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Abstract 
 
 
 
 
 
 
Water entry and exit, green water on deck, sloshing in tanks and capsizing in intact and 
damaged conditions are examples on violent fluid motion. The combination of model tests, 
theoretical analysis and Computational Fluid Dynamics (CFD) methods is emphasized in 
treating these problems. Because mixing of air and liquid may occur, the interaction between 
the flow in the air and in the liquid ought to be considered in numerical simulations. Further, 
the mixing of air and liquid represents a scaling problem of model tests.  
 
In order to make a rational step in improving the analysis of nonlinear wave-induced ship 
motions and loads, it is necessary to base a solution on the Navier-Stokes equations, i.e. a 
CFD method has to be used. The Constrained Interpolation Profile (CIP) method described in 
this thesis is used as a CFD method for exterior water-body interaction studies. Because it is a 
rather new method, careful validation and verification are needed. This includes linear flow 
cases and sub-problems associated with large amplitude water entry and exit. 
 
In this method, the solid body and free surface interaction is treated as a multiphase problem, 
which includes liquid (water), gas (air) and solid (rectangular cylinder, circular cylinder, bow 
flare section, V-shaped section, etc.) phases. The flow is represented by one set of governing 
equations, which are solved numerically on a non-uniform, staggered Cartesian grid by a finite 
difference method. The free surface as well as the body boundary is immersed in the 
computational domain. 
 
First of all, linear and weakly nonlinear wave-body interaction problems are investigated by 
using a CIP-based finite difference method. The numerical wave tank (NWT) encounters 
difficulties in handling the long time simulation of large amplitude motions. Therefore, the 
wave-body interaction problem is isolated into water entry and water exit sub-problems. 
 
This thesis describes the fully nonlinear free-surface deformations of initially calm water 
caused by water-entry and water-exit of a horizontal circular cylinder with both forced and 
free vertical motions. This has relevance for marine operations as well as for the ability to 



predict large amplitude motions of floating sea structures. The numerical results of the water 
entry and exit force, the free surface deformation and the vertical motion of the cylinder are 
compared with experimental results, and favorable agreement is obtained.  
 
The CIP method is also applied to 2D water entry of vertical and heeled bow flare and V-
shaped sections. The results for the bow flare section have relevance for slamming loads on a 
ship in bow sea with large roll oscillations and relative vertical motions. The results for the 
heeled V-shaped section can be combined with a 2D+t numerical method to study how the 
steady heel moment on a prismatic planing hull on a straight course in calm water depends on 
the Froude number (Faltinsen, 2005). A generally satisfactory agreement with experimental 
drop test results of vertical water entry velocity, vertical and horizontal hydrodynamic forces 
as a function of time is demonstrated. This includes the effect of flow separation from the 
knuckles. The experimental results have bias errors due to eigenfrequency oscillations of the 
test rig and the use of elastic ropes to stop the models. The occurrence of ventilation of the 
leeward hull side is examined.  
 
An example on 3D calculations by means of the CIP method is presented. Green water on the 
deck of a Wigley hull at Froude number 0.25 in head sea is studied. 
 
Our studies are a step towards developing rational CFD methods for predicting strongly 
nonlinear wave-induced motions and loads on a ship. 
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Nomenclature 
 
 
 
 
 
 
General Rules 
 
• Only the most used symbols are listed in the following sections 

• Meaning of symbols is given at least when introduced in the thesis 

• Sometimes the same symbol is used to indicate different things 

 
 
Subscripts 
 
max  Maximum 
min  Minimum 
 
 
Roman Letters 
 
A  Submerged cross-sectional area 
A33  Heave added mass 
B33  Heave damping coefficient 
B  Breadth 
CA  Added mass coefficient 
CD  Drag coefficient 
Ce  Exit coefficient  
Cg  Group velocity 
CM  Inertia coefficient 
Cs  Slamming coefficient 



 

Csb  Slamming coefficient due to buoyancy 
Cw  Phase velocity = λ/T = ω/k 
D  Draft/Diameter 
Eu  Euler number 
Fi  Hydrodynamic force component 
Fx  Horizontal force 
Fz  Vertical force 
Fn  Froude number 
g  Gravitational acceleration 
h  Water depth 
I  inertial moment per unit length 
H  Incoming wave height; Drop height 
k  wave number =2π/λ 
L  Ship length 
m  Mass per unit length 
M  Roll moment 
n   Normal unit vector 
p  Pressure 
pa  Atmospheric pressure 
R  radius of circular cylinder 
Re  Reynolds number 
t  Time 
T  Period 
Tw  Wave period 
u  Horizontal velocity component 
v  Vertical velocity component 
U  Horizontal impact velocity component 
V, W  Vertical impact velocity component 
x  Horizontal axis 
y, z  Vertical axis 
(xc, zc)  Mass centre of the floating body 
Za  Amplitude of heave motion 
 
 
Greek Letters 
 
α  Sharpness enhancement parameter; Roll angle 
β  Heel angle; CFL number 
Δx  Horizontal spatial grid size in x-direction 
Δy  Vertical spatial grid size in y-direction 
Δt  Time step 
ε  Small positive constant  
η3  Heave motion 
η3a  Amplitude of heave motion 
λ   Wave length 
μ   Dynamic viscosity coefficient 



 

 vii

ν   Kinematic viscosity coefficient 
ρ   Density of water, air, solid body, etc. 
φ  Velocity potential 
φm  Color function  
Ф  Transformation function 
ω   Frequency (rad/s); Acceleration coefficient in SOR method 
Ω  Computational domain 
 
 
Abbreviations 
 
1D  One dimensional 
2D  Two dimensional 
3D  Three dimensional 
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CHAPTER 1 
 
 

Chapter 1 Introduction 
 
 
 
 
 

1.1 Background and motivation 

 
Green water on deck, water impact, sloshing in tanks and capsizing in intact and damaged 
conditions are examples on violent fluid motions in marine hydrodynamics, see Figure 1.1. 

 
 

 
(a) Green water and water impact on floating structures. 
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(b) Sloshing in tanks. 

 

 
(c) Platform P-36: capsizing in damaged conditions. 

Figure 1.1 Examples on violent fluid motions in marine hydrodynamics.  

 
 
The green water problem arises when a ship, usually in harsh weather conditions, encounters 
waves that exceed the freeboard and wet the deck (Nielsen, 2003). Many researchers have 
investigated the green water problem both experimentally and by the use of various numerical 
models. With the introduction of floating production storage and offloading units (FPSOs) and 
floating storage units (FSUs) in the offshore industry, the problem of green water loads has 
been given increasing attention, and the effort to install FPSOs in yet harsher environments 
has increased the problems related to green water incidents (Ersdal & Kvitrud, 2000).  
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For the analysis of sloshing in ship tanks, one of the major concerns in the marine 
hydrodynamic field is the accurate prediction of impulsive load on internal structures (Kim, 
2000). During violent sloshing, the sloshing-induced impact load can cause a critical damage 
on the tank structure. Such damage cases have been reported for oil tankers, LNG carriers and 
bulk carriers. Since 1970's, the sloshing problem has been an important issue in the design of 
the liquefied natural gas (LNG) carriers. Recently, this problem also became an important 
issue in FPSO design. 
 
Capsizing of ships leads to a primary group of casualties, including loss of life and money. 
Despite today’s advanced technology, it is difficult to build non-capsizing ships because of the 
fact that it is impossible to model and simulate the environment mathematically with all its 
aspects (Taylan, 2003). The random, unpredictable and sometimes chaotic character of the 
ocean environment is responsible for capsizes and loss of life. Many legal and scientific 
investigations have been carried out to find the causes of the disaster. Unfortunately, the exact 
causes of the incident still remain a mystery. 
 
Therefore, it is necessary to estimate quantitatively and precisely the wave loads during the 
fully nonlinear wave-body interactions. Experiments are the most practical but expensive way. 
A major difficulty of the numerical simulations arises from the extremely complicated 
hydrodynamic phenomena, for instance, the highly distorted or broken free surface, the effect 
of the compressibility of water/air or the elasticity of the body in the case of water impact. A 
combination of model tests, theoretical analysis and Computational Fluid Dynamics (CFD) is 
needed to describe the phenomena mentioned above. Because mixing of air and liquid may 
occur, the interaction between the flow in the air and in the liquid ought to be considered in 
numerical simulations. Further, the mixing of air and liquid represents a scaling problem for 
model tests. 
 
In order to make a rational step in improving the analysis of nonlinear wave-induced ship 
motions and loads, it seems necessary to base a solution on the Navier-Stokes equations, i.e. a 
CFD method has to be used. Even though there may be a long wait for the computational 
power needed to simulate the stochastic effect of a sea state, this should not prevent research 
groups from starting the process. Careful validation and verification are needed. This should 
include linear flow cases and sub-problems associated with large amplitude water entry and 
exit. 
 
 

1.2 CFD methods 

 
There are different types of CFD methods, which have been used to solve the above problems. 
Before breaking and fragmentation phenomena occur, and in the regions where the flow can 
be studied through a potential theory, the most efficient and accurate instrument is given by 
the use of the Boundary Element Method (BEM). After that more general field methods able 
to capture the post-breaking phase have to be considered.   
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CFD methods based on solving the Navier-Stokes equations such as the Smoothed Particle 
Hydrodynamics (SPH) method, the Constrained Interpolation Profile (CIP) method, and the 
finite difference methods in which the free surface is captured by the Volume of Fluid (VOF) 
method or the Level Set (LS) method are generally more robust than the BEM to solve violent 
fluid motion. Further, mixture between air and fluid may occur and viscous effects can be 
accounted for. However, the accuracy of a CFD method for different applications such as 
sloshing in tanks, green water on deck, slamming and large amplitude ship motion has to be 
documented. Important verification and validation tests of a CFD method include also how 
well it can predict linear fluid problems. CFD methods are still too time-consuming for 
practical strongly nonlinear 3D wave-ship interaction problems, requiring long time 
simulations to obtain probability density functions of response variables in a stochastic sea. 
 
Both grid methods and gridless methods are used to solve the Navier-Stokes equations. The 
SPH method is an example on a gridless method where individual fluid particles are followed 
in time. The grid method can be classified into two categories: 
 
• Lagrangian method (moving grid method) 

 
The boundary is treated explicitly without smearing information at the interface. The 
boundaries are fitted by the computational grid. The governing equations are solved on the 
boundary fitted grid. Boundary conditions are applied at the exact location of the free 
surface or rigid boundary. This method is quite efficient when the geometric variation is 
modest. However, it is very difficult and time consuming to generate the boundary grid of a 
strongly deforming free surface and arbitrarily moving bodies (Fekken, 2004). The 
Boundary Element Method applied to a strongly nonlinear problem is a special case of the 
Lagrangian method. 

 
• Eulerian method (fixed grid method) 

 
Eulerian methods are suitable for surfaces with large deformations. The interface is not 
explicitly tracked but is reconstructed from the field variables of the fixed grid. The 
location of the interface is determined based on volume fraction information, resulting in 
uncertainty of about one grid cell. It is difficult to apply the boundary conditions at the 
exact location of the boundary, but the discretization is easy because no remeshing is 
needed (Fekken, 2004). Topological changes are easy to handle but some accuracy may be 
lost when details of the interface can not be covered by the grid. The interface is of a finite 
thickness but can be sharpened by various strategies. The VOF, LS and CIP methods use an 
Eulerian grid.   

 
In the following, all the CFD methods mentioned above will be described briefly. 
 

1.2.1 Boundary Element Method (BEM) 

The Boundary Element Method has been successful in solving linear and second-order wave-
body interaction problems dominated by potential flow. Good results have also been 
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demonstrated in cases of strongly nonlinear and violent fluid motion. An example is the water 
entry studies by Zhao & Faltinsen (1993). Flow separation from chines can be accounted for, 
but it is more difficult to use a BEM to simulate non-viscous flow separation from curved 
surfaces happening during water entry. A BEM fails, for instance, when a plunging wave 
impacts on the underlying water. One reason is that vorticity is generated, i.e. there does not 
exist a velocity potential describing the fluid flow. However, there is the possibility to cut 
away the plunging wave part and continue the numerical solution with minor influence on the 
pressure distribution on the body. Moyo & Greenhow (2000) used BEM to study the fully 
non-linear inviscid-flow calculations of the deformations of an initially calm free surface 
caused by the free motion of a horizontal cylinder starting from rest from a prescribed depth. 
The calculations break down due to ventilation at the final stage. The cylinder is then above 
the initially calm water free surface with a thin layer of fluid on the upper cylinder surface and 
two (symmetric) regions with pressures lower than the atmospheric pressure on the lower 
cylinder surface. The resulting pressure inversion across the free surface immediately below 
the cylinder causes Rayleigh-Taylor instability and spontaneous free surface breaking of the 
type photographed by Greenhow & Lin (1983). This stops the numerical calculations. 
 

1.2.2 Smoothed Particle Hydrodynamics (SPH) method 

SPH is a particle method for the numerical simulation of Lagrangian hydroynamics. It is 
originally invented by Lucy (1977) and Gingold & Monaghan (1977) to simulate the fission of 
a rapidly rotating star and is extended to complicated free surface flows including solitary 
wave propagation over a planar beach (Monaghan & Kos, 1999), plunging breakers (Tulin & 
Landrini, 2000), solid bodies impacting on the water (Monaghan et al., 2003) and dam break 
simulations (Monaghan, 1994). In particle methods, the computational elements are not grid-
cells as in finite difference methods, but moving points in space where computational data in 
the fluid is sampled. The motion of the particles is typically governed by the equations of the 
fluid. SPH is a Lagrangian method, which means that the particles follow the fluid flow. The 
particles carry all the computational information, so there is no computational grid.  The 
particles themselves are the computational framework on which the fluid equations are solved.  
This makes the method easy to implement.   
 
The main strength of SPH comes directly from its Lagrangian properties.  It is easy to handle 
multi-dimensional problems and problems without any particular symmetry with SPH. SPH 
only performs calculations in the relevant regions, i.e. where the mass is located. No 
computational time will be spent in empty regions. It is relatively easy to include different 
physical processes in SPH. The equations retain their original mathematical form to a high 
degree.  SPH is known to be a robust method and gives reasonable accuracy for a wide range 
of conditions. Even when a simulation evolves outside the domain where SPH is known to 
give valid solution, the method will not break down completely. Landrini et al. (2003) 
simulated the problem of sloshing in a tank by SPH and showed a favorable agreement with 
experiments as shown in Figure 1.2. 
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Figure 1.2 Experiment (left) and SPH simulations (right) of sloshing in a tank (Landrini et al., 
2003). 

 
 
However, boundary conditions are usually difficult to implement in SPH. Handling of 
boundaries does not come very naturally. Typically, it is difficult to prevent particles from 
penetrating boundaries. For complicated boundary conditions, SPH is not the method of 
choice; see Rogers et al. (2003). The easiest types of boundaries that can be handled by SPH 
are the natural boundaries far from the regions of interest where the density falls to zero and 
the periodic type conditions. SPH gives reasonable results for the first order gradient, but 
becomes worse for higher order derivatives. Special techniques need to be employed when the 
second and/or higher order derivatives are present in the physics. Another drawback is that the 
predicted pressure may contain unphysical oscillations due to the use of an artificial pressure-
density relationship. 
 
Monaghan (1988) described the application of SPH to a wide variety of problems in 
compressible gas flow. It is suggested that SPH is most effective in 3D calculations and least 
efficient in 1D, but the full effectiveness of SPH is yet to be determined. There is still a wide 
range of problems suitable for SPH treatment, although most of these problems are generally 
in the astrophysics field. 
 

1.2.3 Volume of Fluid (VOF) method 

Volume of Fluid (VOF) is a powerful numerical method developed by Nichols et al. (1980) 
and Hirt & Nichols (1981) to simulate the free surface flows. The VOF method uses an 
Eulerian approach and relies on the calculation of a scalar parameter (color function φ ) 
representing the fractional volume of fluid in a numerical cell in order to track interface 
distortions. The color function is semi-discontinuous with values between one and zero and is 
advected according to the local flow velocity u 
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0
t
φ φ∂
+ ⋅∇ =

∂
u        (1.1) 

 
A filling process is used to determine which cell in the meshing volume is filled and which is 
emptied. The popularity of the scheme is based on its easy implementation, its accuracy and 
its computational efficiency.  
 
Xing-Kaeding et al. (2004) studied the strongly nonlinear free-surface deformation during the 
water entry and exit of a horizontal circular cylinder by a viscous flow solver with the volume 
of fluid (VOF) method and got favorable agreement with the photographs of experiments. 
Kleefsman et al. (2004) solved wave impact problems by a numerical method based on the 
Navier-Stokes equations and by using an improved volume-of-fluid (VOF) method for the 
displacement of the free surface. Dam break problem and water entry and exit of 2D objects 
were compared with the experimental results to validate this method.  
 
However, Eulerian VOF schemes have accuracy problems in the attempt to maintain local 
mass conservation, see Lafaurie et al. (1994). The reconstructed interface is not smooth or 
even continuous, lowering the accuracy of the geometrical information (normals and curvature) 
at the interface compromising the entire solution. Several researchers have worked to improve 
the accuracy of the VOF geometrical information using convolution of the color function with 
a kernel function, see e.g. Williams et al. (1999a, 1999b). James & Lowengrub (2004) used a 
surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. 
The main advantages of this method are that the interface shape is not constrained, changes in 
topology are handled automatically, and mass of each flow component is conserved exactly. 
The interface location is captured by tracking the local volume fraction. The volume fraction 
is constant in each fluid and discontinuous at the interface. The volume fraction convection 
equation is solved in every cell, but is nontrivial only near an interface. To maintain the 
discontinuous nature of the volume fraction, care is taken not to introduce numerical diffusion 
when solving the equations. Numerical diffusion would cause smoothing of the discontinuity 
and the interface would become smeared normal to itself. The approach used to avoid this is to 
calculate the flux of one of the fluids across each cell face using a reconstruction of the 
interface position. The fluxes are then used to update the volume fraction to the next time step.  
 
A number of techniques based on VOF have been developed for a number of applications, for 
instance, tracking water droplets caught in an air stream and polymer mould filling, see 
Rudman (1997). However, all these techniques have been developed for structured meshes 
and follow the finite-difference (FD) discretisation of the original scheme. Recently, attempts 
have been made to construct VOF schemes in Finite Element (FE) frameworks, which, 
however, employ secondary structured grids for the solution of the scalar advection equation 
for the tracking of the material interface, see Maronnier et al. (1999). Chirstakis et al. (2002) 
developed a new unstructured algorithm based on the VOF method for tracking material 
interfaces in a finite-volume framework. 



 
CHAPTER 1 Introduction 

 

 
8 

1.2.4 Level Set (LS) method 

The Level Set (LS) method, invented in 1987 by S. Osher and J.A. Sethian (see Osher & 
Sethian, 1988) has proved remarkably successful as a numerical (and theoretical) device in a 
host of applications including fluid mechanics, combustion, computer vision, and materials 
science, see Osher & Fedkiw (2001, 2002) and Sethian (1999, 2000). In the level-set method, 
a smooth function ( , )x tφ called distance function or color function is introduced to denote the 
distance from x to the initial interface location at any instance. A particle on the level set 
evolves in time by the following transport equation 
 

0nu
t
φ φ∂
+ ∇ =

∂
       (1.2) 

 
where un is the normal velocity of the interface. Level Set methods have been widely used for 
capturing interface evolution especially when the interface undergoes extreme topological 
changes, e.g. merging or pinching off. Sussman (1994) used Level set methods to model 
multiphase immiscible incompressible flows. These methods are attractive because they admit 
a convenient description of topologically complex interfaces and are quite simple to 
implement. However, the numerical presentation of the transport equation to determine the 
values of the color function is prone to numerical error which leads to a loss or gain of mass.  
As documented in Gerrits (2001), the LS method has serious problems with mass conservation.  
 
Enright et al. (2002) proposed a new method which combines the best properties of an 
Eulerian Level Set method and a marker particle Lagrangian scheme. This method randomly 
places a set of marker particles near the interface (defined by the zero level set) and allows 
them to passively advect with the flow. In fluid flows, particles do not cross the interface 
except when the interface capturing scheme fails to accurately identify the interface location. 
This method in Enright et al. (2002) was designed to track material interfaces for both 
incompressible and compressible flows where characteristics are not created or destroyed. In 
these instances, marker particles can be used to accurately track characteristic information 
without considering shocks and rarefactions where particles need to be created and destroyed 
in a consistent fashion. The particle level set method has not yet been extended to treat more 
complex flows such as those involving geometry, e.g. motion normal to the interface or 
motion by mean curvature. However, extending the particle level set method to treat the 
reinitialization equation is straightforward since the exact solution dictates that both the 
interface (zero level set) and the marker particles should sit still. 
 
Landrini (2003) compared three CFD methods (BEM, SPH, LS) with experiments for 2D 
dam-breaking and water-wall impact problems to identify the disagreements among different 
tools; see Figure 1.3 which presents the time evolution of the water front toe after the dam 
break. The BEM simulation has to be stopped at the impact of the plunging wave with the 
underlying water, while the CFD methods are able to continue further on and predict rather 
similar shapes of the entrapped cavity and of the jet splash up caused by the water-water 
impact as in Figure 1.4 . 
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Figure 1.3 Verification and validation for the dam-breaking problem: time evolution of the 
water front toe.  x and τ are the non-dimensional variables defined as x=X/H and 

t g Hτ = where X and t are respectively the physical spatial and temporal variables and 
H=5.7cm is the original dam height equal to the original length, L, of the reservoir behind the 
dam. τ=0 is the time instant for dam break and xmax is the instantaneous position of the water 
front. The analytical solution in Ritter (1892) gives the asymptotic velocity of the water front 
by a shallow-water theory. (Landrini, 2003). 

 
 

 
Figure 1.4 Air-water interface during the impact of a backwards plunging wave with the 
underlying water after the dam breaking flow has impacted against a vertical wall. Solid line: 
Level-Set solution. Double dots: SPH solution. Dashed line: Level-Set with reinitialization by 
Russo & Smereka (2000). The horizontal and vertical scales  x and y are non-dimensional 
variables x=X/H and y=Y/H, respectively. t g Hτ = is the non-dimensional time. X and Y 
are the physical spatial variable.  t is the physical temporal variable.  The dam with the height 
H=60cm and the length L=2H is placed at a distance Lc=3.366H from the vertical wall. 
(Landrini, 2003). 
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1.2.5 Constrained Interpolation Profile (CIP) method 

The problem of structure-fluid interaction is not an easy task even without phase change. In 
most cases, the grid cannot always be adapted to the solid surface. Therefore, the description 
of moving solid surface of complicated shapes in the Cartesian grid system is a challenging 
subject. In order to attack the problem mentioned above, a method able to treat a sharp 
interface and to solve the interaction of compressible gas with incompressible liquid or solid is 
needed. Constrained Interpolation Profile method based on Cubic Interpolated Propagation 
(CIP) method in Takewaki et al. (1985), Takewaki & Yabe (1987), Yabe & Takei (1988), 
Yabe & Aoki 1991) and Yabe et al. (1991) was developed to treat both compressible and 
incompressible fluids with large density ratios simultaneously in one program to simulate the 
interaction of gas with a liquid and/or solid.  The CIP method is associated with solving 
advection equations in the advection phase, which is the first of the three stages in the time 
stepping procedure. The details about this method will be described in Chapter 2. 
 
The CIP-based finite difference method is a relatively new CFD method used in marine 
hydrodynamics. The structure-fluid interaction problem is treated as a multiphase problem 
including liquid (water), gas (air) and solid (rectangular cylinder, circular cylinder, bow flare 
section, V-shaped section, etc.) phases. The flow is represented by one set of governing 
equations including the continuity of fluid mass and the Navier-Stokes equations, which are 
solved numerically on a non-uniform, staggered Cartesian grid by a finite difference method. 
The free surface as well as the body boundary is immersed in the computational domain. An 
Earth-fixed rectangular grid is used to cover the air, water and solid body. An artificial 
mathematical problem is solved inside the body. This facilitates the numerical procedure.  
 
In order to identify which part is the air, the water or the solid body, density functions mϕ  
(m=1, 2, 3) are introduced and satisfy the same transport equation as Eq. (1.1). The numerical 
method causes no sharp interface between air and water, i.e., the values of 1ϕ  and 2ϕ  change 
continuously between the values for air and water at the free surface. The same happens with 
the density functions between the body and the air and the water. However, some strategies 
can be applied to sharpen the interfaces. 
 
Hu & Kashiwagi (2004) applied the CIP-based method for numerical simulation of violent 
free surface flows. Hu et al. (2005), Zhu et al. (2005) and Faltinsen et al. (2005) also used this 
method both for 2D and 3D flow and with a numerical wave tank. Hu et al. (2004) applied a 
conservative form of the CIP scheme, i.e. the CIP-CSL3 (Constrained Interpolation Profile-
Conservative Semi-Lagrangian scheme with third-order polynomial function) scheme, which 
provides a way to reduce the numerical diffusion at the phase interface, to investigate violent 
sloshing phenomena within a horizontally oscillating rectangular tank, see Figure 1.5. 
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Figure 1.5 Comparison of computed free surface profiles of violent sloshing within a 
horizontally oscillating rectangular tank at t/T=5.8 using the CIP-CSL3 scheme. T=0.8s. The 
three lines denote φ1 = 0.01, 0.50 and 0.99, respectively (Hu et al., 2004). φ1 is explained in 
Eq.(2.16) in Section 2.3.1. 

 

1.2.6 Domain Decomposition (DD) 

When the BEM does not break down as illustrated above, it is generally more accurate and 
less time consuming than other CFD methods. A Domain Decomposition (DD) method where, 
for instance, the LS method is used to describe the violent fluid motion near the ship and the 
BEM is applied in the rest of the fluid domain is therefore an attractive approach (Colicchio et 
al., 2005). This assumes implicitly zero vorticity in the BEM-domain and is a reasonable 
assumption for most practical problems. However, it is not straightforward to combine the 
BEM with another CFD solver. The reason is that the BEM defines a sharp interface between 
the air and the water while there is implicitly assumed a continuous change of the mass 
density from air to water in the LS and CIP methods. A combination of the BEM and SPH 
methods is challenging due to the fact that particles either leave or enter the SPH fluid domain. 
 
 

1.3 Present work 

 
In this thesis, a new numerical code applying the CIP-based method is developed to solve the 
nonlinear wave-body interaction problems. Because this is a rather new method in the field of 
marine hydrodynamics, we point out the need for verification and validation by experiments. 
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Because we are limited from a practical CPU and storage point of view to improve the 
accuracy in 3D simulations by decreasing the grid size and increasing the computational 
domain, we present verified and validated 2D simulations of linear, weakly nonlinear and 
strongly nonlinear wave-body interaction problems. 
 
 

1.4 Outline of the thesis 

 
Chapter 1 is the introduction of this thesis which gives the background and motivation, 
possible CFD methods, present work and the content of the thesis. 
 
Chapter 2 describes in detail the numerical method (CIP) applied in this thesis, including the 
numerical algorithm, the determination of the boundaries and the absorbing boundary 
condition, and the calculation of the hydrodynamic forces acting on the body. 
 
In Chapter 3, 2D linear and weakly nonlinear wave-body interaction problems have been 
studied by using CIP-based method. For the linear problem, the hydrodynamic coefficients in 
harmonic heave motion for a rectangular cross-section, including the added mass and damping 
coefficient are calculated. The convergence of the method is studied by varying the amplitude 
of the forced harmonic motion, the grid size, the timestep size, the computational domain and 
the wave beach condition. The numerical results by CIP-based method are compared with the 
numerical results by BEM, the experimental results and the numerical linear results by Vugts 
1968) based on an irrotational flow of incompressible water. Error sources have been 
discussed. The wave forces on 2D sections in the free surface zone are calculated in the 
numerical wave tank (NWT) which consists of a fixed body, a double-flap wavemaker to 
generate waves and an artificial damping zone at the downstream boundary to damp out the 
waves. The numerical results of 2D flow are compared with experiments by Aarsnes (1997). 
Experimental error sources are analyzed. The use of numerical wave tank leads to difficulties 
in handling the large amplitude motions. Therefore we will isolate the wave-body interaction 
problem to water entry and exit sub-problems. 
 
Chapter 4 presents the numerical results of water entry and exit of a horizontal circular 
cylinder with constant velocity. The slamming coefficient and exit coefficient are calculated 
for different test conditions and are compared with the experimental results by Miao (1989). 
The parameters which may influence the slamming coefficient are investigated. Possible 
experimental error sources are analyzed. A simplified model is introduced to explain and 
compare with the numerical results of water exit. Two cases with higher Froude number for 
both water entry and water exit are simulated to further investigate the Froude number 
dependence of slamming coefficient and exit coefficient, however no experimental results are 
available for comparison. 
 
Chapter 5 shows the numerical results of water entry and exit of a horizontal circular cylinder 
with free motion. A half-buoyant cylinder and a neutrally buoyant cylinder are used in the 
simulations of water entry and a neutrally buoyant cylinder is used in the simulations of water 
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exit. Fully nonlinear free surface deformations of initially calm water caused by the motion of 
the circular cylinder are compared with the photographs taken in the experiments by 
Greenhow & Lin (1983). The numerically predicted motion of the circular cylinder is 
compared with the experimental data as well.  
 
Chapter 6 gives the water entry forces on both vertical and heeled ship sections, including a V-
shaped section and a bow flare section. All the numerical results including vertical 
acceleration, vertical velocity and hydrodynamic force are compared with the experiments by 
Aarsnes (1996). The critical angles at which ventilation occurs off the vertex of a wedge were 
presented as a function of deadrise angle, heel angle and the ratio U/W between the horizontal 
and vertical water entry velocity components by Judge et al. (2004). We tested one of the 
cases with deadrise angle 37˚, heel angle 30˚ and U/W=0.75 and found the consistency of the 
critical angle with the results in Judge et al. (2004). 
 
We will also present an example on 3D wave-ship interaction with severe water on the deck of 
a Wigley model in Chapter 7. Many interesting phenomena have been found. However, the 
results need to be experimentally validated. 
 
Finally, summary and future perspectives are given in Chapter 8.  
 
Part of the work in this thesis has been published in Zhu et al. (2005a), Zhu et al. (2005b) and 
Faltinsen, Zhu & Hu (2005). 
 
 





 

 15

 
 
 
 
 
 
 

CHAPTER 2 
 
 

Chapter 2 Constrained Interpolation Profile 
(CIP) Method 

 
 
 
 
 

2.1 Introduction 

 
Conventional numerical analysis methods, such as BEM for potential flow and computational 
fluid dynamics (CFD) methods using curvilinear grids to fit both a free surface and a body 
surface are not applicable to extremely nonlinear problems.  Recently, several new CFD 
methods based on solving the Navier-Stokes equations are developed in which the free surface 
is captured as a part of the solution. They are therefore capable of computing more 
complicated free surfaces than the conventional surface-fitted methods. However, it is still a 
challenge for CFD to treat the complex free surface phenomena. 
 
Using an upwind difference technique for the advection term of Navier-Stokes equations is 
necessary for a stable numerical calculation in computational fluid dynamics (CFD). However, 
the use of upwind schemes will introduce excessive numerical diffusion and associated 
inaccuracies. Efforts to reduce such numerical diffusion have resulted in many high-order 
upwind schemes.  
 
For compressible fluid, either TVD (total variation diminishing) or ENO (essentially non-
oscillating) methods proved to be effective in capturing shock waves. However, divergence of 
velocity which becomes zero in the incompressible fluid limit cannot be treated independently 
of the advection part, since these schemes employ a conservation form of the fluid equations. 
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Furthermore, the conservation algorithm sometimes gives fictitious pressure undulations at the 
boundary of multiphase materials as pointed out by Karni (1994).  
 
Incompressible schemes like the QUICK algorithm of Leonard (1979), SIMPLE algorithm of  
Patankar & Spalding (1972) or higher-order upwind schemes can treat divergence-free fluid 
vorticity and turbulence. However, these schemes cannot always treat a shock wave as a sharp 
discontinuity.  
 
We need a scheme to treat both compressible and incompressible fluids with large density 
ratios simultaneously in one program to simulate the interaction between gas, liquid and solid.  
Fully implicit solvers can handle this procedure, but the convergence of the iterations in a 
highly distorted state is still a problem. In an effort to move towards this goal, an Eulerian 
approach based on the CIP (cubic-interpolated propagation) method was developed.  
 
The CIP method was for the first time presented as a high-order upwind scheme about 20 
years ago. It does not need an adaptive grid system and therefore eliminates the grid distortion 
problems caused by structural breakup and topology change. The material interface can be 
captured by one grid throughout the computations. Further, this method can treat all the phases 
without restriction on the time step for high sound speed. The CIP method, which is a 
pressure-based algorithm coupled with a semi-Lagrangian approach, was demonstrated by 
Yabe et al. (2001) to be stable and robust in analyzing these subjects, but lacks conservative 
properties.  
 
 

2.2 CIP method 

2.2.1 One-dimensional CIP formulation 

In order to explain the CIP method, we start from the 1D advection equation as follow 
 

 f f+u =0
t x

∂ ∂
∂ ∂

       (2.1) 

 
This equation presents a translational motion of a wave with velocity u. Different finite 
difference schemes can be used to get the numerical solution of this equation, see Yabe et al. 
(2001) and Figure 2.1. 
 
The first-order upwind scheme constructed by two adjacent grid points results in numerical 
diffusion, because the linear interpolation will lose the information of the profile inside the 
grid cell. A high-order upwind scheme by more than two grid points can be used to reconstruct 
the profile inside the grid cell, but has an overshooting problem. Figure 2.1(d) presents a 
scheme different from the conventional high-order scheme called the CIP scheme, which uses 
the grid point value and its spatial derivative (gradient) in two grid points to form a cubic 
polynomial to approximate the profile. 
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Figure 2.1 The principal of the CIP method. (a) The solid line is the initial profile and the 
dashed line is an exact solution after advection shown in (b) at discretized points. (c) When (b) 
is linearly interpolated, numerical diffusion appears. (d) In the CIP method, the spatial 
derivative also propagates and the profile inside a grid cell is retrieved (Yabe et al., 2001). 

 

 
Figure 2.2 CIP scheme as a semi-Lagrangian method (Yabe et al., 2001). 

 
 
By differentiating Eq. (2.1) with respect to x, we have the equation of the spatial derivative 
 

g g u+u =-g
t x x

∂ ∂ ∂
∂ ∂ ∂

       (2.2)  

 
where g= f x∂ ∂ . For simplicity, we assume a constant advection velocity u.  Then, Eq. (2.2) 
has the same form as Eq. (2.1). For u>0, the profile for fn inside the upwind cell [xi-1, xi] can 
be approximated by 
 
 3 2( ) ( - ) ( - ) ( - )n

i i i i i i i iF x a x x b x x c x x d= + + +    (2.3) 
 
Then the profile at timestep n+1 in Figure 2.2 is obtained by shifting the profile at timestep n 
by –uΔt, i.e. the time evolution of the function f and g can be obtained by using the following 
Lagrangian invariants: 

-uΔt a) b) 

d) c) 

gradient

uΔt 
1n

if
+

n
if

xi-1 xi

n
iF

1n
iF +
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1 ( )n n

i i if F x u t+ = − Δ  1 ( )n n
i i ig dF x u t dx+ = − Δ    (2.4) 

 
Therefore the CIP advection scheme is called a semi-Lagrangian method in the sense that the 
CIP advection scheme employs a Lagrangian invariant solution. The four known coefficients 
in Eq. (2.3) can be determined by known quantities n

if , 1
n

if − , n
ig and 1

n
ig − . We obtain the 

following relations 
 

( )11
2 3

2 n nn n
i ii i

i

f fg g
a

x x
−−

−−
= −

Δ Δ
 

( )11
2

32
n nn n

i ii i
i

f fg g
b

x x
−−

−+
= −

Δ Δ
     (2.5) 

n
i ic g=  

n
i id f=  

 
CIP was originally interpreted as ‘Cubic Interpolation Propagation’ but is recently known as 
‘Constrained Interpolation Profile’, since the development of CIP has resulted in many 
schemes for other order polynomials than cubic, i.e. linear, quadratic Lagrange, cubic 
Lagrange, cubic spline and quintic Lagrange. All these schemes, except those using a linear 
interpolation function, need at least three points to construct an interpolation approximation in 
one dimension.  
 
Compared with the conventional upwind schemes, CIP has the following features: 
 
• Compact high-order scheme. A function and its spatial derivatives are taken as dependent 

variables to construct a profile. Therefore a cubic polynomial can be determined by using 
the information at grid points of a grid cell. 

 
• Sub-cell resolution. The use of spatial derivatives makes the profile inside a grid cell 

well-reconstructed. This means that in order to achieve a certain computational accuracy, 
a smaller number of grid points may be used by CIP than by conventional high-order 
upwind schemes. 

 
• The calculation cost does not increase even though additional variables (spatial 

derivatives) are introduced according to Eq. (2.4). 
 

2.2.2 Two-dimensional CIP formulation 

The general form of two-dimensional advection equations for a function χ can be written as 
follows: 
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χ χ χu v 0
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
      (2.6) 

x x xχ χ χ
u v 0

t x y
∂ ∂ ∂

+ + =
∂ ∂ ∂

      (2.7) 

y y yχ χ χ
u v 0

t x y
∂ ∂ ∂

+ + =
∂ ∂ ∂

      (2.8) 

 
The subscripts x and y indicate partial derivatives with respect to x and y. The terms on the 
right-hand-sides (RHS) of Eqs. (2.7) and (2.8) are included in the non-advection phase 
calculation of a fractional step approach as shown in the next section. 
 
Consider a grid point (i,j), then we can find a upwind cell with four grid points (i,j), (iw,j), 
(i,jw) and (iw,jw). Here iw=i-sign(u), jw=j-sign(v). Each grid has three continuity conditions, 
i.e. the values of χn , n

xχ  and n
yχ , so  there are 12 continuity conditions. Then a multi-

dimensional polynomial up to third-order of ξ and η can be constructed to approximate the 
spatial distribution of the value of χ in the upwind cell as follows: 
 

3 3 3 2 2 3 2
31 13 30 21 12 03 20

2
11 02 10 01 00

X( , ) C ξ η C ξη +C ξ C ξ η C ξη C η C ξ

C ξη C η C ξ C η C

ξ η

+

= + + + + +

+ + + +
 (2.9) 

 
There are 12 unknown coefficients which can be determined by 12 continuity conditions at the 
four points of the upwind cell.  
 
Another polynomial is introduced in a simpler way as  
 

3 2 2 3 2
30 21 12 03 20

2
11 02 10 01 00

X( , ) C ξ C ξ η C ξη C η C ξ

C ξη C η C ξ C η C

ξ η

+

= + + + +

+ + + +
   (2.10) 

 
There are 10 unknown coefficients in Eq. (2.10) which can be determined by 10 out of 12 
continuity conditions on the four grid points of the upwind cell. The values of χn, n

xχ  and n
yχ  at 

grid points (i,j), (iw,j), (i,jw) and the value of χn at the grid point (iw,jw) are one of the choices 
to determine the unknowns, but not the only one.  One should note that since the continuity 
conditions of n

xχ  and n
yχ  at the grid point (iw,jw), i.e. the farthest grid point from the 

concerning point (i,j) are not used, the profile near (iw,jw) may not be correct when calculated 
from Eq. (2.10). However, numerical tests studied by Hu (2005) showed that the differences 
between the results by Eqs.(2.9) and (2.10) are negligible. For the sake of simplicity, we 
choose Eq. (2.10) in our calculations with the following coefficients 

 

{ }n n n n 3
30 1 x x 1C ξ χ (iw,j) χ (i,j) 2 χ (iw,j) χ (i,j) /ξ⎡ ⎤ ⎡ ⎤= + − −⎣ ⎦ ⎣ ⎦  
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{ }n n n n 3
03 1 y y 1C = η χ (i,jw)+χ (i,j) -2 χ (i,jw)-χ (i,j) /η⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

{ }n n n n 2
20 1 x x 1C -ξ χ (iw,j) 2χ (i,j) 3 χ (iw,j) χ (i,j) /ξ⎡ ⎤ ⎡ ⎤= + + −⎣ ⎦ ⎣ ⎦  

 

{ }n n n n 2
02 1 y y 1C -η χ (i,jw) 2χ (i,j) 3 χ (i,jw) χ (i,j) /η⎡ ⎤ ⎡ ⎤= + + −⎣ ⎦ ⎣ ⎦  

 

{ }n n n n n n 2
21 1 x x 1 1C = χ (iw,jw)-χ (iw,j)-χ (i,jw)+χ (i,j) -ξ χ (i,jw)-χ (i,j) /(ξ η )⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 

{ }n n n n n n 2
12 1 y y 1 1C = χ (iw,jw)-χ (iw,j)-χ (i,jw)+χ (i,j) -η χ (i,jw)-χ (i,j) /(ξ η )⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

 
n n n n

11 1 1C = - χ (iw,jw)-χ (iw,j)-χ (i,jw)+χ (i,j) (ξ η )⎡ ⎤⎣ ⎦  
 
         { }n n n n

1 x x 1 y y 1 1ξ χ (i,jw)-χ (i,j) η χ (iw,j)-χ (i,j) (ξ η )⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦  

 
     n n n n

1 1 21 1 12 1χ (iw,jw)-χ (iw,j)-χ (i,jw)+χ (i,j) (ξ η ) -C ξ -C η⎡ ⎤= ⎣ ⎦  

 
n

10 xC χ (i,j)=  
 

n
01 yC χ (i,j)=  

 
n

00C χ (i,j)=  
 

where 1ξ sign(u) x= − Δ  and 1η sign(v) y= − Δ . Once the interpolation function has been 

determined, the values after the advection calculation, *χ , *
xχ and *

yχ , can be directly obtained 
as follows: 

 
*χ (i,j) X(ξ',η')=  

 

*
x

ξ ξ'
η η'

X(ξ,η)χ (i,j)
ξ =

=

∂
=

∂
 

*
y

ξ ξ'
η η'

X(ξ,η)χ (i,j)
η =

=

∂
=

∂
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where ξ' u t= − Δ  and η' v t= − Δ . This is called A-type CIP scheme where the advection part 
can be calculated by a semi-Lagrangian procedure after the interpolation function of Eq. (2.10) 
is determined.  
 
 
A-type CIP 
 
 ( )1( ) Xn n n tχ + = − Δx x u  

( ) ( )1 X( )
nn n tξ χ ξ

+ ∂
∂ = − Δ

∂
x x u  

 
For multi-dimensional advection calculations, there are several other CIP schemes called C-
type and M-type schemes which make use of a dimensional splitting method and do multi-
dimensional CIP calculation by repeating one-dimensional CIP calculation. The concept of 
these schemes is shown in Figure 2.3 for two-dimensional cases. 
 
 

 
(a) A-type CIP    (b) C-type or M-type CIP 

Figure 2.3 Concept for A-type, C-type and M-type schemes in two dimensions. 

 
 
C-type CIP 
 
Step 1 
 

2 21 2 , , , , 2 2ˆ ˆ( , ) CIP_1D( , ( ) , , ( ) , )n n n n n
i i i j x i j i jw x i jwA x x x xχ χ χ χ χ= = ∂ ∂ =  

2 2 21 2 , , , , 2 2
2 2

ˆ ˆ( , ) CIP_1D( , ( ) , , ( ) , )n n n n n
x i i i j x i j i jw x i jwA x x x x

x x
χ χ χ χ χ∂ ∂

∂ = = ∂ ∂ =
∂ ∂

 

Step 2 

Step 1 
1i 2ˆ(x ,x )

1 2(u ,u )
1i 2j(x ,x ) 1iw 2j(x ,x )  

1i 2jw(x ,x ) 1iw 2jw(x ,x )  

1 2ˆ ˆ(x ,x )

1iw 2jw(x ,x )  

1iw 2j(x ,x )  

1i 2jw(x ,x )

1i 2j(x ,x )

1 2ˆ ˆ(x ,x )

1 2(u ,u )  

n+1
1i 2jχ (x ,x )  
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( )1 1 1 1 2 1 1 21 2 , , , , 2 2ˆ ˆ( , ) CIP_1D ( ) , ( ) , ( ) , ( ) , )n n n n n
x i x i x i j x x i j x i jw x x i jwA x x x xχ χ χ χ χ∂ = ∂ = ∂ ∂ ∂ ∂ =  

( )1 2 1 1 1 2 1 1 21 2 , , , , 2 2
2 2

ˆ ˆ( , ) CIP_1D ( ) , ( ) , ( ) , ( ) , )n n n n n
x x i x i x i j x x i j x i jw x x i jwA x x x x

x x
χ χ χ χ χ∂ ∂

∂ = ∂ = ∂ ∂ ∂ ∂ =
∂ ∂

 

 
 
Step 2 
 

1 1

1
, 1 1̂CIP_1D( , , , , )n

i j i x i iw x iwA A A A x xχ + = ∂ ∂ =  

1 1 1

1
, 1 1

1

ˆCIP_1D( , , , , )n
x i j i x i iw x iwA A A A x x

x
χ + ∂

∂ = ∂ ∂ =
∂

 

2 2 1 2 2 1 2

1
, 1 1̂CIP_1D( , , , , )n

x i j x i x x i x iw x x iwA A A A x xχ +∂ = ∂ ∂ ∂ ∂ =  

1 2 2 1 2 2 1 2

1
, 1 1

1

ˆCIP_1D( , , , , )n
x x i j x i x x i x iw x x iwA A A A x x

x
χ + ∂

∂ = ∂ ∂ ∂ ∂ =
∂

 

 
where CIP_1D denotes one-dimensional CIP calculation. The C-type CIP has the same 
accuracy as the A-type CIP. The merit of C-type CIP is easy extension to multi-dimensions. 
The disadvantage is that extra dependent variables should be introduced, such as 

1 2x x χ∂  for 
2D case. To avoid using higher-order spatial derivatives, an M-type CIP scheme was 
developed. 
 
 
M-type CIP 
 
Step 1 
 

2 21 2 , , , , 2 2ˆ ˆ( , ) CIP_1D( , ( ) , , ( ) , )n n n n n
i i i j x i j i jw x i jwA x x x xχ χ χ χ χ= = ∂ ∂ =  

2 2 21 2 , , , , 2 2
2 2

ˆ ˆ( , ) CIP_1D( ,( ) , , ( ) , )n n n n n
x i i i j x i j i jw x i jwA x x x x

x x
χ χ χ χ χ∂ ∂

∂ = = ∂ ∂ =
∂ ∂

 

( )1 1 1, , 2 2ˆFDM_1D ( ) , ( ) ,n n
x i x i j x i jwA x xχ χ∂ = ∂ ∂ =  

 
Step 2 
 

1 1

1
, 1 1̂CIP_1D( , , , , )n
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Here a linear interpolation denoted as FDM_1D is used. The precision of M-type CIP scheme 
may be less than A-type and C-type schemes. However, numerical experiments by Hu (2005) 
have shown that the difference in the computational results by the three schemes is not 
significant. For the sake of simplicity, M-type scheme is often used in multi-dimensional 
computations. 
 
 

2.3 Numerical algorithm 

2.3.1 Governing equations 

Two-dimensional water and air flow in interaction with a solid body is considered in this 
thesis. The fluid is assumed compressible and viscous. Temperature variations are neglected. 
The governing equations for the fluid are 
 

i
i

i i

uρ ρ
u ρ

t x x
∂∂ ∂

+ = −
∂ ∂ ∂

      (2.11) 

iji i
j i

j j

σu u 1
u f

t x ρ x

∂∂ ∂
+ = − +

∂ ∂ ∂
      (2.12) 

 p = f (ρ)        (2.13) 
 
where 

t is the time variable; 
xi (i =1,2) are the coordinates of a Cartesian coordinate system; 
ρ is the mass density; 
ui (i=1,2) are the velocity components; 
fi (i=1,2) are due to the gravity force. 

 
Further, σij is the total stress and is expressed as  
 

ij ij ij ijσ =-pδ +2μ(1-δ /3)S  
 
where: 

p is the pressure; 
μ is the dynamic viscosity coefficient; 

ijδ is the Kronecker delta function; 
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ij

j i

uu1
S

2 x x

∂∂
= +

∂ ∂
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⎜ ⎟⎜ ⎟
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The expression for σij implies a modeling of the bulk viscosity for compressible fluid that can 
be questioned; see White (1974). If turbulent flow is considered, the equations have to be 
averaged over the time scale of turbulence and additional equations describing the Reynolds 
stresses must be introduced. We assume laminar flow in the following studies. This is 
appropriate for the boundary layer flow in the considered Reynolds number range. Even 
though the boundary layer flow is laminar and flow separation occurs, the separated flow will 
be turbulent for the considered Reynolds numbers. However, it is more important to correctly 
predict the boundary layer flow and where flow separation occurs than the fact that the 
separated flow is turbulent. 
 
The sound speed C defined as C= dp/dρ gives 

2dp dρ=C
dt dt

 

or 

i i
i i

2p p ρ ρ
u u

t x t x
=C∂ ∂ ∂ ∂

+ +
∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

     (2.14) 

 
Making use of Eq. (2.11), the equation of state (EOS) given by Eq. (2.13) can be expressed by 
Eq. (2.14) as follow  
 

2 i
i

i i

up p
u ρC

t x x
∂∂ ∂

+ = −
∂ ∂ ∂

      (2.15) 

 
In order to identify which part is the air, the water or the solid body, density functions φm (m=1, 
2, 3) are introduced. These functions satisfy 

 
m m

i
i

u 0
t x
ϕ ϕ∂ ∂

+ =
∂ ∂

       (2.16) 

with 

{ m
m

1, (x,y) Ω(x,y,t) 0, otherwiseϕ ∈=  

 
where Ωm denotes the domain occupied by the liquid, gas and solid phase, respectively. The 
left-hand-side (LHS) of Eq. (2.16) is the material derivative of D

Dt
ϕ . Eq. (2.16) indicates that if 

we follow a fluid particle, the property φm of the fluid particle does not change with time. The 
numerical method causes no sharp interface between air and water, i.e., the values of 1ϕ  and 

2ϕ  change continuously between the values for air and water at the free surface. The same 
happens with the density functions between the body , the air and the water. 
 
Because a one-fluid formulation is used, that is the air and the water phases are modeled as a 
single fluid with varying properties (i.e. density, viscosity, etc.), there is no need to specify 
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dynamic conditions in terms of stresses at the interface between the air and the water. The 
dynamic conditions are automatically satisfied. 
 
The time integration of the governing equations of the fluid, i.e. Eqs. (2.11), (2.12) and (2.15), 
together with the density function Eq. (2.16), is based on an Euler method and a fractional step 
approach consisting of three steps. 
 

2.3.2 The fractional step approach 

The governing equations of the fluid and the density function are written as follows 
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ρ
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 (2.17)  

 
By applying a fractional step approach, the numerical solution of the governing equations can 
be divided into two phases: advection phase and non-advection phase. The non-advection 
phase is divided into a state-related part to reflect the fluid compressibility denoted by non-
advection phase (ii) and a remaining part denoted by non-advection phase (i). Therefore, there 
are totally three fractional steps, and the three fractional steps are arranged in an order of the 
advection phase, the non-advection phase (i) and the non-advection phase (ii).  
 
The time integration of the equations is based on an Euler method. The variables with 
superscript ‘n’ denote the values at the present time level. The following procedure shows how 
to get the values at the new timestep ‘n+1’ by calculation of the three intermediate steps.  
 
 

1. Advection phase 
 

( )i
i

Tju
t x

ρ
u 0 0 0 0p

mϕ

∂ ∂
+

∂ ∂

⎛ ⎞
⎛ ⎞⎜ ⎟ =⎜ ⎟⎜ ⎟
⎝ ⎠⎜ ⎟

⎝ ⎠

 

 
The first fractional step is called the advection phase. It means that the right-hand side (RHS) 
of Eq. (2.17) is set equal to zero. The equations of the first-order spatial derivatives i/ x∂ ∂  of ρ, 
ui, p and φm denoted as 

ix ρ∂ , 
ix ju∂ ,

ix p∂ and
ix mϕ∂ are obtained by differentiating Eq. (2.17) 

with respect to xi. 
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(2.18) 

 
The RHS of Eq. (2.18) is also set equal to zero in the advection phase computation. Because  

all the equations in the advection phase have the same mathematical form i
i

χ χu 0
t x

∂ ∂
+ =

∂ ∂
, the 

advection phase computation can be done by the CIP method.  
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The superscript * indicates the intermediate values after the CIP computations. 
 
The source terms at the RHS of the equations of the spatial derivatives, i.e. Eq. (2.18) are 
computed by a central-difference scheme, and the values of the spatial derivatives are updated 
by an Euler explicit scheme as follows 
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i i

* **
x x i

i i
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The spatial derivatives with an overbar indicate the intermediate values after the computations 
of the first fractional step. 

 
 

2. Non-advection phase (i) 
 

T

j
ij ij kk j

jt

ρ
2μ 1u 0 S - δ S +f 0 0p ρ x 3

mϕ

∂

∂

⎛ ⎞
⎛ ⎞∂⎜ ⎟ ⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠⎝ ⎠⎜ ⎟

⎝ ⎠

 

 
For the non-advection phase (i), a central difference scheme is used for the RHS terms and an 
Euler explicit scheme is used for the time integration. The spatial derivatives of the velocity 
components are also updated simultaneously  
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Here the value with the superscript ** denotes the intermediate value after the computations of 
the second fractional step and also the derivative at the new timestep ‘n+1’. 

 
 

3. Non-advection phase (ii) 
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For the non-advection phase (ii), an implicit scheme is used for the time integration. 
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n+1 n+1
i i
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Taking divergence of Eq. (2.20) and substituting  n+1

i iu / x∂ ∂  by using Eq. (2.21), we obtain the 
following pressure equation 
 

**n+1 n+1 *
i

* 2 2
i i i

u1 p p -p 1= +
x ρ x Δt xρ C Δt
⎛ ⎞ ∂∂ ∂
⎜ ⎟

∂ ∂ ∂⎝ ⎠
     (2.22) 

 
This is a Poisson type equation for the pressure calculation. This equation is valid for liquid, 
gas and solid phases, and we can obtain the pressure field in the whole computation domain by 
solving this equation. This is the most time-consuming part. 
 
For the solid phase (the body), this Poisson equation reduces to a Laplace equation for the 
pressure of an artificial problem inside the body. We implicitly solve the artificial problem 
inside the body. We enforce the velocity inside the body equal to the rigid body velocity. The 
interior pressure satisfies the Laplace equation and is consistent with the pressure on the body 
surface. The interior pressure and velocity is not consistent with Eqs. (2.11), (2.12), (2.15) and 
(2.16), i.e. it is not a true flow problem. The reason for doing this is from a practical 
computational point of view. The procedure ensures that the body boundary conditions are 
satisfied. This is obviously needed as a part of solving the exterior flow. We do not need to 
explicitly specify the free surface conditions. This is implicitly taken care of by the method. 
 
The computation of advection phase has no restriction on the size or the sign of the Courant-
Friedrich-Lewy (CFL) number /u t xβ = Δ Δ . However, using the explicit time integration, i.e. 
Euler scheme, results in a CFL restriction for the time step size as documented in Kawasaki 
(2005), i.e. β is less than 1.0. 
 

2.3.3 Cartesian grid method 

In this thesis, we apply the CIP method together with a Cartesian grid method to solve the 
wave-body interaction problem. As a matter of fact, there are many numerical methods that 
can be applied for the wave-body interaction, including grid method and gridless method. If 
we consider the grid methods, they can be roughly divided into two categories: domain 
dividing method and domain embedding method as shown in Figure 2.4. 
 
For the domain dividing method, the free surface and the body surface are taken as the moving 
domain boundaries to be determined. A curvilinear grid or an unstructured grid that adapted to 
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the boundary is required. Although this method gives high resolution for boundary layer 
computation, the grid generation with complicated boundaries is troublesome and the 
regridding process for unsteady problem is computationally costly. Therefore this method is 
generally not applicable for strongly nonlinear marine hydrodynamic problems such as 
slamming, water on deck, wave impact by green water, and capsizing due to large-amplitude 
waves.  
 
However, the domain embedding method can in general be applied to those complicated 
problems. We can foresee problems if a thin plate is studied. A practical example that is 
challenging to handle is a ship equipped with bilge keels. As a Cartesian grid is often used, 
this domain embedding method is also called Cartesian grid method. The use of a Cartesian 
grid method can greatly simplify the structure of the code and increase the computation 
efficiency for problems with complicated free surface and moving bodies. 
 
 
 

 
 

(a) Domain dividing  (b) Domain embedding (Cartesian grid) 

Figure 2.4 Examples of two grid systems used in the Finite Difference Method (FDM) to 
model wave-body interaction problems. (a) Domain dividing method uses a grid system 
adapted to the instantaneous body boundary and free surface. (b) Domain embedding method 
uses an Earth-fixed Cartesian grid system. 

 
 
Figure 2.5 shows the grid system used in the calculations where we have the following 
relations: dx(i)=x(i)-x(i-1), dy(j)=y(j)-y(j-1), xc(i)=[x(i)+x(i-1)]/2, yc(i)=[y(j)+y(j-1)]/2, 
dxc(i)=xc(i)-xc(i-1) and dyc(j)=yc(j)-yc(j-1). The computational domain is divided into 
rectangular cells. An exterior fictitious one-cell layer adjacent to each side of the physical 
domain is added to allow imposition of discrete boundary conditions.  
 
A staggered grid configuration shown in Figure 2.6 is used to discretize the dependent 
variables. On each cell, the pressure p is computed at the cell center, the velocity component u 
is computed at the middle of the vertical edge, and the velocity component v is computed at 
the middle of the horizontal edge. The first-order spatial derivatives are computed at the same 
position as the variables. In the associated formulation, the u-momentum equation is 
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discretized at the middle of the right vertical edge, the v-momentum equation is discretized at 
the middle of the top horizontal edge, and the continuity equation is discretized at the cell 
center. 
 
 
 
 

 
 

Figure 2.5 Grid system used in the 2D CIP calculations. p is the pressure. u and v are 
horizontal and vertical velocity components, respectively.  
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Figure 2.6 The staggered grid used in combination with the 2D CIP method. p is the pressure. 
u and v are horizontal and vertical velocity components, respectively. ρ is the density of air, 
water or solid body. mϕ (m=1,2,3) is the density function. The subscripts x and y denotes the 
spatial derivatives with respect to x and y.  

 

2.3.4 Iterative methods for Poisson equation 

As the fluid is assumed to be incompressible, i.e. the pressure wave propagates at infinite 
speed, the Poisson equation for pressure can be rewritten as 
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      (2.23) 

 
Since most of the CPU time will be spent solving the Poisson equation, the use of a fast 
solution method is important for increasing the total computation efficiency. For a 2D problem, 
the Poisson equation can be written in a finite difference form for a cell (i,j) as 
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   (2.24) 

 
where ( )ix dx iΔ = , ( )iy dy iΔ = , ( )ixc dxc iΔ = and ( )iyc dyc iΔ = as defined in Figure 2.5, 
respectively.  
 

j

j-1 
ii-1

u(i,j) 
ux(i,j) 
uy(i,j) 

v(i,j), vx(i,j), vy(i,j) 

p(i,j), px, py 
 
ρ(i,j), ρx, ρy 
ϕm(i,j), ϕmx, ϕmy



 
CHAPTER 2 Constrained Interpolation Profile (CIP) Method 

 

 
32 

 
Figure 2.7 Definition of density ρ on the grid lines. 

 
 
The density ( , )N i jρ , ( , )S i jρ , ( , )W i jρ and ( , )E i jρ are computed at the positions presented in 
Figure 2.7. ( , )N i jρ is linearly interpolated by the nearest two values 
of ( , ) and ( , 1),i j i jρ ρ + ( , )S i jρ by ( , ) and ( , 1),i j i jρ ρ − ( , )W i jρ by ( , ) and ( 1, ),i j i jρ ρ −  and 

( , )E i jρ by ( , ) and ( 1, ),i j i jρ ρ +  respectively. 
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Equation (2.24) represents a sparse linear system for the pressure p which can be rewritten as 
 

=Ax b         (2.25) 
 
where A is an M×M matrix, and b are vectors with M elements. Here M=NX×NY. NX and 
NY are grid number in x-, y-direction, respectively. For a sparse linear system, we need an 
iterative method for numerical solution. There are two types of iterative methods: the 
stationary method and the non-stationary method.  
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The stationary method, e.g. the successive over-relaxation (SOR) method is an old method, 
but easy to understand and implement. The algorithm of SOR is as follows: 
 

( ) ( ) ( 1)1ˆ
M

k k k
i i ij j ij j

j i j iii

x b a x a x
a

−

< >

⎛ ⎞
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∑ ∑     (2.26) 

 
( ) ( ) ( 1)ˆ (1 )k k k
i i ix x xω ω −= + −       (2.27) 

 
where ω is an acceleration coefficient with 0<ω<2 . ( 1)k

ix −  denotes the value at previous 

iteration k-1, ( )ˆ k
ix  is the intermediate value and ( )k

ix  is the value at present iteration k. SOR 
may be the most efficient stationary method. We use this method to solve the Poisson equation. 
However, the rate of convergence is too slow to use for the large-scale linear system in a 3D 
computation. 
 
The non-stationary method is usually hard to understand but highly effective. The efficiency 
of the method largely depends on the so-called pre-conditioner. The Bi-Conjugate Gradient 
Stabilized method (Bi-CGSTAB) of Vorst (1992) is found to work well for the CIP method. 
The Bi-CGSTAB method with preconditioning matrix K is given in Xiao (2001) as: 
 
 Set : 

the initial residual 0 0 ;= −r b Ax  0x is the initial guess; 
 0 0ˆ ;=r r   

0 0 0 1;ρ ω α= = =   

0 0 0;= =v p  
for i=1, 2, 3, … 

( , );i i iρ = r r   

1 1 1 1( / ) /( / );i i i i iβ ρ ρ α ω− − − −=  

1 1 1 1( )i i i i i iβ ω− − − −= + −p r p v ; 
solve p̂  from ˆ ;i=Kp p  

ˆ ;i =v Ap  

0/( , );i i iα ρ= v r  
;i i iα= −s r v  

solve q from Kq=s; 
u=Aq; 

( ) /( );iω = u,s u,u  

1 ˆ ;i i i iα ω+ = + +x x p q  

1 ;i iω+ = −r s u  
if 1i Tε+ ≤r b then quit  

end 
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However, numerical implementation of the Bi-CGSTAB method with a good pre-conditioning 
is not easy. On the other hand, it is hard to treat an irregular body boundary.  The CIP code in 
this thesis uses a Cartesian grid method which has no difficulty with it because a rectangular 
computation domain is always used. 
 
 

2.4 Determination of boundaries 

 
Density functions mϕ  (m=1, 2, 3) with 0 1mϕ≤ ≤  are introduced to identify which part is the 
air, the water or the solid body.  There are two types of interfaces that need to be captured in 
the numerical simulations, i.e., the interface between air and water (the free surface) and the 
interface between solid body and water, such as the floating body boundary, see Figure 2.8. 
The behaviors of these two types of interface are quite different, and so different capturing 

methods are used for each of them. Since a constraint within a computational cell is
3

1

1m
m

ϕ
=

=∑ , 

after 1ϕ and 3ϕ  are known, we have 2 1 31ϕ ϕ ϕ= − − . 
 
 

 
Figure 2.8 Density function mϕ  (m=1,2,3) for multiphase problems with 0 1mϕ≤ ≤ and 

1 2 3 1ϕ ϕ ϕ+ + = in the computational cells.  

 

2.4.1 Calculation of the density function for the free surface 

The free surface is determined by solving this density function with the CIP method. During 
the computations, the original sharp interface may become poorly defined with finite thickness 
due to the numerical diffusivity. However, owing to the sub-cell resolution feature of the CIP 
scheme, the thickness grows very slowly as the computation proceeds. Therefore, for many 
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cases, it is considered that this degree of interface diffusion is acceptable for computations 
with the time corresponding to the actual hydrodynamic problems. 
 
However, attempts to overcome this diffusion also result in a number of interface capturing 
methods, such as VOF (volume of fluid, Hirt and Nichols, 1981), LS (level set method, 
Sussman et al., 1994) and the CIP method. It has been shown that the CIP coupled with a 
function transformation method can calculate the free surface without diffusion.  Therefore, 
we can solve the following equation for transformation function Φ instead of Eq. (2.16) 
 

i
i

u 0
t x

∂Φ ∂Φ
+ =

∂ ∂
       (2.28) 

 
Yabe et al. (2001) introduced a tangential function  
 

( ) ( )1 1( ) tan 1 0.5ϕ ε π ϕ⎡ ⎤Φ = − −⎣ ⎦  
 

1

1
tan 0.5
(1 )

ϕ
ε π

− Φ
= +

−
 

 
where ε is a small positive constant. A very sharp interface, which means that the thickness of 
the interface ( 1 0.05 0.95ϕ = → ) is within one or two grid widths, can be obtained by using 
ε=0.02. The disadvantage of this transformation method is that the originally smooth free 
surface may become a stepwise function. Further, the numerical calculation of tangential 
function is time consuming. 
 
Hu (2005) recommended the simpler function transformation as  
  
 1 1( ) 0.5 ( 0.5)ϕ α ϕΦ = + −  
 
 1 0.5 ( 0.5)ϕ α= + Φ −  
 
where 1α > is the sharpness enhancement parameter. It was demonstrated that 1.2α = is 
sufficient to make the thickness of the free surface ( 1 0.05 0.95ϕ = → ) less than 5 grid widths. 
 
As pointed out by Hu (2005), these two transformations described above only work well with 
the 3rd-order scheme. 
 
Another CIP-based interface capturing method, i.e. CIP-CSL3 (CIP-Conservative Semi-
Lagrangian scheme with a 3rd-order polynomial function) scheme is developed. Instead of the 
spatial derivatives in CIP method, this scheme uses cell-integrated values as the additional 
constraint to construct a cubic polynomial. Because this scheme introduces a slope control 
parameter, the sharpness of the density function variation across the interface can be retained 
in the calculations. Detailed description of the scheme can be found in Xiao & Yabe (2001) 
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and Xiao & Ikebata (2003). The biggest merit of this scheme is the good mass conservation, 
which is beneficial to long-term computation. Hu et al. (2004) applied this scheme for violent 
sloshing computation. 
 

2.4.2 Calculation of the density function for rigid body 

For the floating body boundary, we consider only the rigid-body case. Instead of the 
computation using Eq. (2.16), a direct computation method is developed to determine the 
density function for the solid phase 3ϕ . The basic idea of this method is to map the geometry 
information of a moving body to an Earth-fixed Cartesian grid system.  
 
For a rigid body, since the geometry does not change with time, a Lagrangian method is 
developed to calculate 3ϕ  to obtain accurate body boundary position without any numerical 
diffusion. If the solid body can be expressed by an explicit mathematical formula, the 
treatment is simple. Otherwise, two Lagrangian methods as shown in Figure 2.9 can be used to 
calculate 3ϕ . The first method is to use a series of straight line segments to approximate the 
body surface. The second method is to present the solid body by distributing particles on the 
surface and it can be extended from 2D to 3D straightforwardly. Furthermore, both non-slip 
and slip conditions for velocity and the boundary condition for pressure can be obtained by 
this method. 
 
 
 

 
 

(a) Body surface presented by line segments       (b) Body surface presented by particles 

Figure 2.9 Lagrangian methods to define a rigid body. 

 
 
For the two-dimensional case, the main procedure of the first method can be expressed as 
follows: 
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• The two-dimensional body boundary is approximated by a series of straight line-
segments 1( , )k kp p + , k=1,N.  

 
• The coordinates for the end points ( , )pk pkx z of the line segments in Figure 2.9(a) are 

calculated by the following equations: 
 

0 0( ) cos ( ) sinpk c pk c pk cx x x x z zα α= + − − −     (2.29) 
 

0 0( )sin ( )cospk c pk c pk cz z x x z zα α= + − + −    (2.30) 
 

where ( , )c cx z is the mass center of the floating body, α is the roll angle, the superscript 0 
denoted the initial value. ( , )c cx z and α are calculated in a Lagrangian way because the 
hydrodynamic forces acting on the body can be obtained by the method described in 
section 2.5. 

 
• All the intersection points (nodes) of line segments and grid lines are then calculated. For 

each computational cell, if there are more than two nodes, the cell is considered as a 
boundary cell between the solid body and the air or the water, and the area of the solid 
body (area of the shadow) in this cell is computed to determine 3ϕ . Let us see the 
computational cell in Figure 2.10 where points A and B are the intersection points (nodes) 
between the line segments and grid lines, then the density function 3ϕ  for this 
computational cell can be calculates as 

 

3
Area of the shadow( , )

Area of the cell
i jϕ =

 
 
 
 

 
Figure 2.10 Definitions used in the calculation of the density function 3ϕ at the interface 
between the body and the fluid. The shaded area means the area occupied by the solid body in 
the computational cell. 
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After density functions for all phases are determined, the physical properties for each 
computation cell can be determined by the following equation 
 

3

1
m m

m

λ ϕ λ
=

=∑        (2.31) 

 
where λ denotes the viscosity, sound speed and something else. Under the incompressible fluid 
assumption, the density can also be determined by Eq. (2.31).  
 

2.4.3 Non-slip condition on the body boundary 

For the floating rigid body, a non-slip condition should be satisfied on the body boundary. 
However, the location of the interface is determined based on the volume fraction information, 
i.e. density function, unavoidably resulting in an uncertainty in one grid cell. So, it is difficult 
to apply the non-slip boundary condition at the exact location of the boundary. Hu et al. (2004) 
introduced two methods to calculate the velocity in the boundary cells. 
 
The first method, which is applied to the calculations in the thesis, determines the velocity in a 
cell containing the solid phase as 
 

3 3(1- )ϕ ϕ= +bU U u  
 
Where Ub is the local velocity of the body and u is the velocity obtained by Eq. (2.12). This is 
a volume fraction weighting treatment for velocity interpolation in the boundary cells. In the 
numerical procedure, imposing the velocity distribution inside and on the body boundary is 
equivalent to applying a forcing term if to the momentum equation Eq. (2.12) as follows: 
 

1n n
i i

i i
u u

RHS f
t

+ −
= +

Δ
 

 
Where RHSi contains the remaining terms of Eq. (2.12). The forcing term if is zero in the 
fluid cells and has the following expression in the solid and boundary cells to satisfy 

1 1n n
i iu U+ += (non-slip condition) on the body boundary. 

 
1n n

i i
i i

U u
f RHS

t

+ −
= − +

Δ
 

 
The second method is an interpolation method which determines the velocity U as shown in 
Figure 2.11 by applying a linear approximation as used by Faldun et al. (2000). The force is 
given by an imposed velocity U0 which is obtained by interpolating the local velocity of the 
body Ub and the velocity of the neighboring fluid cell U1. 
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Figure 2.11 Sketch of the velocity interpolation. 

 
 
Because the outer flow field is essentially independent of the velocity distribution inside the 
body, the difference between these two methods lies in the way that the imposed velocity at 
the body boundary is determined. 
 
 

2.4.4 Absorbing boundary conditions 

The numerical wave tank must have a finite size in the simulations. Therefore, the 
disturbances radiated by the body, as well as the transmitted and reflected waves, may reach 
the edge of the computational domain within the necessary simulation time. This will cause 
unphysical reflections and affects the results. In order to prevent the problem and to perform 
simulations in a finite computational domain over a long time, a non-reflecting boundary 
condition is required at the downstream boundary of the computational domain to damp out 
progressively the outgoing wave motions. 
 
 

 
Figure 2.12 Sketch of the damping zone in a numerical wave tank 
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An artificial damping zone shown in Figure 2.12 is placed at the downstream boundary 
( 1 1 1

s ex x x< < , 3 3 3
b tx x x< < ), and an artificial damping force is added to the body force term of 

Eq. (2.12), which is expressed as follows: 
 

3 31 1
3

1 1 3 3
1

nm fs

i idi s e t b
x xx xf u

x x x x
α δ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

−−
= −

− −
    (2.32) 

where: 
 

es xx 11 , and tb xx 33 ,  denote the positions of the damping zone boundaries; 
fx3 is the average free surface position; 

 

else
i

i
3

0
1

3
=

⎩⎨
⎧=δ   

 
The constants in Eq. (2.32) are determined in Hu & Kashiwagi (2004) with tΔ= /5.0α , m=4 
and n=1 and are used in all the calculations in this thesis.  
 
 

2.5 Hydrodynamic forces on the floating body 

 
The hydrodynamic force acting on a floating rigid body, i.e. iF , can be calculated by 
integrating the pressure and skin friction along the body surface. 
 

( ) ( ) ( ) 2p
i i i ik k ik k

A A

F F F p n dA S n dAν δ μ= + = − +∫∫ ∫∫    (2.33) 

 
where A denotes the surface of the floating body and kn  is the k-th component of outward 
unit normal vector. By applying Gauss theorem, Eq. (2.33) can be rewritten as 
 

( )3 32i ik
i k

pF d S d
x x
ϕ μ ϕ

Ω Ω

∂ ∂
= − Ω+ Ω

∂ ∂∫∫∫ ∫∫∫     (2.34) 

 
If only the pressure needs to be considered, i.e. the skin friction is relatively small and can be 
neglected, we have 
 

( )
3( )p

i i ik k
i iA V

p pF F p n dA dV d
x x

δ ϕ
Ω

∂ ∂
= = − = − = − Ω

∂ ∂∫∫ ∫∫∫ ∫∫∫   (2.35) 
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where V and Ω denote the space occupied by the body and the whole computational domain, 
respectively. The advantage of using Eq. (2.35) is that we do not need to know the exact 
position and orientation of the boundary surface for calculation of the unit normal vector. As 
the pressure in the whole computation domain can be calculated by Eq. (2.22). Equation (2.35) 
provides a very simple and robust way to compute the hydrodynamic forces acting on the 
moving body in the fixed Cartesian grid system. For instance, for a two-dimensional problem, 
the force and the moment acting on the floating body can be written as follows 
 

3x
pF d
x
ϕ

Ω

∂
= − Ω

∂∫∫∫  

3z
pF d
z
ϕ

Ω

∂
= − Ω

∂∫∫∫       (2.36) 

3( ) ( )y c c
p pM x x z z d
z x

ϕ
Ω

∂ ∂⎡ ⎤= − − − − Ω⎢ ⎥∂ ∂⎣ ⎦∫∫∫  

 
 

2.6 Equations of motions 

 
After the hydrodynamic forces are obtained, it is not difficult to calculate the translational and 
the rotational velocity of the rigid body. The position ( , )c cx z of the mass center in the Earth-
fixed coordinate system and the roll angle α can be obtained by the following equations of 
motion 
 

2

2
c xd x F

mdt
=  

2

2
c zd z F

mdt
=  

2

2
yMd

Idt
α
=    (2.37) 

 
Where m is the mass per unit length of the body and I is the inertia moment per unit length 
about the mass center. 
 
These equations of motion above can be solved by a fourth-order Runge-Kutta scheme shown 
in Eqs. (2.38) and (2.39) where y is the variable of interest, i.e. xc, zc and α in Eq. (2.37). If we 
have 

 

[ ]
2

2 ,d y y b y y
dt

= =  

 
By using 
 
 1 ,n nb b y y= ⎡ ⎤⎣ ⎦  
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2( )
2 1 12 8 2,tt t

n n nb b y y b y bΔΔ Δ⎡ ⎤= + + +⎢ ⎥⎣ ⎦
 

2( )
3 1 22 8 2,tt t

n n nb b y y b y bΔΔ Δ⎡ ⎤= + + +⎢ ⎥⎣ ⎦
 

2( )
4 3 32 ,t

n n nb b y y t b y b tΔ⎡ ⎤= + Δ + + Δ⎢ ⎥⎣ ⎦
 

 
we can obtain the following  
 

5
1 1 2 3 46 2 2 ( )t

n ny y b b b b O tΔ
+ ⎡ ⎤= + + + + + Δ⎡ ⎤⎣ ⎦ ⎣ ⎦    (2.38) 

2( ) 5
1 1 2 36 ( )t

n n ny y y t b b b O tΔ
+ ⎡ ⎤= + Δ + + + + Δ⎡ ⎤⎣ ⎦ ⎣ ⎦    (2.39) 

 
 

2.7 Summary 

 
The method described in this chapter is applied to solve the fully nonlinear wave-body 
interaction problem.  
 
• The method is a CIP-based finite difference method. The acronym CIP is related to the 

solution of the advection phase in the numerical time-stepping procedure. 
 
• The wave-body interaction problem is treated as a multiphase problem which has a liquid 

phase (water), a gas phase (air) and a solid phase (solid body). Density functions mϕ  

(m=1, 2, 3) with 0 1mϕ≤ ≤  and 1 2 3 1ϕ ϕ ϕ+ + = are introduced to identify which part is 
the air, the water or the solid body.   

 
• The problem is numerically solved in an Earth-fixed Cartesian grid system. An artificial 

problem is solved inside the solid body. 
 
• The free surface and the body boundary are immersed in the computational domain. 

 
• The pressure for the whole computational domain including the interior field of the solid 

body is calculated by one set of equations.  
 
 



 
 

 43

 
 
 
 
 
 
 

CHAPTER 3 
 
 

Chapter 3 2D linear and weakly nonlinear 
wave-body interaction problems 

 
 
 
 
 

3.1 Introduction 

 
Practical state-of-the-art computational tools for nonlinear wave-induced motions and loads on 
a ship handle the nonlinear effects in a simplistic way. The numerical codes typically assume 
irrotational flow of incompressible water. The Froude-number-dependent trim angle and 
proper handling of the interaction between the steady and unsteady flows have increased 
importance with increasing Froude number. Lugni et al. (2004) demonstrated both 
experimentally and numerically the importance of nonlinear effects in the steady flow around 
monohulls and catamarans at Froude numbers higher than 0.5. Further, the predicted linear 
wave-induced heave and pitch motions were sensitive to how the interaction between the 
unsteady and steady flows was handled. Their studies included Froude numbers down to 0.3. 
 
Viscous flow separation effects are important for accurate resonant roll predictions of 
monohulls at low and moderate Froude number. This represents a nonlinear effect and has to 
be handled by an empirical viscous roll damping model in a potential flow code. Nonlinear 
vertical potential flow forces and pitch moments are typically handled by considering 
nonlinear Froude-Kriloff and hydrostatic restoring terms and including terms involving the 
time rate of change of heave added mass. This nonlinear method is combined with a linear 
time domain strip theory. It is common to use convolution integrals to express the linear 
hydrodynamic loads due to the ship motions. Even though it appears simplistic, the method 
may be able to predict correctly the nonlinear trends in, for instance, the midships vertical 
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bending moment. This was documented in a comparative study organized by ISSC for the S-
175 container ship in regular head sea conditions at Froude numbers 0.2 and 0.275 (Jensen et 
al., 2000). An advantage of a simplistic nonlinear method based on strip theory is the practical 
ability to perform simulations in a stochastic sea to obtain probability density functions of 
response variables. A nonlinear system requires typically more realizations of a sea state than 
a linear system in order to obtain reliable predictions of extreme value response. 
 
A simplistic approach as described above is combined with separate calculations for slamming 
loads on, for instance, a bow flare section. The state of the art in prediction of slamming loads 
on a ship cross-section with given inflow conditions and body motions and based on 2D flow 
is generally satisfactory. However, a challenge is to incorporate the slamming predictions in 
the global ship motion calculations. Because the slamming loads can be sensitive to the inflow 
conditions, an integrated approach is needed. This requires special considerations when the 
slamming duration is so short that local hydroelastic effects matter. If bow flare slamming is 
considered, an intermediate step towards a fully 3D solution could be a nonlinear 2D+t 
approach. The ship passes through a set of transverse Earth-fixed cross-planes and a time-
dependent 2D problem is solved in each cross-plane. The procedure requires a slender ship 
and that gxU / is higher than ≈0.4. Here U is the forward speed of the ship and x is the 
longitudinal distance along the ship with x=0 corresponding to the bow. It implies that the 
procedure can only be applied for the whole ship in the case of Froude number larger than 
≈0.4. 
 
Another challenge associated with the above-mentioned simplistic approach is to evaluate 
green water loads. This may, for instance, be attempted by calculating the relative vertical 
motions along the deck and then using a dam-breaking model to predict the behavior of the 
water on the deck. The resulting loads on equipment and deck house have to be done by 
separate calculations. There are several shortcomings with a model such as this. One is the 
accuracy of the predictions of the relative vertical motions and proper accounting of the 
steady-flow effect. Another factor is that a dam-breaking model is not always adequate to 
describe the behavior of the green water. We will discuss this later in Chapter 7. 
 
Careful validation and verification of the CIP-based finite difference method are needed in 
order to make a rational step in improving calculations of nonlinear wave-induced ship 
motions and loads. Therefore, in this chapter we will deal with linear and weakly nonlinear 
cases. Our studies in this chapter are limited to 2D flow and we do not consider the effect of 
forward speed. 
 
 

3.2 Convergence study 

 
In order to investigate the convergence of our CIP-based finite difference method, the small-
amplitude heave motion of a nearly rectangular cross-section shown in Figure 3.1 and Table 
3.1 is studied by varying the following parameters: 
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• Grid size  
• Timestep size  
• Computational domain 
• Damping zone 

 
 

Table 3.1 Principal data for the rectangle used in Vugts (1968) 

Length (L) 4.19m 
Breadth (B) 0.40m 
Draft (D) 0.20m 
Area coefficient 0.9992 
Displacement 335.2kgf 
Water depth 1.8m 

 
 

 
Figure 3.1 The cross-section of the nearly rectangular cylinder used in Vugts (1968). 

 
 

 
Figure 3.2 The whole computational domain used in the CIP calculations. Two artificial 
damping zones are placed on both ends of the numerical wave tank to damp outgoing waves.  
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If long time simulations are performed, and the amplitude and frequency of the oscillations are 
constant, the hydrodynamic force acting on the body will eventually reach steady state. Our 
focus is first on the linear steady-state hydrodynamic force. The part of the force in opposite 
phase with the acceleration of the body is defined as the added mass force, while the part in 
opposite phase with the velocity of the body is the hydrodynamic damping force. Further, 
there are dynamic restoring forces caused by changes in the hydrostatic pressure distribution. 
If the harmonic oscillation of the body in the i-direction is given as iη , the hydrodynamic 
steady state force in the j-direction in the linear problem can be written as 
 

j ji i ji i ji iF A B Cη η η= − − −       (3.1) 
 
where Aji, Bji and Cji are defined as the added mass, damping and restoring coefficients, 
respectively. For instance, for our considered heave problem, 33C gBρ= where B is the 
breadth of the cross-section. Added mass and damping coefficients are easily evaluated from 
the force history.  
 
Vugts (1968) presented linear numerical results for added mass and damping coefficient for 
cylinders with different cross-sections oscillating on the free surface. The closefit technique by 
De Jong (1967, 1973) and the Lewis form technique were used. Both methods are based on 
conformal transformation of the cross-section to a semi-submerged circular cylinder. The 
circular cylinder problem in the auxiliary plane is solved by Ursell’s (1949) method. The 
closefit technique gives a better geometrical description of the cross-section shape than the 
Lewis form technique. By Lewis form is implied that only the beam, draft and the cross-
sectional area are needed as input. The comparisons between these two theoretical calculations 
demonstrated that the differences are generally not of much importance for the tested sections. 
 
Vugts (1968) reported the results of the cylinder with rectangular cross-section for different 
B/D-ratios, i.e. 2, 4 and 8. Here B is the breadth of the cross-section and D is the draft. In this 
thesis, we consider the harmonic heave motion 3 3 sina tη η ω= of the rectangle with B/D=2. 
The numerical wave tank with artificial damping zones used in the CIP calculations is shown 
in Figure 3.2. A wide range of frequencies as shown in Table 3.2 is tested.  
 
For ‘deep water’, i.e. h/λ > 0.5 where h is the water depth, we have the following relations: 
 

2 2 /gk gω π λ= =  
 

/ / 2wC T k gλ ω λ π= = =  
 

0.5g wC C=  
 
The finite water depth relationships are 
 

2 tanhgk khω = , 2 /k π λ=  
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/ /wC T kλ ω= =  
 

21
2 sinh 2
w

g
Cd khC

dk kh
ω ⎛ ⎞= = +⎜ ⎟

⎝ ⎠
 

 
Here Cw is the phase velocity and Cg is the group velocity. Table 3.2 presents the numerical 
values. Because we choose h = 1.8m corresponding to the experimental tank used by Vugts 
(1968) in all the calculations, this means that the cases with λ < 3.6m orω B 2g > 0.5 can be 
considered as deep water problems.  
 
 

Table 3.2 Detailed parameters of the test cases for heave added mass and damping of the 
nearly rectangular section shown in Figure 3.1. 

Non-dimensional 
wave frequency 

Wave 
frequency 

Wave 
period 

Wave 
length 

Phase 
velocity 

Group 
velocity 

ω B 2g  ω (rad/s) T(s) λ (m) Cw (m/s) Cg (m/s) 
0.25 1.75 3.590 13.668 3.807 3.153 
0.50 3.50 1.795 4.930 2.746 1.501 
0.75 5.25 1.197 2.236 1.868 0.934 
1.0 7.0 0.898 1.258 1.401 0.700 

1.25 8.75 0.718 0.805 1.121 0.560 
1.50 10.5 0.598 0.559 0.935 0.468 

 
 

Table 3.3 Reference parameters used in the CIP calculations of heave added mass and 
damping of a nearly rectangular cross-section. 

Computational domain with damping zones length × height 76m×3m  
Minimum non-dimensional horizontal grid size  min(Δx/B) 1/200 
Minimum non-dimensional vertical  grid size  min(Δy/B) 1/200 
Total number of computational cells NX × NY 500×200 
Non-dimensional timestep size  Δt/T 1/2000 
Amplitude of heave motion 3aη  0.03m 

 
 
 
The numerical grid used in the CIP calculations is rectangular with horizontal and vertical 
lengths Δx and Δy (see Figure 2.5 and Figure 2.10). The smallest values are used near the 
body surface and the free surface. The minimum non-dimensional lengths in the calculations 
are min(Δx/B)=1/200, min(Δy/B)=1/200. The computational domain has a length and height 
of 76m and 3m, respectively. The total number of the computational cells is 500×200. The 
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timestep size is Δt/T=1/2000  where T=2π/ω is the period of the heave motion. The damping 
zones longer than 10m are placed at both sides of the numerical wave domain. The amplitude 
of the harmonic heave motion 3aη  is 0.03m. All the parameters mentioned above are shown in 
Table 3.3 and taken as the reference parameters in the following convergence study. 
 

3.2.1 Influence of grid size 

In order to check the influence of the grid size on the numerical results, three kinds of grid 
sizes shown in Table 3.4 are used in the calculations. Figure 3.3 (a) shows that the results of 
the heave added mass are close for the small and reference grid sizes, and have small 
differences for the large grid size. However, the results of the heave damping coefficient in 
Figure 3.3(b) do not have the same trend, i.e. forω B 2g 1≥ , the small grid size and the large 
grid size give similar results which are larger than the results of the reference grid size, and 
forω B 2g <1 , the small and reference grid sizes give similar results which are smaller than 
the results of the large grid size. The possible reasons are the sensitivity in estimating the 
damping part and the precision in the numerical calculations, which are discussed later on in 
Section 3.3.3. 
 
 

Table 3.4 Different grid sizes used in the CIP calculations of the heave added mass and 
damping coefficients of a nearly rectangular cross-section. 

 min(Δx/B) min(Δy/B) 
Small grid size 1/400 1/400 
Reference grid size  1/200 1/200 
Large grid size  1/100 1/100 

 
 
 

+
+ +

+ +

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Small grid size
Reference grid size
Large grid size+

 
(a) Added mass coefficient 



 
3.2 Convergence study 

 

 
49

+ +

+ + +

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.1

0.2

0.3

0.4

0.5

0.6

Small grid size
Reference grid size
Large grid size+

 
(b) Damping coefficient 

Figure 3.3 Non-dimensional heave added mass 33A Aρ  and damping 33( ) 2B A B gρ  as a 

function of 2B gω for different grid sizes. 3 0.03 .a mη =  

 

3.2.2 Influence of timestep size 

Similarly, in order to investigate the influence of timestep size on the numerical results, two 
kinds of timestep sizes are used in the calculations. For small (reference) timestep size, 
Δt/T=1/2000. For large timestep size, Δt/T=1/1000. T=2π/ω is the period of the heave motion. 
From Figure 3.4(a), we can see that the timestep size has negligible influence on the numerical 
results of the heave added mass. However, the influences on the damping coefficient are not 
negligible, which can be seen in Figure 3.4(b). The possible reasons are similar as previously 
stated. 
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(b) Damping coefficient 

Figure 3.4 Non-dimensional heave added mass 33A Aρ and damping 33( ) 2B A B gρ  as a 

function of 2B gω for different timestep size. 3 0.03 .a mη =  

 

3.2.3 Influence of computational domain 

The influence of computational domain is investigated by varying the total length of the 
numerical wave tank. The length of the numerical wave tank including the damping zone is 
28m for the small computational domain, 76m for the reference computational domain, and 
124m for the large computational domain. Figure 3.5(a) shows that the different 
computational domains give negligible differences on the numerical results of the heave added 
mass. From Figure 3.5(b), we can see that the small and large domains give similar results of 
the heave damping, which are larger than the results calculated in the reference domain. This 
is believed to be due to the sensitivity in estimating the damping part and the precision in the 
numerical calculations as previously stated. 
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(b) Damping coefficient 

Figure 3.5 Non-dimensional heave added mass 33A Aρ  and damping 33( ) 2B A B gρ as a 

function of 2B gω for different computational domain. 3 0.03 .a mη =   

 

3.2.4 Influence of damping zone 

In order to perform the long-time simulations in the numerical wave tank, we can either use a 
large computational domain or use a finite computational domain with an artificial damping 
zone to damp the outgoing waves. We simulate these two conditions to see how the damping 
zone influences the numerical results. Figure 3.6 shows the comparison of the results with and 
without the damping zone for the reference computational domain. The results of the heave 
added mass have negligible differences. This may be due to the fact that the computational 
domain without damping zone is also large enough to avoid the effects from both sides of the 
numerical wave tank. The computational domain without damping zone gives larger heave 
damping coefficients than the computational domain with damping zone. The possible reasons 
are stated in Section 3.2.1. 
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(a) Added mass coefficient 
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(b) Damping coefficient 

Figure 3.6 Non-dimensional heave added mass 33A Aρ  and damping 33( ) 2B A B gρ  as a 

function of 2B gω for different damping condition in the reference computational domain. 

3 0.03 .a mη = The length of the computational domain is 76m. 

 
 
Therefore, we will compare the results with and without the damping zone for a very small 
computational domain of length 4.4m. From Figure 3.7, we can observe negligible differences 
for 2 1B gω ≥ and non-negligible differences for 2B gω <1. This is because the reflected 

wave front does not reach the cylinder within the computational duration for 2 1B gω ≥ , i.e. 
the ratio between the length of the numerical wave tank and the wavelength is large enough to 
avoid the reflected wave effects from both ends of the tank. However, for 2B gω <1, the 
wave reflected from the side of the tank will influence the hydrodynamic force acting on the 
cylinder, and consequently influence the hydrodynamic coefficient. 
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(b) Damping coefficient 

Figure 3.7 Non-dimensional heave added mass 33A Aρ and damping 33( ) 2B A B gρ  as a 

function of 2B gω for different damping condition. 3 0.03 .a mη = The length of the 
computational domain is 4.4m. 

 
 

3.3 Verification and validation 

3.3.1 Linear numerical results by Vugts and BEM 

Figure 3.8 shows the comparisons of the heave added mass and damping coefficients between 
the results by the boundary element method (BEM) and the deep-water numerical results by 
Vugts (1968). Both methods assume linear potential flow. The BEM results are calculated by 
using a code modified by the author from Greco’s (2001) code. The parameters used in the 
calculations are as follows: the water depth of the tank was 1.8m, the cylinder was placed 10m 
away from the wavemaker which was located on the left side of the tank, a 10m damping zone 
was placed 5m away from the cylinder at the downstream boundary. The whole computational 
domain was discretized into 40 elements on the body surface, 320 elements on the free surface 
including the damping zone and 190 elements on the outer control boundary. This high 
number of elements is expected to give accurate numerical results. 
 
From Figure 3.8 we can see that the results of added mass and damping coefficients by the 
BEM agree well with the linear numerical results by Vugts (1968) except in the vicinity 
of 2 0.25B gω = . The reason is the effect of finite water depth. However, the finite water 
depth effect is not very important for the considered frequencies. This gives some confidence 
in the linear numerical results by Vugts according to potential flow. We use later on these 
linear potential flow results by Vugts as a reference for our CIP calculations. 
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(b) Damping coefficient 

Figure 3.8 Non-dimensional heave added mass 33A Aρ  and damping 33( ) 2B A B gρ   as a 

function of 2B gω by BEM and closefit method by Vugts. A denotes the submerged cross-
sectional area. 

 

3.3.2 Verification and validation 

In this section, we will compare our numerical results of the heave added mass and damping 
coefficients with the experimental and linear numerical results by Vugts.  Non-dimensional 
heave amplitudes 3aη D =1/20, 2/20 and 3/20 are used. Here D is the draft which is 0.20m, i.e. 
the amplitude of the heave motion will be 0.01m, 0.02m and 0.03m, respectively.  
 
Figure 3.9 shows the comparisons of the heave added mass and damping coefficients between 
the experimental results and the linear numerical results by the closefit method in Vugts (1968) 
and the numerical results by the CIP method. 
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(b) Damping coefficient 

Figure 3.9 Comparisons of the experimental, numerical and linear numerical results of the 
non-dimensional heave added mass 33A Aρ  and damping 33( ) 2B A B gρ  for different 

amplitudes of heave motion as a function of 2B gω . 3a aZ η= = the heave amplitude. A = the 
submerged cross-sectional area. 

 
 
Vugts (1968) stated that in the low frequency range, i.e. ω B 2g <0.5 , the experimental 
results deviate from the linear numerical results by the closefit method due to the experimental 
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inaccuracies especially in the added mass. A reason is believed to be the decreasing magnitude 
of the added mass force with decreasing frequency. Further, the experimental results are 
slightly higher than the linear numerical results at the higher frequency side. The overall 
agreement between the experiments and the linear numerical results is satisfactory. Further, 
the CIP results are in general satisfactory agreement with the linear potential flow results. The 
differences will be discussed below. 
 
 
 

    
Figure 3.10 Numerically predicted vorticity field at t/T=7.3 and t/T=7.7 for a square section 
oscillating in the free surface with B/D=2. 3 0.03 .a mη = The dimension of the vorticity is s-1. 

 
 
Because the ratio between the heave amplitude and the draft, i.e. 3aη /D , is small, one would 
expect a priori that linear effects dominate. This means that the considered heave amplitudes 
show a small influence on the added mass and damping coefficients. This is true for the added 
mass as shown in Figure 3.9(a) except for the small frequencies ω B 2g 0.25= and 0.5. The 
results for the smallest amplitude ought to be closest to the linear potential flow results. 
However, this is not true for ω B 2g 0.25= and 0.5. When it comes toω B 2g 0.25= , we 
should have in mind the finite water depth effects and rather compare with the BEM results in 
Figure 3.8. 
 
The variation in the damping coefficients as a function of the considered heave amplitudes is 
not negligible for ω B 2g 1≥ . A reason for this is decreasing wave generation with 
increasing frequency and the presence of vortex shedding from the sharp corners which can be 
seen from Figure 3.10. We are here considering the double-body in infinite fluid.  The 
associated drag force can be expressed as 1

3 32 DBCρ η η− . Therefore, the vertical 
hydrodynamic force expressed by Eq. (3.1) can be corrected by accounting for the drag force 
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1
3 33 3 33 3 33 3 3 32 DF A B C BCη η η ρ η η= − − − −     (3.2) 

 
We will here associate 33B with wave generation and DC with viscous effects. Strictly 
speaking, viscous effects can also cause a linear hydrodynamic force component. However, 
Braathen (1987) showed by using a thin free-shear layer model that vortex shedding had a 
small effect on wave generation. On the contrary, wave generation has a clear effect on vortex 
shedding. The latter implies that DC is frequency dependent. 
 
We will now focus our attention on the high frequencies. Wave generation is then small. We 
start with showing the equivalence between the studied problem and the flow past a double-
body in infinite fluid. This enables us to compare with other published data. 
 
Because the heave motion is small relative to the cross-sectional draft, it is reasonable to 
linearize the free surface conditions. We assume the vorticity is concentrated in thin boundary 
layer and free shear layers close to the corners of the rectangular cross-section. The fluid flow 
outside the vorticity regions can be considered by a velocity potentialϕ . The consequence is 
the following linearized free surface condition for steady-state conditions 
 

 2 φ-ω φ+g =0   on z=0
z
∂
∂

      (3.3) 

 
When the frequency ω is very high and fluid accelerations are much higher than the 
gravitational acceleration g, we can neglect the second term on the right-hand-side of Eq. (3.3). 
Then, the free surface condition can be simplified as φ=0  on the mean free surface. This 
property together with the fact that we consider the heave motion allows us to study the 
double body problem, i.e. we consider forced heave oscillations of the sum of the submerged 
body and its mirror image above the free surface.  
 
Because the velocity potential φ is constant on z=0, the velocity cannot be horizontal along the 
free surface and has to be vertical, i.e. the body cannot generate any free-surface waves and no 
energy is carried away to infinity. Then, the damping term associated with wave generation, 
i.e. the second term on the right-hand-side of Eq. (3.3) can be neglected. So, we can compare 
our numerical results with the theoretical, numerical and experimental results for 2D flow 
around a rectangular section in infinite fluid. 
 
Then, we can associate Eq. (3.2) with Morison’s equation (Morison et al., 1950) which is 
often used to calculate wave loads on circular cylindrical structural members of fixed offshore 
structures when viscous forces matter, and generalize it to express the vertical hydrodynamic 
force acting on a horizontal rectangular cylinder with heave motion 3 3 sina tη η ω= (Faltinsen, 
1990). The vertical force 3F  per unit length of the rectangular cylinder can be represented as 
 

1
3 3 3 32( 1)M DF C S C Bρ η ρ η η= − − −     (3.4) 
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where ρ is the fluid density, S  is the volume displacement per unit length, B is the width of 
the cylinder normal to the flow direction, and MC and DC  are the inertia and drag coefficients, 
respectively. The drag coefficient DC and added mass coefficient AC can be obtained by the 
following formulas according to Keulegan-Carpenter (1958) 
 

2 2
0 0

3 3 2( )cos( ) ( ) cos( )
4 4

T T

D
m m

C F t t dt F t t dt
TBU BU

ω πω ω
ρ ρ

⎛ ⎞
= − = − ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫  (3.5) 

0 0

1 1 21 ( )sin( ) ( )sin( )
T T

A M
m m

C C F t t dt F t t dt
SU SU T

ω ω
πρ ωρ

⎛ ⎞
= − = = ⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫  (3.6) 

 
where 3m aU ωη= is the amplitude of the oscillation velocity, ( )F t  is the time history of the 
hydrodynamic force per unit length which should be two times of the hydrodynamic force 
calculated by the CIP method excluding the restoring force for the rectangular section in the 
free surface. The inertia coefficient of the cylinder can be calculated as 1M AC C= + . 
 
For all the considered cases withω B 2g =1.5 , we obtain that 1.1AC ≈  which is close to the 
theoretical value 4.754 / 4 1.1885AC = = given by Newman (1977) for a square in an infinite 
fluid based on potential flow.  
 
Forω B 2g =1.5 , we obtained the following DC -values: 
 

4.8DC ≈  Experimental results by Vugts (1968) for 3aη =0.01m 
6.8DC ≈  Numerical results by the CIP method for 3aη =0.01m 
5.0DC ≈  Numerical results by the CIP method for 3aη =0.02m 
4.3DC ≈  Numerical results by the CIP method for 3aη =0.03m 

 
There should theoretically be small influence of the heave amplitude on the DC -value for a 
rectangular section in infinite fluid at small KC-numbers 3aπη /D (Graham, 1980). This 
assumes negligible influence of shear stress which is true in our calculations. We note that the 
experimental results for 3aη 0.01m,= and the CIP results for 3aη 0.02m=  and 0.03m show 
nearly the same results. However, the CIP results for 3aη 0.01m= is clearly different. Further, 
the experimental DC -value of 3.0 obtained by Bearman et al. (1984) for a facing square in 
infinite fluid is clearly lower than our numerical and Vugts’ experimental results. Possible 
numerical error sources are discussed below. 
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3.3.3 Numerical error sources 

• The influence of the bilge radius r 
 
A possible error is the influence of the bilge radius, which is neglected in our computations. 
Faltinsen (1989) documented that the bilge radius r has an effect on the drag coefficient 
and that increasing the bilge radius means decreasing the drag coefficient for 2D nearly 
rectangular sections in infinite fluid. However, the influence is very small when the ratio 
2 /r B is smaller than approximately 0.05. The bilge radius and the width of the rectangular 
cylinder used in the calculations are 0.0025m and 0.4m respectively, so we have 
2 / 0.00625r B = which is too small to influence the drag coefficient. Further, because the 
bilge radius of the rectangular cylinder is close to the smallest vertical grid size and even 
smaller than the smallest horizontal grid size in the numerical simulations, the effect of the 
bilge radius will not show up in the numerical results of the vertical hydrodynamic force. 

 
 
• The influence of wave generation 
 

The combined effect of wave generation and vortex shedding will influence the numerical 
results. How big the influence of the wave generation is at the largest examined frequency 
will be assessed qualitatively in the following way. By assuming no viscous effect, the 
damping coefficient can by energy conservation (Faltinsen, 1990) be calculated by 
 

 
2 2

3
33 3

3

A gB =ρ
η ω

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

      (3.7) 

 
where 3A  is the far-field wave amplitude. For the examined frequencyω B 2g =1.5 , the 

far-field wave amplitude 3A is numerically predicted to be around 30.2 η . According to 

Eq. (3.7), the non-dimensional damping coefficient 33(B ρA ) B 2g is calculated to be 
approximately 0.006, which means that the influence of wave generation on damping is 
small. It is therefore appropriate as we did earlier to compare our numerical results with 
Bearman et al.’s (1984) experimental results for a square section in infinite fluid. 
 
 

• Possible sensitivity in estimating the drag part 
 

The drag force is a small part of the total hydrodynamic force when 3aη /D is small. Let us 
document this by examining the double-body in infinite fluid. The ratio between the 
maximum drag force and the maximum added mass force is  

 
3a D

a
A

η C
R =0.25

D C
⎛ ⎞
⎜ ⎟
⎝ ⎠
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Using DC =5.0  and AC =1.1  gives a 3aR =1.136(η /D),  i.e. the ratio is only 0.17 for the 
largest 3aη /D=3/20.  The drag force is 90° out of phase with the added mass force and 
causes a small phase shift in the total hydrodynamic force. The estimated drag force is 
sensitive to this phase influence. 

 
 
• Precision in the numerical calculations for small heave amplitude 
 

The precision in the numerical calculations decreases with decreasing heave amplitude for 
a given grid size. For instance, for the heave motion with the amplitude of 0.01m 
andω B 2g =1.5 , the rectangular cylinder oscillates within less than 5 grid cells near the 
free surface, and the generated wave elevation oscillates within 2 grid cells. It is desirable 
to have a larger ratio between the heave amplitude and the grid dimension. 
 
It is not straightforward to further decrease the grid size. Decreasing the grid size will 
decrease the timestep size due to the CFL stability criterion. This will increase the number 
of computational elements and time steps, therefore greatly increase the computational 
time. Further, the increase of time steps will make numerical diffusitivity mentioned in 
Section 2.4 stronger. 

 

3.3.4 Conclusions 

According to the investigations above, we can draw the following conclusions: 
 
• The numerical results of the heave added mass and damping coefficients by the CIP 

method are in general agreement with both the experimental and linear numerical potential 
flow results by Vugts (1968). 

 
• The numerical results of the heave damping by the CIP method at high frequencies are due 

to viscous damping. The results are consistent with Vugts’ experimental results except for 
the smallest examined heave amplitude. The results are not consistent with Bearmean et 
al.’s experimental drag coefficient for a facing square in infinite fluid. Our numerical 
results for drag coefficient is not reliable for the smallest examined 3aη /D=1/20.  This is 
both due to the small magnitude of the drag force and practical restrictions in reducing the 
grid size in the numerical computations. 
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3.4 2D numerical wave tank 

3.4.1 Experimental setup 

The 2D version of our CIP code will be compared with the experimental results by Aarsnes 
(1997) for wave forces and moments on a V-shaped test section that was restrained from 
oscillating. Incident regular waves were considered. The tests were carried out in the extension 
of the towing tank at the Marine Technology Center in Trondheim. The tank is 80m long and 
10.5m wide. The water depth is 10m. The tank is equipped with a hydraulically operated, 
double-flap wave generator. The cross-section drawing of the wave generator is shown in 
Figure 3.11. The upper and lower flap motions are in phase with each other. The specified 
wave conditions and the corresponding motions of the wavemaker are listed in Table 3.6. 
 
 
 

 
Figure 3.11 Cross-section of the main part of the hydraulic wave generator in the large 
towing tank at the Marine Technology Center, Trondheim. 

 
 
The model was mounted underneath the stiff carriage in the extension of the towing tank as 
shown in Figure 3.12. The draft of the cylinder was altered by lifting the entire model. During 
the tests, the carriage was kept in the fixed position 30.0m from the wavemaker.  The model 
was mounted in the center of the towing tank and wave absorbers were placed at the end of 
each dummy section, as shown in Figure 3.13. The intention of the wave absorbers was to 
reduce the 3D effects which develop at the ends of the model. Without these wave absorbers, a 
transverse wave system will gradually develop in the towing tank which can significantly 



 
CHAPTER 3 2D linear and weakly nonlinear wave-body interaction problems 

 

 
62 

influence the measured vertical forces and wave elevation. This effect will be dependent of the 
actual wave period. 
 
The model with a V-shaped cross-section shown in Figure 3.14 was used in the tests. The total 
model shown in Figure 3.12 was divided into three parts, one measuring section with a 
dummy section on each side. The measuring section was connected to the rig using two force 
transducers. The main data for the model are shown in Table 3.5.  
 
 
 

 
 

(a) Carriage in the towing tank 
 

 

 
(b) The model  

Figure 3.12 Sketch of the model mounted on the carriage in the towing tank. 
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Figure 3.13 Towing tank positions of wave absorbers and wave staffs used in the experimental 
studies by Aarsnes (1997). 

 

 
Figure 3.14 Details of the V-shaped test section. Dimensions in mm. The mean water level 
correspond to z=+150mm in our studies. 
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Table 3.5 Main dimensions of the V-shaped test section 

Breadth 0.500m 
Draft 0.400m 
Length of measuring section  0.250m 
Length of each dummy section 2.000m 
Total length 4.250m 

 
 

3.4.2 Wave conditions 

The 2D numerical wave tank (NWT) used in the calculations is 80m long, including a 
damping zone on the side of the tank opposite to the wavemaker, see Figure 3.15. The 
experimental wavemaker was included as a part of the numerical wave tank. The control 
signals for the two flaps for different specified wave heights and periods of regular waves 
shown in Table 3.6 were estimated based on the wave data in Aarsnes (1997) combined with 
the wavemaker transfer function (which is stored in MARINTEK's internal computer system 
for wavemaker BM1 in Towing Tank 1) and a frequency-dependent weight function ( which is 
implemented in MARINTEK’s software "WAVEN"). The water depth is 4m, which satisfies 
the deep water condition for all test cases. In order to perform simulations in a numerical wave 
tank with finite computational domain over a long time, a non-reflection boundary condition is 
required at the downstream boundary. An artificial damping zone is placed at the downstream 
boundary as shown in Figure 3.15, and an artificial damping force expressed by Eq. (2.32) is 
added to the body force term in Eq. (2.12). 
 
The whole computational domain used in the numerical simulations has a horizontal length of 
80m and a vertical height of 4.83m. The smallest grid length is used near the wavemaker. The 
minimum horizontal and vertical lengths in the calculations are min(Δx)=0.005m and 
min(Δy)=0.002m respectively. The total number of the computational cells is 827×253. The 
timestep size isΔt/T=1/1000 .  
 
 

Table 3.6 Specified wave conditions and the corresponding wavemaker conditions. 

Specified waves Analysis results 
from calibration tests 

Amplitude of 
wave maker Wave 

no. Wave 
period 
T (s) 

Wave 
height 
H(m) 

Wave 
period 
T(s) 

Wave 
height 
H(m) 

Upper 
flap 

(deg) 

Lower 
flap 

(deg) 
1 1.1 0.03 1.09 0.032 0.663 0 
2 1.3 0.03 1.3 0.031 0.588 0.061 
3* 1.3 0.06 1.3 0.071 1.176 0.122 
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Figure 3.15 Sketch of our numerical wave tank with a double flap wavemaker, damping zone 
(wave beach) and a fixed body. The lower flap is hinged at a distance zr  above the bottom. The 
upper and lower flap motions are in phase with each other. L1 is the distance between the 
wavemaker and the fixed body, which is chosen larger than 4λ to avoid the local effect at the 
wavemaker. L3 is the length of damping zone which must be at least 4λ long to damp the waves. 
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Figure 3.16 Time history of the wave elevations at 3m (solid line), 4m (dashed line), 5m 
( dash-dot line) and 7m ( long-dashed line) from the wave maker. Specified wave: T=1.1s and 
H=0.03m. 
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Figure 3.17 Time history of the wave elevations at 3m (solid line) and 7m (long-dashed line) 
from the wave maker. Specified wave: T=1.3s and H=0.03m. 
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Figure 3.18 Time history of the wave elevations at 3m (solid line), 4m (dashed line) and 5m 
(blue dash-dot line) from the wavemaker. Specified wave: T=1.3s and H=0.06m. 

 
 
Figure 3.16 - Figure 3.18 show the time history of the wave elevation at different distances 
from the wavemaker for different specified incoming wave conditions. We can see the wave 
elevation at the different distances gets a steady-state behavior after some time. The numerical 
incident wave height for the No. 1 wave condition in Figure 3.16 is 0.032m. The numerical 
incident wave height for the No. 2 wave condition in Figure 3.17 is 0.031m. The numerical 
results for these two wave conditions are in good agreement with the analysis results from the 
calibration tests. However, the numerical incident wave height for the No. 3 wave condition 
with superscript * in Table 3.6 is shown to be 0.065m in Figure 3.18 which has a clear 
difference from the value of 0.071m in the calibration tests and the specified wave height of 
0.06m. 
 

3.4.3 Wave forces on 2D section in the free surface zone 

When the fixed model is introduced, wave loads acting on the model for the specified wave 
conditions will be considered. The same computational domain is used in the numerical 
simulations. The model is fixed at a position 15m from the wavemaker. The smallest grid 
length is used near the wavemaker and the fixed model. The minimum horizontal and vertical 
lengths in the calculations are min(Δx)=0.005m and min(Δy)=0.002m, respectively. The total 
number of the computational cells is 1050×253. The timestep size isΔt/T=1/1000 .  
 
 
 

Time (s)

F
X

(N
)

10 11 12 13 14 15 16 17
-20

-15

-10

-5

0

5

10

15

20 CIP
Experiment

 



 
3.4 2D numerical wave tank 

 

 
67

 

Time (s)

F
Z

(N
)

10 11 12 13 14 15 16 17
-10

-8

-6

-4

-2

0

2

4

6

8 CIP
Experiment

 
 

Time (s)

M
Y

(N
m

)

10 11 12 13 14 15 16 17
-1.5

-1

-0.5

0

0.5

1

1.5 CIP
Experiment

 
 

Figure 3.19 Wave forces and moment acting on the V-shaped section for the specified wave 
condition. T=1.1s, H=0.03m. The draftt is 0.4m. FZ=Vertical force. FX=Horizontal force. 
MY=Roll moment about the axis through the origin of the coordinate system defined in Figure 
3.20. 

 
 

 
Figure 3.20 Coordinate system. The coordinate system is fixed in the model with origin 
located at the elevation of the knuckle. Positive z-axis is pointed upwards and the x-axis is 
horizontal and pointing against the wavemaker. This implies that the waves propagate along 
the negative x-axis. 
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Figure 3.21 Wave forces and moment acting on the V-shaped section for the specified wave 
condition. T=1.3s, H=0.03m. The draft is 0.4m. FZ=Vertical force. FX=Horizontal force. 
MY=Roll moment about the axis through the origin of the coordinate system defined in Figure 
3.20. 
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 Figure 3.22 Wave forces and moment acting on the V-shaped section for the specified wave 
conditions. T=1.3s, H=0.06m.The draft is 0.4m. FZ=Vertical force. FX=Horizontal force. 
MY=Roll moment about the axis through the origin of the coordinate system defined in Figure 
3.20. 

 
 
Figure 3.19 presents comparisons of steady-state wave force and moment when the specified 
incident wave height and period are 0.03m and 1.1s, respectively. The actual incident wave 
height was 0.032m both in the experiments and the numerical simulations.  
 
Figure 3.21 presents comparisons of steady-state wave forces and moment when the specified 
incident wave height and period are 0.03m and 1.3s, respectively. The actual incident wave 
height was 0.031m both in the experiments and the numerical simulations. Linear effects are 
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dominating in this condition. There is good agreement between numerical and experimental 
values of the horizontal wave force Fx. The differences between the CIP method and the 
experiments are largest for the vertical force Fz. Since the incident wave period 1.3s 
corresponds to a natural period for transverse sloshing, there is the possibility of experimental 
errors. Zhao et al. (1988) showed the transverse sloshing resonance had more effect on the 
vertical than on the horizontal linear wave force. This is consistent with the fact that the 
horizontal wave forces agree better than the vertical wave force in Figure 3.21. 
 
Figure 3.22 presents comparisons of wave force and moment when the specified incident 
wave height and period are 0.06m and 1.3s, respectively. The actual incident wave height was 
0.071m in the experiments, and 0.065m in the numerical simulations as previously stated. The 
vertical force has some oscillations, which are related to higher-order components. The first 
harmonic of the force oscillates with the frequency ω =2π/T, the oscillation frequencies of the 
second and third harmonic are 2ω and 3 ω, respectively. A Fourier analysis of the total force 
history shows that the first three harmonics of the hydrodynamic force are dominant. The ratio 
between the third and the first harmonic force is around 0.27, which is comparable with the 
results shown in Baarholm (2001) who compared the first and the third harmonic part of the 
force for Lewis form cylinder with B/D=2 and A/(BD)=0.989 for different heave amplitudes 
where B is the breadth at the waterline, D is the draft of the cylinder and A is the mean 
submerged cross-sectional area. 
 
However, when testing the case with the wave period T=1.3s and wave height H=0.12m, we 
found that the numerical wave tank encounters difficulties in handling the large amplitude 
motions for long time simulations.  
 

3.4.4 Experimental error sources 

Experimental error sources are related to 3D flow effects, incident wave conditions, resonant 
waves in the tank, and measurement accuracy. Because we did not perform the tests, we 
cannot quantify experimental errors. However, a qualitative discussion will be given below. 
 
 
• 3D effects without tank walls 
 
We assume a free surface of infinite horizontal extent and use the theoretical results for 
infinite frequency added mass in heave of a rectangular plate by Meyerhoff (1970). If a plate 
of the same length-to-beam ratio as in the tests is considered and the contribution to the 
added mass from a section of the same length and position as the measuring section is 
studied, Meyerhoff’s results show that the flow can be considered 2D at the measuring 
section. However, the frequency matters for the influence of three-dimensionality. Newman 
& Sclavounos (1981) studied theoretically added mass and damping of a prolate spheroid 
with the longitudinal axis in the mean free surface and with length-to-beam ratio L/B=8. 
The effect of three-dimensionality matters for frequencies ω smaller than / 3.L gω =  
Using the total length 4.25m of the model shows that three-dimensionalities must be 
considered when T>1.38s. However, the three-dimensional effects are largest at the ends of 
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the model. This discussion suggests that the flow can be considered two-dimensional at the 
measuring section for the considered wave period as if the model were in water of infinite 
horizontal extent.  
 

 
• Transverse sloshing 
 
The planar fluid motion in the transverse cross-section of the tank has an infinite number of 
eigenfrequencies. Our concern is if any of these eigenfrequencies are in the vicinity of the 
frequencies generated by the wave maker and that the corresponding eigenmodes are 
symmetric about the longitudinal center plane of the tank. These eigenmodes can then be 
excited due to the three-dimensional nature of flow caused by the test section. This will be 
present even though we argued earlier in the text that the flow is approximately two-
dimensional at the measuring section. Zhao et al. (1988) showed a dominant effect of 
transverse sloshing on the wave loads of a stationary hemisphere restrained from oscillating. 
However, no wave absorbers as in Aarsnes’ (1997) experiments were used at the tank walls 
in Zhao et al.’s (1988) experiments. The resonant period of concern in our case is 1.30s, 
corresponding to four wavelengths across the tank walls. We have no information available 
documenting how effective the wave absorbers along the tank walls were in Aarsnes’ (1997) 
experiments. 
 

 
• Longitudinal sloshing (seiching) 
 
It is the lowest mode that is of most concern. We approximate the mode by assuming a 
longitudinal rectangular tank with 2D flow. Using shallow water theory gives that the 
natural period of the lowest mode is ghLTN /2= , where L is the tank length and h is the 
water depth. Setting L=80m and h=10m gives TN=16.15s, i.e. much longer than the 
considered wave periods. If seiching was excited, it would appear as a beating effect. 
However, no such effect could be detected in the measurements.  
 

 
• Incident wave conditions 
 
Transverse instabilities dependent on the wave length and period may develop in the 
incident waves. Further, there is a scattering effect due to the wave absorbers. The effects of 
these factors are unknown. 
 
 
• Measurement accuracy 
 
The force measurements are believed accurate. The wave measurements are affected by 
meniscus effects due to free surface tension at the wave probe. The resulting measurement 
accuracy is less than ±0.001m. 
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3.5 Summary  

The CIP-based method is used to solve the linear and weakly nonlinear wave-structure 
interaction problem in a 2D numerical wave tank (NWT). The wavemaker in the numerical 
wave tank generates regular and irregular waves.  
 
The numerical results are first compared with the experimental added mass and damping 
coefficient results of a nearly rectangular section with forced small-amplitude heave motion. 
The convergence of the CIP-based method is investigated by varying the amplitude of the 
heave motion, the grid size, the timestep size and the computational domain. From all the 
studied cases, the added mass coefficient has good agreement with the linear numerical results 
based on potential flow. However, the damping coefficient has relatively better agreement 
with the experimental results than with the linear numerical results based on potential flow. 
Noticeable differences can be observed when comparing the numerical results and the 
theoretical results. Error sources have been discussed to explain the differences. The results of 
the BEM agree well with the linear numerical results by Vugts (1968) based on potential flow.  
 
The incoming waves generated by the wavemaker in the numerical wave tank without the 
fixed body are in good agreement with the specified wave conditions. Wave forces including 
the horizontal force, vertical force and the moment acting on the 2D section in the free surface 
zones are compared with the experimental results by Aarsnes (1997). The numerical results of 
the horizontal force are in good agreement with the experimental results for all three test cases. 
However, there are noticeable differences between the numerical and the experimental results 
of the vertical force. These differences may be due to the experimental errors. 
 
Our numerical wave tank encounters difficulties in handling the large amplitude motions for 
long time simulations. Therefore we will isolate the wave-body interaction problem to water 
entry and exit sub-problems in the following chapters. 
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CHAPTER 4 
 
 

Chapter 4 Water entry and exit of a circular 
cylinder with constant velocity 

 
 
 
 
 

4.1 Introduction 

 
This chapter presents numerical simulations of two-dimensional water-entry and water-exit of 
a circular cylinder with forced constant velocity by using the CIP-based finite difference 
method described in Chapter 2. This has relevance for wave loads on a horizontal member of a 
jacket structure in the splash zone, marine operations where units are lowered from a crane 
ship through the free surface and large amplitude wave-induced motions and loads on floating 
structures. 
 
The water exit has been far less studied than the water entry. The water entry phase includes 
the slamming, i.e. the impact between the body and the free surface. This can be associated 
with the formation of air pockets and local hydroelastic effects. We include the air flow, but 
assume a rigid structure. The air and water are assumed incompressible. The compressibility 
of the air matters when air cushions are generated. The compressibility of the water matters 
only in a very small initial time and is not believed important for the structural response. 
Gravity and viscosity do not matter in the initial water entry phase. However, both these two 
effects must be considered at a later stage of the water entry and during the water exit phase. 
Viscous effects become important when viscous flow separation occurs. The latter requires the 
existence of points on the cylinder surface where the shear stress is zero. This takes time to 
develop after the start up flow around the cylinder. This has been discussed by Schlichting 
(1979) for the flow around a circular cylinder in an infinite fluid. There occurs Froude number 
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dependent non-viscous flow separation from the cylinder surface during the penetration of the 
cylinder in our studied water entry cases. An open air cavity is then formed above the cylinder. 
The non-viscous flow separation is important for the hydrodynamic loads on the cylinder. 
 
Greenhow & Moyo (1997) studied totally submerged horizontal circular cylinders moving 
with constant vertical motions. The results are compared with the small-time asymptotic 
solution derived by Tyvand & Miloh (1995a, b), whose results were taken to the third order of 
the small expansion variable T=Ut/d. Here U is the cylinder speed, t is the real time and d is 
the initial cylinder centre depth. In Tyvand & Miloh (1995a), the general hydrodynamic 
conditions are stated for the zeroth-, first- and second-order potentials, but the hydrodynamic 
condition for the third-order potential is only valid for constant acceleration from rest. The 
corresponding kinematic conditions are also general, except for the condition corresponding to 
the third-order potential, which is only valid in the case of constant acceleration from rest. The 
leading-order gravitational effect appears in the hydrodynamic condition for the second-order 
potential, and this leading-order gravity-dependent potential satisfies the condition of zero 
normal derivative at the cylinder contour. Excellent agreement is obtained for small times. 
Beyond this, only the numerical method gives accurate results until the free surface breaks or 
the cylinder emerges from the free surface. We compared our numerical results of the free 
surface deformation of a circular cylinder impulsively started with constant upwards and 
downwards velocities in initially calm water with the results in Greenhow & Moyo (1997) for 
several dimensionless times T = Ut/d as defined above. The agreement is fairly good. 
 
It is obvious that if the cylinder submerges very slowly, the free surface will simply close over 
the cylinder top. However, in our studied cases in this chapter, an open air cavity is happening 
above the cylinder due to non-viscous flow separation from the cylinder surface during the 
penetration of the cylinder. Then, the open air cavity will be closed either by that a closed air 
cushion is formed above the cylinder with the upper cylinder surface remaining dry or that the 
open air cavity above the cylinder surface disappears with the upper surface becoming wetted. 
How this open air cavity is closed is a function of the Froude number. The calculations in this 
chapter indicate that there is a threshold Froude number for a closed air cavity appearing 
above the cylinder. Then, a relevant question is what the threshold Froude number is. 
 
Moyo (1996) showed the case of a submerging cylinder with radius-based Froude number of 
0.46 with no bubbles above the cylinder top, which indicated that the radius-based threshold 
Froude number should be higher than 0.46. However, he did not show what the threshold 
Froude number is for his studied cases, where the cylinder starts half-submerged. In this 
chapter, we studied several Froude numbers, i.e. 0.4627, 0.577, 0.6863, 0.791 and 0.9247 
without a clear air cushion. A closed air cushion is clearly created when the Froude number 
equals 1.1. These imply that the threshold Froude number should be higher than 0.9247 and 
lower than 1.1 for our studied cases with a cylinder starting from above the free surface. 
Because there are no experimental results to compare with, we can not tell whether or not the 
air cushion is in reality created and when the air cushion starts to occur. All these questions 
need future studies. 
 
In this chapter, we will compare the CIP-based method by existing experimental results for 
forces during the entry and exit phase. The initial impact and the non-viscous flow separation 
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represent numerically the most difficult phases of the water entry. The final water exit phase 
before penetration of the cylinder is also numerically challenging. 
 
 

4.2 Convergence study 

 
A horizontal circular cylinder is forced through an initially calm water surface with a constant 
vertical velocity V. The submergence of the lowest point on the cylinder relative to the calm 
water surface is h=Vt. Here t is the time variable with t=0 corresponding to the initial time of 
impact. The slamming coefficient Cs is defined as 
 

3
21

2

F
Cs

ρV 2R
≡        (4.1) 

 
Here: 
ρ is the mass density of water;  
R is the radius of the circular cylinder;  
F3 is the total vertical hydrodynamic force per unit length of cylinder resulting from the water 
entry, including the buoyancy force. The viscosity causes a shear force and influences the 
pressure loads. The effect of viscosity matters for the hydrodynamic force when viscous flow 
separation occurs. The dominant effect is due to the influence on the pressure loads. However, 
we cannot separate out what is the influence of viscosity and potential flow effects. 
 
In this section, we will investigate the convergence of the CIP-based method by varying the 
timestep size and grids size. The No. 2 water entry test by Miao (1989) in Table 4.2 is used as 
an example case.  
 

4.2.1 Effect of timestep size 

The numerical grid used in the calculations is rectangular with horizontal and vertical lengths 
Δx and Δy (see Figure 4.1) that vary in the computational domain. The smallest values are 
used at the cylinder. The minimum non-dimensional lengths in the simulations are Δx/R=0.01 
and Δy/R=0.01. The computational domain has a breadth and height of 400R and 50R, 
respectively. The total number of cells is 620×450.  
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Figure 4.1 Sketch of grid distribution of part of the circular cross-section with radius R and its 
close vicinity. 

 

Vt/R

C
s

0 0.01 0.02 0.03
0

5

10

15

20
dt=T/1000
dt=T/1250
dt=T/2000
dt=T/2500
dt=T/4000
dt=T/5000

 
Figure 4.2 Slamming coefficient Cs as a function of non-dimensional submergence Vt/R. Here: 
dt is the time step size used in the numerical integration; T=R/V where R is cylinder radius 
and V is water entry velocity. The calculations are for the test condition No. 2 in Miao’s (1989) 
experiments (see Table 4.2). 
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Figure 4.2 shows how the slamming coefficient Cs as a function of submergence depends on 
the time step size dt. From this figure, no convergence is apparent at the early stage of the 
impact. The difficulty in solving this problem can be understood from the numerical results by 
Zhao & Faltinsen (1993) for water entry of wedges with constant velocity. A non-viscous and 
incompressible fluid was assumed and a Boundary Element Method (BEM) was applied in 
their study. The air flow and gravity were neglected. The smaller the deadrise angle β was, the 
more difficult it was to obtain convergent results. The lowest examined β was 4˚. The local 
deadrise angle is initially zero during the water entry of a circular cylinder. We are better off 
during the initial impact with using the analytical Wagner’s (1932) solution, which shows that 
the time rate of change of the wetted area 2c in the outer flow domain is proportional to1/ t , 
i.e. the solution is singular at t=0. The outer flow domain excludes the detailed flow in the 
spray roots and the jets causing spray. The numerical time integration method ought to 
recognize this singular behavior and an Euler method is inadequate. The Wagner method gives  
Cs=2π at t=0. 
 
The effect of compressibility and air flow will influence the results. However, it is believed 
that the origin of our numerical difficulties illustrated in Figure 4.2 is associated with the very 
rapid initial change of the wetted surface. Although we cannot get convergence of F3 at the 
early stage of impact, we can see that all the curves in Figure 4.2 converge after a small 
submergence 0.02Vt/R ≈ .  
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Figure 4.3 Averaged initial slamming coefficient Cs as a function of non-dimensional time 
stepsize dt/T. Here Cs (0-0.02) denotes the slamming coefficient averaged from Vt/R=0 to 0.02; 
Cs (0-0.03) is the slamming coefficient averaged from Vt/R=0 to 0.03. 
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However, for some problems, what is important for the global and local responses of the 
structure during a small time increment Δt after the impact is the force impulse rather than the 
instantaneous value of the force.  The force impulse is defined as 
 

∫=
Δt

0
3 (t)dtFI        (4.2) 

 
We compared therefore time-averaged Cs-values (related to the force impulse I) during the 
small submergences (related to small time increment Δt) Vt/R=0.02 and Vt/R=0.03 as a 
function of the time step size. From Figure 4.3, convergence for the averaged Cs can be 
obtained when a small time step size is used. 
 
The initial impact phase results by using the time-averaged Cs are in reasonable agreement 
with the empirical formulas by Miao (1989) and Campbell & Weynberg (1980). We will now 
investigate the numerical results for a broader range of Vt/R. 
 

4.2.2 Effect of grid size 

Figure 4.4 shows the slamming coefficient as a function of Vt/R for different grid size as 
shown in Table 4.1. Because all the results are in favorable agreement with the experiments, 
we can in different cases choose different grid size to decrease the computing time. 
 
 

Vt/R

C
s

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

Cond. 1
Cond. 2
Cond. 3
Cond. 4

 
Figure 4.4 Convergence study for different grid sizes for No. 2 water entry test in Miao (1989).  
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Table 4.1 Computational conditions 

Minimum grid size Condition 
No. 

Grid number 
(NX×NY) min(Δx/R) min(Δy/R) 

Timestep size  
Δt/T 

1 290×371 0.04 0.04 1/2000 
2 340×371 0.02 0.04 1/2000 
3 290×521 0.04 0.02 1/2000 
4 340×494 0.02 0.02 1/2000 

 
 
 

4.3 Water entry with constant velocity 

4.3.1 Description of the experiment 

Our CIP-based method will be compared with the water entry tests by Miao (1989) in the No. 
2 tank at the Marine Technology Centre in Trondheim. The basin is 28m long, 2.5m wide and 
has a water depth of 1.0m.  
 
A test cylinder with diameter D=0.125m and length L=0.25m was used in measuring the 
impact forces. In order to achieve a two-dimensional flow condition, the model was equipped 
with two rectangular stiffened end plates with height H=0.4m and width B=0.3m.The test 
cylinder was made from a standard PVC pipe. The pipe thickness is 3.7mm. The end plates 
were made of plexiglass for photographic purpose during the impact phase of the experiment.  
 
A hydraulic system drove the model vertically downwards into water at speeds ranging from 0 
to about 2.66m/s. The stroke was regulated by an electronically operated valve in combination 
with the measurements of the position of the test cylinder by means of a potentiometer. The 
water entry velocity was determined from an average slope computed from the position data. 
Other parameters for the water entry tests are shown in Table 4.2. 
 
The numerical grid is rectangular with horizontal and vertical lengths Δx and Δy that vary in 
the computational domain. The smallest values are used at the cylinder. The minimum non-
dimensional lengths in the simulations are Δx/R=0.02 and Δy/R=0.02. The computational 
domain has a breadth and height of 400R and 50R, respectively. The total number of cells is 
500×435.  
 

Table 4.2 Parameters for the water entry tests by Miao (1989) 

Test No. No.1 No.2 No.3 No.4 No.5 
V(m/s) 0.5124 0.639 0.760 0.876 1.024 

Fn 0.4627 0.577 0.6863 0.791 0.9247 
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4.3.2 Possible parameters influencing Cs 

The non-dimensional impact force defined by Eq. (4.1) can be expressed as 
 

n ,
VtCs f( ,F ,Re ...)
D

=  

 
where nF = V gD is the Froude number, Re=VD/ν is the Reynolds number and ν=μ ρ is the 
kinematic viscosity of water. Other possible parameters influencing Cs are the roughness 
number k/D, the Weber, Euler and Cauchy numbers. Here k is the mean height of the 
roughness on the cylinder surface. We assume a rigid structure so that non-dimensional 
parameters characterizing the elastic properties of the structure do not matter.  
 
 
• k/D and Re 
 
The viscous parameters k/D and Re will matter for the force magnitude after viscous flow 
separation has occurred. This will in practice for water entry mean that the whole cylinder 
surface is wetted and the cylinder has penetrated many cylinder radii.  
 
 
• Euler number Eu 
 
The Euler number Eu 2

a=p /(0.5ρV )  where pa is the atmospheric pressure must be considered 
if closed air cavities are formed.  
 
 
• Weber and Cauchy numbers 
 
The Weber and Cauchy numbers account for the surface tension and the compressibility of the 
water, respectively. The importance of surface tension requires a free surface with high 
curvature. It matters, for instance, in describing the details of either spray or small bubbles. 
However, the detailed spray behavior has negligible influence on the hydrodynamic loads on 
the structure. We do not consider the effect of surface tension in our calculations. The 
compressibility of the water matters at a very small initial time, when the speed of sound in 
water is smaller or the order of VR/t . The latter is the theoretical velocity of half of the 
intersection point of the cylinder and undisturbed free surface position, when the effects of air 
cushion, air flow and free surface deformation are neglected. Let us exemplify what this time 
scale means by setting the speed of sound, i.e. 1400ms-1, equal to VR/t and use 

-1V=0.5124 m s⋅ together with R=0.0625m. This gives the time 81.634 10  s−⋅  
or 7101.34Vt/R −⋅= . This corresponds to a significantly smaller time than the time steps used 
in the calculations presented in Figure 4.2. The consequence is that we have not properly 
modeled the effect of the compressibility in the water. However, the compressibility of the 
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water matters in a too small time scale to have practical importance for the global behavior of 
the structure and maximum structure stresses. This means that the error in adequately 
modelling the compressibility of water is unimportant for our application. 
 
 
• Fn and Re 
 
Our further discussion will focus on the influence of Fn and Re. A smooth cylinder surface is 
assumed. The Froude number dependence is both due to the free surface wave generation and 
the buoyancy force. 
 
In order to check the influence of Reynolds number on Cs, both a low and a high Reynolds 
number in the subcritical flow regime are used in the calculations and the comparisons are 
shown in Figure 4.5, Figure 4.6 and Figure 4.9. The Reynolds number was obtained by 
varying fictitiously the kinematic viscosity of water. The results show a small difference 
between the high and low Reynolds numbers. This is an expected result for this Reynolds 
number variation in the subcritical flow regime. The vorticity in the fluid was calculated in 
order to assess the influence of the viscous forces. Because the major vorticity was 
concentrated in the boundary layer of the cylinder, i.e. no flow separation, there is expected a 
small effect of viscosity on the pressure. Further, the frictional force gave a very small 
contribution to the total force.  
 
We can explain qualitatively the behavior of Cs as a function of Vt/R by expressing the total 
vertical force as in Faltinsen (1990) 
 

3 33 33F  = d(VA (t))/dt+ρgA(t) = VdA (t)/dt+ρgA(t)  
 
Here A33 is the 2D infinite-frequency heave added mass and A(t) is the cylinder area below the 
mean free surface. (t)/dtdA 33  is largest at t=0 and decreases with increasing Vt/R while A(t) 
increases with time. The combination of (t)/dtVdA 33  and ρgA(t)  causes a minimum Cs as 
we see occurs at about Vt/R=0.5 in the examined cases. This approach does not account for 
the fact that the water separates from the cylinder and causes an open air cavity above the 
cylinder. It follows by continuity of fluid mass that the water displaced by the cylinder and the 
air cavity causes an increased water elevation. This free surface wave generation affects the 
vertical force. A large part of the force at the final stage when the cylinder surface is totally 
wetted is due to the buoyancy. 
 
If the cylinder is totally submerged, the contribution of the buoyancy to the slamming 
coefficient is  
 

2

Sb 2 21
n2

ρgπD /4 π 1C = =
2ρV D F

      (4.3) 

 
This value is presented in Figure 4.5-Figure 4.9 from the time when the cylinder is totally 
submerged. There is a maximum in Cs a small time before the cylinder is totally submerged.  
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Figure 4.5 Slamming coefficient Cs as a function of Vt/R for the water entry test No.1. 
V=0.5124 m/s. Fn=0.4627. 
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Figure 4.6 Slamming coefficient Cs as a function of Vt/R for the water entry test No. 2. 
V=0.639 m/s. Fn=0.577. 
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Figure 4.7 Slamming coefficient Cs as a function of Vt/R for the water entry test No. 3. 
V=0.760 m/s. Fn=0.6863. 
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Figure 4.8 Slamming coefficient Cs as a function of Vt/R for the water entry test No. 4. 
V=0.876 m/s. Fn=0.791. 
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Figure 4.9 Slamming coefficient Cs as a function of Vt/R for the water entry test No. 5. 
V=1.024 m/s. Fn=0.9247. 
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Figure 4.10 The non-dimensional time Vt/R when the circular cylinder is totally submerged as 
a function of Froude number Fn for water entry with constant velocity. 
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Figure 4.11Free surface deformations for different Froude numbers before and after the 
impact of the two free surfaces of the open air cavity.  

 
 
As one can see from Figure 4.5 to Figure 4.9, the non-dimensional time Vt/R for the cylinder 
to be totally submerged for the five Froude numbers studied above increases with the Froude 
number and is illustrated in Figure 4.10. Figure 4.11 shows the free surface deformations for 
the five different Froude numbers before and after the impact of the two free surfaces of the 
open air cavity. We can see the two free surfaces on both sides of the open air cavity move 
almost along the cylinder surface. After the impact, a very thin layer appears above the 
cylinder top. This thin layer may be due to either the generation of the closed air cushion or 
the numerical diffusion on the free surface. Because the numerical method does not predict a 
sharp interface between the water and air, and because of the small thickness of the apparent 
air cushion above the cylinder and numerical diffusion, we cannot be sure that a closed air 
cushion occurs. If the thin layer is the closed air cushion, then the threshold Froude number 
will change to be lower than 0.4627 instead of 1.1 as stated in the introduction. When the 
Froude number goes to infinity, we expect an infinitely long air cavity above the cylinder. 
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This is similar to the water entry of a wedge at infinite Froude number studied by Zhao et al. 
(1996). When time goes to infinity, the problem is equivalent to steady cavity flow past a 
wedge at zero cavitation number. 
 

4.3.3 Experimental error sources 

From Figure 4.5 to Figure 4.9, some differences exist between the numerical results and the 
experimental data at the final stage of impact. The fact that we predict correctly the buoyancy 
force for the totally submerged phase is no surprise. So, in order to judge the accuracy of the 
predictions, we must deduct the buoyancy force. This increases the errors in the numerical 
predictions relative to the experiments. However, the experiments have errors as well.  
 
Experimental error sources could be 
 
• Buoyancy force due to the stiffened end plates. This contribution to the slamming 

coefficient is approximately 0.03 at Vt/R=0 and is about 0.1 after Vt/R=4.2. 
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Figure 4.12 Velocity field in the vicinity of the circular cylinder and the vertical velocity 
around the end plate edge for the water entry test No. 2. The water entry velocity of the 
circular cylinder is 0.639m/s. Vt/R=-1.2 means that the distance between the lowest point of 
the cylinder and the mean free surface is 1.2 times the radius of the cylinder. Fn=0.577. 
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• 3D flow effects in the experiments. Although the two end plates were used on the model 
cylinder, it is impossible to completely get rid of 3D effects and to achieve 2D flow. This 
was numerically documented in the present case by evaluating the 2D flow velocity 
around the cylinder at the position of the plate edges in Figure 4.12. Since this was not 
negligible, we anticipate some 3D flow effects. We cannot quantify this. However, we 
expect that the 2D flow assumption represent a good approximation. 

 
• Cross flow with flow separation at the edges of the end plates as a consequence of 3D 

flow. 
 
• Frictional force on the end plates. The vertical frictional force on the end plates can be 

estimated by 21
F2F ρC V S= , where S is the area of both sides of the two end plates, i.e. 

S=4HB where H is the height of the end plates and B is the width of the end plates. The 
International Towing Tank Conference (ITTC) 1957 model-ship correction line expresses 
the friction coefficient CF for a smooth hull surface as CF = 0.075/(log10Re-2)2, where 
Re=VH/ν is the Reynolds number. The contribution of the frictional force to the 
slamming coefficient is 21

SF 2C F/( ρV DL)= , which is approximately equal to 0.01. One 
should note that the estimation by assuming totally wetted plate sides is an approximation. 
Further, the effects of stiffeners and the fact that the velocity along the inside of the plates 
is spatially varying due to the presence of the cylinder are ignored. However, our 
objective is to estimate qualitatively the contribution of frictional force to the slamming 
coefficient. We find that this contribution is about 0.01, i.e. it is negligible. 

 
• Possible necklace vortices (see Lugt, 1983) at the intersection lines between the plates 

and the cylinder. We cannot estimate this effect. 
 
• Natural frequencies of the test rig, including possible hydroelastic effects. Chezhian 

(2003) documented clear hydroelastic effects in his experimental drop tests of a 
horizontal 3D structure with circular cross-sections. The oscillatory nature of the 
experimental slamming coefficient suggests either hydroelastic effects, eigenfrequency 
oscillations of the test rig, or air cavity oscillations. Miao (1989) said without giving 
detailed explanations that the 140Hz oscillations seen in the experiments can be 
associated with the measuring system. However, oscillations with smaller frequencies 
occur also in the force measurements, in particular when the cylinder surface is totally 
wetted. We made a rough estimate of the possibility of oscillations of air bubbles. This 
was done by guessing the possible dimensions of the air bubbles and estimating the 
natural frequency of the air bubble oscillations (see Faltinsen, 2005). We found that this 
could not explain the oscillating behavior of Cs. 

 
 

4.3.4 Numerical prediction for Fn=1.1 

The previous results of water entry of a circular cylinder were for the five Froude numbers 
0.4627, 0.577, 0.6863, 0.791 and 0.9247. Slamming coefficient Cs was examined as a function 



 
4.3 Water entry with constant velocity 

 

 
89

of Vt/R from 0 to 6. The most important parameters are Vt/R and Fn. There is negligible 
Froude number dependence at the initial stage of the water impact. However, the Froude 
number matters at a later stage. We will in the following study Fn=1.1 to further investigate 
the Froude number dependence of Cs and the flow as a function of Vt/R. There are no 
experimental results to compare with in this case.  
 
Figure 4.13 presents the results of Cs as a function of Vt/R. The vorticity in the fluid was 
calculated in order to assess the influence of the viscous forces. Because the major vorticity 
was concentrated in the boundary layer of the cylinder, there is a small effect of viscosity on 
the vertical force. 
 
Figure 4.14 shows the free surface deformation during the water entry of the cylinder. As one 
can see, after the cylinder reaches the free surface, the water rises and two jets are thrown up 
on both sides of the cylinder and move away from the cylinder, leaving the upper part of the 
cylinder dry even when h/R>2, where h (=Vt) is the submergence of the lowest point on the 
cylinder relative to the mean free surface. The free surfaces on the two sides of the air cavity 
eventually become unstable and the cavity formed behind the cylinder collapses. The free 
surfaces of the open air cavity above the cylinder impact first against each other above the 
cylinder surface. The impact throws up another jet. The closure of the air cavity for Fn=1.1 
occurs when Vt/R≈5.2. The flow will be affected by the Euler number after the closure of the 
air cavity. Because the compressibility of the air is neglected, we cannot properly describe the 
behavior of the air cavity. Otherwise, one would need to account for adiabatic compression of 
the air bubble (see Best, 1993). 
 
 

Closure of
air cavity

Vt/R

C
s

0 1 2 3 4 5 6 7
0

1

2

3

4

5

CIP
Csb

 
Figure 4.13 The slamming coefficient Cs as a function of non-dimensional time Vt/R. Fn=1.1. 
Eu=135. Re=1.52·105. 
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Figure 4.14 The free surface deformation during the water entry of a circular cylinder with 
constant velocity. A closed air cavity is formed above the cylinder at Vt/R≈5.2. The free 
surface denotes the density function 1 0.5.ϕ =  Fn=1.1. Eu=135. Re=1.52·105. 
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4.4 Water exit with constant velocity 

4.4.1 Comparisons between CIP and experiments 

Similarly as for the water entry studies, the grid used in the water exit calculations is also 
rectangular. The smallest horizontal and vertical lengths are used at the cylinder. The 
minimum values are Δx/R=0.04 and Δy/R=0.04. Other parameters for the water exit tests are 
shown in Table 4.3.  
 
 

Table 4.3 Parameters for the water exit tests by Miao (1989) 

Test No. No.1 No.2 
V(m/s) 0.5124 0.7644 

Fn 0.4627 0.6903 
 
 
A minor correction was made to the experimental data to make it possible to compare with the 
numerical results. The buoyancy force due to the stiffened end plates has been subtracted from 
the experimental data. Its contribution to the vertical force matters until Vt/R=4.2, where t=0 
corresponds to the time when the top of the cylinder reaches the mean free surface. 
 
Figure 4.15 and Figure 4.16 present comparisons of the exit coefficient Ce between the CIP 
calculations and the experiments by Miao (1989). Here Ce is defined in the same way as the 
slamming coefficient Cs; see Eq. (4.1). The overall agreement is good. The cylinder was 
initially at rest at Vt/R=-5.5, and was accelerated harmonically by using a function of sin tω  to 
a constant velocity V at Vt/R=-5 in the numerical simulations. Here, Vt/R=-5.5 means that the 
distance between the top of the cylinder and the mean free surface is 5.5 times the radius of 
the cylinder. 
 
We note large oscillations in the experimental force. This is believed to be experimental errors 
associated with unwanted vibrations of the test rig causing added mass and structural inertia 
forces on the test cylinder. The vibrations are probably connected with the automatic control 
of the hydraulic system used to force the test cylinder out of the water. The control system was 
based on the position measurements. However, small deviations in the position can cause large 
accelerations. Let us illustrate this by an example based on the data in Figure 4.16. There is 
from Vt/R=-4.5 to -3.2 a large amplitude oscillation of Ce which we denote as Ce0. We use a 
harmonic approximation, i.e. Ce0~Casin(ωt+α), where ω is estimated as 60(rad/s). We neglect 
the structural mass and approximate the oscillatory force amplitude as 2 2ρπR ω A , where A is 
the amplitude of the oscillations of the test rig. Using the definition of Ce and estimating the 
amplitude Ca of the oscillatory part Ce0 of Ce as 2.4 gives A/R=0.03, i.e. A is a small value as 
we anticipated. The velocity amplitude ωA associated with this oscillatory behavior is 0.11V. 
We note that the oscillatory forces are largest at the start-up. Similar behavior was also seen 
during the water entry tests at the start- up of the cylinder above the mean free surface. This 
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confirms our suspicion that the oscillatory forces are due to the transient effects of the 
hydraulic system. 
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Figure 4.15 Exit coefficient Ce as a function of Vt/R for the water exit test No. 1. V=0.5124m/s. 
Fn=0.4627. 
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Figure 4.16 Exit coefficient Ce as a function of Vt/R for the water exit test No. 2. V=0.7644m/s. 
Fn=0.6903. 
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4.4.2 A simplified model 

In order to further explain physically the results, we will introduce a simplified model that 
accounts for buoyancy, viscous drag and a potential flow force expressing the time rate of 
change of heave added mass. This model does not account for the deformation of the free 
surface which is important when the cylinder is close to the free surface. We believe that a 
rigid wall condition is a proper free surface condition for the exit problem when the cylinder is 
not too close to the free surface. 
 
It follows by the time rate of change of the kinetic fluid energy, the “rigid-wall” free surface 
condition and potential flow theory that there is a vertical hydrodynamic force  
 

33
33

( )1
2

dA t dVF V A
dt dt

= +  

 
acting on the cylinder. We notice that the structure of this expression differs from the force 
expression 33( ) /d A V dt used in the simplified water entry calculations. The reason is the 
difference in the free surface conditions. For constant exit velocity,  
 

2 331
2

dA
F V

dz
=        (4.4) 

 
Here 0z = is the mean free surface and the vertical z-coordinate is positive downwards. F is 
positive upwards. Because this formula for water exit is not well known, in the following we 
will give a detailed derivation by using conservation of kinetic energy. An alternative 
derivation based on Lagrange’s equations may be found in Moyo (1996). 
 
Assume zero gravity and incompressible fluid in irrotational motion, the rate of change of 
kinetic energy in a fluid domain Ω can be expressed by Eq. (3.19) and (3.20) in Faltinsen 
(1990) as 
 

0( )k
n

S

dE t p p
U ds

dt t n t
ϕ ϕ ϕρ

ρ
⎛ ⎞⎛ − ⎞∂ ∂ ∂

= − − +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
∫∫    (4.5) 

 
where S is the boundary surface to Ω and / n∂ ∂ is the derivative along the normal unit vector 
n to S. Positive direction of n  is into the fluid domain. nU  denotes the normal velocity of S 
and 0p is the atmospheric pressure. 
 
Further, because 2 0ϕ∇ = , 

( ) ( )
2 2kE t d dρ ρϕ ϕ τ ϕ ϕ τ

Ω Ω

= ∇ ⋅∇ = ∇⋅ ∇∫∫∫ ∫∫∫    (4.6) 
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Applying the divergence theorem to Eq. (4.6) gives 
 

( )
2k

S

E t ds
n

ρ ϕϕ ∂
= −

∂∫∫       (4.7) 

 
Let the bounding surface S consist of the wetted body surface BS , the “rigid-wall” WS , two 
vertical control surfaces S∞  and S−∞ at y = ∞ and y = −∞ respectively and finally a surface 0S  
far down in the fluid between S∞  and S−∞ (see Figure 4.17 ), i.e. 0B WS S S S S S∞ −∞= + + + +  , 
we write  
 

3/nU n Vnϕ= ∂ ∂ =  on BS  
/ 0nU nϕ= ∂ ∂ =   on WS , S±∞  and 0S  

 
 
 

 
Figure 4.17 The fluid domain and its control surface 

 
 
Because the contributions from WS , S±∞  and 0S  disappear and we can write 3Vϕ ϕ= , Eq. (4.7) 
can be simplified to by using the definition of the added mass 
 

2 3
3( )

2
B

k
S

E t V ds
n
ϕρ ϕ
∂

= −
∂∫∫      (4.8) 

 
We can rewrite Eq. (4.8) in terms of heave added mass 33A . The linearized pressure 
p tρ ϕ= − ∂ ∂ can be written as 3p dV dtρϕ= −  where 3ϕ satisfies 3 3/ n nϕ∂ ∂ = on the body 

surface. Here 3n  is the z-component of the normal vector. The resulting vertical force is  

SB 

y 
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3 3 3 3( )
B BS S

dVF t pn ds n ds
dt

ρ ϕ= − =∫∫ ∫∫  

 

which by definition is equal to 33
dVA
dt

− . Then we have 33 3 3

BS

A n dsρ ϕ= − ∫∫ . It follows that  

2
33

1( )
2kE t A V=        (4.9) 

 
On the right hand side of Eq.(4.5), we have no contribution from WS , S±∞  and 0S , so  
 

( )0 3 3
( )

B

k

S

dE t
p p Vn ds VF

dt
= − = −∫∫      (4.10) 

 
Substituting Eq. (4.9) into the left hand side of Eq. (4.10), we have 
 

2
33 3

1
2

d A V VF
dt
⎛ ⎞ = −⎜ ⎟
⎝ ⎠

      (4.11)  

or 
33

3 33
1
2

dA dVF V A
dt dt

= − −       (4.12) 

 

Because 33 33 33dA dA dAdz V
dt dz dt dz

= = and V is constant, we finally get 

 
233

3
1
2

dA
F V

dz
= −        (4.13) 

 
This is consistent with the Eq. (4.4) by noting that 3F  is positive downwards. 
 
 
The 2D heave added mass A33 for the circular cylinder satisfying the rigid-wall condition is 
estimated by generalizing the asymptotic formula for large z/R by Sun (2004), i.e. 
 

24

4

2
33

2αα
1α

ρπR
(z)A

−
−

=       (4.14) 

 
where α =2p/R and z=p means the z-coordinate of the cylinder axis. This agrees well even for 
small (p/R-1) with the asymptotic expression for small (p/R-1) by Walton (1986). Since 
Walton’s formula is not good for large (p/R-1), we have used Eq. (4.14) in our calculations 
even though it is not exact for very small (p/R-1). Since our objective is only to show the trend 



 
CHAPTER 4 Water entry and exit of a circular cylinder with constant velocity 

 

 
96 

in the force for small (p/R-1), this is sufficient. The free surface will in reality not be a wall 
when the cylinder is close to the free surface. 
 
The viscous drag coefficient was estimated by curve-fitting the experimental data by Sarpkaya 
(1966) as 
 

*5 *4 *3 *2 *
D 1 2 3 4 5 6C p t p t p t p t p t p= + + + + +     (4.15) 

 
Here 00.351/RVt't * ≥−= and the time 0t'= is the start of the flow. The non-dimensional pi-
coefficients are given as follows: 
 

7
1p 2.4805 10−= ⋅  

5
2p 3.647 10−= − ⋅  

3
3 101.9058p −⋅=  

2
4p 4.4173 10−= − ⋅  

1
5 104.3146p −⋅=  

2
6 107.3386p −⋅=  

 
When 0.351/RVt'0 ≤≤ , CD equals to zero. These results are for subcritical flow, i.e. the 
boundary layer flow is laminar. This is appropriate for the model tests. However, the boundary 
layer flow upstream of the separation points on the cylinder surface may be turbulent in full 
scale conditions. This has an important effect on CD. Further, Sarpkaya’s results are for an 
infinite fluid and nearly constant velocity V. Both the presence of the free surface and the time 
variation of V will influence CD. 
 
Then, the total vertical hydrodynamic force including the contributions due to the buoyancy 
force is expressed as follows: 
 

2 2 2
3 33-1/ 2 0.5 /DF g R C DV V dA dzρ π ρ= +     (4.16) 

 
Figure 4.18 shows the calculations with this simple formula. It demonstrates that the buoyancy 
and viscous forces dominate when -1Vt/R ≤ . When 0Vt/R1 ≤<− , there is a dominant effect 
due to the time rate of change of the kinetic fluid energy. 
 
Figure 4.19 shows the comparisons between the simplified formula and the CIP calculations. 
It demonstrates a good agreement when -1Vt/R ≤ . This means implicitly that the CIP 
calculations are consistent with Sarpkaya’s experiments for the time variation of the viscous 
drag coefficient. A major effect of the viscous force is due to viscous flow separation. This 
can implicitly be seen from Figure 4.20 which shows numerically predicted vorticity in the 
fluid and demonstrates that the vorticity is not concentrated in the boundary layer along the 
cylinder as it was for our water entry studies. The agreement between the simplified formula 
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and the CIP calculations is not good for 0Vt/R1 ≤<− . However, since a significant 
deformation of the free surface occurs then, this should not be expected.  
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Figure 4.18 Simplified calculations of the exit coefficient Ce=F3/(0.5ρV22R) by Eq. (4.16) with 
and without the effect of viscous drag force as a function of Vt/R for the two water exit tests. 
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Figure 4.19 Comparisons between the simplified formula Eq. (4.16) and the CIP calculations 
for the two water exit tests. Ce=F3/(0.5ρV22R). 
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Figure 4.20 Numerically predicted vorticity field for the water exit test No. 1. Fn=0.4627. 
OMG means the vorticity with dimension 1s − . 

 
 

 

 
Figure 4.21 Visualization of free surface deformation for the water exit test No. 2. The 
pictures present the density function 1ϕ  which is theoretically one for water and zero for the 
body and the air. Red=1. Blue=0. Fn=0.6903. 
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The time dependent free surface elevation is illustrated in Figure 4.21, by showing the density 
function 1ϕ  which is theoretically one for water and zero for the body and the air. Red and 
blue colors mean one and zero, respectively. The presence of other colors is caused by 
numerical errors and illustrates that the interfaces between the water and the air and the body 
are not sharp in the numerical simulations. 
 
However, returning now to Figure 4.15 and Figure 4.16, we then see both in the experiments 
and in the CIP calculations that a significant change in the vertical force occurs when the 
cylinder is close to the free surface. We can, based on the calculations with the simplified 
formula, say that this rapid change in force is in a qualitative way associated with the large 
rate of change of the kinetic fluid energy. We believe that at the final stage of the water exit 
when the total force becomes close to zero, ventilation in the fluid below the cylinder and 
above the mean free surface occurs. This will be made evident later in the text. 
 
The numerical results for Vt/R<-1 should be compared with the experimental data obtained 
after filtering out the oscillatory force behavior. We explained the oscillations earlier as an 
experimental error due to the hydraulic system. The averaged experimental data are in fair 
agreement with the numerical simulations. However, the oscillations of the cylinder will 
influence the time development of the drag coefficient through changes in the time history of 
the separation points. This will require further studies. 
 

4.4.3  Numerical prediction for Fn=1.0 

The 2D water exit of a circular cylinder with the Froude number of 0.4627 and 0.6903 is 
studied in detail by the CIP method in the previous sections and good agreement is 
documented with the experimental results by Miao (1989) for forced constant vertical velocity. 
We will present another case with forced constant vertical velocity, with a Froude number of 
1.0.  
 
Figure 4.22 presents the computed exit coefficient Ce as a function of Vt/R for the three 
Froude numbers. Figure 4.23 shows the comparisons between the simplified formula and the 
CIP calculations. The time-dependent-free-surface elevation is illustrated in Figure 4.24, by 
showing the density function 1ϕ =0.5. The water above the cylinder is lifted by the cylinder 
and a thin layer of water is formed subsequently on the top of the cylinder. The numerically 
predicted pressure showed that cavitation does not occur. However, the predicted total 
pressure in the water can be lower than the atmospheric pressure below the cylinder at the 
final stage of the water exit. This suggests that ventilation occurs. 
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Figure 4.22 The exit coefficient Ce as a function of  the non-dimensional time Vt/R. 
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Figure 4.23 Comparisons between the simplified formula (Eq. (4.16) and the CIP calculations 
for water exit tests. Ce=F3/(0.5ρV22R). 
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Vt/R=-2 Vt/R=-1
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Vt/R=+2 Vt/R=+3

 
 

Figure 4.24 Visualization of free surface deformation for water exit simulation with Fn=1.0. 
The free surface denotes the density function 1 0.5.ϕ =  
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4.5 Summary 

 
The slamming coefficient Cs as a function of Vt/R has no apparent convergence at the early 
stage of the impact of a circular cylinder. The reason is believed to be that the numerical time 
integration method (Euler method) used in the code does not recognize the singular behavior 
at t=0. However, the initial impact phase results by using the time-averaged Cs during a small 
submergence are in reasonable agreement with the empirical formulas by Miao (1989) and 
Campbell & Weynberg (1980). 
 
For water entry, possible parameters influencing Cs, i.e. the Froude number Fn, the Reynolds 
number Re, the roughness number k/D, the Weber, Euler and Cauchy numbers are 
investigated. Non-viscous flow separation and wave generation are important factors during 
water entry after an initial penetration phase. Viscous effects have a minor influence on the 
water entry force. Experimental error sources are discussed. 
 
For water exit, a simplified model is introduced to explain physically the results of exit 
coefficient. The predicted vorticity associated with viscous flow separation, the time rate of 
change of kinetic fluid energy and the free surface deformation give a reasonable explanation 
of the phenomena observed during water exit. 
 
The CIP calculations give a good overall agreement with the experiments by Miao (1989) for 
water entry and water exit with constant velocity. 
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CHAPTER 5 
 
 

Chapter 5 Water entry and exit of a circular 
cylinder with vertical free motion 

 
 
 
 
 
 
This chapter presents the fully nonlinear free-surface deformation of an initially calm water 
caused by water-entry and exit of a horizontal circular cylinder with free vertical motion by 
using a CIP-based finite difference method. 
 
 

5.1 Water entry with vertical free motion 

 
Now we consider the free surface profiles caused by a circular cylinder dropped into initially 
calm water. A half-buoyant and a neutrally buoyant circular cylinder with a radius of 5.5cm 
are used in the calculations. The depth of water is 0.30m. The cylinder was dropped from a 
height of 0.5m between the lowest point of the cylinder and the mean free surface. Numerical 
results are compared with the experiments conducted by Greenhow & Lin (1983). 
 

5.1.1 Half-buoyant cylinder 

Figure 5.1 shows the free surface deformation during water entry of a half-buoyant circular 
cylinder. As one can see, after the cylinder reaches the free surface, two jets are thrown up on 
both sides of the cylinder and move away from the cylinder, leaving the upper part of the 
cylinder dry even when h/R>2, where h is the submergence of the lowest point on the cylinder 
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relative to the mean free surface. The non-viscous flow separation from the cylinder is by no 
means trivial to numerically predict. The author is aware of other CFD methods having 
difficulties with this. Obviously the prediction of the non-viscous flow separation can be 
influenced by the grid size. Relatively small grids were used at the areas of flow separation in 
our numerical simulations.  
 
Figure 5.2 shows the depth of penetration of the cylinder. Fairly good agreements can be 
obtained between the numerical results and experimental data for a half-buoyant cylinder. 
 
 
 
t=0.305s  

 
 
t=0.330s  

 
 
t=0.385s  
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t=0.420s    

 
Figure 5.1 Free surface deformation during water entry of a half-buoyant circular cylinder 
with a radius of 5.5cm. CIP simulations (left) and experiments by Greenhow & Lin (right). 
The pictures present the density function 1ϕ  which is theoretically one for water and zero for 
the body and the air. Red=1. Blue=0. 
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Figure 5.2 Depth of penetration during water entry of a half-buoyant circular cylinder with a 
radius of 5.5cm. 

 

5.1.2 Neutrally buoyant cylinder 

Figure 5.3 shows the free surface deformation during water entry of a neutrally buoyant 
cylinder at several time instants. Similar to the half buoyant cylinder, after the cylinder 
reaches the free surface, two jets are thrown up on both sides of the cylinder and move away 
from the cylinder, leaving the upper part of the cylinder dry even when h/R>2. The free 
surfaces on the two sides of the air cavity eventually become unstable and the cavity formed 
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behind the cylinder collapses. The free surfaces of the open air cavity above the cylinder 
impact first against each other at the cylinder surface. The impact throws up another jet. Some 
air bubbles can be seen along the cylinder moving upwards to the free surface.  
 
At t=0.50s, the cylinder reaches the bottom of the tank and bounces up. Because the bottom of 
the tank is not modeled in this computation, we used the same treatment as Xing-Kaeding et al. 
(2004), i.e. the velocity of the cylinder is simply reversed at this time instant to simulate a 
loss-free re-bounce.  
 
Figure 5.4 shows the time history of the penetration depth of the neutrally buoyant cylinder. 
At t=0.34s, the experimental data is clearly larger than the numerical result. However, 
Greenhow & Lin (1983) put a question mark over this point. 
 
 
t=0.315s  

 
 
t=0.410s  

 
 
t=0.50s  
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t=0.75s 

 
Figure 5.3 Free surface deformation during water entry of a neutrally buoyant circular 
cylinder with a radius of 5.5cm. CIP simulations (left) and experiments by Greenhow & Lin 
(right). The pictures present the density function 1ϕ  which is theoretically one for water and 
zero for the body and the air. Red=1. Blue=0. 
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Figure 5.4 Depth of penetration during water entry of a neutrally buoyant circular cylinder 
with a radius of 5.5cm. 
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Figure 5.3 and Figure 5.4 show in general satisfactory agreement between the numerical 
results and experimental data for the neutrally buoyant circular cylinder. 
 
 

5.2 Water exit with constant force 

 
We study now a neutrally buoyant circular cylinder which rests on the tank bottom and is 
lifted by applying a constant force equal to the cylinder weight. Numerical results are 
compared with the experiments conducted by Greenhow & Lin (1983). 
 
 
t=0.072s  

 
 
t=0.165s  

 
 
t=0.220s  
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t=0.248s  

 
 
t=0.280s  

 
Figure 5.5 Free surface deformation during water exit of a neutrally buoyant circular cylinder 
with a radius of 5.5cm. CIP simulations (left) and experiments by Greenhow & Lin (right). 
The pictures present the density function 1ϕ  which is theoretically one for water and zero for 
the body and the air. Red=1. Blue=0. 

 
 
Figure 5.5 shows the free surface deformation at several time instants. The numerical 
simulations predicted the dominating phenomena during the water-exit of a cylinder: the water 
above the cylinder is lifted by the cylinder and thin layers of water are formed subsequently on 
the top of the cylinder. When the cylinder further rises up, the thin water layer is drawn down 
along the cylinder and causes the breaking of the free surface. The fact that viscous flow 
separation has occurred (see Figure 4.20) lowers the pressure below the cylinder. The 
numerically predicted pressure distribution at time instant t=0.248s is illustrated in Figure 5.6. 
Because the total pressure in the water is clearly higher than the vapor pressure (e.g. 2336.9Pa 
at 20°C), cavitation does not occur. However, the predicted pressure in the water is lower than 
the atmospheric pressure in the vicinity of the free surface below the cylinder. This suggests 
that ventilation happens and is confirmed by the experimental results showing a mixture of the 
water and the air below the cylinder. The numerical simulations in Figure 5.6 show two large 
eddies below the cylinder with a yellow-like color. This color implies a mixture between the 
water and the air. However, the fine details of how ventilation occurs require future studies. 
Moyo & Greenhow (2000) associate the break-down of the free surface and resultant 
ventilation with the fundamental fluid-mixing mechanism connected with the Rayleigh-Taylor 
instability. This occurs when a light fluid (e.g. air) is accelerated into a heavy fluid (e.g. water). 
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Figure 5.6 Predicted pressure distribution in Pascal at t=0.248s for the water exit described 
in Figure 5.5. The atmospheric pressure has to be added to obtain the total pressure. 
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Figure 5.7 Distance from the cylinder top to mean free surface during water exit of a neutrally 
buoyant circular cylinder with a radius of 5.5cm. 

 
 
Figure 5.7 shows the distance from the cylinder top to the mean free surface. From these 
figures, we can see that the simulations and experiment agree well. 
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5.3 Summary 

 
The complicated free surface deformation during water entry and exit of a circular cylinder is 
simulated by CIP method with good agreement to the photographs taken from the experiments 
conducted by Greenhow & Lin (1983). During water entry with free motion, the non-viscous 
flow separation from the cylinder which is a difficulty for the other CFD methods is by no 
means trivial to predict numerically. Relatively small grids were used at the areas of flow 
separation since this prediction can be influenced by the grid size. The numerically predicted 
pressure distribution suggests that ventilation occurs but no cavitation occurs during water exit 
with constant force.  
 
The motion of the circular cylinder for both water entry with free motion and water exit with 
constant force agrees also well with the experimental data.  
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CHAPTER 6 
 
 

Chapter 6 Water entry loads on ship sections 
 
 
 
 
 

6.1 Introduction 

 
Practical state-of-the-art computational tools for nonlinear wave-induced motions and loads on 
a ship handle the nonlinear effects in a simplistic way. The numerical codes typically assume 
potential flow with empirical viscous roll damping. Separate calculations are done for 
slamming loads on, for instance, a bow flare section. The state of the art in prediction of 
slamming loads on a symmetric ship cross-section with given vertical inflow conditions and 
body motions and based on 2D flow is generally satisfactory. However, water entry of a 
heeled section has not been extensively studied. This has, for instance, relevance for bow flare 
loads in bow sea with combined large roll motions and relative vertical motions; see 
Yamamoto et al. (1985). The motivation for their study was structural damage due to bow 
flare slamming. Because the heel angle decreases the relative impacting angle between the 
hull surface and the water surface, the maximum slamming pressures increase with the heel 
angle for a given relative vertical impact velocity. A challenge is to incorporate the slamming 
predictions in the global ship motion calculations. Because the slamming loads can be 
sensitive to the inflow conditions, an integrated approach is needed. This requires special 
considerations when the slamming duration is so short that local hydroelastic effects matter. 
Another application of our study is related to dynamic stability of high-speed vessels. Water 
entry results of a heeled wedge section can be combined with a 2D+t method to study how the 
steady hydrodynamic heel moment on a prismatic planing vessel on a straight course in calm 
water depends on the Froude number and the heel angle (Faltinsen, 2005). 
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6.2 Experimental setup 

 
This chapter presents numerical and experimental results by the CIP-based finite difference 
method for water entry of bow flare and V-shaped sections. The experimental drop tests by 
Aarsnes (1996) for the ship sections shown in Figure 6.1 (see Table 6.1) are used. The test rig 
consists of four different parts: the vertical guide rails, the trolley, a rotable horizontal beam 
and the test section. The rotable beam is connected to the trolley using one bolt at each end of 
the beam. The ballast weights are located within the rotable beam. The trolley is engaged with 
the vertical guide rail. The test sections are mounted directly to the horizontal, rotable beam. 
The test sections are connected to the trolley during the entire drop. Any rotation of the test 
section is suppressed even during the impact phase. The free-falling rig is mounted in a small 
towing tank. The trolley is raised using a winch fitted with a quick-release hook. The hook is 
connected to an automatic release mechanism. After the test section has hit the water surface, 
the trolley is stopped, using two elastic ropes. The total drop section is divided into three parts, 
one measuring section with a dummy section on each side.  
 
 

  
Figure 6.1 Details of the ship sections used in Aarsnes’ (1996) experimental drop tests. 

 
 
Three-dimensional flow effects at the measuring section are roughly estimated to cause an 
error of less than 5% relative to the assumed 2D flow. This was done by considering 
symmetric impact at the time instant when the spray roots are at the knuckles. The body 
boundary condition is transferred to a rectangular plate. The infinite-frequency free surface 
condition is assumed on the horizontal plane exterior to the plate. Tank wall effects are 
neglected. The problem is then equivalent to cross-flow without flow separation past a 
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rectangular plate in an infinite fluid. Using information from the potential flow calculations by 
Meyerhoff (1970) gives the desired result. 
 
 

Table 6.1 Data related to the experimental drop tests of the ship sections in Figure 6.1. 

Cross-section V-shaped Bow flare 
Breadth of section 0.300m 0.320m 
Draft of section 0.200m 0.240m 
Length of measuring section 0.100m 0.100m 
Length of each dummy section 0.450m 0.450m 
Total weight of drop rig 288kg 261kg 
Weight of measuring section 10.3kg 6.9kg 

 
 
The water entry problem of two ship sections is solved by using Newton’s 2nd law, the CIP-
based finite difference method and accounting for the total weight of the rig. Frictional forces 
along the guide rails are negligible. In this section, the free drop tests of these two ship 
sections with zero and non-zero heel angle are investigated. 
 
 

6.3 Bow flare section 

6.3.1 Zero heel angle 

Comparisons between the drop test results and the CIP calculations of the vertical acceleration, 
velocity and hydrodynamic force Fz of the bow flare section at zero heel angle are presented 
in Figure 6.2. The maximum vertical hydrodynamic force occurs at the time when the spray 
roots are at the knuckles. The agreement is generally satisfactory. The experimental results 
contain an acceleration component oscillating with a frequency of about 100 Hz. This is 
associated with a natural frequency of the test rig and cannot be modeled in our numerical 
simulations. This oscillating acceleration part affects in particular the added mass force and 
represents an experimental error source. 
 
Figure 6.3 presents comparisons of the time history of the pressures at the four points P1, P2, 
P3 and P4 defined in Figure 6.1. The pressure gauges have a diameter of 5 mm. The initial 
pressures at P1 are not well described by the numerical method. This is associated with the 
singular nature of the initial impact and has earlier been discussed for the initial impact force 
on a circular cylinder. A better way to theoretically predict the initial impact pressure at P1 is 
to use Wagner’s theory and average the predicted pressure over the pressure measurement area. 
There is otherwise a reasonable agreement between the numerical and experimental pressure 
results. Zhao et al. (1996) used a nonlinear BEM without gravity and compared with Aarsnes 
(1996) drop test results for the bow flare section with another drop height. The experimental 
vertical velocity was used as input to the numerical simulation. The BEM predicted very well 
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the vertical hydrodynamic force while the agreement in the pressure predictions was less 
satisfactory. A reason may be that the BEM calculations did not include gravity. This needs 
further investigations. 
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Figure 6.2 Comparisons between numerical and experimental time histories of vertical 
acceleration, velocity and hydrodynamic force Fz during drop test of bow flare section with 
zero heel angle. Drop height H=0.318m. t=0 corresponds to the initial impact time. 
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Figure 6.3 Comparisons between numerical and experimental time histories of pressure at P1, 
P2, P3 and P4 defined in Figure 6.1 during drop test of bow flare section with zero heel angle. 
Velocity,  acceleration and vertical force are shown in Figure 6.2. 

 

6.3.2 Non-zero heel angle 

Figure 6.4 to Figure 6.8 present numerical and experimental drop test results when the bow 
flare section has a heel angle β of 4.8˚, 9.8˚, 14.7˚, 20.3˚ and 28.3˚, respectively. The vertical 
distance H between the initial position of the keel and the free surface is indicated in the 
figures. The initial impact time t=0 was experimentally determined by wave gauge tape 
mounted on the surface of the test section.  
 
The measured results have been lowpass filtered using a cutoff frequency of 300 Hz. The 
experimental results contain an acceleration component oscillating with a governing frequency 
of about 100 Hz. This is due to eigenfrequency oscillations of the test rig. The high frequency 
acceleration oscillations have a small influence on the drop velocity, but are evident as added 
mass forces in the experimental force results. A large influence of the test rig oscillations is 
apparent on the horizontal water entry force for the small heel angles. The vibrations of the 
test rig are present even before the section hits the calm water surface and are probably excited 
during the release of the test section. The test rig vibrations affect the initial impact time. The 
numerical simulations before the impact are very similar to a ‘free fall’ behavior with 
negligible influence of air resistance. There is a small difference in the experimental and 
numerical initial impact velocity for the bow flare section. 
 
We note a phase lag between the numerical and experimental force results, i.e. the time when 
the water entry force is maximum, differs in the experiments and the CIP simulations. The 
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maximum numerically predicted force occurs when the spray root is at the knuckle on the 
windward side. 
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Figure 6.4 Acceleration, velocity, horizontal (Fx) and vertical (Fz) hydrodynamic force during 
drop test of bow flare section. t=0 initial impact time. Drop height H=0.017m. Heel angle 
β=4.8˚. 

 
 
No ventilation occurred at the leeward hull side in the numerical predictions. This is consistent 
with the experimental results except when the heel angle is 28.3˚. No cross-flow and viscous 
flow separation that could trigger ventilation were apparent at the keel in the numerical 
simulations. The fact that ventilation occurred in the experiments on the leeward side of the 
bow flare section at the heel angle 28.3˚ may be affected by the test rig vibrations. Let us as a 
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simplification decouple this effect of the test rig vibrations from the water entry problem. We 
then have the body oscillating with high frequency. Let us as a further simplification assume 
that the oscillation only causes an added mass force. This added mass force is a consequence 
of the hydrodynamic pressure which will be oscillating in time. It can be negative or positive, 
depending on the sign of the acceleration. If the pressures on the body associated with the 
added mass force is negative relative to atmospheric pressure during part of an oscillation 
cycle and if this occurs close to the free surface, ventilation may be triggered. 
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Figure 6.5 Acceleration, velocity, horizontal (Fx) and vertical (Fz) hydrodynamic force during 
drop test of bow flare section. t=0 initial impact time. Drop height H=0.02m. Heel angle 
β=9.8˚. 



 
CHAPTER 6 Water entry loads on ship sections 

 

 
120  

The elastic ropes used to stop the model, cause an experimental bias error at the later stage of 
the water entry. An indication when this bias error matters can be found by comparing 
experimental and numerical predictions of vertical velocity and acceleration. For instance, the 
CIP calculations for the heel angle 9.8˚ (see Figure 6.5) deviate significantly from the 
experiments when the time is larger than 0.12s. We could say by accounting for the presence 
of experimental errors that there is a reasonable agreement between experiments and theory. 
The largest difference in the peak value of the vertical force occurs for the largest heel angle. 
One reason is that the leeward side ventilated in the experiments, while the leeward side was 
wet in the numerical simulations. 
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Figure 6.6 Acceleration, velocity, horizontal (Fx) and vertical (Fz) hydrodynamic force during 
drop test of bow flare section.  t=0 initial impact time. Drop height H=0.02m. Heel angle 
β=14.7˚. 
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Figure 6.7 Acceleration, velocity, horizontal (Fx) and vertical (Fz) hydrodynamic force during 
drop test of bow flare section. t=0 initial impact time. Drop height H=0.03m. Heel angle  
β=20.3˚. 
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Figure 6.8 Acceleration, velocity, horizontal (Fx) and vertical (Fz) hydrodynamic force during 
drop test of bow flare section. t=0 initial impact time. Drop height H=0.12m. Heel angle 
β=28.3˚. 

 
 

6.4 V-shaped section 

6.4.1 Zero heel angle 

The free drop test results of the V-shaped section with zero heel angle are presented in Figure 
6.9 to Figure 6.11, including time histories of vertical acceleration, velocity and hydrodynamic 
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force Fz. The test model was freely dropped from different height H of 0.50m, 0.313m and 
0.195m, respectively. The experimental results of acceleration contain a component oscillating 
with a frequency of about 250 Hz. This is associated with a natural frequency of the test rig 
and cannot be modeled in our numerical simulations as previously stated for the bow flare 
section. This oscillating acceleration part affects in particular the added mass force and 
represents an experimental error source. The numerical vertical velocity is 4-5% larger than 
the experimental results. The agreement of vertical force is generally satisfactory. 
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Figure 6.9 Vertical acceleration and velocity, and vertical hydrodynamic force Fz during drop 
test of V-shaped section with zero heel angle. Drop height H=0.50m. t=0 initial impact time. 

 



 
CHAPTER 6 Water entry loads on ship sections 

 

 
124  

 
 
 

Time (s)

V
er

tic
al

ac
ce

le
ra

tio
n

(m
s-2

)

-0.01 0 0.01 0.02 0.03 0.04 0.05
-6

-4

-2

0

2

4

6

8

10

CIP
Experiment

Time (s)

V
er

tic
al

ve
lo

ci
ty

(m
s-1

)

-0.01 0 0.01 0.02 0.03 0.04 0.05
2.3

2.35

2.4

2.45

2.5

2.55

2.6

CIP
Experiment

 
 
 

Time (s)

F
z

(N
)

-0.01 0 0.01 0.02 0.03 0.04 0.05
-100

0

100

200

300

400

500

600

CIP
Experiment

 
 

Figure 6.10 Vertical acceleration and velocity, and vertical hydrodynamic force Fz during 
drop test of V-shaped section with zero heel angle. Drop height H=0.313m. t=0 initial impact 
time. 
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Figure 6.11 Vertical acceleration and velocity, and vertical hydrodynamic force Fz during 
drop test of V-shaped section with zero heel angle. Drop height H=0.195m. t=0 initial impact 
time. 

 

6.4.2 Non-zero heel angle 

Figure 6.12 to Figure 6.15 show the comparisons between the numerical and experimental 
time histories of vertical acceleration, velocity and hydrodynamic force Fz during the drop 
tests of the V-shaped section with finite heel angle. The measured results for accelerations and 
forces have been lowpass filtered using a cutoff frequency of 700 Hz. The oscillations with 
frequency about 250 Hz are due to an eigenfrequency of the drop rig. As noted earlier, the 
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vibrations are present even before the section hit the calm water surface and influence the 
initial impact condition. The numerical vertical velocity which is consistent with the result of 
the free falling body without air resistance is about 4-5% larger than the experimental result. 
The overall agreement of the vertical force is good.  
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Figure 6.12 Vertical acceleration and velocity, and vertical hydrodynamic force Fz during 
drop test of V-shaped section. t=0 initial impact time. Drop height H=0.12m. Heel angle 
β=4.8˚. 
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Figure 6.13 Vertical acceleration and velocity, and vertical hydrodynamic force Fz during 
drop test of V-shaped section. t=0 initial impact time. Drop height H=0.198m. Heel angle 
β=9.8˚. 
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Figure 6.14 Vertical acceleration and velocity, and vertical hydrodynamic force Fz during 
drop test of V-shaped section. t=0 initial impact time. Drop height H= 0.316m. Heel angle 
β=14.7˚. 
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Figure 6.15 Vertical acceleration and velocity, and vertical hydrodynamic force Fz during 
drop test of V-shaped section. t=0 initial impact time. Drop height H=0.197m. Heel angle 
β=20.3˚. 

 

6.4.3 Critical heel angle 

Both the numerical simulations and the experiments showed that the leeward side was wetted 
for the heel angles β equal to 4.8˚, 9.8˚, 14.7˚ and 20.3˚. This is consistent with the theoretical 
results by Judge et al. (2004) who presented critical angles at which ventilation occurs off the 
vertex of a wedge as a function of deadrise angle, heel angle and the ratio U/W between the 
horizontal and vertical water entry velocity components. 
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We compared our numerical results with the experimental results by Judge et al. (2004) when 
U/W=0.75 and the deadrise angle is 37˚. The critical heel angle in the experiments is between 
25˚ and 30˚ while their theoretical estimate was 22˚. Figure 6.16 shows our numerical 
predictions of the free surface elevation when the heel angle is 30˚. Our numerical procedure 
does not predict a sharp interface between the water and the air. The density function φ1 is 
theoretically 1 in the water and zero in the air. However, φ1 varies continuously between 1 and 
0 in the grid cells close to the interface in the numerical simulations. The free surface 
prediction in Figure 6.16 is based on φ1 =0.5 and is consistent with the fact that ventilation 
occurs. Further, the free surface shape is in overall agreement with a picture presented by 
Judge et al. (2004). However, the fine details of the free surface at the vertex are not correct. 
This deficiency of our numerical method was more evident when studying a heel angle of 34˚.  
 
The free surface may, according to the local potential flow analysis by Faltinsen (2005), be 
expressed as Z=AX3/2. The origin of the Cartesian coordinate system X-Z is at the vertex. The 
X-axis coincides with windward wedge side and is pointing in the down-stream direction. The 
constant A must be determined by a global flow analysis. The consequence of the local flow 
analysis is that the water flow leaves tangentially at the vertex, i.e. the free surface is parallel 
to the windward wedge side at the vertex. This is not consistent with our numerical predictions. 
One reason may be associated with the fact that the theoretical pressure gradient on the 
windward wedge side is infinite at the vertex. The numerical scheme does not account for this 
singular behavior. There is also the possible effect of viscosity.  
 
Our numerical results gave no ventilation at the heel angle of 25˚. This is consistent with the 
experiments. Even though we predicted ventilation at a heel angle of 34˚, the numerically 
predicted free surface was not in satisfactory agreement with a picture presented by Judge et al. 
(2004). The predicted length of the hollow on the leeward side was too small. 
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Figure 6.16 Numerically predicted free surface elevation during drop test of V-shape section 
with deadrise angle 37˚. U/W=0.75. Heel angle β=30˚. W=1.0 ms-1. The rectangular grid 
system used in the calculations is indicated. 
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The numerical code failed to predict the water entry force on the V-shaped section in Aarsnes’ 
(1996) experiments when the heel angle is 28.3˚. Because the angle between the windward 
hull side and the calm free surface is only 1.7˚ at the initial impact, an air cushion is probably 
generated (Koehler & Kettleborough, 1977). This requires that air compressibility is 
accounted for in the numerical method. Further, hydroelasticity may matter when the relative 
impact angle is only 1.7˚ (Faltinsen, 2005). Muthu (2003) demonstrated that hydroelasticity 
may influence hydrodynamic loads when the relative impact angle is small. Because no 
detailed structural data were documented by Aarsnes (1996), we did not try to include 
structural elasticity in the numerical code. 
 
 

6.5 Maximum impact force vs. heel angle 

 
The numerically calculated non-dimensional maximum impact force Fmax/(0.5ρV2BL) as a 
function of the heel for the considered bow flare and V-shaped sections starts to increase 
significantly with the heel angle when the heel angle is larger than 10˚; see Figure 6.17. Here 
Fmax is the maximum force, V is the velocity at maximum force; B is the maximum breadth; L 
is the length of the measuring section. The results are dependent on the Froude number 

/V gB and the time history of the water entry velocity. Viscous forces and Reynolds number 
matter only when viscous flow separation occurs at curved surfaces. This is not evident in the 
numerical simulations. 
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Figure 6.17 The non-dimensional maximum impact force as a function of heel angle β for bow 
flare section (left) and V-shaped section (right) for the considered test cases. 
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6.6 Summary 

 
The CIP-based finite difference method has been applied to 2D water entry of vertical and 
heeled bow flare and V-shaped sections. The results for the bow flare section have relevance 
for slamming loads on a ship in bow sea with large roll oscillations and relative vertical 
motions. The results for the heeled V-shaped section can be combined with a 2D+t numerical 
method to study how the steady heel moment on a prismatic planing hull on a straight course 
in calm water depends on the Froude number (Faltinsen, 2005).  
 
A generally satisfactory agreement with experimental drop test results of vertical water entry 
velocity, vertical and horizontal hydrodynamic forces as a function of time is demonstrated. 
This includes the effect of flow separation from the knuckle. The experiments, but not the 
numerical simulations, show ventilation of the leeward side of the bow flare section at the 
largest examined heel angle 28.3˚. The leeward side is wetted in all other conditions in the 
experiments and the numerical simulations.  
 
Bias errors due to eigenfrequency oscillations of the test rig and the use of elastic ropes to stop 
the models affect the results. An important effect of the eigenfrequency oscillations is their 
effect on the added mass forces.  
 
The CIP method fails in the experimental test case when the angle between the windward hull 
side of the V-shaped section and the free surface is 1.7˚. This small relative impact angle 
causes probably an air cushion extending from the keel to the knuckle on the windward side. 
Local hydroelastic effects are important to consider at low relative impact angles (Faltinsen, 
2005). This requires modeling of structural elasticity effects. Because the local structural 
elasticity properties of the experimental models are unknown and our numerical model 
presently assumes a rigid body, the hydroelastic slamming effect could not be studied.  
 
Because the slamming loads are sensitive to the inflow conditions, the slamming calculations 
should be integrated in the global ship motion calculations. Our studies are a step towards 
developing rational CFD methods for predicting strongly nonlinear wave-induced motions and 
loads on a ship. 
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CHAPTER 7 
 
 

Chapter 7 3D study of green water on the deck 
of a ship 

 
 
 
 
 

7.1 Introduction 

 
The 3D version of the CIP code has been applied to green water on deck in Faltinsen, Zhu & 
Hu (2005). A Wigley model was selected in the simulations. The main particulars are 
described in Table 7.1. The ratio between the freeboard and the ship length is only 0.03. The 
deck house height-to-ship length ratio is also 0.03. However, one would have chosen the 
freeboard and the deck house height to be larger for a real ship. The Froude number 

nF = V gL is 0.25 where L is the ship length, and head sea incident regular waves are 
assumed. Second-order Stokes waves were used to describe the incident wave field. The 
wavelength is the same as the ship length and the wave height is 0.1m. When the wave 
steepness is 1/10 as in this case, a second-order wave theory is not perfect but can be 
considered as a reasonable approximation relative to an infinite-order Stokes wave, see 
Faltinsen (2005). A sketch of the 3D numerical wave tank is shown in Figure 7.1. 
 
The predicted heave (η3) of the centre of the gravity and the pitch (η5) motions are shown as a 
function of t/Tw in Figure 7.2. Tw is the wave period. Positive heave is upwards and positive 
pitch corresponds to bow down. We note that steady-state conditions have not been obtained 
in the considered time interval. The ratio between maximum absolute value of heave and half 
the incident wave height is 0.5, i.e. we are not in the resonant conditions for the vertical 
motions. This will occur for a longer wavelength.  
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Table 7.1 Data for a Wigley hull in a 3D numerical wave tank 

Length at waterline  1.0 m 
Beam at midships  0.2 m 
Draft  0.0625 m 
Displaced volume 0.00555 m3 
Freeboard  0.03 m 
Centre of gravity above base  0.0551 m 
Gyration radius in pitch  0.225 m 
Froude number  0.25 

Ship model  

Reynolds number  1.174x106 
Wave theory  Second-order Stokes 
Wavelength λ 1.0 m 
Wave height H 0.1 m 

Incident waves  

Water depth h 4.0 m 
Grid number  165(x) × 80(y) ×80(z) 
Min grid space  0.006m (x)×0.005m (y)×0.005m (z) 

 
 
 
 

 
Figure 7.1 Sketch of the 3D numerical wave tank. 

 
 



 
7.1 Introduction 

 

 
135

η
5 (rad)  

η3 
η5 

η 3
 

 
Figure 7.2 Predicted pitch ( 5η ) and heave ( 3η ) of the center of the gravity as a function of 
non-dimensional time t/Tw for a Wigley hull in regular head sea waves with wave height-to-
wavelength ratio 0.1 and wavelength-to-ship length ratio 1.0. Fn=0.25. Tw=wave period. 

 
 

7.2 3D water-on-deck simulations for a Wigley hull 

The wave-induced ship motions and the free surface configuration during one encounter 
period are illustrated in Figure 7.3. We note severe green water on the deck impacting against 
the deck house and causing water even on the top of the deck house. When t/Tw=3.4, the rise 
of a vertical wall of water at the sides of the deck in the bow has started. The bow part of the 
deck is totally wetted at t/Tw=3.5 and a 3D nearly vertical wall of water is propagating along 
the deck. This behavior differs from the well-known dam-breaking phenomenon associated 
with green water on the deck. The vertical wall of water created along the sides of the deck 
will then not continue being a vertical wall as the water propagates with the largest velocity 
along the deck.  
 
We see a tendency to a dam-breaking behavior of the water on deck at t/Tw=3.6 in Figure 7.3, 
i.e. the water moves with the largest velocity at the deck. The flow from the sides meets at the 
centre plane where the free surface elevation is increased. It looks as a tongue of water. The 
largest longitudinal velocity at the deck is associated with this tongue of water at the centre 
plane. A tongue of water was also shown in the experimental studies by Barcellona et al. 
(2003) for a stationary ship restrained from oscillating. 
 
 
 
 



 
CHAPTER 7 3D study of green water on the deck of a ship 

 

 
136 

t/Tw=3.0 

 
 

t/Tw=3.1 

 
 

t/Tw=3.2 

 
 

t/Tw=3.3 

 
 

t/Tw=3.4 

 
 
 
 



 
7.2 3D water-on-deck simulations for a Wigley hull 

 

137

t/Tw=3.5 

 
t/Tw=3.6 

 
 

t/Tw=3.7 

 
 
t/Tw=3.8 

 
t/Tw=3.9 

 
 

Figure 7.3 3D water-on-deck simulations for a Wigley hull in regular head sea waves with 
wave height-to-wavelength ratio 0.1 and wavelength-to-ship length ratio 1.0. Fn=0.25. 
Tw=wave period. 
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7.3 Detailed Flow in the centre plane and at the bow of the 
Wigley hull 

The reason for the difference in behavior of how the water comes on the deck at the bow is 
believed to be associated with the ratio between the relative vertical velocity WRB and the 
relative longitudinal velocity URB in the bow. If this ratio is large, we expect a dam-breaking 
type of water on deck. When WRB /URB is order one or smaller, the water may enter the deck 
as a plunging wave impacting against the deck. This is clearly illustrated in Figure 7.4 by 2D 
experimental results with a stationary ship-like body that was restrained from oscillating. 
Similar behavior was experimentally confirmed by Barcellona et al. (2003) for 3D stationary 
ship models with blunt bow that were restrained from oscillating. At the later stages of the 
water flow on the deck, i.e. after the break-down of the cavity created by the impacting 
plunging breaker, the flow has similarities with the dam-breaking flow. This means that the 
flow velocity is largest at the deck. 

 
 
 

 
Figure 7.4 The initial phase of water on the deck of a 2D ship-like body that was restrained 
from oscillating. A plunging wave impacts against the deck and an air cushion is created 
(Greco, 2001). 

 
 
The ratio WRB /URB is not very large when the water enters the deck in our case. This can be 
seen from the calculated results in Figure 7.5, where we present the detailed flow pictures in 
the centre plane with t/Tw from 3.4 to 3.9. A relative-frame moving with the forward velocity 
of the ship is used. The relative-frame flow velocity vectors in the centre plane and the vertical 
velocities of the bow are indicated. This confirms that we should not expect a dam-breaking 
behavior when the water enters the deck. However, the water does not enter the deck as a 
plunging breaker, i.e. as in Figure 7.4. A reason may be insufficient grid discretization. 
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Another reason may be that our case is with a sharp bow and small bow entrance angle while 
the cases by Barcellona et al. (2003) and in Figure 7.4 correspond to blunt bows. The free 
surface profile at t/Tw=3.45 appears as the start of a plunging breaker, but the water velocity 
at the deck will subsequently increase so that a nearly vertical wall of water propagates along 
the deck at t/Tw=3.5. A similar behavior was observed experimentally by Buchner (1995) for 
a stationary free-floating FPSO with a blunt bow. The water has started to move with largest 
velocity at the deck at t/Tw=3.55. The velocity at the deck is then larger than 2ms-1, which by 
using Froude scaling to be a full scale condition with a 100m long vessel corresponds to a 
velocity larger than 20ms-1.  An object exposed to this impact velocity will experience severe 
loads that depend on the slope of the free surface at the front of the propagating water; see 
Greco (2001) for more details. The fact that the interior angle of the water front along the deck 
is much larger than for a dam-breaking flow causes a much larger impact loads for a given 
impact velocity. 
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Figure 7.5 Detailed view of the flow velocities in the centre plane and at the bow of the Wigley 
hull in a relative frame moving with the ship speed U=0.78ms-1. The magnitude of the 
velocities can be estimated by comparing with the reference vector representing a magnitude 
of 2ms-1. The vertical ship velocity at the bow is also indicated. The conditions are similar to 
Figure 7.3. The ship length is 1m. 

 
 
We note the presence of a lump of nearly stagnant water in front of the deck house at t/Tw 
≤3.55. This is due to water on deck from a previous green water event. The results at 
t/Tw=3.60 show that the collision between the new and previous green water on deck diverts 
the path of the new water on deck. When the water on the deck has impacted on the deck 
house, it continues to move upwards. This is different from the studies by Greco (2001) and 
Barcellona et al. (2003), where the vertical fluid motion along the vertical wall on the deck 
finally stopped with the result that a backwards plunging breaker impacted on the underlying 
water. This phenomenon causes important loads on the deck and the deck house. This 
behavior is obviously a function of the deck house height, which is relatively low in our case. 
The water engulfs the top of the deck house as the result of a plunging breaker with a peculiar 
elongated shape. 
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Our case study has shown many new interesting flow phenomena associated with green water 
on deck. However, the results need to be verified and validated by experiments. For instance, 
the influence of grid size and the size of the computational domain should be investigated. 
Further, a realistic wavemaker has to be included for comparisons with experiments. This can 
be done as already explained in connection with our 2D Numerical Wave Tank. 
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CHAPTER 8 
 
 

Chapter 8 Summary and future perspectives 
 
 
 
 
 

8.1 Summary 

 
It has been demonstrated by extensive verification and validation tests that the 2D CIP code 
can in many cases adequately predict: 
 
• The fully nonlinear free-surface deformation.  
 
• Flow characteristics such as vorticity fields and viscous flow separations. 

 
• The hydrodynamic loads acting on the body in the Earth-fixed Cartesian grid system in a 

very simple and robust way. 
 
• The motion of the body during water entry and exit.  
 
• The non-viscous flow separation.  

 
 
On the other hand, the 2D CIP code has the following difficulties: 
 
• The predicted force at the early stage of the impact of a circular cylinder with the free 

surface does not converge. This is due to the singular nature of the problem. However, 
the force impulse during a small initial time converges. 
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• To simulate the cases when the angle between the impacting wedge side and the free 
surface is small. A reason is that the code did not account for the air compressibility. This 
small relative impact angle probably causes an air cushion extending from the keel to the 
knuckle on the windward side. 

 
• To apply the boundary condition at the exact location of the boundary. The interface is 

not explicitly tracked but is reconstructed from the field variables on an Earth-fixed grid. 
The location of the interface can be determined based on the volume fraction information, 
i.e. the density function, unavoidably resulting in an uncertainty of one grid cell. 
Topological changes are easy to handle, but some accuracy can be lost when details of 
the interface can not be covered by the grid. 

 
• The CIP method is shown to give generally satisfactory prediction of heave added mass 

and damping of a nearly rectangular cross-section for linear problems. However, 
difficulties occur in accurately predicting drag coefficients when the heave amplitude 
becomes too small. 

 
We have illustrated the capability of a 3D CIP code to predict green water phenomena. 
However, this needs further verification and validation. 
 
 

8.2 Future perspectives 

 
In order to make the calculation more accurate and fast, future work is needed. In particular 
we need to develop: 
 
• An efficient solver for the Poisson equation. The solver for the Poisson equation used in 

this thesis is successive over-relaxation (SOR) which is a stationary method easy to 
understand and implement but quite time-consuming to reach a favorable convergent 
condition. 

 
• A more accurate treatment of the body boundary condition. According to the description 

of the CIP method in Chapter 2, we can see that the body boundary condition is of 
importance to the accurate calculation of the density function 3ϕ  and therefore for the 
calculation of the hydrodynamic forces on the floating body and the motion of the body. 

 
• An account of compressibility and local elastic deformation of the structure as a 

consequence of local phenomena of slamming (Faltinsen, 2000). As discussed in Chapter 
5, the small relative impact angle causes probably an air cushion extending from the keel 
to the knuckle on the windward side. Local hydroelastic effects are important to consider 
at low relative impact angles (Faltinsen, 2005). This requires modeling of structural 
elasticity effects.  
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• Methods/checks for ensuring global conservation of mass, momentum and energy. Proper 
description of sloshing in a tank is for instance sensitive to how well liquid mass is 
conserved. However, the original CIP scheme has difficulty with this. In order to 
overcome this difficulty, establishing an exact conservative semi-Lagrangian scheme is a 
challenging task. Therefore, a CIP-based interface capturing method, so-called CIP-CSL3 
(CIP-Conservative semi-Lagrangian scheme with 3rd-order polynomial function) scheme 
should be incorporated in the numerical code. Instead of the spatial derivatives in the CIP 
method, this scheme uses cell-integrated value as the additional constraint to construct a 
cubic polynomial. Because this scheme introduces a slope control parameter, the 
sharpness of the density function variation across the interface can be retained in the 
calculation. Detailed description of the scheme can be found in Xiao & Yabe (2001) and 
Xiao & Ikebata (2003). The biggest merit of this scheme is the good mass conservation 
which is beneficial to long-time computations. Hu et al. (2004) applied this scheme for 
violent sloshing computations.  

 
• An account of surface tension. A continuum surface force (CSF) model (Brackbill et al., 

1992) can be incorporated in the computation code to approximate the effect of surface 
tension, in which the surface tension is considered as a continuous, three-dimensional 
effect across the interface. The surface tension force is included in the body force 
term if of Eq. (2.12) as follows: 

 

1
1

1

s
sf

σ ϕ
ϕ

ρ ϕ

⎛ ⎞∇
= − ∇ ⋅ ∇⎜ ⎟⎜ ⎟∇⎝ ⎠  

 
where σs is the surface tension coefficient. By applying this model, no extra treatment is 
needed even when the interface is topologically distorted. However, the practical 
importance of including surface tension in full scale conditions is limited. 

 
 
From the water entry study in Chapter 4, we can foresee there exists a threshold Froude 
number where the air cushion starts to occur. However, what the threshold Froude number 
should be needs future studies. Further, model tests are also required in order to validate the 
findings. 
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Figure A.1 Computational procedure for applying CIP to impressible flows 
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Figure A.1 illustrates briefly the computational procedure for applying CIP method to 
impressible flows. This procedure adopted in most of our computations, is proved to be very 
robust for incompressible multiphase computations.  
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