01.04.2010;15.5;mm/s-RMS; 
vibv_fuel_circp_1_pde;01.05.2010;0.55;mm/s-RMS; 
 
vflow_fuel_circp_2;01.02.2010;5600;L/h; 
vflow_fuel_circp_2;01.03.2010;5600;L/h; 
vflow_fuel_circp_2;01.04.2010;5600;L/h; 
vflow_fuel_circp_2;01.05.2010;5600;L/h; 
dp_fuel_circp_2;01.02.2010;465;L/h; 
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dp_fuel_circp_2;01.03.2010;465;L/h; 
dp_fuel_circp_2;01.04.2010;465;L/h; 
dp_fuel_circp_2;01.05.2010;465;L/h; 
vibv_fuel_circp_2_mde;01.02.2010;0.65;mm/s-RMS; 
vibv_fuel_circp_2_mde;01.03.2010;0.65;mm/s-RMS; 
vibv_fuel_circp_2_mde;01.04.2010;0.65;mm/s-RMS; 
vibv_fuel_circp_2_mde;01.05.2010;0.65;mm/s-RMS; 
vibv_fuel_circp_2_mnde;01.02.2010;0.63;mm/s-RMS; 
vibv_fuel_circp_2_mnde;01.03.2010;0.63;mm/s-RMS; 
vibv_fuel_circp_2_mnde;01.04.2010;0.63;mm/s-RMS; 
vibv_fuel_circp_2_mnde;01.05.2010;0.63;mm/s-RMS; 
vibv_fuel_circp_2_pde;01.02.2010;0.55;mm/s-RMS; 
vibv_fuel_circp_2_pde;01.03.2010;0.55;mm/s-RMS; 
vibv_fuel_circp_2_pde;01.04.2010;0.55;mm/s-RMS; 
vibv_fuel_circp_2_pde;01.05.2010;0.55;mm/s-RMS; 
 
 
mflow_fuel_stpreheat;01.02.2010;27.2;kg/s; 
mflow_fuel_stpreheat;01.03.2010;27.2;kg/s; 
mflow_fuel_stpreheat;01.04.2010;27.1;kg/s; 
mflow_fuel_stpreheat;01.05.2010;26.5;kg/s; 
t1_medium_fuel_stpreheat_in;01.02.2010;105.0;degC; 
t1_medium_fuel_stpreheat_in;01.03.2010;105.5;degC; 
t1_medium_fuel_stpreheat_in;01.04.2010;106.0;degC; 
t1_medium_fuel_stpreheat_in;01.05.2010;106.3;degC; 
t2_medium_fuel_stpreheat_out;01.02.2010;90.0;degC; 
t2_medium_fuel_stpreheat_out;01.03.2010;90.5;degC; 
t2_medium_fuel_stpreheat_out;01.04.2010;90.3;degC; 
t2_medium_fuel_stpreheat_out;01.05.2010;90.8;degC; 
t3_fuel_stpreheat_in;01.02.2010;50.0;degC; 
t3_fuel_stpreheat_in;01.03.2010;50.8;degC; 
t3_fuel_stpreheat_in;01.04.2010;51.0;degC; 
t3_fuel_stpreheat_in;01.05.2010;51.5;degC; 
t4_fuel_stpreheat_out;01.02.2010;80.0;degC; 
t4_fuel_stpreheat_out;01.03.2010;80.0;degC; 
t4_fuel_stpreheat_out;01.04.2010;80.0;degC; 
t4_fuel_stpreheat_out;01.05.2010;79.0;degC; 
 
mflow_fuel_sep1preheat;01.02.2010;0.60;kg/s; 
mflow_fuel_sep1preheat;01.03.2010;0.59;kg/s; 
mflow_fuel_sep1preheat;01.04.2010;0.57;kg/s; 
mflow_fuel_sep1preheat;01.05.2010;0.58;kg/s; 
t1_medium_fuel_sep1preheat_in;01.02.2010;119.9;degC; 
t1_medium_fuel_sep1preheat_in;01.03.2010;120.3;degC; 
t1_medium_fuel_sep1preheat_in;01.04.2010;122.8;degC; 
t1_medium_fuel_sep1preheat_in;01.05.2010;123.1;degC; 
t2_medium_fuel_sep1preheat_out;01.02.2010;105.1;degC; 
t2_medium_fuel_sep1preheat_out;01.03.2010;105.6;degC; 
t2_medium_fuel_sep1preheat_out;01.04.2010;105.0;degC; 
t2_medium_fuel_sep1preheat_out;01.05.2010;105.1;degC; 
t3_fuel_sep1preheat_in;01.02.2010;80.0;degC; 
t3_fuel_sep1preheat_in;01.03.2010;81.6;degC; 
t3_fuel_sep1preheat_in;01.04.2010;81.4;degC; 
t3_fuel_sep1preheat_in;01.05.2010;81.5;degC; 
t4_fuel_sep1preheat_out;01.02.2010;98.0;degC; 
t4_fuel_sep1preheat_out;01.03.2010;98.0;degC; 
t4_fuel_sep1preheat_out;01.04.2010;97.8;degC; 
t4_fuel_sep1preheat_out;01.05.2010;97.7;degC; 
 
mflow_fuel_sep2preheat;01.02.2010;0.60;kg/s; 
mflow_fuel_sep2preheat;01.03.2010;0.60;kg/s; 
mflow_fuel_sep2preheat;01.04.2010;0.60;kg/s; 
mflow_fuel_sep2preheat;01.05.2010;0.60;kg/s; 
t1_medium_fuel_sep2preheat_in;01.02.2010;119.9;degC; 
t1_medium_fuel_sep2preheat_in;01.03.2010;119.9;degC; 
t1_medium_fuel_sep2preheat_in;01.04.2010;119.9;degC; 
t1_medium_fuel_sep2preheat_in;01.05.2010;119.9;degC; 
t2_medium_fuel_sep2preheat_out;01.02.2010;105.1;degC; 
t2_medium_fuel_sep2preheat_out;01.03.2010;105.1;degC; 
t2_medium_fuel_sep2preheat_out;01.04.2010;105.1;degC; 
t2_medium_fuel_sep2preheat_out;01.05.2010;105.1;degC; 
t3_fuel_sep2preheat_in;01.02.2010;80.0;degC; 
t3_fuel_sep2preheat_in;01.03.2010;80.0;degC; 
t3_fuel_sep2preheat_in;01.04.2010;80.0;degC; 

t3_fuel_sep2preheat_in;01.05.2010;80.0;degC; 
t4_fuel_sep2preheat_out;01.02.2010;98.0;degC; 
t4_fuel_sep2preheat_out;01.03.2010;98.0;degC; 
t4_fuel_sep2preheat_out;01.04.2010;98.0;degC; 
t4_fuel_sep2preheat_out;01.05.2010;98.0;degC; 
 
mflow_fuel_heater_1;01.02.2010;1.50;kg/s; 
mflow_fuel_heater_1;01.03.2010;1.45;kg/s; 
mflow_fuel_heater_1;01.04.2010;1.45;kg/s; 
mflow_fuel_heater_1;01.05.2010;1.50;kg/s; 
t1_medium_fuel_heater_1_in;01.02.2010;160.0;degC; 
t1_medium_fuel_heater_1_in;01.03.2010;161.5;degC; 
t1_medium_fuel_heater_1_in;01.04.2010;160.2;degC; 
t1_medium_fuel_heater_1_in;01.05.2010;160.6;degC; 
t2_medium_fuel_heater_1_out;01.02.2010;145.0;degC; 
t2_medium_fuel_heater_1_out;01.03.2010;145.1;degC; 
t2_medium_fuel_heater_1_out;01.04.2010;145.0;degC; 
t2_medium_fuel_heater_1_out;01.05.2010;145.2;degC; 
t3_fuel_heater_1_in;01.02.2010;130.0;degC; 
t3_fuel_heater_1_in;01.03.2010;129.8;degC; 
t3_fuel_heater_1_in;01.04.2010;130.0;degC; 
t3_fuel_heater_1_in;01.05.2010;130.0;degC; 
t4_fuel_heater_1_out;01.02.2010;140.0;degC; 
t4_fuel_heater_1_out;01.03.2010;140.0;degC; 
t4_fuel_heater_1_out;01.04.2010;139.0;degC; 
t4_fuel_heater_1_out;01.05.2010;140.1;degC; 
 
mflow_fuel_heater_2;01.02.2010;1.50;kg/s; 
mflow_fuel_heater_2;01.03.2010;1.50;kg/s; 
mflow_fuel_heater_2;01.04.2010;1.50;kg/s; 
mflow_fuel_heater_2;01.05.2010;1.50;kg/s; 
t1_medium_fuel_heater_2_in;01.02.2010;160.0;degC; 
t1_medium_fuel_heater_2_in;01.03.2010;160.0;degC; 
t1_medium_fuel_heater_2_in;01.04.2010;160.0;degC; 
t1_medium_fuel_heater_2_in;01.05.2010;160.0;degC; 
t2_medium_fuel_heater_2_out;01.02.2010;145.0;degC; 
t2_medium_fuel_heater_2_out;01.03.2010;145.0;degC; 
t2_medium_fuel_heater_2_out;01.04.2010;145.0;degC; 
t2_medium_fuel_heater_2_out;01.05.2010;145.0;degC; 
t3_fuel_heater_2_in;01.02.2010;130.0;degC; 
t3_fuel_heater_2_in;01.03.2010;130.0;degC; 
t3_fuel_heater_2_in;01.04.2010;130.0;degC; 
t3_fuel_heater_2_in;01.05.2010;130.0;degC; 
t4_fuel_heater_2_out;01.02.2010;140.0;degC; 
t4_fuel_heater_2_out;01.03.2010;140.0;degC; 
t4_fuel_heater_2_out;01.04.2010;140.0;degC; 
t4_fuel_heater_2_out;01.05.2010;140.0;degC; 
 
vibv_fuel_sep_1_mde;01.02.2010;0.21;mm/s-RMS; 
vibv_fuel_sep_1_mde;01.03.2010;0.99;mm/s-RMS; 
vibv_fuel_sep_1_mde;01.04.2010;1.04;mm/s-RMS; 
vibv_fuel_sep_1_mde;01.05.2010;1.77;mm/s-RMS; 
vibv_fuel_sep_1_mnde;01.02.2010;0.35;mm/s-RMS; 
vibv_fuel_sep_1_mnde;01.03.2010;1.27;mm/s-RMS; 
vibv_fuel_sep_1_mnde;01.04.2010;2.46;mm/s-RMS; 
vibv_fuel_sep_1_mnde;01.05.2010;3.69;mm/s-RMS; 
vibv_fuel_sep_1_sde;01.02.2010;0.49;mm/s-RMS; 
vibv_fuel_sep_1_sde;01.03.2010;1.94;mm/s-RMS; 
vibv_fuel_sep_1_sde;01.04.2010;14.35;mm/s-RMS; 
vibv_fuel_sep_1_sde;01.05.2010;0.25;mm/s-RMS; 
 
vibv_fuel_sep_2_mde;01.02.2010;0.21;mm/s-RMS; 
vibv_fuel_sep_2_mde;01.03.2010;0.21;mm/s-RMS; 
vibv_fuel_sep_2_mde;01.04.2010;0.21;mm/s-RMS; 
vibv_fuel_sep_2_mde;01.05.2010;0.21;mm/s-RMS; 
vibv_fuel_sep_2_mnde;01.02.2010;0.35;mm/s-RMS; 
vibv_fuel_sep_2_mnde;01.03.2010;0.35;mm/s-RMS; 
vibv_fuel_sep_2_mnde;01.04.2010;0.35;mm/s-RMS; 
vibv_fuel_sep_2_mnde;01.05.2010;0.35;mm/s-RMS; 
vibv_fuel_sep_2_sde;01.02.2010;0.49;mm/s-RMS; 
vibv_fuel_sep_2_sde;01.03.2010;0.49;mm/s-RMS; 
vibv_fuel_sep_2_sde;01.04.2010;0.49;mm/s-RMS; 
vibv_fuel_sep_2_sde;01.05.2010;0.49;mm/s-RMS; 
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Appendix H. Measurement hierarchy
Top level measurement hierarchy is identical to system hierarchy, while for the fuel oil sub-systems the 

measurement hierarchies are shown below: 

 

Figure 34: Print screens showing fuel oil sub-systems measurement hierarchies. 

The  symbol, of course, depicts aggregation nodes, while graph symbol depicts measurement nodes. 

Not all vibration aggregation nodes have been expanded fully, however these are equal for all pumps 

and separators, all with three bearings measurement points mde, mnde and pde (or for separators sde). 
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Appendix I. Calculations of Reference and Measurement Data: Pumps 
 

General formulas used: 

3

3

( / ) 3600
( / )
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mflow kg s
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1000

fHead m g m s kg m
Head kPa

 
   

Fuel Oil Transfer Pump 

For the transfer pumps, the criterion saying emptying and filling one bunker tank within reasonable time, 

assumed to be 12 hours, was used to find a value of the typical mass flow for the pump. Necessary pump 

head of such pumps will be dominated by the pressure vessel head necessary to pump fluid into a nearly 

full tank. I assume a total pump head of 15 m is typical. 

Parameter Unit Value Comment 

Mass flow 27,0 kg/s Assume for trimming purposes moving contents of one complete bunker 

tank within 12 hours 
Volumetric 

flow 
100,5 m^3/h 

 Pump Head at  

flow 
139,3 kPa Calculated assuming typical pump head for such pumps is 15 m 

Power 6,5 kW Assuming pump efficiency η =0,6 

Table 16: Fuel Oil Transfer Pump flow, head and indicated power 

Rounding off the values slightly, I assumed the following reference condition test data and values at test 

dates to be used for demonstration of TCI’s in TeCoMan: 

Parameters Symbol Unit Reference 1.2.2010 1.3.2010 1.4.2010 1.5.2010 
p1 a - -3,96E-09 

    p2 b - 0 
    p3 c - 180 
    v1 dp kPa 140 142,3 140 120 137,5 

v2 vflow L/h 100500 97500 100000 101500 103000 
TCI user function value % 0,0 0,0 -0,3 -13,8 -0,4 
Table 17: Reference and test data for fuel oil transfer pumps 
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With the constants defined in Table 17 above, the test points can be plotted against the Head – flow 

curve to demonstrate how test points are positioned relative to the reference curve:  

 

Figure 35: Head-flow curve and test points for fuel oil transfer pump 
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Fuel Oil Separator Feed Pump 

For the fuel oil feed pump, it was assumed to typically handle 1,2 times the maximum continuous fuel 

consumption, as separation should have some overcapacity. For the pump head, a value of 450 kPa was 

simply assumed. 

Parameter Unit Value Comment 

Mass flow 0,6 kg/s Assume 1,2 times maximum fuel consumption 

Volumetric flow 2281,4 L/h 

Multiplied above by 3600 and divided by 

density 

Pump Head at given flow 450 kPa Assumed value 

Indicated Power 0,5 kW Assuming pump efficiency η =0,6 

Table 18: Head, flow and indicated power for fuel oil separator feed pump 

Reference and measurement data were proposed through iteration in the spreadsheet and chosen: 

Parameters Symbol Unit Reference 1.2.2010 1.3.2010 1.4.2010 1.5.2010 

p1 a - -0,00002835 
    p2 b - 0 
    p3 c - 600 
    v1 dp kPa 450 475 455 405 430 

v2 vflow L/h 2300 2100 2200 2300 2400 
TCI User function value 

 
% 0,0 0,0 -1,7 -10,0 -1,5 

Table 19: Reference and measurement data for fuel oil separator feed pump 

 

Figure 36: Head - flow curve and measurement data for fuel oil separator feed pump 
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Fuel Oil Supply Pumps 

For the fuel oil supply pumps, the mass flow was once again assumed to have a 20% overcapacity with 

respect to the maximum fuel flow. The pump head was assumed to be 1,5 times the pressure vessel 

head between the day tank (approximately 1 atmosphere) and the mixing tank assumed to have a 

pressure of 12 bars. In fact the pressure vessel head would then be 11 bars or conversely produce a 

pump head of 1650 kPa, however I forgot the day tank 1 atmosphere pressure and used 12 bars giving a 

value of 1800 kPa. 

Parameter Unit Value Comment 

Mass flow 0,6 kg/s Assume 1,2 times maximum fuel consumption 
Volumetric flow 2311,2 L/h Multiplied above by 3600 and divided by density 

Pump Head at flow 1800 kPa Assumed 1,5 times pressure vessel head at mixing tank 

pressure) Indicated Power 1,9 kW Assuming pump efficiency η =0,6 
Table 20: Head, flow and indicated power for fuel oil supply pumps 

Reference and measurement values were chosen: 

Parameters Symbol Unit Reference 1.2.2010 1.3.2010 1.4.2010 1.5.2010 

p1 a - -0,0000945 
    p2 b - 0 

    p3 c - 2300 

    v1 dp kPa 1800 1852 1800 1650 1760 

v2 vflow L/h 2300 2150 2200 2300 2380 

TCI user function value 

 

% 0,0 -0,6 -2,3 -8,3 -0,3 
Table 21: Reference and measurement values for fuel oil supply pump 

The Head – Flow curve and test points from these data is shown below. 

 

Figure 37: Head - Flow curve and measurement points for fuel oil supply pump 
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Fuel Oil Circulation Pumps 

For the mass flow of the circulation pumps, according to (35 p. 82) there must be an overcapacity in flow 

rate relative to the maximum fuel consumption of the engine of about 3. For the pump head, it was 

assumed that pump head is approximately 1,5 times the pressure vessel head. Assuming 12 bars at the 

mixing tank and according to (38) a typical 15 bars pressure available at the high pressure fuel injection 

pumps, the pressure vessel head is 3 bars.  

Parameter Unit Valuee  Comment 

Mass flow 1,5 kg/s Assume 3 times maximum fuel consumption  (35) 
Volumetric flow 5915,9 L/h Multiplied above by 3600 and divided by density 

Pump Head at given flow 450 kPa Assume typical pump head is 1,5 times the pressure vessel head 

Indicated Power 1,2 kW Assuming pump efficiency η =0,6 
Table 22: Head, flow and indicated power for fuel oil circulation pump 

Rounding off the flow rate slightly and otherwise iterating within the sheet I chose the following 

reference and measurement values: 

Parameters Symbol Unit Reference 1.2.2010 1.3.2010 1.4.2010 1.5.2010 

p1 a - -0,00000431 
    p2 b - 0 

    p3 c - 600 

    v1 dp kPa 450 465 450 440 405 

v2 vflow L/h 5900 5600 5900 5950 6200 

TCI user function value 

 

% 0,0 0,0 0,0 -1,7 -6,8 
Table 23: Reference and measurement data for fuel oil circulation pump 

From these data we obtain the following head – flow curve and data points: 

 

Figure 38: Head - Flow curve and measurement points for fuel oil circulation pump 

1.2.2010

1.3.2010

1.4.2010

1.5.2010

350

370

390

410

430

450

470

490

5400 5600 5800 6000 6200 6400

H
e

ad
 [

kP
a]

Volume flow [L/h]

Head - Flow Curve Separator Feed Pumps

Head [kPa]



xxi 
 

Appendix J. Reference and Measurement Data: Heat Exchangers 

Settling Tank Preheater 

For the settling tank preheater, mass flow was chosen equal to the fuel transfer feed pumps. 

Temperatures of the fuel oil at reference were taken from calculated intended design temperature. All 

other data were chosen arbitrarily or through iteration to reflect plausible values. 

Parameters Name Unit Reference 01.02.2010 01.03.2010 01.04.2010 01.05.2010 

p1 cp medium j/kgK 1903,8 1903,8 1903,8 1903,8 1903,8 

p2 A m^2 25 25 25 25 25 

p3 kref W/m^2K 1950 1950 1950 1950 1950 

v1 T1 deg C 105,0 105,0 105,5 106,0 106,3 

v2 T2 deg C 90,0 90,0 90,5 90,3 90,8 

v3 T3 deg C 50,0 50,0 50,8 51,0 51,5 

v4 T4 deg C 80,0 80,0 80,0 80,0 79,0 

v5 mflow medium kg/s 27,20 27,20 27,20 27,10 26,50 

 
TCI user function value % -0,1 -0,1 -3,3 -4,7 -13,6 

 
kmeas W/m^2K 1947,1 1947,1 1885,5 1859,0 1685,0 

Table 24: Reference and measurement data for settling tank preheater 

Separator Preheaters 

For the separator preheater, mass flow was chosen equal to the maximum continuous fuel consumption 

of the engine.  It would perhaps be more likely that mass flow was set equal to that of fuel separator 

feed pumps. However if temperature control is done by by-passing the heaters, the flow through the 

preheaters may likely be somewhat smaller than for the pump. For demonstrating the concept of TCI’s 

this is unimportant. Temperatures of the fuel oil at reference were taken from calculated intended 

design temperatures. All other data were chosen arbitrarily or through iteration to reflect plausible 

values. These data were implemented for separator preheater 1 in TeCoMan, while all measurements for 

preheater 2  for all dates were set equal to measurements dated 01.02.2010 below. 

Parameters Name Unit Reference 01.02.2010 01.03.2010 01.04.2010 01.05.2010 

p1 cp  medium j/kgK 1985,2 1985,2 1985,2 1985,2 1985,2 

p2 A m^2 0,5 0,5 0,5 0,5 0,5 

p3 kref W/m^2K 1827,5 1827,5 1827,5 1827,5 1827,5 

v1 T1 deg C 120,0 119,9 120,3 122,8 123,1 

v2 T2 deg C 105,0 105,1 105,6 105,0 105,1 

v3 T3 deg C 80,0 80,0 81,6 81,4 81,5 

v4 T4 deg C 98,0 98,0 98,0 97,8 97,7 

v5 mflow medium kg/s 0,60 0,60 0,59 0,57 0,58 

 
TCI user function value % 0,0 0,0 -9,1 -16,4 -16,6 

 
kmeas W/m^2K 1827,2 1827,6 1660,3 1527,8 1523,4 

Table 25: Reference and measurement data for separator preheater 

Fuel Oil Heaters 

For the fuel oil heaters, mass flow was set equal to that of fuel oil circulation pumps, 3 times maximum 

fuel consumption. Temperatures of the fuel oil at reference were taken from calculated intended design 
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temperatures. All other data were chosen arbitrarily or through iteration to reflect plausible values. 

These data were implemented for fuel oil heater 1 in TeCoMan, while measurements for fuel oil heater 2  

for all dates were set equal to measurements dated 01.02.2010 below. 

Parameters Name Unit Reference 01.02.2010 01.03.2010 01.04.2010 01.05.2010 

p1 cp of selected medium j/kgK 2141,3 2141,3 2141,3 2141,3 2141,3 

p2 A m^2 1 1 1 1 1 

p3 kref W/m^2K 1848 1848 1848 1848 1848 

v1 T1 deg C 160,0 160,0 161,5 160,2 160,6 

v2 T2 deg C 145,0 145,0 145,1 145,0 145,2 

v3 T3 deg C 130,0 130,0 129,8 130,0 130,0 

v4 T4 deg C 140,0 140,0 140,0 139,0 140,1 

v5 mflow selected medium kg/s 1,50 1,50 1,45 1,45 1,50 

 
TCI user function value % 0,0 0,0 -6,0 -15,6 -0,9 

 
kmeas W/m^2K 1848,0 1848,0 1737,7 1559,2 1830,9 

Table 26: Reference and measurement data for fuel oil heater 
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Appendix K. Vibration data 
Table shows data for all bearing position of all components subject to vibration monitoring. Unit of all 

values are mm/s-RMS vibration velocity. The last subscript of each string denotes the bearing location, 

mde is motor driving end, mnde is motor non-driving end, pde is pump driven end and sde is separator 

driven end. All data was fabricated arbitrarily within a range of plausible threshold values according to 

ISO 3945.  

Fuel Oil Transfer pump 1 01.02.2010 01.03.2010 01.04.2010 01.05.2010 
vibv_fuel_tfp_1_mde 0,45 1,75 3,40 0,89 
vibv_fuel_tfp_1_mnde 0,52 1,89 4,06 0,67 
vibv_fuel_tfp_1_pde 0,36 1,13 3,04 0,55 
Fuel Oil Transfer pump 2         
vibv_fuel_tfp_2_mde 0,45 0,45 0,45 0,45 
vibv_fuel_tfp_2_mnde 0,52 0,52 0,52 0,52 
vibv_fuel_tfp_2_pde 0,36 0,36 0,36 0,36 
Fuel Separator 1 Feed Pump 

   vibv_fuel_sep1fp_mde 0,62 1,28 4,45 0,58 
vibv_fuel_sep1fp_mnde 0,55 1,33 4,01 0,49 
vibv_fuel_sep1fp_pde 0,42 1,45 3,88 0,47 
Fuel Separator 2 Feed Pump 

   vibv_fuel_sep2fp_mde 0,62 0,62 0,62 0,62 
vibv_fuel_sep2fp_mnde 0,55 0,55 0,55 0,55 
vibv_fuel_sep2fp_pde 0,42 0,42 0,42 0,42 
Fuel Oil Supply Pump 1 

    vibv_fuel_sp_1_mde 0,24 1,13 2,18 0,21 
vibv_fuel_sp_1_mnde 0,32 1,4 1,89 0,35 
vibv_fuel_sp_1_pde 0,52 1,87 5,02 0,44 
Fuel Oil Supply Pump 2 

    vibv_fuel_sp_2_mde 0,24 0,24 0,24 0,24 
vibv_fuel_sp_2_mnde 0,32 0,32 0,32 0,32 
vibv_fuel_sp_2_pde 0,52 0,52 0,52 0,52 
Fuel Oil Circulation Pump 1 

   vibv_fuel_circp_1_mde 0,65 0,67 0,71 0,89 
vibv_fuel_circp_1_mnde 0,63 0,68 0,69 1,15 
vibv_fuel_circp_1_pde 0,55 1,59 15,5 0,55 
Fuel Oil Circulation Pump 2 

   vibv_fuel_circp_1_mde 0,65 0,65 0,65 0,65 
vibv_fuel_circp_1_mnde 0,63 0,63 0,63 0,63 
vibv_fuel_circp_1_pde 0,55 0,55 0,55 0,55 
Fuel Oil Separator 1 

    vibv_fuel_sep_1_mde 0,21 0,99 1,04 1,77 
vibv_fuel_sep_1_mnde 0,35 1,27 2,46 3,69 
vibv_fuel_sep_1_sde 0,49 1,94 14,35 0,25 
Fuel Oil Separator 2 

    vibv_fuel_sep_2_mde 0,21 0,21 0,21 0,21 
vibv_fuel_sep_2_mnde 0,35 0,35 0,35 0,35 
vibv_fuel_sep_2_sde 0,49 0,49 0,49 0,49 
Table 27: Vibration measurement data for all components subject to vibration monitoring. 
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