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Abstract

"I:‘he work consists of two parts. The first part is a study of the model uncertainty of differ-
ent hydrodynamic models used to estimate global loads on mono hull vessels. The applied
hydrodynamic models are the linear strip theory as presented by Salvesen et al. (1970) and a
"qi;asiqmnlinear code developed at the Department of Marine Structures, Wu (1996).

“The physical and numerical hydrodynamic models are simplifications of the reality. The first
mentioned theory assumes linearity. The second theory takes into account some effects which
-are assumed to represent the major part of nonlinear contribution in an approximate manner.
A method to estimate the model uncertainty is therefore presented. For linear response, the
model uncertainty is given as the ratio between the estimated and experimental design value for
a given return period, D, as ¥p. The model uncertainty of the nonlinear theory is expressed as
. the ratio between the experimental and theoretical response amplitude in a regular wave, X.

A linear relation is detected between ¥p and the discrepancy between the predicted and mea-
sured value of the transfer function at a frequency corresponding to a decomposed wave length
equal to the ship length. An estimate of the model error for a given heading angle is expressed by
‘mean value and standard deviation. 1t 1s concluded that the long term vertical bending moment
‘is highly influenced by the model error and that it varies somewhat with the heading.

In this work there is not found any general trend indicating that the nonlinear model uncer-
tainty, y, is a function of the wave steepness, degree of nonlinearity or wave length. A relation
between the model error and the block coefficient are also examined, but the number of cases
-are too small t0 ascertain a trend. However, the study confirms that in most cases the sagging
and hogging responses are over- and underestimated respectively. The nonlinear model error
herein is determined for each vessel and might be used for similar vessel types.

For new ship types and other theoretical models, uncertainty measures found in this work will
not necessarily be applicable.

The second part is concerned with estimating the long term extreme value for a given return
veriod, let say D = 100 years. In principle, this response needs to be obtained by combining

the response in all the sea states. The response for a given sea state, specified by the significant
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wave height, H, and the peak period, T, can be obtained in the frequency domain for the lineay
response. Time domain simulation is required to obtain the nonlinear response, and long time
series is required to limit the statistical uncertainty. Especially in the latter case, it is crucial to
introduce ways to improve the efficiency in the calculation. In this work it is shown that the lon
term extremes can be estimated by comsidering only a few short term sea states. The key issue
in this approach is to identify a contour curve corresponding to an iso-density curve of the short
term sea state parameters, H; & T,. These contours are structure independent and therefore an
useful tool for the designer since they can be handed contour curves for a given return period and
further conduct the necessary analysis. And, as shown in this thesis, the number of necessary
short term analysis is limited to a few sea states.

The contour curves are established by using inverse First Order Reliability Method, IFORM. In
general, the design value established using the contour curve corresponding to a return period,
say D years, will be defined as the largest short term characteristic along the contour line.

The contour line approach is validated by complete long term analysis. As long as the response
is linear, the parameters in the weighted short term distribution are found using the appropriate
transfer functions. However, nonlinear response simulations are in the time domain. Therefore,
the long term analysis become rather complicated and time consuming. A long term analysis
based on identifying the most important sea state, defined by the coefficient of contribution,
using linear analysis is applied. An iteration procedure is thereafter used to find the nonlinear
long term extreme values. It is concluded that only a limited number of sea states is necessary
to get an acceptable estimate of the nonlinear D-year response as long as the most important
sea states are included, 4. e. the sea state with maximum coefficient of contribution.

The extreme value obtained by using long term analysis are then compared to the value of
the short term characteristic. The short term characteristic is accepted when the ratio between
the two values are approximately equal to one.

It is concluded that the design extreme value defined by the parameters in the short term
distribution and an appropriate fractile, is suitable for estimating the long term extreme value.
The necessary fractile can be determined using linear response analysis at zero forward speed
and head sea waves. This fractile is also applicable for the corresponding nonlinear analysis, i.e.
sagging and hogging.

Wave loads depend upon the routing and manoeuvring and speed limitation to reduce the
effects of heavy weather. Account of manoeuvring and speed limitation is made in a simple
way in this thesis. It is shown that the contour line approach is applicable for these events.
However, in some cases a three dimensional contour surface must be established if the effect of
speed limitation should be properly treated.
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Nomenclature

General Rules

Only the most used symbols are declared in this chapter
Symbols are generally defined where they appear in the text for the first time
Matrices and vectors are represented by bold characters

Overdots signify differentiation with respect to time

Subscripts

cubic  Cubic splines

linear Linear splines

Gen Generalised Gamma distribution
Her Hermite distribution

hog Hogging

LT Long term

maz  Maxima

R Related to random variable R
sag Sagging

fe

Superscripts

[ Linear
nl Nonlinear

Roman Letters

A Wave amplitude
A Added mass force in direction 7 due to 9
A Added mass matrix
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gl: gIR
92: G2R
H

Mot

Damping force in direction j due to

Damping matrix

Damping matrix

Block coefficient

Coefficient of contribution

Return period in years

Spreading function

Energy Content

Expected value

Probability density distribution

Cumulative distribution

Wave exciting forces and moments

Gravitational acceleration

Estimate of skewness, estimate of the skewness of B
Estimate of kurtosis, estimate of the kurtosis of 2
Wave height

Calculated transfer function

Measured transfer function

Significant wave height

Limiting significant wave height

Transfer function

Complex conjugate of H,.{.)

Number of peak periods, T,

Wave number

Number of significant wave heights, H,

Wave number vector

Hydrostatic restoring force

Length between the perpendiculars

Parameter in the Generalised Gamma distribution
Varians

Spectral moments

Spectral moments using H (w)

Scale parameter in the Rayleigh distribution
Mass matrix

Midship vertical, bending moment

Normal vector

Number of peaks in all sea states within 1D years
Number of peaks in sea state si within D years
Normal vector

Number of regular components
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Number of maxima
Number of peaks during D years

Number of sea states
Random number

Atmospheric pressure

Generalised coordinate matrix

Generalised coordinate matrix due to linear forces
Ceneralised coordinate matrix due to nonlinear forces
Probability of being above, i.c. 1—P{)

Probable extreme value of the random variable 1
Design extreme value of the random variable R
Random variable

Auto-correlation function

Parent response

Restoring force in direction j due £0 7

Restoring matrix

Normalised response

Response with return period D years

Response with return period D years when Ng; sea states are included
Sea state with (Hs, Tp)i

Fstimate of variance, estimate of the variance of R
Wave energy spectrum

Response energy spectrurml

Time

Period

Mean wave period

Peak period

Limiting peak period

Zero up-crossing period

Average zero up-crossing period

Forward speed

Standard Gaussian process

Variance

Fluid, velocity vector

Fluid, velocity vector on the point & on the body
Eigenmode matrix

Position vector

Realization

Simulated response amplitude midship for a given wave length and wave height
Measured response amplitude midship for a given wave length and wave height
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Greek Letters
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Scale parameter in the Gumbel distribution
Probability of exceedance

Probability of being below, 1.e. 1 — &
Design fractile

Scale parameter in the Weibull distribution
Wave heading

Peakedness parameter

Shape parameter in the Weibull and Generalised Gamma distribution

Skewness, skewness of R

Kurtosis, kurtosis of R

CGamma function

Dirac delta function

Location parameter in the Weibull distribution

Phase difference between the real and imaginary part of Hpe(:)
Bandwidth of the process

Wave elevation

Response

Shift parameter

Acceleration, the velocity and displacement matrices
Acceleration, the velocity and displacement in degree of freedom &
Response due to nonlinear forces

Total response

Correction factor

Correction factor for expected largest value

Design correction factor for expected largest value

Correction factor for the most probable extreme value

Design correction factor for the most probable extreme value

Scale parameter in the Generalised Gamma distribution
Wave length

Mean value, mean value of R

Location parameter in the Gumbel distribution
Standard deviation

Estimate of variance, variance of R

Density of water

Relative model error

Additive model error
Hlw)

Nondimensional additive model error, i.e. ¢ (w) =1+ % )
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DASS
DNV
FORM
Fn

¥P
IACS

Undisturbed potential due to incoming waves

n'th order, unsteady potential

First order potential due motion 7

Diffraction potential

Steady state potential

Fluid velocity potential

Ratio between measured and simulated response amplitude midship for a
given wave length and wave height |, t.e. §/y

Ratio between measured and simulated response for a given wave length
Arbitrary phase angle

1
Ratic between %}2
D

Wave frequency
Weighting function
Encounter frequency
Peak frequency

viations

Aft perpendicular

Dynamic Analysis System and Support project
Det Norske Veritas

First Order Reliability Method

Froude number, i.e. —£
V9Lpp

Fore perpendicular
International Association of Classification Socicties

IFORM  inverse First Order Reliability Method

ITTC
LAMP

International Towing Tank Conference
Large Amplitude Motion Program

LANWIL Linear And Nonlinear Wave Induced Loads program

LRNM
MIT
NKK

Linear Response Nonlinear Maxima,
Massachusetts Institute of Technology
Nippon Kokan Co., Ltd.

NV1418  Norske Veritas program number 1418

SHI

. SORM
BRI

o SWAN
COTMIT

VERES

Sumitomo Heavy Industries

Second Order Reliability Method
Ship Research Institute

Ship Wave ANalysis program

TIme domain analysis program, MIT
VEssel RESponse program
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176 1 Background

77 Accurate prediction of wave-induced ship motions, hydrodynamic loads and the resulting struc-
179 ral response is of crucial importance in ship design. The severe motion can limit operability,

act serviceability as well as safety. The extreme loads may cause structural failure due to

181 atigue and fracture, e.g. Watanabe and Ohtsubo (1998). Furthermore, the importance of ac-
181 -urate prediction of the motions, loads and structural response become increasingly important

with the advent of novel ship design and more demanding operational requirements.

183

Safety requirements to ship hulls are specified in Ship Rules issued by Classification Societies who
185 rmonise their rules through the International Association of Classification Societies, IACS, e.g.
Nitta‘et al. (1992). Traditionally, the rule book approach is applied in the design of ships. The

1 . .
87 book approach meet well the busy designers’ need and preference for rules which are simple

191 to use. They do not yet provide means, for example, to quantify the effect of a proposed design
change on the subsequent safety on that design. In addition, as new designs are entering the

199 arena, the ship rules may become out-of-date since the formulae are based on data for various
ip types and would not generally be optimal for a given vessel. The variation and complexity

201 of novel hull concepts, see Fig. 1.1 & 1.2, the possible influence of structural dynamics as well as

nlinear load effect, suggest that direct calculation of the hull girder load effects are preferable
203 in'such cases.

The most common way to establish design loads by direct calculations is by means of long
~term description of the response. This require that a wide range of sea states must be analysed
‘a;_I_’ld that the fina) distribution is obtained as a weighted sum of these sea states. In addition,

formation about routes and operational profiles must be obtained. If linear response analysis
are-conducted, the response in a given sea state is defined by the transfer function, while time
lomain simulations are in general required to obtain the nonlinear response. This leads to time
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Figure 1.1: Super liner for 1500 passengers. (The illustration is down loaded from the Kverner
web server at www. kvaerner. com/ship/masa-yards/.)

consuming analysis. The long term anal
of view, since a large number of long,

the nonlinear design loads. A more off
term design values is therefore wanted.
implemented into simulation programs 1
a set of defined criteria, e.g. accuracy,

ysis become rather impractical from the designers point
time domain simulation must be conducted to estimate
cient and practical feasible method to estimate the long
But first, suitable ship motion and loads theories to be
nust be evaluated. The final choice should be based on
computer capacity and economy and level-of-learning.

For the past two decades, significant effort have been devoted to study the nonlinear hydrody-
namics. Three-dimensional time-domain theory have been implemented, e.g. Lin et al. (1994),
Kring et al. {1996), into the program packages SWAN, Vada and Helmers (1992) and LAMP,
Lin et al. (1996), respectively. Both ship motions and incident waves are assumed to be large
and the free surface condition have been satisfied on the incident wave surface. However, the
three dimensional theory do not enjoy the same success as the linear strip theory. This is partly
due to the difficulties in the theory and the implementation. The main reason is the requirement
of tremendous computer power. The LAMP system mentioned in Lin et al. (1994), offer an op-

portunity to use simpler codes as a, filtering mechanism for more accurate and power demanding
theories.

Simplified approaches has emerged at the expense of accuracy,
(1980}, Wu and Moan (1996), Wu et al. (1996).
strip theory and a nonlinear modification of the hydrodynamic forces. That is they are quasi-

nonlinear theories. Simulation programs applying the fore mentioned theories are i.e. NV1418,
Appendix A.1.3, and LANWIL, Appendix A.1.2, respectively.

e.g. Borresen and Tellsgird
These theories use a combination of linear

The ship-wave problem was traditionally formulated in the fre

quency domain assurning smail
ship motions and waves. VERES, mentioned in Fathi (1997)

, 18 a simulation program based
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1.1. BACKGROUND 3

Figure 1.2: Fast cargo trimaran. (The illustration is down loaded from the Kvarner web server
ot www.kvaerner.com/ship /masa-yards/.)

on linear, strip theory formulations. Two different theories are implemented,- namely the con-
ventional strip theory and the high-speed strip theory, Salvesen et al. (1970), Faltinsen and
Zhao (1991). The linear frequency domain programs have been successful in many ways, 7.¢e. in
estimating the wave induced loads for conventional ships. However, the linearity assumptions of
small ship motions relative to the wave surface is violated at the fore quarter of the ship even
in moderate sea states. In addition, the flare will introduce significant nonlinear effects in the
region. Even though heave and pitch may be well predicted by lincar theory, the hull girder
loads will be affected by the nonlinear effects. An overview of existing nonlinear hydrodynamic
theories is presented in Beck and Faltinsen (1999).

The choice of the hydrodynamic theory to be used in direct calculation of design loads, will
naturally depend on the the designers’ level of learning, the wanted accuracy, available com-
puter capacity and of course, the economy plays an important role. The needed simulation
time may be reduced by a factor 5 by using a supercomputer instead of a work station, Lin
et al. (1994). In addition the simulation time will depend on the complexity of the theoretical
formulation. Roughly, the time requirement is proportional to N2, where N3p is total number
of elements, for a 3-dimensional theory. The time is proportional to N2, * S for a 2-dimensional
theory, where Nap is the number of elements for each strip and S is the number of strips. A
23-dimensional theory will require time somewhere in between the two fore mentioned formula-
tions. In the time domain, the required time will be proportional to the number of time steps,
Hoff (1999). In Lin et al. (1994) it is pointed out that a fully nonlinear formulation require as
much as 6000 longer time to simulate a realization of one minute compared to a lnear, strip
theory analysis in frequency domain.

¥or most practical purposes, it is in general not feasible to apply the most complex theoret-
ical formulations in direct calculation of design loads. This is based on that use require a certain
level of knowledge, and that the simulation programs themselves are expensive. In addition,
extensive investments must be made to install the powerful computers needed to be able to
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conduct the simulations within reasonable time. Therefore, the more simpler theoretical formu-
lations are in general applied, i.¢. linear and nonlinear strip theories. These are easy to use and
reasonably fast with personal computer.

The hydrodynamic theor
tain d i

compared. tHowever, in order to obtain an optimal design it is important to quantify the
uncertainty related to the design process. Roughly, the contributing error sources can be related
to

e theoretical limitations

¢ modelling of seas

21th ITTC (1996) presents an overview of studies on uncertainty analysis and validation of
numerical sea keeping methods. A systematic work has been conducted throughout the vears
by C. Guedes Soares starting with Soares (1984) where he studied the model uncertainty of
standard methods for predicting the wave induced loads both in connection with short- and long
term statistics. In Soares ( 1986) modelling of the wave environment was treated and later he also
studied the uncertainty in wave climatology and the effect on ship responses in Soares and Moan
(1987), Soares and Viana (1988). Soares (1991) treated the transfer function uncertainty and its
effect on short term responses. The effect of wave climate modelling on long term response was
studied in Soares and Moan (1991), Soares and Trovio (1991). Faltinsen and Svensen (1990}
studied the uncertainty in linear, strip theory related to human, numerical and physical errors.
They were concentrating on heave and pitch motion.

1.2 Objective

A purpose of this thesis is to achieve an overview of existing hydrodynamic thearies used to
stimate global loads on monohyl] vessels. Theories which are incorporated in numerical codes

simplified method should account for the long term variation of the sea and use direct calcula-
tion based of the chosen hydrodynamic theories. Refined methods will be used for validating
the simplified method to be used in practical design. The simplified method should account for
probabilistic as well as nonlinear character of the load effect.

An important aspect is that the simplified method should be practical feasible and simple to
use. This will also affect the choice of the theoretical formulation of the ship-wave problem.
Determination of the hydrodynamic loads will be based on state-of-the-art methods, however
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e should be easy to use, reasonably fast and inexpensive (relatively). The final

choice will naturally be a golden middle course of the mentioned criteria.

tudies applying the simplified method in particular cases will be presented.

Some cases S

1.3 Organisation of the Thesis

A brief discussion of ship motion and load theories are given in Ch. 2. A linear and -nonlinear
strip theory implemented in simulation programs chosen for the further study, are discussed.

Other possible simulation programs are presented in Appendix A.

Ch. 3 contains the applied probabilistic theory. Basic theory is briefly discussed. Short term and
extreme value statistics are presented. Particular attention has been paid to long term statistics.

Operational restrictions is briefly touched.

In Ch. 4 the model uncertainty problem is treated. Theoretical limitations, Chap. 4.2, and
been under discussion. Model uncertainty of the linear strip

experimental errors, Sect. 4.7, have
s model uncertainty regarding the nonlinear model is

theory is given in Sect. 4.3 - 4.5, wherea
treated in Sect. 4.0.

A simplified method used to find the long term extreme values for the vertical bending mo-
ment midship, based on the contour line concept is fully described and discussed in Chap. 5.
Both the linear and nonlinear ship motion and 1oad theories have been used in the analysis, see

Chap. 5.3 and 5.4.

Two case studies are conducted using the results in Ch. 5. The studies are given in Ch. 6
and 7. Finally, main conclusions and suggestions for further work are presented in Ch. 8.

1.4 Contributions of the Thesis

There are two main contributions in this thesis, The first is a study on the model uncertainty of
different hydrodynamic theories. A new formulation of the model error of the transfer function
is presented. The model error is further investigated and applied to find the uncertainty of the
estimated hundred year vertical midship bending moment on monohull vessels. The trends of the
model uncertainty of nonlinear theory are investigated in order to look for particular behaviour
with regard to wave steepness, wave length, degree of nonlinearity in the response and block

coefficient.

The second contribution is a simplified method to estimate the design joads, i.¢. global loads on
monohull vessels. The simplified method is based on the contour line concept, which previously
has been applied on floating offshore structures. However, in this work the method has been
tested on vessels with forward speed, and suitable short term characteristics to be used with the
contour line have been found. Its applicability has also been tested for varying forward speed,
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and when operability restriction is considered.

The simplified method has been verified with refined methods, i.e. long term analysis. The long
term response is obtained by combining the response in all sea states. This is rather straightfor-
ward for linear response, since the analysis can be conducted in the frequency domain. However,
time domain analysis is required to obtain the nonlinear response. It is therefore crucial to
improve the efficiency in the calculation. In this thesis, it is demonstrated that the long term
extremes can be obtained by considering only a few short term sea states.

The main contributions of the thesis are found in the following chapters:

e Sect. 4.3.2 contains a new formulation of the model error of the transfer function as a
function of the frequency.

e Sect. 4.4.2 contains sensitivity analysis of the model error. Influence of the difference
frequency areas is investigated.

e Sect. 4.4.1 and 4.4.3 contain different analysis using the model ervor.

e Sect. 4.5.1 contains generalisation of the model error. A relation between the uncertainty
in the hundred year value of the vertical midship bending moment and the dimensionless
model error is established.

e Sect. 4.6.2 - 4.6.3 contain investigation of the trends of the model error of nonlinear
response given as the ratio of the experimental and predicted value of a regular wave.

e Sect. 5.3.1 - 5.3.4 contain verification of the applicahility of the contour line approach on
monohull vessels with forward speed and different wave headings. Appropriate short term
characteristics are tested and suitable design fractiles and correction factors are found and
presented.

e Sect. 5.3.5 contains a theory about relation between the trend of the comrection fac-
tor/fractile and the location of the maximum coefficient of contribution to the exceedance
probability.

e Sect. 5.4.5 - 5.4.6 contain a procedure used to improve the efficiency of long term analysis
of nonlinear load response analysis. The procedure is based on using a combination of
linear frequency domain analysis and nonlinear time domain analysis.

e Sect. 5.4.7 contains calculation of long term nonlinear extremes using the simplified meth-
ods, i.e. contour line concept and the short term extreme characteristic, design extreme
value.

e Ch. 6 contains a case study on the use of the contour line approach on a monohull vessel
with varying forward speed. Only linear load analysis is performed. The results are also
presented in Haver et al. (1998a) , Haver et al. {1998Db) .

.
.
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o Ch. 7 contains a case study on the use of the contour lines or a monchull vessel when
operational restrictions is taken into account and the forward speed is kept constant. Both
finear and nonlinear load response analysis are conducted.




CHAPTER 2

Ship Motion and Load Theories

2.1 Introduction

Accurate prediction of the wave-induced ship motions, hydrodynamic loads and the resulting
structural response is of crucial importance in ship design. Severe motion can limit operability,
affect serviceability as well as safety. Extreme loads may cause structural failure due to buckling,
collapse and fracture.

The advances in computational ship hydrodynamics over the last decade have resulted in increas-
ingly accurate methods for predicting ship motions, loads and structural response. Especially
the use of the codes has been improved over the last years due to the development of the mod-
ern computers. As a result of these developments, a new level of computational capability is
emerging for prediction of the wave-induced ship motions, hydrodynamic loads and structural
responses.

In traditional ship design the ship motions, the hydrodynamic forces and the structural re-
sponse are evaluated in the frequency domain using some sort of potential theory formulation.
There are both two and three dimensional theories. A two and a half dimensional theory, 7.e.
two dimensional body boundary conditions and three dimensional free surface conditions, has
also been developed. Among these, it is the 2D theory which has gained most popularity as it
offers an efficient tool for solving the ship wave problem. In particular the conventional strip
theory, also known as the linear strip theory once presented by Salvesen et al. (1970} back in
the 1970’s, has attained a unique reputation. The linear strip theory has been widely used the
past few decades due to its simplicity and accurate prediction of wave induced ship motions and
global loads.

The following is an introduction to the theories applied in this thesis. First, the fully, non-
linear problem will be defined. The assumptions leading to the simplified linear, strip theory

9
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will be pointed out. The basic assumptions and hydrodynamic theory given in Salvesen et al.
(1970) will be presented. The theory is implemented in the program VERES, Fathi (1997).
In addition, simplified nonlinear corrections, Wu and Moan (1996}, as extension to the linear
theory are described. The nonlinear corrections are implemented in the nonlinear, strip theory
code LANWIL, Wu and Moan (1996}.

The software packages VERES, Fathi (1997), and LANWIL, Wu and Moan (1996}, will be
used in this work. The theoretical background will be presented in the following chapters.

2.2 Complete Hydrodynamic Problem

2.2.1 Coordinate system

Let {z,y, z) be a right-handed coordinate system with respect to the mean position of the ship
with the z-axis pointing vertically upwards through the centre of gravity of the ship. z is pointing
towards the stern. The body is moving with a constant velocity, U/, in the negative 2-direction
with heading, 5. The other coordinate system, (g, vo, 20), is fixed in space. Let the translatory
and rotational displacement in the z,y and z-direction be 1;,72,73,04,75 and 7 respectively. The
coordinate system and the definition of the translatory and the rotational displacement are given
in figure 2.1.

Figure 2.1: Sign conventions and definitions of coordinate axis.

2.2.2 Fluid Velocity Potential
Let the fluid velocity potential be defined as

& = Ux + dg(x) + ¢'(z, 1) + ¢*(,t) + .. + ¢"(x, 1) (2.1}

where Uz and ¢g is the steady state solution describing the steady flow and, the steady flow
pattern created around the ship respectively. ¢ is the first order unsteady potential containing
the first order velocity potential ¢g due to the incoming, undisturbed wave and other first order,
unsteady potentials. ¢?...¢" are the second,..,n’th order unsteady potentials.
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2.2.3 ldeal Fluid

The fluid is assumed to be irrotational, inviscid and incompressible. The fluid velocity vector,

V(x,t), can be described by the fluid potential, @, at time, t, and the point, {z,y, z), as
Vix,t) = VE{x,t) (2.2}

The fluid is irrotational when V x V = (, in the fluid domain. The incompressibility, V-V = 0,

requires that the velocity potential is the fluid has to be a solution of the Laplace equation

Ve =0 (2.3)

2.2.4 Pressure in the Fluid

From the Bernoulli’s equation, one may find the pressure as, e.g. Newman {1977);

e 1
P= —-,0(5{ -+ ~2~V‘I> VO + gz) + 9o (2.4)

when the atmospheric pressure is assumed to be independent of the position on the free surface.

2.2.5 Free Surface Condition

The exact free surface condition is applied on the surface, z = ¢, is given as, e.g. Newman {1977);

e aP ad 1

e b g— +2VD - V— + VO . V(VP - V) = 2.5

Bt2+gaz+v 8t+2 ( ) =0 (2:)
This conditions is achieved by requiring that the substantial derivative of the pressure, _Q,(ng_m_)‘
is zero on the surface, i.e. from the dynamic condition. The expression for the free surface, ¢ is

obtained from Eq. 2.4 giving

1 1

2.2.6 Additional Condition

The body boundary condition on the wetted surface of the body is given as, e.g. Faltinsen ( 1990);

n-V® =V, n on St) (2.7}

where S,(t) is the exact position on the ship surface pointing out in the fluid domain and V; (a,1)
is the fluid velocity at the point = on the body. In addition to the body boundary condition,
the fluid motion caused by the body will go to zero far away from the body. That means the
fluid motions in the far field will tend to those of the free stream and the undisturbed incident
wave;

V® = Ui+ Vdolz,t) for j&| = —oc0,t < 00 {2.8)
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2.3 Linear strip theory

2.3.1 Linearization

In order to make progress towards a linear solution, both the free surface condition, the body
boundary condition and the Bernoulli equation will be linearized. The total velocity potential
in the ship fixed reference frame, z, is given as

C = Uz + ¢s(x) + ¢* (2, 1) (2.9)

That is only the steady state solution, Uz + ¢g(a), and the first order unsteady potential in-
cluding the first order velocity potential ¢ due to the incoming, undisturbed wave are taken
into account. In addition it is assumed that the hull geometry is slender so that the steady
perturbation potential ¢s is small. Assuming that the unsteady motion is small implies that
also ¢' and its derivatives will be small, Sect. 2.3.4. Thus, higher-order term of ¢5 and ¢' and
cross products of the two will be neglected. Physically this mean that there is no interaction
between the steady and unsteady wave systems. And that the free surface waves created by the
steady potential has no effect on the motions and wave loads.

In order to reduce the problem from three to two dimensions it is necessary to assume that
the frequency is relatively high, Sect. 2.3.3. This implies that the classical free surface condi-
tion with forward speed, see Eq. 97 page 364 Newman (1977), is simplified to Eq. 2.10. An
approximation of the three dimensional result may be obtained by solving the hydrodynamic
‘ problem at each strip and integrating along the length of the hull to get the three dimensional
3 solution, see Fig. 2.2 for an illustration. Then the two dimensional, unsteady problem that must
; be solved at each strip is given by the two dimensional Laplace equation, the linearized body
boundary condition and the free surface condition, see Salvesen et al. (1970) for details.

Figure 2.2: Splitting up the vessel for strip theory calculation.
The free surface condition is given as

[(%) -{-g%} Sz, t) =0onz=0 (2.10)

The linearized pressure is given as
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_ 6 a 1
p= Mp(ég + U%)«:ﬂﬁ (z,1) (2.11)

In the following three chapters, the consequences of the three basic assumptions in the linear,
strip theory will be pointed out and discussed in view of other theories.

2.3.2 1Ideal Fluid

It is assumed that the fluid is homogeneous, irrotational, non-viscous and incompressible. Since
the viscous effects are neglected it means that the only damping considered is the hydrody-
namic damping due to energy loss when free swface-waves are generated, t.e. wave radition.
This assumption is justified for vertical motions, heave and pitch, where the viscous damping is
very small. On the other hand, the roll motion is significantly affected by the viscous damping.
The amplitude of the roll motion can only be reasonable computed in the resonance area if one
take into consideration the viscous damping. In general, the viscous roll damping is taken into
account using empirical formulas.

In the strip theory program VERES, Fathi (1997}, three different components of the viscous
damping, i.e. frictional roll damping, eddy damping and bilge keel damping are taken into ac-
count. Fig. 2.3 shows the theoretical and experimental data for the roll amplitude of a cylinder
with rectangular cross sectionwhen both wave and viscous damping and only wave damping
are included. One may notice that the viscous effect significantly affects the roll amplitude at
resonance. ’

Other contributions to damping are structural damping and hydrodynamic damping due to
forward speed. None of these contribution to the damping will be important as long as the
dynamic amplification of the hull is not taken into account, i.e. the hull is rigid. In Wu and
Moan (1996) an example is presented to show the effect of the hydrodynamic damping due to
forward speed for an elastic ship, structural damping is omitted, relative to a static analysis
(rigid ship), see Fig. 2.4. One may notice that the damping due to wave radiation dies out very
quickly for high frequencies, but the damping due to forward speed is not reduced.

2.3.3 High Frequency

In order to reduce the problem from three to two dimensions, it is assumed that the frequency is
relatively high. In addition, one has to assume that the variation of the flow in the cross-sectional
direction is much larger than in the longitudinal direction. One result of this simplification is
that the method is more applicable in head than following seas.

The 16th International Towing Tank Conference, ITTC, reports that there is substantial dis-
agreement between experimental and calculated results for the vertical wave loads in following
seas (ITTC container ship ship S-175). This is may be due to the low encounter {requency.
Another result is that the generated unsteady waves are propagating in directions perpendicular
to the center plane of the vessel. The real wave picture is far more complex. At high Froude
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Figure 2.4: Transfer function of the madship bending moment at Fn = (.52, with structural
damping omitted. All values are made dimensionless by the ship length, L,,, the mass density
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and Moan (1996).

numbers divergent wave systems occur. This indicates that the strip theory is a low Froude

number theory. The forward speed limitation is the most severe restriction for n

aval applica-
tions.
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Salvesen (1981) presents comparisons between strip theory and a three dimensional theory de-
veloped by Chang (1977). He solves the complete three dimensional hydrodynamic problem
by distributing Gireen’s function over the wetted surface of the body, and satisfies correctly all
forward speeds. Some computations of the added mass and damping coefficients for the Series
60 model with with block coefficient Cj = 0.70, are presented. Chang’s method agree well with
the experimental data throughout the frequency range while the strip theory agree well in the
high frequency area.

Fig. 2.5 shows a comparison between strip theory, three dimensional theory and experimental
data for the vertical midship bending moment for the Series 60 model, with Cp = .70. There
are some differences between the results in the low frequency area, but in the high frequency
area there is quite good agreement for both experimental results and numerical simulations. The
sumerical three dimensional simulation is conducted with the program system Lamp, Lin et al.
(1996) and see Appendix A.2.4.
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Figure 2.5: Vertical bending moment midship for the Series 60 model, Gy = 0.70. Comparisons of
linear theories and experimental results, Lin et al. (1994). BM is the vertical bending moment
midship, a is the wave amplitude and L = L,,. The ezperuments are condcuted with o wave
steepness 2a/X = 1/50.

Faltinsen and Zhao (1991) presented a method to analyse any type of slender, high-speed vessel
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in waves. This is a modification of the strip theory which accounts for the interaction upstreamn.
It is therefore denoted as a 27 dimensional theory, i.e. two dimensional body boundary conditions
and three dimensional free surface conditions. The problem is solved by a stepping procedure
starting at the bow. The diverging waves, which is not included in the strip theory, is now
taken care of with only a small jncrease in the computational costs. Total forces are obtained
by integrating the cross-sectional, two-dimensional forces over the ship length.

2.3.4 Small Waves

The basic assumption of linear theory is that the wave-amplitudes are assumed to be small
relative to some characteristic dimension of the vessel, i.e. draft. The unsteady responses are
then equivalently small. Due to the linearity assumption there are only hydrodynamic effects of
the hull under the mean free surface. Therefore, the strip theory does not distinguish between
alternative hull forms above the mean free surface. Consequently, the above-water hull form
should be wall sided to get optimal results.

The linearity assumption of small ship motions relative to the wave surface is violated at the fore
quarter of the ship even in moderate sea states. This can be seen in Fig. 2.6 which illustrates the
bow motion of a destroyer in a sinusoidal wave with A=1.20Ly, and £ = 0.013. The flare will
introduce significant nonlinear effects in the bow region, even though heave and pitch may be
well predicted by linear theory. This presides that the calculated results are violated in high sea
states where slamming and green water on deck occur, Wu and Moan (1996}, Wa et al. (1996),
Sagli et al. (1997). The second order effects will affect the sagging and hogging moment in both
frequency and amplitude,

Figure 2.6: Destroyer hull in sinusoidal wave, A = 1.20L and i} = 0.013. Salvesen (1981)

The effect due to nonlinearity is exemplified in Fig. 2.7 showing comparisons of linear and non-
linear vertical bending moment midship for the reefer vessel. The numerical results are obtained
using the three dimensional program SWAN with nonlinear correction for the hydrostatics and
the Froude-Krylov forces, see Appendix A.2.3. Simplified nonlinear results are found by using the
nonlinear strip theories implemented in the simulation program NV1418, Bprresen and Tellsgard
(1980} & Appendix A.1.3, and Lanwil, Wu and Moan (1996) & Appendix A.1.2. Included are
also some experimental results, Korbijn (1991), and results from ordinary strip theory are shown
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Figure 2.7: Midship bending moment for the reefer vessel versus the wave amplitude for A/ Ly, =
1.0 at drafts 8.0m and 11.4m. Both linear and nonlinear simulations results are included.

by continnous lines. Numerical results from SWAN and NV1418 are taken from Kring et al.
{1996). The figure shows that there are relatively large nonlinear effects for the sagging- and
hogging moments.

2.4 Equation of motion

Assuming that the unsteady responses are small one may, as already mentioned, linearise the
problem. The governing equation of the unsteady ship wave problem can be written as

(M+A)fj+ B+ Ry =F (2.12)

where M is the mass matrix. A, B and R are the added mass, the linear damping and the
hydrostatic restoring matrix respectively. F are the complex amplitudes of the wave exciting
forces and moments. 7}, 77 and 17 are the acceleration, the velocity and displacement matrices.

The degree of complexity in the structural analysis depends mainly on whether it is neces-
sary to include a dynamic hull response analysis or not. The next question is if it is necessary
to include this as a part of the ship motion analysis.

Most existing theories treat the ship as rigid. Since, the dynamic analysis can be performed
separately after the ship motion analysis is conducted, it is in general sufficient to assume the
ship to be rigid. However, there are two main instances where the ship should be modelled as
a flexible beam and the ship structural loads should be an integrated part of the ship motion
analysis, i.e.
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e if the encounter frequencies synchronise with the lowest natural modes of frequencies of
the ship hull, the phenomenon of flexible hull vibration known as springing may occur

o if the response due to slamming is to be examined and the ship is so small that the motions
are significantly affected by slamming

Wu and Moan (1996) presents a hydroelastic strip theory for both low- and high speed vessels.
The work is a modification of the conventional strip theory and the high-speed theory, Salvesen
et al. (1970) and (Faltinsen and Zhao 1991) respectively. The fiexibility of the ship is taken into
account by applying a number of dry-eigenmodes in addition to the six-rigid body modes, see
Sect. 2.5. Hermundstad (1995), Hermundstad et al, (1999) established a similar approach to
include the flexibility of catamarans in the high-speed code.

If the natural frequency coincides with the wave frequency, hydroelasticity will have a remark-
able effect on the transfer function, Fig. 2.4. However, it does not mean that the same effect
will be found in the response spectrum. This is due to the energy distribution in the wave
spectrum. In general, the vessel’s eigenfrequency is larger than the wave frequency. Increased
hydroelasticity reduces the eigenfrequency and may cause springing. The hydroelasticity will
first be of importance for moderate waves and may contribute to fatigue.

2.4.1 Added mass, damping and restoring forces and moments.

The added mass and damping forces are steady-state hydrodynamic forces caused by forced mo-
tions of the vessel when there are no incident waves. The forced motions generate outgoing waves
and dynamic pressure on the hull. When the pressure is integrated over the wetted surface of the
vessel, hydrodynamic forces which are proportional to the acceleration and velocity are obtained.

The added mass, damping and restoring forces and moments can be formally written as

thdmdynamic,j = - _1}.77A - Bjkﬁic - Rjk.??k (213)

where the added mass and damping coefficients are given as

: d
Ay = _;% {f/é (zw + U%) qbknjds} (2.14)
lec = 5(\\9 {[fs (zw -+ Ué%) qﬁmjds} (215)

The added mass and damping coefficients are found by solving the 2D boundary value problem
for each section along the ship and integrating the results over the length, Salvesen et al, (1970).
As already mentioned, the applicability of the strip theory approach is dependent on relatively
high frequencies and a high length to beam ratio. The strip theory neglects the interaction
between the sections. An example on the influence of the three dimensional effects can be found
in Faltinsen {1979). For instance, when the length to beam ratio of a spheroid in infinite fluid is
5, the three dimensional added mass in heave is 90% of the two dimensional result. The added
moment in pitch or yaw is found to be 70% of the two dimensional results.
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There are different ways to compute these two dimensional hydrodynamic quantities. For very
simple cross sections, .e. circular cylinder, analytical solution exist. For more arbitrary cross
sections, numerical techniques must be used. The most common numerical techniques are, see

Fig. 2.5
e Frank close-fit source distribution method

e Lewis-form method

Tn the first method the section is represented by a numbex of straight segments. The potential is
obtained by distributing pulsating source singularities with constant strength over each segment
(2D sink and source method). The Frank close-fit method is time-consuming and in addition the
method breaks down at an infinite number of discrete frequencies (irregular frequencies). How-
ever, this is a mathematical problem and may be circumvented by using different techniques.
The advantage of this method is that it can be applied to any cross-sectional shape. Using the
Lewis form method, the geometrical shape is mathematically represented by the Lewis form with
the same beam, draft and area as the given section, but not necessarily the actual shape of the
given section. This method is fast and quite accurate for common ship section, but can not be
used on sections with large bulb or with a very small sectional area. The advantage is that it is
a very fast method relative to the Frank close-fit method.

Lewis-form method Franck close-fit method

Known analytical Conformal Direct numerical
solution + mappimg solution

Known solution
transformed back

Figure 2.8: Calculation methods for two dimenstonal ship sections.
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As already mentioned, the linear strip theory does not distinguish between alternative hull form
above the mean free surface. In the case of large waves and motion, nonlinearities are introduced
in the problem. Lin et al. (1994) and Kring et al. (1996) took into account the nonlinearities
in the hydrodynamic forces by satisfying the body boundary condition on the instantaneous
position and integrating the pressure below the undisturbed incident free surface. Since their
methods are fully nonlinear one can not find the added mass and damping separately, since it is
solved as one large problem:.

However, there are several approximate methods. Jensen and Pedersen (1979) and Wu and
Moan (1996) took into account second order modifications of the added mass and damping. Wu
and Moan (1996) did the corrections for the added mass at high frequency (¢ — 0), see Sect.
2.5. In Jensen and Pedersen (1979) the added mass and damping is Taylor expanded about

Z =0, where Z is the relative displacement, to the first order (m(z,t) = m(0,z) + 2‘%’;—‘ 50

In most cases, the nonlinear corrections tend to increase sagging moments and decrease the
hogging moment. However, the nonlinear modification of the added mass and its derivative
may in some cases give the opposite results, i.e. the sagging moment is reduced and whereas
the hogging moment increases, Sagli et al. {1997). One should remember that the nonlinear
hydrodynamic force is a function of the total relative displacement, velocity and acceleration.
‘Therefore the nonlinear response to all those components does not equal the superposition of
the nonlinear response by applying the components individually.

The restoring forces are independent of the velocity potential and the only influencing factors
are the geometry and the mass distribution. The restoring forces follow directly from hydrostatic
considerations,

2.4.2 Exciting forces and moments

The exciting forces and moments are the forces and moments acting upon the vessel when the
vessel is restrained from moving and there are incident waves present. The exciting forces and
moments can be divided into two groups:

1. The forces and moments due to the undisturbed waves causing the undisturbed pressure
field is called Froude-Krylov forces.

2. The presence of the vessel cause a disturbance in the pressure field. The forces due to this
disturbed pressure field are called diffraction forces. The forces are found in a similar way
as the added mass and damping forces; i.e to solve a 2D boundary value problem for each
section and integrate the results over the wetted length of the body.

Formally the exciting forces can be written as

3}
Femciting,j - p/[g (3&) -+ U%) (Qbﬂ -+ ¢D)d$ (216)

where ¢g is the undisturbed wave potential and ¢p is the potential due to the diffracted waves.
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The nonlinearity in the exciting forces and moments can be included in similar ways as for
the added mass and damping mentioned above. The Froude-Krylov force is always exactly
included, since this force is caused by the undisturbed pressure field. In Jensen and Pedersen
(1979) the nonlinearity of the free surface are taken into account by using a perturbation method.
The hydrodynamic pressure due to the incoming waves is integrated to the free surface. Wu and
Moan (1996) also introduce nonlinear modification of the Froude-Krylov forces at high frequency.

Using fully nonlinear methods, both Froude-Krylov and the diffraction forces may be inciuded
is a consistent manner. However, the nonlinear Froude-Krylov and restoring forces are in some
cases included as an extension of the linear method. This is done i.¢. in the LAMP Code, Lin
et al. (1994) and Appendix A.2.4. LAMP — 2, see Table 2.1, is based on three dimensional
linear hydrodynamic, but nonlinear restoring and Froude-Krylov forces are included. The reason
for developing this simplified code is that it drastically reduces the need for computer resources.

2.5 Extension to a simplified nonlinear, strip theory

An efficient method to determine the hull girder wave response in head sea waves considering
hoth nonlinear hydrodynamic and possible structural dynamic effects are presented in Wu and
Moan (1996). The total response is decomposed into linear and nonlinear parts. The linear part
is evaluated by using linear, strip theory as presented in Sect. 2.3. The nonlinear part comes
from the convolution of the impulse response function of the linear ship-fluid system and the
nonlinear modifications of added mass, damping, restoring and wave forces. The global dynam-
ics are taken into account by using modal analysis. The method for for both high and slow speed
vessels are described in Wu and Moan (1996). Validation based on a model test is presented in
Wu et al. (1996). A short overview will be presented in the following.

The method is based on the following assumptions

e The nonlinearity comes from the large ship motions in heave and pitch while the structural
deformation remains small.

¢ The incident waves can be described sufficiently by linear wave theory.

e The influence of ship motion on the incident wave elevation is negligible

The theory is implemented in the nonlinear, strip theory program LANWIL, see Appendix A.1.2.

2.5.1 Equation of motion

The equation of motion of the ship structure in the vertical direction per unit length can be
written as

m(2)i(z, 1) + c{a)w(z, t) + k(ziw(x, t) = Flz,t) (2.17)

where m(z), c(z) and k(z) are the structural mass, the structural damping and the structural
stiffness respectively. F(t) is the external nonlinear forces, acting on the ship and w{z,#) is the




29 CHAPTER 2. SHIP MOTION AND LOAD THEORIES

unknown vertical displacement.
The vertical displacements may be approximated by an aggregate of the s lowest dry eigen-

modes, wy(x) k=1, .., s including heave and pitch which are the dominant parts. w(z,t) is
given as

wlz, 1) =Y wy(x)py(t) = wip (2.18)
k==l
in which pi.(t} are the unknown generalised coordinates.

The vertical force per unit length exerted by the fluid on the ship hull at position z can be
written as, e.g. Faltinsen (1990);

Fz,t) = _f)l?; {ﬁz(’zz‘)g%?ﬂJ + flz,t) (2.19)

where 7(z, ¢) is the double-body added mass (or high-frequency added mass) of the submerged
cross section. f{z,t) consists of the Froude-Krylov force and the hydrostatic restoring force
per unit length on the instantaneous wetted surface. D/ Dt represents the total derivative with
respect to time, 1;

D 5} 7]
DiT 5 + Ué_a_? (2.20)

and {(z,t) = w(z, )~ ((z,t) is the vertical displacement of the ship hull relative to wave surface.

2.5.2 Matrix Formulation

Inserting Eq. 2.18 into Eq. 2.17 gives

m(z)W'B + o(2)wTp -+ k{z)wTp = Fz,t) (2.21)

Maltiplying Eq. 2.21 by the eigenmode matrix ,w, and integrating over the length of the huli,
Langen and Sighjérnsen (1979), gives

(M + Ao)B(t) + (C + Bo)p(t) + (K + Ro)p(t) = F(2) (2.22)

M, C and K are the generalised structural mass, damping and stiffness matrices of the ship hull.
Ao, By and Ry are the generalised linear fluid added mass, damping and restoring matrices. F(z)
is the generalised wave force vector. The wave forces are separated into a linear and nonlinear
part, i.e.

F(t) = Fy(t) + P (2) (2.23)

where F(t) is the linear excitation forces. The terms in the nonlinear component F,, (¢) will be
described in the following.
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2.5.3 Nonlinear Forces

The nonlinear effect has been put into the generalized force vector Fn(t) which contains the
following terms

Fu(t) = Fip(t) + For () + Fap(t) + Fap{t) k= 1,2, .8 (2.24)
where
Fig(t) = - /L wk(m)%‘é?t) Di()‘i’t) dz (2.25)

is the slamming force. The hydrodynamic forces due to the nonlinear modifications of the two
dimensional added mass and its derivatives with respect to x is given as

2 .
For(t) = w/;wk(a:) [z, t) ~ o(z, t)] %%Qdm (2.26)
Fult) = ~U fL wk(m)a[m@’t)a; ho(, 8] D 55;’”@ (2.27)
Fa(t) = — /ka(-%‘) [Q(z,t) — Qolz, 1) + bo(z)(a, 1)} dz (2.28)

They reflect to some extent the nonlinear effects in the fluid added mass, damping and diffraction
force. The last element in Eq. 2.24, Fu:(#), is the nonlinear modification of the Froude-Krylov
force and the hydrostatic restoring force. 7g(z) is the double-body added mass of the mean
submerged cross section Qo{z,t). @(z,%) is the area of the instantaneous submerged cross sec-
tion, and bg(x) 1s the beam at mean draft.

Decomposing the total generalized response, p(t), into a linear part and part which is the
response due to the nonlinear corrections gives

p(t) = pi(t) + palt) (2.29)

Eq. 2.22 can be rearranged as
(M + Ag)pi(t) + (C+ Bo)pu(t) + (K + Ro)pi(t) = TFu(t) (2.30)
(M + Ao)pa(t) + (C+ Bo)ba(t) + (K +Ra)pa(t) = Falt) (2.31)

In order to take into account the memory effect of the free swface, Ag, Bo, Ro and F; are re-
placed with the frequency dependent mass A, damping B, restoring matrix R and the frequency
dependent Froude-Krylov and diffraction force, Fpy -+ Fp, derived in lnear theory, respectively,
Wu and Moan (1996). The linear and nonlinear responses, which are the solution of these
equations, are found by applying convolution integration
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() = [ ; h(t — 1) [Fr(r) + F(r)] dr (2.32)
palt) = /_ ; h(t — 7). (7) (2.33)

where
h(t) = % /_ Z [~2 (M 4 A) + it (C + B) + (K + R)] ™ s, (2.34)

is the impulse response function matrix.

Unlike most existing nonlinear analysis procedures, this method is not confined to conventional
strip theory. The impulse response function, h(t), can be solved by employing different linear
potential-flow theories. The way the nonlinear hydrodynamic force is dealt with, implies that
although large amplitude relative motion is introduced, the memory effect of the free surface is
still treated in a linear manner, Wu and Moan (1996).

2.5.4 Rigid body

If the ship is treated as a rigid body, only the two first dry eigenmodes in Bq. 2.18 will be
included, z.e. heave and pitch. Therefore the linear part of the theory will be equivalent to the
solution of Eq. 2.12. That is the solution of the ordinary linear strip theory as discussed in Sect.
2.3. The nonlinear contribution comes from the solution of Eq. 2.33.

When the simulation program LANWIL, Appendix A.1.2, was applied in this work, numerical
problems were encountered. The nonlinear contribution from slamming, Eq. 2.25, turned out
to be sensitive to the discretization of the hull. When response in extreme, irregular sea states
was stmulated, high frequent oscillations were encountered when bottom slamming occurred. In
particular this was a problem, when bottom slamming was located in the midship region causing
large hogging responses. This could be dealt with by increasing the number of sections along the
hull. This can bee seen in Fig. 2.9, showing pieces of the time domain simulations in irregular
seas for the vertical bending moment midship on the $-175 container ship. For this specific
vessel, the result was converging as the number of sections was increased to N = 126. Increas-
ing the number of sections, did not influence the peak values of the sagging response significantly.

Naturally, the number of sections needed to get convergent results will depend on the hull form,
the length between the perpendiculars and also forward speed. Simulations conducted with a
tanker did not show any problems as indicated above. The vessel was large, Ly, = 270m, and
the motions were small. Response histories for a destroyer had equivalent numerical problems
as for the S-175 container ship. However, the deadrise angle is larger for the destroyer than the
S5-175 container ship. The S-175 container ship has a deadrise angle approximately equal to zero
and one believes that this flat bottom is a part of the problem.
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How this particular numerical instability can be dealt with in stochastic analysis is discussed in
detail in Sect. 5.4.2.

2.5 1.5
20t 1.0 +
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(a} H, =14.5m & T, = 1595 (b} Hs = 13.56m & T, = 13.70s

Figure 2.9: Vertical bending moment midship for the 8-175 container ship in head seq, irreqular
waves, Fn = 0.275

2.6 Summary

The strip theory has been presented. Its limitations have been pointed out and commented ver-
sus other existing theories for ship motions and loads. In addition a simplified nonlinear theory

have been introduced.

The ordinary strip theory is implemented in the simulation program VERES, Fathi (1997),
and the nonlinear strip theory implemented in the simulation program LANWIL, Wu and Moan
(1996). These two programs will be used throughout this work.

Other existing programs for calculation of ship motions and loads have been mentioned. More
information can be found in Appendix A. An overview of some features of existing simulation

programs is shown in Table 2.1.




respectively)

Table 2.1 Programs for calculation of sh

tp motions and loads (2 =0 and F {t) are still water surface and incident wave surface

* Method:

I

Hydrodynamic, Restoring and Froude-Krylov Forces

Domain

muiuomymmﬂnm&wq

VERES

Free Surface Boundary Conditions on Z = 0
22-D Linear Hydrodynamics

2D Linear Hydrodynamics

Linear Restoring and Froude-Krylov

frequency

no

LANWIL

Free Surface Boundary Conditions on 2 = 0
2D Large-Amplitude Hydrodynamics
Nonlinear Restoring and Froude-Krylov

time & frq

yes

NV1418

Free Surface Boundary Conditions on £ = (
2D Large-Amplitude Hydrodynamics
Nonlinear Restoring and Froude-Krylov

time

no

SWAN-1

Free Surface Boundary Conditions on 2 = 0
3D Linear Hydrodynamics
Linear Restoring and Froude-Krylov

frequency

no

SWAN-2

CHAPTER 2. SHIP MOTION AND LOAD THEORIES

Free Surface Boundary Conditions on £ (t)
3-D Large-Amplitude Hydrodynamics
Nonlinear Restoring and Froude-Krylov

time

no

LAMP - 4

Free Surface Boundary Conditions on £ (¢)
3-D Large-Amplitude Hydrodynamics
Nonlinear Restoring and Froude-Krylov

time

yes

LAMP -3

Free Surface Boundary Conditions on £ {t)
mw-v Large-Amplitude Hydrodynamics
Nonlinear Restoring and Froude-Krylov

time

no

LAMP -2

Free Surface Boundary Conditions on 2 — 0
3-D Linear Hydrodynamics
Nonlinear Restoring and Froude-Krylov

time

o

LAMP -1

Free Surface Boundary Conditions on Z = 0
3-D Linear Hydrodynamics
Linear Restoring and Froude-Krylav

time

no

26




CHAPTER 3

Probabilistic Theory

3.1 Introduction

As mentioned, in the previous chapter, two different formulations are available for numerical
solution of the ship response due to stochastic wave loads, t.e.

e frequency domain solution

e time domain solution

The frequency domain solution is significantly quicker than the time domain solution of any
useful length. For Gaussian processes the energy spectrum will give a complete description of
the statistical properties of the process. This means that all statistical values, i.e. variation,
zero-up-crossing frequency, distribution of maxima and extremes, can be found without any sta-
tistical uncertainty.

In a time domain solution, the response is given as a time record of limited length, i.e a
realization of the process. The record represents values of the underlying process at discrete
time increments and is called a time series. If a realization of the response due to a wave pro-
cess with constant parameters are divided into two halves, one will have two realizations of the
response process. The two realizations will be different and so will the statistical parameters.
Therefore, none of them can be taken as true values. The statistical uncertainty can he dealt
with by making the time series sufficiently long. Time domain analysis will require estimation
of statistical parameters, and also the ability to find uncertainties related to such estimates.

In the following sections probabilistic methods to describe the above mentioned stochastic pro-
cesses will be introduced. Some basic concepts are given. In addition short term and extreme
value statistics will be briefly mentioned. Classical long term statistic is described together with
an approximate long term method. The former includes all sea states in the scatter diagran.

27
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While the latter method uses coefficients of contribution in order to select a part of the scatter
diagram to be used in the long term analysis. This will save computing time and man-hours if
time domain solutions are applied.

3.2 Basic Concepts

In general the wind generated sea waves is a nonlinear random process. The nonlinearity is more
prominent in severe sea states. This is seen in many observation showing a large excess of high
crest to shallow troughs. Lounguet-Higgins (1963) presented the nonlinear random process as

C = Z o€ + Z Q€65 + Z L€ €5 €L (31)

where o are constants and ¢ are independent, regular components. Neglecting the higher order
terms one is left with the a linear representation of the sea surface, i.e.

(= Z%Q (3.2)

It is known that in linear theory of wind generated sea waves, the statistical distribution of
wave elevation, ¢, is normally described by the Gaussian distribution with zero mean value and
variance mg. Effects like skewness and kurtosis will therefore not be modelled. It is assumed
that the wave process is stationary within a short period of time (normally 20 minutes to 3
hours) and ergodic, 7.e. ensemble average is equal to the temporal average.

The long term, i.e. monthly to years, variation of the sea, is simply described by a sequence of
stationary, short term sea states. If sequence effects are of no importance, the long term varia-
tion 1s normally presented in a scatter diagramn showing the joint frequency of the wave spectral
parameters that completely describe each short term Gaussian process. This includes the sig-
nificant wave heights and peak periods over a period of time ranging from months to many years.

‘The wave elevation can be characterised in the frequency domain by the wave spectrum. For
long-crested sea states, 1.e. no spreading, the spectrum is a function of the wave frequency given
as S¢(w). For short crested sea state, i.e. waves are spread about the dominant wave direction,
the spectrum is given as a function of the wave frequency, w, and wave heading, g, as Selw, B)
and called a directional spectrum.

The wave spectrum can be estimated directly from the time series by mean of the auto-correlation
function, R(7), e.g. Newland (1984). For long-crested waves this relationship is given by

1 .
Se{w) = %/ R(r)exp™7 dr (3.3)

where the auto-correlation function is given as R(7) = E[({t)¢(t + 7)]. For shori-crested sea
states the expression is given as, e.g. Myrhaug (1993),

Se(w, k) = (—2;%—3—[(3[00 R(r, &) exp"i{m“k’g} drd€ (3.4)
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where & is the wave number vector given as k == {kcos 3, ksin 3. The auto-correlation function
is now given as R(€,7) = E{((a,t)( (= + £,t + 7)]. Where z is the position vector and £ is the
vectorial distance between the two actual points in the horizontal plane. 1t can be shown, e.g.
Myrhang (1993}, that the spectrum S¢{w, k) can be given as

Sel{w, k, 8) = Selw, B)o [k — sign(w)k{w)] (3.5)

which means that irregular shori-crested waves are described by adding linear waves with wave
frequencies, w, wave number, f(w), and wave heading, 8. Generally, standardised spectra are
used in statistical analysis, see Sect. 3.3.

The relation between the wave spectrum and the wave amplitude can be found in many text-
books, see e.g. Faltinsen {1990}, Myrhaug (1992), as
Aj = QS’C(wj)ij (36)

Aij = \/ZSC(wj)ijAﬁi (37)

where the expression represents the energy content in wave component number j and 7. The
total energy is given by a summation of the wave components, see Eq. 3.25 and 3.26. Aw; and
ApB; are the difference between two successive frequencies and wave headings respectively. This
leads to the next topic treating irregular wave elevation and response.

3.3 Standardised Wave Elevation Spectrum

Wave measurements indicate that the scatter diagram may be divided into three parts as shown
in Fig. 3.1, Torsethaugen {1987). Part one and three consist of swell and wind sea generated
waves, where the third part is dominated by swell. Part 2 consists purely of wind sea generated
waves and can be described by the one peaked Jonswap spectrum or the the Pierson Moskowitz
spectra which is a special case of Jonswap spectrum. The Torsethaugen spectrum, Torsethaugen
(1993), is a two-peak formulation, which includes both swell and wind generated waves. Only
the formulations of the Jonswap and Pierson Moskowitz spectrum are presented in this work.

3.3.1 The Jonswap Spectrum

The Jonswap spectrum is used to represent sea states which are fully and not fully developed.
The spectrum has a peakedness parameter, v, which determines the energy concentration around
the peak frequency, Tp. The higher value of v the more energy around the peak frequency wy,
Bishop and Price (1979).

The Jonswap spectrum is given on the form

(3.8)
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T

Figare 3.1: Different sea types in the scatter diagram.

where
o spectral parameter

wy peak frequency

7 peakedness parameter

B spectral parameter, = 1.25

0.07 ifw < w,

spectral parameter,o = { 000 ifw>w,

The relation between the spectral parameter, «, and the significant wave height, H,, the peak
period, 7}, and the peakedness parameter, -, is given as, e.g. Fathi (1997);

HQ
o= 5.0617;;(1 ~0.2871In+%) (3.9)

where the value of the peakedness parameter can be found as

0.19756T% 0.0056T,
f = exp [3.848 (1 - ——@J)J where § = 0.036 — \/f?_".q_lz (3.10)
and the limiting values for the peakedness parameter is set to

10y <70 (3.11)

The ratio between the peak period, Ty, and the zero-up crossing period is given as

12102
—;ﬂ = —{.01698y + 1.30301 + 0 (3.12)
z ¥

"I'he Pierson Moskowitz spectrum is a special case of the Jonswap spectrum with v = 1.0.
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3.3.2 Pierson Moskowitz Spectrum

The Pierson Moskowitz spectrum is given as

HET, wT,

87 (Hiﬂ_
where H, is the significant wave height and T is the zero up-crossing period. The significant
wave height is defined as the average of the one third highest waves. The zero-up crossing period
and the mean wave period is given as

Sg(w) =

T 27

)78 exp {—l(sz)"‘} (3.13)

T, = 21, | (3.14)
Mo

T = 20 (3.15)
my

where mg, M, and my are spectral moments given as

o0
My = / whSe(w)dw, n=10,1,2,3, . (3.16)
o

For this particular wave spectruim, the following relations exist between the mean wave period,
the peak period, T}, and the zero-up crossing period, T,

T, = 1.0867, (3.17)
T, = 1.4087, (3.18)

The Pierson Moskowitz spectrum is suitable for a fully developed sea state, €.g. Bishop and Price
(1979). For a given peak period and significant wave height, the Pierson Moskowitz spectrum is
identical to the Bretschneider, ISSC and I'TTC spectrum models.

3.3.3 Direction Spectrum

In short-crested waves where the waves tend to spread about the dominant wind direction,
one has to take into account the heading angle. This can be done by introducing a spreading
function, D(#). The direction spectrum is given as

Selw, 8) = S¢(w)D{B) (3.19)
Different functions has been proposed for the spreading function, but a common one is a cosine
type function, e.g. Bishop and Price (1979);

D(B) = Ancos™ 8 (3.20)
where § is —7/2 < 8 < 7w/2. Apis given as

-1 TG +1)

w2
= (ot 07 = ST

where T'() is the gamma function.

(3.21)
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3.4 Response Spectrum

The response spectrum is given as a function of the frequency of encounter and wave heading
by
S?K(we: [7)) = HWC(wew ﬁ)H;g(wmﬁ)S((We: 48) (822)

where H,.(we, 8) is the the transfer function for a given speed and heading. S¢(we, ) is the wave
direction spectrum as a function of the frequency of encounter and wave heading. 7 indicates
the response and ¢ the wave elevation. The star denotes the complex conjugate. The frequency
of encounter is given as a function of the heading angle, the wave frequency and forward speed,
U, as

2
We = w -+ g—)g—U cos f3 (3.23)

It can be shown that the moments of the response spectrum in short-crested waves for directions
between head to following sea can be written as, Hoff (1994), Tikka {1989);

ma = [ /5 el Hy (w1, B) H g (10, B) S w0, B)df s (3.24)
Q0
as opposed to Eq. 3.16 where the spectrum is multiplied with the wave frequency. For long
crested waves Eq. 3.24 is somewhat modified, i.e. the heading is dropped as a variable in the
analysis.
3.5 Generation of Time Series

A realization of limited length, can be written as a large sum of regular components, 7.¢.

Aﬂ
z(t) = Z ¢; sin(w;t — ;) (3.25)
=1

where ¢; i the amplitude determined from the energy spectrum, w; is a discrete frequency and
%; an arbitrary phase angle.

Different methods can be applied to generate time records, e.g. Langen and Sighjornsen (1979),

Langen (1981). Tucker et al. {1984) has also treated this problem. The results from the different
methods will have different statistical properties. Some alternatives are

1. deterministic amplitude and stochastic phase

2. stochastic amplitude and phase

3. stochastic frequency and phase
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The third method above is implemented into the simulation program used in this work, Wu and
Moan (1996}.

The stochastic frequency is found by drawing a random nwmber p from an even distribution
in the interval [0,1]. The random frequency in the interval (Wiowenj» Wupper,;] 18 then given as
W = Wiowenj + P X Awj. An equivalent procedure can be used in order to establish a random
wave heading B, i-e. Bi = Biowers + P X AF; when the time series for the response is wanted, see
Eq. 3.27. Thus the amplitude for long crested waves can be found as A; = 1/2S5¢{w;)Aw; or as
Agj = /25:(w;) Buw; AB; for short crested waves, Wu and Moan (1996).

The stochastic phase is distributed randomly in an interval between 0 and 2.

3.5.1 Description of Irregular Wave Elevation

Linear superposition of short crested wave components, gives the total wave elevation as the
sum of N regular wave components and / headings as

N

Cla,y t) = Z Z Ay sin(wyt — Ky + hy) (3.26}
i=1 j=I

where the wave amplitude A;; is given in Eq. 3.7. 1y is the random phase angle. The phase

angle is 2 stochastic variable uniformly distributed between 0 and 2%. The wave number vector

k is a function of the wave heading 3 and the wave number, k. The wave frequency and the

wave number is related by the dispersion relation which is given as wf- = k;g for deep water

waves.

3.5.2 Description of Irregular Response

If one wants to calculate the linear response, n(t), due to the wave, {(t), this will be a sum of
the responses due to each single wave component. Given that the response is linear, this can be
written as

N

() =D > [ Hue(wey, i) Aissinwejt — Ky + 1y +€i5) (3.27)

i=1 =1

where Hye{wej, B;) 18 the complex transfer function for between the response and wave at fre-
quency w; and heading f;. we; is the encounter frequency given i Eq. 3.23. k is the wave
number vector. th;; is the random phase angle and &;; 1s the phase difference between the real
and imaginary part of Hyc(we;, i)

If the response is nonlinear, a superposition can not be used. If a fully nonlinear theory is
applied to solve the hydrodynamics, one has to create the irregular wave, i.e. BEq. 3.26, and

solve the hydrodynamic problem for each time step.

The nonlinear theory applied herein is valid only for head seas and uses a combination of Eq. 3.26
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and Eq. 3.27, modified to long crested waves. As mentioned in Sect. 2.5, the hydrodynamic
problem is solved in two steps, i.e.

¢ linear response in the frequency domain

¢ response due to nonlinear forces in the time domain

The linear response time series are found by by combining the transfer functions and the irregular
wave elevation analogous to Eq. 3.27. Next, the corresponding wave elevation is used to find
the response due to the nonlinear forces, Eq. 2.25 - 2.28 at each time step in the time domain
giving 7™ (¢). The nonlinear corrections are calculated on basis of the linear motions. Finally,
the total response is found by adding linear and nonlinear parts in the time domain, i.e.

N
Neor () = Z [y (wes )| Aj sinfwe;t -+ 1 + £;) + ™ () where Wej = wj -+ wf—g— (3.28)

j=1

3.6 Short Term Statistics

In the following four different probability density distributions used to describe the maxima are
presented. The Rayleigh distribution is the exact distribution for a narrow banded process. The
Rayleigh distribution is a special case of the Weibull distribution which has shown to be useful
to describe processes which are nonlinear in nature. The Generalised Gamma distribution cover
a wide range of distribution, including the ones mentioned here. Due to the large number of
parameters the distribution is very flexible and care should be shown applying the distribution.
Fig. 3.2 shows various probability functions for specific values of v and m. In addition the
Hermite distribution, Winterstein (1988}, is described.

v
3

-
Rayleigh

Gamma .

Exponential

@
—_
[
(¥
H

Weibull

Figure 3.2: Probability distributions for various values of the parameters m and v of the gener-
olised Gamma distribution.
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3.6.1 The Rayleigh Distribution
The Rayleigh probability density distribution is given as, Ochi (1990);

frir) = Eﬁ;f—exp {— (%)} r>0; M >0 (3.29)

and the camulative distribution is given as

Falr) =1 — exp {— (%)} (3.30)

where
20% = 2mg  for amplitude
M= { 80% = 8&my for height (crest-to-trough) (3.31)
where myg i the zeroth spectral moment.
The mean value and the standard deviation is given by
M
pr = ' (3.32)
M4 -
Or = ﬂ—(g—“ﬂ (3.33)

3.6.2 The Weibull Distribution
The three parameter Weibull probability density distribution is given as, e.g. Ochi (1990);

. -1 ShT
fr(r) = % (%) exp{—(r_ﬂ}) | where 6 <r < oo (3.34}

and the cumulative as
Frir)=1~ exp[‘(rﬁém where § <r < oo (3.35)

where § is the location parameter, J is the scale parameter and 7 is the shape parameter. The
Rayleigh distribution in Eq. 3.29 s a special case of the Weibull distribution, i.e. v = 2.0,
§=0.0and g = VM. B and +y are both positive values. The mean value and the standard
deviation of R is given by

pr = 6+ B0 (1 + %) (3.36)

or = B\/;(1+ %) —I? (1+ %) (3.37)
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3.6.3 The Generalised Gamma Distribution

The generalised Gamma probability distribution is given as, Ochi (1978);

fr(r)= MQ——)\"””T'Y”"“} exp” ™7 0 <r < o0 (3.38)
['(m)
where I'(m) is the gamma function, v, m and A are constants that may be estimated through
certain moments of the histogram Stacy and Mihram (1965), or by weighted curve-fitting. The
latter is advantageous, because fr(r) can be made much closer to the histogram in the impor-
tant high-value region, by proper choice of the weighting function. The Rayleigh distribution
represents a special case of Eq. 3.38 with vy =2 and m = 1.

The cumulative distribution of Fg(r) is obtained as the incomplete gamma function with argu-
ment {Ar)7, 7.e.

s 1 (Ar)7Y U (m
Fr(r) :fﬂ frr)dr = I“(m)/g v expT du = %*l (3.39)

The n’th moment is given as, Ochi (1978);

1 T(m+2)
oy T 3.40
T N T T (m) (3.40)
The mean value and the standard deviation of R are given respectively as
Lr = ™ (3.41)

or = 4/ma—mi (3.42)

3.6.4 The Hermite Distribution

Alternatively, one may adopt the approach suggested by Winterstein (1988) where the result-
ing process is replaced by an Hermite expansion of a standard Gaussian process, Up(¢). The
coefficients in the expansion are determined such that the lowest moments, 4.e. the mean value,
variance, skewness, and kurtosis, equal the target values.

Including the first four terms in the Hermite expansion, the transformation of the standard
(Gaussian process is given as

Ro(t) = B =88 _ ) (3.43)

R

where

Ro(t) = KiUp(t) + ha(UZ(t) — 1) + ha(UZ(2) — 3Us(1))] (3.44)
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and Ro(t) is the normalised response, yep the mean value of the parent response R(t) and o is
the standard deviation of R(t). 71z and 7z is the skewness and kurtosis of the parent response
respectively. The other parameters are given by, Winterstein (1988),

. TR
he = 6(1 - 6h4) (345)
1+ 15(ar—3)—1
By = V1T (ng ) (3.46)
K = (142h;%+6h;%)70° (3.47)

This approximation is valid for vz > 3 and h3 < 3h4(1 — 3hy). Petersen (1992) presents an
approach to find the exact values of the parameters. According to Sgdahl (1991) the probability
density distribution of the R-maxima can be expressed as

N cuy ud ug\ | dug
falr) = - cuot (22 expl- 81 4.0 (1) | (3.48
and the cumulative distribution is given as
1o (S0 xpl- YD) g (20
Fr(r) =1 = @ (52 exp[--2] - & (-2 (3.49)
where
c = Vl-¢& (3.50)
O (KL 2hgto + Bhale — 1]} (3.51)
0

where ¢ is the bandwidth of the R process.

If the response is narrow banded and Gaussian, the response is characterised by v,z = 0.0
and vop = 3.0. Bq. 3.48 & 3.49 is then reduced to the Rayleigh probability density and cumu-
lative distribution respectively.

The Hermite model has not been verified for nonlinear response in this work. However, it
has been used in order to compare results from classical linear, longterm analysis result from
using the IFORM-technique, Kumar and Winterstein (1997). This is shown in Sect. 5.2.3. A
few comparisons of nonlinear longterm analysis are also given, see Sect. 5.4.5.

3.7 Extreme Value Statistics

The largest value of a random variable that is expected to occur during a period of time or a
certain number of observations is called the extreme value. It is defined as

Ronee = max[R' R*....R") (3.52)
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Then, the extreme value distribution of the N independent and identically distributed maxima
is given as

FRiaa (1) = [Fa(r)]¥ (3.53)

where N is the number of maxima and Fy(r) is the initial distribution. The probability density
distribution becomes

Y

rinonlr) = LN )9 g (3.54)

Depending on the tail behaviour of the distribution of maxima, the extreme distribution con-

verges towards one of three asymptotic distribution. These were studied by Gumbel (1958) and

systematized as Type I, I & ITI asymptotic distributions. The Type I asymptotic distribution is

frequently used and arises from distributions with exponentially decaying tail. This is the case
for the distributions mentioned in Sect. 3.6.

The Type I asymptotic distribution, called the Gumbel distribution, is given as e.g. Ochi (1990);
FRmas (1) = exp {—exp[—an(r — un)]} where — oo <r < oo (3.55)

where oy is the scale parameter and uy the location parameter.

If the initial distribution of the maxima. is known, Eq. 3.53 gives the exact extreme distri-
bution of the N maxima. The initial distribution, Fr(r), could be any of the distributions
mentioned in Sect. 3.6. The choice will be dependent on the nature of the random process.

The Rayleigh Distribution

Let Fi be the Rayleigh distribution given as Eq. 3.29. The expected largest value, the probable

extreme value (characteristic extreme value) and the design extreme value can be found in many
textbooks, e.g. Ochi (1990)

H

ERpe:] = V2mg {\/inN -+ ?/12%} (3.56)

rp = 2meln IV (3.57)

N
Tedesign = 1/ 2mgln < where ¢ =1 — o (3.58)

where 74 gesign 15 the extreme value corresponding to a probability of & of being exceeded or a
probability of & of being below. The probable extreme value is the value where the density func-

tion peaks and the expected extreme value is the “center of gravity” in the probability density
distribution.
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The Weibull Distribution

If the initial maxima distribution Pr(r) is given by the Weibull distribution, Eq. 3.35, the
expected largest value, the probable extreme value and design extreme value will be equal to,
i.e. Ochi (1978), Farnes (1990);

iR = 5+6{(1nN}%+0.57722.;(1nn) ; } 350
rp = B{n(N)}7+§ (3.60)
To,design ™ ﬁ{lﬂ('jy“)}}/7+5 (361)

&
The Generalized Gamma Distribution

The design extreme value, 74 gesign, for which the probability of being exceeded is a specified
value, & = (1 — @), can be evaluated as the solution of the following equation, Ochi (1978),

F(AT'a‘dcsign)—? (m)
I'(m)

where 7 is the number of peaks. For a large number of peaks N and a small probability of being
exceeded & an asymptotic solution of Eq. 3.62 is obtained as

= (1= @) (3.62)

~

(Mo design) "™ exp™ (W dess)” = T(m)% (3.63)

Solving the above equation for (Arq gesign)” for given m, 7, X and & the desired extreme value
Podesign Can be determined. The most probable extreme value can be found by solving

(Arp) =D exp=7) = T(m) (3.64)

2| =

3.8 Long Term Statistics

3.8.1 Long Term Response

In order to estimate the lifetime extreme value for ship response, a long term analysis has to be
performed. The long term peak distribution of maxima is obtained by summation of short term
probabilities of exceedance in all possible combinations of mean wave periods, significant wave
heights, heading angles and speeds,

Frp(r) = /Hs /Tpfy]f;FR(r|h,t,B,u)st;pp(h,t)f(u,ﬁ|h,t)ﬁ;h,t,uﬁdhdtdudﬁ (3.65)

where 3 and U is the heading angle and forward speed respectively. W5 is & weighting factor
which expresses the relative rate of response peaks within each sea state. f(x, B|h,t) accounts
for the effect of manoeuvring in heavy weather with respect to sailing speed and heading into
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the waves. fy, 7, {h,t) is the long term joint probability distribution of significant wave height
and peak periods. Fp(r|h,t, 8,u) is the short term cumulative probability distribution. If the re-
sponse process is Gaussian the short term cumulative probability distribution may be described
by the Rayleigh distribution, Eq. 3.30. If the process deviates too much from the CGaussian
process, the Weibull distribution may be used, Eq. 3.34, and one should possibly use empirical
expressions for the zero-up-crossing frequency of the process.

Assuming that the velocity and heading angle are independent variables, the long term dis-
tribution is given as

Fo(r) = /H S /T P fU /ﬁ En(rlh, b, 6,) fu. iy (s t) £ (uls )£ (B, 1) s pihdtdudB  (3.66)

If the effect of peak period on heavy weather manoeuvring is negligible, Fq. 3.66 can be written
as

Frn(r) = fﬂs fT p / /ﬁ Pr(rihot, B,1) f, z, (1 0)F (ulD) F (BN Bp g pidhdidudd  (3.67)

The conditional distribution of speed and direction can further be simplified by assuming
F(BIh) = 8(B) and f(ulh) = d(c(h)), where §() is the Dirac delta function. The simplification
means that only one heading is considered, and a deterministic relation between the significant
wave height and the forward speed is assumed.

The probability of excedance, i.e. the probability that R will be larger than r, is given as

Qrr(r) =1 - Frp(r) {3.68)
If in addition only consider one forward speed is considered, .e. F(ulh) = 8(uwg), BEq. 3.67 is
reduced to

Fuplr) = / Fr(rib,t, Boyuo) fa, 2, (b )i s a pd bt (3.69)
Hg Ty

The above equations may be discretized. Defining by a mesh of kppe = 1n0.0fH by joper =
no.ofT,, see Fig. 3.3(a), Eq. 3.69 can approximated by

kmoz fman

Fro(r) = z Z Fa(rlhi,ty, Bos o) F,m, (B £5) By g ARAL (3.70)

k=1 j=1
where Ah and Ai are the grid size in the H, and Ty, ranges respectively. According to Fig. 3.3(b)
Eq. 3.70 can further be rewritten as
N:n‘
Fyp(r) = Fr(risi, o, o) fur. z, (Rsis tes) By 1, g ARAL (3.71)

i=]

where N,; is the number of sea states, i.e. for a square mesh Ny = Emoe X oz
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Figure 3.3: Discretization of the scaiter diagram into single sea states.

The weight function which expresses the relative rate of response peaks in each sea state is
defined by the zero-up-crossing wave period, T, for the sea state st and the average zero-up-
crossing wave period wave period, 1%, as

T,

Tz‘si

The long term value 7p for a given return period of D years is given by

i
FLT(TD) =]- N—D where ND = LGE)T%;-WSS“QQ (373)

Np is the number of peaks during D years.

The probability that the long term value R will be larger than rp is given by

i
Qur{rp) =1 — Fir(rp) = o (3.74)
D
where
N
1 — Fr(rp) = Y Qr(R > vplsi, Bo, o) fir, 1, (Psis tsi) B s DR Ay (3.75)
i=1

The contribution to the probability of exceedance Qpr(rp) from a sea state si is given as, €.g.
Farnes and Passano {1989), Larsen and Passano (1990), Videiro {1998),
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Figure 3.4: Contour plot of the coefficient of contribution,Cr(si), for wave heights , Fig. 8.4(a),
and vertical bending moment midship at Fn=0.275 for the $-175 container ship, Fig. 3.4(b), in
the Northern North Sea.

’ 51 }si:tsi wtis;u.
Crlsi) = Qr(R > ?”Dl%}ﬁoagif(i;?( Vi Esi ) Whyi s 8 (3.76)

Fig. 3.4 presents a typical example of the contour curves of the coefficient of contribution,
Cr(st), for the long term response of wave heights and ship response in the Northern North Sea.
As can seen, there is a limited area of the scatter diagram which contributes to the long term
response. Most parts of the scatter diagram have Cr(si)-values close to zero. Keeping this in
mind, the scatter diagram can be divided into two regions, i.e.

¢ aregion § which contributes to the long term response
e aregion outside § which does not contribute to the long term response
The contributing areas could be selected by choosing the areas where Cr{si) > a. Thus Eq.

3.75 can be rewritten as

NylCr(si)>a

Qrr(rp) = Z Qr(R > rplsi, Bo, uo) far, 1, (Fsiy tes ) Wi s g DR -+ Z - (377)

=3 others

where Ny;|Cr(si} > a is the number of discrete, contributing sea states within 3. The last term
in Bq. 3.77 is approximately equal to zero, giving
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NeiCrisi)>e
Qurirp) = Z Qr(R > rplsi, Bo, wo) i, 1 Rty Lei) Wyt us DR (3.78)
=1
The weight function @y, t,,,4,5 has to be recalculated for the sea states within § since the average
gero-up-crossing wave period T 1s changed.

Eq. 3.78 will reduce computational cost when doing long term analysis for time domain sim-
ulations since only a limited number of simulations will be necessary to predict the long term
response. Naturally, one will need to locate the contributing part of the scatter diagram. This
can be done by using frequency domain analysis to establish Cp(si)-contours. The Cr(si}-
coefficients might be used to locate important sea states, and further selected regions of the
scatter diagram to be included in the nonlinear long term analysis. The contributing part for
linear response will not necessarily coincide with the contributing part for nonlinear time domain
simulations. However, it will give a good indication about its location.

Next, time domain simulations might be conducted in the selected areas of the scatter diagram.
A suitable short term distribution, Qr(R > r|si, B0, ug), must be found and the corresponding
statistical parameters must be estimated for the sea state, si.

In this work, the above mentioned procedure is applied. Linear frequency domain analysis
will be used to establish the Cr{si)-values for the vertical bending moment midship. The most
important sea states for the response can then be located. Next, nonlinear time domain analysis
are conducted in chosen areas of the scatter diagram. The nonlinear long term response is thus
found by solving Eq. 3.78, rewritten as

N,i|CR(57')>a

Qurirp)= > Qr(R>rplsi,bo, u0)

i=1

N

(3.79)

Tetoy,

where n,; is the number of peaks in sea state si. 7y 18 the total number of peaks for all sea
states, 1.€. Mot = Z‘i:’;'cﬂ(”b” ng, within D years. Even if the computation time is reduced by
using this method, it will still be rather time consuming since the number of sea states needed
to predict the long term response within a certain accuracy is not known beforehand.

Tt can easily be shown for linear frequency domain response that the number of sea states
needed to predict the long term response within an accuracy of 5%, is small as long as the sea
state with max Cr(si) is included. An example is presented in Fig. 3.5. Fig. 3.5(a) shows the
Cr(st)-coefficient for the linear, vertical bending moment midship for the S-175 container ship
obtained by conducting a complete long term analysis giving vl where D = 100 years. Also
shown are four smaller, selected areas of the scatter diagram named Al, A2, A3 and A4. Al
contains only one sea state, the one with max Cr{si). Using this four small areas, the long term
responses 5, .. are obtained. The ratios vty n../TD versus the sum of the included Cg(st)-values
in the original scatter diagram are shown in Fig. 3.5(b). In addition, several other ratios are
shown. One may notice that by including only Al, the long term response is reduced by ap-
proximately 10% even if the Cr(s7)-value for this sea state is only 9 — 10%. A2 which contains
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Figure 3.5 Coefficient of contm'butz‘on,CR(sz'), for vertical bending moment midship for the S-175
container ship ot Fp = 0.275 in head seaq waves at the top. Importance of different areqs of the

= 100 years.

only 9 sea states, gives a reduction of 2%. 50% of the Cr(si) will give a reduction of only 5%.
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3.8.2 Long Term Wave Climate

The North Atlantic has often been used as a reference climatology for prediction of design val-
ues of wave induced load effects. For this area Walden (1967) and Hogben and Lumb (1967)
collected data by visual observation and from passing ships respectively. Hogben et al. (1986)
contains statistics of the ocean wave climate for the whole globe. An extensive amount of data
s also collected in the vicinity of the numerous offshore installations along the Norwegian coast.
These data will be applied in this work.

The long term wave climate can be described by the simultaneous probability distribution for
the significant wave height, H,, and the peak period, T}, given as

Fuz, (hot) = fa, (W) frim (th) (3.80)

The probability distribution function is estimated by fitting the probability distribution for
the significant wave height, H,, and the conditional distribution for the peak period, T, to
observations separately. fu.(h) is modelled by a log-normal distribution for H, < 7 and as a
Weibull distribution for H, > n, Haver {1980),

_le_ex x (hepn )y
fu fh) = Vi, b h exp(~05 i ;1'5{ bk (3.81)
| v exp(~(3)") R

where i, g, and of, y, are the mean and the variance of the of the variable In H, respectively.
The parameters in the Weibull distribution are estimated by requiring continuity at h = n for
both fg, (k) and Fg,(h). This requirement gives us two additional equations which can be solved
to give us v and 3. The value of 1 is chosen in order to get an optimal fit. For the Northern
North Sea the values are found to be = 3.27m, pun, = 0.836, oty = 0.376, § = 2.822 and
~ == 1.547, Haver and Nyhus (1986). The conditional distribution of the peak period , T}, given
H, is given by the log-normal distribution is, Haver (1980),

1 (Int — a7, )2
. _gpunt T ) 3.82
fTPIHA( i ) \/ﬂaluiﬂpt o ( O-?nTp ( )

where 7, = E[InT;| and ohr, = Var|lnT;) are the mean value and variance respectively. The
mean valne and the variance are further fitted for each class of significant wave height which has
a sufficient number of observations. These are again used to establish estimates for the most
extreme sea states, see Haver and Nyhus (1986). The estimated mean value and variance are
given below,

a7, = 01+ G2 ln(h + as) (3.83)

or

T, = G1 -+ azh™ (3.84)

and for all areas
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cr]‘o;lTp == Dy 4 by exp{—byh) (3.85)
The conditional mean peak period is given as, Bury (1975)
i
TP!HS = eXp{/-LlnTp + 5‘712117‘,,) (3'86)

It is believed that the scatter diagram for the Northern North Sea is representative for a large
group of sea areas. Data for different sea areas for the parameters in Yq. 3.81 - 3.85 are given
in Table 3.1. The Troms I data in Andersen et al. (1987a) and Andersen et al. (1987b) has
the Statfjord/Brent data. The Sleipner and Ekofisk zone II-VI data in Bjerke et al. (1991) and
the Aasgard data can be found in Andersen et al. (1996). Data from Ekofisk are given Haver
{1993). The simultaneous probability distribution, Ju,r,(h,t), for the Northern North Sea is
presented in Fig. 3.6.
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Figure 3.6: The simultancous probability distribution fu.x,(h,t) for the Northern North Sea

3.9 Operational Restrictions

A ship master will in general tend to avoid severe sea states and conditions by for instance
reducing speed and change of heading, or a combination of the two. Actions will be based on
for instance observation of waves and the ships response and will in general be a results of the
ship masters experience.
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In this work, the effect of voluntary speed loss and manoevring to avoid severe sea states will
be studied. Voluntary speed loss means that the ship master reduces the speed due for instance
to slamming, green water on deck and large vertical accelerations. The two former features will
induce large loads on most ships. The slamming load affects the global load. Green water on
deck will mainly induce large loads on the superstructure. The influence on the global loads are
found to be minor. The reason is mainly that green water load is out of phase with the peak
values of the bending moments, (Wang et al. 1998). The latter operability limitation will affect
the ability to perform work effectively, NORDFORSK (1987).

The operability Himiting boundaries are obtained from short term statistics combined with the
sea keeping criteria. The limiting curves can be presented as envelope curves as a function of
the limiting significant wave height, H™(T,), and the corresponding peak period, T},

The limiting significant wave height, is in the following defined by three chosen limiting sea keep-
ing characteristics. An example of the limiting wave heights boundaries are shown in Fig. 3.7.
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Figure 3.7: Limiting operability limiting curves for the S-175 container ship at o forward speed
of 22 knots, F'n = 0.275. The 100-year contour lines for the Northern North sea is shown by the
continuous lines.

3.9.1 Slamming

In Ochi (1964), where theoretical results are compared to experiments, the limiting significant
wave height due to the slamming criteria is given as

. 1 dz V2,
lem T . crit i
¢ ( }}) \/ 2In Py (C"g + o2 ) (3 87)

Ty
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where Vi is the critical re-entry velocity, d, o, and o, is the local draft, standard deviation
of relative motion and velocity for a unit significant wave height respectively. FPgam 8 the
probability of slam. According to Ochi (1964) a bottom impact is called a slam if the fore ship,
ie. at 0.15L,, behind F'P, emerges from water and the re-entry velocity at the station exceeds

the critical value

Ve = 0.093 vV ngp (388)

1f one is looking for the limiting significant wave height due to bow flare slamming, an option is
to use a criteria based on a critical pressure, Faltinsen (1990). The probability of slam is defined

as

. o N p d?
P(impoct pressure > p) = exp [ (—w——pkggv + 203)1 (3.89)

where k is the pressure coefficient which can for instance be found in Zhao et al. (1996). In
addition it is necessary to define how large the pressure is at slamming. A possibility is to use
a fraction of the hydrostatic pressure pgd. However, there is no clear answer to that problem.

NORDFORSK (1987) suggests that a probability of slam Fuam = 0.03 is suitable .

3.9.2 Green water on deck

The limiting significant wave height due to the green water on deck criteria is given as, Ochi {1964),

H(T,) = 4 (3.90)

g-(Tp)/—211 Py

where P,,, is the probability of green water on deck and g.(T}) is the standard deviation of the rel-
ative vertical motion at a chosen position. F is the height of the free hoard. NORDFORSK (1987)
suggests a permissible probability for green water of 7%.

3.9.3 Vertical Acceleration
The limiting significant wave height due to the acceleration criteria is given as, Fathi (1997),

. ghm
HIMT) = iy (3.91)

where of™ and o5(tp) are the limiting vertical acceleration defined by the designer and standard
deviation of the vertical acceleration for a unit wave height respectively. In NORDFORSK (1987)
values for o™ are suggested allowing for different levels of activity. For instance of™ = 0.15 at
the bridge is suggested for merchant ships, This will allow for heavy manual work.




50 CHAPTER 3. PROBABILISTIC THEORY

3.9.4 Effect of Operability Restrictions on Long Term Responses

Wave induced loads, being sensitive to the relative heading of the ship and the forward speed,
will be affected by the manoevring in heavy seas. Furthermore, the long term responses are
highly influenced by the large sea states. Thus, it will be important to account for this effect in
the prediction of the extreme values of the wave induced loads.

The effect of manoevring may be taken directly into account into the long term analysis. For
a given condition, i.c. heading and forward speed, the the operability criteria must be checked.
If the criteria is not fulfilled, the condition must be changed until the criteria is met. If this is
not possible, one may assume that the situation does not occur at all or occurs with a certain
probability. Finally, the long term distribution must be found.

Alternatively, simplified methods may be used to study the effect of manoevring on long term
extreme values. The effect of voluntary speed loss might be studied by creating velocity and
heading profiles based on the limiting sea keeping criteria. Looking at Fig. 3.7 it is clear that
the profiles are functions of the sea state parameters, H; and 7). In addition, the velocity and
heading profiles are burdened with some randomness, i.e. the operability criteria for a given sea
state is met with a certain probability partly depending on the ship master attitude. If there
exist instructions on board regarding the sea keeping, one would expect that the operability cri-
teria would be met with a larger probability than if no such instructions exist and manoevring
is performed according to the ship master interpretation of the severity of the sea state and ship
response.

The profiles can be modelled as functions of both the significant wave height and the peak
period. A somewhat simplified approach is to assume that the profiles are independent of the
peak period, ¢.e. the limiting significant wave height is constant and taken as the minimum value
along the limiting operability curve, see Fig. 3.7. Smooth surfaces and “staircase” profiles may
be used to describe the speed and heading variation as H, and T, changes. Both a smoothed and
staircase profile are applied in Ch. 6 to study the effect of varying forward speed on estimation
of the long term extreme values.

Inclusion of the operability limitation into the long term analysis, implies that the probabil-
ity distributions f(u|h,t) and f(8|h,t) must be established if the profiles are functions of the
two sea state parameters. Accordingly, the distributions f(u|h) and f(8|h) must be established
if the profiles are independent on the peak period. Naturally one may assume that there is a
deterministic relation between the sea state parameters and the forward speed and heading, as
commented on page 40. In Ch. 6 the relation between the significant wave height and forward
speed is modelled as deterministic and stochastic.

Heavy weather may also be avoided by

e Keep the vessel anchored in the harbor until the weather has calmed down

¢ Manoeuvre the vessel into calmer sea areas
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3 The former can for instance be taken into account in the long term analysis by a slightly modifi-
cation of Bg. 3.66. That is the operational restrictions will give the upper limit of the significant

wave height to be used in the analysis. That is

HE™(Tp)
Furlr) = /H [T | [U [ﬁ Falrlh.t. £.16) fir.z, (s 2) £l ) £ (B1R, OB 00t dudB (3.92)

HE(T,) is the limiting significant wave height given by the operability limiting boundaries.
Alternatively, the limiting significant wave height can taken as the minimum value along the
limiting operability curve, see Fig. 3.7. Since only parts of the scatter diagram is included in
the analysis the other part corresponds to the time spent in the harbour. However, if the ship
master instead manoeuvre into calmer seas, this may be modelled by using a scatter diagram

representing this situation or by modifying an existing scatter diagram. That is

Fue(r) = /H_, fT p [ /ﬁ Falrlit, Bo10)fam, (s ) (ulis )1 (81RO pdhdidudf (3.93)

where f w,.T, is the scatter diagram accounting for operability restrictions. This will be studied
in Ch. 7 where three different modification of the scatter diagram is presented.




C'HAPTER 4

Uncertainty Analysis

4.1 Introduction

Prediction of wave induced loads and motions is an important part of the design process. Es-
timated design loads shall ensure that structural safety is obtained, both regarding safety for
crew, environment and property. Such requirements encourage the designer to choose conser-
vative design loads. On the other hand, too conservative design may be so expensive that the
vessel is 10 longer economically feasible.

In order to obtain optimal design, it is important to quantify and account for the uncertainties
related to the design process. Sources of error contributing to the uncertainty in loads are for
instance

o wave data (scatter diagram and spectral shape uncertainty}
¢ model accuracy and weight distribution
e theoretical limitations

¢ ship operation

{21th ITTC 1996) presents a review of studies on uncertainty analysis for physical model testing
and validation of numerical sea keeping methods, Soares has presented a large extent of work
regarding uncertainty analysis. In one of his earliest work, Soares (1984), he studied the model
uncertainty of standard methods for prediction the wave induced loads both in connection with
long- and short term statistics. In Kaplan et al. (1984) different uncertainties associated with
ship longitudinal strength and loading are seviewed. Uncertainties in stress analysis of marine
structures are studied in Nikolaides and Kaplan (1991). Faltinsen and Svensen (1990) studied

the uncertainty, among other topics, in linear strip theory. They concentrated on heave and

33
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pitch ship motions. The effect on long term response due to uncertainty in the wave climate
modelling is studied in Soares and Moan (1991), Soares and Trovio {1991), while the effect of
transfer function uncertainty on short term ship responses are discussed in Soares (1991). The
uncertainty involved in modelling the directionality in waves are discussed in Soazes (1995).
Schellin et al. (1996) studied the uncertainty of existing theoretical models by comparing two
dimensional and three dimensional theories.

In this work the uncertainty regarding the theoretical model will be studied. In addition, the ef-
fect of the wave spectrum on the theoretical uncertainty is also touched on. This will be referred
to as model uncertainty in the following chapters. The aim with uncertainty analysis, is that
the estimated design load should represent the real world. Information about the uncertainty
of the theoretical model is needed in reliability analysis. In addition, detection of systematic
errors may imply weakness of the theoretical method and be basis for improvement of the the-
oretical model. The model uncertainty gives a measure on the difference between the fruc and
the predicted loads expressed as

true value
predicted value

model uncertainty = (4.1)
A convenient way to assess the uncertainty of the transfer function is by calculating the corre-
sponding long term distributions and quantifying the uncertainty on the characteristic values,
Soares and Trovio (1991), if sufficiently data is available. A possibility is to compare true and
predicted response in regular waves. The model error will be a stochastic variable describing the
uncertainty in a specific theoretical model. The madel error can be described by its probability
density distribution. In general, the available information about the model error is limited and
the distribution can not be established. A possibility is to present the model by its mean value,
p with standard deviation o. In this work these two parameters will be used to describe the
model error. The values parameters are quantified Sect. 4.5.1 and 4.6.2 as an estimate of the
uncertainty in the linear, long term extreme value and the uncertainty in nonlinear response in
regular waves.

If the model uncertainty is estimated by using a wave-by-wave approach, the estimated, true
probability distribution is not necessarily completely correct, Haver (1995), Jonathan and Taylor
(1996). A method which can be used in order to get correct the predicted probability density
distribution are given in Winterstein and Sweetman (1999). However, a large amount of data is
needed for these analysis. In general, this is not the case and simplifications must be done to
estimate the uncertainty in the design loads.

In this work, the uncertainty in linear- and a quasi-nonlinear strip theory, Ch. 2, will be studied,
but first of all theoretical limitations will be briefly discussed.

4.2 Theoretical Limitations

The validity of strip theory is previously discussed in Ch. 2. The nonlinear theory applied herein,
will of course have some of the defects as in the linear strip theory. Therefore, most of the men-
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tioned defects of the linear strip theory, will also be limitations for the nonlinear formulation.
However, one would expect smaller uncertainties, relative to physical reality, when nonlinear
theory is applied since nonlinear effects due the waves are taken into account as slamming and
modification of the Froude-Krylov force and the hydrostatics. However, different nonlinear the-
oretical models exist and there is uncertainty connected to the modelling of nonlinear effects.

Tt is known that the strip theory is not valid for low frequencies, Salvesen et al. (1970). This
is due to that the added mass and damping are not correctly predicted at low frequencies, see
Sect. 2.3, which again is resulting in incorrect radiation forces. However, at low frequencies the
vertical motions and loads are dominated by the hydrostatics, meaning that the errors in the
added mass and damping should not influence the final result. Therefore, one should not expect
to get more uncertain results in following and quartering sea than in head and bow seas when
dealing with vertical loads and motions. In addition transom stern effects are not taken into
account and the behaviour of the fluid aft of the ship is therefore neglected. However, for the
vessels applied in this study only one has transom stern and it is located above the free surface.
Tt is therefore expected that the transom stern effect is not large.

The theories applied herein do not include the steady state contribution, i.e. the component
caused by a moving ship in still water. The steady state component may give hogging or sagging
moment depending on the hull form, Ueno and Watanabe (1987). As a result, caution should
be taken when experimental and simulated results are compared. However, in a private conver-
sation Wang (1999) states that the steady state contribution to the vertical bending moment
midship is in the range of 5 ~ 10% for the ITTC container ship S-175.

The assumption of linear and small waves of the strip theory, implies that the responses are
proportional to wave height and that the there is no difference in value between hogging and
sagging moments. Generally, nonlinear effects results in difference between sagging and hogging
response. Experiments described in Korbijn (1992) indicate that there is a difference between
sagging and hogging response for the reefer vessel vessel. The same experimental data are used
in order to compare a three dimensional theory and the simplified nonlinear theory, NV1418,
Borresen and Tellsgird (1980), with experimental data, Kring et al. (1996). Jensen and Ped-
ersen (1979) presented nomlinear calculations on the SL-7 container ship. Also here, a clear
difference was found between sagging and hogging. Fig. 4.1 shows the transfer function for the
midship bending moment for the tanker at Fn = 0.13 and in head sea waves. The experimental
data points for maximum response in regular waves at increasing wave height are also included.
They are presented as response value divided on the regular wave amplitude. If the response
was linear, these data points would coincide in the figure. The observed scatter is probably due
to nonlinearity in the response and randomness in the experimental data. In addition, one may
notice that for this particular vessel it seems that the nonlinearity reduces both sagging and
hogging response.

A section which causes a large change in water area as the ship is moving is likely to give nonlin-
ear effects. This is for sections in the bow and stern. If the stern is flared or the stern 1s transom
or very shallow, nonlinearities will occur. Some examples of hull forms can be seen on Fig. .1
in Appendix F. One would expect that ships with a small block coefficient will be exposed to
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Figure 4.1: Predicted transfer function for the vertical bending moment midship for the tanker
at Fn = 0.13 in head sea (continuous line). Experimental response data in reqular waves for
different wave lengths, M/ L,,, and wave heights are also included.

more nonlinearity than ships with a large block coefficients. This is because the non vertical
ship sides are more accentnated for small coefficients. Since wave induced structural loads are
obtained by integration over a portion of the ship hull, nonlinearities due to the end sections

play a much more important role than in the predictions of the ship motions, e.g. Fujino and
Yoon (1986).

As mentioned earlier, the linearity assumption requires vertical ship sides. The nonlinear code
uses a momentum von Karman solution in order to estimate the slamming force, von Kérmén
and Wattendorf {1929). This means that the pile-up of water is not taken into account. A com-
parison of the Wagner, Wagner (1932), which take pile-up into account, and the von Karman
solution for a cylinder shows that the slamming coeficient is twice as large when the pile up is
considered, Faltinsen (1990). Zhao et al. (1996) states that the von Karman and conservation
of momentum gives too low maximum force and thus the time history of the force will be un-
derestimated.

In addition, there will be three dimensional slamming effects which are not taken into account
by the simplified nonlinear strip theory. The three dimensional effects will reduce the slamming
force, Zhao et al. (1996). Other effects which tend to reduce the slamming force is the possible
presence of air bubbles. However, this will probably not be a problem in the bow as the bow
section would not trap the air. It could be a problem at aft if there is a transom stern with a
rather flat bottom.

The nonlinear effect due to green water is taken into account in a simplified manner. When
the wave elevation exceeds the main deck, the extra force due to green water is equal the hy-
drostatic pressure of a water column equal to the breadth of the ship and the exceeding wave
height. The water formation when the wave elevation exceeds the main deck might look dif-
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ferently, ¢ flow separation. Wang et al. (1998) presents an improved method to include the
green water on deck. However, their results showed that for the S-175 container ship with rigid
hull, the the inclusion of the green water load seems to have a negligible effect on the global loads.

The slamming force has the same value both for water entry and exit. It always acts up-
ward regardless of the direction of motion. In the nonlinear code, the force due to slamming is
set equal to zero at water exit according to general agreement. In reality, the force at water exit
i not zero and will probably contribute to the loads. The water exit problem is little studied.
The water exit problem for a cylinder was studied in Greenhow and Lin (1983) where some
experimental results are presented. Comparisons of experiments and numerical results are given

in Greenhow (1988).

Yet, it is hard to say whether the deviation between measured and predicted data, are due
to errors during the measuring of data or if the physical assumptions in the theory are wrong.
It is most likely that the deviations are due to many factors and combination of these.

4.3 Modelling of Transfer Function Uncertainty

The aim is to randomise the model error of linear strip theory based on the ratio between the
true and predicted long term extreme values. In order to that, the transfer function uncertainty
must be modelled.

The model error of the transfer function can either be expressed by the ratio or difference
between the measured and calculated transfer function. The former can be written as

H{w) = ¢p{w)H(w) (4.2)

and the latter as

H{w) = H(w) + ¢(w) (4.3)

where H (w) represents the measured transfer function. H (w) is the calculated transfer function.
#(w) and @(w) represent the different modelling errors. In Soares (1984) the former formula-
tion is used in the assessment of uncertainty for the midship bending moment. Faltinsen and
Svensen (1990) used the latter formulation on order to to study the uncertainty in heave and
pitch transfer functions. In this work both formulation will be tested.

The drawback of using the difference between the measured and predicted value, is that the
model error is not dimensionless. This is of inconvenient, if one wish to generate a general
formulation to be used on other ships. BEq. 4.3 can be rewritten to a dimensionless form as;

Hw) = Hw) + ¢(w) = Hw) (1 + %%))) (4.4)

Rewriting the above expression even more, gives
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r

Hw) = Hw)(1+¢ W) = Hw)¢' () (4.5)

where ¢'(w) = Jf:f{‘:}) and ¢ (w) = 1 + ¢'(w). This is the common way to express dimensionless
model error. The above expression can be atilised keeping in mind that the basis for the mod-
elling error is the difference between the experimental and predicted data as in Eq. 4.3. In the
following, no distinction will be made between ¢(w) and ¢"(w). It will be clear from the context

which formulation that is applied.

Herein, the discrete values of the model error was obtained by using the following procedure

e Predict transfer function by using the relevant theory, H (w)

e Find the ratio or difference between experimental value H(w;) versus K (w;) at w; for { =
1,..,n giving ¢w;} and ¢(w;), i.e.
H(w
" o) = e

* Qg(we‘) = f:—’r(wi) ~ H(w;)

o This discrete data sets, [¢(w)), p{ws), .., ¢{w,)] and [mgwl), Blw2), ., Pl )], will be used to
find a functional form of the model errors, ¢(w) and $(w)

4.3.1 Polynomial Representation of Model Error

The most general representation of the model error can be given as

n
dlw) = Z a;w' = ag + a1w + g’ + .. + apw® (4.6)
i=0
The simplest formulation of the model error is obtained is n = 0 which means that d(w) is set
equal to a constant value, i.e. independent of w. Soares (1984) defined the model error P(w) as
given by Eq. 4.2. The function ¢(w) can be of the general form

Hw) = a+ bw+ cw® (4.7)

In Soares (1984) the model error is given as a constant value, i.e. ¢(w) == a. The value of a can
be estimated by means of the method of least mean square values, giving

. 2 H;H,

where H; and H, is the experimental and simulated response value at frequency i. This implies
that the uncertainty at frequencies which are not relevant for maximum response, may have a
large influence on the model error.

A disadvantage of setting d(w) = a is that it is difficult to provide an adequate description
of the measured transfer function, H(w), in cases where the experimental data deviate from
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simulated results in peak frequency of the transfer function. On the other hand, it is rather
easy to generate a frequency independent model valid for a range of speeds, headings and block
coefficients using regression analysis. A model error which is a function of the above mentioned
sariables can be written as, Soares (1984);

$(0,U,Cy) = a(6,U,Cy) = A§+ BU +CCy + D (4.9)

where ¢ is the heading angle, U the forward speed and Cj is the block coefficient. A, B, C and
D are constants.

The accuracy of the model error will be improved by introducing additional {requency dependent
terms. A linear model is obtained if n =1 and a quadratic model is created when n =2 and so
on. The improved accuracy is dependent on the number of data points available and of course
t+he method used to fit the model error, ¢(w). Of course, the parameters, ag, G, .., Gn, Call be
estimated by using the least square method as applied in Eq. 4.8. Larger number of param-
eters will on the other hand demand increasing size of the data sets to get reliable estimates.
Unfortunately, the experimental data sets are in general not that comprehensive. However, one
may circumvent the problem with lack of data points. By using another fitting procedure, a
frequency dependent polynomial representation of the model error may be established. This can
be done by using splines.

4.3.2 Spline Representation of Model Error

Tn order to study the influence of the frequency on the modelling error, ¢(w) and $(w), splines
were chosen in this work. The advantage is that only a limited number of experimental data is
needed to establish the modelling error. As mentioned above, it is ragher difficult to establish a
model error based on regression analysis, but using splines one is able to take into account the
frequency dependence. For more details, see Appendix C.

One of the disadvantages with the spline representation may turn up when data points are
located very close to each other. This may cause radically changes in the value of ¢(w) and P{w)
from one point to another because the derivative, dp(w)/dz and de(w)/dz, is so large. This
problem can be solved by substituting a group of data points in a small region by a single data
point prior to the curve fitting. This is done by calculating the average value of the n measured
transfer function points, H {w;), as

- 1 n 1 n
H{@) = - ZH(wi) where @ == - ZWi (4.10)
=1 i=]

The problem is caused by random measurement error. This was in particular a problem for the
model error, ¢(w), defined by the ratio between the measured and predicted value given by Eq.
4.2, and when cubic splines were used in order to fit a function through the points. In order
to circumvent the problem, the modelling error was also fitted by using linear splines for both
formulations of the model error.

The procedure was as follows
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¢ Fit the function ¢(w) and ¢{w;) using linear or cubic splines to the the data sets
¢

[qb(wl)a ¢)(w2)> L qf)(wn)] and d)(wl): J)(WQ): i (ig(wn)} respectively

» The value of ¢{w) and ¢(w) can now be calculated at arbitrary point along the interva]
[wl, ciey wﬂ]

Using the procedure above, gives totally four different combinations by using Eq. 4.2 - 4.3 for
linear and cubic splines.

4.4 Uncertainty in the Long Term Response

Long term characteristic values may be found for both the measured, & {w}, and predicted,
H(w), transfer functions by using the appropriate spectral moment in the Rayleigh distribution,
t.e. My and my, respectively. Assuming that the waves are long-crested, it is only necessary to
change H(w) with H{w) in Eq. 3.24 and modify the equation to represent long crested waves,
The result is

o= [ PV )PS0 (4.11)

where w is the wave frequency and w, is the frequency of encounter. Using this spectral moment
in the Rayleigh distribution, Eq. 3.29, it is easy to calculate the long term characteristic values
by using Eq. 3.69.

The uncertainty in the long term extreme vale can be quantified by the ratio between the
long term extreme value estimated using H(w) and H(w) respectively.

4.4.1 Influence of the Return Period

Characteristic load effects for design of marine structures are typically referred to return periods
of 100, 50 or 20 years. Classification Societies refer to the probability level 10~ normally meant
to correspond to an operating life of 20 years in the North Atlantic. The effects of speed reduc-
tion due to heavy weather are allowed for and a uniform probability is normally assumed for
the occurrence of different ship to wave headings, DNV (1995). On the other hand, for offshore
structures in e.g. Norway and US the reference period is 100 years, while 50 years is used in UK.

To study the effect of return period, the 100, 50 and 20 year characteristic values were caleu-
lated using Eq. 3.69. Since only the linear response is considered, the Rayleigh distribution was
assumed to be suitable to describe the short term probability in a single sea state. The needed
spectral moments were found by calculation of the response spectrum using both the predicted
transfer function and the corrected transfer function, w.r.t. model data as mentioned above.
Thereafter, the response moments were found according to Eq. 3.24 modified to long crested
waves. The number of response peaks can easily be found by using standard equations, Eq. 3.14.

In the further context, the scatter diagram for the Northern North Sea will be applied in the
calculations. The smoothing of the scatter diagram is described in Sect. 3.8.2. Both the Pierson
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Moskowitz and the Jonswap spectra are applied.

To identify the response amplitude r4,, the following equation is solved by iteration.

Qur(R > rh) = NLD (4.12)

where Np is the number of response zero-up-crossings during D-years in all sea states. The
superscript [ indicates linear response, see Sect. 3.8.1.

The D-years long term extreme values are established for both predicted, H{w), and measured
transfer functions, H{w), i.e. 7 and 7L, respectively. The relative value of the D-year value of
the wave induced bending moment obtained by the corrected transfer function normalised by
the respective value of the uncorrected transfer function, is given as

7

Yp = (4.13)
D
This number will indicate the uncertainty in the D-year response using linear strip theory. While
the the ratios of iy to rhy and rig to ry are approximately 0.96 and 0.92, see Appendix E,
the difference between the uncertainty in the D-year value is not sensitive to the return period.

That is, for all practical purposes

Pro0 = P50 ~ Yo (4.14)

See Table 4.1 - 4.4 where these values were calculated for 100, 50 and 20 years return periods
giving %100, ¥s0 and g for ITTC ship 5-175 at six different headings. The results are pre-
sented as the ratios 52%5—0% and I},%% Both the Pierson Moskowitz and the Jonswap spectrum, with
peakedness parameter as given in Eq. 3.10, are used in the analysis. This ship was chosen since
it has been the object of comprehensive study for many years. The data used in this study
was provided by several institutions 0 the TTTC in order to identify differences in the various
strip theories and computer programs, 15th & 16th ITTTC Seakeeping Committee (1983). The
contributing institutions were Nippon Kokan Co., Ltd., Sumitomo Heavy Industries and Ship
Research Institute, indicated by NKK, SHI and SRI respectively. The hull form is shown in
Appendix F and the mass distribution is reproduced from 15th & 16th ITTC Seakeeping Com-

mittee (1983) in Appendix G.

As can be seen, the tables are not complete as the numerical correction fail to work in some
parts of the transfer function. In some cases the model error based on Eq. 4.2 and cubic splines
is highly oscillating. In other cases the model error based on Eq. 4.3 causes negative transfer
function values at lower and upper bound frequencies. How to deal with this matter will be
discussed in Sect. 4.4.2.

In what follows, the 100-year return period will be applied in order to quantify the transfer
function uncertalnty.
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Table 4.1: The ratio of the relative values Weo and Wig for the S-175 container ship, Fn = 0.975,
The Pierson Mosckowitz spectrum is used in the analysis.

Heading 0 30 G0 120 150 180
SHI | SRI| SHI | SRI | SRI | SRI | SHT | SRI [ SHT | NEX |
H(w) Lo v 160 10 | 10 0 10 | 1.0 { L0 | 10 |10 10
H{w)¢eupielw) 1.002 | — 11.001 0999 | 1.0 | 1.0 0999 ! 0999 1.0 | 0998
H(w) + ¢(wiewie | 1002 | — [1.001 | ~ |0.997 | 0.999 | - - - -
H{w)p(w)iinear 10021 — 11.001 | 1.0 | 1.0 0999 1.0 ! 0999 ! 1.0 | 0.908
H{w) + ¢lwliinear | 1002 | — | 1.001 | - |0.009 | 0.999 | - - - -
wa)%_fg;; LO 100 10 | 10 0 1.0 | 10 | 10 | 10 | 1o 10

Table 4.2: The ratio of the relative values oo and gy for the S-175 container ship, F'n = (1.275.
The Pierson Mosckowitz spectrum is used in the analysis.

Heading 0 30 60 | 120 150 180

SHI | SRI | SHI | SRI | SRT | SRI | SHI | SRI | SHI [ NKK |
H(w) LO P10 10 f 10 | L0 ] 10 [ 1.0 | 1.0 | 1.0 | 10
H(w)¢eupic(w) 1.604 |~ 11.002 | 0.999 | 0.999 | 0.999 | 0.997 | 0.996 | 0.999 | 0.996
H{w) + ¢(w)ewse | 1.003 | — 11.001 | - 0094|0009 ]| - - - -
H{w)d(w ) tinear 1003 | — [1.001 1.6 | 0999099 | 1.0 |0.997 | 0.999 | 0.996
H{w) + ¢(whinear | 1.003 | — | 1.0 - 10997 | 0.999 | — -~ - -
H(w)%%;—f;l 1O 110l 100 10 [ 10§ 10 | 10| 10 | to | 10

Table 4.3: The ratio of the relative values Yso and gy for the §-175 container ship, Fn = (0.275.
The Jonswap spectrum is used in the analysis.

Heading 0 30 60 | 120 150 180
SHI | SRI | SHI [ SRI | SRY | SRI | SHI | SRI | SHI |NKK
H{w) 1.0 110 7 1.0 | 20 [ L0 ] 10 T 1.0 | 10 |10 | 10
H(w) oupie(w) LOD3 | - 11.001 | 1.001 | 1.001 | 1.001 | 0.996 | 0.997 | 1.0 | 0.998
H{w) + ¢(w)ewpie | 1.002 | — |1002] - 0.998 | 1.002 | - - - -
H{w)@(whtinear | 1002 | ~ [ 1.001| 1.0 | 1.002 | 1.002 { 0.997 | 0.997 | 1.0 | 0.998
H{w) + ¢$(wimear | 1001 | ~ [ 12.001] - | 1002|1002 | — — - —
H(w) & 10 1100 10§ 10 | 10 [ 10 | 1.0 | 10 |10 10
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Table 4.4: The ratio of the relative values oo and 1o for the S-175 container ship, Fn = 0.275.
The Jonswap spectrum is used in the analysis,

Heading 0 30 60 | 120 150 180

SHI [SRI | SHI [ SRI | SRI | SRI | SHI | SRI | SHI | NKK
H(w) 10 110 1.0 | 1.0 ] 10 ] 1.0 [ 1.0 | 1.0 | 1.0 | 10
H ()¢ eupic(w) 1.007 | — | 1.002 | 1.001 | 1.003 | 1.005 | 0.996 | 0.993 | 0.999 | 0.995
H{w) + $lw)eusic | 1.004 | — [1.002 | — 10995 | 1.006 | - - - -
H (w)p(w)iinear 1.004 | — | 1.002 | 1.001 | 1.004 | 1.006 | 0.997 | 0.994 | 0.999 | 0.995
H(w) + ¢p(@tiner | 1003 | — | 1002 - 1004|1005 ) - - - -~
H(w) B 10 |10 10 | 10 | Lo | 10 | 1.0 | 10 | 1.0 | 10

4.4.2 Sensitivity Analysis

As mentioned in Sect. 4.3.2, many types of curve fittings have been tried in order to model the
uncertainty of the transfer function. The final choice should be based on accuracy and simplicity.
1t was found that the frequency dependent error modelled using Eq. 4.2, i.e. the ratio between
experimental and predicted values of the transfer function, when the complete frequency range
was applied was not well behaved. The random nature of the experimental data caused large
oscillations in areas where the ratio between neighboring experimental and predicted data were
distinet in value. This was not only a problem at low or high frequencies, but it also occasionally
happened at frequencies close to the dominant peak of the transfer function.

The most well behaved modelling error was based on the difference between the measured and
predicted transfer function value, Eq. 4.3. Cubic splines were used to fit the curve. The reason
why cubic splines are preferred to linear splines is that the corrected transfer function, H (w),
and modelling error, ¢(w), in general looks smoother using the cubic splines. However, at low
and high frequencies negative values of the corrected transfer function, H(w) occurred. Fortu-
nately, this can be dealt with in an easy manner. Since mainly area close to the peak value of
the transfer function will contribute to characteristic values, a simplified approach may be used
to model the part of the transfer function which contains less energy. Some areas might in fact
be skipped completely as the contribution is rather small and in most cases negligible. This will
be shown later in this section.

An example on the above mentioned problems are presented in Fig. 4.2. The figure illus-
trates the transfer function of vertical bending moment midship for the S8-175 container ship at
Fn = 0.275, and the effect of using the different ways to model the transfer function uncertainty.
It clearly indicates that the model error based on relative error causes large oscillations. The
model error based on Eq. 4.3 causes negative values of the transfer function.

Unfortunately, it is not possible to generate a simple formulation of the uncertainty in the trans-
fer function using splines. The optimal solution to the problem would of course be some kind
of black box solution similar to the constant model error used by Soares (1984). However, it is
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Figure 4.2: Transfer functions for the vertical bending moment midship for the 5-175 ship at
head sea with Fn = 0.275. The different model errors are illustroted. Ezperimental data from
SRI, 15th & 16th ITTC Seakeeping Committee (1983).

not possible to model a frequency dependent error using regression analysis unless the number
of experimental data points is rather large. In this work, the most adequate and simple formu-
lation was found to be the dimensionless error based on the difference between the experimental
and predicted values of the transfer function given as ¢“(w) = 1 + %((—% The model error of
the transfer function will be used to quantify the uncertainty in the long term extreme values.
Finally, the model uncertainty may be randomised by the uncertainty in the long term extreme
value, ¥1po. That is, the uncertainty is given as a mean value with a standard deviation, u, see

Sect. 4.5.1.

In order to verify the importance of the different frequency areas of the transfer function, the
100-year value for the vertical bending moment midship was calculated for the ITTC ship S-175,
see 15th & 16th ITTC Seakeeping Committee (1983). The transfer function was predicted by
using linear, strip theory and the resulting transfer functions are shown in Fig. 4.3, The transfer
function is plotted against o = Lppﬁos 5- Lhat is the expression is the ratio between the decom-
posed wave- and the ship length, where 8 is the heading angle and ) is the wave length. One
would therefore expect, that the peak value of the transfer function would be close to o = 1.0

since this corresponds to a decomposed wave length equal to the ship length, L,,.

"To study the influence of the frequency areas, the transfer functions were modified in the sense
that the areas above o = 1.5,2.0,3.0,4.0,5.0 and 6.0 were removed, see Fig. 4.4. Further, the
100-year value for using both non modified and modified transfer function was calculated to see
when the rig “converged”.

‘T'he results are presented in Fig. 4.5, showing the error, i.e. change in the 74y, value due to the
removal of frequency areas, as a function of the heading angle.
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Figure 4.3: Transfer function for the vertical bending moment midship for the S-175 ship. Fn =
0.275.

10 a 1.0 20 o

Figure 4.4: IHlustration of the modification of the transfer function by removing areas above

- A —
Q= Lppcosf 2.0

In addition, part of H{w) below the cancellation frequency was removed, see illustration in
Fig. 4.6. These smaller peaks are caused by ship wave interaction, and the contribution to
the 100-year value is rather small. However, if the response is hydroelastic these peaks may
contribute to fatigue and the removal of these frequency areas may not be justified. The limit
of o is not fixed, as the value changes from transfer function to transfer function. For the 5-175
container ship the cancellation frequency is located at a = 0.5. The results are given in Table
4.5, where the error indicates the change in the 100-year value for the vertical bending moment
midship when only the “main” peak is kept. Only three headings, namely 0, 30, and 60, are
included as the headings 120, 150 and 180, did not have any prominent cancellation frequency
in the frequency range included.

Fig. 4.5 shows that the alteration in the rl 4o value decreases as the a-value increases. Another
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Figure 4.5: The error due to change in the 1 00-year value, Tioos by removing the frequency areas
above ov. Vertical bending moment madship for the S-175 ship. Fn = 0.275.
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Figure 4.6: Ilustration of the modification of the transfer function by removing areas below the
cancellation frequency.

Table 4.5: Percentage change in the 100 year verlical bending moment mid ship on the 5-175
ship due to remowval of frequencies below the cancellation, see Fig. 4.6

| Heading | Pierson Moskowits % | Jonswap [%]j
0 (.40 —0.29
30 ~-{.55 —-{1.33
60 —(.81 —0.46

feature for both Specira, is that by skipping the area above o — 3.0 the 100-year valueis changed
by less than 2.5%. Compared to the uncertainties in experimental data, this error is negligible.
This result indicates that frequencies above o = 3.0 is less important in the calculation of
long term extremes for the vertical bending moment midship. The explanation is that, the sea
states which are most influent on the 100-year value are concentrated in the vicinity of av = 1.0
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where the transfer function has it maximum value. Therefore, as long the energy content of the
response spectra., ie. S(w)H (w)?, is maintained to a certain degree, the 100-year value will have
» minimal change in value. The same explanation is, of course valid for the removal of the peaks
below the dominant peak of the transfer function, i.e. below o = 0.5.

4.4.3 Hundred Year Values and Sensitivity to Sea States Based on
Linear Theory

In order to find the 100 year value, 7y, for the fitted transfer function, H(w), of the vertical
bending moment midship, the method presented in the preceding section, Sect. 4.4.2, was em-
ployed. Calculations were conducted on five different ship, namely the container ships S1-7 and
S.175, a reefer vessel and two cargo ship the Wolverine State and the California Bear, where the
latter belongs to the Mariner class. The Mariners are represented with two load distributions,
which is indicated as full and light load for the Wolverine State and easthound and westbound
route for the California Bear. The eastbound route has the smallest displacement. Geometrical
data, mass distribution and experimental data can be found in Gie (1972), 15th & 16th ITTC
Seakeeping Committee (1983}, {Korbijn 1992), Chicco and Numata (1969) and Numata and
Yonkers (1969}, The hull forms are shown in Appendix F and the mass distribution are repro-
duced in Appendix G. An overview over the applied transfer functions is given in Appendix H.

The procedure was as follows
e Predict transfer functions using linear, strip theory, Hw)

Digitalize experimental data points

Calculate the error ¢(w;) = H(w;)) -~ H{w;) i =1.n

e Use cubic splines to fit ¢(w) to the data points [B(wn), Plws), - D)

e Calculate the dimensionless model error ¢ {w) and find the
corrected transfer function H(w)

e Remove high and low frequency region according to Sect. 4.4.2.

e Calculate the 100-year value for the smoothed, extended and measured transfer function
giving am
The results are presented in Table 4.6 - 4.15. Both the Pierson Moskowitz and the Jonswap spec-

trum is used in the analysis. The peakedness parameter in the Jonswap spectrum is given by
Eq. 3.10. Scatter diagram from the Northern North Sea is applied in all analysis, see Sect. 3.8.2.

The relative heading between ship and waves is probably the most important factor with respect

to wave induced loads. The estimated 100-year value of the vertical bending moment reaches its

: maximum at head to bow seas, increasing in magnitude towards head sea. This can be seen in
o the Table 4.6 - 4.15, where the 100-yeax measured vertical bending moments are presented. The
‘: vertical bending moment is less sensitive to increase in speed, but a slight increase with speed ;
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Figure 4.7: 100-year contour line of the Northern North Sea and the locality of the mazimum,
coefficient of contribution, max Cg(si}, indicated by the dots.

is detected, see Table 4.6 - 4.8,

In addition to the 100-year values, #{y,, also the most important sea state is presented. By
most important sea state is meant the individual sea state, si = (H,, Tp}i, which has the largest
coeflicient of contribution, i.e. max Cy(s7);, see Sect. 3.8.

One may notice that maximum Cp(si)-values occur at H, ~ 8 — 14m and with peak periods
where the corresponding wave length is approximately equal to the ship length. This indicates
that only sea states swrrounding s = (Hs, Tp): are necessary to consider when estimating oo
by long term statistics. It also explains why removal of high and low frequencies in the transfer
functions H {w), see Sect. 4.4.2, have only minor effect on the 100-year value.

As mentioned in Sect. 3.3, the scatter diagram may be divided into three different regions.
Part 1 and 3 consist of windsea and swell, while part 2 is purely windsea dominated. Part 2
can be modelled by a onepeaked spectrum like Jonswap or Pierson Moskowitz which is applied
in this work. The borders between the three zones, Torsethangen (1987), are shown in F ig. 4.7
together with the coefficient of contribution which and the 100-year contour line in the Northern
North Sea. The coefficient of contribution may give an indication on which spectrum should be
used, i.e. one- or twopeaked spectrum. Even if the figure indicates that the two peaked spectrum
should be used, a one peaked spectrum will give conservative results for the responses studied
in this work and is therefore applied herein.

The max Cr(si) using the Jonswap spectrum is larger than the corresponding value using the
Pierson Moskowitz spectrum in most cases. This could indicate that fewer sea states are neces-
sary to estimate the rig-value using Jonswap spectrum. Use of the coefficient of contribution
in long term analysis will be studied in more in Sect. 5.4.5.
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Table 4.6: 100 year characteristic values, oo, for the vertical bending moment midship for the
SL-7 container ship. All oo are made dimensionless w.r.t. L

y2

2 Bpg. Fn = 0220,

Pierson Moskowitz Jonswap
Most Important Sea State Most Important Sea State
Heading | #0(10%) | H, | Tp Cr {%] Hooll0® | He | T Cr %]
0 1111 145 | 15.5 3.25 1.118 i3.5 | 13.5 10.87
45 0.904 125 | 185 9.58 0.944 12.5 | 12,5 15.87

Table 4.7: 100 year characteristic values, #op, for the vertical bending moment midship for the

SL-7 container ship. All Py, are made dimensionless w.r.t. L3 Bpg. Fn =0.245.

Pierson Moskowitz Jonswap
Most Important Sea State Most Important Sea State

Heading | #g0l10%] | Hs | T Cr [%)] #Hooll®] | He | Ty Cr [%]
0 1.152 14.5 } 15.5 8.22 1.211 13.5 1 13.5 10.62
25 1.068 | 13.5 | 145 8.86 1.i11 13.5 | 135 11.34
45 0.944 ;126 | 13.5 9.44 0.989 12.5 1 12.5 17.89
G5 0.656 | 11.5 | 12,5 9.84 0.648 | 10.6 { 11.5 20.79
115 0.574 | 1L.h | 125 9.05 0.544 85 | 9.5 12.97
135 0.730 | 125§ 135 9.36 0.748 | 11.5 1125 8.10

155 0.822 | 13.5 | 14.5 9.63 0.922 125|125 16.00

Table 4.8: 100 year characteristic values, Plogs for the vertical bending moment midship for the

SL-7 container ship. All#,,, ere made dimensionless w.r.t. L3 Bpg. Fn=0.270.

Pierson Moskowitz Jonswap
Most Important Sea State Most Important Sea State
Heading | #[10%) | H, | Tp Cr %] MHaoll0®] | Hy | Ty Cr %]
0 1.196 13.5 | 14.5 8.30 1.278 13.5 | 13.5 11.97
45 1.033 12.5 | 13.5 9.31 1.089 12.5 | 125 20.23
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Table 4.9: 100 year characteristic values, 7, for the vertical bending moment midship for the
100

5-175 container ship. All #,y are made dimensionless w.r 1. L3 Bpg. Fn = 0.275.

Pierson Moskowitz Jonswap
Most Tmportant Sea State Most Important Sea State

Heading | #4,[10°) { H, | T, Cr %] Mooll0] | Hy | T, Cr (%]

SHI 1131 | 125 [ 135 9.14 1.154 106 | 11.5 18.69
0 SRI 1.480 13.5 | 14,5 8.85 1.571 13.5 | 13.5 9.32

SHI 1.057 11.5 1 125 9.60 1.097 10.5 | 11.5 22.90
0 0srr | 1366 [125]135]  sos 1377 | 115 | 115 10.33
60 { SRI 1.069 13.6 ] 14.5 7.42 1.040 13.5 | 14.5 8.62
120 | SRI 0.777 10.5 | 11.5 8.83 0.726 85 | 85 17.72

SHI 0.880 12,5 1 13.5 9.41 0.903 95 : 9.5 14.36
150 SR1 0.954 13.5 | 14.5 8.40 .966 11.5 | 12,5 8.34

SHI (.6567 12.5 1 13.5 9.74 .669 11.5 1 12.5 11.23
180 NKK 0.846 125 1135 8.30 0.874 11.5 | 12,5 12.69

Table 4.10: 100 year characteristic values, Py, for the vertical bending moment midship for the
reefer vessel. All 7oy are made dimensionless w.r.t. LY Bpg. Fn=0.0.

Pierson Moskowitz Jonswap
Most Important Sea State Most Important Sea State
Heading | 71[10°) | H, | T, Cr %] Mooll0® | Ho T T, Cr [%]
fore | (0.763 11.5 1 12,5 10.53 0.802 |9.5 105 22.89
0 aft 0.809 | 11.5 | 12.5 10.65 0.829 9.5 | 105 20.87

Table 4.11: 700 year characteristic values, Flo0s for the vertical bending moment midship for the

reefer vessel. All 7y, are made dimensionless w.r 1. L3 Bpg. Fn=0.145,

Pierson Moskowitz Jonswap
Most Important Sea State Most Important Sea State
Heading | #00[10°] | H, | T, Cr [%] Mooll0® | H, | T, Cr (%]
fore | 0919 | 1151125 8.41 (.950 0.5 | 11h 15.13
0 aft 0.988 1115 | 125 9.82 1.031 9.5 | 10.5 17.77
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Table 4.12: 100 year characteristic values, Fige, for the vertical bending moment midship for
the cargo ship Wolverine State, full loading condition. All #o are made dimensionless w.r.t.
73 Bpg. Fn=0214,

op

Pierson Moskowitz Jonswap
Most Important Sea State Most Important Sea State
Heading | #oo[10%) | Ho | Tp 1 Cr %8 || flool10%) | Hs T, | Crl%l
0 1.138 12.5 1 13.5 9.18 1.177 10.5 | 11.5 20.94
30 1.001 11.5 | 12.5 10.21 1.078 9.5 {106 31.96
60 0.642 11.5 1 11.5 10.55 0.655 85 | 95 33.93
120 0.820 9.5 | 9.5 12.30 0.774 7.5 1 1.5 26.23
150 0.893 11.5 ¢ 12.5 10.14 0.906 85 | 95 19.75
LE%Q_ 0.807 12.5 | 13.5 8.98 0.807 | 10.5 } 11.5 10.99

Table 4.13: 100 year characteristic values, Fgq, for the vertical bending moment midship for
the cargo ship Wolverine State, light loading condition. All #5 are made dimensionless w.r.1.
Lf,pog_ Fn = 0214

Pierson Moskowitz Jonswap T
Most Important Sea State Most Important Sea State

Heading | #ool10° | Hs | Ty Cr %) #lopll0%] L Hs | Ty Cr (%)
0 1.171 11.5 1 115 10.04 1.243 951105 19.79
30 1.025 {115 | 115 10.89 1.052 1951 9.5 26.40
60 0.622 95 | 9.5 14.34 0.628 | 75| 75 30.28
120 0.549 9.5 | 9.5 12.63 0522 7.5 75 31.22
150 0.803 115 | 12.5 10.14 0506 |85} 95 19.75

| 180 0.787 | 10.5 | 11.5 10.46 0.787 | 9.5 105 17.77 4]

Table 4.14: 100 year characteristic values, g, for the vertical bending moment midship for
the Mariner Class cargo ship California Bear, westbound loading condition. All i are made
dimensionless w.r.t. L3, Bpg. Fn = 0.258.

Pierson Moskowits Jonswap
Most Important Sea State Most Important Sea State
Heading | #pol10°) | Hs | T Cr [%) #ool10%] | Hs | Tp Cr %l
0 1.088 112.5 125 8.98 1.0904 | 105 | 105 15.44
30 1.032 11.5 | 12.5 10.24 1.063 95 | 10.5 25.06
60 0.758 9.5 | 9.5 11.43 0.709 8.5 | 85 22.79
120 0.752 9.5 | 9.5 11.00 £.709 75 1 7.5 30.17
150 0.045 | 11.5 | 125 10.90 (1.963 9.5 | 10.5 20130
180 J__ESM 11.5 | 125 10.02 0.895 9.5 1 10.5 25.01
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Table 4.15: 100 year characteristic values, 71y, for the vertical bending moment midship for
the Mariner Class cargo ship Culifornia Bear, ecasthound loading condition. All oo are made
dimensionless by Lngpg. Fn = 0.258.

[ Pierson Moskowitz Jonswap
Most Important Sea State Most Important Sea State
Heading | #[10°%] [ &, | 7, Cr %] || #loofl0?] |H, | 7T, Chr %)
0 0.951 115|125 10.06 0.970 | 9.5 105 20.48
30 0.839 1.5 1 11.5 10.40 0.870 195 95 18.63
60 0.609 95 | 9.5 13.48 0597 1751 75 34.17
120 0.646 9.5 ! 10.5 11.00 0.622 |75 7.5 25.07
150 0.783 115 | 12.5 10.65 0.796 | 95| 105 20.11
180 0.702 11.5 ;125 10.55 0.709 19.5 105 19.15

To assess the uncertainty in the transfer function, the uncertainty in the long term extreme value
was quantified. That is the ratio between measured and predicted long term extreme value, 114,
was calculated for the vertical bending moment midship. A value is denoted as measured when
the transfer function is corrected using the model error of the transfer function and as predicted
if the transfer function is uncorrected. The results for all ships are presented in Table 4.16 - 4.19.

The ratio shows that in most cases the estimated hundred year value, o0, 18 overestimated,
t.e. ¢ag0 < 1.0. The 7y, is overpredicted by as much as 40% for the Wolverine State in light
loaded condition in following sea. The results for the S-175 and the SL-7 container ship state
the contrary for head to beams seas, That is the r! ,-values are underpredicted. However, the
results for beam to following seas could indicate overprediction is a general trend. The results
for these two container ships might indicate that systematic error is present in the theory, i.e. a
shift from anderprediction to overprediction at beam sea, when the loads for this vessel type is
estimated.

Looking at the 1, g-values for the SL-7 and the reefer, the values increase as the forward speed
increases for the two heading angles applied in this work. Comparing the ratios for the other
vessel, the same behaviour is not observed. However, only one forward speed case is available
for the other vessels. The increase of the ratio might only be observed when comparing results
for a given vessel as the forward speed increases.

Experimental data obtained by different organisations for a given model, should give results
with similar tendencies. This was not the case for the S-175 container ship. In most cases the
the experimental data from different test programs showed large scatter. Consequently, this will
emerge in the estimated #,, and the corresponding .

The data from SRI, SHI and NKK lead to significantly different results. The largest devia-
tion between the submitted data, groups! was as large as 36% in the worst case, t.e. in head sea.

'Collection of data points for a given test case
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Since the experimental data show a large scatter, one may suspect that something in incorrect
with the data and one could be tempted to neglect data from some of the contributing organisa-
tions. However, t0 neglect data groups, the corresponding result must differ from all other data
groups. T his is not the case for the S-175 container ship. Whereas the results for the SRI are in
the same order of magnitude as the g0 values for the SL-7 vessel, the SHI and NKK data are
resembling the result for the reefer vessel, California Bear and Wolverine State. In addition, the
SRI-value at 60-degrees is substantially larger than the results for the mentioned three vessels.
However, the tendency is similar as for the SL-7 container ship. Instead of neglecting the data
for the S-175, the above comments should be kept in mind.

Table 4.16: Ratio between predicted and measured 100 year value for the vertical bending moment
N

midship, Y00 = %ﬂﬁ The Jonswap spectrum is applied in the calculations.
100

[ Heading [0 [ 80 ] 60 [ 120 [ 150 | 180 |
GRI T 1237 | 1.232 | 1.717 | 0.840 | 1.084 | -
S-175 Fr=0.275 | SHI | 0900|0982 - _ o1z | o7l
NKK | - ; . ; . 11021
fore 0.928 - - - - -
. , Fn=0.0 aft 0.050 | - ; - ; -
reeler vesse F _0 145 fore 0970 B T T ; ;
= aft 1.053 1 - - - - -
- west 10749 | 0.815 | 0.027 | 0.804 | 1.032 | 0.976
California Bear | Fn=0.208 | o | g730 | 0.744 | 0.876 | 0.730 | 0.874 | 0.796
_ Tight || 0.946 | 0.881 | 0.832 | 0.678 [ 0.883 | 0.588
Wolverine State | Fn=0.214 | p 1 0910 | 0.954 | 1.055 | 0.925 | 0.969 | 0.830

Table 4.17: Ratio between predicted and measured 100 year value for the vertical bending mornent
)

madship, ¥igo = ;}QQ Results for the SL-7 container ship is presented. The Jonswap spectrum s
160

applied in the calculations.

[ Heading 0 | 25 | 45 | 65 [ 116 | 135 1155 |
Fn=0220 [ 1197 | - 11245} - - - |-

SL-7 Fno=0.245 || 1.204 | 1178 | 1.273 | 1.482 | 0.768 | 0.021 | 1.129
Fn=0270 ) 1238 | - | 1367 - - - |-
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Table 4.18: Ratio between predicted and measured 100 year value for the vertical bending moment
al

midship, o0 = ;}ﬂl The Pierson Moskowitz spectrum is applied in the calculations.
100

| Heading | 0 30 160 [ 120 | 150 | 180 ]
SRT || 1.242 | 1.288 | 1.829 | 0.871 | 1.048 | .
S-175 Fn=0.275 | SHI | 0.957 | 0.997 | - - 10967 | 0.772
NKK . - . . - 10.995
fore (.890 - - - - -
=00 & | ooaa| - i i i ]
reefer vessel Tore 0951 - - - - -
Fr=0.145 | o 1.045 | - ; ; . -

west 11 0.780 | 0.834 | 1.031 | 0.825 | 0.989 | 0.089
east 0.938 | 0.746 | 0.916 | 0.735 | 0.735 | 0.837
light || 0.938 | 0.908 | 0.857 | 0.692 | 0.866 0.585
full 0.935 | 0.939 | 1.099 | 0.944 | 0.935 | 0.833

California Bear Fn=0.258

Wolverine State Fn=0.214

Table 4.19: Ratio between predicted and measured 100 year value for the vertical bending moment
al

midship, g0 = ;%911 Results for the SL-7 container ship is presented. The Pierson Moskowits
190

spectrum s applied in the coleulations.

| Heading | 0 [ 2574 [ 65 [ 115 | 135 | 155 ]
Fn=10220 [ 1224 | - 12521 - - - -

SL-7 Fn=0.245 || 1.238 | 1.203 | 1.281 | 1.546 | 0.791 | 0.920 | 1.068
Fpn=0270 | 1261 | - 1374 - - - -

4.5 Dimensionless Model Error for Linear Theory

A procedure to estimate the dimensionless model error for the vertical bending moment mid-
ship for seven ships is presented. A method based on cubic splines and model error as in Eq.
4.3. The transfer function uncertainty is given as a function of w and the model uncertaingy
is quantified by the ratio between the measured and predicted 100-year value for the vertical
bending moment midship, 1105, One may notice that there is a large discrepancy between the
measured and predicted data. There is not only large difference on the ratio for one heading, but
there is also noticeable difference between the measured data for one ship when experimental
measurements are conducted by different organisation, see data for the $-175 container ship. In
addition, the data from one organisation always tends to cither overestimate or underestimate
the 100 year value, i.e. 00 < 1.0 or 9o > 1.0.

In this section, a general measure of the uncertainty in the linear, strip theory will be presented
as the uncertainty in the long term extreme value and the corresponding standard deviation
based on the results in Sect. 4.4.3
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4.5.1 Generalisation of the Dimensionless Model Error

In the previous chapters, some errors that may contribute to the deviation between predicted
and measured data for the transfer function are pointed out. Another uncertainty is the actual
mathematical formulation of the model error. During the experimental testing, one is mainly
concerned about collecting data in the vicinity of A/Ly, = 1.01n order to capture the dominant
peak of the transfer function. Therefore, one is normally in lack of experimental data. One
should therefore keep in mind that the dimensionless model error, ¢"(w), is only an indication of
the uncertainty of the theory relative to experimental testing. It can be used in order to get an
idea about uncertainty in the calculation when one is performing long term statistics. A direct
use of the model error in short term statistics is not recommended. Especially not for sea states
where the peak period is far off the peak period of the transfer function. This is due to the

ancertainty in the modelling in those areas.

The model error for all ships are collectively presented in Fig. 4.8 for the headings 0, 30, 60, 120,
150 and 180 degrees. Results for the SL-7 container ship are only included for head sea, since
data are not available for the other headings. There is not made any distinction for the separate
ships since one is aiming at a general measure of the model uncertainty, ¥:00. Hand-drawn
continuous lines are included to emphasize the spread of the results. Looking at the figure, one
may see that the model errors have a large scatter at small and large wave lengths, ¢.¢. high and
low frequencies. In the area where the m%as—ﬁ is close to unity the scatter seems t0 narrow. But,
even in this area the values can vary as much as 0.6 ~ 9.0. An interesting observation is that
the upper limits are in all cases results of analysis with the S-175 container ship. In particular,
large deviation can be observed for the headings 8 = 30, 60 & 120 degrees. As mentioned in
Sect. 4.4.3, the ratio, g, at § = 60 degrees was suspiciously large for this vessel. This is also
reflected in Fig. 4.8(c) where the dimensionless error, & ( Lppios 5= 1.0 is approximately 2.0.
This may confirm that the the experimental data from SRI is questionable. However, one may
say that the uncertainty in the transfer function for all wave lengths seems to be in a scatter
band which is drawn on the figures as continuous, thick lines.

Tn order to find a method to get an estimate of the uncertainty in the long term extreme value
expressed by the ratio ¥g0, a relationship between the the ratio o and the model error of the

transfer function, ¢”(), at either = = 1.0 or ;—“'\é?ﬁ — 1.0 was searched for (w is the wave fre-
o pp B

quency and w, is the frequency where the corresponding wave length is equal to the ship length).
The model error of the transfer function can be expressed by the ratio between the measured
and predicted transfer function at this point. Or else one may find the difference between the
measured and predicted transfer function and normalise the value as shown in Eq. 4.4 - 4.5.

For every transfer function the value of the model error ¢" at £ = 1.0 or f—io—s—ﬁ- = 1.0 was
P

selected and plosted against the ratio 40 obtained by long term statistics of the corresponding
transfer function. The final results are presented in Fig. 4.9. The results using the value of the
model error at - = 1.0 versus oo are shown in Fig. 4.9(a} and Fig. 4.9(c). The other two fig-

ures, 4.9(b) and 4.9(d) show the results picking out the value of the model error at E;‘L" =1.0.

p COS 3
Both the Pierson Moskowitz and the Jonswap spectrum are presented. In the figures there is
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Figure 4.8: Model error of the transfer function, ¢"(w)
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also a straight line which is calculated using linear regression analysis;
y=ar+b (4.15)
The coefficients are found by using the least square method given as

i = and b= § — aZ (4.16)

Table 4.20: Values of the estimated parameters, Eq. 4.15, for the various curves used to estimate
the model uncertainty by the ratio 0. Also given are the standard dewviation, &, and the
correlation coefficient, p.

lSpectruml a [ b [ g } p E
PM 0.813 ] 0.195 | 0.171 | 0.60

= FLO(2 = 1.0
oo = F(9"(, D Jouswap | 0.800 | 0.105 | 0.155 | 0.72
. PM 0.722 | 0262 | 0.128 | 0.84
oo = FAH" (s )} Jonswap | 0.658 | 0.316 | 0.131 | 0.81

where the @ and §f are the average values. The values of the estimated parameters, the standard
deviation and correlation coefficient are given i Table 4.20. In Fig. 4.9 also a straight obtained
using regression anlysis with head sea data are shown. It is a prominent linear relationship
between the o and ¢" wsing only head sea data. However, due to the limited number of data
points available for a given heading, it is chosen not distinct between the headings in the this
work.

One may notice that by plotting the value of the model error d"() at Tp‘;i\oTﬁ = 1.0 versus
1100, the data points seem to gather closer to the straight line. Using the value of the model
error ¢ at o= 1.0 versus g0 this tendency is not so strong, indicating that there is a stronger

correlation between the model error ¢”( Lp,,)c\os 7 = 1.0) and t109. Even though the spread is large
in either of the cases, the correlation coefficients are largest for the former cases. That is, the
correlation coefficients are 0.81 and 0.84 in Fig. 4.9(b) and 4.9(d) respectively, whereas they
are 0.69 and 0.72 in Fig. 4.9(a) and 4.9(c). One may also notice that the standard deviation is

smaller in the former than the latier case.

This discovery leads to a simplified method to obtain an estimate of the uncertainty of the
100 year value of the vertical bending moment midships. For a given heading angle, the band

for the model error at ; p)éos 5 = 1.0 can be found on Fig. 4.8. The range for the ratio, #go, can
/P

thus be found by returning to Fig. 4.9(b) and 4.9(d). This is exemplified in Fig. 4.10. For every

heading, the mean value, (/5”(1,,,,,'2056 = 1.0), and the standard deviation, o, of qﬁ”(Lwiosﬁ = 1.0)

is found. The parameters for the linear regression in Table 4.20 is used in order to find an esti-
mate for 910 and the lower and upper limit, see range on Fig. 4.10. The upper and lower limit is

found by using (¢"( Lm,ios 5= 1.0) + o) and the linear relationship to Y10 giving [qplower 4 3.
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4.6 Model Uncertainty of Nonlinear, Strip Theory

To asses the model uncertainty of nonlinear hydrodynamics, different methods can be applied.
In general, the possible methods will be restricted due to the experimental data. Experimental
investigation of nonlinear response is normally conducted in regular waves. It is not common o
do experiments to measure nonlinear, irregular response.

The simplest model would be to find a constant value in a format similar to that of the
1ACSrules, Nitta et al. (1992).

Another possibility is to use a nonlinear model uncertainty based on a regular wave correc-
tion. That is for a given wave defined by its wave height, H, and its period, T', one can find the
ratio between the measured amplitudes for sagging and hogging and the corresponding simulated
values.

Qsag or hog = X(H, T) Ysag or hoy (417)

An option is of course to do 2 time domain simulation for a given significant wave height, H,
and peak period, Tp. The corresponding time series could be created in an experiment. Further,
stochastic analysis to find extreme values could be carried out. An estimate of the model
uncertainty is based on the ratio of simulated, y(t), and measured extreme values, i(¢). The
equivalent procedure could be carried out to find other measures as for instance ratios between
individual peaks in the simulated time series and the corresponding measured series in order to
correct the simulated time series, .¢.

G(t) = g(Hs, Tp)y(t) (4.18)

In order to reduce the length of the time series, a similaz method to that presented in Torhaug
(1996), could be used. Torhaug located © critical wave episodes” which were expecied to give the
largest nonlinear response. The critical wave episodes were located by means of linear analysis.
In order to find the extreme, nonlinear responses, only short time series were needed. This idea
was also initiating the development of the guasi-nonlinear code in Wu and Moan (1996). A
similar method could be used in experiments in order to reduce length and cost of creating long
time series.

To assess the nonlinear model uncertainty, a simplified nonlinear theory was applied. The total
response is decomposed into linear and nonlinear parts. The linear part is evaluated by using
the ordinary strip theory discussed in Sect. 2.3. The nonlinear part comes from the convolution
of the impulse response function of the ship-fluid system and the nonlinear modification of the
hydrodynamic forces. The method for high and slow speed vessel are described in Wu and Moan
(1996). Validation based on a model test is presented in Wu et al. {1996},

The nonkinear components taken into account are due to slamming and modifications of the
Froude-Krylov and hydrostatic restoring force. In order to evaluate to slamming force, an
asymptotic solution is used for the added mass. For details, see Sect. 2.5.
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4.6.1 Regular Waves

The model uncertainty of the nonlinear, strip theory was associated with the model error ex.
pressed as the ratio between experimental and predicted amplitudes of the vertical midship
bending moments responses due to 2 regular wave. That is the true response maxima is given
as

gsag or hog == X¥sag or hog (419)

4 and y represents the measured and predicted maximum values respectively, for the sagging
or hogging. x is the ratio between the two. One can imagine that X 1s a function of different
parameters such as wave height, wave periods, hull form, loading conditions and also the mea-
suring method is a parameter contributing to the uncertainty. In order to find a trend for the
relative difference, a large amount of experimental data were used and a number of simulations
were carried out,

The uncertainty in linear strip theory was characterised by the ratio between the true and
the predicted long term extreme value The aim is to establish a similar approach for correction
of the predicted nonlinear, long term extreme value, i.e.

% == correction factor -+ (4.20)

where 7% and % is the true and predicted sagging or hogging response respectively.

tal measurements in regular waves. It will be shown in Sect. 5.4.5 that there is mainly one sea
state which does contribute to the long term extreme value. The long term extreme value can
be estimated within an error of 15% using this specific sea states for the response cases applied
herein. There is therefore no need to perform uncertainty analysis with a wide range of sea
states to obtain a reasonable estimate of the correction factor. In addition, the vessel will have
its maximum response for a given set of wave heights and periods depending on the the degree
on nonlinearity. These responses will contribute most to the extreme responses. An estimate
of the uncertainty in the long term extreme value can be based on uncertainty analysis of the
response in a set of regular waves. The correction factor may be given as a function of X, i.e.

=00y (4.21)

In the following, a measure of the uncertainty in nonlinear strip theory will be established on
bases of response in regular waves.

Unfortunately, limited data exist in the open literature, They quite often lack details which
render impossible any further use. In the following, the reports which have been applied, found
or read in this study will be listed in the hope that others do not have to waste their time by
searching for experimental data,




46, MODEL UNCERTAINTY OF NONLINEAR, STRIP THEORY 81

Experimental data are collected for different ships ranging from 100-300 meters full scale. Results
for a tanker and a destroyer are found in Dalzell (1964a) and Dalzell (1962a). A large amount
of data for a mariner type of vessel and three variants are given in Dalzell (1964b) and Dalzell
(1962b) and Dalzell (1962¢). The mariner models are named 2251A-V1, 2251A-V2, 2251A-V3
and 2251B. The original mariner hull was designated as 2251A. The designation V1 refers to the
design weight distribution. V2 and V3 represent variation of the weight distribution within the
model, namely cargo at the ends and at midship respectively. Results for the model 2251A-V3
are not included as the weight distribution 1s somewhat unusual. The model tests were merely
included in the report in order to study the change of the radius of gyration. The last model
99518 is equivalent to the 2251A-V1 with increased freebord.

A reefer vessel is described in Korbijn (1992). This vessel is also used in this work in order
to study the model uncertainty for the linear strip theory. The experimental data for the reefer
vessel is determined by measuring strains at different localities on a backbone frame. The sag-
ging and hogging values midship are found by solving a set of equations and integrating from
aft and front. Ideally, the two values should be equal. However, the strain gauges has limited
‘accuracy and the inaccuracies adds up differently starting from aft or front. This may lead to
large deviations between the two values. The results for the reefer vessel are therefore indicated
by aft and front to separate the cases.

The experiments have been carried out for a constant wave length X and increasing wave height
h and a constant forward speed U. Calculations were conducted with the wave length, wave
height and speed as in the experiments scaled to full scale. For every regular wave, the ratio
between the experimental and simulated value for the sagging and hogging value midship were
found. The value of the hogging response is in the following designated negative sign. Fig. 4.11
is an example of a comparison between the experimental values and simulations carried out for
the destroyer vessel at two different speeds and equal wave length.

The hull forms are shown in Appendix I and the mass distributions are reproduced in Ap-
pendix G.

Lloyd et al. (1980) presents a rather large amount of experimental data and details so that
the data can be used of independent workers in order to verify their own theories. However,
there are limited data for the midship bending moment. Detailed information are also given
in Nethercote (1981). A limited amount of comparisons of experimental data and nonlinear
calculations are presented by Fujino and Yoon (1986}, Petersen (1992), Xia et al. (1995) based
on different nonlinear theories. Kring et al. (1996) presents comparisons of measured data for
the above mentioned reefer vessel and different nonlinear theories, i.e. nonlinear strip and 3D
theories. The experimental data can be found in Korbijn {1991). However, Korbijn (1998)

suggested that these data were not reliable and should not be used.

4.6.2 Trends

In order to find a more general expression for the model error, X, the dependence of the error on
relevant parameters has been investigated. The motivation is that if no such trend is detected,
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Figure 4.11: Midship bending moment for the destroyer vessel versus the wave amplitude for
M Lpy = 1.0. Both linear and nonlinear simulations results are included.

this may justify that an average value may used to describe the model error for a given vessel.

Firstly, the relation between the model error ¥ and the wave steepness H/A is investigated.
Secondly, the influence of the degree of nonlinearity is studied. Also the dependence of ¥ on
wave length will be commented.

The model uncertainty for the mariner vessels 2251A-V1 and 2251A-V2 as a function of the
wave steepness are presented in Fig. 4.12 and 4.13. One might suspect that the model uncer-
tainty would increase as the wave steepness increases as a result of large nonlinear effects which
the quasi-nonlinear theory applied in this work, will be unable to predict accurate. Fig. 4.12(a)
and 4.13(a) show the model error y versus the wave steepness H/X for wave lengths ranging
from A/Ly, = 0.75 — 1.75. The results for the 2251A-V1 vessel indicate that the model error is
more or less in the same range for sagging and hogging. However, for the 2251A-V2 vessel the
model uncertainty for sagging is clearly concentrated below 1.0 and for hogging the results are
larger than 1.0. For the latter vessel, the tendency is also that the model uncertainty decreases
and increases for increasing wave steepness for the sagging and hogging response, respectively.
The trend was not so clear for the 2251A-V1 vessel. This is more easily seen in Fig.4.12(b) and
4.13(a). The lines are connecting the model uncertainty for constant wave tengths \/L,, versus
the wave steepness. As already mentioned, the x for the mariner 2251A-V1 does not have so
strong tendency to increase or decrease when H/) increase. The value of x seems to depend on
the type of response. That is sagging is overestimated and hogging underestimated. The results
for the 2251A-V2 are emphasising what is already mentioned above. One should notice that
the hull form for the 2251A-V1 and 2251 A-V2 vessels are identical. The only difference between
the vessels is the distribution of the mass along the length of the hull. The deviation of the
behaviour of the model uncertainty is therefore somewhat unexpected.




4.6. MODEL UNCERTAINTY OF NONLINEAR, STRIP THEORY 83

1.5 ; e
o sagging o —|
1.4 | hogging i

1.3

T
-
-
.
:

1.1

o8t
0.8
07t °, e 0
086

¥
]

1.5
1.4 }
13 ¢
12}
11 ¢

1 b
0ot
0.8 |
07
0.6

0 002 004 006 008 0.1 0.12
M

(b) Lines connecting the modet uncertainty for constant
M Lpp-ratios

Figure 4.12: Model uncertainty X versus the wave steepness H /A for the mariner 2051A-V1
requlor head sea waves. Fn = 0.0.

A correlation between the model uncertainty and the degree of nonlinearity in the responss,
i.e. the ratic between the nonlinear response amplitude for the sagging and hogging moment
midship and the equivalent linear value, is expected and was therefore investigated. The degree
on noulinearity is indicated by nonlin/lin. The results for the tanker at two different forward
speeds, Fn = 0.0 and Fn = 0.13, are shown in Fig. 4.14. 1t seems that the model uncertainty
is independent of the degree on nonlinearity in the response, even if at some wave lengths there
is a indication that y is decreasing as nonlin/lin is increasing. It also seems like the mariner
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Figure 4.13: Model uncertainty x versus the wave steepness H/X for the mariner 2251A-V2 in
reqular head sea waves. Fn = 0.0.

2251A-V2 is somewhat sensitive to the degree of nonlinearity for some wave lengths, especially
at zero forward speed. However, this is not a general trend but an occasional happening. The
results seem to be evenly distributed around a constant value. Since the model error of the
nonlinear, strip theory seems to be independent of wave steepness and degree of nonlinearity,
this implies that the theory is able to account for even large nonlinearities. This leads us to the
next concept, where an average value is calculated for each wave length, 7.e.
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k
v=1 300 (4.22)
i=1
where k is the number of experiments/simulations for a given wavelength \;. The value of ¥
is calculated for each vessel, with and without forward speed, and presented in Fig. 4.15. In
the forward speed cases, 4.15(c) and 4.15(d), two different Froude numbers are included i.e.
Fin = 0.13 and Fn = 0.145. It is not expected any significant differences in the results for ¥ at
these two Froude numbers. Therefore they are not treated separately.

Again the value of ¥ does not seem to depend on the parameter along the abscissa. The ten-
dency is once more that the value of ¥ vary around a mean value, except for some significant
deviations at low wave lengths in sagging for the tanker.
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‘Table 4.21: The average value, 1, for the tanker both including and excluding the data points g
ALy == 0.5. AN/ Ly, and H/X included,
] Fn | AfLpp =05 l Average Value, y ! Variance, o I Standard Deviation, o

sagging | 0.0 incl. 1.314 0.7494 0.866
excl, 0.960 0.0001 0.011
0.13 incl. 0.741 0.0374 (.193
excl. 0.816 0.0049 0.070
hogging | 0.0 inct. 1.186 (0.0445 0.211
excl. 1116 0.0181 0.134
(.13 incl. 1.476 0.2016 0.449
excl. 1.307 0.0380 (.194 N

A generalisation of the model uncertainty is pursued. The most striking idea is to link the
value of ¥ to a parameter which is individual for each vessel. One is therefore suggesting to use
an average value for each of the response cases. For a given vessel and forward speed the average
value is given as

s

[y T

{
2% (4.23)
j=1

and with variance

N Ev Y
0_2 — EJ:ll(i.?l Iu’) (4‘24)

where p is the average model error X; for all wavelengths A; and { is the number of wave lengths.

Fig. 4.15 shows that the value ¥ for the tanker at A/ Lpp = 0.5 deviates strongly from the
other §-values. Looking back on Fig. 4.14 showing the model error, x, for the tanker, the values
of x at A/Ly, is substantially larger or smaller than x-values at other )/L,, ratios. One may
suspect that there is something wrong with the measurements and ono is tempted to neglect the
data at \/L,, = 0.5. This is also supported by the fact that the measurement were conducted
at very low wave heights, .e. 2-3cm. The smaller the wave heights are, the more difficult it will
be to produce them physically. The average value, , for the tanker is calculated and presented
in Table 4.21 both including and excluding the data at A/L,, = 0.5. Also presented are the vari-
ance o> and the standard deviation o. By excluding the data points belonging to A/L,, = 0.5
the standard deviations are reduced very much. In the following the values of 4, excluding data
points at A/L,, = 0.5, will be used.

The average values, p, variance, o | and standard deviation, o, for all vessel are given in
Table 4.22 - 4.25. The mean value, i, variance, 52, and standard deviation, &, of the of mean
values, u, for all ships are given in the last row in the tables. An estimate of the model error
of the nonlinear hydrodynamic theory may be obtained by using the average value for a given

vessel. One may notice that in most cases, the sagging values are conservative. That is the
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Figure 4.15: Model error X as a function of the ratio A/ Lpp.

simulated values are larger than the experimental results. In general, the model error, X, for the
hogging response is larger than one, meaning that the experimental values are larger than the
simulated response.

Sufficient experimental data were available for the reefer vessel to perform uncertainty analysis
for both linear and nonlinear strip theory. This enable comparison of the ratio, %o, charac-
terising the model uncertainty in linear, strip theory and the average value, g, for this specific
vessel. One may notice that the model errox, i, for sagging response, see Table 4.22 and 4.24, is
in general smaller than 1o, s€€ Tab. 4.16 and 4.18. The model error for hogging, see Table 4.23
and 4.25 is larger than ¢y0p. This implies that the predicted sagging response using nonlinear,
strip theory is more conservative than the prediction by linear, strip theory. The contrary is the
result for the hogging predictions.

A more general approach would be if one is able to find a connection between the model error
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and some characteristic of the vessel. This may make the model error more applicable for other
vessels. On the other hand, there will be additional uncertainty connected to the model errors
if applied on other vessel then those presented herein. This will be discussed in Sect. 4.6.3,

Table 4.22: Average valyes of the ratios of measured and simulated values of the sagging response
midships in regular head sea waves. Frn = 0.0. Al M Loy and HJX included,
| Cy [ Average Value, p I Variance, ¢? I Standard Deviation, o

2251A-V1 0.61 0.856 0.0346 0.186
2251A-V2 0.61 0.893 0.0016 0.040
22518 0.61 0.853 0.0071 0.084
Tanker 0.80 0.960 0.0001 0.011
Destroyer 0.55 0.781 0.0005 0.022

fore 0.862 0.0102 0.101
reefer vessel afp | 097 0.886 0.0102 0.101

| All ships | A=0871_ | 57=00029 | g = 0.054 ]

Table 4.23: Average values of the ratios of measured and simulated values of the hogging response
midships in regular head sea waves. Frn = (.0, All M\/L,, and H/X included.
l Cy l Average Value, i ] Variance, ¢? | Standard Deviation, 01

2251A.V1 0.61 0.998 0.0134 0.116 |
225TA-VD 0.61 1.145 0.0030 0.055
22518 0.61 0.961 0.0090 0.095
Tanker (.80 1.116 0.0181 0.134
Destroyer 0.55 (1.895 0.0082 {1090
fore 0.953 0.0019 0.043
reefer vessel afy | 087 1.006 0.0011 0.033

| All ships | A=1.010  [5%=0.0081 | & = 0.089 j

4.6.3 Generalisation of the Model Error

A relation between the model uncertainty and for instance the block coefficient might be estab-
lished. If an equation is fitted to the average values for the model error, ¥, estimates of X can
be obtained for the intermediate block coefficients.

A function on the form

¥ =aly +bCy = f(Cy) where n =0,2,3,4 (4.25)

was chosen for the purpose. The constants g and b can be estimated by using the method of
least mean square values, Appendix D, giving
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Table 4.24: Average values of the ratios of measured and simulated values of the sagging response
midships in regular head sea waves. Fn = 0.13 4 0.145. All A/ Ly, and H/ N included.
| Cy | Average Value, p | Variance, o? | Standard Deviation, o |

F2251A-V1 0.61 0.849 0.0023 0.048
2251A-V2 0.61 0.839 0.0018 0.043
9251B 0.61 0.886 0.0025 0.050
Tanker 0.80 0.816 0.0062 0.079
Destroyer 0.55 0.971 0.0011 0.033

fore . 0.975 0.0064 0.080
| vockor vessel afe | 097 1.042 0.0039 0.063
[ Al ships | p=0011 | 3*=0007 { & = 0.085

Table 4.25: Average values of the ratios of measured and simulated values of the hogging response
midships in regular head sea waves. Fn = 0.13 & 0.145. All M/ Ly, and H/ X included.
rC’b | Average Value, p l Variance, ¢* | Standard Deviation, & i

2251A-V1 0.61 1.255 0.0530 0.230
9251A-V2 0.61 1.156 0.0053 0.073
22518 0.61 1.010 0.0150 0.122
Tanker 0.80 1.307 0.0380 0.194
Destroyer 0.55 1.095 0.0326 0.181
fore 1.087 0.0244 0.156
| rocfer vessel af | 07 1.197 0.0153 0.124
[ All ships | i=1158 | 6200107 | g = 0.103 !

T Gy T O = S O Y vCy
¥ m
S CEY O = (i Crty?
221 yCyp - a ZT—:I CJ?H

= m n (427
SuNe: )

I n = 0 the estimates of @ and b is equivalent to the estimates for a straight line given as

(4.26)

oM

p 2711 yCy — Zm=1 Cy zﬂll Yy

S ST o) 1.8
Yo CE - (L, G (4.28)

P = Zizly*;&:l Cy w20)

where m is the number of data points.

Eq. 4.25 was fitted to each of the data groups of average values of the model uncertainty X
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versus the block coefficient C,. Four equations, one for each value of n, was fitted to the dats,
and the best fit were chosen on the basis of least residual mean square deviation from the data.
The resulting values for the coefficients a and b is presented in 'Table 4.26 together with the
values of n that is minimising the mean square deviation. In addition the variance and standard
deviation is presented for each case. The variance and standard deviation are calculated by
using

s [T~ H(G)?

- (4.30)

where m is the number of ships (for the reefer vessel aft and front counts two). By fitting an
equation to the data points instead of using the average value will reduce the interval for the
model uncertainty, i.e. y(Cy) £ & will be smaller than i+ {[i and 7 refers to the average values
and standard deviation for all ships}. This is because the deviation between the Eq. 4.25 and
the data points is minimised by using the method of least mean squares.

Table 4.26: Values of the estimated parameters, Fq. 4.26, for the various curves used to estimate
the model uncertainty v.

| Fn ln| a | b | Varance, 6° | Standard Deviation, ¢ |
Sagging 0.0 41 1.631 —0.844 0.0009 0.030
0.13 & 0.145 | 0 | ~0.604 | 1.334 0.0038 0.062
Hogging 0.0 4 1.882 | —0.935 |© 0.0040 0.063
0.13 & 0.145 | 0 | 0.786 0.673 0.0063 0.079

The resulting equations for the model error for the sagging and hogging response midship in reg-
ular waves are presented in Fig. 4.16 together with the average values given in Table 4.22 - 4.25.

Looking at Fig. 4.16 one may notice that there is a small difference between the linear, n = 0,
and the three other nonlinear curves, except for sagging at forward speed. Based on this obser-
vation, the model error, ¥ = f{C}), can be approximated by a linear function. The values of the
estimated parameters ¢ and b for n = ( and the corresponding variance and standard deviation
are given in Table 4.27.

In three cases the, model error increases, as C, increases. The opposite trend is observed for
sagging response with forward speed decreases as the value of Cy increases. Even if a propor-
tional tendency is observed, it is believed that the number of data is too small to state that this
as a general trend. If more data where available, one could naturally studied more carefully.

4.7 Experimental Errors

Calibration of the measuring instraments may introduce errors from one test to another even if
the experiments are conducted in the same towing tank. If equivalent experiments are conducted
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Table 4.27: Values of the estimated parameters, Eq. 4.26, for the various curves used to estimate
the model uncertamnty x.

[Fn [n] a 1 b | Variance, &% | Standard Deviation, & |

Sagging 0.0 01 0521 |0.549 0.0010 £.031 1
0.13 & 0.145 | 0 | —0.694 | 1.334 0.0038 0.062

Hogging 0.0 01 0.692 | 0.583 0.0047 \ 0.068 J
0.13 & 0.145 | 0 | 0.786 | 0.673 0.0063 0.079
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Figure 4.16: Model error ji as @ function of the block coefficient Cy together with the data points
used in the fitting procedure.

in different towing tanks, there is most likely introduced systematic deviations. Looking at the
ratio Yoo, 4 €. the uncertainty in the long term extreme value, for the S-175 container ship this
is quite evident. The diffevence hetween the ratios are maximum 36% and minimum 7% where
two different institutions have submitted experimental data.
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In order to measure the loads, one need specific information about the load distribution along
the hull and the locality of the centre of gravity. Exact knowledge of these data will only be
known after the ship is built. If the mass distribution is known approximately, this will cause
trouble when one wants to do simulations for further verification of the model tests.

Uncertainties in the encounter frequency is another source of error. Since the physics of the
boat is dependent on this number, it is important to generate the encounter frequency correctly.
The encounter frequency, w,, is given as

2
wWe == We(w, B, U) == w + %?ﬁé {4.31)

where the w is the wave frequency, U is the forward speed, £ the heading angle and g is the
acceleration of gravity. One would expect that the wave frequency is quite accurately deter-
mined, but reflection from sides of the tank/ocean basin and distortion can be another source to
uncertainty. Another important parameter is the heading angle. If the test model is towed, one
would expect that the heading angle is less uncertain as the model is normally fixed to a carriage.
On the other hand, if the model is towed it can be be restricted from moving in a natural way.
Most likely, the error due to uncertainty in the heading angle is small in a towing tank. In the
case where the model is moving freely in an ocean basin, this uncertainty is larger. At bow or
aft sea, the rudder will be used quite actively in order to keep the heading. It is probable that
the model will tend to oscillate somewhat from side to side, even though the change from its
average position will be small.

Since the encounter frequency goes as ~ cos 3 the change in w, due to change in the heading
angle 5, Ow. /8B ~ sin 8. That means that the encounter frequency is most sensitive to inaccu-
racies in the heading angle at bow or quartering seas. As an example a change of the heading
angle of A = 0.2 degrees cause a variation for the encounter frequency between {0.62 ~ 0.64] at
sixty degrees, whereas the same change cause a negligible difference at head sea.

Another important parameter that concerns the frequency of encounter is the forward speed.
If the model is towed this will not be a problem as the carriage will run at constant speed.
However, for a free running model added resistance will reduce the speed and thus influence the
final encounter frequency.

Naturally, the deviation in the encounter frequency will not be so conspicuous when one is
looking at a figure showing both measured and predicted data. But when one is trying to quan-
tify the uncertainty by some kind of mathematical methods, this uncertainty can aggravate the
results. In the case where the measured data points are located in the very steep areas of the
transfer function it is rather obvious that accurate knowledge of the position of the data point is
quite important. And that uncertainties in the wave frequency, the heading angle, the forward
the speed are sources of error. This may explain why the model error is very large at high and
low frequencies, i.e. large and small waves. One may notice that in the region where o = 1.0
the model errors are ranging from 0.5 ~ 1.0 — 2.0 in all cases, whereas at large and small waves
the error, in most cases, increases.
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Among the models, only the SL-7 and the 5-175 container ships which are free running models
steered by an autopilot. For the three boats, Wolverine State, California Bear and the reefer
vessel, the experimental data has been found by towing tests. The tanker, destrover and the
mariner vessels 2251A-V1, -V2, 2251B have been towed in the same towing tank.




C'HAPTER 5

Simplified Estimates of Long Term
Extreme Response

5.1 Introduction

In the design of ship, two approaches are applied to obtain the design loads, i.e.

e Ship Rules

# direct calculations

Traditionally extreme wave loads are obtained from Ship Rule formulae. Such formulae are based
on data for various ship types and would not generally be optimal for a given vessel. This is
particularly the case for novel vessels, and direct caleulation of the hull girder loads is therefore
preferable in such cases.

The most used method is a complete long termn description of the response itself. This means
that many wave conditions must be analysed and that the long term description is obtained as
a weighted sum of the short term descriptions, see Sect. 3.8, considering various wave headings,
velocities, routes and operational restrictions, i.e. velocity and heading profiles. The response
in a given sea state, defined by the parameters significant wave height, H;, and peak period, Tp,
can be obtained in the frequency domain for the linear response, while time domain simulation
is, in general, required to obtain nonlinear response. Consequently the number of load cases to
be analysed become almost impractical from a designers point of view. Therefore, a simplified
method is necessary to improve the efficiency in the calculation for the nonlinear long term
extreme values. This may be done in different ways, but some possible methods are

o regular design waves

95
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¢ design storm

e set of sea states

The first approach is based on a deterministic wave description. The wave height and period are
determined from wave statistics or physical considerations calibrated by more accurate methods,
The method is attractive as it is rather simple. No stochastic analysis is needed when the methog
is calibrated. On the other hand, if a system is sensitive to the period, i.e. dynamic system or
a highly nonlinear system, information is omitted and the method becomes questionable de.
pending on the calibration. For offshore platform a critical wave length and corresponding waye
height is applied, while for fixed platforms, which have negligible dynamic effects, the extreme
responses occur for the highest waves, NORSOK STANDARD (1999). Ships have heen designed
by calculating the response from a wave with length equal to the ship length. The wave height
can be found from the breaking wave criterion, e. g- Otufsen et al. (1991) applied this for flexible
risers and Adegeest et al. ( 1998) for ships. However, the method is not commonly used for hy]
girder load calculations in ships, but in the DNV (1987) there are given guidelines on design
wave parameters to be used for analysis of semi submersible platforms.

The second approach is to use a design storm. This is a stochastic analysis of a response in one
specific area defined by its energy spectrum. In this case the lifetime extreme can be recognised
as the most probable or the expected value during the storm. Using this approach, a long term
analysis is not necessary, but large uncertainties are seen in connection with the design storm
parameters which is the significant wave height, H,, peak period, T, and storm duration. In
addition, the chosen parameters are often based on experience and different methods are applied.

The third method, is a tool giving the designer a set of sea states to be used in the design
analysis, i.c. some chosen sea states op sea states defined by the contour lines. The contour lines
(contour curves) are simultaneous values of significant wave height and period corresponding to
a certain probability of occurrence, Haver (1987), Winterstein et al. {1993). In this thesis, it
will be shown how these kind of curves can be established and utilised.

9.2 The Contour Line Approach

The contour line concept is mainly suggested as a method for predicting load- and response-
maxima corresponding to a prescribed return period without having to carry out a full long
term analysis. The advantage with this concept is that the environmental and response analysis
is decoupled. Meaning that the structural analyst can be handed contour curves for a given
return period and a chosen sea area from an environmental analyst. This also opens for different
interpretations of the contour line itself which could all be equally valid when seen in view of the
procedure established for selecting a characteristic short term extreme value, but the simplified
method must be calibrated by full long term analysis.

In general, the design extreme value established using the contour line approach will be de-
fined as




5.2. THE CONTOUR LINE APPROACH a7

Xp = max Xp along{H,, Ty)p contour {5.1)

where I is the return period of interest and Xp is the short term characteristic used to estimate
the design extreme value Xp. A suitable short term extreme characteristic, X p, must be de-
termined trough thorough analysis with sufficient number of response problems using long term
analysis and contour line solutions.

Initially, the contour lines were proposed to follow lines of constant probability density of the
joint density function going to é.g. {Hooyears (Tp)mean Haver et al. (1980). The estimate
of the largest response was chosen as the most probable extreme value. However, this short
term characteristic was not. able to predict the D-year value propexly. The actual location of
the contour lines was therefore determined such that the largest most probable extreme wave
crest during 6 hours along the contour line, did equal the 100-year crest height, Haver (1996).
Consequently, the significant wave height along the contour line exceeds the marginal 100-year
value for a certain range around the conditional mean spectral peak period. The reason for this
is that in addition to the variability in the slowly varying parameters, e.g. the significant wave
height and the peak period, there is also an inherent randomuess associated with the largest
maximum crest height within the stationary sea state, Haver (1996).

This may be demonstrated by predicting the 100-year significant sea states, H, and the condi-
tional mean spectral peak period, Tp. The duration of the sea state must be chosen to define
the probability level of the 100-years H, and this duration is commonly chosen as 3-hours. The
most probable extreme crest height of this sea state 1s smaller than the 100-year crest height
determined from fully long term analysis, i.¢. the return period is smaller then 100 years. In fact
the 100-year value is approximately 10% larger than the most probable extreme crest height of
the 100-year 3-hour sea state. 1t will be quite similar for response problems. This fault has to be
accounted for if a short term concept can be consistently used for predicting long term extreme
values. In order to take into account the uncertainty in the response, X, one can do one of the
following i.e.

e One may increase the duration of the sea state artificially. But since the extremes increases
rather slowly with the duration, duration has to be made rather long maybe around 24
hours. This is inconvenient if time domain simulations are 1o be used for establishing the
short term distribution of response maxima.

e The sea state level may be increased artificially, t.e. blow up the contour lines using us-
ing omission sensitivity factors, Madsen (1988), to compensate for the uncertainty in the
response, e.g. Winterstein et al. (1993). Another approach is to increase the maximum
significant wave height along the contour line with about 10% and adopt the contour line
through this point as a proper design contour line. Haver (1996) has applied a combina-
tion of increased duration of the sea sea states and and artificial high sea states, i.e. the
duration was increased slightly from 3 to 6 hours and the maximum significant wave height
was increased by 7%.

e One can estimate a higher fractile, o, of the extreme value distribution.
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» Alternatively, a correction factor to be multiplied by the expected largest value must be
found.

¢ Or a correction factor can be multiplied by the probable extreme value.

A disadvantage of the inflated contour line is said to be that the structures are exposed to un-
physical sea states. For the last couple of years it has been recommended to use contour lines
of a non-inflated type. This means that the maximum significant wave height along the con-
tour line equals the 100-year significant wave height. Accordingly, the effects of the short term
variability has to be compensated for by either increasing the sea state duration or selecting a
higher fractile of the 3-hour extreme value distribution, or use the two last suggested short term
characteristics and appropriate correction factors.

Herein, focus will be put on the fractile approach, but the correction factor approach will be
discussed for linear response. The correction factor to be multiplied with the expected largest
value or the probable extreme is believed to be more case dependent than the fractile approach.
However, it is left to see which size the fractile, ¢, must have to get reasonable estimates of the
D-year response. Naturally, the fractile will depend on the response type and possibly the de-
gree of nonlinearity. Other factors may be forward speed, wave heading and vessel type. Return
period and sea area might influence the fractile size.

Over the years, contour lines are most often determined such that they follow lines of con-
stant probability density. A more consistent approach is probably to determine contour lines
corresponding to constant exceedance probability. This can he conveniently done using methods
from the field of reliability analysis. Usually the aim of a reliability analysis is to estimate the
exceedance probability of a particular capacity or load level. This is very efficiently and, most
often, very accurately done using the FORM-technique, see e.g. Madsen et al. (1986).

5.2.1 FORM and Inverse FORM

By introducing the “Inverse FORM” method, it will be shown how these contours can be directly
generated.

First Order Reliability Method - FORM

The reliability measure of probability of failure is given as

PF = /5;{2}50 fz(Z)dZ (52)

where Z is the set of basic variables Z = (21, ..., Z,) and g(z) is the failure function. The failure
function is defined in terms of the basic variables as

< {0 failure set
g(z) = < =0 limit state set {5.3)
>0 safe set
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Figure 5.1: Illustration of approzimate failure probability calculation based on FORM, Madsen
el al. (1986)

If the basic variables are normally distributed and the failure surface is a hyperplane (linear),
the probability of failure is simply

Pp = ®(-fc) (5.4)

B¢ 1s called the reliability index, see Fig. 5.1.

An exact evaluation of Eq. 5.2 is rarely feasible as the basic variables are in general not nor-

mally distributed. Alternative methods such as numerical integration must be used, but they

are very time consuming. In structural engineering dealing with structures of high reliability,
=

it is usually sufficient to calculate the failure probability within a factor of 2 - 5. A method
satisfying this is First Order Reliability Method, FORM, ¢.e. a linearization of the failure surface.

The variable transformation of Z into a standardised normal u-space, independent of FORM/SORM,

is given as

U="T(2) = Z=T4U) (5.5)

where 7 is an arbitrarily distribution and correlated, while U is standard, normally distributed
and independent. The failure probability function in the u-space is now given in terms of the
failure function in the z-space as

6(Z) = g(T7HU)) = gu(U) (5.6)

To find the probability of failure in the u-space one is searching for the minimum distance, 3,
from the origin to a point on the failure surface, see Eq. 5.3. This point is the design point U*
which is the solution of

min [UL ; subject to gu(u) =0= 05 = U~ (5.7)

FORM uses U* as a linearization point, t.e. the failure surface gy{u) is approximated by a
hyperplane, or, if preferred, a quadratic approximation provided by SORM.
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Inverse First Order Reliability Form - Inverse FORM

Consider a response quantity X as a function of a set of basic variables Z. Using FORM,
the basic variables in the z-space is transformed into a set of variables U in the u-space, i.e.
X = 2(U). Assuming that the uncertainty in the basic variables are dominating, the response
X can be treated as a deterministic variable. FORM seeks the failure probability of exceeding
a known response value, z.,, through

Given .y £ = min |Ul; when 9(U)} = 200y — 2(U) =0 {5.8)

In probabilistic design, the Capacity Ty, is not given but rather sought with the goal that the
reliability 4 is achieved. Of course this can be found with the FORM technique using an iteration
routine or else one can do the opposite, namely to find the CAPACItY Zg,., given the reliability 8
using the “Inverse FORM routine” as described by (Winterstein et al. 1993),

Given 8! & = max 2(U); when Ul =4 (5.9)

Solving Eq. 5.9 for a set of variables U in u-space one get a sphere with radius corresponding
to # = [U] in the u-space. The contour lines in z-space specified to a probability of exceedance
Pp are obtained by inverse transformation, Z = T-!(U). That means, for a desired probability
level 8, the environmental analyst need only to report the contour lines of critical Z values.
Since the response is deterministic, the response o, may be found.

In general, the randomness of the response x can not be neglected. It can be included as a
third variable to obtain a proper estimate. But, as already mentioned, it would be nice for the
structural analyst if the contours were problem independent, .. decoupled from the response,
and this will be studied in this worlk. Methods which can be used to account for the randomness
of the variable 2 is mentioned in beginning of Sect. 5.2.

5.2.2  Comparison of Contour Lines of Environmental Variables

A comparison of contour lines applying constant probability density and constant probability of
exceedance, established using Haver et al. (1980) and Ude and Winterstein (1996) respectively,
are shown in Fig. 5.2. The two approaches will coincide in the reference point, d.e. 10-, 100- and
100 year significant wave height and conditional mean spectral peak period, but they may differ
slightly as one moves away from this point. However, in the area where the largest responses
are expected to occur, i.e. large wave heights, there is no significant difference in using the lines
of constant probability density or constant probability of exceedance.

The latter approach is, however, more efficient. If more variables are to be included in the
problem, 7.e. 3D-contour surfaces, the IFORM approach can easily be extended to include more
variables. The IFORM technique will be used in the following when the contour lines are estab-
lished.

Introducing response surface for the response characteristics, the IFORM-technique can be
utilised as a very fast tool for predicting response extremes corresponding to a prescribed return
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Figure 5.2: Contour lines at the Northern North Sea and Aasgard for return periods 16, 100 and
1000 years. The lines are lines of constont probability density and the dots are lines of constant
probability of exceedance (IFORM).

period. However, this requires that the short term response characteristics are available at least
for a reasonable area surrounding the design point. Such an extended version of the simula-
tion program presented in Ude and Winterstein (1996), is described in Kumar and Winterstein

(1997).

5.2.3 Classical Longterm Analysis Versus IFORM Technique

In order to verify the accuracy of the IFORM technique, the lifetime extreme values were cal-
culated using the classical long term approach and compared to the results obtained using the
mentioned IFORM technique solving Eq. 3.69, Kumar and Winterstein (1997).

The wave heights with return periods 20, 50 and 100 years were calculated using Eq. 3.69
using the classical solution method, hp, and the IFORM technique, hp rrora . at different areas
along the Norwegian coast. The results are presented in Table 5.1. One may notice that the wave
height using the classical technique, hp, is always larger than the resulting wave height using
the IFORM technique, Ap 1roga. Increasing return period decrease the difference between the
two solutions. However, the difference is small and in all cases less than 5%.

Long term extreme values for the linear, vertical bending moment midship for the 5-175 con-
tainer ship using both solution methods are also calculated. The results are shown in Table 5.2.
Six different headings and four different Froude numbers are applied. The IFORM solution,
' trorass 1€ in all cases smaller than the values obtained by the classical solution method, rh.
However, the difference is rather small and in all cases less than 3.0%.

This deviation is partly due to that formulation of the long term problem. Kumar and Winter-
stein (1997) uses an extreme value distribution instead of a distribution of maxima and weighting
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Table 5.1: Comparison of wave heigths corresponding to 20, 50 and 100 year return periods using
classical longterm analysis, hp, and solution found using the IFORM technique, hoiroru.

hp
hparorm
Return period 20 | 50 I 100
Northern North Sea 1.033 1.027 1.023
Sleipner 1.040 1.031 1.028
Ekofisk 1.045 1.036 1.031
Aasgard 1.033 1.026 1.023
Statfjord 1.034 1.027 1.024

Table 5.2: Comparison of vertical bending moment midship corresponding to 100 year return
periods using classical longterm analysis, iy, and solution found using the IFORM technigue,
Moosrorm- Scatter diagram is from the Northern North Sea.

i
*lo0.s o RN
Heading Fr = 0.0 | Fn=10.1 | Fn=02 Fn = ().275
0 1.006 1.006 1.004 1.006
30 1.006 1.008 1.009 1.007
60 1.018 1.014 1.015 1.014
120 1.021 1.022 1.020 1.020
150 1.008 1.006 1.010 1.011
180 1.004 1.005 1.004 1.005

function in the long term formulation which is applied in this work. Applying TFORM to solve
the long term problem with an extreme value distribution for the response in a sea state, gives
conservative results for the wave response, i.e. the failure surface is curved towards origo, see Fig,.
9.3, compared to exact solution of the same formulation. Non conservative results are found for
the long term extremes of the vertical bending moment midship, .. the failure surface is curved
away from origo. Thus, a contribution to the deviation may be caused by the approximation of
the failure surface. Deviation may also be caused by the numerical solution in the simulation
program, Kumar and Winterstein (1997), and the simulation program used to solve the problem
in the standard formulation.

5.3 Linear Response

The aim of design load calculation is in principle to establish responses corresponding to a pre-
scribed return period, e.g. D-year. In order to predict consistent estimates of D-year responses,
some sort of long term analysis must be carried out. As already mentioned, the contour line
approach can be used in order to predict the D-year value without carrying out the full long term
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failure zone

U

Figure 5.3: [lustration of failure zone using IF ORM.

analysis. That is some sort of short term statistics will be applied to estimate the D-year value.
The most intuitive estimate of the D-year load would be to use the median value, the expected
largest or the probable extreme value. However, in general these short term extreme values will
underestimate the long term extreme value due to the short term variability. Different ways to
take into account the short term variability are discussed in Sect. 5.2.

In this work, both the design fractile and correction factor approach will be treated. How-
ever, the focus will be on the fractile approach as this method will be applied for both Gaussian
and non Gaussian response. For Gaussian response the Rayleigh distribution is used to describe
the maxima distribution. The design extreme value is given by, BEq. 3.58, t.e.

/ N
! - Ao .
Todesign = |\ 20 In = where & =1 — &

where & is the probability of being exceeded, N the number of maxima and mg is the zeroth
spectral moment.

5.3.1 Design Fractile Approach

I addition to find a good estimate of the above mentioned fractile and correction factor, one
also needs knowledge about the dominant response. In our case, the vertical midship bending
moment is studied. Therefore, one has to find the dimensioning load, as a function of heading
and speed, which wili indicate the importance of needed accurate estimate of the load. The
100-year values for the midship bending moment midship, for a given speed, as a function of the
heading is shown in Fig. 5.4(a). Asshown in earlier Ch. 4, the bending moment has a maximum
i1 head sea waves. The vertical bending moment in head seas increases as the forward speed
increases.

Pig. 5.4(b) shows the short term characteristic design extreme value, the expected largest value
and the probable extreme value, calculated along the lines of constant probability of exceedance, \
together with the long term extreme value. The return period for the environmental contour |
line for the Northern North sea is 100 years, see Fig. 5.2(a) and the duration of the selected |




104 CHAPTER 5. SIMPLIFIED ESTIMATES OF LONG TERM EXTREME RESPONSE

- . 1.3 . . . ——e
Fn=0.0 -
1.4} Fr=01 = i 12l
— Fn=0.2 . . = T
o Fn=0.275 = b et
mg 12+ o 1.1 ¢
“a 10} ) PR
e ‘ , ...? |
L, s e a 08} 100
£ 08} : B 0=0.85 -
B y % o8l 0=0.90
-2 e ) - ElR e
. « Q 07 | Tp ommmes
0.4 : . : : . 0.6 : : : : :
0 30 60 90 120 150 180 9 10 1 12 13 14 15
B [degrees) Sign. wave height, H, [m}
{a) Vertical bending moment midship for the (b) Estimates of ri g for Fn = 0.275 in head seas.

S-175 container ship.

Figure 5.4: 100-years values and estimates of the vertical bending moment midship for the §-175
container ship.

short term sea states are 3 hours. One may notice that the expected largest and the probable
extreme values will not give good estimates of 7i00- The design extreme vatue corresponding to
& probability of exceedance & = 0.10 — 0.15 represents a good estimate, i.e. o = 85 — 90%,

The magnitude of the fractile needed in order to use the short term characteristic design extreme

value, rﬁr,dmgn, to estimate the 100-year value, is given by the following equation;

e (R < 7"200) = [Fr(ll < Tioo)]N =a=1-4 (5.10}

! N . 7 (ri00)?
Tigo = 27710111»5 = a=1-4= Nexp %m (5.11)

where NV is the number of maxima and My the zeroth spectral moment. The minimum value of
@, is the smallest fractile you can use in order to get rgldesign = 1140, , i-€. something between
0.85 — 0.90 for the above case. A larger value will give conservative results for the i, -value.
However, by rounding off the minimum fractile upwards to the closest multiple of five, the over-
estimation will only be a few percent.

giving

In order to find the minimum fractile needed to use the design extreme value to estimate the
100-year value of the vertical bending moment midship, Eq. 5.11 is solved for various of speed
and headings for the S-175 container ship. The results are shown in Fig. 5.5. An interesting
observation is that for a given heading, the fractile is decreasing as the loads are increasing, i.¢.
forward speed is increasing. For a given speed, the fractile increases from bow to beam seas, and
decreases rapidly from beam to following seas. This will be discussed thouroghly in Sect. 5.3.5.
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Figure 5.5 Mingmum fractile needed in order to get oo = Th design for the $-175 container ship.
Different heading and speeds.

This indicates that the fractile found for head sea waves at zero forward speed can be used
as a design fractile for the given ship. This design fractile will give a sufficiently accurate mea-
sure of the design load, i.¢. 100-year value of the vertical bending moment midship, for the given
ship. That means

Kdesign — Q(Q = 00, Fn = 00) (512)

Taking the above observations into account, the design fractile is set 10 be o = 90%. This value
is found by rounding off the muinimum fractile at head sea waves at Fn = 0.0 upwards to the
closest multiple of five, i.e. 87% = 90%.

The design fractile for the G175 container ship is found to be o = 0.90, i.e. a 10% proba-
bility of exceeding g gesign 804 correspondingly 90% chance to be below. The design fractile will
overestimate Tgo i most cases except for some cases at quartering seas and with low forward
speed. Since one is looking for a design extreme value, the underestimation at quartering seas
is less important. Since the underestimation also decrease when the forward speed is increasing,
this implies that as the loads are getting larger the underestimation decrease. Taken into account
that the underestimation is less than 4%, these events are less significant when one is looking for
the largest vertical bending moments midship, Fig. 5.6{a}. This can also be seen in Fig. 5.6{b},
showing the 100-year vertical bending moment versus the design extreme value. It is evident
that there is a linear relationship between the two values and also that using Th 90 design 1S & good
estimate of 7.

The minimum fractile to estimate the rlop is independent of the sea area. The minimum fractiles
for both the Sleipner, Ekofisk, Aasgard and Statfjord felds were all equal to o = 90%, te. the
probability that the extreme value will be below rh sesign 15 90%. The same was concluded for
100-year crest heights for these sea areas. For hioo the necessary fractile is also equal to o = 90%.
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Figure 5.6: Estimation of the 100-year value, 744, of the vertical bending moment midship using
the design extreme value with o fractile o = 0.90, Thao- Results for the §-175 container ship at
different heading and speeds.

Another issue, is the fractile’s sensitivity to the return period. One could be tempted to apply
the 90% fractile in order to estimate the D-year value using contour lines corresponding to a
return period D for other than the 100-year problem. In general, this will not be the case. For
wave heights, it seems like a 90% fractile, Fig. 5.7(a), is appropriate for most return periods
even if the wave response will be slightly underestimated for the largest return periods, see
Fig. 5.7(b). However, for the vertical bending moment midship the alteration for the minimum
fractile is more prominent. If a 90% fractile is used to estimate the 100-year value, it will be
underestimated by approximately 5% since the value of o increases as IJ increases. This indi-
cates that care should be exercised, if an estimated design fractile determined for a given return
period is to be applied for other than the original return period.

9.3.2  Design Correction Factor Approach

The effect of short term randomness can also be taken into account by introducing a correction
factor to be multiplied with the expected largest value, Eq. 3.56, or else the most probable
extreme value, Eq. 3.57. As mentioned, it is expected that this is a more case dependent than
the fractile approach. However, as long as the response is Gaussian, the correction factor & can
be determined in a similar manner as the design fractile, Qidesign, 10 the fractile approach.

The correction factor, x, to be multiplied with the most probable extreme value is presented
in Fig. 5.8(a). One may notice that the behaviour of the correction factor is similar as for the
minimum fractile. That is, for a given heading the value of the correction factor decreases as the
the speed is increasing. The value of the correction factor has a maximum at quartering seas




5.3. LINEAR RESPONSE -

96 (T g S 1.03 e - . .
0 Bl 5 o o
£ 1.02% poo*
- : 5 3
g2 o g 101 .
e L . o
L0271 o % 1.00 ¢+
2 = .
@ 90 Ho & 099 . .
< o S oest °
¢ o8 \% : i
o 1 s 0987 r
w86y 2 oo6t ¢ .
84—t . 0.05 L—
c 1 2 3 4 5 6 7 B 9 10 c + 2 3 4 5 6 7 8 9 10
Return period, D [years] 10° Return period, D [yoars] 10°
(a) The probability that the extreme vertical {b) Ratios between the design extreme values us-
hending moment, R, and wave height, H, is be- ing o = 0.90, 7k g0 and hg g0, and long term val-
low the long term vaiues riD and hp respectively. ues, 7'y and hp respectively.

Figure 5.7: Froctile sensitivity to the return period, D-years, and the deviation from the long
term vertical, bending moment midship, v, and wave height, ha, value by using 10% probability
of exceedance. T hat is 90% chance of being below 7'6_90@83{9“ or hogodesign. (1 = 1000 years,

9 = 2000 years etc. )

and a minimum at following seas. Since the vertical bending moment is largest at head sea, 1t
will be appropriate to use the correction factor at head sea and zero forward speed as a design
value. This will be conservative for the largest loads of interest, but the loads at quartering seas
will be slightly underestimated. The design correction factor to be multiplied with the most
probable extreme value is given as

g = k(8 =00,Fn=00) (5.13)

" pdesign
The design correction factor, Bl eoipn” for the S-175 container ship was found to he approxi-
mately 1.15, see Fig. 5.8(a). The estimated long term value using the 100-year contour curve
and the most probable extreme value multiphied with Kol i 1.15 are shown in Fig. 5.8(b).
It seems that the by using £yt | = 1.15 adequate results are obtained for the 100-year value

esign

of the vertical bending moment midship for all speeds and headings.

Using the correction factor approach on the expected largest value, the tendencies will be similar,
and reasonable estimates of the 100-years long term extreme value will be found. The value of
the correction factor for S-175 ship will be approximately Kg(ni .)design = 1.1, and is given by

KE[RL, .. ) design = H-E[Rg_mm}(e = 00, Fn = 00) (514)

If the underlying loading mechanism is nonlinear, the most probable extreme and the expected
largest value given by Eq. 3.56 & 3.57, will be too crude since the distribution of the maxima is
not Rayleigh distrhuted. An improverent, depending on the response problem, is to describe the
distribution of the maxima by the Woeibull distribution. That is the most probable maximum,
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S-175 container ship at different heading amd speeds.

r;’;’ » and the expected largest value, KRy, 1> 18 given by Eq. 3.59 and 3.60 respectively. The

estimated correction factors for the S-175 container ship at head seas and with zero forward
speed is given as o == 119 & Kprpi, 1 = 1.13 and Rt = 113 & Kppm 1 = 1.09 for sagging
and hogging moment midship respectively. It is believed that the correction factors approach
in this case will be less robust than the fractile approach since the nonlinearities affects the
distribution in the tail. However, this is not studied any further in this work.

5.3.3 Estimated Design Fractiles

The minimum fractile needed to estimate the hundred year value of the vertical bending mo-
ment calculating the design extreme value along the hundred year contour lines is established for
several ships using the procedure described in Sect. 5.3.1. The vessels are described in Ch. 4,
except for the EuroExpress which can be found in Saglt et al. (1997). Hull forms and main
dimensions’ are given in Appendix F and the mass distributions used are given in Appendix G.

It is found that the fractile is dependent on the size of the hundred year value of the verti-
cal bending moment midship. That means that large ships have smaller design fractiles than
ships with shorter length, i.e. the larger load the smaller fractile.

There is a linear relationship between the hundred year value and the main dimensions of the
vessels, see Fig. 5.9(a). The minimum fractile versus the value Lngng‘b is presented in Fig.
5.9(b). These dimensions are chosen since Lf,pong has the unit [Nm]. G} is included since the

YThe hull form and massdistribution for the EuroExpress is confidential and is not included, however a fish-
view picture of the hull is shown.
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Figure 5.9: Relation between the 100-year value of the vertical bending moment mid ships, o0
and estimated design fractiles, o, versus main dimensions of the vessel.

shape of the hull shape influences the vertical bending moment. Since the miniumum fractile
needed is decaying as the value along the abscissa is increasing, an exponential decaying funcion
is fitted to the data.

Vessels with equal hull form, but with different load distribution may also get different min-
imum fractiles. However, the difference is small. This was the case for the Mariner vessels,
Wolverine State and California Bear.

The design fractile, qgesign, for each vessel is presented in Table 5.3. The design fractiles are
established on the basis of the minimum fractile found for cach vessel and rounded off upwards
to the closest fifth integer, i.e. 87% = 90%. The last column shows the ratio between the esti-
mate of the hundred year value, 7} vesipn and the hundred vear value, rig,. By using the design
fractiles presented in the table, the 7ig value will only be overestimated by approximately 4%
in the worst cases. Remembering that the design fractile will decay when the Froude number is
increasing, this will give conservative estimates of the hundred year values of the vertical bending
moment midships.

An estimate of the design fractile can also be found using the fitted curve in Fig. 5.9(b} for

vessels with L s ranging from 116 — 970m. This will be a more general approach and might be

used for other vessels than those presented herein.

5.3.4 Estimated Design Correction Factors

As mentioned, an alternative to the design fractile approach is the correction factor approach.
The correction factor should be multiplied by the short term characteristic, expected largest or
most probable extreme value, calculated along the 100 year contour line to get an estimate the
100 year value, rig,.
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Figure 5.10: Design correction factors, KE[RL,,,] and K. as a function of the main dimension of
the vessel.

The correction factor, tpy and Kggm ), are found for all vessels. The behaviour of the cor-
rection factors are similar to the behaviour of the minimum fractile, i.e. the value of Kol and
kpry ) decay when the loads to be estimated increase.

The design correction factors for a range of vessels are shown in Table 5.3. The correction
factor to be used together with the most probable and expected largest extreme are given in
columns seven and nine respectively. In addition the relative errors using these factors are given
in column eight and ten. Using these factors, the estimated 100-year value is only under- or
overestimated by a few percent.

The estimated correction factors are shown in Fig. 5.10 as a function of the main dimensions,
L;I,Bng’b for vessels with L s ranging from 116 — 270m. An exponential decaying function is
fitted to the data and included in the figures. The fitted function can be used in order to get a
measure of the value of the correction factors, nip and Kgpl, )

The correction factor approach will not be utilised any further in this thesis. It was merely

mentioned, to emphasise that there exist other approaches than using the design fractile to
estimate long term extremes using contour curves.

5.3.5 Fractile and Correction Factor Sensitivity

Intuitively, one may guess that there must be a connection between the correction factor/fractile
size and the location of the maximum coefficient of contribution, max Cr(si), see Sect. 3.8. If
the sea state si = {H,,T,); is located in a region with large duration, see Fig. 3.6, one may ex-
pect that the correction factor/fractile will be relatively larger than if the max Cpr(s7) is located
on a region with smaller duration.
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This may be explained as follows. The number of peaks applied in the long term analysis
is a function of the duration of the sea states, and naturally the return period, D. Conse-
quently, the number of maxima in the contributing sea states, ¢.¢. Cgr(si) > a, will be larger
when max Cr(si) is located at sea states with relatively large duration. When the contour line
approach 18 applied to estimate the Jong term extreme response, & Jarge number of maxima
in the contributing sea states must be compensated for by either a higher correction factor or
fractile. Changes in the correction factor /fractile can be related back to shift in the location of
max Cri{si), and possibly the number of maxima. Factors affecting the location of {Hs, Tp);, azre
for instance forward speed, heading into the waves, type of vessel and nonlinear effects.

As seen previously, the correction factor/fractile tends o decrease when the forward speed
i increasing and the heading is fixed. And in addition, the correction factor /fractile increases
from head to beam seas. This is because the transfer function peak frequency decreases as the
sorward speed gets larger and the heading goes towards beam seas. Accordingly, the location of
max Cr(st) will move towards larger and smaller peak periods respectively.

The dependency of the vessel size, see Fig. 5.9(b) & 5.10, can be explained by similar rea-
sons. That is, large ships has maximum response at larger wave lengths than smaller ships.
Consequently, the coefficient of contribution has maximum at increasingly larger peak periods
as the vessel size increases. Thus, a smaller correction factor /fractile is necessary to get an
adequate estimate of the D-year response.

As mentioned, the number of maxima included may also influence the size of the correction
factor/fractile size. This can be seen in Fig. 5.7(a), where the necessary fractile size is found for
several return periods. The fractile size does increase when the return period gets longer, i.e.
more maxima is included in the analysis but the location of max Cg(si) is the same.

Care should be taken, when the maximum coefficient of contribution is located at a sea state
with peak period larger than the mean spectral peak period in the reference point, z.e. 100-
years significant wave height. In Haver et al. (1998a), Haver et al. (1998b) it 1s suggested to
use fractiles less than 90% for systems which are sensitive to shorter periods. Looking at the
transfer functions, it is probable that the coefficient of contribution has a maximum for larger
peak period than the one i1, the reference point. Based on the experience in this work and 1n
Haver et al. (1998a), Haver et al. (1998Db), it seems like the value of the fractile is approximately
symmetrical w.r.t. the location of the sea state with max Cr(st) and peak period in the reference
point. This is also reasonable with respect to the previous argumentation. This conclusion is
based on three response cases from Haver et al. (1998a), Haver et al. (1998b) and 13 from
this thesis. Some scatter 1s experienced for the design fractile for three different models of the
Mariner vessel, see Table 5.3. More cases should preferentially be tested out to get more data
and be able to study the issue closer.
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Table 5.3: Ship data, design fractiles, Qdesign, and design facctors, Bord veeion & kpm exldesign » for each vessel (FL=Fyl] Load,
LL=Light Load, EB=FEast Bound, WB=West Bound )
Ship Ly Beam | G, Cdssign | i || Ty KBl desig]  “ElfLnac]
THL THL _,..._ ‘.AW& 160 pydesgy i60 150
8-175 175 25.4 0.572 a0 1.008 1.15 1.004 1.10 1.601
SL-7 270 32.2 0.598 85 1.003 1.13 1.019 1.08 0.997
Wolverine State FL 151.2 21.8 0.65 95 1.033 1.16 1.002 1.11 0.998
Wolverine State LL 151.2 21.8 0.61 95 1.026 1.16 0.997 1.12 1.002
California Bear ER 160.9 23.2 0.58 95 1.030 1.16 0.999 1.11 (0.695
California Bear WB 160.9 23.2 0.60 95 1.032 1.16 1.001 1.11 0.999
reefer vessel 160 24.7 0.57 95 1.029 1.16 0.999 112 1.004
Tanker 272.8 4(.2 0.80 85 1.006 1.13 1.003 1.08 1.001
Destroyer 116.7 12.4 0.55 95 1.017 1.17 0.998 1.13 1.003
Mariner 2251A-V1 158.5 23.1 0.61 95 1.034 1.18 1.063 1.11 1.000
Mariner 2251A-V2 158.5 23.1 0.61 90 1.006 1.15 1.003 1.10 1.600
Mariner 22518 158.5 231 0.61 95 1.035 1.16 1.604 1.12 1.000
EurcExpress 219.5 20.2 0.39 90 1.009 1.14 0.996 1.10 1.001
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As the design fractile, the correction factor would probably be symmetrical w.r.f. to the loca-
sion of the sea state with max Cr(si) and the peak period of the reference point, i.e. 100-years
significant wave height. In Haver et al. (1998a}, Haver et al. (1998b) it may be seen that the
correction factor for the most probable extreme value for the systems presented therein decreases
as the eigenperiod decreases. The explanation is as for the design fractile, Sect. 5.3.3.

The fractile and correction factor sensitivity to the locality of the sea state, st, with maximum
coefficient of contribution is illustrated i Fig. 5.11. The arrows indicate the direction in which
the fractile and correction factor decreases in value as si moves along the arrows. For example
a small ship located with max Cr(sé) at sea state si = (10.5s,10.5m} has a design fractile of
95%, while a large ship with si = (13.55,13.5m) may have a fractile of approximately 85%. The
correction factor has a similar behaviour.
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Figure 5.11: The figure shows the direction in which the correction factor/fractile ezperiences an
decrease in value as the locality of the sea state with max Cr(si) moves in the same direction.
The direction is indicated by — and x is the reference point, i.e. 100-yeers significant wave
height and the mean spectral peak period.

5.4 Nonlinear Response

In this work, the nonlinear response is found by using the simulation program LANWIL, (Wu
and Moan 1996), Wu et al. (1996), which is presented in details in Sect. 2.5 and Appendix A.1.2.

In order to estimate the lifetime extreme value using nonlinear response, one has to determine
the short term distributions. This includes three tasks

¢ determine the necessary length of the simulations

e generation of the samples of maxima
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e find appropriate distribution model and estimate the corres

ponding distribution parame.
ters

Finally, some sort of long term analysis must be carried out. The life time extreme value for

a given return period of D-vear can then be determined. This issue will be described in the
following sections.

5.4.1 Evaluating and Comparing Time series

The stability of the statistical moments may be investigated by comparing values calculated for
portions of a long realization or from different realizations of the same initial process. The mean
value and the standard deviation are normally quite stable, while the higher order moments, ¢.e.
skewness and kurtosis, will vary significantly between the realizations. The mean value and the
variance can be estimated from reasonable short realizations. A rather
to get reliable estimates of the skewness and kurtosis since th
as the order of the moment increases.

large sample is required
e statistical uncertainty increases

This can be seen in Fig. 5.13 which shows the statistical moments calculated for different
realization lengths of the initial process by using Eq. B.2. The statistical moments are caley-
lated for the vertical bending moment midship on the S-175 container ship in head sea waves,
Both linear and nonlinear simulations are included. In addition, the statistical moments ob-
tained by conducting frequency domain analysis is included for the linear case. The 100-year
sea. state and the corresponding mean peak period in the Northern North Sea is applied. This

sea state is indicated in Fig. 5.12 by a #. The shortest realizations were 15 minutes and the
longest were 6 hours.

30

100 year

25 |

20 |

15 | +

To Isi

10

Figure 5.12: Contour lines of the Northern North Sea for return period of 100 years. &: H, =
13.56m and T, = 13.76s. : H, = 14.5m and T, =159s. &: H,=11.5m and T, = 12.5s.

The statistical moments are also caleulated for portions of a long realization and are given in
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Figure 5.13: Estimated statistical moments for realizations of the initial process of the wertical
bending moment midship on the S-175 container ship in head sea waves with a forward speed
at Fn = 0.275. The sea state ts Hy = 14.0m and T, = 15.9s. The length of the realization is

indicated along the abscissa.

Table 5.4 - 5.5. The shortest are 36 realizations of 10 minutes each and the longest are 6 re-
alizations of 60 minutes. It is seen that the standard deviations of the estimated moments are

reduced as the realization lengths increases.

Tt seems that realizations of 3 hours are stable enough for a practical purpose for the first

four moments. Therefore, 3 hours realization will be applied in the following.

5.4.2 Fitting of Distribution Models to Samples of Maxima

400

This section describes the methods used to fit the following models to the maxima, samples:

e The Rayleigh distribution
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Table 5.4: Statistics of parameters of thirtysiz 10 minutes reali
stmulated bending moment midship

zation of the initial process of
for the $-175 container ship. Fn = 0.975. Hy = 14.5m and

T, = 15.9s.
Est. Est. st Est. Est.
mean stdv skewness kurtosis avr. cycle frq,
[GNm] {GNm] [ [ [s7]
linear response:
Mean 0.0 0.338 0.010 2.972 0.149
Standard deviation 0.0 0.014 0.041 0.254 0.004
Coefficient of variation [-] - 0.041 - 0.085 0.028
Max 0.0 0.367 0.095 3.583 0.158
Min 0.0 0.311 -0.069 2.489 0.140
nonlinear response:
Mean 0.167 0.386 £.956 4.456 0.146
Standard deviation 0.009 0.013 0.133 (0.832 0.004
Coeflicient of variation [-] 0.054 0.034 0.139 .187 0.030
Max 0.186 0.414 1.368 7.774 0.167
Min 0.150 0.361 0.750 3.440 0.140

Table 5.5: Stotistics of parameters of siz 60 minutes realization of the initial process of simulated
bending moment midship for the S-175 container ship. Fno=0.275. H, = 14.5m and T, = 15.9s.

Est. Est. Est. Est. Est.
mean stdv skewness kurtosis avr. cycle frq.
|GNm] [GNm] [] [l [s™]

linear response:

Mean 0.0 0.338 0.0609 2.994 0.149
Standard deviation 0.0 0.004 0.0 0.070 0.0
Coefficient of variation [-] - 0.011 - 0.023 0.0
Max 0.0 0.343 0.020 3.103 0.151
Min 0.0 0.334 0.002 2.910 0.148
nonlinear response:

Mean 0.167 0.387 0.963 4.4%3 0.146
Standard deviation 0.002 0.003 0.040 0.210 0.0
Coefficient of variation [-] 0.013 0.008 0.042 0.046 0.0
Max 0.170 0.390 1.008 4.785 0.149
Min 0.164 0.382 0.902 4.213 0.145
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o The Weibull distribution
e The Weibull-tail distribution
e The Generalised Gamma distribution

Moment estimation is used to fit the Rayleigh, Weibull and Generalised Gamma distribution
models. Moment estimators are based on the principle that the m parameters 0y, 0, ..., 0, are
chosen so that the moments on the distribution are equal to the moments of the sample, i.e,

10 By ) == / Fplr O o, B} dr (5.15)

o

The principle is giving a set of m equations to find the m unknown estimators 1,02, ..., 0.

The parameters in the Weibull-tail distribution are found by linear regression in Gumbel scale,
see page 118,

The Rayleigh Distribution

The scale parameter in the Rayleigh distribution, Eq. 3.29, is found by sefting the mean value
of the model equal to the mean value of the sample, see Appendix B, .e.

Hr = Mg (5.16)

For visualization, the sample of maxima may be presented graphically by a straight line by using
a Rayleigh probablity paper. The value along the the abscissa is given as

7

V24

(5.17)

and the value along the ordinate as

v—=In(1 = Pa(r)) (5.18)

The Weibull Distribution

The three parameters in the Weibull distribution is found by setting the three first statistical
moments of the model equal to the corresponding measures of the sample, see Eq. 3.36. The
location parameter, §, and the scale parameter, /3, are given by the estimates of the mean value
and the standard deviation of the sample maxima, Eq. 3.36. In addition the shape factor, 7, is
found by solving the following equation, Bury (1975);

MR = QiR (5.19)
where the v,z 1s the skewness of the model given as

T4+ 3/9) =30(1+ 1/MT{1 +2/v) + 203(1 4+ 1/7)

(1 +2/7) = D21+ /7))
and ¢ is the skewness of the sample, sec Appendix B.

(5.20)
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where u; == In ;. %, s> and gy, are the mean value, variance and skewness of the logarithm to the
observed sample. In addition Stacy and Mihram (1965) derived the following three equations

~lgl = o I (5.26)
dm21 r(m)}
—ln I'(m} .
v = % —*;— + i g1, <0 {5.27)
d T(m
A= exp {wﬂ R ’}’( )} (5.28)

The three parameters can be found directly from the graphic solution presented in Stacy and
Mihram {1965). However, in this work the estimates of v, m and A is found by a trial and error
method. That is, the solution is a combination of solving the above equations and weighted
curve-fitting. The parameters are varied until the best fit is obtained. Since the tail distribution
is of vital importance, a weighting function is applied during the fitting with weight factors
which is gradually increasing towards the tail.

5.4.3 Selection of Samples of Maxima

The method of moments put most of its effort into making a good fit around the mean value
of the distribution model. The goodness of the tail is highly dependent on the choice of the
model. When one is looking for the extreme values, it is important that the model distribution
agrees with the tail of the sample distribution . Methods that increase the weight of the tail is
suggested below in addition to the more crude method of using all available maxima.

Using All Peaks

Both local and global maxima are included in the maxima sample, see Fig. 5.14(a). Theoretically
this is wrong if slamming occur. It can be shown that the succeeding peaks, i.e. whipping,
are dependent on the initial “slam-peaks”, i.e. the {ollowing peaks are deterministic. This will
violate the basic assumption in extreme value statistics, saying that all maxima are independent.
However, if the vessel is treated as rigid, the whipping response is not taken into account. Thus,
the assumption of independency is not violated. On the other hand, the local maxima are
slightly correlated to the global maxima indicating that this method is not ideal with respect to
independence.

Using Global Maxima

An alternative to using all local and global maxima, is to use only the global maxima. This
will eliminate some of the smaller maxima occurring, and thus give more importance to the tail.
As opposed the method above, i.e. using all peaks, the local maximum which is expected to
be more correlated to the local maxima than the following global maxima, will be eliminated.
Another advantage is that the number of maxima in the sample will be equal to the number of
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The Weibull-tajl Distribution

The Weibull-tail method has beeny proposed by Sgdahl (1991) for nonlinear problems. The
Weibull-tail distribution is fitted by requiring the Weibull model to give the same extremes ag a
Gumbel model fitted to the largest extremes in segments of the time serie.

The Weibull-tail method may be implemented by

e Finding the maxima given by a set of realizations of the same process generated by different
sets of random phases and frequencies for the spectral components.

e Splitting long realization into segments and finding the largest maxima within the segment,
This approach has been applied in this work.

The scale and shape parameters of the Weibull-tail distribution are given as estiinates of the
mean value and standard deviation of the set of the largest maxima, 7.e.

P e [(me=t)e ] oan
lnnmm: SRe

y = ""Rﬁ'ﬁ[zn(ﬁ,m)ﬁﬁ (5.22)
Cy

where J and + is the scale and shape parameters in the Weibull distribution. & is the location
PArameter. ., mpge and sp,. is the average number of maxima for each segment or realization,

estimators and can be found in Sedahl (1991). The location parameter, 4, is found by using the
standard method of momenis by using all maxima in the realization, as presented in Sect. 5.4.9.

Farnes (1990) indicates that 8-10 segments are reasonable for miost cases, however long real-
izations are needed to glve accurate results.

The Generalized Gamma Distribution

To find the three parameters, v, m and A, the method proposed by Stacy and Mihram (1965) has
been used. The method determines the parameters by equating the following three logarithmic
moments to those of the model, 1.e.

1 N
i = ﬁZui (5.23)
i=1
2 1 J 12
8, = N——:—le(u?;mu) (524)

N
O T Ty e ; e (529
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zexo-up-crossings. If the weighting function in a long term analysis is to be found, one can coupt,
the number of zero-up-crossing instead of the number of peaks.

Using Linear Response to Locate Nonlinear Maxima, the LRNM Method

Another possibility, is to use the linear response to locate the region where maxima might oceyy,
That is , first the time step where a linear maxima occur is located. Knowing this time step,
one may find a nonlinear maxima in the region close to the linear maxima,

Using a Up-crossing filter

This filter is based on the fact that the number of maxima minus the number of minima above
a certain response level, ¢, corresponds to the number of up-crossings at the up-crossing-level,
see Fig. 5.14(c). This filter was proposed in Farnes (1990) and later used in Videiro (1998).

The filter examines the realizations at levels below each maximum starting with the lowest
maximum. If a minimum exist below the maximum considered, both the maximum and mini-
mum are removed. The procedure is repeated until all minima above the up-crossing-level, 4.e,
mean value of the series, zero etc, , is removed. The filter will in general not change the tai] of
the distribution, but it will remove local maxima close to the chosen up-crossing-level.

Using a Filter with Time window

The last method that was tried, was a window filter. That is, by carefully keeping track of all
maxima and the corresponding point in time, only the largest maxima within a certain period of
time is sampled. The size of the window was set to a percentage of the Zero-up-crossing period.
The method is visualized in Fig. 5.14(d). Using a time window filter, the large values will be
given more weight in the fitting procedures.

The use of a window flter can be Justified, in the case of slam with following whipping re-
sponse. As already mentioned, the peaks after a slam are deterministic. By using this filter, one
picks the largest peak value and disregard the following peaks. In the case of a rigid body, the
whipping does not occur and there is no particular reason for choosing this filter type.

9.4.4  Fitting the Three Parameter Weibull Distribution to the Max-
ima Samples

The three parameter Weibull distribution was used to fit the maxima samples. The distribution
was found to be less dependent. on the type of maxima sample generated above. The Cener-
alized gamma distribution is the most sensitive distribution, which also is expected due to the
large number of parameters. The Generalized gamma distribution gives a good identification
of the size of the extreme response, but the estimated extreme value is rather sensitive to the
filtering technique. There was no significant difference in the behavior of the Weibull-tail and
the three parameter Weibull distribution. However, since the Weibull-tail is fitted by using a

small number of maxima, the estimated extreme value will be burdened with more uncertainty
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Figure 5.14: Filtering routines to establish mazima samples (- nonkinear response, -« - linear
response).

than the traditional Weibull distribution. The Rayleigh distribution underestimates the sagging
response and overestimates the hogging response. Fig. 5.15 show the fitting of the mentioned
distributions to two different maxima samples, i.e. using global maxima and maxima established
using the LRNM method.

The samples of maxima were established by using the LRNM method, see page 120. This
method makes the fitting procedure very stable. As mentioned in Sect. 2.5.4, there were nu-
merical problems in extreme sea states when bottom slamming occurred. The bottom slamming
midship caused a sudden, large hogging response when the region close to midship was out of
water in sagging condition. In some cases, extremely large hogging responses occured and this
caused problems when the distribution parameters were estimated. In particular this was a prob-
lem for the Weibull-tail distribution when the distribution parameters for the hogging response
were estimated. The LRNM method makes the fitting procedure stable, since the method in
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Figure 5.16: Statistical moments for original and filtered realizations of the initial process as o
function of increased number of sections along the ship hull. Vertical bending moment midship
for the S-175 container ship in irregular, head sea. F'n = 0.275

general would not detect these peak values. This can be seen in Fig. 5.15(b) where this method
is applied. In Fig. 5.15(a) a sample of global maxima is applied.

The vertical bending moment response histories for the 8-175 container ship were filtered using
a Matlab routine (a low pass filter called Butter, i.e. high frequent oscillations are avoided}.
This was done since the instabilities had an effect on the calculated statistical moments. How-
ever, the statistical moments were less sensitive to the numerical instability than the estimated
Weibull parameters. 42 sections were appropriate and there was no significant improvement for
the first four statistical moment by increasing the number of section any further. A comparison
of estimated mean value, standard deviation, skewness and kurtosis is shown in Fig. 5.16 for
original and filtered realizations for forward speed with F'n = 0.275. The three sea states applied
are shown in Fig. 5.12. All data points are given in Appendix J. A comparison of the estimated
design extreme values, see Eq. 3.61, for both the original and filtered realization are shown in
Fig. 5.17. T'wo different maxima samples are represented, i.e. global maxima and LRNM. One
may notice that beyond N = 42 there is small changes in the estimated extreme value. Neither
filtering of the realizations nor using different maxima samples influence the sagging response
significantly. However, the hogging response is highly affected by the filtering of the maxima
sample. The LRNM is approximately constant and independent of the number of sections. When
the number of sections is large, the results for the global maxima sample converge towards the
results from the LRNM sample. Fig. 5.18 presents the estimated design extreme values for the
filtered realization using global maxima and LRNM. The values are made dimensionless w.7.1.
the design extreme value for N = 126. And again there is no large differences between the two
maxima samples for sagging, but the hogging response is sensitive. This is due to the numerical
instability indicated.

All data for the fitted three parameter Weibull distribution can be found in Appendix J. Both
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Figure 5.17: Comparison of the estimated design extreme values, ro.90,design, using two different
mazima samples versus increased number of sections along the ship hull. Both filtered and
original realization are presented. Vertical bending moment midship for the S-175 container ship
in wrregular, head sea. Fn = 0.275
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Figure 5.18: Comparison of the estimated design extreme values, T0.90,design, USIng two different
mazima samples versus increased number of sections along the ship hull. The design extreme
values are normalized by the the value obtained with 126 section long the hull. Only filtered real-
wzations are presented. Vertical bending moment midship for the §-175 container ship in irregular,
head sea. F'n = (.275.

data for the original and filtered realization are shown together with results for global and LRNM
maxima samples.

One should remember, that the numerical instability is dependent on the vesse] type and of
course the forward speed. This indicates that the response histories must be checked for each
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case. As already mentioned in Sect. 2.5.4, the S-175 containership was highly influenced by
these instabilities while simulations conducted on a tanker did not have such problems. The
destroyer showed small irregularities which had only minor influence on the final results.

Another option is of course to increase the number of sections along the length of the hull.
The numerical instability will thus decrease and the response will converge, see Fig. 2.9. The
disadvantage is that the CPU-time will increase. When the number of sections is doubled, the
CPU-time is also doubled. The number of necessary sections, will also he dependent on the
specific vessel and its characteristics, i.e. main dimensions and hull form. The forward speed
will also play an important role in this problem. At zero forward speed it is less likely that this
problem will occur. Neither will small sea states cause a problem. In this work the realizations
were checked carefully, and the necessary actions were taken if problems occured. The LRNM
filtering technique was used in all cases, but the additional lowpass-filter was only used in some
cases.

5.4.5 Approximate Longterm Analysis

The nonlinear lifetime extreme values are estimated by conducting an approzimate long term
analysis. The method is described in Sect. 3.8. The idea is to use a limited number of sea states
in the analysis, instead of using the complete scatter diagram which is a more commaon approach.
In order to do so, the sea states which do contribute to the life time extreme value, must be
located. This can be done by using the linear, frequency domain analysis and establish the
corresponding coefficients of contribution. This will be a preliminary estimate of the response
and location of the maximum Cr(si)-value, t.e. the corresponding sea state.

The nonlinear simulations are conducted by the program LANWIL, (Wu and Moan 1996), Wu
et al. (1996). The generated random phases and frequencies used in the irregular sea, are equiv-
alent for all sea states, i.e. the seed is always the same. Ideally the seed should also be a random
number, so that the random frequencies and phases would be different in each simulation. If the
random frequencies and phases used in the simulations were different in each sea state, the statis-
tical uncertainty would have been reduced. That means that in this case this is not accounted for.

The procedure applied to estimate the nonlinear, long term response can be split into two
steps which is

Step L:
1. establish transfer function from linear, frequency domain analysis = H{w)
9. find linear D-year response from classical long term analysis = 74

3 find the coefficient of contribution, Cr(st}, for every sea state

4. Tocate max Cgr(si) and the corresponding sea state, si= (Hg Tp)i
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Step I1:

The first iteration is conducted with sea state si from Step I, and the steps are followed from
1 to 3, before returning back to step 1 and the inclusion of more sea states, The iteration
procedure to find the nonlinear '} is as follows.

L. start nonlinear simulations in the sea, states in the neighbourhood of si

e find sample of maxima using the LRNM-method
® estimate the three Weibull parameters

¢ find the total number of maxima in the selected sea states, Nsi;

2. find the nonlinear D-year response from approximate long term analysis, r}’",{ Wi,

3. find the Cg(si);-values

4 ry - " nsi.} > € check the Cr{si); -values at the boundaries of the included sea
3 =1 i3 “3 o
state area to locate new sea states to be included. Return to 1.

5. else if {ryf Nsip, 7‘%5’1\,5%[ <eletry Nsi, = T'H Neimoo and thus % Nsimoo = 71
The above procedure is applied to find the nonlinear vertica] bending moment on three different
vessels. The scatter diagram are from the Northern North Sea. The Pierson-Moskowitz spec-
trum is applied in all cases. The chosen return period is D = 100 years.

Calculations are carried out using the S-175 container ship at two forward speeds, i.e. Fin = 0.0
& Fn = 0.275. In addition, analysis were performed with the tanker and the destroyer at
Fn=0.0& Fn = 0.2. These three vessels are chosen due to the diversity in main dimensions
and hull forms. The S-175 container vessel is long and slender with a large bow-flare. One
would expect large nonlinear effects on this vessels. The tanker has a large block coefficient
and the above water hull form is wall-sided. The vessel will probably not be much influenced
by nonlinearities. The destroyer is relatively small with large deadrise angle and has a smaller
block coefficient than the $-175 and the tanker. It will more likely experience larger motions
and therefore more bow flare slam than the other two.

The results are presented in Table 5.6 and 5.7. The estimated nonlinear, longterm vertical
bending moments midship are made dimensionless with the corresponding linear value. Also
presented are the sea state si with maximum Cr(si)-value and the value max Cr(s1).

One may notice that the nonlinear, long term sagging moment is larger than the corresponding
linear value for zero forward speed, F'n = 0.0. Largest nonlineazitios are detected for the $-175
container ship, where the nonlinear value is approximately twice the linear value. As expected
the tanker does not experience large nonlinear effects. The long term sagging response is in-
creased by approximately 30% for the destroyer.

When the Froude number is increased, the nonlinear sagging moment is further increased and
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pecomes more than doubled for S-175 container ship. Since operability restrictions are not taken
into considerations, one may experience these abnormal large response values. It is interesting
to note that the nonlinear effects decrease the response with increased velocity for both the
tanker and the destroyer. This tendency is also occasionally observed in regular waves , see Fig.
4.11. Also in that case the forward speed caused a reduction In the experienced vertical bending
moment midships, 2.e. nonlinear response is smaller than the corresponding linear response.

The nonlinear effects tend to decrease the hogging response. The reduction is increasing as
+he forward speed is increasing for all vessels. The effect is most prominent for the destroyer.
The reduction is somewhat smaller for the §-175 container ship. The change in the hogging
response is smallest for the tanker.

The long term sagging and hogging responses for the S-175 container ship are compared to
the long term responses obtained by using the IFORM-technique, 0 1rona Kumar and Win-
terstein (1997). The distribution of the response applied in the long term formulation is the
Hermite distribution, see Sect. 3.6. Since the Hermite-distribution has not been verified for
nonlinear ship response, its applicability can not be guaranteed. The ratios between ridy and
r¥o rropm fOr are close to 1, except the ratio for the hogging at F'n = 0.0 which shows rela-
tively large deviation, see Table 5.8. The Hermite model probably contributes to the deviation
between the estimated long term extremes. A slightly simplified formulation of the long term
response was applied, see comments in Sect. 5.2.3. Problems were also encountered applying the
simulation program, Kumar and Winterstein (1997). That is, the simulation program would not
converge to stable results. It is of course possible that the IFORM 1s converged towards wrong
colution. Therefore the IFORM extreme value must be subjected to additional uncertainty.
Winterstein et al. (1994) verified the model through simulation for TLIP’s.

Table 5.6: 100-year nonlinear vertical sagging moment midship. The values are made nondi-
mensional w.r.t. to corresponding linear value.

wnd

Shi]) Fn Hs,max Crst) Tp,max Crisi) nmax CR{S?) %}Qﬂ.
[m] s %]

5-175 0.0 11.5 12.5 11.78 1.93
0.275 10.5 12.5 10.62 2.33

Tanker 0.0 12.5 15.5 12.73 1.08
0.2 14.5 16.5 4.18 0.93

Destroyer 0.0 8.5 9.5 38.44 1.26
0.2 10.5 1L.5 20.43 0.98

5.4.6 Importance of the Coeflicient of Contribution

The coefficient of contribution can give valuable information. Firstly, it can indicate in which
area of the scatter diagram one should include more sea states. If the change in Cr(si) is large,
9Ca(A) o 6(’3"‘;'5”}, this indicates that the sea states beyond this point are less important. A

1. €.

Ohe




128 CHAPTER 5. SIMPLIFIED ESTIMATES OF LONG TERM EXTREME RESPONSE

Table 5.7: 100-year nonlinear vertical hogging moment midship. The values are made nondi-
mensional w.r.t. to corresponding linear value.

prl

Ship Fn Hs,max Cr(si} Tp,max Crsi) max C’R(Si) ;%Q.Q
(m] [s) 7] *

5-175 0.0 10.5 12.5 12.28 0.79
0.275 10.5 12,5 17.88 0.61

Tanker 0.0 13.5 15.5 11.32 0.92
0.2 12.5 16.5 12.16 (.83

Destroyer 0.0 7.5 10.5 13.91 (.52
0.2 10.5 10.5 256.89 0.42

Table 5.8: Comparison of approzimate longterm analysis, 1%, and solution found by using the
IFORM technique, 7 jponu- The vessel is the §-175 containership.

,rnf

T‘ﬂ.
100 JFORM

Fn Sagging | Hogging
0.0 0.924 0.876
0.275 1.069 0.993

small gradient will indicate the contrary. Secondly, it may help to locate the most contributing
sea state in the scatter diagram, i.e. Cg(si)-maxima. In linear analysis, the dominating maxi-
mum is located in the region where T, = /2nL,,/g, i.e. A = Ly In nonlinear analysis, other
maxima may occur due to large responses at other peak periods due to nonlinearities, i.e. for
instance slamming which is expected to occur at slightly shorter and steeper waves. Inclusion of
the nonlinear corrections of the hydrostatic restoring and Froude-Krylov force may also cause the
second maxima. Thirdly, and maybe most important, the Cr(si)-value will tell us that a small
number of simulations are necessary to estimate the long term response reasonable for practical
purposes as long as the most important sea states are included in the analysis. To exemplify
this, the long term response analysis performed with the S-175 container ship at F'n = 0.275 will
be applied. The Cg(si)-distribution is shown in Fig. 5.19 as a function of the significant wave
height, H,, and the peak period, T,. The Cr{si)-values are plotted as contour lines ranging from
0-17%.

Both sagging and hogging have two distinet peaks where Cy(st) reaches a maximum. The
maxima in sagging are almost equivalent in value, whereas the second peak in hogging is rela-
tively small. The maxima are close, and they are easily detected by studying the Cr{si}-gradient.

As long as the sea state with maximum Cg(si)-value, see Table 5.6 and 5.7, is captured there is
no need to perform a large number of simulations. By using Fig. 5.19 one may select a number
of sea states and thereafter find the total sum of the contributing sea states, i.e.
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Figure 5.19: Coefficient of contribution, Cr(si}, for the nonlineor vertical bending moment mid-
ship. S-175 container ship at F'n = 0.275.

total contribution = Z Cr(st) (5.29)

Nsi

The chosen sea states can then be applied to estimate the desired nonlinear longterm bending

moment, 7""’51' ve;e The deviation from the true answer with Nsi = oo, can be expressed as the
. ) A ! . . B . ‘

ratio ?‘1 Net - The ratio %‘L versus 3 ; Cr(si) is shown in Fig. 5.20 for the 8-175 container

nd

Fod fa
ship, the tanker and the destroyer. Both zero forward speed and forward speed are represented.

Since the distribution of the Cg(si)-values for the 5-175 at Fn = 0.275 has two maxima, one
could wonder if both maxima must be located to get a reasonable long term estimate. For the
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sagging, both maxima-regions have Y v Crisi) = 50%. Looking at Fig. 5.20(a), this will only
cause a reduction in the response of about 5%. Including only the sea state with maximum
Cr(si)-value, enclosed by a circle in Fig. 5.20, causes a reduction of approximately 8% and 14%
for hogging and sagging respectively. The small maxima in hogging, has very little effect on
the long term response. Excluding this maxima region, causes a reduction of less than 0.5%.
For both the tanker and the destroyer inclusion of 50% of the Cr(si)-vales cause reduction of
approximately 5%.

The degree of nonlinearity is reflected in these figures, see Fig. 5.20(2)-5.20(c}. The ratios

i

RD,.Nsi
nl
Rp

are gathered along one line both for the tankers sagging and hogging response This ig

: : . . RE L
probably due to the fact that the response is only slightly nonlinear. The ratios =t for the
D
5-175 container ship and the destroyer show more scatter. This is probably caused by nonlinear
effects.

Even if the epprozimate long term analysis and knowledge about the Cr{st)-coefficient, wil]
reduce the man hours and computing time, it is still rather time consuming to estimate the long
term design value. A further simplification of the long term problem, is to use the contour line
approach. This will be studied in the next chapter.

5.4.7 Design Fractile Approach

The contour line approach can be used to predict the D-year response without carrying out a
full or an approzimate long term analysis. As for Gaussian response, the design extreme value
will be applied to estimate the D-year value and to account for the randomness in the response.
Since the Weibull distribution has been found appropriate for the nonlinear sagging and hogging
moment, the design extreme value is found by using Eq.3.61, i.e.

n N
Tafdesign = 6{111(5’-)}}/7 +4

The design fractiles, Qdesign, are found from linear analysis using contour line approach given in
Table 5.3. The design fractiles for the S-175 container ship, the tanker and the destroyer are 90%,
85% and 95% respectively. The duration of the short term sea states are 3 hours and the contour
line for the Northern North Sea is shown in Fig. 5.12. The design extreme value is caleulated
along this contour line and the largest one is chosen as the, design value, ?‘Zimgn , according to
Eq. 5.1. The sea state giving maximum short term response along the 100-year contour line,

H gesign & T design, and the corresponding ratio 7’§2csiqn /T, are presented in Table 5.9 & 5.10.

The contour line combined with the design extreme value seems to give reasonable estimates
of the nonlinear lifetime extreme valye. In particular, the results for the tanker are satisfying.
This is because the response is only slightly affected by the nonlinearities. The sea state with
max Cr(si) is therefore located close to the max Cr(st) for linear response. The used design
fractile will therefore be accurately determined,, Sect. 5.3.5. The estimated design values for
the 5-175 container ship and the destroyer is somewhat underestimated. This is because the the
nonlinear response has max Cr(s7) at smaller and steeper sea states requiring a higher fractile to




< 4. NONLINEAR RESPONSE -

1.00 1 g v d T e T .a‘.—‘j

0.98 o N
0.96 - ® hogging

. sagging o
0.94 R 9 ]

o
0.92 ¢ G K

0.90 ¢ ]

8

rnlD.{\lsi}';ﬂt’.‘l

0.88 4
oss | © ,

0.84 Lttt
00 01 0.2 03 04 05 06 07 08 08 1.0

zn-lc H(S i)

{a) 5-175

1.00 . , : S

0.98 r . 1

0.86 | Lo hogging  *
. sagging  °
0.94 %o g -

0.82 -
0.90 | o E
oss| .

0.86 k
I

0.84 + *
0.0 0.2 0.4 0.6 0.8 1.0

%,.Calsh

Nei

nt, nt
Tonst 1D

{1h) Tanker

1.00 - T T T ﬂ

0488 | . o 4
hogging  °

086 @ o i
oo b @ @ @ sagging  °

092 ¢

ni

ToNsi™D

0.90 3
0.88 1 ;
0.86 | ‘

0.0

0.2 0.4 06 0.8 1.0 t
Zu-aCR(Si) ;

(c) Destroyer
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state with mazimum coefficient of contribution is enclosed by a circle.
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‘Table 5.9: Ratios between short term extreme values using the design fractile approach and the

nl

r : . .
long term response, =222 Nonlinear sagging response.
In

3

e
ShiP Fn a'desz‘gn£%] Hs,desz‘gn {nﬂ Tp,design ES] ”%f"fﬁé‘i‘ﬁ
5-175 0.0 90 13.559 13.761 0.9713
0.275 90 14.261 14.901 0.9739
Tanker 0.0 85 14.500 15.917 0.9953
0.2 85 14.500 15.917 1.0303
Destroyer 0.6 35 9.230 9.344 0.9913
0.2 95 12.437 12.488 £.9754

get rgfimqn /7730 > 1.0. One may observe that the underestimation is less than 3% in most cases.
One particular result is the estimated life time hogging moment for the destroyer at Fn = 0.0.
The underestimation is approximately 7%. In the author’s opinion, this is due to a combina-
tion of a highly nonlinear hogging response and that the max Cr(st) is far off the corresponding

linear location. The fractile, Qgesign = 0.95, is therefore too small to estimate this value properly,

However, in design one is looking for the dominant loads. Since the sagging response is sat-
isfactorily estimated by using the design fractiles from lnear analysis, the method seems to be
useful in order to estimate the lifetime extreme values for nonlinear bending moment midships.

According to the experience in this work, it seems to be reasonable to apply the fractile de-
termined by linear response analysis also for the nonlinear response analysis. A 85% fractile is
appropriate for the tanker, but increasing the fractile to 90% will give conservative estimates of
the long term extreme value. For the S-175 container ship a 90% fractile is suitable and a 95%
fractile is needed for the destroyer.

Table 5.10: Ratios between short term extreme volues using the design fractile approach and the

nt

long term response, <552, Nonlinear hogging response.
100

o

Ship Fn Q’design[%} Hs,design [m] Tp,desz‘gn [S] _(L:;%
5-175 0.0 a0 12437 12.488 (.9752
0.275 90 12.437 12.488 0.9746

Tanker 0.0 85 14.500 15.817 1.0059
0.2 85 14.500 i5.917 0.9917

Destroyer 0.0 95 12.437 12.488 (.9297
0.2 95 12.437 12.488 0.9957




CHAPTER 6

Effect of Varying Forward Speed on
Linear Response

6.1 Introduction

In this chapter, the applicability of the contour line concept for varying forward speed will be
studied. The aim is to obtain a reasonable estimate of the 100-year value by a proper choice of
stochastic characteristics, i.¢. to see which short term characteristic is most suitable when the
speed is dependent on the significant wave height.

A moving ship will typically reduce speed as the significant wave height increases. The amount
of speed reduction will depend on the severity of the sea and the ship master’s interpretation. of
the situation. Therefore, the ship speed can be modelled as a random variable with parameters
(mean and standard deviation) depending on the significant wave height, H,. In such cases, the
forward speed should possibly be included as the third dimension in the contour problem, ¢.e.
the contour line should be generalised to a contour surface. Herein, the application of contour
lines will also be studied in a somewhat simplified manner. The adequacy of H, ~ T, contour
lines for various choices of forward speed will be investigated, and the use of H, — U contour
lines for given spectral periods will be studied.

6.2 Long Term Results
To study the adequacy of the contour line concept in the forward speed case, the contour line
concept is applied to the ITTC container vessel, $-175. The data and the hull form is presented

in Appendix F. Mass distribution is given in Appendix G. The information is taken from 15th
& 16th ITTC Seakeeping Committee (1983).

133
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The long term wave climate in the Northern North Sea is used, see Sect. 3.8.9. It is assumeq
that the short term distribution of the surface elevation is Gaussian.

Assuming the response is linear, the transfer functions can be calculated by using ordinary
strip theory, Salvesen ef al. (1970} as implemented in VERES, Fathi (1997). Since the sea
elevation is Gaussian, the short term distribution of the response maxima is described by the
Rayleigh distribution. In this example, the vertical bending moment midship was chosen. The
calculation was performed for three different Froude numbers namely Fn, = 0.1, 0.2 and 0.3,
ie U =4.14, 8.29 and 11.39m/s respectively. The resulting transfer functions are presented in
Fig. 6.2.

The long term distribution of the response is calculated by using Eq. 3.67. To simplify the
calculation, the vessel is assumed to run in long crested, head sea waves. It is assumed that the
heading angle is independent of the significant wave height, 7.e. 5 can be removed from Eq. 3.67.
Further, the velocity profile for the S-175 container ship is obtained by using the vertical accel-
eration criteria in Sect. 3.9.3. That is, the limiting significant wave height for a given speed is
found by using Eq. 3.91. The limiting wave height is taken to be the minimum value along the
operability limiting curve, implying that the vessel can operate in all sea states with significant
wave height below the limiting value. A RMS-value of 0.15g in the centre of gravity allows for
heavy manual work, NORDFORSK (1987). It assumed that there is a deterministic relation
between the significant wave height and the forward speed. The resulting “stair case” velocity
profile is shown in Fig. 6.1. It must be emphasised that the velocity profile is just an illustrative
example, for most practical cases the forward speed is much less than indicated by the present
velocity profile.

12 . . y . ; . . : ; T T 0.025
- stair case
1t F smoothed ——- -
10 | 0.02
o ! =
o
= BF &7 0.015
~ a
E 7¢E F
= o
> [ g 0.0t
8 v
5 =
4} 0.005
3 b
o . " : . i L s . i L " J 0 N . - : o
4 5 8 7 8§ 9 10 11 12 13 14 15 1§ 0 0.2 0.4 0.6 0.8 1 1.2
H, [m]  [rad/s)

Figure 6.1: “Stair case” and smoothed veloc-  Figure 6.2: The transfer functions for the
ity profile for the S-175 container ship. Bstab-  vertical bending moment midship in head sea
lished by use of the acceleration criteria 0.15g  waves for the S-175 at three different forward
in the centre of gravity. speeds.

The lifetime extreme value is first calculated by using the complete long term description of the
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Table 6.1: Lifetime exireme values calculated by using complete long term analysis to selected
nareas” of the scatter diagram.

Life time extreme value
@: All H | H, > 85 [ H, > 105
“gtaircase” profile 1.437 _ i
Fno= (0.1 1.314 1.314 1.313
Frn=02 1.487 1.487 1.486
o= 0.275 1.642 1.642 1.641

response. The return period used is 100 years and the Pierson Moskowitz spectrum is used. In
order to study the effect of using a velocity profile compared to a fixed speed for all significant
wave heights, both a forward speed independent on H, and "stajrcase” profile were used. As can
be seen from Table 6.1 and Fig. 6.3 the life time extreme value is not significantly affected by the
lower sea states. The largest contribution is from sea states with significant wave height ranging
from H, = 12.5m — 13.5m. As concerns the “stair case” velocity profile, the corresponding life
+ime extreme value does not differ too much from the values obtained by using constant forward
speeds. This is probably due to the fact that the life time extreme values in this case, are in
general mainly affected by the velocities in the higher sea states and sea states with a significant
wave height at about 11 — 15 meters, see Table 6.1.

As already mentioned, the environmental contour line for the Northern North Sea will be
adopted. Both the contour lines following constant probability density and constant exceedance
probability are presented in Fig. 5.2(a). As may be noticed, the contour lines are almost identi-
cal in areas with large significant wave height, while the accuracy deceases as One moves towards
smaller wave heights. This indicates that in the area of concern, there is no significant difference
in using either the lines of constant probability or constant probability of exceedance. However,
the latter is used in order to calculate the short term characteristics since the computer code is
available and could easily be modified.

6.3 Short Term Results

The 85% fractile for the design extreme value, the expected largest and the characteristic extreme
value, see Eq. 3.56-3.58, are calenlated along the lines of constant probability of exceedance.
The return period for the environmental contour line for the Northern North Sea is 100 years
and the duration of the selected sea states are set equal to 3 hours.

The three first figures, Fig. 6.4(a) - 6.4(c) , show the short term characteristics together to-
gether with the life time extreme value obtained by using the complete long term analysis with
the “stair case” velocity profile given in Fig. 6.1. Tt is clear that, except for the forward speed
Fn = 0.275 (U=11.39m/s) in the short term characteristic, neither the expected largest value

nor the characteristic extreme value represents proper estimates of the 100-year bending mo-
ment. When the highest forward speed is used for all sea states along the 100-year contour line,
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Figure 6.3: Cocfficient of contribution for sea states with Hy > 8.5m. Only constant forward
speeds were used.

it is seen from Fig. 6.4(a) that the expected largest value slightly exceeds the 100-year value,
while Fig. 6.4(b) shows that the probable extreme value is rather close to the target value. The
reason for this is that as Fn = 0.275 is used for the most extreme sea states (for which a much
lower speed is used in the long term analysis, see Fig. 6.1), it represents “artificial high speed”.
This means that the fact that the short term variability is omitted by selecting a deterministic
short term characteristic is compensated for by using a “too large” forward speed, i.e. an inflated
forward speed when using the terminology as applied before.

The short term extreme value obtained by adopting the 85% fractile of the extreme value dis-
tribution, estimates the 100-year value with good accuracy if a Froude number of Fin = 0.2, .e.
U = 8.29m/s is chosen, see Fig. 6.4(c). It is seen that the adequacy of the various fractiles
depends on the selected speed for the contour line analysis. In Fig. 6.4(d) - 6.4(f) results for var-
ious fractiles are shown for three choices of the forward speed. In the figures, the 100-year values
as obtained from a long term analysis are also given, both for the “stair case” velocity profile
in Fig. 6.1 and for a constant speed. By applying a constant speed in the long term analysis,
the 90% fractiles is adequate for all speeds. For the “stair case” profile, the appropriate fractile
is dependent on the speed applied to estimate the design extreme value. It seems that the best
choice of speed, is the speed in the area of the most influencing sea states, see Fig. 6.1 and 6.3,
i.e. Fn =~ 2.0. Using speeds corresponding to Fn = 0.1 and Fn = 0.275, the design extreme
value will underpredict or overpredict the 100-year value using the “stair case” profile, respec-
tively. To get reasonable results, abnormal fractiles must be applied. However, using the design
extreme value at f'n = 0.2, reasonable values are obtained for a fractile between 75 — 80%. The
largest design extremes along the curves in Fig. 6.4(d) - 6.4(f) are also identified and presented
in Table 6.2. The design extreme values are normalised both with the life time extreme values
from the complete long term analysis using “star case” profile and constant speed. The best
fractile should be the one with a normalised value closest to 1.0.

It can be seen from the figures and the table that in case of constant profiles the best fractile
seems to vary between 85 — 90%. If the “staircase” profile is used, the best fractile seem to be
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Figure 6.4: Fig. 6.4(a) - 6.4(f) show short term characteristics for the vertical bending moment
midship at head sea waves for the 5-175 container ship.
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Table 6.2: Design extreme values using different fractiles and forwards speeds. The design ex-
treme values are normalised by the life time extreme value obtained by using the "staircase”
profile and constant forward speeds indicated by “stairc.” and const. respectively.

Fractile 5% 80% 85% 90% 95%
Profile Stairc. f Const. | Stairc. | Const. | Staire. ] Const. | Stairc. ! Const. | Stairc. | Const,

Fn=101 0.876 | 0.957 | 0.887 | 0.967 | 0.901 | 0.986 | 0.921 1007 | 0.954 | 1.043
Fn=10.2 0.995 | 0.961 | 1.007 | 0.973 | 1.023 | 0.980 | 1.045 | 1.010 1.082 | 1.046
Fn=0.275 | 1102 | 0.964 | 1.116 | 0.967 | 1.134 0.992 01158  1.013 | 1.199 | 1.048

between 75 — 80% for the Fn = 0.2, However, a 90% fractile will estimate the design extreme
value within an error of 5% in this case. Of course, this is case dependent and other results may
be obtained for other heading angles, speeds and vessels,

6.4 Significant Wave Height - Speed Contour Lines

In order to study the use of H, — I/ contour lines, the distribution

Jru(how) = fu, (h) fogm, (ulh) (6.1)

must be established. The randomness of U given H, is assumed to be well described by a log-
normal distribution. The functional form of this model is given in Eq. 3.82, while the parameters
have to be estimated as shown below. The distribution for H, is assumed to be described by
Eq. 3.81.

A smoothed mean velocity versus significant wave height, H,, is, in view of the illustrative
purpose of this study, assumed to be given by

Ly = —3.0arctan [&%9-)] ~+ 7 (6.2)

An illustration of the smoothed velocity profile is shown in Fig. 6.1. The coefficient of variation
is set. constant to 20% for all wave heights. The expected value and the standard deviation of
In¥U in terms of py can be found in Bury (1975). The contour lines are generated by the use
of the IFORM technique, Ude and Winterstein (1996}. The resulting lines for return periods of
10, 100 and 1000 years are shown in Fig. 6.5(a). Looking at Fig. 6.5(a) one may notice that
seems to be two forward speed for every significant wave height. This is a result of using the
log-normal to describe the randomness given U given Hy, and is not physical. If the exponential
distribution is applied instead, the lower region which indicates that U is almost independent of
H, will not occur. The same will oceur in Sect. 6.5 where the log-normal distribution is applied
to create contour surfaces.

The design extreme values are calculated along the lines of constant probability of exceedance
for given values of the peak period for a return period of 100 years. As before, the Pierson
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Figure 6.5: Fig 6.5(a) shows the contour lines for the Northern North seo using the IFORM
technique. The design extreme value for different fractiles. The sea state duration is equal to 3
hours in Fig. 6.5(b) and 6.5(c), while 100 hours is applied in Fig. 6.5(d).

Moskowitz spectrum is applied. Two cases are presented. First the peak period was kept con-
stant such that T, = V2rLpla, e X = Ly Thus the peak of the transfer function will
approximately (the peak is somewhat inftuenced by the forward speed) coincide with the peak
of the wave energy spectrum. In the second case, the peak period is equal to the conditional
mean value given by Eq. 3.86 indicated by To|H, in the figures. The first and second case are
presented in Fig. 6.5(b) - 6.5(d) together with the 100 year life time extreme value obtained by
using the complete long term analysis, 4.e. with a velocity profile given in Fig. 6.1.

Looking at Fig. 6.5(b), it seems like the 70% fractile vield a good estimate of the life time
extreme value when T}, is kept constant and selected such that the corresponding wave length
coincides with the ship length. One may also notice that it is not the cases with small veloc-
ities that give large forces. The cases governing the extremes are situated in the area of large
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significant wave height, H,, and it is of major importance to adopt proper speed to use for
these events, see Fig. 6.5(a). This is as expected since the forward speed does not influence the
transfer function in any great extent. On the other hand, the response is proportional to the
wave height as long as the problem is linear.

When the peak period is set equal to the conditional mean value, a different situation occyr.
Fig. 6.5(c) shows that in this case, a 3 howr duration is not long enough to estimate the life time
extreme value if not very, very high fractiles are adopted. If the mean period is used, a duration
of 100 hours must be adopted if a proper short term value shall be obtained at a reasonable
fractile level, see Fig. 6.5(d). This suggests that short term variability can be accounted for
by selecting a more unfavourable period, 13, but more strongly it suggests that a full three
dimensional contour surface should be recommended for the purpose of estimating the 100-year
value by means of short term analysis.

6.5 Three Dimensional Contour Lines

It is seen from the previous pages that for the forward speed case, all three slowly varying pa-
rameters, significant wave height, spectral peak period and forward speed, are of importance.
Accordingly, a three dimensional contour surface should have been established. It is not possible
to read proper subset of parameter combinations of the figure of such a surface, so in practice it
has to be given as a set of two dimensional strips of the body. Alternatively, one may provide
numerical number for the contour surface in a three dimensional matrix. Although, problem
independent contour can be given in any dimension, it is not very attractive to do so for more
than three dirensional problems regarding the slowly varying parameters. However, for three
dimensional problem it can be done and this will be illustrated below. For higher dimensions one
should rather solve the complete long term problem and include the fast process as a random
parameter, and further solve the problem by the conventional way or applying IFORM technique.

‘The three dimensional density function of the three slowly varying parameters are given by

Trorulhytow) = fu (B) frm, (ER) form, (wlh) {6.3)

where the models for fy (k) and Sr,1m,(t|R) are given by Eq. 3.81 and 3.82, Haver and Nyhus
(1986). The conditional density function for the forward speed, fyig,(ulh} is modelled by a
log-normal model with a conditional mean forward speed given by Eq. 6.2, and a coefficient of
variation equal to 0.2 for all wave heights. It is assumed that the forward speed is independent
of the peak period, 7},. The expressions for the parameters of the log-normal model can be found
in Bury (1975).

A full long term analysis using the TFORM, Ude and Winterstein (1996), technique is car-
ried out. Based on this analysis, the 100-year bending moment is found to be 1.43 - 10°Nm.
- This is a result very close to the result, presented in Table 6.1, obtained using a straight for-
ward long term analysis using the simulation program LOSSY, Farnes and Passano {1989). The
slowly varying characteristics which together with this extreme value of the fast process defines
the design point which are 11.3m, 13.3s and 6.1m/s. The question now is how well could this
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value be predicted by short term analysis if using short term sea state combinations located
on the surface corresponding to FORM probability of exceedance 3.42 - 107%, i.e. the 100-year
probability of exceedance for an arbitrary 3-hour sea state. The contour surface is shown in

Fig. 6.6.

contour surface
ol 20.6 -~
174 -~
15 + 13.6 -
10 g==c 1‘*:\3 S 101 oo
5 s o e 6.56 -
0
2
4
TP

Figure 6.6: Three dimensional 100-year contour surface for significant wave height, H,, spectral
peak period, Ty, and forward speed, U .

As short term characteristics, the median and the 90% fractile is adopted. Using the median, the
estimated “100-year value” is found to be 1.26- 10°, while the 90% fractile yields 1.41- 109, This
means that the median under predicts the 100-year value with approximately 10 — 15%, while
adoption of the 90% fractile results is a rather accurate prediction. The sea state parameters
and speed corresponding to the 00% fractile results are 13.2m, 13.6s and 5.4m/s respectively.

6.6 Conclusion

As forward speed is introduced into the contour problem, it is more complicated to recommend
adequate fractiles to be used in connection with two-parameter contour lines {i.e. significant
wave height, H,, - spectral peak period, Tp, or significant wave height, H,, - forward speed, U).
I the forward speed is independent of the wave height, proper results are obtained for the 90%
fractile. A 90% fractile is suitable, if the change of speed s carried out at the smaller sea states
where the coefficient of contribution is low. That is, the speed is constant in and close to the
sea state with max Cr{si) or the design sea state on the contour line.

For varying speed the choice of fractile becomes very dependent, on the chosen speed for the
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short term sea state on the contour line. When a contour line based on speed and wave height is
used, the optimum fractile becomes very dependent on the spectral peak period. It is therefore
concluded that for the forward speed case, both significant wave height, spectral peak period
and forward speed should be included in the contour problem, i.e. a contour surface should he
established.

As a three dimensional contour is introduced for the forward speed case, the 90% fractile seems
to give adequate results.

A more extensive discussion is given in Sect. 7.7.




CHAPTER 7

Effect of Restricted Service on Linear
and Nonlinear Response

7.1 Introduction

A ship master may avoid severe weather by manoeuvre the vessel into calmer sea areas or simply
keep the vessel anchored in harbour until the weather has calmed down. In this chapter, the
operational restrictions, see Sect. 3.9 and Fig. 3.7, will be used to study the latter,- namely the
effect on the response due to restricted service.

The aim is to study the effect of restricted service on the linear and nonlinear long term re-
sponses and how the model weather restrictions can be accounted for in the long term analysis.
It is further the purpose, to find a model which can be used in combination with the contour line
approach based on the fractiles determined in Ch. 5. Different methods to model the restricted
service will be presented and the use of contour line concepts applicability will verified. The
effect of varying forward speed is not included.

Prediction of transfer functions and nonlinear, time domain simulations of the vertical bending
moment midship are conducted using the simulation program LANWIL, see Appendix A.1.2.
The estimated transfer functions will be similar to the transfer functions obtained by using the
simulation program VERES, Fathi (1997), since they are both based on linear, strip theory.

7.2 Linear, Long Term Response Due to Restricted Ser-
vice

To study the effect of restricted service on the long term vertical bending moment midship, the

IT'TC container ship S-175 is chosen. The data and hull form is given in Appendix . Mass

143
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distribution is given in Appendix G. The Northern North Sea is chosen as sea environment, see
Eq. 3.80 - 3.82 and Haver and Nyhus (1986). The vessel is running in long crested, head sea
waves with constant forward speed.

The operability limiting boundaries are established on basis of the sea keeping criteria presented
in Sect. 3.9, i.e.

e Vertical acceleration at CG
o Vertical acceleration at FP
o Green water on deck

& Slamming at FP

A RMS-value of 0.15g in the centre of gravity, CG, allows for heavy manual work. 0.15g is also
applied for vertical acceleration at the fore perpendicular, FP. Green water on deck has been
calculated for a probability of 7%. The slamming criteria is found by calculating the k-factor
using Slam2d, Heggelund et al. (1998), and defining a critical pressure, P, The critical pres-
sure is set to be 60% of the hydrostatic pressure, Hoff (1999). The probability of slam is 3%.
For more information see Sect. 3.9.

The linear, long term extreme response is calculated by using Bq. 3.92. That is the upper
limit of the significant wave height is changing as the peak period increases. Since the vessel is
only present in selected parts of the scatter digram limited by the operability limiting curves, see
Fig. 3.7, this represents long term responses due to restricted service when the ship master seecks
shelter in a harbour. As shown in Sect. 5.4.6 there is only a few sea states which do contribute to
the long term response. Therefor one may approximate the limiting boundary by the minimum
value of HI'™(T,) and still expect that a reasonable estimate of the long term response due to
restricted service should be obtained. The operability limiting curve is approximated as

H, = min HI™(T,) (7.1)

The ratios between the linear, long term vertical bending moment using H¥™(T.) and H, as
upper limits respectively are presented in Table 7.1. It seems that there is a small difference in
the estimated moments using the two methods except for two cases. That is the sea keeping
criteria “Vertical acceleration at FP” at Fn = 0.2 and Fn = 0.975. The value H, is small, {.e.
min H™(Tp) < 4m, for these two speeds. This may indicate the approximate operability limit
should be applied with care for small limiting significant wave heights.

7.3 Modification of the Scatter Diagram

Restricted service may also be modelled by creating a scatter diagram which takes into account
the fact that the ship master prefers the calmer sea state. The modification of the original,
simultaneous distribution Fy, 1, (h,t) = Fy, (h)Fr, (¢|h) into F, Hom, (R, 1) = ﬁ‘Hs(h)FTp(tlh) will
be discussed in the following.
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Table 7.1: Ratios between the linear, long term vertical bending moment midship using H¥™(T,)
and the result by using H; as the upper limit. $-175 at four different foward speed in head sea
waves in the Northen North Sec. Return period is 100-years.

Limiting criteria

Fn Vertical accelera- | Vertical sccelera- | Green water on Slamming at FP
tion at CG tion at FP deck

0.0 1.0 1.038 1.009 1.048

0.1 1.0 1.040 1.006 1.008

0.2 1.004 1.166 1.005 1.070

0.275 1.002 1.157 1.051 1.050

Seatter diagram which takes into account the effect of restricted service may be modelled in
different ways. Three diflerent methods are applied herein, The first method is to truncate
the distribution. Physically, truncation may be compared to a situation where the ship mas-
ter is never present in sea states with significant wave height larger than H,. In reality, some
variability should be allowed for. The truncated area above in the distribution function should
have been added the distribution somewhere between Hy = 0 — H, depending on how the bad
weather is avoided. Most likely, the area should have been added just below the limit H,, since
the ship master will in general only manoeuvre into slightly better weather. In this work it as-
sumed that the probability density above the truncation limit can be divided uniformly between

H, =0 H,. A truncated distribution with upper limit H!™ is given as, Bury (1975);

Fy,(h) = Fu,(h) (7.2)

F H, (hs)
Truncation of the Weibull distribution 18 Jlustrated in Fig. 7.1 where the continues line is the
original Weibull distribution. The truncation limit is set to be 5m due to illustrative purposes.
In order to establish the contour lines, IFORM transformation is applied, see Appendix 1. The
significant wave beight using the truncated Weibull distribution is simply given by

h = fl—n(1 - SO (7.3)

where ®(U) = ®(U1)F . (hs). However, the ship master will in general also be in larger sea
states. This encourages establishinent of distribution with tail. In this work, the second and third
method are modifications the Weibull-distribution describing the behaviour of the significant
wave height, H, by

e Rescaling of the Weibull distribution

e Reshaping of the Weibull distribution

Rescaled and reshaped Weibull distribution describes the situation where the ship master ma-

noeuvre into calmer areas and some variability around the limiting value, H,, is allowed for. The
rescaling of the of Weibull distribution is done by finding a new scale parameter §*. The scale
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parameter 5* will be applied in the Weibull distribution instead of 8 which is the original scale

parameter from Sect. 3.8.2. The scale parameter might be determined by letting A, represent

the D-year sea state. Meaning that in the modified scatter diagram, the significant wave height

will only exceed H, once every D-year. This method is chosen since the classical contour lines

are determined in this manner. The new scale parameter is given as
hs

(g

where N, is the number of sea states within a year. Thus DN, is the number of sea states in
D-years. The IFORM transformation gives

Bt == (7.4)

h = [ 1n(1 - &))"/ (7.5)

The third method applied in this work, was to reshape the Weibull distribution to take into
account restricted service. The procedure is similar to the one above. That is H, represent the
D-year sea state This will give us

_ In(~ ln(bih,f;)
= (7.6)

x

where +* is the new shape parameter. Accordingly, the IFORM transformation is written as

h=B[-In(1 - $U ) (7.7)

The distribution of the significant wave height consists of both the log-normal and the Weibull
distribution. Since the Weibull distribution is changed so that restricted service is taken in
to account, also the log-normal distribution must be changed. That is since the cumulative
distribution should be equal to one when h is large. In this work this is approximately done by
setting the value of the cumulative log normal distribution equal o the cumulative new Weibull
distribution at the shift point h = 1), see Bq. 3.81. The procedure will be equivalent for ali three
modifications of the Weibull distribution. That is

p(ZLZ LRty (78)
Pin i1,

The new scale parameter in the log-normal distribution valid for h < 7 is estimated as

Inn — pmn
* . s
Olnp, = @—l(mi?zm ) {(7.9)

The IFORM transformation for the log-normal distribution will be given as

b= eXp{,LL]an + O'i);] H,Ul} (?10)

It seems that the part of the scatter diagram which is described by the log-normal distribution,
does not affect the estimated long term response significantly, except for cases where the limiting
significant wave height is close to the shift value 5. How the log-normal distribution is modified
is therefore of no importance for the final result. The contour lines for the Northern North sea
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by applying the Weibull distribution which is either truncaied at H, or rescaled or reshaped by
letting Hs = Hp are given in Fig. 7.2. Hp is the D-year significant wave height. The log-normal
distribution is rescaled depending on the modification on the Weibull distribution.

A comparison of the two different modifications are shown in Fig. 7.1 together with the trun-
cated distribution and the original Weibull distribution. The new scale and shape parameters,

* and v* is found by letting H, represent the 100-year significant wave height. H, = 5 is chosen
for the purpose of illustration. The figure shows that a rescaled distribution has smaller density
in the tail then the reshaped distribution, Which implies that the reshaped distribution allows
for more severe sea states. Accordingly, larger long term responses are expected.

08 —
07 ; By b ]
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Figure 7.1: The original Weibull density distribution with scale and shape parometers 3 and
v. Rescaled and reshaped Weibull distributions with scale and shape perameters [* and ¥
respectively and truncated Weibull distribution. The operability limit 18 equal to Hy = 5.0m.

7 4 Linear and Nonlinear Long Term Response Using the
Modified Scatter Diagram

The linear, long term vertical bending moment midship using the modified scatter diagram
Fy,p,{h,t) of the Northern North Sea is calculated for the 5-175 container ship, see Eq. 3.93.
Tt is assumed that the short term maxima distribution is well described by the Rayleigh distri-
bution. The vessel is running in long crested, head sea waves. The forward speed is constant.
Results are presented in Fig. 7.3 as a function of the limiting significant wave height H,. For
the truncated scatter diagram this represents an upper Timnit and the vessel is never present in
higher sea states. The rescaling and reshaping allows for some variability around the limiting
value.

It is interesting to note that the 700 values for the vertical bending moment midship obtained
by a truncated scatter diagram, are very close to the long term results obtained using the op-
erability limit given by H,. The difference is in the range 0.01 — 0.1% and therefore neghigible.

This is because the value FHl'& 3 is close to 1.0, even for wave heights close to the shift parameter
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Figure 7.2: Contour lines of the Northern North

Sea for a return period D = 100 years for
limiting significant wave height, H,.
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p. That is why there will not be a large difference between these two methods. If the truncated
distribution is found appropriate to model the restricted service, it is simpler to do long term
analysis using the operability limit H, as discussed in Sect. 7.2. The final results will be almost
equivalent.

All three models of f .1, (7, 1), show that the linear, long term vertical bending moment midship
decreases rapidly as the limiting significant wave height decreases, see Fig. 7.3. As expected,
the truncated distribution will give larger response values than the other two methods. This
is also expected since the vessel spends more time in rough weather than using the two other
models of fx, x,(R,t). The rescaling gives the smallest 100-years values when compared to using
truncation and reshaping of the scatter diagram. This is because rescaling will give a model
where the vessel spends more and more time in the smaller sea states as H, decreases. This is
not the case for the reshaping, see Fig. 7.1. Accordingly the results will be somewhere between
the long term results using the rescaled and truncated distribution.

Also the nonlinear, long term vertical bending moment midship, 7%, is calculated. The Weibull
distribution is applied to describe the distribution of the maxima , see Sect. 5.4.4. The LRNM
method is used to create the maxima samples, Sect. 5.4.3. The simulation time was set to three
hours according to experience made previously. In order to limit the number of simulation,
the procedure given in Sect. 5.4.5 was applied. The effect of restricted service is modelled by
applying the rescaled scatter diagram with limiting significant wave height equal to 10m. The
100-year long term sagging and hogging moments are given in Table 7.2 . Also the most con-
tributing sea states are given together with the coefficient of contribution, Cr(s?}. The ratios

@fm for sagging are smaller than the corres onding values given in Table 5.6, when the original
5 & p g

T

scatter diagram was applied. That is simply because the degree of nonlinearity decreases when
the included sea states are less severe. This argument can also be used to explain why the ratios
are larger than the corresponding values in Table 5.7 for the hogging response. A comparison
between the nonlinear long term value in restricted versus unrestricted service are given in the
last column in Table 7.2. A 30% reduction of the sagging moment is experienced when severe
sea states above 10m are avoided. The restricted service has an effect of 15— 20% on the hogging
moment.

Table 7.2: 100-year nonlinear vertical sagging ond hogging moment midship for the S-175 con-
tainer ship, ™, Effect due to restricted service s taken into account by applying a rescoled
scatterdiagram for an operability limit at H, = 10m, see Fig. 7.2(b). The values are made

nondimensional w.r.t. to corresponding linear value, o0, and nonlinear value panTest in un-
restricted service. m _
Fn H imax Cr(si) T;u,maxCR(si} max Cr(si) :T%'QQ ‘anuﬂrest
[ g k)
sagging || 0.0 05 12.5 10.34 1.81 0.71
0.275 8.5 12.5 23.76 2.21 Q.71
hogging 0.0 8.5 11.5 17.64 0.86 0.82
0.27% 8.5 12.5 14.87 0.69 0.85
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Figure 7.3: Long term 100-year linear, vertical bending moment midship for the S-175 container
ship in head sea waves. Scatter diagrams which are modified for restricted service are applied.
Weather restrictions are indicoted by the value H,. The long term values in unrestricted service

are included lines.
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7.5 Linear and Nonlinear Long Term Response Using
Modified Contour Lines

The long term response is obtained by using the the scatter diagram with contour line as shown
in Fig. 7.2(b). The return period for the environmental contour line for the Northern North
Sea is 100 years and the duration of the sea states along the line is three howrs. The design
extreme value with an appropriate fractile has in this work shown to be adequate for unrestricted
service, Ch. 5. Based on the linear term results in Ch. 5, the fractile qgesign = 90% is chosen
for the S-175 container ship, see Table 5.3. This is done because the fractile must be known on
beforehand. If the fractile from linear analysis applicable also in restricted service it is convenient.

The linear design value is given by Eq. 3.58. All three modifications of the scatter diagram
are applied in the analysis. Fig. 7 4 shows the estimated 100-year values of the linear, verti-
cal bending moment midship using the contour line approach. The results using the truncated
scatter diagram are given in Fig. 7.4(a), while Fig. 7.4(b) and 7.4(c) show the obtained results
using the rescaled and reshaped scatter diagram respectively. The 100-year values conducting
a complete long term analysis given on the ordinate are equivalent to those presented in Fig. 7.3.

Truncating the scatter diagram, will underestimate the long term response in most cases if
the contour line approach is applied. One could suggest t0 solve the problem by increasing the
fractile. However, the fractile will be dependent on the value H, since the underestimation in-
creases as the value H, decreases, see Fig. 7.4(a). This indicates that a truncated distribution is
not particularly applicable combined with the contour method. However, if restricted service is
modelled by rescaling of the scatter diagram, the contour line approach gives acceptable results
even for the smallest limiting wave heights, .. 7500 = rl o- This is because the modified scatter
diagram has got a new form, while the truncation only “adds” probability without changing
the form of the distribution. Changing the form will move the location of the sea state with
max Cr(si) relatively, while in a truncated distribution the sea state si = (H,, Tp); will be lo-
cated at the truncation point as long as Hs; < H,. Reshaping the scatter diagram will give
reasonable good estimates of the long term response using the contour approach for the largest
long term values. Some scatter ‘s observed at the lower long term values. This implies that
using the contour line, rescaling of the scatter diagram will be most applicable combined with
the contour line approach since the long term maxima can estimated accurately.

The 100-year values for the nonlinear, vertical bending moment midship are estimated using the
contour lines of the rescaled scatter diagram with limiting, significant wave height H, = 10m.
The design extreme values are calculated using Eq. 3.61, since the Weibull distribution has
shown to be appropriate to describe the maxima distribution. The simulation time is set to
three hours. According earlier experience, a 90% fractile is applied for this vessel. The dimen-
sionless values are given in Table 7.3 together with the design point on the contour line. A 90%
fractile seems to produce long term values close to the target value since the dimensionless values
are close to unity for both sagging and hogging at Frn o= 0.0 and Fn = 0.275.
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Figure 7.4: Comparison of linear, long term mazima, 00, With the design. value, Thao, determined
by the contour method. Results for the 5-175 container ship at different speeds and limiting
stgnificant wave heights, H,, see Fig. 7.3,
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Table 7.3: Comparison of nonlinear, long term mazima, v, with the design value, 1%y, de-
termined by the contour method based on operability restriction with rescaled scatter diagram.
Nonlinear sagging and hogging response for the S-175 container ship with a limiting significant
wave height H, = 10m, see Fig. 7.3.

T
Fn Hs,design {111] Tp,design [S] ‘a?dl%g:m
saggng 0.0 9.832 12,789 1.0270
0.275 9,832 12,789 1.0145
hogging 0.0 9.348 11.548 1.0043
0.275 0.832 12.789 (3.9854

7.6 Conclusion

The limiting operability limits, H¥™{Tp), can be approximated by setting the limiting significant
wave height for all period equal to the minimum value along the operability limiting curve, z.e.
H, = min H¥"(T;). The estimated long term extreme value will not be significantly affected by
this approximation.

Effects due to restricted service might be modelled by truncation of the simultaneous distri-
bution Fy,1,(h,t) = Fy,(h)Fr,(t|h) into F w,1, (R, ). A truncated distribution does not allow
for any variability around the operability limit, i.e. the vessel is never present in sea states with
significant wave heights larger than H.. The two other modifications of the scatter diagram
allow for some variability at H;. Probably the reality should be modelled as something between
a truncated distribution and a rescaled or reshaped distribution.

Long term analysis using a truncated model, will give approximately the same long term re-
sponses as performing long term analysis with an approximate operability limit Hs = min H b (Ts)
as upper Hmit.

All three modification of the scatter diagram show that the linear, long term response de-
creases rapidly as the limiting significant value, H,, decreases. Rescaling yields the lowest long
term values, while the reshaping gives somewhat larger long term extremes and truncation gives
the largest values. The maximum difference between the long term values using truncated and
rescaled distribution is as much as 20%. The nonlinear, long term value is found based on oper-
ahility restriction with rescaled scatter diagram using H, = 10m as upper limit. The long term
vertical sagging is reduced by 30%, while hogging moment is reduced by approximately 15— 20%
compared to values obtained in unrestricted service.

Tt seems that if restricted service should be modelled, rescaling of the scatter diagram is preferred
if the contour line approach should be applied in order to find the lifetime extreme value. Using
the contour line approach in combination with truncated and reshaped scatter diagram, will in
most cases underestimate the long term extreme value.
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The contour line approach is able to reproduce the 100-year long term extreme values, Proper
results are obtained using a 90% fractile for both linear and nonlinear response independent oy
the forward speed. One should remember, that the speed is kept constant in these analysis,
If however, the speed is dependent on the wave height, the forward speed should probably be
included as a third variable, i.e. a contour surface should be established. When restricted service
is considered, the most contributing sea states, i.e. max Cr(si), are more likely concentrated in
areas where the vessel experiences speed changes.

7.7 Conclusive Remarks to the Contour Line Approach

As mentioned in Ch. 1 one of the objectives of the thesis, was to contribute o develop 3 sim-
plified method for calculating design loads on modern ships. Both probabilistic and nonlinear
character of the load should be accounted for, It is important to know how the simplifications
affect the accuracy of the estimated design loads in view of saved man efforts and computation
time. This is in particular important if the response is nonlinear and simulation in the time
domain must be performed. The conventional long term analysis will become both complicated
and time consuming. The accuracy will be discussed assuming that error less than approxi-
mately 5% is negligible. Tt is also important to note that the response mentioned herein refers
to the vertical bending moment midship.

If the response is linear, conventional long term analysis is rather straight forward. The analysis
is neither complicated nor time consuming, and operability restrictions can easily be accounted
for. The contour line approach, i.e. design extreme values together with an appropriate fractile
in selected sea states given by the contour line, can be a good alternative if contour curves are
readily available and statistical tools for conventional long term analysis are not in hand. If the
contour curves must be established, a complete long term analysis can be equally considered.
In this work, the linear response analysis has been applied to verify the contour line methods
applicability for later use in connection with nonlinear, long term response analysis. In the case
studies different response cases have been studied in connection with the contour line approach.
That is

e linear and nonlinear TESPONSE

¢ unrestricted and restricted service
where restricted service can further be divided into
¢ varying forward speed and manoevring in order to avoid severe sea states

For linear response in unrestricted service a fractile of 90% seems reasonable for most, ships, but
for vessels with length smaller than 160m the fractile can advantageously be increased to 95%.
This fractiles yield reasonable results at all headings.

For nonlinear response, the fractile obtained using linear response analysis gave reasonable es-
timated for the nonlinear vertical bending moment midship for the S-175 container ship, tanker
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and the mariner. For these vessels 90%, 85% and 95% fractiles were applied respectively. Using
ihe fractile to 90% for the tanker will give conservative results. In particular good results were
obtained for sagging response. At one occasion, the hogging response was underestinated by as
much as 7%.

For linear response and varying forward speed the following is observed for the $-175 container
ship:

A 90% fractile is suitable when change of forward speed is performed at wave heights lower
than the sea sates which yields maximum contribution to the long term extreme value.
That is, the speed which should be applied in the sea states given by the contour line is
constant in and close to the region containing the sea state with max Cr(si) or the design
sea state on the contour line.

- If change of speed is conducted close to the sea state which yields maximumn response,
care should be exercised in choosing the appropriate speed to be applied in the contour
line approach. A possibility is to chose the largest speed. A 90% fractile will yield a
conservative estimate of the long term extreme value.

. Application of H, — U contour is questionable since the fractile will be highly dependent
on the peak period appled in the short term analysis.

- Introducing the forward speed as a third variable, a H, — T, — U contour surface can be
established. A 90% fractile gives tolerable results of the long term extreme value using the
contour sutface.

Operability restrictions such as manoevring in order to avoid severe sea states, can he modelled
by modifying the scatter diagram. Truncation, rescaling and and reshaping of the scatter dia-
gram are used in this work. A truncated distribution does not allow for any variability around
the operability limit, while this is allowed for using reshaping or rescaling of the scatter diagran.
The best picture of the reality is most likely a combination of the former and one of the two
latter modifications of the scatter diagram.

For linear response for the S-175 container ship accounting for manoevring in order to avoid
severe sea states, all three modifications above are applied. The following is experienced:

_ A truncated distribution is fairly easy to establish, but can not be applied in combination
with the contour line approach since the fractile will be dependent on the operability limit,
i e. the fractile must be increased as the limit decreases.

- A reshaped scatter diagram will in general underestimate the long term extreme value
using the contour line approach. The underestimation increases as the limiting significant
wave height decreases.

- Rescaling of the scatter diagram gives reasonable estimates of the long term extreme value
using 90% fractile for the S-175 container ship.
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For nonlinear response only rescaling of the scatter diagram is used to take into account the
effect of manoevring. A 90% fractile is suitable to estimate the long term extreme sagging and
hogging values for the S-175 container ship.

The linear and nonlinear long term extremes will be reduced when the effect of manoevring
i order to avoid severe sea states is taken in to account.

long term analysis, Sect. 5.4.5, the latter involves search for the most, contributing sea states to
be be applied in the long term analysis. The method is dependent on experience and js some-
what more elaborate than the contour line approach. The contour line method is more specific
and easy to apply. For the cases used in this work, approximately 5-6 simulations are performed
to estimate the nonlinear, long term extreme value. It is in the authors opinion that at least 9
simulations must be performed for the approximate long term analysis. This is to ensure that
the sea state with maximum contribution to the long term value is captured which is required
to get an acceptable estimate.

dependent on the significant wave height. Regarding the restricted manoevring, it is emphasised
that the main purpose was to apply the contour line approach and none of the two modifications
mentioned here was promising. However, modelling the restricted service due to manoevring
using a truncated scatter diagram is probably easy to use together with the approximate Iong
term analysis which procedure is described in Sect. 5.4.5 The sea state with maximum coeffi-
cient of contributions is always located close to the truncation limit. The requirement is that the
significant wave height where the truncation is conducted is smaller than the original significant
wave height with maximum coefficient of contribution. The sea state is easy to locate and a
long term estimate can be obtained with a small number of simulations. However, this kind of
analysis is not performed in this work,

A large number of linear response analysis and a significantly smaller number of nonlinear anal-
ysis have been performed. The purpose is to apply the fractile from linear analysis, to estimate
the nonlinear, long term extreme values. It seems that fractiles to be applied for both linear and
nonlinear analysis, can he determined for linear response in unrestricted service in head sea with
zero forward speed. It is reason to believe that the fractiles can be applied when the effect of
operability restrictions should be accounted for, in accordance with the work presented in this
thesis, for both linear and nonlinear response. More nonlinear simulations are required to fully
confirm the the contour method’s accuracy. It is in the authors opinion that both the linear
and nonlinear response analysis give a good impression of the applicability of the contour line
approach.
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Conclusions and Suggestions for
Further Work

The intention of this study has been to investigate the uncertainty in the hydrodynamic mod-
els applied to estimate the vertical bending moment midship. In addition, efficient long term
analysis and a simplified method to estimate the long texm extreme value based on the contour
Jine concept are presented and verified for both linear and nonlinear response applying different
vessels, forward speeds and operational restrictions.

The main conclusions are presented in the following chapters assuming that error less than
approximately 5% is negligible. It is important to note that the response mentioned to herein
refers to the vertical bending moment midship.

8.1 Uncertainty Analysis

The uncertainty of the theoretical models used to estimate linear, Salvesen et al. (1970), and
nonlinear response, Wu and Moan (1996), Wu et al. (1996), are studied. The hydrodynamic
theories are incorporated into the simulation programs VERES, Fathi (1997), and LANWIL
respectively, see Appendix A The conclusions drawn from this work are presented in the next
two sections.

8.1.1 Modelling of Uncertainty in Linear Strip Theory

The model error of the transfer function is given as a function of the wave frequency. Different
types of errors were tested. The transfer function uncertainty was modelled by the difference
between the measured and predicted transfer function value. Due to lack of experimental data,
it is concluded that the model error could be modelled using cubic splines. This is the most
well behaved model error. However, one should remember that with limited experimental dafa
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points, no approach is ideal.

The uncertainty in the transfer function is characterised by calculating the corresponding long
term extreme value. The uncertainty in the long term extreme values is found by quantifying
the ratio between the true and the predicted long term extreme value, i.e. the ratio between the
measured and predicted value respectively. The return period has no significantly influence on
the relative error. Meaning, the values found in this work for a return period of hundred years
can be applied also for other return periods.

Sensitivity analysis shows that there is a limited region of the transfer function that contributes
to the long term extreme values. The study justifies that only the model error of the main peak
of transfer function need to be modelled.

A significant scatter is observed comparing estimated, relative error for a given wave head-
ing for the different vessels. In particular, one should notice that there is a discrepancy between
the relative error for a given vessel when experimental data submitted by different organisations
are used. The results provided by a given organisation always tend to either overestimate or
underestimate the response.

A linear tendency between the relative error and the dimensionless model error at the frequency
giving a decomposed wave length equal to the ship length, is discovered. This information is
applied to find an estimate of the relative error within a band.

The long term extreme response is highly influenced by the model uncertainty. The relative
error band varies somewhat with the heading angle. In particular, the band is large for quarter-
ing sea at sixty degrees. This may be caused by coupling to roll motion.

8.1.2 Model Uncertainty of Nonlinear, Strip Theory

The uncertainty associated with the error in nonlinear theory is expressed as the ratic between
the measured and simulated regular response amplitude.

For some response cases, there seems to be a relation between model error and the wave steep-
ness. However, it can not be concluded to be a general trend for all vessels and response cases.

A relation between the degree of nonlinearity in the response and the model error, is also
investigated. As for the previous case, no clear tendencies are observed even if in some cases
the model error seems to have a linear relation to the degree of nonlinearity. Since the model
error of the nonlinear, strip theory seems to be independent of wave steepness and degree of
nonlinearity in the response, this implies that the theory is able to account for even large non-
linearities and that no systematic errors, which can easily be corrected for, are present. Since
no general trend is observed, an average value for the model exror for a given wave length is found.

The average value of the model error is found to be independent of the wave length. The
tendency is that the value varies around a mean value. Therefore, a model error with mean
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value and standard deviation is established for each of the response cases. The model error for
the sagging response are in most cases less than one, ¢.e. the response is overestimated. Hogging
response is more likely to be underestimated. However, model error for hogging response seems
to be more case dependent than sagging response.

A relation between the mean value of the model error and the block coefficient is examined.
It is believed that the number of data is too small to ascertain that the relation is linear. If
more data where available, one could naturally be study this more carefully.

The nonlinear model error herein is determined for each vessel and might be used for simi-
lar vessel types.

8.2 Simplified Estimates of Long Term Extreme Response

The inverse First Order Reliability Method, IFORM, has been preferred to establish the contour
lines of the environmental parameters, significant wave height and peak period. A computer
code based on IFORM was readily available and could easily be modified. This method is also
particular efficient if more parameters are to be included, 4.¢. if a contour surface should be
established. However, contour curves on lines of the environmental parameter might also be
establish using the lines with a constant probability density. The contour curves using the two
different methods will be approximately equivalent.

The scatter diagram for the Northern North Sea and the Pierson Moskowitz spectrum are applied
in all analysis. The sea surface elevation is assumed to be Gaussian.

8.2.1 Linear Response

The contour line approach has been found useful in order to estimate the D-year ife time extreme
value for ships with and without forward speed, given that suitable short term characteristics are
chosen for the purpose. In this work, the focus has been put on the design extreme value. The
design extreme value and a fractile have been applied in selected, three-hour sea states given by
the D-year contour line. This will give a reasonable estimate of the D-year long term extreme
value given that the appropriate fractile is applied.

The necessary fractile, &, seems to be independent of the sea environment in consideration. The
chosen return period will influence the size of the fractile. The necessary fractile for D = 100
will underestimate the D = 10.000 years response. However, the underestimation is small.

The design fractiles found are in the range from 0.95 ~ 0.85. A fractile of 90% seems reasonable
for most ships, but for vessels with length smaller than 160m the fractile can be advantageously
be increased to 95%.

The use of correction factors have been briefly discussed. The design correction factor to be
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multiplied with the expected largest and most probable extreme value are 1.1 and 1.15 respec.
tively.

This presented fractiles and correction factors are valid for ships with lengths ranging from
116 — 270m.

8.2.2 Nonlinear Response

In order to estimate the nonlinear, lifetime extreme value, the short term distribution must be
determined. This includes three tasks, - namely determination of simulation length, generation
of maxima sample and finding an appropriate distribution. The results are respectively

¢ 3 hours simulations
* Using linear response series to locate the nonlinear maxima, i.e. LRNM-method

e Three parameter Weibull-distribution

The long term extreme values are found using
* approzimate long term analysis
* contour line approach

The approzimate long term analysis is convenient since it includes only a limited number of
sea states. These sea states are located by establishing the coefficient of contribution for the
corresponding linear response. The maximum value of Cr(si) is used as a starting point, and an
increasing number of sea states are included until the coefficient of contribution for the nonlinear
response is located and the nonlinear, long term extreme value has converged. If approximately
50% of the Cr(si)-values are included less then 5% underestimation is experienced for the S-175
container ship, the tanker and the destroyer. Including only the sea, state with max Cr(si), the
underestimation is still smaller then 15%. It is concluded that, if the max Cg(si) is included in
the analysis, only a limited number of sea states Is necessary to get an acceptable estimate of
the D-year value of the nonlinear vertical bending moment midship, i.e. sagging and hogging.

The nonlinear lifetime extremes are also estimated by using the contour line approach which is a
special way to select the few sea states included in the long term analysis. The approach is based
on the results from the linear analysis. That is, the design extreme value, :r'gfdeségn, is calculated
along the contour using the design fractile found in the linear analysis. The sagging response is
satisfactorily estimated for all three vessels at both zero and non-zerg forward speed. Applying
the contour line generally makes a too low estimate of the long term extreme sagging response.
However, the underestimation is small in all cases. The nonlinear bending moment for the tanker
is accurately determined for both sagging and hogging. The long term hogging response is also
underestimated in most cases. In particular, the hogging response for the destroyer at Fin = 0.0

is conspicuous. The ratio between 1 /7750 is as small as 0.92. This is due to the fact that

Ydesign

the sea state with max Cr{s?) for the nonlinear response is far apart from the corresponding sea
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state in linear analysis. Accordingly the fractile determined using linear analysis is to small.

In this work, this underestimation is believed to be connected with location of the maximum
contributing sea state. As concluded for linear response, the design fractile is dependent. on the
gize of the vessel. There is a connection between the period giving wave length equal to the ship
length and the value of the design fractile. That is, the smaller vessel the higher fractile. Since
nonlinear response will most likely be larger for somewhat smaller wave lengths, one would ex-
pect that the fractile found from the linear analysis would slightly underestimate the long term
nonlinear bending momenti.

However, the conclusion is that the contour line approach is able to predict the nonlinear,
long term vertical bending moment accurately enough for practical purposes using the fractiles
estimated by linear response analysis. For the vessels with length larger than 160m, a 90%
fractile can be used. For smaller vessels a 05% fractile is suggested. In particular, the sagging
moment is well estimated. This is uplifting, since the sagging response is larger than hogging
response, and will therefore be the dimensioning load.

8.3 Case studies

Two case studies of the applicability of the contour line approach have been carried out when
operability limitations were taken into account. The S-175 container ship was applied in both
cases. The aim was to check if contour line approach were able to predict the life time extreme
values when restricted service is taken into account, i.e. varying forward speed and when ma-
noeuvring were performed in order to avoid severe sea states. The main conclusions from the
case studies can be summarised as follows.

8.3.1 Effect of Varying Forward Speed on Linear Response

Tnclusion of forward speed into the contour problem makes the analysis more complex. In this
thesis three different alternatives have been applied to study the effect of varying forward speed
on linear response. That is

e H-T, contour with forward speed, U, as a function of H
e H,-U contour with selected peak period, T

o H-T,-U contour surface

Using H,-T, contour line with a forward speed which is independent of the wave height, proper
results are obtained using a design fractile equal to 0.90 for the S-175 container ship. In addition,
if the long term extreme value is independent of the speed change, i.e. change of speed is caxried
out in areas where coefficient of contribution is low, a 90% is applicable. That is, the speed is
constant in and close to the sea state with max C'r(si) or the design sea state on the contour
Jine. The analysis can then be carried out using the forward speed for this area.
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If change of speed is conducted in area where Cg(si) reaches its maximum or close to the
design sea state on the contour line, the design fractile is dependent on the chosen speed applied
in the short term sea states along the contour line. If the H, — U contour lines are chosen, the
fractile is very sensitive to the chosen peak period used in the short term sea states. Application
of H;— U contour lines are therefore not recommended. It is suggested that all three parameters
should be introduced into the contour problem. That is, a contour surface should be established
for the significant wave height, peak period and forward speed, i.e. H, ~ T, — U contour line.

If the H; — T, — U contour surface is applied, Cdesign = 0.90 seems to give tolerable results.

8.3.2 Effect of Restricted Service on Linear and Nonlinear Response

Effect of restricted service on linear and nonlinear response can be accounted for by remodelling
the smoothed scatter diagram. In this work three different models are applied based on:

e truncation
e rescaling
o reshaping

A truncated distribution does not. allow for any variability around the operability limit, 7.e. the
vessel is never present in sea states with significant wave heights larger than the limiting signifi-
cant wave height. The two other modifications of the scatter diagram allow for some variability
at the limit. The a combination of the truncated and one of the two other models is most likely
the best picture of the reality.

Application of all three modifications are applied in linear response analysis. The truncated
model is easy to establish, but can not be used in combination with the contour line approach
as the fractile will be dependent on the truncation limit. Using the contour line approach with
a reshaped scatter diagram will in general underestimate the long term extreme values. The
underestimation increases as the limiting significant wave height decreases. If the contour line
approach is to be used, rescaling of the scatter diagram can be applied. Accordingly, a 90%
fractile is adequate for linear response for the S-175 container ship.

The rescaled scatter diagram is applied to cstimate the nonlinear, vertical bending moment
midship, z.e. sagging and hogging, using the contour line approach. A 90% fractile gives reason-
able estimates of the long term sagging and hogging extreme values.

‘The linear and nonlinear long term extremes will be reduced when the effect of restricted service
is taken in to account.

In this case study, the speed is constant and independent of the significant wave height. Thus,
linear and nonlinear long term extremes will be adequately estimated using an 90% fractile for
zero and nonzero forward speed. However, if the speed is varying over the included significant
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wave height range, application of a contour surface should be considered. Since the service
is restricted it is more likely that the speed will change in the areas where the coefficient of
contribution is reaching its maximum value.

8.3.3 Conclusive Remarks to the Contour Line Approach

In the case studies different response cases have been studied in connection with the contour
line approach. Five combinations of the following are studied

e linear and nonlinear response

o unrestricted and restricted service
where restricted service is divided into
e varying forward speed and manoeuvring in order to avoid severe sea states

Effect of varying forward speed on the nonlinear long term response is not considered in this work.

A large number of linear response analysis and a significantly smaller number of nonlinear anal-
ysis have been performed. The purpose is to apply the fractile from linear analysis, t0 estimate
the nonlinear, long term extreme values. It seems that fractiles determined for linear response
in unrestricted service in head sea with zero forward speed, can be applied for both linear and
nonlinear analysis. It is reason to believe that these fractiles are suitable when the effect of
operability restrictions should be accounted for, in accordance with the work presented in this
thesis, for both linear and nonlinear response. More nonlinear simulations are required to fully
confirm the the contour method’s accuracy. It is in the authors opinion that both the linear
and nonlinear response analysis give a good impression of the applicability of the contour line
approach.

8.4 Suggestions for Further Work
The suggested further work related to the topic described in this thesis may be grouped into

e Improvement of the model uncertainty analysis

e Refinement of the simplified method

Regarding the first point, the lack of experimental data is assumed to constitute the main lim-
itation of the present formulation. In particular, when uncertainty in the transfer function is
modelled. If unlimited number of data point were available, one would be able to apply for
instance regression analysis to account for the frequency dependence. A polynomial formulation
which would be simpler to apply than the present spline formulation. In addition estimates of
the uncertainty of the coefficients in the applied polynomial could be found.

However, as shown in this work detailed experimental analysis could be done for the frequency
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region close to the peak frequency of the transfer function. An approximate solution of the
model error of the transfer function could be applied for the other frequency region, i.e. at the
tail of the transfer function.

Concerning the nonlinear response, laboratory experiments could give information of the re.
sponse in irregular seas. Model uncertainty could then be modelled on fractile level as against
wave-by-wave approach, Winterstein and Sweetiman (1999). That is the distribution function
used in the analysis, should be in close agreement with the distribution function from measure-
ments if they were available. This uncertainty measure could be useful in combination with
estimation of long term extreme values using the contour line approach.

In this study, the vertical bending moment midship has been studied. It is left to study the
model uncertainty for other loads and load combinations, e.g. torsional moment and horizontal
bending as well as combined local and global loads. Effect of short crested sea is not touched,
and could be a topic for further study. In addition, effect of routing could be taken into account,

It is shown that long term extremes can be obtained by considering only a few sea states,
It remains to justify this approach for combined loads that may have their maxima in different
sea states.

The robustness of the contour line approach should be further examined. In particular combi-
nation of nonlinear response and varying forward speed. Analysis with other vessel types should
be carried out and other response cases should be tested. The applicability of the contour line
approach for estimating the long term extreme values for combination of horizontal and vertical
bending as well as torsional moment. due to steady state and transient loading and combination
of global hull girder bending and local pressures due to steady state loading. Effects due to short
crested seas and routing should also be considered.

In particular, more extensive analysis should be carried out for the nonlinear vertical bend-
ing moment midship. It could be interesting to include statistical uncertainty in the nonlinear
simulation of the vertical bending moment midship. The effect on the design fractile approach
and the approzimate long term analysis could be taken into account.

The contour method should also be checked for nonlinear response on ship with an arbitrary
orientation with respect to the wave pattern. In this work, the vessel is treated as rigid. There-
fore, the effect of hydroelasticity should be taken into account. The applicability of the contour
line method for multihull vessels should also be a topic for further research.
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APPENDIX A

Existing Programs

A.1 Linear and Nonlinear Strip Theories

Traditionally, the ship motion problem is formulated in the frequency domain and linearised by
assuming that the motions and incident wave amplitude are small relative to the draft of the
ship, e.g. Salvesen et al. (1970). W hen ship forward speed gets higher, it is no longer reasonable
to use the conventional strip theory since the Auid near the ship hull can not be sufficiently
described by two-dimensional flow. A high-speed formulation was presented by Faltinsen and
Zhao (1991). These two theories are incorporated in VERES, Fathi (1997), a simulation program
developed at MARINTEK AS.

Due io limitations of the linear strip theories, many investigators have extended the frequency
domain strip theories to large amplitude time domain strip theory approaches. In these ap-
proaches, the hydrostatic restoring force and the Froude-Krylov forces are accurately included
while the hydrodynamic restoring forces and the diffraction forces are approximately included.

Such an approach has been utilised in the simulation programa LANWIL developed by Wu and
Moan (1996), Wu et al. {1996).

A.1.1 VERES

The VERES (VEssel RESponse), Fathi (1997), program is a linear strip theory program that
calculates ship motions and loads in the frequency domain. The first version of VERES treated
only cases for mono hulls with low to moderate speed. A problem solved by the traditional
strip theory developed by Salvesen et al. (1970). Later the program was extended to include
the high-speed formulation, Faltinsen and Zhao (1991). This version can also be applied on
twin-hulls, however the interaction between the hull is not accounted for.

VERES has been developed as a part of the DASS, DASS (1999), project at MARINTEK
AS.
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Applications

The program calculates
e Motion transfer functions in six degrees of freedom
e Relative motion ! transfer functions (relative motion between the ship and the wave)

Motions at specified points

Unsteady global loads * {forces and moments)

May take into account viscous effects by empirical formulas

Short term and long term statistics of the above mentioned response quantities
e Operational restrictions and profiles

Valid for slender mono- and twin hull at low to high speed.

A.1.2 LANWIL

LANWIL, Linear And Nonlinear Wave Loads, is a strip theory programn that calculates lineas-
and nonlinear wave induced motions and loads. The nonlinear approach include the hydrostatic
restoring force and the Froude-Krylov forces accurately, while the hydrodynamic forces are ap-
proximately included. Effect of Green water on deck is taken into account. The flexibility of
the ship has been taken into account by employing a number of dry eigenmodes in addition to
the six rigid-body modes.The linear theory applies to mono hulls and catamarans at all wave
headings, but the nonlinear theory is so far restricted to head and following sea.

Theoretical background may be found in Wu and Moan (1996), Wu et al. (1996).

Applications
LANWIL calculates

e Motion transfer functions for heave and pitch
e Sectional transfer function for shear forces and bending moment

e Sectional linear and nonlinear time series for heave and pitch, shear force and bending
moments

e T'wo approaches to calculate the sectional loads, 7.e. assuming rigid body and elastic body

1 Motions includes both displacements, velocities and accelerations
2With unsteady, they are referring to the wave induced dynamic part of the global loads, as opposed to the
steady loads, which also are present in calm water
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A.1.3 NV1418

NV1418 is a two dimensional, sonlinear strip theory program which calculates the motion and
joads in the time domain. A simplified second order theory has been implemented in order to
take into account the effects from flare and bottom slamming. Another second order effect is
green water on deck and this has been regarded as a “quasi static” effect. The ship hull is rigid,
ie. the flexibility of the hull is not included. The theory is only applicable to ship in head
sea waves travelling with a constant forward speed. The theory behind the program is given in
Borresen and Tellsgard (1980).

Applications
NV1418 determine

o Heave and pitch motions

o Sectional shear forces and bending moment

A.2 Three Dimensional Programs

Three dimensional programs may be divided in two groups: Rankine source methods and meth-
ods based on Green’s functions. Compared to the methods which are based on Green's function,
the Rankine source methods have the following advantages and disadvantages:

¢ Advantages

— the evaluation of the influence matrix is simple

— extension to nonlinear free surface condition is a possibility
e Disadvantages

— large equation system due to panelling of the free surface caunse increase in the com-
puting time

A.2.1 Rankine Source Methods

In the Rankine source methods, the velocity potential is described by a distribution of Rankine
sources over the wetted surface of the body and the free surface. The panelling of the free
surface is necessary since the Rankine sources do not fulfil the free surface conditions. The
linear frequency domain problem has been solved by this method by Nakos (1990}, Nakos and
Sclavounos (1990b), Nakos and Sclavounos (1990a). The linear time domain problem was later
solved by Kring and Sclavounos (1995), Nakos, Kring, and Sclavounos (1993). An extension to
the nonlinear problem was presented by Kring et al. (1996). The Rankine source methods are
implemented in the simulation program SWAN (Ship Wave ANalysis) as a cooperation between
Massachusetts Institute of Technology, MIT, and Det Norske Veritas Research AS, DNV.
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A.2.2 Green Function Methods

In the Green function methods, the velocity potential is described by a distribution of Greey
functions over the wetted surface of the body. The panelling of the free surface is no longer
needed as the Green function satisfies the free surface condition. The theory behind the linear
time domain program TiMIT developed at MIT is presented in e.g. Bingham et al. (1993). The
Green functions method is also applied in the LAMP (Large Amplitude Motion Program), Lin
et al. (1996), system of codes which have been developed by Lin et al. (1994) for calculations
of motions and loads in large amplitude waves.

A.2.3 SWAN

SWAN is a complete three dimensional motion program. The program models the complex
ship-wave interaction. Early versions of the SWAN treated the linear steady and sea keeping
problems in the frequency domain. More recently the method was extended to also include the
time domain. The last work has been dedicated to the treatment of the nonlinear see keep-
ing problem. The first extension to the linear problem was to include the nonlinear hydrostatic
restoring and Froude-Krylov forces. The final version is a fully nonlinear problem where the com-
plete hydrodynamic problem is solved at each time step. The ship-wave interaction is treated
according the weak scatterer hypothesis where it is postulated that the ship wave disturbance
is small compared to the ambient waves, see Kring et al. (1996).

The program is developed as a cooperation between Massachusetts Institute of Technology, MIT,
and Det Norske Veritas Research AS, DNV. SWAN includes a multitude of numerical techniques
to provide the user with the most appropriate solution tool for analysis of ship motions.

Applications

e Calculation of added mass, damping coefficients and exciting forces and moments. These
are integrated effects of the hydrodynamic pressure over the hull.

e Prediction of the motion of a steady freely floating ship. The motion is defined by hoth
amplitude and phase relative to the incoming wave.

o Calculation of shear forces and bending moments at arbitrary section of the ship (Calcula~
tion of the global loads is performed with linear and nonlinear extension of the hydrostatic
restoring forces and Froude-Krylov. Computation of the global loads with use of the weak
scatterer hypothesis is not yet included, but will be incorporated, Kring et al. (1996).)

e Prediction of quadratic mean forces and moments due to waves. These include the added
resistance, the steady side force and the mean yaw moment.

¢ Calculation of pressure on the hull and in the fluid, the fluid velocities on the hull and in
the fluid and the wave elevation on the sea surface.

o Simulation of the steady turbulent boundary layer along the ship hull and the viscous wake
behind the ship for prediction of total drag on the ship.
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e Valid for full-shaped ships at low to moderate speeds and for fine-shaped ships from low
to high speeds.

A.2.4 LAMP

The LAMP system of codes have been developed to calculate motion and loads in large axnplitude
waves. LAMP is based on a multi level approach which is a system of codes with different level
of sophistication. In general, the physics underlying the ship-wave interaction is best understood
using comparisons generated by incremental increase in complexity. This means that the lower
fevel codes act as a filtering mechanism for the selection of more accurate but more complex and
computationally intensive codes. The computation methods and hardware requirements for the
LAMP code is presented in Table A.1.

Table A.1: Computation methods and hardware requirements for the LAMP code.(Z = 0 and
F(t) are still water surface and incident wave surface respectively),Lin et al. (1994).
| Method: [ Hydrodynamic, Restoring and Froude-Krylov Forces | Hardware j

LAMP - 4 Trree Surface Boundary Conditions on F(t) Supercomputer |
3-D Large-Amplitude Hydrodynamics
Nonlinear Restoring and Froude-Krylov
LAMP - 3 Freo Surlace Boundary Conditions on F(f) Workstation
2:-D Large-Amplitude Hydrodynamics
Nonlinear Restoring and Froude-Krylov
LAMP - 2 Free Surface Boundary Conditions on Z =0 Workstation
3-D Linear Hydrodynamics
Nonlinear Restoring and Froude-Krylov
LAMP -1 Free Surface Boundary Conditions on Z = 0 Workstation
3-D Linear Hydrodynamics
Linear Restoring and Froude-Kxylov

Applications
e Calculation of shear forces, bending- and torsional moment at arbitrary section of the ship.
¢ Prediction of motions of a ship in seaway

e Two approaches to calculate the sectional loads, one assuming rigid body and and the
other one assuming elastic body

e Added- and wave resistance can be calculated

e In oblique or beam sea, forces due to lift- and viscous effect can be included (In oblique
cen and beam sea, forces due to lift- and viscous effects will have a significant effect on
motions and loads}
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o Calculation of the hydrodynamic pressure distribution over the hull

¢ Normally a run is conducted with a constant forward speed at a given heading angle, but
any path or speed may be specified




APPENDIX B

Evaluating and Comparing Time Series

Deviations from the Gaussian distribution can be expressed by four statistical moments. The
mean, the variance, the skewness and the kurtosis may be calculated from the distributions of
the process

= f f(@)da

A = [ e
[z - px)’fx(z)dz

Nnx = =) (B.1)
_ Jl@ = px) x(z)de
Yex = 7
Tx

The variance, o2, is a measure of the variation about the mean value and is equal to the square
of the standard deviation. The skewness, 71x, 18 a measure of the asymmetry of the distribution
and the kurtosis, Yox, is a measure of the density in the tails of the distribution, 7.e. the proba-
bility of extremes. The mean value and skewness will be zero for a Gaussian process while the
kurtosis have the value three.

If the process is ergodic, the above values may be estimated from the time series peak values as

1 N

N

1
s% = o1 (z; — mx)*

J=1
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1 {2, — my)®
Gix = v Z _g”?“*— (B.2)
=1 7
N
1 (z; —my)?
Hox = I JZ:; %sg

where N is the number of peak values. The stability of the last four parameters may be inves.
tigated by comparing the parameters for portions of a long realization or for nmany realizations
of a process. The mean and the variance will normally be quite stable and can be calculated for
rather short realizations. The last two parameters, the skewness and the kurtosis, are more un.-
stable and larger realizations are needed to get stable results. This is because extreme behaviour
in portions of the realizations tend to dominate these two higher moments.




ArPENDIX C

Approximation by Spline Functions

Sometimes the value of a functionf(z) is known at a given set of data [x1,.., &), but no ana-
Iytical expression for f(z) is available. Therefore its value can not be calculated at an arbitrary
valee in the interval.

Therefore one which to to draw a curve/fit a function through or by the points ;. There
are number of ways of doing this. The most common approach among functional form are
the polynomials. The function values can also be established by means of the method of least
squares. The former is more suitable if you have a smaller number of data whereas the latter are
used when the amount of data is large. Another possibility is to use the so-calied spline function.
A spline is a function consisting of of polynomial pieces joined together with a certain smooth-
ness conditions. The cubic splines consisting of third degree polynomial are the most popular
ones. They produce interpolated functions which is continuous through the second derivative.
Compared to ordinary polynomials, a spline is much “stiffer”, i.e. in the sense that polynomials
may go berserk and exhibit wild oscillations between the tabulated points.

C.1 Natural Cubic Splines

The first and second degree of splines are useful in certain applications, but they both suffer and
obvious imperfection. The first degree spline has abrupt changes in all derivatives. The lack of
smoothness for the quadratic spline is not so obvious, but the curvature is discontinuous at the
knots |23, Za, .., Tn)-

The general definition of a spline of degree k is
e The domain of S is [a, O]

e 55,57 .., 5 are continuous in the domain la, ]
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e The domain [a,d] is divided into subintervals [¢ = 21,22, ., &p-1,%n = bl and S is a
polynomial of degree k

The goal of cubic spline is to establish a spline which is continuous throughout the second
derivative, i.e. slope and curvature, in the domain [a,b]. The cubic spline is constructed so that

Si(z) Tz < T < Xo

S(a) = ,:S’g(x) P e < < Ty 1)

Sp{x) 5 Tper < T < Ty

where S; = a; + bt + ¢;z® + d;z®. In each subinterval the polynomial goes through two knots |
i.e. ;1 and z;, giving us 2{n — 1) equations. Requiring continuous slope and curvature gives
ancther 2(n — 2) equations. For a unique solution two other conditions must be specified at the
end knots z; and z,,. One way of doing so, is to set 5”(z;) and/or §”(x,) equal to zero, i.e. a
natural cubic spline. The values $”(2) and/or 5”(z,) can also be calculated so that the first
derivative have a specified value at one or both ends, Press et al. (1992}.

Cheyney and Kincaid (1985) claims that natural cubic splines are the best functions to apply for
curve fitting. This statement is based on the cubic spline property saying that if S is a natural
cubic spline interpolating the twice-continuous function f at knots [@ = 21,22, .., Zno1, Tp = D)
then the integral of the square $”(x) is less then equal to the integral of the square of f"(z).




APPENDIX D

Least Square Method

Giiven a set of data points (z1,91), --(%n:¥n), the Least Square Method finds a solution for a
desired model X by minimising

E* = ||Y - X2|| (D.1)

where Y is the matrix containing the y-values, X is the chosen model and 3 is the coefficient
matrix. The least squares solution of the inconsistent! system Y = X8 + ¢ of m equations and
n unknowns is given as, Strang (1988)

XTX3 = XTY (D.2)

If the columns of X are linearly independent, then XTY is invertible and

A= (XTX)*XTY (D.3)

(XTX)1XT is called a pseudoinverse and i applied to the system since X is a rectangular
matrix and cannot be inverted, Strang {1988). Using the Least Square Method 5 is always
unbiased, i.e. E(8) = §.

Proof:

~

B(B) = E(XTX)"'X'Y)
= (X*X)'XTE(Y)
(XTX) ' XTE(XS +¢)
= (XTX)TXTXKS + (XTX) KT E(e)
= I8=p (D.4)

1There more equations than unknowns. A solution which is optimal for all data points can be found by
minimising Eq. D.1
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APPENDIX E

Relative difference

! ") . , i . .
Table E.1: The ratios %QQ and 2. The Pierson Moschkowitz spectrum is used in the analysis.
50 20

"l
The ratio 22 using the Pierson-Mosckowitz spectrum
5o

Heading 0 30 60 120 150 180
" SHI | SRi | SHI | SRI | SRI | SRI | SHI | SRI | SHI [ NKK
H(w) 1035 | 1.035 | 1.034 | 1.034 | 1.033 | 1.033 | 1.036 | 1.036 | 1.037 | 1.037
H{w)deupiclw?) 1033 | — 11.03411.034|1.033 | 1.033 | 1.037 | 1.037 | 1.038 | 1.039
H(w)+ ¢{whewpic | 1033 — | 1033 | — 11035 1034} - - - -
H (w)${w)tinear 10331 — | 1.0331.0341.032|1.034 | 1.037 | 1.037 | 1.038 | 1.039
H(w) + ¢(@tineor | 1033 | — [ 1033 ~ | 10341033 - - - -
H(w)zﬁj’ji 1035 | 1.034 | 1.034 | 1.034 | 1.033 | 1.033 | 1.036 | 1.036 | 1.037 | 1.037

The ratio %ﬂﬂl using the Pierson-Mosckowitz spectrum

Heading 0 30 G0 120 150 180
SHI | SRI | SHI | SRI | SRI | SRI | SHI | SRI | SHI | NKK
H(w) 1084 | 1.084 | 1.083 | 1.083 | 1.079 | 1.080 | 1.087 | 1.087 | 1.091 | 1.001
H{w)gbm,-c(w) 1.080 | — |1.080 | 1.083 | 1.080 | 1.081 | 1.090 | 1.092 | 1.093 | 1.095
H(w) + plw)ousie | 1081 — | 1081 ) — 1086 1082 - - - ~
H () d{w inear 1081 ¢ — | 1.081|1.083{ 1.080 | 1.081 | 1.090 | 1.001 | 1.082 | 1.095
H(w) + ¢(w)tineer | 1081 | — 11080 ~ |1.082 | 1L08L ) - - -~ -
H(w)z Hilly 1.084 | 1.084 | 1.083 | 1.082 | 1.080 | 1.081 | 1.087 | 1.087 | 1.091 | 1.001
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Table £.2: The ratios 7:,409 ard ﬁ:ﬁm The Jonswap spectrum is used in the analysis.

50

206

!
The ratio %‘m using the Jonswap spectrum
Al

Heading 0 30 60 | 120 150 180
SHI | SRI | SHI | SRI | SRI | SRI | SHI | SRI | SHI | NKK
H(w) 1.035 | 1.035 | 1.034 | 1.034 | 1.033 | 1.035 | 1.034 | 1.034 | 1.035 | 1.035
H () eupic(w) 1.032 | — | 1.0331.034 | 1.032 § 1.033 | 1.035 | 1.037 | 1.036 | 1.037
H(w) + ¢p(wlewpic | 1033 | — [ 1.033| — |1.035 1032 - - - -
H(w)lw )zmea, 1.033 | — 1.033|1.035 | 1.031 | 1.032 | 1.035 | 1.037 | 1.036 | 1.037
H{w) + ¢(w)tinear | 1033 | — | 1.033| - |1.031]1.032| — - - -
H{w )E H o 1.035 | 1.035 | 1.035 | 1.034 | 1.033 | 1.035 | 1.034 | 1.034 | 1.035 | 1.035
i
The ratio ?ﬁl using the Jonswap spectrum
Heading 0 30 60 | 120 150 180
SHI | SRI | SHI | SRI | SRI | SRI | SHI | SRI | SHI | NKK
H{w) 1.085 [ 1.085 | 1.083 | 1.083 | 1.080 | 1.085 | 1.082 | 1.082 | 1.086 | 1.086
H (w) Peupic(w 1.080 | — | 1.081 | 1.083 | 1.078 | 1.080 | 1.087 | 1.089 | 1.089 | 1.092
H(w)+¢{w)wbw 1080 | ~ |1.081] — 1108 |1079| - ~ - -
H(w)$(wiincar 1.080 | ~— | 1.081 | 1.083 | 1.076 | 1.079 | 1.087 | 1.089 | 1.089 | 1.092
H(w) + ¢p{wliinear | 1.081 | — | 1.081 | — {1077 | 1079 | -~ - - -
H(w)zh;ﬁ 1.085 | 1.085 | 1.083 | 1.083 | 1.081 | 1.085 | 1.083 | 1.082 | 1.086 | 1.086




APPENDIX F

Hull forms

Table F.1: Ship data.

Ship Ly B D O VCG LCG

[m} (] [m] [ [m] [m}
S-175 175 256.4 8.5 0.572 ° 9.55 2.55
SL-7 270 32.2 10.85 (.598 13.49 10.12
Wolverine State - full load 151.2 21.8 0.14 0.65 7.77 -0.98
Wolverine State - light load 151.2 21.8 5.95 (.61 6.86 -0.23
California Bear - east bound 160.9 23.2 6.4 (.58 7.32 3.02
California Bear - west bound 160.9 23.2 7.5 0.60 8.23 2.68
Reefer vessel 160 24.7 8.93 0.67 i0.4 412
Tanker 272.8 40.2 14.91 0.80 11.01 -0.91
Destroyer 116.7 12.4 4.27 0.55 2.10 3.95
Mariner 2251A-V1 158.5 23.1 8.45 0.61 3.82 2.24
Mariner 2251A-V2 158.5 23.1 8.45 0.61 8.29 2.21
Mariner 22518 158.5 23.1 8.45 0.61 8.96 2.25
EurcExpress 219.5 20.2 7.25 0.39 - -
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Figure F.1: Hull forms.
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Mass distributions

APPENDIX G

Table G.1: Mass distribution for the S-175 container ship, I 5th & 16th ITTC Seakeeping Com-

mittee (1983).

Segment no. i ({ ﬁ;)l, l (f;)gi i m; [ton]
1 (F.P) 8750 78.75 510.42
2 -7R.78 -70.00 711.12
3 -70.00 -61.25 850.25
4 -G1.25 -52.50 1020.30
b -52.50 -43.75 1190.35
6 -43.75 -35.00 1314.02
7 -35.00 -26.25 1406.77
8 -26.25 -17.50 153045
9 -17.50 -87.60 1654.12
10 -87.50 0.00 1700.50
11 0.00 87.50 1654.12
12 87.50 17.50 1570.64
13 17.50 26.25 1484.07
14 26.25 35.00 1397.50
15 35.00 43.75 1360.40
16 43.75 52.50 1360.40
17 52.50 61.25 1267.64
18 61.25 70.00 1051.22
19 70.00 78.75 850.26
20 (AP} 78.75 87.50 680.20
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Table G.2: Mass distribution for Wolverine State - full load, Chicco and Numata (1969) &
Kaplan and Raff (1972).

Segment no. i l (f:—;)n i (11;;}23 | m; [ton]
1(FP) 7559 T71.81 103.19
2 ~71.81 -64.256 303.62
3 -64.25 -56.69 527.86
4 -56.69 -49.13 855.29
) -49.13 -41.57 105.17
& -41.57 -34.02 1191.65
7 -34.02 -26.46 1299.80
8 -26.46 -18.90 1388.10
9 -18.90 -11.34 1406.96
10 -11.34 -3.78 1416.88
11 -3.78 3.78 1430.77
12 3.78 11.34 1434.74
13 11.34 18.90 1384.13
14 18.90 26.46 1285.91
15 26.46 34.02 1070.59
16 34.02 41.57 784.84
17 41.57 49.13 710.42
18 49.13 56.69 765.99
19 56.69 64.25 588.38
20 64.25 71.81 509.00
21 71.81 75.59 210.349

Table G.3: Mass distribution for Wolverine State - light load, Chicco and Numata (1969) &
Kaplan and Raff (1972).

Segment no. i I () | (35 )2 m; {ton]
1 (F.P) -75.59 -60.47 547.78
2 -60.47 -43.35 818.19
3 -43.35 -30.24 1660.23
4 -30.24 -15.12 1958.47
9 -15.12 ¢.0 1060.75
6 0.0 1512 1590.64
7 15.12 30.24 1381.86
8 30.24 43.35 1248.66
9 43.35 60.47 1070.69
10 (A.P.) 60.47 75.50 680.99
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Table G.4: Mass distribution for California Bear - eastbound route, Numata and Yonkers (1969).

Segment no. i | (=) (7% m; [ton]
1{F.P) ~79.05 70.76 213.88
2 -70.76 -55.62 730.54
3 -65.62 -30.24 1237.03
4 -39.24 -20.08 1861.45
5 -20.08 -1.85 1747.13
) -2.47 3.09 971.65
7 3.09 8.34 09190.42
8 8.34 13.90 0932.78
9 13.90 19.47 669.98
10 19.47 39.24 2105.75
11 35.24 57.78 1641.01
12 57.78 72.61 760.04
13 {A.P) 72.61 81.88 977.61

Table G.5: Mass distribution for California Bear - eastbound route, Numata and Yonkers (1969).

Segment no. i | (£ | (1) | m; [ton]
1 (F.P) -79.10 -70.45 217.91
2 -70.45 -55.62 747.11
3 -55.62 -39.55 132.05
4 -39.55 -21.01 233.47
5 -21.01 -2.47 307.20
6 -2.47 7.72 1811.24
7 7.72 13.29 954.78
8 13.29 18.54 584.91
9 18.54 38.62 2289.65
10 38.62 56.86 1933.30
11 56.86 72.61 1269.04
12 (AP 72.61 §1.88 276.48




194 APPENDIX G. MASS DISTRIBUTIONS

Table G.6: Mass distribution for the reefer vessel, Korbijn ( 1992).

Segment no. i , () ] (£= )i [ m; [ton]
1(FP) -80.0 -70.0 454.45
2 -70.0 -60.0 454.45
3 ~60.0 -50.0 454.45
4 -50.0 -40.0 454.45
5 -40.0 -30.0 1715.93
6 -30.0 -20.0 1715.93
7 -20.0 -10.0 1715.93
8 -10.0 0.0 1715.93
9 0.0 10.0 1476.25
16 10.0 20.0 1476.25
11 20.0 30.0 1476.25
12 30.0 40.0 1476.25
i3 40.0 50.0 1476.25
14 50.0 60.0 1476.25
15 60.0 70.0 1476.25
16 (A.P) 70.0 80.0 1476.25

Table G.7: Mass distribution for the tanker, Dalzell (1964a).

Segment no. i ‘ (= l (L—':-;)gi I m; [ton]
1(F.P) -136.40 -122.71 1006.13
2 -122.71 -109.37 1203.43
3 -109.37 -05.48 4979.96
4 -95.48 -81.95 7551.09
5 -81.95 -68.30 8450.91
6 -68.30 -54.64 8795.88
7 -04.64 -37.63 8899.19
8 -37.63 -3.73 18612.20
9 -3.73 40.60 45792.40
10 40.60 68.01 8692.38
11 68.01 81.76 7864.56
12 81.76 95.52 3570.06
13 95.52 109.37 2173.08
14 109.37 123.12 4200.92
15 (AP) 123.12 136.40 2345.65




Table G.8 Mass distribution for the destroyer, Dalzell (1964a).

Segment no. i I (ﬁ;)n | (Lipp)gi i my; [ton]
1(F.P) 758.37 ~52.65 30.18

2 -H2.65 -46.80 57.483
3 -46.80 -30.92 107.86
4 -39.92 -35.15 89.33

5 -35.15 -29.39 147 .59
6 -29.39 -23.46 219.72
7 -23.46 -17.50 282.53
8 -17.50 -11.77 196.20
9 -18.77 -6.09 181.10
10 -6.09 -0.20 229,93
11 -0.20 5.68 263.66
12 5.68 12.92 190.32
13 12,92 21.58 425.46
14 21.58 28.86 275.76
15 28.86 34.79 250.46
16 34.79 40.79 191.76
17 40.79 46.80 156.03
18 46.80 52.65 81.56

19 (AT 52.65 58.37 77.68
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Table G.9: Mass distribution for the Mariner 2251A-V1 & 2251B, Dalzell (1964b).

Segment no. i ! (=) | (75 )2 } my [ton]
1(F.P) -79.25 -75.02 109.80
2 -75.02 -67.27 477.17
3 -67.27 -58.59 0963.27
4 -58.59 -51.31 778.25
b} -51.31 -43.32 658.41
6 -43.32 -35.34 844.81
7 -35.34 -27.59 916.23
8 -27.59 -19.84 1107.70
9 -19.84 -11.86 1185.95
10 -11.86 -3.87 1219.75
11 -3.87 4.34 1604.62
12 ' 4.34 12.09 1312.98
13 12.09 20.08 1168.54
14 20.08 27.83 1092.90
15 27.83 35.81 1094.41
16 30.81 44.03 1520.47
17 44.03 52.01 12056.64
18 52.01 59.76 938.47
19 59.76 §7.51 675.02
20 67.51 75.26 379.82
21 (A.P) 75.26 79.25 130.53
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Table G.10: Mass distribution for the Mariner 2251A-V2, Dalzell (19640).

Segment no. i . (ﬁ;)li I {ﬁ;)gi m; {ton]
1 (F.P} -79.25 -71.27 311.72
2 -71.27 -63.52 301.25
3 -63.52 -55.77 2909.96
4 -55.77 -47.78 307.70
5 -47.78 -39.80 306.33
G -39.80 -32.05 206.01
7 -32.05 -24.30 294.72
8 -24.30 -16.32 309.10
9 -16.32 -13.27 120.42
i0 -13.27 -10.92 083.37
11 -10.92 -8.57 087.25
12 -8.57 -4.58 1671.25
13 -4.58 -2.23 086.93
14 -2.23 4.11 4131.06
15 4.11 11.86 5047.96
16 11.86 15.38 160.77
17 15.38 22.89 342.08
18 22.89 31.11 372,76
19 31.11 38.86 350.13
20 38.86 47.08 369.94
21 47.08 54.59 336.96
22 54.59 62.58 356.70
23 62.58 70.80 365.76
24 (A.P.) 70.80 79.25 374.70




APPENDIX H

Applied transfer functions

Table H.1: Ouverview over applied transfer funciions.

Ship H Fn 1 Headings
S-175 0.275 0, 30, 60, 120, 150, 180
SL-7 0.220 0,45

0.245 0, 25, 45, 65, 115, 135, 155

0.270 0, 45
Wolverine State - full load 0.214 0, 30, 60, 120, 150, 180
Wolverine State - light load 0.214 0, 30, 60, 120, 150, 180
California Bear - east bound (0.258 0, 30, 60, 120, 150, 180
California Bear - west bound 0.258 0, 30, 60, 120, 150, 180
Reefer vessel 0 0

0.145 0
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APPENDIX ]

IFORM - transformation

The IFORM - technique may be used to establish the the lines of constant probability of ex-
ceedance. A detailed derivation of the contour lines for the distribution Fr.m, (b t), see Eq. 3.81
& 3.82, is given herein.

The probability of exceedance is given by

1
pe”DNS

where D is the return period and N, is number of sea states within one year. The duration of
the sea states are in this work set to be three hours.

(L)

The transformation is given as
O(U) = ®(U)B(Us) = Fy,(h)Fr, (th) (1.2)
&() and &() are standard, normal distributions. Then

B(-Bc) = p. = Bo=-3""(p) (1.3)

The contour lines in U-space will be circles with radius equal to Be, Fig. 1.1, The values of U;
and U, are therefore given by

U = fecos(f) (14)
Uy = PBesin{f) (15)

The corresponding values of H, and T, must be found, so that
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Us

U

Figure 1.1: Definition of U-space

O(Uy) = Fp,(h) (L.6)
O(Uy) = Fp(itih) (L7)

When h < 5 the density function for the significant wave height is given by the log-normal
distribution. That is

Ink — wy,
‘I)(Ul) = ¢ (———U—M) = h= exp{,u;n H, F G’;anUl} (18)
In H,
and when h > 7, the significant wave height is described by the Weibull-distribution. Thus
h.. :
- exp{=(5)"} = ®(Th) = b= f[-In(1 - ()" (1.9)
The peak period, Tp, is given by the log-normal distribution giving
Int — T
B(Uy) = @ (——————n . ad 7”) = t=exp{pnr, + o, Us} (1.10)
inT,




Analysis of the nonlinear responses

APPENDIX J

Table 1.1: Statistical moments for the sea state Hy = 11.5m & T

= 12.5s

No. of sections

realization type H mp - [10°Nm] | sp- [10°Nm] | nrl-] | 9200~ | whls™!]

91 orig {3.14595 0.36429 0.80870 | 5.68013 : 0.16056
filtered 0.14595 0.36220 0.87368 i 4.39236 | 0.15537

49 orig 0.14488 0.36061 (.88034 | 4.55064 | 0.15759
filtered 0.14488 (.35094 0.89408 | 4.44889 1 0.15472

orig 0.14489 0.36001 0.89366 | 4.47326 | 0.15528

63 filtered 0.14489 0.35976 0.89188 | 4.45462 | 0.15500
105 orig (0.14480 (0.36997 0.89569 | 4.45767 | 0.15574
filtered (1.14480 0.35975 0.89383 | 444348 | 0.15500

196 orig (0.14484 0.35996 0.80681 | 4.45712 | 0.15481
filtered 0.14484 0.36078 0.89396 | 4.44426 | 0.15500
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Table J.2: Statisticol moments for the sea state Hy = 13.56m & T, = 13.76s

No. of sections | realization type || mpg - [10°Nm] | sp- [10°Am] | yigl~] | g2rl~] | wts™T]

21 orig 0.17494 0.40771 (0.89503 | 4.54693 | 0.15741
filtered 0.17949 (.40549 (.88262 | 4.22309 | 0.15111

42 orig 0.17844 (.40365 0.90205 | 4.37080 | 0.15287
filtered 0.17844 0.40306 0.89798 | 4.33247 | 0.15130

orig 0.17841 (.40300 0.90116 | 4.31928 | 0.15194

63 filtered (.17841 {.40266 0.89566 | 4.29012 ; 0.15083
105 orig (.17841 0.40282 0.89902 | 4.30667 | 0.15120
Y filtered 0.17841 0.40247 | 0.89307 | 4.28078 | 0.15074
196 orig 0.17849 0.40295 0.90015 | 4.31357 | 0.15074
filtered 0.17850 (.40261 0.80423 | 4.28797 | 0.15046

Table J.3: Statistical moments for the sea state Hy = 14.5m & T, = 15.0s

No. of sections | realization type i mp - [10°Nm)] | sr- [10°Nm] | vigl=] | g2a[-] | wr{s™1]
91 orig 0.16642 (.38903 0.99769 | 4.66647 | 0.14889
filtered {(.16642 (.38752 0.96668 | 4.46623 | (.14639

4 orig {.16544 0.38534 0.98644 | 4.56872 | 0.14639
filtered (0.16544 0.38491 0.97868 | 4.53771 | 0.14385

orig 0.16540 0.38490 0.98329 | 4.55967 | 0.14639

03 filtered 0.16540 0.38454 | 0.97600 | 4.53459 | 0.14583
105 orig 0.165306 0.38484 (0.98121 | 4.55586 | 0.14583
filtered 0.16536 .38451 0.97508 | 4.53116 | 0.14574

196 orig 0.16543 0.38490 0.98138 | 4.55328 | 0.14593
- filtered 0.16534 0.38547 0.97532 | 4.52980 | 0.14574
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Table J.4: Weibull parameters for original realizations of the sagging response in the sea state
H,=115m & T, = 12.5s
No. of sections | type of maxima K | 8- [10°Nm] | 6 [10°Nm] I 0 design - 10PN

01 alobal 1.4358 | 0.6758 0.2949 3.3326
- LRNM 1.3622 | 0.6275 0.5716 3.4095
o global 1.4267 | 0.6308 0.6394 3.1745
LRNM 1.3773 | 0.6036 0.6479 3.2303

global 14184 | 0.6237 0.7442 3.1754

03 LRNM 1.3709 | 0.5984 0.6780 3.2302
05 global 1.4158 | 0.6237 0.7215 3.1829
2 LRNM 1.3667 |  0.5966 0.6893 3.2381
196 global 14114 | 0.6199 0.7800 3.1844
“ LRNM 1.3666 |  0.5962 0.6897 3.2364

Table J.5: Weibull parameters for original realizations of the hogging response in the sea state
H, = 11.5m & T, = 12.5s
No. of sections | type of maxima Rl | 8- [10°Nm] | 6 [105Nm] | 700 desiqn 107N m]

91 global 4.172:10° ; 8.901-107 8.901-10° 0.4865
LRNM 2.5021 0.4015 -0.7831 0.9186

" global 0.6748 0.9737 1.5864 3.0010
- LRNM 2.4975 0.39803 -0.7702 0.9130
63 global 1.7235 0.2958 -0.1669 1.1239
LRNM 2.4928 0.3968 -0.7473 (.9130

(05 global 2.2788 0.3718 -0.4994 0.9591
LENM 2.4926 0.3969 -0.7532 0.9135

196 global 2.4345 0.3906 -0.6706 0.9272
- LERNM 2.4933 {1.3971 -0.7570 0.9135
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Table J.6: Weibull parameters for original realizations of the sagging response in the sea state
H, =13.56m 8T, =13.76s

No. of sections E type of maxima || ¥[-] ! B [10°N'm) { 8 [105Nm)] I T(TQD.desiqn 10 Nm]
91 glohal 1.5087 (0.8173 (1.2626 3.7215
LRNM 1.4452 0.7766 0.4129 3.8021
19 global 1.54563 0.7954 0.3900 3.6023
- LRNM 1.4946 0.7698 0.2969 3.h669
63 global 1.5508 0.7962 0.3756 3.4849
LRNM 1.4684 0.7688 0.2881 3.5478
105 global 1.5642 0.8014 0.3514 3.4605
LRNM 1.5118 0.7749 0.2366 3.5232
196 global 1.5660 (.8028 (13506 3.4597
LRNM 1.5130 0.7757 0.2343 3.5221

Table J.7: Weibull parameters for original realizations of the hogging response in the sea state
H, =13.56m & T, = 13.76s

No. of sections ' type of maxima, “ vi=] | 8- [10°Nm) E 818 Nm] [ 7‘6{%0‘&832-0?1 [10° N'm)]
91 global 0.6280 (.0872 1.8267 3.4542
LRNM 2.8031 (0.4556 -1.0669 (0.9192
49 giohal 1.5601 (1.2803 0.4804 1.2516
LRNM 2.7945 0.4523 -1.0565 (G.9144
63 global 2.5692 0.4268 -0.7927 (3.8545
LRNM 2.7928 0.4520 -1.0548 (.9144
105 global 2.8481 0.4598 -1.1124 0.6098
LRNM 2.7094 0.4533 -1.0635 0.9144
196 global 2.8324 0.4567 -1.0764 0.9108
LERNM 2,7948 0.4528 -1.0600 0.9150
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Table 1.8: Weibuil parameters for original realizotions of the sagging Tesp

H, = 14.5m & T, = 159s

onse in the sea state

No. of sections l

type of maxima H 7

-] i A - [10°Nm] | § 108 Nm) ! 7,3.!90@65&;71 TN

o slobal 14758 | 0.7965 70,0325 3.7066
LRNM 14031 | 0.7442 0.1573 37845

o slobal 15398 | 0.7784 0.0397 3.4230
LRNM 14705 | 0.7425 0.0537 3.4938

alobal 15355 | 0.7700 0.0843 3.4955

63 LRNM 1.4506 . 0.7326 0.1074 3.4041
alobal 15182 | 0.7683 01164 54347

109 LENM 14557 | 0.7308 0.1358 3.5023
oo alobal 15333 | 0.7704 0.0078 3.4252
LRNM 14603 | 0.7328 0.1220 3,493

Table 1.0: Weibull parameters for original realizations of the hogging response in the sea state
H, = 14.5m & T, = 15.9s

No. of sections i

type of maxima

l ’T{_] t ﬁ : {]_OQN?TJ,] t g - [108Nm'] ! Tgfgo‘desiqn ) []_ng\Tm}

91 global 1.6500 0.2858 (.2918 1.1609
LRNM 2.7340 (.4233 -0.9333 0.8775

49 global 2.7812 0.4247 -(.9483 0.8652
LRNM 2.7333 0.4203 -0.9281 0.8712

63 global 2.7911 0.4263 -0.9682 0.8642
LRNM 2.7250 0.4182 -(0.5131 0.8707

105 global 2.7699 0.4222 -0.9206 0.8655
LRNM 2.7227 0.4178 -0.9042 0.8712

196 global 2.7789 0.4239 -0.9382 0.8651
- LRNM 2.7222 0.4175 ~0.9001 0.8711
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Table J.10: Weibull parameters for filtered realizations of the sagging response in the sea state
H,=11.5m & T, =125s
No. of sections E type of maxima ” ¥[~1 ] 8- [10°Nm] | 5 [108Nm] E Tg.ggﬂ.desiqn' [10°Nm)

91 global 1.4523 0.6381 0.6461 3.1210
LRNM 1.4024 (0.6124 0.5820 3.1758
49 global 1.4073 0.6163 0.8049 3.1831
LRNM 1.3663 0.59811 (.6915 3.2317
global 1.4087 0.6180 0.7782 3.1839
63 LRNM 1.3629 0.5934 0.7020 3.2371
105 global 1.4082 0.6173 0.7874 3.1835
LRNM 1.3637 0.5939 0.7007 3.2360
126 global 1.4006 0.6186 0.7717 3.1835
LRNM 1.3633 .5938 (.6985 3.2371

Table J.11: Weibull parameters for filtered realizations of the hogging response in the sea state
H; =11.5m & T, = 12.5s
No. of sections | type of maxima || y[-] | 8- [10°Nm] | §-[10°Nm] | v ii0n - [10°Nm]

51 global 1.4476 .2552 (.5067 1.2794
LRNM 2.5025 0.4020 -0.7882 0.9193
49 global 2.3707 0.3832 -0.6004 0.9402
LRNM 2.4962 0.3976 -.7623 0.9131
63 global 2.0017 0.3340 -0.1647 1.0242
LRNM 2.4905 0.3965 -0.7508 0.9135
105 global 2.4402 0.3917 -0.6854 0.9263
LERNM 2.4913 0.3966 -0.7479 (0.6138
196 global 2.5032 0.3993 -0.7562 0.9152
LRNM 2.4898 0.3963 -0.7453 0.9139
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Table J.12: Weibull parameters for filtered realizations of the sagging response in the seq state
H, = 13.56m & T, == 13.76s
No. of sections 1 type of maxima H 7l-1 I 8- [16°Nm] l 5 (108 N'm] 1 o0 design * 110° N'm)]

’ global 1.6116 | 0.8201 0.1997 3.3783
LRNM 1.5402 | 0.7884 0.1185 3.4458

i global 15395 | 0.7855 0.4419 3.4806
LRNM 14918 | 0.7613 0.3205 3.5398 ;%

global 1.5609 | 0.7945 0.3824 3.4440

63 LRNM 1.5100 | 0.7695 0.2475 3.5058
05 global 15647 | 0.7950 0.3674 3.4362
LRNM 1.5130 | 0.7701 0.2424 3.4976

196 global 15616 | 0.7940 0.3935 3.4400 5
LRNM 15118 | 0.7697 0.2432 3.5002 ;;

Table J.13: Weibull parameters for filtered realizations of the hogging response in the sea state
H,=13.56m & T, = 13.70s
No. of sections | type of maxima |~ | A [10°Nm] | é- [10°Nm] [ 750 design * 1107 N'm)

o global 57033 | 0.4567 7.0506 0.9252
LRNM 98003 | 0.4552 11,0507 0.9196

o global 24450 | 04091 206386 0.0719
LRNM 57005 | 0.4520 1,052 0.9154

slobal 58207 | 0.4553 1.0643 0.0008

63 LRNM 97048 | 0.4521 110520 0.0142
o5 zlobal 58323 | 0.4560 07T 0.9105
LRNM 97961 |  0.4527 -1.0679 0.0148

ot slobal 28311 | 0.4558 1.0649 0.0103
LRNM 97063 | 0.4528 1.0574 0.9149
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Table J.14: Weibull parameters for filtered realizations of the sagging response in the sea stote
H,=14.5m & T, = 1595

No. of sections | type of maxima “ yi-1 ] A-{16°Nm)] I 8- [108Nm) i rg_gg,desiqn 109 Nm]
o alobal 15388 | 0.7802 20.0040 5.4078
LRNM 14670 | 0.7365 0.0739 3.4892
alobal 174086 | 0.7538 0.1862 34435
42 LRNM 1.4380 | 0.7172 0.2044 3.5106
alobal 14058 | 0.7512 0.5058 34431
63 LRNM 14353 | 0.7150 0.2099 3.5112
olobal 14944 | 0.7510 0.2006 3.4475
105 LRNM 14346 | 0.7149 0.2212 3.5140
o global 14980 | 0.7523 01091 3.4400
LRNM 14379 | 0.7161 0.2107 3.5064

Table J.15: Weibull parameters for filtered realizations of the hogging response in the sea state
H, =145m & T, = 15.95
No. of sections 1 type of maxima “ v[=1 | 8- [10°Nm] | d- [LI0°Nm] | v8o0 yusioy - 1107 Nm]

alobal 2.8088 | 0.4342 10183 0.8721
2 LRNM 27278 | 0.4224 -0.9234 0.8783
- #lobal 57836 | 04940 0.0475 0.8651
LRNM 97212 | 0.4179 -0.9059 0.8716
- global 57716 | 0.4232 0.9398 0.8653
LRNM 07151 | 0.4164 -0.8028 0.8715
slobal 57736 | 0.4232 ~0.9288 0.8650
105 LRNM 27186 | 0.4172 -0.8960 0.8717
o6 alobal 27755 | 0.4235 09320 08657
LRNM 27187 | 0.4172 -0.8961 0.8717
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