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Abstract

Buckling and postbuckling of plates and sti�ened panels are considered. Computational

models for direct calculation of the response are dev eloped using large de
ection plate

theory and energy principles. De
ections are represented b y trigonometric functions. All

combinations of biaxial in-plane compression or tension, shear, and lateral pressure are

included in the formulations. The procedure is semi-analytical in the sense that the incre-

mental equilibrium equations are derived analytically, while an umerical method is used

for solving the equation systems, and for incrementation of the solution.

Unsti�ened plate models are dev elopedboth for the simply supported case and for the

clamped case. F or the simply supported case the material types considered are isotropic

elastic, orthotropic elastic, and elastic-plastic. Two models are developed for analysis of

local buckling of sti�ened plates, one for open pro�les and one for closed pro�les. A global

buckling model for sti�ened panels is developed by considering the panel as a plate with

general anisotropic sti�ness. The sti�ness coeÆcients are input from the local analysis.

Two models are developed for combined local and global buckling, in order to account for

interaction betw een local and global de
ection.The �rst is for a single sti�ened plate, and

uses a column approach. The second is for a sti�ened panel with several sti�eners.

Numerical results are calculated for a variety of plate and sti�ener geometries for ver-

i�cation of the proposed model, and comparison is made with nonlinear �nite element

methods. Some examples are presented. F or all models, the response in the elastic region

is well predicted compared with the �nite element method results. Also, the eÆciency of

the calculations is very high. Estimates of ultimate strength are found using �rst yield as a

collapse criterion. In most cases, this leads to conservativ e results compared to predictions

from �nite element calculations.
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Chapter 1

Introduction

1.1 Background and motivation

In design of ships and o�shore structures, it is essential to ensure that the structure has

suÆcient strength to sustain an extreme loading situation.Marine structures are assem bled

of plates and sti�ened panels, Fig. 1.1, and the strength of each panel is crucial for the

overall structural capacity. Although a large degree of redundancy usually ensures that

the structure has strength reserves after failure of individual panels, each panel should be

designed so that its ultimate capacity is not exceeded.

A structural component may collapse due to excessive yielding, buckling, rupture or fatigue.

Sti�ened panels used in marine structures are especially vulnerable to buckling, since the

plates are relatively thin and the loading predominantly in-plane. Determining the buckling

characteristics of each panel is therefore a vital part of the structural strength assessment.

Buckling does in itself not imply immediate collapse. Plates may have signi�cant strength

reserv es in the postbuckling region, and it is important to account properly for this e�ect

in order to achiev e optimum design.

T raditionally, the buc klingstrength of sti�ened panels has been assessed using explicit

design formulas, suc h as Det Norske V eritasClassi�cation Note for Buckling Strength

Analysis (Det Norske V eritas1995). These kind of formulations are usually based on

linear plate buckling theory, combined with empirical corrections to account for imperfec-

tions, residual stresses and plasticity. Combinations of loads are dealt with using various

1
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�

M M

Figure 1.1: Ship hull girder

interaction formulas, while sti�ener buckling is assessed using a column approach together

with e�ective width correction.

Although ha ving the adv an tageof being relativ ely simple and pro viding quic kstrength

estimates, the use of explicit design formulas is not a satisfactory design approach. It is

not possible to establish a set of formulas that are well suited for all geometries and load

combinations, and inaccurate results may be obtained if the formulas are used on cases they

w ere not originally intended for. They are not 
exible with respect to various imperfection

shapes and amplitudes, which may have a large in
uence on the response. Finally, they

do not provide information on de
ection modes and amplitudes.

Hand calculations using explicit design formulas have been important in the ship build-

ing industry, but computational tools are becoming more and more common. The need

for explicit formulas is therefore decreasing. The most accurate alternative is the use of

nonlinear �nite element methods (NFEM). This is a useful tool for research and compari-

son purposes, but performing NFEM on sti�ened panels is not practical for design. With

the large amount of panels to be analysed in a ship structure, the cost of modelling and

computing is too large for design purposes, even with the pow erful computers of today.

The approach presen tedin this thesis is a compromise betw een explicit design formulas

and nonlinear �nite element methods. The motivation is to obtain a direct calculation tool

which is more accurate than the simpli�ed formulations used in existing design codes, and

more eÆcient and simpler to use than NFEM. It should be fast and eÆcient to use, and

give information regarding deformation modes and load-response characteristics. An ana-

lytical approach is combined with a numerical solution procedure, giving a semi-analytical

method. The energy equations are integrated analytically, and sti�ness coeÆcients are

URN:NBN:no-3348



1.2. PROBLEM FORMULATION 3

obtained explicitly. A numerical method is used for solving the equation system and for

incrementing the solution.

The emphasis is on analysis of an isolated sti�ened panel. How ever, it is believed that the

results presented can be useful for future development of an integrated hull girder design

model. Suc h a model is required in order to take full account of the redistribution of forces

betw een panels due to buckling, but is outside the scope of the current work.

1.2 Problem formulation

The sti�ened panel is assumed to consist of a rectangular plate area with sti�eners running

in the longitudinal direction. The panel is supported by hea vy longitudinal and transverse

girders, as sho wn in Fig. 1.2. This kind of arrangement is typical for the dec k, side or

bottom of a ship hull. It is assumed that the girders have suÆcient strength to support

the panel, so that the part relevan t for analysis is the plating with sti�eners. The sti�eners

may be open or closed pro�les. Open types are 
at bar, angle bar, tee bar or bulb bar,

while the hat-pro�le is a typical example of a closed pro�le. The former types are typical

for con ventional ship structures, while the latter is used for lightw eigh t applications such

as high speed vessels and living quarters of o�shore structures.

The loads acting on a sti�ened panel in marine structures are in-plane compression or

tension resulting from the overall h ull girder bending moment, shear stress resulting from

the h ull girder shear force or torsion, and lateral pressure resulting from internal cargo or

the external sea. In the current work, the shear force and lateral pressure are assumed to

have constant values o ver the length and width of the plate, while the in-plane compression

or tension is assumed to be linearly varying.

A sti�ened panel is usually part of a larger structure, and it is therefore not obvious how to

de�ne the boundary conditions of an isolated panel. A common assumption is to consider

the edges as simply supported, and freeto mo ve in-plane but forced to remain straight.

This means that the neighboring panels are assumed to provide some in-plane constraint,

but no rotational constraint.

The fabrication process will introduce imperfections in the structure. Plates have a certain

initial out-of-plane de
ection, sti�ener w ebsha vea sideways initial distortion, and the

combined sti�ened plate may have an initial lateral de
ection in the global mode. Residual

stress from the welding process will also be present. Due to the imperfections, the response

is geometrically nonlinear from the start of the loading history. There is no well-de�ned

buckling load, but a gradual transition from the prebuckling to the postbuckling region. A t

some point material yielding will occur, and �nally the collapse load will be reached. The

aim in this work is to trace the geometrically nonlinear load-de
ection equilibrium curve
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Longitudinal girder

Transverse girder

Stiffener

Figure 1.2: Sti�ened panel

from the onset of loading until the maximum load is reached. Estimates of the ultimate

load and deformation shall be provided.

Both steel and aluminium panels are considered. Steel panels are usually quite stocky ,

and local deformations dominate. Aluminium panels are usually slender and ha ve much

low er global buckling load. The coupling betw een local andglobal buckling is therefore

much larger. Also, the material sti�ness ofaluminium is only one third of that of steel.

Aluminium panels have the additional problem of heat a�ected zones (HAZ). This may be

treated in the current computational model by reducing the yield stress in the HAZ-zones.

More advanced treatment of HAZ-e�ects is not within the scope of the current work.

1.3 Previous work

The published literature on buckling of beams and plates is overwhelming, and only a few

selected references can be mentioned here. A short historical review is given �rst, and some

con tributions from recent years are then presented.

The �rst work in the �eld of buckling theory was made by Euler (Euler 1759), who derived

the linear elastic buckling value foran ideal, axially compressed column. It took almost

a hundred years before Euler's theory became generally accepted, because experiments

were only conducted on short columns that buc kle inelastically. The P erry-Robertson

approach, (Ayrton and Perry 1886) and (Robertson 1925), is based on the column model

with an initial imperfection, and �rst yield in the extreme �ber is taken as the elastic limit

load. This method has been widely used in design codes, suc h as (Det Norske V eritas

1995). Correction of the linear elastic value to account for plasticit y can also be done using

Johnson- Ostenfeldt correction.
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Caldwell proposed the e�ective width method (Caldwell 1965) as a method for accounting

for local plate de
ection when using the column model on a sti�ened plate. Following this,

much work has been devoted to �nding appropriate expressions for the e�ective width of

plating, e.g. (F aulkner 1975), (Carlsen 1980), and (Valsgard 1980).

Navier derived the di�erential equation for bending of rectangular plates, and used trigono-

metric functions to obtain linear elastic buckling values for certain problems. Design for-

mulas have been developed for unsti�ened plates which implicitly account for imperfections

and residual stress. Contributions in this �eld are numerous, e.g. (Soares 1988), (Ueda,

Rashed, and P aik 1995), (P aik and P edersen1995), (Soares and Gordo 1996a), (Soares

and Gordo 1996b), (Cui and Mansour 1998), (Fujikubo and Yao 1999), (Kristensen 2001),

and (Paik and Kim 2002). Combined loads are handled using capacity interaction curves

obtained from parametric studies.

Pioneering work on large de
ection of plates was performed by Kircho� (Kircho� 1850),

who discovered the importance of nonlinear terms for large de
ections. The �nal form of

the plate di�erential equation for large deformations w asderiv edby von Karman, (von

Karman 1910). The equations were extended to plates with initial curvature b y Marguerre

(Marguerre 1937).

The �nite element method (FEM) was in troduced about �fty years ago, (Turner, Clough,

Martin, and Topp 1956), and it has become an increasingly more important tool with the

continuous development of high-speed computers. Today the use of linear FEM during

design of marine structures is standard, while the use of FEM for nonlinear problems such

as buc kling is mostly restricted to research, e.g. (Langseth and Hopperstad 1996), (Yao,

Fujikubo, and Yanagihara 1997) and (Fujikubo, Yao, and Khedmati 2000).

The Idealized Structural Unit Method was dev eloped in the 1970s, (Ueda and Rashed 1984).

This is a method where a structure is divided into the biggest possible structural units,

whose geometric and material nonlinear beha viorare idealized. The units are regarded

as elements in a nonlinear analysis of the en tire structure. Recent dev elopments of the

method are due to many researc hers, e.g. (P aik 1987), (Ueda and Fujikubo 1992), (Ueda,

Rashed, and Abdel-Nasser 1993) and (Fujikubo, Keading, and Yao 2000).

Recent work in the �eld of analytic or semi-analytic buckling formulations have been re-

stricted mostly to linearized buckling predictions, neglecting non-linear geometrical e�ects

in the large de
ection region, such as (Hughes and Ma 1996), (Masaoka and Okada 1996),

(P aik, Thayamballi, and Park 1998) and (Fujikubo and Yao 1999).

Some work has been performed on the large de
ection response of unsti�ened plates, e.g.

(Levy 1942), (Ueda, Rashed, and Paik 1987), (Masaoka, Okada, and Ueda 1998) and (Paik,

Thayamballi, Lee, and Kang 2001). In (Steen 1989) large de
ection of a sti�ened panel

w as analysed using a single degree of freedom model, but neglecting local buckling e�ects.
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In recent years, the need for improved buckling formulations has been recognized by the

ship classi�cation society Det Norske Veritas (DNV). Until no w, buckling assessment has

been performed using explicit requirements such as those found in DNV Rules for Ships

(Det Norske V eritas2001) and DNV Classi�cation Note for Buckling Strength Analy-

sis (Det Norske V eritas 1995). Implementation of a new buc klingcode, P anelUltimate

Strength (PULS), is now being performed (Steen and �stvold 2000). This code is based

on theoretical formulations and direct calculation procedures. Some of the buckling mod-

els developed in the current work have been implemented in PULS, (Det Norske Veritas

2002b). A t the time of writing, the unsti�ened plate model presented in c hapter 3, and the

local buckling model presented in chapter 4 have become part of PULS. Some examples of

application using PULS will therefore be presented.

A summary of recent con tributions in the �eld of ultimate strength of sti�ened panels can

also be found in reports from International Ship and O�shore Structures Congress, (ISSC

2000) and Society of Naval Architects and Marine Engineers, (Paik, Thayamballi, Wang,

and Kim 2000).

1.4 Present work

In the present work, the aim has been to analyse the coupled behavior of a sti�ened panel

using large de
ection theory for both the plate and the sti�eners in combination. F or this

purpose, the task is divided into sev eral steps, where the �rst basic step is buckling analysis

of a single unsti�ened plate, and the last step is a complete model for combined buckling of

a sti�ened panel. Any combination of biaxial in-plane compression or tension, shear, and

lateral pressure is included. De
ections are assumed in the form of trigonometric function

series. The response history is traced using energy principles and perturbation theory. The

formulations derived are implemented in a FORTRAN computer code for each model.

The theoretical basis for the computational models developed is presented in chapter 2.

The use of energy principles is described, and a presentation of large de
ection plate theory

is given. Also, an overview of the material formulations and numerical procedures used is

given.

A buckling model for an unsti�ened elastic plate is derived in c hapter 3, �rst for simply

supported and then for clamped boundary conditions. A plate with orthotropic elastic

sti�ness coeÆcients is then studied, and �nally a plate with elastic-plastic material prop-

erties is considered. This last model is the only one in the current work that accounts for

material nonlinearities. It was found that satisfactory estimates of the ultimate strength

can be obtained by using �rst yield due to membrane stress as a collapse criterion. This

is also considered to be a sound design approach. Since the elastic-plastic model has poor

computational eÆciency compared to the elastic model, it was decided to focus on eÆcient
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and accurate elastic solutions for the remaining models.

Local buckling of a sti�ened plate is considered in chapter 4. In the local models, it is

assumed that the plate and sti�ener de
ects locally, while lateral de
ection of the sti�ener

in the global mode does not occur. A model is �rst derived for open pro�les and then for

a pro�le of the closed type.

A global buckling model using anisotropic sti�ness coeÆcients is presented in chapter 5.

Local deformations are accounted for b y using reduced sti�ness coeÆcients calculated from

the local buckling model. The sti�ness is reduced compared to the linear sti�ness due to

local buckling e�ects. However, the coupling betw een local and global deformation is not

fully accounted for in this model, since the global deformation is assumed not to in
uence

the local deformations.

A complete buc klingmodel for a sti�ened panel with open pro�le sti�eners, including

coupling betw een local and global buc klingmodes, is presen tedin chapter 6. A single

sti�ened plate is assumed be representativ e for the local deformations of all the sti�eners

in the panel, and global deformation is included as an additional degree of freedom.

Estimation of design collapse load using a �rst yield criterion is discussed in chapter 7.

Some examples of application of the developed buckling models are presented using PULS.

Comparisons with the nonlinear �nite element code ABAQUS are given.

Finally, conclusions and recommendations are given in c hapter 8.
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Chapter 2

General theory

This chapter gives an o verview of the general theory and methods used for development of

the buckling models presented in the subsequent chapters. Some of the theory presented

here is standard textbook material. More on variational principles and energy methods

can be found in (Lanczos 1986), (Shames and Dym 1985), (Dym and Shames 1973), and

(Washizu 1975). Recognized references on plate theory are for instance (Timoshenko and

Gere 1959), (Bulson 1970), (Szilard 1974) and (Murray 1984). Buckling and stability theory

is presented by (Bleich 1952), (Timoshenko and Gere 1961), (Gerard 1962), (Brush and

Almroth 1975) and (Troitsky 1976). The theory on material behavior is mostly taken from

(Chen and Han 1988), (Lemaitre and Chaboche 1994), and (Mazzolani 1995). Buckling

problems related to ship structures are presented in (Hughes 1988).

Nonlinear plate de
ection is a complex phenomenon, especially due to the development of

second order strains. Even linear buckling problems may only for a few special cases be

solv ed analytically. F or more general problems, energy principles can provide approximate

formulations. V ariational methods is the basis for �nite element methods used in structural

analysis, but they may also be used for establishing analytical or semi-analytical solutions

for a structural member as a whole.

In the current work, the principle of virtual work and the principle of minimum potential

energy are used to study the response of plates and sti�ened plates during buckling. The

energy formulations are combined with the Rayleigh-Ritz method for obtaining a solution

for the displacement. In con trast to the �nite element method, where the displacement

shape is taken as piecewise polynomial, the displacements are here assumed on global form,

9
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10 CHAPTER 2. GENERAL THEORY

and the energy of the whole system is considered. The number of unknowns in the problem

is therefore only a small fraction of that necessary for a FEM-analysis. Di�erent types of

material behavior are studied; isotropic elastic, anisotropic elastic and elastic-plastic. An

incremental solution procedure is applied. Solving for the rate of displacement at each

increment, a response curve is produced by incrementation.

In the last section of this chapter, eigen valuecalculations are discussed. Although the

emphasis in the presen twork is on nonlinear analysis, eigenvalue calculation has also

been implemented in all models. The eigen valueis in itself not very informative, but

the associated eigenmode gives an indication of the preferred deformation mode of the

structure. The eigenmode may therefore be useful for choosing the initial imperfection

mode. How ever, it will be shown that for some cases the eigenmode is di�erent from the

preferred postbuckling deformation mode.

2.1 Buckling and stability

The word buckling is used with di�erent meanings in di�erent con texts.Mathematically, it

is connected to instability phenomena. Ph ysically, we usually say that a plate is buckling

when in-plane loads results in out-of-plane de
ection. The term buckling load is usually

used to denote the linear elastic buckling load. This is also referred to as the initial

buckling value, or the eigen value. The eigen valueis calculated assuming that no out-

of-plane deformation occur before the buc klingvalue is reached, and that the material

behavior is linear elastic.

For a perfect plate, the poin tof instabilit yis referred to as the bifurcation load. For

a plate with initial de
ection, bifurcation will not occur and the buckling load is not a

w ell-de�ned value. The plate will start to deform immediately when the load is applied,

and the response is nonlinear from the start. If a maximum loadexists, it is called the

limit load, Fig. 2.1. F rom a practical point of view, it is desirable to account for the e�ect

of initial de
ections, since all real plates have imperfections. It is also n umerically easier

to include initial de
ections, since bifurcation points do not have to be treated,and the

response curve will be smooth.

For some problems, the buckling response may be very unstable. This is often connected

to mode-snapping. If the current de
ection shape is not the preferred one, the plate may

try to snap to a di�erent shape. This may lead to quite dramatic response, including snap-

through or snap-back response, Fig. 2.1. One reason could be that the initial de
ection

is in a di�erent mode than the preferred de
ection mode. Another reason could be that

the preferred de
ection shape in the large de
ection region is di�erent from the preferred

shape in the pre-buckling region, or that the load condition is changed. Examples of this

will be shown in the next chapter.
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B
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snap through

snap back

Load Load

Response Response

Figure 2.1: Equilibrium curves: (L)=Limit poin t,(B)=Bifurcation point, (T)=Turning

point

2.2 Energy principles

2.2.1 The principle of virtual work

The principle of virtual work states that a system is in static equilibrium if the sum of

virtual work for internal and external forces is zero for all virtual deformations and strains

that are kinematically allow ed.

ÆW + ÆH = 0 (2.1)

where ÆW is internal virtual work in the plate, ÆH is virtual work of external loads, and Æ

is the v ariational operator.The principle of virtual work is v ery general, and valid also for

non-conservativ e systems. It is independent of any constitutive law, and it can therefore

be applied for structures with inelastic material properties.

As mentioned, the solution to the nonlinear buckling problem is calculated using incre-

mentation. Consequently, it is the rates that are solved for in each increment. Therefore,

the principle of virtual work is used on the following rate form

Æ _W + Æ _H = 0 (2.2)

where the dot signi�es di�erentiation with respect to a rate parameter. The rate parameter

is de�ned in a subsequent section.
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12 CHAPTER 2. GENERAL THEORY

2.2.2 The principle of minimum potential energy

The principle of minimum potential energy can be derived from the principle of virtual work

for conservativ e systems. It states that of all the possible de
ections satisfying kinematic

compatibility, those which satisfy static equilibrium will giv e a stationary value of the

potential energy of the body:

Æ� = ÆU + ÆT = 0 (2.3)

where � is total potential energy ,U is internal energy ,and T is poten tialof external

loads. The principle can only be established for conservativ e, or rev ersible, systems.That

means that the material must be elastic, and the loads must be directionally constant. The

material does not necessarily have to be linear elastic, how ever.

It can be shown that the stationary value of the total potential energy is a minimum value.

If the deformed con�guration can be described by the de
ection w, we can write:

@�

@w
= 0 (2.4)

The principle of minimum potential energy can also be used on rate-form:

(
@ _�

@w
) = 0 (2.5)

2.3 The Rayleigh-Ritz method

In the Rayleigh-Ritz method, the continuous displacement of a body is represented by a

set of assumed displacement functions. The problem is reduced to �nding the unknown

coeÆcients, or amplitudes, of these functions. It is required that the assumed functions

satisfy the essen tial boundary conditions, but they do not need to satisfy the natural

boundary conditions. F or a plate, displacements and rotations along the edges are essential

boundary conditions, while forces and moments along the edges are natural boundary

conditions.

The Rayleigh-Ritzmethod is convenien t to use in connection with the principle of minimum

potential energy. The displacement is assumed to be written as

w(x; y) =
X
m

X
n

Amngm(x)gn(y) (2.6)
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2.4. LARGE DEFLECTION PLATE THEORY 13

where gm and gn are shape functions, and Amn are displacement amplitudes. The principle

of minimum potential energy may then be rewritten as

@�

@Amn

= 0 (2.7)

The rate form of this equation is

(
@ _�

@Amn

) = 0 (2.8)

The problem is now to �nd a set of unknowns Amn or _Amn, rather than to �nd a continuous

displacement w(x; y).

2.4 Large de
ection plate theory

Using the Love-Kircho� assumption that lines normal to the undeformed middle surface

remain normal to this surface, the strains in a material point can be taken as the sum of

membrane and bending strain:

"
tot
ij = "ij � zw;ij i; j = x; y (2.9)

where z is the v ertical distance from the plate neutral axis to the material point in con-

sideration, and "ij is the membrane strain. This is the tw o-dimensional extension of the

Euler-Bernoulli hypothesis for bending of beams. According to Marguerre (Marguerre

1937), who extended the von K�arm�annonlinear plate theory to plates with an initial

curvature, the membrane strains can be written as:

"x = u;x +
1

2
w
2
;x + w0;xw;x (2.10)

"y = v;y +
1

2
w
2
;y + w0;yw;y (2.11)


xy = u;y + v;x + w;xw;y + w0;xw;y + w;xw0;y (2.12)

where w and w0 are the additional and initial out-of-plane de
ection of the plate, respec-

tively, and u and v are displacement in x and y-direction, respectively. Static equilibrium is

achiev ed through the plate di�erential equation. Using the Airy stress function F , de�ned
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14 CHAPTER 2. GENERAL THEORY

in terms of the membrane stress � so that

�x = F;yy (2.13)

�y = F;xx (2.14)

�xy = �F;xy (2.15)

the di�erential equation for large de
ections of an isotropic elastic plate can be written as

r4
w =

t

D

h
p

t
+ F;yy(w + w0);xx + F;xx(w + w0);yy � 2F;xy(w + w0);xy

i
(2.16)

Here, p is the lateral pressure, t is plate thickness, and D is the bending sti�ness of the

plate,

D =
Et

3

12(1 � �2)
(2.17)

where E is elastic modulus, and � is P oisson's ratio. The condition for strain compati-

bility can be derived from the membrane strain equations, Eq. (2.10) through (2.12). By

di�erentiation and combination of the equations, the requirement for strain compatibility

can be written:

"x;yy + "y;xx � 
xy;xy = w
2
;xy � w;xxw;yy + 2w0;xyw;xy � w0;xxw;yy � w0;yyw;xx (2.18)

Using Hook's law, and introducing the stress function, the plate compatibility equation

becomes:

r4
F = E(w2

;xy � w;xxw;yy + 2w0;xyw;xy � w0;xxw;yy � w0;yyw;xx) (2.19)

T ogether,the tw o di�erential equations Eq. (2.16) and (2.19) are the von Karman plate

equations modi�ed for plates with imperfections.They are of the fourth order and coupled,

and therefore in general not possible to solve exactly .In the current work, the continuous

de
ection w is replaced by a set of assumed displacement functions. Then, a stress function

F that satis�es the compatibility equation must be found. When the principle of virtual

w ork or minimum potential energy is used, the plate di�erential equation does not need to

be solved.

2.5 Material law

The material law for elastic material is:

�ij = Cijkl"kl i; j; k; l = x; y; z (2.20)
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where Cijkl is the general linear elastic sti�ness tensor. F or thin plates it is usual to assume

plane stress condition, so that �z = �yz = �zx = 0. For an isotropic material we then have

Hook's law

�x =
E

(1 + �2)
("x + �"y) (2.21)

�y =
E

(1 + �2)
("y + �"x) (2.22)

�xy = 2G"xy (2.23)

where G = E
2(1+�)

is the shear modulus. The inverse relation is

"x =
1

E
(�x � ��y) (2.24)

"y =
1

E
(�y � ��x) (2.25)

"xy =
1

2G
�xy (2.26)

Yielding is assessed by the v on Mises yield criterion:

�eq =
q
�2x + �2y � �x�y + 3�2xy < �f (2.27)

where �eq is the equivalen t stress, and�f is the initial yield stress of the material.

F or most of the buckling models developed in the current work, the onset of yielding due

to membrane stress is tak en as the criterion for the ultimate load of the structure, and

material nonlinearities are not considered. F or the unsti�ened plate, a model that includes

plasticit y e�ects has been developed. For elastic-plastic materials, an incremental 
ow law

must be applied, in order to allow for elastic unloading in the plastic range. A material

law on total form cannot be used, since there is no unique relationship betw een stresses

and strains.

The incremental material law is written as

_�ij = C
ep
ijkl _"kl i; j; k; l = x; y (2.28)

or

_"ij = M
ep
ijkl _�kl i; j; k; l = x; y (2.29)
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where C
ep
ijkl is the elastic-plastic sti�ness matrix, and M

ep
ijkl is the elastic-plastic 
exibility

matrix. The strain rate _"kl is the total strain, i.e. the sum of elastic and plastic strain in

each material point.

The elastic-plastic sti�ness matrix for plane stress and isotropic hardening is:

[C
ep
ijkl] =

2
64

E
1��2

� s2
1

s
sym:

�E
1��2

� s1s2
s

E
1��2

� s2
2

s

�s1s6
s

�s2s6
s

E
2(1+�)

� s2
6

s

3
75 (2.30)

where

s1 =
E

1� �2
(sx + �sy) (2.31)

s2 =
E

1� �2
(�sx + sy) (2.32)

s6 =
E

1 + �
sxy (2.33)

s =
4

9
�eHp + s1sx + s2sy + 2s6sxy (2.34)

sij is the stress deviation tensor, which for plane stress is

sx =
2

3
�x �

1

3
�y (2.35)

sy =
2

3
�y �

1

3
�x (2.36)

sxy = �xy (2.37)

while �e is the v on Mises equivalen t stress, andHp is the plastic modulus, i.e. the slope of

the uniaxial stress-plastic strain curve at the current value of �e.

2.6 Staging and incrementation

A sti�ened plate may be subjected to a combination of several loads simultaneously. They

may be applied sequentially , proportionally, or by some other scheme. In order to reduce

the number of load parameters to one, a piecewise linear load path is prescribed. Eac h

linear part of the load history is called a stage, and the process is therefore referred to as

staging. Within each stage s, the load parameter is varied from 0 to 1. The external forces

Pi can then be represented by the single load parameter � as:

Pi(�) = P
(s�1)
i + �

h
P

(s)
i � P

(s�1)
i

i
(2.38)
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Now only the load parameter � enters the equation system as an unknown, and all loads

may be calculated from the load parameter after the solution has been obtained. Any

desired load history may be approximated by de�ning a suÆciently large number of load

stages.

As will be sho wn, the potential energy of a plate subjected to large de
ections is of the

fourth order in the de
ection. The equations resulting when using the principle of minimum

potential energy and the Ra yleigh-Ritzmethod are therefore of the third order in the

displacement amplitudes. An incremental solution procedure is applied in order to obtain

a linear equation system, and to avoid solving a set of third order equations. Linear

equation systems are easily solved, and have a unique solution in contrast to third order

systems. Using perturbation theory, as done in (Steen 1998), a general rate parameter �

is de�ned so that:

_Amn =
@Amn

@�
(2.39)

_� =
@�

@�
(2.40)

The rate parameter may be considered as a pseudo-time. Using this kind of parameter is a

more general method than pure load control or pure displacement control methods, since

an y type of behavior can be handled, including passing limit points and turning poin ts.

This means that even unstable phenomenon such as snap-through and snap-back problems

can be treated. The updated displacements and load parameter are calculated as a Taylor

series:

A
i
mn = A

i�1
mn + � _Ai�1

mn +
1

2
�
2 �Ai�1

mn + ::: (2.41)

�i = �i�1 + � _�i�1 +
1

2
�
2��i�1

mn + ::: (2.42)

where i is the curren tincrement. In principle, the perturbation theory can be applied

up to an y order. For the unsti�ened plate, the energy formulations ha vebeen derived

up to the second order. The second order terms can be considered as an alternative to

using equilibrium iterations betw een the increments. They increase the accuracy and can

be used to control the size of the increments in the analysis, since the second order rate

represen tsthe curv ature of the equilibrium curv e. It is found, ho w ever,that the �rst

order approximation gives suÆcient accuracy when small increments are used. This will

be demonstrated by numerical examples, which are all based on �rst order incrementation.

It can also be useful to have information about the response in many increments. F or the

subsequent deriv ations, only �rst order incrementation is therefore used.
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18 CHAPTER 2. GENERAL THEORY

The perturbation parameter can be de�ned in various ways. A convenient approach is to

use arc-length incrementation. This is achiev ed b yde�ning the perturbation parameter

so that the increments are taken as speci�ed steps along the equilibrium curv e in the

load-displacement space. The following relation must then be satis�ed:

��2 +�q2mn = ��2 (2.43)

Summation over all mn is implied. qmn are the displacement amplitudes made non-

dimensional with respect to some geometry parameter, such as the plate thickness:

qmn =
Amn

t
(2.44)

The scaling is necessary to make the equations dimensionally consistent. By letting the

increments go to w ards zero, the following relation is found:

_�2 + _q2mn = 1 (2.45)

2.7 Solving the �rst order equations

Applying the principle of minimum potential energy on rate form, and assuming a dis-

placement shape with (M �N) terms, the problem is reduced to a system of (M �N) linear

equations with (M � N + 1) unknowns. The unknowns are the M � N displacement rate

amplitudes _Amn and the load rate parameter _� . The last equation necessary to solve the

equation system is Eq. (2.45). This last equation is nonlinear in the unknown rate pa-

rameters, and can therefore not be included in the equation system directly. The solution

procedure is explained in the following.

The rate of minimum potential energy may be written:

_
(
@�

@Afg

) =
@
2�

@Afg@Amn

@Amn

@�
+

@
2�

@Afg@�

@�

@�
= 0 (2.46)

Using matrix notation, this equation system can be written:

K _A+G _� = 0 (2.47)

where

K =
@
2�

@A2
(2.48)

G =
@
2�

@A@�
(2.49)
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2.7. SOLVING THE FIRST ORDER EQUATIONS 19

The K-matrix may be interpreted as an incremental sti�ness matrix, while the G-vector

can be interpreted as an incremental load vector. The solution of this equation system is

written:

_A = � _�K�1G (2.50)

= � _�D

The matrix D is de�ned as D = K�1G and has the elements dmn. Substituting D into

Eq. (2.45) gives:

_�2(d211 + d
2
12 + ::: + d

2
MN + t

2) = t
2 (2.51)

) _� = � tp
d211 + d212 + :::+ d2MN + t2

(2.52)

The displacement rate amplitudes are then found as

_Amn = _�dmn (2.53)

The reason for the � in Eq. (2.52) is that by specifying an arc length increment along

the equilibrium curve there will always be tw o possible solutions, one in the direction of

positiv e traversal and one in the direction of negative traversal.

In order to trace the complete response curve, the solution of positive traversal must be

found. Two common criteria for choosing the correct solution are the work criterion and

the angle criterion. The former is based on the requirement that the work performed by

the external forces shall be increasing. This criterion works �ne for most usual problems,

but breaks down in case of snap-back problems, in which the work after the turning point

is decreasing.

The angle criterion is applicable even for suc h problems, and is therefore used in the

current work. It is based on the assumption that the equilibrium curve is smooth. Hence,

the angle betw eenthe tangents to the curv e in tw oconsecutive increments should be a

small number. More precisely, the angle betw een the tangent to the curve in increment

(i) and the tangent to the curve in the next increment (i+1) in the direction of positive

traversal, should alw ays be smaller than the angle betw eenthe tangent to the curv e in

increment (i) and the tangent to the curve in the next increment (i-1) in the direction of

negative traversal.

Numerically, this can be implemented by calculating the angles �+ and �
�
corresponding
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20 CHAPTER 2. GENERAL THEORY

to the + and - sign in Eq. (2.52) above:

�+ = arccos

"
_�+( _�i�1 +

dmn
_Amn;i�1

t2
)

#
(2.54)

�
�
= arccos

"
_�
�
( _�i�1 +

dmn
_Amn;i�1

t2
)

#
(2.55)

The correct sign of the load rate parameter is _�+ if �+ is the smaller angle, and _�
�
if �

�

is the smaller angle.

2.8 Solving the second order equations

The second order rate of minimum potential energy may be written:

�
(
@�

@Afg

) =
@
3�

@A3
fg

_A2
fg + 2

@
3�

@A2
fg@�

_Afg
_� +

@
2�

@A2
fg

�Afg +
@
2�

@Afg@�
��

= K�A +G�� + F = 0 (2.56)

where

F =
@
3�

@A
3
fg

_A2
fg + 2

@
3�

@A
2
fg@�

_Afg
_� (2.57)

The last equation necessary in order to solve the above equation system is found by di�er-

entiation of Eq. (2.45):

_��� + _qmn�qmn = 0 (2.58)

Since this equation is linear in the second order rate parameters, it can be included in

the equation system directly. The �rst order perturbation parameters are known from the

solution of the �rst order equations. Hence, a new equation system is formed, and the

second order rates can be calculated:

K2
�A2 +G2 = 0 ) �A = �K�1

2
G2 (2.59)
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Figure 2.2: De
ection at midpoint under axial loading for 1.0x1.0x0.009m plate (� = 3:7)

where

K2 =

�
K G
_A _�

�
; G2 =

�
F

0

�
; �A2 =

�
�A
��

�
(2.60)

Comparisons are made betw een results obtained with �rst order incrementation and with

second order incrementation in Fig. 2.2. The plot is for a 1.0x1.0x0.009m plate subjected

to axial loading. The load is made non-dimensional with the yield stress �f = 235MPa.

The plate slenderness is � = b
t

q
�f
E
= 3:7. First order and second order approximations are

plotted for an arc-length of � = 0:2, which is considered to be large. Some di�erence is seen,

but not so much considering the large arc-length. When � = 0:02 is used (labelled 'Small

inc.' in the �gure), no di�erence is seen. With respect to computational eÆciency, it is

found that the cost of calculating the second order rates is of the same order as calculation

of the �rst order rates. This indicates that computational gain is not likely to be achieved

by including the second order terms. The rest of the models are therefore derived using

only �rst order incrementation.

2.9 Calculation of linear eigenmode

The emphasis in the current work is calculation of nonlinear buckling response. The linear

buckling eigenvalue is of less practical interest, because it does not give much information

about the real strength of the structure. It can be useful, how ever, to calculate the linear

eigenmode. Although the shape of the eigenmode is not necessarily the same as the post-

buckling de
ection shape, it is useful for setting the initial de
ection. All structures have
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22 CHAPTER 2. GENERAL THEORY

imperfections, but the actual shape is usually not known. The most conservativ e approach

is then usually to use the eigenmode as the imperfection shape.

The condition for structural instability is that the incremental sti�ness matrixK is singular.

The eigenproblem is therefore de�ned so that:

Kx = 0 (2.61)

where x 6= 0 is the eigenvector.

In a linear eigenvalue calculation, the change in geometry prior to buckling is neglected.

The sti�ness matrix is then decomposed as a sum of material and geometric sti�ness:

K = KM +KG (2.62)

The material sti�ness is the sti�ness evaluated at the reference con�guration. Usually the

reference con�guration is the initial con�guration, so that the material sti�ness is evaluated

with A = 0 and � = 0. For the speci�c cases considered here, the material sti�ness equals

the sti�ness due to bending potential energy:

KM = KB (2.63)

The geometrical sti�ness is linearly dependent on the load factor �:

KG = �K1 (2.64)

The matrix K1 is the sti�ness matrix due to external potential energy ,evaluated with

A = 0 and � = 1.

K1 = Kext(� = 1) (2.65)

The eigenproblem is now written:

(K0 + �EK1)x = 0 (2.66)

or equivalen tly

K0x = ��EK1x (2.67)

This is a generalized symmetric algebraic eigenproblem

M1x = �EM2x (2.68)
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2.9. CALCULATION OF LINEAR EIGENMODE 23

where �E is the eigenvalue corresponding to the eigenvector x. F or the cases considered

here, both M1 = K0 and M2 = �K1 are real symmetric. In addition, M1 is positiv e

de�nit.

The mathematical solution can be obtained using standard algebraic routines. EÆcient

solution may be obtained for the case whereM1 andM2 are symmetric, andM2 is positiv e

de�nit. In order to achiev e this, the equation is rewritten as:

�K1x = �
0

EK0x (2.69)

so that M1 = �K1, M2 = K0, and �
0

E = 1=�E .
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Chapter 3

Buckling of unsti�ened plates

Buckling of unsti�ened plates is now considered. This is a �rst step to w ards abuc kling

model for an integrated sti�ened panel. The formulations deriv ed here are developed

further in subsequent chapters. The unsti�ened plate is also of interest in itself. An

example is applications where the serviceability limit state is important. A simpli�ed

de
ection analysis may then be performed by taking the plate betw een sti�eners as simply

supported, neglecting the rotational restraint from the sti�eners. Another example is a

sti�ened panel with weak sti�eners, where de
ection in the global mode is dominant. Suc h

a panel may be analysed as an orthotropic plate, by including the e�ect of the sti�eners

as orthotropic sti�ness coeÆcients in the model.

An isotropic elastic, simply supported plate is considered in section 3.1, while a plate with

clamped edges is discussed in section 3.2. These models are used as part of the local model

presented in chapter 4. An orthotropic elastic plate is studied in section 3.3. This model

is dev eloped further in chapter 5 to a global buckling model for sti�ened panels. Finally,

a plate with elastic-plastic material properties is analysed in section 3.4. Plasticity is not

considered further in this work, so the derivations for the elastic-plastic unsti�ened plate

is presen ted as an independent study .

For all models, examples of application are given, and comparisons are made with nonlinear

�nite element calculations using ABAQUS. A large number of cases have been studied in

order to test the developed models, and only a few may be included here.

25
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SxySx

Sy

p

a

x

b

y

Figure 3.1: Unsti�ened simply supported plate

3.1 Simply supported plate

An unsti�ened, rectangular plate is studied, Fig. 3.1. The length is a, the breadth is b,

and the thickness is t. The material is assumed to be isotropic and linear elastic, and is

characterized by the elastic modulus E and Poison's ratio �.

The external loads are in-plane compression, shear force and lateral pressure. The external

in-plane stress Sx, Sy and forces Px, Py are de�ned as positive in compression, since it is

mainly compression that is of interest for study of the buckling phenomenon. How ever,

the in ternal stress�x and �y is de�ned as positive in tension as usual.

3.1.1 Assumptions

The edges of the plate are assumed to be free to move in-plane, but forced to remain

straigh t. According to Marguerre's plate theory ,Eq. (2.10) and Eq. (2.11), this means

that

Z a

0

("x �
1

2
w
2
;x � w;xw0;x)dx = �u 8 y (3.1)Z b

0

("y �
1

2
w
2
;y � w;yw0;y)dy = �v 8 x (3.2)

This restriction represents the e�ect of the neighboring plates that will support the plate
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3.1. SIMPLY SUPPORTED PLATE 27

in a larger structure. The conditions for simply supported edges are:

w = 0 at all edges

w;yy + �w;xx = 0 at y = 0; b

w;xx + �w;yy = 0 at x = 0; a

(3.3)

These conditions are satis�ed by taking the additional and initial de
ections as double

Fourier series, as �rst suggested by Navier:

w
s =

MsX
m=1

NsX
n=1

A
s
mn sin (

m�x

a
) sin(

n�y

b
) (3.4)

w
s
0 =

MsX
m=1

NsX
n=1

B
s
mn sin (

m�x

a
) sin (

n�y

b
) (3.5)

where the superscript s is used to indicate sine-mode, in con trast to the cosine-mode

which is used in the next section for the clamped plate. Initial de
ection is included

in order to avoid bifurcation problems, and because all plates in the real world ha vea

certain degree of out-of-plane imperfection resulting from the fabrication process. The

most common approach is to set the imperfection shape equal to the eigenmode of the

plate. Alternatively, the measured imperfectionwi in a plate may be represented by w
s
0 by

calculating the Fourier coeÆcients:

B
s
mn =

4

ab

Z
a

Z
b

wi(x; y) sin (
m�x

a
) sin (

n�y

b
)dydx (3.6)

P erfect plates can be analysed as a limiting case by specifying a very small initial de
ection.

In order to satisfy strain compatibility, a stress functionF must be found using the assumed

displacements, so that the plate compatibility equation is satis�ed. The approach follow ed

is the same as that of Levy (Levy 1942), but in addition geometrical imperfections are

accounted for using Marguerre's plate theory. Shear force is also included as an additional

load case. The stress function is assumed to have the follo wing form:

F
s = �Sxy

2

2
� Syx

2

2
� Sxyxy +

2MsX
0

2NsX
0

f
s
mn cos(

m�x

a
) cos(

n�y

b
) (3.7)

The �rst three terms results from constant external stress, while the summation term rep-

resen ts the membrane stress developing due to de
ection. The stress function coeÆcients

f
s
mn satisfying compatibility are found by substitution of the above equations into the com-

patibilit y equation,Eq. (2.19), as shown in appendix A. The coeÆcients derived in the
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28 CHAPTER 3. BUCKLING OF UNSTIFFENED PLATES

current work are not equal to the ones presented in the work b y Levy. This could be due

to some di�erent de�nitions. The result obtained here is:

f
s
mn =

E

4(m2 b
a
+ n2

a
b
)2

X
rspq

b
s
rspq(A

s
rsA

s
pq +A

s
rsB

s
pq +A

s
pqB

s
rs) (3.8)

where f s0;0 is de�ned as zero, and the coeÆcients bsrspq are in teger n umbers given as

b
s
rspq = rspq + r

2
q
2 if

�
�(r � p) = m; s+ q = n

r + p = m;�(s� q) = n
(3.9)

b
s
rspq = rspq � r

2
q
2 if

�
r + p = m; s+ q = n

�(r � p) = m;�(s� q) = n
(3.10)

It can be sho wn that the stress function F as de�ned abo vesatis�es not only the com-

patibilit y equation, but also the boundary conditions for the plate.The integrated stress

resultan tin an y cross-section equals the external load, while the integrated elongation

is constant over the edges. F rom the stress function, the membrane stress components

�x = F
s
;yy, �y = F

s
;xx, and �xy = �F s

;xy are found by di�erentiation. Knowing the stresses,

the in ternal potential energy can be calculated as outlined in the following.

3.1.2 Internal potential energy

In general, the internal potential energy is

U =
1

2

Z
V

�i"idV (3.11)

where V is the body volume. Summation is implied. The internal energy can be divided

into a part due to membrane stretching of the middle plane of the plate, and a part due

to bending about the middle plane. F or this purpose, the Lo ve-Kircho� assumption is

applied. The stress and strain is written as the sum of a membrane part which is constant

over the thic kness, and a bending part which is linearly varying. We can then write:

U =
1

2

Z
V

(�m + �b)("m + "b)dV (3.12)

=
1

2

Z
V

(�m"m + �b"b)dV (3.13)

= Um + Ub (3.14)
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The coupling terms disappear when integrating over the thic kness, since the bending is

acting about the plate middle plane. The potential energy due to bending and membrane

stretching can therefore be calculated separately.

Using Hook's law, and then substituting the stress function for the membrane stress, the

membrane energy can be expressed as:

Um =
t

2E

Z a

0

Z b

0

�
(�xx + �yy)

2 � 2(1 + �)(�xx�yy � �
2
xy)
�
dydx (3.15)

=
t

2E

Z a

0

Z b

0

�
(F s

;xx + F
s
;yy)

2 � 2(1 + �)(F s
;xxF

s
;yy � (F s

;xy)
2)
�
dydx (3.16)

Introducing the assumed form of the stress function, integration over the plate area can

be carried out analytically, and a closed form expression is obtained. The result is given

in appendix A. It can be seen that the membrane energy is proportional to the displace-

ment amplitudes As
mn to the fourth order, since f smn is quadratic in A

s
mn. The minimum

membrane energy and rate of minimum membrane energy is calculated by di�erentiation,

and is of third and second order in A
s
mn, respectiv ely.Hence, the membrane energy gives

a second order contribution to the incremental sti�ness matrix.

By substituting the Lo ve-Kircho� assumption for the bending strain, using Hook's law,

and integrating over the thic kness, the following expression for the potential energy due to

bending is derived:

Ub =
D

2

Z a

0

Z b

0

�
(ws

;xx + w
s
;yy)

2 � 2(1� �)(ws
;xxw

s
;yy � (ws

;xy)
2)
�
dydx (3.17)

Integration over the plate area is carried out analytically by introducing the assumed form

of the displacements. The result is di�erentiated twice to �nd the minimum poten tial

energy and the rate of minimum poten tialenergy . The resulting expressions are given

in appendix A. The bending energy is proportional to the square of the displacement

amplitudes, and gives a constant contribution to the incremental plate sti�ness. The

incremental bending sti�ness therefore only needs to be calculated once, in contrast to the

incremental membrane sti�ness which must be calculated for each new increment.

3.1.3 Potential of external loads

In general, the external potential energy is calculated as:

T =

Z
S

tiuidS (3.18)
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where S is body surface, ti is external surface load in direction i, and ui is surface displace-

ment in direction i.

Constant edge-loads are considered �rst. The poten tial ofin-plane compressive forces is

calculated as external force multiplied with displacement:

Tc = Sxbt�u+ Syat�v (3.19)

where �u and �v are the elongations of the plate in the x- and y-direction, respectively.

These are calculated according to Eq. (3.1) and Eq. (3.2). For compression loads, the

elongations will be negative. Carrying out the integration, as shown in appendix A, it is

found that the potential of external loads consists of tw o parts. One part contributes to

the incremental load vector G, and is proportional to the displacement amplitudes Amn.

The other part contributes to the incremental sti�ness matrix K, and is proportional to

the external load parameter �, de�ned in Eq. (2.38).

If the in-plane loads vary linearly, the external stress is written:

Sx(y) = S
1
x + (S2

x � S
1
x)
y

b
(3.20)

Sy(x) = S
1
y + (S2

y � S
1
y)
x

a
(3.21)

where S
1
x and S

2
x are the magnitudes of the external axial stress at y = 0 and y = b,

respectiv ely.Similarly, S1
y and S

2
y are the external transverse stress at x = 0 and x = a,

respectiv ely.The stress function is then modi�ed as:

F
s = � S

1
x

y
2

2
� (S2

x � S
1
x)
y
3

6b
� S

1
y

x
2

2
� (S2

y � S
1
y)
x
3

6a
� Sxyxy

+

2MsX
0

2NsX
0

f
s
mn cos(

m�x

a
) cos(

n�y

b
) (3.22)

The external energy is calculated as:

Tc = t

Z a

0

Z b

0

(Sx(y)u;x + Sy(x)v;y)dxdy (3.23)

= t

Z a

0

Z b

0

�
Sx(y)("x �

1

2
(ws

;x)
2 � w

s
;xw

s
0;x) + Sy(x)("y �

1

2
(ws

;y)
2 � w

s
;yw

s
0;y)

�
dxdy
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The membrane strain terms "x and "y are troublesome. For the case with constant edge

load, the integrated membrane terms must be zero if static equilibrium of the plate is to

be ful�lled. F or non-constant loads, this is not necessarily the case. Until now, it has been

assumed that the external stress is transferred directly into the plate. F or a plate with

constant edge-loads and straight edges, this is also the case in practice. F or a plate with

non-constant edge-loads, however, this is not exactly correct. F or the limiting case of a

plate in pure in-plane bending, the assumed stress distribution is actually equal to that of

a plate with edges free to deform in-plane. F or a plate with straight edges in pure in-plane

bending, the stresses will be transferred into the plate in a more complex pattern. This

can be seen by performing nonlinear �nite element analysis on a 
at plate subjected to

pure in-plane bending.

The external energy is here calculated by neglecting the membrane terms. The calculated

response will therefore be somewhere in betw een thesolution for straigh t edges andthe

solution for free edges. Since it is more conservativ e to assume that the edges are free to

bend in-plane than to assume straight edges, this solution method is considered acceptable.

If the load gradient is moderate, the resulting response will be very close to the case with

straigh t edges, but with increasing gradient the solution will always be on the safe side. It is

also worth noticing that the linear elastic buckling value for plates in pure in-plane bending

is very high. The analytical k-factor for this load condition is close to 24, compared with 4

for constant load. This means that the linear buckling stress for practical applications will

be well abo ve yield stress, so that the postbuckling sti�ness is of less practical importance.

From the arguments abo ve, the external potential energy due to linearly varying edge

loads can be calculated using Eq. (3.23), with "x = 0 and "y = 0. The details are given in

appendix A.

The potential energy due to external shear stress Sxy is

T� = Sxyt

Z a

0

Z b

0

(u;y + v;x)dydx (3.24)

Rearranging the shear strain expression in Marguerre's equation, Eq. (2.12), we get

T� = Sxyt

Z a

0

Z b

0

(
xy � w
s
;xw

s
;y � w

s
0;xw

s
;y � w

s
;xw

s
0;y)dydx (3.25)

where the contribution from the 
xy-term must be zero due to static equilibrium. The

expressions resulting from integration over the plate area and di�erentiation with respect

to the displacement are giv en in appendix A.

The contribution to the potential of external energy from lateral pressure is:

Tlp = �
Z a

0

Z b

0

pw
s
dydx (3.26)
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The result is given in appendix A. The lateral pressure gives a constant contribution to

the incremental load vector, but no contribution to the incremental sti�ness matrix.

3.1.4 Implementation

The total rate of minimum poten tialenergy is found by adding the con tributions from

internal and external energy:

(
@ _�

@Afg

) = (
@ _Um

@Afg

) + (
@ _Ub

@Afg

) + (
@ _Tc

@Afg

) + (
@ _T�

@Afg

) + (
@ _T lp

@Afg

) (3.27)

The result is a linear equation system, on the form of Eq. (2.47). Solving this equation

system, a set of displacement rate amplitudes _Amn is found, which are used to calculate

the next increment in the analysis.

The computational model is implemented using the programming language Fortran 90.

Since all expressions have been integrated analytically, the elements of the sti�ness matrix

K and G are exactly calculated based on the explicit expressions derived. The equation

system are solv ed by matrix inversion for each increment. The solution procedure may

hence be classi�ed as semi-analytical.

3.1.5 Results

Some numerical examples using the presented model are given. The results are compared

with analyses performed with the nonlinear FEM program ABAQUS (Hibbitt, Karlsson,

and Sorensen 1994). Isotropic, elastic material is assumed. For all calculations, an elastic

modulus of E=208000MPa is used. The plates are modelled using 4 node double curved

general-purpose shell elements, S4R. The sources of inaccuracy in the computational model

developed are drift from the correct equilibrium curv e due to the incrementation, and

di�erence betw een correct and assumed displacement shape. The former is controlled b y

specifying suÆciently small values of the perturbation parameter. The latter is controlled

by specifying suÆciently large number of terms in the assumed displacement functions.

This depends on the geometry and load condition, as will be shown in the following. The

initial de
ections are set to a small value in all the examples.

T o the left in Fig. 3.2, the load-de
ection response of a quadratic plate subjected to biaxial

loading is shown. The load is made non-dimensional with the yield stress �f=313.6MPa.

Proportional loading is used, and the magnitude of the load is the same in both directions.

The number of terms in the de
ection function is 3x3, and it is seen that the correspondence

with ABAQUS results is good. The right plot shows the load-average strain response of
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Figure 3.2: Left: De
ection at midpoint under biaxial loading for axbxt=1.0x1.0x0.026m

plate (� = 1:5). Right: Snap-back under axial loading for axbxt=1.68x0.98x0.011m plate

(� = 3:0)

a rectangular plate subjected to axial loading. The load is made non-dimensional with

the yield stress �f=235MPa, and the average strain is made non-dimensional with the

corresponding yield strain. Here, 8x8 de
ection terms have been used in the calculation

model. The snap-back in the postbuckling region is pro voked by specifying an initial

de
ection mode which is di�erent from the preferred one, leading to violent mode snapping.

It should be noted that the snap-back occurs very late in the postbuckling region, and is

therefore of more academic than practical interest. The inten tion is to demonstrate that

such complex responses is well treated with the perturbation method used, even if only

�rst order terms are included in the formulations.

In Fig. 3.3, the load-de
ection response for a quadratic plate subjected to lateral pressure

(left) and shear loading (right) is shown. The shear load is made non-dimensional with the

yield stress �f=235MPa. The number of terms used is 3x3 for both cases. The accuracy

of the calculations is good, and the computational eÆciency is very high.

3.2 Clamped plate

The edges of a plate can be considered as clamped if the surrounding structure is strong

enough to preven t rotation of the edges. Clamped-like conditions may also occur due to

the applied loads. Lateral pressure may cause a plate to de
ect symmetrically about a

sti�ener, and thereby causing a clamped de
ection mode, as seen in Fig. 3.4.

Here, it is assumed that the longitudinal edges of the plate are clamped, while the transverse
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Figure 3.3: De
ection at midpoint under lateral pressure (left) and shear loading (right)

for 1.0x1.0x0.009m plate (� = 3:7)

x

z

Figure 3.4: Clamped-like conditions due to lateral pressure

edges are taken as simply supported, Fig. 3.5. The number of half waves will usually be

greater than one in the longitudinal direction, due to the e�ect of axial compression and the

plate aspect ratio, and the e�ect of the lateral pressure on the de
ection shape is therefore

less signi�cant.

3.2.1 Assumptions

As for the simply supported plate, the edges are assumed to be free to move in-plane, but

forced to remain straight. The conditions for clamped longitudinal edges are expressed as:

w = 0 at all edges

w;y = 0 at y = 0; b

w;xx + �w;yy = 0 at x = 0; a

(3.28)

One way to handle clamped edges is to use the same displacement functions as for the sim-

ply supported plate, and to add a rotational spring along the clamped edges. The essential

boundary conditions are then satis�ed, and the clamped condition can be analysed by ap-
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y

x

Figure 3.5: Boundary conditions for clamped plate model

plying a very sti� spring. Good results was obtained using this approach, but the number

of terms required in the displacement function was found to be large. The displacement

shape is estimated reasonably well with less terms, but the bending moment distribution

requires more terms. This is because the bending moment resulting from a sine-series is

zero along the edges, while the bending moment for a clamped plate attains its maximum

value at the edges.

Better results were ac hiev ed using cosine-terms. The following displacement shape is then

used:

w
c =

McX
m=1

NcX
n=1

A
c
mn

2
sin(

m�x

a
)[1 � cos(

2n�y

b
)] (3.29)

w
c
0 =

McX
m=1

NcX
n=1

B
c
mn

2
sin(

m�x

a
)[1 � cos(

2n�y

b
)] (3.30)

The above expressions represent a far better approximation to the clamped condition than

the sine-terms, and good results may be obtained with only a few degrees of freedom, e.g.

2 or 3. Similarly, a plate with all edges clamped may be analysed using cosine-terms in

both directions:

w
c =

McX
m=1

NcX
n=1

A
c
mn

4
[1 � cos(

2m�x

a
)][1� cos(

2n�y

b
)] (3.31)

w
c
0 =

McX
m=1

NcX
n=1

B
c
mn

4
[1� cos(

2m�x

a
)][1 � cos(

2n�y

b
)] (3.32)

URN:NBN:no-3348



36 CHAPTER 3. BUCKLING OF UNSTIFFENED PLATES

The former case is considered to be of more practical interest. This is because plates

betw een sti�eners are usually quite long, and the boundaryconditions on the transverse

edges are therefore less important. The latter case is not further described here. In the

following, a stress function corresponding to the chosen displacements is presented, and

potential energy-expressions are derived.

3.2.2 Stress function

The approach used for establishing the stress function for the clamped plate is the same

as for the simply-supported plate, and the derivation is therefore omitted. The result is:

F
c = �Sxy

2

2
� Syx

2

2
� Sxyxy +

2McX
0

2NcX
0

f
c
mn cos(

m�x

a
) cos(

2n�y

b
) (3.33)

The coeÆcients f cmn are

f
c
mn =

E

4(m2 b
a
+ 4n2 a

b
)2

X
rspq

b
c
rspq(A

c
rsA

c
pq +A

c
rsB

c
pq +A

c
pqB

c
rs) (3.34)

where f c0;0 is de�ned as zero, and the coeÆcients bcrspq are

b
c
rspq =

8>>>>>><
>>>>>>:

2r2q2 if �(r � p) = m; q = n

�2r2q2 if r + p = m; q = n

�rspq � r
2
q
2 if �(r � p) = m; s+ q = n

rspq + r
2
q
2 if r + p = m;�(s� q) = n

�rspq + r
2
q
2 if r + p = m; s+ q = n

rspq � r
2
q
2 if �(r � p) = m;�(s � q) = n

(3.35)

3.2.3 Potential energy

The potential energy is calculated in the same way as for the simply supported plate. By

substitution ofthe new displacemen t function and stress function, analytical integration

can be carried out. The resulting expressions for all contributions are given in appendix A.

However, for the shear force, substituting the assumed displacements into the energy ex-

pression used for the unsti�ened plate gives:

T� = Sxyt

Z a

0

Z b

0

(
xy � w
c
;xw

c
;y � w

c
0;xw

c
;y � w

c
;xw

c
0;y)dydx (3.36)

= 0 (3.37)
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Figure 3.6: Load-average strain for 1.0x1.0x0.013m clamped plate (� = 2:6) under axial

loading calculated using 2x3 cosine-terms (Cos) and 2x11 sine-terms (Sin)

The reason for this result is that the cosine-terms are alw ayssymmetric, and they are

therefore not able to describe shear deformation. F or shear force analysis, it is necessary

to include sine-terms in the de
ection shape. A possible approach is the method described

previously, where a pure sine-series is used together with a very sti� spring. An even

better strategy is to use cosine-terms and sine-terms in combination. This is done for the

combined plate/sti�ener-model presented later, and it is therefore not further described

here.

3.2.4 Results

In Fig. 3.6, the non-dimensional load-a veragestrain response for a plate with clamped

longitudinal edges subjected to axial loading is shown. The load is made non-dimensional

using the yield stress �f=235MPa. The initial de
ection is set to a small value. Calcu-

lations using sine-terms as well as cosine-terms are shown. It is seen that good accuracy

is obtained with only 2x3 cosine-terms, while the analysis with 2x11 sine-terms is less

accurate.

3.3 Orthotropic elastic plate

Orthotropy is a special form of anisotropy, in which the material of the plate has three

planes of symmetry with respect to its elastic properties. The orthotropy may be due

to material properties, but for applications in steel and aluminium marine structures,
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structural orthotropy is more relev an t. The plates are sti�ened in such a w aythat the

panel may be considered as an orthotropic plate in terms of its overall sti�ness coeÆcient.

In this section, a plate with orthotropic material properties is discussed. It is assumed

to be homogeneous in the thickness direction, and is therefore not directly suitable for

structural orthotropic problems. How ever,the model is dev eloped further in chapter 5

to include general anisotropy and bending sti�ness independent of in-plane sti�ness. The

deriv ations are performed for a simply supported plate.The procedure for a clamped plate

w ould be similar.

3.3.1 Orthotropic elastic material law

The material law for an orthotropic plate is generally:

�ij = Cijkl"kl i; j; k; l = 1; 2; 3 (3.38)

or

"ij = Mijkl�kl i; j; k; l = 1; 2; 3 (3.39)

where Cijkl are sti�ness coeÆcients, and Mijkl are 
exibility coeÆcients. The nine inde-

pendent and non-zero sti�ness coeÆcients are C1111, C1122, C1133, C2222, C2233, C3333, C1212,

C1313, and C2323. These can be related to the three moduli of extension E1, E2, E3, in

the directions of orthotropy, three shear moduli G12, G23, G31, and three coeÆcients of

con traction,�12, �23, �31. F or plane stress the six independent material coeÆcients may be

calculated directly from the three-dimensional coeÆcients, or they may be de�ned through

the tw o moduli of extensionE1, E2, three shear moduli G12, G23, G31, and the coeÆcient

of contraction �31.

3.3.2 Orthotropic stress function

The compatibility equation for an orthotropic plate is:

M1111F;yyyy +M2222F;xxxx + 2(M1122 + 2M1212)F;xxyy (3.40)

= w
2
;xy + 2w0;xyw;xy � w;xxw;yy � w0;yyw;xx � w;yyw0;xx

The solution can be written on the same form as for the isotropic, simply supported plate:

F = �Sxy
2

2
� Syx

2

2
� Sxyxy +

2MX
0

2NX
0

fmn cos(
m�x

a
) cos(

n�y

b
) (3.41)

URN:NBN:no-3348



3.3. ORTHOTROPIC ELASTIC PLATE 39

The coeÆcients fmn for the orthotropic case become:

fmn =
1

4a2b2

�
m

4

a4
M2222 + 2

m
2
n
2

a2b2
(M1122 + 2M1212) +

n
4

b4
M1111

�
�1

�
X
rspq

brspq(ArsApq + ArsBpq +ApqBrs) (3.42)

where f0;0 is de�ned as zero, and the coeÆcients brspq are the same integer numbers as for

the isotropic, simply supported plate, Eq. (3.9).

3.3.3 Internal potential energy

The potential of in ternal energy is divided into a bending part and a membrane part, as

before.

The plate membrane energy is:

Um =
1

2

Z
V

�
m
"
m
dV (3.43)

=
t

2

Z
A

(�m11"
m
11 + �

m
22"

m
22 + 2�m12"

m
12)dV (3.44)

=
t

2

Z
A

�
M1111F

2
;yy + 2M1122F;xxF;yy +M2222F

2
;xx + 4M1212F

2
;xy

�
(3.45)

By substitution of the material parameters for an isotropic plate, the usual plate membrane

energy equation is obtained, Eq. (3.15). Expressions resulting from integration over the

plate area are found in appendix A.

The bending energy is

Ub =
1

2

Z
V

�
b
"
b
dV (3.46)

=
1

2

Z
V

(�b11"
b
11 + �

b
22"

b
22 + 2�b12"

b
12)dV (3.47)

Introducing the orthotropic material law, and substituting "
b
ij = �zw;ij for the bending
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strain, we can write

Ub =
1

2

Z
V

�
"
b
11(C1111"

b
11 + C1122"

b
22) + "

b
22(C2211"

b
11 + C2222"

b
22) + 4"b12C1212"

b
12

�
dV (3.48)

=
1

2

Z
V

z
2

2

�
w;11(C1111w;11 + C1122w;22) + w;22(C2211w;11 + C2222w;22) + 4C1212w

2
;12

�
dV

Using the sti�ness matrix symmetry, C2211 = C1122, and performing the integration over

the thic kness, we get:

U
b =

t
3

24

Z
A

�
C1111w

2
;11 + 2C1122w;11w;22 + C2222w

2
;22 + 4C1212w

2
;12

�
dA (3.49)

Again, it can be shown that substitution of the isotropic sti�ness coeÆcients reduces this

equation to the usual plate bending energy equation, Eq. (3.17). The �nal expressions

resulting from integration are given in appendix A.

3.3.4 Potential of external loads

The elongation is partly due to the membrane e�ect of the external force, (superscript F ),

and partly due to the plate de
ection, (superscript D):

�u = �uF +�uD (3.50)

�v = �vF +�vD (3.51)


 = 

F + 


D (3.52)

The displacements due to the external force is:

�uF = a(SxM1111 + SyM1122) (3.53)

�vF = b(SxM2211 + SyM2222) (3.54)



F = SxyM1212 (3.55)

This part is irrelevan t with respect to the potential energy since it disappears when di�er-

entiating with respect to the de
ection.
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Figure 3.7: Load-average strain for 1.68x0.98x0.011m (� = 3:0) orthotropic (ort) and

isotropic (iso) plate under axial loading using 5x3 terms

The part due to the de
ection is independent of the material properties, and is therefore

the same as for the isotropic plate. Hence, all external energy expressions derived for the

isotropic plate are valid also for the orthotropic plate.

3.3.5 Results

In ABAQUS, elastic orthotropy may be speci�ed either by the material type orthotropic or

by the material type lamina. The former is valid for a general stress state, and 3D-material

properties are automatically reduced to 2D-parameters for a plane stress condition. The

lamina-type is only applicable for plane stress.

An example is sho wn in Fig. 3.7, where results from the orthotropic plate model using

5x3 displacement shape terms is compared with results from ABAQUS using the lam-

ina material type. The orthotropic sti�ness coeÆcients Co
ijkl are chosen arbitrarily as

C
o
1111 = 1:5Ci

1111, C
o
2222 = 0:7Ci

2222, and C
o
1212 = 1:3Ci

1212, where C
i
ijkl are the isotropic

sti�ness coeÆcients corresponding to E=208000MPa. The loading is axial, the plate ge-

ometry is 1.68x0.98x11m, and the results are made non-dimensional with the yield stress

�f=235MPa. The initial de
ection is set to a small value. It is seen that the agreement is

very good. The results using isotropic coeÆcients are also included for comparison.
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3.4 Elastic-plastic plate

A plate with elastic-plastic material properties is now studied. The derivations presented

here are for a simply supported plate, but the procedure would be similar for a clamped

plate. Only in-plane compression and tension have been considered for this case.

In the present con text, the major di�erence betw een elastic and elastic-plastic material is

that plasticit y makes the plate non-homogeneous. First of all, this means that analytic

integration is not possible, and much of the computational eÆciency that w asachieved

for the elastic plate is lost. Second, some approximations must be introduced in the

formulations, giving larger inaccuracy than for the elastic case. Bearing this in mind, it is

clear that the elastic-plastic model will not perform as well as the elastic one.

The material is assumed to be isotropic and elastic-plastic. It is characterized by the elastic

modulus E and Poison's ratio � in the elastic range, and by an incremental 
ow law in the

plastic range. Plasticit y problemsare non-conservativ e, which means that the principle

of minimum potential energy is not v alid. The more general principle of virtual work is

therefore applied, as presented in c hapter 2.Since an incremental material law is applied,

all expressions must in the following be written on incremental form.

3.4.1 Assumptions

The additional and initial de
ections are again taken as double Fourier series, Eq. (3.4).

The rates of de
ection are

_w =

MX
m=1

NX
n=1

_Amn sin(
m�x

a
) sin(

n�y

b
) (3.56)

_w0 = 0 (3.57)

the virtual de
ections

Æw =

MX
m=1

NX
n=1

ÆAmn sin (
m�x

a
) sin(

n�y

b
) (3.58)

Æw0 = 0 (3.59)
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while the rates of virtual de
ection are

Æ _w = 0 (3.60)

Æ _w0 = 0 (3.61)

The de
ection shape should automatically adjust itself so as to minimize the virtual work,

pro vided that a suÆcient number of terms are included in the displacement function. For

the elastic plate, this was demonstrated for a plate where mode snapping occurred during

the analysis. When plasticity is included, change of shape due to localization of plasticity

is an important e�ect. It will be shown that the presented model is able to account for the

e�ect of plastic localization.

3.4.2 Plate theory

Using Marguerre's plate theory, the membrane strain rates are

_"x = _u;x + _w;x(w;x + w0;x) (3.62)

_"y = _v;y + _w;y(w;y + w0;y) (3.63)

_
xy = _u;y + _v;x + _w;x(w;y + w0;y) + _w;y(w;x + w0;x) (3.64)

The virtual membrane strains are

Æ"x = Æu;x + Æw;x(w;x + w0;x) (3.65)

Æ"y = Æv;y + Æw;y(w;y + w0;y) (3.66)

Æ
xy = Æu;y + Æv;x + Æw;x(w;y + w0;y) + Æw;y(w;x + w0;x) (3.67)

The virtual membrane strain rates are

Æ _"x = Æ _u;x + Æw;x _w;x (3.68)

Æ _"y = Æ _v;y + Æw;y _w;y (3.69)

Æ _
xy = Æ _u;y + Æ _v;x + Æw;x _w;y + Æw;y _w;x (3.70)

By di�erentiation and combining equations Eq. (3.62) through Eq. (3.64), the requirement
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for strain compatibility of the plate on rate form is

_"x;yy + _"y;xx � _
xy;xy (3.71)

= 2w;xy _w;xy + 2w0;xy _w;xy � _w;xxw;yy _w;yyw;xx � _w;yyw0;xx � _w;xxw0;yy

Using the incremental elastic-plastic material law gives

_"x;yy = M1111 _�x;yy +M1122 _�y;yy + (M1112 +M1121) _�xy;yy (3.72)

_"y;xx = M2211 _�x;xx +M1122 _�y;xx + (M1112 +M1121) _�xy;xx (3.73)

_"xy;xy = M1211 _�x;xy +M1222 _�y;xy + (M1212 +M1221) _�xy;xy (3.74)

Now, introducing the stress rate function _F so that

_F;xx = _�y (3.75)

_F;yy = _�x (3.76)

_F;xy = � _�xy (3.77)

the compatibility equation for the plate can be written as

M1111
_F;yyyy +M2222

_F;xxxx + (M1122 +M2211 + 2M1212 + 2M1221) _F;xxyy (3.78)

�(M1112 +M1121 + 2M1211) _F;xyyy � (M2212 +M2221 + 2M1222) _F;yxxx

= 2w;xy _w;xy + 2w0;xy _w;xy � _w;xxw;yy � _w;yyw;xx � _w;yyw0;xx � _w;xxw0;yy

Due to plasticity, the material parametersMijkl are functions of position (x; y) in the plate,

and this makes it less attractiv e to solv e the compatibility equation Eq. (3.78) directly. An

alternative approach is suggested in the following.

In the elastic region, Eq. (3.7) is the solution of the stress function satisfying both strain

compatibility and plate boundary conditions. More speci�cally, it ensures that the internal

stresses in tegrated over an y plate section are in equilibrium with the external forces, and

that the integrated membrane strains are such that the plate edges remain straight. Now

the membrane strain is divided into tw o parts.The �rst part, "D, is the membrane strain

resulting from the de
ection of the plate. The second part, "F , is the membrane strain

necessary to ensure equilibrium betw een external forces and internal stresses. Hence, the

total strain rate in any point is written as

_"ij = _"Dij + _"Fij � z _w;ij i; j = x; y (3.79)
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The virtual strain is

Æ"ij = Æ"
D
ij + Æ"

F
ij � zÆw;ij i; j = x; y (3.80)

The virtual strain rate is

Æ _"ij = Æ _"Dij + Æ _"Fij i; j = x; y (3.81)

F rom the strain compatibility requirement, Eq. (3.71), it is seen that the membrane strain

rates are geometry dependent only , that is they can be determined from the de
ection and

the de
ection rates. Therefore, the strain rate due to the de
ection of the plate can be

determined from a strain function G:

_GD =

2MX
0

2NX
0

_gmn cos(
m�x

a
) cos(

n�y

b
) (3.82)

where

_gmn =
1

4(m2 b
a
+ n2

a
b
)2

X
kl

(bmnkl + bklmn)(Akl + Bkl) _Akl (3.83)

and the coeÆcients bmnkl and bklmn are in teger n umbers determined as for the elastic plate,

Eq. (3.9). The membrane strain rates are then

_"Dx = _GD
;yy (3.84)

_"Dy = _GD
;xx (3.85)

_"Dxy = � _GD
;xy (3.86)

The boundary conditions and stress equilibrium are not automatically satis�ed by the

abo ve membrane strain rate in the plastic range, as it is in the elastic range. The strain

rate _"Fij must be determined so that these requirements are ful�lled. In the elastic range, it

means that the strain rate must be c hosen so that it balances the external force increment.

In the plastic range, the stress rate distribution over one section resulting from the strain

rate _"Dij will giv e a stress rate resultan tover the section which is di�erent from zero.

Similarly, the stress rate distribution over the thic kness due to the bending strain�z _w;ij

will also give a stress rate resultant over the thic kness which is di�erent from zero after

yielding hasstarted at the top or bottom of the section. Thus, the strain rate _"Fij must

also be such that these stress rate resultants are balanced.
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In addition, _"Fij must be so that the compatibility requirement, Eq. (3.71), is not violated.

Therefore, the following is chosen:

_"Fx;y = 0 (3.87)

_"Fy;x = 0 (3.88)

That is, the strain rate _"Fx in x-direction is constant in the y-direction, while it can vary

in the x-direction. The strain rate _"Fy in y-direction is constant in the x-direction, while it

can v ary in they-direction. With this choice, _"Fij automatically satis�es the compatibility

requirement and the boundary condition.

In order to ensure force equilibrium, the displacement rate _w must be so that the following

conditions are ful�lled:

Z b

0

Z t

0

_�xdzdy = � _Px 8 x (3.89)Z a

0

Z t

0

_�ydzdy = � _Py 8 y (3.90)

The minus-sign in front of the external force rates are due to the de�nition of force. External

forces are taken as positive in compression, while stresses are taken as positive in tension.

By ful�lling these requirements, strain compatibility is ensured in every point, while stress

equilibrium is ensured when integrating over an y plate section.

By variation of Eq. (3.89) and Eq. (3.90), we have:

Z b

0

Z t

0

Æ _�xdzdy = 0 8 x (3.91)Z a

0

Z t

0

Æ _�ydzdy = 0 8 y (3.92)

The stress rates and virtual stress rates can be expressed using strain rates and virtual

strain rates and the incremental material law. T aking the total strain rate in a material
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point as the sum in Eq. (3.79), the requirements Eq. (3.89) and Eq. (3.90) becomes

Z b

0

Z t

0

�
C1111( _"

D
x + _"Fx � z _w;xx) + C1122( _"

D
y + _"Fy � z _w;yy) (3.93)

+(C1112 + C1121)( _"
D
xy � z _w;xy)

�
dzdy = � _Px 8 xZ a

0

Z t

0

�
C2211( _"

D
x + _"Fx � z _w;xx) + C2222( _"

D
y + _"Fy � z _w;yy) (3.94)

+(C2212 + C2221)( _"
D
xy � z _w;xy)

�
dzdx = � _Py 8 x

In the �rst equation, _"Fx is constant and can be tak en outside the integral sign. In the

second equation, _"Fy is constant and can be taken outside the integral sign. We can then

write

_"Fx =
� _Px �

R b
0

R t
0

�
C1111( _"

D
x � z _w;xx) + C1122( _"

D
y + _"Fy � z _w;yy)

�
dzdyR b

0

R t
0
C1111dzdy

�
R b
0

R t
0

�
(C1112 + C1121)( _"

D
xy � z _w;xy)

�
dzdyR b

0

R t
0
C1111dzdy

(3.95)

_"Fy =
� _Py �

R a
0

R t
0

�
C2211( _"

D
x + _"Fx � z _w;xx) + C2222( _"

D
y � z _w;yy)

�
dzdxR a

0

R t
0
C2222dzdx

�
R a
0

R t
0

�
(C2212 + C1121)( _"

D
xy � z _w;xy)

�
dzdxR a

0

R t
0
C2222dzdx

(3.96)

It appears that the strain rates can not be written out explicitly, since _"Fx (x) in the �rst

equation depends on the integral of _"Fy (y) over bt, while _"Fy (y) in the second equation

depends on the integral of _"Fx (x) over at. Therefore, an iterativ e procedure is applied.

First, _"Fx is calculated from Eq. (3.95) assuming _"Fy to be zero. Then this value is used to

calculate _"Fy from Eq. (3.96). This value is then again used in the �rst equation to �nd a

new and better estimate of _"Fx . This iteration proceeds until the relative di�erence between

tw o consecutive calculated values are smaller than a certain error tolerance.
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For the virtual strain rates, similar expressions result,

Z b

0

Z t

0

�
C1111(Æ _"

D
x + Æ _"Fx ) + C1122(Æ _"

D
y + Æ _"Fy )

+(C1112 + C1121)Æ _"
D
xy

�
dzdy = 0 8 x (3.97)Z a

0

Z t

0

�
C2211(Æ _"

D
x + Æ _"Fx ) + C2222(Æ _"

D
y + Æ _"Fy )

+(C2212 + C2221)Æ _"
D
xy

�
dzdx = 0 8 y (3.98)

and

Æ _"Fx = �
R b
0

R t
0

�
C1111Æ _"

D
x + C1122(Æ _"

D
y + Æ _"Fy ) + (C1112 + C1121)Æ _"

D
xy

�
dzdyR b

0

R t
0
C1111dzdy

(3.99)

Æ _"Fy = �
R a
0

R t
0

�
C2211(Æ _"

D
x + Æ _"Fx ) + C2222Æ _"

D
y + (C2212 + C1121)Æ _"

D
xy

�
dzdxR a

0

R t
0
C2222dzdx

(3.100)

and a similar iterative procedure is applied for solving these equations.

The virtual strains Æ"Fx and Æ"
F
y are accumulated values, and must be calculated by incre-

mentation when Æ _"Fx and Æ _"Fy have been found:

Æ"
F;s
x = Æ"

F;s�1
x + �Æ _"F;s�1x (3.101)

Æ"
F;s
y = Æ"

F;s�1
y + �Æ _"F;s�1y (3.102)

Similarly for the total strains:

"
F;s
x = "

F;s�1
x + � _"F;s�1x (3.103)

"
F;s
y = "

F;s�1
y + � _"F;s�1y (3.104)

3.4.3 Internal virtual work

The internal virtual work is

ÆW =

Z
V

�ijÆ"ijdV i; j = x; y (3.105)
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where the integration is carried out over the whole plate volume V . The rate of internal

virtual work is then

Æ _W =

Z
V

( _�ijÆ"ij + �ijÆ _"ij)dV (3.106)

Using the expression for the total strain in a material poin t,Eq. (3.79), the following

expression for the rate of internal work is obtained:

Æ _W =

Z
V

�
_�ij(Æ"

D
ij + Æ"

F
ij � zÆw;ij) + �ij(Æ _"

D
ij + Æ _"Fij)

�
dV (3.107)

=

Z
A

�
(Æ"Dij + Æ"

F
ij)

Z
t

_�ijdz + (Æ _"Dij + Æ _"Fij)

Z
t

�ijdz � Æw;ij

Z
t

z _�ijdz

�
dA

Written out, this becomes:

Æ _W =

Z
A

�
(Æ"Dx + Æ"

F
x )

Z
t

_�xdz + (Æ"Dy + Æ"
F
y )

Z
t

_�ydz + 2Æ"Dxy

Z
t

_�xydz

+(Æ _"Dx + Æ _"Fx )

Z
t

�xdz + (Æ _"Dy + Æ _"Fy )

Z
t

�ydz + 2Æ _"Dxy

Z
t

�xydz

�Æw;xx

Z
t

z _�xdz � Æw;yy

Z
t

z _�ydz � 2Æw;xy

Z
t

z _�xydz

�
dA (3.108)

The integration is carried out numerically over the plate volume.

3.4.4 Virtual work of external loads

The virtual w orkof external in-plane loads is calculated as external force times virtual

displacement:

ÆT = PxÆ�u+ PyÆ�v (3.109)

where Æ�u and Æ�v are the virtual elongations of the plate in the x- and y-direction,

respectiv ely.The rate of virtual external work is

Æ _T = PxÆ� _u+ _PxÆ�u+ PyÆ�_v + _PyÆ�v (3.110)

where _Px and _Py are load rates, and Æ� _u and Æ� _u are virtual elongation rates.
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The elongation of the plate is

�u =

Z a

0

u;xdx (3.111)

�v =

Z b

0

v;ydy (3.112)

The virtual elongation is then

Æ�u =

Z a

0

Æu;xdx (3.113)

Æ�v =

Z b

0

Æv;ydy (3.114)

and the virtual elongation rates are

Æ� _u =

Z a

0

Æ _u;xdx (3.115)

Æ�_v =

Z b

0

Æ _v;ydy (3.116)

Using strain rate and virtual strain rate expressions Eq. (3.65) and Eq. (3.68), the rate of

virtual external work can be written:

Æ _H = _Px

Z a

0

�
Æ"

D
x + Æ"

F
x � Æw;x(w;x + w0;x)

�
dx (3.117)

+ Px

Z a

0

�
Æ _"Dx + Æ _"Fx � Æw;x _w;x

�
dx

+ _Py

Z b

0

�
Æ"

D
y + Æ"

F
y � Æw;y(w;y + w0;y)

�
dy

+ Py

Z b

0

�
Æ _"Dy + Æ _"Fy � Æw;y _w;y

�
dy

The terms involvingw and w0 can be calculated and integrated analytically using the

assumed displacement functions. Carrying out this integration, the expression for the rate
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of virtual external work becomes:

Æ _H = �
MX
m=1

NX
n=1

(
m

2

4a
_Px +

n
2

4b
_Py)�

2(Amn +Bmn)ÆAmn (3.118)

�
MX
m=1

NX
n=1

(
m

2

4a
Px +

n
2

4b
Py)�

2 _AmnÆAmn

+
_Px

b

Z
A

(Æ"Dx + Æ"
F
x )dA+

Px

b

Z
A

(Æ _"Dx + Æ _"Fx )dA

+
_Py

a

Z
A

(Æ"Dy + Æ"
F
y )dA+

Py

a

Z
A

(Æ _"Dy + Æ _"Fy )dA

The integration is carried out numerically over the plate area.

3.4.5 Implementation

In con trast to the elastic case, evaluation of the elastic-plastic formulations requires nu-

merical integration. In addition, all variables must be calculated by incrementation, since

only rates can be calculated at each increment. Consequently, stress and strain values for

each integration point must be remembered from one increment to the next.

Using the principle of virtual work, an equation system is derived in the same form as for

the elastic plate using the principle of minimum potential energy. The solution procedure

is the same as before.

3.4.6 Results

Some calculations performed using the plate model is presen ted,and comparisons with

ABAQUS are presented. An elastic modulus of E=208000MPa is used, and no hardening

in the plastic region is assumed. The initial de
ections are set to a small value in all the

examples. The results from the model are obtained using 7x5 terms in the displacement

function.

In Fig. 3.8, the load-de
ection response of a 1.0x1.0m plate subjected to axial loading

is shown. The load and average strain is made non-dimensional with the yield stress

�f=313.6MPa. The example to the left is a plate with thickness t=13.0mm, which means

a slenderness � = b
t

q
�f
E

= 3:0. The example to the righ t is for t=26.0mm, meaning
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Figure 3.8: Non-dimensional load-average strain under axial loading for 1.0x1.0x0.013m

plate, � = 3:0 (left) and 1.0x1.0x0.026m plate, � = 1:5 (righ t)
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Figure 3.9: Non-dimensional load-average strain under axial loading for 1.68x0.98x0.011m

plate, � = 3:0 (left) and 1.68x0.98x0.017m plate, � = 1:93 (righ t)

� = 1:5. It is seen that the agreement is best for the thicker plate, while the response is

too sti� in the postcritical region for the thinner plate.

In Fig. 3.9, the response of a 1.68x0.98m plate subjected to axial loading is shown. The

load and average strain is made non-dimensional with the yield stress �f=235MPa. The

left plot is for a plate with t=11.0mm, i.e. � = 3:0, and the right plot is for t=17.0mm,

i.e. � = 1:93. Also here the response is too sti� in the postcritical region.

Much of the sti�ness reduction in the postcritical region is believed to be due to plastic

localization. It is therefore essen tial that this e�ect is accounted for in the model. The
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Figure 3.10: Longitudinal de
ection shape under axial loading for 1.68x0.98x0.011m plate,

� = 3:0

longitudinal de
ection shape at half-width was therefore plotted for the 1.68x0.98x0.011m

plate for comparison, Fig. 3.10. It is seen that plastic localization does take place also in the

model, but the de
ection shape is not exactly equal to the one calculated by ABAQUS. The

deviation betw een the FEM-results and the model does probably indicate that the assumed

strain distribution is not entirely correct in the plastic region. However, the results are

quite good up until the ultimate limit state, and the ULS-loads predicted are quite close to

that of ABAQUS. The problem is that the calculated response is non-conservative in the

postcritical region. A simple way to reduce the sti�ness is to set the membrane sti�ness

equal to zero after the onset of membrane yielding. Results for the 1.68x0.98m plate using

this approach is sho wn in Fig. 3.11. It is seen that the results are now onthe safe side,

and not too far from the FEM-predictions.

T estingwas also performed for transv erse load, and for other geometries, with similar

agreement in the results. The tests performed with the elastic-plastic plate model indicated

that reasonable results could be obtained even in the plastic region, although the accuracy

is not so good as in the elastic region. How ever, the computational eÆciency of this model

is drastically reduced compared to the elastic one. There are tw o reasons for this. The

�rst one is that numerical integration must be used, which increases the e�ort necessary to

calculate the membrane sti�ness across the plate. The second is that a larger number of

displacement shape terms are necessary in order to describe the non-regular displacement

shape due to plastic localization.

The most important aim for a design model is to provide eÆcient and accurate calculation

of the response in the elastic region, combined with safe predictions of ultimate strength.

Both of these requirements can be met with an elastic model, using a �rst membrane yield

criterion for estimation of design collapse load. It w as therefore decided not to put further
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Figure 3.11: Non-dimensional load-average strain under axial loading for 1.68x0.98x0.011m

plate, � = 3:0 (left) and 1.68x0.98x0.017m plate, � = 1:93 (righ t) using modi�ed sti�ness

e�ort into dev elopment or testing of the elastic-plastic plate model, and it is not developed

further in subsequent chapters. Estimation of ultimate limit state using membrane yield

criterion is further discussed in chapter 7.
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Chapter 4

Local buckling of sti�ened plates

Local buckling of a plate with an attac hed sti�ener is considered. By local buckling, it

is understood that the plate, the w eb andthe 
ange may deform locally, but the entire

sti�ened plate shall not de
ect laterally. In other words, the connection betw een the plate

and the sti�ener is �xed in the vertical direction. Lateral support is also pro vided by

transv erse girders.

The motivation for dev eloping a local buc klingmodel is that most sti�ened panels in

marine structures are built up of relativ ely thin plates, in the sense that the sti�ener

spacing and the web height are large compared to the plate and web thickness. Hence, the

local buckling load for the plate and the web is much low er than the global buckling load of

the combined sti�ened plate. P anels with global buckling load close to the local buckling

load may experience very unstable response in the postbuckling region, and it is therefore

good design practice to ensure that the global buckling load is well abo ve the local buckling

load. In design codes, it is usual to accept that local buckling of plate members take place,

but overall sti�ener or grillage buckling should not occur.

The column approach is often used for buc kling assessment in design codes, such as the

DNV Classi�cation Note for Buckling Strength Analysis (Det Norske Veritas 1995). These

formulations have the advantage of being relatively simple, and provide quick strength es-

timates. How ever, looking at the de
ection modes of actual sti�ened panels, it is clear that

a column model does not provide the best representation of the real structural response.

Usually, local deformations dominate, while lateral de
ection in the global mode is less

signi�cant.

55
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Figure 4.1: Open pro�les: Flat bar, angle bar, tee bar and bulb

For most of the panels used in traditional ships the global buckling load is w ellabo ve

the squash load of the panel, and is therefore of little importance. In such cases, the local

buckling models presented in the following are suÆcient for pro viding a reasonable strength

estimate of the panel. F or some cases, how ever, local buckling may interact with global

buckling. The local models presented here may then be combined with a global buckling

model. Global buckling is discussed in chapter 5 and combined local and global buckling

in chapter 6.

4.1 Open pro�les

A sti�ener of the open pro�le type is considered �rst. It may be a 
at bar, angle bar,

tee-bar, or bulb pro�le, Fig. 4.1. These are the sti�ener types which are most frequently

used in conven tional steel ships.The computational model developed for open pro�les was

also presented in (Byklum and Amdahl 2002b).

4.1.1 Plate de
ection

The sti�ener acts as a rotational line spring on the plate. As a result, the boundary

condition for a plate betw een t w o sti�eners is somewhere in betw een simply supported and

clamped. For most sti�ened plates the web is quite slender compared to the plate itself,

so that the situation is quite close to that of simply support. The clamped mode becomes

more important for stronger webs and under in
uence of lateral pressure. In order to

include the possibility of all t ypes of plate de
ection in the range from simply supported

to fully clamped, it is necessary to assume the de
ection shape as a combination of sine-

terms and cosine-terms. Hence, the assumed displacement patterns for additional and

initial de
ection are, Fig. 4.2:

w = w
s + w

c (4.1)

w0 = w
s
0 + w

c
0 (4.2)

where s and c denotes sine and cosine mode de
ection, respectively. Both w
s and w

c are
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Figure 4.2: Local model with assumed plate and sti�ener de
ection modes

as giv en in c hapter 3 for the unsti�ened plate.

Combining the sine-de
ection and the cosine-de
ection a�ects the strain compatibility.

Due to coupling terms in the strain compatibility equation, a new stress function must be

derived. The total stress function is now written as:

F = F
0 + F

s + F
c + F

sc (4.3)

where F
s and F

c satisfy the compatibility equation for the simply supported and the

clamped displacement terms, respectiv ely,as presented in c hapter3. F
0 is the external

force part, while F sc satisfy the coupling terms in the compatibility equation:

r4
F
sc = E(2ws

;xyw
c
;xy � w

s
;xxw

c
;yy � w

c
;xxw

s
;yy + 2ws

0;xyw
c
;xy (4.4)

+ 2wc
0;xyw

s
;xy � w

s
0;xxw

c
;yy � w

c
0;xxw

s
;yy � w

s
0;yyw

c
;xx � w

c
0;yyw

s
;xx)

The stress function contributions are:

F
0 = �Sxy

2

2
� Syx

2

2
� Sxyxy (4.5)

F
s =

2MsX
0

2NsX
0

f
s
mn cos(

m�x

a
) cos(

n�y

b
) (4.6)

F
c =

2McX
0

2NcX
0

f
c
mn cos(

m�x

a
) cos(

2n�y

b
) (4.7)

F
sc =

Ms+McX
0

Ns+2NcX
0

f
sc
mn cos(

m�x

a
) sin (

n�y

b
) (4.8)
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The coeÆcients f smn and f
c
mn are as given before for the simply supported and clamped

plate, while f scmn are:

f
sc
mn =

E

4(m2 b
a
+ n2

a
b
)2

X
rspq

b
sc
rspq(A

s
rsA

c
pq +A

s
rsB

c
pq +A

c
pqB

s
rs) (4.9)

where f sc0;0 is de�ned as zero, and the coeÆcients bscrspq are:

b
sc
rspq =

8>>>>>>>>>><
>>>>>>>>>>:

2rspq + 2r2q2 + 1
2
s
2
p
2 if

�
p+ r = m; 2q � s = n

�(p � r) = m; s+ 2q = n

2rspq � 2r2q2 � 1
2
s
2
p
2 if

�
p+ r = m; 2q + s = n

�(p � r) = m; 2q � s = n

�2rspq + 2r2q2 + 1
2
s
2
p
2 if �(p � r) = m; s� 2q = n

�2rspq � 2r2q2 � 1
2
s
2
p
2 if p+ r = m; s� 2q = n

s
2
p
2 if p+ r = m; s = n

�s2p2 if �(p � r) = m; s = n

(4.10)

The derivation is similar as for the simply supported plate and is therefore omitted.

4.1.2 Sti�ener de
ection

The displacement shapes chosen for the sti�ener de
ection v and initial de
ection v0 are:

v = v1 + v2 (4.11)

v0 = v01 + v02 (4.12)

where

v1 =
z

h

MwX
m=1

V1m sin (
m�x

a
) (4.13)

v01 =
z

h

MwX
m=1

V01m sin (
m�x

a
) (4.14)

v2 = (1� cos (
�z

2h
))

MwX
m=1

V2m sin (
m�x

a
) (4.15)

v02 = (1� cos (
�z

2h
))

MwX
m=1

V02m sin (
m�x

a
) (4.16)
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Figure 4.3: P ossible displacement shapes for sti�ener

Mw is the number of terms included in the longitudinal direction. The �rst term, v1,

represen tstorsion of the sti�ener as a rigid body, while the second term, v2 represents

bending of the web, see Fig. 4.2. Both terms involv e torsion and bending of the 
ange.

There are other displacement functions that also could be used to represent the sti�ener

de
ection, and increasingly better results would be obtained if more terms were included.

For sti�eners with very heavy 
anges, for instance, buckling may occur in the web without

much distortion of the 
ange. In such cases, it may be bene�cial to use a de
ection

pattern which allows for w ebde
ection that is clamped-like towards the 
ange. Other

possible de
ection shapes for the sti�ener are, Fig. 4.3:

v3 = sin(
�z

h
)
X
m

V3m sin (
m�x

a
) (4.17)

v4 = sin(
�z

2h
)
X
m

V4m sin (
m�x

a
) (4.18)

v5 = (1 � cos(
�z

h
))
X
m

V5m

2
sin (

m�x

a
) (4.19)

v6 = (1 � cos(
2�z

h
))
X
m

V6m

2
sin (

m�x

a
) (4.20)

De
ection shape number three includes rotation of the 
ange, but no bending. Number four

and �ve includes bending but no rotation of the 
ange, while number �ve is also without

rotation at the plate. Number six represents w eb de
ection without neither rotation nor

bending of the 
ange or the plate.

Eigenvalue analyses including several possible de
ection shapes show ed that the two mode

shapes v1 and v2 are the most important for practical cases. Though linear eigen value

calculation does not tell the truth about the nonlinear response, they give an indication
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to which de
ection shape is most probable. In order to limit the number of degrees of

freedom in the model, and hence maximize computational eÆciency, it w asdecided to

include only the de
ection shapes V1 and V2 in the model. This choice was also supported

by nonlinear FEM calculations with ABAQUS. Requiring rotation continuity at the plate-

sti�ener connection, as discussed in the next section, eliminates the variables V1m, and

leaves the additional variables V2m. The total number of degrees of freedom is therefore

(MsNs +McNc +Mw).

4.1.3 Transverse continuity

The requirement for rotational continuity at the plate-sti�ener connection is:

@v

@z

����
z=0

= � @w

@y

����
y=0

(4.21)

The minus-sign is due to the de�nition of the right-handed coordinate system. For the plate

a positive de
ection gives a positive rotation, while for the sti�ener a positive de
ection

gives a negative rotation. Substituting the de
ection shapes for the plate and the sti�ener

w e �nd that:

V1m = �h
X
n

n�

b
A
s
mn (4.22)

The de
ection modes V2m has no rotation at the plate-sti�ener connection, and does there-

fore not enter the continuity equations.This is also the case for the cosine-de
ection modes

A
c
mn of the plate.

4.1.4 Longitudinal continuity

When considering the plate and the sti�ener as one member, longitudinal continuity also

has to be ful�lled. The transv ersemembers, i.e. girders or bulkheads, are assumed to

enforce the same displacement in the longitudinal direction for the sti�ener as for the

plate. If the displacement is constant over the heigh tof the sti�ened plate, while the

sti�ness is not, it follows that the applied external stress must be unevenly distributed

betw een the t wo members. Since the sti�ness of each member is changing during buckling,

the ratio of external load carried by each is initially unknown, and the force distribution

needs to be included in the energy formulations.

F or the unsti�ened plate, the external stress was assumed to be directly transferred into

the plate, and did not enter the equilibrium equations. T urning to the sti�ened plate, the
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membrane stress is divided into a part due to de
ection, �D, and a part due to the external

force, �F :

�
p = �

p;D + �
p;F (4.23)

�
s = �

s;D + �
s;F (4.24)

where p denotes plate, and s sti�ener. Both the de
ection part and the force part are

no w unknowns. It is still assumed that the membrane stress due to the external force is

constant over each member, but in general unevenly distributed betw een the t w o.

Expressions for the membrane strains due to external force may be deriv ed using tw o

requirements. The �rst is that the elongation takes a constant value o ver the cross section,

so that the plate displacement equals the sti�ener displacement, and the second is that the

internal stress resultant equals the external force:

�up = �us (4.25)

N
p
x +N

s
x = �Px (4.26)

where Px is the total external force acting on the sti�ened plate, and N is internal stress

resultan t in the plate and the sti�ener.The minus-sign is because the external force Px is

de�ned as positive in compression, in contrast to the internal forces. The elongations in

the plate may be written

�up =

Z
a

("p;Fx + "
p;D
x � 1

2
w
2
;x � w0;xw;x)dx (4.27)

= a"
p;F
x +�up;D (4.28)

�vp =

Z
b

("p;Fy + "
p;D
y � 1

2
w
2
;y � w0;yw;y)dy (4.29)

= b"
p;F
y +�vp;D (4.30)

while the internal stress resultants are

N
p
x =

Z
b

Z
t

(�p;Fx + �
p;D
x )dzdy (4.31)

= bt�
p;F
x (4.32)

N
p
y =

Z
a

Z
t

(�p;Fy + �
p;D
y )dzdx (4.33)

= at�
p;F
y (4.34)
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The integrated e�ect of the de
ection membrane stress must be zero due to static equilib-

rium, and does therefore fall out of the equations. In the transverse direction, we have

N
p
y = at�

p;F
y (4.35)

= at("p;Fy + �"
p;F
x )

E

1� �2
(4.36)

which gives

"
p;F
y = �(1 � �

2)
Py

atE
� �"

p;F
x (4.37)

We then have:

N
p
x = Ebt("p;Fx � �Py

atE
) (4.38)

A fundamental assumption introduced for the sti�ener is that the longitudinal displacement

is constant over the height of the sti�ener, so that

u
s
;x = "

s;F
x + "

s;D
x � 1

2
v
2
;x = constant (4.39)

This assumption is based on the fact that the length of the sti�ener is usually much larger

than the height, and it has been veri�ed by non-linear FEM-analysis for some practical

cases. The reason for using a di�erent method for calculating the strain distribution for

the sti�ener than for the plate, is the presence of a free upper edge of the sti�ener. A stress

function of the type that was used for the plate cannot be used for the sti�ener, and the

simpli�cation given in Eq. (4.39) is therefore introduced.

Since "s;Fx is also assumed to be constant, w e can simply choose

"
s;F
x = u

s
;x (4.40)

"
s;D
x =

1

2
v
2
;x (4.41)

In realit y, each of these membrane strain components will be functions of x. F or simplicity,

however, it is decided to use average values in the x-direction for calculation of potential
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energy . This is conserv ative, since using mean values giv e smaller internal energy than

using the actual values. The de
ection membrane strain is then:

"
s;D
x (z) =

1

2a

Z
a

v
2
;xdx (4.42)

The elongation becomes

�us =

Z a

0

u;xdx (4.43)

= a"
s;F
x (4.44)

and the sti�ener stress resultant

N
s
x =

1

a

Z
Vs

(�s;Fx + �
s;D
x )dVs (4.45)

= AsE"
s;F
x +

E

a

Z
Vs

"
s;D
x dVs (4.46)

where Vs and As are sti�ener volume and cross-sectional area, respectiv ely. In the last

relation, the one-dimensional Hooke's law, �x = E"x, is used. It is thus assumed that no

membrane stress develops in the sti�ener in the vertical direction. Using the continuity

condition �up = �us it is found that:

"
s;F
x = "

p;F
x +

�up;D

a
(4.47)

Now considering force equilibrium in the longitudinal direction, we write:

�Px = N
s
x +N

p
x (4.48)

= AsE("
p;F
x +

�up;D

a
) +

E

2a

Z
Vs

v
2
;xdVs + Ebt("p;Fx � �Py

atE
) (4.49)

Rearranging, an expression for the plate membrane strain due to the external force is

found:

"
p;F
x =

�Pxa+ �Pyb��up;DEAs � E
2

R
Vs
v
2
;xdVs

aE(bt+As)
(4.50)
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y

z

b

Figure 4.4: Integration area for local model: Clamped mode de
ection above, and simply

supported mode below

The strain "p;Fx is here expressed by the load variables Px and Py, and by the displacement

variables As
mn, A

c
mn, and V2m through �up;D and v;x. The strain will therefore come out

as part of the solution to the whole problem.

4.1.5 Internal potential energy

For the unsti�ened plate, the area betw eentw osti�eners, (0 to a), and tw otransverse

girders, (0 to b), w as considered. F or a sti�ened plate it is more common to consider the

sti�ener/girder-connection to be in cen ter,and include half a sti�ener length and half a

plate breadth on each side, i.e. to look at the region (-a/2 to a/2), (-b/2 to b/2).

Looking at the chosen displacement functions,ho w ever, it is seen that the cosine-part is

periodic within one plate breadth, while the sine-part is periodic within tw o plate widths

and t w o plate lengths.In order to take proper account of the continuity of the plating, it

is necessary to perform the integration over tw o widths andlengths. Hence, the area of

integration is taken as (-a/2 to 3a/2) and (-b/2 to 3b/2), Fig. 4.4. F rom the derivations

shown in appendix B, it can be seen that integrating the potential energy to 3a/2 and 3b/2

instead of a/2 and b/2 eliminates the coupling terms between odd and even half wave num-

bers. That means that no assumptions have to be made beforehand regarding symmetry or

an tisymmetry of the de
ection mode. The de
ection shape will automatically adjust itself

to the one which is the most bene�cial with respect to the plate geometry and loading. In

FEM-analyses the continuity of plating must be accounted for b y prescribing symmetry or

an ti-symmetry conditions at the edges, depending on the anticipated de
ection mode.

The chosen area of plate integration is so that tw o sti�eners must be included, one at y = 0
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and one at y = b. It is assumed that both make the same contribution to the potential

energy of the system, so the energy for the sti�ener at y = 0 is multiplied with tw o.

Calculation of each con tribution to the potential energy is outlined in the following. Further

details can be found in appendix B. The plate bending energy is due to the combined e�ect

of the sine-de
ection and the cosine-de
ection. It is expressed by:

U
p
b =

D

2

Z 3a=2

�a=2

Z 3b=2

�b=2

�
(w;xx + w;yy)

2 � 2(1� �)(w;xxw;yy � w
2
;xy)
�
dydx (4.51)

The web bending energy is:

U
w
b =

Dw

2

Z 3a=2

�a=2

Z h

0

�
(v;xx + v;zz)

2 � 2(1� �)(v;xxv;zz � v
2
;xz)
�
dzdx (4.52)

It is calculated by inserting the expression for V1m found from the con tinuity condition,

integrating over the area, and di�erentiating with respect to the rate and displacement

amplitudes.

The 
ange bending energy is:

U
f
b =

EIf

2

Z 3a=2

�a=2

(v;xxjz=h)
2
dx +

GJf

2

Z 3a=2

�a=2

(v;xzjz=h)
2
dx (4.53)

where the �rst part is due to in-plane bending of the 
ange, and the second is due to

torsion of the 
ange. EIf is the bending sti�ness and GJf the torsional sti�ness of the


ange. As for the web, the bending sti�ness is found by inserting the expression for V1m
and di�erentiating with respect to the rate and displacement amplitudes.

The plate membrane energy is

U
p
m =

E

2(1 � �2)

Z
Vp

�
("p;Fx )2 + ("p;Fy )2 + 2�("p;Fx )("p;Fy )

�
dVp (4.54)

+
E

2(1 � �2)

Z
Vp

�
("p;Dx )2 + ("p;Dy )2 + 2�("p;Dx )("p;Dy ) +

1� �

2


2
xy

�
dVp

= U
p;F
m + U

p;D
m (4.55)

The coupling betw een"p;D and "
p;F is zero, since "p;F is constant and the integral of "p;D

over the plate area is zero. The de
ection part U p;D
m of the membrane energy for the plate
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may be written

U
p;D
m = U

p;s
m + U

p;c
m + U

p;sc
m (4.56)

where U
p;s
m is the membrane energy due to sine-de
ection, U p;c

m is that due to cosine-

de
ection, and U
p;sc
m is due to coupling terms. More details are given in appendix B.

The external force part, U p;F
m , can be found by taking the constant membrane strain outside

the in tegration, and substituting the expression for"p;Fy :

U
p;F
m =

abtE

2(1� �2)

�
("p;Fx )2 + ("p;Fy )2 + 2�("p;Fx )("p;Fy )

�
(4.57)

=
1

2
abtE("p;Fx )2 (4.58)

It is seen that the contribution from "
p;F
y cancels out of the equations. The �nal result is

obtained by substitution of the expression derived for "p;Fx .

The sti�ener membrane energy is

U
s
m =

E

2

Z
Vs

("s;Fx + "
s;D
x )2dVs (4.59)

=
EVs

2
("s;Fx )2 +

E

2

Z
Vs

("s;Dx )2dVs + E"
s;F
x

Z
Vs

"
s;D
x dVs (4.60)

By substitution of the expressions for "s;Fx and "
s;D
x , integration can be carried out. U

s
m

is then found as a function of the unknown load parameter and displacement amplitudes.

Since the energy expressions are of the fourth order the resulting expressions are lengthy.

They are therefore not presented explicitly.

4.1.6 Potential of external loads

Using the displacements calculated for the plate and sti�ener in combination, the external

energy due to in-plane compression can be calculated directly:

Tc = Px�u+ Py�v (4.61)

= Px(2a"
p;F
x +�up;D) + Py(2b"

p;F
y +�vp;D) (4.62)
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where expressions for "p;Fx , "p;Fy , �up;D and �vp;D are giv en previously.

The external energy due to shear force and lateral pressure needs some special considera-

tion. The sine-terms in the de
ection shape are anti-symmetric about x = 0 and y = 0.

This means that integrating the external shear energy directly gives zero con tribution,

since only sine-terms are included in the longitudinal direction. The chosen de
ection

shape is therefore not able to describe the continuous de
ection of tw o neighboring plates

under the action of shear loading correctly . An approximate solution may be obtained

by neglecting the interaction betw een the plates,and looking at each plate individually.

This means that the plate energy is integrated betw een (0� a),(0� b) and then multiplied

with a factor 4. Only the sine-terms will then con tribute to the poten tialenergy . This

is a conservativ e approach, since the restraining e�ect of the tw o plates on each other is

neglected. How ever, FEM-analyses have sho wn that the restraining e�ect under pure shear

loading is quite small. Hence, the shear energy is calculated as:

T� = �4Pxy

Z a

0

Z b

0

(ws
;xw

s
;y + w

s
0;xw

s
;y + w

s
;xw

s
0;y)dydx (4.63)

A similar consideration has to be made regarding calculation of external energy due to

lateral pressure. When integrating the sine-terms in the longitudinal direction, the (�a=2
to 0) part will always cancel the (0 to a=2) part. As for the shear-force, the integration

is therefore tak en between (0 to a), and multiplied by tw o. Ph ysically ,this means that

the plate continuity at the transv ersemember is not ful�lled, which makes the model

less sti� than the real structure. How ever,the lateral pressure is believed to ha vethe

largest in
uence on the de
ection shape in the transv ersedirection. The cosine-terms

included are capable of describing the transverse de
ection shape due to the pressure, and

the in tegration can therefore be taken directly betw een (�b=2 to 3b=2). The potential of

external energy due to lateral pressure is therefore taken as:

Tlp = �2
Z a

0

Z 3b=2

�b=2

pwcdydx (4.64)

4.1.7 Results

Computations have been performed on a variety of sti�ener geometries for veri�cation of

the proposed model. Results are presented for a 
at bar, an angle bar and a tee bar sti�ener,

with dimensions given in Table 4.1. The 
at bar is from a tanker deck panel, the angle bar

is from a bulk carrier bottom panel, and the tee bar is from a tanker bottom panel. The

elastic modulus is 206000MPa for all cases. Results for axial and transverse compression are

shown for each sti�ener in Fig. 4.5 through Fig. 4.7. The initial de
ection for each sti�ener
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T able 4.1:Dimensions for sti�ened steel plates

Sti�ener a[m] b[m] t [m] h[m] tw[m] bf [m] tf [m] �f [MPa]

Flat bar 4.75 0.91 0.018 0.325 0.020 355

Angle bar 2.73 0.85 0.0165 0.350 0.012 0.100 0.017 355

T ee bar 4.335 0.814 0.020 0.475 0.012 0.200 0.025 325
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Figure 4.5: Steel 
at bar under axial loading using 5x1 terms (left) and transverse loading

using 7x3 terms (right)

is tak en as the eigenmode, with an amplitude of 1.0mm. The real imperfections present in

actual sti�ened plates are usually larger and more complex, but such considerations are not

a main issue in the current work. The results are compared with FEM-calculations, and

the accuracy is good. Increasingly betterresults are obtained with more terms included

in the de
ection function and smaller increments. F or the geometries and load conditions

presen ted, de
ection in the cosine-mode is small, and good results are obtained with sine-

terms included only.

It is seen that the load-average strain responses compare well for these cases. A deformation

plot is made for the angle-bar in order to compare the model de
ection shape with the

ABAQUS de
ection shape, Fig. 4.8. The de
ection shapes resulting from ABAQUS and

the developed model are both plotted using the ABAQUS postprocessor. It is seen that

de
ection shape is w ell predictedby the model, although only six degrees of freedom is

applied to represent the deformation in this case.

In order to investigate the e�ect of the rotational restraint on the plate from the sti�ener,

analyses are performed on the angle bar sti�ener with the sti�ener removed. Results with

and without sti�ener, both calculated using the presented model, are shown in Fig. 4.9. It
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Figure 4.6: Steel angle bar under axial loading using 3x1 terms (left) and transverse loading

using 5x3 terms (right)
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Figure 4.7: Steel tee bar under axial loading using 5x1 terms (left) and transverse loading

using 7x3 terms (right)

is seen that for axial load, the sti�ness reduction after buckling is larger for the unsti�ened

plate than for the sti�ened plate. F or transverse load the sti�ness reduction is almost the

same for the tw o cases, but the buckling load is low er for the unsti�ened plate. It should

be noted how ever, thatthis �gure only shows the local e�ect of the sti�ener. The main

purpose of the sti�ener is to prevent global buckling of the sti�ened panel.

An example is also shown for an aluminium pro�le, T able 4.2. This is an extruded tee-

pro�le used for high speed passenger ships. The dimensions are quite di�erent from the

more con ventional steel sti�eners discussed above, and it is therefore an interesting test
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Figure 4.8: De
ection shape for steel angle bar under axial load resulting from ABAQUS

analysis (left) and Model calculations (right)
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Figure 4.9: Steel angle bar under axial loading using 3x1 terms (left) and transverse loading

using 5x3 terms (right): Comparison betw een sti�ened plate and unsti�ened plate

case. The elastic modulus is taken as 70000MPa. The imperfection is 1.0mm in the elastic

eigenmode. Results for axial and transverse compression are shown in Fig. 4.10.

It is seen that the agreement is good also for this geometry and material. The computa-

tional eÆciency is high, since only a few degrees of freedom are necessary for most of the

cases. In the next chapter, it will be shown how sti�ness coeÆcients may be derived using

T able 4.2:Dimensions for sti�ened aluminium plate

Sti�ener a[m] b[m] t [m] h[m] tw[m] bf [m] tf [m] �f [MPa]

T ee bar 2.4 0.32 0.005 0.075 0.005 0.040 0.005 240
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Figure 4.10: Aluminium tee bar under axial loading using 9x1 terms (left) and transverse

loading using 15x1 terms (right)

the local model, and how these may be used for global buckling assessment. But �rst a

local model will be presented for a closed pro�le.

4.2 Closed pro�les

Local buckling of a plate with an attached sti�ener of the closed type, more speci�cally a

hat-pro�le, is now considered. Closed pro�les are relevan t for certain types of aluminum

structures, for instance in high speed vessels and in living quarters on o�shore structures.

Since they may be produced by extrusion, they come in a variety of shapes and sizes.

The hat-pro�le, Fig. 4.11, is just one of the possible pro�le types. The objective in this

section is to show the di�erence betw een open and closed pro�les, and to demonstrate the

applicability of the proposed method for analysis of both types.

4.2.1 De
ection shapes

The main di�erence betw een a pro�le of the open type and a closed type, is that a closed

pro�le has a v ery large torsional sti�ness. T orsional buckling of the sti�ener as a whole

is not v ery relev an t, and it is necessary instead to look at local buckling of the individual

plate members of the sti�ener. It is an important propert yof the hat-pro�les that all

angles betw een the plates building the pro�le is larger than90 degrees. This is because

larger angles leads to larger in-plane support betw een theplates, and therefore a sti�er

pro�le.
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a b

c d

�
�

�

�

Figure 4.11: Closed pro�le of the hat-type

Here, the whole pro�le is considered as an assembly of individual plates. Eac hplate is

treated in the same way as the unsti�ened plate considered in chapter 3. In addition, the

transv erse and longitudinal continuity of the plates must be taken care of.

During deformation, the individual plates in the pro�le interact and provide rotational

sti�ness to each other. The plates will have boundary conditions somewhere betw een simply

supported and fully clamped, as was the case for the main plate of the open sti�ener pro�le.

The degree of �xation for each plate depends on the sti�ness of the neigh boring plates.

In principle, the best w ouldbe to assume that all the plates de
ect in a combination

of sine-shape and cosine-shape. Requiring con tinuity of rotation at the edges, the sine-

displacements w ould be coupled for all the plates.The cosine-de
ection, giving no rotation

at the edges, would be independent.

It is decided to simplify somewhat, and try to solve the problem using only sine-de
ection.

The approach used is to let all plates de
ect independently �rst, and then apply springs

at the corners in order to account for the continuity.By specifying a large spring sti�ness,

each plate should then tak e on a displacement shape that is compatible with the other

plates.
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a �

�

�
� 1a

� 4a

� 2a

y2

y4

y1

Figure 4.12: Rotation of plate members 1, 2, and 4 at node a

The assumed displacement pattern for each plate is:

w
1 =

MsX
m=1

NsX
n=1

A
1
mn sin(

m�x

a
) sin(

n�y

b1
) (4.65)

w
2 =

MsX
m=1

NsX
n=1

A
2
mn sin(

m�x

a
) sin(

n�y

b2
) (4.66)

w
3 =

MsX
m=1

NsX
n=1

A
3
mn sin(

m�x

a
) sin(

n�y

b3
) (4.67)

w
4 =

MsX
m=1

NsX
n=1

A
4
mn sin(

m�x

a
) sin(

n�y

b4
) (4.68)

and similarly for the initial displacements. The superscripts 1; 2; 3; 4 refer to the individual

plates, as indicated in Fig. 4.11. It is assumed that one of the two vertical plates can be

taken as represen tative for both, so that only four di�erent displacements are included.

The number of degrees of freedom is now 4(MsxNs).

4.2.2 Transverse continuity

The requirement for rotational continuity at the edges is

@w
i

@y

����
y=yi

=
@w

j

@y

����
y=yj

(4.69)

for an edge betw een platei and plate j, where yi is 0 or bi in the local coordinate system

of plate i. The intersection betw een the platesa, b and d is sho wn in Fig. 4.12.

As explained,the requiremen t for transverse con tinuity is not initially ful�lled. Instead,

it is accounted for using line springs at the corners. F or eac h plate, the rotation at each
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edge is calculated. The di�erence betw een the rotation of two neighboring plates gives a

discontinuity, and this will give additional energy to the system. If the spring sti�ness is

set suÆciently large, the system will try to keep the di�erence betw een the plate rotations

at zero.

The di�erence in rotation at the corner node a in Fig. 4.12 is:

��12 = �1a � �2a (4.70)

��14 = �1a � �4a (4.71)

��24 = �2a � �4a (4.72)

The rotations are calculated using a local coordinate system for each plate, and become:

�1 =
@w

1

@y

����
y=b1

=
�

b1

X
m

X
n

nA
1
mn sin (

m�x

a
) cos(n�) (4.73)

�2 =
@w

2

@y

����
y=b2

=
�

b2

X
m

X
n

nA
2
mn sin (

m�x

a
) cos(n�) (4.74)

�4 =
@w

4

@y

����
y=0

=
�

b4

X
m

X
n

nA
4
mn sin (

m�x

a
) (4.75)

The potential energy due to rotation is:

U� =
1

2
k�

X
i

Z
a

(��)2idx (4.76)

where the summation is over all plate intersections in the pro�le, and k� is the line spring

sti�ness. In order to prevent discontinuity, it should be set to a large value. It may for

instance be given suc h that the rotational sti�ness is ten times the plate bending sti�ness.

By substitution of the displacement functions, the rotational potential energy is found as a

second order function of the displacements. Applying the principle of minimum potential

energy on rate form, a constant sti�ness contribution is obtained. The sti�ness matrix

con tains coupling terms which ensures that the de
ection of each plate is compatible with

the other de
ections. More details are found in appendix B.

4.2.3 Longitudinal continuity

As for the open pro�le considered previously, longitudinal continuity of the plate members

has to be ful�lled. Girders or bulkheads are assumed to enforce equal displacement in the
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longitudinal direction for all the plates in the cross-section. The sti�ness of the plates will

be di�erent after buckling, and this is therefore not automatically satis�ed. The approach

used here is the same as that applied for the open pro�le. The applied external stress must

be unevenly distributed betw een the plate members, and the ratio of external load carried

by each member is initially unknown. It needs to be included in the energy-formulations,

and will be a part of the solution for each increment.

For each plate, the membrane stress is divided into a part due to de
ection, �D, and a part

due to the external force, �F :

�
i = �

i;D + �
i;F (4.77)

where i denotes plate number i. Both the de
ection part and the force part are no w

unknowns. It is assumed that the membrane stress due to the external force is constant

over each member, ho wever di�erent for each one. Alternatively, w emay write for the

membrane strains:

"
i = "

i;D + "
i;F (4.78)

Expressions for the membrane strains due to external force may be deriv ed using tw o

requirements. The �rst requirement is that the elongations takes a constant value o ver the

cross section, so that the displacement is equal for all plates:

�ui = �u = constant (4.79)

The second requirement is that the internal stress resultant equals the external force:

4X
i=1

N
i
x = �Px (4.80)

The displacement requirement is considered �rst. The longitudinal elongations, equal for

all plates, may be written

�ui =

Z a

0

("i;Fx + "
i;D
x � 1

2
(wi

;x)
2 � w

i
0;xw

i
;x)dx (4.81)

= a"
i;F
x +�ui;D (4.82)

which means that the unknown membrane strains due to the external force is

"
i;F
x =

�u��ui;D

a
(4.83)
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The transverse elongation is the sum of the elongations for plate 1 and 4:

�v =

Z b1

0

("1;Fy + "
1;D
y � 1

2
(w1

;y)
2 � w

1
0;yw

1
;y)dy (4.84)

+

Z b4

0

("4;Fy + "
4;D
y � 1

2
(w4

;y)
2 � w

4
0;yw

4
;y)dy (4.85)

= b1"
1;F
y + b4"

4;F
y +�v1;D +�v4;D (4.86)

The internal stress resultants for eac h plate are

N
i
x =

Z bi

0

Z ti

0

(�i;Fx + �
i;D
x )dzdy = biti�

i;F
x (4.87)

N
i
y =

Z a

0

Z ti

0

(�i;Fy + �
i;D
y )dzdx = ati�

i;F
y (4.88)

The integrated e�ect of the de
ection membrane stress is zero, as before.

In the transverse direction, the internal force in plate 1 and plate 4 must both equal the

external load:

�Py = N
1
y = at1�

1;F
y (4.89)

�Py = N
4
y = at4�

4;F
y (4.90)

Introducing Hooke's law, we may write

�Py = at1("
1;F
y + �"

1;F
x )

E

1� �2
(4.91)

= at4("
4;F
y + �"

4;F
x )

E

1� �2
(4.92)

which means that

"
1;F
y = �(1 � �

2)
Py

at1E
� �"

1;F
x (4.93)

"
4;F
y = �(1 � �

2)
Py

at4E
� �"

4;F
x (4.94)
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Using this, the longitudinal stress due to external load in plate 1 and 4 becomes

�
1;F
x = ("1;Fx � �Py

at1E
)E (4.95)

�
4;F
x = ("4;Fx � �Py

at4E
)E (4.96)

For practical applications, the thickness of plate 1 and 4 will usually be equal, t1 = t4. For

plates 2 and 3 there is no transverse force, which means that �Fy = 0 and

�
2;F
y = E"

2;F
y (4.97)

�
3;F
y = E"

3;F
y (4.98)

Now these relations may be used to establish the condition for equilibrium in the longitu-

dinal direction:

�Px = b1t1�
1;F
x + b2t2�

2;F
x + 2b3t3�

3;F
x + b4t4�

4;F
x (4.99)

= ("1;Fx � �Py

at1E
)Eb1t1 + ("4;Fx � �Py

at4E
)Eb4t4 (4.100)

+ "
2;F
y Eb2t2 + 2"3;Fy Eb3t3 (4.101)

Introducing the strain-elongation relation we get

�Px = �u(b1t1 + b2t2 + 2b3t3 + b4t4)��u2;DEt2
b2

a
� 2�u3;DEt3

b3

a

� (�u1;D +
�Py

t1E
)Et1

b1

a
� (�u4;D +

�Py

t4E
)Et4

b4

a
(4.102)

which means that the longitudinal elongation can be written

�u =
�Pxa+ �Py(b1 + b4) + (�u1;Dt1b1 +�u2;Dt2b2 + 2�u3;Dt3b3 +�u4;Dt4b4)E

(b1t1 + b2t2 + 2b3t3 + b4t4)E

(4.103)

Using this expression for the combined elongation,the mem brane strain in each plate is

calculated from Eq. (4.83).
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4.2.4 Potential energy

The bendingenergy for eac h plate is calculated as for the unsti�ened plate presented in

chapter 3.

The membrane energy for each plate is

U
i
m = U

i;F
m + U

i;D
m (4.104)

The coupling betw een"i;D and "
i;F is zero, since "i;F is constant and the integral of "i;D

over the plate area is zero.

The de
ection part, U i;D
m , is calculated as for the unsti�ened plate in chapter 3. The

external force part, U i;F
m , is:

U
i;F
m =

1

2
abitiE("

i;F
x )2 (4.105)

By substitution of all parameters, U i
m can be found as functions of the unknown load

parameter and displacement amplitudes.

Using the common displacements calculated for the plates in combination, the external

energy due to in-plane compression or tension is calculated as:

Tc = Px�u+ Py�v (4.106)

where expressions for �u and �v are giv en previously. Shear force and lateral pressure

will only a�ect plates 1 and 4, and is calculated as for the unsti�ened plate.

4.2.5 Results

Results for axial and transverse compression are shown for a hat pro�le in Fig. 4.13. The

sti�ener length is 1.0m, the cross-section widths are ba = bd =0.14m, bb =0.12m, bc=0.08m,

and the thic knessta = td =5mm, tb = tc=3mm. The elastic modulus is E=70000MPa,

and the yield stress �f=240MPa. The initial de
ection is taken as the eigenmode, with an

amplitude of 0.1mm.

The agreement is good for the load range presented, but due to convergence problems in

the FEM-calculations, the analyses were terminated at a low er load level than intended.

Deformation-shape plots are also included in order to evaluate the goodness of the model.

Deformation shape resulting from ABAQUS is shown in Fig. 4.14 and deformation shape
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Figure 4.13: Aluminium hat pro�le under axial loading (left) and transverse loading (right)

using 10x3 terms)

Figure 4.14: 3-dimensional de
ection shape for aluminium hat pro�le under axial load

(left) and transverse load (right) resulting from ABAQUS analysis

from the developed model is shown in Fig. 4.15. It should be noted that the former is a 3-

dimensional plot, while the latter is a 2-dimensional plot of the cross-sectional displacement.

It is seen thatthe deformation shapes fromthe model qualitativ ely agrees well with the

deformation shapes from ABAQUS. The method of using rotational springs to ensure the

continuity betw een the plate members seems to work well. It is especially interesting to

look at the de
ection of the vertical plates, where the de
ection is clearly non-symmetric.

For axial load the deformation mode is close to clamped at the lower end, and close to

simply supported at the upper end. Only three terms w asnecessary in the transverse

direction to produce this shape.
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Figure 4.15: 2-dimensional de
ection shape for aluminium hat pro�le under axial load

(left) and transverse load (right) resulting from Model calculation
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Chapter 5

Global buckling of sti�ened panels

Global buckling of a sti�ened panel is now considered. A computational model is developed

by considering the panel as an unsti�ened plate with anisotropic sti�ness coeÆcients. The

anisotropy is structural, meaning that it is caused by the plate sti�ening. The material is

still considered as isotropic. The local deformation of plating and sti�eners is accounted for

by applying a set of reduced sti�ness coeÆcients. These are derived from the local buckling

model presented in chapter 4, as illustrated in Fig. 5.1. Due to the local buckling e�ects,

the sti�ness properties are reduced compared to the initial sti�ness. How ever, the coupling

betw een local and global deformation is not exactly accounted for with this approach,

since the global deformation is assumed to not in
uence the local deformation. The model

therefore considers a kind of one-way interaction betw een local and global buckling.

In section 5.1 the sti�ness coeÆcients used on the global level are de�ned in terms of

average stress and strain. In section 5.2, it is described how the coeÆcients can be derived

using the local buckling model presented in section 4.1. Finally, deriv ation of the global

buckling model is given in section 5.3.

5.1 De�nition of global sti�ness coeÆcients

The de�nitions used in this section follow (Det Norske Veritas 2002a). The sti�ness coeÆ-

cients Cij are de�ned as the change in load Ni resulting from a change in displacement "j ,

81
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B

a

x

y

Cijkl

Figure 5.1: Illustration of global buckling model

pro vided that all other displacements are k ept �xed. The loads considered on the global

level are de�ned as, see Fig. 5.2:

N1 = Axial force per unit breadth in x-direction

N2 = Axial force per unit length in y-direction

N3 = Shear 
ow

M1 = Resulting moment about the plate plane due toN1

M2 = Resulting moment about the plate plane due toN2

M3 = Torsional moment

The corresponding displacements are:

"1 = Average strain in x-direction

"2 = Average strain in y-direction

"3 = Shear strain

�1 = Curvature about the y-axis

�2 = Curvature about the x-axis

�3 = Torsion

It should be noted that these de�nitions are somewhat un usual, since N3 is shear 
o w

rather than force in z-direction, and M3 is torsional moment rather than moment about

the z-axis. The displacement parameters used are all average v alues.Hence, the sti�ness

coeÆcients may also be considered as averaged over the panel.
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N1
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M3

M3

M1

N2

M2

x

y

Figure 5.2: De�nition of global forces and moments

The incremental force-displacement relation for the sti�ened panel is:

2
6666664

�N1

�N2

�N3

�M1

�M2

�M3

3
7777775
=

2
6666664

C11 C12 C13 Q11 Q12 Q13

C21 C22 C23 Q21 Q22 Q23

C31 C32 C33 Q31 Q32 Q33

Q11 Q21 Q31 D11 D12 D13

Q12 Q22 Q32 D21 D22 D23

Q13 Q23 Q33 D31 D32 D33

3
7777775

2
6666664

�"1
�"2
�"3
��1
��2
��3

3
7777775

(5.1)

The sti�nessmatrix is symmetric, so that Cij = Cji andDij = Dji. The sti�ness coeÆcients

may be divided into a linear and a nonlinear part:

Cij = C
L
ij + C

NL
ij (5.2)

Dij = D
L
ij +D

NL
ij (5.3)

Qij = Q
L
ij + Q

NL
ij (5.4)

The linear parts are the ones corresponding to classical orthotropic sti�ness coeÆcients, and

these are independent of load and displacement. The nonlinear parts are calculated using

the local buckling model, and will be functions of load and displacement. F or compressive

loads they will be negative, resulting in a sti�ness reduction.
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5.2 Derivation of reduced sti�ness

5.2.1 General

For calculation of the sti�ness coeÆcients, the forces are written as follows:�
N

M

�
=

�
C Q

QT D

�L �
"

�

�
+

�
gN(Amn)

gM(Amn)

�
(5.5)

The sti�ness coeÆcients are then de�ned as:

Cij =
@Ni

@"j
= C

L
ij +

@gNi

@"j
(5.6)

Qij =
@Ni

@�j
= Q

L
ij +

@gNi

@�j
(5.7)

=
@Mj

@"i
= Q

L
ij +

@gMj

@"i
(5.8)

Dij =
@Mi

@�j
= M

L
ij +

@gMi

@�j
(5.9)

5.2.2 Linear coeÆcients

The reduced sti�ness coeÆcients are derived for the local buckling model presented for

open pro�les in section 4.1. First, the resultan tforces and moments are calculated by

integration of the membrane stress:

Ni =

Z
h

�iidz (5.10)

Mi =

Z
h

z�iidz (5.11)

The neutral axis of the sti�ener is not kno wn,since it is continuously changing during

buckling. The bending moment is therefore calculated about the middle plate plane. The

neutral axis and the neutral bending sti�ness coeÆcients can be calculated once the in-

plane and bending sti�ness are determined, as explained in section 5.3.

By manipulating the expressions derived using the requirement of longitudinal continuity

in section 4.1.4, and introducing the axial curvature �1, the internal axial and transverse
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force can be written:

N1 = E
AT

b

�
1 +

�
2
bt

AT (1� �2)

�
"1 +

�tE

1 � �2
"2 +

EAszgs

b
�1 (5.12)

� tE

2a
�up;a � �tE

2b(1� �2)
�vp;a +

E

8ab

Z
Vs

v
2
;xdVs

N2 =
�tE

1� �2
"1 +

tE

1� �2
"2 �

�tE

2a(1� �2)
�up;a � tE

2b(1 � �2)
�vp;a (5.13)

where AT is the total cross-sectional area, As is the sti�ener area, and zgs is the distance

from the plate plane to the centroid of the sti�ener. The curvature �1 is due to global

de
ection. It is set to zero in the local analysis, but is included in the formulations for

deriv ation of the sti�ness coeÆcients. The shear force and bending moment is:

N3 = Gt"3 +
Gt

4ab
D


p;a (5.14)

M1 =
EAs

b
"1 +

EI

b
�1 +

E

8ab

Z
Vs

zv
2
;xdVs (5.15)

where I is the moment of inertia of the whole cross-section. The sti�ness coeÆcients are

found by di�erentiation of the above expressions. The linear parts are given directly as:

C
L
11 = E

AT

b
(1 +

�
2
bt

AT (1� �2)
) (5.16)

C
L
12 = C

L
21 =

�tE

1� �2
(5.17)

C
L
22 =

tE

1 � �2
"2 (5.18)

C
L
33 = Gt (5.19)

Q
L
11 =

EAszgs

b
(5.20)

D
L
11 =

EI

b
(5.21)

All other linear coeÆcients are zero for the open pro�le sti�eners.

URN:NBN:no-3348



86 CHAPTER 5. GLOBAL BUCKLING OF STIFFENED PANELS

5.2.3 Nonlinear coeÆcients

The nonlinear parts of the sti�ness coeÆcients are calculated as:

C
NL
ij =

@gNi

@Amn

@Amn

@"j
(5.22)

Q
NL
ij =

@gNi

@Amn

@Amn

@�j
(5.23)

D
NL
ij =

@gMi

@Amn

@Amn

@�j
(5.24)

The �rst part may be found directly by di�erentiation once gN and gM are known. They are

given from the expressions for Ni and M1 presen ted in the previous subsection, Eq. (5.12)

through Eq. (5.15)

The second part is calculated using the equilibrium equations. F rom the previous chapter,

the local equilibrium equations resulting from the rate of minimum potential energy were

written:

K _A+G _� = 0 (5.25)

where

K =
@
2�

@A2
(5.26)

G =
@
2�

@A@�
(5.27)

In the local analysis the curv ature�1 is de�ned as zero, but for calculation of sti�ness

coeÆcients it must be included in the equilibrium equations. The additional sti�ness

con tribution is due to the membrane strain resulting from the curvature:

"�1 = z�1 (5.28)

Adding this strain to the potential energy, the modi�ed equilibrium equations become:

K _A+G _� +G�1 _�1 = 0 (5.29)

The load vector G may be split in to separate contributions from the di�erent loads, so

that:

K _A+GNi
_Ni +G�1 _�1 = 0 (5.30)
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where

GNi
=

@
2�

@A@Ni

(5.31)

This equation contains both load and displacement parameters. F or calculation of sti�ness

coeÆcients, the load parameters must be replaced by displacement parameters. The in-

plane loads are replaced using Eq. (5.5):

K _A+GNi
(CL

ij _" +QL
ij _�+ _gNi

) +G�1 _�1 = 0 (5.32)

Introducing

_gNi
=

@g

@A
_A (5.33)

the modi�ed equilibrium equation is:

K
0 _A+G

0

"i
_"i +G

0

�1
_�1 = 0 (5.34)

The modi�ed sti�ness matrix and load vectors are

K
0

= K+GN1

@gN1

@Amn

+GN2

@gN2

@Amn

+GN3

@gN3

@Amn

(5.35)

G
0

"1
= GN1

C
L
11 +GN2

C
L
21 (5.36)

G
0

"2
= GN1

C
L
12 +GN2

C
L
22 (5.37)

G
0

"3
= GN3

C
L
33 (5.38)

G
0

�1
= GN1

Q
L
11 +G�1 (5.39)

By applying partial di�erentiation on the minimum potential energy we get:

@( @�
@Amn

)

@"i
=

@
2�

@A2
mn

@Amn

@"i
+

@
2�

@Amn@"i
= 0 (5.40)

@( @�
@Amn

)

@�1
=

@
2�

@A2
mn

@Amn

@�1
+

@
2�

@Amn@�1
= 0 (5.41)
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By de�ning

K
0

=
@
2�

@A2
mn

(5.42)

G
0

"i
=

@
2�

@Amn@"i
(5.43)

G
0

�1
=

@
2�

@Amn@�1
(5.44)

we get:

K
0 @Amn

@"i
+G

0

"i
= 0 (5.45)

K
0 @Amn

@�1
+G

0

�1
= 0 (5.46)

This means that

@Amn

@"i
= �(K0

)�1G
0

"i
(5.47)

and

@Amn

@�1
= �(K0

)�1G
0

�1
(5.48)

5.2.4 Results

An example of how the sti�ness coeÆcients may change during local deformation is given

in Fig. 5.3. The calculations are for the steel angle bar from chapter 4, T able 4.1. The

load is axial, and the imperfection is 1mm in the local eigenmode.

The values plotted are the ratio betw een the non-linear sti�ness coeÆcients and the cor-

responding linear values. Q12 is divided by Q11 since Q
L
12 is zero. The sti�ness ratios

are slightly smaller than 1.0 at the start of the analysis due to the imperfection. If the

imperfection was larger, the sti�ness ratios would also have smaller initial values.

It is seen that the sti�ness reduction is signi�cant for C11 and C22, but the most drastic

change is for C12 which even changes sign. The reason is that C12 is positiv e for a 
at plate
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Figure 5.3: Change in sti�ness properties during local buckling due to axial load for steel

angle bar

due to the Poisson-e�ect, while it becomes negative for large de
ection due to membrane

stretching. The change in Q11, Q12 and D11 is small. There is some reduction in Dn11,

which is the neutral bending sti�ness. This coeÆcient is de�ned in the next section.

It is seen that the sti�ness reduction is quite localized around the buckling strain, and the

sti�ness is almost constant after this. This is a general trend found for all the sti�eners

investigated here. F or smaller imperfections the sti�ness reduction will be even more

sudden, while for larger imperfections there will be a more gradual transition. The plateau

on the sti�ness curves after buckling is a useful property, because it means that the global

buckling response may be estimated using a single set of sti�ness coeÆcients. Instead of

continuously updating the coeÆcients, conserv ativ e results could be obtained by using the

coeÆcients calculated at the end of the local analysis.
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Sx Sx

p

Figure 5.4: Global de
ection of sti�ener in simply supported mode and clamped mode

5.3 Global buckling model

In order to dev elop the global buckling model, the sti�ened panel is considered as an

elastic plate with general anisotropic sti�ness coeÆcients. The anisotropy is structural,

and the anisotropic sti�ness coeÆcients represen t the e�ect of plate sti�ening. For analysis

of global buckling alone, orthotropic plate theory is suÆcient, but when nonlinear sti�ness

properties due to local buckling are calculated, general anisotropy must be assumed.

5.3.1 Assumptions

A rectangular plate �eld with sti�eners running in one direction is considered. F or the

following derivations the sti�eners are assumed to be in the longitudinal direction, Fig. 5.1,

but transverse sti�ening can be analysed simply by switching panel length and breadth.

The sti�ened panel is supported at all edges by transverse and longitudinal girders. The

length of the panel is a, while the width isB. The loads considered are in-plane compression

or tension, shear force and lateral pressure. The edge loads are assumed to be constant

in magnitude. If the edge loads were to vary along the edges, the structural sti�ness of

the panel could no longer be assumed to be constant. The sti�ness would then have to be

calculated as a function of the position in the panel, and a numerical procedure would be

needed for integration of the energy equations.

Two sti�ener spans and panel widths are included in the model. The inten tion is to account

properly for the e�ect of lateral pressure on the panel. The pressure must be carried by

the sti�eners, and the de
ection of the sti�eners may therefore be a combination of the

simply supported mode and the clamped mode, Fig. 5.4. This is equivalent to the sti�ened

plate model considered in chapter 4, where it is assumed that the boundary condition for

a plate betw een t w o sti�eners is somewhere in betw een simply supported and clamped.

URN:NBN:no-3348



5.3. GLOBAL BUCKLING MODEL 91

The de
ection shape is therefore taken as a combination of sine-terms and cosine-terms:

w = w
s + w

c (5.49)

w0 = w
s
0 + w

c
0 (5.50)

where s and c denotes sine and cosine mode de
ection, respectively:

w
s =

MsX
m=1

NsX
n=1

A
s
mn sin (

m�x

a
) sin(

n�y

B
) (5.51)

w
c =

McX
m=1

NcX
n=1

A
c
mn

2
[1� cos(

2m�x

a
)] sin (

n�y

B
) (5.52)

w
s
0 =

MsX
m=1

NsX
n=1

B
s
mn sin (

m�x

a
) sin (

n�y

B
) (5.53)

w
c
0 =

McX
m=1

NcX
n=1

B
c
mn

2
[1 � cos(

2m�x

a
)] sin (

n�y

B
) (5.54)

5.3.2 Anisotropic material law

Some introductory remarks regarding the anisotropic material law are giv en �rst. The

material law for plane stress is:2
664
�11

�22

�12

�21

3
775 =

2
664
C
��

1111 C
��

1122 C
��

1112 C
��

1121

C
��

2211 C
��

2222 C
��

2212 C
��

2221

C
��

1211 C
��

1222 C
��

1212 C
��

1221

C
��

2111 C
��

2122 C
��

2112 C
��

2121

3
775
2
664
"11

"22

"12

"21

3
775 (5.55)

Using that �12 = �21 and "12 = "21, the material law for an isotropic material can be

simpli�ed to:2
4 �11

�22

�12

3
5 =

2
4 C

�

1111 C
�

1122 C
�

1112

C
�

2211 C
�

2222 C
�

2212

C
�

1211 C
�

1222 C
�

1212

3
5
2
4 "11

"22

"12

3
5 (5.56)

The superscripts �� and � are used to indicate that the matrix elements are not the same

in the tw o expressions. F or an isotropic material the coeÆcients C1112 = C2212 = C1211 =

C1222 = 0, while for an anisotropic material they are generally di�erent from zero. If the
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sti�ness matrix is reduced by the procedure used for isotropic material, symmetry of the

sti�ness matrix is no longer maintained, so that C1112 6= C1211 and C2212 6= C1222. In order

to maintain symmetry, it is necessary to de�ne the sti�ness matrix using the shear strain


12 = 2"12:2
4 �11

�22

�12

3
5 =

2
4 C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212

3
5
2
4 "11

"22


12

3
5 (5.57)

This last de�nition is used in the following deriv ations for the anisotropic plate. The

de�nition of the sti�ness coeÆcients in
uences the compatibility equations and the energy

expressions.

5.3.3 Material law for structural anisotropic plate

For a sti�ened panel, it is more convenient to express the sti�ness relations in terms of

stress resultants instead of stress. For the resultant forces N1, N2, and N3, the material

law is:2
4 N1

N2

N3

3
5 =

2
4 C11 C12 C13

C21 C22 C23

C31 C32 C33

3
5
2
4 "1

"2


3

3
5 (5.58)

The corresponding 
exibility relation is needed for derivation of the stress function. It is

written:2
4 "1

"2


3

3
5 =

2
4 M11 M12 M13

M21 M22 M23

M31 M32 M33

3
5
2
4 N1

N2

N3

3
5 (5.59)

The sti�ness relation for the resultant bending moments is:2
4 M1

M2

M3

3
5 =

2
4 D11 D12 D13

D21 D22 D23

D31 D32 D33

3
5
2
4 �1

�2

�3

3
5 (5.60)

It is assumed that there is no coupling betw eenresultan tforces and moments, i.e. all

Qij-terms are zero. This can be done by performing a neutralization of the sti�ness coeÆ-

cients, as explained in (Det Norske Veritas 2002b). This means that the bending sti�ness

coeÆcients are rede�ned so that no coupling occurs. The neutral bending sti�ness matrix
~D is calculated from the original sti�ness as ~D= D�QTC�1Q.

F or simplicity, the symbolD is used in the following to denote the neutral bending sti�ness

matrix.
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5.3.4 Stress function for sti�ened panel

The general requirement for strain compatibility is:

"x;yy + "y;xx � 
xy;xy = w
2
;xy � w;xxw;yy + 2w0;xyw;xy � w0;yyw;xx � w;yyw0;xx (5.61)

A stress function F is no w de�ned in terms of the stress resultants Ni in the sti�ened plate,

so that:

N1 = F;yy (5.62)

N2 = F;xx (5.63)

N3 = �F;xy (5.64)

Using the material law as de�ned above, and introducing the stress function F , the com-

patibilit y equation for the anisotropic plate can be written:

M1111F;yyyy +M2222F;xxxx + (2M1122 +M1212)F;xxyy � 2M1112F;xyyy � 2M2221F;yxxx

= w
2
;xy + 2w0;xyw;xy � w;xxw;yy � w0;yyw;xx � w;yyw0;xx (5.65)

The solution to this equation is more complex than for the isotropic plate, due to the

nonzero coeÆcients M1112 and M2221. A solution is found by assuming the stress function

to consist of the following terms:

F = F0 + Fs1 + Fs2 + Fc1 + Fc2 + Fsc1 + Fsc2 (5.66)
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where

F0 = �Sxy
2
t

2
� Syx

2
t

2
� Sxyxyt (5.67)
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mn cos(
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) cos(
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) (5.68)
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f
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mn sin (
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) sin(
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f
c1
mn cos(

2m�x

a
) cos(

n�y

B
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0

2NcX
0

f
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mn sin (

2m�x

a
) sin (

n�y

B
) (5.71)

Fsc1 =

Ms+McX
0

Ns+2NcX
0

f
sc1
mn sin(

m�x

a
) cos(

n�y

B
) (5.72)

Fsc2 =

Ms+McX
0

Ns+2NcX
0

f
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mn cos(

m�x

a
) sin(

n�y

B
) (5.73)

By substitution of the assumed stress function into the compatibility equation, it is found

that the coeÆcients f 1mn and f
2
mn must be:

f
s1
mn =

1

4a2B2(K1s� K2s2

K1s
)

X
rspq

b
s
rspq(A

s
rsA

s
pq +A

s
rsB

s
pq + A

s
pqB

s
rs) (5.74)

f
s2
mn = �K2s

K1s
f
s1
mn (5.75)

f
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1

4a2B2(K1c � K2c2

K1c
)

X
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b
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c
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c
pq +A

c
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c
pq + A

c
pqB

c
rs) (5.76)

f
c2
mn = �K2c

K1c
f
c1
mn (5.77)

f
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mn =

1

4a2B2(K1sc � K2sc2
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)

X
rspq

b
sc
rspq(A

s
rsA

c
pq + A

s
rsB

c
pq +A

c
pqB

s
rs) (5.78)

f
sc2
mn = �K2sc

K1sc
f
sc1
mn (5.79)
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where

K1s =
m

4

a4
M2222 +

m
2
n
2
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n
4

B4
M1111 (5.80)
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3
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mn
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m
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n
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M2221 + 4

mn
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M2222 +

m
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n
4

B4
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3
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M2221 � 2

mn
3

aB3
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and f0;0 is de�ned as zero. The coeÆcients bsrspq, b
c
rspq, and b

sc
rspq are the same integer

numbers as de�ned previously in Eq. (3.9), Eq. (3.35), and Eq. (4.10).

5.3.5 Internal potential energy

The potential of in ternal energy is generally written as

U =
1

2

Z
V

�"dV (5.86)

The strain is �rst divided into a constant membrane part "m and a linearly varying bending

part "b = z�. Integration is then performed over the thic kness in order to express the

potential energy as a function of stress resultants:

U =
1

2

Z
V

�("m + "
b)dV (5.87)

=
1

2

Z
V

�"
m
dV +

1

2

Z
V

z��dV (5.88)

=
1

2

Z
A

N"
m
dV +

1

2

Z
V

M�dV (5.89)

= Um + Ub (5.90)
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By substitution of the material law, the membrane energy is written:

Um =
1

2

�
M11

Z
A

N
2
1dA+M22

Z
A

N
2
2dA+M33

Z
A

N
2
3dA (5.91)

+ 2M12

Z
A

N1N2dA+ 2M13

Z
A

N1N3dA+ 2M23

Z
A

N2N3dA

�

The membrane energy is calculated by substitution of the stress function and integrating

over the plate area. The �nal expression is given in appendix C.

The bending energy is:

Ub =
1

2

�
D11

Z
A

�
2
1dA+D22

Z
A

�
2
2dA+D33

Z
A

�
2
3dA (5.92)

+ 2D12

Z
A

�1�2dA+ 2D13

Z
A

�1�3dA+ 2D23

Z
A

�2�3dA

�

The resulting expression is found by substituting �1 = w;xx, �2 = w;yy, �3 = 2w;xy, and

performing the integration. The result is given in appendix C.

5.3.6 Potential of external loads

The displacements are partly due the membrane e�ect of the external load (subscript F ),

and partly due to the de
ection of the plate (subscript D):

�u = �uF +�uD (5.93)

�v = �vF +�vD (5.94)


xy = 

F
xy + 


D
xy (5.95)

The part due to the de
ection is independent of the material properties, and is therefore

the same as for an isotropic plate. The part due to external load is:

�uF = 2a(M11N1 +M12N2 +M13N3) (5.96)

�vF = 2b(M21N1 +M22N2 +M23N3) (5.97)



F
xy = M21N1 +M22N2 +M23N3) (5.98)
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This part is relevan t for calculation of the actual load-elongation response of the plate, but

has no e�ect on the potential energy since it disappears when di�erentiating with respect

to the de
ection. The potential of external energy is therefore the same as for an isotropic

plate.

The external energy consists of a part due to sine-de
ection, a part due to cosine-de
ection,

and a coupling part. The sine- and cosine-part are calculated as for the unsti�ened plate

in chapter 3, except for di�erent areas of integration.

The energy due to in-plane tension or compression load is:

Tc = N1�u+N2�v (5.99)

The shear energy is:

T� = N3

Z 2a

0

Z 2B

0

(u;y + v;x)dydx (5.100)

The energy due to lateral pressure is:

Tlp = �
Z 2a

0

Z 2B

0

pwdydx (5.101)

It is seen that contribution from the sine de
ection to the lateral pressure energy vanishes

upon integration. This is due to the an ti-symmetry of the sine-de
ection. Ph ysically ,

this means that lateral pressure will only give rise to de
ection in the cosine mode. For

combined loads, the de
ection will be a combination of the two.

All �nal potential energy expressions are given in appendix C.

5.4 Results

Analyses of anisotropic plates may be performed with ABAQUS using the anisotropic ma-

terial option for the case of an unsti�ened plate. Results from such analyses are compared

with results obtained using the presen ted model. Only in-plane anisotropic sti�ness co-

eÆcients can be speci�ed with this option. The material is assumed to be uniform over

the thickness. This means that the bending sti�ness is given directly from the in-plane

sti�ness, in contrast to the curren tmodel where the bending sti�ness may be speci�ed

independently of the in-plane sti�ness.

The case shown in Fig. 5.5 is for a 840x980x11mm aluminium plate with E=70000MPa and

�f=240MPa. A combination of lateral pressure p=0.2MPa, corresponding to 20m water
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Figure 5.5: Load-average strain response for anisotropic plate subjected to combined axial

load and lateral pressure (left) and transverse load and lateral pressure (right)

column, and axial or transverse compression, Sx=240MPa or Sy=240MPa, is applied. This

gives a de
ection mode in betw een simply supported and clamped.For this speci�c case, a

sti�ness coeÆcient C1111 = 2Ciso
1111 is used. The imperfection is 10mm in the eigenmode. It

is seen that the agreement is good, which indicates that the e�ect of anisotropic sti�ness

is well handled by the model. Also, the lateral pressure e�ect, which giv es a resulting

de
ection mode in betw een simply supported and clamped, is well tak en care of.

In order to chec k the bending sti�ness formulations, analyses are performed using a sti�ened

panel in ABAQUS. It is desirable to compare the model with a sti�ened panel de
ecting

in a pure global mode, i.e. without local buc klingof plate and sti�eners. One w ayto

achiev ethis is to model a panel with very large plate thic kness compared to the panel

dimensions. Suc h a panel is likely to de
ect globally without local deformations. Another

w ayto achiev e the same type of response is to model the panel using the shell general

section option.

A sti�ened panel consisting of three of the aluminium pro�les analysed in section 4.1,

T able 4.2, is modelled in ABAQUS. The thickness of the plate, the web and the 
ange is

increased to 50mm. This geometry is so stocky that the resulting deformation is purely in

the global mode. Analyses are performed on the sti�ened panel in ABAQUS for axial and

transv erse loading, with an imperfection in the global mode equal to 3.6mm.Analyses are

then performed with the global buckling model using linear anisotropic sti�ness coeÆcients

according to the sti�ener dimensions, as explained previously. The results are shown in

Fig. 5.6. It is seen that the agreement is very good.

In Fig. 5.7 the response of this panel under axial loading, calculated using linear sti�ness

coeÆcients, is compared with the response calculated using reduced sti�ness obtained from
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Figure 5.6: Load-average strainresponse due to pure global buckling for sti�ened panel

subjected to axial compression (left) and transverse compression (right)
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Figure 5.7: Load-average strain response during axial load calculated from global buckling

model using linear and nonlinear sti�ness coeÆcients

the local model from chapter 4. The imperfection is 3.2mm in the local mode and 3.6mm

in the global mode. It is seen that the global de
ection is larger when the reduced sti�ness

is applied, as expected. In this analysis, the sti�ness coeÆcients input to the global model

are gradually reduced, corresponding to the current load factor.

In chapter 7, capacit yestimates calculated using reduced sti�ness coeÆcients obtained

from the present approach are presented.
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Chapter 6

Coupled local and global buckling

For panels with hea vy sti�eners, local buc klinge�ects are the most important. Global

de
ection must also be accounted for, but the interaction with local buckling is likely to

be small. It can therefore be included by using a separate model like the one described in

chapter 5. F or panels with small sti�eners, how ever, the global eigenvalue may be close to

the local eigenvalue. The interaction betw een local and global buckling e�ects could then

be signi�cant. The global model presented in c hapter 5 can be used to predict the reduction

in global buckling strength due to local e�ects, but the tw o-w ay interaction betw een local

and global deformation is not exactly accounted for with this approach.

In this chapter, methods for analysis of the coupled response due to local and global

buckling is presented. In the �rst section, a simpli�ed model for a single sti�ened plate is

described. In the second section, a model for a complete sti�ened panel is presented.

6.1 Coupled local and global buckling for a sti�ened

plate

Combined local and global buckling of a single sti�ened plate is considered �rst. This

means that only one sti�ener is included, and global buc kling is assumed to be in the

column mode. The sti�ened plate is assumed to be simply supported at each end by

101
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Figure 6.1: Shanley model (reproduced from (Steen 2001))

transv erse girders, but the e�ect of longitudinal girders is not included. Only axial load

has been considered here.

The model is derived using the local model presented in c hapter 4.1 for open pro�les, and

combining it with a Shanley method. This approach was used by Steen in (Steen 2001).

The Shanley model was originally developed as a method for analysing nonlinear material

behavior, (Shanley 1947). It w as used by Steen for handling geometrical nonlinearities in

a column due to local buckling e�ects. Here, the model developed by Steen is extended to

an inde�nite number of plate degrees of freedom, and a more re�ned web de
ection shape.

The Shanley model developed by Steen is a column buckling formulation in which the local

cross-sectional behavior follo ws a t w o-dimensional spring law, Fig. 6.1. It consists of a rigid

beam attached to a spring at the low er end, where the spring characteristics represent an

integrated e�ect of local buckling and imperfection e�ects of the whole cross-section. In

the limit of compact cross-sections, the spring characteristic represents the uni-axial linear

elastic material stress-strain law.

The global equilibrium equations for the Shanley model are:

P �N = 0 (6.1)

PLL(�+ �0)�M = 0 (6.2)

where � = �=L and �0 = �0=L are average curvatures, and L is the total length of the
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sti�ened plate. P is the external load, and N and M are the resultan taxial force and

moment acting at the column midspan. They are de�ned as:

N =

Z
A

�xdA (6.3)

M =

Z
A

z�xdA (6.4)

The length of the rigid beam, L, is de�ned as the length giving the same linear buckling

load for the Shanley model as for the Euler column. For the simply supported column, it

means that

L =
L

�2
(6.5)

The equation system resulting from the local model is modi�ed by introducing � as an

unknown parameter . The additional strain in a material point due to the global curvature

� is, assuming the Bernoulli-Euler hypothesis,

"g = z� (6.6)

The unknown � en ters the local equation system through the potential energy. The system

of equations with one additional degree of freedom is solved by introducing the moment

equilibrium equation abo ve. The local displacements and the global curvature are then

solv ed instantaneously.

6.1.1 Local equilibrium equations

The local buckling model derived in chapter 4 is used. The axial stress and strain in a

material point is modi�ed to account for �. F or the membrane stress and strain in the

plate we no w have:

�x = �
D + �

F � Ezg� (6.7)

"x = "
D + "

F � zg� (6.8)

where zg is the distance from the plate plane to the plane about which the sti�ened plate

is bending.
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The plate membrane energy is:

U
p
m =

E

2(1 � �2)

Z
Vp

("2x + "
2
y + 2�"x"y +

1� �

2


2
xy)dVp (6.9)

= U
D + U

F + U
� (6.10)

The new term here compared to earlier is the part involving � which becomes:

U
s
� = 2Ez2g�

2
bta� 4Ezg�"

F;p
bta (6.11)

For the sti�ener, the modi�ed membrane strain in position z is:

"x = "
D;s + "

F;s + (z � zg)� (6.12)

The sti�ener membrane energy is

U
s
m =

E

2

Z
Vs

"
2
xdVs (6.13)

= U
A + U

F + U
� (6.14)

where the new contribution due to � is

U
s
� =

E

2
(z � zg)

2
�
2
Vs + �E

Z
Vs

"
D(z � zg)dVs + �E"

F

Z
Vs

(z � zg)dVs (6.15)

The contribution from external energy is the same as before, since the �-terms disappear

upon di�erentiation with respect to Afg.

6.1.2 Bending moment

The plate bending moment when the global curvature is included is:

M
p = zgt

Z
b

�xdy (6.16)

= �2zgbt�F + 2Ez2gbt� (6.17)
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The contribution due to �
D is zero when integrated over the plate area. The sti�ener

bending moment is:

M
s = 2twE

Z
h

(z � zg)�x(z)dz + bf tfE(h� zg)�x(z = h) (6.18)

= 2tw�E(
h
3

3
� zgh

2 + z
2
gh) + 2bf tf�E(h� zg)

2 (6.19)

+ 2tw�
f(
h
2

2
� zgh) + 2bf tf�

f (h� zg) (6.20)

The contribution from �
D;s is zero at the midspan.

6.1.3 Solving the equation system

Including � in the local equilibrium equations lead to a system of equations on the form:

K11
_A +K12 _� +G1

_� = 0 (6.21)

The moment equilibrium equation can be written

K21
_A +K22 _� +G2

_� = 0 (6.22)

Assembling the above equations, an equation system with equal number of equations and

unknowns is obtained, and the rates _Amn and _� are solv ed for simultaneously.

6.1.4 Results

One case is presented as an example of how local and global buckling may interact for a

slender panel, Fig. 6.2. This is the aluminium sti�ener used for comparison in chapter 4,

which is quite weak with respect to global buckling. It is seen that the overall capacity is

smaller than the pure global strength, due to the e�ect of local deformations.

This example show that interaction e�ects may be important for panels with weak sti�-

eners. However, the model presented here is not very well suited for analysis of sti�ened

panels. One reason is that lateral support pro vided by longitudinal girders at the edges

of the sti�ened panel are not accounted for. This may have a signi�cant sti�ening e�ect

in the postbuckling region. Another reason is that the single sti�ened plate model is not

w ell suited for analysis of transverse in-plane compression. Therefore, a more appropriate

sti�ened panel model is developed in the next section.
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Figure 6.2: Load-average strain response due to pure global buckling (wL = 0) and com-

bined local and global buckling for sti�ened aluminium plate subjected to axial compression

+

Figure 6.3: Combined local and global buckling model

6.2 Coupled local and global buckling for a sti�ened

panel

The local buckling model presented in section 4.1 for open pro�les is used as the basis also

for the model of a sti�ened panel including several sti�eners. The model developed in the

following is also presented in (Byklum and Amdahl 2002a).

The local de
ection is assumed to be the same for all sti�eners in the panel, Fig. 6.3. That

means that poten tialenergy for one sti�ened plate may be multiplied to represen tthe

whole panel. If di�erent de
ection shapes were to be included for each sti�ener, the total

number of degrees of freedom would be too large for eÆcient solution of the problem.
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Global de
ection is added to the local. The global deformation is represented by a Fourier

series, but in order to limit the number of unknowns in the model it is assumed that one

global degree of freedom is suÆcient to represen tthe global de
ection. The number of

degrees of freedom can be reduced to one by determining the de
ection shape beforehand

using linear theory, and let only the amplitude of the de
ection be the unknown in the

nonlinear analysis. This approach is justi�ed by the design-philosophy that local buckling

is acceptable, but large lateral de
ection of the sti�eners should not occur. F or moderate

global de
ection, the linear global eigenmode of the panel is a good approximation of the

actual deformation shape also in the nonlinear region. The global de
ection shape used is

therefore

w
g = Ag

MgX
m=1

NgX
n=1

kmn sin(
m�x

a
) sin (

n�y

B
) (6.23)

w
g
0 = Bg

MgX
m=1

NgX
n=1

kmn sin(
m�x

a
) sin (

n�y

B
) (6.24)

B is the breadth of the whole panel, in contrast to b which is the sti�ener spacing. The

de
ection amplitude Ag is the global degree of freedom, while the coeÆcients kmn de�nes

the de
ection shape. They are determined at the start of the analysis by calculation of

the linear eigenmode. For this purpose, the sti�ened panel is treated as a geometrically

orthotropic plate. This is similar to the model presented in c hapter 5, but for the eigenmode

calculation, initial sti�ness coeÆcients are used. This is because the global de
ection shape

is assumed to be constant.

The additional potential energy due to the global de
ection causes an interaction between

the local and the global de
ection, which giv es coupling terms in the sti�ness matrix.This

e�ect cannot be correctly included for a continuous sti�ener, because the interaction will be

di�erent for sti�ener-induced buckling and for plate-induced buckling. F or global buckling,

sti�ener-induced means de
ection tow ards the plate, while plate-induced means de
ection

tow ards the sti�ener.If the de
ection is sti�ener-induced in one span, it is usually plate-

induced in the next span. The interaction with the local de
ection is therefore di�erent in

tw o consecutive spans, and this cannot be properly represented b y a single set of continuous

de
ection functions.

The problem is simpli�ed by using the same coupling e�ect for the span (0 to a) as for (a

to 2a). This is a conservativ e assumption, since it gives larger in teraction andtherefore

larger resulting de
ection. F or moderate amounts of global de
ection, it is believed that

this approximation will not introduce large errors.
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6.2.1 Global bending

Global de
ection leads to additional membrane strain in the plate and sti�eners. This

e�ect is referred to as global bending, although the strain is of the membrane type. This

is to distinguish it from the e�ect of membrane stretching of the panel due to global

deformation, which is considered in the next section.

The membrane strain due to global bending is

"
g
b = (z � zg)w

g
;xx (6.25)

The bending energy due to global de
ection is calculated for the sti�eners and the plating

separately . This is more correct than to multiply the energy for one sti�ened plate with

the total number of sti�eners. The reason is that the total panel breadth is usually larger

than the sum of plating associated to each sti�ener: B = (ns+1)b, where ns is the n umber

of sti�eners in the panel.

The bending energy for a sti�ener located at y = ys is

U
s;g
b (ys) =

1

2
EIs

Z 2a

0

w
g
;xx(ys)dx (6.26)

where Is is the moment of inertia of the sti�ener without plating, and the integration is

over the lengthof the sti�ener. The total global energy is calculated by performing the

integration and summing over all sti�eners. The result is given in appendix D.

The bending energy for the plating due to global de
ection is calculated as:

U
p;g
b =

D

2

Z 2a

0

Z 2B

0

�
(wg

;xx + w
g
;yy)

2 � 2(1� �)(wg
;xxw

g
;yy � (wg

;xy)
2)
�
dydx (6.27)

The result is given in appendix D.

6.2.2 Global membrane stretching

For calculation of the global membrane e�ect in the sti�eners and plating, an average

strain approach is used. The exact strain distribution is diÆcult to calculate for the plate

and sti�eners in combination, but average strains can be calculated by requiring overall

equilibrium for the sti�ener and the plate.
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The membrane strain "x(x; y) averaged over the length of the plate is:

"
av
x (y) =

1

a

Z
a

"xdx (6.28)

=
1

a

Z
a

(ux +
1

2
w
2
;x + w;xw0;x)dx (6.29)

=
�u

a
+
1

a

Z
a

(
1

2
w
2
;x + w;xw0;x)dx (6.30)

Similarly, the membrane strain "y(x; y) averaged over the width of the plate is:

"
av
y (x) =

1

B

Z
B

"ydy (6.31)

=
1

B

Z
B

(vy +
1

2
w
2
;y + w;yw0;y)dy (6.32)

=
�v

B
+

1

B

Z
B

(
1

2
w
2
;y + w;yw0;y)dy (6.33)

The elongations �u and �v are calculated by requiring that the membrane strain inte-

grated over the whole sti�ened panel must be zero, in order to ful�ll static equilibrium:

Z
V

"xdV = 0 (6.34)Z
V

"ydV = 0 (6.35)

For the axial strain, this gives:

t

Z B

0

"
av
x (y)dy +As

X
Ns

"
av
x (ys) = 0 (6.36)

Rearranging, the axial elongation becomes

�u =
��2(A2

g + 2AgBg)(tI3 +As

P
Ns
I1(ys))

2a2(Bt+NsAs)
(6.37)

while the average axial strain becomes:

"
av
x (y) =

�u

a
+

1

2a
(
�

a
)2(A2

g + 2AgBg)I1(y) (6.38)
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The integration constants I1 and I3 are giv en in appendix D.

For the transverse strain, we have:

t

Z a

0

"
av
x (y)dx = 0 (6.39)

The transverse elongation is

�v = � 1

2a
(
�

B
)2I7(A

2
g + 2AgBg)2a

2(Bt+NsAs) (6.40)

while the average transverse strain becomes:

"
av
y (x) =

�v

B
+

1

2B
(
�

B
)2(A2

g + 2AgBg)I5(x) (6.41)

The global membrane energy for the plate is:

U
p
m =

Et

2

Z 2a

0

Z 2B

0

("2x + "
2
y)dxdy (6.42)

The coupling term betw een the axial and transverse membrane strain vanishes when inte-

grating over the plate area.

The global membrane energy for the sti�ener is:

U
s
m = 2aEAs

X
Ns

"
2
x (6.43)

The �nal expressions are given in appendix D.

6.2.3 Coupling between local and global buckling

There are tw o possible coupling e�ects betw een the local and the global de
ection. The �rst

one is betw een the local membrane strain and the global membrane strain. The importance

of this coupling is investigated by considering that the plate usually de
ects locally with a

short wavelength compared to the global de
ection. By looking at the membrane sti�ness

matrix for the unsti�ened plate, it is found that the coupling sti�ness betw een short-wave

de
ection and long-wave de
ection is small. Considering also that the global membrane

strain e�ect is usually moderate compared to the global bending e�ect, it is decided to

neglected this sti�ness contribution.
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The coupling e�ect betw eenthe global bending strain and the local membrane strain is

believed to be more signi�cant, and is therefore included in the model.

The potential energy due to this coupling is:

U
cp = E"

p;F

Z
Vp

"
g
dV + E

X
Ns

"
s;F

Z
Vs

"
g
dV + E

X
Ns

Z
Vs

"
s;D

"
g
dV (6.44)

The contribution from "
p;D vanishes upon integration. The resulting expressions are given

in appendix D.

6.2.4 Global potential of external loads

The global external energy due to in-plane compression is calculated using the elongations

deriv ed in previous sections:

Tc = 2Sx(Bt+NsAs)�u+ 2Syat�v (6.45)

The global external energy due to shear force and lateral pressure is calculated as for an

unsti�ened plate, only using the global displacement function instead of the plate displace-

ment functions. Resulting expressions are given in appendix D.

6.2.5 Results

Analyses are performed with the proposed model for tw o quite di�erent sti�ened panels,

and comparisons are made with ABAQUS for veri�cation. The panels are full-width ver-

sions of the local sti�ened plates considered in chapter 4. The �rst one is the typical steel

panel with angle pro�les, T able4.1, and the second one is the slender aluminium panel

with quite small tee pro�les, Table 4.2. F or both panels three sti�eners are included. Im-

perfections are taken according to the DNV Classi�cation Note (Det Norske Veritas 1995),

so that the local plate tolerance is 0.05b, the local sti�ener tilt is 0.0015a, and the global

initial de
ection is 0.0015a.

F or the ABAQUS analyses, one panel width is modelled in the transverse direction, while

(1/2+1+1/2) sti�ener spans are modelled in the longitudinal direction, Fig. 6.4. Simply

supported boundary conditions are applied on the longitudinal edges, while symmetry

conditions are applied on the transverse edges. All edges are free to move in-plane, but

forced to remain straight.

Load-elongation curves are presented for both panels for axial load and transv erse load,

Fig. 6.5 and Fig. 6.6. It is seen that the agreement is good.
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Figure 6.4: ABAQUS models of aluminium panel (left) and steel panel (right)
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Figure 6.5: Steel angle bar under axial loading (left) and transverse loading (right)

The resulting de
ection shapes for the tw o panels are quite di�erent. The steel sti�eners

are heavy, and the deformations are almost purely local. The aluminium sti�eners are

weak, and global deformation is signi�cant. F or axial load it is dominating, as seen in

Fig. 6.7. This indicates that the proposed model works well both for panels with heavy

and with weak sti�eners.

The model dev elopedhere is no w compared with the models presented in the previous

chapters. The response calculated from the coupled model is compared with the results

calculated using the local model from section 4.1 alone, and the local model combined

with the global model from chapter 5. T o the left in Fig. 6.8 it is seen that the pure local

response coincides with the coupled response for the steel panel under axial loading. The

global response is negligible. T o the right, it is seen that the pure local response is low er

than the total response for the aluminium panel under axial loading. The response found
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Figure 6.6: Aluminium tee bar under axial loading (left) and transverse loading (right)
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Figure 6.7: Comparison betw een lateral de
ection in the local mode and the global mode

for steel angle bar panel (left) and aluminium tee bar panel (right) under axial loading

by adding the local response and the global response is quite close to the response from

the coupled model, and both agree well with ABAQUS.

It is interesting to see that the response is w ellpredicted by performing separate local

and global analyses, even for the aluminium panel in axial loading where both de
ection

modes are important. The interaction betw een the t w o modes may be further investigated

by setting the coupling terms in the sti�ness matrix in the coupled model equal to zero.

For the steel panel, where the global de
ection is small, the interaction is also small as

expected. The aluminium panel is a more interesting case, since the eigenvalues for local

and global buc kling are closer to each other. Comparison of the de
ection using the

presen ted formulations and a formulation without coupling is shown in Fig. 6.9. It is seen
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Figure 6.8: Comparison betw een pure local response and coupled local and global response

for the steel angle bar panel (left) and the aluminium tee bar panel (righ t) under axial

loading
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Figure 6.9: Comparison betw een lateral de
ection in the local mode and the global mode

for aluminium tee bar using the coupled formulation (c) and the uncoupled formulation

(nc)

that both the local and the global de
ection are smaller when the coupling is not accounted

for, as expected. How ever, the e�ect is much larger for the global de
ection than for the

local. This suggests that even for this panel it may be suÆcient to use a kind of one-way

interaction, as presented in chapter 4 and 5, i.e. the e�ect of local de
ection on the global

de
ection is accounted for, but not the opposite.

Although the coupled model presen tedin this chapter is more consistent than treating

global and local de
ection separately, the latter approach has several advan tages. First, it
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is possible to use more degrees of freedom also in the global analysis. This may sometimes

be necessary when the applied load condition is such that the de
ection shape may change

signi�cantly during the analysis, e.g. when lateral pressure is applied. Second, it is easier

to re�ne the model to handle linearly varying edge loads. Finally, it is possible to ha ve

di�erent types of local models, e.g. one for open pro�les and one for closed pro�les, but to

use the same global model.
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Chapter 7

Estimation of ultimate limit state

There are several possible applications of the computational models presented in the previ-

ous c hapters.One �eld of application is de
ection analyses of plates or sti�ened panels for

servicability limit state checks. Another application could be to use the derived sti�ness

coeÆcients for eac h panel as input to a larger structural analysis, e.g. a ship hull girder

cross section. This would be very useful for determining how the forces redistribute over

the cross section due to buckling of individual panels.

In the curren tw orkthe aim is to dev elopa design tool that can estimate the ultimate

limit state for individual sti�ened panels. This is done by combining the elastic models

with appropriate limit state criteria. Here, �rst yield due to membrane stress is taken as

the design capacity, as described in the following. Sev eral of the models developed in the

current work have been implemented in the Det Norske Veritas computer code PULS, and

some examples produced by this computer code are therefore presented.

7.1 PULS

7.1.1 Description

PULS (Panel Ultimate Limit State), (Det Norske Veritas 2002b), is a new buckling code

which is currently being implemented at DNV. It is based on a direct calculation approach,

117

URN:NBN:no-3348



118 CHAPTER 7. ESTIMATION OF ULTIMATE LIMIT STA TE

and will form a new standard for buc kling strengthassessment in DNV. PULS consists

partly of formulations and computer code developed in the current work, and some results

obtained using PULS will therefore be presented as examples of application of the proposed

methods. The examples are produced using version 1.3 of the program, released May 2002.

The program is going through a continuous dev elopment, and some of the results may

therefore deviate somewhat from results from the later versions.

Among the unsti�ened plate models presented in c hapter 3, the simply supported, isotropic

elastic model has been implemented in PULS.In addition, the local sti�ener model pre-

sented in chapter 4 for open pro�les has been implemented. The hat pro�le model is

considered for implementation at a later time, while the nonlinear global model presented

in chapter 5 is being implemented at the time of writing. The coupled models presented in

chapter 6 has not been considered for PULS implementation, since the simpler approach

of using reduced sti�ness coeÆcients from the local analysis as input to the global analysis

gives satisfactory results.

The graphical user interface implemented in PULS makes it an in tuitiv e and easy to use

calculation tool, Fig. 7.1. The input is much easier, and the pitfalls are fewer, than what

is the case when using a nonlinear FEM code. The output from PULS is much more in-

structiv e than ordinary buckling codes, because of the possibility to display stress patterns

and displacement shapes, in addition to the usual ultimate limit state value.

7.1.2 Imperfections

An important decision to make when performing nonlinear analyses, whether it is by

NFEM or analytical methods, is the choice of imperfections. Both the shape and the

amplitude of the initial de
ection may have a large e�ect on the resulting response. This is

a considerable complication compared to standard code formulations, where imperfection

e�ects are implicitly accounted for b y empirical factors.

If the actual imperfection for a plate is known, it can be included directly by calculating

the F ourier coeÆcients and using these as input to the analysis. In design, how ever, the

imperfections are not known. A common strategy has been to calculate the �rst linear

eigenmode for the actual load case, and use this as the imperfection shape. The amplitude

can be taken according to tolerance limits de�ned in rules and regulations. This approach

has been assumed to give a low er bound for the collapse strength.

Investigations ha veshown, however, that the �rst eigenmode does not alw aysgiv e the

low est ultimate limit state,(F eatherston 2000). F or thin plates, where the eigenvalue is

low compared to the collapse load, the postbuckling range becomes more important relativ e

to the prebuckling range. F or suc h cases, the preferred de
ection mode in the postbuckling

range may be di�erent from the eigenmode, and the use of the eigenmode as imperfection

URN:NBN:no-3348



7.1. PULS 119

Figure 7.1: PULS user interface

shape can be unconservativ e. F or axial load, it is typical that the plate prefers to de
ect

in a more short-wave pattern in the postbuckling range than in the prebuckling range. For

instance, if the eigenmode for axial load has three half-waves, de�ning the imperfection

with four half-waves may give a low er collapse load.

On the other hand, applying imperfections with a large number of half-waves may under-

estimate the strength signi�cantly, since this t ype of imperfection shape may be unrealistic

compared to what is the typical shape in real structures. Ev en if one plate has an unfa-

vorable imperfection shape, it is part of an integrated structure where the other plates are

likely to have imperfections that are more favorable with respect to strength. Therefore,

force will be redistributed from weak plates to stronger plates.

Imperfection sensitivity is a topic which needs more attention, and is not further discussed

here. In PULS, the imperfection level may be adjusted by the user, but default values are

suggested. These are 1/200 of the sti�ener spacing for plate de
ection betw een sti�eners,

and 1/1000 of the sti�ener span for sti�ener tilt and global imperfection. The minimum

eigenmodes are used to de�ne the imperfection shape. The imperfections for local plate
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de
ection and sti�ener tilt are de�ned by scaling the local eigenmode, while the global

imperfection is de�ned by scaling the global eigenmode. The default levels are a little

below standard shipbuilding tolerances, re
ecting that the eigenmode is an unrealistic and

conservative de
ection shape compared to the imperfections found in real plates.

7.1.3 Limit state criteria

A �rst yield approach is used for estimation of the collapse load. First yield has often been

applied to assess the critical load in design formulations, such as in the DNV Classi�cation

Note 30.1 for Buckling Strength Analysis, (Det Norske Veritas 1995). In the Classi�cation

Note, a column model is used together with a �rst yield criterion. This is commonly

referred to as the Perry-Robertson approach, and has been widely used in design.

First yield is a sound design criterion, because yielding will giv e un w anted permanent

deformations in the structure, and it is questionable to utilize the strength reserves in the

plastic region at the design stage. There are di�erent ways to de�ne the collapse criterion.

First yield in an extreme �ber is usually a quite conservativ e criterion, since redistribution

of stress through the thickness gives additional capacity. A more appropriate criterion is to

use yielding in the middle of the plate, i.e. membrane stress yielding, since this indicates

that the cross-sectional capacit yis exceeded, and further increase in the load must be

carried by stress redistribution in the plate plane.

Comparison with ABAQUS sho ws that this strategy gives satisfactory results for most

practical cases. F or thin plates the membrane stress will redistribute in the plate plane

after �rst membrane yield, so that some post-yield capacity exists. One way to account

for some of the reserv e capacity after the onset of yielding, is the approach used by for

instance (P aik, Thayamballi, Lee, and Kang 2001) for unsti�ened plates. The plate is

then divided into a mesh, considered to consist of several �bers. When yielding starts in

the outer �bers, they loose their strength, and the total sti�ness is reduced accordingly.

Yielding will then spread to more and more �bers, until the panel collapses. In this way,

the panel may be able to sustain some additional loading after the �rst yield.

For thic ker platesthe bending stress becomes increasingly more important, and the ca-

pacit y of a cross section may then be exceeded before the membrane stress reaches yield.

F or suc h cases the ULS estimates obtained using a membrane stress criterion alone may

be higher than those obtained from nonlinear FEM. The membrane stress criterion can

be combined with a bending moment capacit y criterion, using an interaction formulae for

the combined bending/membrane action. In the current version of PULS how ever, a pure

membrane stress criterion is applied. This is considered to be safe, since the imperfection

pattern used in the analyses are quite conservativ e compared to a more realistic imperfec-

tion pattern. The imperfection shape applied has a very regular up-down-pattern in the

transv erse direction, while real ship panels are much more likely to be much more random.

URN:NBN:no-3348



7.2. RESULTS 121

Figure 7.2: von Mises membrane stress distribution from PULS for 3.0x1.0x0.01m plate

(� = 4:1) subjected to axial load

In addition, the rotational restraint from the transverse girders is neglected in the analyses,

which ma y have a signi�cant e�ect on the transverse load cases where the stresses are very

localized around the transverse supports. It is therefore believed that the real strength of

actual ship panels is higher than the ULS values obtained with ABAQUS.

7.2 Results

7.2.1 Unsti�ened plates

An example of unsti�ened plate analysis using PULS is presented. The plate analysed

is 3.0x1.0x0.01m, with E=20800MPa and �f=355MPa. The applied load is pure axial

compression. The von Mises membrane stress distribution at the de�ned ULS is shown

in Fig. 7.2. The cursor on this plot is poin tingon the poin twith maximum equivalen t

membrane stress, which has just reached the yield stress.

Fig. 7.3 shows the minimum eigenmode for the same plate under a combination of trans-

verse compression, Sy=20MPa, and shear stress, Sxy=100MPa. Fig. 7.4 shows the de
ec-

tion shape at the ultimate limit state. This de
ection shape is quite di�erent from the

eigenmode, which sho ws the importance of the nonlinear membrane e�ect in the postbuck-
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Figure 7.3: Minimum eigenmode from PULS for 3.0x1.0x0.01m plate (� = 4:1) subjected

to transverse compression and shear load

ling region. The eigenmode is here clearly not the preferred de
ection shape for the plate

in the postbuckling region.

Some ultimate limit state analyses are carried out with ABAQUS for comparison with

the PULS estimates. The ABAQUS analyses are performed with linear elastic, hardening

plastic material, and the ULS values are the maximum loads attained from the load-

response curves. The PULS estimates are based on a limit state de�nition in the form of

a �rst yield criterion, as explained in the previous section.

Results are presented for plates with three di�erent aspect ratios. The �rst is a 810x810mm

plate, Fig. 7.5, the second a 2430x810mm plate, Fig. 7.6, and the third a 4050x810mm

plate, Fig. 7.7. F or all plates, the thicknesses 8mm and 12mm have been considered. The

yield stress is taken as 315MPa and the elastic modulus as 206000MPa. For the ABAQUS

analyses, a hardening parameter of 1000MPa is used. Since PULS is intended as a ship

design tool, the buckling criteria in the current DNV Rules for Ships are also included for

comparison.

It is seen that the PULS ULS estimates compare reasonably well with the ABAQUS results,

and much better than the Ship Rules. How ever, for predominantly transverse loading, some

of the PULS estimates are higher than the ABAQUS results. This is because PULS only

considers membrane stresses in the limit state criteria, as discussed in the previous section.
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Figure 7.4: Final de
ection shape from PULS for 3.0x1.0x0.01m plate (� = 4:1) subjected

to transverse compression and shear load
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Figure 7.5: Biaxial interaction curves from PULS, ABAQUS, and the Ship Rules for

810x810mm plate with t=8mm, � = 3:9 (left), and t=12mm, � = 2:6 (righ t)

For transverse loading, large bending stresses develop in the plate, and collapse may occur

before yield due to membrane stress is reached.

For the 4050x810mm plate there is another source of discrepancy. V ersion 1.3of PULS

applies 7x7 terms in the displacement shape. F or plates with such a high aspect ratio, it is
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Figure 7.6: Biaxial interaction curves from PULS, ABAQUS, and the Ship Rules for

2430x810mm plate with t=8mm, � = 3:9 (left), and t=12mm, � = 2:6 (right)
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Figure 7.7: Biaxial interaction curves from PULS, ABAQUS, and the Ship Rules for

4050x810mm plate with t=8mm, � = 3:9 (left), and t=12mm, � = 2:6 (right)

sometimes necessary to have more terms in the longitudinal direction in order to represent

the displacement shape correctly . If the number of terms is too small, the calculated

response is too sti� and the ULS estimate is too optimistic. In version 1.4 of PULS,

released in September 2002, the number of displacement shape terms is increased.
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7.2.2 Buckling of sti�ened panels using PULS: Current v ersion

The sti�ened plate model in version 1.3 of PULS is based on the local model presented

in section 4.1, combined with a linear, global eigenvalue calculation. The local analysis is

performed �rst, and a set of reduced sti�ness coeÆcients are calculated at the instant when

yielding due to local de
ection starts. The calculated reduced bending sti�ness is used for

the global eigen value calculation,where the sti�ened panel is treated as an orthotropic

plate. The eigenvalue is used to calculate the displacements due to global buckling e�ects

as:

�1 =
�

�E � �
�10 (7.1)

where �E is the eigen valueload factor, � is the curren t load factor, �1 is the curren t

dimensionless global displacement amplitude, and �10 is the initial dimensionless global

displacement amplitude. Knowing the global displacement shape, the maximum curvature

of the panel can be calculated for each load level. The global stress is giv en from the

curvature. The local membrane stress is then calculated for the same load level using

the in-plane sti�ness coeÆcients. The local stress is added to the global, and the sum is

checked against the yield stress. The load factor is then increased until yield is reached.

Interaction curves may be produced in PULS for all load combinations of axial load, trans-

verse load and shear force. The interaction curves are plotted together with eigenvalues

for local and global buckling. As an example, an interaction curve for biaxial loading is

produced for a sti�ened steel panel consisting of three sti�eners, Fig. 7.8. The plate and

sti�ener dimensions are as for the angle bar analysed in section 4.1, see Table 4.1. It is seen

that curv es areplotted for local elastic buckling and for ULS. Global elastic buckling is

normally also included, but for this case the global buckling values are so high that they are

outside the plotting range. The points on the ULS curve are marked with Limitstate 1-5

in order to indicate the location in the panel where yielding starts. Limitstate 1 refers to

yielding in the plate corner, Limitstate 2 refers to yielding at the sti�ener 
ange (tension),

Limitstate 3 refers to yielding at the plate/sti�ener connection (compression), Limitstate

4 refers to yielding at the sti�ener 
ange (compression), and Limitstate 5 refers to yielding

at the plate/sti�ener connection (tension).

Some ULS analyses have been performed with ABAQUS for comparison. The �rst case is

a panel with three of the steel angle bar sti�eners analysed in section 4.1, see Table 4.1.

The results for this case is shown in Fig. 7.9. It is seen that the correspondence between

the PULS results and the ABAQUS results is good. The PULS results are conservative

for pure axial load and for pure transv erse load,while they are a little higher than the

ABAQUS results for the biaxial load cases. The DNV Ship Rules are also plotted for

comparison. It should be noted that the Ship Rules does only have buc kling formulations

for sti�eners in the case of pure axial load. The other points on the interaction curve are

therefore based on the formulations for unsti�ened plates.
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Figure 7.8: Interaction curve for biaxial loading for 
atbar steel panel
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Figure 7.9: Biaxial interaction curves from PULS, ABAQUS, and the Ship Rules for steel

angle bar panel
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Figure 7.10: Biaxial interaction curves from PULS, ABAQUS, and the Ship Rules for

aluminium panel

The second case is a panel with three of the aluminium tee bar sti�eners analysed in

section 4.1, T able4.2. The results for this case is sho wn in Fig. 7.10. This panel has

w eak sti�eners, and global de
ection is important. It is seen that PULS signi�cantly

underestimates the ultimate strength of the panel. This is due to the linear global model,

which neglects second order e�ects on the global level. Results using the nonlinear global

model presented in c hapter 5 are given in the next subsection.

Some analyses performed at DNV for three di�erent tank ers are also included.These cases

are selected from three actual ships that are considered to be representativ e for sti�ened

panels in the bottom of tank ers,and are therefore of particular interest. The geometry

and the material parameters for the three panels are given in Table 7.1. F or all cases, the

elastic modulus is taken as E=206000MPa. For case 3 and 4, the tw o yield stresses given

in the table are for the plate and the sti�ener, respectively. The number of sti�eners in

these t w o panels is 16, but this number is reduced to 9 in the ABAQUS analyses in order

to limit the computational cost. This should not a�ect the results much. For case 5 and

6, the sti�ener is of the Holland Pro�le (HP) type, which means that the 
ange is a bulb.

These are modelled in PULS and ABAQUS as L-pro�les with equivalen t cross-section area

and moment of inertia. F or all analyses, the imperfections are de�ned as explained in

subsection 7.1.2, both for the ABAQUS analyses and the PULS analyses.

The results for case 1 and 2 are shown in Fig. 7.11, the results for case 3 and 4 are shown

in Fig. 7.12, and the results for case 5 and 6 is sho wn in Fig. 7.13. It is seen that the

agreement is quite good for axial load, while the capacity in the biaxial range is somewhat

overestimated for the thick plate cases 1-4. F or case 5 and 6, where the plate thickness is

moderate, the agreement is very good in the whole biaxial range. As already pointed out,

the deviation in the biaxial range for the thick plates is due to the e�ect of large bending
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T able 7.1:Dimensions for tanker cases

a[m] b[m] B [m] Ns Bar t [m] h[m] tw[m] bf [m] tf [m] �f [MPa]

1 5.12 0.91 9.1 9 L 0.020 0.5985 0.012 0.200 0.020 315

2 5.12 0.91 9.1 9 L 0.022 0.5985 0.012 0.200 0.020 315

3 3.92 0.82 8.2 16 L 0.017 0.400 0.013 0.100 0.018 235/315

4 3.92 0.82 8.2 16 L 0.019 0.400 0.013 0.100 0.018 235/315

5 2.4 0.80 5.6 6 HP 0.0135 0.240 0.011 355

6 2.4 0.80 5.6 6 HP 0.0145 0.240 0.011 355
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Figure 7.11: Biaxial interaction curves from PULS, ABAQUS, and the Ship Rules for

tank er case 1 (left) and 2 (right)

stress when transv erse loading is dominating. This could be corrected by introducing a

bending stress criterion in the limit state check.

7.2.3 Buckling of sti�ened panels using PULS: Modi�ed v ersion

The nonlinear global model developed in chapter 5 is currently being implemented in PULS,

and some examples using this new version of the program is presented. Using the nonlinear

global model means that more accurate results are obtained for sti�ened panels with weak

sti�eners, where global e�ects are important. The e�ect of lateral pressure may also be

accounted for on the global level, since a t w o-span global model is used.

In order to achiev e maximum computational eÆciency, a simpli�ed version of the model

presented in chapter 5 is implemented in PULS. This version performs the calculation in
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Figure 7.12: Biaxial interaction curves from PULS, ABAQUS, and the Ship Rules for

tank er case 3 (left) and 4 (right)
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Figure 7.13: Biaxial interaction curves from PULS, ABAQUS, and the Ship Rules for

tank er case 5 (left) 6 (right)

tw o steps.The �rst is a linear step, where tw o de
ection shapes are calculated.The �rst is

the eigenmode due to in-plane loads, while the second is the lateral de
ection due to lateral

pressure. In the linear step, a high number of de
ection shape terms may be used. In the

second step, a geometrical nonlinear calculation is carried out, using the amplitudes of

these t w o de
ection shapes as the only degrees of freedom.Comparisons with the original

model show that this approach gives good results, and signi�cantly improved computational

eÆciency.

Comparisons are performed betw een this modi�ed PULS version and the current version.
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Figure 7.14: Biaxial interaction curves from PULS and ABAQUS for aluminium panel.

Modi�ed version of PULS indicated by (m)

It is found that for the steel panels considered in the previous section, there is no di�erence

in the results. This is as expected, since the global eigenvalue is very high for all these

cases. The linear global model does then perform equally well as the nonlinear. For the

slender aluminium panel, how ever, the nonlinear global e�ect is signi�cant, see Fig. 7.14.

It is seen that the PULS version modi�ed for nonlinear, global e�ects performs much better

than the current linear v ersion.

The e�ect of lateral pressure is accounted for in the global nonlinear model, but this feature

has not yet been �nalized in PULS. This is because lateral pressure makes it necessary to

introduce new limit state criteria. Usually the global e�ect is most signi�cant at mid-span,

but global de
ection due to lateral pressure may giv e rise to large global stresses at the

transv erse frames.This is presently not c hec ked, but it will be included in the next version

of PULS.

Some analyses ha vealready been performed with ABAQUS in order to investigate the

pressure e�ect. One example is shown in Fig. 7.15. A lateral pressure of p=0.2531MPa,

corresponding to the design sea pressure, is applied �rst. The in-plane loads are then

applied incrementally up to yield. It is seen that the pressure reduces the capacity in the

whole biaxial range. This is because of the increased global curvature due to the pressure.

It is observed that yielding �rst occurs at midspan for axial load, as before, while it occurs

at the transverse frames for the load conditions with transverse load.

PULS can be applied with lateral pressure with the existing limit state criteria. The e�ect

of the pressure is then to increase the global de
ection and the global curvature at midspan,

but the global stresses at the transverse supports are not accounted for. It is seen that the

result for axial load agrees fairly well with ABAQUS, while the predictions in the biaxial
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Figure 7.15: Biaxial interaction curves from ABAQUS and PULS for tanker case 1. Results

with lateral pressure, p=0.2531MPa, is indicated by (p)

range does not exhibit signi�cant strength reduction due to the pressure. This w asas

expected, and should be improved with modi�cation of the limit state criteria in PULS.

Analyses have also been performed with shear loading. This is a quite diÆcult case to

analyse using �nite element methods, since the boundary conditions must be carefully

chosen. The edges should be kept straight, but free to rotate and translate in-plane, as

w ell as to contract or stretch. The load should be evenly distributed along the edges. The

best approach is to use a large model, so that the de
ection in the interior of the panel is

not signi�cantly a�ected by the boundary conditions at the edges. The tanker cases 1 and

2 discussed previously are considered to be well suited, since three sti�ener spans and ten

sti�ener spacings are modelled. It is found that collapse due to pure shear loading does

not occur until the external shear stress reaches shear yielding, i.e. � = �f=
p
3 � 0:77�f .

The same result is obtained with PULS. This indicates that shear is not a critical load for

the tanker panels considered here. F or more slender panels, the e�ect of shear load may

be more signi�cant.

7.3 Special considerations

7.3.1 Intermediate sti�ening

A common w ayto increase the local buckling strength of sti�ened panels is to add in-

termediate sti�ening such as tripping brackets, transv erse sniped sti�eners, or transverse

connected sti�eners. A tripping brac ketwill provide both lateral support for the plate
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and sideways support for the sti�ener, and this can be accounted for by reducing the

panel length in the model to the length betw een the tripping brackets. A sniped sti�ener,

however, provides lateral support for the plate, but does not provide any support for the

sti�ener. F or most cases the sti�ener de
ection is governed by the plate de
ection, and the

e�ect of a sniped sti�ener is then approximately the same as the e�ect of a tripping bracket.

If the sti�ener height is very large, how ever, the sti�ener may de
ect independently of the

plate.

This case is handled in PULS by treating the sniped sti�ener as a very sti� lateral spring.

The sti�ness con tribution of this spring ensures that the plate de
ection at the sniped

sti�ener location is zero, but leaves the web free to de
ect sideways. One example where

this is important, is the tanker case 2 studied above. This panel has very high webs, and for

axial load the local deformation is in the form of a single half-wave. The plate has a high

aspect ratio and would therefore prefer a more short-waved de
ection, but the high web

forces the plate into a one-wave de
ection. When a sniped sti�ener is applied at midspan,

the plate is forced down at the middle, while the web k eeps the one-wave de
ection shape.

7.3.2 F reeedges

All the models presented are based on the assumption that the edges are supported in-

plane by the surrounding structure, so that they will remain straight. This is not entirely

correct for all parts of a ship structure. One example is web girders, which are continuous

in the longitudinal direction, but not in the vertical direction. It may be too optimistic to

assume that the long edges of such girders remain straight, and the membrane sti�ness in

the v ertical direction may be over-predicted.

A simpli�ed way to account for this e�ect, is to neglect the membrane strains in the vertical

direction completely. This reduces the membrane sti�ness compared to the straight edge

case. There will always be some membrane e�ect in the vertical direction even if the edge

is free to deform, and this method will therefore giv e results that are on the safe side.

Modi�ed versions of the unsti�ened plate model and the local sti�ener model have been

dev eloped to account for this and will be implemented in PULS in the future.

7.3.3 Residual stress

Residual stress is an e�ect of welding that is present in both steel and aluminium structures.

When the material contracts due to cool-down after the welding, tension stress develops

close to the weld. These are balanced by compressive stress further out in the plate.

If the residual stress pattern is known, it can be accounted for b y simply adding the residual
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stress to the stress calculated in the analysis. The e�ect of the residual stress may be that

�rst yield occurs in a di�erent position than if the initial condition is stress-free. Usually

the maximum compressive stress occurs at the edges, but when residual tension stress is

presen t �rst yield may occur further inside the plate. The critical points which are to be

checked for yielding must therefore be chosen with care if residual stress is to be accounted

for.

The e�ect of residual stress is a topic for further discussion. Since the plates and sti�eners

in a ship are subjected to dynamically varying loads, the residual stress will gradually be

relieved. It is therefore a question whether it is correct to include them in the analysis,

and, if so, which magnitude to use. The e�ect of residual stress is currently not included

in PULS, but will be considered for implementation later.

7.3.4 Heat a�ected zones

Heat a�ected zones (HAZ) is a problem for welded structures that are produced by heat

treatable aluminium alloys. The e�ect of HAZ on unsti�ened plates was in vestigated by

(Kristensen 2001). In heat treatable alloys the yield strength is increased by heat treating,

followed by arti�cial aging. When plates are welded, the heat from the w elding process

will reduce the yield strength of the material close to the weld. It is common to assume a

loss in yield strength of 50%, (British Standards Institution 1996).

For aluminium applications, the limit state criteria in PULS are modi�ed according to

basic principles used in DNV Rules for High Speed Light Crafts (HSLC) and Eurocode 9.

The minimum of the following three criteria is used:

1. First yield in the base material just outside of the HAZ.

2. Local material failure in the most highly stressed area of the HAZ, based on the

ultimate tensile strength of the material in the HAZ.

3. Gross yielding in the HAZ, disregarding all non-linear geometrical buckling e�ects.

There are many uncertainties with respect to the e�ects of HAZ in aluminium structures,

and it is a topic that will be giv en further atten tion in the con tinuous dev elopment of

PULS.
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Chapter 8

Concluding remarks

8.1 Conclusions

Computational models for analysis of buc klingand postbuckling of plates and sti�ened

panels have been derived. The motivation was to develop a design tool that is more ac-

curate than existing code formulations, and more eÆcient than nonlinear �nite element

methods. The models are formulated using large de
ection plate theory and energy prin-

ciples. Biaxial in-plane compression or tension, shear, and lateral pressure are considered,

and any combination of these may be analysed with the models developed. The procedure

is semi-analytical in the sense that all energy formulations are derived analytically, while a

numerical method is used for solving the resulting set of equations, and for incrementation

of the solution.

F or the unsti�ened plate, a model was dev eloped both for the simply supported case and

for the clamped case. F or the simply supported case the material types considered was

isotropic elastic, orthotropic elastic, and elastic-plastic. Load-de
ection curves produced

by the proposed models was compared with results from nonlinear FEM. For the elastic

models, good correspondence and very high eÆciency were achieved. For the elastic-plastic

model, the accuracy and eÆciency were less satisfactory. Based on these �ndings, it was

decided to apply �rst yield as the collapse criterion for the subsequent models, and thereby

eliminate the need for plasticit y calculation. This ensures eÆcient computation of the

response in the elastic region, and conservativ e estimates of the ultimate limit strength.

135
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Two models have been developed for analysis of local buckling, one for open pro�les and

one for closed pro�les. Geometrical nonlinearities were accounted for both in the plates and

sti�eners, and rotational and longitudinal continuity between the members were ensured.

A local buckling model is suÆcient for analysis of panels with stocky sti�eners, since global

de
ection is of little signi�cance. For more slender sti�eners, the local model is used to

calculate the reduction in in-plane and bending sti�ness due to local buckling. The reduced

sti�ness can then be used as input to a global buckling model.

A global buckling model was dev eloped by considering the sti�ened panel as a plate with

general anisotropic sti�ness. The sti�ness coeÆcients are input from the local analysis.

The global model is geometrically nonlinear, and is modelled with tw o spans toaccount

for lateral pressure e�ects. Two combined models were dev eloped in order to account for

interaction betw een local and global buckling. The �rst is for a single sti�ened plate, and

uses a column approach. Only axial load is considered. The second is for a sti�ened panel

with several sti�eners. Biaxial compression, shear and lateral pressure was considered.

Computations have been performed on a variety of plate and sti�ener geometries for veri-

�cation of the proposed model, and comparisons were made with nonlinear �nite element

methods. Some examples have been presented. F or all models, the response in the elastic

region is well predicted compared with results from ABAQUS. The eÆciency of the calcu-

lations is also very high. The deviation from the ABAQUS results is larger for the strength

estimates than for the elastic response calculations. This is because redistribution of stress

due to plasticity is not accounted for in the models. In most cases, this leads to conser-

vativ e results.It is considered a sound principle to not utilize post-yield strength reserves

in design calculations, and the deviation in the strength estimates is therefore acceptable.

For thick plates in transverse compression, the results may be on the nonconservativ e side

if a pure membrane stress criterion is used, and it should be considered to account for the

bending stresses in the collapse criterion.

The most important adv an tage of the present models compared to nonlinear �nite element

methods is the large gain in computational eÆciency. In addition, no geometric modelling

is necessary , and no element mesh has to be created. Finally, the input of imperfections is

very easy , since the user can specify any initial de
ection. Compared to conven tional design

formulas, the major advantage of the method is a more direct calculation strategy which

gives increased accuracy. This is especially important for non-conven tional geometries, for

which the explicit design formulas were not originally created. More information is also

obtained in form of displacement shapes and amplitudes. Analyses may be performed with

di�erent imperfections, by contrast to the design formulas, where a �xed imperfection is

implicit in the expressions.

The unsti�ened plate model and the local model for open pro�les have been implemented

in the DNV buckling code PULS. The local model is there combined with a linear global

buckling calculation. In addition to calculating the ultimate strength, the programpro-
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duces interaction curv es, stress plots and displacement plots. These are very useful for

improved understanding of buckling e�ects, which is essen tial in the design process.

8.2 Recommendations

The elastic response is well predicted with the models developed, and the ULS estimates

obtained using a �rst yield criterion show promising results. However, improvements may

be made in the de�nitions of the limit state criteria. Some of the reserve capacity after �rst

yield may be accounted for by simpli�ed methods, but care should be taken before this

additional strength is utilized in design. It is also observed cases where nonconservative

results are obtained, and these should be investigated further. F or thic k plates, it may be

necessary to add limit state checks that include the bending stress. F or aluminium, more

researc h is needed in order to determine how the strength reduction in the heat a�ected

zones should be treated.

The e�ects of residual stress should also be further investigated. It is a question how much

the residual stress is relieved after some time in service, and how much it will in
uence

the strength. It can be included in the model by adding it to the calculated stress, if the

distribution and magnitude is known.

Choosing imperfections remain a diÆcult task. Using the eigenmode together with toler-

ances set in standards, may give results that are too conservativ e compared with real plates

and panels. On the other hand, using an imperfection shape that is more representative for

real panels may be nonconservativ e for plates that have a more unfavorable imperfection

shape. In addition, there is the complicating factor that the eigenmode is sometimes not

the imperfection shape that gives the lo w est collapse load.More knowledge is needed about

the shapes and amplitudes of the imperfections in real ships, and more research should be

carried out in order to de�ne appropriate imperfections for nonlinear analyses.

When it comes to application to ship structures, several additions to the current models are

desirable. First of all, linearly varying edge loads should be implemented in the sti�ened

panel models. For large panels, the change in in-plane load can be quite large from one end

to another. This is a complication, since the sti�ness reduction will be di�erent for eac h

sti�ener unit in the panel. Hence, the sti�ness of the panel is no longer uniform, which

means that numerical integration is necessary on the global level.

In addition, a more re�ned way to handle panels with unconstrained edges could be useful.

This can be done with the current models by neglecting the membrane strain normal to

the unconstrained edges, but this is probably too conservative. A model for curved panels

should also be developed, for application in the bilge region. Considering the bilge panels

as 
at gives results that are overly conservativ e.
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Appendix A

Buckling of unsti�ened plates

A.1 Simply supported plate

For all derivations in the following, the superscript s, indicating de
ection in the sine-mode,

is omitted for increased readability.

A.1.1 Solution of the compatibility equation

For an initially 
at plate, the compatibility equation is:

r4
F = E(w2

;xy � w;xxw;yy) (A.1)

The solution of this equation was proposed written in the following form by Levy:

F = �Pxy
2

2bt
� Pyx

2

2at
+

2MX
0

2NX
0

fmn cos(
m�x

a
) cos(

n�y

b
) (A.2)

The coeÆcients fmn are found by substitution of the above expression into the compatibility

equation. The approach proposed by Levy is also used her, but for some reason the
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coeÆcients deriv ed hereare not equal to those presen tedin the w orkby Levy . For the

initially 
at plate the following equation results:
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By manipulation of the trigonometric functions, the right hand side can be written as:
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It is then found that for Eq. (A.3) to be true, the coeÆcients fmn must be:

fmn =
E

4(m2 b
a
+ n2

a
b
)2

X
rspq

brspqArsApq (A.5)

where f0;0 is de�ned to be zero, and the coeÆcients brspq are:

b
s
rspq = rspq + r

2
q
2 if

�
�(r � p) = m; s+ q = n

r + p = m;�(s� q) = n
(A.6)

b
s
rspq = rspq � r

2
q
2 if

�
r + p = m; s+ q = n

�(r � p) = m;�(s� q) = n
(A.7)

For the plate with initial de
ection, the compatibility equation can be rewritten in the
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following manner:

r4
F = E(w2

;xy � w;xxw;yy + 2w0;xyw;xy � w0;xxw;yy � w0;yyw;xx)

= E
�
(w;xy + w0;xy)

2 � (w;xx + w0;xx)(w;yy + w0;yy)
�

� E
�
w
2
0;xy � w0;xxw0;yy

�
(A.8)

This shows that the solution of the stress function F can be written as the di�erence

betw een the t w o solutions

F = F (w + w0)� F (w0) (A.9)

Hence, the coeÆcients fmn for a plate with initial de
ection must be:

fmn =
E

4(m2 b
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A.1.2 Derivatives and rates of the stress function

By di�erentiation, the derivativ es and rates of the coeÆcients fmn involv ed in calculation

of the sti�ness matrix is:
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where all the b-coeÆcients are calculated by the same rule as brspq.
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A.1.3 Membrane energy

The potential energy due to membrane stretching is:

Um =
t
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Z b
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Substituting the stress function, and rewriting the trigonometric functions, the integrations

can be carried out analytically. The resulting expression is:
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ab

4
�
4

2MX
0

2NX
0

f
2
mn(

m
2

a2
+
n
2

b2
)2

+
ab

2
�
4

2MX
0

f
2
m0(

m

a
)4 +

ab

2
�
4

2NX
0

f
2
0n(

n

b
)4

#
(A.15)

By di�erentiation, the rate of minimum membrane energy is:

_
(
@Um

@Afg

) =
abt

4E
�
4

2MX
0

2NX
0

"
@fmn

@Afg

_fmn +
_

(
@fmn

@Afg

)fmn

#
(
m

2

a2
+
n
2

b2
)2 (A.16)

+
abt

2E
�
4

2MX
0

"
@fm0

@Afg

_fm0 +
_

(
@fm0

@Afg

)fm0

#
(
m

a
)4

+
abt

2E
�
4

2NX
0

"
@f0n

@Afg

_f0n +
_

(
@f0n

@Afg

)f0n

#
(
n

b
)4

A.1.4 Bending energy

The potential energy due to bending is

Ub =
D

2

Z a

0

Z b

0

�
(w;xx + w;yy)

2 � 2(1� �)(w;xxw;yy � w
2
;xy)
�
dydx (A.17)

By substitution of the assumed displacement functions, the integration can be carried out:

Ub =
abD

8
�
4

MX
m=1

NX
n=1

A
2
mn(

m
2

a2
+
n
2

b2
)2 (A.18)
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By di�erentiation rate of minimum bending energy is:

_
(
@Ub

@Afg

) = D�
4 ab

4

�
f
2

a2
+
g
2

b2

�2

_Afg (A.19)

A.1.5 External energy

For constant edge-loads, the potential of external in-plane forces is:

Tc = Sxbt�u+ Syat�v (A.20)

where the elongations are:

�u =

Z a

0

u;xdx (A.21)

=

Z a

0

("x �
1

2
w
2
;x � w0;xw;x)dx

�v =

Z b

0

v;ydy (A.22)

=

Z b

0

("y �
1

2
w
2
;y � w0;yw;y)dy

The membrane strain is calculated from Hook's law, using the assumed stress function:

"x =
1

E
(�x � ��y) (A.23)

=
1

E

"
�Sx + �Sy �

2MX
�2M

2NX
�2N

fmn cos(
m�x

a
) cos(

n�y

b
)�2(

n
2

b2
� �

m
2

a2
)

#

"y =
1

E
(�y � ��x) (A.24)

=
1

E

"
�Sy + �Sx �

2MX
�2M

2NX
�2N

fmn cos(
m�x

a
) cos(

n�y

b
)�2(

m
2

a2
� �

n
2

b2
)

#

Substituting the abo ve relations into the elongation expressions, the integrations can be
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carried out:

�u = �Sxa

E
+ �

Sya

E
� �

2

8a

MX
m=1

NX
n=1

m
2(A2

mn + 2AmnBmn) (A.25)

�v = �Syb

E
+ �

Sxb

E
� �

2

8b

MX
m=1

NX
n=1

n
2(A2

mn + 2AmnBmn) (A.26)

Hence, the potential of external loads becomes:

Tc = � abt

E
S
2
x +

2�abt

E
SxSy �

abt

E
S
2
y (A.27)

� Sxbt

8

MX
m=1

NX
n=1

m
2
�
2

a
(A2

mn + 2AmnBmn)

� Syat

8

MX
m=1

NX
n=1

n
2
�
2

b
(A2

mn + 2AmnBmn)

By di�erentiation the rate of minimum external energy is:

_
(
@Tc

@Afg

) = � _�

�
f
2
bt

4a
(Ss

x � S
s�1
x ) +

g
2
at

4b
(Ss

y � S
s�1
y )

�
(Afg +Bfg)�

2

� �

�
f
2
bt

4a
(Ss

x � S
s�1
x ) +

g
2
at

4b
(Ss

y � S
s�1
y )

�
_Afg�

2 (A.28)

The �rst part contributes to the load vector G, and is proportional to the displacement.

The second part con tributes to the sti�ness matrix K, and this is proportional to the

external load parameter �.

For linearly varying edge-loads, the modi�ed stress function is:

F = � S
1
x

y
2

2
� (S2

x � S
1
x)
y
3

6b
� S

1
y

x
2

2
� (S2

y � S
1
y)
x
3

6a
� Sxyxy

+

2MX
0

2NX
0

fmn cos(
m�x

a
) cos(

n�y

b
) (A.29)
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And:

F;xx = �Sy(x) � (
�

a
)2

2MX
0

2NX
0

m
2
fmn cos(

m�x

a
) cos(

n�y

b
) (A.30)

F;yy = �Sx(y) � (
�

b
)2

2MX
0

2NX
0

n
2
fmn cos(

m�x

a
) cos(

n�y

b
) (A.31)

The potential energy is:

Tc = t

Z a

0

Z b

0

(Sx(y)u;x + Sy(x)v;y)dxdy (A.32)

= t

Z a

0

Z b

0

�
Sx(y)("x �

1

2
w
2
;x � w;xw0;x) + Sy(x)("y �

1

2
w
2
;y � w;yw0;y)

�
dxdy(A.33)

Ignoring the membrane strain the potential energy is calculated as:

Tc = �t
Z a

0

Z b

0

�
Sx(y)(

1

2
w
2
;x + w;xw0;x) + Sy(x)(

1

2
w
2
;y + w;yw0;y)

�
dxdy (A.34)

Carrying out the integration gives:

Tc = � S
1
xbt�

2

8a

X
mn

m
2(A2

mn + 2AmnBmn) (A.35)

� (S2
x � S

1
x)
�
2
t

4ab

X
mnq

m
2(AmnAmq + 2AmqBmn)Inq

�
S
1
yat�

2

8b

X
mn

n
2(A2

mn + 2AmnBmn)

� (S2
y � S

1
y)
�
2
t

4ab

X
mnq

n
2(AmnAqn + 2AmnBqn)Imq
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where Inq and Imq are the integrals:

Inq =

Z b

0

y sin (
n�y

b
) sin (

q�y

b
)dy =

8><
>:
0 n 6= q , n� q even
b2

4
n = q

�4b2

�2
nq

(n2�q2)2
else

(A.36)

Imq =

Z a

0

x sin(
m�x

a
) sin(

q�x

a
)dx =

8><
>:
0 m 6= q , m� q even
a2

4
m = q

�4a2

�2
mq

(m2
�q2)2

else

(A.37)

The rate of minimum potential energy is:

_
(
@Tc

@Afg
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xbt�

2
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2
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(Aqg +Bqg)Imq

� S
1
xbt�

2

4a
f
2 _Afg � (S2

x � S
1
x)
�
2
t

2ab
f
2
X
q

_AfqIqg

�
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yat�

2

4b
g
2 _Afg � (S2

y � S
1
y)
�
2
t

2ab
g
2
X
q

_AqgImq (A.38)

The external potential energy due to shear force is:

T� = Sxyt

Z a

0

Z b

0

(u;y + v;x)dydx (A.39)

Rearranging and integrating gives:

T� = �Sxyt
Z a

0

Z b

0

(w;xw;y + w0;xw;y + w;xw0;y)dA (A.40)

= �Sxyt
X
mnpq

(AmnApq +BmnApq +AmnBpq)
mq

ab
�
2
I (A.41)
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where I is the in tegral:

I =

Z a

0

Z b

0

cos(
m�x

a
) sin(

p�x

a
) sin(

n�y

b
) cos(

q�y

b
)dxdy (A.42)

=

8>><
>>:
0 if m=p or n=q

1
4�2

�
a

m+p
[cos(�(m + p))� 1] + a

p�m
[cos(�(p �m)) � 1]

�
�

b
n+q

[cos(�(n+ q)) � 1] + b
n�q

[cos(�(n� q))� 1]
�

else

By di�erentiation, the rate of minimum potential energy is:

_
(
@T�

@Afg

) = � _�
�
2
t

ab
(Ss

xy � S
s�1
xy )

X
mn

(Amn + Bmn)(mgImnfg + fnIfgmn)

� Sxy�
2
t

ab

X
mn

_Amn(mgImnfg + fnIfgmn) (A.43)

The �rst part is here the incremental load vector contribution, while the second part is the

incremental sti�ness matrix contribution.

The contribution from lateral pressure to the potential of external energy is:

Tlp = �
Z a

0

Z b

0

pwdxdy (A.44)

= �pab
�2

X
m

X
n

1

mn
[cos(m�)� 1][cos (n�) � 1]Amn (A.45)

By di�erentiation we get:

_
(
@Tlp

@Afg

) = � _�(ps � p
s�1)

ab

�2

1

fg
[cos(f�) � 1][cos (g�) � 1] (A.46)

It is seen that the lateral pressure gives a con tribution to the incremental load vector, but

no contribution to the incremental sti�ness matrix.

URN:NBN:no-3348



154 APPENDIX A. BUCKLING OF UNSTIFFENED PLATES

A.2 Clamped plate

For all derivations in the following, the sub- and superscript c, indicating de
ection in the

cosine-mode, is omitted for increased readability.

A.2.1 Membrane energy

The membrane energy is calculated in the same way as for the simply supported plate.

Substituting the new stress function, and carrying out the integration, we get:

Um =
t

2E

"
F (Sx; Sy; Sxy) +

ab�
4

4

X
m;n

f
2
mn(

m
2

a2
+ 4

n
2

b2
)2 (A.47)

+
ab�

4

2

X
m

f
2
m0(

m

a
)4 + 8ab�4

X
n

f
2
0n(

n

b
)4

#

The rate of minimum membrane potential energy is:

_
(
@Um

@Afg

) =
t

2E

"
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( _fmn

@fmn
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+ fmn
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)2 (A.48)

+ab�4
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+ f0n

_
(
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))(
n

b
)4

#

A.2.2 Bending energy

By substitution of the assumed displacement functions into the general bending energy

expression and carrying out the integration, the bending energy becomes:

Ub =
abD

2
�
4

MX
m=1

NX
n=1

 
A
2
mn(

m
4

16a4
+
n
4

b4
+
m

2
n
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2a2b2
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q=1

AmnAmq

m
4
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(A.49)

The rate of minimum bending energy is:

_
(
@Ub

@Afg

) =
abD

2
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4

 
_Afg(
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4

8a4
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4
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2
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f
4
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(A.50)
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It is seen that the cosine shape functions leads to a non-diagonal bending sti�ness matrix,

in con trast to the sine shape functions used for the simply supported plate.

A.2.3 External energy

Only constant edge loads have been considered for the clamped plate, but linearly varying

edge loads can be included in the same way as for the simply supported plate. The potential

energy due to external in-plane forces is:

Tc = Sxbt�u+ Syat�v (A.51)

where the elongations are calculated as for the simply supported plate. Substituting the

assumed de
ection shape for the clamped plate gives:

Tc = � abt

E
S
2
x +

2�abt

E
SxSy �

abt

E
S
2
y (A.52)

� Sxbt�
2

32a

MX
m=1

NX
n=1
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2
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(A2

mn + 2AmnBmn) + 2

NX
q=1

(AmnAmq + 2AmnBmq)
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2

8b

MX
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NX
n=1

n
2(A2

mn + 2AmnBmn)

The rate of minimum potential energy is:

_
(
@Tc

@Afg

) = � Sxbt�
2

16a
f
2

"
_Afg + 2

NX
q=1

_Afq

#
(A.53)

� Syat�
2
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g
2 _Afg

�
_��2bt

16a
(Ss

x � S
s�1
x )f 2

"
(Afg +Bfg) + 2

NX
q=1

(Afq + Bfq)

#

�
_��2at

4b
(Ss

y � S
s�1
y )g2(Afg +Bfg)

F or the shear force, substitution of the assumed displacements into the energy expression
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used previously for the simply supported plate gives:

T� = Pxy

Z a

0

Z b

0

(
xy � w;xw;y � w0;xw;y � w;xw0;y)dA (A.54)

= 0 (A.55)

The potential of external energy due to lateral pressure is:

Tlp = �
Z a

0

Z b

0

pwdxdy (A.56)

= �p ab
2�

X
m

X
n

1

m
(cos(m�) � 1)Amn (A.57)

By di�erentiation we get:

_
(
@Tlp

@Afg

) = � _�(ps � p
s�1)

ab

2�

1

f
(cos(f�) � 1) (A.58)

As for the simply supported plate, the lateral pressure gives a con tribution to the incre-

mental load vector, but no contribution to the incremental sti�ness matrix.

A.3 Orthotropic plate

A.3.1 Membrane energy

The membrane energy for the orthotropic plate is:

Um =
abt

8
�
4
X
m

X
n

f
2
mn

�
M2222

m
4

a4
+M1111

n
4

b4
+ 2(M1122 + 2M1212)

m
2
n
2

a2b2

�
(A.59)

The rate of minimum membrane energy is
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) =
abt
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)) (A.60)
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A.3.2 Bending energy

The bending energy for the orthotropic plate is:

Ub =
abt

3

96
�
4
X
m

X
n

A
2
mn

�
C1111

m
4

a4
+ C2222

n
4

b4
+ 2(C1122 + 2C1212)

m
2
n
2

a2b2

�
(A.61)

The of minimum potential bending energy is

_
(
@Ub

@Afg

) =
abt
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4
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g
4
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_Afg (A.62)
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Appendix B

Local buckling of sti�ened plates

B.1 Open pro�les

B.1.1 Plate bending energy

The plate bending energy is due to the combined e�ect of the sine-de
ection and the

cosine-de
ection. Writing the total de
ection w as the sum w = ws + wc the bending

energy becomes:

U
p
b =

D

2

Z au

�a=2

Z bu

�b=2

�
(w;xx + w;yy)

2 � 2(1� �)(w;xxw;yy � w
2
;xy)
�
dydx (B.1)

= U
s
b + U

c
b + U

sc
b (B.2)

where au and bu are the upper integration limits. The �rst con tribution, due to sine-

de
ection, becomes:

U
s
b =

D

2
�
4
X
r;p

X
s;q

A
s
rsA

s
pq

�
(
r
2
p
2

a4
+
s
2
q
2

b4
+ 2�

r
2
q
2

a2b2
)I1I2 + 2(1� �)

rspq

a2b2
I3I4

�
(B.3)

159
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When the area of integration is taken as (�a=2; a=2) and (�b=2; b=2) the in tegration con-

stan ts are:

I1 = a=2 r=p (B.4)

=
�2a(r cos �r

2
sin �p

2
� p sin �r

2
cos �p

2
)

�(r � p)(r + p)
(r+p) odd

= 0 else

I2 = b=2 s=q (B.5)

=
�2b(s cos �s

2
sin �q

2
� q sin �s

2
cos �q

2
)

�(s� q)(s+ q)
(s+q) odd

= 0 else

I3 = a=2 r=p (B.6)

=
2a(r sin �r

2
cos �p

2
� p cos �r

2
sin �p

2
)

�(r � p)(r + p)
(r+p) odd

= 0 else

I4 = b=2 s=q (B.7)

=
2b(s sin �s

2
cos �q

2
� q cos �s

2
sin �q

2
)

�(s� q)(s+ q)
(s+q) odd

= 0 else

When the area of integration is tak en as (�a=2; 3a=2) and (�b=2; 3b=2) the integration

constants simplify to:

I1 = a r=p (B.8)

= 0 else

I2 = b s=q (B.9)

= 0 else

I3 = a r=p (B.10)

= 0 else

I4 = b s=q (B.11)

= 0 else

It is seen that integrating to 3a/2 and 3b/2 instead of a/2 and b/2 eliminates the coupling

terms betw een odd and even half wave numbers. This ensures that the continuity of the

plating is accounted for. Hence, for all derivations in the following, 3a/2 and 3b/2 is used

as upper integration limits.
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The second contribution to the plate bending energy, due to cosine-de
ection, becomes :

U
c
b =

D

2
�
4
X
r;p

X
s;q

A
c
rsA

c
pq

�
r
2
p
2

4a4
I1I5 + 4

s
2
q
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b4
I1I6 � 2�

r
2
q
2

a2b2
I1I7 + 2(1� �)

rspq

a2b2
I3I8

�
(B.12)

where, for (�b=2; 3b=2)-in tegration:

I5 = 3b s=q (B.13)

= 2b else

I6 = b s=q (B.14)

= 0 else

I7 = �b s=q (B.15)

= 0 else

I8 = b s=q (B.16)

= 0 else

The last part is the contribution due to coupling betw een sine- and cosine-de
ection.This

term is zero when integrating over (�a=2; 3a=2) and (�b=2; 3b=2):

U
sc
b = 0 (B.17)

B.1.2 Sti�ener bending energy

The web bending energy is:

U
w
b =

Dw

2

Z 3a=2

�a=2

Z h

0

�
(v;xx + v;zz)

2 � 2(1� �)(v;xxv;zz � v
2
;xz)
�
dzdx (B.18)
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Inserting the sti�ener de
ection function, and integrating, the result is:
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X
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r
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X
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X
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(B.19)

The integration coeÆcients are I1 = I3 = a for the current integration limits.

The bending sti�ness is found by inserting the expression for V1m found from the continuity

condition, and di�erentiating with respect to the rate and displacement amplitudes. As

the resulting expressions are quite lengthy, they are not given here.

The 
ange bending energy is:

U
f
b =

EIf

2

Z 3a=2

�a=2

(v;xxjz=h)
2
dx +

GJf

2

Z 3a=2

�a=2

(v;xzjz=h)
2
dx (B.20)

where the �rst part is due to in-plane bending of the 
ange, and the second is due to

torsion of the 
ange. EIf is the bending sti�ness and GJf the torsional sti�ness of the


ange. Inserting the sti�ener de
ection function, and integrating, the 
ange bending energy
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becomes:

U
f
b =

EIf

2a4
�
4
X
rs

r
2
s
2
I1(V1rV1s + V2rV2s + 2V1rV2s) (B.21)

+
GJf

2h2a2
�
2
X
rs

rsI3(V1rV1s +
�
2

4
V2rV2s + �V1rV2s)

where again I1 = I3 = a. As for the web, the bending sti�ness is found by inserting the

expression for V1m and di�erentiating with respect to the rate and displacement amplitudes.

B.1.3 Plate membrane energy

The plate membrane energy is

U
p
m =

E

2(1 � �2)

Z
Vp

("2x + "
2
y + 2�"x"y +

1� �

2


2
xy)dVp

=
E

2(1 � �2)

Z
Vp

�
("p;Fx + "

p;D
x )2 + ("p;Fy + "

p;D
y )2 + 2�("p;Fx + "

p;D
x )("p;Fy + "

p;D
y ) +

1� �

2


2
xy

�
dVp

=
E

2(1 � �2)

Z
Vp

�
("p;Fx )2 + ("p;Fy )2 + 2�("p;Fx )("p;Fy )

�
dVp

+
E

2(1 � �2)

Z
Vp

�
("p;Dx )2 + ("p;Dy )2 + 2�("p;Dx )("p;Dy ) +

1� �

2


2
xy

�
dVp

= U
p;F
m + U

p;D
m (B.22)

The coupling betw een"p;D and "
p;F is zero, since "p;F is constant and the integral of "p;D

over the plate area is zero.

The de
ection part, U p;D
m , is considered �rst. The stress function for the plate, F , may be

written F = F
s + F

c + F
sc. The membrane energy for the plate may be written

U
p;D
m = U

p;s
m + U

p;c
m + U

p;sc
m (B.23)

where U
p;s
m is the membrane energy due to sine-de
ection, U p;c

m is that due to cosine-
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de
ection, and U
p;sc
m is due to coupling terms. It is found that:

U
p;s
m =

abt

2E
�
4
X
m;n

(f smn)
2(
m

2

a2
+
n
2

b2
)2 (B.24)

+
abt

E
�
4
X
m

(f sm0)
2(
m

a
)4 +

abt

E
�
4
X
n

(f s0n)
2(
n

b
)4

and

U
p;c
m =

abt

2E
�
4
X
m;n

(f cmn)
2(
m

2

a2
+ 4

n
2

b2
)2 (B.25)

+
abt

E
�
4
X
m

(f cm0)
2(
m

a
)4 + 16

abt

E
�
4
X
n

(f c0n)
2(
n

b
)4

These are the same expressions as derived previously for the unsti�ened plate, only multi-

plied with 4. The coupling term is in general:

U
p;sc
m = U

p
m(F

sc
; F

sc) + U
p
m(F

s
; F

c) + U
p
m(F

sc
; F

s) + U
p
m(F

sc
; F

c) (B.26)

The latter tw oterms becomes zero for the curren tareas of integration. The resulting

expressions for the other tw o terms are:

U
p
m(F

sc
; F

sc) =
abt

2E
�
4
X
m;n

(f scmn)
2(
m

2

a2
+
n
2

b2
)2 (B.27)

+
abt

E
�
4
X
n

(f s0n)
2(
n

b
)4

U
p
m(F

s
; F

c) =
abt

E
�
4
X
m;n

f
s
m;2nf

c
mn(

m
2

a2
+ 4

n
2

b2
)2 (B.28)

+ 2
abt

E
�
4
X
m

f
s
m;0f

c
m;0

m
4

a4
+ 32

abt

E
�
4
X
n

f
s
0;2nf

c
0;n

n
4

b4
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B.1.4 External energy

The shear energy is calculated as:

T� = 4Pxy

Z a

0

Z b

0

(
xy � w;xw;y � w0;xw;y � w;xw0;y)dA (B.29)

= �4Pxy

Z a

0

Z b

0

(ws;xws;y + ws0;xws;y + ws;xws0;y)dA (B.30)

Only the sine-terms contribute to the shear energy. Inserting the displacement function

and carrying out the integration gives:

T� = � 2Pxy

�
2

ab

X
rspq

(As
rsA

s
pq +A

s
rsB

s
pq + B

s
rsA

s
pq)rqI (B.31)

where the integration constant I is:

I =

8>><
>>:
0 if r=p or s=q

1
4�2

�
a

r+p
[cos(�(r + p))� 1] + a

p�r
[cos(�(p � r))� 1]

�
�

b
s+q

[cos(�(s+ q)) � 1] + b
s�q

[cos(�(s� q)) � 1]
�

else

The potential of external energy due to lateral pressure is:

Tlp = �2
Z a

0

Z 3b=2

�b=2

pwdxdy (B.32)

= 2p
ab

�2

X
m

X
n

1

mn
(�n� cos(n�)2 sin (n�))(cos(m�)� 1)Ac

mn (B.33)

It is seen that only the cosine-terms contribute to the lateral pressure energy.
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B.2 Closed pro�les

B.2.1 Corner node rotational energy

The rotation energy for the in tersection betw een plate 1 and2 at node a is given as an

example. The con tributions fromthe other connections are similar. However, the local

coordinate system for each plate must be properly chosen in order to get the rotation signs

correct. The di�erence in rotation betw een plate 1 and 2 at the corner node a is:

��12 = �1a � �2a (B.34)

The rotations are :

�1a =
@w1

@y

����
y=b1

=
�

b1

X
mn

nA
1
mn sin (

m�x

a
) cos(n�) (B.35)

�2a =
@w2

@y

����
y=b2

=
�

b2

X
mn

nA
2
mn sin (

m�x

a
) cos(n�) (B.36)

The potential energy due to rotation is:

U� =
1

2
k�

Z
a

(��)212dx (B.37)

=
1

4
k��

2
a

X
m

X
nq

nq cos(n�) cos(q�)(
A
1
mn

b1
� A

2
mn

b2
)(
A
1
mq

b1
�
A
2
mq

b2
) (B.38)

The rotational sti�ness is found by di�erentiating t wice with respect to the displacement

amplitudes:

@
2
U�

@A
1
fgA

1
fq

=
1

2
k��

2
gq

a

b
2
1

(B.39)

@
2
U�

@A1
fgA

2
fq

= �1

2
k��

2
gq

a

b1b2
(B.40)

@
2
U�

@A
2
fgA

2
fq

=
1

2
k��

2
gq

a

b
2
2

(B.41)
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Appendix C

Global buckling of sti�ened panels

C.1 Membrane energy

The membrane energy can be written as a sum of sine, cosine and coupling contributions:

Um = U
s
m + U

c
m + U

sc1
m + U

sc2
m (C.1)

The sine contribution is:

U
s
m =

aB�
4

2

X
m

X
n

(f s1mn)
2(K1s� K2s2

K1s
) (C.2)

The cosine contribution is:

U
c
m =

aB�
4

2

X
m

X
n

(f c1mn)
2(K1c � K2c2

K1c
) (C.3)

The coupling contributions are:

U
sc1
m =

aB�
4

2

X
m

X
n

(f sc1mn)
2(K1sc � K2sc2

K1sc
) (C.4)

U
sc2
m = aB�

4
X
m

X
n

f
s1
m;2nf

c1
mn(K1c � K2c2

K1c
) (C.5)
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C.2 Bending energy

The bending energy can be written as a sum of a sine and a cosine con tribution. The

coupling terms vanish upon integration.

Ub = U
s
b + U

c
b (C.6)

The sine contribution is:

U
s
b =

aB�
4

2

X
m

X
n

�
D11(

m

a
)4 +D22(

n

B
)4 + 2(D12 + 2D33)(

mn

aB
)2
�
(As

mn)
2 (C.7)

The cosine contribution is:

U
c
b =

B�
4

2

X
rp

X
s

�
4D11

r
2
p
2

a4
I5 +D22

s
4

4B4
I6 � 2D12(

rs

aB
)2I7 + 4D33

s
2
rp

a2B2
I8

�
A
c
rsA

c
ps

(C.8)

where the integration constants are:

I5 = a r=p (C.9)

= 0 else

I6 = 3a r=p (C.10)

= 2a else

I7 = �a r=p (C.11)

= 0 else

I8 = a r=p (C.12)

= 0 else

C.3 External energy

The external energy due to in-plane compression or tension is the sum of a sine and a

cosine part:

Tc = T
s
c + T

c
c (C.13)
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The coupling terms vanishes upon integration. The sine contribution is:

T
s
c = � N1�

2

2a

X
m

X
n

m
2((As

mn)
2 + 2As

mnB
s
mn) (C.14)

� N2�
2

2B

X
m

X
n

n
2((As

mn)
2 + 2As

mnB
s
mn)

The cosine contribution is:

T
c
c = � N1�

2

2a

X
m

X
n

m
2((Ac

mn)
2 + 2Ac

mnB
c
mn) (C.15)

� N2�
2

8B

X
m

X
n

n
2

"
((Ac

mn)
2 + 2Ac

mnB
c
mn) + 2

X
r

(Ac
mnA

c
rn + 2Ac

mnB
c
rn)

#

The energy due to shear load is only due to sine-de
ection:

T� = �N3

Z 2a

0

Z 2B

0

(w;xw;y + w0;xw;y + w;xw0;y)dA (C.16)

= �N3

X
mnpq

(As
mnA

s
pq +B

s
mnA

s
pq +A

s
mnB

s
pq)

mq

aB
�
2
I (C.17)

where I is the in tegral:

I =

8>><
>>:
0 if m=p or n=q

1
�2

�
a

m+p
[cos(�(m + p))� 1] + a

p�m
[cos(�(p �m)) � 1]

�
�

B
n+q

[cos(�(n+ q)) � 1] + B
n�q

[cos(�(n� q))� 1]
�

else

(C.18)

The energy due to lateral pressure is only due to cosine-de
ection:

Tlp = �2paB
�

X
m

X
n

1

m
(cos(m�) � 1)Ac

mn (C.19)
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Appendix D

Coupled local and global buckling

D.1 Coupled local and global buckling for a sti�ened

panel

D.1.1 Global bending

The global bending energy for the sti�eners is:

U
s;g
b = EIa(

�

a
)4A2

g

X
Ns

X
m

X
n;q

m
4
kmnkmq sin(

n�ys

B
) sin (

q�ys

B
) (D.1)

The global bending energy for the plating is:

U
p;g
b =

aBD

2
�
4
A
2
g

MgX
m=1

NgX
n=1

k
2
mn(

m
2

a2
+

n
2

B2
)2 (D.2)

D.1.2 Global membrane stretching

The global membrane energy for the plate is:

U
p
m =

Et

2
(A2

g + 2AgBg)
2
FG5 (D.3)
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The global membrane energy for the sti�eners is:

U
s
m = 2EAsa(A

2
g + 2AgBg)

2
FG7 (D.4)

The integration constants used are:

I1(y) =
a

2

X
m

X
n;q

m
2
kmnkmq sin (

n�y

B
) sin(

q�y

B
) (D.5)

I3 =
aB

4

X
m

X
n

m
2
k
2
mn (D.6)

I5(x) =
B

2

X
m;p

X
n

n
2
kmnkpn sin(

m�x

a
) sin (

p�x

a
) (D.7)

I7 =
aB

4

X
m

X
n

n
2
k
2
mn (D.8)

FG5 = 4
B

a
FG12 +

4

a
(
�

a
)2I3FG1 +

1

16
(
�

a
)4FG3 (D.9)

+ 4
a

B
FG22 +

4

B
(
�

B
)2I7FG2 +

1

16
(
�

B
)4FG4 (D.10)

FG7 =
X
Ns

(
FG12

a2
+
FG1

2a
(
�

a
)2FG6(ys) +

1

16
(
�

a
)4FG62(ys) (D.11)

FG6 =
X
m

X
nq

m
2
kmnkmq sin (

n�ys

B
) sin (

q�ys

B
) (D.12)

FG1 =
��2(tI3 +As

P
Ns
I1(ys))

2a2(Bt+NsAs)
(D.13)

FG2 = � 1

2a
(
�

B
)2I72a

2(Bt+NsAs) (D.14)

FG3 = 4ab
X
m;p

X
n;q;s;t

m
2
p
2
kmnkmqkpskptI11(n; q; s; t) (D.15)

FG4 = 4ab
X
m;p;r;v

X
n;q

n
2
q
2
kmnkpnkrqkvqI12(m; p; r; v) (D.16)
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I11(n; q; s; t) =
1

8
if

8>><
>>:
�n + q + s� t = 0

n+ q + s+ t = 0

n� q + s� t = 0

�n � q + s+ t = 0

(D.17)

= �1

8
if

8>><
>>:
�n+ q + s+ t = 0

n� q + s+ t = 0

�n� q + s� t = 0

n+ q + s� t = 0

(D.18)

I12(m; p; r; v) =
1

8
if

8>><
>>:
�m + p+ r � v = 0

m+ p + r + v = 0

m� p+ r � v = 0

�m � p + r + v = 0

(D.19)

= �1

8
if

8>><
>>:
�m+ p+ r + v = 0

m� p + r + v = 0

�m� p+ r � v = 0

m+ p+ r � v = 0

(D.20)

D.1.3 Coupling between local and global buckling

The potential energy due to coupling betw een local membrane stretching and global bend-

ing is:

U
c = � 4Et(

�

a
)2zg"

p;F
AgI1 + 4E(

�

a
)2(bf tf(h � zg) + htw(

h

2
� zg)"

s;F
AgI2 (D.21)

+ 2E(
�

a
)2AgI2

Z
As

"
s;D(z � zg)dA

where

I1 =
aB

�2

X
m

X
n

m

n
kmn(cos(m�) � 1)(cos (n�) � 1)) (D.22)

I2 = �a

�

X
Ns

X
m

X
n

mkmn(cos(m�) � 1)) sin (
n�ys

b
) (D.23)
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D.1.4 Global external energy

The global potential energy due to shear force is:

T� = �Sxyt�
2

aB
(Ag + 2Agbg)

X
m;n;p;q

mqkmnkpqI (D.24)

where I is the in tegral:

I =

Z 2a

0

Z 2B

0

cos(
m�x

a
) sin (

p�x

a
) sin (

n�y

B
) cos(

q�y

B
)dxdy (D.25)

=

8>><
>>:
0 if m=p or n=q

1
�2

�
a

m+p
[cos(�(m + p))� 1] + a

p�m
[cos(�(p �m)) � 1]

�
�

B
n+q

[cos(�(n+ q)) � 1] + B
n�q

[cos(�(n� q))� 1]
�

else

The global potential energy due to lateral pressure is:

Tlp = �4paB
�2

Ag

X
m

X
n

1

mn
[cos(m�) � 1][cos(n�)� 1]kmn (D.26)
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