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Abstract  
 

Increased activity in deeper water areas, in connection with oil and gas exploration, has 

resulted in a steadily increased demand for model testing technology to predict reliable 

behavior of floating offshore structures at deep water. Common model testing technology, 

developed for more shallow water, must be modified to meet the challenges that deep water 

model testing poses. The approach using active control of line forces to replace the mooring 

and riser system seems promising. Actuators should induce the same resulting forces as 

calculated by numerical methods on to the vessel in real time. 
 

This master’s thesis has its focus on the development of an experimental setup to investigate 

the performance of the control system inducing desired forces on to a simplified vessel model. 

To simplify the complexity with an experiment using a vessel moving in 6 degrees of freedom 

(DOF), a simplified vessel model with motion only in the heave direction is considered. 

Active control of the line force connected to the vessel, moving only in heave direction, is 

launched to investigate if the actuator or motor-winch system, mange to induce the correct 

calculated mooring force for a measured heave motion.  
 

Necessary procurement of parts to the experimental setup has been obtained. Reasonable 

values for the maximum and minimum top tension for one mooring line has been used to find 

an appropriate actuator. A Faulhaber electrical motor was chosen to meet the specifications. 

The drive electronics controlling the electrical motor has a wide variety of control options, 

and control of the motor shaft torques, necessary to obtain desired forces, is possible.  

 

A mathematical model describing the experimental setup was developed. A model of the DC 

motor dynamics and the mass dynamics are mathematically derived. The unknown parameters 

in the model have been found using measurement data from experiment.  The measurement 

data are established using a pretensioned spring connected to the DC motor shaft, as well as a 

freely running shaft.  

 

In the experiments two test cases are considered. In test case one a spring and line, 

representing the active mooring line, is connected in-between the vessel model, or oscillating 

actuator, and a motor-winch system. The motor-winch, or DC motor, will then try to pull the 

line and spring till it reaches the desired reference. The measured heave motion to the 

oscillating system is utilized to calculate the mooring force references, the active mooring line 

will then try to induce the same forces as calculated. The calculated forces are only available 

for a given heave motion.  

 

A second test case is performed with a vessel model represented as a mass. The mass, or 

vessel, is connected to the oscillating system actuator with a spring. The oscillating system 

actuator will represent the wave motion, while the spring should represent the water plane 

stiffness. A rope, or line, connected in-between the mass and the motor-winch system will 

represent the active mooring line. Different sinusoidal references, as well as piecewise 

constant signals are used to test if the active mooring line is able to induce the desired forces 

on to the mass real time. 

 

The results show that for the given heave motion the motor-winch setup will be able to 

actuate the desired mooring line forces on to the oscillating body. Sinusoidal force references 

are also possible to follow. There is however a constraint in the frequency, and a high 
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oscillating system frequency will be a limitation. By decreasing the oscillating frequency less 

noise in the measured signal will occur.  

 

To avoid a lot of noise in the measured forces filtering the signal was necessary. An observer 

has been developed to remove this noise. The filtered signal (estimated force) can then be 

used as feedback to the controller. 

 

A vessel model considered in three DOF is used to find an appropriate sampling frequency. 

The real time response measurements to the vessel need to be sampled in order to calculate 

desired mooring forces. A study is therefore conducted to find the bandwidth, or highest 

frequency, in the system to conclude which sampling frequency that is needed to recreate the 

response signals without loss of information. The results show that 50 Hz sampling frequency 

will be necessary to recreate the continuous time signals for the specific case considered. 
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Abbreviation: 
 

ATLAS Active Truncated Line Anchoring Simulator 
COG 

CONTMOD 
Center of Gravity 

Continuous Mode 

cRIO 

DC gain 

Compact Reconfigurable I/O 

Low frequency (DC) gain 

DC motor Direct Current motor 

DOF Degrees of Freedom 

DNV-RP Det Norske Veritas – Recommended Practice 

HLA 

I/O 

High Level Architecture 

Input output 

LTI Linear-time invariant 

MARINTEK The Norwegian Marine Technology 

Research Institute 

MARIN Maritime Research Institute Netherlands 

MC lab Marine Cybernetics Laboratory 
P1Z One pole one zero transfer function 
P2 Two pole transfer function 
PI Proportional Integral 
PID Proportional Integral Derivative 
PWN 

RS232 
Pulse Width Modulation 

Recommended Standard 232 

SNAME 

 

SOR 

Society of Naval Architects and Marine 

Engineers 

Source For Velocity 

TF 

UDP 

Transfer Function 

User Datagram Protocol 
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1 Introduction 
 
This chapter gives an overview of model testing in the design of floating structures in general, 

the use of such methods on deep water floating systems, and a proposed method for how the 

problem can be solved. The second section reviews some of the available literature that is 

relevant for this master’s thesis. The chapter ends with a presentation of the contributions of this 

master’s thesis, and an outline of the report. 

 

1.1 Background and Motivation 

 

Floating productions systems have been accepted by the offshore industry as reliable and 

economic solution for oil production. Today, the possibility of discovering new oil and gas 

resources within deep water fields continue to push technology forward.  

 

Oil companies have invested a considerable amount of money in the research and development 

in order to utilize oil, gas and ore deposits in deep water fields, and thus have played an 

important role in the development of methods for model testing deep water floaters. According 

to Buchner et al., Wichers & de Wilde (1999), approximately 25 % of the future deepwater fields 

will be deeper than 1000 m. 

 

Model testing in the design of floating production systems has been performed to find reliable 

prediction of motions caused by the combined actions of waves, wind and current. Model testing 

is also used when testing new concepts, numerical software and when finding operational limits 

for existing structures.  

 

The model testing facilities for offshore structures have a typical water depth limitation of 10 

meters. The model scale for hull and waves should preferably not be smaller than 1:40. The 

existing test facilities will therefore limit the full scale water depth to 400 meters. The testing of 

floating structures on very deep water must therefore apply an approach using a truncated model 

of the mooring and riser system. The challenge is hence to make a truncated model with identical 

static and dynamic properties as for the real system. 

 

The approach using active control of line forces to replace the mooring and riser system seems 

promising. The active lines should actuate the same forces on to the vessel as calculated by 

numerical methods. The numerical calculation of the mooring and riser system must be done real 

time and preferably correspond to the full-scale dynamic forces. The force calculations are 

computed from measured vessel motion and waves. 

1.2 Previous Work in Model Testing 

 

Different methods for model testing deep water structures already exist. However, on very deep 

waters problems with the existing methods occur. Several different approaches are presented in 

the following subsections. 
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Ultra-small scale testing 

Normally model testing is done by scaling the floating production system. Hence, scaling a deep 

water system seems like a reasonable approach especially since the testing is carried out 

geometrically complete and correct. However, the exciting model test facilities for offshore 

structures have a typical water depth limitation of 10 meters. When simply scaling the deep 

water system, the model will become undesirable small. With small models, uncertainties in the 

results especially mooring line forces become significant. Scaling a deep water system will 

therefore limit the prototype water depth to about 1000 m at reasonable scales MARINTEK and 

Cheveron (2008). This will result in a 1:100 in model scale. However, with 1:100 in model scale 

the current is difficult to include. This is not optimal and a larger model scale must preferably be 

used. 

 

In Buchner et al. et al. (1999) ultra small scale testing is defined as scales smaller than 1:100. 

Since the loads scale with 
3  uncertainties in the result at smaller scales may be expected. In 

Moxnes & Larsen (1998) it is shown that to generate environmental forces at these scales 

become problematic. Especially the waves are difficult to generate since they are significantly 

influenced by surface tension. 

 

Active equivalent mooring system 

 

When it comes to development of technology for deep water model testing, MARIN in the 

Netherlands and MARINTEK in Trondheim have been some of the main driving forces. In 

recent years, different possible approaches have been suggested. Buchner et al. et al. (1999) 

shows one example, the ATLAS (Active Truncated Line Anchoring Simulator) model testing 

method. The focus to this system has been to use an active equivalent mooring system.  

 

The active equivalent mooring system, described in Buchner et al. et al. (1999), is a setup using 

robot arms placed on the basin floor. The function of these robot arms is to actuate the same 

forces as the truncated riser and mooring system above the basin floor. The virtual mooring lines 

and risers below the basin floor is simulated and coupled to the real mooring lines in the test 

basin. With a system like this larger model scales are possible, and simulations of the full 

dynamic behavior of the mooring and riser system are possible. However, as Buchner et al. et al. 

(1999) states a system like this will require heavy computational power to simulate the mooring 

and riser system real time. 
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Figure 1.1: Schematic setup of the active equivalent mooring system given in Buchner et al. et al. (1999). 

 

Truncated systems with off-line numerical simulations 

An alternative approach is to use a truncated mooring and riser system, usually in combination 

with computer simulations. Some examples are given in Stansberg, Ormberg & Øritsland (2002), 

Buchner et al. et al. (1999) and Stansberg, Karlsen,Ward, Wichers, & Irani (2004). This hybrid 

approach uses a passive truncated mooring system modeled to be as similar as possible to the 

real deepwater system. However, the full depth mooring line and riser dynamics, as well as 

damping, cannot be modeled accurately. Coupled mooring analysis is needed to calibrate the test 

results from the truncated setup to the real deepwater system. A numerical program representing 

the physical system is calibrated using the truncated model-test results. By using relevant 

information to the reduced depth system the numerical program can be extrapolated to fit the full 

basin depth. Hence, the results can be scaled up to full scale. 

 

In Buchner et al. (1999) the main disadvantage with an approach like this, is that numerical 

calculations are necessary to determine design values. This is due to the fact that the mooring 

and riser system cannot be modeled correctly using a passive system. 

 

Outdoor model testing 

 

Outdoor model testing is another possibility as mentioned in Stansberg et al. (2004). The idea of 

the method is to do the model testing in a quiet fjord or lake as an alternative to the existing 

facilities. In Huse, Kleiven and Nielsen (1998) tests using a 90 m long model of deep sea risers 

were performed in a Norwegian fjord. The problem with this approach, also mentioned in 

Stansberg et al. (2004), is that the environmental conditions given in nature are non-controllable. 

 

1.2.1 Active Control of Line Forces 
 

The active control of line forces method is proposed so that the full depth mooring and riser 

system can be replaced by active controlled lines. This can be done by calculating real time 

desired mooring and riser forces. A control system should then actuate the same equivalent 

forces onto the floating unit using the active lines.  
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This method will add several new uncertainties such as delays in the numerical calculations, or 

delays in the control system actuating the desired forces. The system will depend on actuators 

that accurately impose the correct forces. Technical issues regarding this will be investigated in 

this thesis. 

1.2.2 Published Literature 

 

There has been extensive work trying to describe the problem related to deep water model 

testing.  Hybrid approaches using truncated mooring and riser systems together with model tests 

have been presented in Buchner et al. et al. (1999), Stansberg et al. (2002) and Watts (1999).  

 

In Watts (1999) a hybrid approach is proposed as an alternative to the construction of deeper, 

more expensive wave basins. The article describes the problems related to numerical 

calculations, especially for smaller scales since the computational time accelerate. This is 

because time is scaled with the square root of the model scale.  

 

The hybrid approach explained in Watts (1999) uses a physical model of the floater interfaced 

with a numerical model of the mooring and riser system by means of an actuator. According to 

Watts (1999) alternative designs are currently being evaluated, and it is likely that calculated 

desired forces will be used and actuated on to the floater using servo motors that follow the 

floater motion.  

 

Buchner et al. (1999) describe that the wave, wind and current generation systems have a large 

impact on the reliability to the model test results. Using the present facilities at MARIN in the 

Netherlands, puts a limitation on the model scales for water depths deeper than 1000 m. 

 

In addition a recent article published in the Oil and Gas magazine by Argyros Langley and 

Ahilan (2009) present a new study that aims to simplify mooring analysis for deepwater systems. 

An analytical truncation procedure presented allows a rapid assessment of line dynamics. 

 

1.3 Main Contributions 

 

The overall objective of this master’s thesis is to find a control strategy able to actuate reliable 

and accurate forces on to the vessel, using active control of line forces replacing the mooring and 

riser system. To achieve this goal, this thesis contribution is the development of a simplified 1 

DOF experimental setup moving only in the heave direction. Necessary equipment has been 

procured, and experiments using one active mooring line attached to the simplified vessel have 

been performed. The work carried out in order to achieve this objective can be summarized as 

follows: 

 A simplified model of the offshore vessel is developed. The bandwidth and necessary 

sampling frequency to recreate the continuous time responses for the vessel moving in 

three degrees of freedom (DOF) is proposed. The necessary sampling frequency is found 

using a specific case. 
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 A one DOF case only looking at the heave motion is modeled mathematically and the 

unknown parameters in the model has been found using system identification. The DC 

motor dynamics and mass dynamics are derived. 

 A control system is designed in order to induce desired forces in the one DOF case. 

Velocity control of the motor shaft is proposed as a solution to actuate the desired forces 

on to the vessel. An observer that filters the disturbance found in the measured actuated 

force is proposed. The estimated filtered force signal is then used as feedback to the 

controller.  

 The experimental setup consistent with the one DOF model together with the control 

system is made, and experimental testing of the system is preformed. A Faulhaber engine 

is proposed as an actuator to induce the desired forces. 

 

1.4 Outline of Thesis 

 

Chapter 2 gives a system overview of the method using active control of line forces to replace 

the mooring and riser system. The chapter proposes a solution for how the problem can be solved 

for a vessel moving in 6 DOF. A motor-winch configuration using an actuator solution to induce 

the correct resulting forces, calculated from numerical methods in real time, is proposed. The 

chapter ends with suggesting the simplified motor-winch configuration setups for the one DOF 

case considered in this thesis.  

 

Chapter 3 presents the simplified vessel dynamics for a 3 DOF case. The vessel is considered to 

be a barge exposed to a given regular wave. The equation of motion is presented in model scale 

using calculated data from Hydro-D. The equation of motion is then used to establish transfer 

functions from the force inputs to the response output. The bandwidth, or highest frequency in 

the system is the determined, and the necessary sampling frequency in order to recreate the 

continuous time responses is suggested. 

 

Chapter 4 introduces the experimental setup built in the marine cybernetics laboratory. The 

choice of actuator, or Faulhaber DC motor, is elaborated and key equipment in order to build the 

simplified 1 DOF model is discussed and presented.  

 

Chapter 5 gives a detailed mathematical description of the 1 DOF simplified system. 

Mathematical models for the mass dynamics and motor dynamics are derived. Velocity control 

of the engine shaft is discussed as a method for actuating the desired forces. The motion 

controller implemented on the Faulhaber drive electronics is explained. 

 

Chapter 6 presents a method for establishing the unknown parameters in the model. The DC 

motor parameters, control gains in the model, as well as parameters to describe the Faulhaber 

motion controller are determined. 

 

Chapter 7 compares the simulated outputs in the derived model with the measured data from 

experiment. The parameters used in the model are found in the previous chapter. 
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Chapter 8 presents the control design. An observer is presented in order to filter the measured 

force signals. A control strategy that minimizes the difference between a filtered measured force 

signal (estimated force) and force reference is presented. 

 

Chapter 9 gives a presentation of the results found from the experiments and a discussion 

regarding the experimental setups used in the marine cybernetics laboratory. 

 

In chapter 10 the report is concluded and the most important findings are presented. 

 

The Appendix contains some of the detailed data used in this thesis.  
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2 System Overview 
 

As oil is becoming more scarce, developments of fields at more inaccessible places will be 

necessary. In the design and operation of floating oil production vessels, reliable prediction of 

the behavior is important. Model testing of the floating structures plays an important role in this 

evaluation.  

Currently, methods for model testing at deepwater depths have significant shortcomings. There 

are several drawbacks to small-scale model testing and model testing using a truncated mooring 

and riser system. A promising solution is to replace the mooring and riser system with active 

control of line forces. This chapter starts with a general presentation of a possible solution, 

before the main principles behind the method are discussed in more detail. 

 

2.1 Presentation of the Project 

 

In this thesis, solutions for model testing of deepwater moored structures using active control of 

line forces, will be investigated. In this method, the mooring and riser systems are replaced by a 

set of lines connected to torque controlled motors actuating mooring and riser forces. The 

objective of the control system is to actuate the same equivalent forces as the simulated mooring 

and riser system. It will be necessary to investigate if the control system will be able to actuate 

these forces and still be able to give reliable motions for the floater. In addition reasonable 

mooring and riser forces within a sufficient range needs to determined and tested.  

 

The time delay in the control system and signal communication needs to be found. Too large 

time delay will give undesirable effects in the resulting behavior of the floater. Hence, the 

acceptable delay, and corresponding bandwidth (speed) of the control system, must be 

determined.  

 

Simplified models of the floating structure will be designed in order to evaluate the control 

system. A simple one DOF model setup using a motor, spring, mass, wave effects and typical 

mooring forces will be designed. In addition a method for solving a three DOF case is proposed. 

 

The one DOF model together with the control system will be mathematically modeled. In 

addition an assessment of the necessary sampling frequency to reconstruct the continuous time 

responses to a vessel moving in three DOF, exposed to force inputs, will be investigated. 

 

A physical model reflecting the target system in the model test basin, will be designed, 

consisting of a motor, line, controller, spring, communication, and gear. This physical model will 

be tested using the designed control setup in loop. The goal is to make an assessment of the 

performance of the system using a real physical experimental setup. 
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2.1.1 Prerequisites and limitations 

 

The 10 meter basin water depth makes it difficult to perform small-scale model testing using 

existing methods. However, it may be possible to apply larger model scales by simulating the 

riser and mooring forces and actuating them on to the vessel using active control of line forces.  

 

The prerequisite assumption is that the mooring force simulator and communication system is 

fast enough such that time delays will not result in unacceptable distortions of the vessel 

responses. 

 

Limitations 

 The test strongly depends on the accuracy of the simulated numerical mooring and riser 

forces that controls the electronic equipment.  

 The line forces will only be able to exert strain forces, and the force will always be 

positive. 

 The simulation of mooring forces must be done in real time. 

 The time delay between the simulated forces and the corresponding actuated line forces 

will have a limit. 

 

2.2 Outline of the Method 

 

As previously mentioned various methods for model testing of moored floaters exist today. 

However, as discussed earlier the existing methods are inadequate when using model tests in the 

design of ultra deep water floaters. The “active control of mooring line forces” method is 

proposed as a solution. 

 

The idea of this method is that calculated resulting mooring line forces are forced onto the floater 

using a control system. To solve the problem by actuating forces onto the floater three possible 

solutions are proposed: 

 

 Hexapod 

 “Sea bed” robot arm 

 Motor-winch configuration 

The hexapod is a solution using robot arms directly connected to the hull of the floater and a 

carriage. The robot arms to the hexapod are placed such that all 6 degrees of freedom can be 

actuated. The main disadvantage with this method is that the system will involve large inertia 

due to the robot arm masses and the robot arm motion may be too slow. This method will not be 

further evaluated in this thesis. 
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“Sea bed” robot arms placed on the model tank bottom can be used to actuate desired forces 

through a set of lines. The approach will demand advanced equipment and high knowledge about 

the robot arm dynamics. This method will not be further evaluated in this thesis. 

 

The motor-winch configuration approach consists of motors directly connected to lines actuating 

forces onto the floater. Hence, resulting desired forces can be forced onto the floating structure. 

The dynamics to a system like this will be much easier to model than it would for a robot arm, or 

hexapod, solution. The equipment to such a system will be much cheaper and easier to acquire. 

 

The motor-winch configuration method uses thin lines coupled to torque controlled motors. The 

lines are only able to exert tension forces, and thus need to be directly connected to the hull of 

the floater. Necessary knowledge about the dynamics and effects of the lines in water may be 

needed.  

 

Figure 2.1 shows the overall system containing a mooring line simulator, controller, motor-

winch system and a vessel. From the vessel motion the mooring line simulator will calculate the 

desired forces. The controller will use this input and give command to the motor winch system. 

Control signals will then tell the motor winch system to actuate forces onto the vessel. The 

actuated forces will affect the vessel and give new vessel motion.  

 

The numerical mooring simulator uses the measured data from the vessel motion and waves to 

calculate full-scale dynamic forces in the anchor and riser system. Motion sensors and HLA 

communication is used to gather the measured data. The mooring simulator passes on the 

corresponding model scale forces to the controller using Ethernet, user datagram protocol (UDP), 

or some other communication. A customized input output (I/O) protocol in LabVIEW® 

connected to some hardware, typically a Compact Reconfigurable I/O (cRIO) module, can then 

be configured to receive the desired force reference signals.  

 

The calculated resulting forces from the anchor and riser system are then used as reference in the 

control system. A control allocation scheme will distribute the desired resulting forces among the 

set of actuators, in this case the motor-winches. Optimal setpoints are commanded to each motor-

winch in order to actuate the same resulting forces as calculated by the mooring simulator. Force 

rings connected in-between the vessel and the active lines measures the force actuated by each 

motor. 

 

To command the engines analog voltage signals can be applied. Alternatively, a pulse width 

modulation (PWN) signal can be used. Recommended standard 232 (RS232) communication is 

another possibility. 
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Figure 2.1: Main topology showing the key elements in the active control of lines method. 

 

The problem is divided in two parts. The first subproblem will look closer at the mooring line 

simulator, and work will be done in order to find reliable mooring line forces fast enough. Co 

MSc. student Stian Garlid will look closer at this problem. The second subproblem will be the 

design of the controller and motor winch system. 

 

The core of the system first subproblem must be a real time simulator for computation of full-

scale dynamic forces in the anchor and riser system. The vessel motion and waves are used real-

time to calculate the resulting forces using the computer software Riflex. Riflex receive the 

motion from vessel and waves using high level architecture (HLA) communication. The 

calculated forces are then used as input in the vessel model. New vessel motions and wave 

signals are then used to calculate the the next set of desired forces.  
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Figure 2.2: Sub-HIL simulator topology. 

 

This thesis will look at the second subproblem, presented in Figure 2.3. The hardware in the loop 

(HIL) simulation is a technique that is used in the development and test of complex real-time 

embedded systems. For this problem this technique will be used to test the design of the control 

system setup.  

 
Figure 2.3: Sub-HIL simulator topology with control system in loop. 
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A motor-winch configuration for a six DOF case is proposed in Figure 2.4 as one possible 

schematic setup. The box shaped body will represent the vessel, the circles marked as M 

represent the motor-winch actuators and the zigzag lines represent the passive springs. Force 

rings are placed in-between each connection point to the vessel to measure the actual forces on 

the vessel. A control system, using appropriate allocation algorithms, should then actuate the 

same resulting forces in each degree of freedom as calculated by the mooring simulator. 

 
Figure 2.4: Experimental setup for a six DOF case, courtesy Stian Garlid (2010). 

 

If less DOFs are included, a different motor-winch configuration setup will be needed. A 

schematic setup for a three DOF case is shown in Figure 2.5. The figure shows the required setup 

needed to successfully control three DOF. For the schematic setup presented the focus is of 

control in the vertical plane i.e. surge, heave and pitch.  

 

 
Figure 2.5: Configuration of motors and winches. 
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The problem will be divided into subproblems using an experimental setup. The vessel in Figure 

2.5 will then be replaced by a simplified one DOF mass-spring model in heave. The idea is to 

test the controller together with this setup.  

 

The schematic for the 1 DOF setup is presented in Figure 2.6. A mass-spring system together 

with the controller will first be mathematically modeled. The physical simplified model, 

according to Figure 2.6, will be built, and the control setup will be experimentally tested on this 

system. 

 

 

Figure 2.6: One DOF mass-spring system. 

 

In the experiments a second test case will be conducted, shown in Figure 2.7. The vessel will 

now be the oscillating system represented as the wave motion in previous figure. The active 

mooring line will be the line with spring connected to the oscillating body.   

 
Figure 2.7: One DOF experimental setup. 

 



 

14 
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3 Modeling of Vessel Dynamics 
 

In this chapter a model for the vessel dynamics in a three DOF case will be introduced. The 

vessel will be a simple rectangular barge. The equation of motion to this barge is presented for a 

given case both in full scale and model scale. Since the focus in the schematic setup presented in 

Figure 2.5 is of control in the vertical plane, the responses are given in surge, heave and pitch. In 

the model testing experiments, real time measurement of the vessel responses are needed to 

calculate desired mooring line forces. An assessment of the necessary sampling frequency to 

recreate the measured analog signal, without loss of information, is therefore desired. 

 

In order recreate the signal a frequency response analysis is performed between the different 

force inputs to the response outputs to determine the bandwidth in the system, or highest 

frequency. The necessary sampling frequency required to successfully recreate the continuous 

signal is then determined.   

3.1 Coordinate Systems 

 

The positions, motions and accelerations are described by coordinate systems. The coordinate 

systems follow the standard right-hand rules. The coordinate system is illustrated in Figure 3.1 

and Figure 3.2.   

 

The notation to Society of Naval Architects and Marine Engineers(SNAME), for marine vessels, 

is used and given in Table 3.1. The DOF is indicated in the left column with its respective 

notation for “forces and moments”, “linear and angular velocities” and for “position and Euler 

angles”.   

 

 

 
Figure 3.1: Motion of variables for marine vessels (SNAME, 1950). 

 

  

http://www.google.no/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fwww.sname.org%2F&ei=PxUSTIjFJZ2SOPirsewH&usg=AFQjCNHWU03_3o47A_P8mkWX-SD_Zje9TQ
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The coordinate system to the vessel shown in Figure 3.1 can be expressed using the following 

notation: 

Table 3.1: The notation of SNAME (1950) for marine vessels. 

 

The global and body coordinate system to a floating vessel is explained below and illustrated for 

a three DOF case in Figure 3.2.   

  

Global coordinate system: This coordinate system is fixed in the mean water level. Coordinates 

with respect to this coordinate system are denoted ( , , )g g gx y z . This coordinate system is 

assumed to be the inertial reference frame. 

 

Body fixed coordinate system:  The floater coordinate system is a moving reference frame 

fixed to the vessel. The origin of the coordinate system coincides with the floater center of 

gravity (COG). The body axis bx , by  and bz  coincide with the principal axes of inertia and are 

defined as in Fossen (2002) as: 

 bx  - longitudinal axis (directed from aft to fore) 

 by  -transversal axis (directed to starboard) 

 bz  -normal axis (directed from top to bottom) 

 
Figure 3.2: Coordinate systems. 

DOF  Forces and 

Moments 

Linear and 

angular 

velocities 

Positions and 

Euler angles 

1 Motions in the x-direction (surge) X u x 

2 Motions in the y-direction (sway) Y v y 

3 Motions in the z-direction (heave) Z w z 

4 Rotation about the x-axis (roll,heel) K p   

5 Rotation about the y-axis 

(pitch,trim) 

M q   

6 Rotation about the z-axis (yaw) N r   
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3.2 Froude Scaling 

 

Depending on the problem, different scaling methods are used. For problems where the 

volume forces dominate, Froude scaling of the wave kinematics and responses is mostly used. 

This is the most common way to scale model tests since the forces on large volume bodies 

mainly come from volume forces. If viscous forces dominate, Reynold scale of the model 

should be used. Large volume bodies that also are influenced by viscous forces can be 

modeled in a corrected Froude scale as stated in DNV-RP-C205 (2007), Section 10.9.2.1. 

However, it is most typical to use pure Froude scaling in model tests. In DNV-RP-C205 

(2007) the scaling factor relations between full-scale and model scale, shown in Table 3.2, are 

given. 

 

Parameter Scaling factor Model unit (typical) Full scale unit 

(typical) 

Length   m m 

Velocity 1/2  m/s m/s 

Linear acceleration 0  m/s
2

 m/s
2

 

Angular acceleration 1
 deg/s

2 
deg/s

2 

Angle 0  degrees deg
 

Force 31.026  N kN 

Moment 41.026  Nm kNm 

Stiffness 21.026  N/m kN/m 

Linear Damping 2.51.026  kg/s kg/s 

Time 1/2  s s 

Table 3.2: Froude scaling law. 

 

3.3 Description of Case 
 

The floater is chosen to be a simple barge with specifications given by Table 3.3. The barge 

will be a box-shaped floating body with length L, breath B and draught D is subjected to 

regular sinusoidal waves that propagate along the negative x -axis shown in Figure 3.3. The 

wave-length is   and the wave amplitude is a .  

 

 

 
Figure 3.3: Schematics of the floating barge. 
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Dimension Abbreviation Value Unit 

Length L 91  m 

Beam B 27  m 

Depth moulded Dm 6  m 

Depth D 3 m 

Mass M 7555  ton 

Radius of gyration  
4 5 61,   1,   1r r r     m 

Centre of gravity  
, , ,0,   z 0,   0b COG b COG b COGx      m 

Wave amplitude 
a  

2   m 

Wave period T  7   s 
Table 3.3: Case specifications and barge dimensions. 

 

3.3.1 Equation of Motions 
Equation Chapter (Next) Section 3 

The coupled equations of motion for the three DOF system can be written  

 ( )( )rb a t    M M D G f , (3.1) 

 

where 
rbM  is the rigid body mass matrix, 

aM is the added mass matrix, D  is the damping 

matrix, G  is the stiffness matrix, f  is the force vector and   is the displacement vector.   

and   are the 1
st
 and 2

nd
 derivative of the displacement with respect to time. 

 

Defining  

 




 
  
 

x , (3.2) 

 

The state space representation, with ( )tu f , of the equation of motion can be written as 

  x Ax Bu  (3.3) 

 y Cx  (3.4) 

 

where 

 
3 3 3 3 3 3

1 1 1

0 0
,   

( ) ( ) ( )rb a rb a rb a

  

  

   
    

       

I
A B

M M G M M D M M
 (3.5) 

 [1 0 0 0 0 0]C . (3.6) 

 

The motions of the vessel are given in 3 DOF [ ]b

T

b bzx 
 
where 

bx  is the surge 

displacement in x -direction, 
bz , is the heave displacement in z -direction and 

b  
it the 

rotation about the z -direction (pitch). The derivative to   is defined as [ ]Tu w q   

where u is the surge velocity, w  is the heave velocity and q  is the angular velocity in pitch. 

The input will be  ( ) [ ]TF t X Z M u , where X  is the force input in surge, Z  is the 

force input in heave and M is the moment in pitch.  

 

The matrices are calculated in Sesam Hydro-D for a wave amplitude 2a   [m] and wave 

period 7T  [s], see Appendix 12.3. The added mass matrix is calculated as 
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5 6

7 3

6 3 10

7.7760·10 1.7430 7.9350·10

2.0790·10 2.2190·10 3.1740·10

8.2720·10 2.1710·10 1.3910·10

a

 
 

  
 
 

M . (3.7) 

 

The matrix will change depending on the period we use. The potential damping matrix is also 

found and it is given as 

 

5 7

1 7 3

7 3 9

3.3870·10 5.8920 3.0510·10

1.2520·10 1.1510·10 1.8990·10

3.0270·10 1.7850·10 5.8990·10

 
 

  
 
 

D . (3.8) 

 

This matrix will also change depending on the wave period. The constant water plane stiffness 

matrix is calculated as 

 
7 2

2 10

0 0 0

0 2.4700·10 3.0010·10

0 3.0010·10 1.6930·10

 
 

 
 
  

G . (3.9) 

 

while the body mass matrix is found to be 

 

6 8

6 8

8 8 6

7.5550·10 0 4.0260·10

0 7.5550·10 9.4160·10 .

4.0260·10 9.4160·10 7.5550·10

rb





 

 
 

  
 
 

M  (3.10) 

 
 

3.3.2 Equation of motion in model scale 
 

The previous matrixes are given in full-scale and it will therefore be necessary to scale them 

to model scale. Table 3.3 gives the scaling factors.  

 

The terms in the matrices must therefore be multiplied with the scale corresponding to its 

units. The terms multiplied with the pitch rotation, i.e. third column, needs to be scaled with 

an extra   factor. This is because angles are scaled with 1 and “meter” is scaled with   

according to Table 3.3.  

 

In the added mass matrix the terms, in kg, are scaled with 31.026 . The terms multiplied with 

the rotation will have denomination [ · ]kg m  and therefore a scaling factor 41.026 . With a 

1:70 as model scale the added mass matrix can be written as 

11 13 15

31 353

51 53

33

55

1

2.2096 000 4.9529 006 3.2211 001
1 1

5.9076 005 6.3054 001 1.2884 004 ,
1.026

2.3505 001 6.1691 003 5.6466 002
1

a a a

aM a a a

a a a

e e e

e e e

e e e



 



 
 

    
       
  
      

 
  

M M M

M M M M

M M M

  

with a wave period 7 / 0.8367MT   [s] and a wave amplitude / 2.86aM a    [cm].  
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The body mass will be 

11 13 15

31 33 353

51 53 55

1

2.1468 001 0 1.6343 015
1 1

0 2.1468 001 3.8223 015 .
1.026

1.144 13 2.6756 013 3.0669 001
1

rb rb rb

rb rb rb rb

rb rb rb

e e

e e

e e e



 



 
 

   
     
  
      

 
  

M

M M M

M M M M

M M M

  

The third column is multiplied with the pitch acceleration. In Table 3.2 potential damping is 

scaled with 2.51.026  and can therefore be written as 

 

11 13 15

31 33 352.5

51 53 55

1

8.0524 000 1.4008 004 1.0362 001
1 1

2.9765 004 2.7364 002 6.4496 004 .
1.026

7.1965 002 4.2437 002 2.0035 003
1

e e e

e e e

e e e



 



 
 

    
      
  
      

 
  

M

D D D

D D D D

D D D

  

The water plane stiffness matrix in model scale will be 

 

11 13 15

31 33 352

51 53 55

1

0 0 0
1 1

0 4.9131 003 8.5276 004 .
1.026

0 5.9693 002 4.8108 004
1

e e

e e



 



 
 

  
      
  
      

 
  

M

G G G

G G G G

G GG

  

The matrices derived can be used in the equation of motion given by (3.1) to find the 

velocities in surge and heave as well as angular velocity in pitch. The displacements and 

rotation given in three DOF, i.e. surge, heave and pitch, can also be found from given force 

inputs.  

 

3.3.3 Frequency response 
 

The transfer functions between given inputs and outputs can be established by using the state 

space representation of the system given by (3.3) to (3.4). The corresponding frequency 

response can then be found for different transfer functions. Hence, the bandwidth can be 

determined. 

 

The transfer function from the force input in surge X  to the velocity output in u can be 

expressed as 

 ( ) ( )s s
X

I
u   1

C A B . (3.11) 

Using the “ss2tf” function in Matlab® the transfer function is found to be 

 
4 3 2

6 5 4 3 2

004226 02867 654 2036 209.2
( )

709 1564 530.9 5084 1684

u s s s s
s

s s s s sX s

    


    
 (3.12) 

The frequency response for this transfer functions can be found using the “freqs” function in 

Matlab®. “freqs” evaluates the polynomials at each frequency point, then divides the 
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numerator response by the denominator response, ref MathWorks. s i  and “freqs” 

calculates the response using the “polyval” equation for desired frequencies. 

 

The low frequency (DC) gain is defined as  

 ( )K    1
D C I A B , (3.13) 

where K  is the transfer function value at z=1 (s=0 in continuous time). 

The bandwidth to the system can then be defined as the first frequency where the gain drops 

below -3 dB of the DC gain, ref (The MathWorks). The bandwidth can also be found using 

the Matlab® function  “bandwidth”.  

 

The frequency response from u to X (velocity in surge to force input in surge) is plotted 

together with its discrete transfer function in Figure 3.4. The figure shows that the 

discretization, using zero-order hold sampling time 0.1sT   [s], of the transfer function affects 

the frequency response. The plot also shows that the discrete system will get unstable for 

higher frequencies. 

 
Figure 3.4: Frequency response to the continuous time transfer function from force input in surge to the 

surge velocity, shown together with its discrete transfer function. 

 

In Figure 3.4 the steady state low frequency (DC) gain will be 

 0.124K    (3.14) 

 

The system, with poles and zeros given by Figure 3.5, will be stable since all its poles are in 

the left half plane (L.H.P). This makes sense since the system investigated is a general 

x ax u    model. However, the input output stability for the outputs ,b bx z  and 
b  

(positions and Euler angle), will only be marginal stable. 

 

The frequency response and bandwidths from the inputs [ ]TX Z Mu  to the surge 

velocity u , heave velocity w and angular pitch velocity q are given in Appendix 12.5. As a 
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result the bandwidth from force input X  in surge to the surge velocity u  is used in the 

determination of sampling frequency.  

 
Figure 3.5: Poles ‘x’ and zeros ‘0’ for the system with surge velocity as output. 

 

 
3.3.4 Determination of Sampling Frequency 
 

In order to reconstruct the continuous time signal perfectly it is possible to use sampling 

instants that are sufficiently close. However, much of the signal will be lost if the sampling 

instants are too far apart, and if the sampled signal is changing too fast. It may therefore be of 

importance to find the highest frequency of the continuous time signal. This frequency is 

often referred to as the bandwidth frequency to the system, (Hüche, 1996). The value can be 

found by investigating where the transfer functions magnitude drops 3 dB below its DC gain 

value, ref Mathworks. The DC gain is the transfer function magnitude at 0s   (frequency 

equal to zero).   

 

To avoid getting the phenomena called aliasing, meaning that the sampled signal is 

interpreted as a lower frequency signal, the necessary sampling rate needs to be determined. 

According to Nyquist’s sampling rule (Aastrom, 1997) the signal can be reconstructed if we 

sample with a frequency at least two times higher than the highest frequency to the system. 

The bandwidth frequency 
b , often referred to as the Nyquist frequency 

N , must therefore 

be 

 
2

s
b


  , (3.15) 

where  
s  is the sampling frequency.  
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From the frequency response analysis of the system the design bandwidth frequency to the 

system should be chosen to be 0.3415b   [rad/s]. This is the highest frequency to the 

transfer function from the input force X  to the velocity output in surge u .  

 

In practice a much faster sampling frequency than the bandwidth frequency is necessary. As a 

rule of thumb (Perdikaris, 1991) suggest a sampling rate that is 10-20 times larger than the 

frequency bandwidth to the system.  

 

The sampling frequency should therefore be selected to be 

 

 · · ·0.3415·2 ·10 42.92 12s b s      [Hz], (3.16) 

 

where 
s  is the safety factor. To recreate the continuous time signal and avoid losing 

information, a sampling time of 0.023[s] should be selected. 
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4 Experimental Setup 
Equation Chapter (Next) Section 4 

The 3 DOF vessel model can be simplified by neglecting the surge and pitch motion. By only 

looking at the heave motion of the vessel it will be easier to establish an experimental model. 

The experimental model consists of a DC motor that needs to be able to actuate necessary 

forces onto the simplified vessel model.  

 

The simplified 1 DOF model, Figure 4.1, show a DC motor, with precision gear head, 

connected to a line actuating forces onto the simplified vessel model. The system 

communicates with a computer, giving commands to the motor. The DC motor will then 

actuate the necessary force to reach its desired reference.  

 

 
Figure 4.1: Overview of the 1 DOF system and its key components. 

 

In this chapter, the necessary equipment for the experimental setup will be introduced. First, a 

discussion regarding the choice of DC motor is presented. Finally, the overall key equipment 

is explained. The chapter ends with a discussion regarding the installation of the equipment.  

4.1 Determination of DC motor 

 

In order to find an appropriate DC motor for the simplified vessel model, the maximum range 

for the expected mooring line forces, and responses, is needed. A reasonable estimate can be 

found by investigating the maximum and minimum top tension in one mooring line. To find 

the expected deflection amplitude to the simplified vessel model it is possible to look at the 

maximum and minimum heave response. 

 

In J.M. Heurtier et al. (2001) a fully coupled analysis is presented wherein the motions of the 

floater, mooring lines and risers are computed. In the fully coupled analysis a test case 

proposed by Ormberg H. and Larsen (1998) is reproduced. The analysis deals with the 

dynamic response to environmental sea loads of a Floating Production and Storage Offloading 
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vessels (FPSO). The FPSO analyzed in the paper is anchored at 2000 m water depth using 

eight mooring lines connected to a rotating turret in the bow. 

 

The maximum and minimum heave movement, presented in J.M. Heurtier et al. (2001), is 

found to be -9 m and 11 m, see Figure 4.2. The values give a reasonable assumption for what 

to expect of the maximum, and minimum, vertical motion of the top node for one mooring 

line. 

 

 

 
Figure 4.2: Heave motion versus time, zoom near peak (J.M. Heurtier, 2001). 

 

It will also be necessary to suggest an appropriate estimate on how large, or small, a mooring 

line force is. The result in J.M. Heurtier et al. (2001), present the top tension in the most 

loaded line. The results over the complete simulation give a maximum top tension of 4800 

kN, and a minimum of 800 kN, see Figure 4.3. 

 

 
Figure 4.3: Top tension in the most loaded line versus time. Top: complete simulation. Bottom: zoom near 

a peak (J.M. Heurtier, 2001). 

 

Using Figure 4.3, it will be possible to find the top tension and heave motion in model scale. 

According (DNV, 2007), the typical model scales for shallow water mooring tests are 
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between 1:30 and 1:100. The scaled top tension, using selected scales in this interval, for one 

mooring line will then be:  

 

Model 

Scale 

Maximum top tension 

model scale force  

(full scale 4800 kN). 

Minimum top tension model 

scale force  

(full scale 800 kN) 

Unit 

1:30 182.4  30.4  N 

1:50 39.4  6.6  N 

1:70 14.4  2.4  N 

1:90 6.8  1.1 N 

1:100 4.9  0.8  N 

Table 4.1: Model scale maximum expected top tension in one mooring line. 

 

Hence, the maximum and minimum vertical motion of the top node, for one mooring line, 

will most likely not exceed the following values: 

 

Model Scale Maximum heave motion in 

model scale  

(full scale 11 m). 

Maximum heave motion in 

model scale  

(full scale -9 m). 

Unit 

1:30 0.36  -0.30 m 

1:50 0.22  -0.18  m 

1:70 0.16  -0.13  m 

1:90 0.12  -0.10  m 

1:100 0.11  -0.09  m 

Table 4.2: Model scale maximum expected heave motion. 

 

The necessary maximum model scale force is dramatically cut down when the model scale is 

reduced from 1:30 to 1:70. Selecting a 1:70 model scale will therefore reduce the power 

demand to the machine actuating the maximum force. A much more practical, cheaper and 

smaller engine can then be selected. Another reason to select 1:70 as the model scale is that 

the top node vertical motion will be smaller than with a 1:30 as model scale. Hence, the wave 

generator does not need to have large deflection amplitudes. 

 

A 1:70 in model scale should however be avoided when model testing in the ocean basin 

facilities. Preferably a 1:40 in model scale or larger should be used, reducing the margin of 

error and making it easier to implement environmental disturbances.  

 

The top node of the mooring line, using 1:70 as model scale, will have vertical motion 

between 0.16 m and -0.13 m. In order to just have one revolution of the wheel connected to 

the DC motor shaft, the following radius will be necessary 

 
0.16 m - (- 0.13 m)

0.052  m
2 2

O
r rO 

 
    , (4.1) 

 

The obtained maximum and minimum values give us appropriate design specifications for the 

DC motor. The DC motor needs to actuate the necessary forces onto the vessel. With a 5 cm 

moment arm, the DC motor has to be able to actuate the following torques 
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0.05 m *2.39 N=0.12 Nm 

0.05 m*14.36 N=0.72 Nm

0.12 Nm < torque < 0.72 Nm

 (4.2) 

 

Hence, an engine that is able to actuate the calculated torques must be used in the 

experimental setup in order to reproduce the maximum and minimum top tension. The data 

from J.M. Heurtier (2001) is scaled using a 1:70 in model scale to reduce the engine torque 

demand. 

 

Table 1 in Watts (1999) shows that the expected mooring line peak tension, in the most 

loaded line, is measured to be 23.54 [N]. A model scale 1:80
 
of a turret moored concrete 

FPSO with four mooring lines are experimental tested in Watts (1999). The comparison 

between random wave test and simulated tensions in mooring lines are presented. In our 

calculation the 14.4 N peak tension will be smaller than the value presented in Watts (1999). 

A higher peak tension is however expected since the FPSO is moored using four mooring 

lines instead of eight.  

4.2 Necessary Equipment 

 

Figure 4.4 shows an overview of the key equipment used in the experimental setup. The 

equipment consists of several parts and an overview is shown in the figure. The experimental 

setup use a DC motor to actuate forces onto the vessel model using velocity control of the 

engine shaft. Analog voltage signals are used as input to the Faulhaber motion controller to 

control the shaft velocity. The cRIO-9074 module is used to transmit the analog voltage 

signals; hence the shaft velocity can be preset. Force measurements can then be used as 

feedback to control the torque actuated by the motor. 

 

The computer is communicating with the cRIO module using TCP/IP and the computer 

software LabVIEW®. The cRIO-hardware I/O are mapped to its respective ports in the 

compiled Simulink® model utilized by LabVIEW®. The Simulink® model can therefore be 

used to control the shaft velocity using force measurements as feedback. 

 

The Faulhaber motion manager is used to set the configuration to the motion controller. The 

Faulhaber drive electronic is connected directly to the computer using a RS232 cable. The 

RS232 communication is used together with the Faulhaber motion manager to configure the 

motion controller implemented on the drive electronics.  

 

The Simulink® model must be compiled in order to run together with the LabVIEW® 

software. The model must be compiled to a “dll” file using the Real-Time Workshop. Further, 

the real-time workshop toolbox I/O blocks must be used at the ports in the Simulink® model 

that are mapped to the cRIO module. The solver and fundamental sample time is set in the 

“configuration parameters” panel. The fundamental sampling time is set to be 0.01 s, or 100 

Hz. 
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Figure 4.4: Experimental setup of the 1 DOF system. 

 

The connections to the Faulhaber drive electronics are illustrated in Figure 4.5. The figure 

show the cables connected to its respective ports on the motion controller. The engine is 

connected to the motion controller using eight small cables. The RS232 communication is 

used by the Faulhaber motion manager to configure the motion controller. The velocity to the 

shaft can then be preset via analog voltage input by enabling the motion controller in speed 

mode. 

 

 

Figure 4.5: Faulhaber MCBL 3006 S motion controller connections. 

 

The cRIO module is shown with its cables connected in Figure 4.6. The cRIO module is used 

to transmit analog voltage signals to the motion controller in order to command the shaft 
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velocity of the engine. The TCP/IP port shown in the figure is used to communicate with 

LabVIEW®. 

 

 
Figure 4.6: cRIO-module connections. 

4.2.1 Servo motor / winch 

 

A brushless DC servomotor, 3564 k024B-k1155, from Faulhaber was chosen in order to meet 

the spesifications. The engine will be able to actuate the necesarry mooring line forces in 

model scale. Staubo Elektro-Maskin-AS, situated in Oslo, was used as dealer
1
. The key 

technical data are: 

 

Description Value Unit 

Diameter  35  mm 

Length 64 mm 

Stall torque 371 mNm 

Torque up to 44  mNm 

Table 4.3: DC Servomotor key technical data , ref (DC Motor Spesifications). 

 

                                                 
1
 Contact person: Morten Søgaard, Tlf. 22 75 35 26/41 67 92 65, E-mail: morten.sogaard(at)staubo.no 

mailto:morten.sogaard@staubo.no
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, 

Figure 4.7: Brushless DC servomotor/winch setup. 

 

4.2.2 Precision Gearhead 

 

In order to achieve the appropriate torque the planetary precision gearhead, 30/1 S-34:1, from 

Faulhaber is chosen in order to meet the specifications. The key gearhead data are: 

 

Description Value Unit 

Shaft Diameter  8 mm 

Diameter  30 mm 

Length  43,1 mm 

Efficiency 70 - 

Reduction ratio 43:1 - 

Table 4.4: Precision gear head technical data. 

 

 

Figure 4.8: Planetary gearhead, ref. (Gear Specifications). 
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With the brushless DC-Servomotor in Figure 4.7 the engine will be able to actuate the 

following torque: 

 

Engine: Maximum 

torque 

44 mNm 

Gearhead: Reduction 

ratio 

43:1 

Gearhead: Efficiency 70 % 

Max available torque 44mNm*43*0.7=1.3 Nm 

Table 4.5: Maximum available DC motor torque. 

 

With a reasonable choice of radius, a 14 N peak force will be possible. With a 4 cm radius the 

estimated expected forces should be well covered, without reaching the 1.3 Nm limit. Using 

the radius directly from the gear shaft a peak force at 1.3Nm/0.004 m = 325 N will be 

possible. 

4.2.3 Motion Controller 

 

The Faulhaber motion controller is designed for control of the DC motor. The controller has 

numerous functions and operating modes which enable flexible adjustment to the respective 

drive function. The motion controller can be set in speed, position and torque control. The 

flexible connection option opens up a wide range of application areas. In addition the motion 

controller parameters can be adjusted in the Faulhaber motion manager.  

 

The motion controller MCBL 3006 S from Faulhaber, in combination with the brushless DC-

Servomotor, has the following control options 

 

Control nr.: Control option: 

1 Torque control 

2 Speed control 

3 Position control 

Table 4.6: Control options. 

 

The Faulhaber motion controller is equipped with an integral current controller, which enables 

torque limitation. In the instruction manual, (Instruction Manual), on page 39, 53 and 58, 

current regulation is explained. It is possible to switch to “analog target current presetting”, 

page 39, with the source for velocity (SOR) command. The SOR command with argument 3 

makes it possible to set the current target value via analog input. Since the current is 

proportional to the torque, it will be possible to follow a torque reference.  

 

The engine can also run in speed mode and the angular velocity to the engine shaft can be 

preset via analog voltage input. Force measurements can then be used as feedback to control 

the desired torque actuated by the motor. The motion controller should then be set in 

continuous mode (CONTMOD) using the SOR command with argument 1.  
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Figure 4.9: Drive electronics, ref. (Instruction Manual) 

 

4.2.4 Sensors Specifications 

 

To measure the actuated forces the MARINTEK
2
 force ring is used. An amplifier is used to 

amplify the measured force ring signal. The amplifier is shown in Figure 4.11. 

The measured force will include white noise; filtering the signal will therefore be necessary 

before using it as feedback. 

 

Figure 4.10: Marintek force ring. 

                                                 
2
 Contact person: Torgeir Wahl, Tlf. 73 59 57 44/ 92 86 34 28, E-mail: torgeir.wahl(at)ntnu.no 

mailto:torgeir.wahl@ntnu.no
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Figure 4.11: Force measurements amplifer.  

 

4.2.5 Power Supply 

 

The cRIO module and motion controller is connected to individual 24 volt power supplies. 

4.2.6 Oscillating System 

 

The oscillating system can be set to create desired vertical motion. The vertical motion is 

controlled using an external computer. The frequency and amplitude to the sinusoidal motion 

generated can be changed in the LabVIEW® interface controlling the device. Measurements 

of the vertical motion are sent as voltage signals to the cRIO module.  
 

 
Figure 4.12: Oscillating system generating sinusoidal vertical motion. 

 

The program in LabVIEW® used to control the actuator is shown in Figure 4.13.  
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Figure 4.13: LabVIEW® interface used for control of the oscillating system actuator. 

 

4.3 Discussions 

 

At first torque control with current limitation was carried out. An analog voltage at the motion 

controller input will then correspond to a current limitation in the DC motor. The relationship 

between torque and current is proportional, and a current limit will then correspond to a given 

torque. Hence, the desired reference force can be achieved. However, with current limitation 

used as set point the motor shaft will try to keep its position. If a torque higher than the 

current limit is applied at the motor shaft the pulley will turn, with lower torque the position 

will be maintained. The motor shaft needs to have a sinusoidal motion in order to follow the 

vessel vertical motion. A high positive angular velocity of the motor shaft is therefore set as 

target in the controller. If the torque, or current set point limit, is set to be high in the 

Faulhaber motion controller, the pulley will turn until it reaches its current limit. If the torque 

or current limit is set to be a low value the shaft will release its pull until the new current limit 

is reached. This control option will however be to slow and the pulley will not release its pull 

fast enough due to the friction in the gear. Another control option will therefore be needed.  

 

According to the Faulhaber Instruction Manual velocity control with high requirements on 

synchronous operation and minimal torque fluctuations can be utilized. A PI velocity 

controller ensures that the target velocities are maintained. The velocity to the engine shaft 

can then be preset using analog voltage input. Force measurement can be applied as feedback 

to ensure that desired force references are achieved by controlling the shaft velocity. 
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The engine shaft maximum speed can be set to run at rpm values all the way up to 22 000. 

The maximum speed at the gear shaft will however be lowered to about 360 rpm with a 43:1 

reduction rate and 70 % efficiency. Meaning that the gear shaft can turn 6 rounds each 

second. The engine should therefore have no problem following an oscillating vertical 

motion. In addition the engine has no problem inducing a 14 [N] peak mooring line force, 

larger forces can be actuated without any problem. 
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5 Mathematical Models of Experimental Setup 

Equation Chapter (Next) Section 5 

In this chapter, a model for the 1 DOF system will be introduced. First, a detailed model of 

the mass dynamics is explained. Special attention is given to the modeling of the vessel, or 

mass, connected to a spring and oscillator. A simplified model of the motor dynamics and its 

corresponding transfer functions is then presented. This model is used together with the 

derived mass dynamics to represent the total model. Finally, the motion controller included on 

the Faulhaber drive electronics is explained. Velocity control of the motor shaft is discussed 

as a method for controlling the force actuated onto the vessel. The total model of the mass and 

motor dynamics is used to describe the Faulhaber system with velocity control. 

5.1 Mass Dynamics 

 

A floating vessel in heave is described by the following uncoupled equation of motion 

(Pettersen, 2007): 

33 33 3 33 3 33 3 3( ) ( )M A F tB C    
    

 (5.1) 

 

where 3  is the heave position, 3( )F t is the external forces in heave and: 

    m  = mass of the vessel ( kg ) 

    33A  = hydrodynamic added mass in heave ( kg ) 

    33B  = linear damping coefficient 

    33C  = spring coefficient 

 

3( )F t  is defined as all the forces acting on the body mass in vertical direction (or the 3-

direction). The spring force term 33 3C   is position dependent, and it is given as the difference 

between the body’s buoyancy force and the gravity force. If the body is brought out of its 

equilibrium position the force will be the result of the change in buoyancy (Pettersen, 2007). 

The spring coefficient can therefore be written using the equation in (Pettersen, 2007)  as 

33 w pC gA ,      (5.2) 

 

where 
w pA   is the area of water plane (

2m ) with 

     = density of water (
3/kg m ) 

g  = acceleration of gravity (
2/m s ) 

 

In order to emulate the heave motion of a floating vessel the setup in Figure 5.1 is introduced. 
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Figure 5.1: Simplified vessel model 

 

The simplified model should have properties similar to (5.1) describing a floating vessel in 

heave. mf   is the measured force, or the force actuated onto the system from the motor. Lf  is 

the load force from the wire (tension) on the motor shaft. Further, 1k
 
should equal the water 

plane stiffness given by the coefficient 33C , and m should equal the body mass 33M  of the 

floating vessel in model scale. When the vessel is considered to be a rectangular barge the 

mass is defined in (Pettersen, 2007) as 

 33M LBd ,      (5.3) 

 

where B  is the breadth, L  is the length and d  is the draught to the barge. 2k  is the stiffness to 

the force ring measuring the force actuated onto the body mass from the direct current (DC) 

motor, shown as M in Figure 5.1.   

 

To introduce a wave force on the body mass a “wave generator” is introduced. The “wave 

generator” is connected to the spring 1k
 
and the roof. An engine will cause the spring 

connection point to move up and down, emulating a wave force on the body mass. The 

vertical motion, caused by this engine, can be written as a harmonic function 

)( ) sin(z t a b t  ,     (5.4) 

 

where a and b  are some constants and   is the frequency.  

 

From the setup we also have the relationship 

 ( ) ( ) ( )x t z t y t  .     (5.5) 
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The following sign convention is adopted (see Figure 5.1) 

( )z t  Distance from the fixed roof to the fastening point of the spring (positive 

downwards). ( )z t a b   is the minimum value, and ( )z t a b   is the 

maximum value. Hence, a  must be larger than b , where a  and b is given in 

(5.4). 

x  Distance from the fixed roof to the COG of the moving mass. (positive 

downwards) 

0x  Equilibrium position of the pretensioned starting position of the mass m , or the 

distance from the fixed roof to the center of gravity (COG) of the mass at rest 

when ( )z t a b   and 0mf  . 

y  Distance from the fastening point of the spring ( 1k ) to the COG of the moving 

mass m  (positive downwards). 

0y  Distance from the spring fastening point to the COG of the mass when 

1 0k mf f mg   , where 1kf  is the spring force due to the stiffness 1k . In other 

words the equilibrium position of the mass when the system is at rest with ( )z t  

stationary and no gravity acting on the mass.  

 

In the simplified vessel model the damping and added mass is neglected. Since the body mass 

is oscillating in air, added mass will not be included here as it would in an experiment in 

water. Also damping is neglected in this simplified model, and hence some accuracy lost. 

However, the simplified model will give a good indication of the bandwidth to the control 

system actuating the simulated mooring force onto the vessel. The behavior to the vessel, 

proposed in the simplified model, will therefore be satisfactory. 

 

Hook’s law describes the opposing force exerted by the spring 

 1 1 1kf k d        (5.6) 

where, 1k , is the spring constant, and 1d is the total distance the spring is disturbed from its 

position at relaxation. The spring force is then given as 

 1 1 0 1 0( ( ) ) ( ( ) ( ) ),kf k y t y k x t z t y    
   

 (5.7) 

 

and 1d  is given as 

 1 0( ) ( )d x t z t y   .     (5.8) 

 

The spring force will be a simple linear approximation, and in most instances Hook’s law is 

not precise. For metal springs, linear model is only valid in the region where the spring 

behavior is elastic, beyond that the model breaks down. 

 

The equations describing the mass dynamics becomes 

 1m kx m fgm f   .     (5.9) 

 

Inserting (5.6) into (5.9) give 

                                    1 0( ( ) )mm k x zx m tg yf    ,     (5.10) 
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where g  is the gravitational constant and m is the mass. The equilibrium to the dynamic 

equation will be 0 0

1

, )( )(0,
m

x x
g

z y
k

    which shows that the mass falls to rest when 

1kf mg , with 0mf   and 0( )z t z . 

 

Assuming the second spring, 2k , is infinitely stiff so that it may be disregarded and there is no 

slack in the wire, then the mass system and the rotating motor dynamics, will be coupled. The 

revolution or distance, mx , of the pulley on the motor shaft can then be written as 

 0 0( )mx r x x    ,    (5.11) 

 

where    is the pulley angle, 0  is the initial angle, r  is the radius of the pulley connected to 

the motor shaft.   

 

For convenience, the initial motor angle could be selected as 0 0  , such that 

 
0r

r

x x

x r



 

 

 
,     (5.12) 

 

where   is the angular velocity of the pulley connected to the motor shaft. 0x
 
can be selected 

to 

 

 0 0

1

a b
mg

x y
k

    ,    (5.13) 

where 0  ensures that 0x x  is at a pretensioned position for all [ , ]a bz a b    when 

0 0   . 

 

5.2 Motor Dynamics 

 

The equivalent electrical circuit of the DC motor is illustrated in Figure 5.2. It can be 

represented by a voltage source au  across the coil of the armature, see (Egeland, 1993). The 

resistance is denoted by aR , and the armature inductance of the circuit by aL . The induced 

voltage due to the applied voltage source is referred to as ae , or the back electromotive force 

(emf). It is generated by the rotation of the electrical coil through the flux lines of the 

permanent magnets.  
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Figure 5.2: Electrical representation of a DC motor, ref (The MathWorks). 

 

The torque,  , seen at the shaft of the motor is proportional to the current induced by the 

applied voltage 

 ( ) aTt iK  ,      (5.14) 

 

TK  is the torque constant and dependent on the flux density of the magnets, the number of 

turns around the armature winding, ref. (The MathWorks). The back induced electromotive 

force can be written, in compliance with Faraday’s law, as 

 a Ee K  ,      (5.15) 

 

where   is the angular velocity and EK  is the voltage constant dependent on the physical 

properties of the motor. The sum of all the torques around the shaft, using Newton’s law, can 

be written as in (Egeland, 1993) 

 ( ) ( )m i f LTK t K i t
d

J
dt


      ,   (5.16) 

 

where 
f mK   is a linear approximation for viscous friction, mJ  is the inertia of the rotating 

masses, and L  is the load torque. Further, Kirchhoff’s voltage law states that the sum of all 

voltages around a loop must equal zero, giving 

 0a a a a a ae i R L
d

u i
dt

    .    (5.17) 

  

Substituting (5.15) into (5.17) give the following differential equation 

 ( ) ( ) ( )a
a a a E at K t

di
L R i t

dt
u    .    (5.18) 

 

A differential equation for the torque can be found by inserting (5.14) into (5.18), giving 

 ( )a a a a E au tiL i KR  
   

 (5.19) 

 

Further, the differential equation for the angular velocity can be found, using (5.14) and (5.16)

, as 

                                       m f LT aK iJ K     .    (5.20) 

 

The equations given by (5.19) and (5.20) describe the DC motor dynamics. Hence, a state 

space representation of the motor dynamics can be expressed as 
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  (5.21) 

and 

  0 1
a

y
i



 
  

 
,    (5.22) 

 

which is expressed symbolically as 

 1 2+ u +a L

d

dt
x Ax B B

   
 (5.23) 

and 

 y Cx      (5.24) 

 

where the applied voltage au  is the control input, L  is the load disturbance, 2x  is the 

state vector and y   is the output.  

 

In (Hesphana, 2009) the controllability matrix for a linear time-invariant (LTI) system is 

given as 

 
2 1

  ( )[ ]  n

n knCo B AB A B A B

     (5.25) 

for a n-by-n matrix A , and an n-by-k matrix B . In the LTI system, (5.23), the B matrix is a 

2-by-1, and the A matrix a 2-by-2. This will give the following controllability matrix 

  1

2

1

0

a

a a

T

m a

R

L L
Co B AB

K

J L

 
 

  
 
 
 

     (5.26) 

The reduced row echelon form of the controllability matrix, using Gauss Jordan elimination, 

will be 

 
1 0

0 1

 
 
      

 (5.27) 

This corresponds to two linearly independent columns, or rows, of the controllability matrix 

Co , resulting in full rank. The controllability matrix test, or Theorem 38 in (Hesphana, 

2009), states that a LTI system is controllable if and only if ( )rank Co n . Since 2n   the 

LTI system in (5.23) is controllable. 

 

Using the duality Theorems in (Hesphana, 2009) Section 15.8 it is possible to conclude that a 

pair (A,C) is observable if and only if the pair 
' '( , )A C is controllable. Using (5.25), on the pair 

' '( , )A C , the following controllability matrix is obtained 

' ' ' ' 2 ' ' 1 ' '( ) ( )nCo C AC A C A C Ob     

 

where, Ob , denotes the observability matrix of the LTI system, defined by 
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2

1

( )  

n

kn n

C

CA

Ob CA

CA 



 
 
 
 
 
 
  

 

 

Since 
'( ) ( ) ( )rank Co rank Ob rank Ob   Theorem 59 in (Hesphana, 2009) states that the LTI 

system is observable if and only if ( )rank Ob n . 

0 1

1 f

m m

C
KOb

CA
J J

 
   

        

 

 

This matrix will also have full rank, or rank equal to two, giving an observable LTI system.  

 

5.2.1 Transfer Functions 

 

A block diagram for the motor dynamics can be developed from the differential equations. 

Taking the Laplace transform of each equation gives 

1
(0) ( ) )) ) (( (a E

a a a a

a a a

R K
i i s s u ssi s

L L L
     

1
( ) (0) () ( ))(

fT
La

KK
s ss i s s

J JJ
       

 

The initial conditions converges to zero, and all the variables become some change around a 

reference state, if we consider perturbations around some steady state value. The equations 

can then be rewritten into the following form: 

 
( )

( )
( )a E

a

a a

u s K

R

s
i s

L s







     (5.28) 

 
))

( )
((T La

m f

K s
s

s K

i s

J








     (5.29) 

 

The block diagram, using (5.28), and (5.29), is shown in Figure 5.3. 
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Figure 5.3: Block diagram representation of a DC-motor 

 

Inserting  (5.29) into (5.28) give 

( ) ( )
( )

( )

a
a E

m f

L

a

a a

s s
u s K

J s

L

i

i
K

s R
s









 

( ) ( )( )E E
a a a a

m f

L

m f

i
K K

s R u s
s K J s K

s L s
J


 

  






 


 

 

The equation for ai can then be written as 

1 2( ) ( ) )) ( (( )La as u s H s si s H   

  

where 1( )H s , and 2 ( )H s is the relationship between ai and the inputs.  The transfer function

1( )H s , from the voltage au  to the current  ai , can then be written as 

 
1 2
( ) ( )

( )

m fa

a a m f a a m a f T E

J s K
H s s

u L J s K L R J s R K

i

K K


 

   
.  (5.30) 

 

Further, the transfer function from the load torque L  to the torque is given by 

 2 2
( ) ( )

( )

a E

a m f a a m a f TL E

K
H s s

L J s K L R J s

i

R K K K
 

   
.  (5.31) 

 

The transfer function from the inputs to the output  can also be found using the same 

approach.  

 

Inserting (5.28) into (5.29) give 

 

( ))( ( )
( )

( )

L
T a E

a a

m f

K s

L
s

J s

u s K
s

R

K

s










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)T aE T
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and the equation for the output   can be written as 

3 4(( ) ( ) ( ) () )Las u s ss sH H   .
 

 

The transfer function 1( )H s , from the voltage au  to the angle velocity  , can then be written 

as 

 
 23( ) ( ) T

a m a m a f a f a E T

s
L s J R K L

K
H s

Ku s KJ K R




   
 .  (5.32) 

 

Further, the transfer function from the load torque L  to the angular velocity  is given by 

 4 2
( )( ) a a

m a m a fL a f a E T

s R
s

L s J R K L s K

L
H s

R KJ K



 





  
 .  (5.33) 

5.3 1 DOF Dynamic Model 

 

The motor dynamics is derived in Section 5.1 and are given as: 

 ( )a a a a E auL i ti KR  
    

 (5.34) 

 ·f LJ r fK     
 
.
    

 (5.35) 

 

The equations given by (5.10), (5.34) and (5.35) represent a state space of dimension 5 . The 

state space can be reduced to 3  by introducing the constraint given by (5.12).  The mass 

dynamics in (5.10), with state variables ( , , )ai  , is then obtained as 

 
1 0 0(· · · ( ) )m k rm r mg f z t yx          (5.36) 

 

Since m Lf f   the equation (5.35) can be rewritten by adding (5.36),  giving 

 
 1 0 0

0

2

0

2

1 1·

( ( ) )

( ) (· · · ) )(

f

f

J r z t y

J r m

K r mr mg k x

K k r r z tm r k yg x

    

   

        

        
  (5.37) 

 

Hence, the total dynamic system describing the setup in Figure 5.1, written in 1
st
 order state 

space form, becomes 

          (5.38) 

 1 1 0 02

2 ( )
1

( )f T aKk r i r z t y xK mrg k
J mr

      


       (5.39) 

  
1

a E a a a

a

i iK uR
L

   

    

 (5.40) 

 

The system above requires that 0mx x x   at all times. This means that no slack in the wire 

between the pulley motor and mass may be accepted. If slack in the wire occurs the equation 

will no longer be valid, and the   and x  dynamics will not be coupled. An alternative 

approach may be necessary to decouple the   and x dynamics to avoid this problem. 

However, since the simulated mooring force is positive the wire will need to be tensioned at 

all times and therefore no slack in the wire may occur. 
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Defining the states as 

 : [ ]'ax i  ,      (5.41) 

 

we can write the dynamic model as 

 ax Ax B Gu w   ,      (5.42) 

 y Cx ,      (5.43) 

 

with 
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2 2 2 2
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1
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L L
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  

   
        
      
          

 

 (5.44) 

 [0 1 0]C        (5.45) 

 

and disturbance 1 0 0( ( ) )w mg k z t y x    . 

 

The observability and controllability matrix can be found for the state space system above 

utilizing the same methods as applied for the DC motor dynamics. The controllability matrix 

and observability matrix to the system above will have full rank, hence the system will be 

controllable and observable. 

 

5.4 Motion Controller 

 

The goal is to control the force actuated onto the vessel, this can be achieved by presetting the 

velocity of the DC motor. A positive velocity of the motor shaft will tension the line 

connected to the floater. Force measurement can then be used as feedback to determine what 

velocities the DC motor needs in order to achieve the desired reference forces.  

 

The Faulhaber drive electronics include a motion controller that can be configured to control 

the velocity of the motor shaft. The Faulhaber Motion manager software sets the 

configurations of the motion controller. By running on continuous mode (CONTMOD) and 

the SOR1 operating mode it is possible to preset the velocity to the motor via analog voltage 

input. Alternatively we can use the SOR2 mode with velocity presetting via a pulse-width-

modulation (PWM) signal. It is also possible to run with velocity presetting via RS232, 

meaning that commands can be sent to the motion controller, for example direction of 

rotation.  

 

In this thesis the velocity will be preset via analog voltage input. The maximum speed is set to 

be 10 000 rpm in the Faulhaber motion manager software. 10 V at the analog input will then 

give 10 000 rpm as target velocity.  

 

A schematic overview of the system included in the Faulhaber motion controller is shown in 

Figure 5.4. The target velocity due to an analog voltage input is calculated in the “Target 
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Velocity Calculations” box. The system also consists of a PI velocity controller that attempts 

to minimize the difference between the target velocity and actual velocity by adjusting the 

engine control input u. Figure 12.1 in Appendix 12.1 gives a more detailed view of the system 

implemented on the Faulhaber motion controller. In the supplied Faulhaber software it is 

possible to monitor the target velocity, actual velocity and actual current. The data can be 

stored and used in the system identification process.  

 

The computer software LabVIEW® utilized together with the cRIO module can be used to 

send analog voltage signals as input to the Faulhaber drive electronics. By controlling the 

analog input it is possible to control the actual velocity of the motor shaft. Hence, the desired 

force actuated onto the vessel can be controlled. 

 

 

 

Figure 5.4: Schematic overview of the system implemented on the Faulhaber motion controller. 

 

 

The physical system of the Faulhaber motion controller is detailed and complex. However, it 

is possible to use previously derived models of the mass and motor dynamics to describe the 

main physical properties of the system.  

 

A model describing the dynamics from a given target velocity 0  to the actual velocity   

and current ai  can be found. Figure 5.5 shows the block diagram of PI control for a DC motor 

with angular velocity as feedback. The block shown as “1 DOF dynamic model” in the figure 

are the previously derived equations from (5.38) to (5.40), which consists of the motor and 

mass-spring dynamics. The 1 DOF dynamic model can be used to describe the DC motor 

dynamics, however this model will include the disturbance from the mass-spring dynamics 

(the disturbance from the mass-spring can be neglected in the model by simply setting the 

mass and spring value to zero). However, it is convenient to include this dynamics when the 

DC motor is connected to the mass-spring. A PI controller is included to minimize the 

difference between a preset target velocity 0  and the actual velocity . A PI controller is 

chosen to represent the PI velocity controller on the Faulhaber motion controller. 
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A function will be necessary to describe the relationship between the current ai , or actual 

motor shaft velocity  , to actuated force mf . When the motor shaft is connected directly to a 

spring the force can be described as the distance the pulley will turn multiplied with spring 

stiffness. This will be explained more in detail later in the section. 

 
Figure 5.5: Blockdiagram from the target velocity 0  to the actuated force mf . 

 

The mathematical equation for the PI velocity controller in Figure 5.5, in frequency domain, 

can be written as 

 ( ) pPI
ik

H s k
s

  ,     (5.46) 

 

where 
pk  is the proportional constant and ik

 
is the integral constant. 

 

The control objective is that the tracking error will approach zero. The tracking error is 

defined as 

 0( )e t    ,      (5.47) 

 

where 0  is the target velocity and   is the output. The control input signal is then given as  

 ( ) ( ) i
a p

k
u s e s k

s

 
  

 
.    (5.48) 

 

The control energy needed to achieve error regulation will then be 

 ( ) ( ) ( )a i pu t k e t dt k e t  .    (5.49) 

 

Inserting (5.49) into the 1 DOF dynamic model from (5.38) to (5.40) give 

                    (5.50) 

 1 1 0 02

2 ( )
1

( )f T aKk r i r z t y xK mrg k
J mr

      


       (5.51) 

 
1

( ) ( )a E a a i p
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i R i
L

K k e t dt k e t    
 


   

 (5.52) 
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If  
0e      the total model, from 0  to   and ai , can be written as 

 

 
0         (5.53) 

                   (5.54) 

 1 1 0 02

2 ( )
1

( )f T aKk r i r z t y xK mrg k
J mr

      


       (5.55) 

 0(
1

)a E a a i p

a

ki K R i
L

k           ,    (5.56) 

 

since 
0

( )e t dt 


 .  

 

Defining the states as 

 : [ ]'ax i   ,     (5.57) 

 

we can write the dynamic model as 

 0x Ax B Gw   ,     (5.58) 

 y Cx ,     (5.59) 

 

with 
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    

(5.60)

  
 [0 0 1 1]C       (5.61) 

 

and disturbance 1 0 0( ( ) )w mg k z t y x    . 

 

The equations given by (5.53) to (5.56) describe the model from the target angular velocity 

0  to the actual angular velocity   and the current ai . 

 

When the DC motor is directly connected to a pretensioned spring connected to a fixed point, 

the relationship between   and measured force mf  can be defined to be proportional to the 

motor shaft angle of rotation  : 

 

 1 1m d Cf C t   .     (5.62) 

 

When the spring is connected directly to the oscillating system actuator, with vertical motion

3 , the force can be expressed as: 

 1 2 3m CCf   .     (5.63) 
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The force can also be expressed using the current: 

   

 ·m af K i   (5.64) 

 

A second model needs to be derived in order to find the relationship between the analog 

voltage and the target velocity, shown in Figure 5.4. Earlier it was mentioned that 10 V as 

analog input will result in 10 000 rpm as target velocity, assuming the maximum speed is set 

to 10 000 rpm. However, the relationship is not proportional and a model is needed to 

describe it. The black box shown as “target velocity calculation” in Figure 5.4 from the analog 

voltage input aiu  to the target velocity 0  must therefore be determined. The model, shown in 

Figure 5.6, is assumed to be a PI controller that attempts to minimize the difference between a 

reference 
,0r  and the target velocity 0 . 

 

 
Figure 5.6: Block diagram from the analog voltage aiu  input to the target velocity 0 . 

 

The relationship, between a target velocity 0  and it’s reference velocity 
,0r , can be written 

as 

 0 ,0 0 ,0 0( ) ( )ui r u p rk dt k       ,   (5.65) 

 

where uik  and 
u pk are some unknown constants. Further, it is assumed that the relationship 

between an analog voltage aiu  and its reference 
,0r  is proportional 

 
,0r aiGu  ,     (5.66) 

 

where G  is a unknown constant. Inserting this relationship into (5.65) give 

 

 0 0 0( ) ( )ui ai u p aik dG t ku Gu     .   (5.67) 

 

The derivative of 0  can be written as 

 0 0 0

0 0

( ) ( )

(1 )

ui ai u p ai

u p ui ui ai u p ai

Gu Gu

k Gu

k k

k k k Gu

  

 

 



 

   
.

  

 (5.68) 

Assuming that the initial conditions are zero the Laplace transfer function in frequency 

domain, describing the relationship between target velocity and analog voltage, may be 

written as 
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 0 ( )
(1 )

up ui

ai u p ui

k Gs k

k

G
s

u k s

 



.    (5.69) 

 
 The model can be used to find the target velocity from a given voltage input. The transfer 

function have one pole and one zero. 
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6 System Identification 
Equation Section 6 

In this chapter the unknown parameters in the derived models are determined. Measured input 

and output data from experiments are used to determine the parameter values. The parameters 

are tuned so that the model output fit the measured output using the same input.  

 

In the first section the parameter values in the derived model from analog voltage to target 

velocity are determined. The System Identification Toolbox is used to tune the parameters to 

fit the data in best feasible way. 

 

In the second section the parameter values in the model describing the relationship between 

target velocity, current and actual velocity are determined. The input data is selected to be the 

measured target velocity while the outputs are selected to be the current and actual velocity of 

the motor shaft. Measured input and output data are used to tune the initial DC motor 

parameters using the System Identification Toolbox. The last part of the section describes 

how the control gains in the model are determined. 

 

Finally, the relationship between a measured force ring voltage and an actual force is 

discussed. 

 

6.1 Parameter Identification in the Model from Analog Voltage to 
Target Velocity 

 

The analog voltage input is set to be a white noise signal with 0.1 [s] zero-order hold sample 

time. The analog voltage input to the Faulhaber motion controller will then be a piecewise-

constant white noise signal. Figure 6.1 shows the measured target velocity due to this applied 

voltage. 

 

To determine the parameters in the model between analog voltage  aiu  to target velocity 0
 

the measured input and output data in Figure 6.1 can be used. To find the unknown 

parameters in , (5.69), the first half of the measurement data can be used for identifying the 

model, while the last half can be used for validation. Since the derived model have 1 pole and 

1 zero (P1Z) it is possible to use System Identification toolbox to identify an optimal P1Z that 

fits the measured data.   
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Figure 6.1: Measurement of the target velocity (top) due to a white noise analog voltage input (bottom). 
  

From the calculations performed by system identification toolbox the optimal P1Z will be:  

 

 

 

 

 

 

 

 

 

 

 

 

The unknown parameters in (5.69) can therefore be selected to be: 

 
1

,     Tz= ,     Tp1=
u p u p

ui ui

k k
Kp G

k k


 . (6.1) 

 

 

 

 

Process model with transfer function 

                                       1+Tz*s 

G(s) = P1Z(s) = Kp *    ------------ 

                                     1+Tp1*s 

 

with   Kp   = 988.63+-2.8207 

  Tp1 = 0.010566+-0.00025546 

  Tz    = 0.0047011+-0.00014818 

 

Estimated using PEM using SearchMethod = Auto from data set z 

Loss function 32296.3 and FPE 32553.3 
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6.2 Parameter Identification in the Model from Target Velocity to 
Current and Actual velocity 

 

In this section the parameters in the derived model from (5.53)-(5.56) are determined. First 

the control parameters in the model are found using a DC motor with optimal PID control. 

The section ends with describing how the unknown DC motor parameters are found. 

 

The mass is set to be equal to zero since collected measurements are preformed with the 

motor connected directly to a spring fixed to the roof. Measurement data are also collected 

when the pulley, connected to the shaft, runs freely; the stiffness and mass are then set to be 

zero. The other parameters in the model are set to be equal to: 

 

Description  Unit 

Distance from “roof” to stationary 

oscillator 
0 0.5z    [m] 

Distance from “roof” to mass 
0 0.8x   [m] 

Pulley radius 0.04r   [m] 

Distance from stationary oscillator 

to  mass 
0 0.3y   [m] 

Table 6.1: Parameter values in the model. 

6.2.1 Determination of the Control Gains 

 

When the motor runs freely it is possible to look at a DC motor with angular velocity as 

feedback to determine optimal controller gains. Figure 6.2 shows the block diagram of 

optimal PID control for a DC motor with angular velocity as feedback. The transfer function 

3( )H s of the DC motor from the applied voltage au (control input) to the angular velocity    

is derived in (5.32). 

 
Figure 6.2: Block diagram of PID control of a DC motor 

 

3( )H s  can then be defined as in Yu & Hwang (2004): 

 2

( )

( )a

s c

u s s as b




 
. (6.2) 

where the constants ,a b  and c  are given by 3( )H s previously derived. The mathematical 

equation of a PID controller in frequency domain is 

 ( ) i
pD dPI

k
H s k k s

s
   , (6.3) 
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where 
pk  is the proportional constant, dk  is the derivative constant and ik is the integral 

constant. 

 

The control objective is that the tracking error will approach zero. The tracking error is 

defined as 

 0( )e t    , (6.4) 

where 0  is the velocity command and   is the output. The control input signal is then given 

as  

 ( ) ( ) i
a p d

k
u s e s k k s

s

 
   

 
. (6.5) 

The control energy needed to achieve error regulation will then be 

 ( ) ( ) ( ) ( )a i p d

d
u t k e t dt k e t k e t

dt
   . (6.6) 

 

To find optimal value of 
pk , dk  and ik  the approach described in Yu & Hwang (2004) can be 

used. The augmented state vector is introduced and its differential equation is given as 

 

( )

( ) ( ) ( ) ( )

( )

a

e t

z t e t Az t Bu t

e t

 
 

  
 
  

, (6.7) 

where 

 

0 1 0 0

0 0 1  and  0

0

A B

b a c

   
   

 
   
        

. (6.8) 

 

Further, in Yu & Hwang (2004) the performance measure is given as 

  
0

( ) ( )( () )T

p a a

T u t RuJ z t Q tz t



  , (6.9) 

where Q  and R  are symmetric weighting matrices. The matrices should be selected to 

minimize the performance measure. From Yu & Hwang (2004) it is shown that the optimal 

control input is given as: 

  

1

2 3

*

1

( ) ( )

        ( )

        ( )

        ( )

a

i p d

t R BSz t

Kz t

K K K z t

k k k z t

u  

 

 

   

   (6.10) 

 

where S  needs to satisfy the algebraic Riccati equation 

 
1 0T TA S SA SBR B S Q    . (6.11) 
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The motor parameters are assumed to be the same as the ones given in the motor datasheet: 

 

Parameters Values Unit 

aR  1.2   

EK  0.02012 V/(rad/s) 

fK  2.2918*10^-6 Nm/(rad/s) 

aL  1.94*10^-4 H 

TK  20.12*10^-3 Nm/A 

mJ  3.4*10^-6 kgm^2 

Table 6.2: Initial DC motor parameters, ref. (DC Motor Spesifications). 

 

The augmented matrices will then be 

 

0 1 0 0

0 0 1  and  0

/0 ( ) / / T a ma T E a m m a f a a mf

A B

K L JR K K K L J J R K L L J

   
   

    
          

 

 

The weighting matrices are selected to be 

 

100 0 0

0 5000 0 ,     1

0 0 0

Q R

 
 

 
 
  

 (6.12) 

 

Solving the Riccati equation (6.11) for S and substituting into (6.10) give the optimal gains 

  10.0000  70.6907   0.0020i p dk k k    , (6.13) 

 

with roots of the closed-loop characteristic equation calculated as 3298.1 3269.9i   and 

0.1414 . 

 

The derived controller gains can be used in the model describing the relationship between the 

target velocity, actual velocity and current. 

 

6.2.2 Determination of the DC motor parameters 

 

The unknown DC motor parameters in the differential equations described by (5.53) - (5.56) 

needs to be determined. In order to do so proper experimental data needs to be measured and 

stored. The target velocity and actual velocity can be measured and stored using the Faulhaber 

software manager. The experimental target velocity and actual velocity is shown Figure 6.3. 

The figure shows that the actual velocity has a delay compared to the target velocity. 
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Figure 6.3: The actual velocity (dashed) of the motor shaft due to a measured target velocity (solid). 
 

Measurement of the current can also be found using the Faulhaber software manager. The 

current was measured using a sinusoidal voltage as input, and a pretensioned spring connected 

directly to the roof and motor shaft. The measured input-output data, with current mean 

removed, are shown in Figure 6.4.  

 

Figure 6.4: Current measurement (top) due to a sinusoidal target velocity (bottom). 
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The derived differential equations (5.53) - (5.56) can be used to describe the model from the 

target velocity 0  to the actual velocity   and the current ai . The System Identification 

Toolbox can find the unknown parameters using the given differential equations by 

comparing it to the input and output measurements.  

 

The initial DC motor parameters are set to be equal to the parameters given in Table 6.2. The 

initial parameters are however changed by trial and error and by running the System 

identification program together with different measured data.  

 

In Appendix 12.2 the system identification toolbox calculations are given. The parameters are 

found using target velocity as input and actual current/velocity as output. From the calculation 

the following DC motor parameters are obtained: 

 

Parameters Values Unit 

aR  0.3915   

EK  0.0309 V/(rad/s) 

fK  0.4611 Nm/(rad/s) 

aL  0.0042 H 

TK  1.5120 Nm/A 

mJ  0.00213 kgm^2 

Table 6.3: DC motor parameters. 

 

The Matlab® “pem” function used to estimate the model parameters uses optimization to 

minimize the cost function, defined as follows for scalar outputs (The MathWorks): 

 
2

1

( , ) ( )
N

t

GV G H e t


 , (6.14) 

where ( )e t  is the difference between the measured output and the predicted output of the 

model. 

 

6.3 Relationship between measured voltage and actual force 

 

Different weights are used to establish a relationship between the measured voltage, in the 

force ring, and the corresponding force. The weights are connected to the force ring fixed to 

the roof. The measured force due to the mass m  can then be expressed as F mg , where g  

is the gravitational constant. The voltage measurements due to different weights are shown in 

Figure 6.5. 

  



 

60 

Voltage [mV] Force [N] 

-254 0 

-335 1.160523 

-404 2.337723 

-464 3.122523 

-557 4.495923 

-667 6.065523 

-721 6.850323 

-801 7.929423 

-933 9.989523 

-1068 11.951523 

-1180 13.423023 

-1279 14.894523 

-1408 16.856523 
Figure 6.5: Voltage measurement in the force ring to a force. 

 

The principle of least squares can be used in a fast and efficient manner to find the best fitting 

straight line passing through the data given by Figure 6.5. The unknown parameters in a linear 

equation 1 2f̂ U    can be found using this method, where U  is the experimental voltages 

and f̂  is the computed force. From (Åström & Wittenmark, 1997) the unknowns   should be 

chosen in such a way that the sum of the squares of the difference between the actually 

observed and the computed values multiplied by a degree of precision is a minimum. 

 

If all the measurements are assumed to have the same precision, the least square principle 

says that the parameters should be selected so that the following loss function given in 

(Åström & Wittenmark, 1997) 

 21
)

2
( iJ    , 

is minimal. ˆ
i i if f   , where if  is the measured values of the force, and 1 2f̂ U   is the 

computed force. The loss function is minimal for parameters   such that 

 f V  (6.15) 

where  

  
1

1 2

1

  and 

1

T

n

U

V

U

  

 
 


 
  

 . (6.16) 

To find  , we premultiply (6.15) with 
TV  and multiply with the inverse of  

TV V  on both 

sides 

 
1( )T TV V V f V f    , (6.17) 

where V

 is the pseudo-inverse of V .  Figure 6.6 show the best fitting line for the data set 

given by Figure 6.5. 
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Figure 6.6: Best fit linear equation of observed data for voltage and force. Found using least square 

method. 

 

The best fit equation is found to be 

 0.0145 .63ˆ 3 3 43Uf     (6.18) 

where U  is the force ring voltage and f̂  is the best fit computed force. 

 

6.4 Discussion 

 

The results obtained in the system identification process use measured data with a DC motor 

connected to a pretensioned spring and with a freely rotating pulley. Preferably, the measured 

data used in the system identification of the model should have been collected using a mass 

and spring together with the vertical oscillating motion. The parameters will therefore be un-

optimized when the mass is included. The vessel mass will induce vertical motion and a 

disturbance load at the motor shaft.  

 

The vertical motion to the oscillating system can be accounted for by considering its force 

impact. When the vertical motion measurements to the oscillating actuator are known, its 

force impact can be found by multiplying the displacement with the spring stiffness. The force 

due to the oscillating motion can then be added to the spring force generated by the DC motor 

to obtain the total measured “force ring” force, assuming the spring is connected directly to 

the oscillating system and the mass is neglected. 
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7 Model Validation 
Equation Section 7 

In this chapter the simulated outputs from the derived model are compared with measured 

data. The parameters in the model are found in the system identification chapter. Using the 

known parameters the chapter starts with comparing the simulated target velocity to the 

measured target velocity. In the second section the simulated actual velocity/current are 

compared to measured data. Finally, the measured force and the simulated force are 

compared. 

7.1 Model Validation between Analog Voltage to Target Velocity 

 

Figure 7.1 shows the comparison between the measured and simulated target velocity 0  due 

to a given voltage input.  The transfer function in (5.69) using calculated parameters gives an 

85.6 % fit to the measured output data. A transfer function with 2 poles (P2) is also shown in 

the figure, the P2 transfer function gives an 82 % fit. The fit is calculated using the following 

equation (The MathWorks): 

 

 
 

1 ( )
100

(
·

)

outnorm y y
fit

norm y mean y

 



 (7.1) 

where y  is the measured output and outy
 
is the simulated. 

 

The established model from the analog voltage to the target velocity, gives a satisfactory fit to 

the experimental measured data. 
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Figure 7.1: Comparison between the measured and simulated target velocity using an optimal one pole-

one zero transfer function, and a two pole transfer function. 
 

 

7.2 Model Validation from Target Velocity to Current and Actual 
Velocity 

 

The comparison between the simulated actual velocity   and the measured actual velocity is 

shown in Figure 7.2. The figure shows that the simulated velocity has a 90.26 % fit to 

measured velocity from experiment. 

 

The parameters work relative well if the target velocity input is white noise. However, the 

model does not necessarily work well for all types of input signals. In order to test how well 

the model performs, a relative unfavorable input signal is used. The input signal is set to be a 

pulse signal with amplitude close to maximum, in this case pulses at 9000 rpm. The result 

comparing the simulated   and experimental angular velocity output is shown in Figure 7.3. 

The fit in this case will be 77.3 %. A worse fit is expected for this case since the amplitude is 

close to maximum and the model is tuned for lower amplitudes. The comparison is 

established using a freely running motor shaft. 
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Figure 7.2: Comparison between the measured (solid) and simulated actual velocity (dashed) due to a 

white noise analog voltage input. 
 

 

Figure 7.3: Comparison between the measured (solid) and simulated actual velocity (dashed) using 

established DC motor parameters given in Section 6.2.2, and pulses as analog voltage input. 
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In Figure 7.4 the measured current from experimental data is compared to the simulated 

current. The current is simulated using the parameters found in the system identification 

chapter. The measurements are done using a pretensioned spring fixed to the roof and an 

analog sinusoidal voltage as input. The simulated model current gives a 59 % to the measured 

current. 

 

Figure 7.4: Comparison between the measured (dashed) and simulated current (solid), using established 

DC motor parameters given in Section 3, sinusoidal voltage as input and a pretensioned spring connected 

directly to the roof. 

7.3 Comparison between the Simulated Force and Measured Force 

 

The measured force due to a sinusoidal analog voltage input is monitored and stored. The DC 

motor is connected to a spring that is fixed to the roof.  The input voltage and its 

corresponding force are shown in Figure 7.5. The force ring measurements, in Volt, are found 

in Newton using (6.18). The input voltage has initial amplitude high, hence a high initial 

velocity. The positive velocity in the beginning will therefore tension the spring even more. 

This is done to keep the spring tensioned when the voltage becomes negative again. 

 

The force measurements from experiment due to the sinusoidal voltage input are shown in 

Figure 7.5. In this case the DC motor is connected directly to a spring fixed to the roof. The 

force due to the analog voltage is then measured.  

 

If the analog voltage is used as input in the derived model of the system a simulated actual 

velocity can be used to describe the force in the spring. Since the DC motor is connected 

directly to the pretensioned spring the simulated force can be expressed as mf dK t  , 

where   is the actual velocity and K is a constant. When K is selected to be 0.086 the 

simulated forces will correspond well to the measured forces from experiment.  
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The simulated force is shown together with the measured force in Figure 7.6. The simulated 

force differs from the measured forces the first four seconds. This is due to the fact that the 

initial force in the experiment is positive since the spring is pretensioned. In the model the 

simulated force will be zero since the voltage is zero. 

 

Figure 7.5: Analog voltage input (top) and the corresponding measured force (bottom). 

 

Figure 7.6: Simulated force (dashed) from model compared to the measured force (solid) from 

experiment, using the same voltage input given by Figure 7.5. 
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7.4 Discussion 

 

A model from a given analog voltage input to the actual measured force is established. There 

is a good accordance between the simulated actual velocity and the measured velocity due to 

the same voltage input. The match between simulated current and measured current is also 

satisfactory. The parameters in the model are established for a DC motor connected to a 

pretensioned spring, and for a DC motor running freely.  

 

The vertical motion from the oscillating generator can be accounted for by adding its 

contributing force. The force due to the vertical motion can be found by multiplying the 

vertical motion with the spring stiffness. A good model is therefore established when the 

spring is connected directly to the oscillating system.  

 

If a mass is included in-between the spring and rope connected to the oscillating system the 

vertical motion due to the mass will induce disturbance in to the system. Preferably, optimal 

model parameters should have been established for this case. 
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8 Control Design 
 

The objective is for the mooring force acting on the vessel to track given desired reference 

signals. The corresponding feedback controller must then track the reference. The objective 

for the controller will be to actuate these equivalent forces in each time step on to the vessel 

model. If the reference force is defined as reff , and the output is the measured force mf . The 

main objective will be to design a control law ensuring that m reff f  . 

 

This can be achieved by controlling the velocity of the motor shaft; hence the analog voltage 

input to the real process must be controlled. The difference between the force reference and 

measured force must be minimized. The force measurements will include white noise, or 

disturbances. Hence, filtering this signal must be carried out. An estimated force that removes 

the noise in the measured force must be used as feedback. 

8.1 Control Design 

 

 
Figure 8.1: Blockdiagram from the force reference to the measured force. 

 

The control strategy is to design a control law ensuring that 
rm eff f .  A PID controller can 

be uses for this purpose. The mathematical equation of a PID controller in frequency domain 

is 

 1
1 1( )P dI

i
pD

k
H s k k s

s
   , (7.2) 

where 
1pk  is the proportional constant, 1dk  is the derivative constant and 1ik is the integral 

constant. 

 

The control objective is that the tracking error will approach zero. The tracking error is 

defined as 

 ( ) ˆ
re f me f ft   , (7.3) 

where re ff  is the force command and ˆ
mf  is the estimated force. The control input signal is 

then given as  



 

70 

 
1

1 1( ) ( ) i
ai p d

k
u s e s k k s

s

 
   

 
. (7.4) 

The control energy needed to achieve error regulation will be 

 1 1 1( ) ( ) ( ) ( )ai i p d

d
u t k e t dt k e t k e t

dt
   . (7.5) 

 

8.2 Observer Design 

 

The main purpose of an observer is to reconstruct unmeasured or absent signals and to 

provide noise filtering of measured signals. The filtered or reconstructed signals are then used 

as feedback to the control system. In this case the measured force will be noisy and a filtered 

force signal must be used as feedback to the control system. 

 

An estimator that copies the model from 0  to mf   exactly can be expressed as 

0 1
ˆ ˆ ˆ

mK f   
 

 2
ˆ ˆ

mK f    
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 
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ˆˆ 1

(ˆˆ ˆ )a E a a i p m

a

i K i k K
L

k fR       
 

     

 3
ˆ ˆ· ·m Kf C    

The deviation error  
1ˆ

m m mf ff    is taken between noise corrupted real measurement of 

the force and estimated values. 1K , 2K , 3K and 4K  are the observer gains. 

 

In Figure 8.2 the estimated force due to sinusoidal voltage inputs is compared to the measured 

force from experiment with measured vertical motion 3  to the oscillating system set to zero. 

The observer gains are chosen to be: 

 1 2 3 4400,   320,   310  &  200K K K K    . (7.6) 

 

The estimated force is also compared to the measured force from experiment when the input 

voltage is a white noise signal. Figure 8.3 shows the estimated force and measured force for 

this case. The observer removes the unwanted noise in the signal.  
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Figure 8.2: Estimated force compared to the measured force due to sinusoidal voltage inputs. 

 
Figure 8.3: Estimated force compared to the measured force. 
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8.3 Mooring Line Calculations 

 

To simplify the mooring line calculations a sinusoidal heave motion of the vessel model is 

considered. The corresponding force in the mooring line due to this vertical motion is 

calculated using RIFLEX by co-student Stian Garlid. The force corresponds to the top node 

vertical mooring line force. In Figure 8.4 the vertical force in one mooring line is given for a 

sinusoidal heave motion with amplitude 0.057aM  [m] and period 1.55MT   [s]. The force 

and heave motion are given using 1:70 as model scale, corresponding to a full scale amplitude 

4a   m and period 13T   s. 

 

In lack of an equation describing the relationship between a vertical motion and 

corresponding force a lookup table in Simulink® is used. When the measured vertical motion 

is known the corresponding mooring line force can be found from the calculated data. 

However, as seen in Figure 8.4 a vertical displacement will correspond to two different force 

values. To separate these to values it is possible to look at the derivative of the vertical 

motion. When the derivative is positive the first section of the corresponding force is used in 

the lookup table, and when the derivative is negative the second section is used. The 

calculated data in the lookup table use the steady state heave motion over one period as seen 

in Figure 8.4. When the vertical displacement is in-between two given values the lookup table 

uses linear interpolation to find the corresponding force. Desired force references are now 

established for a given heave period and amplitude.  

 

The specific heave motion can therefore be used to calculate the desired reference force as 

shown in Figure 8.5. The calculated mooring line forces are then utilized as reference in the 

control system. 

 

 
Figure 8.4: Top node vertical force in one mooring line(bottom) and the corresponding vertical 

motion(top). 
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Figure 8.5:Blockdiagram from measured heave motion to desired mooring line force. 
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9 Experiments 
 

A series of model tests were performed in order to investigate the performance to the control 

system using various force reference inputs. The Marine Cybernetics (MC) laboratory was 

used as testing site, and an experimental setup consisting of a Faulhaber engine, oscillating 

system, spring and mass, was used in the execution of the experiments.  In the experiments a 

100 Hz sampling frequency is used, the sampling frequency is set in the “configuration 

parameter “ panel in the Simulink® model.  

 

The experimental testing is performed using two different experimental setups. The first case 

include a setup were the force ring is connected directly to the oscillating unit. The spring is 

then connected in-between the force ring and a rope running down to the Faulhaber engine. 

Measurements of the vertical displacement to the oscillating unit, representing the heave 

motion, are then used to calculate the desired mooring line force. The Faulhaber engine will 

then try to pull the spring and line so that it achieves the same force. Tests are conducted 

using sinusoidal motions of the oscillating unit as well as zero displacement.  

 

A second test case is conducted by connecting the spring in-between the oscillating unit and a 

mass. The force ring is connected directly to the underside of the mass and a rope running 

down to the Faulhaber engine. Tests are conducted to see whether the Fulhaber engine 

manages to actuate correct forces corresponding to given reference values. The vertical 

motions of the oscillating unit are set to be sinusoidal and zero.  

 

This chapter describes the experimental setups, and present some of the main results obtained. 

A discussion regarding the control system performance and practical issues connected to the 

accomplishment of the experiments concludes the chapter. 

 

9.1 Case 1 

 

In this case the vessel is considered to be the oscillating system as shown in Figure 9.1. The 

vertical motion will therefore correspond to the heave motion of the vessel. The heave motion 

measurements can be used to calculate the desired reference forces using the approach given 

in Section 8.3. Figure 9.1 shows the experimental setup consisting of the oscillating system, 

force ring, spring and Faulhaber engine. A pulley is attached to the Faulhaber engine shaft 

pulling the “mooring line”. The mooring line consists of a line and a spring. The spring is 

connected in between the line and force ring fixed to the oscillating system. 
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Figure 9.1: Experimental setup case 1. 

 

 

The measured heave motion to the oscillating system can be used as input to the control 

system to calculate the desired reference forces as shown in Figure 8.4. The heave motion is 

sent to the cRIO module as an analog voltage signal. With 0 volt as input the oscillator is in 

its top position. However, as a default the oscillating system is lowered with 0.2 m 

corresponding to 2 volt as input. The relationship between vertical motion and voltage is 

given as 

 3

1
( 2)

10
u   , (7.7) 

where 3  is the measured heave motion in meter and u  is the voltage input.  

 

The heave motion to the oscillating system is set to be equal to the steady state motion given 

by Figure 8.4 with amplitude 0.057aM   [m] and 1.55MT   [s]. The parameters in the 

control system are set to be equal to the values given by Table 9.1. The mass is not considered 

in this case and its value is set to be zero.  

 

The estimated force in the control system is set to be equal to 3
ˆ ˆ· ·m Kf C  . K and C are 

found by experimental testing and their values are set to be equal to 0.005 and 4.85 

respectively. 

 

The experimental result using the parameters given in Table 9.1 is shown in Figure 9.2. The 

plot shows a good resemblance between the reference and measured force. Hence, the control 

system will be able to actuate the desired mooring line forces for a vessel moving in the given 

heave motion. However, there is some disturbance in the measured force especially at the 

peak amplitudes. 
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The estimated force filters the signal quite well. However, by reducing the observer gains the 

noise in the estimated force can be reduced even more. Due to the rapid motion, 1.55 seconds 

from top to bottom, the observer gains needed to be set high. 

 

Observer gains Controller gains Mass Sinusoidal Heave Motion 

K1=7000 kp=11 m=0 [kg] Amplitude=0.057 [m] 

K2=4300 ki=3  Period=1.55 [s] 

K3=3300 kd=0.02  Frequency=0.64 Hz 

K4=7000    
Table 9.1: Parameter values. 

 
Figure 9.2: Experimental result using parameter values in Table 9.1. Mooring line force reference shown 

together with estimated and measured force (top) and heave motion (bottom). 

 

 

The 1:70 in model scale give a relative small heave period (time is scaled with the square root 

of the model scale). Preferably a larger model scale should be utilized when model testing, 

resulting in a larger heave period. Experiments assuming higher heave periods are therefore 

conducted. In the experiments using higher heave periods, the observer gains may be reduced. 

The result using the parameters in Table 9.2 is shown in Figure 9.4.  

 

The noise at the peak amplitudes are now reduced and the measured force follow the force 

reference better. Some disturbance is still present, however this is hard to remove due to the 

constant white noise disturbance present in the measurements. 

 

Observer gains Controller gains Mass Sinusoidal Heave Motion 

K1=1500 kp=11 m=0 [kg] Amplitude=0.057 [m] 

K2=1900 ki=3  Period=5 [s] 

K3=1800 kd=0.02  Frequency=0.2 Hz 

K4=1500    
Table 9.2: Parameter values. 
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Figure 9.3: Experimental result using parameter values in Table 9.2. Force reference shown together with 

estimated and measured force (top) and heave motion (bottom). 

 

The desired force is now changed to a random sinusoidal reference. The amplitude and bias to 

this reference signal is then changed during the experiment. The heave motion is set to be a 

sinusoidal motion with amplitude 0.057aM   [m] and period 3.3MT   [s]. The result is 

shown in Figure 9.4. The control system will be able to follow the sinusoidal references using 

different bias and amplitude values. 

 
Figure 9.4: Random sinusoidal force reference with different amplitude and bias values changed under 

simulation. Sinusoidal force reference shown together with estimated and measured force (top) and heave 

motion (bottom). 

 

 

Figure 9.5 shows a close up view when the bias to the sinusoidal reference force is changed. 

From the figure the settling time is found to be 0.12sT   [s]. This is the time it will take for 
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the measured force to reach its reference value. The estimated force filters the unwanted 

disturbance in the measured force properly. 

 
Figure 9.5: Sinusoidal force reference with different bias values changed under experiment shown 

together with estimated and measured force (top). The plot is shown together with the corresponding 

heave motion (bottom). 

 

Figure 9.6 show a piecewise constant force reference plotted together with the measured and 

estimated force. From the figure the settling time is found to be 0.15sT   [s]. In this case 

there will be no heave motion of the oscillating system. 

 
Figure 9.6: Force reference shown together with its measured and estimated force. The vertical motion 

from the oscillating system is set to be zero. 

 

Several additional experimental results using a pretensioned spring without vertical heave 

motion are shown in Appendix 12.4. The experiments were done using a sinusoidal force 

reference and a zero order hold element, meaning that the signal is kept constant until the next 

sample instant. The Sample time in the zero order hold element is then gradually decreased. 
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With 10 ms sampling time the force reference will be a piecewise constant signal with 10 ms 

steps. The result using 10 ms sampling time is presented in Figure 9.7. The figure shows that 

the measured force have a good fit to the desired reference.  

 
Figure 9.7: Estimated and measured force compared to a sinusoidal force reference with 10 ms zero order 

hold. 

9.2 Case 2 

 

The experimental setup for case two is shown in Figure 9.8. The “vessel in waves” will 

consist of the mass (vessel), spring and an oscillating system. The oscillating system will 

induce vertical motion representing the wave motion.   

 

Figure 9.9 shows a detailed view of the key components in the experimental setup. The force 

ring is connected in-between the mass and a rope. The rope is then connected to the Faulhaber 

engine. Guidelines are used to guide the mass in the vertical direction and to prevent it from 

spinning and hitting the oscillating system frame. 
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Figure 9.8: Experimental setup case 2. 

 

 

 
Figure 9.9: Detailed view of the experimental setup showing key components. 
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The estimated force used as feedback in the control system is set to be equal to 
ˆ ˆ· ·m C zKf   . K and C are found by experimental testing and their values are set to be equal 

to 0.005 and 4.85 respectively. z  will represent the measured vertical wave motion to the 

oscillating system and is given as  

 
1

( 2)
10

z u   (7.8) 

where u  is the voltage input from the oscillating system. 

  

In Figure 9.10 a sinusoidal reference force is presented together with the measured force and 

estimated force using parameters given by Table 9.3. As seen from the figure the measured 

force is noisy but it follows the reference quite well. The vertical motion to the oscillating 

system is set to be a fixed sinusoidal motion with amplitude 0.057 m and frequency 0.1 Hz. 

 

The bias to the sinusoidal force reference is then changed during the experiment. The force 

references together with the measured and estimated force are presented in Figure 9.11 . The 

settling time is found to be 1.2sT   [s].  

 

The controller manages to follow a random sinusoidal force reference quite well for low 

frequency vertical oscillating motions. A 1.2 second settling time is needed to reach the new 

sinusoidal reference when the bias in the reference is changed. As illustrated by Figure 4.3 

given in J.M. Heurtier et al. (2001) the mooring line top tension is sinusoidal. The mooring 

line top tension has no discontinuity like the reference given by Figure 9.11. The control 

system should therefore be able to follow a sinusoidal reference of the form presented in J.M 

Heurtier et al. (2001). However, if the vertical oscillating motion frequency is set to be too 

high disturbances in the system gets significant, this will be a limiting factor.  

 

Experiments using zero vertical oscillating motion are also conducted. A piecewise constant 

signal is used as force reference. The measured and estimated forces from the experiment are 

presented with its force reference in Figure 9.12. The settling time is found to be 0.95sT   

[s], and the measured signal has a transient. The mass included in the system will induce 

disturbances into the system, but as seen in the figure the estimated force will filter away 

much of this disturbance.  

 

 

Observer gains Controller gains Mass Sinusoidal vertical motion 

generated by the 

oscillating system 

K1=1500 kp=0.4 m=0.64 [kg] Amplitude=0.057 [m] 

K2=1900 ki=2  Period=10 [s] 

K3=1800 kd=0  Frequency=0.1 Hz 

K4=1500    
Table 9.3: Parameter values. 
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Figure 9.10: Experimental result using parameter values in Table 9.3. The sinusoidal reference, measured 

and estimated force (top) are shown together with the vertical motion to the oscillating system (bottom). 

 

 
Figure 9.11: The sinusoidal reference, measured and estimated force (top) are shown together with the 

vertical motion to the oscillating system (bottom), using different bias in the sinusoidal reference force. 
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Figure 9.12: Force reference shown together with the measured and estimated force. The vertical motion 

from the oscillating generator is set to zero. 
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9.3 Discussion 

 

The model tests indicate that the control system in case two is able to follow a sinusoidal 

force reference when the frequency of the vertical oscillating motion generated is low. When 

the frequency gets higher, more disturbance is introduced due to the vertical motion of the 

mass, a modified controller with smaller proportional gain and a relative high integral effect is 

needed. The need for high integral effect compared to the proportional gain is to compensate 

for the increased disturbance.  

 

The calculated mooring line vertical forces, for a given heave motion, show good accordance 

to the measured force from experiments in case one. The vertical motion to the oscillating 

system is set to be equal to the desired heave motion. The Faulhaber engine will then try to 

actuate the calculated forces due to this motion, on to the oscillating system, or vessel in this 

case. The result shows good resemblance between the calculated mooring forces and actuated 

forces, although some disturbances are induced at the top peaks. A better result is achieved for 

a vertical heave motion with lower frequency, and lower observer gains. 

 

9.3.1 Challenges 

 

The mass and spring stiffness chosen in the experiments do not correspond to the model scale 

water plane stiffness and model scale mass for a realistic vessel model. A realistic vessel 

model built in scale 1:70 has a length of 1.2 meter and a mass of approximately 15 kg, ref 

Corneliussen, J. , (2003) - Cybership 2. To use a model like this in the experiments proved to 

be difficult to achieve.  

 

During the experiments, some problems were discovered. One of the problems was that it was 

difficult to store the information in the Simulink® model real-time for 100 Hz fundamental 

sampling frequency. If too many *.mat files were used to store signals in the Simulink® 

diagram an error in the LabVIEW® interface will occur. The loop will have problem running 

if too many *.mat files are stored on to the cRIO hard drive when running the compiled 

Simulink® model in LabVIEW® . 

 

A second problem discovered was that the mass will not be constrained to only vertical 

motion. In an attempt to avoid this problem guidelines were used to guide the mass in the 

vertical direction. However, this method should be improved. 

 

At first the force measurements were noisy and corrupted. A wire that grounded the negative 

cord was needed to achieve proper force meaurments.  

 

To assume that the spring force in the experiment will be a simple linear approximation will 

be a strong assumption. In most instances Hook’s law is not precise and the spring behavior 

will not always be elastic. 

 

The DC motor parameters are not optimized for case two when the mass is included. 

Preferably, proper input output data should have been collected using this setup. However, the 

observer will filter away much of the disturbance introduced due to the mass. 

 

The observer and controller gains are found by trial and error. Optimal gains should 

preferably have been established. 
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10 Conclusions 
 

This chapter summarizes the results obtained in this master’s thesis, and proposes areas that 

need further investigation and analysis. 

 

10.1  Conclusion 

 

This thesis has focused on the experimental setup and control of the mooring line forces 

actuated on to a simplified vessel model. More specifically, it is considered how desired 

forces can be induced correctly in real time on to a vessel model moving in 1 DOF. The main 

conclusion is that it may be possible to follow desired simulated mooring forces for a 

sinusoidal heave motion of the vessel.  

 

The method of actuating forces onto a vessel model with 6 DOF using a motor-winch 

configuration was modified in order to make it easier to study. A simplified 1 DOF dynamic 

system, including an actuator representing the mooring line, was developed to investigate the 

performance of the control system actuating the mooring line forces.  

 

The simplified vessel model moving in heave direction is mathematically modeled. The mass 

dynamics and motor dynamics to the system are derived and explained. The unknown 

parameters in the model have been found, and the simulated outputs from the model are 

compared to measurement data from experiment. The simulated model outputs show good 

resemblance with the measured. However, proper model parameters with a mass included in 

the system should be looked further into. 

 

Further, an experimental setup of the system is developed and appropriate procurement of 

parts necessary has been obtained. To induce correct mooring line forces, in model scale, 

reasonable peak values for the expected mooring line top tension has been used in the 

decision process to find an appropriate actuator. The actuator, or Faulhaber electrical motor, 

has no problems inducing the desired peak values. The drive electronics for the electrical 

motor has a wide variety of control options, and control of the motor shaft torques, necessary 

to obtain desired forces, is possible. However, there will be a limitation in how fast these 

desired forces are reached. The frequency to the vessel heave motion will be a critical factor.  

 

Experiments show that the control system is able to actuate the correct mooring line vertical 

component on to a vessel model moving in a specific sinusoidal heave motion, although some 

disturbances are induced at the top peaks. A lowered heave motion frequency will reduce this 

disturbance. The model scale considered is chosen to be 1:70, the frequency will then be high 

(small period) since time is scaled with the square root of the model scale. A more favorable 

heave motion frequency using for example 1:40 as model scale would be preferred. 

 

Real time measurements of the heave motion are used to find the corresponding mooring line 

forces. The corresponding mooring line forces are calculated in forehand using RIFLEX, such 

that a lookup table can be used to find the corresponding force for a given real time heave 

motion, however this puts a constraint on the vessel heave motion. Preferably, RIFLEX 

should be connected to the system to calculate these forces real time using an UDP or 

Ethernet connection. Correct mooring line forces may then be calculated when the vessel 
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heave motion is changed to a sinusoidal movement different from the specific heave motion 

used in the experiment.  

 

Experiments using given mooring force references were also conducted to investigate the 

performance to the control system. A given force reference will give a good indication on 

whether the induced force reference from the control system manage to follow the mooring 

force reference appropriately, despite the fact that the force reference to a real mooring line 

will be different. With a lowered heave motion frequency the induced force by the actuator 

follow the force reference better. When the sinusoidal reference is changed instantaneously to 

a different set point it will take about 120 ms for the control system to follow the new 

sinusoidal reference.  

 

In case one the control system is able to actuate the desired forces within 150 ms for a 

piecewise constant reference, assuming the vertical heave motion is set to zero. For case two 

the vertical disturbance due to the mass will increase this settling time to 950 ms. When the 

force reference is set to be sinusoidal and the vertical generator motion is set to be different 

from zero, the actuator will be able to actuate the desired sinusoidal forces used in the 

experiments. When the mass is included more disturbances will occur in the system, and a 

lower proportional gain, as well as a relative high integral gain is needed to counter act the 

disturbance. The estimated force will filter away much of the induced disturbance due to the 

mass, hence avoiding a jagged motion at the motor shaft. 

 

Finally, an assessment of the necessary sampling frequency has been conducted. A 50 Hz 

sampling frequency will be necessary to recreate the continuous time responses for a vessel 

model moving in three DOF exposed to force inputs.  The vessel model is considered to be a 

barge exposed to a regular wave with 7 seconds period and 2 meter amplitude.  A frequency 

response analysis from the force inputs to the vessel responses are used to determine the 

highest frequency in the system (bandwidth). The bandwidth is then used to determine the 

necessary sampling frequency to recreate the signals without loss of information.  

 

10.2  Recommendations for Further Work 

 

The LabVIEW® program interface must be modified using a custom I/O. The custom I/O 

must be programmed to send the measured heave motion as an output signal. RIFLEX must 

then be set to receive this signal calculate the desired mooring force due to this motion and 

send the calculated mooring force signal back to LabVIEW®. Calculated mooring line forces 

will then be available for different vessel heave motion. The calculated mooring force must be 

used as reference in the control system.  UDP can be used to communicate between 

LabVIEW® and RIFLEX. 

 

As a next step the system can be expanded to three DOF. The actuator motor-winch 

configuration can then be arranged as proposed in Figure 2.5. An oscillating system moving 

in three DOF must then be used. The surge, pitch and heave motion measurements must be 

sent to RIFLEX to calculate desired resulting forces. The motor-winch configuration applied 

together with a control allocation scheme, in the vertical plane, can then be utilized to actuate 

the calculated resulting forces on to the oscillating system. An oscillating system that is able 

to move in three DOF must then be utilized. The oscillating system actuator mounted on the 

MC carriage may be a possible solution. 
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When considering the mass connected to the spring and oscillating system, optimal model 

parameters should preferably be established using measurement data for this system. The 

controller and observer gains can be found using optimization methods. A realistic vessel 

mass and spring stiffness should have been used, hence a more accurate model. 

 

RS232 communication can be used to set the velocity of the motor shaft instead of the analog 

volage input as used in this thesis. The velocity can then be preset by sending commands from 

LabVIEW® to the Faulhaber drive electronics. 
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12 Appendix A 
 

12.1 Motion controller and Computer Software 

 

An overview of the Faulhaber motion controller circuit for the DC motor running in speed 

mode is shown in Figure 12.1. 

 

 

Figure 12.1: Circuit for the Overview - MCBL 3003S 

 

The LabVIEW® interface is shown in Figure 12.10. 

 

 
Figure 12.2: LabVIEW® VI used for control of DC motor.  
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Figure 12.3: Faulhaber motion manager used for configuration of the motion controller. 
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12.2 Parameter DC motor Calculations using System Identification 
Toolbox 

 

Calculations performed by Matlab® system identification toolbox, to find appropriate DC 

parameters in the model to fit the output data. Calculations performed by Matlab® are shown 

in  

 

Time-continuous nonlinear state-space model defined by 'twobodies_m' (m-file): 

 

   dx/dt = F(t, u(t), x(t), p1, ..., p6) 

    y(t) = H(t, u(t), x(t), p1, ..., p6) + e(t) 

 

with 1 input, 4 states, 2 outputs, and 6 free parameters (out of 6). 

 

Input: 

   u(1)  Target Velocity(t) [rad/s] 

States:                              Initial value 

   x(1)  error(t) [-]                xinit@exp1    -0.990949   (est) in [-Inf, Inf] 

   x(2)  angle(t)                xinit@exp1     -893.588     (est) in [-Inf, Inf] 

   x(3)  Actual velocity(t)[rpm]xinit@exp1     12.4466     (est) in [-Inf, Inf] 

   x(4)  Current(t) [mA]           xinit@exp1      3.25606     (est) in [-Inf, Inf] 

Outputs: 

   y(1)  Actual velocity(t) [rpm] 

   y(2)  Current(t) [mA] 

Parameters:                 value         standard dev 

   p1   Jm [kgm^2]          0.0021399    0.000641746   (est) in [-Inf, Inf] 

   p2   Kt [Nm/A]            1.51175       0.719261    (est) in [-Inf, Inf] 

   p3   Kf [Nm/(rad/s)]      0.461112       0.220075    (est) in [-Inf, Inf] 

   p4   Ra [Ohm]             0.391492        0.33844    (est) in [-Inf, Inf] 

   p5   Ke [V/(rad/s)]      0.0309026       0.244718    (est) in [-Inf, Inf] 

   p6   La [H]              0.00416976     0.00238501    (est) in [-Inf, Inf] 

 

The model was estimated from the data set 'twobodies_m', which 

contains 501 data samples. 

Loss function 2.34775e+007 and Akaike's FPE 2.40398e+007 

 

Created:       06-Jun

Last modified: 06-Jun-2010 14:12:55    

The model was estimated from the data set 'twobodies_m', which 

contains 501 data samples. 

Loss function 2.36408e+007 and Akaike's FPE 2.42071e+007 

  

Last modified: 06-Jun-2010 13:59:31 

 

Table 12.1: Model parameter estimation from given input output data. 
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Criterion: Trace minimization 

Scheme: Trust-Region Reflective Newton (LSQNONLIN, 

LargeScale = 'On') 

-------------------------------------------------------------- 

Norm of      First-order 

Iteration      Cost             step         optimality 

-------------------------------------------------------------- 

0          6615.14             -                - 

1          6466.95            10        2.74e+008 

2          6464.44            20         9.4e+007 

3          6463.15            40        5.06e+006 

4          6462.28            80           5e+007 

5          6460.62           160        5.24e+006 

6          6459.35           162        1.58e+007 

7          6457.77           162        3.91e+007 

8          6454.74           162        6.68e+006 

9          6454.74           162        6.68e+006 

10          6454.73          40.5        3.87e+007 

11          6454.36          10.1        1.05e+007 

12          6453.78          20.2        1.01e+007 

13           6453.7          40.5        6.77e+006 

14           6453.7          10.1        6.77e+006 

15           6453.7          2.53        6.77e+006 

16           6453.7         0.632        6.77e+006 

17           6453.7         0.158        6.77e+006 

18           6453.7        0.0395        6.77e+006 

19           6453.7       0.00988        6.77e+006 

20           6453.7       0.00247        6.77e+006 

-------------------------------------------------------------- 

 
Table 12.2: Trace minimization performed by Matlab®.  
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12.3  Sesam 

 

The Sesam software developed by DNV(Det Norske Veritas) give the hydrodynamic data. 

The panel model was made using Genie and the analysis using Hydro-D. 

 

 
Figure 12.4: Genie model in Hydro-D. 

 

Property Value Denomination 

Frequency set 0.5:0.5:20 s 

Depth 2000 m 

Kinematic viscoisity 1.19e-6 m/s^2 

Gravity 9.080665 m/s^2 

Direction 0 rad 

Density 1025 kg/s^2 

Quadratic element mesh 2*2 m 

Number of elements 1648 - 
Figure 12.5:Parameter input for Hydro-D. 

 

We used the parameters in Figure 12.5 to find the transfer functions, phases to find the 

necessary matrixes for the given case with wave amplitude 2a   m and wave period 7T  s. 

 
Figure 12.6: Hydrodynamic transfer function in heave. 
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Figure 12.7: Hydrodynamic transfer function in surge. 

 
Figure 12.8: Hydrodynamic transfer function in pitch. 

 
Figure 12.9: Hydrodynamic transfer function phase. 
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12.4  Piecewise Constant References 

 

The wave motion is set to be zero, and the DC motor is connected to a pretensioned spring in 

the roof. The plots below show the measured, reference and estimated force. The control 

parameters are set to be equal to 
1 1 15,   0  &  0p i dk k k    and the observer parameters are 

set to be 1 2 3 4400,   320,   310  &  200K K K K    . The force reference is chosen to be a 

sinusoidal signal with a zero order hold element. With zero order hold sampling time set to 2 

seconds the piecewise constants signal change its set point to a new value after 2 seconds, as 

presented in the figure.

 
Figure 12.10: Estimated and measured force compared to a sinusoidal reference force with 2 sec zero 

order hold.  

 

The zero order hold element is increased to 500 ms. The piecewise constant reference is 

shown together with the measured and estimated force. 
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Figure 12.11: Estimated, measured force compared to a sinusoidal force reference with 500 ms zero order 

hold. 

 

The zero order hold element sampling time is lowered even more to 250 ms and 100 ms in the 

following figures. 

 
Figure 12.12: Estimated, measured force compared to a sinusoidal force reference with 250 ms zero order 

hold. 
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Figure 12.13: Estimated, measured force compared to a sinusoidal force reference with 100 ms zero order 

hold. 

 

 
Figure 12.14: Estimated, measured force compared to a sinusoidal force reference with 50 ms zero order 

hold. 
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12.5 Frequency Responses 

 

The frequency response from the force inputs X , Z  and moment M to the surge velocity u  

are shown in Figure 12.15. By looking on the figures the DC gains and the systems 

bandwidths can be found.  

 
Figure 12.15: Frequency response for the transfer functions from the force inputs to the surge velocity. 

 

 

When [0 0 0 0 1 0]C  the output will be y w  and the frequency response can be 

found. Figure 12.16 show the frequency response from the three inputs [ ]TX Z Mu  to 

the velocity output in heave w . All the DC gains are zero in this case. 

 
Figure 12.16: Frequency response for the transfer functions from the force inputs to the heave velocity. 
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The poles and zeros to the system with input u  and output w are shown in Figure 12.17. 

Implying that the system is stable since all its poles are in the L.H.P. 

 
Figure 12.17: Poles ‘x’ and zeros ‘0’ for the system with heave velocity as output. 

 

With, [0 0 0 0 0 1]C , the output will be y q . The frequency response from the 

three inputs [ ]TX Z Mu  to the output q
 are shown in Figure 12.18. 

 
Figure 12.18: Frequency response for the transfer functions from the force inputs to the  angular velocity 

in pitch. 

 

In this case the DC gain will be zero and the bandwidth frequency will be high. The poles and 

zeros are given in Figure 12.19. The system is stable since it has all the poles in the L.H.P. 



 

104 

 
Figure 12.19: Poles ‘x’ and zeros ‘0’ for the system with angular velocity in pitch as output. 

 


