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Abstract 

A challenge regarding the transportation of oil and gas in pipelines subsea is to keep the 

temperature high enough to avoid formation of wax and hydrates, which eventually will stop 

the flow. In 2000, Nexans introduced a Direct Electrical Heating-system (DEH) that heats up 

the pipe by applying an alternating current (AC). The problem with applying AC is an 

increased risk of corrosion. The mechanism of AC corrosion has yet to be fully understood, 

and there exists limited data on its severity.  

The purpose of this thesis is to examine the effect of AC, determine the mechanism of AC 

corrosion and provide data describing its severity on steel. To achieve this, the following 

types of steel were investigated through cathodic polarization: X65 carbon steel (CS), AISI 

316 stainless steel (SS) and 25Cr super duplex stainless steel (SDSS). A total of 28 samples 

were tested under cathodic protection-potential (CP) of either -800 mV or -1050 mV, and an 

applied AC in the range of 0-1000 A/m2. Testing was performed in 3.5 % NaCl-solution and 

artificial seawater and lasted for 48 hours. To examine the effect of AC properly, weight loss 

measurements and surface characterization by Scanning Electron Microscope (SEM) and X-

Ray Diffraction (XRD) was performed.  

Cathodic currents were observed for all tested samples, where an increase in AC and a 

negative increase in CP-potential caused increasingly cathodic currents. Increase in AC 

caused the AC cell potential (VAC) to increase as well. Both cathodic currents and VAC was in 

the following order, from high to low: 25Cr>316>X65. 

Some correlation between the corrosion rates (CR) and the DC current response were found, 

where an increase in AC increased the CR and the current response. There was not found any 

correlation between CR and applied CP-potential. The following CRs were calculated for the 

various types of steel: 0-0.260 mm/year (316), 0-0.522 mm/year (25Cr) and 0.191-0.297 

mm/year (X65). When tested at CP-potentials of -800 mV and -1050 mV under 500 A/m2 

applied AC, the CRs were in the following order from high to low: X65>25Cr>316. 

Surface topography was seen to have no effect on AC corrosion, while artificial seawater 

showed a slight decrease in CR compared to 3.5 % NaCl-solution. The latter is likely due 

calcareous deposits that formed on all samples tested in artificial seawater, usually as CaCO3 

and Mg(OH)2. In 3.5 % NaCl-solution, the formed corrosion products were characterized as 

Fe3O4, while Fe2O3 and γ-FeOOH was seen to form in artificial seawater.  



vi 

 

  



 

vii 

 

Sammendrag 

En av flere utfordringer når det gjelder transport av olje og gass gjennom rør subsea, er å 

holde temperaturen tilstrekkelig høy slik at man unngår at voks og hydrater tetter rørene. I år 

2000, introduserte Nexans et såkalt Direct Electrical Heating-system (DEH) som varmer opp 

rørene ved hjelp av vekselstrøm (AC). Den negative siden ved dette er at det er identifisert en 

økt risiko for korrosjon når AC påføres. Mekanismen for såkalt AC-korrosjon er ikke helt 

forstått, og det finnes få studier som har undersøkt alvorlighetsgraden. 

Formålet med denne masteroppgaven er å undersøke effekten av AC, fastslå mekanismen bak 

AC-korrosjon og produsere data som sammen med tidligere studier kan si noe om AC-

korrosjons alvorlighetsgrad når det kommer til stål. For å oppnå dette så har forskjellige typer 

stål blitt undersøkt gjennom katodisk polarisasjon: X65 karbonstål, AISI 316 rustfritt stål og 

25Cr super duplex rustfritt stål. 28 prøver ble testet under en katodisk beskyttelse (CP) på 

enten -800 mV eller -1050 mV, og med en påført AC i området 0-1000 A/m2. Eksperimentene 

ble utført i 3.5 % NaCl-løsning og kunstig sjøvann, og varte i 48 timer. For å nå oppgavens 

mål ble vekttapsmålinger utført, samt undersøkelser gjennom Scanning Electron Microscope 

(SEM) og X-Ray Diffraction (XRD). 

Katodiske strømtettheter ble målt for alle prøvene, hvor en økning i AC og en mindre negativ 

CP førte til at den katodiske strømtettheten økte. En økning i AC førte også til at 

cellepotensialet for AC (VAC) økte. Videre så var både katodisk strømtetthet og VAC i 

følgende rekkefølge, fra høy til lav: 25Cr>316>X65. 

Det ble observert en viss korrelasjon mellom korrosjonshastigheter (CR) og målte 

strømtettheter, blant annet at en økning i AC gjør at både CR og strømtettheten øker. Det ble 

ikke funnet noen korrelasjon mellom CR og de to påførte CP-potensialene. Følgende CR ble 

funnet for de forskjellige ståltypene: 0-0.260 mm/år (316), 0-0.522 mm/år (25Cr) og 0.191-

0.297 mm/år (X65). Ved samme betingelser, henholdsvis påført CP på enten -800 mV eller -

1050 mV og påført AC på 500 A/m2, så var CR i følgende rekkefølge fra høy til lav: 

X65>25Cr>316. 

Det ble videre konkludert med at overflatetopografi ikke har noen innvirkning på AC-

korrosjon, mens CR ble funnet til å være noe lavere for kunstig sjøvann sammenlignet med 

3.5 % NaCl-løsning. Sistnevnte er sannsynligvis som en følge av at kalkprodukter av CaCO3 

og Mg(OH)2, dannet seg på prøveoverflaten til alle prøver som ble testet i kunstig sjøvann. 

Gjennom XRD-analyse ble det funnet forskjellige korrosjonsprodukter i de forskjellige 

løsningene: Fe3O4 ble funnet på prøver testet i 3.5 % NaCl-løsning, mens Fe2O3 og γ-FeOOH 

ble funnet i kunstig sjøvann. 
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1 Introduction 

1.1 Background 

Oil and gas are often collected from the bottom of the sea through long pipelines. A likely and 

potential devastating problem is that during shutdown, the multiphase flow will experience 

heat loss, which again will cause formation of wax and hydrates that may clog the pipelines.  

In order to avoid such clogging, heating of the pipelines with a system called Direct Electrical 

Heating (DEH) is used. This system heats up the pipeline by applying an alternating current 

(AC), which flows through the walls of the pipe and heats it up due to its own electrical 

resistance [1]. 

However, a problem has been seen to rise upon application of AC: the AC-signal has been 

seen to affect the conventional corrosion theory. It has been widely acknowledged that steel 

pipelines suffer from AC corrosion despite satisfying cathodic protection (CP) criteria, and 

several failures from all over the world has been reported [2]. In later years there has been an 

increased amount of research regarding this topic, and it has been determined that steel will 

not suffer from AC corrosion if CP is applied through aluminum sacrificial anodes [3]. 

However, if CP is applied by a current rectifier and there are defects in the coating, the steel 

will suffer from AC corrosion [4, 5]. There is a lack of understanding how the 

superimposition of AC on a DC-signal effects the corrosion behavior of steel. In order to 

develop a system that can ensure that structures are fully protected from AC, even in cases 

where sacrificial anodes are inapplicable, it is necessary to determine and understand the 

mechanism of AC corrosion. In addition, it is advantageous to be aware of AC corrosions 

severity on different steels.   

1.2 Purpose of thesis 

This thesis is a continuation of TMT4500 Specialization project in materials technology, and 

a part of ongoing research studying the electrochemistry of corrosion under the influence of 

AC. The main scope of the thesis is to examine the effect of applied AC, determine the 

mechanism of AC corrosion and provide data describing the severity of AC corrosion on 

steel. A secondary scope is to check a few assumptions regarding the high corrosion rates 

(CR) presented during the specialization project.  

The chosen methodology to reach these goals will be through cathodic polarization of X65 

carbon steel, AISI 316 stainless steel and 25Cr super duplex stainless steel under appliance of 

AC. The experimental set up consists of two parts; one is a regular three-electrode potentiostat 



Introduction 

2 

 

that polarizes the steel cathodically, while the other is an AC-circuit that superimposes an 

alternating voltage (AV) on the steel. The methodology can be divided into five parts, 

whereas the three first will be performed on X65: examine the effect of storing corroded 

samples, effect of surface roughness, difference between 3.5 % NaCl-solution and artificial 

seawater, effect of AC on 316 and effect of AC on 25Cr.  

Polarization behavior, weight loss measurements and surface characterization through 

Scanning Electron Microsope (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), X-Ray 

Diffraction (XRD) and Grazing Incidence X-ray Diffraction (GIXRD) will be performed to 

examine the effect of applied AC properly.  

1.3 Thesis outline 

The thesis is divided into six chapters. Appendices and references will be presented after the 

six chapters. 

Chapter 1 – Presents the motivation and scope of the thesis. 

Chapter 2 – Presents a literature review on the corrosion of steel, focused mainly on 

corrosion in the presence of AC. 

Chapter 3 – Presents the material specifications, sample size and experimental set up, 

procedure and method. 

Chapter 4 – Presents the acquired results. 

Chapter 5 – Presents a detailed discussion of results and experimental work together with 

suggestions for further work. 

Chapter 6 – Presents the conclusions of the thesis.  
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2 Theory 

The theory chapter is divided into three main parts. The first part consists of two chapters and 

presents the Direct Electrical Heating-system (DEH) and its history and purpose. This is 

followed by a general review of DC corrosion and its mechanism in absence of AC. The last 

part is a thorough and up-to-date literature review of AC corrosion, containing its mechanism 

and the most relevant of former work. All this is summarized in the last chapter. 

2.1 History 

The offshore industry is moving towards an increased number of subsea structures. The 

structures can be wells and whole processing-systems, and they are connected to offshore or 

land-based installations with long pipes reaching out to each structure or clusters of several 

structures. When the oil and gas exits the well or manifold and are pumped towards the 

installation, it is under high pressure and temperature. In order to avoid too much heat loss so 

that the product can flow without problems, the several kilometer long pipes are insulated. 

However, during a production shutdown the insulation will not be able to keep the 

temperature high enough, and formation of wax and hydrates is likely to cause plugging as 

seen in Figure 2-1 [1]. As the industry is heading towards production at deeper waters and in 

the arctic environment, it is possible that the insulation that is in use today will prove 

insufficient, and plugging may occur during regular production. 

 

Figure 2-1: Cross-sections of two plugged pipelines [6]. 

For both environmental- and economic reasons such plugging is unwanted, and an often-used 

method to avoid it have been to add different chemicals, for instance methanol, to the 

transported medium [7]. This has worked well enough, however it is expensive and it has 



Theory 

4 

 

been necessary to separate the chemicals from the medium upon arrival at the platform. This 

is yet another processing step and more potential hazardous waste [8]. In 2000, Nexans 

installed an alternative to the use of chemicals; the world’s first Direct Electrical Heating-

system (DEH). This was done for Statoil at the Åsgård-field at the Haltenbank west of 

Norway. In the aftermath, more DEH-systems have been installed at new fields like Skarv, 

Tyrihans and Ormen Lange to name a few [1]. 

2.2 Direct Electrical Heating (DEH) 

The DEH-system is a set of electrical conducting cables that sends an electrical signal from a 

power source on the platform to the pipelines at the sea bottom. The mechanism that avoids 

the plugging of the pipelines is that this signal, which is sent as an alternating current (AC), 

flows through the pipe-walls and heats them up due to their own electrical resistance. There 

exists several systems similar to Nexans’ DEH-system, but the latter is based on pipelines in 

open seawater and consists of three different types of cables as seen in the red rings in Figure 

2-2, from left to right: riser cable, armoured feeder cable and piggyback cable [1]. 

 

Figure 2-2: Illustration of Nexans’ DEH-system with the different cable types [1]. 

The riser cable supplies power from the platform to the seabed and can be used for several 

piping-systems at the same time. It may also include hydraulic tubes and signal cables. The 

armoured feeder cable acts as a connector and connects the riser cable and the piggyback 

cable at the seabed. The piggyback cable is strapped tightly to the pipeline and conducts the 

current along it until the connection-point at its far end. The piggyback cable also contains a 

fiber-optic system for monitoring and is surrounded by an IPS (Integrated Protection System), 

which protects it from external loads and abrasion. To summarize, the current go from the 

power supply through the riser cable, armoured feeder cable, piggyback cable and into the 
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pipeline at its far end. Then the current go through the pipeline (and eventually feeder- and 

riser cable) on its way back to the platform or installation [1]. 

The pipeline that is heated is an active conductor in a single-phase electric circuit, where the 

piggyback cable is the forward conductor. The DEH-system is necessarily an open system, 

which means that it is in contact with the surrounding seawater as can be seen in Figure 2-3. 

The contact is through an increased amount of anodes at the points where the current enters 

and leaves the pipeline. The consequence of an open system is that the seawater acts as a 

conductor, which causes the pipeline and seawater to share the current (although it does not 

lie parallel and close to the pipe as in Figure 2-3, but stretches out through the whole volume 

of the sea). This means that a part of the current (typically around 40 %) is transferred into the 

seawater, either as products from the oxidation of anodes or through charging and discharging 

of the double layer capacitance [4, 6, 7, 9].  

 

Figure 2-3: Schematic view of the DEH-system with current directions included [6].  

Earlier studies on AC-corrosion has shown that there is no significant corrosion of carbon 

steel as long as it is protected by anodes, and the applied current density is below 240 A/m2. It 

is especially important to have enough anodes in the current transfer zone and in areas where 

cracks in coating and insulation can occur, to keep the transfer current density below critical 

values (in the study by Nysveen et al., the critical value of the transfer current density is set to 

40 A/m2) [7]. 
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2.3 Corrosion behavior in absence of AC 

2.3.1 General corrosion behavior 

2.3.1.1 The equivalent circuit 

An electrochemical cell can be described as an equivalent electrical circuit consisting of 

resistances, capacitances and impedances. This equivalent circuit acts as a model for the 

interface between the metal surface and the surrounding electrolyte and can be seen in Figure 

2-4, which is a model based on the Randles circuit. In the figure, Re represents the ohmic 

resistance or potential drop of the electrolyte, Cdl refers to the capacitance associated with the 

double-layer, Rf is the charge transfer resistance and Zd represents the impedance for mass 

transport [10]. 

 

Figure 2-4: The equivalent electrical circuit that acts as a model for the interface between the metal surface and the 

surrounding electrolyte. Figure is adapted from literature [11]. 

The capacitance at the double layer (Cdl) arises due to charge redistribution at the interface, or 

from a dielectric oxide-film on the metal surface. It may act as a capacitor, and parts of any 

current that flow between electrolyte and the metal surface will cause charging or discharging 

(both will be ic) of the double layer. Rf and Zd on the other hand, are combined to an 

impedance called the polarization resistance. This resistance correlates to overpotential that is 

created by the concentration gradients of reactants and products, which are formed due to the 

flow of the Faradaic current, if. This current, dependent on its direction, causes oxidation of 

the metal surface and formation of other products due to oxidation [10, 12].  

The model in Figure 2-4 implies that the total current that flows between the metal surface 

and the electrolyte, is a combination of the Faradaic- and charging current where both 

contributions are equal: 
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𝑖 = 𝑖𝑐 + 𝑖𝑓      (2.1) 

2.3.1.2  Uniform corrosion 

Two reactions on the metal surface are necessary for the metal to corrode, the cathodic- and 

the anodic reaction. It is the sum ∆G for both reactions that determine which way the total 

reaction will be favored, or in other words if corrosion will occur or not. The potential at 

which corrosion will occur is called the corrosion potential (Ecorr). This potential can be 

analyzed in a Pourbaix diagram as shown in Figure 2-6, which is a pH-potential plot that 

shows where different corrosion products of a metal are thermodynamically stable. This 

means that by studying the Pourbaix diagram, it is possible to determine if a corrosion-

reaction will occur or not. However, that is the case if the only anodic reactions that occur on 

the surface, is directly causing the corrosion. In reality, there are several different reactions 

going on simultaneously, and all of them are not necessarily causing corrosion [13].  

In the case for uniform corrosion, the anodic- and cathodic reaction occurs all over the 

surface, which gives an even reduction in thickness. A lot of research has been done on 

uniform corrosion of steel in aqueous solution, and numerous mechanisms have been 

proposed. However, if it is assumed that OH- is the active adsorption anion in the anodic 

reaction (due to lack of other active adsorption anions), it is generally agreed that the initial 

stages of oxidation proceeds through the following equations [14, 15]: 

𝐹𝑒 + 𝐻2𝑂 = 𝐹𝑒𝑂𝐻𝐴𝐷𝑆 + 𝐻+ + 𝑒−    (2.2) 

𝐹𝑒𝑂𝐻𝐴𝐷𝑆 = 𝐹𝑒𝑂𝐻+ +  𝑒−     (2.3) 

Which are followed by the following stages [15]: 

𝐹𝑒𝑂𝐻+ = 𝐹𝑒2+ + 𝑂𝐻−     (2.4) 

𝐹𝑒𝑂𝐻𝐴𝐷𝑆 + 𝑂𝐻− = 𝐹𝑒(𝑂𝐻)2 + 𝑒−    (2.5) 

However if Cl- ions are present, there will be a competition between them and OH- at the 

surface adsorption sites. Which precipitates that are formed, are determined by the relative 

concentration between OH- and Cl- ions, and in solutions dominated by the latter it is more 

likely that FeClADS and Fe(OH)Cl will form instead of the above mentioned. At high 

concentrations of Cl-, the Fe2+ ion can exist in several ferrous-chloride complexes like FeCl+, 

FeCl2, FeCl3
-, etc. [14]. 

If the solution is alkaline, Fe(OH)2 may oxidize and form the more stable magnetite, 

according to the Schikorr reaction (2.6) as seen below [14]. 

3𝐹𝑒(𝑂𝐻)2 = 𝐹𝑒3𝑂4 + 𝐻2 + 2𝐻2𝑂    (2.6) 
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Other possible reactions like (2.7) and (2.8) may also occur if the solution is aerated and Cl- 

ions are present. 

2𝑂𝐻− =
1

2
𝑂2 + 𝐻2𝑂 + 2𝑒−      (2.7) 

2𝐶𝑙− = 𝐶𝑙2(𝑔) + 2𝑒−     (2.8) 

The corresponding reduction reactions that commonly occur are shown in equation (2.9)-

(2.11) below, where (2.10) will occur in an alkaline solution and (2.11) is for an acidic 

solution [16]. 

1

2
𝑂2 + 𝐻2𝑂 + 2𝑒− = 2𝑂𝐻−     (2.9) 

2𝐻2𝑂 + 2𝑒− = 2𝑂𝐻− + 𝐻2 (𝑔)    (2.10) 

2𝐻+ + 2𝑒− = 𝐻2 (𝑔)                                                          (2.11) 

2.3.2 Localized corrosion behavior 

Pitting is a form of localized corrosion that occurs on surfaces that have some degree of 

passivation, through alloying elements or supplied current. Further, the surfaces need to be 

exposed to a medium with aggressive ions, like chlorides, and the potential of the surface 

must be above a certain critical value. Pitting is characterized by holes or caves that can 

become very deep even though their surface-diameter is small.  

The initiation of pitting is caused by a local breakdown of the passive film, which occurs at 

sites where the film is weaker than the surrounding area. There are several explanations to 

why these weak sites occur, where chemical composition and mechanical influence are two 

possible explanations. After initiation, the main propagation-mechanism is that the pits get 

minimum mixing with the bulk electrolyte and thus the pits create their own environment.  

The pitting propagation proceeds through several processes that occur continuously. Firstly, 

the formed pit corrodes uniformly with anodic dissolution and the reduction of oxygen as the 

cathodic reaction (eq. 2.9). Gradually, oxygen will be removed as it is reduced faster than it 

diffuses into the tight pit. This concentration-difference of oxygen will transform the metal 

surface to a cathode and the pit to an anode, which will maintain the metal dissolution within 

the pit. As the concentration of metal-ions increases, there will be a charge unbalance, with 

many positive ions within the pit. To have balance, aggressive ions (particularly chlorides) 

migrate into the pits and form metal-chlorides, which again produce H+ ions through 

hydrolysis. This causes the environment to become increasingly acidic, which increase the 

dissolution even further within the pit. 
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N. Sato distinguishes between two different types of pitting corrosion as can be seen in Figure 

2-5; etch and polish. The etch pitting occurs at low potentials when the pit surface is in the 

active state, while polish pitting takes place at high potentials when the pit surface is under 

transpassive dissolution and usually covered with a salt layer [17]. 

 

Figure 2-5: Two types of pitting described by N. Sato.; etch pitting at low potential in active state and polish pitting at high 

potentials with transpassive dissolution at pit surface [17]. 

2.3.3 Cathodic Protection 

The main principle of cathodic protection is to supply a current on the material that is to be 

protected. The current reduces the potential of the material into the immune area, as shown in 

Figure 2-6, and more or less removes the danger of corrosion completely. It is worth noting 

that the pourbaix-diagram in Figure 2-6 is in water and not in a chloride-rich environment, but 

a similar diagram for the latter should not be too different. The reduction of potential into the 

immune area is called cathodic polarization, and can be done with sacrificial anodes or by 

applying current from an outer current rectifier. The latter is more relevant for this thesis, as a 

potentiostat is being used. 

According to NORSOKs standard, an installation should be polarized to a potential between -

800 mV and -1050 mV vs the Ag/AgCl reference electrode throughout the whole design life 

to be protected [18]. Det Norske Veritas’ (DNV) Recommended Practice states that a 

potential of -800 mV vs the Ag/AgCl reference electrode is accepted for carbon and low-alloy 

steel, although this should be increased to -900 mV in anaerobic environments [19]. The 

difference between Ag/AgCl reference and Standard Calomel Electrode (SCE) is -0,042 V (-

42 mV), which means that -800 mV Ag/AgCl is approximately -760 mV SCE [20]. 
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Figure 2-6: The Pourbaix diagram for iron/carbon steel in water. The active corrosion, immune and passive regions are 

indicated, as well as the critical pitting potential [21]. 

2.3.3.1  Calcareous deposits 

When steel structures are immersed in seawater and under CP, it is known that calcareous 

deposits will form at the steel surface. They form due to a cathodic current that increases the 

local pH by producing OH- ions. Deposits may form through a reaction between these ions 

and cations in the seawater, precipitating the product at the steel surface, or through other 

reactions and precipitations. It is recognized that these deposits serve as parameter that 

reduces corrosion in marine environments, with or without CP, partly due to reduced 

diffusion of oxygen from bulk to steel surface. The deposits that are most likely to occur are 

Mg(OH)2, equation (2.12), and CaCO3 seen in equation (2.13)-(2.16) [22]. 

𝑀𝑔2+ + 2𝑂𝐻− = 𝑀𝑔(𝑂𝐻)2     (2.12) 

The reason why only magnesium deposit as a hydroxide is that Mg(OH)2 has lower solubility 

than Ca(OH)2, and there are more Mg2+ ions in seawater than Ca2+ ions.  Furthermore, 

MgCO3 have higher solubility than CaCO3 and thus the latter precipitates easier. The 

formation of CaCO3 is seen below and is initiated by a reaction between atmospheric CO2 and 

water. All the reactions are dependent on a local increase in pH [22]. 

𝐶𝑂2 + 𝐻2𝑂 = 𝐻2𝐶𝑂3     (2.13) 

𝐻2𝐶𝑂3 = 𝐻+ + 𝐻𝐶𝑂3
−     (2.14) 

𝐻𝐶𝑂3
− = 𝐻+ + 𝐶𝑂3

2−      (2.15) 

𝐶𝑎𝑆𝑂4 + 𝐶𝑂3
2− = 𝐶𝑎𝐶𝑂3 + 𝑆𝑂4

2−    (2.16) 
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It has further been shown that the precipitation rate of deposits is very high at the beginning of 

CP, and is reduced and keeps on reducing as time passes. The growth rate reaches its peek at 

approximately 8 hours of CP, although this does not mean that the steel surface is completely 

covered after 8 hours. Further, Mg(OH)2 is formed with faster kinetics than CaCO3 and thus is 

the major component at the early stages of CP. However, as polarization time prolongs, the 

amount of the CaCO3 increases and becomes the major component [23]. 

2.3.4 Immersion testing in 3.5 % NaCl-solution and seawater 

Natural seawater is a very complex chemical system that is affected by other factors than the 

major components, like dissolved oxygen, pH and biological activity to name a few. It has 

even been experienced that it changes in corrosivity from the bulk seawater upon storage. In 

other words, it is difficult to simulate seawater in a laboratory. 3.5 % NaCl-solution have 

often been used, but has been known to be more aggressive toward carbon steel than natural 

seawater. The reason for this has been suggested to be the presence ions in seawater, which 

form the mentioned calcareous deposits. A cross between the 3.5 % NaCl-solution and natural 

seawater, is synthetic seawater produced from the standard ASTM D1141 or MBL [24]. 

Another factor that causes 3.5% NaCl-solution to be more aggressive than seawater is the 

seawater’s buffer capacity. A NaCl-solution has low buffer capacity and easily gets local 

variations in pH, which increases both corrosion rate and danger of pitting. Seawater on the 

other hand has high buffer capacity due to equilibrium between different ions (like carbonates 

and CO2), and are thus able to keep a stable pH to a larger degree [4]. 

Through experiments with simple immersion testing and potentiodynamic measurements, 

Moller et al. found that the corrosion rate of low carbon steel in 3.5 % NaCl-solution is about 

four times higher than for natural seawater, and that the corrosion rates in natural- and 

synthetic seawater is similar. They also found different corrosion products between the 

seawaters and the 3.5 % NaCl-solution. In the latter the corrosion-layer consisted mainly 

Fe3O4 (magnetite) and γ-FeOOH (lepidocrocite), while for the seawaters it was mainly found 

γ-FeOOH. This was explained with the higher corrosion rates in 3.5 % NaCl-solution that 

gives a higher concentration of Fe2+ at the steel surface, which again can react according to 

equation (2.17) below [24]. 

𝐹𝑒2+ + 2𝐹𝑒𝑂𝑂𝐻 = 𝐹𝑒3𝑂4 + 2𝐻+    (2.17) 

Further, it was also found small amounts of α-FeOOH (Goethite) and Fe6(OH)12CO3 (Iron 

carbonate hydroxide). Additionally, CaCO3 were formed on both seawaters although with 

finer morphology for the natural seawater, which is the probable cause for a slightly lower 

corrosion rate. Magnesium-containing deposits were difficult to detect. [24]. 
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According to DNV’s standard for pipelines, 25Cr duplex is generally corrosion resistant in 

seawater at ambient temperatures, but requires good control of microstructure. 316 on the 

other hand is not corrosion resistant in seawater with the same parameters, with exception if 

the seawater is near to anaerobic conditions [25].  

2.4 AC-induced corrosion 

It has been acknowledged that corrosion of bare steel accelerates in the presence of AC. 

However, if the steel is under CP by anodes or protected by an intact coating, AC corrosion is 

not considered a problem. The problem occurs if CP is applied by a rectifier, there are micro- 

or macroscopic defects in the coating, or if unprotected structures suffer from stray ACs [3-5]. 

Most of the research that exist on AC-induced corrosion, have investigated how CS and other 

low-alloyed steel are affected [26-32]. There is little research done on different types of SSs 

[26, 27]. 

2.4.1 AC corrosion mechanism 

The AC-signal that is sent varies between negative and positive values periodically, at a 

certain frequency. This periodic function is often sinusoidal. When the AC-signal is 

superimposed on a DC-signal, the AC-signal will alternate between what is defined as anodic 

and cathodic currents on each side of a time-axis, as seen in Figure 2-7. The DC-signal 

determines the position of the time-axis and thus the area of both the anodic and the cathodic 

cycle. If the AC is applied on a high DC, the time-axis move up and reduces the area of the 

anodic cycle, and vice versa for low DC. 

 

Figure 2-7: Schematic view of the AC corrosion mechanism when samples are under CP (iDC > 1A/m2), with graph and 

illustrations [33]. 
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The anodic and cathodic cycle affects the steel in different ways, and the amplitude of the AC 

voltage is an important parameter in determining what happens. Possible scenarios during the 

anodic half-cycle: a current may “exit” (in the form of oxidized products) the steel surface and 

the charge can lead to capacitive discharging of the double layer, the oxidation of hydrogen, 

the oxidation of corrosion products and oxidation of iron. The latter often leads to formation 

of a passive film due to high pH at the steel surface. Conversely, the charge in the cathodic 

cycle is consumed by recharging of the double layer capacitance, the reduction of oxygen, the 

formation of hydrogen and the reduction of oxidized corrosion products. It can also polarize 

the anodic formed passive film into the immune area, thus dissolving it electrochemically 

[34]. 

More specifically, for a case with a certain CP (iDC > 1 A/m2) as in Figure 2-7, the anodic 

cycle causes the steel surface to be oxidized by the current “leaving” the steel surface, leading 

to the formation of a protective passive film according to reaction (2.18) [33, 34]. 

3Fe + 4H2O  Fe3O4 + 8H+ + 8e-    (2.18) 

Fe2+  Fe3+ + e-      (2.19) 

In the next cycles, it is assumed that the current may be divided, thus it is possible that several 

reactions occur in each cycle (including dis- and recharging of double layer). During the first 

cathodic cycle, a part of the current causes the steel surface to polarize into the immune area, 

reducing the passive film electrochemically and converting it to a porous layer of rust, as Fe2+. 

Other parts of the current may drive typical cathodic reactions, like evolution of H2 and 

reduction of oxygen as seen in equation (2.9)-(2.11). During the following anodic cycle, a 

new passive film is formed below the porous rust layer and Fe2+ in the rust layer will be 

oxidized according to reaction (2.19). Additionally, parts of the current may drive the 

formation of O2 and Cl2, as in equation (2.7) and (2.8), where the latter has been observed in 

earlier studies [27, 35]. During the subsequent cathodic cycle, passive film will be converted 

again, and reaction (2.19) will be reversed in the rust layer, forming more rust as Fe2+. This is 

a continuous process. Each time a new passive film is formed a small amount of steel is 

oxidized. Thus, corrosion is a result of repeatedly formations of passive films, and not anodic 

metal dissolution [33, 34, 36].  

In addition, due to high AC-voltage it is possible that a solid-state reaction occurs, according 

to equation (2.20). If it occurs, it may do so in both the anodic- and cathodic cycle. The 

reaction can move in both directions depending on the cycle, which correlates to the current 

moving back and forth in the faradaic part of the equivalent circuit. In the anodic cycle the 

reaction will be favored to the right, while it will be favored to the left in the cathodic cycle 

[13, 36].  
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2𝐹𝑒3𝑂4 + 𝐻2𝑂 = 3𝐹𝑒2𝑂3 + 2𝐻+ + 2𝑒−   (2.20) 

A partly similar mechanism as in the paragraphs above is described by D.-K. Kim et al. They 

suggest that the combination of applied AC and an elevated pH, leads to corrosion either by a 

destabilization of the passive layer or by a very high increase in pH. For the latter case, the 

steel enters the active corrosion area of HFeO2
- as can be seen in the Pourbaix diagram in 

Figure 2-6. The first case is explained by the irreversibility of the chemical reactions that 

occur on the metal-solution interface, which leads to a change in the double layer composition 

and metal surface [29].  

It is worth noting that S. Muralidharan et al. performed experiments by applying a certain 

current density (as DC, AC or both) on mild steel in chloride rich environments. They 

reported that the influence of AC current density superimposed in the same current density in 

DC, were far more severe than either AC or DC alone. The corrosion rate of AC+DC in 

NaCl-solution was 1.5 times higher than only DC and 18 times higher than AC alone [32]. 

2.4.2 Influences on AC corrosion 

2.4.2.1  Frequency 

Immersion testing with mild carbon steel in synthetic seawater with purged oxygen performed 

by M. A. Pagano et al., found that the frequency of applied AV affected the AC corrosion 

rate. They tested frequencies in the area 5-500 Hz and stated that increases in frequency leads 

to a drop in corrosion rate. It is also worth noting that at high frequencies, corrosion rates for 

high AVs are similar. They explained these results with a significant decrease in the 

impedance of the double layer. Due to this decrease, only small fractions of the current flows 

through the polarization resistance, and this lead to a lower corrosion rate. Another thing is 

that at lower frequencies, Fe2+-ions diffuse into the solution faster than the polarity of the 

working electrode changes, which means that there are less Fe2+ available for redeposition 

[31]. 

Through a study of electrochemical dissolution of platinum by potentiostatic and 

galvanostatic techniques with applied AC, G. Benke and W. Gnot determined that the highest 

rates of platinum dissolution occurs at frequencies close to 50 Hz [37]. Another study by Y. 

Hosokawa et al. that monitored ACs on a pipe steel, determined that a frequency of 50 Hz had 

the worst effect on AC corrosion [2]. 

2.4.2.2  Potential 

M. A. Pagano et al. found that the amplitude of the applied AV affected the corrosion rate. As 

seen in Figure 2-8, the corrosion rate increases rapidly with increasing AV, although with a 

slight fall in corrosion rate at potential between 100 and 600 mV (corrosion rates between 
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these voltages are still higher than with no applied voltage). It was stated that this fall in 

corrosion rate was due to passivation of the carbon steel. As the voltage was increased, 

hydrogen evolution caused the pH in the diffusion layer to increase, which formed a 

protective oxide layer. At voltage higher than 600 mV, the oxide layer was broken down and 

corrosion rates increased rapidly again [31]. 

 

Figure 2-8: Corrosion rate as a function of applied AV. Experiments at room temperature, O2 removed and at a frequency of 

60 Hz [31]. 

C. H. M. Hagen measured VAC (AC cell potential) between working electrode and AC counter 

electrode, and found that it was higher for SS compared to CS and where 25Cr were higher 

than 316 [26].  
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2.4.3 Potential behavior in an open circuit 

D. Kuang and Y. F. Cheng performed experiments to determine the effect of different coating 

defects on AC corrosion. The experiments were performed without applied DC on X65 

carbon steel, immersed in deoxygenated bicarbonate solution with near-neutral pH. A part of 

their results can be seen in Figure 2-9 [5]. 

 

Figure 2-9: Recorded DC potential as a function of time with various AC applied. Recorded at a steel sample with a circular 

coating defect with a diameter of 5 mm [5]. 

The figure shows a steel sample that is immersed in the solution with different levels of 

applied AC. As no DC is applied, the recorded values are the corrosion potential (Ecorr) of the 

sample, and can be divided into three regions: before applied AC, with applied AC and after 

applied AC. As the DC is measured at a coating defect with 5 mm in diameter, the applied AC 

current density from highest to lowest will be approximately: 1000, 500 and 50 A/m2. One 

can see that the applied AC increases the Ecorr in negative direction, and that the values pre- 

and post-AC is more or less the same. The DC values of -0.8 V vs SCE that occur for 10 and 

20 mA applied AC, resembles a regular CP-system. However, the steel samples were not 

protected at this potential, as they were reported to suffer from corrosion. It is thus likely that 

a regular CP-system is unable to protect a structure that is in contact with AC. A probable 

cause for this is the oscillating nature of the AC. This could also mean that a sample that is 

under CP of approximately -0.8 V vs SCE would possibly suffer from more severe corrosion, 

due to being in the active corrosion area together with an oscillating AC [5]. 

2.4.4 Corrosion kinetics 

Several studies have reported that the corrosion kinetics is affected when AC is applied [38-

40]. However, it has been debated whether it is the cathodic- or anodic overpotential that 
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suffers a change when AC is applied. S. Goidanich et al. suggested that the reduction in 

overpotential were higher for the cathodic reaction, and explained it with a change in the 

double layer chemical composition [39]. L. Lazzari et al. on the other hand concluded through 

studies in different simulated soil solutions, that both the cathodic- and anodic reaction are 

affected, as can be seen in Figure 2-10 and Figure 2-11 [40]. 

 

Figure 2-10: Schematic effect of AC on cathodic overpotential. Left illustration indicates effect on oxygen reduction, the right 

one indicates effect on hydrogen evolution [40]. 

 

Figure 2-11: Schematic effect of AC on anodic overpotential. Where the cathodic reaction at a) and b) is oxygen reduction 

and hydrogen evolution, respectively [40]. 

At high current densities, several studies have reported an enhanced hydrogen reaction at high 

AC current densities [41, 42]. L. Lilleby et al. performed experiments at SMSS in 3.5 % 

NaCl-solution and reported that the oxygen reduction reaction disappeared from the 

polarization curves at high AC, leaving the evolution of hydrogen as the cathodic reaction 

[43]. This was acknowledged by C.H.M. Hagen’s studies in 3.5 wt% NaCl-solution, were it 

was concluded that hydrogen evolution is the controlling cathodic reaction for different SSs 

(316 and 25Cr SDSS) at iAC > 100 A/m2 [26, 44].   

  



Theory 

18 

 

2.4.5 Current behavior under cathodic protection 

Through immersion testing of a sheet of 16Mn steel pipe in a test solution simulating soil 

solution with a pH of 8.95 and connected to a potentiostat, L.Y. Xu et al. found that applied 

AC affected the CP of the steel as can be seen in Figure 2-12 and Figure 2-13. The DC-

potential is maintained and the regions have the same meaning in both figures: CP-I and CP-

II/CP-2 are when only DC is applied. CP+AC mean that various AC current densities are 

superimposed on the DC. By other words, DC is maintained at a constant voltage and AC is 

applied at the CP+AC-region [30]. 

 

Figure 2-12: Recorded DC current density as a function of time with various AC applied. The steel sample is polarized 

potentiostatically at -0.85 V vs SCE [30]. 

As Figure 2-12 shows, the DC current density is close to zero and equal both before and after 

AC is applied. When AC is applied in the CP+AC-region, a positive shift is seen in the 

current density. This positive shift means that the current density becomes anodic, which is 

attributed to oxidizing of the steel anodically and thus enhanced corrosion. For applied AC 

less than 100 A/m2 there is a slight change in anodic direction. For higher AC however, there 

is a bigger difference. Moreover, as the applied AC increases, the more anodic the DC current 

density becomes [30]. 
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Figure 2-13: Recorded DC current density as a function of time with various AC applied. The steel sample is polarized 

potentiostatically at -1 V vs SCE [30]. 

Figure 2-13 also shows equal DC current density before and after AC has been applied, 

although at approximately -4 A/m2 which means full CP-protection. When AC is applied, the 

DC current density drops instantly and stabilizes at a current density that is much lower than 

originally. Further, as applied AC increases, the more negative the DC current density 

becomes. This drop in current density indicates that it becomes cathodic, which means that 

the DC-potential increases and the cathodic reaction and electron consumption is enhanced. 

With these results and weight loss measurements performed, L. Y. Xu et al. concludes that 

applied AC reduces the effectiveness of CP. Although, corrosion is at an acceptable level at 

sufficient negative CP (-1 V vs SCE) and reasonably low AC (iAC < 400 A/m2). Additionally, 

they point out that the AC affects the CP potential readings. For instance when CP is applied 

by constant current or voltage, the readings will be shifted either negatively or positively, not 

necessarily representing the CP-system [30]. 

Other studies have reported results that only coincide partly to these findings. C. H. M. Hagen 

performed similar study on 316 and X65 in 3.5 % NaCl-solution. The deviation from the 

findings by L. Y. Xu et al. is that it was reported that the DC current density for X65 in -800 

mV DC vs SCE, shifted to positive values for a short period only, before turning to negative 

and cathodic values. This is visualized in Figure 2-14. For -1050 mV vs SCE however, results 

were in accordance with L. Y. Xu et al. This was acknowledged by C. B. Esser, who tested in 

artificial seawater, and A. Bergin, who tested in both solutions [26, 27, 35]. 
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Figure 2-14: Recorded DC current density as a function of time, for X65 in -800 mV DC vs SCE for different AC current 

densities. First five hours of a total 48 hour long experiment [26]. 

C. H. M. Hagen integrated the short period of positive values over a time integral, and the 

charge corresponding to this period was calculated. Then it was discovered that the final 

weight loss was much higher than the weight loss from this charge. Thus, dissolution of the 

steel happens during the whole experiment (despite negative DC current response) and is not 

related to the positive values at the beginning [26].  

For 316, C. H. M. Hagen reported a negative current response for both -800 mV and -1050 

mV vs SCE, where the values stabilized at less negative values than the values initially. This 

was confirmed by C. B. Esser [26, 27]. 

2.4.6 Weight loss and corrosion rates 

2.4.6.1 Carbon steel 

D.-K. Kim et al. performed AC-corrosion experiments with mild steel, at a frequency of 60 

Hz and under CP in 3.5 % NaCl-solution and natural seawater. They discovered for both 

solutions, that there were no corrosion in the absence of AC, but as AC was applied an 

increase in AC current density lead to an increase in corrosion rate. This was the case for both 

CP-potentials. They explain this by destabilization of the passive layer that occurs because of 

the electrochemical reactions. For a AC current density of 100 A/m2, the corrosion rate was in 

the area of 0.98-0.99 mm/y for a CP-potential of -780 mV vs. SCE and 0.15-0.17 for a CP-

potential of -1100 mV vs. SCE. In addition, the corrosion rate was higher for the 3.5 % NaCl-

solution compared to natural seawater [29]. The latter is in contrast with A. Bergin’s study, 

which concluded that there was little or no difference between 3.5 % NaCl-solution and 

artificial seawater [35]. 

L. Y. Xu et al.’s experiments in simulated soil solution, as seen in Figure 2-15, reported 

complete protection from corrosion (defined as CR < 0.1 mm/y) at a CP-potential of -1 V vs 
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SCE. If applied AC was below 100 A/m2, complete protection was the case for a CP-potential 

of -0.85 V vs SCE as well [30]. 

 

Figure 2-15: Corrosion rate as a function of applied iAC under different CP-potentials. Determined by weight loss 

measurements of steel immersed in simulated soil solution [30]. 

C. H. M. Hagen reported corrosion rates in the area 0.115-0.205 mm/year depending on AC 

current density at a CP-potential of -800 mV vs SCE in 3.5 % NaCl-solution. With the peak 

CR at 500 A/m2 AC. Similar for a CP-potential of -1050 mV [26]. C. B. Esser found 

somewhat higher CR in artificial seawater; in the area 0.57-1.16 mm/year [27]. Significantly 

higher was the CR reported by A. Bergin, with the peak at 27.4 mm/year. It was proposed that 

a rougher surface roughness, storage of the samples prior to cleaning and an unfavorable 

testing procedure was the reason to these very high CRs [35].  

In general, an increase in corrosion rate with increasing AC current densities are supported by 

several studies, and visualized in Figure 2-16 [28, 30, 32, 35, 42]. 
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Figure 2-16: Corrosion rate as a function of applied iAC under EOC and different CP-potentials. Based on weight loss 

measurements of X65 immersed in 3.5 % NaCl-solution. Plot adapted from results by Stamnes [42]. 

2.4.6.2  Stainless steels  

Much data exists on how carbon steel is affected by AC, but there is little on SSs. 

Experiments on 316 in 3.5% NaCl-solution by C. H. M. Hagen found CR in the area of 0.008-

0.113 mm/year for a CP-potential of -800 mV vs SCE, and 0.007-0.024 for -1050 mV. 

Experiments on 25Cr SDSS were performed by first finding its passive regions through 

polarization curves in 3.5 % NaCl-solution. Then the steel was polarized anodically with 

applied AC. Testing was done with iAC of 0 and 100 A/m2, as the passive regions only was 

present at AC current densities below 100 A/m2. CRs were found in the area of 0.003-0.005 

mm/year for 0 AC and 0.010-0.022 mm/year for 100 A/m2 AC [26]. 

C. B. Esser’s study on 316 in artificial seawater reported CR in the area of 0.0002-0.090 

mm/year for a CP-potential of -800 mV vs SCE, and 0.023-0.034 for -1050 mV [27]. 

2.4.7 Surface characterization 

Visual inspection performed by D.-K. Kim et al. found no corrosion-products at mild steel 

under CP in the absence of AC. For applied AC they found red rust products (two different 

iron products, not defined), increasingly amounts for higher AC-densities. The red rust was 

not formed at one place, but rather spread around on the surface. For the highest AC current 

densities, the red rust was covering approximately 90 % of the surface [29]. 

Immersion testing of X65-steel in concentrated carbonate/bicarbonate-solution performed by 

A.Q. Fu and Y.F. Cheng, also discovered that absence of AC lead to full protection. At low 

AC current densities (50 A/m2 and below) they found that the steel corroded uniformly, but 

for higher AC current densities (100 A/m2 and up) pitting occurred. Further, increased AC 
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current density lead to more pits, and at 500 A/m2 the steel suffered extensively from pitting 

[28]. 

In the study performed by C. H. M. Hagen, the samples were viewed post cleaning in 

Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). It 

was reported that for both X65 and 316, the density and depth of pits increased with an 

increase in applied AC. Additionally, pits on 316 was seen to change configuration with AC; 

low AC current density caused etched pitting while higher current densities caused polished 

pits. Further, grain boundary corrosion was observed at 316 under -1050 mV vs SCE DC and 

1000 A/m2 AC, and non-soluble films formed on 316 were identified as layers of Platinum 

(Pt) [26].  

K. Forthun performed microscopic analysis with XRD of steel samples that had been 

immersed in artificial seawater together with aluminum anodes. The steel samples did not 

suffer from corrosion, except for a few cases of non-significant corrosion at very high 

effective AC current density (due to area-ratio between anode and steel). The XRD-analysis 

was taken of the calcareous deposits that formed on the steel. From the results, it was reported 

that the deposits consisted mainly of Mg(OH)2 and CaCO3 (aragonite). The amount of the 

latter was seen to decrease as applied AC increased. It was also discovered minor amounts of 

NaCl, corrosion products (undefined) and a polymorph of CaCO3 (calcite) [3]. 

2.4.8 Changes in pH due to AC 

D.-K. Kim et al. found, by measuring bulk pH at the end of each experiment, that there was a 

small increase in pH during exposure time with the increase of AC current density. For a 

current density of 100 A/m2 AC, the pH increased with approximately 0.8 for an exposure 

time of 24 hours. This means that the degree of alkalization is increased. Alkalization means 

that water is electrochemically reduced into OH- (can happen with or without oxygen), and an 

increase of these ions close to the metal surface is believed to affect the corrosion process 

greatly. The elevated pH together with the AC-affected DC, may induce corrosion either by 

destabilization of passive layer or by moving the steel into to active corrosion-area (for very 

high pH), as seen in the Pourbaix-diagram in Figure 2-6 [29]. 

2.5 Summary 

Several studies and experimental work, both in absence of and with applied AC, has been 

presented in the last chapters. The most important information is reviewed in the following 

paragraphs.  

 The complete mechanism of AC corrosion has yet to be fully understood, and it is 

unknown which corrosion products that are formed. Studies on AC suggest that 
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HFeO2
- [29], Fe3O4 [33, 34] and Fe2O3 [36] may form. Studies in absence of AC also 

suggest the formation of Fe3O4 [14, 24]. Other suggestions are FeClx and Fe(OH)Cl 

[14], Fe(OH)2 [15] and FeOOH [24]. 

 It is expected that calcareous deposits will form on samples tested in artificial 

seawater. Mg(OH)2 and CaCO3 are the most probable deposits, where increased 

immersion time [23] and increasing AC [3] favors the latter. 

 AC-cell potential is expected to be in the following order, from high to low: 

25Cr>316>X65 [26]. An increase in applied AV has been seen to increase CR [31]. 

 The corrosion potential is seen to increase in negative direction upon applied AC [5]. 

 The kinetics of the anodic- and cathodic reaction has been seen to change when AC is 

applied [39, 40]. The cathodic reaction suffers from the most change; it has been 

reported that the reduction of O2 disappears completely at high AC, leaving the 

formation of H2 as the cathodic reaction [26, 43, 44]. 

 Recorded DC current behavior for a CP-system by different studies is contradictory. 

Studies agree on a cathodic and negative shift for samples polarized at -1050 mV. 

Several studies report a cathodic shift for -800 mV as well [26, 27, 35], while other 

report an anodic shift [30]. It is further expected that steel dissolution will occur 

despite cathodic current response of a CP-system [26]. 

 Corrosion is expected to occur on all steels despite CP, and an increase in applied AC 

has been seen to increase CR [26-28, 30, 32, 35, 42]. It has also been reported that an 

increase in negative direction for CP potential decreases CR for X65 [29, 30] and 316 

[26, 27]. However, studies have also showed that there is no correlation between CP 

potential and CR for X65 [26, 35]. It is further expected that CR for samples under CP 

and AC will be in the following order, from high to low: X65>316>25Cr [26, 27]. 

 Studies comparing 3.5 % NaCl-solution and seawater are contradictory. Some studies 

suggest a pronounced higher CR for the NaCl-solution, tested with [29] and without 

[24] applied AC respectively. Other studies with applied AC have reported little 

difference between the two mediums [27, 35]. 

 Pitting is expected to occur at samples of X65 and 316, under CP and high AC current 

densities. An increase in current density increases pitting severity [26, 28]. 

 pH is expected to increase due to alkalization of the surface, for samples under CP and 

AC in marine environments [29].  
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3 Experimental 

This section contains test equipment, test set up and all procedures used for this immersion 

corrosion testing of CS and SSs, with applied AC and under CP. All methods described are 

inspired by earlier projects performed by C.H.M. Hagen and C.B. Esser, and certain standards 

[26, 27, 45, 46]. Further, it is a continuation of the work done during the author’s 

specialization project [35]. 

3.1 Test sample 

3.1.1 Material specification 

Three different materials have been tested in this study: X65 CS, AISI 316 SS and 25Cr 

SDSS. The X65-samples were manufactured from a part of a pipe at NTNU’s technical 

laboratory of materials. Information about its chemical composition can be seen in Table 3-1. 

Table 3-1: The chemical composition of the X65 carbon steel used in this thesis. Values are given in wt%. 

 

X65 

CS 

Chemical composition 

 C Si Mn P S V Nb Ti 

Wt% 0.16 0.45 1.65 0.020 0.010 0.09 0.05 0.06 

 

The samples of 316 were manufactured from a plate delivered from NTNU’s technical 

laboratory of materials. It was also used earlier studies by C. H. M. Hagen and C. B. Esser. Its 

chemical composition is shown in Table 3-2 below. 

Table 3-2: The chemical composition of the AISI 316 Stainless Steel. Values are given in wt%. 

AISI 

316 

SS 

Chemical composition 

 C Cr Ni Mo Mn Si P S 

Wt% <0.03 16-18.5 10-14 2-3 <2 <1 0.045 <0.03 

 

The 25Cr was delivered as a plate from “Smith Stål Nord Trondheim” and cut into samples by 

NTNU’s technical laboratory of materials. It was also used in an earlier thesis by C. H. M. 

Hagen, and its chemical composition can be found in Table 3-3. The chemical composition is 

collected from a material certificate that accompanied the delivered plate [26]. 
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Table 3-3: The chemical composition of the 25Cr Super Duplex Stainless Steel. Values are given in wt%. 

 

 

25Cr 

SDSS 

Chemical composition 

 C Cr Ni Mo Mn 

 

Wt% 

<0.017 25.75 6.88 3.77 0.58 

Si P S Cu N 

0.29 0.021 0.0004 0.17 0.278 

 

3.1.2 Sample preparation and geometry 

The used samples were pretreated in different ways. The samples from X65 was freshly 

machined and either milled at NTNU’s technical laboratory of materials and then grinded 

manually afterwards, or just milled. Grinding was done by using successively finer grade of 

SiC-papers (220-500-1000 grit size) at a standard grinding table with running water. It was 

necessary to clean the grinded samples according to ASTM-G1 after grinding, as they started 

to corrode in the presence water [45]. The samples of 316 and 25Cr were old samples from C. 

H. M Hagen and C. B. Esser’s studies, which presumably had been polished by water to a 

grade finer than 1000 grit size. They had reacted during their storing at the workbench, and 

thus was cleaned according to ASTM-G1 as well [45]. Figure 3-1 shows two photos of 

samples from 25Cr; differences in surface pre- and post-cleaning and between cleaned 

samples.  

 

Figure 3-1: The first photo shows two 25Cr-samples, were the left on is prior to cleaning and the right one has been cleaned. 

The second photo shows the surface difference between some cleaned samples. The samples that was shiny, as the one to the 

far right was used for XRD and not weight loss measurements 

Prior to testing, they were washed, dried, weighed and coated. Washing was done in the 

following order: distilled water, acetone and ethanol (96 %). The samples were dried using 

hot air from an electrical heat gun, weighed by a standard analytical weight (with an error of ± 

1 mg) and coated with Miccro Super XP 2000 Stop-Off Lacquer. The weight and the lacquer 

can be seen in Figure 3-2. The lacquer used was chosen due to its good protection against 

corrosion and easy removal.  
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Figure 3-2: The left picture is of the standard analytical weight and the right picture is of the lacquer used to coat the 

samples. 

The samples were delivered in sizes of approximately 80*20*2 mm (except for the 25Cr-

samples, which had a thickness of 1.5 mm), but each sample was measured individually due 

to small dimension irregularities. The samples were coated to be able to control the applied 

AC current densities. The limited power output from the AC-supply made it necessary to 

decrease the dimensions of exposed area for high current densities. The ideally exposed area 

of the different samples are shown in Table 3-4 and Figure 3-3, which would give about the 

same “tune-in” value at the VariAC for 500 and 1000 A/m2. However, as the coating was 

applied by hand with a q-tip, there were differences in actual area. This was adjusted by an 

increase or decrease in applied AC-voltage. 

Table 3-4: The ideal dimensions of the samples. 

Ideal sample dimensions 

 Exposed area [cm2] Height [cm] Width [cm] Thickness [cm] 

iAC ≤ 500 A/m2 5.68 1.2 2 0.2 

iAC > 500 A/m2 2.6 0.5 2 0.2 

 

All the samples were coated twice, with approximately one day between each cycle and at 

least one day before immersion. As many samples often were coated at the same time, the 

samples were stored for days in the same manner as can be seen in Figure 3-3. To avoid 

corrosion around the clamp on the top of the samples during experiments, coating was applied 

tight around the clamp and the whole top was covered with laboratory-film as seen in Figure 

3-3. 
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Figure 3-3: The left picture shows some samples before they were coated, and the difference in exposed area is visible. The 

picture in the middle shows how the sample top was covered to avoid unwanted corrosion. The right picture shows drying 

and storing of the samples after coating.  

3.2 Experimental set up 

3.2.1 Preparation of electrolytes 

Two different electrolytes were used, the 3.5% NaCl-solution and artificial seawater. The 

artificial seawater was prepared partly in accordance with ASTM’s standard [46]. One thing 

that was done differently from what the standards suggests is that bromides (KBr) were 

excluded due to HSE-reasons. Another suggestion from the standard that was not followed 

was that the various parts of the solutions should be made and stored in separate containers, 

and then be mixed immediately prior to use. Instead, based on results from the author’s 

specialization project [35] and communication with the main supervisor [47], all the 

ingredients were mixed simultaneously and stored in the same container. Immediately prior to 

use, the pH of the solution was adjusted to 8.2 with 1.25 M NaOH, partly according to 

standard (standard suggests 0.1 M NaOH). pH was measured with PHM210 Standard pH 

Meter from Radiometer Copenhagen. The composition of the artificial sweater is found in 

Table 3-5. 

Table 3-5: The composition of artificial seawater [46]. 

Compound Concentration [g/L] Compound Concentration [g/L] 

NaCl 24.53 MgCl2 5.20 

Na2O4 4.09 CaCl2 1.16 

KCl 0.695 NaHCO3 0.201 

H3BO4 0.027 SrCl2 0.025 

NaF 0.003   
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3.2.2 Equipment 

Lidded glass beakers were used as cells and they were immersed in a water-bath holding 25 

°C, under constant stirring for equal distribution of temperature. At first, the solution within 

the cells was constantly stirred with an electrical driven glass rod at 100 rpm to keep the 

oxygen-level constant. However, since the glass rod barely was immersed in the solution and 

had a low rpm, it was regarded as redundant and was discarded after about half of the samples 

had been tested. 

Platinum was used as counter electrodes and SCE in saturated KCl was used as reference 

electrode for all tests. The SCE displays approximately + 0.244 V vs. SHE (Standard 

Hydrogen Electrode) at 25 °C, which means that ESHE = Emeasured + 0.244 V. All DC-potentials 

in this project are reported versus the SCE-reference. 

In order to have ionic contact between reference electrode and the submerged samples, salt 

bridges were made approximately every two weeks. They were made in U-shaped glass tubes 

constructed specially for this application by the technical laboratory at NTNU, and prepared 

by heating saturated KCl to 90 °C, adding agar and sucking the mixture up on one side of the 

glass tubes. 

3.2.3 Apparatus set up 

The set-up of the circuit is the same as has been used for several years of AC-studies at 

NTNU, and used in projects written the last couple of years [26, 27, 35]. The principle of the 

design is to monitor and control the DC- and AC-voltages independently of each other. The 

circuit is shown in Figure 3-4 and Figure 3-5. 

All equipment that needed electrical supply was grounded and isolated by the use of a 

transformer. To keep any noise at a minimum, all the equipment was put in close proximity to 

each other and the wires that were used were as short as possible. Pre start-up, all clamps and 

wires were inspected and resistance-tested to be sure they were conductive. A VariAC 

supplied AC in the form of voltage, and a PC-based Gamry PotentiostatTM were used to apply 

the DC and log data with the Gamry FrameworkTM. The VariAC sent sinusoidal waves at a 

frequency of 50 Hz. 
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Figure 3-4: Schematic circuit diagram of the used circuit, where the AC-part is on the right and the DC-part is on the left. C 

is a capacitor, L is an inductor, VM is voltmeters, R is a resistance and the VariAC is the source of the AC signal. The black 

component is the SCE, the green tube connecting the baths is the salt bridge, the two blue elements are counter electrodes 

and the red component is the working electrode/steel sample. The circuit diagram is an edited version of the original made 

by C. B. Esser [27]. 

Fluke TrueRMS multimeters were used as voltmeters, where VM1 displayed the DC-potential 

applied by the potentiostat, making it possible to check if it was correct. VM2 displayed the 

AC-voltage that was manually applied by the VariAC, over a fixed resistance, R1. A Fluke 

289 True RMS logging multimeter saved the values from VM3, which displayed the AC cell 

potential, VAC. The capacitor (C) of 500 µF filtered out DC from the AC-part and the inductor 

(L) of 10 L filtered out AC from the DC-part. In Figure 3-5, a picture of the circuit and all its 

components can be seen. 
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Figure 3-5: Picture of the experimental set-up. The numbered components are:  1) PC-based Gamry Potentiostat 2) 

transformer 3)VariAC 4) capacitor and resistance 5) inductor 6) multimeter displaying AC potential from VariAC 7) 

multimeter logging AC cell potential 8) multimeter displaying DC polarization from potentiostat 9) stirrer 10) temperature-

controlled water bath 11) AC counter electrode 12) working electrode 13) SCE 14) salt bridge 15) DC counter electrode 16) 

grounding wire. 

3.2.4 Experimental procedure 

The test cell was filled with approximately 850 mL of electrolyte and counter electrodes and 

the salt bridge was installed. Then the sample was introduced, immediately before DC 

polarization was initiated to avoid any corrosion before recording. Lastly, the VariAC was 

tuned into the right voltage (if the stirring rod was used, it was introduced afterwards). Right 

AC-voltage was calculated with equation found in Appendix A. The VariAC needed to be 

fine-tuned regularly to be sure it remained at the correct value due to its oscillating nature. 

After 48 hours, the AC was turned off right after polarization ended. Then the sample was 

taken out, rinsed in distilled water and ethanol and dried with heat gun. Lastly, the coating 

was peeled of manually and the samples were cleaned for corrosion products (except for one 

sample that was stored in a desiccator for approximately 3 months).  

For the majority of the experiments, the pH was measured. This was done either with regular 

pH-strips or by a standard pH-meter. For the strips, the pH was measured in the solution right 
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before the end or at the corroded sample right after it had been removed from the solution. For 

the pH-meter, the pH was measured in the solution after the sample had been removed.  

3.2.5 Experimental method 

Due to time constraints and unforeseen events, limited parallel- and re-testing was performed. 

A total of 28 samples were tested: 15 of X65, 5 of 316 and 8 of 25Cr. The common testing-

method for all samples was to polarize them potentiostatically at -800 or -1050 mV vs SCE, 

and then applying a constant AC current density through the whole experiment of 48 hours. 

The parameters that were measured were the DC current response of the potentiostat and the 

AC cell potential (data from three experiments were lost due to technical failures). The 

following polarizing-tests were performed: 

 One sample of X65 was tested in 3.5 % NaCl-solution under -800 mV DC and with 

applied AC of 500 A/m2. The sample was stored for 3 months in a desiccator. The 

purpose was to examine if corrosion continued upon storage, which was assumed to 

be the cause for the high CR in the author’s specialization project [35]. 

 Four samples of X65 were tested with applied DC and no AC, to examine if the 

samples were fully protected by the DC. Experiments were performed in 3.5 % NaCl-

solution and artificial seawater, at -800 and -1050 mV DC. 

 Eight samples (four in 3.5 % NaCl-solution and four in artificial seawater) of X65 

were tested to determine the effect of surface roughness. Testing was done at 500 

A/m2 AC with two different topographies, in -800 and -1050 mV DC. These 

performed experiments in NaCl-solution also served as reproducibility-data when 

compared to a former thesis by C. H. M. Hagen [26]. 

 Four samples of 316 were tested in artificial seawater at 500 and 1000 A/m2 AC, in -

800 and -1050 mV DC. 

 Six samples of 25 Cr were tested in artificial seawater at 100, 500 and 1000 A/m2 AC, 

in -800 and -1050 mV DC. 

 Powder from three experiments was inspected through XRD analysis. The different 

powders originated from calcareous deposits on 316 and 25Cr tested in artificial 

seawater at -800 mV DC and 1000 A/m2 AC, and cell sediments from experiment 

performed at X65 in artificial seawater at -800 mV DC and 500 A/m2 AC. 

 Three experiments were performed in order to examine the samples in Grazing 

Incidence X-ray Diffraction (GIXRD) analysis. This was performed at: X65 tested in 

3.5 % NaCl-solution at -800 mV DC and 700 A/m2 AC, X65 tested in artificial 

seawater at -800 mV DC and 500 A/m2 AC, 25Cr tested in artificial seawater at -800 

mV DC and 1000 A/m2 AC. 
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 15 samples were examined and photographed in SEM: seven samples of X65 that was 

tested in different solutions, different surface roughness and various DC-potentials. 

Two from 316 that was tested at 500 A/m2 AC and six samples from 25Cr. 

 One sample was examined in EDS: 25 Cr tested in artificial seawater at -800 mV DC 

and 500 A/m2 AC. It was examined after cleaning. 

3.3 Weight loss measurements 

After electrochemical testing, the samples were cleaned and analyzed in accordance with 

ASTM G1 [45]. The chosen cleaning method was chemical removal, where different 

solutions and procedures were used for different types of steels, which are summarized in 

Table 3-6. During cleaning, the whole sample was immersed in the solution. 

Table 3-6: The various solutions and procedures for chemical cleaning of the tested samples. 

Steel Solution Cycle time Temperature 

 

X65 

- 500 mL HCl (SG 1.16) 

- 3.5 g hexamethylene tetramine 

- Reagent water to make 1000 mL 

30 sec 20 - 25 °C 

AISI 316 SS 

25Cr SDSS 

- 100 mL HNO3 (SG 1.40) 

- Reagent water to make 1000 mL 

20 min 60 °C 

 

Non-corroded samples were tested in order to determine if the cleaning solutions caused any 

metal loss. As X65 suffered small amounts of loss while the SSs suffered none, the detailed 

cleaning procedure differed slightly between the types of steel.  

X65 was usually cleaned in six cycles, where the samples were rinsed as normal (with 

distilled water, acetone, ethanol and then dried with a heat gun) between each cycle. The 

weight loss measurements from each cycle was corrected for metal loss and used to construct 

a plot where the weight loss from corrosion products was found. An example of such a plot 

and some explanation can be found in Appendix B. As the SSs were immune to the cleaning 

solution, no correction or plot was necessary, and only one cleaning cycle was performed.  

The weight loss measurements were used to calculate corrosion rate (CR) with the equation 

found in Appendix A. 
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3.4 Surface characterization 

On a macroscopic level, the samples were inspected visually both after electrochemical 

testing and after cleaning. Photographs were also taken pre and post cleaning. 

On a microscopic level, the samples were tested in SEM, EDS, XRD and GIXRD. All the 

samples viewed in SEM and EDS were viewed post cleaning. The SEM that was used was a 

LV FE-SEM Zeiss Supra 55 VP. A secondary electron detector was used to achieve 

topographical contrast, and the chosen parameters were an accelerating voltage of 15 kV and 

a working distance of approximately 10 mm. For regular SEM, low current-mode and an 

aperture size of 30 µm was used. For EDS, high current mode was used and the aperture size 

was set to 120 µm. 

Three tests were performed with XRD and three with GIXRD, where a Bruker AXS D8 

DaVinci Advance machine was used to perform the testing and Bruker AXC Diffrac.EVA 

software was used to evaluate the results. For XRD, the deposits and products on the samples 

were scratched off, crushed in a mortar and distributed on sample holders with single-

crystalline silicon as background. These tests were set for 30 minutes each, with a fixed 

divergence slit of 0.2° and a 2θ-range of 10-75°. In GIXRD, the sample surface was 

characterized, and thus any calcareous deposits were removed before the samples were cut in 

applicable size by NTNU’s technical laboratory of materials. One sample was cut without any 

cooling medium and the two others were cut with water-cooling and rinsed in ethanol 

afterwards. These tests were set for 2 hours each with a fixed divergence slit, 2.5° incidence 

slit and a 2θ-range of 15-70°. 
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4 Results 

This chapter will present the results from the 28 tested samples: 15 of X65, 5 of 316 and 8 of 

25Cr. All samples were tested for 48 hours. The results from X65 in 3.5 % NaCl-solution that 

was used to test reproducibility of data compared to C. H. M. Hagen’s thesis, will be 

presented in Appendix C. Any results due to parallel testing or from some other reason are 

unnecessary to include in this chapter, will be presented in Appendix D-F. 

The results will be presented in the following order: polarization behavior, weight loss, 

surface characterization (first macroscopic, then microscopic) and general observations. 

Lastly, all the results will be summarized in a separate subsection. All recorded potentials are 

measured against the SCE, which shows + 0.244 V against the SHE at room temperature. The 

AC-potentials are consistently reported as root mean square (RMS) values as measured by 

multimeters, and the DCs in polarization-figures are reported at cathodic for negative values 

and anodic for positive values. Further, 3.5 % NaCl-solution will be referred to as NaCl and 

artificial seawater will be referred to as seawater in this chapter. 
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4.1 Polarization behavior 

During experimental testing, the applied DC current density to maintain the DC-potential at a 

constant level was measured. In addition, the AC cell potential was logged throughout each 

experiment. 

4.1.1 Polarization behavior in absence of AC 

The DC current response for potentiostatic polarization of X65-samples in absence of AC can 

be seen in Figure 4-1. Samples have been immersed in both NaCl and seawater, and polarized 

at -800 and -1050 mV DC.  

 

Figure 4-1: The recorded DC current density response as a function of time, with no AC applied. Samples are polarized at -

800 and -1050 mV DC, in 3.5 % NaCl-solution and artificial seawater. 

One can see here that the DC current response is at a stable cathodic current for samples 

polarized at -800 mV DC in NaCl. At -1050 mV DC in the same medium, the current 

increases in cathodic direction through the whole experiment. For the sample in seawater at -

800 mV DC, a big drop in the current response can be seen. This is due to a situation where 

the salt bridge lost contact and can therefore be ignored. Then, it is visible that the DC current 

response shows decreasingly cathodic values for both potentials in seawater. 

4.1.2 Polarization behavior of various surface roughness 

The DC current response for potentiostatic polarization of X65-samples in order to determine 

the effect of surface roughness, can be seen in from Figure 4-2 to 4-5. Samples polarized in 

NaCl can be seen in Figure 4-2 and 4-3, which have been polarized at -800 and -1050 mV 

DC, respectively. Figure 4-4 and 4-5 shows the samples that were immersed in artificial 

seawater, polarized at -800 and -1050 mV DC. 
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Figure 4-2: The recorded DC current density response as a function of time, with 500 A/m2 AC applied. Samples are either 

milled or grinded at 1000 grit, and polarized at -800 mV DC in 3.5 % NaCl-solution. 

 

Figure 4-3: The recorded DC current density response as a function of time, with 500 A/m2 AC applied. Samples are either 

milled or grinded at 1000 grit, and polarized at -1050 mV DC in 3.5 % NaCl-solution. 
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Figure 4-4: The recorded DC current density response as a function of time, with 500 A/m2 AC applied. Samples are either 

milled or grinded at 1000 grit, and polarized at -800 mV DC in artificial seawater. 

 

Figure 4-5: The recorded DC current density response as a function of time, with 500 A/m2 AC applied. Samples are either 

milled or grinded at 1000 grit, and polarized at -1050 mV DC in artificial seawater. 

From Figure 4-2 to 4-5, one can see that the DC current response more or less stabilizes at 

cathodic currents for all experiments, with an increase in cathodic direction for -1050 mV 

compared to -800 mV DC. More important, it is visible that the difference between milled 

samples and samples that are grinded to 1000 grit is very small. The differences seen for 

seawater at -1050 mV in Figure 4-5, are so small they can be neglected. 

Figure 4-6 and 4-7 displays the AC cell potential that was recorded from the experiments 

viewed in Figure 4-2 to 4-5 above. 
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Figure 4-6: The recorded AC cell potential as a function of time, with 500 A/m2 AC applied. Samples are either milled or 

grinded at 1000 grit, and polarized at -800 or -1050 mV DC in 3.5 % NaCl-solution. 

 

Figure 4-7: The recorded AC cell potential as a function of time, with 500 A/m2 AC applied. Samples are either milled or 

grinded at 1000 grit, and polarized at -800 or -1050 mV DC in artificial seawater. 

From both figures above, it is clear that the VAC for both DC-potentials are higher for the 

samples grinded to 1000 grit compared to those that are milled. This is the case in both NaCl 

and seawater. Samples tested in NaCl as seen in Figure 4-6 are inconsistent when it comes to 

the effect of applied DC-potential, while for samples tested in seawater as in Figure 4-7, there 

seems to be little difference in VAC with the different DC-potentials. 
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4.1.3 Polarization behavior of AISI 316 SS 

The DC current response for potentiostatic polarization of 316-samples in seawater can be 

seen in Figure 4-8. Samples have been polarized at -800 and -1050 mV DC, and been under 

500 and 1000 A/m2 applied AC. 

 

Figure 4-8: The recorded DC current density response as a function of time, with different AC applied at 316-samples. The 

samples are milled and polarized at different potentials in artificial seawater. 

It can be seen from the figure that cathodic currents occur for all samples, and that the 

cathodic current decrease with time. Further, the graphs are similar for three of 5 experiments, 

where the last one tested at -1050 mV DC and 1000 A/m2 AC is significantly more cathodic. 

Further, the sample re-tested at the same parameters suffers a major decrease in cathodic 

direction after approximately 20 hours. However, the general trend is that increasingly 

negative DC-potentials and increasing applied AC, increases the current response in cathodic 

direction. Compared to similar experiments on X65 in Figure 4-4 and 4-5, the current 

response is higher in cathodic direction for 316. 

Figure 4-9 displays the AC cell potential that corresponds to the experiments viewed in Figure 

4-8. 
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Figure 4-9: The recorded AC cell potential as a function of time, with various AC applied at 316-samples. The samples are 

milled and polarized at different potentials in artificial seawater. 

From the figure, it can be seen that high applied AC and less negative applied DC causes VAC
 

to increase. Thus, the highest value of VAC is at -800 mV DC and 1000 A/m2 AC, and the 

lowest is at -1050 mV and 500 A/m2. These values are inconsistent with the corresponding 

current response. However, the form of the curves is similar for all cases except for the re-

tested sample. The VAC for the re-tested sample is high in the first part of the experiment, but 

suffers from a significant decrease after about 20 hours, similar to what can be seen for the 

DC current response of the re-tested sample in Figure 4-8.  

If the VAC-results from Figure 4-9 are compared to similar results for X65 in Figure 4-7, the 

latter values are a bit lower. 
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4.1.4 Polarization behavior of 25Cr SDSS 

The DC current response for potentiostatic polarization of 25Cr-samples in seawater can be 

seen in Figure 4-10. Samples have been polarized at -800 and -1050 mV DC, and have been 

under 100, 500 and 1000 A/m2 applied AC. The line in light blue tested at -800 mV DC and 

1000 A/m2 AC were tested twice. As the current response curves were similar, they are 

presented together in Appendix D. 

 

Figure 4-10: The recorded DC current density response as a function of time, with different AC applied at 25Cr-samples. 

The samples are milled and polarized at different potentials in artificial seawater. 

It can be seen from all samples that the current response is cathodic and that the cathodic 

current decreases with time. Further, both increasingly negative DC and an increase in AC 

cause the current response to increase in cathodic direction. In addition, the cathodic currents 

are higher for all experiments on -1050 mV DC, compared to -800 mV DC. At 1000 A/m2 

AC, the current response is very unstable with several “drops” with increase in cathodic 

current that re-stabilizes quickly. This is especially present for -800 mV DC. If the results on 

25Cr in Figure 4-10 are to be compared with the results on 316 as seen in Figure 4-8, the 

magnitude of the values are similar. 

Figure 4-11 displays the AC cell potential that corresponds to the experiments viewed in 

Figure 4-10. The experiment that was tested twice (at -800 mV DC and 1000 A/m2 AC) will 

be presented in Appendix D with the current response. 
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Figure 4-11: The recorded AC cell potential as a function of time, with various AC applied at 25Cr-samples. The samples are 

milled and polarized at different potentials in artificial seawater. 

From Figure 4-11, it can be seen that the VAC is high when applied AC is high and DC is less 

negative, which is in correlation with measurements on 316 as seen in Figure 4-9. Particularly 

low values are seen when 100 A/m2 AC is applied. It does not seem like there is a correlation 

between the DC current response and the VAC for 25Cr. If the magnitude of the 25Cr-values is 

compared with those at 316 in Figure 4-9, some values are equal and some are a bit higher for 

25Cr. 

4.2 Weight loss measurements 

Corrected weight loss for each sample was measured after the experiment, and this together 

with the duration of immersion and the exposed area was used to calculate the CR. The 

equation used for this calculation can be found in Appendix A. Weight loss in mg is presented 

with decimals for X65 but not for 316 and 25Cr. This is due to the grade of detail of the 

weight used, and because the weight loss for X65 is based on plotted graphs as can be seen in 

Appendix B. 

4.2.1 Weight loss measurements in absence of AC 

For three out of four X65-samples tested in absence of AC, no significant corrosion was 

found through weigh loss measurements. There was however found a CR of 0.041 mm/year 

for the sample tested in seawater at -800 mV DC, which corresponds to the grey graph in 

Figure 4-1. 
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4.2.2 Weight loss measurements of various surface roughness 

Corrosion rates based on calculations from the measured weight loss for X65-samples, either 

milled or grinded to 1000 grit and tested in different solutions can be seen in Table 4-1. 

Table 4-1: Calculated corrosion rate for X65-samples tested at 500 A/m2AC under  -800 and -1050 mV DC, in 3.5 % NaCl-

solution and artificial seawater. The samples have been either milled or grinded to 1000 grit. 

 NaCl Seawater 

Surface roughness -800 mV DC -1050 mV DC -800 mV DC -1050 mV DC 

Milled [mm/year] 0,288 0,226 0,208 0,191 

1000 grit [mm/year] 0,297 0,227 0,239 0,209 

 

It can be seen here that the CRs are similar for the two topographies, where the difference is 

highest at 0.021 mm/year for the samples tested at -800 mV DC in seawater.  Further, an 

increase in negative direction for applied DC seems to decrease CR in NaCl. It is not clear if 

this is a trend in seawater as well, as these calculated values seem to vary more. A clear trend 

however, is that CRs are higher for samples tested in NaCl compared to seawater, especially 

at an applied DC of -800 mV. 

4.2.3 Weight loss measurements of AISI 316 SS 

Corrosion rates based on calculations from the measured weight loss for 316-samples that 

were tested in seawater can be seen in Table 4-2. 

Table 4-2: Calculated corrosion rate for 316-samples tested at different ACs  under  -800 and -1050 mV DC, in artificial 

seawater. One sample was re-tested. 

DC [mV] AC [A/m2] Weight loss [mg] Area [cm2] CR [mm/year] 

-800 1000 1 2.88 0.081 

-1050 1000 3 2,68 0.260 

-1050 1000 0 2,55 0 (re-test) 

-800 500 1 5,55 0.042 

-1050 500 0 5,55 0 

 

From Table 4-2, one can see that 316 seem to be protected at -1050 mV DC at medium 

applied AC. For a high AC of 1000 A/m2 however, the results differ greatly in the two 

experiments. At -800 mV DC, some corrosion occurs, where the CR seem to double when the 

applied AC is doubled. 
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4.2.4 Weight loss measurements of 25Cr SDSS 

Corrosion rates based on calculations from the measured weight loss for 25Cr-samples that 

was tested in seawater can be seen in Table 4-3. The experiment that was performed twice (at 

-800 mV DC and 1000 A/m2 AC), showed similar CRs for both tests and are thus presented in 

Appendix D. 

Table 4-3 Calculated corrosion rate for 25Cr-samples tested at different ACs  under  -800 and -1050 mV DC in artificial 

seawater. 

DC [mV] AC [A/m2] Weight loss [mg] Area [cm2] CR [mm/year] 

-800 1000 6 2.67 0.522 

-1050 1000 3 2.54 0.274 

-800 500 3 5.51 0.126 

-1050 500 5 5.19 0.224 

-800 100 1 5.33 0.044 

-1050 100 0 5.33 0 

 

From the table it can be seen that no or little corrosion occurs at low AC current density. For 

medium and high applied AC there is no clear trend: at -1050 mV DC the CR is similar for 

both 500 and 1000 A/m2 AC, while for -800 mV DC the CR are both lower (500 A/m2 AC) 

and a lot higher (1000 A/m2) than at -1050 mV DC. 

4.2.5 Weight loss measurements of the stored sample 

Corrosion rate based on calculation from the measured weight loss for a X65-sample tested 

and then stored for three months before cleaning, are visible in Table 4-4. One can see that the 

CR is at 0.215 mm/year, which is reasonably low. 

Table 4-4: Calculated corrosion rate for a milled  X65-sample tested at 500 A/m2AC and  -800 mV DC Testing was done in 

3.5 % NaCl-solution and the sample was stored three months in a desiccator between testing and cleaning. 

DC [mV] AC [A/m2] Weight loss [mg] Area [cm2] CR [mm/year] 

-800 500 5.25 5.67 0.215 
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4.3 Macroscopic surface characterization 

Each sample was inspected visually both after experiments was finished and after samples 

were cleaned. The samples were photographed during inspection. 

4.3.1 Surface characterization in absence of AC 

Photographs taken of samples tested in absence of AC can be seen in Figure 4-12. Only one 

of the post cleaned samples are presented due to high degree of similarity between the 

experiments. 

  

Figure 4-12: Pictures of the samples tested with applied DC and absence of AC. The top pictures are prior to cleaning and 

the bottom one is post cleaning. Of the top pictures: the two to the left are tested in 3.5 % NaCl-solution and the right ones in 

artificial seawater. From left to right they have been tested at -800, -1050, -800 and -1050 mV DC. The bottom picture 

corresponds to the first at the top. 

From the figure, it appears that some black corrosion products formed on the sample under -

800 mV DC in NaCl, while the one at -1050 mV DC was fully protected. In seawater, a thin 

layer of calcareous deposits was formed, with an increased amount corresponding to an 

increase in negative direction of applied DC. 

4.3.2 Surface characterization of various surface roughness 

Photographs taken of samples with different surface roughness tested in NaCl and seawater 

can be seen in Figure 4-13 and 4-14 respectively. 
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Figure 4-13: Pictures of samples with different surface roughness tested in 3.5 % NaCl-solution at 500 A/m2 AC. The top 

pictures are prior to cleaning and the bottom one is post cleaning. The left cluster was tested at -800 mV DC, and the other at 

-1050 mV DC. Within each cluster, the 1000 grit samples are to the left.  

One can see that there is little, if any, difference between milled and 1000 grit samples. 

Further, the corrosion product is black with a decrease in amount for -1050 mV DC.  

 

Figure 4-14: Pictures of samples with different surface roughness tested in artificial seawater at 500 A/m2 AC. The top 

pictures are prior to cleaning and the bottom one is post cleaning. The left cluster was tested at -800 mV DC, and the other at 

-1050 mV DC. Within each cluster, the 1000 grit samples are to the left. 

It can be seen that there seem to be a mix between orange and black corrosion products for the 

samples tested at -800 mV DC, while for -1050 mV a medium thick layer of calcareous 

deposits were formed. There is little difference between milled and 1000 grit, but some 

difference can be seen at -800 mV DC. 
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4.3.3 Surface characterization of AISI 316 SS 

Photographs taken of 316-samples tested in seawater can be seen in Figure 4-15 and 4-16, 

which have been tested at 500 and 1000 A/m2 AC respectively. 

 

Figure 4-15: Pictures of 316-samples tested in artificial seawater at 500 A/m2 AC. The top pictures are right after testing, the 

middle ones are after deposits have been stripped off prior to cleaning and the bottom one is post cleaning. The left row was 

tested at -800 mV DC, and the right at -1050 mV DC. 

From Figure 4-15, it can be seen that calcareous deposits are formed at both potentials, but 

with increased amount at -1050 mV DC. At -800 mV, thicker deposits seem to form on the 

edges. It can also be seen that corrosion has occurred beneath the deposits. 

 

Figure 4-16: Pictures of 316-samples tested in artificial seawater at 1000 A/m2 AC. The top pictures are prior to cleaning 

and the bottom ones are post cleaning. The left row was tested at -800 mV DC, the middle at -1050 mV DC and the right is 

the re-test of the middle one. 

In Figure 4-16, it can be seen that all the samples suffered from thick calcareous deposits. It is 

also possible to see that the tested area has dark insoluble layer after cleaning. This is 

especially visible for the re-tested experiment at -1050 mV DC and 1000 A/m2 AC. 
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4.3.4 Surface characterization of 25Cr SDSS 

Photographs taken of 25Cr-samples tested in seawater can be seen in Figure 4-17 where the 

samples were tested at 100 and 500 A/m2 AC, and in Figure 4-18 where the samples were 

tested at 1000 A/m2 AC. 

 

Figure 4-17: Pictures of 25Cr-samples tested in artificial seawater. The top pictures are prior to cleaning and the bottom one 

is post cleaning. The left cluster was tested at 100 A/m2 AC, and the right cluster at 500 A/m2 AC. Within each cluster, the left 

samples are at -800 mV DC and the right at -1050 mV DC. 

From Figure 4-17, the following trend can be seen: more calcareous deposits form with higher 

AC current densities and increase in negative direction for applied DC. The sample tested at -

800 mV DC and 100 A/m2 AC only have deposits at certain places, and it looks like the 

deposits at 500 A/m2 AC have a darker color, with some black spots. From the cleaned 

samples, it is clearly visible that corrosion has occurred. Further, the cleaned sample tested at 

-800 mV DC and 500 A/m2 AC have a very dark area at its top right corner.  

 

Figure 4-18: Pictures of 25Cr-samples tested in artificial seawater at 1000 A/m2 AC. The top pictures are prior to cleaning 

and the bottom one is post cleaning. The pictures to the left are samples tested at -800 mV DC and the right at -1050 mV DC. 

It can be seen that the trend from Figure 4-17 continues. Furthermore, both samples have dark 

areas after cleaning, but the tested area from the experiment at -1050 mV DC are significantly 

darker. 
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4.3.5 Surface characterization of samples for GIXRD analysis 

Photographs of the samples that were re-tested in order to be examined in GIXRD can be seen 

in Figure 4-19 to 4-21. The samples in Figure 4-19 and 4-20 are of X65, which were tested in 

NaCl and seawater respectively. The sample in Figure 4-21 is of 25Cr. 

 

Figure 4-19: Picture of an X65-sample before GIXRD analysis. It was tested in 3.5 % NaCl-solution at -800 mV DC and 700 

A/m2 AC. The sample was cut without any cooling medium. 

In Figure 4-19, one can see that the sample has corroded and that the corrosion product is 

black. 

 

Figure 4-20: Picture of an X65-sample before GIXRD analysis. It was tested in artificial seawater at -800 mV DC and 500 

A/m2 AC. The left picture is before the sample was cut, while the right is after it was cut with water as cooling medium. This 

sample corresponds to the left cluster in Figure 4-14. 

In Figure 4-20, it can be seen that most of the sample is covered with orange corrosion 

products. Upon cutting, the colors have faded, but it still seems like the corrosion products are 

present. The samples presented in Figure 4-20 corresponds to the left cluster of samples 

presented in Figure 4-14. 

 

 

 

 

Figure 4-21: Picture of a 25Cr-sample before GIXRD analysis. It was tested in artificial seawater at -800 mV DC and 1000 

A/m2 AC. The left picture is just after the sample was removed from solution, the middle picture is before cutting and the 

right picture is after it was cut with water as cooling medium. This sample corresponds to the left pictures in Figure 4-18. 

In Figure 4-21, it can be seen that the sample have corroded beneath the calcareous deposits. 

Further, there is little difference between the cut and the uncut sample. It seems like the 

remains of the deposits were washed away by the cooling medium. The samples presented in 

Figure 4-21 corresponds to the left pictures of samples in Figure 4-18. 
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4.4 Microscopic surface characterization 

The samples were examined in XRD, GIXRD, SEM and EDS. XRD analysis was performed 

on powder from formed deposits and cell sediments, while GIXRD was performed on films 

on the sample surface prior to cleaning. All the samples that were observed in SEM and EDS 

were observed post cleaning. 

The XRD tests were set for 30 minutes each, with the following set up parameters: fixed 

divergence slit of 0.2° and a 2θ-range of 10-75°. The GIXRD tests were set for 2 hours each 

with fixed divergence slit, 2.5° incidence slit and a 2θ-range of 15-70°. SEM and EDS 

analysis were performed with an accelerating voltage of 15 kV and a working distance of 

approximately 10 mm. In addition, SEM was operated in low current-mode with aperture size 

of 30 µm, while EDS was operated in high current-mode and an aperture size of 120 µm. 

4.4.1 XRD analysis 

XRD analysis of calcareous deposit formed on 25Cr in seawater at -800 mV DC and 1000 

A/m2 AC can be seen in Figure 4-22. The red column in the figure shows that the deposit 

consisted of Mg(OH)2, the blue displays CaCO3 and the green shows NaCl. 

 

Figure 4-22: X-ray diffractogram of crushed calcareous deposit formed on 25Cr tested in artificial seawater at -800 mV DC 

and 1000 A/m2 AC. This corresponds to the pictures on the left row in Figure 4-18 and the sample in Figure 4-21. 

The results from the XRD analysis performed on 316 in seawater at -800 mV DC and 1000 

A/m2 AC were identical to the one displayed in Figure 4-22. Thus, the diffractogram is 

presented in Appendix E. Further, the analysis of the cell sediments that were formed during 
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the experiment on X65 in seawater, tested at -800 mV DC and 500 A/m2 AC, showed only 

NaCl. These results are also presented in Appendix E. 

4.4.2 GIXRD analysis 

GIXRD analysis of surface films on X65 and 25Cr tested in NaCl and seawater can be found 

in Figure 4-23 to 4-25. The analysis of an X65-sample tested in NaCl at -800 mV DC and 700 

A/m2 AC are presented in Figure 4-23.  

 

Figure 4-23: X-ray diffractogram of a surface film on a X65-sample tested in 3.5 % NaCl-solution at -800 mV DC and 700 

A/m2 AC. This corresponds to the picture in Figure 4-19. 

In Figure 4-23, the red column shows the base material, Fe. The blue and green column shows 

Fe3O4 and Fe2O3, respectively. The two latter columns are very similar and almost 

overlapping due to similar crystal structure. This could mean that only one of them is present, 

or both at the same time. 

The analysis of an X65-sample tested in seawater at -800 mV DC and 500 A/m2 AC are 

presented in Figure 4-24. The pink column represents the base metal, Fe. The red line 

determines that CaCO3 is present, while the green one shows γ-FeOOH (lepidocrocite), which 

may not be present as most of its peaks are also characterized by other species. Fe2O3 is 

represented by the blue column, which have one column that is not placed within a large peak. 

However, one peak is characterized by Fe2O3 only, and Fe2O3 is thus likely to be present. 
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Figure 4-24: X-ray diffractogram of a surface film on an X65-sample tested in artificial seawater at -800 mV DC and 500 

A/m2 AC. This corresponds to the picture in Figure 4-20 (which is tested at same parameters as the left cluster in Figure 4-

14). 

 

Figure 4-25: X-ray diffractogram of a surface film on a 25Cr-sample tested in artificial seawater at -800 mV DC and 1000 

A/m2 AC. This analysis corresponds to the picture in Figure 4-21 (and tested at the same parameters as the left part of 

Figure 4-18). 

The analysis of a 25Cr-sample tested in seawater at -800 mV DC and 1000 A/m2 AC are 

presented in Figure 4-25. The red column represents the base metal, Fe. The blue line 

determines that Mg(OH)2 is present and the green line represents CaCO3. 
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4.4.3 SEM analysis 

This chapter presents the SEM images of importance that was acquired during the SEM 

analysis. 

4.4.3.1 SEM analysis of various surface roughness 

SEM images of X65-samples with different surface roughness and tested in different solutions 

at 500 A/m2 AC and -800mV or -1050 mV DC, can be seen in Figure 4-26 to 4-28. 

 

Figure 4-26: SEM images taken of X65-samples with different surface roughness, tested in 3.5 % NaCl-solution at -800 mV 

DC and 500 A/m2 AC. The left sample is milled and the right is grinded to 1000 grit. Images are taken with a magnification 

of 500 X. 

 

Figure 4-27: SEM images taken of X65-samples with different surface roughness, tested in artificial seawater at -800 mV DC 

and 500 A/m2 AC. The left sample is milled and the right is grinded to 1000 grit. Images are taken with a magnification of 

500 X. 
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Figure 4-28: SEM images taken of X65-samples with different surface roughness, tested in artificial seawater at -1050 mV 

DC and 500 A/m2 AC. The left sample is milled and the right is grinded to 1000 grit. Images are taken with a magnification 

of 500 X. 

For all pictures displayed in Figure 4-26 to 4-28, the biggest holes that can be seen are not 

from pitting but rather because of surface treatment. From the images, it can be seen that there 

is some difference between the various surface topographies. For the pictures on the left hand 

side that are milled, corrosion has occurred uniformly. The pictures on the right hand side that 

have been grinded seem to have corroded uniformly as well. However, spots where the initial 

stages of pitting have occurred can also be seen for the latter. 

4.4.3.2  SEM analysis of AISI 316 SS 

SEM images of 316-samples tested in seawater at 500 A/m2 AC and -800mV or -1050 mV 

DC, can be seen in Figure 4-29.  
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Figure 4-29: SEM images taken of 316-samples tested in artificial seawater at 500 A/m2 AC. The top sample was polarized at 

-800 mV DC, the bottom at -1050 mV DC. Images are taken with a magnification of 500 X. The magnified square at the 

bottom image is at 2000 X. 

From Figure 4-29, it can be seen that both samples suffer from the early stages of pitting. For 

the sample tested at -800 mV DC, the pitting is extensive and covers must of the surface. For -

1050 mV DC on the other hand, only a few small spots have occurred. 



Results 

 

57 

 

4.4.3.3  SEM analysis of 25Cr SDSS 

SEM images of 25Cr-samples tested in seawater and at -800 mV or -1050 mV DC can be seen 

in Figure 4-30 to 4-32. The samples in each figure have been tested at the following applied 

AC from top to bottom: 100, 500 and 1000 A/m2. 

 

Figure 4-30: SEM images taken of 25Cr-samples tested in artificial seawater at 100 A/m2 AC. The left sample tested at -800 

mV DC and the right at -1050 mV DC. Images are taken with a magnification of 500 X. 

 

Figure 4-31: SEM images taken of 25Cr-samples tested in artificial seawater at 500 A/m2 AC. The left sample tested at -800 

mV DC and the right at -1050 mV DC. Images are taken with a magnification of 500 X. 
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Figure 4-32: SEM images taken of 25Cr-samples tested in artificial seawater at 1000 A/m2 AC. The left sample tested at -800 

mV DC and the right at -1050 mV DC. Images are taken with a magnification of 500 X. 

From the images, it can be seen that all samples suffer from initial stages of pitting. Some 

samples, like the one at -1050 mv DC and 500 A/m2 AC in Figure 4-31, seems to be exposed 

to more uniform corrosion as well. Further, the sample tested at -1050 mV DC and 1000 A/m2 

AC in Figure 4-32 seem to be covered with some bright deposits, a tendency that barely can 

be seen in the on at -800 mV DC also. However, it is difficult to deduce any general trend. 

4.4.4 EDS analysis 

A SEM image from the darkest area of a cleaned 25Cr-sample that was tested in seawater at -

800 mV DC and 500 A/m2, which corresponds to the left sample in the right cluster of Figure 

4-17, was examined in EDS. The measured chemical composition displayed only Pt and its 

results are presented in Appendix F. 

4.5 Observations during experimental testing 

4.5.1 Initial color on sample surface 

Some samples of X65 were observed during the start-up phase of the experiments, and it was 

seen that the whole sample surface turned black after a short amount of time. Not as dark as 

towards the end of experiments, but still with a distinct black color. 

4.5.2 Chlorine evolution 

During experiments, it was possible to observe that gas evolved at the samples. This could be 

seen immediately when AC was tuned on, often formed as a chain of big bubbles on the steel-

coating interface initially. Upon removal of the sample and especially the solution, a distinct 

smell of chlorine could be sensed. 
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4.5.3 AC counter electrode 

The AC counter electrode in one of the cells was seen to dissolve. This was discovered after 

one of the last tests (only two more were performed in that cell), which was performed on 

25Cr in seawater at -800 mV DC and 1000 A/m2 AC. The electrode was thin to begin with, 

but after this test, it got thinner and even lost some bits. A picture of the electrode after this 

test can be seen in Figure 4-33. 

 

Figure 4-33: A photograph of the AC counter electrode that has started to dissolve.  

4.5.4 pH measurements 

Measurements with a standard pH meter in a 3.5 % NaCl-solution after the sample had been 

removed showed an increase in pH, with higher values for an increase in negative direction of 

DC. pH-values before testing were approximately 6, and ended up at about 7.5 for -800 mV 

DC and 8 for -1050 mV DC.  

The same measuring method on artificial seawater after testing with X65-samples showed a 

decrease in pH with the same trend for DC-potential. There the start pH was 8.2 and the end 

value were around 7.9 for -800 mV DC and 6 for -1050 mV DC. At 316 and 25Cr, there were 

no difference between the DC-potentials and all experiments ended up on about 7 after a start 

pH of 8.2 

The experiments on 316 and 25Cr were also tested with pH-strips. This testing was done in 

the solution right before testing ended and directly on the steel sample upon its removal from 

the solution, and showed values of about 5 and 10 respectively. Although not a very accurate 

method, it gives a pointer.  
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4.6 Summary of results 

DC current response and AC cell potential 

Although some experiments started out with an anodic DC current response, all quickly 

shifted to cathodic. Further, the samples tested in NaCl showed increasing or stable cathodic 

values, while in seawater decreasing cathodic values was the case. There was found no 

difference for variation in surface topography. For 316 and 25Cr, increasingly negative DC 

and increase in AC caused the DC current response to increase in cathodic direction. In Table 

4-5, it can be seen that 316 and 25Cr display higher cathodic currents than X65, which again 

are higher than X65 (DC). Further, there is little difference between 316 and 25Cr, but the 

latter is slightly more cathodic. 

The majority of recorded AC cell potentials showed little difference with time. The AC cell 

potential at X65 was seen to be higher for samples grinded to 1000 grit compared to milled 

samples. While X65 showed no difference in VAC with DC-potentials, 316 and 25Cr saw a 

tendency to decrease VAC with increasingly negative DC. This can also be seen in Table 4-5, 

which also shows higher VAC-values for 25Cr and 316 compared to X65, where 25Cr is 

slightly higher than 316. 

Table 4-5: Key results from the DC current response and AC cell potential during polarization, for all DC-potentials and and 

types of metal. All samples were under applied AC of 500 A/m2, except for X65(DC), which was tested in absence of AC. 

VAC_avg is averaged over the whole experiment, inet_start is collected 2.5 hours into the experiment and inet_end is collected at the 

end. The collected values for X65 are also averaged over the two surface topographies.  

 

Weight loss measurements  

It was found that the CR was unaffected by the surface topography, and that the CR is slightly 

higher for NaCl than seawater (although there is very little difference at -1050 mV DC). It 

was also discovered that corrosion does not necessarily continue on an X65-sample, even if it 

is stored for months prior to cleaning.  

 

Metal 

sample 

-800 mV DC -1050 mV DC 

VAC_avg 

[V] 

inet_start 

[A/cm2] 

inet_end 

[A/cm2] 

VAC_avg 

[V] 

inet_start 

[A/cm2] 

inet_end 

[A/cm2] 

X65 (DC) 0 -3.17E-5 -1.47E-5 0 -1.41E-4 -3.46E-5 

X65 1.55 -4.54E-5 -3.54E-5 1.56 -6.87E-4 -8.55E-4 

316 2.14 -1.23E-3 -2.63E-4 1.62 -2.79E-3 -1.55E-3 

25Cr 2.25 -1.17E-3 -2.82E-4 2.05 -2.98E-3 -2.33E-3 
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Figure 4-34: Calculated corrosion rate for all different-samples tested (at different ACs under  -800 and -1050 mV DC) in 

artificial seawater. The CR-values are averaged for the experiments tested twice, but deviations are not included. 

As Figure 4-34 shows, an increase in AC increases the CR. There does not seem to be any 

trend on how DC-potential influences CR. At low AC current densities, CR is highest for 

X65. At medium AC, 316 have the lowest CR and 25Cr is similar to X65. At high current 

densities, the CR of 316 is significantly lower than for 25 Cr. 

Surface characterization 

Macroscopic characterization showed that the corrosion products that were formed at X65 

were mainly black in color, although some areas were orange. When X65 was tested in 

seawater at -1050 mV DC, and for all tests on 316 and 25 Cr, calcareous deposits formed. 

More was formed at higher AC current densities and increasingly negative DC. It was showed 

that corrosion occurred beneath these deposits. Lastly, a black insoluble layer with varying 

intensity formed on 316 and 25Cr after cleaning. 

XRD analysis determined that calcareous deposits consisted of Mg(OH)2 and CaCO3. Both 

species and especially the latter were also found on an X65 surface and a 25Cr surface, which 

did not show a mentionable amount of calcareous deposits during the macroscopic 

observation. The corrosion products that were found were Fe3O4, Fe2O3 and possibly γ-

FeOOH (lepidocrocite). SEM micrographs showed that most samples suffered from initial 

stages of pitting, and a few from uniform corrosion. EDS-analysis of black insoluble layer 

after cleaning proved it consisted of platinum (Pt). 
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5 Discussion 

This section contains a discussion of the results and the experimental work. The different 

aspects are discussed in the same order as they were presented in the results. Towards the end 

of this section, suggestions for further work will also be presented. 

5.1 Polarization behavior 

5.1.1 Current behavior 

All the samples of X65 that were tested showed cathodic currents in the DC current response 

for most parts of the testing period, as seen in Figure 4-1 to 4-5. A cathodic current means that 

the cathodic reaction is enhanced, and thus will a high cathodic current mean that the cathodic 

reaction occurs at a high rate. At a cathodic current, the cathodic reaction will be the rate-

controlling part of the total reaction.  

In both 3.5 % NaCl-solution and artificial seawater, the following tendency was seen initially 

at 500 A/m2 AC: at a DC of -1050 mV, the DC current response began with cathodic currents 

and stayed within that region. At -800 mV DC however, the DC current response showed 

anodic currents initially. It took approximately 1 hour in 3.5 % NaCl-solution and 3 hours in 

artificial seawater, before the anodic currents shifted to cathodic. As can be seen in Figure 4-

1, this is not the case in absence of AC, meaning it is promoted by the superimposition of AC. 

However, due to the short time interval where the anodic currents occur, and since it has been 

reported [26] that it is not necessarily directly affecting the corrosion rates, it is not an 

important aspect.  

The same tendency to the cathodic currents that are observed for X65 is observed at samples 

of 316 and 25Cr, seen in Figure 4-8 and 4-10 respectively. This means that cathodic currents 

were seen for all tested samples of all types of steel. This coincide well with some studies [26, 

27, 35] performed on both CS and SSs, and partly with another study [30] by L. Y. Xu et al 

performed on CS. The latter reported anodic DC current density when AC was applied at -850 

mV DC. The authors gave no explanation to why this occurred. Their experiments were 

performed on 16Mn steel in simulated soil solution, but it is unknown to what degree this 

would affect the results compared to the results from this thesis.  

For the samples of X65 that were prepared with different surface roughness, there were found 

little difference in the recorded DC current density. Although the curves were dissimilar 

between the solutions and different DC-potential applied, the samples tested at same 

parameters were very similar in terms of both form and values. This indicates that the 
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different reactions and processes that occur on the steel surface are not affected by an uneven 

topography. For instance, the reduction of oxygen will happen with equal speed and scale 

regardless if it occurs on a flat or uneven surface. It is worth mentioning however, that even 

the milled samples were quite flat on a macroscopic level, but one can clearly see the lines 

across the samples. 

An aspect that was seen for the different solutions is that for 3.5 % NaCl-solution the cathodic 

current increased or remained constant, whereas for artificial seawater it decreased. A likely 

explanation for this is the formation of calcareous deposits that was seen to develop at the 

samples tested in artificial seawater. The deposits act as a barrier that partly covers the 

surface, which is likely to reduce the extent of the cathodic reaction and thus the necessary 

current input. This reduction in cathodic current, which means that the cathodic reaction is 

less dominant and thus is reduced, could indicate that the main cathodic reaction is reduction 

of oxygen as seen in equation (2.9). The reason for this is that calcareous deposits have been 

reported to reduce diffusion of oxygen from bulk to surface [22]. Thus, if oxygen is the 

determining cathodic reaction, less oxygen will be present at the surface and the extent of the 

cathodic reaction will be reduced, which will reduce the cathodic currents. This is however, 

contradictory to other studies [26, 41-44] that have reported hydrogen evolution, according to 

equation (2.11), as the controlling cathodic reaction at high AC current densities (set to iAC > 

100 A/m2 on 316 and 25Cr by C. H. M. Hagen).  

The samples of 316 (Figure 4-8) and 25Cr (Figure 4-10) have very similar DC current 

responses in terms of both value and form, while X65 is quite different. X65 shows little 

variation with time and display low cathodic currents, while 316 and 25Cr display a clear 

decrease with time and at higher values. This is the case for both applied DC-potentials. 

Further, the DC current response for X65 with and without applied AC is quite similar. The 

cathodic currents are, as expected, in the following ranking from high to low: 

25Cr>316>X65>X65(DC). Despite the high degree of similarity between samples of 316 and 

25Cr, there is a difference in the form of some curves. This is the case for experiments 

conducted at high total currents, like 500 and 1000 A/m2 AC at -1050 mV DC and 1000 A/m2 

AC at -800 mV DC. While these experiments at 316 are stable with a steady decrease in 

cathodic current, the same experiments on 25Cr have a few unstable drops. This is especially 

visible for the 25Cr-sample tested at -800 mV DC and 1000 A/m2 AC, which was tested twice 

and is presented in Appendix D. The drops that are seen are instant increases in cathodic 

current that usually relocates very quickly. The highest drop is from approximately -1.0E-3 to 

about -2.8E-3, and there are several smaller ones. This unstable tendency has not been 

reported earlier, and it is unknown why this occurs. Since an increased cathodic current means 

that the electron consumption is increased, a possible explanation could be that an increased 
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electron consumption is a consequence of a higher amount of free electrons due to anodic 

dissolution. If 25Cr is only able to maintain passivity to a certain degree, the spots may be 

short intervals where the steel loses its passivity. Then, for a short amount of time, the anodic 

dissolution increases and more free electrons are formed. Another possible solution to this 

unstable tendency is that high applied AC and less negative DC, causes the formed calcareous 

deposits to be unstable. This will be reviewed more in section 5.3.  

Another similarity worth noting is the form of two of the curves recorded on 316 and 25Cr. 

The curves on both steel samples were recorded from the experiments performed at -1050 mV 

DC and 1000 A/m2 AC, where the one performed at 316 is the re-tested sample. Both display 

high initial cathodic currents, significantly higher than experiments with other parameters 

within the same steel. When experiments are initiated they suffer an immediate decrease in 

cathodic current, followed by a round drop in current, and then with a steep decrease again. 

The sample at 316 suffers a change from an initial value at about -6.7E-3 to an end value of 

about -1.8E-3. For the 25Cr sample, the change is approximately from -7.2E-3 to -2.9E-3. 

This will be discussed further in section 5.2 and 5.3, and briefly mentioned in 5.1.2. 

5.1.2 AC cell potential 

For all the samples tested, the measured VAC was seen to maintain its value more or less 

through the experiment. For the X65-samples at Figure 4-6 and 4-7, there were seen no or 

inconsistent correlation between the recorded DC current response and the VAC. What was 

seen however, was a difference between milled and grinded samples. In both artificial 

seawater and 3.5 % NaCl-solution, the measured VAC was higher for samples grinded to 1000 

grit compared to the milled ones. This can be explained by different resistances in the circuit. 

As the AC cell potential is measured in parallel with the working electrode and the counter 

electrode, it measures the potential difference over the two electrodes. In a cell, this can be 

described by ohmic resistances on the electrodes as seen in equation (5.1). Worth noting is 

that the area of the working electrodes and thus the currents were similar for all the tested 

samples during the examination of surface roughness. 

∆𝑉𝐴𝐶 = ∆𝑉𝐴𝐶−𝑃𝑡 − ∆𝑉𝐴𝐶−𝑆𝑡𝑒𝑒𝑙 = (𝑉𝐴𝐶−𝑃𝑡 − 𝐼 ∗ 𝑅𝑃𝑡) − (𝑉𝐴𝐶−𝑆𝑡𝑒𝑒𝑙 − 𝐼 ∗ 𝑅𝑆𝑡𝑒𝑒𝑙)   (5.1) 

On a steel surface with a rougher and more uneven surface topography, it is more likely that 

the ohmic resistance (RSteel) is increased due to gas bubbles and corrosion products being 

caught on the surface. This could explain why the measured VAC is higher for the finer surface 

topography of 1000 grit, when it is expected to be lower. However, another factor that is 

assumed to play a role is the external resistance, for instance in wires and other equipment. 

All milled samples were tested with one set up and all grinded samples were tested with 
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another set up. Therefore, there could be a difference in external resistance, which could have 

affected the results. 

The measured VAC for 316 (Figure 4-9) and 25Cr (Figure 4-11) are similar, and both showed 

that the VAC increases with an increase in applied AC and less negative DC. Similar to X65, 

there were found little correlation between the DC current response and VAC. One similarity 

that can be found for the VAC at 316 and 25Cr, is that for the same experiments as mentioned 

in the last paragraph of section 5.1.1, tested at -1050 mV DC and 1000 A/m2 AC (re-tested 

sample at 316). A big drop in the VAC can be seen at approximately the same hours as the 

smaller drop was seen at the recorded current response.  

For all types of steel, there were a similarity in terms of relative values between VAC and the 

DC current response. The found VAC was as expected and in correlation with the DC current 

response, in the following order from high to low: 25Cr>316>X65, with a small difference 

between 25Cr and 316. 

5.2 Weight loss and corrosion rates 

The cathodic protection system applied by the potentiostat was believed to protect the samples 

from corrosion, despite a calculated CR of 0.041 mm/year for the sample tested at -800 mV 

DC in artificial seawater. The reason for this is that this value is seen as faulty. This sample 

corresponds to the grey line in the DC current response displayed in Figure 4-1. It is believed 

that when the salt bridge lost contact, the potentiostat applied extreme current values to try to 

hold the potential constant, without succeeding. Thus, some corrosion occurred before contact 

was reestablished.   

The weight loss and calculated CR of the X65-samples that was either milled or grinded to 

1000 grit, was similar independent on the surface topography. In 3.5 % NaCl-solution, the 

CRs were very similar with a difference in the area 0.001-0.011 mm/year. The difference was 

a bit higher in artificial seawater where the highest one was 0.021 mm/year, but still within 

acceptable variance. Thus, an increase in VAC does not necessarily mean an increased CR, as 

stated in a previous study [31], since VAC was seen to be higher for the grinded samples in this 

thesis. Further, it was seen that the CRs were lower in artificial seawater than in 3.5 % NaCl-

solution. This was mainly visible at -800 mV DC where the difference, when averaged over 

surface topography, was 0.069 mm/year, which means an approximately 30 % decrease in CR 

for artificial seawater. At a DC of -1050 mV DC however, the difference in CR was as small 

as 0.027 mm/year, which is a decrease of 13 %. Thus, it can be concluded that the CR to some 

degree is reduced in artificial seawater, which is similar to another study [29] and falls in 

between several earlier studies [24, 27, 35] (whereas one is in absence of AC). An obvious 

reason for this is the formation of calcareous deposits, which have been shown to decrease 
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corrosion. Another cause may be the buffer capacity that seawater possesses, as described in 

section 2.3.4. During measurements of pH before and after experiments, it was showed that 

pH changes with 1.5-2 in 3.5 % NaCl-solution, while in artificial seawater the change was 

0.3-2.2 

Compared to other studies performed on X65 under applied AC, the results presented here 

(0.191-0.297 mm/year) matches several of them within reasonable values: 0.205-0.236 

mm/year[26], 0.15-0.17 mm/year [29], 0.1-0.3 mm/year[30] and 0.15-0.3 mm/year[42]. Some 

studies have also found higher CRs [27, 29, 35]. In addition, the CR of the X65-sample that 

was stored in a desiccator before cleaning was calculated to 0.215 mm/year. Thus, storage of 

the samples prior to cleaning could not have been the cause for the unreasonably high CRs 

during the author’s specialization project. 

The calculated CRs for 316-samples varied a lot as seen in Table 4-2, from not corroding at 

all to a CR of 0.260 mm/year. The CR with the highest deviation is the latter one, as the 

others are in the area of 0-0.081 mm/year. In addition, the experiment (performed at -1050 

mV DC and 1000 A/m2 AC) that gave a CR of 0.260 mm/year was re-tested, and then CR was 

found to be zero. The corresponding DC current response and AC cell potential for these 

experiments have been discussed in section 5.1.1 and 5.1.2, respectively. The corresponding 

DC current responses in Figure 4-8 was seen to suffer a major decrease in cathodic current for 

the re-tested sample that has a CR of 0, while a regular decrease was seen for the sample with 

a CR of 0.260 mm/year. It is thus believed that the DC current response correlates with the 

CR to some degree. This will be discussed further in section 5.3. 

The CRs that were calculated for 25Cr-samples were seen to be quite high, a lot higher than 

expected. The only experiment where the sample suffered no corrosion was at -1050 mV DC 

and 100 A/m2 AC. For the other experiments, the CR was in the area of 0.044-0.522 mm/year. 

The highest of 0.522 mm/year was seen at -800 mV DC and 1000 A/m2 AC, while the rest of 

the samples that were tested at 500 and 1000 A/m2 AC were in the area of 0.126-0.274 

mm/year. Because of the significant difference between these experiments, the highest was 

performed twice with similar results. As 25Cr in general is seen to be immune to corrosion in 

seawater, it is unknown why such high CRs occur. Possible explanations could be that the 

metals passivation properties have little effect due to the oscillating nature of the AC, or that 

the composition of the samples was changed in some way during their manufacturing. The 

latter can easily be tested, and should be so prior to any further experiments.  

Another likely explanation to these high CRs could be the formation of chlorine gas and 

presence of chlorine in the solution, which was observed during the experiments. It has been 

reported that SSs suffer from corrosion in chlorine gas: where the CRs are high for wet gas at 

low temperatures (about 10-100 °C) and dry gas at high temperatures (about 450-650 °C) 
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[48]. Similar as for SS, it has been reported that Pt corrodes in dry chlorine gas at high 

temperatures (about 500-1000 °C) [48, 49]. Thus, it is possible that Pt will corrode at low 

temperatures in wet chloride gas as well. This correlates to the observed dissolution of Pt 

during experiments. However, this explanation does not account for the difference in CR 

between 316 and 25Cr. 

Another possible explanation for the high CRs seen in 25Cr is that high-applied ACs causes 

the steel to enter the transpassive area, as can be described in the pourbaix diagram in Figure 

5-1. This could also be the case for the observed corrosion of the platinum counter electrode, 

as can be seen in the pourbaix diagram in Figure 5-2. From the diagrams, it can be seen that 

both SSs and platinum enter an area where they dissolve into ions at high potentials and high 

pH. However, neither this explanation describes why 25Cr corrodes at a faster rate than 316. 

 

Figure 5-1: Pourbaix diagram for iron species in the ternary system of Fe-Cr-Ni at 25 °C. The question mark at FeO4
2- 

indicates uncertainty on its stoichiometry and stability [50].   



Discussion 

 

69 

 

 

Figure 5-2: Pourbaix diagram for the platinum-water system at 25 °C. The question marks behind the ions on the left and 

right hand side indicate uncertainty due to lack of thermodynamic data [51]. 

Upon comparison with previous studies, the results on 316 and 25Cr are found to be similar. 

Former studies on 316 have presented CRs in in range of 0.007-0.113 mm/year in 3.5 % 

NaCl-solution [26] and 0.002-0.034 mm/year in artificial seawater [27], for applied ACs in 

the area of 100-1000 A/m2. These are a bit lower than the CRs found in this thesis. For 25Cr, 

only anodic polarization and low applied AC has been performed, and at 100 A/m2 AC the 

CR were found in the area 0.010-0.022 mm/year [26]. These are very similar to CR found in 

this thesis at 100 A/m2 AC. 

For all tested steels, it is clear that an increase in AC current density increases the rate of 

corrosion, which is clear in earlier reports as well. The effect of DC-potential varied between 

the different steels and with the different applied AC, making it difficult to deduce any trend. 

316 was seen to have very low CR, which was expected, and even had the lowest CR 

compared to the other steels at both medium and high AC current density. Surprisingly, 25Cr 

had similar CR as X65 at medium applied AC. Compared to some studies, 25Cr even have 

higher CR than X65 at high AC current densities. 

5.3 Surface characterization 

In general, for the samples that were tested in artificial seawater, calcareous deposits were 

very common. This was the case for all steels. Of all the tested samples, the only ones that 
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were not fully covered in calcareous deposits were the ones tested in 3.5 % NaCl-solution and 

the following in artificial seawater: X65 at -800 mV DC and 500 A/m2 AC, and 25Cr at -800 

mV DC and 100 A/m2 AC. The latter of these had local spots were calcareous deposits had 

formed, while the other ones were black (3.5 % NaCl-solution) or black and/or orange 

(artificial seawater). Even though many of the samples were covered in calcareous deposits, it 

was visible upon removal that corrosion had occurred beneath, either before formation of 

deposits or during the whole duration of the experiments. 

Five tests were analyzed through XRD to determine the composition of corrosion products 

and calcareous deposits. For the latter, it was hoped that corrosion products could be found 

within the deposits, which did not happen. The deposits consisted of CaCO3 and Mg(OH)2 

(and NaCl), as described in theory [3, 23]. This indicates an increase in local pH, which is 

confirmed by the in situ pH measurements. More surprisingly, surface analysis of 25Cr 

showed that the sample surface consisted of the same species despite no visible calcareous 

deposits. This indicates that the formation of deposits is extensive and likely to be present and 

reduce risk of corrosion at all samples tested in artificial seawater. This is accompanied by the 

surface analysis of an X65-sample, as seen in Figure 4-24, which displays CaCO3
 (and other 

species) despite no visible calcareous deposits at the sample surface. In the theory [23], it is 

reported that CaCO3 form with slower kinetics than Mg(OH)2, and thus is the major 

component in calcareous deposits in the late stages of testing. Since CaCO3 is the only 

component after a 48 hours test, it could indicate that the formation kinetics is increased upon 

applied AC. The absence of Mg(OH)2 could also indicate that the reduction reaction is the 

formation of H2, as seen in equation (2.11), since it does not produce OH-
 that Mg(OH)2 is 

dependent on. 

In section 5.1.1, it was reported that instability of the recorded DC current density was seen 

from some of the experiments performed on 25Cr, especially at -800 mV DC and 1000 A/m2 

AC but also -1050 mV DC and 500 A/m2 AC. One proposed possible solution was unstable 

calcareous deposits, and this can in fact be seen for those experiments in Figure 4-18 and 4-

17, respectively. The calcareous deposits formed on the actual samples have some holes and 

areas of non-continuous deposits. However, this can also be seen for other experiments on 

316. 

The XRD analysis that were successful in characterizing corrosion products after testing, were 

performed on the sample surface of X65-samples. Fe2O3 was found on both samples. In 

addition, Fe3O4 was found on the one tested in 3.5 % NaCl-solution and γ-FeOOH 

(lepidocrocite) was found on the one tested in artificial seawater. However, the crystal 

structure of Fe2O3 and Fe3O4 are very similar, and when the black color seen at Figure 4-19 is 

taken into consideration, it is most probable that the surface tested in 3.5 % NaCl-solution 
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only consisted of Fe3O4. These different corrosion products formed in different solutions 

coincide to a large degree with another study [24]. The reason to why no γ-FeOOH was found 

at the tests in 3.5 % NaCl-solution could be that the reaction towards Fe3O4, as in equation 

(2.17), is complete. While in artificial seawater the reaction in incomplete due to lower 

reaction kinetics (lower corrosion rates in artificial seawater). This is however, dependent on 

that the solid-state reaction (2.20) is complete.  

For the X65-samples, there was actually seen a difference in the SEM micrographs for milled 

and grinded samples. The milled ones did not seem to suffer from pitting corrosion, but rather 

uniform. Why this occurs is unknown and unexpected, especially due to similar current 

behavior and CRs. The opposite could have been expected because an uneven topography 

might already have valleys or similar that act as pits. Of the other experiments, pitting was 

seen on all samples and uniform corrosion was seen on a few. However, the pitting that was 

observed was often very wide spread and in the initial stages. Thus, no big pitting-holes were 

observed, and there is little difference between this wide spread pitting and uniform corrosion. 

Experiments lasting longer would be necessary to determine how the corrosion would 

propagate, and to confirm if it really is pitting or not.  

Except for the experiments on 316 at 500 A/m2 AC, which displayed less extensive pitting at -

1050 mV DC compared to -800 mV, there were seen no direct correlation between the extent 

of pitting and applied AC or DC as reported by C. H. M. Hagen [26]. 

The black insoluble product that remained on the samples after cleaning, was confirmed to be 

Pt as presented by C. H. M. Hagen [26]. An interesting aspect with the Pt-layer is that the 

color and thus the thickness of the layer vary between different samples. This variation can 

also be seen between samples that have been tested at the same parameters. As already 

mentioned, the DC current response of a 316 and a 25Cr-sample was discussed in section 

5.1.1, and its corresponding AC cell potential discussed in section 5.1.2. In addition, the 

samples’ CR was discussed in section 5.2. Both samples were tested at -1050 mV DC and 

1000 A/m2 AC, and their DC current responses both showed irregular steep decrease in 

cathodic current. In the 316 case, the re-tested sample with these parameters had a CR of 0 

while the original had a CR of 0.260 mm/year. The surface characterization in Figure 4-16 

shows that the re-tested sample is significantly darker in color after cleaning than the original. 

It is thus possible, that the very low CR is due to high amount of Pt deposited. Similar for 

25Cr. In Table 4-3, it can be seen that the CR of 0.522 mm/year tested at -800 mV DC and 

1000 A/m2 AC, is a lot higher than the one tested at -1050 mV DC and 1000 A/m2, which has 

a CR of 0.274 mm/year. From Figure 4-18, it can be seen that the thickness of the Pt-layer at -

800 mV DC and 1000 A/m2 AC is lesser than the Pt-layer at -1050 mV DC and 1000 A/m2 

AC. This indicates that the CR from the latter test probably is reduced due to increased 
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amount of Pt deposited. This is a potential big source of error, which puts the whole testing 

procedure to questioning. 

5.4 The mechanism for AC corrosion 

The mechanism behind AC corrosion is not clearly understood, and it is difficult to set any 

conclusion based on the results from this thesis. The pH measurements and the good growth 

conditions for calcareous deposits proves that a local increase in pH occur on the steel 

surface. Even though the procedure for measuring pH is inaccurate, it dismisses D.-K. Kim et 

al.’s [29] proposal that the pH is so high that the steel enters the active corrosion area of 

HFeO2
-, as seen in Figure 2-6. 

Based on pH measurements, it is likely that the pH is around 10-12 at the steel surface. 

Further, the mechanism is likely to be similar to what is described in Figure 2-7 in section 

2.4.1, and explained in its corresponding text. This is supported by the observations described 

in section 4.5.1. As presented, the VAC was in the region of approximately 1-3 V, which 

means that the anodic cycle reaches almost to the top of the pourbaix diagram in Figure 2-6, 

even at the lowest applied AC. This is far into the region where Fe2O3 is the stable species, 

and thus Fe2O3 should be formed. This is the case for the samples tested in artificial seawater, 

which had a measured VAC at about 1.55 V. For the sample tested in 3.5 % NaCl-solution, the 

VAC was not measured, but based on Figure 4-6 and 4-7 it is expected to be lower but still 

around 1 V. It is thus possible that the faradaic current caused equation (2.20) to be shifted to 

left during the cathodic cycle of the AC, forming Fe3O4 from Fe2O3. In artificial seawater, it is 

possible that the reaction continued according to equation (2.17), leading to formation of γ-

FeOOH. 

On the other hand, the pourbaix diagram Figure 5-1 indicates that the high VAC brings the 

steel into the transpassive region of FeO4
2-. This transpassive region has also been reported in 

a regular pourbaix diagram for iron-water-system [52]. This does not necessarily disprove the 

formation of the species mentioned in the last paragraph, but rather that the mechanism for 

AC corrosion is not as simple as described in Figure 2-7 in section 2.4.1. 

It is clear that some of the faradic current during the anodic cycle leads to the formation of Cl2 

(g) according to equation (2.8). Further, it is likely that there is not only one reduction reaction 

occurring. It is possible that any of the reactions (2.9-2.11) occur at different times during an 

experiment and vary between the different experiments. 

Several propositions to describe the mechanism of AC corrosion have been made, but none is 

able to explain the seen difference between 316 and 25Cr regarding the CR. Thus, it is 

difficult to draw adequate conclusions. 
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5.5 Evaluation of experimental work 

Before experimental work was initiated, all wires and electrical equipment was checked for 

conductivity. Equipment with low conductivity was discarded to make sure that measured 

current was as accurate as possible. The majority of the used apparatus were satisfactory. 

However, the used VariAC was controlled manually. Thus, the applied AC was unsteady and 

changed over time, such that higher or lower values than intended was applied for a limited 

amount of time. Furthermore, it would have been favorable with better accuracy of the 

weights used for measuring weight loss. The used weights accuracy was about ± 1 mg, which 

is the same order of magnitude as most of the weight losses and may thus have had a 

significant effect on the results. 

Another potential source of error, is that two different set ups were used during testing. This 

means two potentiostats, two cells etc. A minor error source is the different resistances in 

wires and equipment, as they to a certain degree can be accounted for. A bigger difference 

between the two cells were the counter electrode of Pt, where the area (and volume) of both 

electrodes were bigger in one cell compared to the other. This would cause a higher current 

density on the counter electrodes in the cell where the area of the electrodes were smallest. 

This would not usually be a problem, but as it is seen that the AC counter electrodes of Pt 

dissolve and deposit on the steel samples, it clearly is in this case. A solution may be to 

increase the area of the counter electrodes in order to reduce their current density so that the 

dissolution will reduce as well. Additionally, it would be favorable if the electrode-area were 

similar in the different cells. Another solution may be to use a different material as counter 

electrode. 

The weakest part of this thesis is the lack of parallel testing. As was seen for the experiment 

performed twice on 316, there can be huge differences in the result. The results will thus 

rather serve as a pointer. Furthermore, in order to increase the reproducibility of the results, 

the coating method should be revised. Applying by hand as in this thesis gives a small 

variance in exposed area, which is undesirable. An easy way to coat the samples with equal 

exposed area would be to dip them in the coating solution upside down. The coating at the top 

were the clamps are connected can easily be removed when dry. This would however, be 

more time consuming than applying coating by hand. 

One of the computers with a potentiostat crashed a couple of times. The potentiostat was able 

to apply the right amount of DC-potential despite crashing such that weight loss 

measurements was performable, but data like DC current response and AC cell potential was 

lost. This can be a frustrating element and should be avoided if possible. 
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The cleaning procedure related to removal of corrosion products on X65, also caused metal 

loss as described in Appendix B. This can be accounted for to a certain degree. However, it 

would still be preferable to perform a cleaning procedure were no metal loss will occur. 

ASTM G-1 has several suggestions of solutions that may work. 

5.6 Suggestions for further work 

Based on the experimental work and methodology performed in this thesis and in former 

work, a range of suggestions to better understand the mechanism of AC corrosion are 

presented in the following paragraphs: 

 Perform similar experimental work as described in this thesis, but with a different set 

up regarding the AC counter electrode. It should be possible to separate the AC 

electrode and the working electrode in two different cells, connected with a salt 

bridge. In that way, the issue with Pt depositing on the tested sample will be removed. 

 It would be interesting to perform galvanostatic polarization, which is to apply a 

constant current (DC) while measuring any change in the potential. Current shifts have 

been seen under constant potential and potential has been seen to decrease in open 

circuit, but it is unknown how potential react upon constant current.  

 Perform accurate in situ pH measurements. This would be of interest both directly on 

the sample surface and in the solution. It could also be interesting to see pH as a 

function of time. An accurate pH measurement could with certainty limit or confirm 

some corrosion reactions.  

 Perform accurate in situ temperature measurements on the sample surface. The 

purpose of the applied AC is to heat the steel samples, but its effect in these laboratory 

experiments is unknown. The temperature can be interesting regarding critical pitting 

temperature and critical temperature related to changes in microstructure. The latter is 

however unlikely.  

 Measure the amount of hydrogen diffused into the samples, to assess the possible risk 

of hydrogen embrittlement in SSs. Regular cathodic protection has been seen to cause 

such problems and gas evolution is very high during AC experiments. It would be 

interesting to see if applied AC on CP increases the diffusion of H-atoms. 

 Further characterization of corrosion products, preferably GIXRD analysis due to 

thickness of layer on the sample surfaces. Experiments should also be performed in 

3.5 % NaCl-solution or similar, to avoid formation of calcareous deposits that disrupts 

the readings. Low applied AC current densities could also be a solution to reduce the 

amount of calcareous deposits that forms.  
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 Perform characterization of ions in the solution, both pre- and post-testing. This would 

be helpful in understanding which reactions that occurs. 

 Increase experimental duration. This would serve as a more accurate method in 

determining the mechanism and severity of AC corrosion. Both XRD and SEM 

analysis would be simplified and give more accurate results. Further, the source of 

error related to weighing the mass loss would be reduced, as mass loss would increase. 

In addition, by testing at different time intervals one could see if the mechanism and 

severity of AC corrosion varies as a function of time. 

 In situ and close up video recording of the sample surface. This would be especially 

interesting in the early stages, to evaluate the observations described in section 4.5.1. 

It could also act as support to either confirm or decline the proposed mechanisms. 

Another interesting aspect would be to inspect the gas evolution and any local 

corrosion. 

 Perform experiments at even lower DC-potential. According to theory there should be 

a limit-potential where applied AC no longer will cause corrosion. If it is the case, it 

could be interesting to find it and determine a CP-system that ensures no corrosion. 
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6 Conclusions 

The cathodic polarization behavior under applied AC have been studied for X65 CS, AISI 316 

SS and 25Cr SDSS, in 3.5 % NaCl-solution and artificial seawater. Weight loss measurements 

and surface characterization by SEM and XRD were included in the study. Due to limited 

parallel testing the following conclusions will serve more as indications: 

 Corrosion of tested samples did not continue upon storage in a desiccator. 

 Surface topography had no effect on AC corrosion  

 Cathodic currents were seen for all tested samples. Higher AC and more negative DC-

potential increased the cathodic currents on 316 and 25Cr. Cathodic currents were in 

the following order from high to low, with small variation between the first two: 

25Cr>316>X65 (with AC)>X65 (absence of AC). 

 The AC cell potential (VAC) showed little correlation to the DC current response. High 

applied AC caused high VAC. Applied DC did not affect VAC for X65, while for 316 

and 25Cr the VAC decreased with more negative DC-potential. VAC was in the same 

order as the DC current response, with the highest value for 25Cr and similar small 

variation between 316 and 25Cr. 

 Some correlation between CR and the DC current response were found. The 

correlation between DC-potential and CR were inconsistent, while an increase in 

applied AC was seen to increase the CR and cathodic currents. The following CRs 

were calculated for the various types of steel: 0-0.260 mm/year (316), 0-0.522 

mm/year (25Cr) and 0.191-0.297 mm/year (X65). 

 For equal experimental parameters, 500 A/m2 applied AC and -800 mV or -1050 mV 

DC, the following CRs were calculated for the various types of steel: 0-0.042 mm/year 

(316), 0.126-0.224 mm/year (25Cr) and 0.191-0.297 mm/year (X65). 

 Calcareous deposits were formed on all samples tested in seawater and usually 

consisted of both CaCO3 and Mg(OH)2. Higher applied AC and negative increase in 

DC-potential caused increased formation of deposits, and it is likely that applied AC 

increases the kinetics of formation. 

 There was a small difference between 3.5 % NaCl-solution and artificial seawater 

regarding AC corrosion, more significant at -800 mV DC. CRs were a little lower for 

artificial seawater and DC current response displayed decreasing cathodic currents 

(compared to stable or increasing in 3.5 % NaCl-solution). Both are likely due to 

formation of calcareous deposits. 

 Fe3O4 was seen to form in 3.5 % NaCl-solution, while Fe2O3 and γ-FeOOH formed in 

artificial seawater. However, this seemed to vary between experiments. 
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Appendix A: Equations 

A.1 Required AC voltage 

The VariAC applied AC in the form of voltage that was controlled through a multimeter 

connected in parallel with VariAC and working electrode. In order to apply the right AC 

current density, calculations were done to find the voltage that corresponded to that current 

density. Exposed area of sample, resistance of the AC-circuit, desired AC current density and 

Ohm’s law was used to determine the required AC voltage, as seen in equation (A.1): 

𝑉𝐴𝐶 = 𝐴 ∗ 𝑅 ∗ 𝑖𝐴𝐶     (A.1) 

Where: 

VAC = required AC voltage [V] 

A = exposed area [cm2] 

R = resistance [Ω] 

iAC  = desired AC current density [A/cm2] 

A.2 Corrosion rate (CR) 

The corrosion rate (CR) in mm/year was calculated by the following equation: 

𝐶𝑅 =
𝑘∗ ∆𝑚

𝑡∗ 𝜌∗𝐴
      (A.2) 

Where: 

∆m = mass loss [g] 

k = constant equal to 8.76 * 104 [mm*hours/cm*years] 

t = duration of experiment [h] 

ρ = density of steel, set to 7.86 [g/cm2] for all steels 

A = exposed area [cm2] 
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Appendix B: Weight loss-graph for X65 

The cleaning solution that was used to clean the X65-samples after testing, also caused metal 

loss of the sample itself. Thus, preventive measures were performed as described according to 

ASTM G-1 [45], to find the actual mass loss due to corrosion. The approach was to repeat the 

cleaning cycle several times and plot the mass loss between each cycle in a graph, which an 

example of can be seen in Figure B-1. Further, the measured mass loss at each cycle was 

corrected for any metal loss, where this correction was based on cleaning of an untested 

sample. Usually six cleaning cycles were performed and plotted in the graph, which could be 

divided into two trend lines. The mass loss due to corrosion will then correspond to the 

intersection of these trend lines. 

 

Figure B-1: Example of measured weight loss as a function of number of cycles, according to ASTM G-1. The corresponding 

experiment was performed at a grinded X65-sample tested in 3.5 % NaCl-solution at -1050 mV DC and 500 A/m2 AC. The 

weight loss was determined to be 0.0055 g.
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Appendix C: Reproducibility 

The results from experiments performed on X65 in 3.5 % NaCl-solution at 500 A/m2 AC was, 

in addition to be compared with artificial seawater and to investigate surface roughness, used 

to test reproducibility of data compared to C. H. M. Hagen’s thesis [26]. The CRs compared 

was calculated from experiments performed under an applied DC of -800 mV and -1050 mV 

DC, and can be seen in Figure C-1.  

From the figure, it can be seen that results were quite similar and thus the experimental 

procedure was sufficient to collect new data.  

 

Figure C-1: Corrosion rate as a function of applied DC-potential. The plot compares results from this thesis with results 

from C. H. M. Hagen’s thesis. The results were acquired from experiments performed at -800 mV and -1050 mV DC, in 3.5 

% NaCl-solution at 500 A/m2 AC. 
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Appendix D: Parallel testing of 25Cr 

The 25Cr-sample that were tested in artificial seawater at -800 mV DC and 1000 A/m2 AC, 

displayed a DC current response and a CR that was significantly different compared to the 

other experiments. Thus, one parallel test was performed. The DC current response for the 

two tests can be seen in Figure D-1, the VAC can be seen in Figure D-2 and the calculated CR 

can be seen in Table D-1. Of the two experiments displayed, the first was presented in chapter 

4 while the 2nd is only displayed here. 

 

Figure D-1: The recorded DC current density response as a function of time. Both experiments have been tested at 25Cr 

under a DC of -800 mV at 1000 A/m2 AC in artificial seawater. 

 

Figure D-2: The recorded AC cell potential as a function of time. Both experiments have been tested at 25Cr under a DC of -

800 mV at 1000 A/m2 AC in artificial seawater.  
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Table D-1: Calculated corrosion rate for 25Cr-samples. Both samples have been tested under a DC of -800 mV at 1000 A/m2 

AC in artificial seawater. 

DC [mV] AC [A/m2] Weight loss [mg] Area [cm2] CR [mm/year] 

-800 1000 6 2.67 0.522 

-800 1000 5 2.42 0.480 (2nd) 
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Appendix E: Additional XRD data 

Additional XRD analysis that was seen as redundant in chapter 4 is presented here. Figure E-1 

displays the formed calcareous deposits that were formed on 316 at -800 mV DC and 1000 

A/m2 AC, and shows same composition as in Figure 4-22. Figure E-2 on the other hand, 

displays that the cell sediments analyzed only consisted of NaCl. 

  

Figure E-1: X-ray diffractogram of crushed calcareous deposits formed on 316 tested in artificial seawater at -800 mV DC 

and 1000 A/m2 AC.  
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Figure E-2: X-ray diffractogram of crushed cell sediments formed during an experiment on X65 in artificial seawater at -800 

mV DC and 500 A/m2 AC. 
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Appendix F: Additional EDS data 

The EDS analysis from the darkest area of a cleaned 25Cr-sample tested in artificial seawater 

at -800 mV DC and 500 A/m2 AC, can be seen in Figure F-1 with its corresponding 

composition in Table F-1 to F-3. It can be seen that the sample is covered by a Pt-layer. 

 

Figure F-1: SEM image from the darkest area seen on the 25Cr-sample tested in artificial seawater at -800 mV DC and 500 

A/m2 AC. 

 

Table F-1: The measured composition of EDS Spot 1 visible in Figure F-1. 

Element Weight % Atomic % Net Int. Error % K-ratio 

Pt-Mβ 100.00 100.00 675.95 2.63 1.00 

 

Table F-2: The measured composition of EDS Spot 4 visible in Figure F-1. 

Element Weight % Atomic % Net Int. Error % K-ratio 

Pt-Mβ 100.00 100.00 167.13 5.85 1.00 

 

Table F-3: The measured composition of Full Area 1 (which is the whole image) visible in Figure F-1. 

Element Weight % Atomic % Net Int. Error % K-ratio 

Pt-Mβ 100.00 100.00 149.01 5.31 1.00 

 


