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Abstract

This is a thesis about control of marine propellers. All ships and underwater
vehicles, as well as an increasing number of offshore exploration and exploitation
vessels, are controlled by proper action of their propulsion systems. For safe and
cost effective operations, high performance vessel control systems are needed.
To achieve this, all parts of the vessel control system, including both plant
level and low-level control, must be addressed. However, limited attention has
earlier been given to the effects of the propulsion system dynamics. The possible
consequences of improper thruster control are:

• Decreased closed-loop vessel performance due to inaccurate thrust pro-
duction

• Increased vessel down-time and maintenance cost due to unnecessary me-
chanical wear and tear.

• Increased fuel consumption and risk of blackouts due to unpredictable
power consumption.

By focusing explicitly on the propeller operating conditions and the available op-
tions for low-level thruster control, this thesis presents several results to remedy
these problems.
Two operational regimes are defined: normal, and extreme conditions. In

normal operating conditions, the dynamic loading of the propellers is considered
to be moderate, and primarily caused by oscillations in the inflow. In extreme
conditions, the additional dynamic loads due to ventilation and in-and-out-of-
water effects can be severe. In order to improve the understanding of these loads
and develop a simulation model suitable for control system design and testing,
systematic model tests with a ventilating propeller in a cavitation tunnel and a
towing tank have been undertaken.
In conventional propulsion systems with fixed-pitch propellers, the low-level

thruster controllers are usually aimed at controlling the shaft speed. Other
control options are torque control and power control, as well as combinations of
the three. The main scientific contributions of this thesis are:

• A combined torque/power controller and a combined speed/torque/power
controller are designed. When compared to conventional shaft speed con-
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trol, the proposed controllers give improved thrust production, decreased
wear and tear, and reduced power oscillations.

• A propeller load torque observer and a torque loss estimation scheme is
developed, enabling on-line monitoring of the propeller performance.

• An anti-spin thruster controller that enables use of torque and power con-
trol also in extreme operating conditions is motivated and designed. By
applying the load torque observer to detect ventilation incidents, the anti-
spin controller takes control of the shaft speed and lowers it until the
ventilation incident is terminated.

• A propeller performance measure that can be used to improve thrust al-
location in extreme operating conditions is introduced.

The proposed controllers and estimation schemes are validated through theoreti-
cal analyses, numerical simulations, and experiments on a model-scale propeller.
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Abbreviations

API Additive PI anti-spin (control)
AS Anti-spin (control)
AUV Autonomous underwater vehicle
CCP Consolidated controlled CPP
CPP Controllable pitch propeller
DOF Degree of freedom
DP Dynamic positioning
EMS Energy management system
FPP Fixed pitch propeller
GES Globally exponentially stable
GNC Guidance, navigation, and control
GPS Global positioning system
ISS Input-to-state stable
LP Low-pass
MQP1 Modified combined torque/power (control) type 1
MQP2 Modified combined torque/power (control) type 2
MTC Manual thruster control
p Primary anti-spin action
P Power (control)
PE Persistently exciting
PM Pierson-Moskowitz (wave spectrum) or Position Mooring
PMS Power management system
Q Torque (control)
Qff Friction feedforward (control)
Qif Inertia feedforward (control)
QP Combined torque/power (control)
ROV Remotely operated vehicle
rps revolutions-per-second
s secondary anti-spin action
S Speed (control)
SB Speed bound anti-spin (control)



xiv NOMENCLATURE

SQP Combined speed/torque/power (control)
TS Torque scaling anti-spin (control)
UGES Uniformly globally exponentially stable
UGS Uniformly globally stable
UUB Uniformly ultimately bounded
UUV Untethered underwater vehicle

Lowercase

a [-] Symmetrical optimum tuning constant
at [-] Propeller constant for a linear KT −KQ relationship
bt [-] Propeller constant for a linear KT −KQ relationship
df [kg/m] Flow dynamics quadratic damping coefficient
e [rps] Shaft speed error
eb [rps] Shaft speed bound error for SB anti-spin controller
fQ [Nm] Propeller torque model
fT [N] Propeller thrust model
h [m] Propeller shaft submergence
h0 [m] Mean propeller shaft submergence
k [-] Parameter for weighting function α(z)
ka [-] Load torque observer gain
kb [-] Load torque observer gain
kg [-] Gear ratio motor:propeller
kj [m−1] Wave number for harmonic wave component j
km [-] Maximum motor torque/power constant
kp [-] Per unit gain for shaft speed control
kt [-] PID integral time constant tuning factor
k0 [-] KQ estimation scheme gain
m [-] Thrust/torque loss relation exponent
mf [kg] Flow dynamics equivalent mass
mV [-] Count of ventilation incidents the last TV seconds
mV,max [-] Maximum count of ventilation incidents the last TV seconds
n [rps] Propeller shaft speed
nas [rps] Desired shaft speed during ventilation
nb [rps] Shaft speed bound for SB anti-spin control
nbp [rps] Propeller bollard pull shaft speed
nc [rps] Control coefficient switch half width
nd [rps] Desired shaft speed, related to Td
nf [rps] Friction compensation switch half width
nm [rps] Motor speed
nmin [rps] Minimum shaft speed for ventilation detection
nN [rps] Rated motor speed
nr [rps] Propeller shaft speed reference
nras [rps] Shaft speed reference for anti-spin control
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ns [rps] MQP controller threshold shaft speed
ns1 [rps] SQP controller threshold shaft speed (speed/torque)
ns3 [rps] SQP controller threshold shaft speed (torque/power)
ṅ+slew [s−2] Reference generator increasing speed rate limit
ṅ−slew [s−2] Reference generator decreasing speed rate limit
ṅ+vent [s−2] Rate limit for increasing nras
ṅ−vent [s−2] Rate limit for decreasing nras
p [-] Parameter for weighting function α(z)
r [-] Parameter for weighting function α(z)
rb [-] Speed bound factor for SB anti-spin control
s [-] The Laplace operator
sni [-] Shaft speed sensitivity function for controller i
spi [-] Power sensitivity function for controller i
sqi [-] Torque sensitivity function for controller i
sti [-] Thrust sensitivity function for controller i
t [s] Time
td [-] Thrust deduction coefficient
wh [-] Hull wake factor
xp [-] Vector of time-varying propeller states

Uppercase

Ap [m2] Propeller disc area
CQ [-] 4-quadrant propeller torque coefficient
CT [-] 4-quadrant propeller thrust coefficient
D [m] Propeller diameter
Hs [m] Sea state significant wave height
Ic [kgm2] Inertia compensation rotational inertia
Im [kgm2] Rotational inertia seen from the motor
Is [kgm2] Rotational inertia seen from the propeller
Ja [-] Advance ratio/advance number
Jr [-] Reference advance ratio
Jrn [-] Reference advance ratio for speed control
Jrp [-] Reference advance ratio for power control
Jrq [-] Reference advance ratio for torque control
Jrt [-] Reference advance ratio for thrust control
Kd [-] PID controller derivative gain
Ki [-] PID controller integral gain
Kp [-] PID controller proportional gain
KQ [-] Actual torque coefficient
KQC [-] Control torque coefficient
KQJ [-] Open-water torque coefficient
KQ0 [-] Nominal torque coefficient
KQ0r [-] Reverse nominal torque coefficient
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KT [-] Actual thrust coefficient
KTC [-] Control thrust coefficient
KTJ [-] Open-water thrust coefficient
KT0 [-] Nominal thrust coefficient
KT0r [-] Reverse nominal thrust coefficient
Ky [Nm] Diesel engine torque constant
Kω [Nms] Linear shaft friction coefficient
N [-] Number of harmonic wave components in sea state
Pa [W] Actual propeller power
Pbp [W] Bollard pull propeller power
Pm [W] Motor power
Pmax [W] Maximum motor power
Pn [W] Nominal propeller power
PN [W] Rated motor power
Pr [W] Propeller power reference
Prs [W] Signed propeller power reference
Ṗ+slew [W/s] Reference generator increasing power rate limit
Ṗ−slew [W/s] Reference generator decreasing power rate limit
P/D [-] Propeller pitch ratio
Qa [Nm] Actual propeller torque
Qb [Nm] Speed bound torque for SB anti-spin controller
Qbp [Nm] Bollard pull propeller torque
Qc [Nm] Saturated commanded torque seen from propeller
Qcas [Nm] Commanded propeller torque for anti-spin control
Qcc [Nm] Commanded propeller torque for QP control
Qccm [Nm] Commanded propeller torque for MQP control
Qci [Nm] Commanded propeller torque, with i the controller index
Qcm [Nm] Commanded motor torque (related to Qc)
Qcn [Nm] Commanded propeller torque for S control
Qcp [Nm] Commanded propeller torque for P control
Qcq [Nm] Commanded propeller torque for Q control
Qcs [Nm] Commanded propeller torque for SQP control
Qc0 [Nm] Unsaturated commanded torque seen from propeller
Qf [Nm] Propeller shaft friction torque
Qff [Nm] Total friction compensation torque
Qff0 [Nm] Static friction compensation torque
Qff1 [Nm] Linear friction compensation torque
Qf0 [Nm] Static friction compensation torque constant
Qf1 [Nms] Linear friction compensation torque constant
Qif [Nm] Inertia compensation torque
Qif,as [Nm] Additional inertia compensation torque for anti-spin
Qm [Nm] Motor torque
Qmax [Nm] Maximum motor torque
Qmp [Nm] Motor torque seen from propeller
Qn [Nm] Nominal propeller torque
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QN [Nm] Rated motor torque
QPI [Nm] Additive commanded torque for API anti-spin control
Qr [Nm] Propeller torque reference
Qs [Nm] Static shaft friction torque constant
R [m] Propeller radius
Ta [N] Actual total thrust
Tad [N] Actual duct thrust
Tap [N] Actual propeller thrust
Tbp [N] Bollard pull propeller thrust
Td [N] Desired thrust from the thrust allocation system
Tf [s] Shaft speed filter time constant
Ti [s] PID controller integral time constant
TIs [s] Mechanical time constant
Tm [s] Motor time constant
Tn [N] Nominal propeller thrust
Tp [s] Sea state peak wave period
Tr [N] Thrust reference, input to the low-level controller
Tras [N] Anti-spin thrust reference
Tvent [s] Dwell-time for ventilation detection
TV [s] Time interval for thruster performance evaluation
U [m/s] Vessel surge velocity
Ua [m/s] Induced velocity in the propeller wake
V0.7 [m/s] Undisturbed incident velocity to the prop. blade at 0.7R
Va [m/s] Propeller advance (inflow) velocity
Vp [m/s] Flow velocity through the propeller disc
Y [-] Diesel engine fuel index

Greek

αb [-] Torque loss calculation weighting function
αc [-] QP controller weighting function
αs [-] SQP controller weighting function
αχ [-] Performance factor weighting function
β [rad] Propeller blade angle of attack at radius 0.7R
βv,off [-] Threshold torque loss for ventilation termination
βv,on [-] Threshold torque loss for ventilation detection
βQ [-] Total torque loss factor
βQJ [-] Torque loss factor for inline flow
βQV [-] Torque loss factor for ventilation, hysteresis, and disc area
βT [-] Total thrust loss factor
βTA [-] Thrust loss factor for loss of propeller disc area
βTH [-] Thrust loss factor for lift hysteresis
βTJ [-] Thrust loss factor for inline flow
βTV [-] Thrust loss factor for ventilation, hysteresis, and disc area
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βTV 0 [-] Thrust loss factor for ventilation
γQ [-] Anti-spin commanded torque scaling factor
γT [-] Anti-spin thrust reference scaling factor
γ̇fall [s−1] Rate limit for decreasing γQ
γ̇rise [s−1] Rate limit for increasing γQ
c [-] Control coefficient switch constant
f [-] Friction compensation switch constant
φ [-] Constant for CCP pitch mapping
ζ [-] Ventilation detection flag
ζj [m] Amplitude of harmonic wave component j
ζr [-] Reference generator damping ratio
ζw [m] Surface elevation due to waves
ηa [-] Propeller efficiency parameter
ηh [-] Hull efficiency
ηm [-] Mechanical efficiency
ηp [-] Overall propulsion efficiency
ηr [-] Relative rotative efficiency
η0 [-] Open-water propeller efficiency
θp [-] Vector of fixed propeller parameters
λc [-] Control coefficient switching function
ρ [kg/m3] Density of water
τ [N,Nm] 3DOF total thrust vector acting on the vessel
τd [N,Nm] 3DOF desired thrust vector from thrust allocation
τn [s] Time constant for nras filter
τm [s] Diesel engine time delay
τ r [s] Reference generator time constant
τγ [s] Time constant for γQ filter
φ [rad] Pitch angle
φDP [rad] Maximum pitch angle for DP
φj [rad] Phase of harmonic wave component j
φr [rad] Reference pitch angle for CPP
χj [-] Performance measure for thruster j
χQ [-] Torque performance factor
χT [-] Thrust performance factor
χV [-] Ventilation performance factor
χV,min [-] Minimum ventilation performance factor
ω [rad/s] Propeller angular velocity (ω = 2πn)
ωj [rad/s] Circular frequency of harmonic wave component j
ωr0 [rad/s] Reference generator natural frequency



Chapter 1

Introduction

Most marine vessels are fitted with propellers and thrusters, and rely on these
to conduct station-keeping, manoeuvring, and transit operations. The main
focus of this thesis will be on modelling, simulation, and control of propellers
on surface vessels with electric propulsion systems. Examples of such vessels
are offshore service vessels, shuttle tankers, drilling vessels, pipe-laying vessels,
and diving support vessels. The operation of the propellers and thrusters has
several important implications:

• The thrust production affects the positioning capability of the vessel.

• The power consumption affects the vessel’s fuel consumption, generator
wear and tear, and risk of power system blackouts.

• Mechanical wear and tear leads to repairs and vessel down-time.

The operational philosophy of the propulsion system hence affects three impor-
tant aspects of the operation of a marine vessel: safety, economy, and perfor-
mance.

1.1 Background
The real-time control hierarchy of a marine guidance, navigation, and control
(GNC) system may be divided into three levels (Balchen et al., 1976, 1980a,b;
Sørensen et al., 1996; Strand, 1999; Strand and Fossen, 1999; Fossen and Strand,
1999, 2001; Strand and Sørensen, 2000; Lindegaard and Fossen, 2001; Fossen,
2002; Lindegaard, 2003; Bray, 2003; Sørensen, 2005) :

• The guidance and navigation system, including local set-point and path
generation.

• The high-level plant control, including thrust allocation and power man-
agement.
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• The low-level thruster controllers.
The guidance and navigation system includes sensors and a vessel observer for
filtering and reconstruction of signals. The local set-point and path generation
may include functions like low-speed tracking, weather-vaning, set-point chas-
ing, and ROV follow. The high-level controller, which can be a dynamic posi-
tioning (DP) controller, position mooring (PM) controller, or joystick controller,
computes the forces in surge and sway and moment in yaw needed to counteract
the environmental loads and track the desired path. The thrust allocation sys-
tem calculates the thrust setpoints for each propulsion unit according to a given
optimization criterion — e.g. minimization of power consumption — such that
the high-level control commands are fulfilled. The low-level thruster controllers
control the thrusters according to the setpoints from the thrust allocation sys-
tem. The control hierarchy is illustrated in Figure 1.1, which shows a block
diagram of a typical DP operation. In manual thruster control mode (MTC),
the setpoints to the thrusters are set by manual operation of the thruster levers.

Various types of propulsion units exist, as well as different types of pro-
pellers. The two main types of propellers are fixed pitch propellers (FPP) and
controllable pitch propellers (CPP). FPP can only be controlled by the pro-
peller speed, whereas CPP can be controlled by both the propeller speed and
the angle of the propeller blades (pitch). Both propeller types can be open or
ducted. On a ducted propeller, the propeller is situated inside a duct, or nozzle.
This increases the efficiency of the propeller at low vessel speeds (Kort, 1934).
For main propulsion, three common solutions exist: mechanical direct-drive

propellers, large azimuth thrusters, and podded propulsion units. Mechanical
direct-drive propellers are connected directly to a prime mover (usually a diesel
engine), possibly via gears and clutches, and can be either FPP or CPP. Azimuth
thrusters can be rotated to produce thrust in any direction. They are driven by
an electric motor inside the hull via shafts and gears, and can be either FPP
or CPP. The former is the most common solution. Podded propulsion units are
usually also rotatable, but the propeller is here normally driven by an electric
motor and drive situated in a pod outside the hull. However, also mechanical
pods exist. Propellers on pods are usually of the FPP type.
For auxiliary propulsion, to aid in station-keeping and low-speed manoeu-

vring, the most common solutions are tunnel thrusters and various types of
azimuth thrusters. Often, such azimuth thrusters can be stowed inside the hull
during transit (retractable or swing-up). Both FPP or CPP are used.
Other propulsion concepts are also in use; examples are the Voith Schneider

cycloidal thruster, the Gill jet, and water jets. Some vessels also have rudders
and/or stabilizing fins. These topics will not be considered in this thesis.
Strictly speaking, a thruster should be defined as a propeller operated at

low vessel speeds. In this work, “thrusters” and “propellers” will be treated
as equivalent expressions. More information on various propulsion units and
propulsion configurations can be found in e.g. Ådnanes et al. (1997), Kallah
(1997), Deter (1997), and Bray (2003).
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Figure 1.1: Block diagram of a typcial DP operation, including environment,
vessel, guidance and navigation system, high-level control, and thruster dynam-
ics including low-level thruster control.

Measurements of the actual propeller thrust is normally not available. Hence,
the mapping from desired to actual thrust must be considered as an open-loop
system, and there is no guarantee of fulfilling the high-level control commands.
Therefore, if the low-level controllers have bad performance, the stability and
bandwidth of the whole positioning system will be affected. Still, the topic
of propulsion control has received relatively little attention in literature, even
though the use of electrical thrusters have opened up new possibilities for im-
proved low-level control. It appears that the same has been true for industry;
with notable exceptions, most propeller manufacturers have focused on the pro-
peller design, and the control system vendors have focused on the high-level
controllers.
More recently, also the issues of low-level thruster dynamics and controller

design have received increased attention, and their impact on the overall vessel
performance have become more apparent. However, this work has mostly been
focused on underwater applications like remotely operated vehicles (ROVs) and
autonomous underwater vehicles (AUVs), see Yoerger et al. (1991), Healey et al.
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(1995), Tsukamoto et al. (1997), Whitcomb and Yoerger (1999a,b), Bachmayer
et al. (2000), Blanke et al. (2000), Fossen and Blanke (2000), Bachmayer and
Whitcomb (2001), Guibert et al. (2005), and Pivano et al. (2006c). Control of
electrically driven propellers for surface vessels has been treated in Sørensen et
al. (1997), Strand (1999), Smogeli et al. (2003, 2004a,b, 2005a, 2006), Pivano et
al. (2006b,a), Bakkeheim et al. (2006), Ruth et al. (2006), Sørensen and Smogeli
(2006), and Smogeli and Sørensen (2006b). Most of these references form the
basis for this thesis. Various governor control schemes for diesel engines with
directly driven propellers are presented in Blanke and Busk Nielsen (1987, 1990).

This thesis is focused on DP operations, which includes station-keeping and
low-speed tracking, as well as joystick control. A surface vessel in DP will be
subject to environmental forces from waves, wind, and current. Depending on
the environmental condition and the task the vessel is performing — and hence
its velocity and heading relative to the environmental forces — the vessel will be
moving in its 6 degrees of freedom (DOF): surge, sway, heave, roll, pitch, and
yaw. DP vessels are usually fully actuated or over-actuated in order to control
all three horizontal-plane DOF (surge, sway, and yaw) simultaneously.
The motion of the vessel coupled with the waves and current give dynamic

operating conditions for the thrusters, depending on the severity of the envi-
ronmental condition. In calm conditions, with small waves and little current,
the vessel will have no significant motion except its controlled trajectory. The
thrusters will then usually be well submerged, and experience small fluctua-
tions in the relative water velocities. This means that the dynamic loading is
of small magnitude, and the thruster performance will be close to ideal, which
again implies accurate thrust production and small oscillations in shaft speed,
motor torque, propeller torque, and motor power. For DP in calm conditions,
the thrust demands are usually low compared to the installed thrust capabil-
ity. Hence, with efficient thrust allocation, it is possible to utilize the thrusters
in a near optimal manner. However, some thrust loss effects may still be ex-
perienced. These are mainly due to frictional and suction losses caused by
the Coanda effect, see e.g. Lehn (1992) and references therein, and thruster-
thruster interaction effects if proper forbidden zones are not implemented in
the thrust allocation system (Lehn, 1992; Ekstrom and Brown, 2002; Koushan,
2004; Brown and Ekstrom, 2005). These effects cannot be counteracted by the
low-level thruster controller, and will therefore not be further treated in this
work. The losses can, however, be significant. They must be targeted from the
vessel design and thrust allocation system.
For increasing severity of the environmental condition, wind, current, and

waves have different influence on the operating condition and utilization of the
thrusters. The mean and slowly-varying environmental loads are composed of
wind, current, and wave-drift forces, including the dynamic (but low-frequency)
loads due to current fluctuations and wind gusts. These forces must be coun-
teracted with the thrusters to make the vessel follow its desired trajectory. The
mean loads on the vessel therefore mainly contribute to alter the setpoints sent
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to the thrusters from the high-level control system. The first order oscillatory
wave forces (Froude-Krylov and diffraction forces) give rise to an oscillatory
vessel motion in all six DOF. These wave-frequency motions should not be
counteracted in normal to moderate seas, since this would lead to unnecessary
wear and tear of the thrusters, as well as increased fuel consumption. This
is solved by proper wave-filtering in the DP system (Strand and Fossen, 1999;
Lindegaard and Fossen, 2001; Lindegaard, 2003; Fossen, 2002). Dong (2005)
and the references therein showed that in high to extreme seas, wave-filtering
should not be used, and that hybrid control could be used to switch between a
bank of controllers suitable for varying environmental conditions. Even though
the thrusters have slowly-varying setpoints, the oscillatory vessel motion com-
bined with the sea elevation and the current- and wave-induced water velocities
mean that the thrusters are operating in a dynamic environment. This leads
to dynamic loading of the propeller which, depending on the chosen control
strategy, leads to oscillations in propeller thrust and torque, shaft speed, motor
torque, and motor power. In addition, the mean relative velocity due to cur-
rent and low-frequency vessel motion alter the operating point of the thrusters.
Depending on the performance of the low-level thruster controllers, the result
is a deviation of the average produced thrust from the thrust setpoints. This is
compensated for by the integral action of the DP system, but at the expense of
reduced positioning bandwidth.
In severe to extreme conditions, the large environmental loads often lead

to high utilization of the installed thrust capacity. At the same time, the sea
elevation and vessel motion means that the thrusters will experience large mo-
tions relative to the water. If the thrusters are well submerged, the inflow will
be highly disturbed, and the propeller loading affected accordingly. If the sub-
mergence becomes too low, the thrusters may suffer severe thrust losses due to
ventilation and in-and-out-of-water effects, leading to reduced thrust capability
and large power transients. Appropriate operation of the propulsion system is
then of high importance for the stability and performance of the power gen-
eration and distribution system, since the thrusters often are the main power
consumers. This is a critical issue with respect to safe operation of the ves-
sel, which in addition affects the fuel consumption and wear and tear of the
generator sets. Recent results also indicate that the unsteady loading during
ventilation can give rise to significant mechanical wear and tear of the propulsion
unit (Koushan, 2004, 2006). This is believed to be the cause of the widespread
mechanical failures of tunnel thrusters and azimuth thrusters, with costly re-
pairs and increased vessel down-time as consequences.
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1.2 Problem statement
To summarize the previous section, it clear that a propeller may be subject to
a wide range of operating conditions, both in terms of environmental loads and
thrust demand. For a DP vessel, the thrust demand will normally increase with
the severity of the environmental condition, as will the dynamic loading of the
propellers and thrusters. It is then rather contradictory that the thruster con-
trollers today are designed for operation in calm conditions, without considering
the effects of the large thrust losses that may occur in harsher conditions.
With the apparent need for high-performance thruster controllers, and the

lack of available references on this topic, the motivation for this thesis is to
remedy the current situation by focusing explicitly on low-level thruster control.
The main problem statement may be formulated as follows:

“Given a thrust set-point and an unknown environmental condition, how can
the propeller be controlled in order to:

• optimize the thrust production,

• reduce the mechanical wear and tear,

• avoid unnecessary power transients,

and at the same time have reliable performance?”.

1.3 Main contributions
The following are believed to be the main contributions of this thesis, organized
by chapters:

Chapter 2: a) New experimental results on a propeller subject to ventilation
and in-and-out-of-water effects at low advance velocities are presented,
both in terms of cavitation tunnel test to capture quasi-static effects, and
open-water tests to capture dynamic effects. The test have been performed
in cooperation with Aarseth (2003) and Ruth (2005). b) An associated
ventilation model suitable for time-domain simulation is developed. The
results have been partly published in Smogeli et al. (2003, 2006).

Chapter 3: a) The thruster control problem is formalized in terms of con-
trol coefficients, friction and inertia compensation, and the three funda-
mental controllers (speed, torque, and power control). This has earlier
been partly published in Smogeli et al. (2005a) and Sørensen and Smogeli
(2006). The concepts of torque and power control of electrically driven
propellers for surface vessels were first published in Sørensen et al. (1997)
and Strand (1999). b) The fundamental controllers are used to construct
various combined controllers, as partly published in Smogeli et al. (2004a)
and Sørensen and Smogeli (2006).
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Chapter 4: Shaft speed, torque, and power sensitivity functions are intro-
duced, and thrust sensitivity functions, as presented in Sørensen et al.
(1997) and Strand (1999), are put into an improved framework. An im-
proved steady-state analysis of the controller performance in presence of
thrust losses is also presented. The results have been partly published in
Sørensen and Smogeli (2006).

Chapter 5: The complete chapter on propeller observers, loss estimation, and
performance monitoring is believed to be a new contribution. The results
have been partly published in Smogeli et al. (2004a,b, 2006) and Smogeli
and Sørensen (2006b).

Chapter 6: The complete chapter on anti-spin thruster control is believed to
be a new contribution. The results have been partly published in Smogeli
et al. (2004b, 2006) and Smogeli and Sørensen (2006b).

Chapter 7: a) An experimental comparison of the fundamental controllers and
the combined controllers, as partly published in Smogeli et al. (2005a) and
Sørensen and Smogeli (2006), is presented. b) An experimental validation
of the various anti-spin controllers, and a comparison with the fundamental
controllers in extreme conditions, are also presented. The results have been
partly published in Smogeli and Sørensen (2006b).

Chapter 8: Extensions of the new control concepts to CPP and transit are
presented.

Chapter 9: a) The concept of anti-spin thrust allocation is introduced. b)
A thruster performance measure that can be utilized to improve thrust
allocation is developed.

1.4 List of publications

The following authored and coauthored publications are directly connected with
the work presented in this thesis, presented in chronological order:

1. Ø. N. Smogeli and A. J. Sørensen (2006b). Anti-Spin Thruster Control
for Ships. Submitted to Automatica.

2. A. J. Sørensen and Ø. N. Smogeli (2006). Torque and Power Control of
Electrically Driven Propellers on Ships. Accepted for publication in IEEE
Journal of Oceanic Engineering.

3. E. Ruth and Ø. N. Smogeli (2006). Ventilation of Controllable Pitch
Thrusters. SNAME Marine Technology, 43(4):170-179.

4. Ø. N. Smogeli, A. J. Sørensen and K. J. Minsaas (2006). The Concept of
Anti-Spin Thruster Control. To appear in Control Engineering Practice.
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Design and Testing of Dynamically Positioned Marine Vessels. Proceedings
of the International Conference on Marine Simulation And Ship Maneu-
verability, MARSIM’03. Kanazawa, Japan, August 25-28.

1.5 Organization of the thesis

In order to investigate the importance of proper low-level thruster control, one
must start with studying the loads that the propeller is subjected to. This is the
topic of Chapter 2, which deals with propeller modelling and simulation. Focus
is put on the thrust loss effects that can be counteracted by the low-level thruster
controllers, both in normal and extreme conditions. The characteristics of a
propeller subject to ventilation and in-and-out-of water effects is investigated,
and systematic tests from a cavitation tunnel and a towing tank at NTNU are
presented. Based on this, a simplified simulation model that captures the main
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characteristics of the losses is proposed. Finally, a complete propeller simulation
model suitable for thruster controller design and testing is presented.
Chapter 3 considers thruster control in normal operating conditions. The

main control objectives are defined, and the general structure of the proposed
thruster controller is shown. Some important aspects regarding choice of control
parameters, use of reference generators, and the need for friction and inertia
compensation are discussed, before the three fundamental control concepts are
presented: shaft speed, torque, and power control. It is then shown how the
fundamental controllers can be combined in various ways to exploit their best
individual properties, followed by a controller comparison by simulations.
The fundamental control concepts are further analyzed in Chapter 4, where

sensitivity functions are established to investigate the steady-state thrust, torque,
shaft speed, and power in the presence of thrust losses. These analysis tools are
applied to two cases: losses due to changes in inflow to the propeller, and losses
due to ventilation. Further, the transient response of the controllers is discussed
with the aid of a Lyapunov analysis of the shaft speed equilibrium.
In Chapter 5 a propeller load torque observer is designed, and a loss esti-

mation scheme developed. In addition, a scheme for monitoring of the thruster
performance is proposed. Simulations are provided to demonstrate the perfor-
mance of the presented concepts.
Chapter 6 is dedicated to controller design for extreme operating conditions.

Motivated by the similar problem of a car wheel losing friction on a slippery
surface during braking or acceleration, the concept of anti-spin thruster control
is introduced. In order to detect the high thrust loss incidents, a ventilation
detection scheme is designed. An anti-spin thruster controller that is applicable
to all the controllers designed for normal operating conditions is then proposed.
Finally, some alternative anti-spin control concepts are presented, and the pro-
posed anti-spin controller tested by simulations.
To further validate the proposed control concepts and estimation schemes,

extensive model tests in the Marine Cybernetics Laboratory (MCLab) at NTNU
have been undertaken. The results from these tests — both in normal and ex-
treme conditions — are presented in Chapter 7, showing that the controllers and
observers perform as intended.
Chapter 8 shows how the presented concepts can be extended to CPP and

transit. This applies to the controllers for normal conditions, the observers and
loss estimation schemes, and the anti-spin thruster controllers.
Finally, anti-spin thrust allocation in extreme conditions is discussed in

Chapter 9. The main concept is to monitor the performance of all the propulsion
units on a vessel, and attempt to utilize the propellers with the best operating
conditions. This may both improve the vessel’s positioning performance and
reduce the mechanical wear and tear of the propulsion units.
The appendices provide additional background material, extensions of the

presented concepts, and additional results.



Chapter 2

Propeller modelling

The actual propeller thrust Ta and torque Qa are influenced by many parame-
ters. Ta and Qa can in general be formulated as functions of the shaft speed
n in revolutions-per-second (rps), time-varying states xp (e.g. pitch ratio, ad-
vance velocity, submergence), and fixed thruster parameters θp (e.g. propeller
diameter, geometry, position):

Ta = fT (n,xp,θp), (2.1)

Qa = fQ(n,xp,θp). (2.2)

In this work, speed controlled FPP are of main concern. The pitch ratio is then a
fixed parameter. The functions fT (·) and fQ(·) may include thrust and torque
losses due to e.g. in-line and transverse velocity fluctuations, ventilation, in-
and-out-of water effects, thruster-thruster interaction, and dynamic flow effects.
In addition, the dynamics of the motor and shaft must be considered. In the
following sections, propeller characteristics, some quasi-static loss effects, and
dynamic effects due to the water inflow, motor, and shaft are considered.

Remark 2.1 Modelling of propellers will in this thesis be treated from a control
point of view. This means that the models are required to be accurate enough to
capture the main physical effects, and such facilitate control system design and
testing. However, details on propeller design and hydrodynamic performance
will not be considered.

2.1 Propeller characteristics

Propellers are, with the exception of tunnel thrusters, usually asymmetric and
optimized for producing thrust in one direction. The propeller characteristics
will therefore depend on both the rotational direction of the propeller and the
inflow direction. The four quadrants of operation of a propeller are defined in
Table 2.1. The quasi-static relationships between Ta, Qa, n, the diameter D,
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1st 2nd 3rd 4th

n ≥ 0 < 0 < 0 ≥ 0
Va ≥ 0 ≥ 0 < 0 < 0

Table 2.1: The 4 quadrants of operation of a propeller, parameterized by the
advance velocity Va and the shaft speed n.

and the density of water ρ are commonly given by:

Ta = fT (·) = sign(n)KTρD
4n2, (2.3)

Qa = fQ(·) = sign(n)KQρD
5n2. (2.4)

KT and KQ are the thrust and torque coefficients, where the effects of thrust
and torque losses have been accounted for. For normal operation, KT > 0 and
KQ > 0. The propeller power consumption Pa is written as:

Pa = 2πnQa = sign(n)2πKQρD
5n3. (2.5)

In general, the thrust and torque coefficients can be expressed in a similar
manner as Ta and Qa in (2.1, 2.2):

KT = KT (n,xp,θp) =
Ta

sign(n)ρD4n2
, (2.6)

KQ = KQ(n,xp,θp) =
Qa

sign(n)ρD5n2
. (2.7)

For ease of notation, the arguments of KT and KQ will mostly be omitted in
the remainder of this work. The nominal thrust Tn, torque Qn, and power Pn
are the ideal values when no thrust losses are present. They are expressed by
the nominal thrust and torque coefficients KT0 and KQ0:

Tn = sign(n)KT0ρD
4n2, (2.8)

Qn = sign(n)KQ0ρD
5n2, (2.9)

Pn = 2πnQn = sign(n)2πKQ0ρD
5n3. (2.10)

The nominal thrust, torque, and power of a reversed propeller are expressed as in
(2.8, 2.9, 2.10), but with KT0 and KQ0 replaced with their reverse counterparts,
KT0r > 0 and KQ0r > 0. The nominal coefficients are assumed to be constant
for a given propeller geometry.
The difference between the nominal and actual thrust and torque may be

expressed by the thrust and torque reduction coefficients — or thrust and torque
loss factors — βT and βQ (Faltinsen et al., 1980; Minsaas et al., 1983, 1987):

βT = βT (n,xp,θp) =
Ta
Tn

=
KT

KT0
, (2.11)

βQ = βQ(n,xp,θp) =
Qa

Qn
=

KQ

KQ0
. (2.12)
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If the difference between KT0 and KT0r is included in βT , and the difference
between KQ0 and KQ0r is included in βQ, the actual thrust, torque, and power
may be written as:

Ta = sign(n)KT0ρD
4n2βT (n,xp,θp), (2.13)

Qa = sign(n)KQ0ρD
5n2βQ(n,xp,θp), (2.14)

Pa = sign(n)2πKQ0ρD
5n3βQ(n,xp,θp). (2.15)

Hence, all disturbances and external states are introduced through βT and βQ.
The arguments of βT and βQ will for notational simplicity mostly be omitted.

2.1.1 Open-water characteristics

The thrust and torque coefficients for deeply submerged propellers subject to
an in-line inflow will here be termed KTJ and KQJ . These coefficients are
experimentally determined by so-called open water tests, usually performed in
a cavitation tunnel or a towing tank. For a specific propeller geometry, KTJ

and KQJ are often given as functions of the advance number Ja:

Ja =
Va
nD

, (2.16)

where Va is the propeller advance (inflow) velocity. This relationship is com-
monly referred to as an open-water propeller characteristics. In general, the
coefficients are written as KTJ = KTJ(Va, n) and KQJ = KQJ(Va, n). In the
following, the arguments Va and n will mostly be omitted. The corresponding
open-water efficiency η0 is defined as the ratio of produced to consumed power
for the propeller:

η0 =
VaTa
2πnQa

=
VaKTJ

2πnKQJD
=

JaKTJ

2πKQJ
. (2.17)

Systematic tests with similar propellers are typically compiled in a propeller
series. The perhaps most well-known series is the Wageningen B-series from
MARIN in the Netherlands, see van Lammeren et al. (1969), Oosterveld and
van Oossanen (1975), and the references therein. In the latter reference, KTJ

and KQJ are given from:

KTJ = f1

µ
Ja,

P

D
,
Ae

A0
, Z

¶
, (2.18)

KQJ = f2

µ
Ja,

P

D
,
Ae

A0
, Z,Rn,

t

c

¶
, (2.19)

where P/D is the pitch ratio, Ae/A0 is the expanded blade-area ratio, Z is the
number of blades, Rn is the Reynolds number, t is the maximum thickness of
the blade section, and c is the chord length of the blade section. Figure 2.1
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Z P/D Ae/A0 KT0 KQ0 KT0r KQ0r

4 1.0 0.70 0.445 0.0666 0.347 0.0628

Table 2.2: Wageningen B4-70 example propeller data: Diameter D, blade num-
ber Z, pitch ratio P/D at radius 0.7D/2, expanded blade area ratio Ae/A0,
nominal thrust coefficient KT0, nominal torque coefficient KQ0, reverse nomi-
nal thrust coefficient KT0r, and reverse nominal torque coefficient KQ0r.
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Figure 2.1: Open-water characteristics for the Wageningen B4-70 propeller.

shows an example propeller characteristics for the Wageningen B4-70 propeller
with main parameters given in Table 2.2. The Wageningen B4-70 propeller
will be used in examples and simulation studies throughout this thesis. The
open-water characteristics in Figure 2.1 is extended into the fourth quadrant,
i.e. negative Va. If the propeller operating direction is reversed, this can be
modelled by a similar open-water characteristics for negative shaft speeds. For
normal operation, KTJ and KQJ are both positive. In off-design conditions,
however, this may not be the case. If Ja is increased slightly beyond the value
for which KTJ is zero (i.e. a high Va compared to n), the thrust becomes
negative while the torque is still positive. For a further increase in Ja, both the
thrust and torque become negative. The propeller is then said to be windmilling,
and the propeller is in practice producing power instead of absorbing it.

Remark 2.2 The open-water characteristics is specific to a certain propeller
geometry. However, the general shape, as shown in Figure 2.1, will remain the
same, regardless of the propeller. This can be explained by the physics of the
propeller; the lift and drag of the propeller blades will give decreasing thrust
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and torque for increasing Ja, and the unsteady operating conditions for small
negative Ja will lead to a drop in the thrust and torque.

Model representations

For simulation purposes, various representations of the open-water characteris-
tics may be used. By expressing KTJ and KQJ as second order polynomials in
Ja, Ta and Qa can be written explicitly as functions of Va and n:

KTJ = KT0 + αT1Ja + αT2Ja |Ja| , (2.20)

KQJ = KQ0 + αQ1Ja + αQ2Ja |Ja| , (2.21)

⇓
Ta = Tnnn |n|+ Tnv |n|Va + TvvVa |Va| , (2.22)

Qa = Qnnn |n|+Qnv |n|Va +QvvVa |Va| , (2.23)

where αT1, αT2, aQ1, and αQ2 are constants, and:

Tnn = ρD4KT0, Qnn = ρD5KQ0,
Tnv = ρD3αT1, Qnv = ρD4αQ1,
Tvv = ρD2αT2, Qvv = ρD3αQ2.

(2.24)

With αT2 = αQ2 = 0, this reduces to the linear approximation commonly used
in the control literature (Blanke, 1981; Fossen, 2002):

KTJ = KT0 + αT1Ja, (2.25)

KQJ = KQ0 + αQ1Ja, (2.26)

⇓
Ta = Tnnn |n|+ Tnv |n|Va, (2.27)

Qa = Qnnn |n|+Qnv |n|Va. (2.28)

It can be argued that the quadratic polynomial is a physically more reasonable
representation that the linear one (Kim and Chung, 2006). (2.22) and (2.23)
clearly show the dependence of the thrust and torque on the advance velocity.
Figure 2.1 indicates that the linear and quadratic polynomial representations in
reality only are applicable in the first quadrant: they clearly cannot capture the
drop in KTJ and KQJ for small negative Ja. In addition, as will be discussed
in Section 2.1.6, the open-water characteristics of a ducted propeller is usually
significantly different, and less linear, than for an open propeller. Hence, these
approximations must be used with care both for simulations and controller-
observer design, and verified against the open-water characteristics of the actual
propeller.
Is it then possible to formulate a better simulation model in terms of KTJ

and KQJ? If a higher-order polynomial in Ja is chosen for KTJ and KQJ , the
resulting representation is singular for n = 0. Another option is to tabulate
KTJ and KQJ as functions of Ja, and use interpolation and equations (2.3,
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2.4) to calculate Ta and Qa. However, since n → 0 from (2.16) implies that
Ja → ±∞, a zero-crossing of n is not covered by the open-water characteristics
unless special precautions are taken. In addition, since Ta and Qa are given
as quadratic functions of n, Ta = Qa = 0 for n = 0, regardless of Va (and
hence Ja). For simulation purposes, the singularity for n = 0 is therefore an
inherent weakness in this model representation. The reason is probably that
the open-water characteristics originally was developed for propellers on vessels
in transit, i.e. for the first quadrant of operation, where only nonzero n were
considered.
In order to capture the correct quasi-static behavior for all 4 quadrants,

and also give physically reasonable results for time-varying inflow and shaft
speed, it appears necessary to use another parametrization than the open-water
characteristics.

2.1.2 4-quadrant model

A more accurate propeller characteristics model was apparently first defined
by Miniovich (1960), and later used by amongst others van Lammeren et al.
(1969) for some of the Wageningen B-series propellers. It is based on the angle
of attack β of the propeller blade at radius 0.7R:

β = arctan(
Va

0.7πnD
) = arctan(

Va
0.7ωR

), (2.29)

where R = D/2 is the propeller radius, and ω = 2πn is the propeller angular
velocity. The four quadrants of operation are now defined as:

1st : 0◦ ≤ β ≤ 90◦, Va ≥ 0, n ≥ 0,
2nd : 90◦ < β ≤ 180◦, Va ≥ 0, n < 0,
3rd : −180◦ < β ≤ −90◦, Va < 0, n < 0,
4th : −90◦ < β ≤ 0◦, Va < 0, n ≥ 0.

(2.30)

This model hence covers also the windmilling regime. The non-dimensional
thrust and torque coefficients CT and CQ are defined as:

CT =
Ta

1
2ρ(Va

2 + (0.7ωR)2)π4D
2
=

Ta
1
2πR

2ρV0.72
, (2.31)

CQ =
Qa

1
2ρ(Va

2 + (0.7ωR)2)π4D
3
=

Qa

πR3ρV0.72
, (2.32)

where the undisturbed incident velocity to the propeller blade at radius 0.7R is
defined as:

V0.7 =

q
Va

2 + (0.7ωR)2. (2.33)

For a specific propeller, CT is in van Lammeren et al. (1969) modelled by a 20th

order Fourier series in β with coefficients AT (k) and BT (k), and CQ similarly
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Figure 2.2: CT and CQ for the 4-quadrant representation of the Wageningen
B4-70 propeller.

modelled with coefficients AQ(k) and BQ(k):

CT (β) =
20X
k=0

(AT (k) cosβk +BT (k) sinβk), (2.34)

CQ(β) =
20X
k=0

(AQ(k) cosβk +BQ(k) sinβk). (2.35)

Note that the Fourier series coefficients in (2.34, 2.35) have zero-based indexing.
This formulation has many advantages over the open-water characteristics, since
it is based on a physically more sound foundation: it is valid for any shaft speed
and inflow, and covers all four quadrants of operation. However, it requires
significantly more model knowledge than the open-water characteristics, and
the necessary data may not be available.

CT (β) and CQ(β) may be parameterized in other ways than the Fourier
series representations in (2.34, 2.35), e.g. by tabulating CT and CQ as functions
of β and using interpolation in this table. Figure 2.2 shows CT (β) and CQ(β)
for the Wageningen B4-70 propeller with main parameters given in Table 2.2.
Numerical values for the Fourier coefficients can be found in van Lammeren et
al. (1969), and are also reproduced in Appendix A.
Since both the 1-quadrant model in (2.6, 2.7) and the 4-quadrant model in

(2.31, 2.32) express Ta and Qa as functions of n and Va, it is possible to establish
some relationships between them. Ja from (2.16) and β from (2.29) are related
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by:

β = arctan(
Va

0.7πnD
) = arctan(

Ja
0.7π

). (2.36)

By equating (2.6) and (2.31), the relationship between KT and CT is found to
be:

KT = CT
π

8
(J2a + 0.7

2π2), (2.37)

and similarly betwenn KQ and CQ from (2.7) and (2.32):

KQ = CQ
π

8
(J2a + 0.7

2π2). (2.38)

2.1.3 Simplified 4-quadrant model

A simplified 4-quadrant model may be derived by using only the first terms in
the Fourier series for CT and CQ:

CTS(β) = AT (0) +AT (1) cosβ +BT (1) sinβ

= AT0 +AT1 cosβ +BT1 sinβ, (2.39)

CQS(β) = AQ(0) +AQ(1) cosβ +BQ(1) sinβ

= AQ0 +AQ1 cosβ +BQ1 sinβ, (2.40)

where CTS and CQS are the simplified 4-quadrant coefficients. This model
preserves the good properties of the 4-quadrant representation, but gives very
coarse approximations of the true propeller characteristics.

2.1.4 General momentum theory with propeller lift and
drag

An alternative representation of the propeller thrust and torque can be obtained
by treating the lift and drag of the individual propeller blades as the source of
propeller thrust and torque. This approach is based on the generalized Rankine-
Froude momentum theory, and is called the blade element theory (Drzewiecki,
1920). It is described in detail in Durand (1963), and can also be found in e.g.
Lewis (1989) or Carlton (1994).
While useful for understanding the physics of the propeller, this formulation

is less convenient for quasi-static simulation purposes than the representations
presented above. The lift and drag based model requires calculation of the
axially and rotationally induced velocities in the propeller disc in order to cal-
culate the effective angle of attack of and incident velocity to the propeller
blades. Since these velocities depend on the propeller thrust, the representation
becomes implicit. However, if the dynamics of the inflow to the propeller is
to be accounted for, as done in Healey et al. (1995), Whitcomb and Yoerger
(1999a), and Bachmayer et al. (2000), such a formulation may be necessary. In
their model, however, the advance velocity is set to zero, and rotational flow is
neglected. Flow dynamics is further treated in Section 2.2.5.
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Figure 2.3: Open-water characteristics of the Wageningen B4-70 propeller for
varying pitch ratio P/D.

2.1.5 Controllable pitch propellers

On a CPP there are two control parameters: the shaft speed n and the pitch
angle φ. Often, the pitch is given in terms of the pitch/diameter ratio P/D. φ
is the angle between the propeller blade at 70% of the propeller radius and a
line perpendicular to the propeller shaft. The pitch P is the distance travelled
by the propeller in the axial direction after one revolution, if it is assumed to be
in an unyielding medium, see e.g. Lewis (1989) or Carlton (1994). φ is related
to P/D by:

φ = arctan(
P/D

π
). (2.41)

The open-water CPP characteristics in terms of KTJ and KQJ must be speci-
fied with three parameters, i.e. KTJ = KTJ(Va, n, φ) andKQJ = KQJ(Va, n, φ).
This can be viewed as a set of conventional open-water characteristics (in terms
of Ja) or 4-quadrant characteristics (in terms of β) for varying P/D. Figure
2.3 shows the open-water characteristics with varying P/D for the fixed pitch
Wageningen B4-70 propellers, with data taken from Oosterveld and van Oos-
sanen (1975). For increasing P/D, the thrust and torque increases for fixed
Va and n, and the optimum open-water efficiency η0 is found for a higher Ja.
In order to model a CPP for all 4 quadrants of operation, a large data set is
needed. Such data can be found e.g. in Oosterveld (1970), or in Strom-Tejsen
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and Porter (1972) based on the work by Gutsche and Schroeder (1963). A 1-
quadrant model can be found in Chu et al. (1979). Some of these data sets are
also reproduced in Carlton (1994).

Remark 2.3 It is important to distinguish between a series of FPP with varying
P/D, as given in e.g. van Lammeren et al. (1969) and Oosterveld and van
Oossanen (1975), and a single CPP with varying P/D, as given in e.g. Chu et
al. (1979) and Strom-Tejsen and Porter (1972).

2.1.6 Characteristics of various propeller types

The propeller characteristics presented here are applicable to open and ducted
propellers. Tunnel thrusters are a special case where the propeller is not sig-
nificantly affected by Va. This can be explained by the sheltered position of
the propeller inside the tunnel, as well as limited sway velocity of the vessel.
Tunnel thrusters are therefore usually modelled without any influence from Va.
For a FPP, this means that KTJ(Va, n) = KT0 and KQJ(Va, n) = KQ0. Note
that the effective thrust of a tunnel thruster is strongly affected by the surge
velocity of the vessel (Chislett and Björheden, 1966; Brix, 1978; Karlsen et al.,
1986). This is regarded as a thrust loss effect, and not included in the propeller
characteristics.
From a modelling point of view, the main difference between open and ducted

propellers lies in the shape of the thrust and torque coefficients. If the open-
water diagrams of an open propeller and a ducted propeller are compared, the
total thrust coefficient of the ducted propeller (i.e. including the duct thrust)
typically has the steeper slope. The torque coefficient, on the other hand, has
a smaller slope. This means that the efficiency of the ducted propeller is higher
at low Ja and lower at high Ja. Equivalently, the duct increases the efficiency of
a heavily loaded propeller, whereas it decreases the efficiency of a lightly loaded
propeller. These relationships are strongly affected by the length of the duct
relative to the propeller diameter. More on this can be found in e.g. Lewis
(1989), Carlton (1994), and the references therein. A comparison of the open-
water characteristics of the Wageningen B4-70 propeller and the Wageningen
Ka4-70 propeller in a 19A nozzle (Oosterveld, 1970) is given in Figure 2.4. The
difference in characteristics is the reason for ducted propellers being used on
e.g. anchor-handling vessels and tugs, where the bollard pull thrust is of main
importance, whereas open propellers are preferred for vessels where the focus is
on efficiency in transit.

2.1.7 Propeller efficiency

The presence of a hull close to a main propeller affects the propeller efficiency
in several ways, see e.g. Lewis (1989). The average advance velocity of the
propeller differs from the ship speed U by the hull wake fraction number wh:

Va = U(1− wh). (2.42)
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Figure 2.4: Comparison of open-water characteristics for the Wageningen B4-70
propeller (thick lines) and the Wageningen Ka 4-70 propeller in a 19A nozzle
(thin lines), both for P/D = 1.0.

Additionally, the velocity field set up by the propeller changes the pressure
distribution on the hull, which leads to an increased resistance ds, expressed by
the thrust deduction coefficient td:

ds = Tatd. (2.43)

By the principle of thrust identity, the thrust coefficient behind the hull is
normally assumed to be unchanged compared to open water, while the torque
coefficient will be affected by the change in inflow at the stern. This is accounted
for by the relative rotative efficiency ηr, such that the effective torque coefficient
KQB = KQ/ηr, and hence the effective torque QB = Qa/ηr. The mechanical
efficiency representing frictional losses in gears and bearings is termed ηm. The
overall propulsion efficiency ηp is found as the ratio between the useful work done
by the propeller in overcoming the vessel resistance Rv at speed U , divided by
the work required to overcome the shaft torque:

ηp =
RvU

(2πnQB/ηm)
=

Ta(1− td)Va
(2πnQa/ηr)(1− wh)

ηm

=
TaVa
2πnQa

(1− td)

(1− wh)
ηrηm = η0ηhηrηm, (2.44)

where ηh = (1− td)/(1− wh) is defined as the hull efficiency, and η0 is defined
in (2.17). For station-keeping, where U ≈ Va ≈ 0, ηp ≈ 0 since η0 ≈ 0. For
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propellers other than main propellers, ηp is not well-defined.
Although η0 = 0 for Va = 0, the propeller is still doing work by accelerating

water through the propeller disc. By using the momentum theory result for the
propeller induced wake velocity, a better indication of the actual propeller hy-
drodynamic efficiency is given by the efficiency parameter ηa. From momentum
theory, see e.g. Durand (1963), the mean water flow velocity Vp through the
propeller disc is given for Va = 0 by:

Vp =
1

2
sign(Tn)

s
2 |Tn|
ρAp

, (2.45)

where Tn is the nominal thrust as given in (2.8), and Ap is the propeller disc
area. ηa is obtained as the ratio of work done in accelerating the water flow to
the work done in overcoming the propeller torque:

ηa =
VpTn
2πnQn

=

s
2 |Tn|
ρAp

|Tn|
4πnQn

=
K
3/2
T0√

2π3/2KQ0

, (2.46)

where (2.8) and (2.9) have been inserted for Tn and Qn. The efficiency pa-
rameter, which does not take into account the thrust deduction or mechanical
efficiency, is obviously a propeller constant. As should be expected, a high thrust
coefficient combined with a low torque coefficient will give a high hydrodynamic
efficiency, and hence a high ηa. From Table 2.2, the efficiency parameter of
the Wageningen B4-70 propeller is ηa = 0.566 for n > 0, and ηa = 0.413 for
n < 0. For the Wageningen Ka 4-70 propeller in a 19A nozzle, as shown in
Figure 2.4, the corresponding efficiency parameters are ηa = 1.094 for n > 0,
and ηa = 0.494 for n < 0.

2.1.8 Thrust and torque relationships

Due to the working principles of the propeller, the thrust and torque are closely
coupled. From an investigation of the effect of roughness on open propellers,
Lerbs (1952) showed that for a given propeller, a change ∆KQ of KQ implies a
proportional change ∆KT of KT , i.e.:

∆KT = ct∆KQ, (2.47)

where ct is a constant. This implies that KT and KQ can be linearly related by:

KT = atKQ + bt, (2.48)

where at and bt are constants for an FPP, and functions of the pitch ratio for a
CPP. This was applied by Zhinkin (1989), who provided full-scale experimental
result to show that this relationship is stable for a large range of propeller op-
erating conditions, including varying advance ratios, in waves, and for oblique
inflow. The KT −KQ relationship in (2.48) derived from open-water tests was
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Figure 2.5: Relationship between KT and KQ for the Wageningen B4-70 pro-
peller in the range −0.9 < Ja < 1.2.

shown to hold also when the propeller is installed behind a hull. It appears,
however, that Zhinkin (1989) only considered the first quadrant of operation.
In order to use a relation like (2.48) for all four quadrants, it is hence necessary
to investigate its validity in the remaining three quadrants. Figure 2.5 shows
the relationship between KT and KQ for the Wageningen B4-70 propeller in
the range −0.9 < Ja < 1.2, both for positive n (first and fourth quadrant) and
negative n (second and third quadrant). For n > 0, the KT −KQ relationship is
almost exactly linear. For n < 0, there are some discrepancies, especially in the
second quadrant (negative Ja), corresponding to KQ < 0.06. The agreement is
still found to be acceptable. Although one should not generalize, this indicates
that the relationship in (2.48) derived from the first quadrant data is applicable
in all four quadrants. For other propellers, it may be that two KT −KQ rela-
tionships should be used: one for n > 0 and one for n < 0. For the Wageningen
B4-70 propeller, the KT −KQ relationship is given by the coefficients:

at = 7.52, bt = −0.054. (2.49)

From the discussion in Section 2.1.6, it can be anticipated that (2.48) will not
hold equally well for ducted propellers, since the shapes of the KT and KQ

curves then are inherently different. Figure 2.6 shows the KT −KQ relationship
for a Wageningen Ka4-70 propeller in a 19A nozzle, with data from the first and
third quadrant taken from Oosterveld (1970). This indicates that the linear
relationship is less applicable to ducted propellers.
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2.2 Dynamic effects
The propeller models presented in Section 2.1 are all quasi-static. Dynamic
effects are introduced by considering the propeller motor and shaft, and also by
flow dynamics.

2.2.1 Shaft dynamics

The torque balance for the propeller shaft is written:

Isω̇ = Qmp −Qa −Qf (ω), (2.50)

where Qmp is the motor torque inflicted on the propeller shaft, Is is the moment
of inertia for the shaft, propeller, and motor, ω is the shaft angular velocity, and
Qf (ω) is the shaft friction. The friction may for most applications be viewed as
a sum of a static friction — or starting torque — Qs and a linear component:

Qf (ω) = sign(ω)Qs +Kωω, (2.51)

where Kω is a linear friction coefficient. If desired, more sophisticated friction
models may be used, including e.g. nonlinear elements, Stribeck friction, and
other hysteresis effects. This has not been considered in the current work, and
the model in (2.51) is considered sufficient for control design purposes.
In general, friction is assumed to be more significant on small thrusters

typically used on underwater vehicles and in experimental setups, than on large
thrusters used on surface vessels.
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Remark 2.4 The propeller torque Qa in (2.50) should in general also include
an added mass term due to hydrodynamic forces in phase with ω̇. This is dis-
cussed in the context of propeller vibrations in e.g. Wereldsma (1965) and Par-
sons and Vorus (1981). However, the added mass will depend on propeller shaft
speed, advance velocity, and propeller submergence, and extensive model knowl-
edge is required in order to include such terms. Neglecting the added mass will
give a reduced rotational inertia, and hence faster dynamics. If the necessary
model knowledge is available, the added mass could be included in Is.

2.2.2 Motor dynamics

Electric motor

The inner torque control loop — or inner current loop — is inherent in the design
of most applied control schemes for variable speed drive systems. The torque is
controlled by means of motor currents and motor fluxes with high accuracy and
bandwidth. By the cascaded control principle, an outer control loop — e.g. a
speed controller — sets the commanded torque setpoint of the inner loop. For this
principle to work, the inner current loop must have a much higher bandwidth
than the outer loop. In the design of the outer control loop, the closed loop of
an electric motor and its current controller may be assumed to be equivalent
with a first order system (Leonhard, 1996):

Q̇m =
1

Tm
(Qcm −Qm), (2.52)

where Qm is the motor torque, Tm is the time constant, and Qcm is the com-
manded motor torque from the thruster controller. This model is applicable to
both AC and DC motors; once the current loop is closed, there is little difference
between the two types of machines. From a practical point of view, the current
loop is usually embedded in the motor drive, and is not at the disposition of the
user. The main importance is therefore to account for its dynamics in the design
of the higher-level controllers (Leonhard, 1996). According to Nilsen (2001), the
dynamics of the current loop are, in the context of shaft speed controller design,
dominated by the filter on the shaft speed measurement. The motor power Pm
is given by:

Pm = Qm2πnm, (2.53)

where nm is the motor speed. The rated (nominal) torque and power for con-
tinuous operation of the motor are denoted QN and PN . The corresponding
rated motor shaft speed nN is given from:

PN = QN2πnN . (2.54)

The maximum torque Qmax and power Pmax for the motor are usually set to:

Qmax = kmQN , Pmax = kmPN , (2.55)

where km typically is in the range of 1.1− 1.2 (Sørensen et al., 1997).
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Diesel engine

A diesel engine is modelled in a similar way as the electric motor. According to
Blanke (1981), the diesel engine dynamics may for control design and propulsion
performance evaluation be approximated by a time constant Tm and a time delay
τm. The diesel engine transfer function becomes:

Qm(s) = e−sτm
Ky

1 + sTm
Y (s), (2.56)

where s is the Laplace operator, Ky is the motor torque constant, and Y is
the fuel index (governor setting). This means that Qcm in (2.52) is given by
Qcm = KyY , where Y is the control signal from the diesel controller. The diesel
engine power is proportional to the fuel flow (Blanke, 1994). From Blanke
(1981), the time constant is empirically found to be:

Tm ≈
0.9

2πnm
, (2.57)

and the time delay can be approximated by half the period between consecutive
cylinder firings. A diesel engine with N cylinders rotating at speed nm rps then
has the time delay:

τm ≈
1

2nmN
. (2.58)

2.2.3 Accounting for gears

Many electrically driven propulsion units are equipped with a gearbox between
the motor and the propeller shaft. In this work, Qm is the motor torque as
seen from the motor, and n is the shaft speed as seen from the propeller. The
relations between the motor torque Qm, the motor shaft speed nm, the motor
torque Qmp seen from the propeller, and the propeller shaft speed n, are given
by the gear ratio kg:

Qmp = kgQm, (2.59)

n = nm/kg. (2.60)

For thruster controller design and analysis, all torques and shaft speeds are as
seen from the propeller, with the exception of Qm and Qcm. For example, the
commanded torque Qc from the controller is referred to the propeller, and Qcm

calculated from Qcm = Qc/kg. The various terms are illustrated in Figure 2.7.
By the principle of conservation of energy, the rotational inertia Is seen by the
propeller can be transformed to the rotational inertia Im seen by the motor by:

Isω̇ω = Imkgω̇kgω,

⇓
Im = Is/k

2
g . (2.61)
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Figure 2.7: Block diagram of the controller, motor, propeller/shaft, and gears.

2.2.4 Bollard pull relationships

When the vessel is stationary such that Va = 0, and the thruster motor is
operated at its max continuous rating, the thruster is said to be in the bollard
pull condition. The bollard pull thrust, torque, power, and shaft speed (seen
from the propeller) are denoted Tbp, Qbp, Pbp, and nbp, respectively. From
(2.60), nbp is given from nN by:

nbp = nN/kg, (2.62)

and Tbp and Qbp are given from KT0, KQ0, and nbp by:

Tbp = ρD4KT0n
2
bp, Qbp = ρD5KQ0n

2
bp. (2.63)

At the bollard pull condition (with Qm = QN ), the steady-state rotational
dynamics (2.50) must satisfy:

kgQN = Qs +Kω2πnbp +Qbp, (2.64)

and PN , Pbp, and the mechanical efficiency ηm must satisfy:

Pbp = Qbp2πnbp = ηmPN . (2.65)

That is, ηm is given from the power lost in static and linear friction:

ηm =
Qbp

QNkg
=

kgQN −Qs −Kω2πnbp
QNkg

. (2.66)

If higher-order friction terms were to be included, similar relationships would
apply.

Remark 2.5 In industrial applications, a constant mechanical efficiency is usu-
ally assumed. This implies that Pa = ηmPm for any shaft speed, where ηm is
found from (2.65). This is equivalent to using a purely quadratic friction model,
as opposed to the static plus linear model in (2.51). If the true friction contains
significant static and/or linear terms, the assumption of a purely quadratic model
will under-estimate the friction losses for n < nbp.
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2.2.5 Propeller flow dynamics

Experimental results have shown that overshoots in thrust and torque during
transient operation cannot be explained by steady state theory. An investiga-
tion into the effects of flow dynamics on the performance of low-level thruster
controllers and underwater vehicle positioning was initiated by Yoerger et al.
(1991). In this work, a lumped parameter one-state model for the shaft dynam-
ics and flow dynamics was proposed:

Isω̇ = Qmp −K1ω |ω| ,
Ta = K2ω |ω| , (2.67)

where an instantaneous relationship between the propeller shaft speed and the
flow rate is included in the parameters K1 and K2. The shaft friction is ne-
glected.
To describe overshoots in thrust found in experimental data, Healey et al.

(1995) extended (2.67) to include the flow velocity Vp through the propeller as
a state. From momentum theory, see e.g. Durand (1963), Vp is connected with
the advance velocity Va and the induced velocity in the wake UA through:

Vp = Va +
1

2
UA. (2.68)

In the work of Healey et al. (1995), a control volume of water around the pro-
peller was modelled as a mass-damper system, leading to the following two-state
model:

Isω̇ = Qmp −Kωω −Qa,

mf V̇p = Ta − dfVp |Vp| ,
Ta = Ta(ω, Vp),

Qa = Qa(ω, Vp), (2.69)

where mf can be viewed as the mass of water in the control volume, and df is
a quadratic damping coefficient. The mappings T (ω, Vp) and Qa(ω, Vp) employ
foil theory with sinusoidal lift and drag curves and the local angle of attack at
radius 0.7R to model the propeller blade lift and drag. Healey et al. (1995) also
proposed using a time constant on the thrust and torque for open propellers to
model lift and drag build-up. A summary of the theory and assumptions behind
these models, as well as experimental verification, can be found in Whitcomb
and Yoerger (1999a).
Discrepancies between (2.69) and experimental results were attempted ex-

plained by Bachmayer et al. (2000). Here it was concluded that the inclusion
of rotational flow dynamics did not improve model performance, whereas the
use of non-sinusoidal lift and drag curves specific to the tested propeller gave
significant performance improvements. Note that these models all assume that
Va = 0, and hence only are applicable for station-keeping operations with small
current.
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In Blanke et al. (2000) the flow dynamics in (2.69) were extended to be valid
for Va ≥ 0 by:

mf V̇p = Ta − 2df |Vp| (Vp − Va). (2.70)

This is useful if the model is needed in the first quadrant of operation, e.g. for
an output feedback thrust controller on an AUV, as proposed by Fossen and
Blanke (2000).
A flow dynamics model valid for all Va is still subject to further research.

For surface vessels, which normally have a much slower response than a small
underwater vehicle, the flow dynamics of the propeller is probably insignificant
(Healey et al., 1995).

2.3 Loss effects
In ideal conditions, i.e. deeply submerged and in calm water, a propeller pro-
duces thrust and torque according to the nominal models in (2.8) and (2.9). A
thrust loss is here defined as any deviation of the thrust and torque from the
nominal values. The effect of the thrust losses may be expressed by the thrust
and torque reduction coefficients βT and βQ, as defined in (2.11) and (2.12).
Thrust losses are in this work divided in two groups:

1. Losses that mainly affect the propeller loading,

2. Losses that mainly affect the propeller wake.

For low-level thruster control, loss effects in group 1 are the most interesting,
since these to some extent may be compensated for by the thruster controller.
The main loss effects to consider in this group are fluctuations in the in-line
water inflow to the propeller, ventilation, and in-and-out-of-water effects. These
will be studied in more detail in the following sections.
The main loss effects in group 2 are losses due to transverse water inflow

and thruster-hull interaction. Transverse inflow, i.e. water inflow perpendicular
to the propeller axis, will introduce a force in the direction of the inflow due
to deflection of the propeller race for open and ducted propellers. This may
be referred to as cross-coupling drag (Lehn, 1992). The transverse flow will
to some extent also alter the loading of the propeller. For tunnel thrusters,
the transverse inflow will be caused by vessel forward or reverse speed, which
gives rise to speed or suction losses (Chislett and Björheden, 1966; Brix, 1978;
Karlsen et al., 1986).
For azimuthing thrusters, both thrust reduction and change of thrust direc-

tion may occur due to thruster-hull interaction caused by frictional losses, and
pressure effects when the thruster race sweeps along the hull (Lehn, 1992). The
last is referred to as the Coanda effect. These effects cannot be significantly
affected by the low-level thruster controller, and must be accounted for during
design of the propulsion system and hull, as well as in the thrust allocation
algorithm. These topics will not be further treated in this thesis.
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A loss effect that cannot easily be categorized is thruster-thruster interac-
tion, which is caused by influence of the propeller race from one thruster on
a neighboring thruster. This may lead to significant thrust losses, if appropri-
ate precautions are not taken in the thrust allocation algorithm (Lehn, 1992;
Ekstrom and Brown, 2002; Koushan, 2004; Brown and Ekstrom, 2005). The
propeller race may influence the neighboring thruster in several ways, depend-
ing on the angle of the propeller race relative to the thrust direction of the
affected thruster. In general, both the in-line and the transverse water inflow
will be altered. In addition, the level of vorticity in the water is increased, giving
rise to unsteady loading.
The hydrodynamics of a propeller affected by thrust losses is highly complex,

and each of the mentioned thrust loss effects deserve a detailed study. Addi-
tionally, industrial experience shows that a simple superposition of the various
loss effects may give too conservative estimates of the total thrust losses. This
may be explained by the nonlinear interactions between the loss effects, which
are difficult to account for. In order to develop accurate simulation models for
propellers on a vessel in a seaway, it will be necessary to undertake comprehen-
sive studies of both the individual loss effects and their interactions. This is
considered outside the scope of this work. Instead, simplified models suitable
for time-domain simulation and controller design, intended to capture the main
characteristics of the loss effects, will be presented.

Remark 2.6 The sensitivity to the different thrust losses depends on the type of
propeller or thruster, application of skegs and fins, hull design, and operational
philosophy. Main propellers are subject to ventilation and in-and-out-of-water
effects, as well as in-line and transverse losses. Azimuth thrusters and pods are
subject to losses caused by hull friction and interaction with other thrusters, and
may also be affected by ventilation. Tunnel thrusters are subject to transverse
losses due to current and vessel speed, and ventilation and in-and-out-of water
losses in heavy seas.

2.3.1 In-line water inflow

Waves, currents, and vessel motion induce a time-varying velocity field around
the propeller. This may be decomposed in an in-line component and a transverse
component. This is described in the simplified simulation model presented in
Appendix C. The simulation model gives the motion of a thruster on a vessel
in a seaway, including the relative submergence with respect to the free surface
and the relative water velocities.
The in-line, or axial, component gives rise to changes in the advance ve-

locity Va, and hence the advance number Ja (2.16). With a time-varying Ja,
the propeller operating point is moving on the KTJ and KQJ curves, see e.g.
Figure 2.1. For a fixed shaft speed n, this induces fluctuations in thrust, torque,
and power. Not many references seem to have discussed these effects explic-
itly, but some information may be found in Domachowski et al. (1997). The
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Figure 2.8: Thrust curves as functions of shaft speed n for varying Va, for the
Wageningen B4-70 propeller with diameter D = 4m.

thrust and torque fluctuations because of non-uniform inflow to the propeller
due to the presence of the hull and appendices are more well-documented, see
e.g. Ker Wilson (1963), Wereldsma (1965), Carlton (1994), Lewis (1989), and
references therein.
The thrust and torque loss factors due to variations in Va for a deeply sub-

merged propeller are denoted βTJ and βQJ , and may be written as:

βTJ(Va, n) =
KTJ(Va, n)

KT0
, (2.71)

βQJ(Va, n) =
KQJ(Va, n)

KQ0
. (2.72)

βTJ and βQJ can be both larger than and smaller than unity, since the variations
in Va may lead to both higher and lower propeller loading than the nominal value
for Va = 0. Figure 2.8 shows example thrust curves as functions of n for varying
Va. The 4-quadrant propeller characteristics of the Wageningen B4-70 propeller
has been used, and the propeller diameter set to D = 4m.
When performing simulations, Va and n will normally be time-varying states,

and the in-line thrust losses will be given implicitly from the model of the
propeller characteristics. However, it is also interesting to study the in-line
losses directly. This will be done more thoroughly in Chapter 4, where the
ability to counteract the in-line thrust losses is analyzed for various low-level
thruster controllers. Based on the propeller characteristics of the Wageningen
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Figure 2.9: Thrust and torque loss factors βTJ and βQJ due to in-line flow as
functions of Ja for the Wageningen B4-70 propeller.

B4-70 propeller in Figure 2.1, Figure 2.9 shows βTJ and βQJ as functions of
Ja. It is clear that vessel speed and/or current will lead to a steady-state offset
in thrust and torque, and that oscillations in the inflow caused by waves and
vessel motion will give rise to oscillations in thrust and torque.

Remark 2.7 Stettler et al. (2005) have studied the steady and unsteady forces
on open and ducted propellers in oblique inflow. Their findings show that the
decoupling in an axial and a transverse flow component, and the use of two
decoupled loss models for inline and transverse flow, is inadequate. Especially
for open propellers, there exists an effective excess thrust greater than what the
decoupled model would suggest. For the research presented here, this simplifica-
tion is still considered to be adequate, since oblique inflow is not of main con-
cern. However, a further investigation of the low-level controller performance
in oblique inflow is an interesting and important topic for future research.

2.3.2 Ventilation and propeller emergence

A propeller on a vessel subject to high waves may experience large vertical
motions relative to the free surface because of wave elevation and vessel wave-
frequency motion. This can result in large and abrupt thrust losses. The losses
may be contributed to three effects: loss of effective propeller disc area, ven-
tilation, and a lift hysteresis effect. In this work, ventilation will be used as a
common term for all these losses. In the literature, sometimes the term aeration
is also used.
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Loss of effective disc area

If the propeller emerges from the water, a thrust loss due to loss of effective
propeller disc area is experienced (Gutsche, 1967; Fleischer, 1973). The corre-
sponding thrust loss factor βTA can be found from a simple geometrical consid-
eration, by assuming that the resulting thrust is proportional to the submerged
propeller disc area:

βTA = real

µ
1− arccos(h/R)

π
+

h/R

π

p
1− (h/R)2

¶
. (2.73)

Here, h/R is the relative submergence, with h the propeller shaft submergence
and R the propeller radius. An alternative representation, where also the pro-
peller hub diameter is accounted for, is given in Koushan (2004). This loss
model is assumed to be valid for any propeller loading. A simplified, piecewise
linear representation is given by:

βTA ≈ 0.5 + 0.5(min(max(h/R,−1), 1)). (2.74)

An alternative representation is given in Minsaas et al. (1983) based on the
results from Faltinsen et al. (1980):

βTA =

⎧⎨⎩ 0, h/R < −0.48,
1− 0.675(1− 0.769h/R)1.258, −0.48 ≤ h/R ≤ 1.3,

1, h > 1.3.
(2.75)

(2.75) includes contributions from the so-called Wagner effect. This is conve-
nient if the dynamic effects of ventilation can be neglected, and only the average
thrust values are needed. In the following, the alternative representation (2.75)
will not be used, since the Wagner effect is included as a part of the lift hysteresis
effect. The three representations are compared in Figure 2.10.

Ventilation

Ventilation may occur when a propeller is operating in the proximity of the
free surface. If the propeller loading is sufficiently high, the low pressure on
the propeller blades may create a funnel through which air is drawn from the
free surface. This phenomenon is connected with co-orientation of the energy
in the surrounding water. The propeller sets up a rotating flow which causes
the free surface to deform, and a vortex starts to develop. Unless the rotating
flow is disturbed, this is a self-amplifying process, and the vortex develops into
a funnel. Air cavities then spread on the propeller blades, reducing their lift
and drag. A fully ventilated propeller may lose as much as 70-80% of its thrust
and torque. Several thorough studies of ventilated and partially submerged
propellers have been performed, see e.g. Shiba (1953), Gutsche (1967), Kruppa
(1972), Brandt (1973), Fleischer (1973), Scherer (1977), Hashimoto et al. (1984),
Guoqiang et al. (1989), and Olofsson (1996). Additional results and further
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studies with respect to vessel operational performance can be found in Faltinsen
et al. (1980), Minsaas et al. (1983, 1986, 1987), Karlsen et al. (1986), and Lehn
(1992). Ventilation is in the above references typically divided in three regimes:
non-ventilated, partially ventilated, and fully ventilated.
Non-ventilated regime: The propeller is deeply submerged, or fully sub-

merged and with low propeller loading. No ventilation occurs.
Partially ventilated regime: The propeller is partly, but not stationary ven-

tilated. That is, the level of ventilation and the location of the air cavities on
the propeller are time-varying. For high Ja, this regime is persistent. For low
Ja, it is an unstable regime that mainly exists as a transition between the two
other regimes.
Fully ventilated regime: A single ventilated cavity covers each of the propeller

blades, meaning that the pressure on the suction side of the propeller blades is
almost atmospheric. This is a relatively stable condition.
The three regimes are sketched as a function of Ja and h/R in Figure 2.11,

based on a similar figure in Olofsson (1996). The partially ventilated, unstable
regime for low Ja is marked as unstable. The regimes that are relevant for DP
are indicated on the Ja-axis.
The thrust loss factor due to ventilation is termed βTV 0, and is in general

expected to be a function of shaft speed, advance velocity, and submergence.

Lift hysteresis

For ventilation to terminate, the supply of air to the cavities on the propeller
blades must be stopped. The three most apparent causes for the funnel from
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Figure 2.11: Ventilation flow regimes, with the regimes relevant for DP indicated
on the Ja axis. Adopted from Olofsson (1996).

the surface to collapse are increased submergence of the propeller, disturbances
in the water, and decreased loading of the propeller. For a propeller in dy-
namic operating conditions, a combination of the two first causes will lead to
termination of the ventilation incident relatively soon after the propeller is fully
submerged. When the air supply to the cavities is stopped, two events must
take place before the full thrust is restored:

1. The cavities on the propeller blades must vanish in order to restore the
suction-side pressure.

2. The produced lift of the propeller blades must build up.

It appears that the first of these two effects has not been explicitly discussed in
the literature. However, a lot can be learned by studying the behavior of the air
cavities on the propeller blades, as done in Koushan (2006). It seems apparent
that the result is a time delay before the lift starts building up.
When the ventilated cavities disappear, there will be a sudden increase in

lift on the propeller blades. Wagner (1925) studied a similar problem for a two-
dimensional foil, and found that the sudden increase was 50% of the steady-state
lift, see also Newman (1977) or Durand (1963). The Wagner function gives the
ratio between the instantaneous lift and the steady-state lift, and shows that the
foil must travel about 20 chord lengths to recover its full lift. A similar behavior
is seen for a propeller that is moving in and out of ventilated condition, as first
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suggested by Faltinsen et al. (1980). According to Koushan (2004), a typical
propeller with pitch ratio P/D = 1 must travel about 4 revolutions at full
submergence to regain its full thrust.
For a propeller moving in and out of ventilated condition due to e.g. vessel

motion and waves, the combination of these two effects means that the thrust
build-up when the propeller stops ventilating is slower than the thrust loss when
the propeller starts ventilating. This gives a hysteresis in the thrust production,
with a corresponding thrust loss factor termed βTH .

Total thrust and torque loss

With βTA due to loss of disc area from (2.73), βTV 0 due to ventilation, and βTH
due to the lift hysteresis effect, the total thrust loss factor βTV is calculated from:

βTV = βTAβTV 0βTH . (2.76)

The corresponding torque loss factor βQV should always be larger than βTV ,
since otherwise increasing loss would give increasing propeller efficiency. Based
on previous results, Faltinsen et al. (1980) and Minsaas et al. (1983) suggested
using the relationship:

βQV = (βTV )
m, 0 < m < 1. (2.77)

Typical values for m are 0.8− 0.85 for an open propeller (Gutsche, 1967), 0.65
for a ducted propeller, and 0.575 for a tunnel thruster (Karlsen et al., 1986). In
the following, the lumped parameters βTV and βQV will for simplicity be called
ventilation loss factors.
The nature of the ventilation loss effects for low-speed applications will be

investigated further in the next section, where experimental results with a ven-
tilated propeller are presented, and an associated ventilation simulation model
developed.

2.4 Ventilation experiments and simulation model

In this work, the main focus is on DP operations, where Ja is small. Hence, only
the left-hand side of Figure 2.11 is relevant. It turns out that little information
on ventilation at low Ja is available in the literature. More specifically, the
dependence of the losses on the propeller shaft speed at low advance velocities,
i.e. Va ≈ 0, has not been investigated. This corresponds to Ja ≈ 0 in Figure
2.11, which gives only one degree of freedom in the model. Clearly, there must
be a dependence on the shaft speed also at Va ≈ 0. In order to improve the
understanding of these loss effects and develop a simulation model for a ven-
tilated propeller at low Va, systematic experiments in the cavitation tunnel at
NTNU have been performed (Aarseth, 2003; Overå, 2003; Ruth, 2005; Ruth and
Smogeli, 2006), as well as open-water experiments in a towing tank.
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2.4.1 Cavitation tunnel test results

A description of the experimental setup is given in Appendix D. In order to test
the propeller performance for normal free surface conditions, the pressure in the
cavitation tunnel was kept at atmospheric level. The advance velocity was kept
low, and the shaft speed and submergence were systematically varied. Time
series of the propeller thrust and torque were recorded, and the mean values for
each test run were calculated. Most of the experiments were conducted with
a ducted propeller with diameter D = 0.25m and pitch ratio P/D = 1. Some
results with an open propeller have also been obtained. Technical specifications
of the propeller are given in Section 7.1.
As an example of the obtained results, Figure 2.12 shows the ventilation

thrust loss factor βTV as a function of the relative submergence h/R and pro-
peller shaft speed n for a ducted propeller at advance ratio Ja ≈ 0.2. Figure
2.13 shows the corresponding relative thrust Ta/Tmax, where Tmax is the maxi-
mum thrust obtained in the experiments. The torque loss factor and propeller
torque are presented in Appendix D. The results obtained here agree well with
previous research, see. e.g. Shiba (1953) or Fleischer (1973), but contain addi-
tional information for the case of low Va. When deeply submerged, the thruster
performs as expected, with thrust proportional to n2. For low shaft speeds, and
hence low propeller loading, the thrust is constant for h/R = 1.5 to h/R = 1,
and then decreases almost linearly from h/R = 1 to h/R = 0. This is due to loss
of effective propeller disc area. For higher propeller loads, the thrust and torque
drop rapidly with decreasing submergence, indicating onset of ventilation. It is
evident that for a heavily loaded propeller, proximity to the surface may lead
to an abrupt loss of thrust and torque. The results indicate that a reduction of
the shaft speed in such a case may increase the thrust, since there is a “ridge” if
higher thrust for n ≈ 9rps. However, further experience with open-water tests
in a towing tank shows that once the propeller is ventilated, such an increase in
thrust is difficult to obtain. This will be further discussed below. The figure also
indicates that it is not possible to increase the thrust significantly by increasing
the shaft speed.
For an open propeller, the “ridge” of higher thrust seems to be less apparent,

and the thrust during ventilation is slightly increasing for increasing shaft speed.
This seems to be the major difference between the two propeller types when
considering ventilation; the structure of the losses is otherwise similar. This
is further explained in Appendix D, where additional experimental results for
an open propeller are presented. More experimental results, where also the
propeller pitch ratio is varied, can be found in Ruth and Smogeli (2006).

Remark 2.8 It has been assumed that the results obtained at Ja ≈ 0.2 are
representative for low Va in general, and hence also for Ja ≈ 0. From the
characteristics of the flow regimes sketched in Figure 2.11, this appears to be a
valid assumption.
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Figure 2.12: Ventilation thrust loss factor βTV vs. relative submergence h/R
and propeller shaft speed n at Ja ≈ 0.2 for a ducted propeller. From experi-
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2.4.2 Open-water test results

The experimental results from the cavitation tunnel are quasi-static. An actual
thruster on a vessel will be operating in more dynamic conditions, where tran-
sient effects are important. To investigate this, open water tests in the Marine
Cybernetics Laboratory (MCLab) at NTNU were carried out with the same
propeller. The experimental setup is described in Section 7.1.
Figure 2.14 shows Ta for increasing thrust reference Tr with a ducted pro-

peller in irregular waves. The shaft speed was as given by the shaft speed
mapping defined in (3.1), and the waves generated with a wave-maker using the
ITTC modified PM wave spectrum in (C.19) with Hs = 8cm and Tp = 1.2s.
The submergence with respect to the calm free surface was h0/R = 1.2. The
time series show that the thrust corresponds well with its reference for low Tr,
but as Tr is increased beyond 140N, the thrust drops and becomes highly tran-
sient. The propeller here enters a ventilated state, from which it is difficult
to exit, even if the shaft speed is reduced significantly: the ventilation persists
also for t > 270s, even though Tr is reduced to 100N. Hence, a hysteresis effect
appears to be present. This is sketched in Figure 2.15, based on a similar figure
in Koushan (2004).

Remark 2.9 The hysteresis seen here is different from the hysteresis effect
discussed in Section 2.3.2. The latter applies to the time-varying thrust of a
propeller moving in and out of ventilated condition, e.g. due to time-varying
submergence. The effect sketched in Figure 2.15 applies to the mean ventilation
loss as a function of propeller shaft speed for a fixed mean submergence.

The hysteresis effect discussed in Section 2.3.2 is demonstrated in Figure
2.16, which shows time series of Ta and Qa as functions of h/R during three
ventilation incidents with the open propeller. The ventilation incidents were
generated by moving the propeller in a sinusoidal vertical motion with amplitude
20cm and period 20s. The mean submergence was about 22cm, and the thrust
reference 240N. For h/R > 1.4, the propeller is deeply submerged, and Ta ≈
240N. As the submergence is reduced, full thrust is maintained until h/R ≈ 1.2,
where ventilation starts, and then drops quickly to Ta ≈ 60N at h/R ≈ 1.0
(a loss of about 75% of the thrust). The thrust is then gradually decreased
to Ta ≈ 40N at h/R ≈ 0.75. For h/R < 1.0, the increasing thrust loss is
considered to be mostly due to to loss of effective disc area, and there is no
significant hysteresis. As the submergence is increased, the thrust builds up
slowly until h/R ≈ 1.2, and then starts building significantly up until it reaches
the nominal value of Ta ≈ 240N at h/R ≈ 1.4.
Figure 2.17 shows time series of the propeller thrust for three different thrust

references during a ventilation incident for the ducted propeller. The ventila-
tion incidents were generated by moving the propeller in a sinusoidal vertical
motion with amplitude 15cm and period 5s. The mean submergence was about
15cm. The ventilation incident starts at time t ≈ 5.8s and stops at t ≈ 9s. The
resulting thrust during ventilation is practically the same for all the three thrust
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function of the shaft speed for a fixed propeller submergence.
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during three ventilation incidents with a ducted propeller, illustrating the thrust
and torque hysteresis effect. From experiments.

references. For Tr = 300N, the loss of thrust is approximately 85%. The devia-
tion of the measured submergence from the imposed motion may be explained
by local surface elevation due to disturbances in the water, and possibly also by
deviation in the actual from the commanded vertical motion.

2.4.3 Scaling of test results

Care must be taken in order to scale the model tests results to be valid for a
large propeller. However, the general behavior of a full-scale propeller subject
to ventilation and in-and-out-of water effects is expected to be similar to the
results from model scale. A discussion on the scaling laws that must be satisfied
in order to transfer the results to full scale is undertaken in Appendix D.
In Section 7, experimental results for a model scale propeller subject to

ventilation with various thruster controllers will be presented. These time series
cannot easily be transformed to full scale, and must be interpreted as they are
— in model scale. Investigation of the performance of various controllers in full
scale will instead be done by simulations, where realistic full-scale propeller data
can be used. This is believed to be a more appropriate approach, since there
are several important structural differences between model scale and full scale:
in addition to the problems with scaling of the propeller load, the friction and
inertia properties of the propeller and drive system may change significantly.
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2.4.4 Ventilation simulation model

Based on the experimental results presented in the previous sections, simplified
ventilation models suitable for time-domain simulation may be developed. The
ventilation thrust loss factor βTV can be expressed as a function of the relative
immersion h/R and the relative shaft speed n/nbp, where nbp is the bollard pull
shaft speed of the propeller, see (2.62). Because of the different characteristics
of the thrust during ventilation for open and ducted propellers, two simulation
models are proposed.

Open propeller

For an open propeller, there is no pronounced “ridge” of higher thrust, and
the thrust is slightly increasing for increasing shaft speed during ventilation.
The proposed ventilation loss model is shown in Figure 2.18. The loss model
is parameterized by two relative shaft speeds, two submergence ratios, and two
loss factors, marked as n1, n2, h1, h2, b1, and b2 in the figure. Additionally,
the main coordinates defining the loss surface are drawn as circles — the loss
factor surface is found by linear interpolation between these points. In the
regime with h/R > h2, the propeller is deeply submerged, and no losses are
experienced (βTV = 1). For h/R < −1 the propeller exits the water completely,
and no thrust is produced (βTV = 0). The remaining regime is −1 < h/R < h2.
For n/nbp < n1 the propeller is lightly loaded, and only losses due to loss of
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Figure 2.18: Ventilation thrust loss model for an open propeller, as function
of relative shaft speed n/nbp and relative submergence h/R, with n1 = 0.2,
n2 = 0.5, h1 = 1.1, h2 = 1.3, b1 = 0.3, and b2 = 0.25.

effective disc area are experienced. This is seen as the gradually decreasing
βTV for −1 < h/R < h1, modelled as in (2.74). For n/nbp > n2, the propeller
is heavily loaded, and decreasing submergence will lead to an abrupt loss of
thrust due to ventilation. The transition to-and-from the ventilated regime
happens for n1 < n/nbp < n2 and h1 < h/R < h2. For h/R < h1, additional
thrust losses are experienced due to loss of effective disc area (meaning that h1
should be close to 1). The thrust loss for a fully submerged and fully ventilated
propeller is defined by the two loss factors b1 and b2. b1 is the loss factor where
full ventilation starts (h/R = h1 and n/nbp = n2), and b2 is the loss factor at
maximum shaft speed (h/R = h1 and n/nbp = 1), with b2 equal to or slightly
lower than b1. For n > nbp, the loss function should be extrapolated. The
parameters in Figure 2.18 are chosen as n1 = 0.2, n2 = 0.5, h1 = 1.1, h2 = 1.3,
b1 = 0.3, and b2 = 0.25.

Ducted propeller

For a ducted propeller, there is a “ridge” of higher thrust, and the thrust is
nearly constant for increasing shaft speed during ventilation. The ventilation
loss model therefore becomes slightly more complicated, but is still simple to
parameterize. The difference from the simulation model for the open propeller is
that the loss factor during ventilation, i.e. for n/nbp > n2 and −1 < h/R < h2,
is modified to give constant thrust independently of n. This is done by the



44 Propeller modelling

0

0.2

0.4

0.6

0.8

1 −2
−1

0
1

2
3

0

0.5

1

1.5
n

2

n
1

h/R

b
1

h
2h

1

n/n
bp

β T
V

Figure 2.19: Ventilation thrust loss model for a ducted propeller, as function
of relative shaft speed n/nbp and relative submergence h/R, with n1 = 0.4,
n2 = 0.45, h1 = 1.1, h2 = 1.3, and b1 = 0.3.

following curve for h/R = h1:

βTV |h/R=h1 = b1(
n2

n/nbp
)2, (2.78)

and with a linear decrease of βTV as function of h/R, with βTV = 0 for h/R =
−1. Hence, the parameter b2 is not needed for this model, since the loss factor for
high n/nbp is implicitly given by b1. In addition, the change from non-ventilated
to ventilated condition is more rapid, which is implemented by a smaller interval
between n1 and n2. Figure 2.19 shows an example of the loss model for ducted
propellers, with n1 = 0.4, n2 = 0.45, h1 = 1.1, h2 = 1.3, and b1 = 0.3. The two
loss models are further compared with the experimental results in Appendix D.

Hysteresis effect

The hysteresis in the propeller loading may be modelled by introducing a posi-
tive rate limit β̇VH on βTV , such that the load is allowed to drop more quickly
than it is allowed to build up, i.e. −∞ < β̇TV ≤ β̇VH . This approach gives rea-
sonable correspondence with experimental time series. It is of course possible to
develop more sophisticated models of the hysteresis effect, but this has not been
considered necessary for the present applications. Using as a rule-of-thumb that
4 complete revolutions of the propeller is needed to develop full lift (Koushan,
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2004), and choosing the magnitude of the change to be 0.7, β̇VH may be found
from:

β̇VH =
0.7

4/n
≈ 0.18n. (2.79)

A further simplification is to choose the rate limit independent of n, with e.g.
the fixed value β̇VH ≈ 0.18nbp.

Torque loss factor

The torque loss factor βQV is calculated from βTV using (2.77), with m = 0.85
for open propellers, and m = 0.65 for ducted propellers. In terms of simulation
variables, the thrust and torque ventilation loss factors for low advance velocities
are given as:

βTV = βTV (h, n), (2.80)

βQV = βQV (h, n). (2.81)

Tunnel thrusters

No results for a tunnel thruster have been obtained in this work. From the
results in Karlsen et al. (1986) and Minsaas et al. (1986), the behavior of a tunnel
thruster is expected to be similar to that of a ducted propeller. A ventilation
loss model similar to Figure 2.19 is therefore assumed to be applicable, with
m = 0.575 for calculation of βQV . However, further research is needed in order
to confirm this.

2.4.5 Ventilation simulation model verification

Figure 2.20 shows βTV from the simulation model as a function of h/R. The
model parameters are the same as in Figure 2.19, the hysteresis rate limit is set
to β̇VH = 0.7s−1, and the shaft speed is set to n/nbp = 0.7. The submergence
is varied as a sinusoidal with mean value h/R = 1.6 and amplitude 0.9. When
comparing with Figure 2.16, the simulation model is found to capture the main
behavior of the ventilation incident.
Figure 2.21 shows time series from a simulation where it has been attempted

to reproduce the experiment shown in Figure 2.14. The ventilation model is
used with the parameters for the ducted propeller as in Figure 2.19, and nbp =
20rps. The propeller characteristics is simulated with a linear 1-quadrant model
(2.25, 2.26), with parameters KT0 = 0.513, αT1 = −0.499, KQ0 = 0.0444,
and αQ1 = −0.0696. The propeller diameter is D = 0.25m, and the mean
submergence is h0 = 0.3m (h0/R = 1.2). The waves are generated from 30
harmonic components extracted from the ITTC modified PM wave spectrum
(C.19), with Hs = 8cm and Tp = 1.2s. The wave-induced Va is calculated
according to (C.33), and the propeller submergence is found from (C.35). The
shaft speed is calculated from the thrust reference Tr according to (3.1). The
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Figure 2.20: Ventilation thrust loss factor βTV from the simulation model in
Figure 2.19 as function of h/R for n/nbp = 0.7, including the hysteresis effect.

simulation is found to reproduce the experiment with satisfactory accuracy, with
the thrust mainly affected by wave-induced velocities for low Tr, and the effect
of ventilation dominating the thrust production for Tr > 140N. It is important
to note that the simulation model cannot capture the true chaotic behavior of
ventilation. For example, the hysteresis effect shown in Figure 2.15 is difficult
to model. When the propeller is in the ventilated regime as shown at the end
of the time series in Figure 2.14, it is in reality hard to get rid of the ventilation
by reducing the shaft speed. This is not reproduced by the ventilation model in
Figure 2.21, which removes the ventilation as soon as Tr is reduced below 140N.

Figure 2.22 shows time series from three simulations attempting to repro-
duce the experiments shown in Figure 2.17. The ventilation model for the
ducted propeller was used as shown in Figure 2.19, and the submergence var-
ied sinusoidally with mean value 15cm, amplitude 15cm, and period 5s. When
compared to Figure 2.17, the simulation model gives too little thrust loss for
Tr = 100N when compared to Tr = 200N and Tr = 300N. It may also seem
that the hysteresis rate limit is chosen slightly too small when comparing with
the experimental time series. However, the inception and duration of the loss
incident, and the general shape of the time series, are reasonably good. The
discrepancies again show that the random nature of these loss effects is difficult
to capture in a simulation model at the current complexity level.

In conclusion, the proposed loss models are coarse approximations of the
real world, but captures the main characteristics of the phenomenon. They are
also easy to implement, and are considered adequate for control system design
and testing. Note that the loss models will be propeller specific, and that the
parameters defining the loss models will vary.
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Remark 2.10 Although the proposed ventilation simulation models show rea-
sonably good performance when compared to the experiments, it is difficult to
generalize the model, e.g. to other propeller types or to full scale propellers.
This is due to the many scaling laws that must be satisfied in order to make
such a generalization. However, the general structure of the ventilation loss
functions, as shown in Figures 2.18 and 2.19, are expected to be applicable also
to other propellers and in full scale. The models are therefore used for full-scale
simulations in Chapter 6. Scaling is further discussed in Appendix D. A more
sophisticated ventilation loss model, which is valid also for varying pitch ratios,
is presented in Ruth and Smogeli (2006).

2.4.6 Blade-frequency loading

The cavitation tunnel results and the ventilation simulation model only consider
the mean load of the propeller during ventilation. The dynamic loading of the
propeller at higher frequencies during ventilation is also an important topic,
especially when considering mechanical wear and tear. There are few available
references considering such high-frequency dynamic loads, but a summary of
previous findings and a thorough investigation can be found in Olofsson (1996).
The following summarizes the facts that are most relevant for this work:

• During ventilation, the loads on each propeller blade fluctuate in time
as the blade goes through four phases: in-air, blade-entry, in-water, and
blade-exit. These fluctuating forces introduce structural loads on the pro-
peller blades.

• The sum of the blade loads for the whole propeller gives an oscillating
propeller thrust and torque, as well as oscillating vertical and transverse
forces. The main loads are found at the blade frequency, i.e. the shaft
speed in rps times the number of propeller blades. The loads are highly
dependent on the operating condition.

• It is especially in the transition to-and-from ventilation, i.e. the unstable,
partially ventilated regime, that large high-frequency dynamic loads occur.

• In addition to the above mentioned loads, resonant blade vibration may
cause large transient loads. This is especially evident at low advance veloc-
ities, since there is little hydrodynamic damping when the propeller is fully
ventilated. This problem increases with increasing propeller speed, when
the magnitude and frequency content of the encountered load increases
danger of resonance. During resonance, the vibrations are amplified, and
the resulting dynamic load is a combination of hydrodynamic and inertial
loads due to fluid-structure interaction. Resonance typically occurs close
to the blade’s natural frequency in air and water. These loads can cause
serious problems, since large stress transients may develop, resulting in
peak stresses exceeding the yield strength of the blade material and hence
causing structural fatigue.
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In Hashimoto et al. (1984), it was also found that significant transverse and
vertical force oscillations at the propeller frequency and twice the propeller fre-
quency could be observed during ventilation. It should be noted that Olofsson
(1996) and Hashimoto et al. (1984) mainly considered propellers at higher ad-
vance velocities. However, the effect of dynamic loading on the propeller should
from a mechanical point of view be independent of the advance velocity. The
results in Olofsson (1996) actually indicated that the loads on the propeller
increased for decreasing Va, due to decreased damping and resonance problems.
Recent results for the blade loading of a ventilated thruster at low advance

velocity can be found in Koushan (2004, 2006). These results confirm that the
high-frequency dynamic loading can be significant. The standard deviation of
the shaft frequency propeller blade force fluctuations was found to be almost
100% of the average force when the propeller was partially submerged. Large
fluctuations were found also for the fully submerged, ventilated condition. The
dynamic loads on a propeller in high sea states can hence be divided in two:

• Wave frequency (or encounter frequency) fluctuations due to the mean
propeller load during ventilation, caused by relative motion of the thruster
with respect to the free surface. This corresponds to the loss of thrust e.g.
shown in Figure 2.17.

• High frequency fluctuations due to individual propeller blade loads during
ventilation.

In the experimental setup used in this work, the measurements of propeller
thrust and torque were not of sufficient quality for studying the blade-frequency
loading. For such a detailed analysis, more sophisticated equipment like the
experimental setup used in Olofsson (1996) or Koushan (2004, 2006) must be
used. Hence, no specific results on the high-frequency loading are presented in
this thesis.

2.5 Propeller simulation model

From (2.50), (2.52), (2.13, 2.14), (2.71, 2.72), and (2.80, 2.81), the resulting
simulation model of a propeller subject to time-varying inflow and submergence,
including shaft and motor dynamics, becomes:

Isω̇ = kgQm −Qa −Qf (ω), (2.82)

Q̇m =
1

Tm
(Qc −Qm), (2.83)

Ta = fT (·) = TnβTJ(Va, n)βTV (h, n)

= ρD4n2KTJ(Va, n)βTV (h, n), (2.84)

Qa = fQ(·) = QnβQJ(Va, n)βQV (h, n)

= ρD5n2KQJ(Va, n)βQV (h, n). (2.85)



50 Propeller modelling

Thrust
setpoint

Ventilation
loss

bTV

Shaft speed

Motor torque

Propeller
characteristics

nQ

Q

Ta

a

mMotor
Dynamics

QcTd Shaft
Dynamics

Thruster
control
scheme

X

X

bQV

Propeller load torque

h

Va

Propulsion unit

Thrust

Advance velocity

Submergence

Figure 2.23: Block diagram of the propeller simulation model.

It has here been assumed that the loss effects due to ventilation and axial flow
may be superposed. When present, however, the ventilation losses will dominate
the axial flow losses. Models for transverse losses, thruster-thruster interaction
and the Coanda effect could be included as modifications of the resulting thrust
and torque.
The combination of the shaft and motor dynamics with the quasi-static

propeller characteristics and loss models may seem inconsistent, but has been
found to give good agreement with experimental results. For full-scale propellers
on surface vessels, it can also be argued that the dynamics involved in the
propeller loading is so fast that it will be dominated by the shaft dynamics. For
small thrusters on underwater vehicles, the dynamics in the thrust production
may have larger importance, as discussed in Section 2.2.5. A block diagram of
the simulation model — including a thruster control scheme with desired thrust
Td as input and commanded torque Qc as output — is shown in Figure 2.23.
A 4MW propulsion unit with a Wageningen B4-70 propeller will be used for

the simulations presented throughout this thesis. The main characteristics of
the B4-70 propeller are given in Table 2.2, and the remaining simulation data
is presented in Appendix A.



Chapter 3

Propulsion control in
normal conditions

The purpose of the low-level thruster controller is to relate the desired thrust
Td to the commanded torque Qc. As discussed in Section 1.1, Td may be given
by the thrust allocation in DP or joystick mode, or manually in MTC mode.
The thruster controllers may be divided in two control regimes, depending on
the operating conditions:

a) Thruster control in normal conditions, when experiencing low to moderate
thrust losses.

b) Thruster control in extreme conditions, when experiencing large and abrupt
thrust losses due to ventilation and in-and-out-of-water effects.

This chapter first considers control aspects common to both control regimes,
and then focuses on control regime a). Control regime b) is treated in Chapter
6.

3.1 Constraints
In most of this work, it is assumed that only the shaft speed n and the motor
torque Qm are available as measurements. Additional instrumentation on the
propulsion unit is not common in industrial installations. For electric motors,
Qm is easily inferred from the motor current, and for diesel engines it is related to
the fuel index. Some of the control options that become available with additional
instrumentation are discussed in Appendix E.2. The presented controllers are
mainly aimed at low-speed applications with FPP driven by electric motors, but
may also be applicable to mechanical direct-drive FPP. The current concepts
are also extendable to CPP with consolidated control (i.e. control of both pitch
and speed) and transit operations. This will be shortly treated in Chapter 8.
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The parameters needed for the various control schemes will be introduced
consecutively. The basic control parameters are the propeller diameter D, the
nominal thrust coefficient KT0 from (2.8), and the nominal torque coefficient
KQ0 from (2.9). These three parameters are usually well known — KT0 and KQ0

can be found e.g. from the bollard pull thrust (2.63) and power (2.65), or from
the open-water characteristics of the propeller. For asymmetric propellers, the
reverse nominal thrust and torque coefficients KT0r and KQ0r are also needed
for good performance.
Depending on the application and the chosen low-level thruster controller,

knowledge of the friction parameters Qs and Kω in (2.51), and the rotational
inertia Is in (2.50) may be desirable. Qs and Kω may be found from system
identification of the drive system. Is is an important parameter for choice of
electric motor, and should in most cases therefore be known. In Appendix B.3,
it is discussed how estimates of these parameters can be identified during manual
tuning of the controllers.

3.2 Control objectives
The ultimate goal of any thruster controller is to make the actual thrust Ta
track the thrust reference Tr. In dynamic operating conditions, however, other
goals may be as important as tracking Tr, e.g. reducing mechanical wear and
tear and limiting power oscillations and peak values. This is especially true in
thruster control regime b), where severe dynamic loads may persist over long
periods of time. In this work, the following performance criteria are considered:

1. Thrust production in the presence of disturbances, i.e. ability to locally
counteract thrust losses.

2. Mechanical wear and tear caused by transients and oscillations in motor
and propeller torque.

3. Predictable power consumption.

4. Robust performance.

3.2.1 Thrust production

The structure of a DP system — including high-level controller, thrust allocation,
and low-level thruster control — was introduced in Section 1.1. In order for the
propulsion system to produce the desired thrust forces, the low-level thruster
controllers must have reasonable accuracy with respect to thrust production. If
this is not the case, the thrust allocation will have a difficult task in distributing
thrust to the various propulsion units, since there is no feedback available from
the actually produced thrust. An offset between the desired thrust and the
actually produced thrust will eventually be captured by the integral action in
the DP control system, and the setpoints to the thrusters increased or decreased
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accordingly. However, this is a slow process, and inaccurate low-level thruster
control will therefore lead to reduced bandwidth of the positioning system as
a whole. Hence, significantly better positioning and tracking performance is
expected with improved low-level thruster controllers (Sørensen et al., 1997;
Strand, 1999). Note that for the DP control system, it is the mean and slowly-
varying values of thrust that are important: the oscillations in thrust induced
by waves and wave-frequency vessel motion do not normally affect the vessel
motion significantly.

3.2.2 Mechanical wear and tear

Normal conditions

There are few references discussing mechanical wear and tear of propulsion units
in normal operating conditions. In older references, the torque loads on the
propeller shaft from the firing of individual diesel engine cylinders have been an
important topic. Apparently, the frequent failures of propeller shaft-lines were
a main driving force for research on vibrations, vibration induced loads, and
structural fatigue in general. This is extensively dealt with in e.g. Ker Wilson
(1963). Another topic that has been researched is the dynamic shaft loading
due to the non-uniform inflow to a propeller installed behind a hull, and its
implications for structural fatigue, see e.g. Wereldsma (1965), Lewis (1989),
and Carlton (1994).
From Section 2.3.1, it is clear that a time-varying inflow to the propeller,

as induced by waves, will result in a time-varying propeller loading. Depending
on the chosen low-level thruster control strategy, this will lead to oscillations
in propeller torque and thrust, shaft speed, and motor torque and power. Es-
pecially in heavy seas, the time-varying loads can be significant, even if the
propeller is deeply submerged. The oscillations in propeller and motor torque
are transmitted through the shafts and gears, resulting in increased dynamic
loads. This was investigated by Domachowski et al. (1997), who concluded that
the dynamic loading because of waves gave rise to significant oscillations of tor-
sional torques in shaft elements and flexible couplings, and that this over time
would cause reduced fatigue strength and increased wear and tear.
To reduce mechanical wear and tear, it is assumed to be advantageous to

reduce the torque oscillations to a minimum.

Extreme conditions

As discussed in Section 2.4.6, a propeller on a vessel in high to extreme seas
may be subject to severe dynamic loading, both at the wave frequency due to
the large changes in mean load during ventilation, and at the blade frequency
and above due to the individual blade loads. As well as posing danger for
structural damage to the propeller, dynamic loading of the propeller may lead
to mechanical wear and tear of the propulsion system. In all propulsion units,
the propulsive power is transmitted from the motor to the propeller through a
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shaft held by bearings, and with a seal to protect against water ingress. Many
thruster units in addition contain a transmission system consisting of gears,
shafts, and bearings. Hence, the gears will be subject to the dynamic propeller
and motor torque, the thrust gear or thrust block will be subject to the dynamic
propeller thrust, and the bearings holding the propeller shaft and the shaft seal
will be subject to transverse and vertical loads. The whole thruster unit will also
be subject to any high-frequency vibration of the propeller. Although not well
documented in the literature, mechanical wear and tear of thrusters is a well-
known industrial problem that has received increased attention in recent years,
especially for azimuthing thrusters and tunnel thrusters (Koushan, 2004, 2006).
It is believed that the widespread mechanical failures in gears and bearings of
such thrusters are mainly due to the combination of low-frequency ventilation
loads and blade frequency load oscillations.
Various failure modes of propellers are extensively treated in IMCA M-129

(1995) and IMCA M-162 (2001). Although the topic of dynamic propeller load-
ing is only briefly mentioned in these references, it seems apparent that the
failures of shafts, gears, bearings, and seals may be partly contributed to dy-
namic loads and vibrations. This is also reflected in the recent efforts made to
improve the understanding of these loads and their effects on the mechanical
parts of the propulsion unit. As an example, Rolls-Royce in 2005 appointed
NTNU in cooperation with MARINTEK as one of 25 world-wide University
Technology Centres (UTC). The programme, which is to run for 10 years with
extensive financing, is entitled “Performance in a Seaway”, and has specific fo-
cus on propulsion issues like dynamic propeller loading and improved controllers
(Rolls-Royce Press Release, 2005; NTNU Press Release, 2005).

3.2.3 Power consumption

For DP vessels, the propulsion system is usually one of the main power con-
sumers. It is also regarded as a critical system with respect to safety. For
safe operation and minimization of fuel consumption, optimal control of the
power generation and distribution system is essential. This task is usually per-
formed by a Power Management System (PMS), or a more sophisticated Energy
Management System (EMS). The PMS stops, starts, and synchronizes the main
generator sets in response to the system loading, with the objective of preventing
blackouts while minimizing the number of on-line generator sets. If the power
load is increased too fast for the generators to respond, or the load is higher than
the available power, the result is under-frequency on the power network. If the
network frequency becomes too low, the generators will be disconnected, with
a blackout as result. This is one of the worst scenarios onboard a DP vessel. In
severe weather conditions, the dynamic loading of the thrusters may result in
unpredictable power variations. In order to meet the power peaks, the operator
may then be forced to have more power available than necessary. This increases
fuel consumption, as well as wear, tear, and maintenance of the generator sets,
since they get more running hours at lower loads. Hence, predictable power
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consumption is of major concern to the power management system in order to
avoid blackouts, improve the performance and stability of the power generation
and distribution network, and minimize fuel consumption and wear and tear
(Lauvdal and Ådnanes, 2000; May, 2003; Sørensen and Ådnanes, 2005; Radan
et al., 2005).

3.2.4 Robustness

As with all control systems, robustness is an important issue. The thruster
controller should be robust with respect to modelling uncertainties, since one
cannot assume perfect knowledge of the necessary parameters. In addition, some
of the physical properties of the system, like the shaft friction, may change over
the life-time of the propeller. The controller must also be able to handle a
wide range of operating conditions, from calm seas with low thrust demands, to
extreme seas with high thrust demands.

3.2.5 Surface vessels vs. underwater vehicles

For low-level thruster control, the main difference between surface vessels and
small underwater vehicles like ROVs and AUVs is the dynamic response of
the vessel. Because the time constants of the underwater vehicles are small,
their closed-loop behavior may be strongly affected by the thruster dynamics
(Yoerger et al., 1991; Healey et al., 1995). For a surface vessel, the dynamic
response of the thruster will be of less importance for e.g. the station-keeping
ability, since the time constant of the vessel itself is dominating. However, the
thrust production is still of high importance.
There are also differences in the expected operating conditions for the pro-

pellers. The operating condition of a propeller on a surface vessel is influenced
by the vessel load condition, vessel motions, waves, and current. An underwa-
ter vehicle is usually operated below the wave zone, and hence only affected
by vehicle motions and current. Furthermore, the vessel motions due to the
waves are much more violent for a surface vessel than for an underwater vehicle.
This means that the requirements to the thruster controllers on a surface vessel
may differ significantly from the corresponding requirements for an underwater
vehicle. In this thesis, the main focus is on surface vessels.

3.3 Thruster controller structure
A block diagram of a propulsion unit with a reference generator, a thruster
controller, and a torque limiting function is shown in Figure 3.1. The desired
thrust Td from the thrust allocation or manual thruster control is passed through
a reference generator to avoid entering transients into the thruster controller.
The output of the reference generator is the thrust reference Tr. The thruster
controller calculates the commanded torqueQc0, which in turn is passed through
a torque limiting function in order to avoid commanding excessive torque or
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Figure 3.1: Block diagram of a propulsion unit with control scheme, including a
reference generator, a thruster controller, and a torque/power limiting function.

power from the thruster motor. The torque and power limited commanded
torque, Qc, is used to control the motor. The output of the system is the thrust
Ta. In the block diagram, the propeller thrust and torque are represented by
the functions fT (·) and fQ(·) from (2.1) and (2.2).

Remark 3.1 In this work, the interface to the low-level thruster controller is
chosen to be the desired thrust Td. In industrial applications with shaft speed
control, is is common that the interface is the desired shaft speed, which is cal-
culated from Td using the static mapping given in (3.1). This is only applicable
if shaft speed control is used.

3.4 State of the art

Three types of propellers are common: speed controlled FPP, pitch controlled
CPP, and consolidated controlled CPP (CCP). For CCP, both the shaft speed
and pitch can be controlled. Since the desired thrust can be produced by a
number of combinations of shaft speed and pitch, this can be formulated as an
optimal control problem. Optimal control of CCP is mainly relevant for transit
operation. This is treated in e.g. Schanz (1967), Winterbone (1980), Beek and
Mulder (1983), Parsons and Wu (1985), Bakountouzis (1992), Chachulski et al.
(1995), Fukuba et al. (1996), Morvillo (1996), Young-Bok et al. (1998), and
Whalley and Ebrahimi (2002), and an overview given in Ruth et al. (2006). A
CCP may also be controlled by fixed mappings from desired thrust to pitch and
shaft speed. This will be further discussed in Section 8.1, where the control
concepts developed for FPP are extended to CCP.
For surface vessels with FPP, shaft speed control is the industry standard,

both for electrically driven and mechanical direct-drive propellers (often, how-
ever, mechanical direct-drive propellers are CPP). The origin of PID type con-
trollers for propeller shaft speed control is uncertain, but they have probably
been utilized for as long as propellers have been used. The early mechanical
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governors for steam turbines were of the centrifugal type, which corresponds to
a pure P-controller (the Watt centrifugal governor). This was in time replaced
by more sophisticated mechanical, hydraulic, pneumatic, and analog electronic
governors used on e.g. diesel engines. Since the 1970’s, digital electronic gov-
ernors have given new possibilities for diesel engine control. This was exploited
by Blanke and Busk Nielsen (1987, 1990), who designed and implemented a
governor with three control modes: constant speed, constant torque, and con-
stant power. The governor was installed successfully on a large number of ships.
The power control mode was found to have good properties during transit, with
reduced power oscillations in a seaway. This appears to be the first reference on
the explicit concepts of torque and power control for FPP. In control of diesel
engines, shaft speed control has still been the most commonly used solution,
as reflected in e.g. the reference manual from Woodward Governor Company
(2004), where torque and power control are not even mentioned. For CCP, the
good properties of torque and power control were discussed by Schanz (1967),
who proposed a constant shaft speed/torque/power controller. This is further
discussed in Section 8.1.5.
For electrically driven FPP on surface vessels, shaft speed control has been

the dominating solution. Although not documented in literature, other control
methods have also been used in industry. According to Skjellnes (2006), Siemens
delivered the first DC installation with torque and power control in 1982, and
another one in 1994. Because of their positive experience with these concepts,
power control was chosen when they started delivering AC installations. This is
reflected in their sales brochure (Siemens AG, 2005). In a parallel development,
ABB and NTNU also started working on torque and power control, culminating
in the publications of Sørensen et al. (1997) and Strand (1999). These appear
to be the first available references on torque and power control for electrically
driven propellers on surface vessels, and have been the starting point for the work
presented in this thesis. The formulations of torque and power control as given in
(3.29) and (3.32) are taken from there. It should be noted that both Siemens and
ABB only use torque and/or power control for transit operations, where these
concepts have proven to be superior at rejecting load disturbances and limiting
power oscillations. Subsequently, a combined torque and power controller was
introduced in Smogeli et al. (2004a), and further developed in Smogeli et al.
(2005a) and Sørensen and Smogeli (2006). The concept of anti-spin thruster
control for electrically driven propellers in extreme operating conditions has
been treated in Smogeli et al. (2003, 2004b, 2006) and Smogeli and Sørensen
(2006b).
For underwater vehicles, both shaft speed control (Healey and Lienard, 1993;

Egeskov et al., 1995; Caccia and Veruggio, 2000; Refsnes and Sørensen, 2004;
Omerdic and Roberts, 2004), and torque control (Yang et al., 1999; Antonelli
et al., 2001; Smallwood and Whitcomb, 2004), have been used. Commercially
available electric thrusters for underwater vehicles, as offered by e.g. Tecnadyne
(2006) and Seaeye Marine Limited (2006), mainly appear to be speed controlled.
According to Yoerger et al. (1991), the predominating solution for under-
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water vehicles at that time was torque control. They found that the thruster
dynamics had a strong influence on the closed-loop underwater vehicle behavior.
To compensate for this, they proposed several controllers, all based on torque
control of the thruster motor. An adaptive sliding mode controller containing
a compensation for propeller-induced flow effects was shown to improve the
closed-loop vehicle performance significantly.
The investigation of model-based thruster control for underwater vehicles

was continued by Whitcomb and Yoerger (1999b). They compared a pure
torque controller with a high-gain proportional shaft speed controller, and a
corresponding shaft speed controller with axial flow compensation. The latter
was implemented with an ad hoc stable open-loop estimator for the axial flow
velocity. They concluded that the torque controller was unsatisfactory for low
thrust commands, probably due to unmodelled friction effects, but with im-
proved performance for higher thrust commands. The high-gain shaft speed
controller was shown to have poor performance, but gave good results with
the addition of the axial flow compensation. It should be noted that all these
experiments were performed at zero advance velocity.
Continuing the concept of axial flow compensation, Fossen and Blanke (2000)

proposed a nonlinear output feedback shaft speed controller for propellers on
underwater vehicles, with feedback from an estimate of the advance velocity.
The advance velocity observer was designed based on the vehicle surge dynam-
ics and a model of the flow dynamics. The closed-loop controller was shown
to be globally asymptotically stable. The results were mainly applicable to a
an underwater vehicle with one propeller operating in the first quadrant (i.e.
positive shaft speed and positive advance velocity).
Tsukamoto et al. (1997) presented an experimental comparison study of five

thruster control systems for underwater robots: on-line neural network control,
off-line neural network control, fuzzy control, adaptive-learning control, and
PID control. However, the controllers were based on direct control of the vehicle
surge position using one thruster, evading the decoupling in thrust allocation
and low-level thruster control that is considered here. Neural networks, fuzzy
control, and adaptive-learning control will not be treated any further in this
thesis.
Bachmayer and Whitcomb (2001) presented two model based thrust tracking

controllers. The controllers were based on detailed knowledge of the propeller
lift and drag curves for all 4 quadrants of operation, in addition to the shaft fric-
tion coefficients (2.51), the rotational inertia (2.50), and the parameters needed
to describe an axial flow model, see Section 2.2.5. They were also based on the
assumption that the advance velocity Va ≈ 0. Under these assumptions, experi-
mental evidence of an asymptotically stable open-loop thrust tracking controller
was presented, although no theoretical proof was given. A shaft speed feedback
thrust tracking controller was shown to influence the rate of convergence of the
tracking error. The proposed controllers appear to be mainly suited for under-
water applications with high bandwidth positioning requirements, and strong
coupling between the vessel and thruster dynamics. For industrial applications
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on surface ships, the detailed model knowledge needed for such a controller can-
not be expected to be available. Particularly, the complete hydrodynamic model
of the propeller is practically never obtainable. The assumption of Va ≈ 0 is
also difficult to justify in practice.
Guibert et al. (2005) presented an output feedback thrust controller. The

controller was based on a stationary extended Kalman filter for estimation of
the hydrodynamic load torque Qa, estimation of the thrust Ta from a numerical
inversion of the propeller lift and drag curves and the flow dynamics model
(2.70), and a PI controller operating on the thrust error. The controller required
extensive model knowledge — both the lift and drag curves of the propeller and
the parameters for the flow dynamics. The controller was tested by simulations,
and found to be highly sensitive to modelling errors, both in the mechanical
and the hydrodynamic model. Moreover, the flow dynamics model (2.70) is
only valid in the first quadrant of operation, and requires knowledge of Va. This
approach is therefore not considered applicable to surface vessels. A different
output feedback thrust controller, which circumvents most of these problems, is
presented in Appendix E.3.

3.5 Control coefficients

The thruster control schemes are based on the thrust/torque/speed/power re-
lationships given in (2.8), (2.9), and (2.10). Since the propeller diameter D and
density of water ρ are known and constant, the only remaining parameters are
the thrust and torque coefficients KT and KQ. The thrust and torque coeffi-
cients used in the controllers are termed KTC and KQC , and denoted control
coefficients.

3.5.1 Shaft speed, torque, and power reference

The shaft speed reference nr, torque reference Qr, and power reference Pr will
be needed in the following sections. nr is calculated from the thrust reference
Tr by the static mapping gn(Tr):

nr = gn(Tr) = sign(Tr)

s
|Tr|

ρD4KTC
, (3.1)

which is the inverse function of the nominal characteristics given in (2.8), with
KT0 replaced by KTC . The mapping gq(Tr) from Tr to Qr can be found from
(2.8) and (2.9) with KT0 and KQ0 replaced by KTC and KQC :

Qr = gq(Tr) =
KQC

KTC
DTr. (3.2)
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The mapping gp0(Tr) from Tr to Pr is found by inserting Qr from (3.2) and nr
from (3.1) in (2.10) such that:

Pr = gp0(Tr) = Qr2πnr = |Tr|3/2
2πKQC
√
ρDK

3/2
TC

. (3.3)

The mapping gp(Tr) from Tr to the signed power Prs is defined as:

Prs = gp(Tr) = sign(Tr)Pr = sign(Tr)|Tr|3/2
2πKQC
√
ρDK

3/2
TC

. (3.4)

The inverse mappings from nr, Qr, and Prs to Tr are termed g−1n (nr), g−1q (nr),
and g−1p (nr), respectively, and given by:

Tr = g−1n (nr) = KTCρD
4nr |nr| , (3.5)

Tr = g−1q (Qr) =
KTC

KQCD
Qr, (3.6)

Tr = g−1p (Prs) = sign(Prs) |Prs|2/3
ρ1/3D2/3KTC

(2π)2/3K
2/3
QC

. (3.7)

3.5.2 Choosing KTC and KQC

In thruster control for station-keeping operations, estimates of the nominal
thrust and torque coefficients KT0 and KQ0 are usually chosen as control co-
efficients, because the actual advance velocity is unknown to the controller.
Doppler logs, GPS, etc. may be used to give estimates of the advance velocity,
but these measurements are usually not of sufficient accuracy for inclusion in
the low-level thruster control laws.
For thruster control in transit, only the main propellers of the vessel are used.

If the propeller characteristics are known, improved controller performance may
be achieved by estimating the propeller advance velocity Va using the known
vessel surge speed U and an estimated hull wake factor wh as in (2.42), or a
low-pass filtered measurement from a Doppler log or GPS. KTC and KQC could
then be estimated from the propeller characteristics. This is further discussed
in Section 8.2. Similar reasoning may be applied to an underwater vehicle,
where the propeller normally is deeply submerged and not subject to wave
effects, ventilation, or water exits. In the following, station-keeping and low-
speed manoeuvring operations of surface vessels are of main concern, such that
the control coefficients are taken as KT0 and KQ0.

3.5.3 Reverse thrust

With the exception of tunnel thrusters, most propellers are asymmetric. To
achieve good performance for both positive and negative thrust references, it
may therefore be necessary to use two sets of control parameters. For low-speed
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operations, this means that KT0 and KQ0 should be used for positive Tr, and
the reverse thrust and torque coefficients KT0r and KQ0r for negative Tr, see
Section 2.1. The following control coefficients are therefore proposed:

KTC = KT0λc + (1− λc)KT0r, (3.8)

KQC = KQ0λc + (1− λc)KQ0r, (3.9)

where λc is a smooth switching function given by:

λc = λc(nr) =
1

2
+
1

2
tanh(εc

nr
nc
). (3.10)

The shaft speed reference nr is given from Tr by (3.1), and nc > 0 and εc > 0
are constants. With a properly chosen εc, the switching between the coefficients
occurs smoothly in the interval nr ∈ [−nc, nc], such that λc ≈ 0 for nr < −nc
and λc ≈ 1 for nr > nc. The switch “width” nc may be chosen freely. (3.8,
3.9) does not affect the stability properties of the controllers when compared
to using constant control coefficients, since KT0, KQ0, KT0r, and KQ0r all are
strictly positive, and the values of KTC and KQC only affect the mappings from
Tr to nr, Qr, and Prs. Using nr as the switching variable instead of e.g. the
measured shaft speed n means that no measurement noise is entered into the
control law through (3.8, 3.9).
As an example, Figure 3.2 shows λc from (3.10) and KTC from (3.8) for the

4MWWageningen B4-70 example propeller with parameters given in Table 2.2,
and the parameters for λc chosen as εc = 3 and nc = 0.2rps.

3.6 Reference generator

The desired thrust from the high-level controller should be filtered through a
reference generator. There are several important reasons for doing this:

• It is in general undesirable to enter transients into a control loop. Es-
pecially in the case of a shaft speed thruster controller, the transients in
motor torque may be large if no rate limits on the reference are imposed:
if e.g. a large step in thrust is commanded, and the speed controller is
tightly tuned, the motor will inevitably reach its maximum rating in a split
second. Such torque transients may damage the mechanical components
in the thruster unit, as discussed in Section 3.2.2.

• The power distribution network should be protected from large distur-
bances. If the loading of the network suddenly increases, the result may
be a large frequency drop. If the frequency drop is too large, the gener-
ators may trip and a blackout occur, see Section 3.2.3. In order to avoid
this, rapid increases of the power load of the thrusters should be avoided.
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Figure 3.2: Control coefficent KTC and switching function λc as functions of nr
for the 4MW Wageningen B4-70 example propeller.

3.6.1 Rate limiting function

In the following, a rate limiting function with certain properties will be needed.
The rate limiting function fslew(z, ż

+
slew, ż

−
slew) should enforce slew rate limits

ż+slew > 0 for increasing magnitude of z, and ż−slew < 0 for decreasing magnitude
of z. This can be implemented by two simple rate limiting elements in series:

fslew(z, ż
+
slew, ż

−
slew) = z1,

ż1 = min(max(ż0,−żmaxslew), ż
max
slew),

ż0 = sign(z)min(max(|ż| , ż−slew), ż
+
slew),

żmaxslew = max(ż+slew, |ż
_
slew|), (3.11)

where żmaxslew is a parameter, and z0 and z1 are internal states. The second rate
limiting element (with output z1) is only needed to avoid transients when z
changes sign.
If the positive and negative slew rate limits have the same magnitude, i.e.

ż+slew = −ż
−
slew = żslew, the rate limiting function can be simplified to:

f0slew(z, żslew) = z0|ż0=min(max(ż,−żslew),żslew). (3.12)

Note that the rate limiting functions in (3.11) and (3.12) are easily implemented
without the need for differentiation.
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3.6.2 Shaft speed reference with rate limit

In the marine industry, the commonly used reference generator appears to be
a rate limiting function on the shaft speed reference nr (Ådnanes, 2006). The
recommended magnitude of the slew rate will depend on the size and type of
the propulsion unit. A typical 1-2 MW unit with shaft speed control would have
a slew rate equivalent to ramping nr from zero to max in about 7-8 seconds,
and a typical 3-4 MW unit a slew rate equivalent to 10-15 seconds. The slew
rate must be chosen in connection with the tuning of the speed controller, such
that the total closed loop — including reference generator, speed control loop,
and inner torque control loop — has the desired performance. It is also possible
to implement a speed dependent reference generator. As a trade-off between
thruster response and undesired disturbances on the power network, a solution
sometimes seen in the industry is to use a fast reference generator for low shaft
speeds, and a slower reference generator for high shaft speeds.
Since the chosen interface to the thruster unit is Td, the reference generator

for Tr can be implemented by using the shaft speed mapping gn(Tr) in (3.1), its
inverse g−1n (nr) in (3.5), and the rate limiting function in (3.11) with slew rate
limits ṅ+slew and ṅ−slew:

nd = gn(Td),

nr = fslew(nd, ṅ
+
slew, ṅ

−
slew),

Tr = g−1n (nr). (3.13)

3.6.3 Shaft speed reference with low-pass filter and rate
limit

In order to reduce the transients in the commanded torque, it may be ben-
eficial to add a low-pass filter to the reference generator in (3.13). For this
system, a second-order filter with damping ratio ζr and natural frequency ωr0
is appropriate. The reference generator then becomes:

nd = gn(Td),

nd2 = fslew(nd, ṅ
+
slew, ṅ

−
slew),

nr(s) = nd2(s)
ω2r0

s2 + 2ζrωr0s+ ω2r0
,

Tr = g−1n (nr). (3.14)

The resulting reference generator is shown in Figure 3.3. Notice that the refer-
ence generator gives a continuous acceleration reference ṅr. This will be utilized
in Section 3.7.2, where an inertia compensation scheme based on ṅr is designed.
An alternative formulation, where the speed rate limit is implemented by an
acceleration saturation element inside the filter, is proposed in Fossen (2002).
A simple tuning rule for the filter parameters is to choose ζr = 1 (critically
damped) and ωr0 = 1.5/τ r, where τ r is the approximate “time constant” of the
filter.
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3.6.4 Power reference generator

For the power generation and distribution system, it is the rate of change of
the consumed power that is critical for safe performance. Hence, it may be
beneficial to design the reference generator to give a maximum rate of change of
power (as opposed to a maximum rate of change of shaft speed). The reference
generator is realized by the thrust-power mapping gp(Tr) in (3.4), its inverse
g−1p (Pr) in (3.7), the rate limiting function in (3.11) with slew rate limits Ṗ

+
slew

and Ṗ−slew, and a low-pass filter as in (3.14):

Pds = gp(Td),

Pd2 = fslew(Pds, Ṗ
+
slew, Ṗ

−
slew),

Prs(s) = Pd2(s)
ω2r0

s2 + 2ζrωr0s+ ω2r0
,

Tr = g−1p (Prs). (3.15)

Note that the acceleration reference ṅr is not directly available from this refer-
ence generator. However, from (3.1) and (3.4), the following relationship may
be established:

Prs = 2πKQCρD
5n3r,

⇓

Ṗrs =
∂Prs
∂nr

ṅr = 6πKQCρD
5n2rṅr,

⇓

ṅr =
Ṗrs

6πKQCρD5n2r
=

KTC

6πDKQC

Ṗrs
|Tr|

. (3.16)

where (3.5) has been inserted. Since Ṗrs is available from the implementation
of the low-pass filter in (3.15), ṅr can be calculated without differentiation. An
alternative formulation, where also the singularity for Tr = 0 is avoided, is given
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by:

ṅr =
1

6π

Ṗrs
max(εr, |Qr|)

, (3.17)

where Qr is calculated from (3.2), and εr is a small number.

3.6.5 Reference generator comparison

Figure 3.4 shows a comparison of the power reference generator in (3.15) and the
speed reference generator in (3.14) for the Wageningen B4-70 example propeller;
see Table A.1 for the propeller simulation data. The slew rates have been chosen
as ṅslew = nbp/10s and Ṗslew = Pbp/10s, with KTC and KQC taken from Table
3.2. The filter parameters were chosen as ζr = 1.0 and ω0 = 1.5/τr, with
time constant τr = 0.5s. Both Tr, nr, Qr, Prs, and ṅr are shown for two
steps in the desired thrust: from −490kN to 490kN, and from 0kN to 490kN.
The results show that the two reference generators obtain their objectives. The
speed reference generator rate limits nr, resulting in slower changing Pr and Tr
for low references, and faster changing for high references. The power reference
generator rate limits Pr, resulting in faster changing nr and Tr for low references,
and slower changing for high references. However, the commanded shaft speed
acceleration is high about the zero-crossing of Tr due to the singularity in (3.16).
This must be kept in mind if ṅr is to be used in an inertia compensation scheme,
as will be proposed in Section 3.7.2.

Remark 3.2 The shaft speed reference generator gives undesirable behavior of
the power reference for large Tr, whereas the power reference generator gives
undesirable behavior of the shaft speed reference for small Tr. This is inherent
in the two approaches.

Remark 3.3 The speed and power reference generators may be combined in
order to enforce both a shaft speed rate limit and a power rate limit. This can
be implemented by using the speed reference generator without low-pass filter
in (3.13) and the power reference generator in (3.15) in series, i.e. use the
output Tr from (3.13) as input to (3.15). In practice, this means that the shaft
speed reference generator is active for small Tr, whereas the power reference
generator is active for large Tr. This will also alleviate the problems with the
power reference generator for low n.

3.7 Friction and inertia compensation
In the design of the torque and power controllers, the friction term Qf (ω) will
be assumed compensated by a feedforward controller. If this is not the case, and
the friction is significant, the controllers will be inaccurate, since at steady state
Qmp ≈ Qa no longer holds, see (2.50). The result is less thrust than expected,
since a portion of the motor power is spent on overcoming the shaft friction.
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For a large thruster, the rotational inertia may be a dominating dynamic
term. In order to achieve the desired closed loop properties with respect to
response and tracking, it may therefore be beneficial to include an inertia com-
pensation term.
In general, feedforward terms to account for friction and inertia should there-

fore be included in the control law, such that the total controller output Qc0 is
given by:

Qc0 = Qci +Qff +Qif , (3.18)

where Qif is the inertia compensation, Qff is the friction compensation, and
the i in Qci is an index specific to the controller in use. For example, i = n for
shaft speed control, i = q for torque control, and i = p for power control.

3.7.1 Friction compensation

For a full-scale thruster on a surface vessel, the shaft friction will in most cases
be relatively small compared to the propeller torque. For smaller vehicles like
ROV’s and AUV’s, the friction may be significant and lead to severely degraded
performance if not accounted for in the controllers. This has been investigated
in e.g. Whitcomb and Yoerger (1999b) and Bachmayer et al. (2000), where a
friction model similar to (2.51) was proposed. In the experimental setup utilized
in the current work, the friction was also found to be significant.

Qff should be designed to compensate for the friction term Qf (ω), i.e.
Qff ≈ Qf (ω), without destabilizing the system. Therefore, a feedforward com-
pensation based on the reference shaft speed nr from (3.1) is chosen instead
of a destabilizing feedback compensation based on n. Motivated by (2.51) the
friction is assumed to consist of a static and a linear term, and the friction
compensation scheme is proposed as:

Qff (nr) = Qff0(nr) +Qff1(nr), (3.19)

where the static term Qff0(nr) and the linear term Qff1(nr) are defined be-
low. If considered necessary, higher-order friction compensation terms may be
included in a similar manner.

Static friction

The contribution from the static termQs in (2.51) is discontinuous for ω = 0. To
avoid discontinuities in the control law, the signum function is replaced with a
smooth switching function, such that the static friction compensation Qff0(nr)
is proposed as:

Qff0(nr) = Qf0 tanh(εf
nr
nf
), (3.20)

where Qf0, εf , and nf are constants. With a properly chosen εf , the switching
between −Qf0 and Qf0 occurs smoothly in the interval nr ∈ [−nf , nf ], such
that |nr| > nf ⇒ Qff0(nr) = sign(nr)Qf0, and nr = 0 ⇒ Qff0(nr) = 0. Note
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Figure 3.5: Friction compensation scheme for the 4MW Wageningen B4-70 ex-
ample propeller.

that the switching function is of similar form as the one used in (3.10). nf
should be chosen such that |nr| < nf is not a relevant setpoint, and Qf0 should
be chosen such that Qf0 ≈ Qs.

Linear friction

The linear friction compensation Qff1 is proposed as:

Qff1(nr) = 2πQf1nr, (3.21)

where the linear friction coefficient Qf1 should be chosen such that Qf1 ≈ Kω.
In nominal conditions, n = nr ⇒ Qff1(nr) ≈ Kωω. For n 6= nr, Qff1(nr) 6=
Kωω, but this only affects the performance about the equilibrium point.

Example friction compensation model

An example friction compensation scheme for the 4MWWageningen B4-70 pro-
peller is shown as a function of nr in Figure 3.5. The parameters have been
taken as Qf0 = 6.2kNm, Qf1 = 720Nms, εf = 3, and nf = 0.1rps.

3.7.2 Inertia compensation

The inertial term in the rotational dynamics (2.50) is ω̇Is. Since differentiation
of the measured shaft speed is undesirable, and the inertia compensation is
wanted only when the thrust reference is changed, the following feedforward
compensation is proposed:

Qif (nr) = Ic2πṅr, (3.22)
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where Ic is an estimate of the rotational inertia Is, and ṅr is given by the
reference generator, as shown e.g. in Figure 3.3. The inertia compensation
scheme is expected to be important mainly for large propellers. In an industrial
installation, the rotational inertia should be relatively accurately known, since
it is an important parameter for the choice of electric motor and tuning of the
motor drive, see Appendix B.1.

Remark 3.4 Qif is written as a function of nr instead of ṅr in order to have
consistent notation with other parts of the control schemes. In block diagrams
etc. Qif may take nr or Tr as input, even though ṅr from the reference generator
is used in practice.

3.7.3 Feedforward compensation properties

The friction and inertia feedforward compensation schemes in (3.19) and (3.22)
may be related to the concept of feedback linearization, where the basic idea is
to transform a nonlinear system to a linear one. This is treated in detail in e.g.
Slotine and Li (1991), Isidori (1995), and Khalil (2002). In robotics, a similar
concept is called computed torque control, see e.g. Sciavicco and Siciliano (2000).
This is also utilized to develop control laws for marine systems in Fossen (2002).
For the propeller, the effect of the feedforward compensation schemes can

be seen from the rotational dynamics (2.50). By neglecting the motor torque
dynamics in (2.52), such that Qmp = Qc0, and inserting (3.18), the rotational
dynamics become:

Isω̇ = Qci +Qff (nr) +Qif (nr)−Qa −Qf (ω). (3.23)

By assuming perfect model knowledge such that Qf0 = Qs, Qf1 = Kω, and
Ic = Is, that |nr| > nf ⇒ Qff0(nr) = sign(nr)Qf0, that sign(ω) = sign(nr),
and inserting (2.51), (3.19), and (3.22), (3.23) reduces to:

2πIs(ṅ− ṅr) = Qci −Qa − 2πKω(n− nr). (3.24)

Hence, it remains to design Qci to compensate for the propeller torque Qa. This
is done by the various control laws presented in Sections 3.10 to 3.15.

3.8 Torque and power limiting
In order to avoid commanding excessive torque or power from the thruster
motor, a torque limiting function — as shown in Figure 3.1 — should be included in
the control scheme. The maximum admissible torque Qmax and power Pmax for
the motor are related to the rated torque and power (for continuous operation)
by (2.55). The controller output should therefore be limited by a torque limiting
function given by:

Qc = max{Qc0, kgQmax,
Pmax
2πn

}, (3.25)
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where Qc0 is the commanded torque from the controller, friction compensation,
and inertia compensation (3.18), and kg is the gear ratio, see Section 2.2.3. The
commanded motor torque Qcm to the motor is finally given as

Qcm = Qc/kg. (3.26)

The maximum power limit yields hyperbolic limit curves for the torque as a
function of motor speed. This is shown in Figure 3.6, where nN is the rated
motor shaft speed. Since the maximum power is not limited by the converter
and motor ratings only, but also by the available power on the network, this
limit should be varied accordingly. By this method the power limitation will
become fast and accurate, allowing to utilize the power system power capability
with a built-in blackout prevention (Sørensen et al., 1997).

3.9 Feedback signal filtering

The feedback signals n and Qm should be filtered before they are entered into
the control loop. This is proposed done by first order filters with appropriately
chosen time constants Tf and Tfq, respectively. In a discrete-time implemen-
tation, the usual requirements to the filter bandwidth with respect to sampling
period applies, see e.g. Åström and Wittenmark (1997).
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3.10 Shaft speed feedback control
The shaft speed controller is designed to keep the shaft speed n equal to the
reference speed nr (3.1). The typical solution is to use a PID controller operating
on the shaft speed error e = nr − n, which sets the commanded torque Qcn

according to

Qcn = Kpe+Ki

Z t

0

e(τ)dτ +Kdė, (3.27)

where Kp > 0, Ki > 0, and Kd ≥ 0 are the PID gains. The motor torque is
controlled by its inner torque control loop, as discussed in Section 2.2.2. Ki is
often given as Ki = Kp/Ti, where Ti is the integral time constant. The integral
term in the PID controller should be limited according to some maximumQi,max

to avoid integral windup, i.e.¯̄̄̄
Ki

Z t

0

e(τ)dτ

¯̄̄̄
≤ Qi,max,

Qi,max = κskgQmax, (3.28)

where 0 < κs ≤ 1 is a constant, usually chosen as κs ≈ 0.8 − 0.9. In control
of electric motors, a PI controller is considered to be the most appropriate
solution (Leonhard, 1996). In this thesis, only PI controllers have been applied,
such that Kd = 0. In the shaft speed control scheme, the friction compensation
Qff and the inertial compensation Qif may be omitted, since the controller
automatically compensates for these terms when the shaft speed is kept at its
reference. Hence, Qc0 = Qcn in this case. Figure 3.7 shows a block diagram
of the shaft speed control scheme, including a reference generator and a torque
limiting block. It is also indicated how Qff and Qif could be included if wanted.
Tuning of the PI parameters is discussed in Appendix B.1.

3.11 Torque feedforward control
In the torque control strategy the outer speed control loop is removed, and the
thruster is controlled by its inner torque control loop with a commanded torque
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Qcq as set-point (Sørensen et al., 1997; Strand, 1999). Qcq is set equal to the
torque reference from (3.2):

Qcq = Qr = gq(Tr) =
KQC

KTC
DTr. (3.29)

If the rotational inertia is large, the torque controller in its pure form (3.29) will
respond slowly to a changing thrust reference, especially for low shaft speeds.
In the work by Sørensen et al. (1997) and Strand (1999), it was suggested
to add an “inner torque algorithm” with a reference generator and reference
feedforward based on Qcq to speed up the transient response. However, no
explicit solution was given. In Section 3.18.1, it will be demonstrated that the
transient response problem is solved by using the inertia compensation proposed
in Section 3.7.2. Hence, the inner torque algorithm from Sørensen et al. (1997)
is no longer necessary. Figure 3.8 shows a block diagram of the torque control
scheme, including reference generator, torque limiting, friction compensation,
and inertia compensation.

Remark 3.5 The control law in (3.29) can also be written as:

Qcq = KQCρD
5n2r, (3.30)

where nr is defined in (3.1). Using the nominal load torque model from (2.9),
and assuming that KQC = KQ0, the rotational dynamics in (3.24) reduces to:

2πIs(ṅ− ṅr) = −KQ0ρD
5(n2 − n2r)− 2πKω(n− nr). (3.31)

Hence, the torque controller combined with the friction and inertia compensation
is equivalent to a complete feedback linearization or computed torque scheme,
with no additional control law.

3.12 Power feedback control
Power control is based on controlling the power consumption of the thruster
motor. The inner torque control loop is maintained, and the commanded torque
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Qcp is calculated from Prs in (3.4) using feedback from the measured shaft speed
n according to (Sørensen et al., 1997; Strand, 1999):

Qcp =
Prs
2π|n| =

KQC
√
ρDK

3/2
TC

sign(Tr)|Tr|3/2
|n| , n 6= 0. (3.32)

Note that this controller is singular for zero shaft speed. Also the power con-
troller will have a slow response to changes in Tr if Is is large. As in torque
control, the inertia compensation scheme (3.22) solves this problem, and replaces
the “inner power algorithm” that was proposed in Sørensen et al. (1997). Fig-
ure 3.9 shows a block diagram of the power control scheme, including reference
generator, torque limiting, friction compensation, and inertia compensation.

3.13 Combined torque/power control

A significant shortcoming of the power control scheme in (3.32) is the singularity
for zero shaft speed. This means that power control should not be used close
to the singular point, for example when commanding low thrust or changing
the thrust direction. For low thrust commands, torque control shows better
performance in terms of constant thrust production, since the mapping from
thrust to torque is more directly related to the propeller loading than the map-
ping from thrust to power. In total, therefore, torque control is a better choice
for low thrust commands. For high thrust commands, it is essential to avoid
power transients, as these lead to higher fuel consumption, increased danger of
blackouts, and harmonic distortion of the power plant network. Power control is
hence a natural choice for high thrust commands. This motivates the construc-
tion of a combined torque/power control scheme, utilizing the best properties
of both controllers.
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3.13.1 Weighting function

The weighting function α(z) : R→ R will be needed in the following:

α(z) = e−k|pz|
r

, for z ∈ R, (3.33)

where k, p and r are positive constants. α(z) satisfies:

lim
z→0

α(z) = 1, lim
z→±∞

α(z) = 0. (3.34)

The derivative of α with respect to z is

∂α(z)/∂z = −k |pz|r e−k|pz|r(−kpr |pz|r−1)
= k2pr |pz|2r−1 e−k|pz|r = k2p2rr |z|2r−1 α(z), (3.35)

which is smooth in z for r ≥ 0.5. Particularly, ∂α/∂z = 0 for z = 0 and
z → ±∞.
The parameter p will act as a scaling factor for z, such that a small p

will widen the weighting function, giving a wider transition between 0 and 1.
Increasing the parameter k sharpens the peak about z = 0, whereas increasing
r widens the peak and makes the transition from 0 to 1 steeper. Figure 3.10
shows α(z) for varying r, p, and k.

3.13.2 Controller formulation

With the commanded torque Qcq from the torque controller in (3.29) and the
commanded torque Qcp from the power controller in (3.32), the combined con-
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troller commanded torque Qcc is defined as:

Qcc = αc(n)Qcq + (1− αc(n))Qcp, (3.36)

where αc(n) is a weighting function of the type (3.33). The shape of αc(n)
defines the dominant regimes of the two control schemes, and can be used to
tune the controller according to user specifications.
The control law (3.36) must show smooth behavior for all n. The derivative

of the commanded torque with respect to n becomes:

∂Qcc

∂n
=

∂αc(n)

∂n
Qcq + αc(n)

∂Qcq

∂n
+

∂(1− αc(n))

∂n
Qcp + (1− αc(n))

∂Qcp

∂n

= k2p2rr |n|2r−1 αc(n)
KQC

KTC
DTr

−k2p2rr |n|2r−2 αc(n)
KQC sign(Tr)|Tr|3/2

√
ρDK

3/2
TC

−1− αc(n)

|n|n
KQC sign(Tr)|Tr|3/2

√
ρDK

3/2
TC

. (3.37)

The first two terms contain no singularities for r ≥ 1, and it remains to inves-
tigate the term:

1− αc(n)

|n|n =
1− e−k|pn|

r

|n|n , hn(n). (3.38)

The limit of hn(n) in (3.38) as n tends to zero is:

lim
n→0

hn(n) = lim
n→0

1− e−k|pn|
r

|n|n = lim
n→0

∂/∂n(1− e−k|pn|
r

)

∂/∂n(|n|n)
= lim

n→0
−k2p2rr |n|2r−2 e−k|pn|r = 0, for r ≥ 1.

The control law is hence smooth with respect to n as long as r ≥ 1 in the
function αc(n). The power control singularity for n = 0 is thereby removed
in the combined torque/power controller. Figure 3.9 shows a block diagram
of the combined control scheme, including reference generator, torque limiting
function, friction compensation, and inertia compensation.

3.14 Modified combined torque/power control
In some applications it may be desirable to abandon the combined controller
for low thrust references (i.e. low shaft speed), and use shaft speed control
instead. This requires an additional switch between the different controllers,
which should be handled with care. Here, two approaches are suggested for
a modification of the combined torque/power controller: additive integral ac-
tion, and vanishing integral action. A third solution, with a slightly different
approach, is given in the next section.
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Figure 3.11: Combined torque/power control scheme.

3.14.1 Additive integral action

If the starting torque Qs is significant but unknown, the static term Qff0 in
the friction compensation scheme (3.19) cannot be implemented. This means
that the combined torque/power controller will give poor performance for low
thrust references, since Qs then will be of significant magnitude compared to the
commanded torque Qci from the controller. For higher thrust references, Qs will
be small compared to Qci, and the performance will probably be satisfactory.
A solution to this is to add an integral term operating on the shaft speed error
as in (3.27) to the combined controller in (3.36) for low thrust references, and
disable the integral update for high thrust references.
As in the friction compensation scheme, the shaft speed reference nr from

(3.1) is used as the switching variable. The threshold shaft speed for the switch
is termed ns > 0, such that |nr| ≤ ns ⇒ shaft speed control, and |nr| > ns ⇒
combined control. The reason for using nr instead of the measured shaft speed
n to define the operating regimes is to avoid switching due to measurement noise
and shaft speed oscillations. The controller output Qccm is formulated as the
sum of the commanded torque Qcc from the combined controller in (3.36) and
an integral term Qi:

Qccm = Qcc +Qi. (3.39)

Qi is defined as:

Qi =

½ R t
0
Ki(nr(τ)− n(τ))dτ for |nr| ≤ ns,

Q̄i for |nr| > ns,
(3.40)

where Ki is the integral gain, and Q̄i is the value of Qi when |nr| = ns. This is
easily implemented by freezing or disabling the integrator update when |nr| >
ns. This can also be written as

Qi =

Z t

0

Kiei(τ)dτ, ei =

½
nr − n for |nr| ≤ ns,
0 for |nr| > ns.

(3.41)
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Assuming perfect shaft speed control (i.e. n = nr) for |nr| ≤ ns, the torque
balance when n = nr = ns from (2.50) becomes:

Qcc + Q̄i +Qf12πnr = sign(n)Qs +Kω2πn+Qa. (3.42)

The combined controller has been designed to cancel the propeller torque, such
that Qcc ≈ Qa. If the linear friction compensation is accurate, such that
Qf12πnr ≈ Kω2πn, it is clear that the frozen integral term is given by:

Q̄i ≈ sign(n)Qs. (3.43)

Hence, by keeping Q̄i as a term in the controller also for |nr| > ns, the static
friction is cancelled for the entire range of controller operation. For this to
work properly, the limit ns should be chosen relatively low, such that it can
be assumed that the static friction is a significant term for |nr| ≤ ns. If ns
is chosen too high, the static friction may be dominated by dynamics in the
propeller loading, such that the assumption Qcc ≈ Qa, and hence also (3.43),
no longer holds. If no linear friction compensation is included, the frozen integral
term will be given by Q̄i ≈ sign(n)Qs +Kω2πns.

Remark 3.6 Perfect matching of Q̄i with the static friction can only be ob-
tained in the ideal case, when Kω is known, the control coefficients KTC and
KQC in the combined controller match the true thrust and torque coefficients,
and there is no dynamic loading of the propeller (nominal conditions). If the
conditions deviate from the nominal, perfect compensation can no longer be
achieved, and the frozen integral term Q̄i 6= sign(n)Qs. However, if Qf0 is un-
known, the total controller performance will still probably be superior to the one
without the added integral action.

3.14.2 Vanishing integral action

If Qs is known and can be included in the friction compensation (by Qf0 = Qs),
but it still is desirable to use the shaft speed controller for low Tr, the approach
described in the previous section is not appropriate. In this case it is possible to
use a similar formulation, where the integral term used for shaft speed control
when |nr| ≤ ns is removed for high nr. This is facilitated by adding a weighting
function αi(nr) of the type (3.33) to the integral term Qi in (3.39):

Qccm = Qcc +Qiαi(nrel), (3.44)

nrel = max(0, |nr|− ns). (3.45)

Hence, αi(nrel) = 1 for |nr| ≤ ns, such that the controller here is identical to
(3.39). For |nr| > ns, Q̄i is scaled with αi(nrel) such that Q̄iαi(nrel) tends to
zero for increasing nr. The shaft speed reference for which Q̄iαi(nrel) ≈ 0 is
implicitly given by the parameters r, p, and k in αi(nrel).
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3.15 Combined speed/torque/power control
As an alternative to the modified combined torque/power controller formula-
tions presented in Section 3.14, it is possible to specify three control regimes
explicitly: speed control for low shaft speed, torque control for medium shaft
speed, and power control for high shaft speed. The regimes are defined as fol-
lows:

|nr| ≤ ns1 ⇒ shaft speed control,
ns1 < |nr| ≤ ns2 ⇒ transition speed↔ torque,
ns2 < |nr| ≤ ns3 ⇒ torque control,
ns3 < |nr| ≤ ns4 ⇒ transition torque↔ power,
|nr| > ns4 ⇒ power control,

with switching shaft speeds ns1 < ns2 < ns3 < ns4. The two transitions are
done by the weighting functions α1(nr) and α2(nr):

α1(nr) = αs(max(0, |nr|− ns1)), (3.46)

α2(nr) = αs(max(0, |nr|− ns3)), (3.47)

where αs is a weighting function of the type (3.33). ns1 and ns3 are chosen
explicitly by the designer, whereas ns2 and ns4 are given implicitly by the func-
tions α1 and α2. Figure 3.12 shows the three control regimes with transition
areas and weighting functions. With a modification of the shaft speed controller
from (3.27), the torque controller from (3.29), a modification of the power con-
troller from (3.32), and the two weighting functions α1 and α2, the controller
output Qcs of the combined speed/torque/power controller is given from:

nr = sgn(Tr)

s
|Tr|

ρD4KTC
, e = nr − n,

Qcn = Kpe+

Z t

0

Kiei(τ)dτ, ei =

½
e for |nr| ≤ ns1,
0 for |nr| > ns1,

Qcq =
KQC

KTC
DTr,

Qcp =
KQC

√
ρDK

3/2
TC

sgn(Tr)|Tr|3/2
max(|n| , εp)

,

α1(nr) = exp(−k(pmax(0, |nr|− ns1))
r),

α2(nr) = exp(−k(pmax(0, |nr|− ns3))
r),

Qcs = α1α2Qcn + (1− α1)α2Qcq + (1− α1)(1− α2)Qcp. (3.48)

Remark 3.7 In the combined power/torque controller it was necessary to use
the shaft speed n in the weighting function in order to avoid the singularity for
zero shaft speed. In (3.48), the singularity is easily avoided by using max(|n| , εp)
instead of |n| in the power equation, where εp is a small positive number. Since
α2(nr) ≡ 1 for |nr| < ns3 (and hence the contribution from the power controller
is zero), this does not affect the controller output.



3.16 Thrust control and additional instrumentation 79

0

0

0.2

0.4

0.6

0.8

1

n
r

−n
s1

n
s1

n
s2

n
s3

n
s4

Speed
control

Torque
control

Power
control

α
1
(n

r
) α

2
(n

r
)
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Remark 3.8 The modification of the shaft speed controller term Qcn is similar
to the vanishing integral term in Section 3.14.2, with a disabled integrator for
|nr| > ns.

Remark 3.9 The control scheme in (3.48) is easily combined with the friction
and inertia compensation schemes as in (3.18) if desired. However, by using
shaft speed control for the lowest thrust references, the most important reason for
using the friction compensation scheme, i.e. tracking properties for low thrust
references, will in most cases be diminished. In some applications, like e.g. the
experimental setup presented in Section 7.1, the friction is of significance also
for the higher thrust references.

3.16 Thrust control and additional instrumen-
tation

If the propulsion unit could be equipped with additional instrumentation, new
control options would appear. With a measurement of the actual thrust, thrust
control becomes an option. This could be implemented e.g. by a PI controller
operating on the thrust error. Without additional instrumentation, it is in
some cases possible to construct an output feedback thrust controller, as pro-
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Controller Abbreviation Section
Shaft speed control S control 3.10
Torque control Q control 3.11
Power control P control 3.12
Combined torque/power control QP control 3.13
Modified QP control w/ additive integral MQP1 control 3.14.1
Modified QP control w/ vanishing integral MQP2 control 3.14.2
Combined speed/torque/power control SQP control 3.15
Friction compensation scheme w/Qff 3.7.1
Inertia compensation scheme w/Qif 3.7.2

Table 3.1: Controllers for normal conditions.

posed in Guibert et al. (2005). These topics, as well as other control options
that become available with additional instrumentation, are further treated in
Appendices E.2 and E.3. Due to the increased complexity and necessary model
knowledge, thrust control is not considered to be a desirable solution for indus-
trial implementation on surface vessels.

3.17 Controller summary

For ease of notation, the controllers presented above will be given abbreviations
as defined in Table 3.1. Shaft speed, torque, and power control are considered
to be the fundamental controllers, since the other controllers are combinations
of these. The abbreviations will be used as e.g. “QP w/Qff”, meaning combined
torque/power control with friction compensation.

3.18 Simulation results

This section presents simulations with the 4MW Wageningen B4-70 example
propeller, with specifications given in Appendix A.
The control coefficients are taken according to (3.8, 3.9), with parameters

given in Table 3.2. The resulting control coefficient KTC is shown as a function
of nr in Figure 3.2. Note that the thrust and torque coefficients in Table 3.2
are identical to the true nominal model parameters as given in Table A.1. With
the chosen εc, λc(nc) = 0.9975, and λc(−nc) = 0.0025. Hence, the control
coefficients are accurate for |nr| > 0.2rps.
The shaft speed reference generator in (3.14) is utilized, with parameters

given in Table 3.3. Unless otherwise specified, the friction and inertia compen-
sation schemes are taken according to (3.19) and (3.22), with the parameters
given in Table 3.4. The resulting friction compensation scheme is shown as a
function of nr in Figure 3.5. Perfect model knowledge has been assumed, such
that the parameters Ic, Qf0, and Qf1 in Table 3.4 are identical to the true model
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KT0 KT0r KQ0 KQ0r εc nc
0.445 0.347 0.0666 0.0628 3 0.2rps

Table 3.2: Control coefficient parameters for the 4MW Wageningen B4-70 ex-
ample propeller.

ṅ+slew ṅ−slew ζr τ r
0.2s−2 −0.2s−2 1.0 2s

Table 3.3: Shaft speed reference generator parameters for the 4MWWageningen
B4-70 example propeller.

parameters Is, Qs, and Kω as given in Table A.1. For the inertia compensation
scheme, ṅr is calculated from the reference generator, as proposed in Section
3.6.
For the shaft speed PI controller in (3.27), the PI gains are taken as proposed

in Appendix B.1, and given in Table 3.5. A torque limiting function as defined
in (3.25) is used, with the parameters Qmax and Pmax given in Table A.1. The
remaining simulation parameters will be given case by case.

3.18.1 Controller response

This section investigates the controller response to a rapid change of thrust
reference, and demonstrates the importance of the friction and inertia compen-
sation schemes. The advance velocity is kept constant at Va = 1m/s, simulating
e.g. current. The measurement noise on n is turned off. Four controllers are
tested: S control, Q control w/Qff , Q control w/Qif, and Q control w/Qff + Qif.
The resulting shaft speed and thrust for a step in Td from 0 to 117kN (corre-
sponding to nr = 1rps) are found in Figure 3.13. The shaft speed reference is
covered by the S controller, which tracks the shaft speed perfectly. However,
there is a steady-state offset in the thrust due to Va. The Q controller w/Qff has
a slow response, but a smaller steady-state offset in thrust. The Q controller
w/Qif has a fast response, but a larger steady-state offset in thrust. The Q
controller w/Qff + Qif has the best performance, with fast response and little
offset in thrust. Figure 3.14 shows the corresponding results for a step from 117
to 263kN (corresponding to nr = 1.5rps). Again, the shaft speed reference is
covered by the S controller. The variations in response are smaller here, demon-
strating that the friction and inertia compensation schemes are most important

Ic Qf0 Qf1 εf nf
25E3kgm2 6.2kNm 720Nms 3 0.1rps

Table 3.4: Friction and inertia compensation parameters for the 4MWWagenin-
gen B4-70 example propeller.
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Kp Ti Qi,max Tf
7.6E5 0.10s 0.9kgQN 0.01s

Table 3.5: Shaft speed PI controller parameters for the 4MWWageningen B4-70
example propeller.
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Figure 3.13: Comparison of the shaft speed and thrust response to a step in Td
from 0 to 117kN at Va = 1.0m/s for four controllers.

for small Tr. Still, however, the inertia compensation speeds up the response,
and the friction compensation reduces the steady-state thrust offset. In total,
the Q controller w/Qff + Qif has the best performance also here.
For Va = 0, which is not shown here, the S controller and Q controller w/Qff

+ Qif both track nr and Tr perfectly, and only the Q controller w/Qif has a
steady-state offset. The response of the Q controller w/Qff is still slow. In
conclusion, the friction compensation scheme is needed to avoid steady-state
offset, and the inertia compensation needed get satisfactory response of the
Q controller. However, as was seen in Figures 3.13 and 3.14, the resulting
thrust without friction compensation may still be better than for the shaft
speed controller when operating away from the nominal design point Va = 0.
Without the inertia compensation scheme, the response of the P controller

is slightly better than for the Q controller. Without the friction compensation
scheme, the steady-state thrust offset of the P controller is slightly larger than
for the Q controller.
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Figure 3.14: Comparison of the shaft speed and thrust response to a step in Td
from 117 to 263kN at Va = 1.0m/s for four controllers.

3.18.2 Fundamental controllers in waves and current

Figure 3.15 shows a comparison of the three fundamental controllers subject
to a sinusoidal wave with amplitude 2m and period 10s, with thrust reference
Tr = 300kN. The mean submergence is h0 = 6m, i.e. h0/R = 1.5, and Va is
calculated from (C.33) with N = 1, ζ1 = 2m, ω1 = 2π/10s

−1, and φ1 = 0. The
friction and inertia compensation schemes are used. The simulations show that
the three controllers obtain their objectives: the shaft speed controller keeps
the shaft speed constant, the torque controller keeps the motor torque constant,
and the power controller keeps the motor power constant. The shaft speed con-
troller has the largest oscillations in thrust, propeller torque, motor torque, and
motor power. The torque controller has the smallest oscillations in thrust and
propeller torque, and much smaller oscillations in motor power than the shaft
speed controller, but has the largest oscillations in shaft speed. The power con-
troller has slightly larger oscillations in thrust and propeller torque, and slightly
smaller oscillations in shaft speed than the torque controller. It also has much
smaller oscillations in motor torque than the shaft speed controller. Similar
results could be obtained for any sea-state, propeller, and thrust reference, as
these properties are inherent in the controllers. This will be further analyzed in
Chapter 4. A small noise content can be seen in the motor torque and power
for the shaft speed controller, and also for the power controller, due to the noise
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on the shaft speed feedback signal.
Figure 3.16 shows the same three controllers, sea state, and thrust reference,

but with the addition of a current that linearly increases the mean value of Va
from 0m/s at t = 5s to 3m/s at t = 105s. The results further demonstrate the
good properties of the torque and power controllers. When the loading decreases
due to the increased advance velocity, the controllers increase the shaft speed
to keep the torque or power constant. The result is superior thrust production,
in addition to reduced oscillations in torque and power.

3.18.3 Fundamental controllers with time-varying thrust
reference

Figure 3.17 shows a comparison of the three fundamental controllers with a
sinusoidal Td of amplitude 50kN and period 50s. The mean submergence is
h0 = 6m. The propeller is subject to a current velocity of 0.5m/s (giving
a positive Va) and irregular waves with Hs = 1m, Tp = 7.6s, defined by 30
harmonic components extracted from the modified PM spectrum in (C.19).
The wave-induced velocities are calculated from (C.33). The friction and inertia
compensation schemes are used, but with a 20% error in both Qf0, Qf1, and
Ic when compared to the true parameters, i.e. Qf0 = 0.8Qs, Qf1 = 0.8Kω,
and Ic = 0.8Is. In addition, the torque controller is simulated without friction
and inertia compensation. Figure 3.18 shows corresponding results with Td of
amplitude 200kN and period 70s. All the controllers track the thrust references
satisfactory, except the pure torque controller. This shows the importance of the
compensation schemes, and also that the compensation schemes work well in the
presence of modelling errors. The singularity of the power controller for n = 0
is clearly seen in the Qm plots. The shaft speed controller has an overshoot
in Qm about the zero-crossing of n. This is mainly due to the static friction.
However, inclusion of the friction compensation scheme does not remedy this
problem. A small transient exists also for the torque controller, although much
less apparent.

Remark 3.10 The reference generator gives a slight loss of amplitude in Tr,
and also enforces a smoother zero-crossing of n when compared to the sinusoidal
Td.

3.18.4 Combined controllers with time-varying thrust ref-
erence

As stated in Sections 3.13 and 3.15, the idea behind the combined QP and SQP
controllers is to utilize the best properties of the various fundamental controllers.
Figure 3.19 shows time series where the QP controller w/Qff + Qif is tested

in regular waves with amplitude 2m and period 5s for a time-varying Td, in-
cluding two zero-crossings of n. The chosen weighting function parameters for
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r p k Q ctr P ctr
6 0.9 1 |n| < 0.5 |n| > 1.5

Table 3.6: Combined QP controller weighting function parameters for the 4MW
Wageningen B4-70 example propeller.

Time interval Td Corresp. nd Regime
t < 20s 50kN ≈ 0.65rps Q ctr.
20s< t < 35s 300kN ≈ 1.6rps P ctr.
35s< t < 55s −30kN ≈ −0.57rps Q ctr.
55s< t < 100s 300kN ≈ 1.6rps P ctr.

Table 3.7: Desired thrust Td, corresponding shaft speed nd, and controller
regimes for the combined QP controller simulation in Figure 3.19.

the QP controller in (3.36), as well as the implied range for pure Q and pure
P control, are given in Table 3.6. The same 20% errors in the friction and in-
ertia compensation schemes as in the previous section have been applied. The
input Td is given as specified in Table 3.7, where also the corresponding control
regimes are given, and drawn by a dashed line in the thrust plot. When in
Q control mode (t < 20s), the expected oscillations in power are present, but
cannot be seen in the figure due to the axis scaling. When in P control mode
(t > 75s), the oscillations in motor torque are barely visible, also here due to the
axis scaling. The QP controller handles the two zero-crossings of n without any
transients, and shifts from pure Q control to pure P control and back smoothly.
The results also show that the reference generator works as intended, providing
a smooth shaft speed reference with rate saturation.

Figure 3.20 shows time series where the SQP controller w/Qff + Qif is tested
in the same environmental conditions as the QP controller. The chosen weight-
ing function parameters for the SQP controller in (3.48), as well as the implied
range for pure S, pure Q, and pure P control are given in Table 3.8. Td is given as
specified in Table 3.9, where also the corresponding control regimes are given,
and drawn by a dashed line in the thrust plot. The control regimes are also
given in Table 3.9. Although it is difficult to make out the details in the figure,
the simulations show that the SQP controller works as intended, and that the
three controllers operate properly in the three control regimes. Some transients
can be seen about the zero-crossings, apparently due to the static friction and
high gains in the PI controller. The results also show that the control coefficient
switch works seamlessly. Notice that a larger magnitude shaft speed is needed
to produce negative thrust, since the propeller is asymmetric.
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Figure 3.19: Time series of the combined QP controller in regular waves for a
time-varying Td.

r p k ns1 ns3 S ctr Q ctr P ctr
4 4 2 0.3 1.1 |n| < 0.3 0.64 < |n| < 1.1 |n| > 1.44

Table 3.8: Combined SQP controller weighting function parameters for the
4MW Wageningen B4-70 example propeller.
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Time interval Td Corresp. nd Regime
t < 20s 10kN ≈ 0.3rps S ctr.
20s< t < 40s 75kN ≈ 0.8rps Q ctr.
40s< t < 70s −75kN ≈ −0.9rps Q ctr.
70s< t < 100s 350kN ≈ 1.7rps P ctr.

Table 3.9: Desired thrust Td, corresponding shaft speed nd, and controller
regimes for the combined SQP controller simulation in Figure 3.20.
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Figure 3.20: Time series of the combined SQP controller in regular waves for a
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Speed ctr. Torque ctr. Power ctr.
Thrust fluctuations Large Small Medium
Torque fluctuations Large Small Medium
Power fluctuations Large Medium Small
Other issues Tuning Power peaks Singularity

Friction Friction
Inertia Inertia

Table 3.10: Comparison of the main properties of the fundamental thruster
controllers.

Light load Medium load Heavy load
Thrust production High High High
Mech. wear & tear Low Medium High
Power fluctuations Low Medium High
Friction/Inertia High Low/Medium Low
Preferred ctr. Speed or Torque Torque Power

Table 3.11: Summary of the relevance (low, medium, high) of the main perfor-
mance criteria for light, medium, and heavy propeller loading.

3.19 Discussion

This chapter has presented several thruster controllers for normal operating
conditions, including various additions like friction and inertia compensation,
reference generators, and torque/power limiting. The controllers are summa-
rized in Table 3.1. A summary of the main properties of the three fundamental
controllers — shaft speed, torque, and power control — is given in Table 3.10.
A summary of the relevance (low, medium, or high) of the main performance
criteria for varying propeller loading is given in Table 3.11.
From these two tables, it is easy to motivate the construction of the combined

controllers, i.e. QP, MQP1, MQP2, and SQP control:

• For medium propeller loading, the torque controller is preferable, and for
high propeller loading the power controller is preferable. In these oper-
ating regimes, the knowledge of the friction and inertia parameters is of
reduced importance. However, improved transient response and tracking
properties is expected if the friction and inertia compensation schemes are
used.

• For low propeller loading, torque or shaft speed control is preferable. If
sufficient system knowledge to implement the friction and inertia compen-
sation schemes is at hand, torque control will probably be sufficient. Then,
the QP controller is a good choice. If the friction and inertia compensation
schemes are implemented, but expected to be less accurate due to limited
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Small propellers Large propellers
Friction Important Less important
Inertia Less important Important

Table 3.12: Importance of the friction and inertia compensation schemes for
varying propeller sizes.

system knowledge, some kind of shaft speed control for low shaft speeds
will be preferable. Then, the MQP1 or MQP2 controller is a good choice.

• If no inertia or friction compensation scheme is implemented, it is probably
necessary to use shaft speed control for low to medium propeller loading,
depending on the significance of the friction and inertia terms. In this
case, the SQP controller may be the best option.

For small propellers, like thrusters on small underwater vehicles and pro-
pellers used in experimental setups, it is expected that the friction is of larger
significance than the inertia. For large thrusters, the opposite is expected.
Hence, it may not be necessary with both compensation schemes in all appli-
cations. The importance of the friction and inertia compensation schemes is
summarized in Table 3.12.
The recommendations above should only serve as guidelines for the choice

of controller. For some applications, other controllers than the ones presented
here may be preferable. It is e.g. simple to construct a combined speed/power
controller based on the SQP controller. In other applications, one of the fun-
damental controllers, i.e. S, Q, or P control, may be the better choice. In the
literature, also other controllers — that may be more appropriate for the appli-
cations studied there — have been proposed, see the references listed in Section
3.4. Some additional control options, based on output feedback, are presented
in Appendices E.3 and E.4.
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Chapter 4

Sensitivity to thrust losses

The steady-state performance of the various control schemes introduced in
Chapter 3 can be theoretically analyzed by establishing their sensitivity to thrust
losses. Depending on the control scheme, a loss of propeller loading may, in ad-
dition to changes in propeller thrust and torque, lead to changes in shaft speed
and power. The relationship between the actual and reference thrust, torque,
shaft speed, and power are termed sensitivity functions :

Thrust sensitivity: sti(n,xp,θp, Tr) ,
Ta
Tr

. (4.1)

Speed sensitivity: sni(n,xp,θp, Tr) ,
n

nr
. (4.2)

Torque sensitivity: sqi(n,xp,θp, Tr) ,
Qa

Qr
. (4.3)

Power sensitivity: spi(n,xp,θp, Tr) ,
Pa
Pr

. (4.4)

The index i indicates the type of controller: i = n for shaft speed control (Section
3.10), i = q for torque control (Section 3.11), i = p for power control (Section
3.12), and i = t for thrust control (Section 3.16). For notational simplicity, the
arguments of the sensitivity functions will be omitted. nr, Qr, and Pr are given
from Tr by (3.1), (3.2), and (3.3), respectively.
When developing the sensitivity functions, it is assumed that all controllers

obtain their objectives perfectly, i.e. n = nr for shaft speed control, Qa = Qr for
torque control, Pa = Pr for power control, and Ta = Tr for thrust control. It has
hence been assumed that the friction is perfectly compensated for in torque and
power control, i.e. Qff = Qf . In Appendix F it is shown how this assumption
may be relaxed. The sensitivity function concept was introduced in Sørensen
et al. (1997) and Strand (1999), where the thrust sensitivity function sti(·)
was used to analyze the properties of shaft speed, torque, and power control.
The current presentation of the thrust sensitivity functions differs slightly from
the original formulations. The sensitivity analysis is mainly of interest for the
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fundamental thruster controllers, i.e. shaft speed, torque, and power control,
as well as thrust control. The sensitivities of the other controllers in Table 3.1
may be directly inferred from the sensitivity of the fundamental controllers,
depending on the chosen weighting functions.
The sensitivity analysis can only be used to evaluate the quasi-static per-

formance of the various control schemes. To gain insight into the transient
performance of the controllers, Section 4.10 presents a stability analysis based
on Lyapunov theory.

Remark 4.1 As mentioned in Section 3.16, the thrust controller requires addi-
tional instrumentation or a complex output feedback formulation, and is hence
of limited industrial relevance. This is further discussed in Appendix E.2.1 and
Appendix E.3.1. The sensitivity functions for thrust control are still derived,
since it is interesting to analyze its properties alongside the fundamental con-
trollers.

4.1 Thrust, torque, power, and shaft speed re-
lations

In the following, the relationships between thrust, torque, power, and shaft
speed will be needed. The shaft speed n can be expressed in terms of the thrust
Ta or the torque Qa by inverting (2.3) and (2.4):

n = sign(Ta)

s
|Ta|

ρD4KT
, (4.5)

n = sign(Qa)

s
|Qa|

ρD5KQ
. (4.6)

From (2.5), the magnitude of the shaft speed is expressed in terms of Pa by:

|n| = P
1/3
a

(2πKQρ)1/3D5/3
. (4.7)

The thrust Ta can be expressed in terms of the torque Qa by eliminating
sign(n)ρn2D4 between (2.3) and (2.4):

Ta =
KT

KQD
Qa. (4.8)

Similarly, Ta can be expressed in terms of Pa by eliminating sign(n)ρn2D4

between (2.3) and (2.5) and inserting (4.5):

|Ta| =
ρ1/3D2/3KT

(2π)2/3K
2/3
Q

P 2/3a . (4.9)
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Finally, Qa can be expressed in terms of Pa by inserting (4.6) in (2.5):

|Qa| =
ρ1/3D5/3K

1/3
Q

(2π)2/3
P 2/3a . (4.10)

The shaft speed, torque, and power mappings in (3.1), (3.2), and (3.3) can be
used to establish the following relationships between the references Tr, Pr, Qr,
and nr:

Tr = KTCρD
4nr |nr| , (4.11)

Qr = KQCρD
5nr |nr| , (4.12)

Pr = 2πKQCρD
5 |nr|3 . (4.13)

4.2 Thrust sensitivity

4.2.1 Shaft speed control thrust sensitivity

Assuming perfect control at steady state, i.e. n = nr, the shaft speed is given
in terms of Tr from (3.27):

n = nr = sign(Tr)

s
|Tr|

ρD4KTC
. (4.14)

The actual thrust for shaft speed control is then given from (2.3) and (4.14):

Ta = sign(Tr)KT ρD
4 |Tr|
ρD4KTC

=
KT

KTC
Tr, (4.15)

and the sensitivity function for shaft speed control stn(·) is:

stn(·) =
Ta
Tr
=

KT

KTC
. (4.16)

4.2.2 Torque control thrust sensitivity

Assuming perfect control at steady state, i.e. Qa = Qr, the propeller torque is
given in terms of Tr from (3.2):

Qa = Qr =
KQC

KTC
DTr. (4.17)

The actual thrust for torque control is expressed in terms of Tr by inserting
(4.17) in (4.8):

Ta =
KT

KQD
Qa =

KQC

KQ

KT

KTC
Tr, (4.18)

and the sensitivity function for torque control stq(·) is:

stq(·) =
Ta
Tr
=

KT

KTC

KQC

KQ
. (4.19)
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4.2.3 Power control thrust sensitivity

Assuming perfect control at steady state, i.e. Pa = Pr, the propeller power is
given in terms of Tr from (3.32):

Pa = Pr = Qr2πnr = |Tr|3/2
2πKQC
√
ρDK

3/2
TC

. (4.20)

The actual thrust for power control is expressed in terms of Tr by inserting
(4.20) in (4.9):

|Ta| = (
√
ρDK

3/2
T

KQ2π
Pa)

2/3 =
KT

KTC

K
2/3
QC

K
2/3
Q

|Tr|. (4.21)

Assuming that the signs of the reference and produced thrust are equal, i.e.
sign(Ta) = sign(Tr), the sensitivity function for power control stp(·) is:

stp(·) =
Ta
Tr
=

KT

KTC
(
KQC

KQ
)2/3. (4.22)

4.2.4 Thrust control thrust sensitivity

If a thrust feedback or thrust output feedback controller is used, the thrust
sensitivity function stt(·) by definition becomes unity:

stt(·) = 1, (4.23)

since Ta ≡ Tr when perfect control is assumed.

4.2.5 Combined torque/power control thrust sensitivity

The analysis of the sensitivity of the combined torque/power controller is not
as straightforward as in the preceding cases. However, since the combined con-
troller is a linear combination of the torque and power controllers, it is a rea-
sonable assumption that its sensitivity function stc(·) may be expressed as:

stc(·) =
KT

KTC
(
KQC

KQ
)κ, for κ ∈ [ 2

3
, 1], (4.24)

such that for high n, stc(·) ≈ stp(·) and for low n, stc(·) ≈ stq(·). In Appendix
F.1, it is shown that a good approximation of κ is given by

κ ≈ 2/3 + 1/3αc(n), (4.25)

where αc(n) is the combined controller weighting function, as used in (3.36).
For analysis purposes, the following approximation to the combined controller
thrust sensitivity function can therefore be used:

stc(·) ≈
βTC

β
2/3+1/3αc(n)
QC

. (4.26)
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Through αc(n), stc(·) depends on the shaft speed n, which makes it less conve-
nient for analysis. However, it is clear that stc(·) will lie in-between stq(·) and
stp(·) for all n.

4.3 Shaft speed sensitivity
The shaft speed sensitivity function for shaft speed control snn(·) is:

snn(·) =
n

nr
=

nr
nr
= 1, (4.27)

since in this case n = nr. Using (4.6) and (3.2), the shaft speed for torque
control is expressed in terms of Tr by:

n = sign(Qa)

s
|Qa|

ρD5KQ
= sign(Tr)

K
1/2
QC |Tr|

1/2

ρ1/2D2K
1/2
Q K

1/2
TC

, (4.28)

and the shaft speed sensitivity function for torque control snq(·) is:

snq(·) =
n

nr
=
sign(Tr)

q
KQC |Tr|

KTCρD4KQ

sign(Tr)
q

|Tr|
ρD4KTC

=

s
KQC

KQ
. (4.29)

Using (4.7) and (3.4) the shaft speed for power control is expressed in terms of
Tr by:

|n| = P
1/3
a

(2πKQρ)1/3D5/3
=

K
1/3
QC

ρ1/2D2K
1/2
TCK

1/3
Q

|Tr|1/2. (4.30)

Assuming sign(n) = sign(nr), the shaft speed sensitivity function for power
control snp(·) is:

snp(·) =
|n|
|nr|

=

K
1/3
QC

ρ1/2D2K
1/2
TCK

1/3
Q

|Tr|1/2¯̄̄̄
sign(Tr)

q
|Tr|

ρD4KTC

¯̄̄̄ = K
1/3
QC

K
1/3
Q

. (4.31)

From (4.5), the shaft speed for thrust control is:

n = sign(Ta)

s
|Ta|

ρD4KT
= sign(Tr)

s
|Tr|

ρD4KT
, (4.32)

and the shaft speed sensitivity function for thrust control snt(·) becomes:

snt(·) =
n

n r
=
sign(Tr)

q
|Tr|

ρD4KT

sign(Tr)
q

|Tr|
ρD4KTC

=

r
KTC

KT
. (4.33)
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4.4 Torque sensitivity

Using (2.4) and (3.1), the torque for shaft speed control is expressed in terms
of Tr by:

Qa = sign(n)KQρD
5n2 =

KQρD
5Tr

ρD4KTC
=

KQD

KTC
Tr, (4.34)

and the torque sensitivity function for shaft speed control sqn(·) is:

sqn(·) =
Qa

Qr
=

KQD
KTC

Tr
KQCD
KTC

Tr
=

KQ

KQC
. (4.35)

In torque control, Qa = Qr, and hence the torque sensitivity function for torque
control sqq(·) is:

sqq(·) =
Qa

Qr
=

Qr

Qr
= 1. (4.36)

Using (4.10) and (3.4), the torque for power control is expressed in terms of Tr
by:

|Qa| =
ρ1/3D5/3K

1/3
Q

(2π)2/3
P 2/3a =

DK
1/3
Q K

2/3
QC

KTC
|Tr|. (4.37)

Assuming sign(Qa) = sign(Qr), the torque sensitivity function for power control
sqp(·) is:

sqp(·) =
|Qa|
|Qr|

=

DK
1/3
Q K

2/3
QC

KTC
|Tr|¯̄̄

KQCD
KTC

Tr

¯̄̄ =
K
1/3
Q

K
1/3
QC

. (4.38)

From (4.8) and (3.2), the torque sensitivity for thrust control sqt(·) becomes:

sqt(·) =
Qa

Qr
=

KQD
KT

Ta
KQCD
KTC

Tr
=

KQD
KT

Tr
KQCD
KTC

Tr
=

KQ

KQC

KTC

KT
. (4.39)

4.5 Power sensitivity

Using (2.5) and (3.1), the power for shaft speed control is expressed in terms of
Tr by:

Pa = sign(n)2πKQρD
5n3 =

2πKQ

ρ1/2DK
3/2
TC

|Tr|3/2 , (4.40)

and the power sensitivity function for shaft speed control spn(·) is:

spn(·) =
Pa
Pr
=

KQ

KQC
. (4.41)
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Using (4.10) and (3.2), the power for torque control is expressed in terms of Tr
by:

Pa =
2π

ρ1/2D5/2K
1/2
Q

|Qa|3/2 =
2πK

3/2
QC

ρ1/2DK
1/2
Q K

3/2
TC

|Tr|3/2 , (4.42)

and the power sensitivity function for torque control spq(·) is:

spq(·) =
Pa
Pr
=

K
1/2
QC

K
1/2
Q

. (4.43)

In power control Pa = Pr, and hence the power sensitivity function for power
control spp(·) is:

spp(·) =
Pa
Pr
=

Pr
Pr
= 1. (4.44)

From (4.9) and (3.4), the power sensitivity function for thrust control spt(·)
becomes:

spt(·) =
Pa
Pr
=

2πKQ

ρ1/2DK
3/2
T

|Ta|3/2

2πKQC

ρ1/2DK
3/2
TC

|Tr|3/2
=

KQ

K
3/2
T

|Tr|3/2

KQC

K
3/2
TC

|Tr|3/2
=

KQ

KQC

K
3/2
TC

K
3/2
T

. (4.45)

4.6 Sensitivity function summary
The various sensitivity functions are summarized in Table 4.1. If the control
parameters KTC and KQC are replaced with the nominal parameters KT0 and
KQ0, as is proposed for thruster control in low-speed applications, the sensitivity
functions may be expressed in terms of the thrust and torque loss factors βT
and βQ from (2.11) and (2.12). This is summarized in Table 4.2.

Remark 4.2 It is interesting to note that if the controllers have knowledge of
the instantaneous values of KT and KQ, such that KTC = KT and KQC = KQ

at all times, all the sensitivity functions in Table 4.1 reduce to unity. This
means that all controllers perform identically.

Intuitively, the various sensitivity functions should be interrelated, regardless
of the chosen controller. This is also the case, as can be found by inserting (2.3),
(2.4), (2.5), (4.11), (4.12), and (4.13) in (4.1), (4.3), and (4.4), and inserting for
(4.2):

sti(·) =
ρD4KTn

2

ρD4KTCn2r
= βT sni(·)2, (4.46)

sqi(·) =
ρD5KQn

2

ρD5KQCn2r
= βQsni(·)2, (4.47)

spi(·) =
2πρD5KQn

3

2πρD5KQCn3r
= βQsni(·)3. (4.48)
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Sensitivity Speed control Torque control
Thrust stn(·) = KT

KTC
stq(·) = KT

KTC

KQC

KQ

Speed snn(·) = 1 snq(·) = (KQC

KQ
)1/2

Torque sqn(·) = KQ

KQC
sqq(·) = 1

Power spn(·) = KQ

KQC
spq(·) = (KQC

KQ
)1/2

Sensitivity Power control Thrust control
Thrust stp(·) = KT

KTC
(
KQC

KQ
)2/3 stt(·) = 1

Speed snp(·) = (KQC

KQ
)1/3 snt(·) = (KTC

KT
)1/2

Torque sqp(·) = ( KQ

KQC
)1/3 sqt(·) = KQ

KQC

KTC

KT

Power spp(·) = 1 spt(·) = KQ

KQC
(KTC

KT
)3/2

Table 4.1: Thrust, torque, power, and shaft speed sensitivity functions defined
in terms of KTC , KQC , KT , and KQ.

Sensitivity Speed ctr. Torque ctr. Power ctr. Thrust ctr.
Thrust stn(·) = βT stq(·) = βT

βQ
stp(·) = βT

β
2/3
Q

stt(·) = 1
Speed snn(·) = 1 snq(·) = 1

β
1/2
Q

snp(·) = 1

β
1/3
Q

snt(·) = 1

β
1/2
T

Torque sqn(·) = βQ sqq(·) = 1 sqp(·) = β
1/3
Q sqt(·) =

βQ
βT

Power spn(·) = βQ spq(·) = 1

β
1/2
Q

spp(·) = 1 spt(·) =
βQ

β
3/2
T

Table 4.2: Sensitivity functions defined in terms of the thrust and torque loss
factors βT and βQ, under the assumption that KTC = KT0 and KQC = KQ0.

From (4.47) and (4.48), it is also clear that:

spi(·) = sqi(·)sni(·), (4.49)

as could have been expected. These relationships can also be verified for the
individual controllers in Tables 4.1 and 4.2.

4.7 Steady-state performance
The steady-state performance of the various control schemes during a loss in-
cident is conveniently analyzed with the sensitivity functions. However, the
validity of the sensitivity functions rely on the steady-state values of βT and βQ
being correct. This is not necessarily trivial, since βT and βQ in general depend
on n, and for the same operating conditions therefore will change between the
different controllers.
For the shaft speed controller (assuming that n = nr), βT and βQ are

given directly. For the torque controller (assuming that Qa = Qr), the analysis
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becomes more complicated, because the resulting shaft speed is unknown. The
loss factor βQ = βQ(·, n) and the shaft speed must satisfy:

Qr = Qa = KQρn
2D5 = KQ0ρn

2D5βQ(·, n), (4.50)

where n is unknown. If βQ(·, n) can be expressed in terms of n, an analytical
solution might be found. In the general case however, this is not possible, and
n must be found by iteration. For the power controller (assuming Pa = Pr), the
analysis becomes similar as for torque control, but now the equation that must
be satisfied is:

Pr = Pa = KQρn
2D52πn = 2πKQ0ρn

3D5βQ(·, n). (4.51)

If an iterative analysis is performed for the combined controller, the equation
that has to be satisfied is (assuming Qcc = Qa):

αc(n)Qr + (1− αc(n))
Prs
2π|n| = KQ0ρn

2D5βQ(·, n).

In thrust control, the equation to be satisfied is (assuming Tr = Ta):

Tr = KT0ρn
2D4βT (·, n). (4.52)

Remark 4.3 The iterative solution procedure used to arrive at the correct steady-
state sensitivity values can be viewed as an extension of the original presentation
in Sørensen et al. (1997) and Strand (1999), where the influence of n on βT
and βQ was not considered.

4.8 Sensitivity to changes in advance velocity
Using the iterative solution procedure described above, the sensitivity to changes
in advance velocity may be analyzed by expressing the various sensitivity func-
tions as functions of Va for given Tr. This is done in Figures 4.1 to 4.4 for the
Wageningen B4-70 example propeller (see Figure 2.1 and Appendix A). The
thrust references Tr = 50, 200, and 400kN have been chosen. The curves for
Tr = 50kN stop at Va ≈ 2.7m/s, since the propeller here starts windmilling
for shaft speed control, i.e. the thrust becomes negative. Figure 4.1 shows the
thrust sensitivity functions stn(·) for shaft speed control, stq(·) for torque con-
trol, and stp(·) for power control. Clearly, the torque controller is the least
sensitive to changes in Va, the shaft speed controller the most sensitive, and the
power controller in-between. This shows that the torque and power controllers
will give significantly better thrust production than the shaft speed controller
when subject to disturbances in Va. Figure 4.2 shows the shaft speed sensitivity
functions snn(·) for shaft speed control, snq(·) for torque control, and snp(·) for
power control. From this, it is clear that the torque and power controller achieve
the increased thrust by increasing the shaft speed as Va increases. Figure 4.3
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shows the torque sensitivity functions sqn(·) for shaft speed control, sqq(·) for
torque control, and sqp(·) for power control. This confirms that the loading
of the propeller decreases with Va for shaft speed and power control, whereas
it is kept constant in torque control — explaining why the thrust production is
superior. Figure 4.4 shows the power sensitivity functions spn(·) for shaft speed
control, spq(·) for torque control, and spp(·) for power control. This shows that
the power controller keeps the power consumption constant regardless of Va,
whereas the torque controller power consumption increases and the shaft speed
controller power consumption decreases with Va. If control of the power con-
sumption is of major concern, the power controller will therefore be superior to
the torque controller.

Remark 4.4 Figure 4.1 is conveniently used to illustrate how the integral action
in the DP controller must be used to counteract the thrust losses with a given
low-level controller. If e.g. Tr = 200kN and Va = 2m/s, and shaft speed control
is used, the thrust sensitivity becomes stn ≈ 0.7. Hence, there is a lack of
30% of the thrust. Since the shaft speed controller is unable to counteract this
loss, the DP controller must increase the setpoint until Ta = Trstn(·) = 200kN.
From iteration, the resulting thrust setpoint can be found to be Tr ≈ 270kN. In
torque control, the thrust sensitivity is stq ≈ 0.94, and there is hence only a 6%
lack of thrust. From iteration, the resulting thrust setpoint needed to achieve
Ta = Trstq(·) = 200kN is Tr ≈ 212kN. In power control, stp ≈ 0.86, and the
resulting thrust setpoint needed to achieve Ta = Trstp(·) = 200kN is Tr ≈ 230kN.

Remark 4.5 The figures show that higher thrust references give less sensitivity
to Va. This is natural, since the loading of the propeller is less affected by a
given Va when the shaft speed increases.

Remark 4.6 The power sensitivity function slope is for most Va larger for shaft
speed control than for torque control. This means that in a time-varying inflow,
the oscillations in power will be larger for the shaft speed controller than for the
torque controller.

Figure 4.5 shows the thrust sensitivity function stc(·) for the combined con-
troller as a function of Tr, together with stn(·), stq(·), and stp(·). The parame-
ters for the weighting function αc(nr) in the combined controller were chosen
as r = 10, p = 0.8, and k = 0.3, which gives pure torque control for n < 0.8 rps
and pure power control for n > 1.6 rps. This is mirrored in stc(·), which equals
stq(·) for low Tr and stp(·) for high Tr.

4.8.1 Non-dimensional parametrization for Va and Tr

In order to plot unique sensitivity functions for any combination of Tr and Va,
valid for any propeller diameter, an alternative approach using the reference
advance number Jr exists. This approach will also remove the necessity of an
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Figure 4.1: Thrust sensitivity stn(·) for shaft speed control, stq(·) for torque
control, and stp(·) for power control as functions of advance velocity Va.
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Figure 4.2: Shaft speed sensitivity snn(·) for shaft speed control, snq(·) for
torque control, and snp(·) for power control as functions of advance velocity Va.
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Figure 4.3: Torque sensitivity sqn(·) for shaft speed control, sqq(·) for torque
control, and sqp(·) for power control as functions of advance velocity Va.
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Figure 4.4: Power sensitivity spn(·) for shaft speed control, spq(·) for torque
control, and spp(·) for power control as functions of advance velocity Va.
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Figure 4.5: Thrust sensitivity spn(·) for shaft speed control, spq(·) for torque
control, spp(·) for power control, and spc(·) for combined control as functions
of thrust reference Tr.

iterative solution procedure. Jr is defined as:

Jr =
Va
nrD

, (4.53)

where nr is the reference shaft speed calculated from Tr using (3.1). The rela-
tionship between Ja in (2.16) and Jr is:

Jr
Ja
=

VanD

nrDVa
=

n

nr
≡ sni(·), (4.54)

where sni(·) is the shaft speed sensitivity function. Hence, for shaft speed
control where n = nr and snn(·) = 1, the reference advance number Jrn is given
by:

Jrn = Ja. (4.55)

For torque and power control, however, n 6= nr and Ja 6= Jr. In torque
control the shaft speed sensitivity is given by (4.29), and the reference advance
number for torque control, Jrq, is defined by

Jrq = Ja

s
KQC

KQ
. (4.56)
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For a deeply submerged propeller, there is a particular value of KQ for a given
Ja, which again implies that there is a particular Jrq(Ja):

Jrq(Ja) = Ja

s
KQC

KQ(Ja)
. (4.57)

Hence, it is possible to re-parameterizeKT andKQ as functions of Jrq instead of
Ja (i.e. given Jrq, there exists particular values of KT and KQ). Furthermore,
since Jrq is determined uniquely by Va and Tr, the sensitivity functions for
torque control are parameterized by Jrq using (4.57).
Using the shaft speed sensitivity function for power control in (4.31) and the

same reasoning as for torque control, KT and KQ can be re-parameterized in
the power control reference advance ratio Jrp(Ja):

Jrp(Ja) = Ja
K
1/3
QC

KQ(Ja)1/3
. (4.58)

For thrust control, KT and KQ can be re-parameterized in the thrust control
reference advance ratio Jrt(Ja) by using (4.33):

Jrt(Ja) = Ja

s
KTC

KT (Ja)
. (4.59)

In order to establish the sensitivity functions without resorting to iteration, the
following procedure can now be followed:

1. Choose the range of Ja for which to calculate the sensitivity function
values.

2. For the chosen range of Ja, calculate the corresponding Jrn (speed con-
trol), Jrq (torque control), Jrp (power control), and Jrt (thrust control)
from Ja, KT , KQ, KTC , andKQC using the relationships defined in (4.55),
(4.57), (4.58), and (4.59).

3. For each Jri, calculate the sensitivity functions from KT and KQ.

What actually happens is that the advance ratio axis is scaled individually
for each controller. Notice that neither Tr, Va, nor D appear explicitly in
the calculations. Figures 4.6 to 4.9 show the thrust, shaft speed, torque, and
power sensitivity functions for shaft speed, torque, power, and thrust control
as functions of Jr for the Wageningen B4-70 propeller. These curves are hence
generalizations of the curves shown in Figures 4.1 to 4.4, with the addition
of the sensitivity functions for thrust control. If thrust control is a feasible
solution, these curves show that the increased performance in thrust production
is achieved by increasing the shaft speed, torque, and power additionally with
respect to the torque controller.
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Remark 4.7 Since stt(·) = 1 by definition, the sensitivity curves for thrust
control are conveniently used to investigate how much the thrust setpoint must
be increased to achieve a certain thrust for the various controllers, as discussed
in Remark 4.4. Applying the same example, with Tr = 200kN and Va = 2m/s,
the shaft speed reference nr ≈ 1.31rps from (3.1), and the reference advance ratio
from (4.53) becomes Jr ≈ 0.38. For shaft speed control, Figure 4.7 shows that
Jr ≈ 0.38⇒ snt ≈ 1.16. This means that in order to get Ta = 200kN, n must be
increased to n = nrsnt ≈ 1.52. Mapping n back to Tr using (3.5), the resulting
thrust reference is Tr ≈ 270kN. Similarly, for torque control, Qr ≈ 120kNm
from (3.2), and Figure 4.8 shows that Jr ≈ 0.38 ⇒ sqt ≈ 1.06. This means
that in order to get Ta = 200kN, Qa must be increased to Qa = Qrsqt ≈ 127kN.
Mapping Qa back to Tr using (3.6), the resulting thrust reference is Tr ≈ 212kN.
Finally, for power control, Prs ≈ 985kW from (3.4), and Figure 4.9 shows that
Jr ≈ 0.38⇒ spt ≈ 1.23. This means that in order to get Ta = 200kN, Pa must
be increased to Pa = Prsspt ≈ 1212kW. Mapping Pa back to Tr using (3.7), the
resulting thrust reference is Tr ≈ 230kN.

Remark 4.8 If some external integral action on Tr exists (e.g. a DP con-
troller), such that Tr is increased until the desired Ta is produced, the mean
values of Ta, Qa, Pa, and n will be the same for all the controllers. Hence, also
the sensitivity functions will have the same values. The differences between the
controllers then lie in the responses to dynamic load changes due to e.g. waves
and wave-frequency vessel motion, as well as the speed of convergence to the
desired Ta.

4.8.2 Friction compensation errors

In the derivation of the sensitivity functions, perfect friction compensation was
assumed. However, since Qff is a function of nr only, the linear compensation
term is not adjusted when the shaft speed differs from nr, as is the case in torque,
power, and thrust control. This will give a small offset from the ideal sensitivity
functions defined above, even with perfect model knowledge. In addition, if
the static friction compensation term is wrong, such that Qf0 ≈ Qs, additional
offsets from the ideal solutions are introduced. In either case, the sensitivity
functions in terms of Jr will no longer be uniform for any Va, Tr, and D. Hence,
the non-dimensional representation presented in Section 4.8.1 cannot be used.
Appendix F.2 shows how the iterative solution procedure from Section 4.7 can
be modified to account for the friction compensation errors, and how the errors
affect the resulting sensitivity functions.

4.9 Sensitivity to large thrust losses
The sensitivity to the large thrust losses experienced during ventilation and
water exits may also be analyzed with the sensitivity functions. This can be
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Figure 4.6: Thrust sensitivity for shaft speed, torque, power, and thrust control
as functions of the reference advance number Jr.
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as functions of the reference advance number Jr.
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done by using the steady-state iterative solution procedure described in Section
4.7, with βQ and βT defined by the ventilation loss models from Section 2.4.4.
The analysis must be performed at a fixed h/R, such that βQ = βQ(n/nbp) and
βT = βT (n/nbp), where nbp is the bollard pull shaft speed. Since ventilation and
water exits in reality are dynamic processes, the sensitivity functions will only
indicate the response of the propeller with different controllers — the resulting
sensitivities will be steady-state values as could be found in e.g. a cavitation
tunnel with fixed propeller submergence. Since the ventilation loss model is a
function of n/nbp, the shaft speed sensitivity sni(·) may be utilized to perform
the analysis independently of D, KQ0 and KT0.
The iteration procedure starts at the reference shaft speed, defined as nr/nbp.

With βQ = βQ(nr/nbp) and βT = βT (nr/nbp), the shaft speed sensitivities
snn(·), snq(·), snp(·), and snt(·) are found from Table 4.2. From this, the shaft
speeds for the next iteration step are found from ni/nbp = sni(·)nr/nbp, with i ∈
{n, q, p, t}. Note that snn(·) = 1 by definition, such that no iteration is needed
for the shaft speed controller. With βQ = βQ(ni/nbp) and βT = βT (ni/nbp),
new shaft speed sensitivities sni(·) can be calculated, and the procedure can be
continued until the iteration converges. By performing a series of these analyses,
the sensitivity functions can be expressed as functions of h/R.
For increased realism, it may be desirable to enforce torque and power limits

according to the maximum rated torque Qmax and rated power Pmax of the
motor, as defined in (2.55). Because of the quadratic and cubed relationships
between propeller shaft speed, torque and power, as defined in (2.4) and (2.5),
the maximum allowable values of sqi(·) and spi(·) can be directly inferred from
nr/nbp. From (2.55), (2.63), and (2.66), and neglecting the power lost in friction
(i.e. assuming mechanical efficiency ηm = 1), Qmax and Pmax are defined in
terms of nbp by:

Qmax = kmQN =
km
kg

Qbp =
km
kg

ρD5KQ0n
2
bp, (4.60)

Pmax = kmPN = kmPbp = kmQbp2πnbp

= km2πρD
5KQ0n

3
bp. (4.61)

From (4.12) and (4.13), ignoring signs, and using KQC = KQ0, the relationships
between Pr, Qr, and nr are:

Qr = KQ0ρD
5n2r, (4.62)

Pr = 2πKQ0ρD
5n3r. (4.63)

The following relationships may then be established for torque:

kgQmax
kmρD5KQ0n2bp

=
Qr

KQ0ρD5n2r
,

⇓
Qr

kgQmax
=

1

km

µ
nr
nbp

¶2
, (4.64)
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and power:

Pmax
km2πρD5KQ0n3bp

=
Pr

2πKQ0ρD5n3r
,

⇓
Pr
Pmax

=
1

km

µ
nr
nbp

¶3
. (4.65)

The saturation limits sqmax for sqi(·) and spmax for spi(·) should correspond to
Qa = kgQmax and Pa = Pmax respectively, such that:

sqmax =
kgQmax
Qr

= km

µ
nr
nbp

¶−2
, (4.66)

spmax =
Pmax
Pr

= km

µ
nr
nbp

¶−3
, (4.67)

where (4.64) and (4.65) have been inserted. This shows that if e.g. nr/nbp = 0.5
is chosen as a starting point for the sensitivity analysis, the saturation limits for
torque and power become sqmax = 4km and spmax = 8km, where km = 1.1−1.2.
Implementation of the torque and power limits requires an additional iteration
procedure to satisfy (4.66) or (4.67), which is activated if either limit is reached.
Figure 4.10 shows the ventilation thrust loss sensitivity analysis for an open

propeller, i.e. with the ventilation loss function defined in Figure 2.18. The
thrust reference Tr corresponds to nr/nbp = 0.5. Curves for the shaft speed,
torque, power, and thrust controllers are shown. Notice that the shaft speed
sensitivity for some controllers exceeds 2, which corresponds to n/nbp = 1, since
the shaft speed during ventilation can be higher than nbp without exceeding
sqmax or spmax. In this analysis, the torque and power saturation limits were
not reached. With respect to the performance criteria defined in Section 3.2,
these results show that the thrust production is least sensitive to the ventilation
loss incident using the thrust controller, followed by the torque controller, power
controller, and shaft speed controller. However, the increased thrust production
from the thrust and torque controllers will lead to excessive power consumption
and propeller racing. This will probably lead to severe dynamic loading of the
propeller, and hence increased mechanical wear and tear. The power controller
will also lead to propeller racing, but keeps the power consumption constant.
Figure 4.11 shows the same analysis for a ducted propeller, i.e. with the

ventilation loss function defined in Figure 2.19, with nr/nbp = 0.5 and km = 1.2
such that sqmax = 4.8 and spmax = 9.6. In this analysis the power limit is
reached both for the torque and the thrust controller. The other main differ-
ence that can be noticed, is that all controllers give the same thrust when the
propeller is fully ventilated, as is inherent in the ventilation loss function for
ducted propellers. Hence, when compared to the shaft speed controller, the
performance of the thrust, torque, and power controllers is in this case even
worse than for the open propeller. In the extreme case of a water exit, when
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Figure 4.10: Sensitivity functions during ventilation for an open propeller, with
thrust reference corresponding to nr/nbp = 0.5.
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βQ ≈ βT ≈ 0, the shaft speed of the thrust and torque controllers will only be
limited by sqmax and spmax.
The results show that the good properties of torque and power control turn

to the opposite when the propeller is subject to large thrust losses, and that
thrust control leads to even worse performance.

4.10 Stability properties
The sensitivity functions introduced in the previous sections are convenient for
analyzing the quasi-static behavior of the controllers during a loss incident, but
give no information on the transient behavior. This section investigates the
stability properties of the shaft speed equilibrium when the propeller is subject
to dynamic load disturbances. The analysis is generic, and applies to all of the
low-level thruster controllers. The main goal is to investigate what happens
when the propeller is operating at steady state, and then suddenly is subject to
a load disturbance.

4.10.1 System definition

Inserting (2.4) for Qa, the rotational dynamics of the propeller can from (2.50)
and (2.51) be expressed as:

Isω̇ = Qmp −Qa −Qf (ω)

= Qmp − sign(ω)Qs −Kωω −
KQρD

5

4π2
ω |ω| . (4.68)

For the stability analysis, KQ will for notational simplicity be written as a
function of the shaft speed ω and time t, with time representing the exogenous
thrust losses: KQ(·) = KQ(t, ω). In extreme operating conditions, KQ(t, ω) will
show highly nonlinear behavior, especially depending on the thruster loading
and the relative submergence h/R, as described in Section 2.4.4. From (2.12),
KQ(t, ω) can also be written in terms of the nominal torque coefficient and the
torque loss factor: KQ(t, ω) = KQ0βQ(t, ω). The following property, lemma,
and assumption are used in the stability analysis.

Property 4.1 The torque loss factor βQ(t, ω), and hence the torque coefficient
KQ(t, ω), are strictly non-negative.

Remark 4.9 This is easily justified from the physics of the system. In the
extreme case of the propeller exiting the water completely, βQ(t, ω) = KQ(t, ω) =
0, but βQ(t, ω) and KQ(t, ω) cannot become negative.

Lemma 4.1 Suppose the function ϕ : R→ R is continuously differentiable and
satisfies:

∂ϕ

∂y
≥ 0, ∀y ∈ R, (4.69)
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Figure 4.11: Sensitivity functions during ventilation for a ducted propeller, with
thrust reference corresponding to nr/nbp = 0.5.
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then it follows that:

(y − y0)(ϕ(y)− ϕ(y0)) ≥ 0, ∀{y, y0} ∈ R. (4.70)

Proof. From the mean value theorem, see e.g. Khalil (2002), the following
relationship holds:

ϕ(y)− ϕ(y0) =
∂ϕ

∂y

¯̄̄̄
y=z

(y − y0),

where z is a point on the line segment connecting y and y0. It follows that:

(y − y0)(ϕ(y)− ϕ(y0)) =
∂ϕ

∂y

¯̄̄̄
y=z

(y − y0)
2 ≥ 0, ∀{y, y0} ∈ R. (4.71)

Assumption 4.1 The motor time constant Tm in (2.52) is negligible compared
to the mechanical time constant, such that Qm ≈ Qcm and Qmp ≈ Qc.

Remark 4.10 This is a common assumption — the motor dynamics are usually
dominated by the rotational dynamics, and may in practice be neglected, at least
for full-scale thrusters.

The analysis proceeds by writing out the commanded torque, which from
(3.18), (3.19), (3.20), (3.21), and (3.22) is expressed by:

Qc0 = Qci +Qif +Qff = Qci + Icω̇r + tanh(ωr/ε)Qf0 +Qf1ωr. (4.72)

Here, ωr = 2πnr, nr is defined in (3.1), and ε is given from (3.20) as:

ε = 2πnf/εf . (4.73)

Using Assumption 4.1, assuming that the torque limiting function is inactive
such that Qc = Qc0, and inserting (4.72), the rotational dynamics in (4.68)
becomes:

Isω̇ = Qci + Icω̇r + tanh(ωr/ε)Qf0 +Qf1ωr

− sign(ω)Qs −Kωω −
KQ(t, ω)ρD

5

4π2
ω |ω|

= Qci + Isω̇r −Qs(tanh(ω/ε)− tanh(ωr/ε))−Kω(ω − ωr)

−KQ(t, ω)ρD
5

4π2
ω |ω|+ ω̇r(Ic − Is) + δQf1(ωr) + δQf2(ω),(4.74)

where the friction modelling error terms δQf1(ωr) and δQf2(ω) are:

δQf1(ωr) = tanh(ωr/ε)(Qf0 −Qs) + ωr(Qf1 −Kω), (4.75)

δQf2(ω) = (tanh(ω/ε)− sign(ω))Qs. (4.76)
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Assumption 4.2 The friction modelling error term δQf2(ω) in (4.76) is neg-
ligible.

Remark 4.11 As shown in Section 3.7.1, |ω| > 2πnf ⇒ tanh(ω/ε) ≈ sign(ω)
with a properly chosen εf . Hence, δQf2(ω) is for all practical purposes negligible.
For |ω| < 2πnf , δQf2(ω) will be an additional damping term.

Remark 4.12 With perfect friction knowledge, i.e. Qf0 = Qs and Qf1 = Kω,
δQf1(ωr) in (4.75) disappears.

Remark 4.13 With perfect inertia knowledge or a constant thrust reference
(ω̇r = 0), the term ω̇r(Ic − Is) in (4.74) disappears.

Under Assumption 4.2, (4.74) is rewritten as a nonlinear mass-damper sys-
tem given by:

ω̇ − ω̇r = u− b0θ(ωr, ω)− b1(ω − ωr)− b2(t, ω)ω |ω|+ δIω̇r + δbf (ωr), (4.77)

where u is the controller output, b0 is a static friction term, b1 is a linear friction
term, b2(t, ω) is a time-varying quadratic damping term, δI is an inertia error
term, δbf (ωr) is a friction compensation error term, and θ(ωr, ω) is a function
according to:

u = Qci/Is, (4.78)

b0 =
Qs

Is
, b1 =

Kω

Is
, b2(t, ω) =

KQ(t, ω)ρD
5

4π2Is
, (4.79)

δI =
(Ic − Is)

Is
, δbf (ωr) =

δQf1(ωr)

Is
, (4.80)

θ(ωr, ω) = tanh(ω/ε)− tanh(ωr/ε). (4.81)

Note that b0 ≥ 0 and b2(t, ω) ≥ 0, since the static friction Qs and the torque
coefficient KQ(t, ω) (from Property 4.1) are strictly non-negative, and the rota-
tional inertia Is > 0. b1 > 0 is assumed to be positive, which implies that the
linear friction coefficient Kw > 0. The quadratic damping term is now rewrit-
ten as the sum of a steady-state value b̄2, which is known, and an unknown
time-varying term b2δ(t, ω):

b2(t, ω) = b̄2 + b2δ(t, ω). (4.82)

In terms of the model parameters in (4.79) and (2.12), b̄2 and b2δ(t, ω) are
defined as:

b̄2 =
KQ0ρD

5

4π2Is
, (4.83)

b2δ(t, ω) = (βQ(t, ω)− 1)
KQ0ρD

5

4π2Is
. (4.84)
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The primary task for the controller is to cancel the mean value of the quadratic
term, since the time-varying part is unknown. This can be interpreted as a
feedforward term. In addition the controller may have dynamic terms. The
input u in (4.77) is therefore written as:

u = ū+ uδ, (4.85)

where ū is the steady-state controller output, and uδ is the dynamic controller
output. In order to cancel b̄2 at steady state with δbf (ωr) = 0 and ω = ωr, ū is
given by:

ū = b̄2ωr |ωr| . (4.86)

Remark 4.14 The control law in (4.85) is a generalization of all the control
laws considered earlier, where ū in (4.86) is the steady-state controller output
in ideal conditions.

With the new definitions of b2(t, ω) in (4.82) and u in (4.85), the mass-
damper system in (4.77) becomes:

ω̇ − ω̇r = −b0θ(ωr, ω)− b1(ω − ωr)− b̄2(ω |ω|− ωr |ωr|)
−b2δ(t, ω)ω |ω|+ uδ + δIω̇r + δbf (ωr). (4.87)

The system in (4.87) is now transformed to the desired equilibrium ωr by intro-
ducing the error state x = ω − ωr:

ẋ = −b1x− b̄2((x+ ωr) |x+ ωr|− ωr |ωr|)
−b2δ(t, ω)(x+ ωr) |x+ ωr|
−b0θ(ωr, ω) + uδ + δIω̇r + δbf (ωr). (4.88)

In the following sections, the system in (4.88) will be divided in a nominal
system and a perturbation term.

4.10.2 Nominal system stability

Assuming perfect friction and inertia knowledge, i.e. Qf0 = Qs, Qf1 = Kω, and
Ic = Is, such that δbf (ωr) = 0 and δI = 0 in (4.80), and to be at the nominal
load condition with b2δ(t, ω) = 0 and uδ = 0, (4.88) reduces to the nominal
system defined as:

ẋ = −b0θ(ωr, ω)− b1x− b̄2((x+ ωr) |x+ ωr|− ωr |ωr|) , f(x). (4.89)

Proposition 4.1 The equilibrium point x = 0 of the nominal system ẋ = f(x)
in (4.89) is globally exponentially stable (GES).

Proof. The positive definite Lyapunov function candidate V (x):

V (x) =
1

2
x2, (4.90)
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satisfies:
k1 kxka ≤ V (x) ≤ k2 kxka , (4.91)

with a = 2 (Euclidian norm), k1 ≤ 1/2, and k2 ≥ 1/2 for all x ∈ R. The
derivative of V (x) along the trajectories of f(x) in (4.89) is:

V̇ (x) = −b0θ(ωr, ω)x− b1x
2

−b̄2((x+ ωr)− ωr)((x+ ωr) |x+ ωr|− ωr |ωr|). (4.92)

From Lemma 4.1, with ϕ(y) = y |y|, y = x+ ωr, and y0 = ωr, it is clear that:

((x+ ωr)− ωr)((x+ ωr) |x+ ωr|− ωr |ωr|) ≥ 0. (4.93)

Also from Lemma 4.1, with ϕ(y) = tanh(y/ε), y = ω, and y0 = ωr:

θ(ωr, ω)x = (tanh(ω/ε)− tanh(ωr/ε))(ω − ωr) ≥ 0. (4.94)

With b̄2 > 0 and b0 ≥ 0 it follows that:

V̇ (x) ≤ −b1x2 ≤ −k3 kxka , (4.95)

with a = 2 and 0 < k3 ≤ b1 for all x ∈ R. The equilibrium point x = 0 is
therefore GES.

Remark 4.15 In practice, the linear damping term b1x in (4.89) will be domi-
nated by the quadratic damping term proportional to b̄2. This is further discussed
in Appendix F.3, where it is shown that for |x| < |ωr|, V̇ (x) complies to:

V̇ (x) ≤ −(b1 + b̄2 |ωr|)x2. (4.96)

Hence, the result in (4.95) is conservative.

4.10.3 Perturbed system stability

In dynamic operating conditions, b2δ(t, ω) = 0 and uδ = 0 no longer holds.
In general, also the friction error term δbf (ωr) 6= 0 and δI 6= 0. The system
(4.88) can then be viewed as the sum of the nominal system in (4.89) and a
perturbation term g(t, x):

ẋ = f(x) + g(t, x), (4.97)

where f(x) is given in (4.89) and g(t, x) is defined as:

g(t, x) , uδ − b2δ(t, ω)(x+ ωr) |x+ ωr|+ δIω̇r + δbf (ωr). (4.98)

The perturbation term does not necessarily vanish at the origin x = 0, since
g(t, 0) = b2δ(t, ω)ωr |ωr|+δIω̇r+δbf (ωr) 6= 0. g(t, x) is, therefore, a nonvanish-
ing perturbation, which means that the origin will not be an equilibrium point
of the perturbed system.



4.10 Stability properties 121

Proposition 4.2 For any uniformly bounded disturbance g(t, x), the solutions
x(t) of the perturbed system in (4.97) are uniformly ultimately bounded (UUB).

Proof. V (x) given in (4.90) satisfies:°°°°∂V∂x
°°°° ≤ k4 kxk , (4.99)

for all x ∈ R and k4 ≥ 1, since k∂V/∂xk = kxk. With the origin of the nominal
system (4.89) exponentially stable, Lemma 9.2 in Khalil (2002) can be applied.
Since (4.91), (4.95), and (4.99) are satisfied for all x ∈ R, they also hold for
x ∈ Dr, where Dr is a ball of radius r:

Dr = {x ∈ R | kxk < r} . (4.100)

Assume that the perturbation term g(t, x) in (4.98) satisfies:

kg(t, x)k ≤ δ <
k3
k4

r
k1
k2

θr, (4.101)

∀t ≥ 0, ∀x ∈ Dr, and some positive constant θ < 1. The solution of the
perturbed system then satisfies the bound:

kx(t)k ≤ ke−ξ(t−t0) kx(t0)k , ∀t0 ≤ t < t0 + T, (4.102)

for all kx(t0)k <
p
k1/k2r, and the ultimate bound:

kx(t)k ≤ b, ∀t ≥ t0 + T, (4.103)

for some finite T , where

k =

r
k2
k1

, ξ =
(1− θ)k3
2k2

, b =
k4
k3

r
k2
k1

δ

θ
. (4.104)

Hence, the solutions x(t) of (4.97) are UUB, and the ultimate bound b is pro-
portional to the upper bound δ on the perturbation. Since the origin of the
nominal system (4.89) is GES and δ → ∞ as r → ∞ in (4.101), x(t) will be
UUB for all uniformly bounded perturbations.

Remark 4.16 The friction model error δbf (ωr) in (4.80) is expected to be
small. The effect of δbf (ωr) 6= 0 is from Proposition 4.2 that the equilibrium of
(4.97) will be shifted.

Remark 4.17 For |ω| > 2πnf , Assumption 4.2 can be relaxed without implica-
tions. For |ω| < 2πnf , relaxation of Assumption 4.2 will give a slightly shifted
equilibrium.
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4.10.4 Implications for shaft speed, torque, and power
control

The analysis in the previous sections considers a generic control law given in
(4.85). This section investigates the implications of the stability analysis for
shaft speed, torque, and power control. For the sake of simplicity, it is here
assumed that δIω̇r + δbf (ωr) = 0 in (4.98).
In terms of the original system parameters, (4.85) translates to:

Qci = Q̄ci + δQci =
KQCρD

5

4π2
ωr |ωr|+ δQci, (4.105)

where (4.83) and (4.78) have been inserted, Q̄ci is the steady-state controller
output, and δQci is the dynamic controller output. KQC has been used instead
of KQ0 in (4.83) since KQC is the torque coefficient used in the controller. This
means that Q̄ci ≡ Qr from (4.12).
The shaft speed controller in (3.27) attempts to keep the shaft speed constant

regardless of the disturbance. In an ideal speed controller, this means that the
perturbation term g(t, x) = 0 in (4.98), and hence that uδ = b2δ(t, ω)ω |ω|. In
the system parameters, this translates to:

δQci = (βQ(t, ω)− 1)
KQ0ρD

5

4π2
ω |ω| , (4.106)

where (4.84) and (4.78) have been used. This essentially means that the change
in propeller loading (parameterized by βQ(t, ω)) is instantly compensated for
by the controller.
The torque controller in (3.29) is a pure feedforward controller. Hence,

uδ = δQci = 0, such that u = ū in (4.85) and Qci = Q̄ci = Qr in (4.105).
This means that g(t, x) in (4.98) consists only of the load perturbation. The
disturbance bound δ in (4.101), and hence also the ultimate bound b in (4.104),
will then depend only on the size of the perturbation, since the torque controller
takes no action to reduce the perturbation (and thereby control the shaft speed).
The dynamic controller term of the power controller in (3.32) can be found

by equating Pr from (4.13) with the power implied by (4.105):

2πKQCρD
5 |nr|3 = 2πn(KQCρD

5nr |nr|+ δQci)

⇓

δQci = KQCρD
5nr |nr|

nr − n

n
= Qr

nr − n

n
, (4.107)

where Qr from (4.12) has been inserted. Hence, n = nr ⇒ δQci = 0. This shows
that the feedback from n will reduce the controller output when the shaft speed
increases, and increase the controller output when the shaft speed decreases with
respect to nr. Hence, the power controller will reduce g(t, x) when compared to
the torque controller, and hence also δ and b.
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Remark 4.18 During ventilation the load may drop suddenly by 70-80%, as
shown in Section 2.4. For the torque and power controllers, this means that
the bound b will be large, such that the shaft speed will increase significantly.
These considerations are consistent with the sensitivity analysis for high thrust
losses presented in Section 4.9: if no action is taken during ventilation, the
performance of the torque and power controllers will be unsatisfactory. This
motivates the need for an anti-spin controller that can detect the ventilation
incidents and take control of the shaft speed to reduce the propeller racing.
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Chapter 5

Propeller observers

Most of the work presented in this thesis is based on the assumption that the
only available measurements are the shaft speed n and the motor torque Qm.
However, in some applications it will be convenient to have estimates of other
system states. Based on the available measurements, this chapter introduces
estimation schemes that can be used for e.g. performance monitoring, thrust loss
estimation, ventilation detection, anti-spin thruster control, thrust allocation,
and output feedback thrust control.

A physical limitation is that only thrust loss effects that are observable from
the propeller can be estimated. In Section 2.3, the loss effects were divided in
two groups: losses that affect the propeller loading, and losses that affect the
propeller race. It is only the first group, which consists of variations in the
in-line inflow to the propeller, ventilation, and in-and-out-of-water effects, that
can be estimated in the low-level thruster control scheme.

Section 5.1 presents a propeller load torque observer. This is a modification
of the observer first introduced in Smogeli et al. (2004a). Section 5.2 presents an
alternative load torque estimation scheme based on nonlinear parameter estima-
tion. Both schemes yield estimates of the load torque Qa, the torque coefficient
KQ, and the torque loss factor βQ. Section 5.3 shows how estimates of the pro-
peller thrust Ta and thrust loss factor βT in some cases may be deduced from
the torque coefficient estimate. Performance monitoring for use in e.g. thrust
allocation is treated in Section 5.4. Section 5.5 demonstrates the performance
of the various schemes by simulations. Extensions of the estimation schemes to
transit and CPP is treated in Chapter 8. An adaptive load torque observer for
the case of an unknown linear friction coefficient can be found in Appendix G.
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5.1 Propeller load torque observer

From (2.50), the following control plant model of the propeller rotational dy-
namics is proposed:

Isω̇ = Qmp −Qa −Qff0(nr)−Qf1ω + δf ,

Q̇a = wQa
. (5.1)

Since fQ(n,xp,θp) in (2.2) is unknown and may exhibit highly nonlinear behav-
ior, Qa is modelled as a bias term driven by an exogenous, bounded disturbance
wQa . The static friction compensation term Qff0(nr) from (3.20) is used in-
stead of a static friction model based on ω, in order to avoid oscillations in this
term about ω = 0. Errors in the friction model when compared to Qf (ω) in
(2.51) are accounted for by δf :

δf = Qff0(nr)−Qf1ω −Qs sign(ω)−Kωω. (5.2)

With the measurement y = ω + v contaminated with a bounded disturbance v
and the input u given by:

u = Qmp −Qff0(nr) = kgQm −Qff0(nr), (5.3)

the shaft dynamics (5.1) can be written on matrix form as:

ẋ = Ax+Bu+ w,

y = Cx+ v, (5.4)

where:

x =

∙
ω
Qa

¸
, A =

∙
−Qf1/Is −1/Is

0 0

¸
,

B =

∙
1/Is
0

¸
, w =

∙
δf/Is
wQa

¸
, C =

£
1 0

¤
. (5.5)

The system is observable from y, since the observability matrix:

O =

∙
C
CA

¸
=

∙
1 0

−Qf1/Is −1/Is

¸
, (5.6)

has full rank. Copying the control plant model (5.1), the proposed propeller
load torque observer is:

˙̂ω =
1

Is

³
u− Q̂a −Qf1ω̂

´
+ ka(y − ŷ),

˙̂
Qa = kb(y − ŷ), (5.7)
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where ka and kb are the observer gains. On matrix form, with K = [ka, kb]
| ,

(5.7) becomes:

˙̂x = Ax̂+Bu+Kỹ,

ŷ = Cx̂. (5.8)

The observer error dynamics obtained by subtracting (5.8) from (5.4) are:

˙̃x = Ax+Bu+ w − (Ax̂+Bu+Kỹ +Kv)

= Ax̃−KCx̃+ w −Kv = Fx̃+∆, (5.9)

where the system matrix F and the vector ∆ containing modelling errors and
noise are:

F = A−KC = −
∙
Qf1/Is + ka 1/Is

kb 0

¸
,

∆ = w +Kv =

∙
δf/Is − kav
wQa − kbv

¸
, k∆k < ∆max. (5.10)

Proposition 5.1 With a constant load torque Qa implied by wQa
= 0, zero

measurement disturbance v = 0, and perfect friction knowledge such that δf = 0
in (5.2), the equilibrium point x̃ = 0 of the observer estimation error in (5.9) is
GES if the observer gains are chosen as ka > −Qf1/Is and kb < 0.

Proof. wQa = v = δf = 0 implies that the input vector ∆ = 0, and hence that
the error dynamics (5.9) is reduced to the unforced linear system ˙̃x = Fx̃.With
ka and kb chosen as specified, F is Hurwitz, and the origin x̃ = 0 is GES.

Proposition 5.2 With a time-varying load torque Qa implied by a nonzero but
bounded wQa , a bounded friction model error δf , and a bounded measurement
error v, the observer error dynamics in (5.9) is input-to-state stable (ISS), and
the observer error x̃ is UUB.

Proof. With wQa , δf , and v assumed to be bounded, the input vector k∆k <
∆max. With the unforced linear system GES and the input bounded, ISS and
boundedness of the observer error x̃ is inherent (Khalil, 2002).

Remark 5.1 In the observer in (5.7), the actual rotational inertia Is from
(2.50) has been used instead of the inertia compensation parameter Ic from
(3.22). This is to account for the fact that Ic may be tuned manually in order
to get the desired transient response of the system, see Appendix B.3. In the
observer, it is desired to have an estimate of Is that is as close as possible to
the true value. If Is is unknown, it may be found with reasonable accuracy from
the tuning scheme presented in Appendix B.3 — even if Ic is chosen differently.

Remark 5.2 If a higher-order friction model than (2.51) is considered appro-
priate, the observer should be modified accordingly. Such an observer, with the
same stability properties as (5.7), is presented in Pivano et al. (2006b).
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5.1.1 Observer tuning

The observer gains ka and kb can be tuned based on the error dynamics (5.9)
using e.g. pole placement. The poles si are found from:

si =
−(Qf1/Is + ka)±

p
(Qf1/Is + ka)2 + 4kb/Is
2

,

and the undamped natural frequency ωn and damping ratio ζ are:

ωn =

r
−kb
Is

, ζ =
Qf1 + kaIs

2
√
−kbIs

. (5.11)

The gains may hence be chosen by specifying desired values for ωn and ζ:

ka = 2ζωn −Qf1/Is, kb = −Isω2n. (5.12)

Typically, the damping ratio could be chosen in the range 0.7 < ζ < 1.1.
The natural frequency should be chosen according to the specific thruster. A
suggestion is choose it to be as fast as the bollard pull shaft speed nbp of the
propeller, i.e. ωn = 2πnbp. Using these rules for the 4MW Wageningen B4-70
example propeller (see Appendix A), with ζ = 0.7 and ωn = 2π · 2 ≈ 12.6, the
gains become:

ka ≈ 17.6, kb ≈ −4E6. (5.13)

5.1.2 Torque loss estimation

The estimated load torque Q̂a can be used to calculate an estimate β̂Q of the
torque loss factor βQ. For DP operation the expected nominal propeller load
torque Q̂n may be calculated from (2.9) by feedback from the propeller shaft
speed n as:

Q̂n = KQCρD
5n |n| , (5.14)

where the control coefficient KQC (usually equal to KQ0) is used. Based on
(2.12), β̂Q is calculated from Q̂a in (5.7) and Q̂n in (5.14) as:

β̂Q =
Q̂a

Q̂n

=
Q̂a

KQCρD5n |n| , n 6= 0. (5.15)

β̂Q should be saturated by an upper limit βQ,max and a lower limit βQ,min in
order to avoid out-of-bounds values for low n, and the singularity for n = 0
should be avoided. Since there are no thrust losses for n = 0, the singularity
can be avoided by redefining (5.15) as:

β̂Q = max(min([αb(n) + (1− αb(n))Q̂a/Q̂n], βQ,max), βQ,min), (5.16)

where αb(n) is a weighting function of the type (3.33), and the saturation limits
βQ,max and βQ,min have been implemented. Applying similar reasoning as in
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Section 3.13, it can be shown that the singularity is removed by choosing r ≥ 1.5
in αb(n). In this work, the limits will be taken as βQ,max = 2 and βQ,min = 0.
If desired, an estimate K̂Q of the torque coefficient is easily inferred from β̂Q in
(5.16) by:

K̂Q = KQC β̂Q. (5.17)

5.2 KQ estimation

As an alternative to the load torque observer presented in Section 5.1, it is pos-
sible to use a nonlinear online parameter estimation scheme to find an estimate
K̂Q of the propeller torque coefficient. Estimates of the load torque Qa and
torque loss factor βQ can then be calculated directly from K̂Q, motivated by
(2.4) and (2.12) respectively:

Q̂a = K̂QρD
5n |n| , (5.18)

β̂Q = K̂Q/KQC . (5.19)

An advantage of this approach is that the singularity in the calculation of β̂Q
is removed.
As in (5.1), the parameter estimation scheme is based on the shaft dynamics

in (2.50) and the friction model from (3.19), with the addition of the torque
model from (2.4). The control plant model then becomes:

Isω̇ = Qmp −
KQρD

5

4π2
ω |ω|−Qff0(nr)−Qf1ω. (5.20)

It is here assumed that the friction parameters are known, such that δf ≈ 0 in
(5.2). Defining the input u as in (5.3) and the unknown parameter θ as:

θ =
KQρD

5

4π2
, (5.21)

the system in (5.20), which is affine in θ, can be rewritten as:

ω̇ = f(ω, u, θ) = F (ω)θ + g(ω, u), (5.22)

where:

f(ω, u, θ) =
1

Is
(u− θω |ω|−Qf1ω), (5.23)

F (ω) =
∂f(ω, u, θ)

∂θ
= −ω |ω|

Is
, (5.24)

g(ω, u) =
1

Is
(u−Qf1ω). (5.25)
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Proposition 5.3 The nonlinear parameter estimation scheme:

K̂Q =
4π2

ρD5
θ̂, (5.26)

θ̂ = −k0
|ω|3

3Is
+ z, (5.27)

ż = k0
ω |ω|
I2s

(u− θ̂ω |ω|−Qf1ω), (5.28)

will yield the error dynamics ˙̃θ = θ̇ − ˙̂θ uniformly globally stable (UGS) for all
ω, and uniformly globally exponentially stable (UGES) for ω 6= 0.

Proof. From Friedland (1997), an estimate θ̂ of θ can be obtained from the
following parameter update law:

θ̂ = φ(ω) + z, (5.29)

ż = −Φ(ω)f(ω, u, θ̂), (5.30)

where φ(ω) is a nonlinear function to be defined, and Φ(ω) its Jacobian:

Φ(ω) = ∂φ(ω)/∂ω. (5.31)

Assuming θ to be slowly-changing, the estimation error θ̃ and its dynamics are:

θ̃ = θ − θ̂,

˙̃θ = − ˙̂θ = −φ̇(ω)− ż = −∂φ(ω)/∂ωω̇ − ż

= −Φ(ω)ω̇ +Φ(ω)f(ω, u, θ̂)
= −Φ(ω)[f(ω, u, θ)− f(ω, u, θ̂)]

= −Φ(ω)F (ω)(θ − θ̂) = −L(t)θ̃, (5.32)

where L(t) = Φ(ω(t))F (ω(t)) is time-varying. Stability properties are investi-
gated by the positive definite Lyapunov function V (θ̃):

V (θ̃) =
1

2
θ̃
2
. (5.33)

The derivative of V along the trajectories of (5.32) is given by:

V̇ = θ̃ ˙̃θ = −L(t)θ̃2. (5.34)

It remains to choose φ(ω) to yield L(t) positive semidefinite. One option is to
choose φ(ω) to satisfy (Friedland, 1997):

Φ(ω) = k0F (ω) = −
k0ω |ω|
Is

, (5.35)
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where k0 is a positive constant, such that:

L(t) = Φ(ω)F (ω) = k0F (ω)
2 =

k0ω
4

I2s
. (5.36)

A candidate φ(ω) satisfying this is:

φ(ω) = − k0
3Is

|ω|3 . (5.37)

This yields the following error dynamics:

˙̃
θ = −k0ω(t)

4

I2s
θ̃, (5.38)

where the time-dependence of ω has been emphasized. Clearly, V̇1 = 0 for
θ̃ 6= 0 iff ω(t) ≡ 0. This is the case of zero shaft speed, for which one cannot
expect to extract any information. However, the error dynamics are still UGS:
ω(t) = 0⇒ φ(ω) = Φ(ω) = ż = 0, which means that parameter adaption stops,
but does not diverge. The condition that ω(t) 6= 0 can be seen as a persistency
of excitation (PE) requirement, leading to UGES of the error dynamics, since:

1

2

°°°θ̃°°°2 ≤ V (θ̃) ≤ 1
2

°°°θ̃°°°2 , (5.39)

V̇ ≤ −k0ω
4
min

I2s

°°°θ̃°°°2 < 0, ∀ |ω| ≥ ωmin. (5.40)

where ωmin > 0.
Appropriate choice of the gain k0 in the KQ estimation scheme (5.26) is

highly dependent on the application. If the gain is chosen high, the scheme
will estimate the instantaneous loading of the propeller, such that Q̂a from
(5.18) and β̂Q from (5.19) will be comparable to (5.7) and (5.15) from Section
5.1. If k0 is chosen low, the high-frequency disturbances in the load torque will
not be captured. Instead, an average torque coefficient and an average torque
loss factor will be estimated. With appropriate tuning, the slow changes in
the mean loading due to e.g. current and vessel low-frequency motion will be
captured, while wave-frequency loads and noise are filtered out. This will be
utilized in Appendix G.2, where approximations of the prevailing thrust and
torque coefficients are calculated.
From K̂Q in (5.26), the estimates Q̂a, and β̂Q are calculated from (5.18) and

(5.19), respectively. When compared to the Qa observer presented in Section
5.1, the two approaches have the same inputs and outputs, and also require the
same model knowledge. The most notable difference is that tuning of the single
gain k0 in the KQ estimation scheme may be simpler than tuning of the two
gains ka and kb in the Qa observer. The performance of the two schemes will
be compared by simulations in Section 5.5.
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5.3 Thrust estimation
In some applications it is feasible to use the estimated propeller torque to es-
timate also the propeller thrust. For open propellers, it was in Section 2.1.8
shown that a linear relationship between KT and KQ holds across a wide range
of operating conditions. Motivated by (2.48), an estimate K̂T can be calculated
from K̂Q in (5.17) or (5.26) by:

K̂T = atK̂Q + bt, (5.41)

where at and bt are propeller constants inferred from the open-water character-
istics. From (2.3) and (2.11), estimates T̂a of the propeller thrust and β̂T of the
thrust loss factor are then found from:

T̂a = K̂T ρD
4n |n| , (5.42)

β̂T = K̂T /KTC . (5.43)

A similar thrust estimation scheme is presented in more detail in Pivano et
al. (2006b), and experimentally validated in Pivano et al. (2006a). The thrust
estimate will be utilized in Appendix E.3.1, where an output feedback thrust
controller is proposed.

5.4 Performance monitoring

Whereas β̂Q gives important information on the local operating conditions of the
propeller, no information of its performance with respect to the thrust setpoint
Td can be directly inferred. This is due to the fact that β̂Q is calculated from
the measured shaft speed. Depending on the low-level thruster controller and
the instantaneous propeller operating conditions, the shaft speed, thrust, and
torque may deviate significantly from the reference values. This was further
analyzed in Chapter 4. For performance monitoring of the thruster, the main
idea is to compare the actual thrust production with the thrust reference. Since
the estimated thrust T̂a only can be estimated with reasonable accuracy for an
open propeller, it is in general necessary to use Q̂a from (5.7) or (5.18) for the
performance monitoring. The proposed torque performance factor estimate χ̂Q
is defined as the ratio of Q̂a to the reference load torque Qr from (3.2):

χ̂Q =
Q̂a

Qr
=

Q̂a

KQC

KTC
DTr

, Tr 6= 0. (5.44)

χ̂Q is singular for Tr = 0, so a similar precaution as for β̂Q in (5.16) should be
taken for the zero-crossing of Tr:

χ̂Q = αχ(Tr) + (1− αχ(Tr))
Q̂a

Qr
, (5.45)
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Is Qf0 Qf1 ka kb βQ,max βQ,min
25E3kgm2 6.2kNm 720Nms 17.6 −4E6 2 0
r p k k0 at bt
4 8 2 5E5 7.52 −0.054

Table 5.1: Estimation parameters for the 4MW Wageningen B4-70 example
propeller.

where αχ(Tr) is a weighting function of the type (3.33) such that χ̂Q(0) = 1.
For open propellers, the thrust performance factor estimate χ̂T can be cal-

culated from T̂a in (5.42). With a similar precaution for the zero-crossing of Tr
as in (5.45), χ̂T is given by:

χ̂T = αχ(Tr) + (1− αχ(Tr))
T̂a
Tr

. (5.46)

Remark 5.3 From (4.3), χ̂Q in (5.45) can be regarded an estimate of the torque
sensitivity function sqi(·).

Remark 5.4 From (4.1), χ̂T in (5.46) can be regarded as an estimate of the
thrust sensitivity function sti(·).

Remark 5.5 Qr can be expressed in terms of the reference shaft speed nr by
(4.12). Hence, for shaft speed control, where n ≈ nr such that Q̂n ≈ Qr, χ̂Q
and β̂Q are nearly identical. For the controllers in Table 3.1 based on torque
and power control, n 6= nr in non-ideal conditions, and therefore also χ̂Q 6= β̂Q.

5.5 Simulation results

The simulations are performed with the 4MW Wageningen B4-70 example pro-
peller, with model parameters given in Tables A.1 and A.2. The shaft speed
controller is used with the parameters given in Table 3.5, and the shaft speed
reference generator is used with parameters given in Table 3.3. The parame-
ters for the estimation schemes are given in Table 5.1. Note that perfect model
knowledge is assumed, such that Is, Qf0, and Qf1 are equal to the true parame-
ters given in Table A.1. ka and kb are taken from the tuning rules in (5.13), at
and bt are taken from Section 2.1.8, and r, p, and k are the parameters for αb(n)
in (5.16). For calculation of β̂Q in (5.16) or (5.19), KQC is used as specified in
(3.9), with parameters given in Table 3.2.

5.5.1 Simulations in waves

Figure 5.1 shows time series from simulations with the Qa observer from Section
5.1 and the KQ estimation scheme from Section 5.2. Td is given in Table 5.2.
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Time interval Td Corresp. nd
t < 30s 50kN ≈ 0.65rps
30s< t < 65s −100kN ≈ −1.05rps
65s< t < 100s 200kN ≈ 1.31rps

Table 5.2: Desired thrust Td and corresponding shaft speed nd for the simulation
in Figure 5.1.

The mean submergence is h0 = 6m, and the propeller is subject to irregular
waves with Hs = 3m, Tp = 9.7s, defined by 30 harmonic components extracted
from the modified PM spectrum in (C.19). The wave-induced velocities are
calculated from (C.33).
The upper two plots show the advance velocity Va and the shaft speed n.

Plots 3, 4, and 5 from above show results for the Qa observer: the actual vs.
estimated load torque, the actual vs. estimated torque loss factor, and the actual
vs. estimated thrust. The lower two plots show results for the KQ estimation
scheme: the actual vs. estimated load torque, and the actual vs. estimated
torque loss factor. The actual βQ is calculated from Qa and Qn using (2.12),
which results in singularities for the zero-crossing of n.
The results show that the Qa observer tracks the actual propeller torque

closely. The torque loss calculation works well except for very low n, where
the singularity avoidance in (5.16) works as intended. The thrust estimation is
based on (5.17), (5.41), and (5.42). For this propeller, the thrust is estimated
with good accuracy. The estimate is better for positive n than for negative n,
since the KT −KQ relationship in (5.41) is more accurate for n > 0; see Figure
2.5. The KQ estimation scheme is shown to work satisfactory for high n, but
has trouble tracking Qa for low n. The torque loss calculation from (5.19) has
no singularities, but the estimate is not useful for low n. The level of noise in
all the estimates is satisfactory.

5.5.2 Simulations with ventilation

Figure 5.2 shows time series from simulations with the propeller subject to ven-
tilation. The simulation setup is as in the previous section, but the irregular
waves are given by Hs = 8m and Tp = 13.1s. The ventilation simulation model
from Figure 2.18 is used with the parameters given in Table A.2, and the pro-
peller submergence calculated from (C.35). The thrust reference is 300kN.
The upper two plots show the advance velocity Va, the submergence h, and

the shaft speed n, plots 3, 4, and 5 from above show results for the Qa observer,
and the lower two plots show results for KQ estimation scheme. The time series
show that both estimation schemes track the actual load torque accurately, even
with the abrupt losses due to ventilation, and that the torque loss calculations
and thrust estimation schemes work satisfactory.
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Figure 5.1: Time series of the Qa observer (plots 3,4, and 5 from above) and
KQ estimation scheme (plots 6 and 7 from above), for varying Tr in waves.
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Figure 5.2: Time series of the Qa observer (plots 3,4, and 5 from above) and KQ

estimation scheme (plots 6 and 7 from above), for Tr = 300kN in large waves,
with the propeller subject to ventilation.



Chapter 6

Propulsion control in
extreme conditions

The various controllers designed in Chapter 3 have so far mainly been evaluated
for normal operating conditions, i.e. subject to moderate thrust losses. From
the simulations in Section 3.18 and the sensitivity analysis in Section 4.8, it was
found that controllers based on torque and power control have many desirable
properties. However, as shown in Section 2.4, a propeller subject to extreme
conditions may experience large load transients due to ventilation and in-and-
out-of water effects. The controllers designed for normal conditions may then
no longer give satisfactory performance. This was briefly treated in Section 4.9,
where the controller performance when subject to large thrust losses was inves-
tigated with the quasi-static sensitivity functions, and in Section 4.10, where the
stability properties of the shaft speed equilibrium was investigated. The results
showed that the torque and power controllers have very poor performance in
such conditions: since the objectives of torque and power control are to keep
the motor torque or power constant, a loss of propeller load torque will lead
to severe motor racing. As discussed in Sections 2.4.6 and 3.2.2, this leads to
mechanical wear and tear because of the unsteady loading of the propeller. The
torque controller will also give excessive power consumption. The shaft speed
controller is partly able to handle the high thrust losses, since the objective of
the controller is to keep the shaft speed constant. However, problems could
arise because a well-tuned PID controller for normal conditions may give bad
performance when subject to the rapid variations in load torque experienced
during ventilation.

To assure satisfactory performance for all conditions, it is therefore necessary
to introduce a new control strategy for use also in extreme conditions. This
strategy has been denoted anti-spin thruster control. The nature of the control
task is in many ways similar to that of controlling a car wheel with loss of
traction on a slippery surface during acceleration or braking. The work on anti-



138 Propulsion control in extreme conditions

spin thruster control has therefore been motivated by similar control strategies in
car anti-spin and ABS braking systems, see for example Haskara et al. (2000) or
Johansen et al. (2001) and the references therein. This is also further discussed
in Smogeli et al. (2006).
The concept of anti-spin thruster control was first introduced in Smogeli et

al. (2003), followed by the introduction of combined torque/power control and a
load torque observer with loss estimation in Smogeli et al. (2004a). Based on the
two previous publications, the first complete anti-spin thruster control solution
was presented in Smogeli et al. (2004b). The concept was further analyzed in
Smogeli et al. (2006), where also two new, simplified anti-spin solutions were
presented. Experimental results and a stability analysis of the proposed concept
is presented in Smogeli and Sørensen (2006b).

6.1 Anti-spin control objectives
The general objectives of a thruster controller, as discussed in Section 3.2, are
independent of the operating condition. However, because of the special nature
of the ventilation losses, some additional considerations on the control objectives
in extreme conditions are appropriate. The main objectives of anti-spin thruster
control are to:

• Reduce the mechanical wear and tear of the propulsion unit.

• Limit power peaks.

• Assure robust and predictable performance.

From the experimental results with ventilated propellers, as presented in Sec-
tions 2.4.1 and 2.4.2 and Appendix D — and also from the discussions on me-
chanical wear and tear in Sections 2.4.6 and 3.2.2 — the following observations
relevant to low-level thruster control can be made:

• Ventilation may occur abruptly when the propeller is operated at high
loading and close to the free surface. It is a stochastic process that cannot
easily be predicted.

• A ventilated propeller experiences large high-frequency loads and vibra-
tions due to blade-frequency loading. The severity of these dynamic loads
increase with the shaft speed.

• For a highly loaded propeller, the thrust during ventilation is almost in-
dependent of the shaft speed, especially for ducted propellers. For open
propellers, a small increase in thrust is achievable by increasing the shaft
speed.

• From a quasi-static point of view, there appears to be an optimal shaft
speed that gives the highest thrust (“optimal thrust”) during ventilation,
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especially for ducted propellers. Once ventilation has occurred, however,
even a significant reduction of shaft speed may be insufficient for terminat-
ing the air suction (see Figure 2.15 and Remark 2.9). Hence, the optimal
thrust can only be achieved by avoiding ventilation inception. This is not
considered a realistic option, since it is assumed that ventilation cannot
be predicted.

To summarize, the shaft speed of a highly loaded propeller during ventilation
should be lowered in order to reduce the mechanical wear and tear. This can
be done without significantly affecting the thrust production. From a total
evaluation of the control objectives and the known behavior of a ventilating
propeller, it is hence found that the following actions are the most appropriate
during ventilation:

1. Primary anti-spin action: take control of the shaft speed.

2. Secondary anti-spin action: reduce the shaft speed.

The first action mainly applies to the torque and power controllers, which suf-
fer from severe propeller racing during ventilation. The second action applies
equally to all controllers. Its main objective is to reduce mechanical wear and
tear, and ease the transition back to the fully loaded condition.

6.2 The anti-spin control concept

The proposed anti-spin concept is a hybrid control scheme, where the condition
of the thruster is monitored, and anti-spin control actions are invoked when
a ventilation incident is detected. The complete thruster control scheme is
composed of four main functions:

1. The core thruster controller, which normally is left to work undisturbed.
This could be any of the controllers in Table 3.1.

2. A performance monitoring scheme. This would typically be one of the
observers presented in Chapter 5.

3. A ventilation detection scheme, based on the output of the performance
monitoring scheme.

4. An anti-spin controller, which is invoked by the ventilation detection
scheme.

A block diagram of the proposed anti-spin control concept is shown in Figure
6.1, where the performance monitoring and ventilation detection schemes have
been assembled in one block. When comparing this figure with the structure of
the control scheme for normal conditions in Figure 3.1, the proposed concept can
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Figure 6.1: Block diagram of the proposed anti-spin control concept, including
the core thruster controller, detection scheme, and anti-spin controller.

be seen as an add-on of the two functional blocks “Monitoring and detection”
and “Anti-spin controller”.
In this work, anti-spin thruster control is primarily treated as a necessary

addition to the controllers based on torque and/or power control, since these
have been found preferable in normal operating conditions. However, it may
also be possible to improve the performance of a shaft speed controller during
ventilation by introducing anti-spin control: a primary anti-spin action can be
added in order to improve the transient performance at ventilation inception
and termination, and a secondary anti-spin action can be used to reduce the
shaft speed during ventilation. This is shortly treated in Section 6.6.3.

6.3 Ventilation detection

The detection of high thrust losses may be done in several ways. A simplistic
approach is to set the detection criteria by rate of change of shaft speed and/or
motor torque — if the shaft speed increases quickly or the torque drops quickly,
this indicates a high loss situation. A similar approach for car wheel anti-spin
was presented in Haskara et al. (2000). A more sophisticated detection algorithm
can be designed based on the performance monitoring tools presented in Chapter
5. Since the anti-spin control scheme is highly dependent on fast and accurate
detection of the ventilation incidents, the latter approach has been preferred.
Estimates of the propeller load torque, torque coefficient, and torque loss

factor can be found from the propeller load torque observer in (5.7), or the KQ

estimation scheme in (5.26). From experience with the various formulations, the
load torque torque observer in (5.7) has been found to give the best over-all per-
formance. The torque loss estimate β̂Q is then calculated from (5.16), and the
ventilation detection is done by monitoring β̂Q and the motor torque Qm. The
detection algorithm is implemented by defining limits for the onset and termi-



6.4 Anti-spin control actions 141

nation of ventilation, βv,on and βv,off . An additional criterion for detection is
that the magnitude of the motor torque is non-increasing, i.e. sign(Qm)Q̇m ≤ 0.
Finally, the detection scheme should only be active for |nr| > nmin, where nmin
is a chosen threshold, and nr given from (3.1). This is to avoid false detection
and chattering for low propeller loading, where anti-spin control is not needed
— the simulation results in Section 5.5 clearly showed that the loss estimation
was unreliable for low n.
The detection signal is termed ζ. It is set to 1 when ventilation is detected,

and 0 otherwise. A typical ventilation incident will then give the following
evolution of ζ, with time instants t1 < t2 < t3:

t1 : β̂Q > βv,on ⇒ ζ = 0,

t2 : β̂Q ≤ βv,on ∩ sign(Qm)Q̇m ≤ 0 ∩ |nr| > nmin ⇒ ζ = 1,

t3 : β̂Q ≥ βv,off ⇒ ζ = 0.

(6.1)

To avoid switching and chattering of ζ due to measurement noise and transients,
an algorithm implementing a detection delay is added, such that once ζ has
changed value, it cannot be reset until after a given time interval Tvent. The
detection delay can be seen as an implementation of the switching dwell-time
proposed in Hespanha and Morse (2002) and Hespanha et al. (2003). The
motor torque should be low-pass filtered before numerical differentiation. This
ventilation detection scheme has shown good performance in both simulations
and experiments.

Remark 6.1 To allow natural oscillations about the nominal propeller loading
due to time-varying inflow to the propeller, and noise in the estimate β̂Q, βv,on
must be chosen significantly lower than 1.

6.4 Anti-spin control actions

During operation in normal conditions, one of the core thruster controllers pro-
posed in Table 3.1 is used. When extreme conditions are encountered, the
anti-spin control actions are triggered by the ventilation detection algorithm.
Different approaches to the anti-spin actions are possible, with the two most
general being:

1. Switch to a completely new control strategy.

2. Modify the existing control strategy.

If an approach with switching is chosen, two options exist:

1a. Switch anti-spin on and off every time ventilation is detected and termi-
nated.



142 Propulsion control in extreme conditions

1b. Switch to an anti-spin control mode when ventilation is first detected, and
stay in this mode until no ventilation incidents have been detected for a
given time interval.

Alternative 1a may introduce problems with ensuring performance and stability
during switching, although new results have improved the ability to analyze sta-
bility of such switching control schemes (Hespanha and Morse, 2002; Hespanha
et al., 2003). Bumpless transfer and switching problems are also discussed in
for example Åström and Wittenmark (1997). This approach will not be further
treated here. Alternative 1b is a more practical approach for this problem —
one could e.g. use a controller based on torque and power control for normal
conditions, and once a ventilation incident is detected switch to shaft speed
control. This scheme is of course based on the presumption that the shaft speed
controller has acceptable performance during ventilation. An implementation
like this was apparently used for the diesel engine governor presented in Blanke
and Busk Nielsen (1987, 1990); when the governor was run in power mode, and
an excessive shaft speed was detected, the governor was automatically switched
to shaft speed control.
The switching problem of strategy 1a is alleviated by choosing the second

anti-spin approach. In this case, the existing control strategy must be compati-
ble with the desired anti-spin control actions. Two natural modifications of the
core thruster control strategies when ventilation is detected are:

2a. Reduce the controller output Qci (3.18) in order to reduce the motor torque
and lower the shaft speed.

2b. Lower the thrust reference Tr in order to reduce the motor torque indirectly.

The torque and thrust modification factors are termed γQ and γT , respectively,
and used such that the anti-spin commanded torque Qcas and anti-spin thrust
reference Tras are defined as:

Qcas = γQQci, (6.2)

Tras = γTTr. (6.3)

In the next section, it will be shown that alternative 2a, i.e. (6.2), is convenient
for implementing the primary anti-spin action, which is to take control of the
shaft speed, while alternative 2b, i.e. (6.3), is convenient for implementing the
secondary anti-spin action, which is to reduce the shaft speed to an appropriate
value.

6.5 Main anti-spin control result: torque scaling
The proposed anti-spin controller is based on the ventilation detection scheme
from Section 6.3, which gives a detection signal ζ ∈ {0, 1}, and the estimated
torque loss factor β̂Q from Section 5.1.
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6.5.1 Primary anti-spin action

The primary anti-spin control action will be motivated from a Lyapunov stability
analysis, with the analysis from Section 4.10 as a starting point. The following
assumption is made for the anti-spin analysis:

Assumption 6.1 The friction and inertia coefficients are known, such that
δbf (ωr) = 0 and δI = 0 in (4.80).

Under Assumption 6.1, the rotational dynamics in (4.88) is written as:

ẋ = −b1x− b̄2((x+ ωr) |x+ ωr|− ωr |ωr|)
−b2δ(t, ω)(x+ ωr) |x+ ωr|− b0θ(ωr, ω) + uδ

= f(x) + g(t, x), (6.4)

where f(x) is defined in (4.89). g(t, x) from (4.98) (under Assumption 6.1) is
rewritten as:

g(t, x) = uδ + (1− βQ(t, x+ ωr))b̄2(x+ ωr) |x+ ωr| . (6.5)

Note that (4.84) has been used to insert b2δ(t, ω) = −(1− βQ(t, ω))b̄2.
Assume that the propeller is initially operating at steady state with input ū

and quadratic damping coefficient b̄2. The loading of the propeller then changes
due to a ventilation incident, described by the torque loss factor βQ(t, ω). Mo-
tivated by (6.2), the primary anti-spin action is to modify the controller output
Qci with a torque scaling factor γQ:

Qcas = γQQci ⇔ u = γQū, (6.6)

where Qcas is the anti-spin commanded torque. During ventilation, γQ is pro-
posed to be given by γQ = β̂Q. In normal operation, γQ = 1 such that
Qcas = Qci. In order to reduce transients, the transitions of γQ between 1
and β̂Q at ventilation detection and termination should not be done abruptly.
It is therefore proposed to add a rate limiting function as given in (3.11) with
slew rate limits γ̇rise > 0 and γ̇fall < 0, and a first order low-pass filter with
time constant τγ . The filter will also remove noise in the estimate β̂Q that
otherwise would have been inserted into the control law. The implementation
of γQ becomes:

γ1 =

½
1 for ζ = 0 (not ventilated),
β̂Q for ζ = 1 (ventilated),

γ2 = fslew(γ1, γ̇rise, γ̇fall),

γQ(s) = γ2(s)
1

τγs+ 1
, (6.7)

where γ1 and γ2 are internal states. Tuning of γ̇rise, γ̇fall, and τγ is discussed
in Section 6.8.1.
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Theorem 6.1 In the presence of an unknown disturbance βQ(t, ω), the primary
anti-spin control law from (6.6) and (6.7):

u = γQū, (6.8)

will yield the solutions x(t) of (6.4) UUB.

Proof. With u given by (6.8), uδ = (γQ − 1)ū. Inserting ū from (4.86), the
perturbation term g(t, x) in (6.5) becomes:

g(t, x) = (γQ − 1)b̄2ωr |ωr|+ (1− βQ(t, ω))b̄2(x+ ωr) |x+ ωr|
= h(t, x) + g2(t, x), (6.9)

where h(t, x) and g2(t, x) are given by:

h(t, x) = b̄2(1− βQ(t, ω))((x+ ωr) |x+ ωr|− ωr |ωr|), (6.10)

g2(t, x) = (γQ − βQ(t, ω))b̄2ωr |ωr| = (γQ − βQ(t, ω))ū. (6.11)

The perturbed system (6.4) can now be rewritten in terms of a new nominal
system f2(t, x) and a new perturbation term g2(t, x):

ẋ = f2(t, x) + g2(t, x), (6.12)

where f2(t, x) from (4.89) and (6.10) is:

f2(t, x) = f(t, x) + h(t, x) (6.13)

= −b0θ(ωr, ω)− b1x− b̄2βQ(t, ω)((x+ ωr) |x+ ωr|− ωr |ωr|).

The stability of the unperturbed system (6.12) with g2(t, x) = 0 is analyzed with
V (x) given by (4.90). The derivative of V (x) along the trajectories of f2(t, x)
in (6.12) becomes:

V̇ (x) = −b0θ(ωr, ω)x− b1x
2 − b̄2βQ(t, ω)x((x+ ωr) |x+ ωr|− ωr |ωr|). (6.14)

Using Lemma 4.1, (4.93), and (4.94) as in the proof of Proposition 4.1, and
Property 4.1, it follows that:

b0θ(ωr, ω)x+ b̄2βQ(·)x((x+ ωr) |x+ ωr|− ωr |ωr|) ≥ 0, (6.15)

for all x ∈ R. Hence, (4.95) holds also in this case:

V̇ (x) ≤ −b1x2 ≤ −k3 kxk2 . (6.16)

The equilibrium point x = 0 of the unperturbed system (6.12) and hence (6.4)
is therefore GES.
The perturbed system (6.12) with g2(t, x) 6= 0 is subject to a non-vanishing

perturbation. By using Lemma 9.2 in Khalil (2002) as in Proposition 4.2, the
solutions x(t) of (6.12) and hence (6.4) are shown to be UUB.
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Corollary 6.1 In the presence of a known disturbance βQ(t, ω), the anti-spin
control law:

u = βQ(t, ω)ū, (6.17)

will yield the equilibrium x = 0 of (6.4) GES.

Proof. With u given by (6.17), this is equivalent to using γQ = βQ(t, ω) in
(6.8). Hence, the perturbation term g2(t, x) = 0 in (6.11), and (6.12) reduces
to the unperturbed system ẋ = f2(t, x), which was shown to be GES.

For a further investigation of the transient behavior of the perturbed system
in (6.4), the Lyapunov analysis can be extended to give estimates of the trajec-
tory bounds by using the comparison method, as shown in Lemma 9.4 and 9.6
in Khalil (2002). This is further treated in Appendix F.3.

Remark 6.2 The proposed primary anti-spin action in (6.6) is independent
of the chosen core thruster controller, and is hence compatible with any of the
controllers in Table 3.1. However, a well-tuned shaft speed PI controller will not
benefit from the primary anti-spin action, since there is no need for additional
measures to control the shaft speed in this case. For the controllers based on
torque and/or power control (i.e. the Q, P, QP, MQP1, MQP2, and SQP
controllers), the primary anti-spin action will alleviate the problem of propeller
racing during ventilation.

Remark 6.3 Corollary 6.1 states that perfect shaft speed control during ventila-
tion would be possible if the ventilation incident could be foreseen, and βQ(t, ω)
was known. However, since the propeller torque is not available as a mea-
surement, and the ventilation incidents are random processes caused by wave
elevation and vessel motion, this is not possible. An implementable solution is
therefore to use the torque loss estimation and ventilation detection schemes as
proposed in Theorem 6.1. The deviation of the shaft speed from the steady-state
solution will depend on the time series of the deviation of the torque modifica-
tion factor γQ from the actual torque loss factor βQ(t, ω), as shown in (6.11).
The deviation will be affected by the ventilation detection scheme, the accuracy
of the estimated torque loss factor β̂Q, and the chosen rate limits and low-pass
filter for γQ.

6.5.2 Secondary anti-spin action

For reduction of wear and tear due to dynamic propeller loading during venti-
lation, it may be desirable to lower the propeller shaft speed, as discussed in
Section 6.1. As indicated in (6.3), this can be done by modifying the thrust
reference during ventilation, since the primary anti-spin control action assures
that the shaft speed is kept close to its reference. The desired shaft speed during
ventilation, nas, will be a thruster specific parameter, and must be chosen as
a trade-off between thrust production, wear and tear, and response time. nr
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should not be changed to nas instantaneously, as this will lead to undesired tran-
sients. It is therefore proposed to add a low-pass filter with time constant τn and
a rate limiting algorithm with rate limits ṅ+vent > 0 and ṅ−vent < 0 to the switch
between nr and nas at ventilation detection and termination. The filtered and
rate limited shaft speed reference is termed nras, and the corresponding thrust
reference termed Tras.
The implementation is similar to the shaft speed reference generator in

(3.14), with the mappings gn(Tr) and g−1n (nr) defined in (3.1) and (3.5), a
rate limiting function fslew(·) as defined in (3.11), and a first order filter:

nr = gn(Tr),

nr2 =

½
nr for ζ = 0 (not ventilated),

sign(nr)nas for ζ = 1 (ventilated),

nr3 = fslew(nr2, ṅ
+
vent, ṅ

−
vent),

nras(s) = nr3(s)
1

τns+ 1
,

Tras = g−1n (nras), (6.18)

where nr2 and nr3 are internal states. The mapping from Tr to Tras in (6.18)
will also be referred to as a setpoint mapping.

Including inertia compensation

If the rotational inertia is significant, it was shown in Section 3.18.1 that the
response of the thruster to a change of torque setpoint may be slow, and that
an inertia compensation scheme was needed to speed up the response of the
controllers based on torque and power control. Hence, if a fast response to
the secondary anti-spin action is wanted, it may be necessary to include an
additional inertia compensation term. This can be done by extracting ṅras from
the low-pass filter in (6.18) and ṅr from the reference generator, and use the
difference between ṅr and ṅras in an additional inertia compensation scheme:

Qif,as = sign(Tr)min(0, sign(Tr)Ic2π(ṅras − ṅr)). (6.19)

Here, Ic is the rotational inertia as in (3.22), and Qif,as is the additional inertia
compensation torque. With a time-varying Tr and no ventilation, ṅras = ṅr,
and Qif,as = 0. During ventilation, with ṅras 6= ṅr, (6.19) will speed up the
convergence to nras at ventilation detection.

Remark 6.4 With the formulation of Qif,as in (3.22), no additional inertia
compensation is used to speed up the transition to nr at ventilation termination.
This is to avoid a too rapid increase in motor torque and shaft speed.

To reduce mechanical wear and tear, the additional inertia compensation
from (6.19), should not be allowed to change the commanded torque direction.
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A saturation of the total commanded torque can be implemented by redefining
Qcas in (6.6) as:

Qcas = sign(γQQci)max(0, [sign(γQQci)(γQQci +Qif,as)]). (6.20)

6.5.3 Resulting anti-spin controller

Figure 6.2 shows a block diagram of the resulting thruster controller with anti-
spin. The additional inertia compensation for the secondary anti-spin action
has been omitted in the figure.

6.5.4 Steady-state analysis

A similar result as the one given in Corollary 6.1 may be obtained by analyzing
the steady-state properties of the proposed ideal anti-spin control law (6.17)
during a ventilation incident with a constant torque loss factor βQ. At a steady
state ventilation condition with perfect friction compensation, i.e. Qff (nr) =
Qf (ω), the propeller load torque Qa and the commanded torque Qc are equal.
With Qa = Qc, Qc = βQQci from (6.17), and βQ from (2.12) and (2.9), the
following relationship can be established:

Qa = Qc = βQQci =
Qa

sign(n)KQ0ρD5n2
Qci, n 6= 0. (6.21)

Under the assumption that sign(n) = sign(Qci) and KQ0 = KQC , the resulting
shaft speed is:

n = sign(Qci)

s
|Qci|

KQCρD5
. (6.22)

Inserting for the torque controller in (3.29), the steady-state shaft speed be-
comes:

n = sign(Qcq)

s
|Qcq|

KQCρD5
= sign(Tr)

s
KQC

KTC
D |Tr|

KQCρD5

= sign(Tr)

s
|Tr|

ρD4KTC
= nr, (6.23)

where nr is the shaft speed reference given by (3.1). Inserting for the power
controller (3.32) in (6.22) and solving with respect to n, the same result is
obtained. This is also true for the combined controller, since it is a linear
combination of the torque and power controllers. Actually, from Corollary 6.1,
n = nr regardless of the choice of core thruster controller, as long as (6.17) is
applied.
It is interesting to note that this also could be inferred from the shaft speed

sensitivity functions presented in Chapter 4. Using (6.17) with the torque or



148 Propulsion control in extreme conditions

n

f

Q

Q

Ta

a

T

m

( )

f Q ( ).

.

Motor
dynamics

Qc

Friction
compensation

.

Tr

X
Qci

g

Core
thruster

controller

Shaft
dynamics

Loss
calculation

Torque
observer

Ventilation
detection

bQ

Anti-spin
control

Qa

Tras

Qcas

z
T

Propulsion
unit

as

Tr

n

z

LP filter +
rate limit

nslew nslew tn

n
ras

1

bQ

LP filter +
rate limit g

Tras

rise fall tg g g

nr

1

0

1

0

{0,1}

+
+

. .

. .

Qff

n

Torque
limit

PQmax max

g
n
( ).

g
n

( ).-1

Qc0

QifInertia
compensation

+
+

+

Q

Q

Anti-spin
control
scheme

Figure 6.2: The proposed torque scaling anti-spin control scheme, including core
thruster controller, inertia and friction compensation, torque limiting function,
torque observer, loss calculation, ventilation detection, and anti-spin control ac-
tions. The input Tr and output Ta of the propulsion unit with thruster controller
are marked with dotted circles.
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power controller involves multiplying the controller formulations in (3.29) and
(3.32) with βQ = KQ/KQC , see (2.12). This is the same as using the two
controllers with KQC ≡ KQ. From the definitions of the shaft speed sensitivity
functions snq(·) and snp(·) in Table 4.1, this implies that snq(·) ≡ 1 and snp(·) ≡
1, which means that n ≡ nr.

6.6 Alternative anti-spin controllers
The anti-spin controller presented in Section 6.5 was shown to be compatible
with all the core thruster controllers in Table 3.1, and has been chosen as the
preferred solution. This section presents some alternative anti-spin solutions,
with varying degrees of complexity.

6.6.1 Speed bound anti-spin control

This is the simplest of the anti-spin control formulations presented in this work.
A dynamic shaft speed bound is added to the core thruster controller, which
can be any of the controllers in Table 3.1 based on torque and/or power control.
This limits the propeller racing, since the shaft speed is kept within the desired
bounds. Using the shaft speed reference nr from (3.1), the dynamic speed bound
nb is defined as:

nb = (1 + rb)nr, (6.24)

where rb is the speed bound factor, typically in the range rb ∈ [0.2, 0.3]. This
means that the shaft speed is allowed to deviate by 20− 30% from its nominal
value. The shaft speed can then vary freely as long as |n| < |nb|, such that the
core thruster controller mostly is allowed to work undisturbed. In a high loss
situation, when torque or power control normally would lead to severe propeller
racing, the shaft speed is bounded by n ≈ nb.
The shaft speed bound is implemented by an additive shaft speed PI con-

troller, which is only activated when |n| ≥ |nb|:

Qcas = Qci +Qb, (6.25)

where Qci is the core thruster controller output, and the additive PI term Qb is
defined as:

Qb = sign(Tr)min

µ
0, Kpeb +Ki

Z t

0

eb(τ)dτ

¶
,

eb = |nb|− |n| . (6.26)

As in (3.27), Kp > 0 and Ki > 0 are the proportional and integral gains, which
should be tuned to give rapid response, and eb is the bound error. The minimum
operator in (6.26) means that Qb is only allowed to reduce the magnitude of the
commanded torque. To avoid integral windup, the integral term in (6.26) may
only assume negative values (upper windup limit at zero). With respect to the
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anti-spin control actions defined in Section 6.4, only the torque modification γQ
is used, with γQ in this case implicitly given by:

γQ =
Qcas

Qci
=

Qci +Qb

Qci
. (6.27)

This formulation does not utilize a dedicated ventilation detection scheme as
proposed in Section 6.3, but “detects” ventilation simply by an excessive shaft
speed. The number of control parameters is therefore kept low, such that the
controller is relatively easy to tune.

Remark 6.5 When the propeller is subject to increasing advance velocities, the
torque and power controllers will increase the shaft speed in order to compensate
for the reduced loading. This increase should not be detected as a ventilation
incident. A weakness of the speed bound anti-spin controller is therefore that
in order to allow the core thruster controller to work undisturbed, rb should be
chosen relatively high. This means that the propeller is allowed to spin more out
during ventilation.

6.6.2 Additive PI anti-spin control

This anti-spin control scheme is similar to the solution presented in Section 6.5,
but applies an additive shaft speed PI controller as primary anti-spin action
instead of the torque scaling used in (6.6). Using the detection scheme from
Section 6.3, the primary anti-spin control action is formulated as follows:

Qcas =

½
Qci for ζ = 0,

sign(Tr)max(0, sign(Tr)(Qci +QPI)) for ζ = 1,
(6.28)

where Qci is the core thruster controller output, and the additive PI term QPI

is defined similarly as in (3.27):

QPI = Kpe+Ki

Z t

0

e(τ)dτ ,

e = nr − n. (6.29)

As before, Kp > 0 and Ki > 0 are the proportional and integral tuning gains,
and e is the shaft speed error. The integral term in (6.29) is continuously reset
for ζ = 0 to avoid integral windup. To reduce mechanical wear and tear, the
total commanded torque Qcas in (6.28) is saturated as in (6.20), such that the
torque direction cannot be reversed by the additive PI controller.
As a secondary antispin action, the thrust reference Tr may be lowered when

ζ = 1 as in (6.18).

6.6.3 Shaft speed anti-spin control

If a well-tuned shaft speed controller is chosen for operation in normal condition,
the need for anti-spin control is reduced. Since the shaft speed controller aims at
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keeping the shaft speed constant regardless of the propeller loading, no primary
anti-spin action to regain control of the shaft speed during ventilation may be
necessary. Actually, the primary anti-spin control action presented in (6.6) is
compatible with the shaft speed PI controller. Simulations show, however, that
the performance of the shaft speed controller is not improved by adding (6.6).
This could be expected, since (6.6) does not modify the PI controller directly,
but only scales its output; in order to improve the performance, it is necessary
to address the PI terms directly.

PI controller with setpoint mapping

If the secondary anti-spin action is deemed appropriate, the setpoint mapping
in (6.18) may be applied directly to a conventional shaft speed PI controller.
This requires a ventilation detection scheme, as proposed in Section 6.3. In
addition to the torque observer and the ventilation detection scheme, the equa-
tions for implementation are taken directly from (3.1), (3.27), and (6.18). With
a well-tuned PI controller, the performance of this scheme during ventilation is
expected to be similar to the scheme presented in Section 6.5.

Remark 6.6 This scheme relies on the PI gains to be tuned to give good per-
formance during ventilation. As will be shown in Section 6.8, a PI controller
that is tightly tuned for good performance in normal conditions, may give un-
satisfactory results when subject to the large load transients experienced during
ventilation. If such a scheme is chosen, the PI gains should therefore be tuned
with care.

PI controller with integrator reset and setpoint mapping

One of the potential problems with a shaft speed PI controller during ventilation
is integrator discharge. When most of the propeller load suddenly disappears,
the integral term must wind down quickly. If the PI gains are not tuned to cope
with this situation, the consequence may be large oscillations in the controller
output. This is certainly not desirable, and may inflict damage to the mechanical
components of the thruster.
A possible solution to this problem is to use an integrator reset mechanism,

see e.g. Zheng et al. (2000) and the references therein. The idea is to monitor
the control system performance, and reset the integral term when large process
discrepancies are detected. A simple approach is to use the ventilation detection
scheme from Section 6.3, and reset the integral term to zero when ventilation is
detected. Combined with the secondary anti-spin action in (6.18), this approach
gives a very rapid reduction in shaft speed. However, it gives no performance
improvements when ventilation terminates. From simulations and experiments,
this approach seems to be too coarse to get good results. The rapid change
in controller output may also add to the mechanical wear and tear instead of
reducing it.
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Controller Abbreviation Section
Torque scaling anti-spin control TS AS control 6.5
Speed bound anti-spin SB AS control 6.6.1
Additive PI anti-spin control API AS control 6.6.2
Primary anti-spin action p 6.5.1
Secondary anti-spin action s 6.5.2

Table 6.1: Anti-spin controllers for extreme conditions.

A more sophisticated Lyapunov-based integrator reset approach is presented
in Bakkeheim et al. (2006). In this work, a load torque observer as presented
in Section 5.1 is utilized for online calculation of a Lyapunov function origin
(equilibrium point). The Lyapunov function value will jump to a higher value
when the propeller starts or stops ventilating. A multiple model Lyapunov
algorithm then decides when to take integrator reset actions, and selects the
integrator value that gives the greatest drop in the Lyapunov function value.
This enables tuning of the PI gains to be done with focus on normal operating
conditions, since the reset mechanism handles the transients during extreme
conditions. The setpoint mapping in (6.18) may also be applied. The concept
was tested experimentally with the setup described in Section 7.1, and proven
successful.

Remark 6.7 The complexity of the shaft speed PI controller with Lyapunov-
based integrator reset is comparable to that of the proposed anti-spin scheme
in Section 6.5. The two approaches share the load torque observer, ventilation
detection scheme, and secondary anti-spin action. The properties of the PI
controller, including the integrator reset mechanism, can therefore be directly
compared with the torque/power controller, including the primary anti-spin ac-
tion. Since the controllers based on torque and power control have been shown
to be superior in normal operating conditions, and their performance during
ventilation rendered acceptable by the anti-spin controller in Section 6.5, this
has been chosen as the preferred solution. The shaft speed anti-spin controllers
introduced in this section will therefore not be further treated here.

6.7 Controller summary

For ease of notation, the anti-spin controllers presented above will be given
abbreviations as defined in Table 6.1. The abbreviations will be used as e.g.
“QP TS AS p+s”, meaning “combined torque/power control with torque scaling
anti-spin, using both primary and secondary anti-spin action”.
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βv,on βv,off nmin Tvent
0.6 0.9 0.5rps 2s

Table 6.2: Ventilation detection scheme parameters for the 4MW Wageningen
B4-70 example propeller.

τγ γ̇rise γ̇fall τn ṅ+vent ṅ−vent nas
0.1s 0.5s−1 −1s−1 0.5s 1s−2 −1s−2 1.1rps

Table 6.3: TS anti-spin controller parameters for the 4MW Wageningen B4-70
example propeller.

6.8 Simulation results

The simulations are performed with the 4MW Wageningen B4-70 example pro-
peller, with model parameters given in Tables A.1 and A.2. For the ventilation
detection scheme, the Qa observer from Section 5.1 is used with the parameters
given in Table 5.1. The motor torque is filtered by a second order Butterworth
filter with cutoff at 10Hz before numerical differentiation. The remaining de-
tection scheme parameters are given in Table 6.2. The basic control parameters
are given in Table 3.2, the parameters for the friction and inertia compensation
schemes in Table 3.4, the parameters for the S controller in Table 3.5, and the
parameters for the combined QP controller in Table 3.6. The Q, P, and QP con-
trollers are in this section always used with the friction and inertia compensation
schemes, which are not explicitly mentioned in the controller abbreviations. The
combined SQP controller from Section 3.15 is not tested here, since it is assumed
that the speed control regime will be chosen such that ns2 ≤ nmin. That is, the
anti-spin controller is de-activated in the speed control regime. For higher shaft
speeds, the SQP controller becomes a QP controller. Hence, the anti-spin sim-
ulations with the QP controller are valid also for the SQP controller. The same
reasoning applies to the MQP1 and MQP2 controllers.
The chosen parameters for the TS anti-spin controller from Section 6.5 are

given in Table 6.3. However, Section 6.8.1 will discuss tuning of the various
parameters, as well as the shaft speed PI control parameters. The additional
inertia compensation scheme for the secondary anti-spin action is implemented
as proposed in (6.19) and (6.20). The parameters for the SB and API anti-spin
schemes are given in Table 6.4. Notice that the same PI parameters as for the S
controller in Table 3.5 have been chosen. For the API anti-spin controller, the
secondary anti-spin parameters from Table 6.3 are used.

6.8.1 Controller tuning

Figure 6.3 shows the shaft speed and motor torque for four different shaft speed
PI controllers during a ventilation incident. The ventilation incident is generated
by a sinusoidal heave (vertical) motion of the propeller with mean submergence
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Kp Ti rb
7.9E5 0.1s 0.3

Table 6.4: SB and API anti-spin parameters for the 4MW Wageningen B4-70
example propeller.
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Figure 6.3: Comparison of the shaft speed PI controller with varying tuning
gains Kp and Ti during a ventilation incident.

6m, amplitude 7m, and period 20s. No waves are simulated, such that the loss
effects only are due to ventilation and in-and-out-of water effects as given by
the ventilation loss model. The thrust reference is Tr = 300kN. The ventilation
incident starts at t ≈ 20.5s, and terminates at t ≈ 28.5s. The results indicate
that the PI gains found in Appendix B.1 and given in Table 3.5 may be too tight,
and that e.g. the use of Kp = 7.9E3 and Ti = 0.4s would be preferable in this
situation. Since the parameters in Table 3.5 are tuned using common industrial
methods, these will still be used for the comparisons in the following sections.
However, it appears that it may be beneficial to account for such high thrust loss
situations in the PI tuning guidelines. The results also show that a loosely tuned
controller suffer both from a period of increased shaft speed during ventilation,
and slow convergence back to the reference after the ventilation incident. A
too tightly tuned controller, on the other hand, may give oscillations due to
integrator discharge.
Figure 6.4 shows comparisons of the QP TS AS p controller with varying

time constants τγ during the same ventilation incident at Tr = 300kN. The
rate limits are set to γ̇rise = 0.5s

−1 and γ̇fall = −1s−1. The results show that
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Figure 6.4: Comparison of the QP TS AS p controller with varying filter time
constants τγ during a ventilation incident.

increasing τγ gives a smoother motor torque, but also increased shaft speed
during ventilation. With the current noise content in β̂Q, there is limited need
for the filter, and τγ = 0.1s will be used in the remainder of the simulations.
Figure 6.5 shows comparisons of the QP TS AS p controller with varying

torque scaling slew rates γ̇rise and γ̇fall during the same ventilation incident at
Tr = 300kN. The filter time constant is set to τγ = 0.1s. The results show that
the main importance for avoiding shaft speed racing is not to choose the slew
rates too small. In the remainder of the simulations, the parameters are chosen
as γ̇rise = 0.5s

−1 and γ̇fall = −1s−1.
Tuning of the secondary anti-spin parameters is less critical for the controller

performance; the three parameters ṅ+vent, ṅ
−
vent, and nas must be chosen as a

trade-off between desired speed reduction during ventilation, and possible wear
and tear as a result of the setpoint mapping.

6.8.2 TS AS control vs. API AS control

The TS AS and API AS controllers are relatively similar in principle; the dif-
ference is the manner in which the anti-spin controller takes control of the shaft
speed during ventilation. The two primary anti-spin schemes are therefore com-
pared in Figures 6.6 and 6.7, with the QP and the Q controller as core thruster
controllers, respectively. All the controllers are tested both with primary and
primary + secondary anti-spin action. The simulation scenario from the previ-
ous section is used, with Tr = 300kN in Figure 6.6, and Tr = 200kN in Figure
6.7. With |n| > 1.5 for the QP controller, it acts as a pure P controller. The re-
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Figure 6.5: Comparison of the QP TS AS p controller with varying slew rates
γ̇rise and γ̇fall during a ventilation incident.

sults show that both the TS AS and API AS controllers have good performance,
that they work well for both P and Q control, and with both primary and sec-
ondary anti-spin action. The API AS controller gives tighter shaft speed control,
but at the expense of more motor torque transients. The TS AS controller gives
a smooth torque, but less tight speed control. However, the overshoot in shaft
speed is still only in the order of 10%, which is not considered a problem. The
convergence to nas during ventilation with the TS AS p+s controller is also
slower than for the API AS p+s controller. However, the TS AS controller is
still preferred due to better control of the motor torque. In the following, only
results for the TS AS controller will be presented.

6.8.3 Single ventilation incidents

This section presents comparisons of six controllers during a ventilation incident,
divided in two groups:

1a) Shaft speed PI controller (S).

1b) Combined torque/power controller (QP) — acts as a P controller for n >
1.5rps.

1c) Torque controller (Q).

2a) Combined torque/power controller with torque scaling primary anti-spin
action (QP TS AS p).
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Figure 6.6: Comparison of TS and API anti-spin control during a ventilation
incident at Tr = 300kN, using the QP core thruster controller.
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incident at Tr = 200kN, using the Q core thruster controller.
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2b) Combined torque/power controller with torque scaling primary and sec-
ondary anti-spin action (QP TS AS p+s).

2c) Combined torque/power controller with speed bound anti-spin (QP SB
AS).

Figure 6.8 shows the six controllers at Tr = 300kN for a single ventilation
incident, generated as in the previous sections. As already seen in Figure 6.3, the
S controller keeps the shaft speed within small bounds, also during ventilation.
The Q controller leads to shaft speed racing and excessive power consumption.
The torque limiting function in (3.25) is active for a short while, limiting the
power consumption at Pmax = 4800kW. The QP controller also leads to shaft
speed racing, but keeps the power limited. The three anti-spin controllers all
obtain their objectives; the QP TS AS p controller keeps the shaft speed within
small bounds, the QP TS AS p+s controller lowers the shaft speed towards nas
during ventilation, and the QP SB AS controller bounds the shaft speed at the
designated level. Figure 6.9 shows the corresponding results for Tr = 450kN.
The main differences to notice are the increased activation of the torque limiting
function for the Q controller, and the larger drop in motor torque needed to
bound the shaft speed. Figure 6.10 shows details from the QP TS AS p+s
controller, demonstrating that the load torque estimation, ventilation detection,
and primary and secondary anti-spin actions work as intended.

6.8.4 Time-varying Tr

Figure 6.11 shows the main simulation results for the QP TS AS p+s controller
in waves and with a time-varying Tr. Figure 6.12 shows the details from the
controller. The mean submergence is h0 = 6m, and the propeller is subject
to irregular waves with Hs = 7m, Tp = 12.6s, defined by 30 harmonic compo-
nents extracted from the modified PM spectrum in (C.19). The wave-induced
velocities are calculated from (C.33), and the propeller submergence calculated
from (C.35). The thrust reference is varied as a sinusoidal with period 100s and
amplitude 450kN. No reference generator is used. The results show that the con-
troller performs satisfactory also in these conditions. The anti-spin controller
is only activated during large thrust losses, and the QP controller is otherwise
left to work undisturbed. The secondary anti-spin action is only activated for
high n. There is one apparently false detection as n crosses zero at t ≈ 58s.
However, this does not affect the performance significantly, and gives no large
transients in the motor torque.

6.9 Discussion

This chapter has introduced the concept of anti-spin thruster control for extreme
operating conditions. Several anti-spin controllers at varying complexity levels
have been presented, including a ventilation detection scheme and a secondary
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Figure 6.8: Comparison of six controllers during a ventilation incident at Tr =
300kN.



160 Propulsion control in extreme conditions

1

2

3

4

n 
[r

ps
]

 

0

200

400

600

T
a [k

N
]

0

200

400

Q
a [k

N
m

]

20

40

60

Q
m

 [k
N

m
]

20 25 30
0

2000

4000

P
m

 [k
W

]

Time [s]

1

2

3

4

 

0

200

400

600

0

200

400

20

40

60

20 25 30
0

2000

4000

Time [s]

S control
Q control
QP control

QP TS AS p control
QP TS AS p+s control
QP SB AS control

Figure 6.9: Comparison of six controllers during a ventilation incident at Tr =
450kN.



6.9 Discussion 161

50

100

150

200

250

Q
a k

[N
m

]

0

0.5

1

β Q
, ζ

 [−
]

20 25 30

0.2

0.4

0.6

0.8

1

γ 
[−

]

Time [s]

0

0.2

0.4

0.6

γ 
−

 β
Q

 [−
]

1.2

1.4

1.6

1.8

2

n ra
s [r

ps
]

20 25 30

0

2

4

6

h/
R

 [−
]

Time [s]

Estimated
Actual

β
Q

ζ

^

<

Figure 6.10: Details from the QP TS AS p+s controller during a ventilation
incident at Tr = 450kN.

anti-spin action that reduces the shaft speed during ventilation. The results
indicate that:

• If a shaft speed controller is found acceptable for normal operating con-
ditions, the anti-spin controllers are of limited applicability. However, the
performance during ventilation may be improved by accounting for such
situations during tuning of the PI control parameters, and possibly also
by modifications of the integral term. The secondary anti-spin action may
be applied to reduce the dynamic loading during ventilation.

• If a controller based on torque and/or power control is chosen for normal
operating conditions, ventilation will lead to excessive power consump-
tion (mainly for the torque controller) and increased mechanical wear and
tear due to unsteady propeller loading. Both analyses and simulations
show that the unacceptable performance of torque and power control when
subject to large thrust losses can be rendered acceptable by an anti-spin
controller.

• The main purpose of the anti-spin controller is to limit the shaft speed dur-
ing ventilation. All the proposed anti-spin schemes in Table 6.1 contains
such functionality.
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• The SB anti-spin controller, which is the simplest formulation presented
here, gives the least control over the shaft speed, and is not compatible
with the secondary anti-spin action. Its simplicity may, however, be an
advantage for industrial applications.

• The TS and API anti-spin controllers give increased control over the shaft
speed during ventilation, and can be combined with the secondary anti-
spin action. These controllers give the best over-all performance, but at
the expense of increased complexity.



Chapter 7

Experimental results

In order to test and validate the proposed control concepts, experiments with
a model scale propeller have been carried out in the Marine Cybernetics Labo-
ratory (MCLab) at NTNU. The experimental setup is described in Section 7.1,
followed by experiments in normal conditions in Section 7.2, and experiments
in extreme conditions in Section 7.3.

7.1 Experimental setup

The MCLab basin is 40m long, 6.45m wide, and 1.5m deep, and is equipped
with a towing carriage and a wave-maker system. The tested propeller was of
conventional design, and used both with and without duct. The main dimen-
sions of the propeller and duct are given in Tables 7.1 and 7.2. The propeller
was attached to a shaft equipped with thrust and torque sensors inside an un-
derwater housing, and driven by an electric motor via shafts and gears with gear
ratio 1:1. The rig with motor, gears, underwater housing, shaft and propeller
was fixed to the towing carriage on a vertical slide, which was used to control
the submergence of the propeller relative to the free surface. The submergence
was measured with a wave probe. The advance velocity of the propeller was
equal to the towing velocity of the carriage, in addition to components from
current and/or waves. The motor torque was controlled from a PC onboard the
carriage, using feedback from the propeller shaft speed and the motor torque.
The control code was generated by rapid control prototyping using Opal RT-Lab
and source code in Matlab/Simulink. This enabled use of the same Simulink
code that was used for simulations. A sketch of the experimental setup is given
in Figure 7.1, and a picture shown in Figure 7.2.
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Propeller Number P 1020
Diameter, D 250mm
Blade number, Z 4
Pitch ratio, P/D 1.0
Expanded blade area ratio, Ae/A0 0.55

Table 7.1: Propeller specification.

Duct Number D 143
Inner diameter 252.1mm
Max. outer diameter 302.4mm
Min. outer diameter 267.7mm
Duct length 118.8mm

Table 7.2: Duct specification.
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Figure 7.1: Sketch of the MCLab experimental setup.
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Figure 7.2: Picture of the MCLab experimental setup.

7.1.1 Measurements, data logging, and filtering

The measurements are summarized in Table 7.3. In addition, all relevant states
and parameters in the control laws were logged. Some comments on the various
measurements are given below.

• The duct thrust measurement contained a lot of high-frequency noise, but
seemed reasonable after filtering.

• The propeller thrust measurement was the most noisy signal. Due to
the nature of the thrust sensor, oscillations at the shaft frequency were
induced, in addition to other high-frequency components.

• The propeller torque measurement was of better quality than the thrust
measurement, but contained significant noise at twice the shaft frequency,
probably due to the mounting of the shaft.

• The shaft speed measurement was of reasonable quality, with some high-
frequency noise and wild-points, and some noise at twice the shaft fre-
quency.
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Parameter Symbol Unit Sensor
Duct trust Tad N Strain gauges
Propeller thrust Tap N Inductive transducer
Propeller torque Qa Nm Strain gauges
Shaft speed n 1/s Tachometer
Motor torque Qm Nm Motor drive
Submergence h m Wave probe

Table 7.3: Measurements in the MCLab experimental setup.

• The motor torque measurement mainly suffered from quantization due to
limited bit resolution in the output from the motor drive, and contained
some high-frequency noise.

• The submergence measurement was of reasonable quality.

All measurements have been filtered for presentation in time-series. The thrust
noise at the shaft frequency meant that the filter cutoff frequency had to be lower
than the shaft speed. For most of the time series, the filter cutoff frequency was
chosen as 4Hz. The filter was a finite impulse response filter (Matlab function
fir1 ) of order 100, which gave a relatively sharp cutoff. In order not to leave
out any significant dynamic effects, careful investigations of the raw data time
series have been performed. Figure 7.3 compares some raw and filtered time
series. In the control laws, where only the shaft speed n and motor torque Qm

were used as feedback, no filtering was applied except in the detection scheme,
where Qm was filtered by a second order Butterworth filter with cutoff at 10Hz.

Remark 7.1 The total thrust is given from:

Ta = Tap + Tad, (7.1)

where the duct thrust Tad = 0 for an open propeller.

Remark 7.2 The gear ratio in the experimental setup is 1:1. From Section
2.2.3, this means that Qcm = Qc and Qmp = Qm.

7.1.2 Propeller characteristics and control coefficients

The propeller has previously been through extensive cavitation tunnel tests at
NTNU, and the open-water characteristics are therefore well known, both for
the ducted and the open case.
Figure 7.4 shows the open-water characteristics of the open propeller, based

on data points from the quasi-static tests performed during this work, see Sec-
tion 7.2.2. KT , KQ, and η0 were calculated from (2.6), (2.7), and (2.17), using
the mean values of Ta, Qa, and n from each run. Second order polynomial
curves have been fitted to the KT and KQ values for positive advance velocities.
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Figure 7.4: Open-water characteristics for the open propeller.

The curves correspond well with previously reported open-water characteris-
tics. Note that the uncertainty of the tests increase with decreasing negative
advance numbers, which give unsteady inflow to the propeller. The nominal
thrust and torque coefficients were found to be KT0 = 0.570 and KQ0 = 0.0750.
The nominal thrust and torque coefficients for reverse thrust were found to be
KT0r = 0.393 and KQ0r = 0.0655. Figure 7.5 shows the KT −KQ relationship,
and a linear fit as proposed in Section 2.1.8. The same data points that are
shown in Figure 7.4 are used (i.e. −0.6 ≤ Ja ≤ 0.9), and the parameters for the
linear fit are at = 8.4 and bt = −0.068. Clearly, the linear relationship fits well.
The ducted propeller has mainly been used for testing of the anti-spin control

schemes, i.e. at Va ≈ 0. The open-water characteristics were therefore not
experimentally determined during the experiments. Figure 7.6 shows the open-
water characteristics from previous tests (Ruth, 2005). The nominal thrust and
torque coefficients were found to be KT0 = 0.513 and KQ0 = 0.0444. The
reverse coefficients were not determined.

Remark 7.3 Comparing coefficients for the open and ducted propeller, it is
clear that the addition of the duct gives a better bollard pull efficiency, as dis-
cussed in Section 2.1.6.

For the open propeller, the control coefficients KTC and KQC were chosen
as in (3.8, 3.9) with εc = 4.5, nc = 3, and using the nominal thrust and torque
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from Ruth (2005).
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coefficients specified above. The ducted propeller was not tested with n < 0,
such that the coefficients could be set as constants, i.e. KTC = KT0 and KQC =
KQ0.

Remark 7.4 The smooth switch of the control coefficients for the open propeller
was not implemented as in (3.10), but instead as:

λc = λc(nr) =
1

2
+
1

π
arctan(7

nr
nc
+ 125

n3r
n3c
). (7.2)

This is almost equivalent to using (3.10) with εc = 4.5.

7.1.3 Friction and inertia compensation

In the experiments presented here, the shaft friction turned out to affect the
performance of the torque and power controllers significantly. A feedforward
friction compensation scheme as proposed in Section 3.7.1 was therefore imple-
mented. The friction was found to be rather nonlinear. It was clearly affected by
the temperature in the gears, bearings, and oil, with decreasing friction as the
temperature increased. Additionally, the friction exhibited a hysteresis, with
less friction for reducing shaft speed than for increasing shaft speed. This is
described in more detail in Pivano et al. (2006c). However, for control purposes
the static plus linear friction compensation in (3.19) was found to be satisfac-
tory. Over the course of the experiments, the friction coefficients were found
to be in the range Qs ∈ [0.8, 1.0] and Kω ∈ [0.009, 0.011]. The switch “width”
of the smooth switching function in (3.20) was chosen as nf = 0.5, and the
constant εf = 4.5. Figure 7.7 shows an example friction model where Qf0 = 1.0
and Qf1 = 0.01, together with a time series for a sinusoidal thrust reference.
This clearly illustrates the nonlinearities in the experienced friction.
The rotational inertia was approximated to Is ≈ 0.05kgm2, and did not ap-

pear to affect the response of the system significantly. An inertia compensation
scheme as proposed in (3.22) was therefore not implemented.

Remark 7.5 The smooth switch in the static friction compensation was not
implemented as in (3.20), but instead as:

Qff0(nr) = Qf0
2

π
arctan(7

nr
nf
+ 125

n3r
n3f
). (7.3)

This is almost equivalent to using (3.20) with εf = 4.5.

7.2 Experiments in normal conditions

This section presents experimental results with the controllers from Chapter
3, i.e. designed for normal operating conditions, including validation of the
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sensitivity functions from Chapter 4. The importance of the friction compensa-
tion scheme is investigated, and the dynamic performance of the controllers in
various operating conditions tested.
The majority of the experiments were conducted for shaft speed control,

torque control, and power control, in order to test the properties of the funda-
mental thruster control schemes. Three main sets of tests are presented in the
following:

1. Quasi-static tests with the open propeller: steady-state tests with con-
stant Va and Tr, used to validate the steady-state performance of the
fundamental controllers and verify the sensitivity functions.

2. Test in waves with the open propeller: dynamic tests in waves with con-
stant Tr, used to investigate the disturbance rejection properties of the
fundamental controllers.

3. Tracking tests with the open propeller: dynamic tests in calm water with
time-varying Tr, used to investigate the tracking properties of the fun-
damental controllers, as well as some of the other controllers from Table
3.1.

Finally, an additional test of the combined SQP controller is presented. The
submergence ratio was kept constant at h/R = 4 for the quasi-static and track-
ing tests, and at h/R = 3 for the tests in waves. For all the tests, time series
are shown for the shaft speed n, total thrust Ta, propeller torque Qa, motor
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D KT0 KQ0 KT0r KQ0r nc
0.25m 0.570 0.0750 0.393 0.0655 3rps
Qf0 Qf1 nf Ic
1.0Nm 0.01Nms 0.5rps 0kgm2

Table 7.4: Basic control parameters used in the experiments with the open
propeller.

Ctr. Kp Ti[s] r p k ns[rps] ns1[rps] ns3[rps]
S 0.2 0.05 - - - - - -
QP - - 4 0.5 1 - - -
SQP 0.3 0.03 3 1 1 - 5 8
MQP1 0.3 0.03 4 0.5 1 5 - -

Table 7.5: Parameters for the various controllers used in the experiments with
the open propeller.

torque Qm, and motor power Pm. The motor torque differs from the com-
manded torque only by a small time constant, and illustrates the output of the
controllers.

7.2.1 Controller parameters

Due to the relatively noisy shaft speed measurement, the shaft speed PI con-
troller in (3.27) could not be tuned too tightly. The parameters were chosen as
Kp = 0.2 and Ti = 0.05s, which gave adequate tracking properties in normal
conditions. The choice of PI parameters will be further motivated in Section
7.3.2. For the combined QP controller in (3.36), the parameters for the weight-
ing function αc(n) in (3.33) were chosen as [r, p, k] = [4, 0.5, 1]. This gave a pure
torque controller for n < 0.5rps and a pure power controller for n > 3rps.
For the combined SQP controller in (3.48), the PI parameters were chosen as

Kp = 0.3 and Ti = 0.03, the parameters for the weighting function αs(nr) were
chosen as [r, p, k] = [3, 1, 1], and the switching shaft speeds chosen as ns1 = 5rps
and ns3 = 8rps. This gives pure shaft speed control for nr < 5rps, pure torque
control for 6.8rps< nr < 8rps, and pure power control for nr > 9.8rps.
For the combined MQP1 controller, the weighting function parameters were

chosen as for the QP controller, i.e. [r, p, k] = [4, 0.5, 1], the integral gain was
chosen as Ki = 10, and the integral threshold shaft speed was chosen as ns =
5rps. This means that the torque controller in practice was used only to facilitate
the zero-crossings of n, since the additive integral action overlaps the torque
control regime.
A summary of all the control parameters is given in Tables 7.4 and 7.5. Note

that the MQP1 controller only has integral action, with parameter Ki = Kp/Ti.
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7.2.2 Quasi-static tests

In the quasi-static tests the thrust reference was kept constant at Tr = 100N,
the advance velocities were Va = {−1,−0.5, 0, 0.5, 1, 1.5}m/s, and the speed,
torque, and power controllers were used. Each combination was run three times,
showing good repeatability. The length of the test series were limited by the
length of the basin, but gave adequate statistical values.
The performance of the three controllers is summed up in Figure 7.8, where

the mean values of Ta, Qa, n, Qm, and Pm are shown for varying advance
speeds. The friction compensation is not included in the plots of motor torque
and power. The three controllers obtain their objectives: the shaft speed con-
troller keeps the shaft speed most constant, the torque controller keeps the
motor torque most constant, and the power controller keeps the motor power
most constant. As the advance speed increases, the effective angle of attack
of the propeller blades is decreased, and the propeller loading decreases for a
constant shaft speed. This can be seen in terms of reduced propeller thrust
and torque at increasing advance velocities for the shaft speed controller: at
Va = 1.5m/s, the propeller thrust is reduced from 100N to 18N. The torque and
power controllers have much better performance, since they increase the shaft
speed as the propeller loading decreases: at Va = 1.5m/s, the propeller thrust
is reduced from 100N to 65N and 50N, respectively.
The performance of the various controllers may also be studied in terms of

the sensitivity functions described in Section 4. The thrust, shaft speed, torque,
and power sensitivity functions for the quasi-static tests can be found in Figure
7.9. They compare well with the theoretically derived sensitivity functions in
Table 4.1.

7.2.3 Dynamic tests in waves

To validate the dynamic performance of the fundamental controllers when the
propeller is subject to a rapidly changing inflow, tests in regular and irregular
waves were performed. The thrust reference was Tr = 90N and the carriage was
kept stationary. A comparison of the controller performance in regular waves
with wave height 8cm and period 1s is shown in Figure 7.10. The results are
summarized in the following:

• The shaft speed controller keeps the shaft speed constant, and has to
vary the motor torque and power in order to achieve this. The resulting
propeller thrust and torque have the largest variance.

• The torque controller keeps the motor torque constant, and as a result the
shaft speed varies with the loading. The resulting propeller thrust and
torque have the smallest variance.

• The power controller keeps the motor power constant, and as a result
both the shaft speed and motor torque varies with the loading. The re-
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sulting propeller thrust and torque lie between the shaft speed and torque
controller values.

Similar results were obtained for other thrust references and waves. Results
for the three fundamental controllers with a slowly-varying advance velocity are
shown in Appendix E.4.

7.2.4 Tracking tests

The tests presented in this section were performed in calm water with zero
advance velocity and time-varying thrust reference Tr, in order to investigate
the tracking properties of the various controllers. Results for seven controllers
are presented, divided in two groups:

1a) Shaft speed PI controller (S).

1b) Torque controller with friction compensation (Q w/Qff).

1c) Combined torque/power controller with friction compensation (QP w/Qff).

2a) Torque controller without friction compensation (Q).

2b) Combined torque/power controller without friction compensation (QP).

2c) Combined speed/torque/power controller with friction compensation (SQP
w/Qff).

2d) Combined torque/power controller with additive integral action and no
friction compensation (MQP1).

The controllers were tested for three different cases, using sinusoidal thrust
references with amplitude TrA:

1. TrA = 50N, period 3s.

2. TrA = 100N, period 5s.

3. TrA = 200N, period 7s.

The power controller could not be tested due to the zero-crossing of Tr (and
hence n), but with the chosen weighting function parameters, the QP controller
was a pure power controller for n > 3.
Figures 7.11 and 7.12 show the controllers in group 1 and 2 for TrA = 50N.

The thrust measurements suffer from the noise problems discussed in Section
7.1.1, since the shaft speed is too low to allow proper filtering. However, the
trend is still clear. Figures 7.13 and 7.14 show the corresponding results for
TrA = 100N, and Figures 7.15 and 7.16 for TrA = 200N.
From Figures 7.11, 7.13, and 7.15, the controllers in group 1 have accept-

able performance for all the test cases. The S controller has a small overshoot
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in the shaft speed after the zero-crossings. This is believed to be connected
with the static friction. Apart from this, the three controllers have comparable
performance in terms of all the measured parameters. For increasing TrA, the
Q w/Qff and QP w/Qff controllers track the thrust reference better than the S
controller, which gives an overshoot in thrust for positive shaft speed and a loss
of thrust for negative shaft speed. Such thrust overshoots during rapid com-
mand changes has earlier been described in Healey et al. (1995) and Whitcomb
and Yoerger (1999a), and was explained by the dynamics of the inflow to the
propeller. It is interesting to note that the Q w/Qff and QP w/Qff controllers
avoid this overshoot, and therefore give better tracking properties without any
explicit compensation for the advance velocity.
The importance of the friction compensation in the Q and QP controllers

can be seen in Figures 7.12, 7.14, and 7.16. Without the friction compensation,
the performance is not acceptable for TrA = 50N, but improves with increasing
TrA, and is acceptable at TrA = 200N. This is consistent with the results from
Whitcomb and Yoerger (1999b), where a feedforward torque control scheme was
compared with two shaft speed controllers. The poor performance of the torque
controller was explained by unmodelled friction. It was found that the problems
were most evident at low thrust references, where friction is more dominating.
Figures 7.12, 7.14, and 7.16 also show results for the SQP w/Qff and MQP1

controllers. For TrA = 50N, nr < 5rps, and both controllers become shaft speed
controllers. This is seen in the time series, which are similar to the S controller.
The difference in performance is probably due to the lack of a proportional term
in the MQP1 controller. For TrA = 100N and 200N, the SQP w/Qff controller
gives acceptable performance, although the tracking properties (with respect
to Tr) are not as good as for the Q w/Qff and QP w/Qff controllers, with a
small overshoot after the zero-crossings. This appears to be due to the shaft
speed controller being engaged and disengaged for low Tr. A similar behavior is
seen for the MQP1 controller. In addition, the MQP1 controller gives too high
thrust for TrA = 100N and 200N, especially in reverse. This is due to the frozen
integral term, which gives a too big contribution after the rapid transition past
ns (at 5rps). For a slower-changing thrust reference, this would probably not
have been a problem.

7.2.5 Test of the combined SQP controller

To further test the properties of the SQP w/Qff controller, the carriage was
moved in the propeller axial direction, with motion amplitude 0.5m and veloc-
ity amplitude 0.25m/s. The thrust reference was increased in steps from 50N to
120N and 220N. The three levels correspond to pure speed, torque, and power
control. The results are shown in Figure 7.17, and corresponds well with the re-
sults with the fundamental controllers shown in Figure 7.10. This demonstrates
that the three controllers work as intended, with seamless transitions between
the control regimes. There were some problems with the thrust measurements,
which can be seen as noise for Tr = 220N.
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7.3 Experiments in extreme conditions

This section presents experiments with the propeller subject to extreme con-
ditions. Results are given for some of the controllers for normal conditions
presented in Chapter 3, as well as for the controllers designed for extreme con-
ditions presented in Chapter 6. The observer and loss estimation scheme from
Section 5.1 are tested as parts of the anti-spin controllers. Results are given
both for the ducted and open propeller.
The propellers have been tested in a variety of operating conditions: for

constant and time-varying thrust references, in waves, with a calm free surface
and forced vertical motion, and in combinations of waves and vertical motion.
In the majority of the results presented here, the thrust reference was kept
constant during forced vertical motion with a calm free surface. This improved
the repeatability and enabled comparison of various controllers, since the time
series could be synchronized by comparing the relative vertical motion of the
propeller. Because of the chaotic nature of ventilation, the actual operating
conditions for the propeller vary from one test run to another. The time series
must therefore only be considered as examples of the performance of the various
controllers. However, the repeatability is in general good. The forced vertical
motion is parameterized in terms of the sinusoidal amplitude Av and period Tv,
as well as the mean submergence h0. Two cases will mainly be used:

1. h0 = 25 cm, Av = 15 cm, and Tv = 10 s. This means that the propeller
blades just exit the surface at the highest point of the trajectory.

2. h0 = 15 cm, Av = 15 cm, and Tv = 5 s. This means that the submergence
ratio h/R = 0 at the highest point of the trajectory, i.e. the propeller
shaft is level with the free surface.

As for the tests in normal conditions, the results are shown in terms of n, Ta,
Qa, Qm, and Pm.

7.3.1 Controller parameters

For the open propeller, the basic control parameters were chosen as in Table
7.4. For the ducted propeller, KTC and KQC were taken as 0.513 and 0.0444,
respectively. That is, (3.8) and (3.9) were implemented with KT0 = KT0r =
0.513 and KQ0 = KQ0r = 0.0444. A summary of the ducted propeller control
parameters is given in Table 7.6. Notice that all the basic control parameters
except the thrust and torque coefficients are equal for both propellers. The
parameters for the S and QP controller were chosen as in Table 7.5. However,
the next section will discuss tuning of the S controller PI parameters.
For the load torque observer and loss calculation from Section 5.1, Qf0 and

Qf1 were chosen as in Table 7.4, Is was set to 0.05kgm2, the observer gains
were chosen as ka = 15 and kb = −25, and the parameters for the weighting
function αb(n) were chosen as [r, p, k] = [8, 0.5, 1]. In the ventilation detection
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D KT0 KQ0 KT0r KQ0r nc
0.25m 0.513 0.0444 0.513 0.0444 3rps
Qf0 Qf1 nf Ic
1.0Nm 0.01Nms 0.5rps 0kgm2

Table 7.6: Basic control parameters used in the experiments with the ducted
propeller.

Qf0 Qf1 Is ka kb
1.0Nm 0.01Nms 0.05kgm2 15 −25
r p k βv,on βv,off Tvent
8 0.5 1 0.6 0.9 1.0s

Table 7.7: Parameters for the load torque observer, loss estimation, and venti-
lation detection, used for both propellers.

scheme from Section 6.3, the threshold parameters were chosen as βv,on = 0.6
and βv,off = 0.9, and the detection delay was set to Tvent = 1s. A summary of
the observer and loss calculation parameters is given in Table 7.7.
For the TS AS controller from Section 6.5, the settings for the primary

anti-spin action were γ̇rise = 1s
−1, γ̇fall = −1s−1, and unless otherwise stated

τγ = 0.3s. Tuning of τγ is discussed in the next section. For the secondary
anti-spin action, the filter time constant was chosen as τn = 0.05s, and the rate
limits were chosen as ṅ+vent = 3s

−2 and ṅ−vent = −3s−2. The desired shaft speed
during ventilation was set to nas = 9rps. This choice was motivated from obser-
vations during the tests, where it seemed that the most violent dynamic loading
disappeared below 10rps. A summary of the TS AS controller parameters is
given in Table 7.8.
For the SB AS controller from Section 6.6.1, the PI parameters were chosen

as Kp = 0.5 and Ti = 0.05s, and the speed bound factor was chosen as rb = 0.2.
The parameters are summed up in Table 7.9.
A maximum shaft speed of nmax = 25rps was enforced in all the experiments,

in order to avoid damaging the setup by uncontrolled propeller racing.

7.3.2 Controller tuning

Figure 7.18 shows the shaft speed and the motor torque during a ventilation
incident for the open propeller with three different shaft speed controllers. The

γ̇rise γ̇fall τγ ṅ+vent ṅ−vent τn nas
1s−1 −1s−1 0.3s 3s−2 −3s−2 0.05s 9rps

Table 7.8: Parameters for the torque scaling anti-spin (TS AS) controller, used
for both propellers.
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Kp Ti rb
0.5 0.05s 0.2

Table 7.9: Parameters for the speed bound anti-spin (SB AS) controller, used
for both propellers.

ventilation incidents were generated by vertical motion of the propeller, with
parameters h0 = 15cm, Av = 15cm, and Tv = 5s. The thrust reference was
Tr = 200N. The figure demonstrates the importance of the tuning of the PI pa-
rameters. Too low gains lead to significant propeller racing during ventilation,
as well as long recovery time after the incident has terminated. On the other
hand, too high gains may lead to oscillations in the controller output due to
integrator discharge, or high sensitivity to measurement noise if a high propor-
tional gain is chosen. Kp = 0.2 and Ti = 0.05s were found to be good trade-offs,
and are used in the following. Figure 7.19 shows similar time series for the QP
TS AS p controller, with varying filter time constants τγ . With primary action
only, the goal of the anti-spin controller was to keep the shaft speed constant.
The choice of τγ can be seen to have a similar effect as the choice of PI para-
meters for the shaft speed controller. If no filter is used, the response of the
controller is fast, but at the expense of a more noisy control signal. If the filter
time constant is too high, the anti-spin controller becomes slow and allows the
propeller to race out significantly before the ventilation incident is “caught”.
This could have been expected from the analysis in Section 6.5.1, where it was
shown that the bound on the shaft speed was determined by the deviation of
γ from βQ during the ventilation incident. τγ = 0.3s was found to be a good
trade-off between response time and noise in the control law, and used in the
remainder of the tests. By comparing the shaft speeds in Figures 7.18 and 7.19
it is apparent that the QP TS AS p controller has similar performance as a
reasonably well-tuned PI shaft speed controller during ventilation.

7.3.3 Single ventilation incidents with the ducted propeller

This section presents comparisons of six controllers during a ventilation incident
with the ducted propeller, divided in two groups:

1a) Torque controller (Q).

1b) Combined torque/power controller (QP) — acts as a P controller for n >
3rps.

1c) Shaft speed PI controller (S).

2a) Combined torque/power controller with torque scaling primary anti-spin
action (QP TS AS p).

2b) Combined torque/power controller with torque scaling primary and sec-
ondary anti-spin action (QP TS AS p+s).
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2c) Combined torque/power controller with speed bound anti-spin (QP SB
AS).

The friction compensation scheme was used for all the controllers.
The ventilation incidents were generated by vertical motion of the propeller,

with parameters h0 = 15cm, Av = 15cm, and Tv = 5s. Figures 7.20, 7.21, and
7.22 show results for Tr = 100N, 200N, and 300N, respectively. The time series
show that the Q controller and the QP controller both lead to propeller racing.
The S controller and the anti-spin controllers limit the shaft speed as intended,
with the secondary anti-spin action of the QP TS AS p+s controller giving a
reduced shaft speed during ventilation. The Q controller could not be tested
for Tr = 300N, since the propeller racing was too severe to give sensible results.
At Tr = 100N, nr < nas, such that the secondary action of the QP TS AS
p+s controller never is activated. The time series is therefore nearly identical
to the QP TS AS p controller. Note also that there is a transient in the motor
torque at the end of the ventilation incident for these controllers. This is due
to a “false” detection — the antispin controller is first switched off, and then
on and off again. This is unfortunate with respect to mechanical wear and
tear. For all thrust references, the resulting thrust during ventilation is about
the same for all controllers — in Figure 7.21 the QP TS AS p+s controller,
which reduces the shaft speed to 9rps during ventilation, produces the same
thrust as the Q controller, which races to 25rps. The power consumption of the
Q controller is unacceptably high, whereas the QP controller keeps the power
consumption limited. The reason for the power not being constant is that the
control coefficients KTC and KQC no longer match the true coefficients during
ventilation. The S and anti-spin controllers give a significantly reduced power
consumption during ventilation. This is inevitable, and may be a problem if
the power system and PMS are not designed to cope with the sudden excess of
power. It can be noted that the QP TS AS p controller has a similar performance
as the S controller during ventilation, which also is the intention. Figure 7.23
shows details from the QP TS AS p+s controller during a ventilation incident
at Tr = 300N, showing that the proposed anti-spin controller — including the
load torque observer and ventilation detection scheme — performs as intended.

7.3.4 Single ventilation incidents with the open propeller

Figures 7.24, 7.25, and 7.26 present similar results as in the previous section,
but for the open propeller. The same six controllers are tested, with the vertical
motion given by h0 = 25cm, Av = 15cm, and Tv = 10s. Since the average
submergence is higher in these tests, the ventilation is less severe than in the
previous section. The QP TS AS p+s controller was not tested for Tr = 100N
in Figure 7.24, since it is identical to the QP TS AS p controller in this case.
For Tr = 300N in Figure 7.26, the Q controller was not tested, since the pro-
peller racing was considered too severe. The main difference to notice from
the previous section, is that increased shaft speed gives increased thrust dur-
ing ventilation. This is consistent with the findings in Section 2.4. The result
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Figure 7.23: Time series of the main parameters in the QP TS AS p+s controller
during a ventilation incident at Tr = 300N for the ducted propeller.

is that the Q and QP controllers give more thrust than the others. From the
discussion in Section 3.2.2, the price to pay is increased mechanical wear and
tear due to the unsteady propeller loading. This was also experienced during
the experiments; when the propeller raced out, as e.g. with the Q controller
at Tr = 200N, violent vibrations could be heard and felt in the whole MCLab
carriage.

7.3.5 Additional tests

Figures 7.27 and 7.28 show results for the QP AS p+s controller for the open
propeller with a sinusoidal Tr of amplitude 50N, period 7s, and offset 200N.
The ventilation incidents were generated by vertical motion of the propeller
with h0 = 15cm, Av = 15cm, and Tv = 10s. Figure 7.27 shows the main
results, with Tr plotted together with Ta, and Figure 7.28 shows details from
the controller. The results demonstrate that the proposed anti-spin controller
performs as intended also with a time-varying reference.
Figures 7.29 and 7.30 show results for the QP TS AS p+s controller for the

open propeller at a fixed mean submergence of h0 = 0.44m (h0/R = 1.75) in ir-
regular waves. The waves were generated from the modified PM spectrum (C.19)
with Hs = 0.06m and Tp = 1.2s, and the thrust reference set to Tr = 240N. Fig-
ure 7.29 shows that only random ventilation incidents were experienced. Figure
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Tr = 100N for the open propeller.
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7.30 shows that the anti-spin controller works as intended: when there is no
or little ventilation, the QP controller is left to work undisturbed, and when
a ventilation incident suddenly appears, the anti-spin actions are activated to
take control of and reduce the shaft speed.

7.4 Discussion

The experiments presented in this chapter have provided a fairly extensive val-
idation of the various proposed control concepts. The results also act as a
verification of the simulation results presented in Chapters 3, 5, and 6.
The quasi-static properties of the fundamental controllers when subject to

varying advance velocity were theoretically analyzed in Chapter 4, and their
performance in waves and current was tested by simulations in Chapter 3. The
experimental results confirmed that the shaft speed controller is the most sensi-
tive to changes in Va, followed by the power and torque controllers, as summed
up in Table 3.10. The experimentally derived sensitivity functions in Figure 7.9
also compared well with the theoretical functions derived in Chapter 4.
The tracking tests with the fundamental controllers confirmed the simula-

tions in Chapter 3, and showed that the performance of the torque and power
controllers with the appropriate friction and inertia compensation schemes were
as good as or better than that of the shaft speed controller. The experiments also
confirmed that, if the friction is significant, the lack of a friction compensation
scheme in the torque and power controllers would lead to poor tracking perfor-
mance for low thrust references. The combined QP controller — which with the
weighting function parameters in Table 7.5 essentially was a power controller
with torque control to facilitate zero-crossings — worked as intended, with a
seamless transition between the two fundamental controllers. The combined
SQP and MQP1 controllers also worked satisfactory, with the MQP1 controller
facilitating reasonable tracking properties even without a friction compensation
scheme.
In extreme conditions, the experiments confirmed the bad performance of

torque and power control. This verified the analysis in Chapter 4 and the simula-
tions in Chapter 6, which also showed severe propeller racing during ventilation
incidents. However, it is apparent that the propeller rotational inertia has a
significant influence on the amount of propeller racing; the simulations with a
full-scale propeller from Chapter 6 gave less racing than the experiments with
the model-scale propeller presented in this chapter.
The experiments further confirmed that the problems with propeller rac-

ing could be alleviated by introducing anti-spin control. The proposed torque
scaling anti-spin scheme from Section 6.5 (TS AS p+s) was shown to work as
intended, including the load torque observer, loss estimation, ventilation detec-
tion, and primary and secondary anti-spin action. The observer gave reasonable
estimates of the propeller load torque, even with relatively noisy feedback sig-
nals, and the ventilation incidents were detected with acceptable accuracy. The
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results were hence consistent with the simulations from Chapter 6. The stabil-
ity analysis in Section 6.5 was performed for a constant thrust reference. Both
simulations and experiments, however, showed that the anti-spin scheme worked
well also for a time-varying Tr.
The speed bound anti-spin controller (SB AS) was also shown to work as

intended, with experimental results comparable to the simulations from Chapter
6.
The weighting function parameters for the QP controller were chosen to

give pure power control for n > 3rps. Hence, the anti-spin controllers were in
practice only presented as add-ons to P control. Anti-spin experiments with
a Q controller have also been also performed (i.e. with anti-spin as an add-
on to torque control, Q TS AS). The results were comparable to the QP TS
AS controller, although with a slightly reduced performance during ventilation.
This is consistent with the simulations presented in Figures 6.6 and 6.7.
From the discussions in Sections 2.4.6 and 3.2.2, ventilation of a propeller

at low Va will give large unsteady loads, which are suspected to cause signif-
icant mechanical wear and tear. The experimental setup was not capable of
measuring these high-frequency loads, and the benefits of limiting the propeller
racing could hence not be verified directly. The unsteady loads were, however,
physically experienced during the experiments through vibrations and noise as
the propeller raced out.

In conclusion, the introduction of anti-spin control meant that the perfor-
mance of the torque and power controllers became acceptable also in extreme
environmental conditions. From an over-all performance evaluation, the QP,
SQP, or MQP controllers with anti-spin and the appropriate friction and inertia
compensation schemes appear to be the best solution, combining the advantages
of the QP controller in normal conditions with acceptable shaft speed control
and limited transients in the motor torque during ventilation. However, the
choice of core thruster controller and eventually an anti-spin controller will de-
pend on the type of propeller, the type of vessel, and the expected operating
conditions.
If an anti-spin controller is deemed appropriate, additional tuning is re-

quired. This will complicate commissioning of the thruster controller. The
main challenge will probably be tuning of the load torque observer, since this is
the core element of the anti-spin controller. However, with the tuning guidelines
from Section 5.1.1, reasonable model knowledge, and increased experience, this
should not be of major concern.
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Chapter 8

Extensions to CPP and
transit

The presented controllers and estimation schemes have all been aimed at FPP
for DP operations. This chapter presents extensions of the presented concepts
to CPP and transit.

8.1 Extensions to CPP

A CPP has two controllable parameters: the shaft speed n and the pitch ratio
P/D. There are hence three possible ways of controlling the thrust from a CPP:

1. Speed control: the pitch is fixed at some preselected value, and the shaft
speed is varied.

2. Pitch control: the shaft speed is fixed at some preselected value, and the
pitch is varied.

3. Consolidated control: both shaft speed and pitch are varied dynamically.
A consolidated controlled CPP is here termed a CCP.

Speed control corresponds to using the CPP as a FPP. This only makes sense
if the pitch actuator is broken and the blades are fixed at a certain pitch. In
this case, the control concepts in Table 3.1 can be used as is, preferably with
KTC and KQC selected according the current pitch.
Pitch control is the classic use of a mechanical direct-drive CPP. If the instal-

lation is equipped with a shaft generator, the prime mover must keep the shaft
speed within certain thresholds to keep the frequency on the power grid within
acceptable limits. Hence, a CPP with pitch control is the only solution. This
also enables the diesel to be run at its optimal RPM at all times. Pitch control
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has also been widespread in diesel-electric installations, where fixed speed elec-
tromotors have been used in tunnel thrusters and azimuthing thrusters due to
their low cost and simplicity.
Consolidated control combines many of the good properties of both variable

speed FPP and fixed speed, variable pitch CPP, but also inherits some of the
cons of the CPP propellers (Schanz, 1967; Morvillo, 1996; Andresen, 2000). The
main advantages of a CCP are reduced noise and the ability to operate at high
efficiency for a wide range of Va and n. This is clearly seen in Figure 2.3, where
the optimal open-water efficiency is found at higher Ja for increasing P/D. With
two controllable parameters, optimal control also becomes a feasible solution,
since the desired thrust often can be met by a number of combinations of speed
and pitch. The task is then to find the combination of shaft speed and pitch that
e.g. gives the lowest power demand, and hence fuel consumption. For DP, this
combination can be found from the pitch dependent propeller characteristics.
In transit, however, the optimization becomes a dynamic task. This is further
treated in Schanz (1967), Winterbone (1980), Beek and Mulder (1983), Parsons
and Wu (1985), Bakountouzis (1992), Chachulski et al. (1995), Fukuba et al.
(1996), Morvillo (1996), Young-Bok et al. (1998), and Whalley and Ebrahimi
(2002). More details on this can also be found in Ruth et al. (2006). In the
following, extensions of the presented control and estimation concepts for FPP
to CCP will be treated. Consolidated control based on optimal control will not
be further treated.

8.1.1 Controller modifications for CCP

A consolidated control scheme must contain mappings from the thrust reference
Tr to the pitch angle reference φr, and one other parameter. In a conventional
implementation based on pitch and shaft speed control, the other parameter
would be the shaft speed reference nr. Not considering optimal control schemes,
which are more complex, there is then a unique relationship between Tr and φr,
expressed by the function gφ:

φr = gφ(Tr). (8.1)

The relationship between the pitch ratio P/D and the pitch angle φ is given
in (2.41). From Section 2.1.5, the open-water characteristics of a CPP can be
parameterized by φ (in addition to Va and n). Hence, the nominal thrust and
torque coefficients may be expressed as functions of φ:

KT0 = KT0(φ), KQ0 = KQ0(φ). (8.2)

The relationships in (8.2) should be known from the propeller characteristics.
It is therefore possible to parameterize the control coefficients from (3.8, 3.9) in
the same manner, based on φr:

KTC = KTC(nr, φr), KQC = KQC(nr, φr). (8.3)



8.1 Extensions to CPP 209

n
f

Q

Q

Ta

a

T

m
( )

fQ ( ).

.Motor
Dynamics

QcTorque
Limit

.

pxp

Shaft
Dynamics

PmaxQmax

Propulsion unit

n

,q

Qc0Tr Thruster
controller

Pitch
Dynamics

r

pxp,q

f

f

KTC KQC

g�( ).

Control
coefficients

Pitch
Control

CCP control scheme

Figure 8.1: Block diagram of a consolidated control scheme for CPP, including
the feedback loop for pitch control.

If the CPP motor is unidirectional, KTC and KQC no longer depend on nr,
and are given explicitly in terms of φr. With φr given by (8.1), and KTC

and KQC given by (8.3), any of the controllers in Table 3.1 can be used without
further modifications. Figure 8.1 shows a block diagram of a consolidated control
scheme for CPP. The figure can be seen as an extension of Figure 3.1 to be valid
also for CCP, with the inertia and friction compensation schemes embedded in
the “Thruster controller” block. The feedback loop of the pitch controller has
also been included in the figure. Implementation of the pitch controller will not
be further treated here. It is instead assumed that a pitch controller exists, and
is capable of acceptable performance.

8.1.2 Consolidated controller example

Design of the pitch mapping (8.1) requires detailed knowledge of the hydro-
dynamics of the propeller, which would typically be provided by the propeller
manufacturer. However, once this is given, the extension to consolidated control
as shown in Figure 8.1 is trivial. To illustrate the proposed approach, a pitch
mapping will be assumed.

Using the Wageningen B4-70 data from Oosterveld and van Oossanen (1975)
— as given in Figure 2.3 — KT0 and KQ0 can be found for the pitch range
0.6 ≤ P/D ≤ 1.4. Data points for this interval are shown in Figure 8.2, together
with second order polynomial fits. The data points for P/D = 0 have been
added to get consistent curves for the whole operating range of the propeller. It
has been assumed that P/D = 0 gives a slightly positive thrust (KT0 = 0.05),
and a propeller power consumption of 10% of the value at about P/D = 1.2
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(KQ0 = 0.01). The polynomials are used as control coefficients, which become:

KTC(φr) = 0.05 + 0.974φr + 1.044φr |φr| , (8.4)

KQC(φr) = 0.01− 0.0843φr + 0.878φr |φr| . (8.5)

It has been assumed that a unidirectional motor is used, such that the control
coefficients in (8.4, 8.5) are independent of nr. For negative φr, the polynomials
should be adjusted, since the propeller is less efficient with negative pitch. This
will not be further treated here.
From Figure 8.2, it is clear that a certain pitch ratio is needed in order to

produce any significant thrust. Hence, the pitch mapping in (8.1) should have
a steep slope about Tr = 0. For high Tr, the pitch may e.g. be chosen to be
at the max value for DP operation, called φDP . For this example, the following
mapping is chosen:

φr = gφ(Tr) = tanh(εφ
Tr
Tbp

)φDP , (8.6)

where εφ is a small constant determining the shape of the mapping, and Tbp is
the bollard pull thrust. The maximum pitch for DP is chosen as P/D = 1.0,
which gives φDP = 0.308, and εφ is chosen as εφ = 0.3. The resulting mapping
from (8.6) is shown in Figure 8.3, together with the control coefficients found
from (8.4, 8.5), as well as the shaft speed reference nr, torque reference Qr, and
power reference Pr found from (3.1), (3.2), and (3.3) respectively. The dip in
KQC for low Tr is due to the polynomial fit used in establishing (8.5), and is
easily avoided by better model knowledge for low pitch ratios.
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Remark 8.1 The whole pitch range is not necessarily used in DP, since it may
be advantageous with higher pitch ratios in transit than in DP. The chosen
maximum pitch for DP will depend on the rating and speed range of the thruster
motor.

8.1.3 Observer and estimation extensions to CCP

The estimated load torque Q̂a and torque coefficient K̂Q from (5.7) and (5.17), or
(5.18) and (5.26), are completely independent of the propeller hydrodynamics
and the operating conditions — they are calculated solely from the rotational
dynamics of the propeller shaft. Hence, these schemes are valid also for CCP
and transit without modifications. However, the estimated torque loss factor
β̂Q from (5.16) or (5.19) is based on the control coefficient KQC , and the torque
performance factor χ̂Q from (5.45) is based on both KQC and KTC . This must
be accounted for if the loss estimation and performance monitoring schemes are
to be used for CCP or transit.
Section 8.1.1 showed how the control schemes for FPP could be extended

to CCP by letting KTC and KQC be functions of the the pitch angle reference
φr. Since KTC and KQC are used to represent the nominal performance of
the propeller, the same approach can be used for β̂Q and χ̂Q. Hence, the loss
estimation and performance monitoring schemes are valid also for CCP when
KTC(φr) and KQC(φr) are chosen as for the thruster controllers, i.e. as in (8.3).

8.1.4 Anti-spin controller extensions to CCP

The ventilation detection scheme in (6.1) and the primary anti-spin action in
(6.6) are both based on β̂Q, and are hence valid as long as the calculation of β̂Q
is valid. The secondary anti-spin action in (6.18) is based on the shaft speed
mapping in (3.1), which again is based on KTC , and therefore holds as long as
(8.3) is applied.
This means that the proposed anti-spin thruster control scheme in Section 6.5

is valid also for CCP simply by applying (8.3), since the four main components
in the scheme:

• Core thruster controller,

• Load torque observer,

• Ventilation detection,

• Anti-spin control actions,

all have been shown to be valid.
As for FPP, the main purpose of the proposed anti-spin control scheme for

CCP is to take control of the shaft speed during severe thrust loss incidents.
This is performed by the primary anti-spin action, which does not affect the
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propeller pitch. Avoiding propeller racing by pitch control is not considered
feasible, due to the limited bandwidth of the pitch actuator.
For the secondary anti-spin action, two options exist:

1. Reduce the thrust reference only to the core thruster controller.

2. Reduce the thrust reference to both the core thruster controller and the
pitch controller.

Option 2 should only be considered if the pitch actuator has the sufficient band-
width. Figure 8.4 shows a block diagram of the proposed anti-spin control
scheme for CCP, where option 2 has been chosen. If option 1 is to be used, Tr
should be routed directly to the pitch mapping gφ(·).
In Ruth and Smogeli (2006), experimental results for a ventilating CPP was

presented. The results showed that the propeller was less sensitive to ventilation
with a lower pitch angle. That is, the inception of ventilation was postponed
when φ was reduced, such that a higher thrust could be produced. A CCP can,
within a large thrust range, meet the desired thrust for a range of combinations
of pitch and shaft speed. If there is a high probability for ventilation, the results
in Ruth and Smogeli (2006) indicate that it is beneficial to run the CCP with a
low pitch angle and high shaft speed. This again suggests that it may be useful
to have at least two pitch mappings gφ(·): one for normal operating conditions,
and one for extreme operating conditions. The latter mapping should then, for
a given Tr, give a lower φr than the mapping for normal conditions.
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This result also indicates that, if the pitch actuator bandwidth is sufficiently
high, option 2 for the secondary anti-spin action should be chosen; a reduced
pitch angle during ventilation would probably hasten termination of the ven-
tilation incident and reduce the load transients. This must, however, only be
considered as speculation, since the experimental setup did not allow for testing
of a CPP with dynamic pitch control.

8.1.5 A near optimal controller

A basic problem with on-line optimal control of CCP is the need to know the
propeller advance speed. If the advance speed is not known, an off-line opti-
mization scheme must be utilized. This is discussed in more detail in Ruth et
al. (2006). A simple, yet smart, consolidated controller that avoids this problem
was presented by Schanz (1967). In this control scheme, the motor torque is
kept constant, while the shaft speed is kept constant by adjusting the propeller
pitch (called a “propeller governor”). The pitch can be controlled by e.g. a PID
controller operating on the shaft speed error, exactly as for the PID shaft speed
controller in (3.27). With constant motor torque and shaft speed, also the power
is constant. Hence, the propeller governor gives a constant speed/torque/power
controller, which can be shown to be very near optimal.
The performance of the controller will depend on the PID tuning and band-

width of the pitch actuator. If a relatively low bandwidth is chosen, such that
wave-frequency disturbances are not counteracted, the controller will be very
similar to the torque controller in (3.29) with control coefficient curves from
(8.3). This will give wave-frequency oscillations in power. If the pitch actua-
tor bandwidth is sufficiently high, and the PID is tuned tightly, the constant
speed/torque/power relationships will be maintained also in waves. This may,
however, give unnecessary wear and tear of the pitch actuator.

8.2 Extensions to transit

During DP operation, the advance velocities of the propellers are assumed to be
of moderate magnitude. The controllers in Table 3.1 are then expected to give
adequate performance with control coefficients based on the nominal thrust and
torque coefficients, as proposed in Section 3.5.
During transit, the propellers are subject to higher advance velocities, and

the actual thrust and torque coefficients will deviate significantly from the nom-
inal coefficients proposed as control coefficients in (3.8, 3.9). This is easily seen
from e.g. (2.25, 2.26) or (2.20, 2.21). Depending on the chosen controller, the
mapping from reference to actual thrust will become inaccurate, and one may
ask if the controllers in Table 3.1 then are appropriate. In order to investigate
this, the differences in control objectives for DP and transit operations must be
clarified, before possible extensions of the controllers are introduced.



8.2 Extensions to transit 215

8.2.1 DP vs. transit

In DP mode, the vessel is usually fully actuated or over-actuated. As described in
Section 3.2.1, accurate thrust production is then important for the bandwidth
of the vessel control system as a whole. In transit, normally only the main
propellers are used. This means that the vessel becomes underactuated, i.e. it is
unable to command accelerations in all 3 horizontal-plane DOF simultaneously.
The control task therefore inherently becomes a 2DOF problem, where the main
objectives usually are to keep a certain vessel speed and heading. It is important
to note that vessels that are fully actuated for low-speed applications, from a
practical point of view still may become underactuated at higher speeds. Such
vessels may e.g. be equipped with main propellers in the stern and a number
of tunnel thrusters in the bow and stern. At higher vessels speeds, the tunnel
thrusters lose most of their efficiency due to the water speed at the tunnel
outlets (Chislett and Björheden, 1966; Brix, 1978; Karlsen et al., 1986). It is
also becoming increasingly common to have one or two azimuthing thrusters in
the bow or mid-ship to assist in DP operations. These are often of the retractable
or swing-up type, and are stowed inside the hull for transit operations.
In classic autopilot schemes, see e.g. Fossen (2002) and references therein,

the control task is usually divided in two: a dedicated speed controller, and
a course auto-pilot. Typically, the speed controller, which also could be man-
ual speed control from the bridge, controls the setpoint of the main propellers,
whereas the course autopilot controls the rudder or azimuth angles. The two
control objectives (speed and course) are hence decoupled. The control alloca-
tion therefore becomes much simpler than in the DP case, especially for the
propeller setpoints, which are set by the speed controller. Control allocation for
the rudders or azimuth angles may become more involved, especially if including
other control objectives such as rudder-roll damping. This is treated in detail in
Perez (2005). In this thesis, only control of the propellers is considered. With
the speed/course decoupling, the mapping from the thrust reference to the ac-
tually produced thrust is of less importance. Since the bandwidth requirements
for the speed controller are less strict than for DP, the setpoints of the main
propellers can simply be increased until the desired vessel speed is reached.
Hence, the mean values of thrust, torque, shaft speed, and power will be the
same, regardless of the chosen low-level thruster controller. With respect to the
performance criteria defined in Section 3.2, the dynamic properties of the vari-
ous controllers in Table 3.1 will remain the same, even if there is a steady-state
offset between thrust reference and the actually produced thrust.
A third vessel control regime that must be considered is trajectory tracking

and manoeuvring control (Fossen, 2002; Skjetne, 2004; Skjetne et al., 2004). In
trajectory tracking, the objective is to force the vessel to track a desired path
in time. In manoeuvring control the objective is to converge to and follow a
parameterized path, and satisfy a desired dynamic behavior along the path.
Such controllers are appropriate where high performance with respect to path
following is required, e.g. for manoeuvring in restricted waters, replenishment
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operations, and formation control. These concepts will therefore probably bene-
fit from a higher system bandwidth than what is necessary for the speed/course
decoupled autopilot; the latter is usually used for long distance journeys like
ocean crossings, where accurate path following is of less importance. Hence,
modifications of the low-level thruster controllers to meet these requirements
should be considered.
For a vessel that operates across a large speed regime, the traditional ap-

proach has been to design dedicated controllers for each regime, and switch
between these controllers according to given criteria. However, recent results
have demonstrated that a unified control concept valid for a larger speed enve-
lope is feasible (Brevik and Fossen, 2005). Such a controller may also benefit
from the increased system bandwidth provided by improved low-level thruster
control across all operating regimes.

8.2.2 Controller modifications for transit

Having clarified the requirements to the low-level thruster controllers for the
various vessel control regimes, the following conclusions may be drawn:

• For a decoupled speed controller/course autopilot, the low-level thruster
controllers in Table 3.1 based on the nominal thrust and torque coefficients
will probably be adequate.

• For a trajectory tracking/manoeuvring or unified controller, it may be
desirable to modify the controllers to increase the system bandwidth.

As for CCP, a modification of the thruster controllers for transit should be
realized by changing the control coefficients KTC and KQC . In transit, the
propellers will be in the first quadrant of operation, for which the open-water
characteristics normally is available. Using the measured ship speed U and
an estimate of the hull wake factor wh, the advance velocity Va and advance
number Ja of the propeller may be calculated from (2.42) and (2.16). Then,
the estimated KTJ and KQJ from the open-water characteristics can be used
as control coefficients, i.e.

KTC = KTJ(Va, n), KQC = KQJ(Va, n). (8.7)

It may be preferable to use gain scheduling with discrete updates of KTC and
KQC , in order to avoid dynamically changing control coefficients. Note that this
approach requires that the ship speed measurement is made available to the low-
level thruster controllers, which may be a practical limitation. If gain-scheduled
control coefficients are used, the properties of the various low-level thruster
controllers from Table 3.1 will remain the same with respect to disturbance
rejection, as well as oscillations in torque and power.
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8.2.3 Performance evaluation for transit

The performance evaluations undertaken in Section 3.18 and Chapter 4 are
applicable also to transit. For example, it is a known problem that a vessel in
heavy head seas will experience large load variations on the propellers. This
is because of oscillations in inflow to the propeller, due to both waves and
oscillations in the ship forward speed. If shaft speed control is used, the resulting
motor torque and power will have large oscillations. This increases the danger
of exceeding the motor torque or power limit, and increases the mechanical
wear and tear. In torque or power control, the propeller shaft speed will adapt
itself to the propeller loading, giving lower oscillations in torque and power.
Power control for transit has been successfully used in industrial installations
by Siemens (Siemens AG, 2005) and ABB (Ådnanes, 2006), and possibly also
by other vendors.
In Blanke (1994), various control schemes for diesel engines on vessels in

transit were evaluated based on an economical cost criterion. In particular, in
was investigated how the ship speed control loop should react to changes in local
weather and actual ship resistance characteristics. It was concluded that torque
control of the diesel engine would reduce the economical loss when compared to
shaft speed control if the ship experiences added resistance due to waves and
wind. In Blanke and Busk Nielsen (1990), it is stated that power control of the
diesel engine has a similar beneficial effect on fuel consumption.

8.2.4 Observer and estimation extensions to transit

As stated in Section 8.1.3, the load torque observer in (5.7) and KQ estimation
scheme in (5.26) are valid for transit without modifications. However, exten-
sions of the loss and performance estimation schemes to transit depends on
the application for which they are intended. For the performance monitoring
scheme, KTC and KQC should be used without modifications, i.e. equal to the
coefficients used in the controllers. χ̂Q will then resemble the torque sensitivity
function sqi from (4.3). If the controllers are used with the nominal coefficients
(KTC = KQ0 and KQC = KQ0), the performance of the shaft speed and power
controllers will deteriorate with increasing advance velocity, as shown in Figure
4.3. If KTC and KQC are updated according the the vessel speed, as suggested
in Section 8.2.2, the performance of the various controllers will be more similar.
For the loss estimation scheme, things get more tricky. This is mainly a

problem for anti-spin control in transit, which is further discussed in the next
section.

8.2.5 Anti-spin controller extensions to transit

Whether the core thruster controller should be modified for transit or not, was
discussed in Section 8.2.2. This choice can be made separately from the anti-
spin controller, since both the primary and the secondary anti-spin actions are
compatible with any core thruster controller.
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Section 8.2.4 clarified that the load torque estimation schemes in (5.7) and
(5.26) were valid for transit without modifications. For the calculation of β̂Q,
however, precautions must be taken. β̂Q is calculated from (5.16) or (5.19), and
reflects the loss of torque when compared to the operating condition described
by KQC . If KQC is chosen as suggested in Section 3.5 , i.e. KQC = KQ0,
β̂Q is an estimate of the total loss of torque when compared to the nominal
situation with Va = 0 and no other losses. When Va > 0, KQ decreases, and so
does β̂Q, see e.g. Figure 2.1. This behavior of β̂Q means that it is difficult to
choose values for the ventilation detection parameters βv,on and βv,off in (6.1).
The scheme should not detect a high Va as a ventilation incident, and hence
βv,on and βv,off should be chosen small. On the other hand, for the detection
scheme to work at a low Va, βv,on and βv,off should not be chosen too low. In
conclusion, the detection scheme must modified for transit.
The solution to this problem is to let KQC in (5.15) or (5.19) be updated

according to the vessel speed, i.e. KQC = KQJ(Va, n), such that it reflects the
prevailing operating conditions, in a similar manner as proposed in (8.7). Then,
β̂Q will stay close to unity when there is no ventilation, and the ventilation
detection scheme can be used with the same parameters as for DP. Note that
the update of KQJ(Va, n) for calculation of β̂Q may be done independently of
an eventual update of control parameters for the core thruster controllers.
If external updates of KQC according to the vessel speed are not available,

it may be possible to incorporate the update of KQC in the low-level thruster
controller without the use of additional instrumentation. This is discussed in
Appendix G.2.



Chapter 9

Thrust allocation in
extreme conditions

The bulk of this thesis has been focused on low-level thruster control. In this
context, the thrust setpoint Td has been considered as en exogenous input. As
discussed in Section 1.1, Td is for DP and joystick operations calculated by the
thrust allocation algorithm, which distributes the high-level thrust demands
to the various propulsion units. This chapter investigates how the thruster
performance monitoring tools presented in Chapter 5 can be utilized also to
improve thrust allocation. The goals are closely related to the control objectives
presented in Section 3.2, and can be summarized as:

• Reduce mechanical wear and tear.

• Reduce power transients.

• Improve the overall propulsion efficiency.

The concept of anti-spin thrust allocation has been motivated by the working
principles of advanced four-wheel drive systems on cars. In essence, these sys-
tems aim at transferring the maximum achievable torque to each wheel; if one
wheel starts spinning, the torque is instead transferred to the other wheels. In
a similar manner, it should be possible to detect that a propeller has lost its
“traction”, and transfer the desired thrust to other propellers with better work-
ing conditions. This, of course, necessitates that the vessel is over-actuated,
such that there exists propellers to which the desired thrust can be transferred.
This will be a presumption in the remainder of the chapter.

9.1 Basic principles
As a background for the following sections, the basic principles of thrust allo-
cation will be shortly summarized.
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9.1.1 Actuator configuration

Considering only 3 degrees of freedom, a thruster located at the horizontal-plane
position [xpj , ypj ] producing a thrust Taj in the direction αj will give the thrust
vector τ j :

τ j =

⎡⎣ τxj
τyj
τmj

⎤⎦ =
⎡⎣ cosαj

sinαj
xpj sinαj − ypj cosαj

⎤⎦Taj = tjTaj , (9.1)

where tj is the thrust configuration vector for thruster j. With N thrusters,
the total thrust vector becomes:

τ = τ 1 + τ 2 + ...+ τN =
£
t1 t2 ... tN

¤⎡⎢⎢⎣
Ta1
Ta2
...
TaN

⎤⎥⎥⎦ = TF, (9.2)

where T is the thrust configuration matrix, and F is the vector of thrust forces.

9.1.2 Unconstrained allocation for non-rotatable thrusters

The simplest thrust allocation scheme considers only thrusters with fixed di-
rections, and do not account for thruster saturation limits. While simple, the
method is illustrative for the general task of thrust allocation. The optimal
thrust allocation for non-rotatable thrusters is given by the generalized inverse
T†w of T, see e.g. Fossen (2002):

T†w =W
−1T|(TW−1T|)−1, (9.3)

where W is a positive definite cost matrix (usually diagonal) weighting the
contributions from each thruster. A high cost factor means that a thruster is
“expensive” to use, and gets less thrust allocated. The vector of generalized
desired forces from the high-level control system is denoted τ d, and the thrust
setpoint vector u is calculated from τ d using T†w by:

u =

⎡⎢⎢⎣
Td1
Td2
...
TdN

⎤⎥⎥⎦ = T†w
⎡⎣ Fx

Fy
Mz

⎤⎦ = T†wτ d, (9.4)

where Tdj is the thrust setpoint of thruster j, and Fx, Fy, and Mz are the
desired forces in surge and sway and moment in yaw. For W = IN×N , T†w
reduces to the Moore-Penrose pseudo-inverse T† = T|(TT|)−1. Note that the
magnitude of the cost factors inW are irrelevant; only the ratio of the individual
entries affects T†w. W can be used to cancel the allocation to one thruster by
setting its cost to a high value. This may, however, result in a close to singular
matrix. Instead, the allocation should be performed without that thruster, i.e.
by removing the corresponding column from T.
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9.2 Current thrust allocation solutions

Various thrust allocation schemes exist. For non-rotatable thrusters with con-
straints, Johansen et al. (2004a) presented a solution using multi-parametric
quadratic programming. For azimuthing thrusters with constraints, an explicit
solution using singular value decomposition and filtering techniques was pre-
sented in Sørdalen (1997a) and Sørdalen (1997b), iterative solutions using linear
programming were presented in Lindfors (1993) and Webster and Sousa (1999),
and solutions using quadratic programming were presented in Johansen et al.
(2004b) and Liang and Cheng (2004). Thrust allocation for surface vessels with
rudders was treated in Lindegaard and Fossen (2003) and Johansen et al. (2003).
A general Lyapunov-based nonlinear control allocation scheme was presented in
Johansen (2004), and an adaptive extension presented in Tjønnås and Johansen
(2005). The common point of all these solutions is that they attempt to ful-
fill the high-level thrust command, i.e. τ = τ d, while meeting a given set of
constraints and optimizing a certain criterion.

9.3 Motivation

What happens when the performance of the individual thrusters is not accounted
for in the thrust allocation algorithm? In calm to moderate seas this is no prob-
lem, since the thrusters will have decent operating conditions, and the thrust
losses will be limited. In high to extreme seas, however, when the thrusters
may be subject to ventilation and water exits, and the thrust losses increase,
problems may arise. Assume that thruster j is subject to heavy ventilation, and
not producing its demanded thrust, i.e. Taj 6= Tdj . The vessel will then eventu-
ally start to drift off position, since Taj 6= Tdj from (9.2) and (9.4) implies that
τ 6= τ d. The response from the high-level control system is then to increase τ d
to stay on position. Through T†w in (9.4), this is transformed to new setpoints u
to the thrusters. Since the loss of thrust on thruster j is reflected in the motion
of the vessel, and the new τ d is calculated to compensate for this motion, the
setpoint of thruster j will be increased (along with other co-allocated thrusters)
in order to produce the “missing” thrust. Hence, the response of the complete
vessel control system to the loss of thrust on a given propulsion unit, is to in-
crease its setpoint. As discussed in Sections 2.4.6 and 3.2.2, increasing the shaft
speed when a thruster is subject to ventilation may lead to increaseddynamic
loading, and correspondingly increased mechanical wear and tear. At the same
time, the actual thrust is not increased significantly. Hence, this response is
rather unfortunate. Not only does it increase wear and tear, it also means that
the overall closed-loop performance of the vessel deteriorates, since the thrust
commands from the high-level control system are not properly met. Instead, the
thrust allocation system should have attempted to re-allocate thrust to other
propulsion units that were less subject to thrust losses.
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9.4 Performance monitoring
The tools presented in Chapter 5 may be utilized to monitor the performance
of the individual propulsion units. There is, however, a multitude of possible
performance criteria. In the following, a thruster performance measure that is
believed to be appropriate for thrust allocation will be proposed.

9.4.1 Sensitivity estimation

For monitoring of the instantaneous working conditions of the propeller, the
torque loss factor β̂Q is the most relevant parameter. This was utilized e.g.
in the anti-spin controllers presented in Chapter 6. For thrust allocation, the
main interest is in the propeller thrust production with respect to its reference,
i.e. Ta vs. Tr. As shown in Section 5.4, an estimate T̂a of Ta is in general not
available, since the K̂T −K̂Q relationship in (5.41) used to calculate T̂a in (5.42)
only holds for open propellers. The thrust performance factor estimate χ̂T in
(5.46) is therefore not always available. Instead, the performance monitoring
will be based on the torque performance factor defined in (5.44):

χ̂Q =
Q̂a

Qr
, Qr 6= 0, (9.5)

and the non-singular representation in (5.45). Q̂a is calculated e.g. by the
observer in (5.7) or from the KQ estimation scheme in (5.26) using (5.18),
and Qr is calculated from Tr using (3.2). As stated in Section 5.4, χ̂Q can
be seen as an estimate of the torque sensitivity function sqi(·) in (4.3). χ̂Q
therefore contains specific information on the performance of the propulsion
unit with respect to its torque reference. However, since the propeller thrust
and torque are closely related, χ̂Q is considered also to be a good measure of
the performance with respect to the thrust reference.
If χ̂Q in (9.5) is based on the load torque observer in (5.7), or the KQ estima-

tion scheme in (5.26) with a high estimation gain k0, it will be an instantaneous
estimate. For use in thrust allocation, an average performance factor may be
more appropriate. The average torque performance factor χ̄Q is defined as:

χ̄Q =
1

T

Z t

t−T
χ̂Q(τ)dτ , (9.6)

where T is the averaging period. A larger T will give less fluctuation in χ̄Q,
but also a slower response to changes in the operating conditions. A similar
estimate could be obtained with the KQ estimation scheme in (5.26) using a
low estimation gain k0.

Remark 9.1 χ̂Q will be affected by both current, wave- and vessel-induced in-
flow velocities, and ventilation. For χ̄Q, the wave-frequency disturbances will be
more or less filtered out, leaving only current, vessel low-frequency motion, and
ventilation.
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Remark 9.2 From a statistical consideration, the minimum theoretical value
of χ̄Q is approximately 0.5. This corresponds to the thruster being above water
half the time, and otherwise fully submerged. In practice, the minimum value
will probably be larger.

9.4.2 Ventilation monitoring

Another criterion that may be used to evaluate the thruster performance, is
the count of the number of ventilation incidents over a given time interval.
This gives explicit information about the level of mechanical wear and tear
and power transients, and is easily implemented by monitoring the ventilation
detection signal ζ from (6.1). Since ventilation detection is a discrete event, some
choices must be made with respect to continuous-time performance evaluation.
A suggestion is as follows, with the performance factor denoted χV :

• Select a time interval TV for performance evaluation.

• Select a lower limit χV,min for χV .

• Denote the count of ventilation incidents during the last TV seconds mV .

• Select the number of ventilation incidents mV,max during TV that should
give χV = χV,min.

Choosing χV to be linear in mV , it can then be calculated from:

χV = 1−
min(mV ,mV,max)

mV,max
(1− χV,min). (9.7)

A scheme for counting of mV based on ζ and TV is easily implemented.

9.4.3 A thruster performance measure

To arrive at a total thruster performance measure, it seems sensible to com-
bine the two performance factors χ̄Q in (9.6) and χV in (9.7). The proposed
performance measure χj is therefore chosen as:

χj = χ̄QχV . (9.8)

In calm seas with no current and little vessel motion, χj ≈ 1 since χ̄Q ≈ 1 and
χV = 1. In normal operating conditions, with moderate waves and some current,
χj = χ̄Q ≈ sqi(·), since χV = 1 as long as there are no ventilation incidents.
This means that χj will depend on the ability of the low-level thruster controller
to counteract disturbances from current and low-frequency vessel motion, as can
be seen e.g. in Figure 4.3. In extreme operating conditions, when the thruster is
subject to ventilation, χj = χ̄QχV , since both χ̄Q and χV will decrease with the
number of ventilation incidents. However, depending on the choice of χV,min,
χj will probably be dominated by χV .
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Remark 9.3 In nominal conditions with ideal performance, χj = 1. With the
theoretical minimum value of χ̄Q ≈ 0.5, and the chosen minium value χV,min
for χV , the minimum value of χj becomes χmin ≈ χV,min/2. The range of χj
hence is:

χj ∈ [
χV,min
2

, 1]. (9.9)

9.5 Implications for thrust allocation
Having a arrived at the performance measure χj , the next challenge is to incor-
porate this into the thrust allocation scheme. As summarized in Section 9.2, a
variety of allocation schemes exist, with varying degree of complexity and appli-
cation areas. To arrive at a general answer to how the performance measure can
be integrated into the allocation schemes is therefore considered neither feasible
nor practical, since the various schemes may benefit from different approaches.
In the following, some considerations regarding use of χj will still be made.
It is assumed that the performance monitoring scheme is implemented for

all the thrusters on the vessel, such that the performance measure vector χ can
be defined as:

χ = [χ1, χ2, ..., χN ]
|
, (9.10)

where χj is the performance measure for propulsion unit number j, and N is
the total number of thrusters.

Remark 9.4 If χj for some reason is not available for some of the propulsion
units, their values can simply be set to 1. These propulsion units will then be
treated as if they were working perfectly at all times. This could be the case e.g.
for a mechanical direct-drive main propeller with a shaft generator, for which a
load torque observer may be difficult to implement.

As shown in Section 9.2, the various thrust allocation schemes all have an
optimization criterion and a set of constraints that must be met. How to inte-
grate χ from (9.10) into the allocation scheme, if at all possible, largely depends
on the implementation. At least two options seem apparent:

1. Use χ to adjust the entries in the cost matrixW. By increasing the cost
of an ill-performing thruster, it will be less utilized as long as there are
other thrusters available that can take its load.

2. Include χ in the optimization criterion, e.g. as maximization of kχk.
This criterion must then be weighted against the other criteria in the
optimization routine.

Venturing further into the details of implementation would require a thorough
analysis of a given thrust allocation scheme. This is not further considered here.



Chapter 10

Conclusions and
recommendations

10.1 Conclusions

This thesis has focused on modelling, simulation, and control of marine pro-
pellers. More specifically, the problem statement formulated in Section 1.2 has
been thoroughly explored, and various thruster controllers have been designed,
analyzed, and tested.
Chapter 2 gave an overview of propeller modelling for simulation and control

design. Based on systematic model tests from a cavitation tunnel and time-series
from open water tests, the behavior of a propeller subject to ventilation and
water exits at low advance velocities was analyzed, and a simplified simulation
model of the corresponding thrust loss effects was developed.
Chapter 3 introduced the main control objectives considered in this work:

thrust production, mechanical wear and tear, predicable power consumption,
and robust performance. The use of reference generators, friction compensa-
tion, inertia compensation, and torque/power limiting was motivated, and the
applicability of these concepts to various control options was discussed. The fun-
damental thruster controllers — shaft speed, torque, and power control — were
introduced, followed by various combined controllers. The performance of the
controllers was compared by simulations, and the importance of the reference
generator and friction and inertia compensation schemes was demonstrated.
Chapter 4 introduced thrust, torque, shaft speed, and power sensitivity func-

tions, which were used to analyze the steady-state performance of the funda-
mental control concepts in the presence of thrust losses. For thrust losses due
to changes in advance velocity, the results showed that the torque and power
controllers were much less sensitive than the shaft speed controller. This agreed
with the simulation results from Chapter 3, and confirmed that torque and
power control have superior properties in normal operating conditions. The
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sensitivity functions were also utilized to investigate the controller response to
large thrust losses due to ventilation and water exits. The results showed that
the performance of the torque and power controllers was highly unacceptable,
since the loss of loading led to severe propeller racing for both controllers, and
also to excessive power consumption for the torque controller.
Chapter 5 presented several tools for monitoring of the propeller perfor-

mance. The main result was a propeller load torque observer, which based
on the available measurements estimated the hydrodynamic load torque of the
propeller. The estimated load torque was utilized to estimate the torque loss
factor, which gave explicit information on the operating condition of the pro-
peller. The proposed estimation scheme was validated by simulations in various
operating conditions, and shown to be able to capture even the rapid changes
in load torque during ventilation and water exits.
Thruster control in extreme conditions was treated in detail in Chapter 6,

where the concept of anti-spin thruster control was introduced. The proposed
anti-spin thruster controller was designed to let the core thruster controller
work undisturbed in normal conditions, and take action only when a ventilation
incident was detected. It then took control of and reduced the shaft speed until
the ventilation incident was terminated. The purpose of this was to reduce
the dynamic loads on the propeller, and ease the transition back to the non-
ventilated condition. The stability of the proposed anti-spin control scheme was
investigated by a Lyapunov analysis, and its performance tested by simulations.
In Chapter 7 results from open-water experiments with a model scale pro-

peller were presented. The results confirmed the performance characteristics
previously inferred from simulations and sensitivity functions, and showed that
it is feasible to use torque and power control with anti-spin in all operating
regimes. The anti-spin controller was shown to work well also in the presence
of unmodelled dynamics, model uncertainty, and noisy measurements.
Chapter 8 showed how the presented control concepts could be extended to

CPP and transit simply by letting the control coefficients be functions of the
propeller pitch and vessel speed, respectively.
Chapter 9 introduced the concept of anti-spin thrust allocation. Based on

the performance monitoring tools presented in Chapter 5, the idea was to re-
distribute the thrust setpoints in order to utilize the various propulsion units
in the most sensible way. In this manner, the total thrust production could be
improved, and the need for anti-spin thruster control reduced, since the most
exposed propulsion units would be less utilized.

The main purpose of this thesis has been to demonstrate the importance of
low-level thruster control and the many aspects of the total vessel performance
that it affects. Based on a total evaluation of the performance across all operat-
ing regimes, the results indicate that the combined torque/power controller from
Section 3.13 or the combined speed/torque/power controller from Section 3.15
are the most favorable solutions. If the propeller may be subject to high thrust
losses, this solution requires the addition of an anti-spin controller, as proposed
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in Section 6.5. Also, if the rotational inertia and/or friction is significant, the
corresponding compensation schemes from Section 3.7 may be necessary. How-
ever, the choice of control solution for a specific installation should probably be
made from an independent evaluation of the performance criteria on a case by
case basis.

10.2 Recommendations for future work
• The theoretical work and testing of the proposed thruster control schemes
— both for normal and extreme conditions — have reached a point where
preliminary full-scale testing in DP is the natural next step. With the
experience gained from this, full-scale industrial implementation could be
close at hand.

• As discussed in Section 8.2.5, some modifications of the ventilation de-
tection scheme and anti-spin control laws are necessary for use in transit.
Although a solution is suggested, this problem requires further attention.

• The fundamental controllers should be tested for oblique inflow to the
propeller. Based on the results on “thrust vectoring” in Stettler et al.
(2005), it would be interesting to see how the torque and power controllers
handle this situation. If the performance differs significantly from that of
a shaft speed controller, this will also have an impact on thrust allocation,
both in DP and transit.

• Some of the results presented in the appendices are incomplete, and require
further work on analysis and testing.

• This work has only briefly touched upon the topic of thrust allocation,
and attempted to illustrate how the overall performance of the propulsion
system on a vessel may be improved by accounting for the performance
of the individual thruster units. In this connection, a thruster perfor-
mance criterion was proposed, based on available measurements and sys-
tem knowledge. How to incorporate this information into existing thrust
allocation schemes has not been further considered. This is a challenge
for future research: with increasingly complex installations, the need for
improved thrust allocation schemes accounting for thruster performance,
as well as e.g. power consumption on individual power buses, will be an
important contribution in the quest for increased performance.
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Appendix A

Propeller simulation data

This appendix presents simulation data for a 4MW propulsion unit equipped
with a Wageningen B4-70 propeller of diameter 4m. The simulation parameters
are assumed to be representative for a typical azimuth or podded propeller used
for main propulsion on e.g. an offshore service vessel1. Note that a modern
propeller will have better hydrodynamic properties than the Wageningen B-
series propeller, which means that less power would be required to produce the
same thrust. However, for the simulation studies performed here, this is of no
major importance.

A.1 Main propeller parameters

The main parameters of the B4-70 propeller are given in Table 2.2, and the
open-water characteristics in Figure 2.1. The remaining simulation parameters
for the propeller dynamics are given in Table A.1. The measurements n and
Qm are contaminated by white noise with power wn and wQm, respectively,
and filtered with first order filters with time constants Tf and Tfq. Simulation
parameters for the ventilation loss function are given in Table A.2. Many of
the simulation parameters in Table A.1 are interrelated. The maximum motor
torque and power, Qmax and Pmax, are related to the rated torque and power
for continuous operation, QN and PN , by (2.55) with km = 1.2. In addition,
the various parameter relationships from Section 2.2.3 are satisfied.

A.2 4-quadrant model parameters

Table A.3 shows the Fourier coefficients used in the 4-quadrant model of the
Wageningen B4-70 propeller, taken from van Lammeren et al. (1969). The

1Thanks to Leif Aarseth at Rolls-Royce Ulsteinvik, Norway, for providing realistic example
data for various thruster types.



a-2 Propeller simulation data

Parameter Symbol Value
Diameter D 4m
Nominal thrust coefficient KT0 0.445
Nominal torque coefficient KQ0 0.0666
Reverse thrust coefficient KT0r 0.347
Reverse torque coefficient KQ0r 0.0628
Rotational inertia Is 25E3kgm2

Linear friction coefficient Kω 720Nms
Static friction Qs 6.2kNm
Gear ratio motor:propeller kg 4
Rated motor torque QN 78kNm
Rated motor power PN 4000kW
Rated motor speed nN 8.2rps
Max motor torque Qmax 93kNm
Max motor power Pmax 4800kW
Motor time constant Tm 0.001s
Shaft speed filter time constant Tf 0.01s
Motor torque filter time constant Tfq 0.01s
Bollard pull thrust Tbp 490kN
Bollard pull torque Qbp 295kNm
Bollard pull prop. power Pbp 3800kW
Bollard pull shaft speed nbp 2.05rps
Mech. efficiency ηm 0.95
Density of water ρ 1025kg/m3

Shaft speed noise power wn 1E − 9
Motor torque noise power wQm 1.0
Sampling frequency f 250Hz

Table A.1: Parameters for the 4MW Wageningen B4-70 example propeller
model.

Parameter Symbol Value
Minimum ventilation loss b1 0.3
Maximum ventilation loss b2 0.25
Submergence ratio 1 h1 1.1
Submergence ratio 2 h2 1.3
Shaft speed ratio 1 n1 0.2
Shaft speed ratio 2 n2 0.5
Torque loss exponent m 0.8
Bollard pull shaft speed nbp 2.05rps
Hysteresis rate limit β̇VH 0.5s−1

Table A.2: Parameters for the 4MW Wageningen B4-70 propeller ventilation
loss model, see Section 2.4.4 for details.
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k AT BT AQ BQ

0 2.5350E-02 0.0000E-00 2.4645E-03 0.0000E-00
1 1.7820E-01 -7.4777E-01 2.6718E-02 -1.1081E-01
2 1.4674E-02 -1.3822E-02 1.6056E-03 1.5909E-04
3 2.8054E-02 1.0077E-01 6.5822E-03 1.6455E-02
4 -1.6328E-02 -1.1318E-02 -2.2497E-03 -2.0601E-03
5 -5.3041E-02 4.7186E-02 -7.8062E-03 8.5343E-03
6 6.0605E-04 1.0666E-02 2.4126E-04 8.7856E-04
7 3.6823E-02 -9.0239E-03 6.1475E-03 -3.1327E-03
8 -2.5429E-03 -7.8452E-03 -1.6065E-03 -9.6650E-04
9 -1.7680E-02 2.3941E-02 -3.3291E-03 4.3190E-03
10 2.7331E-03 8.0787E-03 1.2311E-03 1.2453E-03
11 2.1436E-02 -1.4942E-04 3.1123E-03 9.5986E-05
12 -2.4782E-03 -3.1925E-03 -1.2559E-03 -7.9986E-04
13 1.2317E-03 9.2620E-03 1.3948E-03 1.5073E-03
14 5.0980E-03 1.5527E-03 8.8397E-04 2.4595E-04
15 7.8076E-03 -6.5683E-03 5.0358E-05 -1.6918E-03
16 -3.7816E-03 -6.1655E-04 -7.9990E-04 5.1603E-04
17 3.5353E-03 5.1033E-03 1.3345E-03 1.1504E-03
18 5.3014E-03 -6.0263E-04 1.1928E-03 -4.7976E-04
19 2.1940E-03 -8.2244E-03 -1.3556E-04 -1.4566E-03
20 -2.8306E-03 -6.3789E-04 -7.0825E-04 2.3280E-04

Table A.3: Wageningen B4-70 propeller 4-quadrant model Fourier coefficients.

equations for implementation of the model are given in Section 2.1.2, and the
resulting 4-quadrant CT and CQ curves given in Figure 2.2.
Note that the propeller characteristics obtained from van Lammeren et al.

(1969) differ slightly from the characteristics given in Oosterveld and van Oos-
sanen (1975). For example, the nominal thrust and torque coefficients KT0 and
KQ0, which are important characteristic parameters, are not exactly the same.
From the parametrization given in Oosterveld and van Oossanen (1975) — see
(2.18, 2.19) — the coefficients are directly calculated with Ja = 0 to become
KT0 = 0.455 and KQ0 = 0.0675. From the parametrization given in van Lam-
meren et al. (1969), the coefficients are calculated according to (2.37, 2.38), and
become KT0 = 0.445 and KQ0 = 0.0666. The discrepancy is not of significant
magnitude, and may probably be explained by the different data fitting used in
the two references. In this work, the representation from van Lammeren et al.
(1969) has been used.
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Appendix B

Thruster controller tuning
issues

An inevitable challenge when attempting to make a fair comparison of various
controllers is tuning. This appendix presents some rules-of-thumb for tuning of
the controllers presented in Chapter 3.

B.1 Shaft speed controller PI tuning

The PI controller tuning parameters Kp and Ti should be chosen according to
the rating of the motor, the motor time constant Tm, the shaft speed filter time
constant Tf , the rotational inertia Is, and the desired closed loop properties.
Various guides to the tuning of PI controllers exist.
From Leonhard (1996), a commonly used model-based PI tuning rule for

variable speed drives is the so-called “symmetrical optimum”. Using the first-
order representation of motor and inner current loop from (2.52), the transfer
function h0(s) of the open speed control loop is approximated by:

h0(s) = Kp
Tis+ 1

Tis

1

Tms+ 1

1

Tfs+ 1

1

TIss
, (B.1)

where Tm is the time constant of the motor and current loop, Tf is the shaft
speed filter time constant, and TIs is the mechanical time constant, which is
equal to the rotational inertia, i.e. TIs = Is. Since Tm ¿ TIs and Tf ¿ TIs,
(B.1) can be approximated by (Nilsen, 2001):

h0(s) ≈ Kp
Tis+ 1

Tis

1

Tsums+ 1

1

TIss
, (B.2)

Tsum = Tm + Tf . (B.3)
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The symmetric optimum tuning guideline is:

Ti = a2Tsum,

Kp =
1

a

TIs
Tsum

=
1

a

Is
Tsum

, (B.4)

where a > 1 is a constant related to the damping ratio ζ by:

ζ =
a− 1
2

. (B.5)

Nilsen (2001, 2006) recommends a = 2 − 3, which gives an underdamped to
critically damped system, i.e. ζ = 0.5−1.0. The resulting step response exhibits
a large overshoot. It is therefore recommended to use a reference generator for
the speed command (Leonhard, 1996). In this method, the hydrodynamic load
torque — which effectively represents a large quadratic damping term — has not
been accounted for. Hence, a submerged propeller will have a significantly more
damped response than what is indicated by ζ. For a propeller subject to large
thrust losses, e.g. due to a water exit, the hydrodynamic damping is much
smaller.
A rule-of-thumb used for initial tuning, also in marine industrial installa-

tions, is to choose Kp such that 10 − 20% error in the shaft speed gives 100%
torque, and Ti at least four times larger than Tsum (Ådnanes, 2006; Nilsen,
2006). This corresponds to a proportional gain of 5− 10 in a “per unit” sense,
as is commonly used in electrical engineering. With the parameter kp represent-
ing the per unit gain, i.e. kp ∈ [5, 10], and kt the integral time constant ratio,
i.e. kt ≥ 4, the tuning rule becomes:

Kp = kp
kgQN

nbp
, Ti = ktTsum, (B.6)

where nbp is the bollard pull shaft speed. After application of (B.6) for ini-
tial tuning, the motor drives are usually tuned manually to give satisfactory
performance (Ådnanes, 2006).
Using the example propeller from Table A.1, the tuning rules in (B.6) with

kp = 5 and kt = 5 gives:

Kp = kp
kgQN

nbp
= 5

4 · 78E3
2.05

≈ 7.6E5,

Ti = 0.05. (B.7)

Using the tuning rules in (B.4) with a = 3, the result is:

Kp =
1

a

Is
Tsum

=
1

3

25E3

(0.01 + 0.001)
≈ 7.6E5,

Ti = 9(0.01 + 0.001) ≈ 0.1. (B.8)

The values in (B.8) have been used in the simulation studies in this thesis.
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B.2 Torque and power control tuning

In their pure form, as given in (3.29) and (3.32), the only parameters needed
in the torque and power controllers are the control coefficients KTC and KQC ,
which leaves no tunable parameters. However, for good performance, these
controllers rely on the inertia and friction feedforward compensation schemes in
(3.22) and (3.19), which require tuning.

B.3 Inertia and friction compensation tuning

Tuning of the friction compensation scheme Qff (nr) in (3.19) and inertia com-
pensation scheme Qif (nr) in (3.22) is mainly done by choosing the friction
parameters Qf0 and Qf1, and the rotational inertia Ic. If Qs and Kω in (2.51),
and Is in (2.50) are known, no further tuning should be necessary with the
following choices: Qf0 = Qs, Qf1 = Kω, and Ic = Is. Is is usually known with
reasonable accuracy, since it is an important parameter for the choice of electric
motor and PI controller tuning, as shown in Section B.1. It is less likely to have
decent a priori knowledge of Qs andKω. The main purpose of the compensation
schemes are:

• Qff (nr): Improve the steady-state performance of the system.

• Qif (nr): Improve the transient response of the system.

If Qs and/or Kω are unknown, Qf0 and Qf1 must be tuned manually. Since
Qff (nr) only is intended to improve the steady-state performance, tuning should
be performed at steady state. One possible approach is as follows:

1. Run the motor until it oil, bearings, etc. reaches working temperature.

2. Initially, let Qf0 = 0 and Qf1 = 0.

3. Set Td to a low value, such that the friction at steady state is dominated
by the static term Qs. A suggestion is to choose Td such that nr = nf
from (3.20), i.e. Td = KTCρD

4n2f .

4. Increase Qf0 slowly until the motor turns with n = nf . This should
correspond to Qf0 ≈ Qs, and Qf0 can be fixed at this value.

5. Set Td to a high value, preferably to the bollard pull thrust Tbp. The
corresponding shaft speed nbp should be known from the propeller char-
acteristics.

6. Increase Qf1 until n ≈ nbp. This should correspond to Qf1 ≈ Kω and
Qf1 can be fixed at this value.
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If Is is unknown or uncertain, Ic may be tuned manually. Since the sole
purpose of Qif (nr) is to improve the tracking properties of the controllers, Ic
can be adjusted to give the desired step response of the system. With a reference
generator as in (3.14), ṅr is available to Qif (nr). Tuning can then be done by
commanding a step in Td, and comparing nr with n. If Qff (nr) is already
tuned, Ic should be adjusted until n ≈ nr. If Qff (nr) is not tuned, Ic should be
adjusted such that ṅ ≈ ṅr during the step. This implies that, if desired, Ic can
be chosen different from Is to get the desired transient response of the system.

B.4 Choice of parameters for the combined con-
trollers

The QP, MQP1, MQP2, and SQP controllers — see Table 3.1 — all rely on
the weighting function α(z) in 3.33 for transitions between the fundamental
controllers. How k, p, and r affect the shape of α(z) is discussed in Section
3.13.1. It will probably be beneficial to choose the parameters to give a limited
steepness of the weighting function, in order to make the transition between the
fundamental controllers smoother.



Appendix C

Simulation of relative
propeller motion

In order to perform realistic simulations of a propulsion system, including loss
effects, it is necessary to have reasonable approximations of the motion of each
thruster unit relative to the surrounding water. This appendix provides the
transformation tools needed to couple the thruster and vessel motion and forces.

C.1 Vessel motion

Vessel motion is typically described by the motion of a body-fixed frame (b-
frame) with respect to an earth-fixed frame (n-frame), see Fossen (2002) for
details. The n-frame position pn = [n, e, d]> (north, east, down) and Euler
angles Θ = [φ, θ, ψ]> (roll, pitch, yaw) are defined in terms of the generalized
coordinate vector η:

η = [(pn)>,Θ>]> =[n, e, d, φ, θ, ψ]>. (C.1)

The b-frame translational velocities vbo = [u, v, w]> (surge, sway, heave) and
angular velocities ωb

nb = [p, q, r]
> (roll, pitch, yaw) of the b-frame with respect

to the n-frame, expressed in the b-frame, are defined in terms of the generalized
velocity vector ν:

ν = [(v
b
o)
>, (ωb

nb)
>]> = [u, v, w, p, q, r]>. (C.2)

O is the origin of the b-frame. The translational velocity transformation between
the b- and n-frame is:

vno = R
n
b (Θ)v

b
o, (C.3)
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where vno = ṗ
n, and the Euler angle rotation matrix (zyx-convention) from the

b-frame to the n-frame Rn
b (Θ) ∈ R3×3 is defined as:

Rn
b (Θ) =

⎡⎣ cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

⎤⎦ . (C.4)

Here, s· = sin(·) and c· = cos(·). Note that the rotation matrix Rb
a between

any two frames a and b (from a to b) has the special properties that (Rb
a)
−1 =

(Rb
a)
> = Ra

b . The Euler angle rates satisfy:

Θ̇ = TΘ(Θ)ω
b
bn, (C.5)

where TΘ(Θ) ∈ R3×3 is the Euler angle attitude transformation matrix:

TΘ(Θ) =

⎡⎣ 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤⎦ , θ 6= ±π

2
, (C.6)

and t· = tan(·). Consequently:

η̇ = J(Θ)ν, (C.7)

where J(Θ) ∈ R6×6 is the generalized velocity transformation matrix:

J(Θ) =

∙
Rn
b (Θ) 03×3
03×3 TΘ(Θ)

¸
, θ 6= ±π

2
. (C.8)

To sum up, the rigid-body vessel motion is uniquely expressed by the two vectors
η in (C.1) and ν in (C.2), which are related through (C.7).
There are two conventional ways of calculating the total vessel motion. In

the control literature, the vessel motion has usually been decoupled into a low-
frequency part and a wave-frequency part. The low-frequency motion is then
calculated from the vessel rigid-body dynamics and the low-frequency loads from
current, wind, wavedrift, and the propulsion system, and the wave-frequency
motion is calculated from motion transfer functions (or response amplitude op-
erators — RAOs). The two contributions are then superposed to yield the total
vessel motion.
In an alternative approach, force transfer functions are used to represent

the first-order wave excitation forces, and the fluid memory effects associated
with the radiation forces are expressed in a state-space form. In this way, the
wave-frequency model is integrated with the low-frequency model through force
superposition instead of motion superposition. Other effects like viscous forces,
multi-body interactions, and ship motion control systems can then be incorpo-
rated into the model by means of force superposition; see Fossen and Smogeli
(2004), Smogeli et al. (2005b), Perez and Fossen (2006), and the references
therein.
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C.2 Transformation tools
Calculation of the motion of an arbitrary point P fixed to the vessel and inclusion
of the forces acting on this point in the b-frame equations of motion requires
transformations of positions, velocities, accelerations, and forces between the b-
frame origin O and P. The translational velocity vbp of the point P decomposed
in the b-frame is given by:

vbp = v
b
o + ωb

nb × rbp, (C.9)

where rbp = [xp, yp, zp]
| is the vector from O to P. The vector cross product ×

is defined in terms of the matrix S(rbp) ∈ R3×3 such that:

ωb
nb × rbp , −S(rbp)ωb

nb = S(r
b
p)
>ωb

nb, (C.10)

where:

S(rbp) = −S>(rbp) =

⎡⎣ 0 −zp yp
zp 0 −xp
−yp xp 0

⎤⎦ . (C.11)

Since the angular velocities in P and O are the same, the translational and
angular velocity transformation from O to P can be expressed by the screw
transformation matrix H(rbp) ∈ R6×6:∙

vbp
ωb
nb

¸
= H(rbp)

∙
vbo
ωb
nb

¸
, (C.12)

H(rbp) ,
∙
I3×3 S(rbp)

>

03×3 I3×3

¸
. (C.13)

From this, the position xnp , generalized velocity νp = [v
b
p,ω

b
nb]

| , and generalized
acceleration ν̇p of P are given by:

xnp = pn+Rn
b (Θ)r

b
p, (C.14)

νp = H(rbp)ν, (C.15)

ν̇p = H(rbp)ν̇, (C.16)

where Rn
b (Θ) and H(r

b
p) are defined by (C.4) and (C.13), respectively. Corre-

spondingly, the generalized force vector τ p with point of attack P is transformed
to the generalized force τ in the origin O by:

τ =

∙
I3×3 03×3
S(rbp) I3×3

¸
τ p =H

>(rbp)τ p. (C.17)

Hence, given the vessel motion in terms of η and ν, the motion of a propeller
located at P is given by (C.14)-(C.16). The thrust Ta is transformed to the
b-frame equations of motion by (C.17) and:

τ p =

⎡⎣ cosαp
sinαp
04×1

⎤⎦Ta, (C.18)
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where αp is the propeller azimuth (i.e. angle between the propeller shaft and
the b-frame x-axis).

Remark C.1 The first, second, and sixth entry in τ given from (C.17) and
(C.18) corresponds to the 3DOF thrust vector τ j in (9.1).

C.3 Wave- and current-induced velocities

Irregular waves are commonly described by a wave spectrum Sw(ωw, ψw) =
S(ωw)D(ψw), where the frequency spectrum S(ωw) describes the distribution
of wave energy in the sea state over different frequencies ωw, and the spreading
function D(ψw) describes the distribution of wave energy over directions ψw in
the n-frame. Common frequency spectra and spreading functions may be found
in e.g. Ochi (1998). In this work, the two-parameter ITTC/ISSC modified
Pierson-Moskowitz (PM) spectrum is used (Lloyd, 1998):

S(ωw) =
A

ω5w
exp(

−B
ω4w

), A = 487
H2
s

T 4p
, B =

1949

T 4p
, (C.19)

where Hs is the significant wave height, and Tp is the peak (modal) wave period.
For simulation, the sea state is realized as a superposition of harmonic com-

ponents extracted from the wave spectrum, where harmonic component j is
defined in terms of wave amplitude ζj , frequency ωj , direction ψj , and random
phase φj . The wave particle velocities in the n-frame due to harmonic compo-
nent j at the point P are termed uwj , vwj , and wwj in the x-, y-, and z-direction,
and are written as:

uwj(xp, yp, zp, t) = ζjωj exp(−kjzp) cosψj sin θj , (C.20)

vwj(xp, yp, zp, t) = ζjωj exp(−kjzp) sinψj sin θj , (C.21)

wwj(xp, yp, zp, t) = ζjωj exp(−kjzp) sin(θj −
π

2
), (C.22)

θj = ωjt+ φj − kj(xp cosψj + yp sinψj). (C.23)

Here, the wave number kj is given by the deep-water dispersion relation kj =
ω2j/g, where g is the acceleration of gravity. Letting P move about with the ship
in the n-frame, it can be shown that the frequency of encounter is captured in the
change of xp and yp in (C.23). Using linear theory, the harmonic components are
superposed to give the total wave-induced velocity vector Vw = [uw, vw, ww]

| ,
i.e.:

Vw(xp, yp, zp, t) =
NX
j=1

[uwj(·), vwj(·), wwj(·)]| , (C.24)

where N is the number of harmonic components. The corresponding surface
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elevation ζw(xp, yp, t) and shaft submergence h(xp, yp, t) are calculated from:

ζw(xp, yp, t) =
NX
j=1

ζj sin[ωjt+ φj − kj(xp cosψj + yp sinψj)], (C.25)

h(xp, yp, t) = h0 + ζw(xp, yp, t), (C.26)

where h0 is the submergence of the shaft with respect to the mean free surface.

For freely-floating surface vessels, only the surface current is of any impor-
tance. If the current is given by magnitude Uc and direction βc in the n-frame,
the current velocity vector Vc in the n-frame is written as:

Vc = Uc[cosβc, sinβc, 0]
| . (C.27)

C.4 Calculation of relative motion
The propeller rigid-body velocity Vv in the n-frame is calculated from vbp in
(C.12) by:

Vv = R
n
b (Θ)v

b
p. (C.28)

Accounting for the wave-induced velocitiesVw from (C.24), the current-induced
velocityVc from (C.27), and the motion of the propeller due to the vessel motion
Vv from (C.28), the total relative velocity Vn

p of the water with respect to the
propeller in the n-frame is given by:

Vn
p = Vw +Vc −Vv. (C.29)

The relative velocities are decomposed in an in-line component, which corre-
sponds to Va, and a transverse component Vt by transforming Vn

p into the
b-frame velocity vector Vb

p:

Vb
p = R

n
b (Θ)

>Vn
p , (C.30)

where Rn
b (Θ) is given in (C.4). Then, Va and Vt are found from:

Va = −[cosαp, sinαp, 0]Vb
p, (C.31)

Vt =
°°[− sinαp, cosαp, 0]Vb

p + [0, 0, 1]V
b
p

°°
2
, (C.32)

where αp is the propeller azimuth.

Remark C.2 The sign of Va in (C.31) is needed since a positive Va is defined
as water flow into the propeller, whereas the propeller frame of reference has
positive x-axis in the thrust direction.

Remark C.3 The approach described here should only serve as a rough esti-
mate, since it is assumed that the waves are unaffected by the presence of the
vessel hull, and the velocity contributions from waves, current, and vessel motion
have been superposed.
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C.5 Simplified calculations
In the simulations presented in this thesis, only long-crested waves are con-
sidered, and no vessel motion is included. It has therefore been chosen to set
xp = yp = 0, zp = h0, ψj = 0, R

n
b (Θ) = I3×3, αp = 0, βc = 0, and Vv = 01×3,

such that (C.31), (C.25), and (C.26) can be simplified to:

Va(t) = −
NX
j=1

ζjωj exp(−kjh0) sin[ωjt+ φj ], (C.33)

ζw(t) =
NX
j=1

ζj sin[ωjt+ φj ], (C.34)

h(t) = h0 + ζw(t). (C.35)



Appendix D

Additional ventilation
results

As an extension of Section 2.4, this appendix presents the experimental set-up
used in the cavitation tunnel, gives a discussion on scaling laws for ventilated
propellers, shows additional experimental results for ducted and open propellers
subject to ventilation and in-and-out-of water effects, and provides further com-
parisons of the simulation model and the experimental results.

D.1 Experimental set-up

The tests in the cavitation tunnel at NTNU were conducted on two occasions:
the first time by Aarseth (2003) and Overå (2003), and the second time by Ruth
(2005). The description of the experimental setup has been adopted from Ruth
(2005). The equipment was arranged according to Figures D.1 and D.2. Most of
the test runs were performed with a ducted propeller, but some were performed
without the duct present. The main dimensions of the duct and propeller are
given in Section 7.1.
A list of the measurements is given in Table D.1. The accuracy is high for

all the measurements, except for the advance speed Va when it is lower than
1m/s. The measured duct thrust Tad includes the drag on the pole holding the
duct. This error source is of little importance because of the low advance speeds
during the tests. The total thrust is given from Ta = Tad + Tap.
The measurements were sampled at 1000Hz. The mean values were obtained

by averaging the time series over a period of approximately 5s. This corresponds
to at least 10 propeller revolutions per averaging period for n > 2rps, which is
sufficient to obtain representative mean values. The averaged segments of the
time series were chosen manually.
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Figure D.1: Photo of the cavitation tunnel experimental set-up.

Parameter Symbol Unit Accuracy Sensor
Advance speed Va m/s 1% (Va > 1) Pitot tube
Duct trust Tad N 0.5% Strain gauges
Propeller thrust Tap N 0.5% Inductive transducer
Propeller torque Qa Nm 0.5% Strain gauges
Shaft speed n 1/s 0.5% Pulse counter
Submergence h m 0.5% Ultra sonic

Table D.1: Measurements in the cavitation tunnel experimental setup.
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Figure D.2: Sketch of the cavitation tunnel experimental set-up, taken from
Ruth (2005).
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D.2 Scaling laws

This section is taken entirely from Ruth and Smogeli (2006). According to Shiba
(1953) the two most important parameters when scaling propeller performance
from model scale to full scale are:

1. Geometrical similarity:
Ls
Lm

= λ. (D.1)

2. Kinematic similarity:

Ja,m =
Va,m
nmDm

=
Va,s
nsDs

= Ja,s. (D.2)

Here, λ is the scale, L is any characteristic length, Ja is the advance number,
Va is the advance speed, n is the shaft speed, D the propeller diameter, suffix
s means full scale, and suffix m means model scale. Further, depending on the
operational condition, the following dimensionless parameters have influence on
the propeller performance (Shiba, 1953; Gutsche, 1967; Kruppa, 1972; Brandt,
1973; ATTC, 1974; Scherer, 1977; Guoqiang et al., 1989; Olofsson, 1996; ITTC,
1999b):

3. Submergence ratio:
h

R
. (D.3)

4. Reynolds’ number:

Rn =
V∞c

ν
. (D.4)

Reynolds’ number similarity is not required if Rn > 5·105, or if corrections
for Rn are done according to ITTC (1999a), which requires Rn > 2 · 105.

5. Froude number:

FnD = n

s
D

g
. (D.5)

Froude number similarity is not required if FnD > 3−4. In full scale, FnD
will typically be between 0 and 1.4 (Shiba, 1953).

6. Cavitation number:
σc =

pstatic − pcav
1
2ρV

2
∞

. (D.6)

7. Weber’s number:

W = nD

r
ρ

s
D. (D.7)
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Scaling requirement: 1 2 3 4 5 6 7
Non-ventilated x x x x
Fully ventilated x x x x x (x)
Partially ventilated x x x x x x

Table D.2: Scaling requirements in the different regimes at low advance speeds.
Scaling requirement 1-7 refers to (D.1)-(D.7).

Here, h is the submergence of the propeller shaft, R is the propeller radius, V∞
is the velocity seen by the propeller blade at 0.7R, c is the chord length of the
propeller blade at radius 0.7R, ν is the kinematic viscosity of the water, g is
the gravity, ρ is the density of the water, s is the surface tension of the water,
which equals 0.072 in fresh water, pstatic is the static water pressure at a given
submergence, and pcav is the pressure in the cavity.
The total thrust Ta and the propeller torque Qa are scaled by the total thrust

coefficient KT and the torque coefficient KQ, as in (2.6, 2.7):

KT (Ja, P/D) =
Ta

ρD4n2
, (D.8)

KQ (Ja, P/D) =
Qa

ρD5n2
, (D.9)

where P/D is the pitch ratio. As stated in Section 2.3.2, the operating condi-
tion of the propeller may be divided into three regions; non-ventilated, partially
ventilated, and fully ventilated (Gutsche, 1967; Brandt, 1973; Fleischer, 1973;
Hashimoto et al., 1984; Guoqiang et al., 1989). All these regimes are found in
the experimental results from the cavitation tunnel. The scaling laws described
here are based on experiments with non-ducted propellers, but are assumed to
be valid also for ducted propellers, since non-ducted propellers and ducted pro-
pellers are scaled in the same way in the non-ventilated regime. The scaling laws
in the different regimes are summarized in Table D.2 and further commented
below.

D.2.1 The non-ventilated regime

In this regime, no significant ventilation occurs. This means that the propeller
is deeply submerged, or that the ventilation is light and not affecting the total
thrust or the torque significantly. When both the model scale and the full scale
propeller are in the non-ventilated regime, it is possible to scale the results by
satisfying the requirements given in Table D.2. According to Scherer (1977) it
is believed that the full scale propeller does not ventilate as easily as the model
scale propeller. It is therefore assumed that if the model scale propeller is non-
ventilating, then also the full-scale propeller will be non-ventilating. Reynolds’
number of 2 · 105 corresponds to a shaft speed of n = 4 in the model tests. The
conclusion is that the non-ventilated model scale results can be scaled to full
scale when the shaft speed n > 4 in model scale.
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D.2.2 The fully ventilated regime

This is when a single ventilated cavity is covering the propeller blade, meaning
that the pressure on the suction side of the propeller blade is almost atmospheric.
If the conditions given in Table D.2 are satisfied, and both the model scale
propeller and the full-scale propeller are fully ventilated, it is possible to scale
the results in this regime. It is, however, uncertain how to confirm whether
or not the full scale propeller is going to be fully ventilated. Requirement 6,
cavitation number similarity, is actually obtained through kinematic similarity,
submergence ratio similarity, and Froude number similarity. With pstatic =
patm + ρgh, where patm is the atmospheric pressure, the cavitation number
becomes:

σc =
patm + ρgh− pcav

1
2ρV

2
∞

. (D.10)

Since pcav ≈ patm when the propeller is fully ventilated, (D.10) can be simplified
to:

σc =
2gh

V 2
∞
=

1³
(0.35π)2 + J2a

´ h

R

g

Dn2
. (D.11)

If Ja,m = Ja,s, hm/Rm = hs/Rs and FnD,m = FnD,s, the result is that
σc,m = σc,s. The Reynolds’ number criterion restricts the scaling to shaft
speeds equal to 4 and larger in model scale. The realistic Froude numbers in
full scale corresponds to shaft speeds from 0 to 9 in model scale.

D.2.3 The partially ventilated regime

This is when only part of the propeller is ventilated. The ventilation is said to
be unstable when the propeller’s degree of ventilation is not stationary, but is
a function of time. The required scaling parameters are summarized in Table
D.2. Although the pressure in the ventilated cavity is nearly atmospheric, there
may exist other non-ventilated cavities (Kruppa, 1972). These non-ventilated
cavities require cavitation number similarity. It would then require a free sur-
face depressurized cavitation tunnel to do the experiments. The model tests
presented here were all performed at atmospheric pressure.
In conclusion, it is not possible to scale the results in the partially ventilated

regime to full scale for the experimental results presented here. There is, how-
ever, no reason to believe that the qualitative behavior of a full scale propeller
will differ much from the results obtained for a model scale propeller.

D.2.4 Effect of Weber’s number

TheWeber’s numberW describes the relationship between surface tension forces
and inertial forces. Shiba (1953) and ITTC (1999b) state that W is important
when determining the critical advance number, which is the advance number at
which ventilation occurs for a given submergence ratio and shaft speed. In this
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work, only low advance numbers are considered, and the results are extrapolated
to be valid for Ja = 0. This means that the critical advance number in this case
is of small interest. W will no longer influence the critical advance number when
it is larger than 180. In the model tests performed in the cavitation tunnel, W
is between 15 and 368, and W > 180 for n > 12.

D.3 Additional experimental results

D.3.1 Ducted propeller

Figure D.3 shows the ventilation thrust loss factor βTV and the relative thrust
Ta/Tmax from the experiments with a ducted propeller in the cavitation tunnel
(Aarseth, 2003), and the corresponding βTV and Ta/Tmax from the simulation
model for ducted propellers, as shown in Figure 2.19. The experimental results
are the same as the ones given in Figures 2.12 and 2.13, where nbp has been
set to 20 for the scaling of n. The propeller torque loss factor βQV and relative
torque Qa/Qmax — from both experiments and the simulation model — are shown
in Figure D.4. βQV is calculated from (2.77) with m = 0.65. By comparing
the experimental results with the simulation model, it is clear that the main
characteristics of both the thrust and torque loss is captured in the model.
From the curves alone, it seems that the parameters of the loss function could
have been chosen to give better correspondence. However, these parameters
were used in the simulation model time-series verification in Section 2.4.5, and
found to give good correspondence there.
A new set of experiments with the same experimental set-up was performed

by Ruth (2005), and partly presented in Ruth and Smogeli (2006). An example
of the results is given in Figure D.5, which shows the thrust as a function of h/R
and n for the ducted propeller with P/D = 1. More results for varying P/D,
and a simulation model for a ducted CPP can be found in Ruth and Smogeli
(2006). The figure should be comparable to the lower left plot in Figure D.3.
The results largely agree, but it is clearly seen that the transition between the
ventilated and the non-ventilated regime for high n is less steep in Figure D.5.
This deserves some further attention. First of all, it should be noted that the
transition between the ventilated and the non-ventilated regime is done through
the partially ventilated regime, corresponding approximately to 0.9 ≤ h/R ≤
1.2 for the higher propeller shaft speeds. As discussed in Section 2.3.2 and
illustrated in Figure 2.11, this regime mainly exists as an unstable transition
between the non-ventilated and ventilated regime for low Ja. Interpretation of
the experimental results in the unstable, partially ventilated regime is difficult.
If a long time series is recorded, where the propeller shifts between ventilated and
non-ventilated condition, and the mean values from the whole run are used, the
slope of the thrust loss factor will become less steep. A simulation model based
on this may give a wrong evolution of a single ventilation incident, since the
actual ventilation develops faster than the average values would indicate. Hence,
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Figure D.3: Comparison of the thrust of a ducted propeller during ventilation,
from experimental results (left) and the simulation model (right).
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Figure D.4: Comparison of the torque of a ducted propeller during ventilation,
from experimental results (left) and the simulation model (right).
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Figure D.5: Thrust Ta as a function of h/R and n for a ducted propeller.

the simulation model should have sharper transitions between non-ventilated
and ventilated regime in order to improve the time-domain simulations.
In the experimental results from Aarseth (2003) shown in Figures D.3 and

D.4, the time series on which the curves are based have been chosen with this
in mind; manual inspection revealed if the propeller operating condition seemed
to be dominated by ventilation or not, and the time series picked accordingly.
The simulation model could then be based directly on these curves.
In the results in Ruth (2005), the mean values from the runs in the unstable

ventilated regime were used, giving lower steepness of the thrust loss factor
slope. However, a simulation model for controllable pitch propellers developed
from these results was in Ruth and Smogeli (2006) still shown to give good
agreement with experimental time series.
Another possible explanation of the deviation between the two sets of re-

sults, is that the experiments in Aarseth (2003) were performed at Ja = 0.2,
whereas the experiments in Ruth (2005) were performed at the lowest achiev-
able advance ratio, and then extrapolated to Ja = 0. It is plausible that the
operating condition may have been more stable at Ja = 0.2, and that the results
therefore were easier to interpret. Anyhow, both the simulation model presented
in Section 2.4.4 and the simulation model from Ruth and Smogeli (2006) have
shown good agreement with experimental time series.

D.3.2 Open propeller

Figure D.6 shows the relative thrust Ta/Tmax and torque Qa/Qmax for an open
propeller from Ruth (2005), and the corresponding values from the simulation
model in Figure 2.18. nbp has been set to 20 for the scaling of n in the ex-
perimental results. The parameters for the simulation model were chosen as
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in Figure 2.18, and βQV calculated from (2.77) with m = 0.8. As discussed
above, it has been chosen to model a sharper transition between the ventilated
and non-ventilated condition than what is indicated by the experimental re-
sults. Apart from this, the simulation model can be seen to capture the main
characteristics of the ventilation loss effects. It is interesting to notice the
difference in behavior during ventilation for the ducted propeller in Figure D.5
and the open propeller in Figure D.6. For low h/R, the ducted propeller has a
distinct “ridge” of higher thrust for low shaft speed (n ≈ 9rps is Figure D.5, and
n/nbp ≈ 0.35 in Figure D.3), and the thrust is not increasing for increasing shaft
speed during ventilation. For the open propeller, the “ridge” of higher thrust
seems not to be present, and the thrust during ventilation is slightly increasing
for increasing shaft speeds. This difference in characteristics is also present in
the experimental results presented in Chapter 7.
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Figure D.6: Comparison of the thrust and torque of an open propeller during
ventilation, from experimental results (left) and the simulation model (right).



Appendix E

Additional thruster control
results

This appendix contains additional control laws and discussions. Section E.1
shows how torque control can be used in fault-tolerant thruster control, Section
E.2 demonstrates some of the control options that become available with addi-
tional instrumentation, and Section E.3 presents some related output feedback
controllers. Section E.4 presents an output feedback shaft speed controller with
implicit advance velocity compensation, including experimental results.

E.1 Fault-tolerant control

Fault-tolerant control is in general considered to be outside the scope of this
thesis. However, it is interesting to note that the torque controller as formulated
in (3.29) with the friction compensation scheme from (3.19) and the inertia
compensation scheme from (3.22) is a pure feedforward controller, and hence
independent of any feedback signal. If one of the controllers in Table 3.1 is in
use, and the shaft speed feedback fails, it is then possible to switch to the torque
controller. It is assumed that the inner torque control loop of the motor still is
working; this is a prerequisite for any thruster controller to work. If a torque
limiting algorithm as in (3.25) is implemented in the controller, it will also be
necessary to replace n with nr from (3.1) in (3.25). The operation can then be
continued without significant performance deterioration.
This fault-tolerant control scheme requires that the shaft speed feedback

signal failure is detected. This may be done by common signal quality checking,
considering e.g. signal range, wild-points, and signal variance (Grøvlen et al.,
1998), or by statistical methods like the CUSUM algorithm (Blanke et al., 2003).
Since the performance of the active controller already may be unacceptable

by the time the sensor failure is detected, it is desirable to carry out a rapid
switch to torque control. Additionally, it is not considered pertinent to have an
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automatic switch back to the old controller — when a sensor failure is detected,
the failure should be corrected before a manual restart of the system is per-
formed. Hence, concepts like dwell-time and hysteresis-based switching, which
can be utilized to ensure stability when switching between a set of controllers
(Hespanha and Morse, 2002; Hespanha et al., 2003), will probably not be nec-
essary. It is instead considered sufficient to switch from the current controller
output Qci to the output Qcq of the torque controller immediately after the
failure has been detected. It may also be appropriate to include a rate limit on
the switched output in order to reduce transients in the motor input. Details of
implementation will not be further considered here.
The scenario outlined above is reminiscent of the case study of a ship propul-

sion system presented in Blanke et al. (1998, 2003), where fault-tolerant control
of a diesel engine with a mechanical direct-drive CPP is considered. The ship
propulsion system is in these references treated in a much broader perspective,
with various fault scenarios, diagnosis, and fault handling. However, one spe-
cific case study, which also is the focus of Blanke et al. (1998), is a fault in the
shaft speed feedback measurement. This is considered to be a high risk fault. It
is detected by a nonlinear adaptive observer, which also enables distinguishing
between a fault in the shaft speed feedback and a fault in the engine governor.
When a shaft speed feedback fault is detected, the proposed remedial action is
to apply sensor fusion using the relationships between propeller torque, vessel
speed, and shaft speed. For a given pitch, the propeller torque characteristics
is taken to be linear as in (2.26), i.e.:

Qa ≈ Qnn(P/D)n |n|+Qnv(P/D) |n|Va, (E.1)

where Qnn and Qnv are functions of the pitch ratio P/D. The advance velocity
Va is estimated from the vessel speed U and a hull wake factor wh using (2.42).
The motor torque Qm is assumed measurable from the governor setting, i.e.
Qm = KyY , where Y is the governor input from a shaft speed PI controller
as in (3.27), and Ky the motor torque constant, see (2.56). Neglecting friction
and using the steady-state torque balance from the rotational dynamics (2.50),
an estimate n̂ of the shaft speed, which is assumed to be positive for a CPP, is
found from:

Qm = Qa

KyY = Qnn(P/D)n̂ |n̂|+Qnv(P/D) |n̂|U(1− wh)

⇓

n̂ =
−Qnv(P/D)U(1− wh)

2Qnn(P/D)

+

p
Qnv(P/D)2U2(1− wh)2 + 4Qnn(P/D)KyY

2Qnn(P/D)
. (E.2)

The faulty signal n is then replaced by n̂ in the shaft speed controller, and the
operation can continue with reduced performance.
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There are, however, a few limitations that should be addressed. The lin-
ear torque characteristics is mainly applicable to open propellers in the first
quadrant of operation. It is also assumed that the ship speed U is available as
a measurement to the low-level thruster controller. Additionally, for propellers
other than the main propeller, there is normally no good estimate of the advance
velocity available. Hence, for DP operations with multiple propellers operating
in dynamic flow, this approach may be of limited applicability. The simpler ap-
proach outlined in the beginning of this section may then be more appropriate.
It is also expected that the thrust production will be superior with the torque
controller when compared to the re-configured shaft speed controller based on
n̂.

E.2 Additional instrumentation
In most of this work, it has been assumed that only the shaft speed and the
motor torque are available as measurements, see Section 3.1. However, if the
propulsion unit could be equipped with additional instrumentation, new con-
trol options would appear. The two most desirable measurements for low-level
thruster controller design would be the propeller thrust and torque, with the
feedback signals termed Tfb and Qfb, respectively. This section explores some
of the new options that become available with propeller thrust and/or torque
measurements.

E.2.1 Thrust feedback control

If a thrust feedback signal of high quality is available, it is possible to close the
loop directly with the thrust measurement in e.g. a PID controller. With the
thrust error et, the thrust controller output Qct becomes :

et = Tr − Tfb,

Qct = Ktpet +Kti

Z t

0

et(τ)dτ +Ktdėt, (E.3)

where Ktp, Kti, and Ktd are the nonnegative PID gains. As before, the motor
torque is controlled by its inner torque loop. In order to give good performance,
such a formulation requires a relatively low level of noise on Tfb. Additionally,
the thrust sensor must have a high level of reliability. As of today, thrust control
seems not to be a realistic solution in industrial implementations for surface
vessels. This may be explained by a lack of suitable sensors, and industrial
reluctance to install such sensors even if available.
In Beek and Mulder (1983) a system for fuel optimization of CCP is pre-

sented, based on measurements of propeller speed, pitch, and thrust. The
proposed thrust measurement was realized by sensitive semi-conductor strain
gauges attached to the propeller shaft, achieving repeatability better than 0.5%
over several successful trials. A similar approach is taken in Bakountouzis
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(1992). However, long-term reliability of the feedback signal is not discussed.
Deniellou et al. (1998) proposed a thrust control scheme as in (E.3) for AUV’s.
The thrust was measured by a displacement gauge and a displacement sensor,
with a measurement uncertainty of less than 0.1% of the effective measurement
range. Also the dynamic response was investigated, and found to be satisfac-
tory. Experimental results with a PI controller were provided to show the step
response and tracking properties of the controller.
With a controller such as (E.3), the torque feedback Qfb becomes superflu-

ous. However, if available, it could be used for diagnostics and fault-tolerant
control. This will not be further treated here. A thrust controller will be valid
for any vessel speed, since the mapping from reference to actual thrust is ac-
curate regardless of the inflow to the propeller. Hence, controller modifications
for transit, as discussed in Section 8.2, are not needed.

E.2.2 Thrust control from torque feedback

In Section 2.1.8, it was shown that there for open propellers is a nearly linear re-
lationship between the thrust and torque coefficients, and that this relationship
is valid across a large range of operating conditions. Hence, if a thrust feedback
signal is unavailable, but a propeller torque feedback signal is available, the
KT −KQ relationship in (2.48) can be used to calculate an estimate T̂fb of Ta
from Qfb:

KT = atKQ + bt,

⇓
T̂fb =

at
D
Qfb + btρn

2D4, (E.4)

where at and bt are propeller constants found from the open-water
characteristics. T̂fb from (E.4) can then replace Tfb in (E.3). This control
formulation requires a high quality torque feedback signal. The performance
of the thrust controller with torque feedback is then expected to be similar to
the one with thrust feedback. A torque sensor for this purpose was presented in
Lemarquand (1997), and reported to give satisfactory signal quality. The torque
feedback thrust controller is in principle only feasible for open propellers. For
ducted propellers, no simple relationship between thrust and torque has been
shown, and (E.4) cannot be expected to hold.

E.2.3 Propeller torque feedback control

With a propeller torque feedback signal, it is possible to close the thruster
control loop directly with this, instead of using the torque-thrust relationship
as proposed in the previous section. This can be done in a similar manner as in
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Section E.2.1, with a PID controller operating on the torque error eq:

eq = Qr −Qfb,

Qcqp = Kqpeq +Kqi

Z t

0

eq(τ)dτ +Kqdėq, (E.5)

where Qr is the torque reference calculated from (3.2), Qcqp is the propeller
torque controller output, and Kqp, Kqi, and Kqd are the nonnegative PID gains.
As before, the motor torque is controlled by its inner torque loop. The same re-
quirements to signal quality and reliability as for the thrust controller presented
in Section E.2.1 apply. The friction and inertia compensation schemes from
Section 3.7 become unnecessary with the propeller torque feedback controller,
since the propeller torque is controlled directly.

E.2.4 Propeller power feedback control

Another control option that becomes available with a propeller torque measure-
ment, is propeller power control. With the measurements Qfb and n, the signed
measured propeller power Pfb becomes:

Pfb = Qfb2π |n| , (E.6)

and the control loop may be closed with a PID controller operating on the power
error ep:

ep = Prs − Pfb,

Qcpp = Kppep +Kpi

Z t

0

ep(τ)dτ +Kpdėp, (E.7)

where Prs is the signed power reference calculated from (3.4), Qcpp is the pro-
peller power controller output, and Kpp, Kpi, and Kpd are the nonnegative PID
gains. The motor torque is controlled by its inner torque loop, and the same
requirements to signal quality and reliability as for the thrust controller pre-
sented in Section E.2.1 apply. The friction and inertia compensation schemes
from Section 3.7 become unnecessary with the propeller power controller, since
the propeller power is controlled directly.

E.2.5 Dynamic control coefficients

If both propeller thrust and torque measurements are available, but the quality
of the signals is not of sufficient quality for closing the loop directly (due to
noise, update rate, reliability, etc.), an alternative approach exists. From (2.6,
2.7), the feedback signals Tfb and Qfb may, together with the measured n, be
used in an on-line parameter estimation scheme for the prevailing thrust and
torque coefficients, termed K̂T and K̂Q. The adaption should be slow enough
to avoid e.g. wave-induced disturbances and noise, but fast enough to capture
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the change in operating conditions due to steady-state current or vessel speed.
The estimates can then be used as control coefficients, i.e. KTC = K̂T and
KQC = K̂Q, with any one of the control schemes defined in Table 3.1. This
means that K̂T and K̂Q are used instead of the nominal coefficients KT0 and
KQ0 in the controllers. Assuming that the estimates K̂T and K̂Q will be close
to the true mean values of KT and KQ, the main advantages of this approach
are:

• The control schemes will give good performance for all vessel speeds, since
estimates of the actual thrust and torque coefficients are used. This re-
moves most of the difficulties discussed in Section 8.2, since less model
knowledge is needed.

• The quality of the feedback signals is less critical for performance, which
means that the control schemes are feasible with low-cost sensors.

• If a sensor fails, the parameter adaption can be switched off, and either 1)
the current values of the estimates can be used in continued operation, or
2) the control coefficients can be ramped back to the nominal values KT0

and KQ0. The control scheme is therefore robust with respect to sensor
failure.

• For e.g. the combined torque/power controller, the good properties with
respect to wear and tear and predictable power consumption may be uti-
lized, with increased performance during transit.

The on-line parameter estimation schemes for K̂T and K̂Q can be found
from e.g. Ioannou and Sun (1995). Defining the output yT = Tfb and the input
uT = ρD4n |n|, (2.3) can be written as:

yT = KTuT . (E.8)

Using the estimate K̂T of KT , the predicted output ŷT and the prediction error
εT become:

ŷT = K̂TuT , (E.9)

εT = yT − ŷT = KTuT − K̂TuT = −K̃TuT , (E.10)

where the parameter estimation error K̃T = K̂T − KT . Using the gradient
method, the recursive parameter estimation scheme becomes:

˙̂
KT = −γT εTuT , K̂T (0) = K̄T , (E.11)

where γT > 0 is the adaptive gain and K̄T the initial value of K̂T . For any
bounded u(t) and u̇(t), the prediction error converges to zero (Ioannou and Sun,
1995). Additionally, it can be shown that a necessary and sufficient condition
for K̃T (t) to converge to zero exponentially fast is that u(t) is PE. u(t) is PE
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if it is sufficiently rich of order 1, i.e. at least a nonzero constant signal. This
corresponds to nonzero shaft speed, which is an intuitively sensible requirement.
Correspondingly, the estimate K̂Q of KQ can be calculated from:

˙̂
KQ = −γQεQuQ, K̂Q(0) = K̄Q, (E.12)

with adaption gain γQ > 0, output yQ = Qfb, input uQ = ρD5n |n|, prediction
error εQ = yQ − K̂QuT , and initial value K̄Q. As stated above, the gains γT
and γQ should be chosen such that noise and wave-frequency disturbances are
rejected, while a change in operating condition due to vessel speed or current
is captured. From a practical point of view, it may also be desirable to disable
adaption below a certain shaft speed threshold na, i.e.

εT =

½
yT − ŷT , |n| ≥ na,
0, |n| < na,

(E.13)

and similarly for εQ.
In extreme operating conditions, with ventilation and water exits, the adap-

tion should be switched off, since the thrust and torque models (2.6, 2.7) then
will lead to rapidly changing KT and KQ. With low adaption gains, K̂T and
K̂Q will not converge to any sensible values, and probably exhibit a drifting be-
havior. These uncertain parameters are not wanted in the control laws, and it
would hence be preferable to use the values found from steady-state operation.
How to detect such high loss incidents was treated in Section 6.3.
The torque measurement could, together with the motor torque Qm, also be

used to estimate the coefficients Qf0 and Qf1 used in the friction compensation
scheme (3.19).

E.3 Thrust, torque, and power output feedback
control

In Section E.2, several new control options that become available with addi-
tional instrumentation were presented. All these controllers were of the PID
type, closing the control loop with the error between desired and measured pro-
peller thrust, torque, or power. Usually, however, additional instrumentation is
not available. As additional control options, the controllers from Section E.2
may instead be implemented by output feedback, using one of the propeller
torque estimation schemes presented in Chapter 5. These controllers then be-
come significantly more complex than the other controllers for normal operating
conditions, which are summarized in Table 3.1. As briefly discussed in Section
E.2, the thrust, propeller torque, and propeller power feedback controllers cir-
cumvent the need for friction and inertia compensation, and hence reduce the
necessary model knowledge. However, when implemented as output feedback
controllers, this model knowledge is needed in order to implement the load
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torque observer. For extreme conditions, the output feedback controllers are
not believed to be appropriate, due to the problems with assuring robust per-
formance during ventilation. The stability properties of the output feedback
controllers will not be further considered.

E.3.1 Thrust output feedback

The thrust output feedback scheme is similar to the thrust control scheme from
Section E.2.2, except that the propeller load torque feedback Qfb in (E.4) is
replaced with the estimated load torque Q̂a from one of the observers. This
scheme is therefore mainly applicable to open propellers, where the linear KT −
KQ relationship in (2.48) holds. As discussed in Section 4.9, a thrust controller
is not suited for applications where the propeller may be subject to large thrust
losses — its performance during ventilation is significantly worse than that of
the torque and power controllers. Hence, the thrust output feedback scheme is
mostly relevant for underwater applications like AUV’s or ROV’s, or for deeply
submerged propellers like azimuthing thrusters on a semi-submersibles. The
latter are, however, usually of the ducted type, where (2.48) may not hold.
Using the linear observer from (5.7), the thrust-torque mapping from (E.4),

and the controller from (E.3), the thrust output feedback scheme may be sum-
marized as:

u = kgQm −Qff0(nr),

˙̂ω =
1

Is

³
u− Q̂a −Qf1ω̂

´
+ ka(ω − ω̂),

˙̂
Qa = kb(ω − ω̂),

T̂a =
at
D
Q̂a + btρn

2D4,

et = Tr − T̂a,

Qct = Ktpet +Kti

Z t

0

et(τ)dτ +Ktdėt. (E.14)

Here, Qct is the controller output, nr is given from Tr by (3.1), ω = 2πn,
Qff0(nr) is given by (3.20), Is, Qf1, D, at, and bt are propeller constants, ka
and kb are the observer gains, and Ktp, Kti, and Ktd are the PID gains.

E.3.2 Torque output feedback

The torque output feedback controller is similar to (E.5), with Qfb replaced by
Q̂a. The Qa observer is formulated as in (E.14), and the remaining controller
given from:

eq = Qr − Q̂a,

Qcqp = Kqpeq +Kqi

Z t

0

eq(τ)dτ +Kqdėq, (E.15)
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with Qcqp the controller output, Qr given from Tr by (3.2), and Kqp, Kqi, and
Kqd the PID gains.

E.3.3 Power output feedback

The power output feedback controller is similar to (E.7), with Pfb replaced by
P̂a, and P̂a calculated from Q̂a. The Qa observer is formulated as in (E.14),
and the remaining controller given from:

P̂a = Q̂a |ω̂| ,
ep = Prs − P̂a,

Qcpp = Kppep +Kpi

Z t

0

ep(τ)dτ +Kpdėp, (E.16)

with Qcpp the controller output, Prs given from Tr by (3.4), and Kpp, Kpi, and
Kpd the PID gains.

E.4 Shaft speed control with implicit Va com-
pensation

In Fossen and Blanke (2000), a nonlinear output feedback propeller shaft speed
controller for underwater vehicles, with feedback from estimated advance veloc-
ity, was presented. The advance velocity observer was designed based on the
vehicle surge dynamics and a model of the flow dynamics. The flow dynamics
model was as proposed in Blanke et al. (2000), based on the results by Yoerger
et al. (1991), Healey et al. (1995), and Whitcomb and Yoerger (1999a). As
discussed in Section 2, increasing advance velocity leads to decreasing thrust if
the shaft speed is kept constant. The idea behind the controller in Fossen and
Blanke (2000) was to compensate for the advance velocity, in order to improve
the mapping from desired to actually produced thrust. The output feedback
controller was shown to be uniformly globally asymptotically and uniformly lo-
cally exponentially stable. There are, however, three main limitations to the
result: the propeller model was based on a linear open-water characteristics as
in (2.25, 2.26), the advance velocity observer was only valid for Va ≥ 0, and
the observer relied on the coupling between the propeller thrust and the vehi-
cle surge dynamics. The two first limitations indicate that the result only is
valid for open propellers in the first quadrant of operation, where the linear
open-water characteristics approximation is relatively accurate, and Va ≥ 0.
The third limitation indicates that the observer only will work for a vehicle
equipped with a single propeller for each degree of freedom (or alternatively
with several coordinated propellers), since it otherwise may be difficult to sep-
arate the contributions from several propellers to the surge dynamics. For an
AUV or UUV, the limitations are not of major importance, since these vehicles
usually operate at cruising speed in the first quadrant of operation, and are
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equipped with a simple propulsion system for surge motion. For other vehicles,
e.g. ROVs and surface vessels in DP, that may experience changing inflow due
to current, waves, and low-speed manoeuvring, these limitations may become a
problem.

E.4.1 Controller formulation

Instead of calculating an explicit estimate of Va and using this in a model of the
propeller characteristics, it is possible to formulate a shaft speed controller that
implicitly compensates for changes in the advance velocity. The starting point
is the shaft speed thrust sensitivity function from (4.16):

stn(·) ,
Ta
Tr
=

KT

KTC
. (E.17)

In Figures 4.2 and 4.6, it is shown how stn(·) decreases with increasing Va. This
is also easily seen from an open-water diagram, e.g. Figure 2.1, since KT for a
fixed n decreases with increasing Va. This is the behavior that the controller
from Fossen and Blanke (2000) attempts to compensate for by increasing the
shaft speed when the advance velocity increases. From (E.17), this could also
be achieved by adjusting the control coefficient KTC : with KTC = KT , the
thrust sensitivity stn(·) = 1, and the desired thrust is produced. It is therefore
proposed to use one of the observers from Section 5 to calculate an estimate
K̂Q of KQ, use the KT − KQ relationship in (2.48) to calculate an estimate
K̂T of KT , and use KTC = K̂T in the normal shaft speed PI controller from
(3.27). Using the KQ estimation scheme in (5.26), the shaft speed controller
with implicit advance speed compensation becomes:

u = kgQm −Qff0(nr),

K̂Q =
4π2

ρD5
θ̂,

θ̂ = −k0 |ω|
3

3Is
+ z,

ż = k0
ω |ω|
I2s

(u− θ̂ω |ω|−Qf1ω),

KTC = atK̂Q + bt,

nr = sign(Tr)

s
|Tr|

ρD4KTC
,

Qcn = Kpe+Ki

Z t

0

e(τ)dτ , e = nr − n. (E.18)

Here, Qcn is the controller output, k0 is the estimation gain, and Kp and Ki are
the PI gains. A block diagram of the resulting control scheme is given in Figure
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Figure E.1: Block diagram of the shaft speed controller with implicit Va com-
pensation.

E.1. Notice that the sole purpose of the observer is to aid in calculating the
shaft speed setpoint nr. Hence, the PI controller and KQ estimation scheme
can be tuned separately. The choice of k0 should be motivated from the desired
properties of the closed-loop controller. If it is desired to compensate for all
changes in inflow, also due waves and wave-frequency vessel motion, k0 must
be chosen sufficiently high to capture these effects. If the motivation is to
compensate only for the mean changes in inflow due to current and vessel low-
frequency motion, k0 should be chosen lower, such that the wave-frequency
disturbances are filtered out. If desired, the load torque observer in (5.7) with
K̂Q calculation from (5.17) and (5.16) may be used instead of theKQ estimation
scheme from (5.26).
Since no assumption about the advance velocity or shape of the open-water

characteristics has been made, except for the linear KT − KQ relationship in
(2.48), this controller is valid for all 4 quadrants of operation — or as long as
(2.48) holds. In addition, since no vessel dynamics are involved in the observer,
the controller is valid for any open propeller on any vessel. The restriction
to open propellers is due to the limitation in applicability of (2.48) for ducted
propellers.

Remark E.1 If the main purpose of the controller is to counteract the loss of
thrust due to varying advance velocity, the pure torque controller in (3.29) should
also be considered. As can be seen in Figures 4.2 and 4.6, the torque controller is
significantly less sensitive to changes in Va than the other controllers. The level
of complexity of the torque controller with friction and inertia compensation is
also lower than that of the implicit Va compensation controller in (E.18).

Remark E.2 The stability of the proposed control scheme has not yet been
addressed, and is considered a topic for further research.
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Figure E.2: Control coefficient KTC used in the implict Va compensation
scheme, calculated from the nonlinear observer. From experiments.

E.4.2 Experimental results

The implicit Va compensation scheme was tested with the experimental facil-
ity described in Chapter 7.1, using the open propeller. As seen in Figure 7.5,
the linear KT − KQ relationship in (2.48) holds well in this case. The pro-
peller was kept deeply submerged, with no waves, and the carriage moved in a
sinusoidal motion in the axial direction of the propeller to create inflow oscilla-
tions with velocity amplitude 1m/s and period 31.4s. The thrust reference was
Tr = 200N. Four controllers were compared: shaft speed control, torque con-
trol, power control, and shaft speed control with implicit Va compensation. The
three fundamental controllers were used with the friction compensation scheme
and other settings as described in Tables 7.4 and 7.5.
For the implicit Va compensation scheme in (E.4), the PI gains were chosen

as for the pure shaft speed controller, i.e. Kp = 0.2 and Ti = 0.05. In the
KQ estimation scheme, Qf0, Qf1, and Is were chosen as in Table 7.7, and the
estimation gain was chosen as k0 = 1E− 10. In addition, it was chosen to filter
K̂Q using a first order filter with time constant 0.1s.
The estimated thrust coefficient used in the implicit Va compensation scheme

is shown in Figure E.2, and the resulting time series of n, Ta, Qa, Qm, and Pm
are shown in Figure E.3. The propeller has positive inflow approximately for
30s < t < 45s and 62s < t < 77s, and negative inflow approximately for 45s
< t < 62s. Because of the uncontrollable nature of the flow in the basin, the
time series should not be compared directly, but only serve as an indication
of the performance of the various controllers. Especially for reverse flow, the
loading is highly unstable. The three fundamental controllers can be seen to
obtain their objectives: the shaft speed controller keeps the shaft speed nearly
constant, the torque controller keeps the motor power constant, and the power
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controller keeps the motor power nearly constant. It is interesting to note that
the behavior of the implicit Va compensation scheme is quite similar to the
torque controller; the thrust and torque are kept nearly constant, even in the
reverse flow regime, and the oscillations in shaft speed and power follow closely.
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Appendix F

Additional sensitivity
function results

This appendix presents additional results for the sensitivity functions that were
introduced in Chapter 4. Section F.1 presents the derivation of the combined
QP controller thrust sensitivity function presented in Section 4.2.5, Section F.2
presents an extension of the sensitivity functions to account for friction com-
pensation errors, and Section F.3 extends the Lyapunov analysis from Section
6.5.1 to get explicit bounds on the trajectories of the perturbed system.

F.1 Combined controller thrust sensitivity
In Section 4.2.5, it was assumed that the combined controller thrust sensitivity
function could be expressed as:

stc(·) =
KT

KTC
(
KQC

KQ
)κ, for κ ∈ [ 2

3
, 1]. (F.1)

An approximation to κ will be derived in the following. Assume as before that
at steady state Qa = Qcc, with αc = αc(n) from (3.36):

Qa = Qcc = αcQcq + (1− αc)Qcp. (F.2)

Inserting (3.29) for Qcq, (3.32) for Qcp, and (4.5) for n in (F.2):

Qa = αc
KQC

KTC
DTr + (1− αc)

Prs
2π|n|

= αc
KQC

KTC
DTr + (1− αc)

KQC
√
ρDK

3/2
TC

sgn(Tr)|Tr|3/2

|sgn(Ta)
q

|Ta|
ρD4KT

|

=
KQC

KTC
D[αcTr + (1− αc)

K
1/2
T

K
1/2
TC

sgn(Tr)|Tr|3/2

|Ta|1/2
]. (F.3)
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Using (4.8) and solving for Ta/Tr:

Ta =
KT

KQD
Qa

=
KT

KTC

KQC

KQ
[αcTr + (1− αc)

K
1/2
T

K
1/2
TC

sgn(Tr)|Tr|3/2

|Ta|1/2
], (F.4)

⇓
Ta
Tr

=
KT

KTC

KQC

KQ
[αc + (1− αc)

K
1/2
T

K
1/2
TC

|Tr|1/2

|Ta|1/2
]

= αc
KT

KTC

KQC

KQ
+ (1− αc)

K
3/2
T

K
3/2
TC

KQC

KQ
(
Tr
Ta
)1/2. (F.5)

Inserting the definition of stc(·) from (4.1) in (F.5), and defining the ratios of
control to actual thrust and torque parameters βTC =

KT

KTC
and βQC =

KQ

KQC
:

stc = αcβTCβ
−1
QC + (1− αc)β

3/2
TCβ

−1
QCst

−1/2
c

= αc
βTC
βQC

+ (1− αc)
β
3/2
TC

βQC

1

st
1/2
c

. (F.6)

Assuming the solution of (F.6) to be given by (F.1):

stc =
βTC
βκQC

,

⇓
βTC
βκQC

= αc
βTC
βQC

+ (1− αc)
β
3/2
TC

βQC

1

( βTCβκQC
)1/2

,

βTC
βκQC

= αc
βTC
βQC

+ (1− αc)
βTCβ

κ/2
QC

βQC
,

1

βκQC
=

αc
βQC

+ (1− αc)
β
κ/2
QC

βQC

¯̄
·βκQCβQC ,

0 = (1− αc)β
3κ/2
QC − βQC + αcβ

κ
QC , (F.7)

which implicitly gives κ under the assumption in (F.1). The limiting values are
αc = 1 ⇒ κ = 1 (as in pure torque control), and αc = 0 ⇒ κ = 2/3 (as in
pure power control). Clearly, for βQC = 1 and βQC = 0, any values for κ are
valid, independently of αc. It remains to find a solution for κ in the interval
βQC ∈ h0, 1i, αc ∈ h0, 1i. The result from solving (F.7) numerically (i.e. κ as
function of αc and βQC) is shown in Figure F.1. A good approximation to this
surface is the following intuitive linear function in αc:

κ ≈ 2/3 + 1/3αc, (F.8)
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Figure F.1: κ as function of αc and βQ.

which for βQC > 0.02 gives an error of less than 5%, and has the correct limiting
values for αc = 0 and αc = 1. Hence, stc(·) can be approximated by:

stc(·) =
KT

KTC
(
KQC

KQ
)2/3+1/3αc(n). (F.9)

F.2 Friction compensation sensitivity function
errors

In the derivation of the sensitivity functions, perfect friction compensation was
assumed. As discussed in Section 4.8.2 the linear friction compensation will
give a small deviation from the ideal sensitivity functions, even with perfect
model knowledge, and an error in the static friction compensation will give
an additional offset. In the following, modifications of the iterative solution
procedure from Section 4.7 to account for the friction compensation errors will
be presented.

F.2.1 Linear friction compensation

Since Qff in (3.19) is a function of nr only, the linear compensation term is
not adjusted when the shaft speed differs from nr, as is the case in torque and
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power control. Instead of (4.50) or (4.51), the actual steady-state equation to
be solved is:

Qmp −Qa − sign(ω)Qs +Kωω = 0. (F.10)

With Qmp = Qci +Qff (nr), and assuming perfect model knowledge such that
Qf0 = Qs and Qf1 = Kω, (F.10) becomes:

Qci +Qff (nr)−Qa − sign(ω)Qs −Kωω = 0,

Qci + sign(ω)Qf0 + 2πQf1nr −Qa − sign(ω)Qs −Kωω = 0,

Qci −Qa + 2πKω(nr − n) = 0. (F.11)

Here the friction compensation term 2πKω(nr − n) is new when compared to
the analysis in Section 4.7. The steady-state equations that must be solved
iteratively are derived in the following.

Torque control

For torque control, with Qci = Qcq = Qr from (3.29), (F.11) becomes:

Qr = Qa − 2πKω(nr − n)

= KQ0ρn
2D5βQ(

Va
nD

)− 2πKω(nr − n). (F.12)

Solving with respect to n, the resulting equation for the iterative solution is:

n =
−πKω +

q
π2K2

ω +KQ0ρD5βQ(
Va
nD )(2πKωnr +Qr)

KQ0ρD5βQ(
Va
nD )

. (F.13)

If Kω = 0, the result is as in (4.50).

Power control

For power control, with Qci = Qcp = Prs/(2π |n|) from (3.32), and assuming
that Prs/(2π |n|) = Pr/(2πn) with Pr given in (3.3), (F.11) becomes:

Pr
2πn

−Qa + 2πKω(nr − n) = 0,

Pr − 2πnKQ0ρn
2D5βQ(

Va
nD

) + 2πn2πKω(nr − n) = 0,

2πKQ0ρD
5βQ(

Va
nD

)n3 + 4π2Kωn
2 − 4π2Kωnrn− Pr = 0. (F.14)

On standard cubic form, (F.14) is written as:

n3 + a2n
2 + a1n+ a0 = 0, (F.15)
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where the coefficients ai are defined as:

a2 =
4π2Kω

2πKQ0ρD5βQ(
Va
nD )

, (F.16)

a1 = − 4π2Kωnr

2πKQ0ρD5βQ(
Va
nD )

, (F.17)

a0 = − Pr

2πKQ0ρD5βQ(
Va
nD )

. (F.18)

The polynomial has the real solution:

n = −1
3
a2 + (S + T ), (F.19)

where S and T are given by:

S =
3

q
R+
√
U, T =

3

q
R−
√
U, (F.20)

U = Q3 +R2, Q =
3a1 − a22

9
, (F.21)

R =
9a2a1 − 27a0 − 2a32

54
. (F.22)

The solution for n, which constitutes the equation for the iterative solution
procedure, can hence be found directly, but is not suited for being written out
explicitly. In the case where Kω = 0, (F.19) reduces to (4.51).

F.2.2 Static friction compensation error

If the static friction compensation term is wrong such that Qf0 6= Qs, the
sensitivity analysis as presented in Chapter 4 also becomes wrong. Assuming
ω > 0, the steady-state equation to be solved by the iterative solution procedure
becomes:

Qci +Qff (nr)−Qa −Qs −Kωω = 0,

Qci +Qf0 + 2πQf1nr −Qa −Qs −Kωω = 0,

Qci +∆Qf −Qa + 2πKω(nr − n) = 0, (F.23)

which is identical to (F.11), except for the static friction compensation error
∆Qf = Qf0 − Qs. The solution will then be the same, except that Qci must
be adjusted with the term ∆Qf . In the solutions for torque and power control
given in (F.13) and (F.19), respectively, this is easily done by adding ∆Qf to
where 2πKωnr appears in the expressions for n. Hence, for torque control, the
expression for n from (F.13) becomes:

n =
−πKω +

q
π2K2

ω +KQ0ρD5βQ(
Va
nD )(2πKωnr +Qr +∆Qf )

KQ0ρD5βQ(
Va
nD )

. (F.24)
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In the case where Kω = 0 the result is:

n =

s
Qr +∆Qf

KQ0ρD5βQ(
Va
nD )

. (F.25)

Similarly, the result for power control in (F.19) is adjusted by redefining a1 in
(F.17) as:

a1 = −
4π2Kωnr + 2π∆Qf

2πKQ0ρD5βQ(
Va
nD )

. (F.26)

F.2.3 Result of errors

The error due to the linear friction compensation will always be present, even
with perfect model knowledge. The error due to the static friction compensa-
tion, however, disappears with perfect model knowledge. As an example, the
Wageningen B4-70 simulation propeller is used. The linear friction term and
friction compensation are taken as Kω = Qf1 = 720 Nms, and the error in the
static friction compensation is taken as ∆Qf = −2E3 kNm. In Figures F.2 to
F.5 the thrust, shaft speed, torque, and power sensitivities are shown for two
thrust references: Tr = 50 kN and Tr = 400 kN. The effect of accounting for
the linear friction compensation is best seen in slope of the torque sensitivity
curves for torque control, sqq(·) in Figure F.4, and the slope of the power sen-
sitivity curves for power control, spp(·) in Figure F.5. If the friction had not
been accounted for, these would have been flat. The effect of the static friction
compensation error can be seen in all the figures, since the torque and power
controllers no longer give unity sensitivity functions for Va = 0. Obviously, the
error has a larger impact for the lowest thrust reference.

F.3 Robustness analysis using Lyapunov theory
Accurate estimates of the resulting (steady-state) shaft speed during a thrust
loss incident with a given controller is most conveniently found by using the
sensitivity functions presented in Section 4 and summarized in Table 4.1, or
eventually by the extensions provided in Section F.2. For analysis of the tran-
sient behavior of the system, an analysis based on Lyapunov tools may prove
useful.

F.3.1 Using the comparison method

With the stability analysis in Section 6.5.1 as a starting point, the bound on the
solutions of the perturbed system in (6.4) may be estimated by the comparison
method for non-vanishing perturbations, as described in Lemma 9.4 and 9.6 in
Khalil (2002). Assume that (4.91), (4.95), and (4.99) hold for x ∈ Dr, where
Dr is a ball of radius r:

Dr = {x ∈ R | kxk2 < r} . (F.27)
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Figure F.2: Thrust sensitivity functions for shaft speed, torque, and power
control when accounting for the linear friction compensation and including an
error in the static friction compensation.
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error in the static friction compensation.
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Figure F.4: Torque sensitivity functions for shaft speed, torque, and power
control when accounting for the linear friction compensation and including an
error in the static friction compensation.
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Figure F.5: Power sensitivity functions for shaft speed, torque, and power con-
trol when accounting for the linear friction compensation and including an error
in the static friction compensation.
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The numerical values k1 = k2 = 1/2 and k4 = 1 can be chosen in (4.91) and
(4.99). How to choose k3 in (4.95) is further discussed below. The perturbation
term g2(t, x) is defined in (6.11). Suppose that g2(t, x) satisfies:

kg2(t, x)k ≤ ξ(t) kxk+ δ(t), ∀t ≥ 0,∀x ∈ D, (F.28)

where ξ : R → R is nonnegative, continuous for all t ≥ 0, and satisfies the
condition: Z t

t0

ξ(t)dτ ≤ ε(t− t0) + η, (F.29)

for 0 ≤ ε < k3 and η ≥ 0, and that δ : R → R is nonnegative, continuous, and
bounded for all t ≥ 0. For this system, ε and η can be chosen as ε = 0 and
η = 0, such that g2(t, x) must satisfy:

kg2(t, x)k ≤ δ(t), ∀t ≥ 0,∀x ∈ D. (F.30)

From Lemma 9.4 in Khalil (2002), provided:

kx(t0)k <
r

ρ

r
k1
k2
= r, (F.31)

sup
t≥t0

δ(t) <
2k1αr

k4ρ
= k3r, (F.32)

where it has been inserted that:

ρ = exp(
k4η

2k1
) = exp(η) = 1,

α =
1

2
(
k3
k2
− ε

k4
k1
) = k3 − ε = k3, (F.33)

the solution of the perturbed system then satisfies:

kx(t)k ≤ kx(t0)k e−k3(t−t0) +
Z t

t0

e−k3(t−τ)δ(τ)dτ. (F.34)

Additionally, from Lemma 9.6 in Khalil (2002), if:R t
t0
e−k3(t−τ)δ(τ)dτ ≤ σ, ∀t ≥ t0, (F.35)

for some constant σ > 0, then x(t) is uniformly ultimately bounded with ulti-
mate bound b:

b =
σ

θ
, (F.36)

where θ is an arbitrary constant 0 < θ < 1. This shows that the bound and
ultimate bound on x(t) depend only on its initial condition and the time history
of the bound δ(t) on the perturbation term g(t, x). The remaining difficulties in
order to achieve realistic numerical bounds on the solutions is to find a sensible
value for k3 in (4.95), and a reasonable model for the disturbance bound δ(t) in
(F.30). The ultimate bound will not be further considered here — for steady-state
performance, the sensitivity functions give a more correct analysis.
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F.3.2 Determining the damping

In the proofs of Proposition 4.1 and Theorem 6.1, Lemma 4.1 was used to re-
move the nonlinear damping from the analysis, and hence it would seem natural
to choose k3 = b1. In reality, the nonlinear terms may give a much larger con-
tribution to the stability of the system that the linear terms. For the nominal
system (4.89), assume e.g. to be operating about a positive equilibrium ωr, and
that |x| < ωr such that x+ ωr > 0. V̇ (x) in (4.92) then becomes:

V̇ (x) = −b0θ(ωr, ω)x− b1x
2 − b̄2x((x+ ωr)

2 − ω2r), (F.37)

and by applying (4.94):

V̇ (x) ≤ −b1x2 − b̄2x((x+ ωr)
2 − ω2r)

= −b1x2 − b̄2x(x
2 + 2xωr + ω2r − ω2r)

= −b1x2 − b̄2x
3 − 2b̄2x2ωr

= −(b1 + 2b̄2ωr)x2 − b̄2x
3. (F.38)

The sign of the x3 term is indefinite, and must be dominated by the x2 term.
Since it is assumed that |x| < ωr and ωr > 0, it follows that ωrx2 > x3. Hence:

V̇ (x) ≤ −(b1 + b̄2ωr)x
2 − b̄2ωrx

2 − b̄2x
3

≤ −(b1 + b̄2ωr)x
2. (F.39)

Similarly, if ωr < 0 and |x| < |ωr| such that x+ ωr < 0, V̇ (x) becomes:

V̇ (x) = −b0θ(ωr, ω)x− b1x
2 − b̄2x(−(x+ ωr)

2 + ω2r)

≤ −b1x2 − b̄2x(−x2 − 2xωr − ω2r + ω2r)

= −b1x2 + b̄2x
3 + 2b̄2x

2ωr

= −b1x2 + b̄2x
3 − 2b̄2x2 |ωr|

= −(b1 + 2b̄2 |ωr|)x2 + b̄2x
3. (F.40)

As above, it follows that ωrx2 > x3 such that:

V̇ (x) ≤ −(b1 + b̄2 |ωr|)x2 − b̄2 |ωr|x2 + b̄2x
3

≤ −(b1 + b̄2 |ωr|)x2. (F.41)

Combining the results for positive and negative ωr, i.e. (F.39) and (F.41), it
follows that for all |x| < |ωr|, V̇ (x) complies to:

V̇ (x) ≤ −(b1 + b̄2 |ωr|)x2. (F.42)

This demand on x is quite realistic, since it only excludes perturbations that
cause the rotational direction of the propeller to change, or increase to more
than the double of its nominal value ωr. For normal operation, the shaft speed
will not change direction. With some kind of anti-spin functionality in the
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controller, the shaft speed should not be allowed to exceed 2ωr, even during
large thrust losses. Without an anti-spin controller, however, this may well be
the case with torque and power control. These considerations show, as should
be expected, that the damping introduced by the fluid also contributes to the
stability properties of the system. Comparing realistic values of b1 and b̄2 |ωr|,
it is apparent that the nonlinear damping by far is the dominating. Hence, for
the following Lyapunov analysis, k3 is chosen as:

k3 = b1 + b̄2 |ωr| . (F.43)

For the system during ventilation, as analyzed in Theorem 6.1, such a con-
sideration becomes more difficult, since the nonlinear damping depends on the
torque loss factor βQ(t, ω). The Lyapunov analysis of the nominal system (6.4)
during the loss incident resulted in (6.14):

V̇ (x) = −b0θ(ωr, ω)x− b1x
2 − b̄2βQ(t, ω)x((x+ωr) |x+ ωr|− ωr |ωr|). (F.44)

Similar reasoning as for the nominal system without losses may be applied, such
that for all |x| < |ωr|, V̇ (x) complies to:

V̇ (x) ≤ −(b1 + βQ(t, ω)b̄2 |ωr|)x2. (F.45)

The presence of βQ(t, ω) means that a more conservative estimate of k3 is
needed. During pure ventilation, when the propeller still is submerged, the
minimum value of βQ(t, ω) is approximately 0.2, see Section 2.4. In the case of
a complete water exit, the propeller loses all load torque, such that βQ(t, ω) ≈ 0.
The bound on the shaft speed then only depends on the friction term. This is
clearly seen in the analysis, since k3 then must be taken as k3 = b1. This demon-
strates the importance of designing a fast anti-spin controller: if the ventilation
incident is not caught quickly, the shaft speed may increase rapidly, since most
of the damping in the system is removed. For the ventilated propeller, k3 must
hence be taken as:

k3 = b1 + β̄Qb̄2 |ωr| , (F.46)

where β̄Q is the lowest expected value of βQ(t, ω) during the loss incident.

F.3.3 Quantifying the trajectory bound

In order to quantify the trajectory bound in (F.34) further, some simplifications
are needed. As an example, take a ventilation incident where the propeller
initially is at its equilibrium, such that x(t0) = 0, and βQ(t, ω) drops from 1
to β̄Q instantaneously. The anti-spin controller needs some time to catch the
ventilation incident before γQ converges to β̄Q, and the error γQ − βQ(t, ω)
is modelled as a square wave with amplitude γe and duration T seconds. The
perturbation bound δ(t) from (F.30) then becomes a square wave with amplitude
γeū and duration T , i.e.:

δ(t) =

½
γeū for t ≤ t0 + T,
0 for t > t0 + T.

(F.47)
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With βQ(t, ω) = β̄Q, k3 can be taken as in (F.46). According to (F.34), the
trajectories of the system then satisfy:

kx(t)k ≤ x(t0) +

Z t

t0

e−k3(t−τ)δ(τ)dτ

= 0 + γeū

Z t0+T

t0

e−k3(t−τ)dτ =
γeū

k3
(ek3T − 1)ek3(t0−t)

=
γeū

b1 + β̄Qb̄2 |ωr|
(e(b1+β̄Qb̄2|ωr|)T − 1)e(b1+β̄Qb̄2|ωr|)(t0−t).(F.48)

In the conservative case of zero linear damping, i.e. b1 = 0, this reduces to:

kx(t)k ≤ γeū

β̄Qb̄2 |ωr|
(e(β̄Qb̄2|ωr|)T − 1)e(β̄Qb̄2|ωr|)(t0−t)

= ωr
γe
β̄Q
(e(β̄Qb̄2|ωr|)T − 1)e(β̄Qb̄2|ωr|)(t0−t),

where ū = b̄2ωr |ωr| from (4.86) has been inserted. Clearly, the bound on
the trajectories is proportional to the magnitude of the perturbation γe, and
increasing with the duration T .

Remark F.1 For zero duration T = 0, or zero magnitude γe = 0, kx(t)k ≡ 0
as should be expected. This corresponds to the case of a known disturbance, as
shown in Corollary 6.1.



Appendix G

Additional observer results

This appendix contains additional observer results. Section G.1 presents an
adaptive extension of the load torque observer from Section 5.1, including ex-
perimental results, and section G.2 shows how the prevailing control coefficients
can be estimated from the available measurements.

G.1 Adaptive load torque observer

The load torque observer presented in Section 5.1 is based on knowledge of the
shaft friction parameters Qs and Kω. In the case were these are uncertain, or
expected to change significantly over the life-time of the thruster, the observer
may be extended to include a parameter adaption scheme for Kω. It is still
assumed that the static friction term Qs is known with reasonable accuracy.
The estimate K̂ω can then also be used to replace the parameter Qf1 in the
linear friction compensation (3.21). The adaptive observer was first published
in Smogeli and Sørensen (2006a).

G.1.1 Observability

If Kω is modelled as a random process driven by a bounded disturbance wKω
,

and augmented to the observer state vector x in (5.4), this will give the new
state vector xa:

xa = [ω, Qa, Kω]
>
, (G.1)

and process plant model:

ẋa = fa(xa) +Bau+Gawa, (G.2)

y = h(xa) = Caxa + v, (G.3)
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where the following matrices and vectors have been used:

fa(xa) =

⎡⎣ −ωKω/Is −Qa/Is
0
0

⎤⎦ , Ga = I3×3,

Ba =

⎡⎣ 1/Is
0
0

⎤⎦ wa =

⎡⎣ δf/Is
wQa

wKω

⎤⎦ , Ca =

⎡⎣ 1
0
0

⎤⎦| . (G.4)

The bounded disturbances wa and v are assumed uncorrelated. From Isidori
(1995), the observability matrix of the nonlinear system becomes:

O =

⎡⎣ ∂
∂xa

h(xa)
∂
∂xa

Lfah(xa)
∂
∂xa

L2fah(xa)

⎤⎦ =
⎡⎢⎣ 1 0 0
−Kω

Is
− 1

Is
− ω

Is
K2
ω

I2s

Kω

I2s

2ωKω+Qa

I2s

⎤⎥⎦ , (G.5)

which has rank 3 for all xa ∈ R3 − [0, 0, 0]| . The nonlinear system is hence
weakly locally observable according to the definitions in Hermann and Krener
(1977). Notice, however, that the linearization about the current estimate x̂a
as used in e.g. an extended Kalman filter becomes:

Aa =
∂fa(xa)

∂xa

¯̄̄̄
xa=x̂a

=

∙
−K̂ω/Is −1/Is −ω̂/Is

02x3

¸
, (G.6)

and the Kalman observability matrix becomes:

O =

⎡⎣ Ca

CaAa,
CaA

2
a

⎤⎦ =
⎡⎢⎣ 1 0 0

− K̂ω

Is
− 1

Is
− ω̂

Is
K̂2
ω

I2s

K̂ω

I2s

K̂ωω̂
I2s

⎤⎥⎦ , (G.7)

which has rank 2. This means that linear estimation methods like extended
Kalman filtering, SDRE Filtering (Haessig and Friedland, 1997), etc. are non-
applicable, whereas a nonlinear estimation scheme should be possible to con-
struct.

G.1.2 Kω estimation

The nonlinear system dynamics used in the estimation scheme is based on the
shaft dynamics (2.50), with the static friction Qs sign(ω) replaced by the static
friction compensation (3.20), and Qa replaced by the nominal torque model Q̂n

from (5.14):
Isω̇ = kgQm −Qff0(nr)−Kωω − Q̂n. (G.8)

The error in the static friction compensation, i.e. the deviation of Qff0(nr)
from Qs sign(ω), will partly be captured in the adaption of Kω.
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Remark G.1 Using the nominal torque model Q̂n in the parameter estimation
can be justified, since the estimation of Kω is a slow process, and in DP the
deviation of KQ from KQ0 will be small. In waves, the deviation will average
to zero over time, whereas in current there will be a small steady-state offset.
The offset will depend on the size and type of propeller, and the magnitude and
direction of the current. Note that an offset in KQ will lead to an offset in the
estimate of Kω, but in DP this deviation is expected to be small.

With the motor torque adjusted for the static friction as input as in (5.3),
i.e. u = kgQm − Qff0(nr), the shaft friction coefficient Kω as an unknown
parameter, and inserting for Q̂n, the system in (G.8) becomes:

ω̇ =
1

Is
u− Kω

Is
ω − KQCρD

5

4π2Is
ω |ω| , f(ω, u,Kω). (G.9)

The system is affine in Kω, and can be written as:

f(ω, u,Kω) = F (ω)Kω + g(ω, u), (G.10)

where:

F (ω) =
∂f(ω, u,Kω)

∂Kω
= − ω

Is
, (G.11)

g(ω, u) =
1

Is
u− KQ0ρD

5

4π2Is
ω |ω| . (G.12)

Following a similar approach as in Section 5.2, an estimate K̂ω of Kω can be
obtained from a parameter update law on the form (Friedland, 1997):

K̂ω = φ(ω) + z,

ż = −Φ(ω)f(ω, u, K̂ω), (G.13)

where φ(ω) is a nonlinear function to be defined, and Φ(ω) is its Jacobian,
Φ(ω) = ∂φ(ω)/∂ω. As in Section 5.2, the estimation error K̃ω and its dynamics
are:

K̃ω = Kω − K̂ω, (G.14)
˙̃Kω = − ˙̂Kω = −φ̇(ω)− ż

= −Φ(ω)F (ω)(Kω − K̂ω) = −L(t)K̃ω, (G.15)

where L(t) = Φ(ω(t))F (ω(t)) is time-varying. It remains to choose φ(ω) to yield
L(t) positive semidefinite. From Friedland (1997), one option is to choose φ(ω)
to satisfy

Φ(ω) = kcF (ω) = −kc
ω

Is
, (G.16)

where kc is a positive constant, such that

L(t) = kcF (ω)
2 = kc

ω2

I2s
. (G.17)



a-56 Additional observer results

A candidate φ(ω) satisfying this is:

φ(ω) = −kcω
2

2Is
. (G.18)

This yields the following error dynamics:

˙̃Kω = −kc
ω(t)2

I2s
K̃ω, (G.19)

where the time-dependence of ω has been emphasized. Stability properties are
investigated by the positive definite Lyapunov function V1(K̃ω):

V1(K̃ω) =
1

2
K̃2
ω, (G.20)

such that the derivative of V1 along the trajectories of (G.9) are given by:

V̇1 = K̃ω
˙̃Kω = −kc

ω(t)2

I2s
K̃2
ω ≤ 0. (G.21)

Clearly, V̇1 = 0 for K̃ω 6= 0 iff ω(t) ≡ 0. This is the case of zero shaft speed,
for which one cannot expect to extract any information. However, the error
dynamics are still uniformly globally stable (UGS). Note that ω(t) = 0 ⇒
φ(ω) = Φ(ω) = ż = 0, which means that parameter adaption stops, but does not
diverge. The condition that ω(t) 6= 0 can be seen as a persistency of excitation
(PE) requirement, leading to uniform global exponential stability (UGES) of
the error dynamics, since:

r1

°°°K̃ω

°°°2 ≤ V1(K̃ω) ≤ r2

°°°K̃ω

°°°2 , (G.22)

V̇1 ≤ −r3
°°°K̃ω

°°°2 , (G.23)

for r1 = r2 = 0.5 and r3 = kcω
2
min/I

2
s , where ωmin is the lowest shaft speed

magnitude to be considered.

G.1.3 Adaptive observer design

With the chosen decoupling of parameter estimation and observer, the parame-
ter estimation scheme in (G.13) may be combined with the observer in (5.7) to
give an adaptive observer in the following form:

˙̂ω =
1

Is
(u− Q̂a − K̂ωω̂) + kaω̃,

˙̂
Qa = kbω̃,

ż = kc
ω

I2s
(u− K̂ωω −

KQCρD
5

4π2
ω |ω|),

K̂ω = −kcω
2

2Is
+ z, (G.24)
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n
u QaTorque
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Parameter
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Kw

Figure G.1: Block diagram showing the cascaded structure of the adaptive
observer.

where ω̃ = ω − ω̂ = ỹ and u = kgQm − Qff0(nr) as in (5.3). The parame-
ter estimation and load torque observer can then be viewed as two systems
interconnected in a cascaded structure; see Figure G.1.

Remark G.2 If the nominal torque model in (G.24) is replaced with the esti-
mated load torque Q̂a, the parameter estimation is coupled with the observer,
as discussed in Section G.1.1. The estimates then no longer converge to sensi-
ble values. No formulation with such a coupling of the observer and parameter
estimation has yet been found.

Remark G.3 Following the approach from Friedland (1997), it is possible to
construct a nonlinear parameter estimation scheme for both KQ and Kω. How-
ever, simulations show that the parameter estimates converge only when KQ

and Kω are constant. With a time-varying KQ, as is inevitable in reality, the
estimates do not converge. It should be noted that constant parameters is a basic
assumption in Friedland (1997).

Neglecting the modelling error and noise, as represented by ∆ in the Qa

observer error dynamics in (5.9), the error dynamics of the shaft speed estimate
from (5.1) and (G.24) becomes:

˙̃ω = − 1
Is
(Qa − Q̂a)−

1

Is
(Kωω − K̂ωω̂)− kaω̃

= − 1
Is
Q̃a −

1

Is
(Kωω −Kωω̂ +Kωω̂ − K̂ωω̂)− kaω̃

= − 1
Is
Q̃a − (

Kω

Is
+ ka)ω̃ −

ω̂

Is
K̃ω, (G.25)

and the error dynamics of the load torque estimate from (5.1) and (G.24) is as
before:

˙̃Qa = −kbω̃. (G.26)
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The parameter estimation error dynamics is given in (G.19). On state-space
form, the adaptive observer error dynamics can be written as two cascaded
systems:

Σ1 : ẋ1 = f1(x1) + g(t, x1)x2,

Σ2 : ẋ2 = f2(t, x2), (G.27)

where:

x1 =

∙
ω̃

Q̃a

¸
, x2 = K̃ω, (G.28)

f1(x1) =

∙
− 1

Is
Q̃a − (Kω

Is
+ ka)ω̃

−kbω̃

¸
= Fx1, (G.29)

g(t, x1) = − ω̂(t)
Is

= −ω(t)− ω̃

Is
, (G.30)

f2(t, x2) = −kcω(t)
2

I2s
K̃ω. (G.31)

The parameter estimation error in Σ2 was in Section G.1.2 shown to be UGES
under PE conditions, and the observer error dynamics without the coupling
term g(t, x1) in Σ1 was in Section 5.1 shown to be GES. That is, the positive
definite Lyapunov function V2(x1):

V2(x1) =
1

2
x|1Px1, P =

∙
p11 0
0 p22

¸
, (G.32)

has a derivative along the trajectories of f1(x1) given by:

V̇2 = x|1Pẋ1 < 0 ∀ x1 ∈ {R2 − (0, 0)}, (G.33)

for any positive constants p11 and p22, given that the observer gain requirements
in Proposition 5.1 are met. To demonstrate stability of the cascaded system, it
must be shown that the interconnection term g(t, x1) satisfy certain growth rate
requirements. With Σ2 UGES and the unperturbed Σ1 system GES, Theorem 2
in Panteley et al. (1999) states that the cascaded system in (G.27) is uniformly
globally asymptotically stable (UGAS) if the following additional requirements
are met:

1. V2(x1) must satisfy:°°°°∂V2∂x1

°°°° kx1k ≤ c1V2(x1) for all kx1k ≥ η. (G.34)

2. The function g(t, x) must satisfy:

kg(t, x1)k ≤ θ1(kx2k) + θ2(kx2k) kx1k , (G.35)

where θ1, θ2 : R≥0 → R≥0 are continuous.



G.1 Adaptive load torque observer a-59

Since: ¯̄̄̄
∂V2
∂x1

¯̄̄̄
|x1| =

¯̄̄̄
∂

∂x1
(
1

2
p11x

2
1 +

1

2
p22x

2
2)

¯̄̄̄
|x1|

= |p11x1| |x1| = p11x
2
1, (G.36)

and:
c1V2(x1) = c1

1

2
(p11x

2
1 + p22x

2
2) ≥

c1
2
p11x

2
1, (G.37)

requirement 1 is met for c1 = 2 and η = 0. Furthermore, since g(t, x1) satisfies:

|g(t, x1)| =
|ω(t)− ω̃|

Is
≤ |ω(t)|+ |ω̃|

Is

≤ ωmax + |ω̃|
Is

=
ωmax
Is

+
1

Is
|ω̃|

≤ ωmax
Is

+
1

Is
|x1| = θ1 + θ2 |x1| , (G.38)

where ωmax is the maximum shaft speed of the propeller and:

θ1 =
ωmax
Is

, θ2 =
1

Is
, (G.39)

also requirement 2 is met. The cascaded system (G.27) is thereby shown to be
UGAS. Note that the PE condition on ω (i.e. ω(t) 6= 0) still applies.

G.1.4 Experimental results

The experiments were conducted at the Marine Cybernetics Laboratory
(MCLab) at NTNU with the experimental setup described in Section 7.1.
The open propeller was used. The true friction coefficient was found to be
Kω ≈ 0.01Nms.
The adaptive observer (G.24) was implemented together with a torque con-

troller (3.29) and friction feedforward scheme (3.19) with Qf1 replaced with
the estimate K̂ω. The observer and parameter adaption gains were chosen as
ka = 15, kb = −25, and kc = 5E − 10. Experiments in calm water with the
adaptive observer alone confirmed that the parameter estimate converged to its
true value, and that the propeller torque was tracked by the observer. In the ex-
periments presented here, the propeller shaft had a mean submergence of 30cm,
and the propeller was subject to irregular waves from the modified PM spectrum
(C.19), with Hs = 5cm and Tp = 1.2s. The initial friction coefficient estimate
was K̂ω0 = 0, and the thrust reference was kept constant at Tr = 200N. The
resulting time series are given in Figure G.1, which shows the raw and filtered
shaft speed n, the raw and filtered motor torque Qm, the actual friction coef-
ficient Kω versus the estimated friction coefficient K̂ω, the commanded torque
Qc with and without friction compensation Qff , the thrust reference Tr versus
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the actual thrust Ta, and the actual torque Qa versus the estimated torque Q̂a.
The raw shaft speed and motor torque signals — which are used by the adap-
tive observer — are contaminated with some noise, and the motor torque is also
clearly subject to quantization due to limited bit resolution. The parameter
adaption scheme is enabled at approximately t = 12s, and clearly tracks the
actual friction coefficient. This leads to an increased commanded torque (due
to Qff ), and hence also increased shaft speed and thrust. The adaption of Kω

also leads to a more correctly estimated load torque, which before the adaption
was estimated too high. Experiments with varying thrust references and other
operating conditions show similar performance.

G.1.5 Extensions

As discussed in Chapter 8 with respect to the thruster controllers and observers,
the adaptive observer is extendable to CPP and transit by lettingKQC in (G.24)
be a function of the propeller pitch and vessel speed respectively.
The adaptive observer can also be used in extreme operating conditions, i.e.

when the propeller is subject to ventilation. In order to get convergence of K̂ω,
however, it is necessary to disable estimation during ventilation. From Section
6.3, a ventilation detection signal ζ is available from the loss calculation in (5.16)
and the ventilation detection scheme in (6.1). The following modification can
then be made to the adaptive observer in (G.24):

kc =

½
kcc, for ζ = 0 (no ventilation),
0, for ζ = 1 (ventilation),

(G.40)

where kcc > 0 is the chosen estimation gain. Experiments show that the adaptive
observer then gives convergence of K̂ω and a good estimate of Q̂a, even if the
propeller is subject to frequent ventilation.

G.2 Online control parameter estimation

In some applications, it will be useful to have estimates of the prevailing thrust
and torque coefficients, in order to substitute these for the nominal values in the
control coefficients. The prevailing thrust and torque coefficients, K̄T and K̄Q,
are here defined as the mean coefficients over a finite time horizon, including
the effect of steady-state advance velocity changes (due to current and vessel
low-frequency motion), but excluding the losses due to ventilation, water exits,
wave-induced water velocities, and vessel wave-frequency motion. That is, they
would ideally be equal to low-pass filtered versions of KTJ and KQJ defined in
Section 2.1.1. The desired properties of K̄T and K̄Q are the same as for the
coefficient estimates proposed in Section E.2.5.
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Figure G.2: Experimental results with the adaptive observer in irregular waves.
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G.2.1 Implementation for normal conditions

In normal operating conditions, K̄Q can be estimated directly from the KQ

estimation scheme in (5.26) using an appropriately low gain k0. Alternatively,
the load torque observer in (5.7) and K̂Q calculation in (5.17) can be used, and
K̄Q taken as an average value of K̂Q over a time interval T :

K̄Q(t) =
1

T

Z t

t−T
K̂Q(τ)dτ. (G.41)

K̄T can then be calculated from K̄Q using (2.48) by:

K̄T = atK̄Q + bt. (G.42)

Remark G.4 The prevailing thrust coefficient K̄T can only be calculated with
reasonable accuracy for an open propeller, due to the limitations of the KT −KQ

relationship in (2.48).

G.2.2 Extension to extreme conditions

A possible useful application of K̄Q is ventilation detection during transit. This
problem was discussed in Section 8.2.5. If K̄Q is used to replace KQC in (5.16)
and (5.19), β̂Q will stay close to unity regardless of the vessel forward speed and
current, and be affected only by wave-frequency disturbances and ventilation.
For rejecting disturbances due to waves in K̄Q, it is sufficient to use a low

estimation gain, or equivalently average the estimate over a time period T , as
suggested in (G.41). If the propeller is subject to ventilation, however, addi-
tional measures are needed to remove the large thrust losses in the estimation
of K̄Q. If not, K̄Q would be estimated too low. In Section 6.3, a ventilation
detection scheme based on β̂Q ,which outputs a detection signal ζ ∈ {0, 1}, was
developed. This can be utilized to disable estimation during ventilation:

K̄Q = −k0c(ζ) + z,

ż = kv(ζ)
ω |ω|
I2s

(u− K̂Qω |ω|−Qf1ω),

kv(ζ) =

½
k0, for ζ = 0 (no ventilation),
0, for ζ = 1 (ventilation),

c(ζ) =

(
|ω|3
3Is

, for ζ = 0 (no ventilation),
c̄, for ζ = 1 (ventilation),

(G.43)

where the KQ estimation scheme from (5.26) has been used as a starting point,
and c̄ is the value of c(ζ) at the instant of the switch ζ : 0→ 1 (i.e. the “frozen”
value of c(ζ)).

Remark G.5 The combination of K̄Q with K̂Q to calculate β̂Q depends on
time scale separation: for the scheme to be valid, the update of K̄Q must be
much slower than the update of K̂Q.
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