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Abstract

This thesis presents results from an experimental investigation of hydrodynamic forces
on a cylinder under prescribed harmonic motions in uniform flow. The purpose of the
experiments has been to find hydrodynamic coefficients for pure in-line (IL) oscillations
and investigate the interaction between IL and cross-flow (CF) vortex induced vibrations
(VIV). Hydrodynamic forces are hence measured in both directions.

The experiments are performed in a towing tank of 40m, using a rigid cylinder of as-
pect ratio 20. The cylinder is installed in a yoke structure which in turn is suspended to
an overhanging tow carriage. Model oscillations are achieved by oscillating the yoke on the
carriage, while the flow velocity is obtained by moving the carriage at constant speed in
still water. All experiments are performed at Reynolds number 2.4·104.
Three main types of experiments are carried out:

1. IL oscillations where the frequencies and amplitudes are varied to obtain a detailed
map of the forces acting on a cylinder in the pure IL VIV regime.

2. Two degree-of-freedom motions resembling the oscillation patterns observed in a flex-
ible beam experiment.

3. Two degree-of-freedom motion tests where the shape and direction of the orbital
paths are systematically varied.

From the detailed knowledge of the excitation forces in the pure IL VIV regime, obtained
in the first set of experiments, a novel approach for determining the effect of structural
damping is introduced. This approach makes it possible to distinguish between the effect
of structural damping and the effect of mass ratio on the response of a body subjected
to VIV. A response model for predicting IL VIV is presented based on this method. The
results also reveal that IL oscillations will give rise to CF forces that contribute to an
earlier start-up of CF VIV, compared to conditions where the IL motion is restrained.

The results of the second set of experiments indicate that hydrodynamic coefficients from
forced oscillation experiments and the assumption that strip theory is valid, can be used to
predict two degree-of-freedom response of a flexible beam. In the third set of experiments it
is revealed that changing the shape and direction of the orbital path significantly changes
the forces acting on the cylinder. Hydrodynamic forces at multiples of the oscillation
frequency, known as higher order harmonic forces, are also measured.
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Chapter 1

Introduction

1.1 Background and motivation
In recent years new deep water oil and gas fields have been developed in areas with very
irregular seabed conditions, and this trend is expected to continue in the coming years.
Installation of pipelines in such areas is likely to result in a large number of free spans.
Ocean currents will here lead to separated flow and vortex shedding. These vortices will
again induce forces on the pipe that may result in horizontal and vertical oscillations. This
phenomenon is known as vortex induced vibrations (VIV), and the horizontal and vertical
oscillations are denoted in-line (IL) and cross-flow (CF) respectively. These oscillations will
give time varying stresses in the pipe, and hence lead to accumulation of fatigue damage.

Vortex induced vibration of slender marine structures has been the subject of extensive
research for several decades. The focus of the research has to a large degree been on off-
shore risers. Risers can in this respect be regarded as infinitely long structures where the
boundary conditions are of minor importance. Free spanning pipelines are, on the other
hand, characterized by:

• Relatively short spans, i.e. the boundary conditions become important for the dy-
namics of the span.

• Large variety of span configurations.

• Proximity to seabed. This might influence the inflow conditions and can also cause
nonlinear response due to seabed interaction for large oscillations.

• Damping at span shoulders due to pipe soil interaction.

• Dynamic interaction with adjacent spans, known as multi-span.

The response in IL direction has often been neglected in earlier VIV studies mainly because
CF response amplitudes are larger. However, studies have shown that for free spanning
pipelines fatigue damage due to IL response may become significant and even more critical
than CF. There are two reasons for this:

• IL response is initiated at lower current velocity than CF, and will hence take place
more often. This is easily realized by taking statistics of current velocity into con-
sideration.

1



2 CHAPTER 1. INTRODUCTION

• IL response will take place at two times the frequency of CF, which means that
number of stress cycles due to IL will become two times the number of CF cycles.

Models exist for estimation of response and thus fatigue damage accumulation due to VIV.
These are parametric response models, models based on empirical force coefficients and
direct solution of the hydroelastic problem by computational fluid dynamics (CFD). The
first method is by far the most used for free spanning pipelines while the second method
is mainly used for riser analysis. CFD based methods are still too demanding with respect
to computing time and is therefore a research method and not a tool for engineers.

A large number of parameters are important for the response caused by VIV. Experi-
ments performed by different experimental methods and by different research groups are
often hard to compare because several of these parameters are related and are different
from one set of experiments to the next. Models for prediction of VIV response, based on
empirical force coefficients have hence inherent uncertainties. Three effects are in particular
important in this context:

• Data for hydrodynamic coefficients are found from tests with oscillating rigid cylin-
ders and applied on flexible beams according to a strip theory approach. This means
that forces at a specific position on a beam are assumed to depend on the local
oscillation condition. Hence, no "hydrodynamic communication" along the beam is
accounted for. The validity of this approach has never been studied in detail.

• CF and IL response have often been considered separately, and the interaction be-
tween the two response modes has hence been neglected. A flexible beam may have
IL response without any CF, but for most cases of practical interest IL will be present
as soon as CF response occurs. Observation of VIV for flexible beams clearly indicate
that there is a strong interaction between the two types.

• The amplitudes of IL response are well known for free oscillations of a rigid cylinder
with insignificant damping. This type of experiments will, however, only give data
for fixed combinations of amplitude and frequency. However, real structures may
have significant damping. In order to predict the response for such cases one have
to know the hydrodynamic coefficients for arbitrary combinations of amplitude and
frequency. This type of data has so far not been available.

Failure of a submarine pipeline is considered unacceptable from an environmental perspec-
tive and repair of deep water pipelines is also extremely expensive. Hence, the acceptable
probability of failure is low (typically 10−4). Due to the uncertainty in the models for pre-
diction of fatigue damage, high safety factor are applied on the estimated result in order
to achieve the desired safety level. If the calculation indicate that the fatigue damage over
the design life of the pipeline is too high, the following measures can be taken:

• Rerouting of the pipeline to avoid areas of uneven seabed. This is often not an option
either because the particular area can not be avoided or because the actual length of
the span is found in the as-laid survey

• Seabed intervention

• Rock dumping
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Figure 1.1: Results from a flexible beam experiment performed for the Ormen Lange
pipeline project. The lower figure shows maximum response amplitude in IL and CF
direction, while the upper figure shows the corresponding response trajectory at mid-span.
The increasing Vr is generated by increasing the flow velocity. For definition of Vr see
chapter 2

The motivation for the present work is that we still do not have a full understanding of
VIV for slender marine structures. Various empirical models for prediction of VIV do not
give the same results, and various experimental methods may lead to diversing conclusions.
The effect of IL vibrations has not been included in empirical force coefficient models due
to lack of data. Hence, we do not know much about the actual forces acting on a slender
marine structure subjected to VIV, as the response in most cases is a combination of IL
and CF motion.

1.2 Approach of the present work
The work presented in this thesis is based on further investigations of findings from the
large experimental program carried out for the Ormen Lange pipeline project. These
experiments were carried out by towing a flexible beam representing a scaled model of a
free span for the actual pipeline. This type of experiment allows response both in IL and
CF direction. An example of one of the test series is shown i Figure 1.1. Some of the main
findings from the project were:

• The gradual increase of CF response for increased current speed was slower than seen
for pure CF tests with rigid cylinders, i.e. the maximum oscillation amplitude was
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approximately the same, but it occurred at a higher reduced velocity.

• For cases where the dominating IL mode had higher order than the dominating CF
mode, the maximum amplitude was significantly lower than found from pure CF
tests. Large CF amplitudes were seen only for cases where the 2nd IL eigenfrequency
was sufficiently far from the 1st IL eigenfrequency, i.e. relatively short spans where
lateral stiffness was controlled by bending and less influenced by axial tension.

• The start up of CF response was seen for a lower reduced velocity than predicted
from pure CF experiments.

The reason for the new findings was expected to be the fact that the flexible cylinder
was free to oscillate in IL direction. In this thesis the effect of these IL oscillations are
investigated. The motivation for investigating this is twofold:

1. Fatigue damage in IL direction.

2. IL motion will influence and change the CF motion, and hence the fatigue damage
in CF direction.

The investigation presented in this thesis has been performed by forced oscillation ex-
periments of a short rigid cylinder in constant flow. From this type of experiment the
hydrodynamic force acting on the cylinder can be extracted, and this has been used to
understand how IL response can influence CF vortex induced vibrations. Experiments
designed to investigate three conditions were performed:

1. Pure IL oscillations were performed in order to map the hydrodynamic forces acting
on the cylinder for arbitrary combinations of oscillation amplitude and frequencies
in the regime where pure IL VIV is seen. From these forces the magnitude of the
excitation force can be extracted, which is important for how sensitive these oscilla-
tions are to damping. Information on the added mass can also be obtained, which
is important for predicting the oscillation frequency. In addition, the mean IL force
gives the actual drag coefficient. Forces measured in the CF direction may give some
answers to why CF response is seen for lower current velocities for conditions where
the cylinder is free to oscillate in IL direction.

2. The second set of tests were performed in order to investigate if strip theory can
be used when modeling VIV of flexible beams, i.e. investigate whether the force at
one point along a flexible beam can be found from the oscillation state at this point
only. Trajectories for a given flow velocity, as shown i Figure 1.1, were found for 9
section along the length of the flexible beam tested in the Ormen Lange Project. Two
harmonic functions (IL and CF components), were fitted to the measured trajectories
and tested by the forced oscillation method. If strip theory is valid the transfer of
energy from the fluid to the cylinder should balance the structural damping and the
measured added mass should correspond to the measured oscillation frequency.

3. The third step of the investigation was to perform a systematic variation of shape
and direction of orbital paths in order to investigate if there were certain shapes
that would extract energy and other shapes that would absorb energy. The aim of
this investigation was to see if the hydrodynamic forces would give information on
occurrence of orbits possible for freely oscillating cylinders and a clue on how to
predict response for two degrees of freedom cases.
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1.3 Outline of thesis
The thesis is divided into the following chapters:

Chapter 2 gives a brief overview of the VIV phenomenon and defines some of the most
important parameters describing VIV. The experimental methods used to investigate VIV
are addressed, and some of the most important contributions are referred. A discussion on
how the results from various types of experiments relates to each other is also included. The
last part gives an introduction to two methods for modeling VIV of free spanning pipelines.

In chapter 3 a detailed description of the apparatus used to perform the experiments
is given, and controlling parameters for all experiments are described.

Chapter 4 gives an overview of how the post-processing of the measured data is performed.
The various hydrodynamic coefficients used to present the results from the experiments
are also defined in this chapter.

Chapter 5 presents the uncertainty analysis carried out to determine the reliability of
the hydrodynamic coefficients presented. The chapter goes into some details on the theory
of uncertainty analysis and it shows how the theory has been applied for the experimental
results presented in this thesis.

Chapter 6 presents the results from the pure IL experiments. The main results are contour
plots of drag coefficient, added mass coefficient and dynamic excitation coefficient. The
results are compared with results from free oscillation experiments found in the literature.

Chapter 7 presents results from the investigation of the validity of strip theory in VIV
modeling. Oscillation patterns (trajectories) taken from 9 cross sections along the length
of the span of a flexible beam experiment have been tested by forced oscillation experi-
ments in two degree-of-freedom.

Chapter 8 presents the results from a systematic variation of shape and direction of orbital
paths. The chapter has been divided into sections describing the main findings from the
investigation where some of the experimental results are included in order to describe these
findings. Results from all experiments are given in Appendix E.

Chapter 9 presents conclusions from the experimental work by highlighting the contri-
butions from the thesis, and discusses further work on this topic.





Chapter 2

Theory

The intension of the first two sections of this chapter is to give a brief introduction to
the phenomena vortex shedding and VIV. The topics are included herein for completeness
and more elaborate discussions are given in Ph.D theses by Halse [17], Vikestad [61] and
Skaugset [45]. For detailed reading on the topics, reference is made to books by Blevins
[5] and Sumer & Fredsøe [52].

The various experimental methods used to investigate VIV are addressed in section 2.3.
The aim of the discussion is to highlight what information the various experiments give
and what the limitations of the methods are. Earlier experimental work is included in the
discussion as examples. For a more complete overview of previous work reference is made
to review articles by Sarpkaya [44] and Williamson & Govardhan [62]. In the fourth section
of the chapter two methods used to model VIV of free spanning pipelines are reviewed.

2.1 Vortex Shedding

2.1.1 The Navier-Stokes equation

Viscous flow is described by the Navier-Stokes equation:

∂U

∂t
+ (U · ∇)U = −1

ρ
∇p +

ν

ρ
∇2U + g (2.1)

where U is the fluid velocity vector ([u v w]T ), ∇ is the differential operator, ρ is the
density of the fluid, p is the pressure, ν is the kinematic viscosity and g is the acceleration
of gravity. Without the viscosity term the Navier-Stokes equation reduces to the well
known Bernoulli equation:

ρ
∂φ

∂t
+ p +

1

2
ρU2 + ρgz = constant (2.2)

2.1.2 Boundary layer and vortex formation

In an ideal fluid the flow lines around a cylinder in uniform current can be drawn as indi-
cated in Figure 2.1A. For such flow conditions, also referred to as potential flow, the water
particles will have the same velocity in the downstream stagnation point as in the up-
stream. Hence, the water particles are accelerated upstream, reaching a maximum velocity

7
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Figure 2.1: Flow and pressure distribution around a circular cylinder. Figure from Pet-
tersen [41].

at θ = 90o, and decelerated downstream. For this ideal fluid case the Bernoulli equation
is valid, see Eqn. (2.2), and we readily see that velocity variation causes a pressure drop
upstream and a pressure increase downstream. The pressure distribution over the cylinder
for an ideal fluid is shown in Figure 2.1B. The pressure distribution is symmetric, leading
to zero drag, which is known as d’Alembert’s paradox. In a viscous flow the particles close
to the cylinder will loose energy due to friction. The particles may then not have enough
kinetic energy to meet the increased pressure field downstream. The pressure distribution
from an experiment, see Figure 2.1B, shows that the pressure distribution is asymmetric
for a viscous flow. This leads to a drag force on the cylinder.

The boundary layer is the layer in which the flow velocity is increased from zero at the body
surface to the free stream velocity at some distance away from the surface, see Figure 2.2.
The fluid field can then be divided into two parts:

1. Near the body surface where the velocity gradient normal to the body surface is
large, and the shear stress can not be neglected.

2. Outside the boundary layer where the viscosity can be neglected and the flow can be
determined by potential theory, i.e. the Bernoulli equation is valid (Eqn. (2.2)).

Several ways of defining the thickness, δ, of the boundary layer have been proposed. One
is to define the thickness as the distance between the surface and where the flow velocity
is 99% of the free flow velocity. The boundary layer thickness increases with increasing
viscosity.

When the kinetic energy of the water particles in the boundary layer is not high enough
to overcome the downstream pressure field, the flow will separate from the cylinder as
illustrated in Figure 2.2B. The point on the cylinder where this happens is referred to as
the separation point. Upstream the separation point is the boundary layer region. Down-
stream the separation point is the wake region. The continuation of the boundary layer,
downstream the separation point, is referred to as the shear layer.
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Figure 2.2: Definition sketch. Figure from Sumer and Fredsø [52].

Figure 2.3: Alternating vortex shedding. Figure from Sumer and Fredsøe [52].

Back flow from behind the cylinder meets with the flow from ahead in the separation
point and subsequently advances outwards, separating the shear layer from the cylinder.
The vortex formed behind cylinder feeds on the the circulation from the separated shear
layer. As it grows, it attracts the shear layer from the other side of the wake (see Fig-
ure 2.3a). The approaching shear layer with oppositely signed circulation eventually cuts
off the supply of vorticity to the growing vortex. The vortex is then shed and moves down-
stream with the local velocity, see Figure 2.3b, and together with other vortices form the
von Kármán vortex street.

2.1.3 Flow regimes

The flow pattern around a stationary cylinder has been investigated by several researcher
by the use of various flow visualization techniques. Flow regimes have been classified in
several manners, but they are all based on the dimensionless parameter Reynolds number,
Re. Re denotes the relation between the inertia force and the viscous force in the boundary
layer, and is defined as.

Re =
Inertia force

Friction force
=

ρUD

µ
=

UD

ν
(2.3)

A crude division of the flow regimes is given by Blevins [5]:

• 300 < Re < 1.5 · 105 Subcritical regime

• 1.5 · 105 < Re < 3.5 · 105 Transitional regime
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Figure 2.4: Description of flow regimes. Figure from Sumer and Fredsøe [52].

• Re > 3.5 · 105 Supercritical regime

A more detailed classification is given by Sumer & Fredsøe [52], see Figure 2.4.

One should be aware that the division of flow regimes into Reynolds number ranges is
not definite. Disturbances may have a profound effect on the flow and change the Re
ranges for where the various regimes are seen. Disturbances that may influence the flow
can be surface roughness, inflow turbulence and shape imperfections of the cylinder.

2.1.4 Vortex shedding frequency

Strouhal was the first to discover that for varying current velocity U, the vortex shedding
frequency, fs, behind a stationary cylinder is proportional to U/D. The proportionality
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constant has later been named the Strouhal number, St, and is defined as:

St =
fsD

U
(2.4)

The Strouhal number as a function of the Reynolds number for a stationary circular cylin-
der is shown in Figure 2.5 (a) for the subcritical flow regime. St for Re > 3.5 · 105 is shown
in Figure 2.11 (a).

The shedding of vortices generates time varying pressure over the cylinder. Integrated
over the cylinder surface this can give rise to time varying forces both in-line (IL) with the
flow and transverse (CF) to the flow. The frequency of the oscillating force in CF direction
is given by the vortex shedding frequency, while the oscillating frequency in IL direction
has a frequency twice the vortex shedding frequency.

2.1.5 Oscillating lift force

The time varying, or oscillating, force in CF direction is referred to as the lift force. The
magnitude of the oscillating lift force as a function of Re is shown in Figure 2.5 (b), for
the subcritical flow regime (note that the Re axis is in log-scale). The lift coefficient CL′

is defined as:
CL′ =

2Lrms

ρU2Dlc
(2.5)

Lrms is the root-mean-square value of the force in CF direction, measured over an vanish-
ingly small length lc. The figure shows a strong increase of the lift force from Re≈1600
to approximately 20.000, where the lift force reaches an almost constant value. Norberg
[39] explains the increased lift force by the transition to a turbulent free shear layer. For
Re≈1600 vortices are observed in the shear layer of the near wake. These vortices in-
troduce additional shear stress to the near wake and to balance this the formation region
shrinks and base suction increases. For increasing Re the transformation to turbulent shear
layer move closer to the separation point. At approximately Re=10.000 the transition has
reached a position close enough to the separation point so that the actual position of the
wake transition has a diminishing relative importance.

Sarpkaya [44] has highlighted the importance of this transition in the shear layer for ex-
periments performed in the subcritical flow regime. He refers to results from Zdravkovich
[66] showing that from Re=5.000 to Re=14.000 the eddy formation length decreases from
1.9D to 1.1D. At the same time the distance to the transition from laminar to turbulent
free shear layer decreases from 1.0D to 0.4D. The transition in the free shear layer, from
laminar to turbulent, is expected to disappear at a Re of approximately 20.000.

2.2 Vortex Induced Vibrations

In the previous section an introduction to the vortex shedding around a fixed cylinder
was given, and it was shown that the process give rise to an oscillating force in both
IL and CF direction. For a marine structure to be characterized as "fixed", its natural
frequency must be much higher than any excitation frequency. For many slender marine
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(a) Strouhal number, St (b) Lift coefficient, CL′

Figure 2.5: Results from fixed cylinder experiments, reported by Norberg [39].

structures, such as a free spanning pipeline, this is often not the case. An interaction
between the eigenfrequency of the structure and the shedding frequency causes vortex
induced vibrations.

2.2.1 Characteristics of VIV

As stated by Sarpkaya [44] an all inclusive definition of a self-exciting ’Bluff body’ does
not exist. It can only be described in general terms. In the following the characteristic
properties of the phenomenon known as VIV are described.

The origin of the phenomenon is the separated flow, as described in the previous sec-
tion, where the two shear layers interacts with each other and cause an unsteady wake.
When the shedding frequency and the natural frequency of the ’Bluff body’ approach a
common frequency, the body starts to experience small oscillations (due to dynamic am-
plification). These small oscillations will help to increase the correlation length of the
vortices, which is one of the characteristic properties of VIV. For a fixed cylinder the vor-
tex shedding process is correlated only a few diameters along the length of the cylinder.
Typically 3-6 diameters for the subcritical flow regime, see Blevins [5]. Hence, the forces
acting on the cylinder has different phase over the length of the cylinder and the resulting
force is small. When the correlation increases the resulting force on the cylinder increases
and the oscillation amplitude will also increase.

When the oscillation amplitude in CF direction reach approximately 0.1D, or 0.02D in
IL direction, increased vortex strength is seen (Sarpkaya [44]). This will further con-
tribute to increase the oscillation amplitude. If the flow velocity and thus the oscillation
amplitude is further increased, the spacing between the shear layers defining the virtual
body increases. This apparent increase in D is compensated by the increased flow velocity,
thus keeping the shedding frequency nearly constant (see Eqn.( 2.4)). This represents a
change from the linear increase in shedding frequency for increasing flow velocity, i.e. the
shedding frequency is lower than predicted by the Strouhal relation. This represent the
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start of the self-excitation region, or more commonly known as the lock-in region. The
vortex shedding frequency matches the oscillation frequency of the body at a frequency
apparently dominated by the still water natural frequency of body. However, the frequency
is changed somewhat due to a change in virtual mass (i.e. added mass or hydrodynamic
mass) caused by the vortex shedding process. The effect of the change in hydrodynamic
mass is influenced by the mass ratio of the body. The oscillation frequency is more influ-
enced by this change for low mass ratio bodies than for heavier bodies.

For increasing flow velocity the oscillation amplitude will increase until some maximum
value is reached. This value is typically 1D for purely transverse oscillations at subcriti-
cal flow conditions and Re<15.000, 1.2D for Re>15.000, and up to 1.5D (see Jauvtis and
Williamson [24]) for a body free to oscillate both in-line with and transverse to the flow. As
the oscillation frequency to a large degree is controlled by the natural frequency of the body
and the oscillation amplitudes reach a maximum value, VIV is considered a self-limiting
resonance phenomenon.

2.2.2 Dimensionless parameters

A large number of dimensionless parameters are used to describe the vortex induced vibra-
tion phenomenon. Detailed description of the various parameters are given in Halse [17],
Vikestad [61] and Skaugset [45]. In the following the parameters used in this thesis are
defined.

Flow parameters

The following parameters are used to describe the flow conditions.

Reynolds number, Re: This parameter describes the ratio between the inertia force
and the friction force acting on the body. Re is defined by Eqn. (2.3) and the parameter
determines the flow regime.

Keulegan-Carpenter number, KC: The parameter describes a harmonic oscillating
flow passing a fixed cylinder, and is defined as:

KC =
UmT

D
=

2πA

D
(2.6)

Um is the maximum flow velocity, T is the period of the oscillating flow and D is the cylin-
der diameter. A is the flow amplitude and the right hand part of the definition is obtained
by using the relation Um = ωA = 2πA/T . The KC number is mainly relevant for slender
marine structures in waves.

Turbulence intensity, TI: The parameter describes fluctuations in the incoming flow,
and is defined as:

TI =
urms

Umean

(2.7)

urms is the root-mean-square (rms) of the velocity fluctuations (u(t) = U(t)−Umean). The
turbulence near the seabed may be quite high, and the parameter is hence important for
free spanning pipelines.
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Structure parameters

The structure parameters describe cylinder geometry, density and damping. The following
parameters have been used.

Aspect ratio: Provides a measure of the geometric shape, cylinder length to diameter:

L

D
(2.8)

Roughness ratio: The parameter describes the cylinder surface:

k

D
(2.9)

k is the characteristic size of the roughness. For increased roughness more kinematic energy
will usually be lost in the boundary layer and the flow will behave as if it was at a higher Re.

Mass ratio:, m̄: Parameter describing the mass of the cylinder relative to the displaced
fluid mass pr. unit length:

m̄ =
m

π
4
ρD2

(2.10)

Damping ratio, ζ: The damping ratio is defined as

ζ =
c

2mnωn

(2.11)

ωn is the n’th natural frequency and mn is the mass that corresponds to ωn and the actual
restoring coefficient kn. In this thesis the damping ratio will be used when discussing
structural damping.

Interaction parameters

The fluid structure interaction parameters are defined in the following:

Nondimensional amplitude: Used to describe the oscillation amplitude in forced oscil-
lation experiments and response amplitude in free vibration experiments. The subscript
indicates the direction of the oscillation.

(
A

D
)IL/CF (2.12)

Nondimensional frequency: The nondimensional frequency is defined as:

f̂IL/CF =
fosc,IL/CF D

U0

(2.13)
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fosc is the actual oscillation frequency. The subscript indicates the direction of the oscilla-
tion, IL or CF.

Reduced velocity, Vr: The reduced velocity is defined as the ratio between the path
length in flow direction per cycle and the cylinder diameter

Vr =
path length per cycle

Diameter
=

U0T

D
=

U0

f0D
(2.14)

f0 is the natural frequency in still water. In the literature both the natural frequency in
air and the actual oscillation frequency is seen in the definition of the reduced velocity. VR,
Vrn, Ur and UR can also be seen as symbols for the reduced velocity.

Strouhal number, St: The Strouhal number is based on the shedding frequency for
a fixed cylinder in constant flow and has been defined in Eqn. (2.4).

Response parameter, SG: The parameter is used to predict response due to VIV, and is
one of several similar parameters which essentially consist of the product of mass ratio and
damping ratio. A more thorough discussion on the response parameter is given in section
6.2.4.

2.3 Experimental Methods for Investigation of VIV
This section addresses the various experimental methods that have been used to investigate
vortex induced vibrations. An overview of the methods will be given. The information
that can be extracted, lab requirements, processing methods and limitations will be ad-
dressed, and references to important experiments are given. The section is concluded with
a discussion on the relationship between the various methods.

The aim of VIV experiments is to improve the understanding of the phenomenon in order
to be able to predict response under various conditions. The response has been found
to be a function of a large number of parameters, and VIV experiments are designed to
investigate the effect of these parameters.

2.3.1 Free Vibration Experiments

A large number of free vibration or self-excitation VIV experiments have been carried out
since the pioneers started in the 1960s. Sarpakaya [44] gives references to the publications
on the topic. In the discussion given herein the free vibration experiments have been divided
into two groups based on how the eigenfrequency of the system is generated. These are:

• Rigid cylinder tests where the test cylinder is supported by springs in the oscillation
direction, and the eigenfrequency is controlled by the spring stiffness and mass of the
oscillating parts.

• Flexible beam tests where the eigenfrequencies are controlled by the mass, bending
stiffness, axial tension and length of the beam.

In the first group, oscillations can be restrained in either CF or IL direction, or the cylinder
may be free to oscillate in both degrees of freedom.
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Oscillating rigid cylinder test

The oscillating rigid cylinder tests can again be divided into two groups. These are:

• Spring-mounted cylinder tests

• Pendulum tests

For both types it is assumed that the flow conditions are constant over the length of the
cylinder (2D flow). End plates are used to ensure that there are no 3D effects at the two
ends of the cylinder. Both types of rigid cylinder experiments have been performed in
towing tanks, water flumes and in water tunnels. The instrumentation requirements are
force sensors and motion sensors.

Figure 2.6 (a) shows the experimental setup used by Vikestad [61] for free vibration ex-
periments in CF direction. This is an example of a spring mounted setup. The setup is
useful for low mass ratio - low damping ratio experiments and it allows force measurements
at both ends of the cylinder. The mass, spring stiffness and damping would typically be
fixed in this type of experiment while the current speed is varied in order to obtain results
for a range of reduced velocities. The results are hence obtained over a range of Reynolds
numbers. Results that can be extracted from this type of CF experiment are:

• Response amplitudes, typically reported as A/D vs. Vr. Figure 2.6 (b) shows results
from Vikestads experiment.

• Lift force.

• Drag force. Both mean drag force (on which the drag coefficient is based, see
Eqn. (4.9)) and oscillating drag force can be found.

• Oscillation frequency, fosc.

• Added mass. This can be found by either using the ratio between the eigenfrequency
of the system in air and the oscillation frequency (Ca = m̄[(fair/fosc)

2 − 1]), or by
finding the component of the hydrodynamic force in phase with acceleration (see
Eqn. (4.11)).

• Correlation of the hydrodynamic forces from the two sides (see Eqn. (4.17))

• The structural damping in the system can be investigated by calculating the hydro-
dynamic force in phase with velocity. Averaged over a large number of cycles this
force will balance the damping forces in the system.

Note that this set-up can not give the lift coefficient for arbitrary combinations of frequen-
cies and amplitudes, since these two parameters are results from a specific velocity and can
not be individually controlled.

Pendulum tests are often beneficial for high mass ratio experiments, as both high mass
ratio and low damping can be achieved at the same time. This type of experiment has
been performed in order to extract hydrodynamic coefficients from the transient phase.
Figure 2.7 (a) shows the experimental setup for an IL pendulum experiment performed by
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(a) Experimental setup (b) Response amplitude results

Figure 2.6: Rigid cylinder experiments, spring mounted setup from Vikestad [61]. The
motor and upper spring in this apparatus, see Figure (a), can introduce a disturbance at
a defined frequency on the cylinder and thereby study damping. If this motor is switched
off, one may carry out traditional free oscillation tests.

Johansen [26] and Huse [19]. The experiment was carried out both as excitation tests and
decay tests. For the excitation tests the cylinder was initially kept at its neutral position,
and at the desired current velocity the cylinder was released. The vortex shedding pro-
cess will then excite the system and the response amplitude will increase until a steady
state amplitude is reached. This transient phase can be used to extract hydrodynamic
coefficients in the excitation region. The decay tests were performed by first holding the
cylinder at an offset position larger than the expected response amplitude at steady state.
For the wanted current velocity the cylinder was released, and the transient phase (until
the steady state was reached) could be used to extract hydrodynamic coefficients in the
damping region. An example of the response amplitude development for a decay test is
shown in Figure 2.7 (b). A high mass ratio is beneficial for this type of experiment as
more oscillation periods are required to reach the steady state amplitude. The challenge
is, however, to keep the damping force of the apparatus low.

In recent publications by Williamson, [23], [24], [62], [63], results from pendulum experi-
ments with both low mass ratio, and low damping ratio have been reported. The pendulum
experiment were performed in a water tunnel and the cylinder, vertical positioned, was free
to oscillate both in IL and CF direction. The eigenfrequencies in the two directions were
identical. The experiments performed with this setup gave response amplitudes up to 1.5D
with corresponding vortex shedding modes not seen for VIV experiments with restricted
IL motions.

Flexible beam experiments

The second type of free vibration experiments applies a flexible beam. These experiments
are often performed as scaled models of real slender marine structures. The eigenfrequen-
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(a) Experimental setup (b) Response amplitude results, decay test

Figure 2.7: Rigid cylinder experiments, pendulum setup from Johansen[26]/Huse[19].

cies of these structures are associated with eigenmodes or modeshapes. Hence, when the
structure oscillates the oscillation amplitude varies over the length of the structure. Sta-
tionary response for experiments with uniform flow along the beam is reached when there
is a balance between excitation from forces in zones with low and moderate oscillation
amplitudes, damping in zones with high oscillation amplitudes and structural damping.
Maximum response amplitudes for flexible beams are expected to be higher than for rigid
cylinder experiments.

A large number of flexible beam experiments have been reported, and for simplicity the
various experiments may be divided into three categories:

• Cantilever beams representing scaled models of marine piles.

• Bending stiffness dominated beams, representing scaled models of pipelines.

• Tension dominated beams, representing scaled models of risers.

Cantilever beam experiments may be performed either as a two degree of freedom exper-
iment where the cantilever is free to oscillate in both IL and CF direction, or the physical
properties may be such that one of the directions are restrained. Examples of cantilever
beam experiments are the IL experiments reported by King [27] and Wootton (results re-
ferred in Sarpkaya [53]). Results from these experiments are discussed in chapter 6.4.3.
This type of experiments are typically performed such that the first oscillation mode is
active, and the tip displacement is reported as a function of reduced velocity (Vr). Both
low mass ratio and low damping ratio can easily be achieved. However, as for most free
vibration experiments the Vr-range is achieved by varying the current velocity. This give
results for varying Reynolds number. In addition to tip displacement measurements, base
bending moment has been reported for this type of experiments.
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Bending stiffness dominated flexible beam experiments are typically carried out to
investigate the response of free spanning pipelines. These tests are performed using flex-
ible beams of aspect ratio (L/D) from 100 to 300. The mass, stiffness and axial tension
is chosen to represent a scaled model of an actual span and the beam is towed horizon-
tally through the water to generate current velocity. The eigenfrequency in CF direction
would typically be different from the eigenfrequency in IL direction due to sag. Due to
the bending stiffness dominated dynamic behavior there is a large spacing between the
eigenfrequencies. Hence, the response is expected to be dominated by one eigenmode. The
boundary conditions of the beam becomes important for short span lengths and the dy-
namics of neighbor spans can become important, see Soni and Larsen [49]. This type of
flexible beam experiments are mainly performed as towing tank tests. The beam is instru-
mented by accelerometers or strain gauges so that response can be measured at discrete
points along the beam, both in IL and CF direction. By performing a modal analysis,
e.g. such as described in Lie and Kaasen [32], response amplitudes, responding modes and
response frequencies can be calculated. A comprehensive test program using this type of
experiment was performed for the Ormen Lange pipeline project, see Nielsen et al. [37].
Response for one of the shortest spans tested in the program is shown in Figure 1.1.

Tension dominated flexible beam experiments are typically carried out to investigate
VIV for risers. What separates these experiments from the experiments performed for free
spanning pipelines are:

• Boundary conditions are not important due to the length of the beam.

• A riser has a close to vertical orientation which make the eigenfrequencies in IL and
CF direction almost equal.

• The dynamic behavior is tension dominated. Hence, the ratio between the eigenfre-
quencies is small which makes it more likely that more than one mode will be excited.
Response at higher order frequencies (with respect to the vortex shedding frequency)
may also appear, see Vandiver et al. [60].

• The flow conditions may vary over the length of the beam in order to investigate the
behavior of risers in sheared current profiles.

Results from experiments of this type have been reported by Vandiver et al. [60], Lie and
Kaasen [32] and Huse et al. [20].

The instrumentation of the beam used in tension dominated flexible beam experiments
and the methods for analyzing the results are similar to those described for the free span-
ning pipeline experiments. Hence, only response amplitude, active mode and response
frequencies can be extracted. However, ongoing research on use of system identification
techniques to estimate the forces acting on the beam may give information on hydrody-
namic forces, see Barnardo [3].

2.3.2 Forced Oscillation Experiments

In a forced oscillation experiment the test cylinder is given a prescribed motion. The wake
behind the cylinder responds to this motion, and the force from the wake acting on the
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cylinder can be measured. In order for this method to provide valid data for a cylinder
subjected to VIV , the prescribed motions must be identical to the response of free vi-
brations. Free vibration experiments of short rigid cylinders indicate that the response
is harmonic. Hence, forced oscillation experiments have been performed using prescribed
harmonic motions. The result from a forced oscillation experiment is knowledge of the
hydrodynamic force acting on the cylinder under the tested conditions.

Since the early work by Bishop and Hassan [4] several researchers have used forced oscilla-
tion experiments to investigate VIV. The main focus for the majority of these experiments
has been on CF oscillations. One exception is, however, Mercier [33] who performed some
tests with forced IL oscillations. Jeon and Gharib [25] performed two degree of freedom
tests, i.e. combination of IL and CF motions where they combined harmonic oscillations
in the two directions.

Results from a pure CF experiment performed by Gopalkrishnan [15] are shown in Fig-
ure 2.8. This is one of the most complete works on forced CF oscillation experiments. The
test matrix consists of 60 frequencies from f̂ = 0.05 to f̂ = 0.35 combined with 6 ampli-
tudes from A/D=0.15 to 1.2. Figure 2.8 (a) shows contours of the excitation coefficient
(CL_V ). The excitation coefficient is based on the component of the hydrodynamic force
in phase with velocity. Hence, the coefficient gives information on the energy transfer be-
tween the fluid and the cylinder. A positive coefficient indicates excitation while a negative
coefficient indicates damping. The zero contour of the excitation coefficient is shown as
a thick black line in Figure 2.8 (a) and this line represent the response amplitude for a
freely vibrating cylinder with zero damping. Figure 2.8 (b) shows contours of the added
mass coefficient. This coefficient is based on the force in phase with acceleration and is
important for determining the oscillation frequency of a freely oscillating cylinder. As the
coefficients are related to the motion, they can only be extracted in the directions (CF
and/or IL) that are given forced motions.

Chapter 4.4 shows the hydrodynamic coefficients that can be extracted from forced os-
cillation experiments.

Forced oscillation experiments can be performed both in a towing tank and in a water
tunnel. A motion generation system is required, in order to generate the desired oscilla-
tions, in addition to force sensors. It is important that the apparatus has a high stiffness
so that structural eigenfrequencies in the apparatus do not interact with the oscillation
frequencies. Measuring the correct phase between the force and the motion is essential in
this type of experiment. Hence, motion sensors, in addition to those used by the control
system, are mandatory. A data acquisition system capable of recording data at all channels
simultaneously, or with a known delay, is also required.

2.3.3 Combination of Forced and Free Oscillations

Several projects have used a combination of forced and free vibrations. Moe and Wu [35]
used an experimental setup where the motions were forced in CF direction and free in
IL direction. Vikestad [61] used an electric motor to excite additional frequencies in a
free oscillation experiment in order to measure damping, see Figure 2.6 (a). Hover et al.
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(a) Excitation coefficient (CL_V ) (b) Added mass coefficient, Ca

Figure 2.8: Results from forced cylinder experiments by Gopalkrishnan [15].

[18] published results from a "force-feedback control system" apparatus used to simulate
free vibration experiments, the Virtual Cable Testing Apparatus. The experiments were
repeated by Smogeli et al. [47] after a redesign of the control code allowed for higher Re
(19000). Dahl et al. [9] have performed a combined IL and CF free vibration experiment
using a force assisted apparatus where structural damping in the system is counteracted
by using linear motors.

2.3.4 Comments on the various experimental methods

In the previous section two different experimental methods, free and forced vibrations, have
been discussed. Both methods are used to investigate the intrinsic nature of VIV and to
extract information that is needed to predict response from VIV. VIV is a fluid structure
interaction problem. To simplify, the free vibration experiment can be seen as a method
where the wake excites the cylinder, while the forced oscillation experiment can be seen
as an experiment where the cylinder excites the wake. Do the two methods give the same
results? In the following a short discussion on some of the differences and similarities of
the results from various experimental methods are discussed.

Hysteresis

Hysteresis effects, i.e. different response seen for an experiment performed with increas-
ing flow velocity compared to decreasing flow velocity, have been reported in some free
vibration experiments. Among others Brika and Laneville [6] and Feng [13] have reported
and discussed this phenomenon. However, Triantafyllou et.al. [56] have not reported hys-
teresis effects for a similar experiment. Sarpkaya [44] suggests two possible reasons: - The
Reynolds number is higher in the Triantafyllou experiments, i.e. hysteresis could be a
Re effect. - The product of mass ratio and damping ratio is higher in the Triantafyllou
experiments, which could indicate that hysteresis is only seen for sufficiently low values
of this product. Staubli [51] has shown, by performing pure CF forced oscillation experi-
ments, that hysteresis effects are caused by the nonlinear relation between fluid force and
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oscillation amplitude.

Mass ratio and damping ratio

The product of mass ratio and damping ratio is an important parameter for the response
seen in free vibration experiment. In forced oscillation experiments, these structural pa-
rameters are not relevant. The results from forced oscillation experiments indicate that
mass ratio is mainly important for the effect of the added mass, while damping contributes
to reduced oscillation amplitude.

Response amplitude

Response amplitude is the main result of a free vibration VIV experiment. There has been
discussions whether forced oscillation experiments give the same response amplitude as free
vibration experiments. E.g. Vikestands free vibration results show a maximum response
of ACF ≈ 1.15D (see Figure 2.6 (b)) while Gopalkrishnans forced oscillation experiments
predict a maximum response amplitude of ACF ≈ 0.85D. Experiments performed by Moe
and Wu [35] and Hover et al. [18], where basically the same apparatus and the same
flow velocities have been used for both free and forced oscillations, show that the response
amplitude for the two methods agree reasonably well. Smogeli et al. [47] used the same
apparatus as Hover, but performed the experiments at Re=19.000, and reported a maxi-
mum response amplitude of ACF = 1.15D for both free and forced oscillations.

Maximum response amplitude seen in flexible beam experiments, is expected to be larger
than the maximum response amplitude seen in rigid cylinder tests. For each position along
the length of the beam the oscillation amplitude is given by the mode shape and the max-
imum amplitude. Hence, there are both large and small oscillations present at the same
time. For a freely vibrating beam there must be an energy balance between excitation
and damping, i.e. the excitation in small and moderate amplitude zones is balanced by
damping in the high amplitude zones and by structural damping. To compare modal mo-
tion amplitudes with amplitudes from rigid cylinder tests, Blevins [5] has introduced a
geometric shape factor:

γ =

{∫ L

0
Φ2(x)dx∫ L

0
Φ4(x)dx

} 1
2

(2.15)

This factor is based on the the hydrodynamic load model used in the wake oscillator
model of Iwan [22], and is hence valid for CF oscillations. Reid [42] has proposed similar
geometric shape factors for IL oscillations, based on a hydrodynamic model derived from
experimental data presented by Moe and Verley [34].

Strouhal number

The Strouhal number is a function of Re, and hence a function of the flow velocity under
which the VIV experiments are performed. The results presented in Figure 2.5 (a) show
small variations in St in the subcritical flow regime. Results from different projects can be
brought closer together by plotting the results as a function of the ratio between the vortex
shedding frequency (fs) and the eigenfrequency (f0) or oscillation frequency (fosc), i.e. St/f̂
or St·Vr. In the critical and supercritical flow regime there is a large change in St, compared
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to the subcritical regime (see Figure 2.11 (a)). Hence, there is reason to believe that
correcting for the actual Strouhal number becomes even more important when experiments
performed for high Re are interpreted, or when the results from the subcritical flow regime
is used to predict response for critical and supercritical flow conditions. However, more
results from high Re experiments are required to confirm this.

Reynolds number

As seen from the discussion so far the Reynolds number is an important parameter in VIV
experiments. Even if the effect of St has been corrected for, similar experiments performed
at different Re have shown results with significant differences. This is especially the case
for maximum response amplitude.

Sarpkaya [44] performed forced oscillation experiments for a fixed CF amplitude ratio of
0.5 for 7 Reynolds numbers from 2.500 to 45.000. The results showed a significant variation
in the hydrodynamic coefficients for increasing Re. However, for Re>15.000 no significant
changes in the coefficients were seen. Sarpkaya explains the results with the transition to
turbulence in the free shear layer, as discussed in section 2.1.5. The Re for which this tran-
sition disappears is not known for a cylinder subjected to VIV, but experimental results
indicate Re of approximately 15.000. VIV experiments performed in the subcritical flow
regime for Re higher than this value are expected to be comparable, both free and forced
vibration tests. Experiments performed for Re<15.000 can only be regarded as valid for
the particular Re for which they are performed.

2.4 Models for Prediction of VIV of Free Spanning Pipelines

In the previous sections VIV, as a physical phenomenon, has been described and various
experimental methods used to investigate VIV have been discussed. An important mo-
tivation for investigating VIV is to be able to predict the response of a marine structure
subjected to loads from vortex shedding. In the following two methods used to estimate
response amplitudes for free spanning pipelines are presented. These are:

• Parametric response model method

• Empirical force coefficient method

In the next subsections the two methods will be described, built in assumptions highlighted,
limitations will be pointed out and possible improvements to the methods will be discussed.

2.4.1 Parametric response model method

The parametric response models described in DNV-RP-F105 [10], are by far the most used
models for predicting response due to VIV for free spanning pipelines. Several curve fit
expressions, based on the response parameter SG, have also been proposed for estimating
maximum CF response amplitude. For details reference is made to Sarpkaya [44].
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(a) IL response model, DNV-RP-F105 [10] (b) CF experiment results, figure from Mørk
et al. [43]

Figure 2.9: Response model

Short description of the DNV-RP-F105

The DNV-RP-F105 is a recommended practice (RP) for predicting fatigue damage due to
VIV and direct wave loads of free spanning pipelines. The document provides guidance on
how to model wave and current loads. It gives models for VIV response and a force model
for prediction of direct wave load response. Guidance on how to perform the structural
analysis and how to model pipe-soil interaction is also given.

The models for estimation of response due to VIV are based on several research and
development programs, and references to publications from these programs are given in
the RP. Response models for both IL and CF VIV are provided; examples are shown in
Figure 2.9. As seen from the figure the amplitude ratio (A/D) for both IL and CF direc-
tions is presented as a function of the reduced velocity, Vr. The parameters that determine
the response amplitude differ for the two directions.

In IL the response amplitude is determined by the stability parameter Ks, which essen-
tially consists of the product of mass ratio and damping ratio, and a reduction factor due
to turbulence in the flow. The effect of Ks is illustrated in Figure 2.9 (a). The model
predicts reduced response amplitudes for conditions where wave induced flow velocity is
present in the total flow velocity. If waves dominate the flow, IL VIV is ignored. The IL
response frequency is assumed to be equal to the eigenfrequency of the free span.

The CF response amplitude is given from four parameters. These are:

• Current flow velocity ratio, i.e. the ratio between the flow velocity from current and
the sum of the flow velocity from wave and current.

• KC number.

• Ratio between two consecutive eigenfrequencies.

• Stability parameter, Ks.

The condition giving the highest oscillation amplitude is current dominated flow for a
bending stiffness dominated span, i.e. high ratio between consecutive eigenfrequencies.
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Oscillating flow reduces the response amplitude, while the response of a tension dominated
span would change to a higher mode before the highest response amplitude is reached.
Structural damping reduces the response amplitude through the parameter Ks, and is
included as a reduction factor on the response estimated from the other three parameters.
Seabed proximity and trench depth are parameters in the expression determining the Vr

for which build up of CF response starts, i.e. onset of CF response. An added mass model
is provided for estimation of response frequency in CF direction.

Response models

The parametric response model method is associated with free vibration experiments.
The concept is that response amplitudes (A/D) from a large number of free vibration ex-
periments are plotted as a function of reduced velocity (Vr), where results from various
experimental methods are normalized by the γ-factor, see Eqn. (2.15). The response model
is then chosen as an envelope curve for these results. Examples of results from CF experi-
ments are shown in Figure 2.9 (b).

Considering VIV in uniform current, i.e. no effect of flow turbulence and waves, and
neglecting the effect of seabed proximity and trench, the DNV response curves in IL and
CF are determined by Ks and frequency ratio respectively. In addition the CF response
amplitude is corrected by a factor depending on Ks. Response curves for levels of these
parameters may be created by removing the tests where the parameter of interest is outside
a chosen range from the data set, e.g. tests of Ks-values below 0.2, and then draw a new
envelope curve. The DNV response model for IL VIV, including response curves for several
levels of Ks, is shown in Figure 2.9 (a).

Parametric response model means that the envelope curves describing the response are
described by mathematical expressions built up by the parameters describing the physical
phenomenon.

Assumptions and limitations related to response models

The nature of the method, using envelope curves, is conservative. However, for this to be
the case it is obviously important that the relevant experimental results are representative
for the actual free-span case. As discussed in previous sections the majority of the reported
VIV experiments have been performed within the subcritical flow regime, but at various
Reynolds numbers. Both the maximum response amplitude and Strouhal number vary
within the subcritical flow regime. These variations must be covered by the data set on
which the response curve is based.

It is well known that most free spanning pipelines may experience Reynolds numbers in the
critical and supercritical flow regimes. Whether subcritical experiments are representative
for these flow conditions is still not fully verified.

In the DNV response model the CF response amplitude is a function the CF eigenfrequency
through the parameter Vr. Resent rigid cylinder results, see Dahl et al. [9], indicate that
the ratio between the eigenfrequency in IL and CF direction is an important factor for
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the response both for IL and CF. Conditions that can influence the eigenfrequency ratio
are sag, change in span configuration due to drag and difference in mode number in the
two directions. For a response model to give conservative results for all conditions, it is
important that the data set on which the model is built covers all frequency ratios.

The methodology described in DNV-RP-F105 assumes that the response frequency in IL
direction equals the IL eigenfrequency.

2.4.2 Empirical force coefficient method

Empirical force coefficient methods, such as the method used in the computer program VI-
VANA [30]/[65], have traditionally been used for estimating VIV of marine risers. However,
a recent update allowing for nonlinear pipe-soil interaction, see Larsen et. al. [29]/[28],
has made the program well suited for free spanning pipeline analysis. The fundamental
difference from the parametric response model method, described in the previous section,
is that here the hydrodynamic forces caused by the vortex shedding process are modeled,
and the response is estimated by applying the forces on a finite element model of the free
spanning pipeline. A short description of the program will be given, the hydrodynamic
model describing VIV will be presented and the assumptions and limitations related to
this method will be discussed.

Description of the method

VIVANA is using an iterative procedure for performing dynamic analysis of response de-
pendant loads in frequency domain. The program builds on static results from the finite
element program Riflex [14], developed for static and dynamic analysis of slender marine
structures. An analysis for estimating the response of a free spanning pipeline subjected
to VIV is carried out in the following steps:

• The static configuration of the free spanning pipeline, due to volume forces, bending
stiffness, tension, contact with seabed and current, is found by performing a non-
linear finite element analysis in Riflex.

• The results from the static analysis is transferred to VIVANA and eigenfrequencies
are calculated.

• A predefined range of f̂ , defining the excitation region, is used to determine which
eigenfrequencies that can be excited under the given current condition.

• Based on an added mass model all possible response frequencies are calculated on
the basis of the eigenfrequencies obtained from the static configuration.

• From a model of the hydrodynamic excitation force, response is calculated for each
of the possible modes. The dominating response mode is chosen from an energy
criterion.

• The forces acting on the pipeline, found in the previous step, are transferred to Riflex
and nonlinear pipe-soil interaction can then be included in a second analysis.
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(a) Span model (b) Stress amplitude results

Figure 2.10: Free spanning pipeline analysis performed using Riflex / VIVANA, from
Larsen et. al. [28].

(a) Strouhal number model (b) Added mass model

Figure 2.11: VIVANA models for Strouhal number and added mass, figures from Larsen
et al. [30].

For this method to be valid the response predicted in the last step can not be significantly
different from the response calculated by VIVANA. The benefit of the last step, i.e. per-
forming the time domain analysis, is to get a more accurate result for the local stresses at
the span shoulders. An example from Larsen et al. [28] is shown in Figure 2.10.

Empirical force coefficient models

The hydrodynamic models for added mass and excitation coefficient, used in VIVANA,
are based on the forced oscillation experiments reported by Gopalkrishnan [15] shown in
Figure 2.8.

In order to find the correct response frequency the added mass must be determined. It is
seen from Figure 2.8 (b) that the added mass is very weakly dependent on the oscillation
amplitude. An amplitude independent model has hence been chosen, see Figure 2.11 (b).
The response frequency can therefore be calculated independently of the response ampli-
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(a) Energy transfer (b) Excitation coefficient

Figure 2.12: Excitation model in VIVANA, figures from Larsen et al. [28].

tude.

As discussed in an earlier section of this chapter the Strouhal frequency (vortex shed-
ding frequency, fs) depends on the Reynolds number. In VIVANA it is assumed that the
ratio between the oscillation frequency and Strouhal frequency is the parameter describing
the hydrodynamic forces on the cylinder. By including a model for the Strouhal number,
and knowing for which value of St the Gopalkrishnan experiments are performed, the force
coefficient models is assumed to be valid for a large range of Re. A standard curve for St

as function of Re is offered in VIVANA. Other relationships might be defined by the user,
like the curves shown on Figure 2.11 (a).

The response amplitude for a free spanning pipeline in uniform current, is determined
by a balance between excitation in zones of low and moderate oscillation amplitudes and
damping in zones of high oscillation amplitudes, as shown schematically in Figure 2.12 (a).
The model describing hydrodynamic excitation and damping in VIVANA is based on the
lift coefficient that gives the force in phase with velocity presented by Gopalkrishnan, see
Figure 2.8 (a). It is seen that the coefficient is a function of both amplitude and frequency.
However, as the response frequency is determined independently of the of the response
amplitude, a model for the excitation force only depending on response amplitude can
be used for a given nondimensional frequency, f̂ . This excitation force model is a con-
tinuous mathematical function fitted to the Gopalkrishnan curves for the f̂ of interest,
see Figure 2.12 (b). Strip theory is assumed and iterations are performed until consis-
tency between response (amplitude and phase) and response dependent forces is obtained.
The damping forces consist of structural damping and hydrodynamic damping for high
oscillation amplitudes, while low amplitude oscillations cause excitation.

Assumptions and limitations

The main limitation of the method is that it is valid only for pure CF VIV. It is well known
that IL oscillations are important for the fatigue life of a free spanning pipeline. Also, it is
questionable whether a model for pure CF oscillations is relevant for the CF response of a
free spanning pipeline, as the response would be a combination of IL and CF oscillations.
Hydrodynamic models for IL VIV are not available, and to implement models that include
the interaction between IL and CF VIV into a frequency domain method such as VIVANA
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is not straightforward.

As a complete model for VIV does not exist, several assumptions have been made. Some
of the most important ones are summarized below:

• It is assumed that the force coefficients obtained at Re=10.000 are valid for the
free spanning pipeline conditions. As previously discussed rigid cylinder experiments
performed at Re>15.000 give higher maximum response amplitude and little is known
about VIV in the critical and supercritical flow regime.

• Single frequency response is assumed. It is however seen in oscillating beam experi-
ments that several response modes can exist at the same time.

• Strip theory is assumed, i.e. the effect of axial flow along the flexible beam is ne-
glected.

• No realistic correlation model is considered, i.e. forces are assumed to be fully corre-
lated over the length of the flexible beam.

2.4.3 Application for Free Spanning Pipelines

Two methods for estimating response frequency and stress range for free spanning pipelines
subjected to VIV have been presented. It is seen that the parametric response method
is the more complete in the sense that it provides response models in both IL and CF
direction, takes into account effect of seabed proximity, trench depth, flow turbulence and
also includes the effect of waves. However, as the response curves are based on envelope
curves they would in principle always give conservative results. The model described in
DNV-RP-F105 is built on results from experiments performed at a much lower Re than the
full scale conditions, the validity of the model can thus be questioned. The empirical force
coefficient method described does, in theory, give a less conservative result for a particular
span. However, as an IL force coefficient model does not exist, the method is not suitable
for free spanning pipelines. A short discussion on how new experimental results can be
included in the existing models will be given in the following.

Parametric response model method:

• Given the way the model is developed, using envelope curves, results from new exper-
iment will only change the model if the results exceed the current curves. However,
more experimental results will increase the confidence in the existing model. A re-
sponse model that predicts the response for a given span more accurately than the
present model is expected to involve more parameters.

• An added mass model for pure IL VIV does not exist, and can be included in a
similar manner as the CF added mass model.

• Experiments at high Re would give valuable results for flow conditions representative
for a full scale pipeline.

Empirical force coefficient method:
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• Empirical force coefficients for pure IL VIV can be included in a similar manner as
the existing model for pure CF VIV. This will make the method much more relevant
for free spanning pipelines as the highest fatigue damage is often seen in IL direction.

• CF experiments performed at Re>15.000 give increased response amplitude com-
pared to the experiments on which the existing CF hydrodynamic force model is
built. New experiments performed at Re relevant for full scale free spanning pipelines
will give improved results.

• It is well known that a free spanning pipeline will respond in a combined IL and CF
motion. Modeling the IL-CF interaction requires a better understanding of the fluid
structure interaction, a hydrodynamic model and an updated numerical method.



Chapter 3

Description of the Experiment

The purpose of this chapter is to give a detailed description of the apparatus used to
perform the experiments and present the key parameters for all individual tests.

3.1 Experimental Setup
The experiment was carried out in the towing tank "Marine Cybernetic Laboratory", ref.
[1], at NTNU’s facility in Trondheim, Norway. Dimensions of the tank are (Lt ∗ Bt ∗Dt)
40*6.45*1.5 meter. The tank is equipped with an overhead towing carriage. A computer
controlled 5 degrees of freedom motion simulator is located on this main carriage. Fig-
ure 3.1 and 3.2 give a schematic overview of the apparatus. Characteristic properties of
the experimental setup are given in Table 3.1.

The experimental work this thesis is based upon was performed between October 2004
and September 2005. The equipment was installed in the towing tank several times during
this period and in the following there will be referred to three phases, Phase I, II and III.
These are three periods of lab time from where data were acquired. Some modifications of
the equipment were done between the phases making it necessary to distinguish between
them.

3.1.1 Apparatus

A description of the physical apparatus is included to establish confidence with regard to
reliability and accuracy of the reported data. Also, a description increases the knowledge
of the conditions under which data are acquired, which in turn will be important if the
results are to be compared with other data.

The test model used for the Phase II and III experiments was a 10cm diameter painted alu-
minum cylinder of 2m length. For the Phase I experiment the diameter and length of the
model was 15cm and 3m respectively. This gives an L/D-ratio of 20 (see Figure 3.2). The
cylinder was installed in a yoke which in turn was attached to the tow carriage. Oscillations
were achieved by oscillating the yoke horizontally (IL) and vertically (CF). Microprocessor
controlled servo motors controlled the motions, giving the desired oscillation amplitude,
frequency and phase difference between the vertical and horizontal directions. The cylin-
der was air filled with watertight plugs at both ends in order to keep the mass as low as

31
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Figure 3.1: Schematic description of apparatus, seen from port side.

possible. End plates were installed to eliminate 3D effects at the cylinder ends. The end
plates were designed according to specifications given in Stansby [50], see dimensions in
Figure 3.1. Table 3.1 shows the characteristic parameters for the experiment.

3.1.2 Instrumentation

In order to measure all parameters needed to calculate the hydrodynamic coefficients, the
apparatus was equipped with force- and motion sensors.

Figure 3.2: Schematic description of apparatus, front view.
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Table 3.1: Characteristic properties for the experimental setup.

Characteristic Symbol Phase I Phase II & III

Cylinder diameter [m] D 0.150 0.100
Cylinder length [m] L 3.00 2.00
Cylinder mass [kg] M 15.32 9.68
Towing speed [m/s] U0 0.175 0.262
Reynolds number [-] Re 2.4 · 104 2.4 · 104

Force sensors

The force sensors used in these experiments were of the strain gauge type, produced by
Hottinger (type PW2GC3). Two sensors were orthogonally mounted together, enabling
force measurement in two directions (IL and CF). Forces were measured at both sides of
the cylinder. The two sides are in the following referred to as Starboard (SB) and Port
side. The force sensors were calibrated in three steps. First each sensor was calibrated
to find the calibration coefficient. Then two and two sensors were mounted together and
calibrated to see if there were any transfer of forces between the two directions. The third
step was performed after the apparatus had been assembled in order to detect possible
rotations of the sensors.

Motion sensors

Three different types of motion sensors were used in the experiment. These were accelerom-
eters, string potentiometers and optical encoders.
Accelerometers measuring accelerations in three directions were installed at each side of
the cylinder, on top of the force sensor housing on the outside of the end plate. The ac-
celerometers were calibrated against g = 9.81[m

s2 ].
The string potentiometers were mounted between the yoke and the tow carriage, one in
IL direction and one in CF direction. The potentiometers were factory calibrated, and the
calibration was verified by measuring displacements by the use of a ruler.
The optical encoders were mounted on the motors controlling the axes, giving displace-
ments based on the number of rounds of the motors.
As the accelerometers were located closest to the force sensors, these signals were chosen as
motion signals in the calculation of hydrodynamic force coefficients. There were, however,
some problems with the acceleration signals in CF direction and therefore the string poten-
tiometer signal was chosen in this direction. The measurements taken on the motors were
found to contain a phase error and could therefore not be used since the hydrodynamic
force coefficients are very sensitive to the phase between the motion and the force.

Data acquisition

The signals from the instrumentation were amplified by a Hottinger MGC+ amplifier and
sampled at 100Hz. The computer program Catman was used for the data acquisition. All
channels were low-pass filtered at 30 Hz using a Butterworth filter. Table 3.2 gives an
overview of the channels.
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Table 3.2: Data channels.

Description phaseI phaseII phaseIII Unit

IL force, Starboard side 1 1 1 [N]

CF force, Starboard side 2 2 2 [N]

IL acceleration, Starboard side 4 4 4 [m/s2]

CF acceleration, Starboard side 5 5 5 [m/s2]

IL force, Port side 6 6 6 [N]

CF force, Port side 7 7 7 [N]

IL acceleration, Port side 8 8 9 [m/s2]

CF acceleration, Port side 10 10 10 [m/s2]

Carriage position, Carriage X-axis 11 11 13 [m]

IL position, Carriage U-axis 12 12 15 [m]

CF position, Carriage Z-axis na 13 17 [m]

CF position, Carriage W-axis na 14 18 [m]

IL position, string potentiometer na na 12 [mm]

CF position, string potentiometer na na 11 [mm]

PIV trigger signal na na 19 [V]
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All measurements are recorded in Volt. The units shown in table 3.2 are valid when
the recorded signals are multiplied with the calibration factors.

3.2 Quality Control

As numerous problems were experienced when setting up and performing the experiments,
partly due to the authors limited experience with this type of work, an elaborate system
for quality control was implemented.

The measures taken for ensuring data of high quality are summarized in the following:

• The experiments, including calibration of force and motion sensors and pluck tests
to determine eigenfrequencies in the setup, were conducted by the author. The daily
routines in the lab, e.g. waiting time between each run, were also the same for all
experiments. The results should hence be consistent, both over the duration of one
experimental phase and between phases.

• Predefined tests were repeated, both several times a day for the duration of a test
phase and the same tests were also repeated in later phases. It was thus possible to
monitor that the conditions under which the experiments were carried out were not
changing.

• Data sheets, also showing graphic presentation of some of the main results, were
produced for each individual test. Examples are given in Appendix B.

• A detailed error analysis is carried out, giving a quantitative estimate of the uncer-
tainty in the reported coefficients. The methodology is described in Chapter 5.

• The results are compared with results from other experiments.

Detailed results from the uncertainty analysis and comparison with other experiments
are presented for the IL results in chapter 6.4. Similar results are also produced for the
interaction experiments of chapter 8. These are, however, not reported as the discussion
given on the results from the interaction experiment is more of a qualitative nature.

3.3 Definition of test cases

Four types of experiments were conducted:

• Fixed cylinder tests.

• Pure IL experiments.

• Pure CF experiments.

• Combined IL and CF experiments with varying phase between the two directions,
creating orbital paths of different shapes and directions.
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Figure 3.3: Pure in-line test matrix. The cases tested are shown as dots (•). Free response
curves from DNV [10] and Johansen[26]/Huse[19] are included as solid lines.

The various experiments are explained in some detail in the following:

Fixed cylinder tests. In order to determine the drag coefficient and the Strouhal num-
ber, for a selected Reynolds number, the cylinder was towed at constant speed without
any oscillations. In total 76 cases were tested; 8 in Phase I, 10 in Phase II and 58 in Phase
III. 7 of these cases were tested for Reynolds numbers between 1.0 · 104 and 1.47 · 104, the
other tests were performed for a Reynolds number of 2.4 · 104.

Pure IL experiments. A total of 250 pure IL cases were tested, 142 in Phase I, 41
in Phase II and 67 in Phase III. Figure 3.3 shows the combinations of amplitude ratio
(A/D) and nondimensional frequency tested. The figure shows 156 cases and the IL re-
sults presented in chapter 6 are based on these cases. The other IL cases have been used
in the error analysis to investigate the repeatability of the results.

Pure CF experiments were performed for two reasons. Firstly, this type of experiment
is very well documented and the results from our experiments can therefore be validated
against other experiments. Secondly, pure CF results were required in order to test one of
our hypotheses, that combined IL and CF VIV can be estimated based on pure IL and pure
CF results. A total of 42 cases were tested, 14 in Phase II and 28 in Phase III. The tested
combinations of amplitude ratio and nondimensional frequency are shown in Figure 3.4.

Combined IL and CF experiments A total of 333 combined IL-CF cases were tested,
216 in Phase II and 117 in Phase III. The equation below shows how the orbital paths were
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Figure 3.4: Pure cross-flow test matrix. Results from Gopalkrishnan [15] are shown as a
solid line.

designed.

IL : x(t) = AIL sin(2πfosc,IL · t + α)

CF : z(t) = ACF cos(2πfosc,CF · t)
(3.1)

The equation shows that there are 5 parameters describing the orbital path. In order to
reduce the number of parameters to be varied, the amplitude ratio AIL/ACF was kept
constant at 0.5 and the frequency ratio fosc,IL/fosc,CF was 2. 3 parameters, amplitude,
frequency and phase are varied, and Figure 3.5 shows what the orbital paths look like for
varying phase, α. In addition to the shape of the orbit, the orbital direction relative to the
flow is of importance. In the figure the orbital direction is indicated by arrows.

Figure 3.6 shows tests performed as a systematic variation of the three parameters de-
scribing the orbital path. The figure to the right shows the nondimensional frequencies
and amplitude ratios, two frequencies were tested in phase II and two in Phase III. The
values reported for amplitude and frequency in Figure 3.6 refer to CF direction. The figure
to the left shows the phase angles and oscillation amplitudes. 16 phase angles were tested
in phase II and and 8 in Phase III.

45 "best fit" cases, 18 in Phase II and 27 in Phase III, were tested. These were tests
of orbital paths fitted to trajectories measured from free vibration tests of flexible beams.
The experiments are described in more detail in chapter 7. In addition tests were per-
formed for 6 frequencies (0.11, 0.125, 0.15, 0.175, 0.225, 0.25) at amplitude ratio 0.3 for
three phase angles (77, 84, 90).
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Figure 3.5: Illustration of the orbital path.
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Chapter 4

Data Analysis

The total number of test runs carried out in this project is approximately 700. In order
to handle the signal processing of this large quantity of data in a consistent and effective
manner a post processor was developed in the computer program MATLAB.

In this chapter a brief overview of the post processor will be given, including a defini-
tion of the coordinate system used, the measured signals and the available data sheets.
The signal processing will be given a more thorough description, where the main focus will
be on how the raw data are filtered and on the methods used to decompose the hydro-
dynamic force into a component in phase with velocity and a component in phase with
acceleration.

4.1 Outline of Post Processor
The post processor is developed in such a manner that it is possible to automatize the cal-
culations, and thereby calculate a large number of cases continuously. It has the following
characteristics:

• Reads an input file that describes the cases to be analyzed and gives the input
parameters to each case.

• Four types of analyses can be performed; fixed cylinder, oscillations in IL direction,
oscillations in CF direction and combined IL and CF motions.

• Presents result sheets for different stages of the analysis; signal processing, final
results (coefficients) and results from the uncertainty analysis.

• Results can be presented both as result sheets for each individual case, and as tables
of the calculated coefficients for multiple cases.

4.2 Directions
This section defines the coordinate system used in the project, and describes how measured
data have been interpreted. The direction, sign of the force and acceleration signal, is
dependent on the method used to calibrate the sensor and hence the sign of the calibration
coefficient.

39
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Figure 4.1: Global coordinate system for the experimental setup.

4.2.1 Coordinate system

The coordinate system is shown in Figure 4.1, and the figure shows that the x-axis (IL) is
taken as positive in the towing direction and the z-axis (CF) is positive upwards.

4.2.2 Interpretation of measured signals

The stain gauge force sensors and accelerometers, used in the experiments, are calibrated
and installed relative to the coordinate system described above. All calibrations are per-
formed statically, and this must be taken into account when the measured signals are
interpreted.

Accelerometer

The accelerometers used in this project can be seen as a mass supported by springs in
three degrees of freedom. The accelerometers are calibrated by using the acceleration of
gravity, g=9.81. By using this method the sign of the calibration coefficient is based on
a static force from the mass in the accelerometer on the spring. In the experiment the
accelerations measured are due to inertia forces. The sign of the measured acceleration
signal must therefore be changed for the measured acceleration to comply with the global
coordinate system.

Strain Gauge

The hydrodynamic force is the force from the fluid on the cylinder. The calibration of
the force sensors are performed to comply with this. External loads are applied and the
calibration coefficients are estimated based on the global coordinate system, see Figure 4.1.
The sign of the measured drag force is hence negative, since the current is running in neg-
ative x direction.

In the experiments the cylinder is given prescribed displacements. Due to the mass, M, of
the cylinder the prescribed oscillations will introduce inertia forces that are taken by the
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force sensors. For an acceleration, a, in positive x-direction, this inertia force is seen as
a measured force in negative x-direction of magnitude M · a. As the coefficients shall be
based on the hydrodynamic force, this inertia force must be subtracted from the measured
forces.

Position measurements

Two types of position sensors are used, in addition to the accelerometers. These refer to
coordinate systems different from the one chosen for this project. The sign of the various
axes must therefore be corrected so that the results comply with the chosen coordinate
system.

4.3 Signal Processing
In this section the signal processing part of the post processor will be described in some
detail. The section consists of a description of how the test runs are performed, the
processing of the measured position signals and the processing of the measured force signals.

4.3.1 Execution of the experiment

Each single test was performed as follows:

• Zero setting performed on all channels.

• Data logging started about 10 seconds prior to the start-up of the tow carriage and
the oscillations.

• Tow carriage accelerated to the specified tow velocity.

• Period of constant tow velocity, oscillation frequency and amplitude.

• Oscillations stopped and tow carriage slowed down to a complete stop.

• Data logging for an additional 10 seconds.

Figure 4.2 shows a typical raw data time series of forces measured in IL direction. A filtered
signal is included to illustrate the force at the oscillation frequency. The first part of the
signal, approximately 10 seconds, is used to verify the zero setting. If the mean value of
the first 5 seconds is different from zero, this value is subtracted from the time series. The
last approximately 5 seconds of the time series is used to verify that there is no sensor
drift. If the mean value is significantly different from zero, there is something wrong with
the sensor.

4.3.2 Motion signals

In these experiments the motion signals are used as reference signals for the calculation
of hydrodynamic force coefficients, and the reported coefficients are hence valid for the
given motion, i.e. oscillation amplitude and frequency. The motion was measured by three
methods. These methods were accelerometers, string potentiometers and optical encoders.
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Figure 4.2: Time series of measured IL force, raw signal and filtered signal.

The measured signal from the accelerometers were obviously accelerations, displacements
were measured by the two other methods. To obtain time series of acceleration, velocity
and displacement the signals are processed in the following manner:

• Subtract offset. The mean value of the first 5 seconds is subtracted from the time
series.

• Include calibration factors. For the accelerometer correction for cross-talk is also
performed.

• Integration of the acceleration signals by a frequency domain method, see subsection
below.

• Differentiation of the displacement signals in time domain.

• Comparing the results from the accelerometers and string potentiometers. Phase
difference and amplitude ratio.

• Selecting which motion signal should be used in the hydrodynamic force coefficient
calculation.

• Calculating oscillation frequency, oscillation amplitude and phase angle between IL
and CF oscillation.
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A result sheet is available in the post processor for comparing the motion signals from the
three sensors. The most important parameter to consider is the phase difference between
individual signals, but also the amplitude ratio is calculated.

When all cases, for a given group of tests, are analyzed, the data is used to investigate the
quality of the motion signals, and hence decide which sensor to use for calculation of the
hydrodynamic coefficients. In most cases accelerometers are preferred due to high quality
and the fact that they were located closest to the force sensors. For cases where problems
with the accelerometers are seen, the string potentiometers are used. The measurements
from the tow carriage control system contain phase errors, and are consequently not used
for calculating force coefficients.

Integration in frequency domain

The well known relations Sẋẋ = ω2Sxx and Sẍẍ = ω4Sxx are used to integrate the measured
accelerations to velocity and displacement signals. A MATLAB function, including band
pass filtering, has been developed to perform this integration. In short the integration is
performed in the following steps:

• The signal a(t) is transformed to frequency domain by the fast fourier transform
method, A = fft(a).

• A vector of discrete frequency values, ω, is then constructed. To comply with the
vector for the fourier transformed signal, A, the frequency vector is constructed so
that the frequency increases from zero to the Nyquist frequency and then increases
from the negative value of the Nyquist frequency to zero.

• The band pass filtering is then carried out by setting the A values outside the fre-
quency band to zero

• The integration is performed by V = A/(ω ∗ i) and X = A/(ω ∗ i)2.

• Time series of acceleration, velocity and displacement are found by taking the real
value of the inverse fourier transform of A, V and X respectively. (x=real(ifft(X))).

Differentiation in time domain

The IL and CF motions do not oscillate around their starting point. The starting point
is close to the extreme value, meaning that the mean value of the measured displacement
time series is different from zero. The motion matrix, containing acceleration, velocity and
displacement is found from measured displacements in the following manner:

• The velocity time series is found by: ẋ = xi+1−xi−1

2dt

• The acceleration time series is found: ẍ = xi+1−2xi+xi−1

dt2

• Both the acceleration- and velocity time series are then low-pass filtered with a cut-off
frequency of 2.2Hz.
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• The acceleration signal is used to find an integer number of zero up-crossing periods
within the steady-state part of the signal. The mean value of the displacement
signal is found for the same period. This mean value is then subtracted from the
displacement signal.

4.3.3 Force signals

The force signals are processed in the following manner, prior to calculating the hydrody-
namic coefficients:

• Subtracting offset. The mean value of the first 5 seconds were subtracted from the
time series.

• Include calibration factors and correct for cross-talk.

• Calculate mean value and subtract the mean drag force in IL direction.

• Subtract the inertia force due to acceleration of the cylinder mass.

• Low-pass filter the hydrodynamic force signals

The mean values are calculated for an integer number of oscillation periods. The reason
for calculating the mean value in CF direction, which is supposed to be zero, is to verify
that there is no cross-talk or force sensor drift. The cut-off frequency of the low-pass
filter is 4Hz and is chosen based on the eigenfrequencies of the apparatus determined
by pluck tests. Low pass filtering of the force signals is performed in order to obtain
accurate rms- and correlation coefficients. Filtering the force signals is not required, and
hence not desirable, for calculating the hydrodynamic force coefficients (Ce,IL/CF , Ca,IL/CF ).
Comparing coefficients based on filtered and not filtered force signals has shown that the
selected cut-off frequency does not influence the results.

4.4 Hydrodynamic force coefficients

The purpose of this section is to define all hydrodynamic coefficients used in this thesis,
and specify how they are calculated from the measured force and motion signals.

4.4.1 Fourier-coefficient analysis

From basic fourier theory a continuous function, x(t), can be represented by a series of
harmonic functions defined as:

x(t) = a0 +
∞∑

n=1

(an cos(ωnt) + bn sin(ωnt)) (4.1)

The coefficients a0, an and bn are defined as:

a0 =
1

T

∫ T

0

x(t)dt (4.2)
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an =
2

T

∫ T

0

x(t) cos(ωnt)dt (4.3)

bn =
2

T

∫ T

0

x(t) sin(ωnt)dt (4.4)

In our case we are mainly concerned with the force at the oscillation frequency, ωosc.
In case of a harmonic oscillation, the force can be written:

F (t) = F0 sin(ωosct + φ) (4.5)

where ωosc is the oscillation frequency. The oscillation period Tosc is then given by 2π
ωosc

.
Expanding equation 4.5 we get

F (t) = F0 sin(φ) cos(ωosct) + F0 cos(φ) sin(ωosct) (4.6)

and we identify F0 sin(φ) with a1 and F0 cos(φ) with b1. The force amplitude, F0, and
phase angle, φ, are then given by:

F0 =
√

a2
1 + b2

1 (4.7)

and
φ = atan(

a1

b1

) (4.8)

The coefficient a0 (Eqn 4.2) is seen to represent the mean value of the load x(t), and will
hence define the drag coefficient.

Methods for calculating the fourier coefficients, a1 and b1, are discussed in section 4.5.

4.4.2 Notation

There will be reported results from forced oscillations in two directions, both IL and CF,
and since forced oscillations in IL direction has not previously been reported there is not
an established practice on notation. It has hence been necessary to establish a notation
for the hydrodynamic coefficients that is applicable in two directions. In order to achieve a
consistent notation in both IL and CF directions, the proposed notation for CF is slightly
changed compared to what traditionally has been used for pure CF experiments. The
following notation will be used:

• CD and CL refer to static force in IL and CF direction respectively. There has not
been measured any static forces in CF direction in these experiments. Hence, no CL

values are reported.

• Ct,IL/CF , coefficient referring to the total dynamic force in IL/CF direction.

• Ce,IL/CF , coefficient referring to the force in phase with velocity.

• Ca,IL/CF , coefficient referring to the force in phase with acceleration.
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4.4.3 Definition of Hydrodynamic Coefficients

The hydrodynamic coefficients are defined in the following:

Drag coefficient, CD

The drag coefficient is defined as:

CD =
1

T

∫ t+T

t

FIL(t)
1
2
ρDLU2

0

(4.9)

where FIL is the force in IL direction and T is taken as an integer number of oscillation
periods.

Dynamic excitation coefficient, Ce,IL/CF

The dynamic excitation coefficient is defined as:

Ce,IL/CF =
Fhydro,0,IL/CF sin(φ)

1
2
ρDLU2

0

(4.10)

Where Fhydro,0,IL/CF sin(φ) is the hydrodynamic force in phase with velocity, in IL or CF
direction. This coefficient is analogous to the CL_V coefficient that traditionally has been
used when reporting results from pure CF experiments, see Gopalkrishnan [15] and others.

The reason for using e as identifier for the component in phase with velocity is that this
component will define energy exchange between the fluid and the cylinder. A positive Ce

will excite the cylinder, while a negative value will provide damping.

Added mass coefficient, Ca,IL/CF

The added mass coefficient is defined as:

Ca,IL/CF =
Fhydro,0,IL/CF cos(φ)

πD2

4
ρLω2

oscx0

(4.11)

where ωosc is the oscillation frequency and x0 is the oscillation amplitude. The added mass
coefficient is based on the force in phase with acceleration normalized with respect to the
mass of the displaced water and the acceleration amplitude of the harmonic oscillation,
ω2

oscx0.

Total dynamic force coefficients, Ct,n,IL/CF

The total dynamic force coefficient is defined as:

Ct,n =

√
a2

n + b2
n

1
2
ρDLU2

0

(4.12)

where

an =
2

T

∫ t+T

t

Fhydro(t) cos(nωosc · t)dt (4.13)
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and

bn =
2

T

∫ t+T

t

Fhydro(t) sin(nωosc · t)dt (4.14)

The coefficient can be calculated both in IL and CF direction. The letter n refers to
which multiple of the oscillation frequency, ωosc, the coefficient is calculated for. Hence,
n=1 refers to the total dynamic force at the oscillation frequency, in general referred to as
Ct,IL/CF .

In a similar manner the total dynamic force coefficient at the Strouhal frequency is es-
timated in CF direction, Ct,St . The Strouhal number, St, is estimated from fixed cylinder
tests and a shedding frequency, fs, for the given test condition is found from the relation
fs = StU

D
. The coefficient is defined as:

Ct,St =

√
a2

fs
+ b2

fs

1
2
ρDLU2

(4.15)

RMS coefficients, Crms,IL/CF

An rms-coefficient, Crms, is defined for the total hydrodynamic force:

Crms =

√
2 · 1

n

∑n
i=1(Fhydro,i − F̄hydro)2

1
2
ρDLU2

0

(4.16)

Where F̄hydro is the mean value of the hydrodynamic force and Fhydro,i refers to the hy-
drodynamic force at time step i. The summation is performed for the n time steps in the
steady state region of the time series.

The rms-coefficient is linked to the magnitude of the oscillating force, but does not re-
fer to a given oscillation frequency or phase component relative to motions. For a purely
harmonic force, i.e. single frequency, equal values for Crms and Ct will be calculated. For
force signals containing more than one frequency, the value of Crms will be higher. The
ratio between Crms and Ct may hence be used to investigate if there are significant force
components at other frequencies than the oscillation frequency.

The rms-coefficient is calculated for the oscillating force in both IL and CF direction.

Correlation coefficient, ρxy,IL/CF

Forces are measured at both ends of the cylinder. The correlation coefficient is defined as:

ρxy =
1
n

∑n
i=1(xi − x̄)(yi − ȳ)

SD(x)SD(y)
(4.17)

where SD(x) is the standard deviation of x, defined as:

SD(x) =
1

n− 1

√√√√
n∑

i=1

(xi − x̄)2 (4.18)
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x and y represents the hydrodynamic forces at the two ends, and x̄ and ȳ is the mean value
of the force. The summation is made over the n time steps in the steady state region of
the time series.

The range of the correlation coefficient is -1 to 1. A large positive coefficient indicate
that the two parameters are strongly correlated in phase.

4.5 Decomposition of the hydrodynamic force
In this section four methods used to decompose the hydrodynamic force into a component
in phase with velocity and a component in phase with acceleration are described. The
power transfer method, see 4.5.1, is used as the base case method and the three other
methods are used in the uncertainty analysis, see chapter 5, to estimate the uncertainty in
the force decomposition.

4.5.1 The Power Transfer Method

The method considers the power transfer, i.e. energy pr. unit time, between the fluid and
the cylinder.

The power transfer, P(t), is given by

P (t) = Fhydro(t) · d

dt
x(t) = Fhydro(t) · ẋ(t) (4.19)

where x(t) is the cylinder motion. ẋ(t) is hence the cylinder velocity. The average power
transfer, P̄ , can be written as:

P̄ = lim
T→∞

∫ t+T

t
Fhydro(t) · ẋ(t)dt

T
(4.20)

Assuming that a forced harmonic oscillation gives a harmonic hydrodynamic force, a second
expression for the average power transfer is given by:

P̄ =
1

nTosc

∫ nTosc

0

Fhydro,0sin(ωosct + φ) · x0ωosccos(ωosct)dt

P̄ =
Fhydro,0 · x0ωosc

nTosc

[cos(φ)

∫ nTosc

0

cos(ωosct)sin(ωosct)dt + sin(φ)

∫ nT0

0

cos2(ωosct)dt]

(4.21)

Recognizing the first integral as
∫ nTosc

0
cos(ωosct)sin(ωosct)dt = 0 and the second as∫ nTosc

0
cos2(ωosct)dt = nTosc

2
we get:

P̄ =
Fhydro,0 · x0ωosc

nTosc

[sin(φ)
nTosc

2
] =

1

2
x0ωoscFhydro,0sin(φ) (4.22)

Hence, from equation 4.20 and 4.22 the force in phase with velocity, Fhydro,0sin(φ), is given
by:

Fhydro,0sin(φ) =
2

x0ωosc

lim
T→∞

∫ t+T

t
Fhydro(t) · ẋ(t)dt

T
(4.23)
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By applying the same technique, but without linking it to a physical quantity such as P̄ ,
a similar expression can be derived for the force in phase with acceleration, Fhydro,0cos(φ).

Fhydro,0cos(φ) = − 2

x0ω2
osc

lim
T→∞

∫ t+T

t
Fhydro(t) · ẍ(t)dt

T
(4.24)

As the time series from the experiments are of limited length, i.e. T → ∞ not valid, the
limit functions in Eqn. (4.23) and (4.24) are approximated by integrating over an integer
number of oscillation periods, T = nTosc.

4.5.2 The Fourier-average Method

In the Fourier average method it is assumed that the hydrodynamic force is harmonic, with
the same frequency as the oscillation, ω0. The hydrodynamic force is then given by:

Fhydro(t) = Fhydro,0sin(ωosct + φ) (4.25)

Where φ is the phase angle between the force and the cylinder motion. The cylinder
motion, or oscillation, is given by x(t) = x0sin(ωosct). The force in phase with velocity
can then be found by pre-multiplying by cos(ωosct) and integrate over an integer number
of periods, nTosc.

∫ t+nTosc

t

Fhydro · cos(ωosct)dt =

Fhydro,0cos(φ)

∫ t+nTosc

t

sin(ωosct) · cos(ωosct)dt +

Fhydro,0sin(φ)

∫ t+nTosc

t

cos2(ωosct)dt

(4.26)

Since
∫ t+nTosc

t
sin(ωosct) · cos(ωosct)dt = 0 and

∫ t+nTosc

t
cos2(ωosct)dt = nTosc

2
we get:

Fhydro,0sin(φ) =
2

nTosc

∫ t+nTosc

t

Fhydro(t) · cos(ωosct)dt (4.27)

Correspondingly, pre-multiplying by sin(ωosct), the force in phase with the acceleration is
given by:

Fhydro,0cos(φ) =
2

nTosc

∫ t+nTosc

t

Fhydro(t) · sin(ωosct)dt (4.28)

The calculated phase angle, φ, refers to the time step, t, where the integration starts.
As the phase angle of interest is the phase between the force and the body motion, the
starting point of the integration is taken at the zero up-crossing of the displacement signal.
Coefficients are calculated for all zero up-crossing periods in the steady state region, i.e.
n=1, and the reported value is the mean value of the individual coefficients.

An alternative method for estimating the correct phase between motion and force is to
select a starting point t, e.g. the start of the steady state region, and then use Eqn. (4.27)
and Eqn. (4.28) to calculate the phase angle for both the force- and motion signal relative
to this point. The phase angle between force and motion is then the difference between
the two phase angles.
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4.5.3 The Transfer Function Method

The Transfer Function Method is a frequency domain method. The basic assumptions is
hence that there is a linear relationship between the input signal (frequency and amplitude
of the cylinder motion) and the output signal (the hydrodynamic force).

A transfer function, Hxy(ω), is estimated using the well known relation Sxy(ω) = Hxy(ω)Sxx(ω).
The cross spectrum, Sxy(ω), between displacement and hydrodynamic force, and the auto
spectrum, Sxx(ω), of displacement signal is calculated from the measured time series. The
transfer function is then given by:

Hxy(ω) =
Sxy(ω)

Sxx(ω)
(4.29)

The phase angle between the two signals is the argument of the complex transfer function.
The phase angle of interest is that of the oscillation frequency, ωosc

φ = tan−1(
imag(Hxy(ωosc))

real(Hxy(ωosc))
) (4.30)

The amplitude ratio between the hydrodynamic force signal and the displacement signal
is found by:

Fhydro,0

x0

=
√

(real(Hxy(ωosc)))2 + (imag(Hxy(ωosc)))2 (4.31)

As the oscillation amplitude, x0, is known, the hydrodynamic force in phase with velocity,
Fhydro,0sin(φ), and acceleration, Fhydro,0cos(φ), may be calculated.

4.5.4 The "Least Square Fit" Method

The method is based on a "built-in" least square fit routine in Matlab and the basic
assumption is that the hydrodynamic force may be represented by a linear combination of
the acceleration and velocity signal.

C1 · ẋ(t) + C2 · ẍ(t) = Fhydro(t) (4.32)

Rewritten:
Cx = F (4.33)

where C =
∣∣∣ C1 C2

∣∣∣ and x =

∣∣∣∣∣
ẋ(t)

ẍ(t)

∣∣∣∣∣
The coefficients in C are then estimated by:

minimize ||Cx− F || (4.34)

Assuming that an harmonic oscillation ,x(t) = x0 sin(ωosct), gives an harmonic force, see
Eqn. (4.25), Eqn. (4.32) is given by:

C1x0ωosc cos(ωosct)−C2x0ω
2
osc sin(ωosct) = Fhydro,0 sin(φ) cos(ωosct)+Fhydro,0 cos(φ) sin(ωosct)

(4.35)
The two force components are then easily identified as:

Fhydro,0sin(φ) = ωoscx0 · C1 (4.36)

Fhydro,0cos(φ) = −ω2
oscx0 · C2 (4.37)



Chapter 5

Uncertainty Analysis

In this chapter the method used for estimating the confidence interval for the hydrodynamic
coefficients found in the experiments will be presented. The chapter is closely linked with
to the previous chapter on data analysis and Appendix A where the results from calibration
of force and motion sensors are reported.

5.1 Introduction to Uncertainty Analysis

The aim of an uncertainty analysis is to give a quantitative estimate of how reliable a
measured or calculated value is. Here this will be given as a 95% confidence interval, i.e.
the probability that the true value is within the interval is 0.95. Even if an uncertainty
analysis is performed, parts of the analysis will be open to discussion and possible major
error sources may be overlooked. On the other hand, concluding on experimental results
without at least trying to estimate the reliability of the data, seems at best optimistic.

This chapter presents the uncertainty analysis carried out for the experimental data. The
theoretical background is mainly based on Coleman & Steele [8] and some theory will be
included to explain the various steps of the uncertainty analysis. Ersdal [11] has used the
methodology for a towing tank experiment, and some of the error estimates are based on
his work.

5.1.1 Error and Uncertainty

In the following the term error will be used as the distance between a measured and a true,
but unknown, value. The total error is the sum of a precision (random) error and the bias
(systematic) error. Using the calibration of force sensors as an example, the precision error
would typically be given by the variation in calibration coefficient found from different
calibration series, while the bias error would be given by the possible error in the mass of
the weights used for performing the calibration.

Uncertainty will be used as the statistical estimate of the error.

51
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5.1.2 The Concept of Replication Level

When discussing errors and uncertainties in measurements there is a clear distinction be-
tween the words repetition and replication. Repetition is used in its common sense, some-
thing is repeated. When repeating an experiment the replication level describes exactly
what is repeated. Three orders of replication will be used.

• Zeroth-order replication level describes a condition where the measured quantity is
assumed constant in time, i.e. only the variations inherent in the measurement system
contributes. An example of a zeroth-order replication level is measuring the length
and diameter of the test cylinder.

• First-order replication level describes a condition where the instrumentation and
setup is fixed but time is running. An example of first-order replication level is force
measurements during fixed cylinder tests.

• N’th order replication level would include all other changes. This includes performing
a second test at a later time or performing a similar experiment in a different labora-
tory. In this thesis repeating a test at a later time is considered 2nd order replication,
while repeating a test in a later experimental phase is referred to as higher order
replication.

A more practical distinction between precision and bias error can then be given as follows:
The precision error is given by the variation of the data at a given replication level, while
the bias error is constant for the same level. Hence, the precision error can be estimated
by repeating the experiment while this is not the case for bias error without increasing the
replication level.

5.2 Hydrodynamic Coefficients

The hydrodynamic coefficients for which the uncertainty is estimated are the drag co-
efficient, Eqn. (5.1), the dynamic excitation coefficient, Eqn. (5.2), and the added mass
coefficient, Eqn. (5.3).

• Drag coefficient

CD =
FIL,mean

1
2
ρDLU2

0

(5.1)

• Dynamic excitation coefficient

Ce,IL/CF =
F0 sin(φ)
1
2
ρDLU2

0

(5.2)

• Added mass coefficient

Ca,IL/CF =
1

πD2

4
Lρ

(
F0 cos(φ)

a0

−M) (5.3)
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The definition of the drag coefficient is the same as presented in chapter 4, Eqn. (4.9),
and has been included here for completeness. In the uncertainty analysis the measured
force F has been used when calculating Ce,IL/CF and Ca,IL/CF instead of Fhydro as used
in chapter 4. The reason for the change is that this method makes it straight forward
to include a phase error in the motion signal, which is needed in the total uncertainty
estimate. The implications of using the measured force is that the mass of the cylinder
has to be subtracted after the force has been decomposed, see Eqn. (5.3), and that the
calculated phase angle, φ, would not be comparable with other experiments as it depends
on the mass of the cylinder.

5.3 Data Reduction Equations

As seen in the previous section the measured parameters are not the final result of the
experiment. The propagation of elemental errors into the final experimental result is given
by the data reduction equation, DRE.

5.3.1 General

Given an experimental result, r, which is a function of n measured variables.

r = r(X1, X2, ..., Xn) (5.4)

The influence coefficient, κ, defines how the result is influenced by one specific measure-
ment.

κi =
∂r

∂Xi

(5.5)

The uncertainty in the result is then given by (Coleman & Steele [8]):

U2
r = (

∂r

∂X1

)2U2
X1

+ (
∂r

∂X2

)2U2
X2

+ ... + (
∂r

∂Xn

)2U2
Xn

=
∑

κ2
i U

2
Xi

(5.6)

5.3.2 DRE for the hydrodynamic coefficients

In this section the influence coefficients are found for the three hydrodynamic coefficients.

Drag coefficient. In order to get a transparent expression for the uncertainty in drag
coefficients the expression for uncertainty, UCD

, has been divided by the drag coefficient,
CD. The uncertainty can then be expressed as:

(
UCD

CD

)2 = (
UFIL,mean

FIL,mean

)2 + (
Uρ

ρ
)2 + (

UD

D
)2 + (

UL

L
)2 + (

2UU0

U0

)2 (5.7)

For both the dynamic excitation coefficient, Ce, and the added mass coefficient, Ca, the
coefficients can get the value of zero. Hence, it would not give any meaning to express the
uncertainty as a fraction of the coefficient itself.
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Dynamic excitation coefficient, Ce

(UCe)
2 = (κF0sin(φ))

2(UF0sin(φ))
2+(κρ)

2(Uρ)
2+(κD)2(UD)2+(κL)2(UL)2+(κU0)

2(UU0)
2 (5.8)

Where the influence coefficients are given as:

κF0sin(φ) =
∂Ce

∂(F0sin(φ))
=

1
1
2
ρDLU2

0

(5.9)

κρ =
∂Ce

∂ρ
= − F0sin(φ)

1
2
ρ2DLU2

0

(5.10)

κD =
∂Ce

∂D
= − F0sin(φ)

1
2
ρD2LU2

0

(5.11)

κL =
∂Ce

∂L
= − F0sin(φ)

1
2
ρDL2U2

0

(5.12)

κU0 =
∂Ce

∂U0

= −2
F0sin(φ)
1
2
ρDLU3

0

(5.13)

Added mass coefficient, Ca

(UCa)
2 =(κF0 cos(φ))

2(UF0 cos(φ))
2 + (κM)2(UM)2 + (κa0)

2(Ua0)
2

+ (κD)2(UD)2 + (κL)2(UL)2 + (κρ)
2(Uρ)

2 (5.14)

Where the influence coefficients are given as:

κF0 cos(φ) =
∂Ca

∂(F0cos(φ))
=

1
πD2

4
Lρ

(
1

a0

) (5.15)

κM =
∂Ca

∂M
= − 1

πD2

4
Lρ

(5.16)

κa0 =
∂Ca

∂a0

= − 1
πD2

4
Lρ

(
F0 cos(φ)

a2
0

) (5.17)

κD =
∂Ca

∂D
= − 2

πD3

4
Lρ

(
F0 cos(φ)

a0

−M) (5.18)

κρ =
∂Ca

∂L
= − 1

πD2

4
L2ρ

(
F0 cos(φ)

a0

−M) (5.19)

κρ =
∂Ca

∂ρ
= − 1

πD2

4
Lρ2

(
F0 cos(φ)

a0

−M) (5.20)

In the basic data reduction equations, Eqn. (5.8) and Eqn. (5.14), the force component in
phase with velocity, F0 sin(φ), and in phase with acceleration, F0 cos(φ), has been kept as
one uncertainty component even though it consist of a force component and a phase com-
ponent. The reason for this is that there are several factors that influence the uncertainty
in the product rather than the two individual parameters.
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5.4 Uncertainties in the DRE

In this section the individual uncertainties, Ui, in the data reduction equation are addressed.
Both bias- and precision errors will be considered, and the notation for the two types of
errors are B and P respectively. The DRE is used to calculate B and P individually, and
then the total uncertainty, U, is estimated according to: U =

√
B2 + P 2.

5.4.1 Uncertainty in water density

The water in the towing tank is fresh water and the density is a function of the water
temperature. The temperature was measured several times and at several locations during
the experiments and the table used to find the water density for a given temperature
is taken from Faltinsen [12]. The mean value and error in water density was found by
linear interpolation between the table values ρ = 999.1@150C and ρ = 998.2@200C. The
variation in temperature give the water density precision error while a possible error in the
temperature vs. density table represents the bias error. As a constant density will be used
for each of the three experiment phases the density error will be treated as a bias error.

Table 5.1: Error in water density, Uρ.

Experiment Mean value,
temperature

Std,
temperature

t-
value

Mean value,
density

Density
error, Bρ

PhaseIII 18.2 0.263 3.18 998.5 0.2
PhaseII 15.9 0.363 2.45 998.9 0.2
PhaseI 17.4 0.082 2.57 998.7 0.1

5.4.2 Uncertainty in cylinder diameter and length

The diameter of the cylinder was measured by a slide caliper at random locations and the
estimated bias error is given in Table 5.2.

The length of the cylinder was measured by a tape measure. Several readings were per-
formed and all were found to be within 1mm of the mean value. An estimated error of
5mm have been chosen due to a possible error in the alignment of the end plates. The
error in cylinder diameter and length are treated as bias errors in the error analysis.

Table 5.2: Error in cylinder diameter, BD, and length, BL.

Experiment D [mm] BD [mm] L [mm] BL [mm]

PhaseIII & II 100.0 0.1 2000 5
PhaseI 150.0 0.2 2987 5
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5.4.3 Uncertainty in towing velocity

The towing velocity, UU0 , is found from the tow carriage position measurements. Both an
average velocity (given by start and stop position and time) and an instant velocity vector
(the derivative of the displacement signal) is calculated. The first is used in the force coef-
ficient calculation and the latter is used to estimate the precision error. The bias error in
the tow velocity is related to the calibration factor used in the motion control system and
has been estimated by stop-watch tests and by PIV measurements for various tow velocities.

Bias error: Error in calibration factor, BU0/U0 = 0.01.
Precision error: Variation over length of time series. The standard deviation, SU0 , is
calculated for each case and the precision error is taken as PU0 = 2 · SU0/

√
N .

5.4.4 Uncertainty in drag force

The mean value of the IL force, FIL,mean, is used to calculate the drag coefficient. The
mean value is found for the steady state region of the time series. For cases where only IL
oscillations are present, the mean value is taken over an integer number of IL oscillations
and when CF oscillations are present, an integer number of CF oscillations are used. The
bias error consists of an error in the force calibration factor and an error in the cross-talk
angle, while the variation in mean force over the length of the time series represent the
precision error. The expression used for estimating the bias error (BFIL,mean

) is shown
in Eqn. (5.21) and the errors in calibration coefficient and cross-talk angles are given in
Appendix A. Table 5.3 summarizes the bias error for the three phases.

BFIL,mean

FIL,mean

=

√
(
BkIL

kIL

)2 + (1− cos(Bα))2 (5.21)

In Eqn. (5.21) kIL is the IL force calibration factor and Bα is the error in cross-talk angle.

Table 5.3: Error in drag force, BFIL,mean
.

Experiment (
BkIL
kIL

)SB (Bα)SB (
BFIL,m

FIL,m
)SB (

BkIL
kIL

)Port (Bα)Port (
BFIL,m

FIL,m
)Port

PhaseIII 0.015 2.2 0.015 0.058 2.8 0.058
PhaseII 0.021 6.0 0.022 na na na
PhaseI 0.027 2.3 0.027 na na na

The precision error is calculated for each case according to PFIL,mean
= 2SFIL,mean

/
√

N .
SFIL,mean

is the standard deviation of the mean IL force and a measure of the variation
over the length of the time series. For each zero up-crossing period the mean value of the
IL force is calculated, giving N individual values. SFIL,mean

is based on these values.

5.4.5 Uncertainty in the decomposed force

This subsection addresses the error in the decomposed force, given in Eqn. (5.8) and
Eqn. (5.14) as UF0 sin(φ) and UF0 cos(φ) for the force in phase with velocity and acceleration
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Figure 5.1: Schematic overview of the errors contributing to the uncertainty in the param-
eter F0sin(φ).

respectively. The method used to find the error is the same for both components and
UF0 sin(φ) is used to describe the method.

The phase angle φ is defined as the phase between the force and the cylinder motion.
As the force and motion signals are recorded at different channels, see Table 3.2, it is im-
portant to correct for the time lag between the sampling of the two channels in question.
In this project the data acquisition card NI PCI6221, with a sampling rate of 250kHz, has
been used. For the oscillation frequencies and the channels used in these experiments, this
sampling rate corresponds to a maximum error in phase angle of 0.007deg, or an error in
the force in phase with velocity of 1.1 ·10−4N. This error is insignificant, thus no correction
for sampling rate has been performed.

The following parameters are found to contribute to the error in the decomposed force
(see also Figure 5.1):

1. Error in force calibration factor.

2. Error in force cross-talk angle.

3. Error in acceleration cross-talk angle.

4. Error due to fft filtering of the acceleration signal.

5. Numerical error in the method used to calculate F0sin(φ).

Only the numerical error is contributing to the precision error. The bias error is calculated
as a root-sum-square combination of the elemental bias errors:

BJ =

√√√√
M∑

k=1

(BJ,k)2 (5.22)
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Error in Force Calibration Factors

The errors in calibration factors are shown in Table 5.4, and are based on the calibration
procedure reported Appendix A.

Table 5.4: Error in force calibration factor (relative to mean value) and cross-talk
angle, α

Experiment ILSB CFSB αSB ILPort CFPort αPort

PhaseIII 0.015 0.038 2.23 deg 0.058 0.033 2.84 deg
PhaseII 0.021 0.025 6.0 deg - - -
PhaseI 0.027 0.025 2.3 deg - - -

Error in Force Cross-talk Angle

The estimated uncertainty in cross-talk angle is based on results from the force sensor cal-
ibration. A method known as a "jitter program" is used to determine how this uncertainty
transfers into an uncertainty in the decomposed force. The idea behind a jitter program
is to use the data reduction algorithm to calculate the effect on the final result due to an
error in the input parameter, for details see Coleman & Steele [8].

The effect of an error in cross-talk angle is calculated as follows: First the error in the
cross talk angle is estimated, see Appendix A. Then the cross talk angle is included in
the force signal and the coefficient, F0sin(φ), is calculated. This is carried out for both
positive and negative cross-talk angle. The maximum error is used when the uncertainty
in the force in phase with velocity, F0 sin(φ), is estimated. The error in cross-talk angles
for the three experimental phases are summarized in Table 5.4.

Error in the Acceleration Cross-talk angle and fft-filtering

Two of the errors identified to contribute to the uncertainty in the decomposed force are
related to a phase error in the motion signal. For the cases where acceleration measure-
ments have been used as motion signals, the errors are related to incorrect correction for
cross-talk and to band-pass filtering of the signals. As seen in Figure 5.1 the combined
effect of these errors is considered. This has been done by investigating synthetic signals
where cross-talk has been included and filtering performed, see Appendix A.1.2 for details.

The investigation gave a phase error of Bφ=0.04deg for a 95% confidence interval. No cor-
relation was found between phase angle and acceleration amplitude or frequency. Hence,
this error has been used for all cases. The string potentiometer signal was used as motion
signal in CF direction for Phase III. The phase error due to signal processing of these
signals has been investigated and reported in Appendix A.1.2 and for a confidence level of
95% a phase error of Bφ=0.02deg was found.
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Numerical Error in Force Decomposition

The numerical error is estimated based on the four methods of force decomposition de-
scribed in chapter 4.5. The power transfer method is considered to be the most robust
and accurate method for this type of experiment and is therefore used as the base case
method. The numerical error, which is a precision error, is then estimated by calculating
a standard deviation based on the mean value given by the power transfer method. In the
following the errors related to the four methods are discussed:

The The Power Transfer Method is defined by Eqn. (4.23) and Eqn. (4.24). The method
uses the velocity and acceleration signal, and the integration is performed over the full
length of the steady state region. For most of the analyzed cases the velocity signal is cal-
culated by integration of the measured acceleration signal in frequency domain, see 4.3.2.
Both the acceleration and velocity signal is band-pass filtered. The error in this method
is related to how accurate the numerical integration in Eqn. (4.23) and Eqn. (4.24) is per-
formed, the error in the velocity- and acceleration amplitude ( x0ω0 and x0ω

2
0 respectively)

and a possible phase error in the calculated velocity signal.
The "Least Square Fit" Method is characterized by Eqn. (4.32) and uses the same input
signals as the power transfer method. The difference is that this method uses a Matlab
built-in least square fit algorithm for the force decomposition instead of the numerical in-
tegration used in the base case method. Comparing the results from the two methods will
give an indication of how sensitive the result is to the numerical method used.
The Fourier Average Method is characterized by Eqn. (4.27) and Eqn. (4.28) and the fil-
tered acceleration signal is used to find the integration limits. The force decomposition is
then performed for all zero up-crossing periods in the steady state region. Only the filtered
acceleration signal is used in the force decomposition which excludes possible errors in the
phase of the velocity signal and errors in velocity- and acceleration amplitude which are
included in the two previous methods. The fourier average method can be used to calculate
dynamic excitation- and added mass coefficients for all zero up-crossing periods and also
the individual oscillation periods. The error in the method is related to finding the correct
integration limits and to the numerical integration.
In the Transfer Function Method, see Eqn. (4.29), the force decomposition is performed in
frequency domain and only the force signal, acceleration signal and oscillation amplitude
are included in the analysis. The method is very robust but the main contribution to the
error is the frequency resolution. The full length of the steady state region is used in the
analysis but this is only approximately 70 seconds in the PhaseIII experiments.

From the discussion above it is seen that there are different sources of errors in the four
methods and they are therefore found well suited to be the basis for the estimated un-
certainty. The transfer function method is however found to give the less accurate result
and the inclusion of this method is believed to give a conservative result. It is, however, a
robust method and if it is found to give a very different result from the other methods the
test case would need to be further investigated.
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5.4.6 Uncertainty in cylinder mass

The mass of the cylinder has been found by a Marintek calibrated digital weight measuring
equipment with two digit accuracy. In addition to the mass of the cylinder the design of
the force sensor cross must be considered. The IL force sensor is the sensor connected to
the force sensor housing. Hence the inertia force due to the weight of the CF sensor will
be measured in the IL sensor. The mass of this force sensor, HBM PW2GC3, is 0.25kg. In
addition there are some connection brackets. The mass causing the measured inertia force
and the estimated uncertainty for the two directions are summarized in Table 5.5.

Table 5.5: Error in cylinder mass, BM .

Experiment MIL [kg] BM,IL [kg] MCF [kg] BM,CF [kg]

PhaseIII & II 10.38 0.10 9.78 0.03
PhaseI 16.02 0.10 15.42 0.03

5.4.7 Uncertainty in Acceleration Amplitude

The acceleration amplitude is estimated based on the filtered acceleration time series,
also used in the force decomposition. The acceleration amplitude is found for each zero
up-crossing period and mean value and precision error (Pa0 = 2Sa0/

√
N) are estimated

based on the individual amplitudes. The bias error is estimated from the accelerometer
calibration, see Appendix A, and the bias error relative to the acceleration amplitude is
given in Table 5.6.

Table 5.6: Acceleration amplitude bias error, (Ba0/a0).

Experiment (Ba0/a0)IL,SB (Ba0/a0)CF,SB (Ba0/a0)CF,Port (Ba0/a0)CF,Port

PhaseIII 0.013 0.020 0.010 0.020
PhaseII 0.009 0.072 0.018 0.022
PhaseI 0.031 0.036 0.022 0.026

5.5 Additional Error Sources
In this section some additional potential error sources are addressed. These have not
been included in the uncertainty estimate because the experiments were designed to limit
them to the extent that they are found negligible for the reliability of the hydrodynamic
coefficients.

5.5.1 Residual flow

The relative motion between the cylinder and the fluid was generated by towing the cylin-
der. In order to perform the experiment for the desired flow conditions it is essential that
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Figure 5.2: Estimated residual velocity vs. waiting time. The graphs refer to the tow
velocity, U0, in m/s.

the fluid is at rest before a new test is performed. Ersdal [11] has published the following
equation for estimation of residual flow, based on far wake theory:

u1

U0

= 1.2(
U0t

CDD
)−

1
2 (5.23)

The residual flow relative to the tow velocity, for the four towing speeds used in these
experiments, is show in Figure 5.2.

The tow carriage was returned to its starting position immediately after each run. This
should reverse the residual flow and hence reduce needed waiting time. Taking this into
account would however not change the results significantly. After 10min the equation gives
a residual flow of between 3.5 and 5% of the towing speed for all actual cases.

In order to get a hands-on feeling with the fluid conditions at the depth of the cylin-
der a drifter was placed into the towing tank after the tow carriage had returned to its
starting position. After approximately 6 minutes it was not possible to see any movement
of the drifter. Also, the runs performed after longer breaks, more than two hours, gave the
same results as tests performed after 10 minutes. It was therefore concluded that waiting
10 minutes after each run was sufficient for the residual flow to die out.
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5.5.2 End conditions

End plates were installed in order to avoid three dimensional end effects due to the finite
length of the cylinder. The end plates were made of plexiglass and were structurally
attached to the force sensor housing, with a small gap between the end plates and the
cylinder so that the end plates would not influence the measured hydrodynamic forces.
The end plates were constructed according to specifications given by Stansby [50], with
dimension 7D mounted asymmetric fore and aft, extending 2.5 diameters upstream and
4.5 diameters downstream. The height of the end plates were 5 diameters.

5.5.3 Blockage effect

Forces measured on a cylinder in a finite body of water is different from the forces expected
in an infinite stream. This effect is referred to as the "blockage effect" and is caused by
the presence of the walls and free surface in the towing tank.

The blockage ratio is defined by the diameter of the cylinder divided by the water depth
(D/Dt) and Zdravkovich [67], stated that no correction of forces is necessary for blockage
ratios < 1/10 for Re > 300. In these experiments the blockage ratio is 1/10 for the PhaseI
experiments and 1/15 for Phase II and III. Re is 2.4 · 104.

5.5.4 Wave generation

The force coefficients from this project is produced to be valid for a cylinder in an infinite
volume of water, i.e. no cylinder free surface interaction was tolerated in the experiments.
Bishop & Hassan [4] uses the Froude number to evaluate if surface wave effect is important
to the experiment. The Froude number is the ratio between inertia forces and gravitation
forces and is given on the following form:

Fn,max =
U0√
ghmin

(5.24)

where hmin is the minimum depth of submergence. For the free-surface effects to be ne-
glected, Bishop & Hassan stated that the Fn,max was to be much less than unity. In
their experiments Fn,max was calculated to be 0.375, which was considered sufficiently low.
Gopalkrishnan [15] and Vikestad [61] have reported Fn,max of 0.181 and 0.29 respectively,
which they found sufficiently low for neglecting the effect of free surface.

In the experiments presented in this thesis the Fn,max is 0.06 for the Phase I experiments
and 0.11 for Phase II and III. The free-surface effect is hence deemed negligible.

Transverse waves were however observed for the largest oscillation amplitudes for the Phase
I experiments. By observing the wash on the tank wall it was found that the maximum
wave height was approximately 2cm. Comparison with validation experiments performed
in phase II, where no waves were observed, showed no effect on the hydrodynamic coeffi-
cients.
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5.5.5 Limited towing tank length

The duration of the time series obtained by the experiments are limited by the length of
the towing tank and the towing velocity. As transient effects are present both at the start
up and end of each run it is important that the steady state part of the time series contains
a number of load cycles sufficient to calculate an average value with acceptable standard
deviation.

For these experiments steady state conditions are expected to cover approximately 23m
of the total length. The lowest frequency used in the in-line experiments were f̂IL = 0.2,
giving approximately 30 load cycles for a run. For the Phase II and III experiments the
lowest CF frequency were f̂CF = 0.11, which gives 25 load cycles. This was found to be
sufficient for calculating force coefficients and the limited length of the towing tank is not
considered contributing to the uncertainty in the hydrodynamic coefficients.

5.5.6 Flexibility in apparatus

It is vital for the results of the experiments that the apparatus has a high stiffness, i.e. can
be considered rigid. The lowest natural frequency of the apparatus was therefore estimated
by exciting the system by a rubber mallet and perform a spectral analysis of the measured
forces. The measured natural frequencies are given in Appendix A and are found to be
outside the region of interest.





Chapter 6

Results from IL Experiments

This chapter presents the results from the forced IL oscillation experiments, valid for the
pure IL VIV regime. The chapter is divided into five parts where results from fixed cylinder
tests in uniform flow are presented in the first part. In the second part hydrodynamic coef-
ficients for IL direction are presented while the oscillating forces measured in CF direction
for the same experiments are presented in the third part. The fourth part addresses the
reliability of the presented results, based on results from the uncertainty analysis, compar-
ison with previously reported results from free vibration experiments and comparison with
results from tests performed at lower Reynolds number. The fifth part discusses how the
results can be applied for estimating response amplitudes and frequencies for cylindrical
structures subjected to VIV.

6.1 Stationary cylinder results
Tests with stationary cylinder in uniform flow were performed to determine drag coeffi-
cient and Strouhal number. A large number of runs were performed, especially during the
Phase III experiments, where more than 50 repetitions were made. These results will serve
as a sound statistical basis for the estimation of the coefficients. Histograms of Strouhal
number and drag coefficient are shown in Figure 6.1 and Figure 6.2 respectively. Figure
a and b shows the results from measurements at starboard (a) and port (b) side of the
cylinder. The mean value of the Strouhal number is 0.188, with a standard deviation of
0.004, for the measurements at both ends of the cylinder. When interpreting the results
for the Strouhal number it is important to keep in mind that the duration of the steady
state condition was approximately 70 seconds, which gives a spectral resolution of 0.014Hz,
corresponding to a resolution in the Strouhal number of 0.005.

Figure 6.2 shows that there is a significant difference between the drag coefficient esti-
mated from force measurements at the two ends of the cylinder. The mean values are
1.325 for starboard side and 1.265 for port side, which represents a difference of 4.5%.
From the uncertainty analysis, see Table 5.3, it is seen that there is a relatively large bias
error related to the IL force at port side (5.8%). The IL results presented in this thesis
will hence be based on the starboard measurements.

The majority of the IL experiments were performed in Phase I, where the cylinder di-
ameter was 150mm compared to 100mm for phase II and III (the Reynolds number for

65
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Figure 6.1: Histogram of Strouhal number, estimated based on the the frequency repre-
senting the peak value of the power spectrum. Based on a total of 58 realizations.
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Figure 6.2: Histogram of drag coefficient, estimated based on the mean value of the force in
IL direction in the steady state region of the time series. Based on a total of 58 realizations.
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Figure 6.3: Histogram of Strouhal number and drag coefficient. Comparison between
PhaseI results, 7 realizations shown as solid bars, and the combined results from Phase II
and III (68 realizations).

the various experimental phases were the same). In total 7 stationary cylinder tests were
performed during Phase I and these are compared with the stationary cylinder results from
Phase II and III in figure 6.3. The figure indicates that the drag coefficient given by the
two diameters is similar, while it indicates a slightly higher Strouhal number for the Phase
I experiment.

The results from the stationary cylinder runs are summarized in Table 6.1. For the Phase III
results a correlation coefficient of 0.63 (ρxy,CF ), with a standard deviation of 0.24 (σρxy,CF

),
was found in CF direction. In IL direction the corresponding results were ρxy,IL=0.77 and
σρxy,IL

=0.14. The results from Phase I show higher oscillating forces in both CF (approx-

Table 6.1: Results from stationary cylinder runs. µ represents the mean value and σ
the standard deviation.

Phase No CD St Crms,CF Crms,IL Ct,St

µ σ µ σ µ σ µ σ µ σ

III, SB 58 1.325 0.036 0.188 0.004 0.603 0.128 0.126 0.040 0.460 0.144
III, Port 58 1.265 0.048 0.188 0.004 0.598 0.133 0.115 0.040 0.461 0.147
II 10 1.300 0.029 0.189 0.003 0.600 0.072 0.093 0.008 0.459 0.110
I 7 1.342 0.017 0.195 0.004 0.669 0.110 0.406 0.058 0.509 0.139

imately 11%) and IL direction(a factor of 4!) compared to the results from Phase II and
III. From inspection of the force time series it appears that there is a more stable vortex
shedding process for the the Phase I tests, which also results in a slightly higher drag coef-
ficient. Unfortunately only the force transducers at one side of the cylinder worked for this
phase. Hence, no information with regard to correlation of the vortex shedding process
along the length of the cylinder can be gained. The reason for the higher oscillating forces is



68 CHAPTER 6. RESULTS FROM IL EXPERIMENTS

not known, but this observation is not important for the main results from the experiments.

Comparing these results with the fixed cylinder results reported by Norberg [39], see chap-
ter 2.1.5, excellent agreement between the Strouhal number results is seen. In order to
compare the oscillating lift force, Crms,CF , with the results shown in Figure 2.5(b), the
results presented in Table 6.1 must be divided by

√
2. The reason for this is the way the

coefficients are defined, see Eqn. 2.5 and Eqn. 4.16. Comparing our value for the oscillating
lift force coefficient of 0.42 with the results in Figure 2.5(b), it is seen that it is in the lower
region of reported values for Re=2.4 ·104. This is expected as the results in Norbergs figure
are normalized based on an "vanishingly small length", lc, while the results presented herein
are normalized with respect to the cylinder length. The correlation coefficient shows that
the oscillating lift forces are not correlated, and a lift coefficient normalized with respect
to the full length of the cylinder must hence be expected to be lower.

6.2 Hydrodynamic force in IL direction

In this section the hydrodynamic forces measured in IL direction during forced IL oscillation
experiments will be presented. Contour plots of dynamic excitation coefficient, Ce,IL, added
mass coefficient, Ca,IL, and drag coefficient, CD, will be shown in the first part. Then the
forces in the two excitation regions, referred to as 1st and 2nd IL instability region in the
literature, will be addressed and contour plots of higher order force components will be
shown. The effect of mass ratio and structural damping is addressed in the following two
parts, where the concept of nondimensional damping is introduced as a method to estimate
the effect of structural damping. In the last part the response amplitude of a flexible beam
is addressed.

6.2.1 Contour Plots

The main motivation for performing the IL experiments has been to produce hydrodynamic
coefficients Ce,IL, Ca,IL and CD for the regions where pure IL VIV are expected. The re-
sults are presented as contour plots in Figure 6.4, 6.5 and 6.6. The figures contain results
from approximately 150 runs with nondimensional frequencies ranging from 0.2 to 0.9 and
amplitude ratios from 0.01 to 0.3. The contours are based on linear interpolation between
the results and no attempt has been made to smooth the curves. Results for amplitude
ratio of 0.5 and nondimensional frequencies of 1.0 and 1.2 are given in Appendix C. Flow
visualization by PIV is presented in Appendix D.

Dynamic excitation coefficient, Ce,IL. Figure 6.4 represents the oscillating force, in
IL direction, in phase with velocity as defined in Eqn. (4.10). The zero contour, i.e. the
line representing the separation between positive and negative values of the coefficient, is
shown as the thick black line. The zero contour line defines the IL response amplitude
for a cylinder without mechanical damping. The dynamic excitation coefficient represents
the energy transfer between the fluid and the cylinder. Hence, the two areas of positive
excitation coefficient represent the excitation regions and the zero contour is the boundary
of these regions. The two excitation regions for pure IL VIV, known in the literature as
1st and 2nd instability region, are clearly defined from the zero contour. The 1st instability
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Figure 6.4: Contour plot of dynamic excitation coefficient in IL direction.
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Figure 6.5: Contour plot of added mass coefficient in IL direction. The thick black line
is the zero contour of the dynamic excitation coefficient, Figure 6.4, included to illustrate
the excitation regions.

region ranges from nondimensional frequency 0.375 to 0.76 with a maximum amplitude
ratio of 0.13, while the 2nd instability region ranges from 0.27 to 0.375 with a maximum
amplitude ratio of 0.11.

Added mass coefficient, Ca,IL. Figure 6.5 shows a contour plot of the added mass
coefficient which is based on the force in phase with acceleration as shown in Eqn. (4.11).
The thick black line shows the zero contour of the dynamic excitation coefficient and has
been included to indicate the two excitation regions. The figure shows that the added mass
coefficient is mainly dependent on the nondimensional frequency and less influenced by the
amplitude. This is especially the case if we look at the added mass coefficient along the
zero contour, which can be considered as an estimate of the oscillation amplitude for free
vibrations.

Drag coefficient, CD. Contours of the drag coefficient are shown in Figure 6.6. Also
in this figure the zero contour of the dynamic excitation coefficient is included, as a thick
black line, to indicate the two excitation regions. The drag coefficient is defined from
the mean value of the force in IL direction, see Eqn. (4.9). Note that the mean value
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Figure 6.7: Contour plot of total dynamic force coefficient and IL rms coefficient. The thick
black line represents the zero contour of the dynamic excitation coefficient (Ce,IL = 0).

of the drag coefficient found in the stationary cylinder experiments was 1.33. Figure 6.6
shows a significant variation of the drag coefficient for combinations of amplitude ratio
and nondimensional frequency. Low values of the drag coefficient are seen in the high fre-
quency - high amplitude corner of the figure while a drag amplification peak is seen for a
nondimensional frequency of approximately 0.32. Following the zero contour it is seen that
the 1st instability region can be associated with reduced drag, compared to the stationary
results, and the 2nd instability region can be associated with drag amplification. Closer
inspection of the results actually shows that the drag amplification peak falls in between
the two excitation regions. Also worth noticing is that Gopalkrishnan [15] reported a drag
amplification peak for CF oscillations at a nondimensional frequency of 0.32.

6.2.2 IL force components

The dynamic excitation- and added mass coefficients, presented in Figure 6.4 and 6.5, are
based on the hydrodynamic force components at the oscillation frequency. In Figure 6.7
contours of the total dynamic force coefficient (figure a), which also is based on the force
at the oscillation frequency, and the rms-coefficient (figure b) are shown. The definitions
of the coefficients are given in Eqn. (4.12) and (4.16) respectively.

Figure 6.7 shows that the values of Ct,IL and Crms,IL are very close for the high frequency -
high amplitude cases. However, for the low frequency - low amplitude cases the difference
is more pronounced, which indicates that there are significant force components at other
frequencies than the oscillation frequency. Especially for the second instability region the
difference is large. Figure 6.8 shows the power spectrum of one case in the 1st (a) and one
case in the 2nd instability region. The two cases show that there are forces at multiples of
the oscillation frequency. These components will in the following be referred to as higher
order harmonic forces.

Figure 6.9 shows contours of the total dynamic force coefficients at two- (Ct2,IL) and three



6.2. HYDRODYNAMIC FORCE IN IL DIRECTION 73

0 fosc 2fosc 3fosc 4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

lo
g 10

(S
pe

ct
ra

l d
en

si
ty

)

Frequency [Hz]

(a) 1st instability region, A
D=0.05,f̂=0.425

0 fosc 2fosc 3fosc 4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

lo
g 10

(S
pe

ct
ra

l d
en

si
ty

)

Frequency [Hz]

(b) 2nd instability region, A
D=0.05,f̂=0.325

Figure 6.8: Power spectrum of IL hydrodynamic force.
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(Ct3,IL) times the oscillation frequency, see Eqn. (4.12), relative to Ct,IL. The figure shows
that the higher order harmonic forces are mainly related to the second instability region.
In the first instability region a force component at three times the oscillation frequency
is seen for very low amplitude ratios, but along the Ce,IL = 0 contour the ratio is less
than 0.1. In the second instability region ratios of 0.6 and 0.4 are seen for the second and
third harmonic respectively. These forces are seen for the highest response amplitudes, i.e.
amplitude ratios of approximately 0.11.

6.2.3 Effect of mass ratio

VIV results from free vibration experiments are normally presented as oscillation amplitude
versus reduced velocity, Vr. By finding the added mass coefficient along the Ce,IL = 0
contour (as indicated by the inclusion of the Ce,IL = 0 contour in the added mass contour
plot in Figure 6.5) and assuming that the added mass coefficient for the natural frequency
in still water (f0) is Ca,IL = 1.0, the nondimensional frequency can be transformed to
reduced velocity by:

Vr =
1

f̂

√
m̄ + 1

m̄ + Ca

(6.1)

In the following, amplitude ratio, frequency ratio and drag coefficient will be shown as
function of reduced velocity for varying mass ratio.

Amplitude ratio

In Figure 6.10 (a) the amplitude ratio (A/D) given by the Ce,IL = 0 contour is shown
as a function of reduced velocity. The transformation from nondimensional frequency to
reduced velocity has been performed for four mass ratios. It is seen that when reducing
the mass ratio the response region is stretched out over a larger range of reduced velocities.
A mass ratio of 100 would typically represent a cylinder in air while a mass ratio of 1.5
to 2.0 would be relevant for a pipeline or riser in water. Figure 6.10 (a) shows that the
effect of mass ratio is stronger for the 2nd instability region, compared to the 1st. For
the first instability region the highest amplitude ratio appears at a reduced velocity of
approximately 2.6 for a mass ratio of 100 while it appears at Vr=2.9 for a mass ratio of 1.
The second instability region spans from Vr=2.6 to Vr=3.7 for m̄=100 and from Vr=3.0 to
Vr=5.6 for m̄=1.

Frequency ratio

Knowing the added mass along the Ce,IL = 0 contour it is possible to calculate the ratio be-
tween the response, or oscillation, frequency and the eigenfrequency of a cylinder subjected
to VIV. Figure 6.10 (b) shows this frequency ratio as a function of reduced velocity for the
four mass ratios used in Figure 6.10 (a). The frequency ratio is calculated by substituting
for Vr and f̂ in Eqn. (6.1), which gives the following expression:

fosc

f0

=

√
m̄ + 1

m̄ + Ca

(6.2)

Figure 6.10 (b) also shows the ratio between the frequency given by two times the Strouhal
number and the eigenfrequency in still water for increasing reduced velocity. The following
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figure (b) shows the frequency ratio as a function of reduced velocity for four mass ratios.
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expression can be derived from the definition of St and Vr:

2fs

f0

= 2St · Vr (6.3)

The factor 2 is included because the Strouhal number is defined based on the shedding fre-
quency, for a stationary cylinder, in CF direction. The frequency of the force from vortex
shedding in IL direction is two times the frequency in CF direction. The Strouhal number
found from the stationary cylinder tests is 0.19.

Figure 6.10 (b) clearly shows the importance of mass ratio. The high mass ratio case,
m̄=100, shows a response frequency equal to the eigenfrequency in still water for the full
range of the excitation region. This shows that the forces in phase with acceleration are
not strong enough to change the response frequency for this condition. For the low mass
ratio cases the response frequency increases for increasing Vr. It is seen that the slope is
different from the slope given by the Strouhal number and that the slope changes for the
various mass ratios.

Figure 6.10 (b) also shows that the two excitation regions are divided by the frequency
corresponding to two times the Strouhal frequency (2fs). For the low mass ratio cases the
response frequency apparently follows the Strouhal frequency between the two excitation
regions. It should also be noted that the IL excitation region starts at a ratio between
forcing frequency and eigenfrequency in still water, i.e. 2fs/f0, of approximately 0.5.

Lock-in or wake capture is, as discussed in chapter 2.2.1, one of the characteristic properties
of VIV. Figure 6.10 (b) demonstrates what this phenomenon looks like in free vibration
experiments of varying mass ratio.

Drag coefficient

Figure 6.11 (a) shows the drag coefficient as function of reduced velocity for four mass ra-
tios. The values for the drag coefficient has been found for the first and second instability
region as indicated by the thick black line in Figure 6.11 (b), representing the Ce,IL = 0
contour. The transformation from nondimensional frequency to reduced velocity has been
performed by using Eqn. (6.1) for the added mass values corresponding to the Ce,IL = 0
contour.

Figure 6.11 (a) clearly shows the difference in drag coefficient between the 1st and 2nd

instability region. The average drag coefficient for the stationary cylinder cases was 1.33
and it is seen that the first instability region give a reduction in drag coefficient, while
drag amplification is seen for the second instability region. The minimum value is 0.9,
found for a reduced velocity of 1.7, and the maximum value is 1.85 for reduced velocities
of approximately 3. For m̄=1.5 and oscillation amplitude A/D=0.1 (Figure 6.11 (b)) it is
seen that there is almost a factor of 2 in drag force depending on which vortex shedding
mode is causing the vibration, see also discussion given in Appendix D.
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Figure 6.11: Drag coefficient as function of reduced velocity for varying mass ratio (figure
a). Solid line: m̄ = 100; Dotted line (..): m̄ = 2; Dashdot line (-.-.): m̄ = 1.5; Dashed line
(- -): m̄ = 1.0. Figure b shows the CD contours and the Ce,IL = 0 contours, thick black
line, that figure a is based on.

6.2.4 Effect of structural damping

Structural damping will extract energy from the system. Hence, when structural damping
is present the zero contour will no longer represent the oscillation amplitude. Energy from
the fluid will have to balance the energy extracted from the system by structural damping.
The new balance will be achieved by a reduction of the response amplitude, which will give
a positive dynamic excitation coefficient.

In the following the concept of nondimensional damping will be introduced as a method
for predicting the oscillation amplitude for a system with structural (external) damping.
Application of the method for prediction of IL response amplitudes is shown in section
6.5.2.

Nondimensional damping

A cylinder subjected to VIV in in-line or cross flow direction can be described by the
equation of motion:

mẍ + cẋ + kx = Fhydro(t) (6.4)

Where m is the dry mass of the cylinder, c is the structural damping coefficient and k is
the stiffness. Fhydro(t) is the hydrodynamic force component in IL or CF direction and
x is the corresponding cylinder motion. As shown in previous chapters we have assumed
that the VIV response is harmonic and takes place at resonance. We may then further
assume that the hydrodynamic force is harmonic, Fhydro(t) = Fhydro,0 sin(ω0t + φ). Using
the known general property:

F0 sin(ωt + φ) = F0 cos(φ) sin(ωt) + F0 sin(φ) cos(ωt) (6.5)
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Eqn. (6.4) can be written as (at resonance):

(m +
Fhydro,0 cos(φ)

x0ω2
osc

)ẍ + (c− Fhydro,0 sin(φ)

x0ωosc

)ẋ + kx = 0 (6.6)

We readily identify Fhydro,0 sin(φ) from the definition of the dynamic excitation coefficient,
Ce Eqn. (4.10), and in order to achieve a steady state situation the excitation term must
balance the damping term, i.e. the oscillation amplitude is given by the amplitude where
there is a balance between damping and excitation.

(c− Fhydro,0 sin(φ)

x0ωosc

) = 0 (6.7)

Making the substitutions Fhydro,0 sin(φ) = Ce · 1
2
ρDU2

0 , ωosc = 2πU0f̂/D and x0

D
= A

D
we

have:
c = ρU0D

Ce

4π A
D

f̂
(6.8)

The nondimensional damping coefficient pr. unit length, ĉ, can now be defined as:

ĉ =
c

ρU0D
=

Ce

4π A
D

f̂
(6.9)

Referring to IL oscillations (Figure 6.12) we may divide the dynamic excitation coefficient,
Ce,IL, by 4π A

D
f̂ and then draw contours for varying level of nondimensional damping. In

other words, the oscillation amplitude is determined by the nondimensional frequency, f̂ ,
and the nondimensional damping, ĉ. Again, no attempt has been made to smooth the
contours of Figure 6.12. Only linear interpolation has been used between the measured
values.

Transformation to reduced velocity

In order to better illustrate the effect of damping, amplitude ratios for levels of nondimen-
sional damping are shown as a function of reduced velocity in Figure 6.13 (a). The mass
ratio chosen for the figure is 1.3.

In Figure 6.13 (a) the transformation to Vr is performed by choosing added mass val-
ues along the actual ĉ-contour line. These added mass values are plotted as a function
of nondimensional frequency in Figure 6.13 (b). The figure shows that added mass for
varying f̂ is almost independent on ĉ and hence also on amplitude ratio.

Nondimensional damping and the response parameter, SG

The concept of nondimensional damping is, to the best of our knowledge, introduced for
the first time in this thesis. Previously the effect of damping in VIV experiments has been
evaluated by various parameters containing the product of mass ratio and relative damp-
ing, ζ. Halse [17] has given a thorough discussion on the various versions of the response
parameter, and the following is based on his discussion.

Gopalkrishnan [15] proposed a simple method for estimating CF response based on the
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Figure 6.13: (a): Similar curve as for Figure 6.12, but use of Vr instead of f̂ . The transfor-
mation from f̂ to Vr has been performed according to Eqn. (6.1) and the Ca values used
are shown in figure (b) where × represent ĉ = 0, ◦ for ĉ = 0.1, ¦ for ĉ = 0.2, + for ĉ = 0.3,
? for ĉ = 0.4 and / for ĉ=0.5.
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response parameter, SG. The basic assumptions for the method was that the oscillation
could be described by the equation of motion, Eqn. (6.4), and that the hydrodynamic
force could be described as harmonic, Eqn. (6.5), giving a harmonic response at the same
frequency (denoted ωn which is analogous to ωosc used in this thesis). For this situation
the oscillation amplitude is a result of a balance between the damping and the hydrody-
namic lift coefficient in phase with velocity, CL_V (analogous to the dynamic excitation
coefficient, Ce,CF ,used in this thesis):

2mζωn
dy

dt
⇐⇒ 1

2
ρDU2

0 CL_V cos(ωnt) (6.10)

The symbol ⇐⇒ has been used to denote "in balance with". By substituting y =
yn sin(ωnt) and ωn = 2πf̂U0/D, canceling common terms and rearranging Gopalkrishnan
ended up with the expression:

2{2πf̂ 2

(
2m(2πζ)

ρD2

)
}yn

D
⇐⇒ CL_V (6.11)

From Eqn. (6.11) we recognize the expression within the curly braces {...} as the response
parameter SG (used by among others Gopalkrishnan, Sarpkaya and Griffin) and the expres-
sion within the "normal" braces (...) as the stability parameter KS, or Scruton number,
used by e.g. Blevins and DNV. We also recognize the ratio m

ρD2 ζ know as the mass damping
parameter.

By substituting f̂ = ωnD
2πU0

and c = 2mζωn in the expression for SG we get the expres-
sion published by Vandiver [58].

SG =
cωn

ρU2
0

(6.12)

Vandiver used this expression to show that SG is independent of mass and that the param-
eter is a statement of dynamic equilibrium between the average energy input injected into
the oscillating system by the fluid through lift force, and the energy dissipated by damping.
This is the same reasoning used when defining the nondimensional damping parameter,
and by using Eqn. (6.12) in Gopalkrishnans expression we have:

2{SG}yn

D
⇐⇒ CL_V (6.13)

Substituting ωn = 2π f̂U0

D
and rearranging we get

c

ρU0D
⇐⇒ CL_V

4πf̂ yn

D

(6.14)

Which again is the definition of the nondimensional damping.

As seen from the discussion above, the nondimensional damping is essentially the same
as the stability parameter, SG. Given the large number of nondimensional parameters
related to VIV it is not desirable to introduce new ones. We have, however, chosen to
introduce the nondimensional damping in order to emphasize that variation of damping
and mass ratio causes different effects as pointed out in this chapter. Also, the fact that
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SG traditionally has been associated with mass ratio justifies the replacement. As pointed
out by Vandiver [58]: "The common erroneous conclusion is that low-density cables, hence
cables with small mass ratio, are likely to respond more than high density ones".

Relationships between the nondimensional damping parameter and the most frequently
used parameters describing damping in VIV experiments are summarized in the expres-
sions below.

Response parameter, SG:

ĉ =
SG

2πf̂
(6.15)

Mass-damping parameter, m̄ζ:

ĉ = (m̄ + Ca)ζ · π2f̂ (6.16)

Stability parameter, Ks, as defined in DNV-OS-F105 [10]:

ĉ = Ksf̂ (6.17)

Vandiver [59] has introduced a variation of the SG parameter given in Eqn. 6.12 named Su,
universal reduced damping parameter. This parameter can be used for both uniform and
non-uniform flow conditions, and the parameter is intended to be used to estimate modal
response of flexible beams.

Nondimensional damping and Reynolds number

There has been an ongoing discussion on the importance of Reynolds number in VIV
experiments, i.e. which Reynolds number is sufficient in experiments for capturing the
effect of VIV of a full scale free spanning pipeline or riser. It is seen from the definition
of the nondimensional damping, see Eqn. (6.9), that it contains the inverse of the product
U0D which is also included in the definition of the Reynolds number. Substituting ν = µ

ρ
,

where µ is the viscosity and ν the kinematic viscosity, the nondimensional damping can be
written as:

ĉ =
c

ρU0D
=

c

Re
µ (6.18)

As seen from Eqn. (6.18) it can be very easy to interpret a reduced oscillation amplitude
caused by damping as a Reynolds number effect. Also, it is seen that the importance of
damping inherent in the experimental apparatus is much higher for low Reynolds numbers
than for higher values.

Nondimensional damping in free vibration experiments

The nondimensional damping parameters importance for the response amplitude is clearly
shown for the pure IL regime in Figure 6.12. When performing free vibration experiments
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it is hence important to keep this in mind when the results are interpreted and applied for
prediction of VIV for full scale risers and free spanning pipelines. For instance, when per-
forming free vibration tests in a water tunnel it is common to select a fixed spring stiffness,
giving the desired eigenfrequency, and then increase the current speed to cover the desired
region of reduced velocities, Vr. Assuming that the structural damping is close to constant
over the tested range of frequencies and amplitudes, the oscillation amplitudes measured
will represent different levels of nondimensional damping. High values of nondimensional
damping for low reduced velocity results and lower values for the high reduced velocity
results.

When free vibration experiments are used to investigate the effect of Reynolds number,
the same experimental setup will typically be used for various flow velocities. For the
tests performed the damping level in still water will be the same, but the nondimensional
damping will be reduced for increasing Re. An increased response amplitude observed in
such experiments may then be interpreted as a Re effect. However, the increased response
may actually be caused by a reduced effect of the structural damping in the apparatus.
The effect of Re in VIV experiments has also been discussed in section 2.3.4.

6.2.5 Response amplitude of a flexible beam

As discussed in section 2.3.4 the maximum response amplitude of a flexible beam is ex-
pected to be larger than the maximum response amplitude given by an elastically mounted
rigid cylinder experiment.

The concept of nondimensional damping and the assumption that strip theory is valid
may be used to estimate the maximum response amplitude of a flexible beam. For a given
mode shape, Φ, the modal nondimensional damping coefficient is given by Eqn. (6.19).

ĉmodal,IL =

∫ L

0
ĉIL(y)Φ2

IL(y) dy∫ L

0
Φ2

IL(y) dy
(6.19)

For each position along the length of a flexible beam the oscillation amplitude is given
by the maximum response amplitude and the mode shape. For a given mode shape and
oscillation frequency, ĉmodal,IL may be calculated for given values of maximum response
amplitude. To demonstrate the effect, the mode shape of a pinned-pinned beam is as-
sumed (Φ = (A

D
)max sin(π y

L
)). Modal values of nondimensional damping are calculated for

(A
D

)max from 0.02 to 0.16, and for nondimensional frequency values between 0.25 and 0.80.
The results are presented as contours in Figure 6.14.

It is seen that the shapes of the contours in Figure 6.14 are similar to those in Figure 6.12,
but the amplitudes are increased.

The ratio between maximum response amplitude of a flexible beam and that of a rigid
cylinder is know as the geometric shape factor, or γ-factor (see section 2.3.4). Figure 6.15
shows the geometric shape factor as a function of nondimensional frequency for nondimen-
sional damping values from 0 to 0.3.
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Figure 6.14: Modal ĉ values for a pinned-pinned beam. Amplitude ratio (y-axis) refers to
maximum amplitude ratio at midspan.
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Figure 6.15: Geometric shape factor for a flexible beam with pinned - pinned boundary
conditions. × represent ĉ = 0, ◦ represent ĉ = 0.1, ¦ represent ĉ = 0.2 and + represent
ĉ = 0.3.

For a beam with pinned-pinned boundary conditions, Reid [42] has proposed a geometric
shape factor of 1.18 for IL VIV. For this mode shape Blevins [5] has proposed a geometric
shape factor of 1.16, but this factor is based on a hydrodynamic load model valid for CF
direction. Figure 6.15 shows that one single factor will not cover all conditions, but values
similar to the previously published factors are seen. The figure shows that for most fre-
quencies an increased ĉ level will reduce the geometric shape factor.

In order to use the contours of Figure 6.14 for predicting response amplitude, a modal
structural damping coefficient for the given flexible beam is required. This coefficient must
be established from a damping analysis.

6.3 Oscillating force in CF direction

This section addresses the forces measured in CF direction, when oscillating the cylinder
in IL direction. The objective is to show that there are significant CF force components at
0.5 and 1.5 times the IL oscillation frequency. These force components may excite response
in CF direction, both at ωCF = 0.5ωIL and at a higher order harmonic frequency.

6.3.1 CF force components

In Figure 6.16 (a) contours of the Crms,CF coefficient are shown. The value of Crms,CF

obtained from the stationary cylinder cases was approximately 0.6, and we readily see that
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Figure 6.16: Figure a shows contours of the Crms,CF coefficient during forced IL oscillations.
The Crms,CF value for the stationary cylinder tests was 0.6. Figure b shows the oscillating
force in CF direction at the Strouhal frequency. Stationary cylinder value is 0.5. The two
instability regions are indicated by the thick black line.

IL oscillations influence the oscillating force in CF direction. The Crms,CF values are in-
creased in the 2nd instability region and reduced in the 1st instability region, compared to
the stationary cylinder results. Comparing Figure 6.16 (a) with the contours of the drag
coefficient, see Figure 6.6, it is evident that there is a correlation between the oscillating
force in CF direction and drag force. In Figure 6.16 (b) contours of the force coefficient at
the Strouhal frequency, Ct,St, is shown. The Ct,St value for the stationary cylinder cases was
approximately 0.5, and it is seen from Figure 6.16 (b) that Ct,St for the IL oscillation cases
only exceeds this value in the close region of where f̂IL is two times the Strouhal number.
This indicates that the CF force frequency locks on to the IL oscillation frequency, i.e. a
wake capture phenomenon. In order to investigate this further the power spectra of the
CF hydrodynamic force for one case in the 1st and one case in the 2nd instability region
are inspected, see Figure 6.17.

The spectral density peaks in Figure 6.17 show forces at 0.5 and 1.5 times the IL os-
cillation frequency for the second instability region. The case shown for the first instability
region is at the boarder line of where increased Crms,CF is seen. The spectrum (Figure. 6.17
(a)) shows that the frequency band of the force components are wider than for the 2nd in-
stability region case. The total dynamic force coefficient for the two frequency components
0.5 · fosc,IL and 1.5 · fosc,IL is shown as contours in Figure 6.18.

For the second instability region, Figure 6.18 shows total dynamic force coefficient val-
ues (Eqn. (4.12)) of up to 1 at frequency 0.5 times the IL oscillation frequency and 0.5 at
a frequency of 1.5 times the IL oscillation frequency. Ct,IL values for the second instability
region are in the region of 0.1-0.3, see Figure 6.7.
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Figure 6.17: Power spectrum of CF hydrodynamic force. fosc is the oscillation frequency
in IL direction.
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Figure 6.18: Figure a shows contours of the Ct,CF coefficient, forces at 0.5 times the IL
oscillation frequency. Figure b shows contours of oscillating CF forces at 1.5 times the IL
oscillation frequency, Ct3,CF . The two instability regions are indicated by the thick black
line.
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6.3.2 CF results as function of reduced velocity

In this section force components in CF direction are shown as a function of reduced veloc-
ity, Vr. The reduced velocity is calculated by the method described in section 6.2.3, and
relates as such to an eigenfrequency in IL direction. For a free spanning pipeline of low
mass- and L/D ratio, the first eigenfrequency in CF direction will be very similar to the
first eigenfrequency in IL direction. E.g. for the flexible beam experiment presented in
Figure 1.1, the first eigenfrequency in the two directions are almost identical.

CF forces at 0.5 and 1.5 times the IL oscillation frequency are shown as a function of
reduced velocity in Figure 6.19 (a) and Figure 6.20 respectively. The values presented are
taken along the Ce,IL = 0 lines for the 1st and 2nd instability region as shown in Figure 6.11
(b). Both figures show significant force components in the second instability region. Keep-
ing in mind that the total dynamic force coefficient in IL direction (Ct,IL) for the second
instability region is approximately 0.1-0.3, significant CF forces at both frequencies are
also seen in the first instability region.

Figure 6.19 (b) shows the frequency of the CF force component Ct,CF , relative to the
IL eigenfrequency in still water. Included in the figure is also the Strouhal frequency rela-
tive to the IL eigenfrequency. Figure 6.19 shows the two instability regions, 1st and 2nd, as
separate curves in (a), while in (b) the two regions are divided by the point where the line
representing the Strouhal frequency crosses the curves representing the force frequency. It
is clearly seen that there are CF forces also in the 1st instability region. In IL direction
response is observed when the forcing frequency, i.e. 2fs, is 0.5 times the eigenfrequency
in still water. For conditions where the eigenfrequencies in the two directions are equal,
the figure shows that once the CF forces occur the ratio between the forcing frequency and
the eigenfrequency is at least 0.5.

These forces may explain why CF response occur at a lower reduced velocity in exper-
iments where the cylinder is allowed to oscillate in both IL and CF direction, compared
to experiments where IL motions are restricted. Also, it may explain why the drop in re-
sponse amplitude between the first- and second IL instability region is not seen in flexible
beam experiments (CF vibrations are present). It could hence be correct to talk about an
IL induced CF vibration.

6.3.3 CF correlation

Figure 6.21 (a) shows the correlation coefficient based on the CF forces measured at the
two ends of the cylinder for two frequencies, f̂=0.325 and f̂=0.425. In Figure 6.21 (c)
the total dynamic force coefficient at 0.5 times the IL oscillation frequency is shown. The
amplification of CF forces in the 2nd instability region (line with × markers) is easily seen
from the figure. Comparing Figure 6.21 (c) with the correlation coefficient it is seen that
the correlation is very high for the high CF forces, indicating that there is a fully developed
vortex shedding mode over the length of the cylinder. The result for amplitude ratio 0.09
(f̂=0.325) does however stand out as the correlation coefficient changes sign (-0.7) and the
CF force drops. Looking at Figure 6.21 (d) it is seen that this case ((A/D)IL = 0.09) is
on the border line of the IL excitation region, i.e. Ce,IL close to zero. There is however
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figure (b) shows the frequency ratio as a function of reduced velocity for four mass ratios.
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Figure 6.20: Total dynamic force coefficients at 1.5 times the IL oscillation frequency.
Values taken along the Ce,IL = 0 lines for the 1st and 2nd instability region as shown in
(6.18b). Solid line: m̄ = 100; Dotted line (..): m̄ = 2; Dashdot line (-.-.): m̄ = 1.5; Dashed
line (- -): m̄ = 1.0.

no drop in correlation in IL direction as shown in 6.21 (b) and due to problems with the
apparatus for the first two experimental phases there are no other relevant cases available
to further investigate the observation.

6.4 Validation
In this section the reliability of the IL results is discussed. The section is divided into three
parts where the first part discusses the main results from the error analysis presented in
chapter 5. In the second part results for some cases performed for a Reynolds number
of 1.0 · 104 are compared with the Re=2.4 · 104 results in order to get some idea of how
sensitive the results are with respect to Re. In the last part of this section the results are
compared with free vibration results found in the literature.

A very important part of the quality control was the daily routines in the lab. All ex-
periments and calibrations were performed by the author and care was taken for each
experimental run to be performed according to specifications. An important part of the
data processing quality control was the result sheets that were produced for each case, see
Appendix B. In the first sheet intermediate results are presented in order to select the
appropriate steady state region and verify that the filter limits are doing its job. The "fi-
nal result" sheet, see Figure B.2, is used to verify that stable values for the hydrodynamic
coefficients are achieved. In the error analysis result sheet, see Figure B.3, the importance
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Figure 6.21: Correlation coefficient, as defined by Eqn. (4.17), for CF and IL direction in
figure a and b respectively. Figure c shows the total dynamic force coefficient for a frequency
of 0.5 times the IL oscillation frequency. Figure d shows the dynamic excitation coefficient.
The results are plotted as function of IL oscillation amplitude ratio. × represents result
for f̂=0.325 and 4 for f̂=0.425.
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of the various error sources is seen.

6.4.1 Uncertainty

The methodology used for estimating the 95% confidence interval of the hydrodynamic
coefficients is presented in chapter 5. Performing the error analysis proved to be important
for understanding the possible errors in the experiments and also for gaining confidence in
the results. Due to the large number of cases performed for the IL VIV investigation, it is
not feasible to report detailed results from the error analysis for each case. The uncertainty
analysis results are therefore presented as a summary where the important factors for the
three hydrodynamic coefficients, CD, Ce,IL and Ca,IL, are discussed. Then repeated cases,
2nd order replication, is presented to investigate the repeatability and also whether the
uncertainty analysis can capture the real uncertainties. The results from three frequencies
performed in Phase I were repeated in Phase II. These are compared, and the bias errors
from force sensor and accelerometer calibration are addressed. For Phase I and II the force
sensors at one end of the cylinder did not work properly. The results from both ends are
hence compared only for tests performed in Phase III.

Error analysis

Drag coefficient, CD. For the drag coefficient the error in cylinder dimensions (L and
D) and water density (ρ) is negligible. The important contributions to the bias error is
error in tow velocity and error in calibration of the IL force sensors. A bias error of 1%
is assumed for the tow velocity, see section 5.4.3, and as seen from the data reduction
equation, Eqn. (5.7), this will lead to a 2% error in the result. The bias error in the force
calibration factor is given in Table 5.3 and is between 1.5 and 2.7% at starboard side for
the various experimental phases. The bias error at port side, Phase III, is 5.8%. The main
contribution to the precision error for the drag coefficient is the variation in mean value
from the individual zero up-crossing periods as described in section 5.4.4. A histogram of
the precision error relative to the drag coefficient is shown in Figure 6.4.1.

Dynamic excitation coefficient, Ce,IL. Also for the dynamic excitation coefficient
the error in dimensions and water density give negligible contribution to the total error.
The dynamic excitation coefficient describes the energy transfer between the fluid and the
cylinder. Thus, the sign of the coefficient represents the direction of the energy transfer. As
seen from the presentation of the IL results in earlier sections of this chapter, the oscillation
amplitude where the dynamic excitation coefficient changes sign is one of the important
findings from the experiments. These amplitudes define the boundary of the excitation
region. At the point where the coefficient changes sign the force in phase with velocity
is zero. It is seen from the influence coefficient of the tow velocity, Eqn. (5.13), that this
approaches zero as the force approaches zero. The bias error of the tow velocity is pro-
portional to the force and is hence important for the magnitude of the dynamic excitation
coefficient, but not for the error in the phase of the force and hence not important for the
boundary of the excitation region (the Ce,IL = 0 contour). The error in the decomposed
force, F0 sin(φ), is discussed in section 5.4.5. As for the error in tow velocity, the bias
error from calibration of the force sensors is important for the magnitude of the dynamic
excitation coefficient, but not for the phase of the force and thus not for the sign of the
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Figure 6.22: Histogram of estimated precision error relative to drag coefficient, P_CD

CD
.

coefficient. The error due to cross-talk is found to be negligible for these experiments, and
the estimated phase error due to cross-talk and FFT filtering of the acceleration signal is
0.04deg, see 5.4.5. Hence, there is a marginal contribution from cross-talk to the total error
for cases where the phase angle is close to zero. The main contribution to the precision
error is the numerical error from data processing. The precision and bias errors estimated
for Ce,IL are shown in Figure 6.23 (a) and the figure indicates a precision error for the
Ce,IL = 0 region of less than 0.02. In Figure 6.23 (b) the contours for Ce,IL = −0.015 and
Ce,IL = 0.015 are shown to indicate an error band for the estimated zero contour Ce,IL = 0.
The bias error is approximately 4% of Ce,IL.

Added mass coefficient, Ca,IL.
The error analysis shows that the added mass coefficients for the lowest amplitude ratios
in the test matrix (A/D=0.01) are too unreliable to be included in the results. The data
reduction equation for the estimation of uncertainty in the added mass coefficient is given
in Eqn. (5.14), and the calculated bias and precision errors are shown in Figure 6.24. The
figure shows that the bias error is a function of the added mass value and the trend is in-
dicated by two black lines. The two lines represent the results from Phase I and Phase III
where the relative bias error (BCa/Ca) is higher for Phase I (approximately 4%) compared
with Phase III (approximately 1.8%). The main contribution to the bias error is error in
the force calibration coefficient, see table 5.4, and error in accelerometer calibration coeffi-
cient, see table 5.6. The tables show that the error in both calibration coefficients is higher
for Phase I. It is seen that the bias error is not zero for zero added mass due to a bias
error in cylinder mass and cross-talk. The relative error in mass is larger for the smaller
cylinder, Phase III. The bias error is expected to increase for increasing negative values of
the added mass and it is not clear why this is not the case. The bias errors in dimensions
and water density are found negligible.
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Figure 6.25: Histograms of results for case f̂ = 0.5, A
D

= 0.09.

In general the highest precision errors are seen for the low frequency - low amplitude
cases. Numerical error and precision error in acceleration amplitude contribute to the re-
ported precision error. A histogram of the precision error is shown in Figure 6.24 (b). The
estimated precision error for two cases of nondimensional frequency 0.2 exceeds the scale
of Figure 6.24 (a) and are not considered in the discussion as they are taken as outliers.

Repeatability

Over the course of Phase I, case (A/D)=0.09 and f̂=0.5 was repeated 20 times. The results
for drag coefficient, dynamic excitation coefficient, added mass coefficient and measured
amplitude ratio are presented as histograms in Figure 6.25. In Table 6.2 the mean values
and standard deviations, based on these 20 repetitions, are compared with the nominal
value and precision error estimated from a single case (the one used in the result matrix).
As the experimental setup is the same for all repetitions, the results represent an estimate
of the actual precision error of the coefficients. The bias errors are the same for all 21 cases.
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Table 6.2: Results from repeatability investigation, Phase I.

CD Ce,IL Ca,IL
A
D

mean 0.927 -0.033 0.932 0.093
std 0.025 0.018 0.014 0.001

Nominal 0.932 -0.025 0.931 0.093
Precision 0.012 0.005 0.012 0.001

Table 6.3: Results from repeatability investigation, Phase II.

CD Ce,IL Ca,IL
A
D

mean 0.863 -0.060 0.923 0.092
std 0.019 0.008 0.014 0.001

Table 6.2 confirms that the precision error of the measured oscillation amplitude is small.
The added mass coefficient for the selected case is approximately 0.9, and Figure 6.24 (a)
shows that the precision error is expected to be low. This is confirmed by the standard
deviation of the 20 cases, even though the repetitions gave a 95% confidence interval of
±0.028 (P=2S) compared with the ±0.012 found from the error analysis. For the drag
coefficient and especially the dynamic excitation coefficient the error analysis underesti-
mates the precision error. By inspecting the evolution of the hydrodynamic coefficients
during one test run (an example is shown in Figure B.2), it is seen that for several of the
tests a stationary value is not reached. This indicates that the length of the towing tank
is not sufficient even though the number of oscillation periods in the steady state region is
approximately 65. The method for estimating precision error, used in the error analysis,
is based on the assumption that stationary condition is obtained for all tests.

Higher order replication

Tests for three nondimensional frequencies, f̂ , (0.35, 0.5 and 0.7) were repeated in Phase
II. The cylinder diameter was reduced from 15cm to 10cm and all the calibrations were
redone. This represents a higher order replication level, and by comparing these results
with the results from Phase I the bias error estimated in the error analysis can be investi-
gated. The results from Phase II are compared with Phase I in Figure 6.26. The case used
for investigating the precision error (A/D=0.09, f̂=0.5) was also repeated in Phase II. In
total 10 repetitions were carried out and the results are summarized in Table 6.3.

In Figure 6.26 it is seen that there is a large discrepancy in drag coefficient for the f̂=0.35
case at A/D=0.13 and 0.17. From Figure 6.5 it is seen that these two cases are at the
border of the drag amplification region. The stationary cylinder tests show that there is
a small deviation between the Strouhal number obtained for the two cylinder diameters.
The results indicate that this small difference cause the Phase II results to be outside the
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Table 6.4: Results from repeatability investigation, Phase I and II.

Ce,IL Ct,IL φ [deg]

mean, Phase I -0.033 1.341 -1.40
std, Phase I 0.018 0.017 0.77

mean, Phase II -0.060 1.315 -2.64
std, Phase I 0.008 0.016 0.36

drag amplification region. As pointed out in an earlier section the added mass results for
A/D=0.01 are highly unreliable. This is confirmed by the results presented in Figure 6.26.
Apart from the A/D=0.01 cases the results for added mass coefficient show good agree-
ment. Investigating the results for the dynamic excitation coefficient it is seen that the
difference between the results from Phase I and II increases for increasing A/D ratio. A
closer look at the results reveal that the oscillating forces are of the same magnitude but
there is a difference in phase angle. As the oscillation amplitude increase, the total force
increase and a constant difference in phase cause an increasing difference in dynamic ex-
citation coefficient. The same effect is also seen when the three different frequencies are
compared. The total oscillating force increases for increasing frequency, and it is also seen
that the difference between Phase I and II results increases for increasing frequency. The
results indicate that the bias error for phase angle is larger than estimated in the error
analysis, see chapter 5 and Appendix A.

The results from the 10 repetitions of case A/D=0.09-f̂=0.5, given in Table 6.3, show
similar trends for measured amplitude and added mass coefficient as seen for the 20 rep-
etitions performed in Phase I. However, the differences in drag coefficient and dynamic
excitation coefficient is significant and indicate that there are larger bias errors related
to these parameters than estimated in the error analysis. The mean value of the drag
coefficient is 7% lower than predicted in Phase I, while the estimated bias error based on
calibration and cross-talk were 3.4% and 3.0% for Phase I and II respectively. The sta-
tionary cylinder tests gave a difference of 3%. This indicates that there are additional bias
errors related to the drag coefficient that are not accounted for in the error analysis.

The dynamic excitation coefficient is based on the force in phase with velocity and re-
lates to the total dynamic force coefficient as Ce,IL = Ct,IL sin(φ). Table 6.4 shows the
mean and standard deviation of Ct,IL and φ. The results clearly show that the difference
in dynamic excitation coefficient is due to the difference in phase angle (φ). Based on the
standard deviation, the 95% confidence interval for the mean value of φ can be estimated
(Pφ̄ = 2Sφ/

√
N). The result shows that for Phase I φ = −1.40 ± 0.34 and for Phase II

φ = −2.64± 0.24. This indicate that there is a bias error in φ. The bias error is however
small, and is not considered to influence the main conclusions drawn from the experiments.
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Correlation

In Phase I and II only forces at one side of the cylinder could be measured. The reported
results from these two experiments have therefore been based on the assumption that using
half the cylinder length when estimating the hydrodynamic coefficients would give the same
result as adding the forces from the two sides and useing the full length of the cylinder.

In Phase III forces were measured at both sides of the cylinder and the results for the two
sides are compared in Figure 6.27. The figure shows drag coefficient, dynamic excitation
coefficient and added mass coefficient as a function of amplitude ratio for nondimensional
frequency 0.425. It is seen that there are some differences in the results for the drag coef-
ficient, but (apart from A/D=0.05) the general trend is that the two sides give the same
result. From the stationary cylinder results it should be expected that the drag coefficient
at port side is between 4 and 5% lower than the drag coefficient measured at starboard side.
For the dynamic excitation coefficient and the added mass coefficient there is, however, a
systematic difference between the two sides. The results for Ce,IL indicate a systematic
phase difference and the results for Ca,IL indicate a systematic difference in the magnitude
of the oscillating force. This is further investigated by plotting the correlation coefficient,
the ratio of the total dynamic force coefficients and the difference in calculated phase angle
between cylinder motion and hydrodynamic force, see Figure 6.28.

Results for nondimensional frequency 0.375 and 0.325 are also included in Figure 6.28.
For f̂=0.425 it is seen that there is indeed a difference between the port and starboard
phase angle, between 1.5 and 3 degrees for the various A/D ratios. This trend can also be
seen for the two other nondimensional frequencies, but the variation is larger. Comparing
the phase difference with the correlation coefficient it is seen that both seem to become
stable for higher amplitude ratios. The correlation coefficient is approaching 1 and the
phase difference seems to approach -3. For low values of A/D the correlation is poor and
low correlation is also seen for low values of the nondimensional frequency. The reason
for this is that the total dynamic force for these cases are low and the correlation seems
to drop for low values of the force. The influence on the dynamic excitation coefficient
is, however, not very large due to the large phase angles for these cases, i.e. the majority
of the oscillating force is i phase with velocity which give low values for the added mass.
Figure 6.28 also confirms that the oscillating force at port side is lower than at starboard
side. The calibration of the port side force sensor showed larger uncertainty in the calibra-
tion coefficient, and for the stationary cylinder cases the port side give lower values. The
difference between the two sides seem to increase for low values of total dynamic force.

6.4.2 Reynolds number dependance

As discussed in section 2.3.4 Re is an important parameter in VIV experiments. For pure
CF VIV experiments indicate that both response amplitudes and hydrodynamic coefficients
approaches stable values within the subcritical flow regime when Re exceeds 1.5·104-2.0·104.
For Re below 1.5 ·104 the hydrodynamic coefficients are significantly influenced by varying
Re.

In order to investigate if the hydrodynamic coefficients are significantly different below
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this limit also for IL VIV, experiments were performed at Re=1.0 · 104. A motivation for
these tests was to investigate if the results from the forced vibration experiments could be
used to predict the response of the flexible beam experiments shown in Figure 1.1. The
pure IL tests of the flexible beam experiment were performed at Re below 1.5 · 104.

Figure 6.29 shows results for f̂=0.4 and 0.8 performed at Re=1.0 · 104, compared with
the corresponding Re=2.4 · 104 results. The figure shows good agreement for the added
mass coefficient for f̂=0.8, while the other results show significant discrepancies. Too few
cases are tested in order draw any conclusions regarding the importance of Re for IL VIV
experiments, performed within the subcritical flow regime. The results do, however, indi-
cate that the results from the Re=2.4 · 104 experiment can not be expected to compare
well with the pure IL results of the flexible beam experiment.

6.4.3 Comparison with Other Experiments

Even tough the vast majority of experimental results on VIV are related to CF oscillations,
there have been several research programs investigating IL VIV by free vibration experi-
ments. Classical work on the topic is published by Wootton et. al. [64] and King et. al
[27], see Figure 6.30 (a) and (b) respectively.

Figure 6.30 (a) shows the two instability regions and also indicates the dominating vortex
shedding pattern related to the two regions. The figure shows maximum A/D values of
0.14 for the first instability region and 0.13 for the second instability region. Comparing
Figure 6.30 (a) with the response amplitude given by the Ce,IL = 0 contour presented in
Figure 6.10 it is seen that the maximum response amplitude is similar for both instability
regions, and that the response curve is shifted to higher reduced velocities in Figure 6.10
compared to Figure 6.30 (a). The reason for this is that Wootton performed his experi-
ments at a Strouhal number of 0.23 (see Sarpkaya [53]), while the Strouhal number for this
project is 0.19. It is also seen that the high mass ratio curve in Figure 6.10 give the best
approximation to the Wootton results.

King presented IL response diagrams for various values of the stability parameter k′s based
on results from a model pile mounted as a vertical cantilever in a water flume. The re-
sponse was presented in terms of base bending moment as a function of reduced velocity.
The results are discussed by Naudascher [36] where the base bending moment is converted
to a tip displacement, and Figure 6.30 (b) is taken from this publication. k′s is defined as

k′s = 2mrδs with mr =
ρe

ρ
(6.20)

where mr is the reduced mass, δs is the logarithmic decrement from structural damping,
ρe is the equivalent body density and ρ is the fluid density. Figure 6.30 (b) shows two
figures where the levels of k′s have been achieved by two different methods. In the figure
to the left k′s values from 0.48 to 1.41 have been achieved by varying the tip mass of the
model pile while in the figure to the right k′s values from 0.15 to 1.35 have been achieved
by varying the water level of the flume. It is seen from Figure 6.30 (b) that the levels of
k′s resembles the effect of increased nondimensional damping illustrated in Figure 6.13 (a).
However, the experimental methods used by King make it difficult to compare the results
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Figure 6.29: The figure compare results for Re=1.0 · 104 with the corresponding results for
Re=2.4 · 104. The blue lines represent f̂=0.4 and red lines represent f̂=0.8. Solid lines for
the Re=2.4 · 104 results and dashed lines (- -) for the Re=1.0 · 104 results.
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(a) Results from Wootton [64]. Figure from Sarpkaya and Isaacson [53].

(b) Results from King [27]. Figure from Naudascher [36]. Left figure varying
tip mass, right figure varying water level.

Figure 6.30: IL VIV response.
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Figure 6.31: Comparison between literature results given by solid line and Ce,IL=0 contour
given by dashed (- -) line.

directly with our results.

The main findings related to IL VIV from several research and development projects car-
ried out from 1984 to 1995 have been summarized in two articles by Bryndum et. al [7]
and Tørum et. al. [55]. These results are also the basis for the response curves used
in DNV’s recommended practice "Free Spanning Pipelines" (DNV-RP-F105) [10]. The
response amplitudes given by the Ce,IL = 0 contour is compared with the DNV response
curve for Ks = 0 in Figure 6.31 (a). When converting the nondimensional frequency to
reduced velocity a mass ratio of 3.7 gives the closest fit to the DNV curve. The response
amplitudes in DNV-RP-F105 refer to the maximum response amplitude of a uniform beam
or cable. In order to compare these values with the rigid cylinder results presented in this
thesis, the DNV curve is divided by γ = 1.16, see Blevins [5]. It is seen that the slope of
the two curves compares very well for the first instability region and that the maximum
response amplitude occur at approximately the same reduced velocity. The maximum am-
plitude given by the DNV curve is, however, higher than given by the Ce,IL = 0 contour,
(A/D)max=0.155 vs. (A/D)max=0.13.

A series of IL pendulum tests were performed in the towing tank at Marintek in 2003/2004,
and the results from the experiments were reported in a technical report by Huse [19], and
in a MSc thesis by Johansen [26]. The experiment was performed as excitation and decay
runs where the transient phase was utilized to extract hydrodynamic coefficients, Ce,IL

and Ca,IL. The results from the decay tests are compared with the Ce,IL=0 contour in
Figure 6.31 (b). It is seen that the Johansen/Huse results show very similar response am-
plitudes in the second instability region, while the response is lower for the first instability
region. The reason for this is expected to be mechanical damping.

In order to compare the response amplitudes from the pendulum experiment with the
results from the forced oscillation experiment, the structural damping in the pendulum
tests must be estimated. The damping reported in the Huse/Johansen experiment is the
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Figure 6.32: Figure (a) compares response amplitudes from Huse/Johansen with contours
for nondimensional frequency. × indicate decay run and / indicate excitation run. Figure
(b) shows the estimated nondimensional frequency vs. reduced velocity.

relative damping from decay tests in still water. A relative damping of ζ=0.0081 is reported
for an oscillation period of 0.803s and an oscillating mass of 73.91kg. A cylinder length of
1.4m give a damping coefficient pr. unit length of c = ζ · 2mω = 6.6 [N/(m/s2)]. This
value does, however, include the damping due to fluid forces acting on the cylinder, which
is not a part of the structural damping. The relative damping of a cylinder in viscous fluid
can, for small amplitudes, be estimated by Eqn. 6.21, see Blevins [5].

ζcyl =
π

2

ρD2

m

√
ν

πfD2
(6.21)

Substituting Eqn. 6.21 into the definition of relative damping, ζ = c
2mω

, the following
expression for the damping coefficient due to forces acting on the cylinder is obtained (pr.
unit length).

c = 2πρD
√

πfν (6.22)

Subtracting the value given by Eqn. 6.22 from the damping coefficient given by the decay
tests gives a structural damping coefficient pr. unit length of 5.6 [N/(m/s)]. Nondi-
mensional damping values can hence be calculated for the towing velocities used in the
pendulum experiment, see Figure 6.32 (b).

In Figure 6.32 (a) nondimensional damping contours from ĉ =0.0 to ĉ =0.5 are shown
as functions of reduced velocity. The transformation from nondimensional frequency to
reduced velocity is carried out for a mass ratio of 10.5, which is the mass ratio for the
pendulum experiment. Looking more closely at the decay results it is seen that for Vr

between 1.6 and 2.2 the amplitudes lay between ĉ=0.3 and 0.2. For Vr=2.5 the response
amplitude from the decay test is located between ĉ=0.2 and 0.1. In the second instability
region the response amplitudes follow the ĉ=0.1 contour until Vr=3.5 where the amplitudes
approach the ĉ=0 contour. Figure 6.32 (b) shows the estimated nondimensional damping.
It is readily seen that the ĉ estimated from the structural damping given by decay tests
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in still water is higher than indicated by comparing the response amplitudes with the con-
tours for nondimensional damping. However, the encouraging result from this comparison
is that the concept of nondimensional damping seems to capture the physical effect related
to damping in IL VIV experiments, i.e. the influence from damping increases for lower cur-
rent velocities. For further validation of the nondimensional damping concept against free
vibration experiments, better estimates of the actual structural damping for the various
oscillation frequencies and amplitudes are required. The results for the two highest reduced
velocities indicate that experiments should have been carried out for more nondimensional
frequencies. The maximum response amplitude in the second instability region seems to
be between f̂=0.275 and 0.3, and lower boundary of the second instability region seems to
be between f̂=0.25 and 0.275. By performing experiments at nondimensional frequencies
between these values, a better representation of the boundary of the second instability
region may have been found.

Figure 6.32 (a) shows the response amplitudes from the excitation and decay tests in the
pendulum experiment by Huse/Johansen. The results for the lowest reduced velocities in
both the first and the second instability region show similar values for both types of tests.
However, for Vr=2.5 in the first instability region and the highest reduced velocities of the
second instability region, the excitation runs do not give any response. Huse/Johansen
have concluded that this is a hysteresis effect. The same effect can also be predicted by in-
vestigating the nondimensional damping contours from the forced oscillation experiments.
In the second instability region it is clearly seen that the boundary of the excitation region
is at a lower Vr for low oscillation amplitudes compared to higher amplitudes, Vr=3.4 for
A/D=0.015 and Vr=3.9 for A/D=0.08. In decay runs the pendulum was held at an excur-
sion higher than the expected response amplitude and then released after the tow carriage
had been accelerated to the desired velocity. The oscillations would then be damped until
equilibrium was reached in the excitation region. In the excitation runs the pendulum
was fixed at its mean position until the tow carriage had reached the desired speed and
then released. For any oscillations to occur for this type of experiment there must be an
energy transfer from the fluid to the cylinder in order to start the oscillation. It is seen
that cases with a reduced velocity of more than 3.4 and an A/D less than 0.015 are outside
the excitation region. The same can be seen for the highest reduced velocities in the first
instability region. For Vr=2.5 and a nondimensional damping level of more than 0.1 the
forced oscillation experiments predicts a response amplitude close to zero for an excitation
experiment. In Figure 6.32 (a) it is seen that the response amplitude from the excitation
run at Vr=2.8 exceeds the response given by the decay run by a large margin. It is also
outside the excitation region given by the forced oscillation experiments.

Okajima et.al [40] have published results from IL free vibration experiments performed in
a water tunnel. The experiments were performed for varying values of the mass-damping
parameter Cn. Results from tests with a duraluminum cylinder are shown in Figure 6.33.
The figure clearly shows the two instability regions and it also shows that the response is
reduced for increasing values of the mass-damping parameter Cn. Okajima has defined Cn
as:

Cn = 2Mδw (6.23)
where M is defined as m

ρd
with m as the structural mass pr unit span length and d as the

diameter of the cylinder. δw is the logarithmic decrement in still water. The different levels
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(a) Instability regions (b) Maximum amplitude

Figure 6.33: Results presented by Okajima et.al. [40].Figure (a) shows rms values of the
measured response as a function of reduced velocity. In figure (b) the maximum response
amplitude for the 1st and 2nd instability region is shown as function of the mass-damping
parameter Cn. Figure (a) corresponds to the DUR results in figure (b).

of Cn were obtained by changing the width of the plate springs used as elastic support.
Using this method the mass and the natural frequency were kept relatively constant for
all levels of Cn. In order to compare the results from Okajima with the results from the
forced oscillation experiment, the various levels of Cn has to be converted to nondimen-
sional damping, ĉ. M=10.5 is reported for the duraluminum case shown in Figure 6.33,
and using the definition of M an oscillating mass of 0.69kg is found. A natural frequency
in still water of 24Hz is reported and using the relation δ = 2πζ and the definition of the
damping ratio (ζ = c

2mω
), the total damping coefficient in still water can be estimated

for the various Cn levels. The structural damping is found by subtracting the damping
due to the fluid forces on the cylinder given by Eqn. 6.22. The estimated nondimensional
damping for Cn=0.77 and 1.04 (dashed line) are shown as functions of reduced velocity in
figure 6.34 (b).

Figure 6.34 (a) shows the contours of nondimensional damping as function of reduced
velocity. The transformation to reduced velocity has been carried out for a mass ratio cor-
responding to the Okajima experiments. The response amplitudes given by Figure 6.33 (b)
for the reduced velocities given by Figure 6.33 (a) are included as circles for Cn=0.77 and
squares for Cn=1.04. It is seen that the response amplitudes from Okajima’s experiments
are very close to the nondimensional damping contours corresponding to the estimated ĉ.
However, for the Cn=0.77 case (circles) the ĉ contours predicts an increased amplitude
for higher Vr. The reason for this discrepancy is not known and can only be investigated
by measuring the actual structural damping for the different oscillation frequencies and
amplitudes.

Hysteresis effects in the second IL instability region were also reported in Okajima’s article.
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Figure 6.34: Figure (a) shows response amplitudes for two tests reported by Okajima
et.al. 2002 [40] and contours for nondimensional damping. Figure (b) shows estimated
nondimensional damping for the same tests.

The damping was too high for any hysteresis to be observed in the first instability region.

6.5 Application of IL results

The results reported in this chapter can be applied to predict response amplitudes and
response frequencies for pure IL VIV. As discussed in chapter 2 there are two methods
commonly used for prediction of fatigue damage from VIV. These are methods based on
empirical force coefficients, such as VIVANA and Shear7, and parametric response models
as found in DNV-RP-F105. In the following it is shown how the results from the forced IL
oscillation experiments can be utilized in the two VIV prediction methods.

6.5.1 Empirical force coefficient methods

The method implemented in VIVANA for prediction of CF VIV has been discussed in
chapter 2.4.2. The hydrodynamic coefficients extracted from the experiments presented in
this thesis contain all the information required to implement a similar model for IL VIV.

The contour plot of the added mass coefficient, see Figure 6.5, and also the added mass
vs. nondimensional frequency plot for levels of nondimensional damping, see Figure 6.13,
indicate that an amplitude independent model of the added mass can be applied. The
proposed added mass model is shown in Figure 6.35 (a). The model shows a similar trend
as the added mass values from a forced IL oscillation experiment for a fixed amplitude
ratio of 0.05, reported by Nishihara et. al [38].

Contours of the dynamic excitation coefficient are presented in Figure 6.4. In the model
for CF VIV, implemented in VIVANA, mathematical functions described by the maximum
value of the excitation coefficient and the amplitude of the zero contour has been fitted
to the data. This method can also be used for an IL VIV model. As an example, shown
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Figure 6.35: Figure (a) shows the proposed added mass model, thick black line, for im-
plementation in empirical force coefficient methods. Markers indicate results for different
levels of ĉ, see FIG 6.13b. Figure (b) indicate how the dynamic excitation coefficient can
be modeled. The figure shows results for f̂=0.5.
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Figure 6.36: Proposed drag amplification/reduction curve. Based on CD,stationary = 1.325.

in Figure 6.35 (b), cubic splines are fitted to the measured data points in the excitation
region and a straight line is fitted to the large amplitude data points. Figure 6.35 (b) is
based on f̂=0.5 and similar curves can be created for the other nondimensional frequencies.

Drag amplification is normally included as a function of CF oscillation amplitude. As
seen in Figure 6.6 the drag amplification and reduction is both frequency and amplitude
dependent for IL oscillations. For low values of the nondimensional damping parameter,
which often is the case for free spanning pipelines, it should, however, be sufficient to use a
frequency dependent model for drag correction. The proposed nondimensional frequency
dependent drag amplification /reduction curve is shown in Figure 6.5.1.

The models for the hydrodynamic coefficients presented in Figure 6.35 are valid for the
Strouhal number of the IL experiments, i.e. St = 0.19. The Strouhal number is however a
function of the Reynolds number, as shown in several publications (e.g. Sumer & Fredsøe
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[52]). The hydrodynamic models presented herein are valid for St=0.19 and when used for
conditions giving a different Strouhal number, it is the ratio between f̂ and St that must
used in the calculations.

(
f̂

0.19
)model = (

f̂

St

)actual (6.24)

A model for IL VIV, similar to the one described in this section, has recently been in-
cluded in the computer program VIVANA, see Larsen et. al [31].

6.5.2 Response model

As discussed in chapter 2, response models have traditionally been based on results from
free vibration experiments. However, by introducing the concept of nondimensional damp-
ing it is possible to establish a response model for pure IL VIV from the forced oscillation
results presented herein.

In previous sections it has been shown how the results can be compared to results from
experiments of flexibly mounted rigid cylinders. This section presents a method for pre-
dicting response frequency and maximum response amplitude of a flexible beam, such as
a free spanning pipeline, subjected to uniform current. The proposed response model is
shown in Figure 6.38 and consists of two steps:

1. The eigenfrequency of the pipe is converted to a response frequency through an added
mass model, where the mass ratio of the pipe is an important parameter.

2. The response amplitude is then predicted based on the level of structural damping.

The parameter chosen for the response model is 2St

f̂
. This parameter represents the ratio

between the loading frequency for a stationary cylinder (i.e. two times the vortex shedding
frequency) and the response frequency, 2St

f̂
= 2fs

fosc
.

In the following the method is first described by addressing the steps of the prediction,
and then the method is used to predict response amplitudes and response frequencies of
the three pure IL cases of the flexible beam experiment shown in Figure 1.1.

Establish the eigenfrequency of the span
The eigenfrequency of a free spanning pipeline may be estimated by performing a FE-
analysis. Note that the static drag force should be included in this analysis. The drag
coefficient of a stationary cylinder should be used in order to determine whether the fre-
quency of the span is within the excitation region. Based on this eigenfrequency, the flow
velocity and the diameter of the pipe, the parameter Vr ·2St can be calculated. The parame-
ter represents the ratio between the loading frequency and the eigenfrequency, Vr ·2St = 2fs

f0
.

Convert eigenfrequency to response frequency
By using Figure 6.38 (a) the eigenfrequency is converted to a response frequency by choos-
ing the curve corresponding to the appropriate mass ratio. From this figure it can be
determined whether the span will respond due to pure IL VIV. If the span is found to
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Figure 6.37: Drag amplification(a) and added mass shown as a function of the ratio between
the loading frequency and the response frequency.

respond the eigenfrequency should be recalculated based on an updated drag coefficient,
see Figure 6.37 (a). A value for 2St

f̂
is then established and the oscillation frequency, fosc,

may be found.

Establish response amplitude
For the given 2St

f̂
, the response amplitude is estimated by using Figure 6.38 (b). The

nondimensional damping is given by ĉ = c
ρU0D

, where c is the modal structural damp-
ing coefficient which in general must be found from a damping analysis. For free spanning
pipelines the level of modal structural damping is often given by the damping ratio, ζ. The
nondimensional damping may then be estimated by ĉ = (m̄ + Ca)ζ · π2f̂ , see Eqn. 6.16.
Figure 6.37 (b) gives the added mass required in the expression. Damping from pipe-soil
interaction at the span shoulders should also be included in the modal damping coefficient.

Flexible beam example

Figure 1.1 shows results from a flexible beam experiment performed for the Ormen Lange
pipeline project, and it is seen that three of the flow velocities tested gave pure IL response.
In the following the proposed response model is used to predict response amplitude and
response frequency for these flow velocities, and the results are then compared with the
measured values. Characteristic properties of the flexible beam:

D=0.0351m
m̄=1.36
f0=2.563

Establish eigenfrequency of the span:
In the flexible beam experiment the eigenfrequency in still water was determined experi-
mentally by performing pluck tests. This eigenfrequency is also used here. The Strouhal
number for the various flow velocities may be estimated from Figure 2.5 (a). This figure
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is however based on results from smooth cylinders. The flexible beam is not expected to
be smooth, and a Strouhal number of 0.2 is therefore assumed. The values in column 2 of
Table 6.5 (Vr · 2St) is then calculated.

Convert eigenfrequency to response frequency:
Figure 6.37 (a) is used to convert the eigenfrequency to response frequency, giving the
values in column 3 of Table 6.5 (2St/f̂). The mass ratio of the beam is 1.36 which is in
between the line for 1.0 and 1.5 (for the three cases investigated the two lines are almost
identical).

Establish response amplitude:
The response amplitude is estimated from Figure 6.37 (b), and an estimate for the struc-
tural damping is hence required. This value is not known, but typical structural damping
ratios for flexible beam experiments are between 1 and 2%. A damping ratio of 1.5% is
assumed. In order to estimate the nondimensional damping, ĉ = (m̄ + Ca)ζ · π2f̂ , values
for Ca are found from Figure 6.37 (b) and values for f̂ are known since values for 2St/f̂
have already been established. These values are given in column 4 and 5 in Table 6.5. The
estimated values for nondimensional damping are given in column 6 and the corresponding
response amplitudes are given in column 7. The response frequency is calculated from the
definition of f̂ .

Table 6.5: Results from response model example.

U0 [m/s] Vr · 2St
2St

f̂
Ca f̂ ĉ A

D fosc [Hz]

0.135 0.60 0.60 1.02 0.67 0.24 0.045 2.56
0.181 0.80 0.78 0.87 0.51 0.17 0.095 2.64
0.226 1.00 0.94 0.70 0.43 0.13 0.10 2.74

Comparison with measured results:
The measured values for response frequency and response amplitude are given in Table 6.6.
It is seen that the predicted values are in very close agreement with the measured values
with one exception. This is the response amplitude for the highest flow velocity. Looking
at the response curves for 2St/f̂=0.94, it is seen that the results at this frequency ratio
deviate from the general trend of the response curves. This result highlights that there
may be errors related to the experimental results that are not captured by the error anal-
ysis. Interpolating between the neighboring frequency ratios, it is seen that a response
amplitude close to the measured will be predicted.
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Table 6.6: Measured values from the flexible beam experiment.

U0 [m/s] A
D fosc [Hz]

0.135 0.040 2.59
0.181 0.095 2.63
0.226 0.12 2.73
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Chapter 7

On the Validity of Strip Theory in VIV
modeling

This chapter presents results from an investigation performed in order to determine whether
results from forced oscillation experiments in two degrees of freedom can be used to model
VIV for flexible beams by a strip theory approach.

7.1 Background - Aim of Investigation

Chapter 6 showed that results from forced IL oscillation experiments are well suited for
predicting response of a freely oscillating cylinder in the pure IL regime. This chapter goes
one step further, by also including CF oscillations. While the pure IL regime could be
described by two parameters, A/D and f̂ , the two degrees of freedom motion requires 5
parameters if harmonic motions are assumed in both directions. These are A/D and f̂ in
both IL and CF and a phase angle α, see Figure 3.5.

The aim of this chapter is to investigate if forced oscillation experiments in two degrees
of freedom give results that can be used to model VIV of flexible beams, i.e. slender ma-
rine structures such as free spanning pipelines. The method used is summarized in the
following:

• Results from a relevant and well documented oscillating beam experiment are col-
lected. The results required are time series of response, in addition to structural data
and eigenfrequencies in both IL and CF.

• Trajectories of IL-CF oscillation are identified for 9 cross sections along the length
of the flexible beam.

• Orbits are constructed by fitting harmonic functions to the observed trajectories. It
is important that the orbital directions correspond to the observed directions.

• The orbits are used in forced oscillation experiments of a rigid cylinder, and hydro-
dynamic forces valid for each orbit are found.

• The excitation coefficients in IL and CF direction for all orbits are calculated in order
to determine the total energy transfer between the pipe and the fluid.

115
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• Added mass in both directions are calculated in order to determine whether these val-
ues can explain the difference between the still water eigenfrequency and the observed
oscillation frequency for the flexible beam in the two directions.

The method is based on two main assumptions:

• Strip theory is valid, i.e. the fact that there is communication in the water between
adjacent sections experiencing different oscillation amplitudes would not change the
hydrodynamic forces on the cylinder compared to the forces from 2D flow conditions.

• The difference between the actual response of the flexible beam and the orbits tested
does not significantly change the hydrodynamic forces on the cylinder.

7.2 Experiments Performed

The flexible beam experiment presented in Figure 1.1 for Vr=5.0 has been chosen for this
investigation. From the flexible beam results, trajectories for 9 cross sections evenly dis-
tributed over the length of the span, from y/L=0.1 to y/L=0.9, has been chosen. The
trajectories are shown in Figure 7.1 together with the fitted orbits. The figure clearly
shows that the flexible beam results contain more than one frequency in each direction
and can not be very accurately represented by harmonic orbits. The CF amplitude ratios
(A/D) are between 0.1 and 0.5, and the CF amplitude is two times the IL amplitude for all
9 cases. The phase angle, α, vary from 73 degrees for the smallest amplitudes close to the
two ends, to 85 degrees for the highest amplitude at mid span. The oscillation frequency
in CF represents a nondimensional frequency of 0.147. The IL frequency is two times the
CF frequency.

Two sets of experiments were performed. The first set was carried out during experi-
mental phase II at Re=2.4 · 104 and the second set was carried out during phase III at
Re=1.46 · 104. This is the same Re as for the flexible beam experiment.

7.3 Data analysis

The experimental results from each individual test are analyzed by the methods presented
in chapter 4 and 5. In the following the methods used to estimate the power transfer,
added mass and damping ratio are outlined.

7.3.1 Energy Balance

The coordinate x refers to IL direction, z is the CF direction and y the axial direction
along the beam. The average power transfer pr. unit time (P̄fluid) between the fluid and
the pipe for an infinitesimal length and oscillation in IL and CF is given as:

dP̄fluid = lim
T→∞

∫ t+T

t

(Fz(t)ż(t) + Fx(t)ẋ(t)) dt (7.1)
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Figure 7.1: Cases analyzed. Black lines indicate results from flexible beam experiments.
Red lines indicate the orbits tested (forced oscillation experiments).
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Using the properties of Eqn. (4.22) and the definition of the excitation coefficient, Ce,IL/CF

(Eqn. (4.10)), the average power transfer in CF direction may be expressed as :

dP̄fluid,CF = lim
T→∞

∫ t+T

t

Fz(t)ż(t) dt =
1

2
ωoscz0(F0 sin φ)CF =

1

4
ρDU2ωoscz0Ce,CF (7.2)

A similar expression is also valid for IL direction. Further, using the expression found in
Eqn. (7.2) and substituting for ωosc = 2πUf̂/D, Eqn. (7.1) can be expressed as:

dP̄fluid =
π

2
ρDU3

[
f̂CF

(
A

D

)

CF

Ce,CF + f̂IL

(
A

D

)

IL

Ce,IL

]
(7.3)

For the flexible beam the power transfer integrated over the length of the beam is the
quantity of interest. Substituting for f̂IL = 2f̂CF and (A/D)CF = 2(A/D)IL the power
transfer for this particular case may be written as:

P̄fluid =

∫ L

0

dPfluid(y) dy =
π

2
ρDU3f̂CF

∫ L

0

(
A

D

)

CF

(y) [Ce,CF (y) + Ce,IL(y)] dy (7.4)

For the 9 discrete results available, the integral is approximated by a sum. The expression
used to calculate the reported results is:

P̄fluid =
π

2
ρDU3f̂CF

9∑
i=1

(A/D)CF,i [Ce,CF,i + Ce,IL,i] · 0.1 (7.5)

A free oscillation can only exist if the value of P̄fluid is positive. The power transfer from
the fluid to the cylinder balances the energy dissipation through structural damping. In
order to get a better understanding of the magnitude of the estimated power transfer,
equivalent values of the overall excitation and nondimensional damping coefficients can be
estimated:

C̄e,CF =

∑9
i=1 (A/D)CF,i [Ce,CF,i + Ce,IL,i] · 0.1

(A/D)CF,characteristic

(7.6)

ĉCF,equivalent =
C̄e,CF

4πf̂CF (A/D)CF,characteristic

(7.7)

The characteristic oscillation amplitude ratio is taken as the maximum amplitude ratio
divided by the γ-factor for a pinned-pinned beam (γ=1.16), given by Blevins [5].

7.3.2 Added mass

There is no coupling between the two directions, IL and CF, in the mass matrix for the
flexible beam experiment. Hence, the added mass is found by using modal analysis and
calculating the added mass independently in the two directions. The expression giving
added mass pr. unit length is:

C̄a,IL/CF =

∫ L

0
Ca,IL/CF (y)Φ2

IL/CF (y) dy
∫ L

0
Φ2

IL/CF (y) dy
(7.8)
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Φ is the modeshape of the span. The equivalent added mass from the 9 cross sections
tested is estimated by:

C̄a,IL/CF =

∑9
i=1 Ca,IL/CF,i(A/D)2

IL/CF,i∑9
i=1(A/D)2

IL/CF,i

(7.9)

The ratio between the eigenfrequency in still water, f0, and the oscillation frequency, fosc,
is given by the added mass and the mass ratio:

(
f0

fosc

)2

IL/CF

=
m̄ + C̄a,IL/CF

m̄ + 1
(7.10)

7.3.3 Damping ratio

Knowing the nondimensional damping and the added mass, the damping ratio, ζ, can be
calculated. The damping ratio is defined in Eqn. (2.11) and substituting for oscillation
frequency (ωn = 2π ·Uf̂/D) and the corresponding oscillating mass (mn = πD2

4
ρ(m̄ + Ca))

the damping ratio is given as:

ζ =
c

ρDUπ2f̂(m̄ + Ca)
=

ĉ

π2f̂(m̄ + Ca)
(7.11)

Using the estimated equivalent value for nondimensional damping, and nondimensional
frequency and added mass in CF direction, an estimate of the damping ratio for the flexible
beam experiment can be calculated:

ζCF,equivalent =
ĉCF,equivalent

π2f̂CF (m̄ + C̄a,CF )
(7.12)

7.4 Results
The hydrodynamic coefficients from forced oscillation tests at Re=2.4 · 104 are presented
in Figure 7.2. The coefficients are calculated according to the definitions in Chapter 4 and
the 95% confidence intervals are estimated by the methodology presented in Chapter 5.
The figure shows high values for the excitation coefficient, Ce,CF , close to the two ends,
i.e. for low oscillation amplitudes. Note that these values are significantly higher than for
pure CF experiments. For the highest oscillation amplitudes the excitation coefficient is
negative. The added mass coefficient, on the other hand, has a relatively constant value
except for the smallest oscillation amplitudes. Both coefficients behave as expected for an
oscillating beam. In IL direction the excitation coefficient is negative, but the values are
small. The added mass is also negative, indicating an oscillation frequency higher than the
eigenfrequency.

For the Re=2.4 · 104 case the results presented for y/L=0.2 and 0.3 are based on the
same orbits as for y/L=0.8 and 0.7. Hence, only 7 different cases have been analyzed. The
differences in oscillation amplitude between the the two sides are, however, small (less than
8%). Only measurements at one side of the cylinder are available from Phase II. Also, due
to some problems with the control system the phase angles are lower than intended. The
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largest difference is seen for the lowest oscillation amplitudes where the phase angle is 10
degrees lower than intended, while at midspan the oscillation amplitude is 3 degrees lower
than intended.

The hydrodynamic coefficients obtained for Re=1.46 · 104 are shown in Figure 7.3. This
is the same Re as for the flexible beam experiment. The oscillation amplitudes and phase
angles achieved during this experimental phase (phase III) are as given by the fitted or-
bits. Force measurements are also available at both ends. The results show a very close
agreement between the two sides of the cylinder. The trends of the coefficients are very
much the same as for the Re=2.4 · 104 case. However, the CF excitation coefficient shows
higher values and only the maximum amplitude give Ce,CF < 0.

In Table 7.1 the equivalent coefficients, representing the oscillating beam, are presented.
The table shows that both cases have a positive equivalent excitation coefficient, which
indicate that vibrations can take place. However, the excitation coefficient, especially for
the Re=1.46 · 104 case, seems high. The added mass coefficients show good agreement for
the two cases.

Table 7.1: Results strip theory validation. Hydrodynamic force coefficients.

Coefficient Re=2.4 · 104 Re=1.46 · 104

C̄e,CF 0.28 0.51
ĉCF,equivalent 0.35 0.63
C̄a,CF 3.77 3.58
C̄a,IL -0.13 -0.19

The mass ratio, m̄, of the flexible beam experiment is 1.36, and the frequency ratios in IL
and CF direction are (f0/fosc)IL=0.673 and (f0/fosc)CF=1.364 respectively. The damping
ratio and frequency ratios estimated based on the forced oscillation experiments are given
in Table 7.2.

Table 7.2: Results from strip theory validation. Mass ratio used in the calculations
is m̄=1.36.

Coefficient Re=2.4 · 104 Re=1.46 · 104

ζCF,equivalent 4.7% 8.8%
(f0/fosc)CF 1.48 1.45
(f0/fosc)IL 0.72 0.70

7.5 Discussion
Table 7.2 shows damping ratios corresponding to ζ=4.7% and ζ=8.8% for Re=2.4 ·104 and
Re=1.46 · 104 respectively. Damping has not been reported for the flexible beam experi-



7.5. DISCUSSION 121

1

1.5

2

2.5
C

D

−1

0

1

2

C
e,

C
F

0

2

4

6

C
a,

C
F

−0.2

−0.1

0

0.1

0.2

C
e,

IL

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

C
a,

IL

Axial position, y/L

Figure 7.2: Results for Re=2.4 · 104.
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ment, but is expected to be very low for such an experiment. In particular the damping
ratio estimated for the Re=1.46 ·104 case is too high. This is also the experiment expected
to give the better approximation to the flexible beam results. However, the excitation
coefficient seems to be very sensitive to oscillation amplitude. A small increase in oscilla-
tion amplitude should hence give an excitation coefficient corresponding to a more realistic
damping ratio. The encouraging result is the trend of the excitation coefficient with respect
to increased oscillation amplitude.

The ratios between the eigenfrequency and oscillation frequency, f0/fosc, estimated from
the equivalent added mass values (see Eqn. (7.10)) corresponds reasonably well with the
ratios reported for the flexible beam experiment. The difference is only 4 to 8%. A reason
for this difference can be that the eigenfrequency of the span is changed when the static
drag forces are considered, compared to the still water case. As seen from Figure 7.2 and
7.3 the drag coefficient is relatively high, approximately 2. This will add tension and hence
also geometric stiffness and the eigenfrequency will increase. The added mass from this
type of forced oscillation experiment refers to the eigenfrequency of the span experiencing
VIV, i.e. included static drag forces.

As discussed in section 2.3.4 the Reynolds number is an important parameter in VIV
experiments. The Re of the flexible beam experiment is close to the region where a transi-
tion to turbulence in the free shear layer is seen and the force coefficients are Re dependent.
However, the force coefficients for the two Re values are similar, and the Re is considered
high enough for the transition in the free shear layer not to be a factor. The measured
Strouhal number for Re=1.46 ·104 was slightly higher than for Re=2.4 ·104, St=0.195 com-
pared to St=0.188. Correcting for this difference in the cases performed at Re=2.4 · 104,
by changing the nondimensional frequency to 0.142, should give closer agreement between
the two sets of results.

The results indicate that the IL direction extract energy, i.e. causes damping, while the
excitation is in CF direction. More results are required to determine if this is the case for all
oscillations in two degrees of freedom, but the results show the importance of investigating
the energy balance by taking both IL and CF direction into account. The two directions
can not be treated independently.

The results show some robustness with respect to phase angle. For the Re=2.4 ·104 results
the phase angle was up to 10 degrees lower than intended, without a major change to the
hydrodynamic coefficients. The sensitivity with respect to phase is discussed in Chapter
8.

The experiment was performed in order to investigate if two degrees of freedom forced
oscillation experiments and strip theory can be used to model VIV of a flexible beam os-
cillating both in IL and CF. The results are promising. Even if the response of the flexible
beam is not exactly reproduced by the selected orbits, the results indicate that such a
parametrization provides useful insight into the response of a flexible beam.

It should also be noted that an attempt was made to reproduce the flexible beam results
observed for Vr=3.5, see Figure 1.1, during the Phase II experiment. The same methodol-
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ogy as presented in this chapter was used, but the results gave a negative energy balance.
The reason for this is not known, but the difference in Re between the two experiments
may be one explanation (Re=1.03 · 104 for the flexible beam experiment and Re=2.4 · 104

for the forced oscillation experiment).



Chapter 8

Systematic Variation of Orbital Shape
and Amplitude Ratio

8.1 Introduction

The motivation for performing a systematic variation of orbital shape and amplitude ratio
is to investigate the influence of these parameters on the hydrodynamic forces acting on
a cylinder. This information is vital for understanding the behavior of a flexible beam
subjected to VIV.

The results presented in Chapter 7 indicate that coefficients from forced oscillation ex-
periments and the strip theory assumption can be used to model the response of a flexible
beam. It would therefor make sense to continue with a more systematic variation of orbital
shape and amplitude ratio in order to investigate how flexible beams respond to VIV.

The tests performed are defined in Chapter 3.3 and hydrodynamic coefficients for all these
tests are reported in Appendix E. Included are also the results from pure CF tests. These
are included to serve as a reference for the two degree of freedom cases, and also for com-
parison with literature results.

This chapter is organized in sections presenting the main findings from the investigation.
The test matrix consists of more than 300 cases, and a compact way of presenting all the
results is not found. Some of the results are however presented in detail in order to illus-
trate the findings by a detailed discussion of as few examples as possible. The cases chosen
are the crescent shaped orbits discussed in chapter 7 (f̂=0.147) and two figure of eight
shaped orbits at f̂=0.163 for which flow visualization is available. Detailed results for the
two latter cases are tabulated in order to demonstrate the reliability of the data. The two
cases are considered to be representative for the complete data set. The data processing is
performed using the methodology outlined in chapter 4, 5 and Appendix A. See also data
sheets in Appendix B.
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Figure 8.1: Results for f̂=0.147, phase angles (α) between 0 and 90. Solid black line shows
the results for pure CF.

8.2 Sensitivity with respect to orbital shape

The results presented in chapter 7 indicate that hydrodynamic coefficients obtained from
forced oscillation experiments and the strip theory assumption may be used to model VIV
of flexible beams. However, the results predicted a structural damping level higher than
what can be expected from a flexible beam experiment. In order to investigate how sensi-
tive the hydrodynamic coefficients are with respect to orbital shape and amplitude ratio,
a systematic variation of these parameters has been performed. The results for Ce,CF and
Ca,CF are presented in Figure 8.1 for amplitude ratios from 0.2 to 1.0 and phase angles
(α) between 0 and 90. The two figures for excitation coefficient and added mass coefficient
show that there are two distinct branches. One branch consists of the phase angles rep-
resenting a crescent or "half moon" shaped orbit, α from 77 to 90o, where the excitation
coefficient is positive for low amplitude ratios and the added mass coefficient is positive.
The second branch, representing orbital shapes close to a "figure of eight", shows negative
values for both the excitation coefficient and the added mass coefficient. The results for
α=70 seem to be jumping between the two branches. The large difference in hydrody-
namic coefficients indicates that there are different vortex shedding modes present for the
two branches. Flow visualization of the wake would, however, be necessary to determine
if this is the case, but such data are not available.

From the flexible beam experiment discussed in chapter 7 it was seen that the phase
angle between CF and IL motions was between 70o and 85o. The results for the dynamic
excitation coefficient in Figure 8.1 (a) show that such phase angles give excitation for low
amplitude ratios. The figure also shows the strong sensitivity with respect to amplitude
ratio. This indicates that a marginally increased oscillation amplitude for the tests pre-
sented in chapter 7, would result in a realistic damping level.

Worth noticing is also the high values of the excitation coefficient for low amplitude ratios,
compared to the values for the pure CF tests. This shows that a cylinder free to oscillate
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in a two degree-of-freedom motion is less sensitive to damping, compared to a cylinder that
oscillates in CF only.

The excitation coefficient in IL direction has not been included in this discussion. The
reason for this is that the values of the IL excitation coefficient are small for all phase
angles, and are thus not very important for the energy balance. The IL results are given
in Figure E.3 in Appendix E.

8.3 On the importance of Orbital Direction

One of the main findings from the Ormen Lange experiments, discussed in the introduction
to this thesis, see Nielsen et al. [37], was that for cases where the dominating IL mode
had higher order than the dominating CF mode, the maximum response amplitude was
significantly lower than found from pure CF tests. This conclusion was confirmed by a
2-D pendulum experiment that could investigate sections with figure of eight motions with
different phase between IL and CF components, see Søreide [48] and Huse et al. [21].

The phenomenon may be further investigated by looking into the influence from orbital
direction on the hydrodynamic coefficients. The importance of orbital direction is here
demonstrated by looking into a 1st mode CF - 2nd mode IL scenario. Two scenarios are
addressed, based on two hypotheses on what determines the orbital shape.

• The first hypothesis is that the orbit is controlled by the eigenfrequency ratio between
the IL and CF direction.

• The second hypothesis is that the orbit is controlled by the hydrodynamic forces,
i.e. the cylinder is forced into a certain oscillation pattern. This "preferred" orbital
shape must then be expected to be the crescent shape observed in the flexible beam
experiment discussed in chapter 7.

8.3.1 Orbit controlled by eigenfrequency ratio

A beam with low bending stiffness and high tension will have the same dynamic behavior
as a cable. The second eigenfrequency will then be close to two times the first. Since the IL
excitation frequency is two times the CF, the second mode will dominate IL response for
conditions where the first mode will dominate for CF. The orbital directions of two symmet-
rically positioned cross sections will hence become opposite, see Figure 8.2 (a). Hydrody-
namic forces on the two half length sections must therefore be expected to become different,
not only with respect to phase but also magnitude. Hence, the perfect combination of first
mode CF and second mode IL response must be expected to be disturbed. Results from
two cases of opposite orbital direction (see Figure 8.2 (b)), but with identical nondimen-
sional frequency (f̂CF=f̂IL/2=0.163) and amplitude ratio ((A/D)CF=2(A/D)IL=0.3) are
presented in the following. These results are compared with results from pure IL and
pure CF experiments. Detailed results for the hydrodynamic coefficients CD, Ce,IL/CF ,
Ca,IL/CF , defined in chapter 4.4, are presented in Table 8.1 and 8.2 for CF and IL direction
respectively. The coefficients are presented separately for the two ends of the cylinder,
and the 95% confidence interval is given as UCD

, UCe , UCa . Detailed result are included to
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Figure 8.2: Illustration of the 1st CF - 2nd IL scenario.

demonstrate the reliability of the reported coefficients.

The results presented in chapter 7 show that the response of a flexible beam is deter-
mined by a balance between the energy transferred through the vortex shedding process
and the energy dissipated through damping. Also for the scenario 1st mode CF - 2nd mode
IL, described in Figure 8.2 (a), there must be an energy balance over the length of the
beam. The results in chapter 7 showed that the highest CF amplitudes, in the mid section
of the beam, gave damping, while the excitation regions were seen for lower CF amplitudes
closer to the ends. The two "figure of eight" cases presented in this section have moderate
oscillation amplitudes, (A/D)CF=0.3, and are chosen to represent the excitation regions
somewhere between the mid segment of each half span and the two ends. The pure CF
case tested confirms that this combination of frequency (f̂CF=0.163) and amplitude ratio
is in the CF excitation region. Table 8.1 shows a positive dynamic excitation coefficient
(Ce,CF=0.64), which is in agreement with results reported by Gopalkrishnan [15] and oth-
ers. However, looking at the excitation coefficient for the two "figure of eight" cases it is
seen that for the α=0 case the excitation coefficient is negative (Ce,CF=-1.4), while the
excitation coefficient for α=180 is positive (Ce,CF=0.9). The same trend is also seen for
the excitation coefficients in IL direction reported in Table 8.2.

Even though the two cases represent only two cross sections along the length of the oscil-
lating beam, the results highlight the importance of orbital direction. It is seen that if the
combination of first mode CF and second mode IL response (see Figure 8.2) appears, one
half of the span is forced into an orbital direction that extracts energy from the system
and thus reduces the oscillation amplitude for free vibrations. This finding is in agreement
with the above mentioned publications. The results presented herein indicate that the
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Table 8.1: Hydrodynamic coefficients CF.

Case CD UCD
Ce,CF UCe,CF

Ca,CF UCa,CF

1dof CF , SB 1.725 0.067 0.648 0.027 3.180 0.123
1dof CF , Port 1.640 0.061 0.640 0.026 3.202 0.115

α = 0 , SB 1.662 0.065 -1.384 0.073 3.922 0.221
α = 0 , Port 1.653 0.058 -1.460 0.056 4.192 0.155

α = 180 , SB 1.956 0.079 0.916 0.036 3.171 0.126
α = 180 , Port 1.962 0.074 0.927 0.034 3.249 0.117

Table 8.2: Hydrodynamic coefficients IL.

Case CD UCD
Ce,IL UCe,IL

CaIL UCa,IL

1dof IL, SB 1.866 0.056 -0.150 0.008 0.426 0.028
1dof IL, Port 1.899 0.109 -0.195 0.014 0.360 0.066

α = 0 , SB 1.662 0.050 -0.193 0.008 -0.117 0.031
α = 0 , Port 1.653 0.095 -0.209 0.012 -0.159 0.034

α = 180 , SB 1.956 0.062 0.105 0.004 0.357 0.024
α = 180 , Port 1.962 0.115 0.063 0.005 0.322 0.063

physical explanation is that one half of the span is forced into an oscillation orbit that
causes damping. Hence, the results show that the orbital direction of the "figure of eight"
response is an important factor for the fluid structure interaction, in addition to oscillation
amplitude and frequency in the two directions.

8.3.2 Orbit controlled by the hydrodynamic force

The second hypothesis on what determines the orbital shape is that the hydrodynamic
forces from the vortex shedding process will force a flexible beam to oscillate in a certain
pattern; i.e. the orbital shape is controlled by the hydrodynamic force. The flexible beam
experiment discussed in chapter 7 showed a crescent shaped oscillation orbit with lobes
facing downstream which means that the phase angle, α, is close to 90o (see definition in
Eqn. 3.1). Continuing the investigation of the reduced response amplitude for the com-
bination second mode IL and first mode CF, based on the second hypothesis, it must
be expected that the part of the span where where excitation takes place must have this
crescent shape. The second half of the span would then be forced into a pattern given
by α-values close to 270o, i.e. a crescent shape with lobes facing upstream. The scenario
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Figure 8.3: Illustration of the 1st CF - 2nd IL scenario.

is illustrated in Figure 8.3 (a) and the tested oscillation patterns, α=84 and α=264, are
shown in Figure 8.3 (b).

The excitation coefficients in CF direction, Ce,CF , for phase angles, α, between 0 and
90 are given in Figure 8.1 (a). For phase angles close to α=90 it is seen that the excita-
tion coefficient is positive for amplitude ratios up to approximately 0.4. The results for
phase angles representing the second half of the span are shown in Figure 8.4. Figure 8.4
(a) shows that the excitation coefficient for phase angles close to α=270 is positive for
moderate oscillation amplitudes. This does not support the finding from the Ormen Lange
experiment, i.e. different oscillation mode in IL and CF direction causes reduced oscillation
amplitude. However, a closer look at the added mass coefficient reveal that the added mass
coefficient has a negative value of high magnitude. The large change in added mass means
that the oscillation frequency for the scenario illustrated in Figure 8.3 (a) will require a
much higher reduced velocity, Vr, than the span discussed in chapter 7 and section 8.2, for
the same eigenfrequency, f0.

8.4 Extreme negative values of added mass
Figure 8.4 (b) shows added mass values as low as Ca,CF = −7 for phase angles giving pos-
itive values of the excitation coefficient. This section discusses the implication of negative
added mass for a cylinder subjected to VIV.

8.4.1 Physical interpretation of added mass

The added mass coefficient, defined in Eqn. (4.11), is based on the hydrodynamic force
in phase with the acceleration of the oscillating cylinder. This force component is then
divided by the acceleration amplitude of the harmonic oscillation and normalized with
respect to the mass of the displaced water. A positive added mass means that there is
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Figure 8.4: Results for f̂=0.147, phase angles (α) between 180 and 270. Solid black line
shows the results for pure CF.

a hydrodynamic force acting on the cylinder in the opposite direction of the acceleration.
Hence, increasing values of the added mass coefficient has the same effect on an oscil-
lating cylinder as increasing value of the mass ratio of the cylinder. Increasing the mass
ratio or the added mass of a body oscillating at resonance reduces the oscillation frequency.

For negative values of added mass the hydrodynamic force in phase with acceleration will
act in the same direction as the acceleration of the cylinder, i.e. in the opposite direction
of the inertia force caused by the acceleration of the dry mass of the cylinder. The effect
of a negative added mass coefficient, for a body oscillating at resonance, is the same as
reducing the mass ratio of the oscillating system, i.e. the oscillation frequency will increase.

If a negative added mass coefficient approaches the magnitude of the mass ratio of the
oscillating body, the eigenfrequency will approach infinity, i.e. if Ca → −m̄ then fosc →∞.

8.4.2 The existence of a critical mass ratio

The existence of a critical mass ratio, for which high amplitude CF response extends to in-
finite values of reduced velocity (Vr), is discussed in a paper by Govardhan and Williamson
[16]. The discussion is based on results from free vibration experiments where the IL mo-
tion is restrained and the product of mass ratio (m̄) and damping ratio (ζ) is low. Response
from such experiments consists of three branches; the Initial-, the Upper- and the Lower
branch (see Figure 8.5 (a)). It is well known that the Lower branch is associated with
an added mass coefficient of approximately -0.6, and the paper demonstrates the effect of
mass ratios approaching this value (m̄ → 0.6).

Govardhan and Williamson found a critical mass ratio of 0.54. For mass ratios lower
that this value, the upper branch extends to infinite values of reduced velocity, and the
lower branch ceases to exist. In the paper this is demonstrated by reporting results from
an experiment with a mass ratio lower than the critical value, see Figure 8.5 (b), and
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(a) Response branches pure CF (b) Results for mass ratio 0.52

Figure 8.5: Results from Govardhan and Williamson [16]. Notation: A∗ = (A/D)CF , U∗

= Vr, f ∗ = fosc/f0 and fvo = fs.

from an experiment with zero restoring force. Zero restoring force, resulting in f0 ≈ 0 and
Vr → ∞, was achieved by removing the springs used to generate the eigenfrequency of
the experiment.

The pure CF results presented herein, see Figure 8.6 (b) for (A/D)CF=0.3, show an added
mass coefficient of -0.7 for the nondimensional frequencies corresponding to the Lower
branch. The results also show that the added mass coefficient drops from approximately
3 for f̂ = 0.163 to -0.7 for f̂ = 0.15, a large change in added mass for a small change in
oscillation frequency. The relationship between f̂ and Vr is given by Eqn. (8.1) and it is
seen that for small mass ratios, m̄, a small change in f̂ represents a large change in Vr for
this f̂ -region.

Vr =
1

f̂

√
m̄ + 1

m̄ + Ca

(8.1)

From Eqn. (8.1) and the definitions of the non-dimensional parameters U∗ = Vr and
f ∗ = fosc/f0, we have the following relationships for f̂ and Ca:

f̂ =
f ∗

U∗ (8.2)

Ca =
m̄ + 1

(f ∗)2
− m̄ (8.3)

These relations makes it possible to compare the results from Govardhan and Williamson,
Figure 8.5 (b), with the pure CF added mass results shown in Figure 8.6 (b). In Figure 8.5
(b) it is seen that the upper branch, shown as dots (• •), stretches from reduced velocity
5 to 22. Using the expressions in Eqn. (8.2) and Eqn. (8.3) and the mass ratio used in the
experiment, this corresponds to f̂ from 0.2 to 0.18 and Ca from 1 to -0.425. A large change
in added mass is observed for a small change in oscillation frequency. In Figure 8.6 (b) it
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Figure 8.6: Hydrodynamic coefficients for (A/D)CF = 0.3 found from forced oscillation
tests. Dotted line (· · ·) represents α = 84, dashed line (- -) represents α = 264 and solid
line represent pure CF results.

is seen that the large change in Ca takes place between f̂=0.15 and f̂=0.163 and that the
change in Ca is from 3.1 (f̂=0.163) to -0.7 (f̂=0.15). Comparing the results of Govardhan
and Williamson with our pure CF results show a similar trend. However, there is a shift
in frequency for where the drop in added mass takes place and there is also a significant
difference in the magnitude of the added mass coefficient. Some of these differences may
be explained by the discussion on Reynolds number in VIV experiments given in section
2.1.5. The difference is, however, larger than expected.

The phenomenon discussed in this section, for pure CF experiments, is the same phe-
nomenon seen as a widening of the second instability region for pure IL VIV, demonstrated
in chapter 6.2.3. For the pure IL results a minimum added mass of Ca,IL=-0.2 is seen in
the excitation region. Hence, the critical mass ratio in IL direction i 0.2.

8.4.3 Effect of extreme negative added mass

In the previous section the existence of a critical mass ratio, for which response will ex-
tend to infinite values of reduced velocity, for both pure CF and pure IL VIV is discussed.
Based on results from the experiments presented in this thesis the critical mass ratios are
0.7 and 0.2 for pure CF and pure IL respectively. Mass ratio less than unity means that the
buoyancy force exceeds the weight, which is not relevant for offshore pipelines. The critical
mass ratio as such is hence not relevant to the present study, but may become important
for other applications.

The results shown in Figure 8.4 (b) does, however, give Ca,CF values between -1.5 and
-7. A mass ratio of 1.36, used in the flexible beam experiment referred in this thesis, is
thus less than the critical mass ratio. Hence, a nondimensional frequency (f̂CF ) of 0.147
can not be reached for an orbital shape characterized by α-values from 0 to 45 and from
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180 to 270 degrees. In the following the effect of these extreme negative added mass values
will be discussed based on two scenarios:

1. First mode response in IL and CF with orbital shape characterized by α=264.

2. 1st mode - CF 2nd mode IL scenario as illustrated in Figure 8.3.

The excitation coefficient, Ce,CF , and added mass coefficient, Ca,CF , for orbits character-
ized by α = 84 and 264 are plotted for a wide range of nondimensional frequencies in
Figure 8.6, for an amplitude ratio of 0.3. The figure shows that the added mass coefficient
for α = 264 and pure CF has the same trend. For high nondimensional frequencies both
excitation and added mass coefficients are positive, and there is a large drop in added mass
coefficient over an f̂ range showing positive Ce,CF .

If an orbit characterized by α = 264 should exist, the discussion given in section 8.4.2
and the added mass coefficient shown in Figure 8.6 (b) indicate that response may prevail
till infinite values of Vr for mass ratios up to 7, which is a mass ratio that covers all relevant
mass ratios for offshore risers or pipelines. However, the results shown in Figure 8.6 are
valid for CF amplitude ratios of 0.3 and ACF/AIL=2 only. For pure CF it is well known
that added mass varies insignificantly with amplitude, see e.g. Gopalkrishnan [15], but
this is not necessarily the situation for two degree-of-freedom motion. Figure E.6 shows
negative added mass for (A/D)CF=0.2 for f̂=0.175, while Figure 8.6 (b) ((A/D)CF=0.3)
shows positive added mass at this frequency.

For a flexible beam the modal added mass coefficient, which determines the oscillation
frequency of the span, is given by Eqn. (8.4) (see also chapter 7).

C̄a,IL/CF =

∫ L

0
Ca,IL/CF (y)Φ2

IL/CF (y) dy
∫ L

0
Φ2

IL/CF (y) dy
(8.4)

For the 1st mode CF - 2nd mode IL scenario illustrated in Figure 8.3 one half of the span
will experience negative added mass. This will change the modal added mass coefficient
significantly, and high reduced velocities will then be required in order to achieve the given
oscillation frequency. Oscillation modes of higher order may therefor be excited at a lower
flow velocity than the 1st mode CF - 2nd mode IL.

From the discussion above it is seen that for a span oscillating at higher order mode
numbers, sections of the span may be forced into oscillation patterns giving large negative
added mass values. These sections will then contribute significantly to the modal mass
of the span, and thus change the oscillation frequency significantly. Eqn. (8.1) shows the
relationship between the reduced velocity, which is based on the eigenfrequency of the span
in still water (f0), and the nondimensional frequency. For a low mass ratio condition, the
equation shows that for decreasing values of added mass increasing values of the reduced
velocity is required in order to keep the nondimensional frequency constant. For the 1st

mode CF - 2nd mode IL scenario illustrated in Figure 8.3 (a) it is seen that half the span
will oscillate in a pattern giving large negative Ca,CF . For a higher mode number scenario,
e.g. 2nd mode CF - 3rd mode IL, a smaller portion of the span may be forced into orbits
giving negative Ca,CF . Thus, even if this mode has a higher eigenfrequency in still water,
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Figure 8.7: Force components in CF direction.

the Vr required to achieve a certain nondimensional frequency may be lower. The 1st mode
CF - 2nd mode IL may therefore not be a stable oscillation mode.

8.5 Higher order harmonic forces

An important finding from the experiments presented in this thesis is the existence of
significant hydrodynamic forces at multiples of the oscillation frequency. Forces at mul-
tiples of the oscillation frequency, also known as higher order harmonic forces, have been
reported in two resent papers by Jauvtis and Williamson ([24] and [63]) and response due
to higher order harmonic forces has been reported by Vandiver et al. [60]. Chapter 6 shows
higher order harmonic forces also for pure IL vibrations. These forces are seen for the 2nd

instability region which is associated with the 2S vortex shedding mode. In this section
higher order harmonic forces are discussed based on the results from the combined IL and
CF experiments.

Figure 8.7 (a) shows power spectra of CF force for 4 cases. These are a pure IL case
(with label 1dof IL), a pure CF case (with label 1dof CF) and the two "figure-of-eight"
cases illustrated in Figure 8.2 (b) (with labels 2dof α=0 and α=180). The four cases
are characterized by nondimensional frequency f̂CF = f̂IL/2=0.163 and amplitude ratio
(A/D)CF = 2(A/D)IL=0.3. For the three cases where there are CF oscillations, the fre-
quencies corresponding to the oscillation frequency (fosc), 3·fosc and 5·fosc are shown on
the x-axis. For the pure IL case (1dof IL) the frequency corresponding to 0.5 times the
IL oscillation frequency is the expected frequency of the CF force as it is well known that
the frequency of the vortex shedding force in IL direction is twice the frequency in CF
direction. The higher order components then correspond to 1.5·fosc,IL and 2.5·fosc,IL. The
power spectra show that there are force components at all three frequencies for the two
"figure of eight" cases and the pure IL case, i.e. the three cases with IL oscillation. For
the pure CF case there is a peak in the power spectrum at 3·fosc, but the spectral density
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Figure 8.8: Force components in IL direction.

is almost two order of magnitude lower than for the other cases.

In Figure 8.7 (b) the magnitude of the force components are shown relative to the RMS
value of the oscillating force. The coefficients are defined in chapter 4.4 (see Eqn. (4.12)
and Eqn. (4.16)), and the values are tabulated in Table 8.3. Figure 8.7 (b) shows that
the magnitude of the force component at three times the oscillation frequency is approxi-
mately 30% of the force component at the oscillation frequency, for the three cases where
IL oscillations are present. For the pure CF case the relative magnitude of the higher order
component is only about 5%. The force component at 5 times the oscillation frequency
shows negligible magnitude for all four cases.

Figure 8.8 shows the frequency components of the hydrodynamic force in IL direction,
and the results are presented in a similar way as for the CF force in Figure 8.7. Note that
fosc here refers to the IL oscillation frequency, except for the pure CF case. The power
spectra show higher order components also for the hydrodynamic force in IL direction.
The frequencies of these higher order components are 2 and 3 times the IL oscillation fre-
quency, corresponding to 4 and 6 times the CF frequency for the pure CF case. Figure 8.8
(b) and Table 8.4 show that the magnitude of the higher order components varies more
between the four cases in IL direction than in CF direction. The ratio between the force
component at two times the oscillation frequency and the force component at the oscil-
lation frequency is approximately 25% for the pure IL case, approximately 70% for the
α=0 case and approximately 30% for the α=180 case. The magnitude of the oscillating
hydrodynamic force in IL direction for the pure CF case is small compared to the three
other cases, see Table 8.4, and the higher order harmonic component is therefore negligible
even if the relative magnitude is approximately 20%.

The discussion so far has shown that higher order harmonic forces seem to be related
to IL oscillations, and that the main higher order force component is 3 times the oscil-
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Figure 8.9: Higher order harmonic forces for f̂CF = 0.147.

lation frequency (Ct3,CF ) in CF direction and 2 times the oscillation frequency (Ct2,IL)
in IL direction. In Figure 8.9 Ct3,CF /Ct,CF (a) and Ct2,IL/Ct,IL (b) are shown for ampli-
tude ratios from 0.2 to 1.0 and phase angles, α, between 0 and 90. The nondimensional
frequency of 0.147 is the same f̂CF as seen in the flexible beam experiment discussed in
chapter 7. The figure clearly shows that the relative magnitude of the higher order CF
force component increases with increasing amplitude ratio. It is, however, important to
note that a fixed ratio of 2 between CF and IL oscillation amplitude has been used for all
cases tested. From comparison with pure CF and pure IL results it is reasonable to believe
that the increased relative magnitude of Ct3,CF is due to increased IL oscillation amplitude
(results for pure IL are given in Figure 6.18). Comparing Figure 8.9 (a) with the results
for (A/D)CF=0.3 in Figure 8.7 it is seen that also for f̂CF=0.147 the ratio Ct3,CF /Ct,CF is
approximately 0.3 for this amplitude ratio.

The results for Ct2,IL/Ct,IL given in Figure 8.9 (b) show that only some orbital patterns
give significant higher order forces. For these patterns the relative magnitude of the higher
order forces seem to be independent of amplitude ratio. Interestingly, the orbits giving
higher order IL forces corresponds to the shapes observed in the flexible beam experiment.
It is also seen that the irregular behavior of the α=70 case corresponds to the jump be-
tween the two branches of Ce,CF and Ca,CF seen in Figure 8.1.

The higher order harmonic forces for all combined IL and CF motion tests performed
are shown in Figures E.10 to E.15 in Appendix E. The observed trend is that the relative
magnitude of the higher order harmonic force at 3 times the oscillation frequency in CF
direction increases with increasing oscillation amplitude. For the higher order harmonic
force in IL direction the picture is more complex, and a general trend is not seen. The
higher order harmonic forces in both directions seem, however, to be related to IL oscilla-
tions as none of the 38 pure CF cases tested showed significant force components at other
frequencies than the oscillation frequency. The vast majority of the publications on VIV
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Table 8.3: Total dynamic force coefficients in CF direction.

Case CRMS φ Ct,1 Ct,3 Ct,5

1dof IL, SB 1.125 na 0.915 0.334 0.030
1dof IL, Port 1.513 na 1.274 0.464 0.039

1dof CF, SB 1.715 22.47 1.707 0.087 0.016
1dof CF, Port 1.730 22.01 1.720 0.086 0.016

α = 0 , SB 2.505 -35.70 2.366 0.706 0.067
α = 0 , Port 2.651 -35.36 2.517 0.761 0.073

α = 180 , SB 1.933 30.46 1.821 0.588 0.049
α = 180 , Port 1.968 30.15 1.859 0.596 0.048

are based on pure CF experiments, both free and forced vibration, and this is probably
the reason why higher order harmonic forces only recently have attracted attention.

For a free vibration experiment where an elastically mounted rigid cylinder (in two degrees-
of-freedom) is tested in constant flow velocity, the higher harmonics are expected to be seen
in the measured force only. As VIV is a resonance phenomenon and the apparatus has only
one eigenfrequency in each direction, there are no other eigenfrequencies "available" to be
excited by the higher order harmonic force. Hence, only small components of higher order
harmonic response are expected to be seen. For a flexible beam, on the other hand, there
are several eigenfrequencies related to the various eigenmodes of the beam. The flexible
beam discussed in chapter 7 has an eigenfrequency for the second mode of approximately
3 times the eigenfrequency corresponding to the first mode. For this situation it is possible
for the 3rd harmonic force component to excite the second CF mode, even if the first CF
mode is the dominating one. This is seen as a plausible explanation to the presence of
higher order modes seen from modal analysis of the experiment.

If a free spanning pipeline or riser subjected to VIV responds to higher order harmonic
forces, Vandiver et al. [60] has shown that this is very important for the fatigue life of the
structure. As both the frequency and the mode number is higher than for the dominating
mode, the higher order harmonics contribute significantly to fatigue damage. The next
step of the investigation of higher order harmonic forces should be to investigate for which
conditions these forces injects energy to- and extracts energy from the system. In order
to investigate this by forced oscillation experiments an oscillation amplitude at the higher
order harmonic frequency must be included so that the force can be decomposed into one
component in phase with velocity and one component in phase with acceleration.
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Table 8.4: Total dynamic force coefficients, IL.

Case CRMS φ Ct,1 Ct,2 Ct,3

1dof IL, SB 0.496 -19.71 0.448 0.112 0.036
1dof IL, Port 0.453 -28.80 0.406 0.103 0.032

1dof CF, SB 0.185 na 0.115 0.028 0.004
1dof CF, Port 0.164 na 0.103 0.024 0.006

α = 0 , SB 0.352 -121.47 0.243 0.176 0.053
α = 0 , Port 0.352 -127.30 0.267 0.165 0.052

α = 180 , SB 0.454 16.64 0.370 0.111 0.053
α = 180 , Port 0.409 11.15 0.328 0.105 0.048

8.6 Drag amplification due to VIV

Returning to the four cases used when discussing the 1st mode CF - 2nd mode IL scenario
in Figure 8.2, it is seen from Table 8.1 and Table 8.2 that also the drag coefficient varies
between the cases. The tables show that the pure IL case gives a higher drag coefficient
than the pure CF case, the α=180 case gives a higher drag coefficient than the α=0 cases
and that the pure IL case gives the best approximation to α=180 while the pure CF case
gives the best approximation to α=0. The latter observation is, however, likely to be a
coincidence. Looking at Figure E.7 in Appendix E it is seen that the drag coefficient ratio
between the two orbital directions is a function of the oscillation amplitude.

Figure 8.10 shows the drag coefficient for all cases tested at f̂CF=0.147. The figure shows
that orbits characterized by α between 180 and 270 (figure b) give higher drag coefficient
than the orbits characterized by α between 0 and 90 (figure a). The flexible beam results
show orbits corresponding to α values between 70 and 90. In Figure 8.10 it is seen that
these shapes give the lowest drag coefficient. In chapter 7 the orbits representing the lowest
response amplitudes were approximated by α ≈ 70, while the highest response amplitudes
(close to the mid section of the span) were approximated by α ≈ 85. It is seen that these
are the orbits that give the lowest drag coefficient.

Looking at the results for all cases tested, see Appendix E, the general trend is that
orbits characterized by α close to 90 give the lowest drag coefficient.

For the two 1st mode CF - 2nd mode IL scenarios illustrated in Figure 8.2 and 8.3, the
results presented in this section predict an unsymmetrical static drag force over the span.
This may influence the the modeshape of the oscillation, the eigenfrequency and also the
ratio between the eigenfrequencies in IL and CF directions.

Several models for drag amplification due to VIV have been proposed. Blevins [5] and
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Figure 8.10: Drag coefficients for f̂CF = 0.147. Results for pure IL is shown as a dashed
black line (- -), and results for pure CF as a solid black line.

Vandiver [57] have proposed two models for drag amplification based on the CF oscillation
amplitude, while Skop [46] has proposed a model containing the oscillation frequency and
Strouhal frequency in addition to the amplitude. The results presented herein do, however,
indicate that also the shape and direction of the orbital path are important parameters for
the drag coefficient.

8.7 Vortex shedding modes

Flow visualization by PIV has been carried out for the two "figure of eight" cases pre-
sented in detail in this chapter, see Figure 8.2 (b). Implementation of a new PIV system
for use in the laboratories at NTNU was part of Dr. K.B. Skaugset’s post. doc. project,
and the experiment presented in this thesis (Phase III) was used as test case. The results
shown in Figure 8.11 and Figure 8.12 are from a paper by Aronsen, Skaugset and Larsen [2].

Contour plots of vorticity are shown for the α=0 case in Figure 8.11 and for the α=180
case in Figure 8.12. The figures show the vorticity behind the cylinder at 6 time instances
over one oscillation cycle. In addition to the vorticity plots, time traces of IL and CF forces
have been included. The positions of the cylinder along the orbit, where the vorticity plots
are taken, are also shown.

Comparing the two figures the most obvious observation is that the wake of the α=180 case
is wider than the wake of the α=0 case. It looks like the vorticies in Figure 8.12 disappear
out of the picture over the top and bottom boundary while the vorticies in Figure 8.11
to a larger extent line up behind the cylinder. In the following the vorticity plots are
described with reference to the vortex shedding modes described in a paper by Williamson
and Govardhan [62].
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Figure 8.11: PIV results for α=0, f̂CF=0.163 and (A/D)CF=0.3.
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Figure 8.12: PIV results for α=180, f̂CF=0.163 and (A/D)CF=0.3.
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The α = 0 case (Figure 8.11) resembles the 2C vortex shedding mode. Picture 1 shows
the vorticity behind the cylinder when the cylinder is close to the lower dead end of the
CF motion. The picture indicate that two vortices, with the same rotational direction,
have just been shed from the top of the cylinder. The CF force is slightly negative and
the formation of a vortex can be seen under the cylinder. In picture 2 the cylinder is
moving upwards and in the opposite direction of the flow, giving high relative velocity.
The vortex developing under the cylinder is stronger than in picture 1 and the CF force
is at a minimum. The two vortices that were shed from the top of the cylinder in picture
1 can still be seen in picture 2. In picture 3 two vortices are about to be shed under the
cylinder. The CF force is approximately zero and the cylinder is still moving upwards but
with a component in the opposite direction of the flow. It is seen that vortices have been
shed close to the center of the orbit, which explains the narrow wake. The two vortices
shed under the cylinder are best seen in picture 4. Picture 4 to 6 is similar to picture 1
to 3 but the vortex shedding takes place at the top and underneath the cylinder respectively.

The α = 180 case (Figure 8.12) resembles the 2T vortex shedding mode. The forma-
tion of the mode is best seen in picture 1 through 3. In picture 1 the cylinder is close to
the top dead end of the CF motion, moving downwards and in the direction of the flow, i.e.
low relative velocity. A vortex has just been shed from the top of the cylinder and the CF
force is close to zero. It is seen that the vortex is shed close to the maximum CF oscillation
amplitude, giving a wide wake. In picture 2 the cylinder is still moving downwards and in
the direction of the flow. The position is close to the center of the orbit. It is seen that the
shear layer under the cylinder extends all the way to the top of the cylinder. Both the IL
and CF force are close to zero for this condition. In picture 3 it is seen that two additional
vortices, of opposite rotational direction, have been shed from the top of the cylinder.
The 2T mode is seen in this picture. The position of the cylinder is close to the minimum
CF oscillation amplitude. A vortex is formed under the cylinder giving a negative CF force.

For both phase angle cases, α = 0 and α = 180, it is seen that the vortices are shed
where the relative velocity between the flow and the cylinder is close to maximum. In the
α = 180 case a vortex is formed at the top of the cylinder when the cylinder is moving in
positive CF direction, giving excitation. For the α = 0 case the vortex is formed on the
other side, giving damping. As pointed out by Jeon and Gharib [25], the IL oscillation is
controlling the phase of the shedding. But as seen from the present study, also the vortex
shedding mode can be changed by changing the phase of the IL oscillation relative to CF.

The force measurements are taken on each end of the cylinder while the pictures used
to generate the vorticity plots are from the center of the cylinder. For general use of force
coefficients and interpretation of the vorticity plots, it is important to prove that the vortex
shedding process is correlated along the full length of the test cylinder. Table 8.5 shows
the correlation coefficient (see Eqn. (4.17)) in IL and CF direction. The table shows that
there is a high correlation coefficient in CF direction (ρxy,CF=0.99), while the correlation
in IL direction is slightly lower (ρxy,IL=0.92). The hydrodynamic coefficients in IL direc-
tion also show a larger difference between the two sides compared with the corresponding
coefficients in CF direction. In the discussion of the vorticity plots given above, the focus
has hence been on the force in CF direction.
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Table 8.5: Correlation coefficients.

Case ρIL ρCF

1dof IL 0.970 0.974
1dof CF 0.853 0.993
2dof, α = 0 0.919 0.988
2dof, α = 180 0.951 0.994

8.8 Implications for a flexible beam subjected to VIV
The motivation for performing the forced oscillation experiments reported in this thesis is
to gain knowledge of the hydrodynamic forces acting on a cylinder in order to increase the
understanding of the response of a flexible beam, such as a riser or a free spanning pipeline,
subjected to VIV. The data set is far from large enough to build a model for prediction
of VIV, but a number of findings important for the response of a flexible beam has been
addressed in the preceding sections. These can be summarized in the following:

1. Large CF excitation forces. Ce,CF values in excess of what is previously known from
pure CF experiments.

2. Importance of shape and direction of the orbital path.

3. Large variation in added mass, for shapes and directions of the orbital path. Extreme
negative values are observed. The added mass seems to have a stronger dependency
on amplitude than observed for pure CF experiments.

4. Higher order harmonic forces for cases where IL oscillations are present.

5. Variation of drag coefficient.

These are all findings that have implication for the response of a flexible beam. These
implications are addressed in the subsequent sections.

8.8.1 On orbital shape

Figure 8.13 shows results from a free vibration experiment reported by Dahl et al. [9]. The
figure shows the orbits observed for ratios of the eigenfrequency in IL and CF between 1.0
and 1.9 for increasing reduced velocity. The observed oscillation patterns indicate that the
ratio between the eigenfrequencies in the two directions is an important parameter for the
shape of the orbit. The figure indicates that crescent shaped orbits are more likely for fre-
quency ratios close to 1 while "figure of eight" shaped orbits are more likely for frequency
ratios close to 2. However, the shape of the orbital path changes with reduced velocity.

Results from an experiment reported by Jauvtis and Williamson [24] are shown in Fig-
ure 8.14. The eigenfrequency ratio in this experiment is 1 and the figure shows a large
variation of orbital shape for increasing reduced velocity. An important difference between
the two experiments reported in Figure 8.13 and 8.14 is the mass ratio. The mass ratio for
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Figure 8.13: Orbits from a free vibration experiment by Dahl et al. [9].

Figure 8.14: Orbits from a free vibration experiment by Jauvtis and Williamson [24].
Notation: U∗ = Vr.
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the results in Figure 8.13 is approximately 5 while the the results in Figure 8.14 are for a
mass ratio of approximately 1. The latter results are thus more influenced by a change in
added mass.

The results presented in this thesis show that there are some orbital shapes that can
not exist for rigid cylinder experiments due to a negative excitation coefficient. However,
the results also show the importance of both the shape and direction of the orbital path,
for the hydrodynamic force acting on a cylinder subjected to VIV. Understanding what
determines the response orbit would therefore be important for being able to predict the
response of a flexible beam. In the following some of the important factors are highlighted.

In chapter 6 it is shown how the IL response frequency, for pure IL oscillation, controls the
frequency of the CF hydrodynamic force. For response in CF direction it can be expected
that the CF response frequency controls the hydrodynamic force frequency in IL direction.
This is because the hydrodynamic forces are significantly stronger in CF than for IL. The
hydrodynamic force frequency in IL direction is then two times the CF response frequency.
Whether this IL force will excite the system and cause IL response must then be expected
to depend on several factors; two important ones are eigenfrequency ratio and mass ratio:

• VIV is a resonance phenomenon and the frequency of the IL force must thus interact
with the eigenfrequency in IL direction in order for IL response to take place.

• Added mass is changing the oscillation frequency, in both directions, from the eigen-
frequency in still water. The effect of added mass, i.e. how much the oscillation
frequency changes relative to the eigenfrequency, depends on the mass ratio of the
cylinder.

The two bullet points highlight that both eigenfrequency ratio and mass ratio should be
important parameters for whether IL excitation will occur or not. The results in Fig-
ure 8.13 and 8.14 indicate the same. For pure IL VIV, see Chapter 6, the nondimensional
damping parameter determines the response amplitude in IL direction. Structural damp-
ing must be expected to be important for IL response amplitude also for combined IL -
CF response. However, Chapter 7 indicates that there can be a transfer of energy between
the two directions.

Once IL response takes place, and a "figure of eight" response motion is seen, the re-
sults presented in this thesis show that the hydrodynamic coefficients changes significantly
from what is seen for pure CF response. From flow visualization of two orbits of opposite
directions, see section 8.7, it is seen that it is in fact the IL motion that controls the phasing
of the vortex shedding process. This is an observation also made by Jeon and Gharib [25].

For increasing values of the reduced velocity, Vr, the CF oscillation frequency is expected
to change. Since the frequency of the hydrodynamic force in IL direction follows the re-
sponse frequency of the CF motion, the orbit of the response must also be expected to
change. As an interaction between the frequency of the IL force and the eigenfrequency
in IL direction is required in order to get response, it is seen from Figure 8.13 and 8.14
that no IL response is seen for high reduced velocity associated with high CF oscillation
frequency. A possible reason for this is that the frequency of the IL force is too high to
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excite the IL eigenfrequency.

For a free spanning pipeline the mass ratio may change for various operational phases
during its design life, i.e. empty in temporary phase after installation, water filled during
system pressure test and various content densities during operation. A pipeline installed
on uneven seabed may also have free spans with a large range of eigenfrequency ratios
(between IL and CF direction) since the eigenmodes will be influenced by the boundary
conditions and vertical displacements (sag). Varying pressure and temperature may also
influence the effective axial force of the pipe and hence also the eigenfrequencies. As both
mass ratio and eigenfrequency ratio seem to be important parameters for the response due
to VIV, a better understanding of what causes the various oscillation patterns is important
for being able to predict response and thus fatigue damage more accurately.

8.8.2 On dominating response mode

For a free vibration experiment of an elastically supported rigid cylinder, such as the one
reported by Jauvtis and Williamson in Figure 8.14, there is only one eigenfrequency in each
direction. For a flexible beam, such as a riser or free spanning pipeline, there are several
eigenfrequencies and associated eigenmodes in the two directions that may be excited by
the vortex shedding process. Which eigenmode that is excited is obviously important for
the fatigue damage. From the results presented in this thesis it is seen that the hydro-
dynamic coefficients are strongly dependent on both shape and direction of the response
orbit. Hence, for flexible beams oscillating at other modes than 1st mode CF - 1st mode
IL, there are sections of the span that will be forced into a pattern that is not seen in rigid
cylinder experiments. The influence from such sections on the response of a flexible beam,
will be addressed in the following.

The effect of the three basic hydrodynamic coefficients (Ce,IL/CF , Ca,IL/CF and CD), on
the response of a flexible beam, is summarized below:

• The dynamic excitation coefficients (Ce,IL/CF ) represent the energy transfer between
the fluid and the cylinder. For a flexible beam responding to VIV there must be
a balance over the span between the energy injected through the vortex shedding
process and the energy extracted through damping. Chapter 7 indicates that there
may be a transfer of energy between the two directions (IL and CF). Hence, in order
to determine whether a certain mode can be excited and to determine the response
amplitude, the total energy balance must be considered.

• Added mass (Ca,IL/CF ) may change the response frequency so that the span does not
oscillate at the still water eigenfrequency. Obviously the response frequency must be
within the excitation region for response to take place.

• The drag force (CD) may change the static configuration and thus the eigenmodes
and eigenfrequencies of the span. It is seen from the results presented herein that
the drag coefficient is a function of shape and direction of the response orbit, which
may lead to an unsymmetrical drag force acting on a span. The eigenmode, at which
oscillation takes place, is the eigenmode corresponding to the static configuration
including the mean drag force in IL direction.
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Figure 8.15: Principle sketch of the excitation region.

For higher order modes different vortex shedding modes must be expected over the length
of the span, see section 8.7. Techet et al. [54] have shown vortex splitting between 2S and
2P vortex shedding modes for a tapered cylinder. It is thus reason to believe that more
than one vortex shedding mode can exist over the length of a span oscillating at higher
order modes.

In chapter 8.4 the effect of large negative values of the added mass coefficient is discussed.
For higher order response modes, sections of the span may be forced into an orbit that
gives negative added mass. As it is the modal added mass that must be considered in order
to determine the response frequency of the span, there are reasons to believe that added
mass is important for which combinations of IL and CF oscillation modes that can exist
and also which modes that will be excited for varying current velocity.

Substituting for the reduced velocity (Vr = U/(f0D)) in Eqn. (8.1) the following expression
can be derived for the current velocity (U) required to obtain a certain nondimensional
frequency, f̂ .

U =
D

f̂
·
√

m̄ + 1

m̄ + C̄a

f0 (8.5)

The response region is characterized by the nondimensional frequency (f̂), and extends
over a range of f̂ , see Figure 8.15. It is seen from Eqn. (8.5) that the highest f̂ -values in
the excitation region (f̂start) is reached for the lowest current velocity. Various response
modes may have different excitation regions, but in the following a constant f̂ is assumed
to represent the upper boundary of the excitation region for all modes.

Each possible response mode represents a combination of f0 (the eigenfrequency of the
mode) and modal added mass, C̄a. Increasing mode order represents for most cases an
increasing eigenfrequency, and it is seen from Eqn. (8.5) that for a higher eigenfrequency a
higher current velocity is required in order to reach the response region. Hence, given a con-
stant added mass, increasing response mode requires increasing current velocity. However,
as seen in the previous sections of this chapter the added mass is a function of shape and
direction of the orbital path. For response at higher order modes there may be sections of



8.8. IMPLICATIONS FOR A FLEXIBLE BEAM SUBJECTED TO VIV 149

the span that are forced into an orbit that gives a large negative Ca, which will contribute
to a reduction of the modal added mass, C̄a. Eqn. (8.5) shows that for reduced values of
C̄a an increased current velocity is required in order to reach the excitation region. It is
thus possible that, due to change in modal added mass, a CF mode of higher order may
be excited at a lower current velocity than e.g. the 1st CF mode in combination with the
2nd IL mode.

8.8.3 On multimode response

The results from the experiments presented in this thesis have shown significant force com-
ponents at multiples of the oscillation frequency. These forces, known as higher order
harmonic forces, seem to be related to IL response as they are observed both in the second
instability region for the pure IL experiments and in all combined IL and CF motion cases.
No significant higher order harmonic forces are observed for the pure CF cases.

Response at modes higher than the dominating mode are observed in flexible beam ex-
periments reported by Vandiver et al. [60] and are also observed in the results from the
Ormen Lange experiments discussed in the introduction to this thesis. This response type
is likely to be caused by the higher order harmonic forces, and since these forces are small
resonance is a necessity. Hence, there must be eigenfrequencies available at approximately
3 and/or 5 times the dominating response frequency in CF direction. The eigenfrequencies
corresponding to the eigenmodes of a flexible beam may be approximated by Eqn. (8.6) for
tension dominated conditions and by Eqn. (8.7) for bending stiffness dominated conditions.

ωcable
n = n · π

√
T

mL2
(8.6)

ωbeam
n = n2 · π2

√
EI

mL4
(8.7)

For tension dominated conditions response in CF direction due to a force at 3 times the
dominating response frequency is expected to occur at a mode number that is tree times
the mode number of the dominating mode. The corresponding relation for bending stiff-
ness dominated condition is n3x,i =

√
3 · ndominating,i. The relations are shown graphically

in Figure 8.16 for dominating mode numbers from 1 to 20.

As seen from the figure the mode numbers excited by higher order harmonic force com-
ponent become large even for moderate dominating mode numbers. In order to capture
the response due to higher order harmonic forces in flexible beam experiments it is thus
important that the model is instrumented with a sufficient number of motion sensors.

It is, however, important to note that the response frequency is the frequency that controls
the higher order harmonic force components. As shown in previous chapters the response
does not necessarily take place at a frequency corresponding to the eigenfrequency in still
water. The response frequency is influenced by the added mass.

In the flexible beam experiment discussed in chapter 7 the eigenfrequency corresponding
to the second mode, in both CF and IL direction, is approximately 3 times the first. The
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Figure 8.16: Higher order mode, 3x.

response trajectories clearly show that also the second mode is excited. However, chapter
7 also showed that excluding the response from the second mode in the orbits investigated
by forced oscillation experiments, gave a good approximation of the hydrodynamic forces
acting on the cylinder. I.e. the energy injected through the vortex shedding process cor-
responded reasonably well with the expected structural damping and the measured added
mass corresponded reasonably well with the change in frequency from the eigenfrequency
in still water to the response frequency.

The next step in the investigation of higher order harmonic forces should be to inves-
tigate how response from these forces influences the hydrodynamic forces at the primary
frequency. By including oscillations at a frequency of 3 times the main frequency in forced
oscillation experiments, the following questions may be answered:

• Does response due to higher order harmonic forces inject or extract energy?

• Is the response from higher order harmonic forces independent on the response of the
primary frequency, or is there a transfer of energy between the frequencies?

• Can response from higher order harmonic forces disturb the vortex shedding process
to such a degree that the vortex shedding pattern is disturbed and the primary
response is reduced?

Response time series from flexible beams show that the response is significantly reduced
from time to time, i.e it seems like there is some kind of slowly varying envelope effect
that controls the amplitude at the primary frequency. An explanation for this reduced
amplitude may be that the higher order response has become so large that it disturbs the
vortex shedding process.

The force measurements reported in this thesis have not revealed significant force com-
ponents at frequencies lower than the oscillation frequency. This suggests that multimode
response will consist of a dominating mode and then up to two higher order modes in both
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IL and CF direction. This should however be verified by investigating results from flexible
beam experiments. Note that this refers to uniform current conditions.





Chapter 9

Conclusions and Recommendations for
Further Work

The motivation for the present work has been to investigate pure IL VIV and the interaction
between IL and CF response, primarily for improving prediction methods for free spanning
pipelines. Forced oscillation experiments of a rigid cylinder in uniform flow has been carried
out in order to measure the hydrodynamic forces acting on the cylinder. As a starting point
pure IL oscillations were performed, and then the experiment was extended to include two
degree-of-freedom motions.

9.1 Principal Contributions
The following list gives a summary of the main results. The list follows the chapters in
this thesis, and is not a rating of the importance of the contributions.

1. Contour plots of hydrodynamic coefficients for the pure IL VIV regime:
Dynamic excitation coefficient, Ce,IL, defines the first and second IL instability region,
and gives a maximum response amplitude of A/D=0.13 for the first- and A/D=
0.11 for the second instability region. The maximum value found for the excitation
coefficient is 0.13.
The added mass coefficient, Ca,IL, changes with nondimensional frequency, but is
less influenced by the oscillation amplitude. Ca,IL ranges from 1.0 to -0.2 within the
pure IL regime, and is gradually reduced for decreasing values of nondimensional
frequency. The second instability region is hence associated with the lowest added
mass values.
The drag coefficient varies significantly within the pure IL VIV regime, ranging from
a minimum value of 0.9 to a maximum value of 1.85. The drag coefficient for the
fixed cylinder was 1.33 in these experiments. The first instability region is found to
be associated with drag reduction while the second instability region is associated
with drag amplification.

2. Higher order harmonic forces at 2 and 3 times the oscillation frequency are mea-
sured for pure IL oscillations. These forces are mainly associated with the second
instability region. The magnitude of these forces are up to 60% of the force at the
oscillation frequency for the second order component and up to 40% for the third
order component.

153
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3. Knowing the added mass it has been shown that for a freely vibrating cylinder the
response regions will extend over a wider range of reduced velocities, Vr, as the mass
ratio of the cylinder is reduced. It has also been demonstrated how the added mass
changes the response frequency of a freely vibrating cylinder and that the mass ratio
of the cylinder is important for the response frequency relative to the eigenfrequency
in still water.

4. A novel approach for determining the response amplitude of a cylinder subjected
to structural damping has been derived. A new nondimensional parameter repre-
senting the equilibrium between energy transferred from the fluid to the oscillating
system and the energy dissipated by damping has been introduced. The parameter
is referred to as nondimensional damping, ĉ. The magnitude of the coefficient is
determined by the force in phase with the cylinder velocity, and the results from the
forced oscillation experiments have been used to establish contours for ĉ for the pure
IL regime.

The nondimensional damping coefficient is independent of the mass ratio of the
cylinder. Hence, it has been possible to show the separate effects of mass ratio
and damping on a cylinder subjected to VIV

5. The derivation of the nondimensional damping coefficient has highlighted the impor-
tance of Reynolds number in free vibration VIV experiments. If the same experi-
mental setup is used to perform experiments at two different Reynolds numbers, the
damping inherent in the apparatus becomes more important for the low Re case com-
pared to the high Re case. A reduced oscillation amplitude will hence be measured
for the low Re case. The introduction of ĉ has thus given insight into scale effect of
damping in VIV experiments.

6. It has been shown how ĉ and modal analysis can be used to estimate maximum
response amplitude of a flexible beam subjected to pure IL VIV. The method has
been demonstrated by establishing contours of ĉ valid for for a flexible beam with
pinned-pinned boundary conditions. From these results it has been shown that the
geometric shape factor, i.e. the ratio between the maximum response amplitude for
the flexible beam and the response of a elastically mounted rigid cylinder, depends
on both ĉ and f̂ .

7. Comparison with literature results from free vibration IL experiments has shown that
the data presented herein agrees well, and is hence well suited for predicting pure IL
VIV.

8. Forces in CF direction, when oscillating the cylinder in IL direction, has been iden-
tified. The results show that the magnitude of this force is reduced in the first
instability region and increased in the second instability region, compared to results
from fixed cylinder tests. It has been shown that the IL oscillation frequency controls
the frequency of the CF force for cases where significant force components are found
at 0.5 and 1.5 times the IL oscillation frequency. Hence, higher order harmonic forces
in CF direction exist for pure IL VIV.
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9. The two significant CF force components are present for the lowest nondimensional
frequencies of the first IL instability region. This is likely to be the reason why CF
response is observed at a lower reduced velocity in experiments where the cylinder
is free to oscillate in IL direction, compared to experiments where the IL direction is
restrained.

10. IL hydrodynamic force models suited for inclusion in VIV prediction tools based
on "empirical force coefficient methods" (such as VIVANA and Shear7) have been
presented.

11. A response model for predicting response amplitude and response frequency of a
flexible beam with pinned-pinned boundary conditions subjected to uniform flow has
been presented.

12. A method for using results from two degree-of-freedom forced oscillation experiments
to investigate results from flexible beam experiments has been outlined. The method
considers energy balance and change in frequency, and has been demonstrated by an
example. This example showed promising results as the trends of the results were as
expected, and it indicated that the method gives valuable information on the forces
acting on a flexible beam subjected to VIV. The predicted structural damping of the
example was, however, unrealistically high.

13. The importance of orbital direction of two degree-of-freedom motion has been demon-
strated. It has been shown that different vortex shedding modes will occur depending
on the orbital direction. The change in vortex shedding mode is found to cause sig-
nificant change in the force acting on the cylinder. This is important for the forces
acting on flexible beams oscillating at higher order mode numbers, as the orbital
direction will change over the length of the beam.

14. High negative values of the added mass coefficient has been measured for orbits of
certain shapes and directions, with extreme values as low as Ca,CF=-7. For flexible
beams oscillating at higher order mode numbers, sections of the span may be forced
into orbits of such shapes and directions. These sections will then contribute signif-
icantly to the modal added mass. The modal added mass is important for modal
response frequency at a certain flow velocity.

15. Higher order harmonic forces are measured, and the results show that these forces
are strongly linked to IL oscillations. The trend of the data is that the relative
magnitude of the higher order harmonic CF forces will increase for increasing IL
oscillation amplitude.

16. The results have shown that both the shape and direction of the oscillation orbits
are important parameters for the magnitude of the drag coefficient.

9.2 Recommendations for Further Work

Based on the experience from the present work the following recommendations are given
for further work on this subject:
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• For all future experimental work aimed at investigating the subcritical flow regime,
it is recommended to perform the experiments at Reynolds numbers above 2 · 104.

• Validation of the proposed models for VIV prediction can be performed by flexi-
ble beam experiments for Reynolds numbers where the models are valid, i.e. for
Re>1.5 · 104 in the subcritical regime. In these experiments the structural damping
should be known. The length of the span should be varied in order to obtain struc-
tural damping results for a range of oscillation frequencies. This is important as the
oscillation frequency will change from the still water frequency due to added mass
variation. When comparing the experimental results with the prediction model, it
must also be kept in mind that the applied eigenfrequency should be based on the
static configuration including drag forces.

• By performing free vibration experiments of a short rigid cylinder, e.g. using a
pendulum set-up, it is possible to further investigate the start-up of CF oscillations,
referred to in this thesis as IL induced CF. The ratio between the eigenfrequencies in
the two directions should be varied in order to investigate if a certain ratio between the
loading frequency (given by half the IL oscillation frequency) and the eigenfrequency
is required for CF response to take place. It is also recommended to perform this
experiment for various mass ratios to verify the assumption that it is the ratio between
IL oscillation frequency and CF eigenfrequency that is of importance for when CF
response is excited.

• With an experimental setup as proposed above, it is also recommended to investigate
when the two degree-of-freedom response goes from being dominated by IL response
to being dominated by CF response, referred to as IL induced CF and CF induced
IL response respectively.

• In chapter 7 the eigenfrequency measured in still water was compared with the mea-
sured oscillation frequency of the flexible beam, in order to determine whether added
mass results from forced oscillation experiments are suited for predicting the modal
added mass of the beam. It is recommended to perform this exercise based on an
eigenfrequency where the drag force is included in the static configuration on which
the eigenfrequency is based.

• The orbits used in the experiments reported in chapter 7 were determined by a visual
fit to the trajectories obtained from the flexible beam displacements. As time series
of displacement are available it is possible to determine the phase angle between the
two directions, IL and CF, from spectral analysis, considering only the dominating
frequencies.

• The method described above may be extended to also include higher order displace-
ment components. The higher order component can be represented by a harmonic
function where amplitude and phase is determined from spectral analysis. An orbit
is then established by superimposing the signal on the dominating component. By
constructing the orbit in this manner, the techniques presented in chapter 4 may be
used to analyze the results of a forced oscillation experiment for both the main and
the higher order component. It is then possible to investigate if two components can
be treated independently of each other and if not, how they then interact with respect
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to excitation, damping and added mass. It is further possible to investigate the effect
of frequency, phase and amplitude of the higher order component by systematically
varying these parameters.

• One major limitation of the data from the two degree-of-freedom tests is that the
ratio between CF and IL oscillation amplitudes has a fixed value of 2. The results
have indicated that higher order harmonic forces are strongly dependent on the IL
oscillation amplitude. In order to further investigate this, experiments should be
performed with varying ratio between the oscillation amplitudes in the two directions.
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Appendix A

Calibration

In this appendix the calibration coefficients for force sensors and accelerometers for the
three phases of experiments are given.

As experience was gained from one phase to the next, the methods used to calibrate
the experimental setup was continuously improved. The first section of this appendix will
therefore be a thorough description of the calibration process and the results for the last
phase of experiments. Section A.2 and A.3 present the results from Phase II and Phase I
respectively. The two sections also include a description of how the calibration methods
deviate from what is reported in section A.1.

A.1 Calibration Phase III Experiments

A.1.1 Calibration of force sensors

The force sensors were of the strain gauge type (Hottiger PW2GC3), and the calibration
of the sensors was performed in three steps. First each sensor was calibrated separately to
find the calibration coefficient (in N/V). Then two and two sensors were mounted to form
a "cross", enabling force measurements in two directions (90 degrees off). The mounted
sensors were then calibrated to investigate if there was a transfer of forces between the two
directions. The third step of the calibration was carried out after the assembly of the test
rig. Weights were applied on the cylinder to see if the two sensor crosses were rotated when
installed, and if so find the cross-talk angle. During these calibrations a constant force was
applied in vertical direction to account for the buoyancy. The uncertainty in cross-talk
angle was estimated by investigating the measurements from this calibration.

Force sensor calibration, Step I

The first step of the force sensor calibration is to find the calibration factors (from V
to N) for each force sensor. This was done by applying known weights and recording
the output voltage. Masses of 1, 2, 3, 5 and 7kg were used and a typical time series is
shown in Figure A.1 (a). The load sequence was repeated two times in both positive and
negative direction, giving a total of 44 data points. Results for a typical case is shown in
Figure A.1 (b). As indicated in the Figure the calibration coefficient is estimated by linear
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(a) Calibration time series
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Figure A.1: Step I, force calibration results.

regression. The general expression for a straight line regression is

Y (X) = mX + c (A.1)

where m is the slope and c is the y-axis intercept. In the calibration procedure X represents
the applied weight and Y the output voltage for the given weight. The parameter of interest
is the slope m, which is the inverse of the calibration coefficient, and the standard deviation
of the slope from the curve fit is given by (see Coleman & Steele [8], chapter 7):

Sm =

√
S2

Y

Sxx
(A.2)

where

SY =

√√√√ 1

n− 2

n∑
i=1

(Yi −mXi − c)2 (A.3)

and

Sxx =
n∑

i=1

X2
i −

(
∑n

i=1 Xi)
2

n
(A.4)

These expressions for regression uncertainty only apply when all random uncertainties
are concentrated in the Y values (output voltage). The criteria is not formally met for
these results as there are uncertainties related to the calibration weights. However, the
uncertainties are found to be negligible. The confidence interval for the mean value of the
slope is given by:

m− t95%Sm ≤ µm ≤ m + t95%Sm (A.5)

In the experiments the measured voltage is multiplied by the inverse of the slope, m, and
the estimated uncertainty in the calibration coefficient is treated as a bias error in the force
measurements. Calibration factors and estimated bias errors for the four force sensors are
given in Table A.1.
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Table A.1: Summary of force calibration factors.

Force sensor ID number 8346 8342 8354 8343

Mean value 8.396 8.444 33.567 8.380
Uncertainty, 95 % confidence
interval

2.98E-04 4.14E-04 82.9E-04 3.03E-04

Force sensor calibration, Step II

In step II the force sensors ability to measure forces in two directions is tested. Two and
two sensors were orthogonally mounted together. The "sensor cross" was then tested by
applying known weights in four directions, negative and positive for both IL and CF. The
output voltage was recorded for both sensors and the calibration factors found in step I
was included. The result for one sensor cross is shown in Figure A.2. The figure shows that

Figure A.2: Calibration step II, cross-talk.

when applying a force in CF direction a small force in IL direction will also be present.
The magnitude of this force is estimated to 0.65% of the CF force, with an estimated 95%
confidence interval from 0.62% to 0.69%. The reason for this cross-talk is the way the two
sensors are connected. A force in CF direction cause a moment that has to be taken up
by the IL sensor. The error seems to be linear and the two sensor crosses give the same
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result.

Force sensor calibration, Step III

The purpose of force calibration step III is to:

1. Verify that there is no contact between the test cylinder and the sensor housing.

2. Investigate if the force sensor cross has been rotated during installation, and deter-
mine the cross-talk angle.

3. Verify that, corrected for cross-talk angle, the measured force comply with the force
applied on the cylinder.

To ensure that the first condition was satisfied, a load equal to the buoyancy was applied
in vertical direction. The maximum loads in each direction were higher than the maxi-
mum load expected in the experiment. The second condition was investigated by applying
loads in four directions (positive and negative in CF and IL). Figure A.3 shows the results.
Crosses represent results from the calibration and circles represent the same results after
correction for cross-talk angle.

(a) Starboard (b) Port

Figure A.3: Step III, estimation of cross-talk angle.

To verify that the measurements gave the correct forces the slope of the applied vs. mea-
sured load was calculated. The results show that the measured forces are slightly lower
than the applied load, from 0.5 to 1.9%. The calibration method used in step III is however
less accurate than the method used in the previous two steps. The deviation in measured
load compared to the applied is therefore included in the error estimate, and not used to
correct the calibration coefficient. Four load sequences were performed in each direction
and the slope was estimated for every sequence. A standard deviation for the slope was
then estimated based on a mean value of unity. The estimated relative error in the force
coefficient was then taken as t95% times the estimated standard deviation. Calibration
coefficients and cross talk angels with estimated uncertainties for the two sides are sum-
marized in Table A.2.
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When calculating the slope in IL direction of the port force sensor the calibration results for
the 7 kg external load in negative direction have been excluded. The two calibration results
for this external load deviate by 6% compared to the remaining data set in IL direction
(42 data points). The maximum IL force in the experiments is much smaller than this force.

Table A.2 shows that the correction factor for IL force from a force in CF direction is
different for the two sides, and not the same as the factor found in step II. The reason for
this is probably related to the cross-talk angle and to the direction of the rotation of the
sensor cross. Rotation in one direction enhances the effect and rotation in the other direc-
tion reduces it. The cross-talk angle on the starboard side is approximately half the angle
on the port side. Compared to the correction factor found in step II, 0.7%, the correction
factor is approximately half of this for the starboard side and double for the port side.

Uncertainty in cross-talk angle

The cross-talk angle may also be estimated by investigating the frequency of the force in
the two directions. The method is described by the following steps:

1. For an oscillation in e.g. IL direction of a given frequency, the force component at
this frequency in CF direction is extracted.

2. A straight line is then fitted to the forces measured in the two directions by a "least
square fit" method.

3. The cross-talk angle is then calculated from the estimated slope.

A typical result is shown in Figure A.4 (a). The full test matrix has been investigated
and the uncertainty in cross-talk angle is estimated by: Bα = t95% · Sx−talk + µx−talk. The
estimated uncertainty in cross-talk angle is 2.23 [deg] at the Starboard side and 2.84 at the
Port side. Figure A.4 (b) shows the calculated cross-talk angles for the port side, calculated
in IL direction.

Some of the test series were excluded as a consequence of this exercise since it appeared
that the vortex shedding process gave a force component at the CF frequency in IL direc-
tion. In future work tests should be performed in air to verify the calibrations. Performing
the tests in air will exclude the fluid effects and the method will give a better estimate of
the uncertainty in cross-talk angle.

A.1.2 Calibration of motion sensors

Two types of sensors were used, accelerometer and string potentiometer. The accelerome-
ters were calibrated by using the acceleration of gravity, g=9.81 m/s2. Cross-talk angles
due to rotation of the sensor were determined based on the test series.

Accelerometer calibration

The accelerometers were calibrated by rotating the accelerometer so that the axis of interest
would be horizontal (acceleration = 0), vertical pointing up (acceleration = -g) and vertical
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Figure A.4: Cross-talk angles estimated from experiment data. Force sensor at port side.
Cross-talk angle based on IL oscillations.

pointing down (acceleration = g). Calibration coefficient and uncertainty were estimated
in the same way as for the force sensors. The results are given in Table A.3.

Estimation of accelerometer cross-talk angle

The accelerometer cross-talk angles were estimated from the experiment time series in a
similar manner as for the force sensors. The method should however work better for the
accelerometers, since no hydrodynamic effects can influence the results. The calibration
was performed in the following way: First all available time series were analyzed and an
average cross-talk angle estimated for both ends of the cylinder. The estimated cross-
talk angles were then included in the data reduction program and the the test matrix
reanalyzed. The results showed that the cross-talk angle for the CF axis at the starboard
side (accelerometer 6294z) deviated significantly from the IL axis, and a correction factor
corresponding to a cross-talk angle of 7.4 degrees was included on this axis. The test
matrix was then reanalyzed for a second time and based on these results the uncertainty
in cross-talk angle was estimated. These were 0.8deg for the Starboard accelerometer and
2.2deg for the Port accelerometer. The results are given in Figure A.5, where the 95%
confidence interval is included as solid lines. The results are summarized in Table A.4.

Phase error due to signal processing - accelerometer

In the data reduction analysis the acceleration signal is used as a reference signal for decom-
position of the measured hydrodynamic force into components in phase with acceleration
and in phase with velocity. Cross-talk between the two axes may cause a phase change in
the acceleration signal which will give an error in the calculated force coefficients. Due to
the combined uncertainty from this cross-talk angle and from noise, the acceleration signal
had to be filtered. A digital fft band-pass filter was used.

To determine the possible phase change due to the combined effect of cross-talk and filtering
an investigation with synthetic signals has been performed:
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Table A.2: Summary of force calibration factors, Phase III.

Parameter Mean
Value

Uncertainty
95%

Calibration coefficient IL Starboard, sensor no 8342 8.444 0.130
Calibration coefficient CF Starboard, sensor no 8346 -8.396 0.316
Cross-talk angle Starboard 4.4 [deg] 2.23 [deg]
IL correction factor due to moment caused by CF force,
Starboard

0.3 % [-] -

Calibration coefficient IL Port, sensor no 8343 -8.380 0.483
Calibration coefficient CF Port, sensor no 8354 -33.567 1.115
Cross-talk angle Port 8.1 [deg] 2.84 [deg]
IL correction factor due to moment caused by CF force,
Port

1.64 % [-] -

Table A.3: Accelerometer calibration factors.

Accelerometer ID number 6294y 6294z 6293y 6293z

Mean value 12.944 -14.856 2.693 -2.264
Uncertainty, U, 95 % confidence
interval

0.166 0.504 0.028 0.068

• Two synthetic acceleration signals, sinusoidal signals in IL and CF direction, were
created based on the oscillation frequency and amplitude from the test matrix.

• New IL and CF signals were then created by introducing the cross-talk angle found
in the previous section.

• The new IL and CF acceleration signals were then band-pass filtered with the same
high-pass and low-pass frequency as used in the data reduction analysis for the given
case.

• Finally the phase angles between the filtered signal and the original signal, in IL and
CF direction, were calculated.

All test series from the two degree-of-freedom experiments have been included. It was not
found to be a correlation between phase angle and acceleration amplitude or frequency.
Therefore a constant phase error, due to cross-talk and filtering, will be used for all cases.

In some of the methods used to decompose the hydrodynamic force the velocity signal
was used. The velocity signal was found by a frequency domain integration routine. The
uncertainty in the velocity signal has been investigated in a similar manner.

The results from the calculations are shown in Figure A.6 and the uncertainty in both
acceleration and velocity is found to be 0.04deg.
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(a) Starboard (b) Port

Figure A.5: Acceleration cross-talk angles estimated from experiment time series. 95%
confidence interval included as solid lines.

Table A.4: Summary of accelerometer calibration factors.

Parameter Mean
Value

Uncertainty
95%

Calibration coefficient IL Starboard, sensor no 6294y 12.944 0.166
Calibration coefficient CF Starboard, sensor no 6294z -14.856 0.508
Cross-talk angle Starboard 4.35 [deg] 0.77 [deg]
IL correction factor, Starboard 0.13 % [-] -

Calibration coefficient IL Port, sensor no 6293y 2.693 0.028
Calibration coefficient CF Port, sensor no 6293z -2.264 0.068
Cross-talk angle Port 1.3 [deg] 2.19 [deg]

String potentiometer calibration

The string potentiometers were factory calibrated and the calibration coefficients were
verified by use of a standard ruler. The calibration showed that on average both string
potentiometers over predicted the displacement by 1%. This was based on 10 measurements
and the uncertainty in the calibration coefficient was 0.005 for both potentiometers. As the
ruler had not been calibrated, it was decided to use an uncertainty of 2% (95% confidence
interval) in the uncertainty analysis.

Phase error due to signal processing - string potentiometer

The displacement measured by the string potentiometers must be differentiated to get the
velocity and acceleration signals. A time domain method has been used and the uncertainty
in phase introduced by this method has been investigated in a similar manner as outlined in
the previous section, but without cross talk. A constant band pass region between 0.1 and
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Figure A.6: Phase error in IL acceleration and velocity signal.

2.2Hz has been used for all cases. The phase uncertainty of the velocity- and acceleration
signals were found to be 0.003deg and 0.022deg respectively.

A.1.3 Natural frequency

The natural frequency of the test rig was found by hitting the rig at different locations
with a rubber mallet while measuring forces and accelerations. A spectral analysis showed
the first eigenfrequency at approximately 4.5Hz in IL direction and at approximately 7Hz
in CF direction. The power spectrums for the four force channels are show in Figure A.7.

A.2 Phase II Experiments

A.2.1 Calibration methods

The deviations from the method described in section A.1 are addressed in this section.

Force sensor calibration

Only force sensor calibration step III was performed for the phase II experiments. Step
III was however performed three times as the model had to be taken down two times for
modifications. Hence, the cross-talk angle had to be estimated each time the model was
assembled.
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Figure A.7: Power spectral density of force measurements in natural frequency test, Phase
III.

Only the results for Starboard side are reported, as there was contact between the test
cylinder and the force sensor housing at port side. The calibration was performed in the
following steps:

1. Each of the three data sets were analyzed so that calibration coefficients and cross
talk angles were found.

2. An average value for the calibration coefficients in IL and CF direction, estimated
for each of the three data sets, were used as force calibration coefficients in the
post-processing. The uncertainty in the calibration coefficients were estimated based
on the standard deviation of the three values. For a 95% confidence interval the
uncertainty was found to be Px̄ = t Sx√

N
, where N=3 and t=4.303 (ν=2).

3. The cross-talk angle and IL correction factor found for the last data set were later
used in the post-processing

The cross-talk angle was estimated from the time series as described in section A.1 and
the results are shown in Table A.5.

Accelerometer calibration

The calibration of the accelerometers was performed in a similar manner as described in
section A.1. There are however fewer data points available. For this phase the calibration
factors are based on 5 to 9 data points, while the coefficients in phase III are based on 18
data points. The results are given in Table A.6.
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A.2.2 Calibration results

The calibration results are summarized in Table A.5 and Table A.6 and the natural fre-
quencies are shown in Figure A.8.

Table A.5: Summary of force calibration factors, Phase II.

Parameter Mean
Value

Uncertainty
95%

Calibration coefficient IL Starboard 34.142 0.734
Calibration coefficient CF Starboard -8.661 0.213
Cross-talk angle Starboard -2.4 [deg] 6.0 [deg]
IL correction factor due to moment caused by CF force,
Starboard

−0.3% [-] -

Table A.6: Summary of acceleration calibration factors, Phase II.

Parameter Mean
Value

Uncertainty
95%

Calibration coefficient IL Starboard 12.736 0.112
Calibration coefficient CF Starboard -14.472 1.039
Cross-talk angle Starboard 3.70 [deg] 0.84 [deg]
IL correction factor, Starboard 0.13 [-] -

Calibration coefficient IL Port 10.651 0.192
Calibration coefficient CF Port -10.976 0.243
Cross-talk angle Port -1.86 [deg] 1.73 [deg]

In Figure A.8 it is seen that there are force components at 1.7 and 3.3Hz. This is in
the region where higher order harmonic forces are seen in the 2dof experiments and must
be kept in mind when the results are evaluated.

A.3 Phase I Experiments

A.3.1 Calibration methods

The deviations from the method described in section A.1 are addressed in this section.

Force sensor calibration

The calibration was performed after the experiment and only step III in one direction
was carried out. The test rig was also calibrated prior to the experiments, with loads in
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Figure A.8: Power spectral density of force measurements in natural frequency test, Phase
II.

all four directions, and these calibrations showed no evidence of any difference between
positive and negative direction. The calibration method was however less accurate than
the method described in section A.1.1, and only the results from the calibration after the
experiments have been used in the data processing. The error in force calibration coeffi-
cients was estimated as described in A.1.1. Since step I was not performed it has, however,
been chosen to increase the error by 2%. Thus, if the calibration shows that the standard
deviation (Sm) is 0.25% of the mean value and t95% = 2, the value used in the uncertainty
analysis is 2.5% of the mean value. This is based on the experience gained from the Phase
III experiments. Only the results for Starboard side are reported, as there was contact
between the test cylinder and the force sensor housing at port side.

The cross-talk angle is estimated from the time series. In Phase I pure IL tests were
performed and the cross-talk angle is therefore based on IL oscillations only.

Accelerometer calibration

The accelerometers were calibrated after the experiments and the results are summarized
in Table A.8.

A.3.2 Calibration results

The calibration results are summarized in Table A.7 and Table A.8 and the natural fre-
quencies are shown in Figure A.9.

A.4 Recommendations for future work

For future experiments it is strongly recommended to perform tests in air, i.e. oscillations
in IL and CF direction, both prior to and after the experiment. This will be very useful
for several reasons:

• The actual inertia force from the oscillating mass can be found.
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Table A.7: Summary of force calibration factors, Phase I.

Parameter Mean
Value

Uncertainty
95%

Calibration coefficient IL Starboard 34.070 0.920
Calibration coefficient CF Starboard 8.871 0.222
Cross-talk angle Starboard 0.74 [deg] 2.3 [Deg]
IL correction factor due to moment caused by CF force,
Starboard

0.3 % [-] -

Table A.8: Summary of acceleration calibration factors, Phase I.

Parameter Mean
Value

Uncertainty
95%

Calibration coefficient IL Starboard 12.843 0.392
Calibration coefficient CF Starboard -14.795 0.529
Cross-talk angle Starboard -6.8 [deg] 1.0 [deg]

Calibration coefficient IL Port 10.852 0.236
Calibration coefficient CF Port -11.008 0.284
Cross-talk angle Port -1.2 [deg] 2.2 [deg]

• It can be verified that the force sensors at the two sides give the same result as there
are no fluid forces present that can cause a difference in forces.

• The uncertainty in cross-talk angle can be estimated.

• The accuracy of the post-processor can be tested since we know that there are no
forces in phase with velocity in the time series.

• It can be verified that calibration coefficients are valid for the duration of the exper-
iment.

It is also recommended that force calibration step III is extended to include external load
at the mid point of the test cylinder. This should be done in order to verify that the force
is distributed evenly to each side of the cylinder.

Force calibration step II determines the magnitude of the measured force in IL direc-
tion due to a force in CF direction. In future work it is recommended to investigate how
sensitive this transfer factor is to rotation of the sensor cross, i.e. cross-talk angle. In
section A.1.1 it was found that the transfer factor was different for the two sides.
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Figure A.9: Power spectral density of force measurements in natural frequency test, Phase
I.
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Appendix D

Pure IL PIV results

This appendix presents flow visualization results from four pure IL cases, see Figure D.2
through D.5. These results are from the same PIV project as the figures presented in
section 8.7, but the results have not been published prior to the publication of this thesis.
The PIV images are not processed by the author. Hence, the flow behind the cylinder will
be based on the presented vorticity plots, but possible error sources from the process of
generating these images will not be addressed.

The result sheets consist of 6 images showing the vorticity of the wake. These images
represent 6 time steps over two oscillation cycles. At the bottom of each figure time series
of CF and IL forces are shown together with IL motions. The 6 time instances corre-
sponding to the vorticity plots are shown on the time series. Positive cylinder motion
(IL direction) is defined as a downstream motion, i.e. to the right in the vorticity plots.
Positive CF direction is up.

The four flow visualization cases are shown relative to the Ce,IL = 0 contour in Figure D.1.
Detailed force coefficient results are given in Table D.1, and the coefficients are defined in
chapter 4.

D.1 2nd instability region
The flow pattern within the second instability region, case A, is shown in Figure D.2. It is
seen that the vortex shedding mode resembles the 2C mode, i.e. two co-rotating vorticies.
Picture 1 shows one vortex that has just been shed from the top of the cylinder and a
second that is about to be shed. In picture 2 also the second vortex is shed from the
top of the cylinder and a vortex rotating in the opposite direction is formed underneath
the cylinder. In picture 3 this vortex is shed and a second co-rotating vortex is formed.
Picture 4 is from the same position in the oscillation cycle as picture 1, i.e. the cylinder
is in the forward position upstream, and it is seen that vortex pattern is similar to that
of picture 1. The important difference is however that the vortex pair in picture 1 is shed
from the top of the cylinder while in picture 4 the vortex pair is shed from underneath. A
vortex pair is alternatingly shed from the top and bottom of the cylinder every other IL
oscillation cycle, which causes a strong CF force of frequency equal to half the IL frequency.

Figure D.3 shows the flow pattern of case B. Here the oscillation frequency is the same
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Figure D.1: Flow visualization cases shown relative to the IL instability regions.

as for case A, but the oscillation amplitude is higher and the case represents the damping
region outside the 2nd instability region. Two co-rotating vortices (2C mode) seem to be
shed, see picture 1, but they appear to merge downstream and form a single vortex (2S
mode), see picture 2 to 4. The CF force is not as strong for this case as for the case within
the excitation region, while the drag force is higher for case B.

From the flow visualization the 2nd instability region seems to be associated with the
2C and 2S vortex shedding modes. It is seen that the vortices are not shed as one well
defined vortex, which looks to be the reason for the higher order force components in both
IL and CF direction. Based on these two cases an increased oscillation amplitude seems
to give a vortex shedding mode closer to the 2S mode, and it looks like this mode gives
a higher drag force and a lower oscillating CF force than the 2C mode observed for the
smaller oscillation amplitude.

D.2 1st instability region

Figure D.4 shows the flow pattern for case C within the 1st instability region. Picture 1
indicates a 2S vortex shedding mode while picture 3 indicates a symmetric vortex shed-
ding mode. Thus, the vortex shedding within the first instability region must be seen as a
combination of the symmetric and the 2S mode. This is in line with previously published
results, see e.g. Sumer & Fredsøe [52].

Flow visualization for case D is shown in Figure D.5. It is seen that the symmetric shed-
ding mode dominates, and picture 3 shows a symmetric vortex shedding mode that looks
very similar to what is found in the literature. For the other pictures the shedding mode
is not as well defined. This might be caused by the processing of the PIV pictures.
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The flow visualization of the first instability region shows that within the excitation region
the flow pattern is a combination of the 2S and the symmetric vortex shedding mode. The
presence of the 2S mode causes a significant oscillating CF force and a drag coefficient ex-
ceeding that of a stationary cylinder in uniform flow. For increasing oscillation amplitude
the 2S mode disappears which effectively reduces the oscillating CF force. It is also seen
that symmetric mode reduces the drag force. It should be noted that the main oscillating
force component of case C appears at a frequency different from 0.5 times the IL oscillation
frequency, see Figure 6.17 (a).

Table D.1: Force coefficient results.

Coefficient Case A Case B Case C Case D

f̂IL 0.325 0.325 0.425 0.425
A
D IL

0.05 0.13 0.05 0.13
CD 1.64 2.02 1.43 0.92
Ce,IL 0.123 -0.163 0.121 -0.069
Ca,IL 0.450 0.440 0.590 0.820
ρxy,IL 0.979 0.985 0.963 0.998
ρxy,CF 0.999 0.781 0.827 0.465
Ct2,IL

Ct,IL
0.264 0.197 0.117 0.066

Ct3,IL

Ct,IL
0.352 0.098 0.375 0.104

Crms,CF 1.801 0.901 0.989 0.132
Ct,CF 1.783 0.834 0.071 0.014
Ct3,CF 0.222 0.235 0.012 0.006
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Figure D.2: Case A: 2nd instability region. (A/D)IL=0.05 and f̂IL = 0.325.
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Figure D.3: Case B: 2nd instability region. (A/D)IL=0.13 and f̂IL = 0.325.
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Figure D.4: Case C: 1st instability region. (A/D)IL=0.05 and f̂IL = 0.425.
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Figure E.9: Hydrodynamic coefficients for (A/D)CF=0.3.
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Figure E.10: Higher order harmonic forces for f̂CF=0.147 and α-values between 0 and 90.
First plot shows the difference between the intended (reported) and measured α.
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Figure E.11: Higher order harmonic forces for f̂CF=0.147 and α-values between 180 and
270. First plot shows the difference between the intended (reported) and measured α.
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Figure E.12: Higher order harmonic forces for f̂CF=0.175 and α-values between 0 and 90.
First plot shows the difference between the intended (reported) and measured α.
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Figure E.13: Higher order harmonic forces for f̂CF=0.175 and α-values between 180 and
270. First plot shows the difference between the intended (reported) and measured α.
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Figure E.14: Higher order harmonic forces for f̂CF=0.163. First plot shows the difference
between the intended (reported) and measured α.
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Figure E.15: Higher order harmonic forces for f̂CF=0.195. First plot shows the difference
between the intended (reported) and measured α.


