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Abstract

The main purpose of this Master’s thesis is to use finite element
method to investigate if brittle failure in sea ice can be described in a
force-displacement history. Four implemented material models in LS-
Dyna are taken into account. This in order to study the behaviour by
an interaction between drifting sea ice and offshore structures. The
force-displacement curve give a sawtooth pattern by brittle failure.

The selected material models were determined after research of pre-
vious work for numerical modelling of ice. Material models used for
similar materials, like concrete and granite were also considered. A
litterature review was conducted to understand the properties of S2
sea ice, and its behaviour under compression.

Four material models were studied, characterised and used in three
different numerical models. The material models are referred as
063_Mat_Crushable_Foam, 096_Mat_Brittle_Damage, 111_Mat_-
Johnson_Holmquist_Concrete and 153_Mat_Damage_3 in the key-
word user’s manual for LS-Dyna.

The numerical results were compared with each other and with mea-
sured values from real experiments. The comparisons were performed
with a vertical force-displacement history. All material models had
results in the right order of magnitude.

From the results, it can be concluded that it seems possible to find an
existing material model that can give sufficient results for interaction
between ice and structures. It will be preferable to use material
models with an included damage constant.

Due to recent research, there must be performed further improve-
ments regarding the material modells and the numerical set-up. A
suggestion is to SPH in LS-Dyna. The non-linear finite element code
IMPETUS-Afea can be a good replacement for LS-Dyna, due to its
computational efficiency.
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Sammendrag

I denne masteroppgaven er det benyttet numeriske analyser for å
undersøke om sprøbrudd i sjøis kan beskrives i et kraft-forskyvnings-
forløp. Det er sett nærmere på fire implementerte materialmodeller i
LS-Dyna. Dette for å studere oppførselen som opptrer ved en inter-
aksjon mellom sjøis og offshore-konstruksjoner. Ved sprøbrudd viser
kraft-forskyvnings-kurven et sagformet kraftforløp.

De valgte materialmodellene ble bestemt på bakgrunn av hva som
tidligere er gjort av numeriske analyser for is. Det er også sett på
hva som benyttes for lignende materialer, som betong og granitt. Et
litteraturstudie ble gjennomført for å forstå egenskapene til is og isens
oppførsel under trykk.

Fire materialmodeller ble vurdert, karakterisert og benyttet i tre nu-
meriske modeller. I brukermanualen til LS-Dyna er materialmodel-
lene henvist til 063_Mat_Crushable_Foam, 096_Mat_Brittle_Dam-
age, 111_Mat_Johnson_Holmquist_Concrete og 153_Mat_Damage_-
3. Materialmodellene ble sammenlignet opp mot hverandre og med
måleverdier fra virkelige eksperimenter. Alle presenterte numeriske
resultater hadde rett størrelsesorden sammenlignet med eksperimentene.

Fra resultatene kan det konkluderes med at det er mulig å finne en
eksisterende materialmodell som kan gi gode resultater for interak-
sjon mellom is og konstruksjoner. Med mer forskning på området,
kan den sprø oppførselen i sjøis bli gjenskapt. Det er foretrukket å
bruke materialmodeller med en inkludert skadekonstant.

Siden numerisk analyse for is kun er sett på de senere årene, må
ytterligere forbedringer gjennomføres for både materialmodeller og
de numeriske oppsettene. Et forslag er å benytte SPH i LS-Dyna.
Den ikke-lineære elementkodemodellen IMPETUS-Afea kan være en
god erstatning for LS-Dyna, på grunn av kortere beregningstid.
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Chapter 1

Introduction

Due to increased human activity in Arctic regions, interaction be-
tween ice and offshore structures will occur more frequently. The
problems are among others, huge ice floes drifting from onshore and
drifting first-year or multi-year sea ice. During interaction, ice failure
can occur in a ductile and brittle manner. The brittle ice failure is
important to understand in order to design structures in ice-choked
waters.

There exists a number of investigations of ice actions, from both
laboratories and different locations in the Arctic regions. The purpose
is to understand how the properties of sea ice affect the brittle ice
failure during ice-structure interaction.

In general, experiments from laboratory and in-situ are expensive
and time consuming. Therefore, it is of big interest to develop nu-
merical simulations for the situations described above. This is the
main purpose of the Master’s thesis; use existing material models to
investigate if they can recreate brittle failure for S2 sea ice under
compression.

In recent years, an increasing amount of work regarding simulation
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Chapter 1. Introduction

of ice actions using finite element models has been published. If
experimental tests can be replaced with numerical simulations for
some instances, it may be much more cost effective and less time
consuming to design offshore structures against ice actions.

To find a material model that renders the behaviour of ice is not a
trivial task. For instance, Robert E. Gagnon has simulated ice several
times with a material model initially intended for crushable foams.
The situations were, i.a., ice crushing of a pyramid shaped model
and collision between a loaded tanker and a bergy bit. More about
the models is given in the papers by Gagnon (2011) and Gagnon and
Wang (2012), respectively. von Bock und Polach and Ehlers (2013)
presented a numerical analysis for model-scaled ice using a damage
material model by Lemaitre, where air and water voids were taken
into account.

The material models stated above, are implemented in the explicit
non-linear 3D FEA program LS-Dyna. LS-Dyna contains a suite of
several material models, and is used for all analyses in the thesis.
The material model for crushable foams and the damage model by
Lemaitre, are used in the presented numerical simulations.

To determine the material models, it is looked at previous use for
ice and similar brittle materials, like concrete and granite. The se-
lected material models are referred to in the keyword user’s manual
of LS-Dyna as 063_Mat_Crushable_Foam, 096_Mat_Brittle_Dam-
age, 111_Mat_Johnson_Holmquist_Concrete and 153_Mat_Dam-
age_3. In this thesis they are announced as Crushable Foam, Brit-
tle Damage, Holmquist-Johnson-Cook (HJC) and Lemaitre Damage
model, respectively.

The material models are used in three numerical models, which are
presented in the numerical part of the thesis. The main numerical
model is based on an experimental measurement of ice from Schul-
son’s laboratory, conducted by Kim et al. (2012). The experiment
involves an interaction between a spherically-shaped indenter and a
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Chapter 1. Introduction

freshwater ice specimen.

The ice specimen is confined with four plates, towards movement in
the horizontal direction. By confinement, a triaxial loading occurs.
This is a good resemblance to what takes place in the nature, where a
small piece of a larger ice floe surrounds the piece. The two other sim-
ulations are a single volume element and a drifting ice sheet towards
an offshore structure developed by Hilding et al. (2012).

There are made assumptions regarding to the numerical simulations.
The ice action is normal to the loading plane, and by failure the el-
ements will erode. The extrusion of ice is therefore neglected, due
to element erosion. Development of cracks, i.e. shear band, is also
ignored. Kari Kolari works with a damage model, which should de-
scribe the physical aspect of wing cracks.

Experimental measurements on ice by Erland M. Schulson is the main
source according to the parameter study. Several of his papers and
the book about creep and fracture of ice by Schulson and Duval
(2009) are widely used. The paper by Timco and Weeks (2010) is also
applied, where it is looked at the stage of knowledge and applications
of the engineering properties of sea ice. Løset et al. (2006) describe
actions performed by ice on arctic offshore and coastal structures.

As mentioned, the scope of this thesis is to use existing numerical
models from LS-Dyna to recreate brittle ice crushing failure towards
an offshore structure. The ice alone, is first-year S2 sea ice with a
temperature at -10◦C. In the next section, the outline of this thesis
is given.

3



Chapter 1. Introduction

1.1 Thesis Outline

The theoretical background in Chapter 2, gives the necessary physical
and mechanical properties of sea ice. Further, it includes a descrip-
tion of ductile and brittle behavior, interaction between sea ice and
structures, and continuum mechanics with damage and fracture me-
chanics. The theory of each material model is given in the last section
of the chapter.

Chapter 3 is the part where the numerical models are described,
together with the characterisation of the parameters in the material
models. It will contain a description of how the material parameters
are determined.

The results are presented in Chapter 4, and further discussed in
Chapter 5. Chapter 6 and Chapter 7 includes the conclusion and
further work, respectively.

4



Chapter 2

Theoretical background

Sea ice is a complex material that is composed of solid ice, brine and
gas. Its properties depend on the size and orientation of the crystals,
temperature, salinity, density, impurity etc. (Løset et al., 2006).

The properties of sea ice are highly variable depending upon the ma-
terial’s environmental history, which could mean that the ice can
change along the kilometers of continuous ice sheet. This will cause
different physical and mechanical properties. The physical prop-
erties are, for instance, microstructure, thickness, salinity, porosity
and density. While the mechanical properties include tensile, flexu-
ral, shear, uniaxial compression and multiaxial compression strength,
failure envelope, creep, Young’s modulus, Poisson’s ratio, fracture
toughness and friction.

Due to the dependency of physical and mechanical properties, the
two next sections deal with the properties of first-year sea ice that is
applicable for later use in the thesis. Further the ductile and brittle
behaviour of ice will be presented, as well as the damage and fracture
mechanics. At the end of this chapter there is an introduction of the
four material models that are further used in the numerical analyses.
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Chapter 2. Theoretical background

2.1 Physical Properties of Sea Ice

2.1.1 The Structure of S2 Sea Ice

To define the properties of ice, Michel and Ramseier (1969) came up
with a classification system that deals with the texture of different
types of ice. Most of the ice over the continental shelves of the Arctic
Ocean is S2 sea ice, according to the classification system.

By definition, S2 ice has a vertical columnar crystal structure with
a randomly oriented c-axis in the horizontal direction. In Figure 2.2
the c-axis is oriented in the X1-X2 plane.

As just mentioned, the two illustrations below show S2 sea ice and
S2 freshwater ice. The columnar axis is parallel to the direction of
heat flow, axis defined as X3. Sea ice and freshwater ice have the
same microstructure and grow in a similar manner. However, there
is a significant difference.

Sea ice is weaker than freshwater ice, because of entrapped small
droplets of high saline water called brines. Sea ice also forms and ex-
pels salt into the underlying ocean water, through the brine drainage
channels viewed in Figure 2.1. The brines in sea ice are unable to
support shear stress, which causes an easier deformation compared
to freshwater ice.

The first-year sea ice contains a higher brine volume than multi-year
sea ice, since the brines in the multi-year ice will drain through the
ice as it melts and grows.

Figure 2.1 is a schematic drawing that view several aspects of the
structure to first-year sea ice, with horizontal and vertical thin sec-
tions. The fabric diagram, to the right in the figure, views the c-axis
from a horizontal cross section. Note the development of string c-axis
alignment in the horizontal plane in the lower part of the diagrams,
i.e. the major layer is a typically S2 ice.
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Chapter 2. Theoretical background

Above the columnar ice there is a granular layer, which has a ran-
domly oriented c-axis (also viewed in the fabric diagram). The most
noticeable change in the upper part of the columnar zone is the sig-
nificant increase in grain size with depth, due to the growth period
(Weeks and Assur, 1967).

Figure 2.1: Structure of first-year sea ice above water level. (Løset
et al., 2006)

7



Chapter 2. Theoretical background

(a) Sea ice

(b) Freshwater ice

Figure 2.2: Composite photographs of thin sections viewed through
cross-polarizing filters showing the Xi coordinate system and the
macroscopic structure of (a) S2 sea ice and (b) S2 freshwater ice.
(Schulson, 2010)
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Chapter 2. Theoretical background

Granular ice and columnar S2 ice are isotropic and transversely isotropic
(orthotropic), respectively. The S2 ice is isotropic in the X1-X2 plane,
which is an advantage when material parameters of the S2 sea ice
should be determined. Further first-year S2 sea ice will be consid-
ered, and announced as S2 sea ice.

When characterising ice, it is important that the test data is mea-
sured under similar conditions. Therefore, several parameters are
found from experiments performed in Erland M.Schulson’s labora-
tory. Information is found from many of his papers, the book “Creep
and Fracture of Ice” by Schulson and Duval (2009) and a personal
conversation (Schulson, 2014)

2.1.2 Density

Knowledge of the density of sea ice is important in many applications.
Measurements which represent the in situ density of first-year sea ice
range from 840 kgm-1 to 910 kgm-1 for the ice above the waterline,
and 900 to 940 kgm-1 for the ice below the waterline (Timco and
Weeks, 2010). Gratz and Schulson (1997) studied columnar saline
ice under triaxial loading, and they calculated the average density to
be 910±3 kgm-1.

2.2 Mechanical Properties of Ice

In the preamble several mechanical properties are mentioned. In this
section, relevant topics for further study are included; compressive,
tensile and shear strength, Young’s modulus and Poisson’s ratio. The
fracture toughness, together with fracture mechanics, is described in
Section 2.5.2.
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2.2.1 Compressive Strength

The compressive strength is a fundamental property of sea ice. Ob-
servations of both large and small-scale sea ice under loading show
that ice often fails in compression.

Under a multi-axial state of stress, it is most common that compres-
sive failure occurs (Schulson and Duval, 2009). The reason is that
materials within the compressive zone are constrained by the other
surrounding materials. Therefore, a confinement induces that a bi-
axial and triaxial stress state have large effect on the strength and
mode of failure.

Schulson and Gratz (1999) did experimets for three regimes of a
Coulombic1-like behaviour, where the current is in the third regime.

Figure 2.3: Stress distribution in the third regime, σ33 >> σ11 = σ22.

1Coulombic faulting occurs under brittle regime, and at low confinement
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The third regime is defined as; when the ice is loaded mainly along
the columns, confinement across the columns increase along column
stress at failure, i.e. σ33 >> σ11 = σ22 (Figure 2.3).

Figure 2.4 is a graphical view of the measurements by Gratz and
Schulson (1997), where σ33,f is plotted against σ22,f and σ11,f = σ22,f .
The S2 sea ice is in the third regime, described above. The fig-
ure shows a linear increase between the vertical and the horizontal
stresses, see Figure 2.3 for description of the directions.

Figure 2.4: Compressive strength of S2 sea ice in the third regime at
-10◦C, σ11,f = σ22,f . Data from Gratz and Schulson (1997)
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From the measured data of uniaxial strength by Jones (1997), the
values are in the order of 8 MPa to 12 MPa. Schulson and Duval
(2009) renders a graph for unconfined uniaxially compressive strength
versus strain, which gives a range from approximatly 0.12 MPa to 20
MPa. The basal plane was inclined by 45◦ to the direction of loading.
It should be noted that, the S2 ice is weakest at 45◦ compared to 0◦
and 90◦.

2.2.2 Tensile Strength

The tensile strength defines the maximum tensile stress that ice can
sustain before failure. The tensile strength is important for predicting
both large-scale ice movements and local ice forecasting. (Timco and
Weeks, 2010)

Results from Richter-Menge and Jones (1993), Saeki et al. (1978) and
Dykins (1970) indicate a decrease in tensile strength with increase in
temperature. For columnar ice, the tensile strength is about three
times higher when an ice specimen is loaded with tensile stress exerted
parallel to the growth direction, i.e. vertically loaded (Timco and
Weeks, 2010).

Figure 2.5 gives the tensile strength of S2 sea ice loaded uniaxially
across the columns versus temperature, at strain rate of 10−3s−1. The
tensile strength is dependent on the temperature; as the temperature
increase, the tensile strength decrease. From figure 2.5, the measured
tensile strength range is 0.63±0.12 MPa at -10◦C.

2.2.3 Shear Strength

There is considerable scatter in the measured shear strength of sea ice.
A lot of the test results are generated using test techniques which im-
pose unrealistic normal stress in the failure plane (Timco and Weeks,
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Figure 2.5: Tensile strength of columnar first-year S2 ice, at strain
rate of 10−3 s−1. Data from Richter-Menge and Jones (1993)

2010). According to Timco and Weeks (2010) shear strength values
from the more reliable tests ranged from 550 kPa to 900 kPa for
columnar sea ice.

2.2.4 Young’s Modulus and Poisson’s Ratio

The Young’s modulus and Poisson’s ratio are two important values
in ice mechanics, since the effects of the sea ice viscoelasticity is
significance.

The Young’s modulus E is defined as the ratio of the stress σ to the
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strain ε during elastic behaviour. The relationship is described by
Hooke’s law, σ = Eε. Note that in ice mechanics, the term Young’s
(elastic) modulus is not entirely correct, because of the viscoelastic
strain in Equation 2.1. Young’s modulus is often expressed as effec-
tive modulus or the strain modulus. In this thesis the term Young’s
modulus will be used, since it is common practice in the keyword
user’s manual in LS-Dyna.

εt = εe + εve + εvp (2.1)

In Equation 2.1, εe is the instanteneous elastic strain, εve is the vis-
coelastic strain (delayed elastic) and εvp is the viscoplastic strain.

There is a significant increase in the value of E with decreasing tem-
perature and decreasing brine volume (Timco and Weeks, 2010), see
Equation 2.2 where vb is the brine volume. The value of Young’s
modulus at low brine volumes are characteristically in the range of 9
to 10 GPa.

E = 10− 0.0351vb (2.2)

According to Schulson and Duval (2009) the most accurate values
for Young’s modulus to date has been obtained by Gammon et al.
(1983). The samples was characterised as first-year columnar sea ice,
sampled at -3◦C and tested at -16◦C. Five values for the modulus
were determined, due to the Ih2 ice. The values ranged from 3.1 GPa
to 14.3 GPa, depending on the orientation of the axes. An average
value of Young’s modulus for isotropic ice was determined to 9.3 GPa.

The isotropic average value for Poisson’s ratio was determined to
0.325 by Gammon et al. (1983). In the paper by Timco and Weeks
(2010) the value for sea ice is determined with a mean value of

2Ih is hexagonal crystal form of ordinary ice
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0.295±0.009. A Poisson ratio of 0.33 is suggested for sea ice ac-
cording to the same paper.

By Equation 2.3 the shear modulus G can be obtained by the Young’s
modulus E and Poisson’s ratio ν. The shear modulus is thirty-eight
percent of the value of E and it varies in a similar manner with the
“state” of the sea ice.

G = E

2(1 + ν) (2.3)

Another modulus which is dependent on Young’s modulus and the
Poisson’s ratio, is the bulk modulus. This is useful for the character-
isation in Holmquist-Johnson-Cook material model.

K = E

3(1 + 2ν) (2.4)

2.3 Brittle and Ductile Behaviour
under Compression

Ice exhibits two kinds of inelastic behaviour under compression. Un-
der high rates of deformation the material is brittle, and it is ductile
under lower rates of deformation (Schulson, 2001).

Figure 2.7 gives a selection of results from the laboratory test by
Kim et al. (2012). One of the numerical models are based on the
experiment. The test set-up is shown in Figure 2.6, and further
described into detail in Section 3.2.

The confined ice specimen is loaded with a spherically-shaped inden-
ter. With a vertical velocity at 5.08 mm/s for test number EK7 and
EK8, the behaviour is in the brittle dominate regime. The results
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Figure 2.6: Laboratory test set-up with a confined ice specimen and
an indenter, conducted by Kim et al. (2012).

from test number EK14 with a indenter velocity a tenth less than
the others, shows a ductile behaviour.

The test measurements show that by a ductile dominate regime, the
loads reach higher levels than for a brittle. Also note that by higher
velocities, the ice specimen got a brittle failure.

The interaction between structural deformation and an advancing
ice sheet produces alternating creep and brittle crushing in the same
event. Which esulting in a saw tooth formed action, as seen in Figure
2.7.

When the ice sheet fails at a certain loading level, the stored energy
in the structure is released to move the structure back to its original
position. This results in a high relative speed with respect to the ice,
which causes brittle failure. This type of interaction often produces
either transient or steady-state vibrations, which is not considered
further (Løset et al., 2006).

Figure 2.8 is a schematic view of the stress-strain curves for polycrys-
talline ice under compression as a function of strain rate that shows
the transition, ε̇t, between ductile and brittle behaviour.
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Figure 2.7: Force-displacement history for ductile and brittle be-
haviour from laboratory measurements. Data from Kim et al. (2012).

The ductile behaviour, left hand side of the figure, have a smooth
stress-strain curve that rises and then either levels off or reaches a
maximum followed by descent towards a plateau. In comparison,
brittle behaviour is characterised by a stress-strain curve that rises
pseudo linearly and then suddenly drops off after a strain of approx-
imately <0.003, with little evidence of roll-over. The sudden failure
for brittle behaviour is marked in the load curve with a cross. (Schul-
son and Duval, 2009).

The strain rate ε̇t is around one to four orders of magnitude greater
in compression than under tension. The reason for the higher tran-
sition strain rate is that brittle compressive strength is considerably
greater than the tensile strength (Schulson and Duval, 2009), i.e. ice
is stronger in compression than tension.

From Figure 2.8, there is illustrated that by increasing strain rate
the ductile “peak” stress will increase. Since the maximum ductile
behaviour also increase with lower temperatures, it can be stated that
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Figure 2.8: Schematic of stress-strain curves for polycrystalline ice
under compression as a function of strain rate. At low rates of com-
pression ice exhibits ductile behaviour. At high rates of compression
ice exhibits brittle behaviour. (Schulson and Duval, 2009).

ice is stronger by high strain rates and low temperatures. Gradually,
the ice will exhibit brittle behaviour, and after failure the strength
decreases (Schulson, 2001).

Ice can exhibit Coulombic (C) faulting and plastic (P) faulting within
brittle and ductile regime, respectively. The C-faulting develops un-
der lower degree of triaxial confinement, while P-faulting develops
under higher triaxial confinements. Coulombic faulting is a frictional
based process.

The triaxial strength of both S2 sea ice and freshwater ice exhibits
three regimes of behaviour. One of them is loading mainly along the
columns. Which is called the third regime, and is already presented
in Section 2.2.1.
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In the third regime the compressive strength increase linearly in pro-
portion to the lower of the two across-column confining stresses, il-
lustrated in Figure 2.3. Correspondingly failure occurs through C-
faulting. C-faulting is characterised by macroscopic faults, comprised
of a narrow band of microcracks, oriented around 30 degrees from the
direction of maximum shortening by -10◦C. More about the Coulomb
failure can be read in the book of Schulson and Duval (2009).

2.4 Interaction of Ice-Structure

As stated in Section 2.3, the brittle failure is important in structure
design by interaction between ice and structures. Indentation of ice
can occur, for instance, when floating ice meets a bridge pier, a light-
house or an offhore platform. If the interaction force is too high, the
structure will fail. The book of Løset et al. (2006) is a good source on
ice actions on arctic structures, and this chapter is mainly dependent
on the book.

The forces generated during ice floe impact against a structure de-
pend on the mass and the initial velocity of the ice. Interaction
between drifting ice and structures may cause formation of local and
global actions, structure vibrations, abrasion of structure’s surface
etc.

A local action acts on a relatively small part of the contact area where
the ice meets the structure. The global action FG exerted the whole
structure, and can be determined as the integral of the projections of
local actions pl acting simultaneously over the contact surface,

FG =
∫ ∫

pl dA (2.5)

where A is the real contact surface between ice and structure, which
means the effective contact area at the same instant of time. It follows
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from this equation that the contact area and pressure intensity is
dependent on the global load. For instance, a low pressure over a
wide area can be worse than high local pressure in a narrow area. In
Figure 2.9 a interaction between ice and a structure is illustrated.

Different failure modes in the ice can occur when it interacts with
a structure, i.e. creep, radial and circumferential cracking, buckling,
spalling and crushing. Løset et al. (2006) and Schulson and Duval
(2009) have litterature on these subjects, while Sodhi and Haehnel
(2003) describe the crushing failure mode during edge indentation of
moving ice floes, like creep and brittle failure.

Figure 2.9 illustrates a three step interaction between ice and a struc-
ture. The first figure, 2.9a, shows the development of the microcracks,
then crushed ice spalls, before it disappears, from the top and bottom
of a ice floe (Figure 2.9b). In the third step, Figure 2.9c, the contact
area can be small. This ice will also go to failure and spall away.

When there is no contact between the ice and the structure, a gap
takes place. This may cause critical actions when the interaction
between the ice and the structure starts over again.

Schulson and Duval (2009) describe the behaviour like this; the load
rises in a pseudo-linear manner until it reaches a sharp maximum
after which it drops suddenly and becomes jerky as indentation con-
tinuous. The peak in ice stress may not coincide with the peak in ice
velocity.

The most widespread scenario by an interaction between ice and
structure, is the limit stress. It controls the maximum action in
most cases, and corresponds to the situation when stress (compres-
sive, shear, tensile, flexure and buckling) reaches some limit value.
It is known that the ice can not endure the action that exceeds its
bearing capacity (e.g. strength) (Løset et al., 2006).
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(a) Microcracking (b) Intermediate (c) Flaking

Figure 2.9: Fragmentation of drifting ice towards an offshore struc-
ture. (Saeki and Ozaki, 1980)

2.5 Continuum Mechanics

In continuum mechanics, the intention is to describe the behaviour of
materials by ignoring its particulate nature. A continuum is an area
that can be divided infinitely, and there is no individual particles.
The simplification makes it possible to investigate the movement of
a material on a scale larger than the distances between particles. In
this case, the S2 sea ice is assumed as a continuum.

Løset et al. (1998) define the continuum mechanics as mechanical be-
haviour of materials modelled as a continuous mass. This means that
the actual physical discontinuities like atoms, molecules, and crystals
are not considered. In engineering, the mechanics of continuous mod-
els introduces a representative volume element (RVE) on which all
properties are represented by homogenised variables (Lemaitre and
Desmorat, 2010). Further, the section deals with the damage and
fracture mechanics.

Løset et al. (2006) describes damage and fracture mechanics like this:

• Damage mechanics. The existence of micro cracks, holes etc. is
considered as damaged material, and is treated as a reduction
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in strength. The local conditions around the damaged parts
are not treated.

• Fracture mechanics. Assumes the existence of one dominating
crack, and concentrates on the conditions loacally around the
crack tip.

2.5.1 Damage Mechanics

Continuum damage mechanics is used to predict the crack initiation
in structures subjected to heavy loadings. The damage discontinuities
are “small” with respect to the size of the RVE, but of course large
compared to the atomic spacing (Lemaitre and Desmorat, 2010).

In ice mechanics, Kolari (2007) describes the damage mechanics con-
cept as a loss of stiffness that can be considered to be a consequence of
randomly distributed microcracks. The loss can be macroscopically
measured and characterised by a single damage variable.

Depending on the type of damage, scalar D, vector D or tensor (Dij

, Dijkl) variables can be used. It depends on whether the material is
isotropic or anisotropic.

In ice mechanics both isotropic and anisotropic material are repre-
sented. Damage in isotropic material can be defined by a scalar,
or a damage tensor Dij for multiaxial case. While columnar ice is
anisotropic and the damage has to be represented by a fourth order
tensor Dijkl.

The damage scalar D represents the damage in the plane, where
undamaged material by D=0 and fully damaged material by D=1.
The undamaged and damaged surfaces are illustrated in Figure 2.10.

The undamaged and damaged surfaces are important to the definition
of the scalar damage variable. The stress for the undamaged surface
A0 is given by σ0 = F/A0. The damaged surface A have to include
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Figure 2.10: Undamaged and damaged surfaces in a material.

the a damage variable, in this case D. The effective stress acting on
the resisting area can be given as,

σ̃ = F

A0(1−D) = σ

1−D (2.6)

where F is the applied load.

In numerical analyses it is most common to use a damage scalar D,
but there is also some material models that include the anisotropic
effect. In this context, the scalar for isotropic materials is of interest.

2.5.2 Fracture Mechanics

When ice is loaded, micro cracks may appear. Once a crack is pre-
sented in a material, the question is under what conditions it will
grow or propagate.

The fracture is propagation controlled when the crack is stable. While,
fracture is nucleation controlled when the micro crack continues to
grow after its formation, and eventually leads to failure, i.e. the
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(a) mode-I (b) mode-II (c) mode-III

Figure 2.11: Three crack propagation: (a) crack opening/tensile
mode; (b) crack sliding mode; (c) crack tearing mode.

crack is unstable. The nucleation controlled fracture is called brittle
fracture, and is important in fracture mechanics. (Løset et al., 2006)

The principle of fracture mechanics is that energy dissipates during
fast crack propagation, through ice, is governed to a large degree
by the energy required to create new surfaces (Schulson and Duval,
2009). Materials with cracks will fail before an undamaged material,
since the stresses around the crack tip is consideredably larger than
elsewhere in the material.

Three different modes of deformation, or crack opening modes are
defined in Figure 2.11. Mode-I loading refers to the opening of a
crack under external load, as opposed to crack sliding mode-II or to
crack tearing mode-III of the material adjacent to the crack tip. It
will further be assumed that the deformation occurs in mode-I, since
it is usually of greatest importance for ice.

The crack behaviour is of interest, and particularly in their resistance
to propagation. This is expressed as fracture toughness K. The
fracture energy per unit is crack advance given by the parameter G.
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The fracture toughness in mode-I, KI , and the toughness G define
the state of a loaded crack system. When the stress intensity factor
reaches a critical level of the material at hand, i.e. KI = KIc and
G = Gc, the crack propagates. The parameters KIc and Gc are
termed fracture toughness and toughness, respectively, and are given
as,

K2
Ic = GcE

1− ν2 (2.7)

where E is Young’s modulus and ν is Poisson’s ratio. The fracture
toughness depends on the loading rate and the ice type, with less
variation due to temperature and grain size.

Fracture toughness is a material parameter that should be indepen-
dent of the sample size. According to Schulson and Duval (2009) the
parameter for sea ice ranges from around 100 kPam0.5 for the small-
est specimens (0.5m) to 250 kPam0.5 for the largest (80m). Timco
and Weeks (2010) mention that 115 kPam0.5 is the typical value of
Mode-I fracture toughness of small samples. Dempsey et al. (1999)
report that the fracture toughness for the thick first-year sea ice,
size-independent, is of order 250 kPam0.5.

2.6 von Mises and Hill’s Yield Criterion

Under multiaxial loading conditions, the stress can be determined by
the von Mises or Hill’s yield criterions for isotropic and anisotropic
material, respectively. The von Mises yield criterion is one of the
earliest pressure independent plasticity models, and Hill’s criterion is
a straightforward extension of the von Mises yield criterion.

Golding (2012) used the criterions in his Doctoral thesis to describe
the effective stress of granular and columnar ice. As mentioned ear-
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lier, the granular ice is isotropic and columnar ice is anisotropic
(transversly isotropic) materials.

Since von Mises criterion requires less information than Hill’s crite-
rion, it will be of interest to consider both equations in a numeri-
cal simulation. Even though the Hill’s criterion is most suitable for
transversly isotropic materials, i.e. S2 sea ice.

von Mises yield criterion

The von Mises yield criterion is based on the assumption of isotropy
and pressure insensitivity of the material, and is given in Equation
2.9.

The yield criterion is expressed by the critical yield stress σv
y , which

is defined by the deviatoric stress tensor J2. The stress tensor is
defined by the stresses in the principle directions σ1, σ2 and σ3, see
Equation 2.8.

It is assumed that the yield occurs when the second principle invariant
of the stress deviator J2 reaches a critical value k2, i.e.

√
J2 = k

(Børvik and Hopperstad, 2013). The J2 is given as,

J2 = 1
6((σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2) (2.8)

The effective stress σv
y , critical yield stress, is then further defined for

granular ice,

σv
y =
√

3J2

= (1
2((σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2))0.5

(2.9)

where σ1 is assigned to the algebraically largest value and σ3 to the
algebraically smallest value. Under uniaxial loading, σy = σ1, since
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σ2 = σ3 = 0. Several implemented material models in finite element
programs are based on the von Mises yield criterion.

Hill’s Yield Criterion

As described above, the von Mises yield criterion determine the ef-
fective stress for isotropic marerials. However, it is important to
establish an yield criterion for anisotropic materials, because of the
difference in structure. A particularly important class of anisotropy
is the transversly symmetry (Børvik and Hopperstad, 2013). The
Hill’s criterion also describes the orientations in a material, and is
given by the expression,

σH
y =

{
3[F (σ22 − σ33)2 +G(σ33 − σ11)2 +H(σ11 − σ22)2]

2(F +G+H)

}0.5

(2.10)
where

F = G = 1
2(σd

u,3)2 H = 1
(σd

u,1)2 −
1

2(σd
u,3)2

where σ11, σ22 and σ33 are the three applied stresses oriented in the
directions X1, X2 and X3, respectively, according to Figure 2.2. The
main stress σ11 is parallell with the c-axis of the S2 ice and σ33 is
parallell to the column’s directions.

The constants F , G and H are determined from the uniaxial failure
stresses and σd

u,1 and σd
u,3 are the unconfined across-column and along-

column compressive yield stresses. The unconfined across-column, 0◦,
and along-column, 90◦, compressive yield stresses can be found from
earlier measurements performed on ice specimen, where the specimen
is loaded in a different direction according to the c-axis.
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The proportional loading path is often given to describe the rela-
tionship between the stresses. It is possible to calculate the applied
stresses from earlier measurements with the given ratios. It is ex-
pressed as (R:R21:R31), where R needs to be larger than one and R21
and R31 is defined as,

R21 = σ22

σ11
(2.11a)

R31 = σ33

σ11
(2.11b)

For columnar ice σ11 is the most compressive principal stress. σ22 and
σ33 may not be the respective intermediate and minimum principal
stresses (Golding, 2012).

The pressure is useful in several cases, and can be decided by applying
the following equation,

P = σ11 + σ22 + σ33

3 (2.12)

The information and equations given above is useful according to
determinations of different values from earlier measurements. The
proportional loading path is often given, which makes it easier to
determine the material parameters to sea ice.
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2.7 Material Models in LS-Dyna

In the following sections the theory regarding the four material mod-
els are taken into account. The models are further used in the nu-
merical simulations to see if the results render the brittle behaviour
by interaction between ice and structures.

In Section 3.3 the material models are characterised, while the nu-
merical results are presented in Chapter 4. Note that the material
parameters mainly have the same annotation as in LS-Dyna.

Material models for ice in numerical simulations are not well estab-
lished. The challenge is to find a material model that is capable of
capturing the distinctive mechanism in ice by compression.

There is of great interest to use an already implemented material
model, and LS-Dyna have a large collection compared to other fi-
nite element programs. The choice of material models are based on
previous use for ice and similiar materials, like concrete and granite.

In the keyword user’s manual in LS-Dyna the material models are re-
ferred to as 063_Mat_Crushable_Foam, 096_Mat_Brittle_Damage,
111_Mat_Johnson_Holmquist_Concrete and 153_Mat_Damage_3
(Hallquist, 2014). In this thesis they are announced as Crushable
Foam, Brittle Damage Model, Holmquist-Johnson-Cook (HJC) and
Lemaitre Damage Model, respectively. None of the material mod-
els are temperature dependent, and this behaviour is therefore not
considered.

Gagnon has simulated ice behaviour several times with the Crushable
Foam model, Gagnon and Derradji-Aouat (2006), Gagnon (2011) and
Gagnon and Wang (2012). Gagnon (2011) simulated ice crushing
alone, and the remaining papers contains simulation of collisions with
a bergy bit.

von Bock und Polach and Ehlers (2013) used the Lemaitre Damage
Model in simulation of model-scaled ice. The numerical ice model has
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voids of air and water that is incorporated with a random algorithm
that define 1 % of the elements as air and 4.5 % as water. The model-
scaled ice has a water layer added at the top. As a simplification,
components as air and water are neglected in this context.

The HJC material model is applied several times for concrete, not sur-
prisingly since it was developed mainly for concrete. In the Doctoral
thesis by Seah (2006) this model is applied to simulate penetration of
granite by hard projectiles. The last material model, Brittle Damage,
was chosen due to its brittle behaviour and few required parameters.

HJC and Lemaitre Damage model have an isotropic damage scalar
implemented. More about damage constants in Section 2.5.1, where
both isotropic and anisotropic tensors are considered. Since S2 sea
ice is transversly isotropic, an isotropic damage scalar is sufficient.

In Section 2.8, a failure/erosion criterion in LS-Dyna is presented.
The criterion is added to those material model that do not include a
damage constant or needs to have erosion added.

2.7.1 Crushable Foam Model

The Crushable Foam model requires an input of five parameters and
a loading curve; density ρ, Young’s modulus E, Poisson’s ratio ν,
tensile stress cutoff σc

t , a damping coefficient and a stress-strain curve.

In the implementation of the model it is assumed that Young’s mod-
ulus is constant and the stress is updated assuming elastic behaviour.
Unloading is elastic to the tension cutoff stress σc

t , while subsequent
reloading follows the unloading curve. The stress is given as,

σtrial
ij = σn

ij + E ε̇n+0.5
ij ∆tn+0.5 (2.13)

where σij is the stress tensor, E is the Young’s modulus, ε̇ij is the
strain rate and ∆t is the time increment. The magnitudes of the

30



Chapter 2. Theoretical background

principal values are then checked to see if the yield stress is exceeded.
In these circumstances, the principal stress are scaled back to the
yield surface σy,

σy < |σtrial
i | then σn+1

i = σy
σtrial

i

|σtrial
i |

(2.14)

After the principal values are scaled, the stress tensor is transformed
back into the global system; the yield surfaces for the present appli-
cation.

According to Hallquist (1998) a small value for the Poisson’s ratio
has to be determined. The reason is to insure a flattening of the ice
at the contact zone that is more reminiscent of melting rather than
a flattening that induces bulking of surrounding material, such that
occurs in an elastic deformation scenario with a “real” Poisson’s ratio
(Gagnon and Derradji-Aouat, 2006).

Gagnon and Derradji-Aouat (2006) and Gagnon (2011) used a high
stress and low stress curve for the yield stress versus volumetric strain.
The low stress curve represents crushed ice, while high stress is areas
with undamage ice. The graphs are given in Figure 3.2.

Hallquist (2014) recommends a value between 0.05 and 0.5 for the
damping coefficient. The value is useful to dampen resonant oscilla-
tion. Ice is a stiff material, and is effective damped.

2.7.2 Brittle Damage Model

The Brittle Damage model is primarly formulated for evaluating brit-
tle damage in concrete, but it can be applied to a wide varity of
brittle materials. It is particulary useful in impact simulations. The
advantage for this model is that it contains a minimal set of material
parameters.
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The necessary parameters for the brittle damage model for ice sim-
ulation are mass density ρ, Young’s modulus E, Poisson’s ratio ν,
tensile stress σt, shear stress σs, compressive yield stress σy, tough-
ness Gc, shear retention β and viscosity η. The six first parameters
are found in litterature, the others are calculated or determined by
inverse modelling.

Govindjee et al. (1995) present a full description of the tensile and
shear damage part of this model. Further, the general part of the
model is dealt with.

Failure in the material is assumed to initiate when the first princi-
ple stress exceeds some threshold value. Three coupled surfaces are
postulated to define the damage surface. There is one tensile trac-
tion and two shear tractions, that work across the smeard crack field
(Govindjee et al., 1995).

The shear retention multiplied with the shear stress, βσs, represents
the shear traction that is allowed across the smeard crack plane as the
damage progresses, i.e. a damage rule. The shear retention indicates
the percentage of elastic shear capacity that is retained after cracking.
According to Govindjee et al. (1995) the shear retention factor should
be determined to a small value. The shear traction σ′s is defined as,

σ′s ≤ σs(1− β)(1− exp[−Hsα]) (2.15)

where the parameter H represents the softening modulus, which is
chosen by the analytical program based on the element size. The
shear degradation is coupled to the tensile degradation through the
internal variable α, which measures the intensity of the crack field.

The fracture toughness of the material should be entered as fracture
energy per unit area crack advance, i.e. the toughness. The toughness
Gc is important for a stabile calculation process. It can be determined
from Equation 2.7, with a dependency to the fracture toughness KIc,
Young’s modulus E and Poisson’s ratio ν.
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The viscosity of the material is also crucial on the stability of the
calculation process. In order to avoid error termination, values of the
viscosity between 0.71 and 0.73 MPa are recommended.

2.7.3 Holmquist-Johnson-Cook Model

In 1993 Holmquist, Johnson and Cook published a model with the
purpose of developing a concrete model for impact computations,
where the material experiences large strains, high strain rate and high
pressure. Although the main purpose of the model was to simulate
concrete, but it can be applicable for other materials. Due to the
brittle behaviour of ice can be similar to concrete, this model can be
appropriate.

Holmquist et al. (1993) described the material model and the deter-
mination of normalised constants. Finally they used a penetration
computations and compared it with the test data. Seah (2006) goes
through the parameters in more detail, and thereafter the same pro-
cedure for granite.

The Holmquist-Johnson-Cook (HJC) model contains a large number
of material constants compared to simpler material models. In Table
2.1 the parameters are categorised into four groups; basic, strength,
pressure and damage constants. The parameters with a star are
normalised, which means that they are divided by the quasi-static
uniaxial compressive strength σ′c.

Numerous material tests are required to completely define the con-
stants for a particular ice specimen. The strength model requires
an unconfined compression test, a direct-pull test, a series of triaxial
compressive tests, and a series of compressive tests at different strain
rates. Due to lack of test data, the parameters in Section 3.3.3 may
be obtained from tests that gives the necessary values.
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The normalised equivalent stress is given by σ∗ = σ/σ′c, where σ is
the actual equivalent stress. From the original paper, the specific
expression for normalised equivalent stress is,

σ∗ = [A∗(1−D) +B∗P ∗N ][1C∗ ln(ε̇)∗] (2.16)

where the isotropic damage scalar D is given a value between 0 and 1,
expressed in Equation 2.17. The dimensionless strain rate ε̇∗ = ε̇/ε̇0,
where ε̇ is the actual strain rate and ε̇0 is the reference strain. A
graphical representation of the HJC model is given in Figure 2.12.

Figure 2.12: Strength response of the HJC material model.
(Holmquist et al., 1993)

The HJC model is an elastic-viscoplastic model coupled with isotropic
damage, where the response is separated into hydrostatic and devia-
toric contribution. The model accumulates damage from both equiv-
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alent plastic strain and plastic volumetric strain. It is expressed as,

D =
∑ ∆εp + ∆µp

εf
p + µf

p

(2.17)

where ∆εp and ∆µp are the equivalent plastic strain and plastic vol-
umetric strain during loading, respectively. The denominator is the
plastic strain to fracture under a constant pressure P , i.e. f(P ) =
εf

p + µf
p (Holmquist et al., 1993). The specific expression which fol-

lows, where D1, D2, P ∗ and T ∗ are presented in Table 2.1.

f(P ) = εf
p + µf

p = D1(P ∗ + T ∗)D2 (2.18)

From the equation above it is given that plastic strain to fracture
increase with increasing normalised hydrostatic pressure P ∗, but the
material can not undergo any plastic strain at P ∗ = −T ∗. There-
fore a third constant εf

min is provided to allow a finite amount of
plastic strain to fractured the material, as illustrated in Figure 2.13
(Holmquist et al., 1993).

The hydrostatic pressure-volume relationship is presented in Equa-
tion 2.19 and Figure 2.14. The figure illustrates three separated re-
gions of the pressure-volume response. The first region is linear elastic
and occurs at P≤Pcrush, the second region Pcrush < P≤Plock and the
third region defines the fully dense material. The dense region is de-
fined as P > Plock, i.e. a fully compaced material where all air voids
are removed.

The crushing pressure and volumetric strain are obtained from pcrush =
σc/3 and µcrush = pcrush/K, respectively. K is the bulk modulus, and
is defined in Equation 2.4.

P = K1µ̄+K2µ̄
2 +K3µ̄

3 (2.19)
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Figure 2.13: The damage of fracture of the HJC material model.
(Holmquist et al., 1993)

where µ̄ = (µ − µlock)/(1 + µlock) and K1, K2 and K3 are material
parameters that can be determined from Equation 2.20. Golding
(2012) derived the constants to be determined in an easier way. The
parameter S is the Hugoniot constant.

K1 = E

3(1− 2ν) for P ≤ Pcrush (2.20a)

K2 = K(2S − 1) for Pcrush < P ≤ Plock (2.20b)
K3 = K(1− 4S + 3S2) for P > Plock (2.20c)

To get a realistic solution, an erosion algorithm have to be used. In
the HJC model the criterion of erosion is determined by using plas-
tic failure strain FS. Unfortunately, the subject of erosion criterion
was not described by Holmquist et al. (1993). Seah (2006) had a
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Figure 2.14: Pressure versus volume response for the HJC material
model. (Holmquist et al., 1993)

parameter study for the erosion criterion, including a description of
its behaviour.

If the erosion criterion is too low, the behaviour of the system will
be inaccurate or even unphysical. For instance, the stress wave prop-
agation and confined effects will be reduced since the strain energy
can not be transmitted. Therefore, it is important that an accurate
value of the erosion criterion FS is determined. In Chapter 4 different
values of the parameters are compared.

Note that the term erosion in this context does not refer to the phys-
ical failure mechanism. According to Leppänen (2002) the erosion
criterion is set above 1.5, and a parameter study by Johnson et al.
(1998) concludes that erosion criteria for concrete above 3.0 will give
realistic results. Seah (2006) conclude with the same value as John-
son et al. (1998) for both concrete and granite.
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The softening behaviour of the considered material under uniaxial
compression depends on the value of εf

min. According to Seah (2006)
failure of the material can be delayed by adopting higher values of
εf

min.

Due to the amount of parameters, further description is given to-
gether with the characterisation of the material model in Section
3.3.3.

2.7.4 Lemaitre Damage Model

The Lemaitre Damage model is based on the work of J. Lemaitre and
J. Dufailly. The damage model is a pressure independent plasticity
model with yield surface defined by the function F = σv

y − σy = 0,
where σv

y is the equivalent von Mises stress and σy is the uniaxial
stress (Hallquist, 2014).

Mass density ρ, Young’s modulus E, Poisson’s ratio ν, initial stress
σy0, isotropic hardening modulus H, critical damage scalar Dc and
damage material constants S and t need to be determined. The
parameters for kinematic hardening are assumed neglected.

In the Lemaitre Damage model the hardening modulus affects the
slope of the load-displacement curve beyond the linear-elastic section,
and the critical damage parameter failure.

Equation 2.21 states the evolution of the isotropic damage value Ḋ.
The damage value is defined as a function of yield strength Y , the
plastic strain ε̇p and the material constants S and t.

Ḋ = (Y
S

)t ˙̄εpl (2.21)

In the keyword manual for LS-Dyna S and t have default values
at σy/200 and 1, respectively. Damage accumulation begins when
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r > rd, where rd is a damage threshold that can be determined from
the plastic strain, since equation for damaged plastic strain r is also
based on the plastic strain.

According to Lemaitre and Desmorat (2010), the critical damage
value Dc is recommended to a range between 0.2 and 0.5 for most
materials. Fracture occurs when isotropic damage scalar D reach the
critical damage value Dc, and the element in the numerical analysis
will be deleted.

A further description of the implementation of the equations in the
model is listed in the keyword manual for LS-Dyna, Hallquist (2014).

2.8 Element Failure and Erosion Crite-
rion

Many of the constituitive models in LS-Dyna do not allow failure
or erosion. To give the element a failure or an erosion criteria, the
keyword Mat_Add_Erosion is implemented in LS-Dyna. The key-
word can also be applied to constitutive models with other failure or
erosion criterion.

One of the numerical models is an interaction between a confined ice
specimen and a spherically indenter, it is further explained in Section
3.2 together with the other numerical models.

The mentioned indentor must erode the surface of the ice specimen
to obtain a brittle behaviour. Among the four material models men-
tioned above, the criterion is supplied to the Crushable Foam and
the Brittle Damage model.

Each of the citerions defined in the keyword user’s manual are applied
independently. When a criterion is satisfied, the element will be
deleted from the calculation.
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In the material cards, there is not necessary to give a value for every
single parameter. An exclusion number, EXCL, allows the user to
specify criteria to be ignored without ambiguity. The cost of failure
modes will then be reduced.

The criteria used for the actual material models, is the principle
stress at failure σmax, due to descriptions given earlier in this chapter.
Failure occurs when the maximum principal stress reaches a critical
value, σ1 ≥ σmax (Hallquist, 2014).
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Chapter 3

Numerical Simulations

In this chapter, hardware and sofware used to the numerical simu-
lation are presented, the numerical model set-up described and the
parameters to each material model characterised.

The results from the simulations are presented in Chapter 4 and
further discussed in Chapter 5. In the discussion some of the results
from the numerical simulation will be compared with measurements
from laboratory and in-situ experiments.

3.1 Hardware and Software

Two clusters were applied for the numerical analyses. The prelimi-
nary simulations, i.e. before the final analyses, were run at the cluster
Snurre with symmetric multiprocessing (smp). It is a Linux based
Cluster which belongs to Faculty of Engineering Science and Tech-
nology at Norwegian University of Science and Technology (NTNU).
Snurre consists of five computational nodes, each equipped with 2
six-core Intel X5680 central processing units (CPUs) and 24GB of
memory.
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All final simulations were run at Vilje, a high performance super-
computer with smp and massively parallel processing (mpp). Vilje
houses a total of 1404 computational nodes with 2 eight-core CPUs
and 32GB of memory each. The system is procured by NTNU to-
gether with met.no and UNINETT Sigma.

The difference between smp and mpp is how the job utilize the avail-
able CPU cores. The "do loops" in the smp version will be distributed
over a chosen cores, while the mpp version divide the numerical model
into as many parts as there is cores specified.

The analytical software LS-Dyna V971 R7 was used, which is a 3D
FEA non linear program for explicit time integration. LS-Dyna con-
tains a number of contact algorithms and a large collection of material
models that can be chosen for the interacting structures. This is an
advantage when the most suitable material model for sea ice should
be determined. The input data is prepared and results processed in
the interactive program LS-PrePost.

The latest keyword user’s manual is divided in two parts; one for
the material models and one for the remaining keywords (Hallquist,
2014).

3.2 Numerical Model Set-up

There will be three numerical models presented in this section. The
first is a single volume element, to easier understand the behaviour of
each material model. The second model is the main numerical model,
an indentation of a confined ice specimen. Finally, a numerical model
with a drifting ice sheet towards an offshore structure are presented.

Some assumptions are made regarding the numerical simulations.
Shear band, which is development of cracks, and extrusion of ice are
not taken into account. Only ice under compression in the loading
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direction is studied. The purpose is to see if the force-displacement
curve gives the desired loading pattern that comes with brittle failure.

Figure 3.1 shows the numerical models. Note that they are not in
the right scale in relation to each other.

3.2.1 Single Volume Element

For the single volume element a eight noded hexahedral element with
full integration were used.

There is an advantage to use a single volume element, shown in Figure
3.1a, before the main analyses. The behaviour of each material model
can be investigated with compressive or tensile loading. In this case
the volume element is being compressed, due to the loading situation
described in the next section. In the input file a easy load curve is
given, which describe the compressive load.

In this case, it is desirable that the elements goes to failure. If not a
ductile behaviour develops, and the characterised sawtooth pattern
in brittle damage will not occur.

3.2.2 Confined Ice Specimen

The main numerical model in Figure 3.1b, is initially a small-scale
laboratory ice-indentation test performed in Erland M. Schulson’s
laboratory conducted by Kim et al. (2012). Figure 2.6 shows the
schematic sketch of the experimental setup. The initially tests were
performed on confined and unconfined freshwater granular and colum-
nar S2 ice at -10◦C and -40◦C.

In this context, the simulated test is confined S2 sea ice at -10◦C
using semi-spherical indenter (hemispherical-ended rods). The radius
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(a)

(b)

(c)

Figure 3.1: The numerical models; (a) Volume element, (b) Interac-
tion between a confined ice specimen and an indenter (c) Drifting ice
sheet toward an offshore structure.
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of the indenter is 12.7 mm, and the constant penetrate velocity and
depth are 5.08 mm/s and 12.7 mm, respectively.

The ice specimen is confined with aluminium extenders whit mea-
surement at 140x140x20 mm3, while all edges of the ice specimen is
determined to 146 mm. The numerical simulation has similar prop-
erties and set-up like the tests EK7 and EK8 from the laboratory.
See section Figure 2.6 for test set-up and Figure 2.7 for the results.

The ice specimen is confined to simulate a similar behaviour like an
ice floe. If a small piece of an ice floe is taken into account, this piece
will be sourrounded by ice. The confined situation will then illustrate
a piece from a ice floe in a good way, i.e. triaxially loading.

Eight noded hexagonal solid elements with reduced integration is
employed for all parts of the model. The ice specimen consists of
4800 solid elements. The finite element model for the indenter and
the five plates are treated as rigid bodies.

In order to align the numerical model with the ice physics, there is
assumed an element size like the grain size under the loaded area
at the ice specimen (von Bock und Polach and Ehlers, 2013). The
grain size ranges from 1 mm to 2.4 mm for the ice specimen in the
laboratory test described above. Note that the mesh density of the ice
decrease from the centre to the outher, which apply for all directions
of the cube, i.e. horizontally and vertically.

The surface contact algorithm in LS-Dyna is used to define contact
between the ice specimen and the plates are Contact_Automatic_-
Surface_to_Surface. The contact between the indenter and the ice
specimen is Contact_Eroding_Surface_to_Surface. The ice is the
master, then the other parts will be the slave. The time step for the
simulation is determined when the simulation has started.
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Energy Control

Explicit non-linear analyses with reduced integration, must be con-
trolled for hourglass energy, energy balance and kinetic energy. All
values are found from the ASCII file, GLSTAT. The energy check
is perfomed to warn against possible numerical instability, spurious
modes.

The hourglass method is chosen to be type 6. In the keyword con-
trol_energy HGEN is set to 2. The hourglass energy is then calcu-
lated.

Hourglass mode has to be minimized, and as a rule-of-thumb hour-
glass energy should be less than 10 % of the peak of the internal
energy. It can be controlled in Control_Hourglass by regulate the
QH if the rule is not satisfied. Recommended value for solid element
is 0.1 or less. All hourglass is elastic, lower QH can cause a more
plastic consideration.

The energy balance is perfect if the total energy is equal to the sum of
initial total energy and external work. In LS-Dyna this is controlled
by the energy ratio. The energy balance is sufficient if the energy ratio
is equal or close to 1. The energy ratio is the total enegy divided by
initial energy and external work.

The last control is to see if the kinetic energy is held at a minimum.

3.2.3 Ice Sheet Towards an Offshore Structure

The final numerical model is developed by Hilding et al. (2012). It
is a full scale simulation of an ice sheet drifting towards an offshore
structure. The results from these simulations are compared with a full
scale measurements of ice forces from the lighthouse Norströmsgrund
in the Gulf of Bothnia. The measurements from the lighthouse is
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given in Figure 4.16. The results from the numerical simulations are
presented in section 4.3 and further discussed briefly in section 5.2.

The methodology is based on cohesive element method to model the
ice fracture in conjunction with a homogenisation method, which is
developed by Hilding et al. (2012). The homogenisation method is
used to capture sub element size cracks in a cost effective manner.
The crack propagates when the cohesive elements have deformed suf-
ficiently, then the element goes to failure.

In the numerical model it is looked at an ice fracture called continuous
crushing mode. In this fracture mode the ice breaks and get crushed
into very small fragments, <1cm, during the interaction with the
structure. The crushed ice accumulates both below and above the
ice sheet.

The lighthouse is modelled as a rigid body, and the ice sheet is 0.69
m thick with element size at 0.13x0.2x0.2 m. The shear and tensile
strength for vertical cohesive elements is 1 MPa, while it is 1.1 MPa
for horizontal cohesive elements. The contact algorithm Contact_-
Eroding_Surface_To_Surface has been used between the ice and the
lighthouse. Each analysis where terminated after 5 seconds.

3.3 Characterisation of the Material Model

In Section 2.7 the theoretical aspect for each material model was
presented. The following sections characterise the parameters for the
material models. The parameters are determined during litterature
study in Chapter 2, assumptions and inverse modelling.

As stated earlier, ice is a complicated material. The ambition with
the numerical simulations are not to develop a material model which
captures the behaviour of ice in all respects. The most important
is to develop the brittle behaviour under triaxial loading, and to get

49



Chapter 3. Numerical Simulations

the sawtooth pattern in a force-displacement curve.

Three material parameters recurs in the material models. They are
determined from the theory chapter, Chapter 2. The Young’s mod-
ulus E and the Poisson’s ratio ν are determined to be 8 GPa and
0.33, respectively. In Section 2.1.2 the mass density is chosen to 900
kgm-3.

3.3.1 Crushable Foam Model

The material properties for the Crushable Foam model are the density
ρ, Young’s modulus E, Poisson’s ratio ν, the tensile cutoff σc

t and the
load curve defining yield stress versus volumetric strain. Poisson’s
ratio is assumed to 0.003, since a low value is recommended according
to Section 2.7.1. The reason is to insure a flattening that reminiscent
of melting. The parameters are presented in Table 3.1.

Table 3.1: Summary of parameters used in Crushable Foam model

ρ E ν lcid σc
t Damp. σmax

[kg/m3] [GPa] - - [MPa] - [MPa]

900 8 0.003
see

Figure
3.2

0.65 0.5 Section 4.2.1,
Results

The volumetric strain is the unit change in volume due to a defor-
mation. In this context compression is a positive value. The load
curve for the yield stress versus volumetric strain is given in Figure
3.2. The values are obtained by Gagnon (2011).

The four point in the high stress curve are 0.0, 0.0; 0.015, 25.0×106;
0.5, 50.0×106; and 1.0, 50.0×106, where each pair corresponds to frac-
tional volumetric strain and yield stress respectively. For the other
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Figure 3.2: Yielding stress versus volumetric strain curves for Crush-
able Foam model. Data from Gagnon (2011).

curve, low stress, the points defining the curve are: 0.0, 0.0; 0.015,
2.5×106; 0.5, 10.0×106; and 1.0, 10.0×106. Note that Gagnon (2011)
combined the curves in his simulations, here they will be considered
seperately.

To simulate the numerical model with Crushable Foam model, the
erosion/failure criterion described in Section 2.8 was applied. The
criterion should improve the existing model to avoid bad element
shapes, which can occur due to compressive deformation in ice as a
foam.

3.3.2 Brittle Damage Model

The determined ice parameters for the Brittle Damage model are
given in Table 3.2. The parameters are the density ρ, Young’s mod-
ulus E, Poisson’s ratio ν, tensile strength σt, shear strength σs, frac-
ture toughness Gc, shear retention β, viscosity η and compressive
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yield stress σy.

Fracture toughness and viscosity are important for the stability of
the calculation. The fracture toughness is chosen to 115 kPam0.5,
then the toughness Gc is calculated from Equation 2.7. For ice the
value of shear retention should be a small value, and are estimated
to 0.016. From the recommended values of the viscosity in Section
2.7.2, it is chosen to be 0.724 J/m2.

Due to a problem with the penetration according to this material
model, the erosion/failure criterion in LS-Dyna were used for Brittle
Damage model. Different values for the maximum compressive stress
σmax with respect to the comparison.

Table 3.2: Summary of parameters used in Brittle Damage model

ρ E ν σt σs

[kg/m3] [GPa] - [MPa] [MPa]

900 8 0.33 0.65 0.7
Gc β η σy σmax

[J/m2] - [MPas] [MPa] [MPa]

1.5
7.1 0.016 0.724 8

Section 4.2.2,
Results

3.3.3 Holmquist-Johnson-Cook Model

The Holmquist-Johnson-Cook (HJC) model is presented in Section
2.7.3. In this section the characterisation of the parameters are or-
ganised in basic properties, strength, pressure-volume response and
damage accumulation parameters.
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A summary of the material parameters is given in Table 3.3, the
descriptions of each term is given in Table 2.1. The unconfined com-
pressive strength is σ′c=8 MPa, which is the value the normalised
constants have been divided by.

Table 3.3: Summary of parameters used in HJC model

ρ G A∗ B∗ C N σ
′
c

[kg/m3] [GPa] - - - - [MPa]

900 4.96 0.0461 1.2930 0.0097 1.0290 8
T ε0 εmin S∗max pcrush εvol.crush plock

[MPa] - - - [MPa] - [MPa]

0.65 1 0.100 3.375 2.67 0.0004 2.67
εvol.lock D1 D2 K1 K2 K3 FS

- - - [GPa] [GPa] [GPa] -

0.0
0.02
0.04
0.164

1.0 6.667 0.800 0.872 0.1, 0.7
1, 1.5, 2

Basic Properties

The basic properties, density, Young’s modulus and Poisson’s ratio,
are the same as for the other material models. However, this model
requires a shear modulus G, which is calculated from the Poisson’s
ratio ν and Young’s modulus E, see Equation 2.3. The shear modulus
G is calculated to be 4.96 GPa. In the numerical results, the Young’s
modulus is compared with the shear modulus in a force-displacement
history.
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Strength Model Parameters

The next step in the characterisation of the parameters are the strength
constants, A∗, B∗, C, N , Smax and T .

The maximum strength is assumed to 27 MPa, which gives a nor-
malised maximum strength Smax at 3.375. From Section 2.2.2, the
tensile strength can be determined to 0.65 MPa.

The remaining strength parameters are found using results from the
triaxial compression test by Golding (2012). There is given a log-log
plot of maximum effective stress versus applied strain for columnar
ice deformed under (1.0:R21:R31)=(1.0:0.5:0.2) at -10◦C. Due to lack
of access to the test measurements, the values are obtained from the
mentioned graph. Table 3.4 gives the results from the triaxial com-
pression test by Golding (2012), and the results from the calculation
to determine the upcoming values.

The third column in the table given below with the stress σ11 in
X1 direction is calculated from Hill’s criterion, Equation 2.10. The
effective failure stress σ is given as the σM

y in the equation.

The uniaxial failure stress are determined to σf
u,1 = 32.5 MPa and

σf
u,13 = 19 MPa for the angles 0◦and 90◦, respectively (Schulson and

Duval, 2009). The remaining values are replaced with σ22 = 0.5σ11
and σ33 = 0.2σ11. Finally the equation of Hill’s criterion can be
reorganised, and the stress σ11 in X1 direction is determined. The
directions of the stresses σ11, σ22 and σ33 is given in Figure 2.4.

Together with the proportional loading path and results from Hill’s
criterion the hydrostatic pressure P can be calculated from Equation
2.12. The hydrostatic pressure and effective stress at failure are nor-
malised with the uniaxial compressive stress σ′c=8 MPa, and given in
the two last columns.

The normalised hydrostatic pressure and the normalised effective fail-
ure stress in Table 3.4 are given in Figure 3.3. From this figure the
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Table 3.4: Development of pressure and stress to the HJC model

Eff. Failure Applied strain Stress in X1 Hydr. Norm. Hydr. Norm. Eff.
stress Pressure Pressure Failure Stress
σ ε̇11 σ11 P P ∗ σ∗

[MPa] [s−1] [MPa] [MPa] [MPa] [MPa]

4.446 8e-6 5.838 3.308 0.414 0.556

7.112 1.9e-4 9.339 5.292 0.662 0.889

11.860 0.001 15.574 8.825 1.103 1.483

23.440 0.01 30.780 17.442 2.180 2.930

27.797 0.0211 36.502 20.684 2.586 3.475

21.528 0.0306 28.269 16.019 2.002 2.691

23.440 0.0348 30.780 17.442 2.180 2.930

22.490 0.037 29.533 16.735 2.092 2.811

normalised cohesive strength A* is determined.

The cohesive strength is defined as the difference between the undam-
age strength and the completly fractured strength at a given pressure.
The intersection point at the ordinate, by the normalised stress σ∗,
the A* is determined to be 0.0461. Note that the graph start from the
normalised tensile strength at the abscissa, T ∗ = 0.65MPa/8MPa =
0.08125.

The strain rate coefficient C is obtained by performing a least square
fit of the four data point shown in Figure 3.5. To obtain the strain
rate effect alone, the pressure effect must be removed.
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Figure 3.3: Description of the strength model for sea ice for finding
A*.

The technique to determine the strain rate coefficient C is given
in Figure 3.4 and 3.5. The first figure gives the normalised effec-
tive stresses versus the normalised pressure at different strain rates.
The four strain rates are found from Table 3.4. A straight line is
drawn from the maximum normalised tensile hydrostatic pressure T*

through each of the test data.

The change in strength due to strain rate alone is determined at
a constant normalised pressure P*=1.1, corresponding to the data
at ε=0.001. The ε is an assumed limit between ductile and brittle
failure. The intersection points at P*=1.1 for the four graphs are
used further in Figure 3.5.

The last parameters, B* and N, are determined by fitting the curve
using the least squares method in Matlab. The constants are de-
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fined from the equation 2.16, where ε̇∗ = 1.0. Hence, B*=1.239 and
N=1.029.

Figure 3.4: Normalised effective stress versus normalised pressure at
different strain rates.
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Figure 3.5: Determinition of normalised parameter C*.

Pressure-Volume Response Parameters

Due to lack of information in the transition region of the pressure-
volume response curve, µlock is set to 0 and plock=pcrush=2.67 MPa.
The equation of plock is presented in the theory part of this model,
and the crushing pressure µcrush=0.0004.

From Equation 2.20 the parameters K1, K2 and K3 can be deter-
mined. The Hugoniot data is not available for ice, hence a material
that resemble the material properties of ice is used. There is assumed
to be acceptable if the density is closely matched. The pumice is cho-
sen, it is a volcanic rock that intially float in water and has a density
at 550 kg/m3. The Hugoniot constant S is 1.06. This assumption
only affects the constants for equation 2.19 and the high-pressure
behaviour of the material.
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Damage Accumulation Parameters

The damage constants D1 and D2 and the plastic strain εp
min require

results from a cyclic compressive loading.

Due to lack of information, results from a biaxial test conducted by
Iliescu and Schulson (2002) is used to find εp

min and a normalised
pressure P*. Note that this P* is not the same as above.

The relation σ22 = Rσ11 = 0.072± 0.012σ11 is assumed to also apply
for the strain rate when finding ε22 from ε11. The equivalent plastic
strain rate is then obtained from Equation 3.1 to be εp

min =0.07203.

Since P = (σ11 + σ22)/3 for biaxial loading, the normalised value
is P*=0.2698. Finally D1 can be determined to 0.164. According
to Holmquist et al. (1993) D2=1, the same value is used here. The
constant D1 is determined from the Equation 2.18.

ε̄ = (2
3(ε2

11 + ε2
22))0.5 (3.1)

Since the D1 is sensitive to the selected strain rate, another value is
also calculated for ice. For an uniaxial loading with plastic strain at
0.01 and normalised pressure P = (σ11/3)/σ′f=0.4146. That leads to
another damage constant, D1=0.02. Holmquist et al. (1993) deter-
mined the damage constant D1 to be 0.04 for concrete, which will
be compared with the two calculated above in a force-displacement
history together with the results.

The failure strain, FS, is determined due to inverse modelling. It is
important to chose a correct value for failure strain, if not uncorrect
values will be plottet and elements may blow up. In this context
there will be tried five values; 0.1, 0.7, 1, 1.3 and 2.
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3.3.4 Lemaitre Damage Model

This model requires few parameters, the density ρ, Young’s modulus
E and Poisson’s ratio ν is the values presented in the introduction
of this section. The other parameters are determined by assumption,
scaling and default values.

Table 3.5: Summary of parameters used in Lemaitre Damage model

ρ E ν σy0 H β S T DC
[kg/m3] [GPa] - [MPa] [MPa] - - - -

900 8 0.333 1 61.6 1 5000 1
0.200
0.350
0.500

The initial yield stress σy0 is a assumed value. The isotropic hard-
ening modulus H is scaled from the paper by von Bock und Polach
and Ehlers (2013), where a value for Young’s modulus and hardening
modulus for ice is already given.

Default values are chosen for the isotropic hardening parameter β
and the damage constants S and t. The critical damage value Dc
was determined by chosing values between 0.2-0.5, and see how de-
pendent the analyses are of the parameter. The kinematic hardening
parameters are neglected.

The isotropic damage flag, output stress flag and damage plastic
strain are set to, respectively, 1, 0, 1. The damage threshold rd were
assumed to zero, the value depends on when damage accumulation
begins, r > rd. Since it is zero, damage depends on the damage
plastic strain r. More about these in the keyword manual by Hallquist
(2014).
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Numerical Results

In this chapter, the numerical results obtained from the analyses
are given. The numerical models are presented in Chapter 3, and
illustrated in Figure 3.1.

Before the main numerical model, a single volume element were taken
into account. It was used to understand the behaviour of the material
models. Here the results are briefly presented.

In Section 4.2 the results from the confined ice specimen with an in-
denter is presented. This is the most important part of the chapter,
since the input parameters for each material model are investigated.
The results are given in figures that compare the force-displacement
history. They are essential to the comparison within and between
the material models. If the results from the material models are suf-
ficient according to the brittle behaviour, a desired sawtooth pattern
is shown. More about the brittle failure and the desired sawtooth
pattern in Section 2.3.

How the indenter penetrates the ice specimen may be related to the
graphical results. Four tables with the first principal stress presented
by iso-plots are given as a final presentation of the numerical model
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of the indenter and the confined ice specimen.

At the end the results from the drifting ice sheet developed by Hilding
et al. (2012) are presented. The material models are compared with
the original material model in a force-displacement diagram and with
illustrative figures from the simulations at termination time.

The numerical simulations are runned with both smp and mpp ver-
sion of LS-Dyna, which are described in Section 3.1. The CPU time
for analyses runned with mpp version was less than those with smp
version.

For some of the models, the same analysis gave different results run-
ning smp and mpp. Hence the computational time is not further
considered, just commented.

Were the smp and mpp version gave different results, a comparison
is conducted. The smp version should give the same results if there
is used one or eight cores, while the mpp version can give different
results depending on the number of cores.

4.1 Results: Single Volume Element

The time step of the single volume element increased for Crushable
Foam, Brittle Damage and Lematire Damage model under compres-
sion, i.e. the element was not deleted. For the latter model the
elemtents will be deleted by a numerical model, because of a damage
constant and the elements will affect each other. The two other have
to be further studied in terms of element failure in compression. As
described in Section 3.3 were the parameters are characterised, the
Mat_Add_Erosion are presented.

For the HJC model it was noticed that the deletion time for the
element depends on the plastic strain εmin and the erosion criterion
FS. If erosion criterion was unchanged and the plastic strain was
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set to a high or low value, it was seen that the elements were deleted
faster by a higher value of plastic strain. However, a constant plastic
strain and variation in failure strain gave an earlier deletion of the
element with low failure strain values. This is presented in Figure
4.8 for the numerical model with the confined ice specimen.

The deletion time was not affected by changes according to the ref-
erence strain ε0. Therefore the value from the original paper by
Holmquist et al. (1993) at 1.0 is used in all analyses.

4.2 Results: Confined Ice Specimen

The results from the confined ice specimen are given as a graphi-
cal view of the vertical force versus the displacement caused by the
indenter. The parameter study will be in focus, where chosen pa-
rameters with different values are compared against each other. The
considered parameters are chosen for the reason that they may have
an effect on the brittle failure in sea ice.

The interaction between the indenter and ice specimen, deletion of
elements, is shown by a iso-plot with a fringe lever in section 4.2.5.
The iso-plots are given for the first principal stress.

During the presentation of each comparison in the figures, some com-
ments regarding the results are given to conclude which parameters
that is taken further into account. In Chapter 5 the material models
are further discussed and compared to each other.

Explicit non-linear analyses with reduced integration have to undergo
an energy control. For the presented results, the hourglass energy,
energy balance and kinetic energy are controlled.

The hourglass energy was satisfying for all analyses according to the
rule-of-thumb presented in Section 3.2.2. For some cases the hour-
glass coefficient QH was reduced from 0.1 to 0.06. There were no
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significant signs to spurious modes, since the energy ratio was ap-
proximately 1 for all analyses. The kinetic energy was also controlled,
and the values was held at a minimum.

As a control if the results are approximately satisfying, the uniaxial
stress under the indenter is calculated with the equation σ = F/A.
Where, F is the vertical force and A is the penetrated area of the
indenter by the peak force.

4.2.1 Crushable Foam Model

There was minimal problems regarding the analyses with the Crush-
able Foam model. The most demanding task was to determine the
loading curve, yield stress versus volumetric strain. Therefore, the
high and low stress curves from Gagnon (2011) was used, see Figure
3.2. The rest of the chosen parameters are given in Table 3.1.

The force-displacement curves below show that the Crushable Foam
model depends on the damping constant, Poisson’s ratio and the
loading curve. The tensile cutoff is essential due the correct loading
path. In Figure 4.3 the finaly plot of the force-displacement is viewed
with high and low stress curve.

The comparison of two damping coefficients, 0.1 and 0.5, shows that
the brittle failure develop earlier when the damping coefficient is low.
The lowest recommended damping coefficient at 0.05, did not pass
the analysis. The time step increased, due to blown up elements.

In Figure 4.2 three graphs are plotted, with different value of Pois-
son’s ratio and the tensile cutoff. The Poisson’s ratio is given a low
value, according to Gagnon and Wang (2012), and the true value of
Poisson’s ratio is determined earlier. Those values are 0.003 and 0.33,
respectively. The latter ratio gives greatest forces, but a delayed ele-
ment failure. Since there is recommended to use a low value for the
Poisson’s ratio, 0.003 have been used further.
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Figure 4.1: Crushable Foam model with various damping values, ν =
0.003 and σc

t = 0.65 MPa.

To get reliable results the tensile cutoff σc
t have to be a nonzero

positive value, which is a recommendation according to Hallquist
(2014). The green graph given in Figure 4.2, along the abscissa,
shows why the tensile cutoff should be a nonzero value.

Figure 4.3 view the finally results of the numerical simulation with
the Crushable Foam material model. Note that the high stress curve
is for unbroken ice, and low stress is for the crushed ice. The loading
curve for high stress increase more rapid compared with the other
curve. The vertical force dampens out after the maximum force is
reached.

In the last figure the penetration depth for high stress and low stress
by the peak forces 3 kN and 1.7 kN are 5.4 mm and 8.2 mm, re-
spectively. This cause uniaxial stresses at 33 MPa and 8 MPa, as
explained in the introduction of this section, which is satisfying com-
pared to the section about compressive strength, Section 2.2.1.
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Figure 4.2: Crushable Foam model with various values for Poisson’s
ratio and tensile cutoff. Damping=0.5.

Figure 4.3: Crushable Foam model with high stress and low stress
loading curve. Damping=0.5.
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4.2.2 Brittle Damage Model

To determine the parameters given in Table 3.2 to the Brittle Damage
model was simple, but a way more difficult to get the analysis to
run normal. In the theory of the model, it is described that the
elements will erode when the maximum stress is reached. In this
case, the results then viewed a ductile behaviour with the material
model alone. Hence, the erosion/failure criterion was added. The
σmax refer to the maximum principal stress in the material card to
the Mat_Add_Erosion.

A ductile behaviour occured when σmax > σ0, i.e. the principal stress
was given a higher value than the compressive yield stress in the
material card to the Brittle Damage model. If the opposite is the
case, the elements eroded by failure.

There were tried to run analyses with viscosity parameters outside
the range 0.71 to 0.73, but error occured. Those results viewed that
the recommended values for the viscosity is prefered. Several analyses
were run with both smp and mpp version for comparision, since both
gave different results. The smp and mpp version are described in
Section 3.1.

The figures 4.4 and 4.5 view the difference between the smp and mpp
version. The first figure, with Gc=1.5 J/m2 and σmax=3 MPa, have
almost the same path and force drops at same penetration depth.
The most significant difference is for the second figure, where the
first force drop with smp version is at 7.4 mm and mpp version gives
a drop at 2.7 mm penetration depth. The maximum vertical force is
4.2 kN and 3.3 kN, respectively. This leads to a calculated uniaxial
stress at for 24 MPa and 144 MPa for the smp and mpp version,
respectively. Compared with the uniaxial strength given in Section
2.2.1, the results from the smp version is most realistic.
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Figure 4.4: Brittle Damage model run with smp and mpp, Gc=1.5
J/m2 and σmax=3 MPa.

Figure 4.5: Brittle Damage model run with smp and mpp, Gc=7.1
J/m2 and σmax=8 MPa.
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Figure 4.6: Brittle Damage model with various toughness and max-
imum stress. Gc=1.5 J/m2 versus Gc=7.1 J/m2 with σmax=10 MPa
and σmax=5 MPa for mpp and smp version, respectively.

It seems to several elements fails simultaneously when the indenter
penetrates the surface of the ice specimen, which causes a gap be-
tween the surfaces. From the force-displacement history this is viewed
by the big drop in force value. The iso-plot in Table 4.3 gives a better
view of the element erosion.

By a comparison of the toughness energy Gc, there is minimal differ-
ences. Figure 4.6 gives the graphs for two pair of comparisons, where
the analyses with smp version have maximum stress σmax=5 MPa
and the mpp σmax=10 MPa. The latter got a ductile behaviour, the
reason might be that σmax > σ0.

To be noted, several analyses were run with different values below
0.1 for shear retention, but it had no significant effect on the results.
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4.2.3 Holmquist-Johnson-Cook Model

There were many parameters that needed to be determined for the
HJC model, a summary is given in Table 3.3. The most demanding
part, where to find the parameter that determined the element ero-
sion by failure. Parameters that were not found in litterature or by
calculation, were found by using inverse modelling. Further, different
compared values of the parameters presented and commented.

The damage constant D1 is sensitive to the value of plastic strain,
which can be seen from Equation 2.17. Holmquist et al. (1993) gave
a damage value D1 equal to 0.04 for concrete. In Section 3.3.3 two
values to the respect to ice are calculated to 0.02 and 0.164. From
the Figure 4.7 it is clearly shown that the damage constant should
be in the range of 0.04 to get the desired behaviour.

Figure 4.7: Three various values for damage constants, D1=0.164 and
D1=0.02 are calculated and D1=0.04 from Holmquist et al. (1993).
Shear modulus G and erosion value FS=1 are applied.
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Figure 4.8: Determition of the erosion criterion FS. Shear modulus
G and damage constant D1=0.04 are applied.

In Figure 4.8 five values are compared for FS, and the failure occurs
earlier by an lower value. Which was the same as the study from the
single volume element showed. The graph is plotted with a chosen
damage constant D1=0.04 and the shear modulus G.

Each result from the analyses have the same slope and a ductile
behaviour before failure. As described in Section 2.7.3, the erosion
criterion is a fictive value and can not be determined from litterature.
Inverse modelling has to be used to find a reliable value. In Section
2.7.3 it is mentioned that it is recommended to determine an erosion
criterion above 1.5, it seems that is not the case for ice.

In the theory section for the HJC model there is mentioned that the
erosion criterion can not be too low, which can give innaccurate or
unphysical results. This statement are proven by a erosion criterion
at 0.1 in Figure 4.8. For S2 sea ice the erosion criterion can be
determined approximately in a range between 0.7 and 1.3.

Since the penetration depth is 12.7 mm, there is difficult to say some-
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Table 4.1: Values for the von Mises and Hill’s criterion

von Mises Hill
A∗ 0.0357 0.0461
B∗ 1.004 1.293
C 0.0142 0.0097
N 1.022 1.023

thing about the force-displacement curve of when FS is equal to 1
will continue. But as long as the vertical force increase after a drop
for the values 0.7, 1.0 and 1.3, it also seems to be the same case for
higher values of the failure strain.

In Section 2.6 it was defined that the von Mises yield criterion applies
to granular ice and Hill’s yield criterion to columnar ice. Since Hill’s
criterion requires some more parameteres, it is of interest to compare
results from both methods. The different values between the crite-
rions, are presented in Table 4.1. The parameters for von Mises are
found in the same way as for Hill’s.

There is seen from Figure 4.9 that the von Mises yield criterion gives
lower values for the vertical force compared to Hill’s criterion, which
means that ice get a weaker behaviour. The values for the vertical
force from the analysis with Hill’s criterion, is almost 100 % higher
than for the von Mises criterion. Note that the damage constant D1
is equal to 0.04, and that the shear modulus G is used.

Some places the Young’s modulus E is given in the material card
rather than the shear modulus G. For instance Golding (2012) used
Young’s modulus. To see how the results are affected by that change,
two analyses were run. In Figure 4.10 the results are presented. The
shear modulus get a bigger mass failure than the elastic modulus,
approximately at a penetration depth by 10 mm.

Which of the modulus there is preferred to use is difficult to deter-
mine. The elements start to fail approximately around a penetration
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Figure 4.9: Hill’s yield criterion compared with von Mises yield cri-
terion. Shear modulus G and damage constant D1=0.04 are applied.

depth at 8mm for both cases, but the indenter in the analysis with
the elastic modulus get faster contact with the ice. Which is seen
from the curve, since the force increase more rapid after a drop.

To control the uniaxial stress for the analysis with Hill’s criterion,
D1=0.04 and shear modulus G, the values is calculated to 20 MPa.
The penetration depth is 8.3mm at the peak force 4.4 kN.

In the case where the von Mises yield criterion is used, the uniaxial
stress under the indenter is 9.7 MPa. The first drop is at 8.1 mm
with a maximum force at 2 kN. Compared with the values from the
section about compressive strength, the calculated values for uniaxial
stress is sufficient.

4.2.4 Lemaitre Damage Model

The Lemaitre Damage model was one of the least demanding material
models to run. There is an advantage that the damage constant is
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Figure 4.10: Comparison between Young’s modulus E and shear mod-
ulus G with damage constant D1=0.04.

implemented. The parameters are tabulated in Table 3.5. Further
three figures are presented to compare different values against each
other.

Figure 4.11 gives a comparison between the smp and mpp version,
described in Section 3.1. Two pair of similar input files have run
differently. All four graphs give the saw tooth pattern, but mpp ver-
sion do not have the big force drop. It is uncertain what happened
with the two graphs with mpp version after 12.7 mm, but for the two
other it seems to continue the brittle failure pattern. The smp ver-
sion is further used, due to better results according to the calculated
uniaxial stress described in the introduction.

In Figure 4.12 three graphs with different initial compressive stress
σy0 are compared, with equal damage constant and smp processing.
The damage material constant S is renewed for each initial yield
stress, S = σy0/200. The slope increase with higher value of the
initial yield stress σy0. The Lemaitre Damage model depends to a
certaint extent to these values.
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Figure 4.11: Comparison between smp and mpp with various initial
compressive stress σy0.

Figure 4.12: Lematire Damage model with various initial yield stress
σy0. smp and Damage=0.350 are applied.

Figure 4.13 gives the results from three different damage constants,
Dc. It is seen that the damage constant controls when the elements
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Figure 4.13: Lematire Damage model with various damage constant
Dc, smp version.

goes to failure, higher damage constant gives a “delayed” deletion.
The blue graph, Dc=0.500, is the default value in LS-Dyna. While,
Dc=0.200 is the lowest recommended value according to Lemaitre
and Desmorat (2010) and 0.350 is chosen as a average of those two.
The damage constant at 0.350 gives an higher amplitude after failure
compared to the others.

When Dc=0.200 the ice specimen starts to fail by the maximum force
at 9.4 kN, by a penetration depth at 5.5 mm. Dc=0.350 and Dc=0.500
drop in force by 7 mm and 9.2 mm, respectively. The maximum force
for the two latter are 12.2 kN and 17.4 kN.

By calculated uniaxial stress, given by the equation F = σ/A the
values for the last figure are higher than the given values in Sec-
tion 2.2.1. The results for Dc=0.200, Dc=0.350 and Dc=0.500 are,
respectively, 99 MPa, 79 MPa and 65 MPa.

Note that a comparison of the given results from the analyses with
Lemaitre Damage model, the force-displacement history from von
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Bock und Polach and Ehlers (2013) looks similar. In both cases the
results are ductile and after a while drops the force.

4.2.5 Iso-Plot for First Principle Stress

An analysis from each material model are given in the iso-plots below.
In the table caption the material model is given, while below which
analysis is presented:

• Crushable Foam model; ν=0.003, σc
t = 0.65 MPa, σmax=5 MPa

• Brittle Damage model; Gc = 7.1 J/m3, σmax = 8 MPa

• Holmquist-Johnson-Cook model; D1=0.04, G=4.96 MPa

• Lemaitre Damage model: Dc=0.350, σ0 = 1 MPa

The time history include six time steps, where the figures are named
with related time step and displacement. The plots are half of the
ice specimen, as shown in Figure 4.14. The fringe level range from 0
to 5 MPa, and apply to all iso-plots for easier comparison. The first
principle stress is oriented in the vertical direction, parallell to the
columns in the S2 sea ice.

As mentioned earlier, the shear band and extrusion of ice are not
taken into account. The reason is the element erosion, i.e. the ice
that should be extruded is deleted.

There is difference in how the indenter penetrates the ice specimen.
For Crushable Foam no element erosion is developet, instead they
expand out of plane where the indenter meets the ice. For Brittle
Damage, Holmquist-Johnson-Cook and Lemaitre Damage model the
element erosion occurs, and the elements starts to fail at different
time steps.

The first failure that occurs with the Brittle Damage model, at a
penetration depth at 2.7 mm, for HJC model by 8.3 mm and Lemaitre
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Figure 4.14: The fringe levels for first principal stress and half of the
numerical ice specimen.

Damage model by 7.0 mm. The graphs are represented in Section
4.2, the figures 4.5, 4.10 and 4.12, respectively.

A criterion for brittle fracture is given for Crushable Foam and Brittle
Damage model, the elements start to fail by the given maximum
principal stress. The values are 5 MPa and 8 MPa, respectively.
Failure occurs when the maximum principal stress reaches a critical
value, σ1 ≥ σmax.

In the ice specimen with the Lemaitre Damage model stress waves
are develope before failure. After the first element failure, the high
values of principle stress acts in the damage area.
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Table 4.2: Iso-plot for the Crushable Foam model.

(a) t=0.4 s, 2.0 mm (b) t=1.36 s, 6.9 mm

(c) t=1.68 s, 8.5 mm (d) t=2 s, 10.2 mm

(e) t=2.24 s, 11.4 mm (f) t=2.5 s, 12.7 mm
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Table 4.3: Iso-plot for the Brittle Damage model.

(a) t=0.4 s, 2.0 mm (b) t=1.36 s, 6.9 mm

(c) t=1.68 s, 8.5 mm (d) t=2 s, 10.2 mm

(e) t=2.24 s, 11.4 mm (f) t=2.5 s, 12.7 mm
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Table 4.4: Iso-plot for the HJC model.

(a) t=0.4 s, 2.0 mm (b) t=1.36 s, 6.9 mm

(c) t=1.68 s, 8.5 mm (d) t=2 s, 10.2 mm

(e) t=2.24 s, 11.4 mm (f) t=2.5 s, 12.7 mm
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Table 4.5: Iso-plot for the Lemaitre Damage model.

(a) t=0.4 s, 2.0 mm (b) t=1.36 s, 6.9 mm

(c) t=1.68 s, 8.5 mm (d) t=2 s, 10.2 mm

(e) t=2.24 s, 11.4 mm (f) t=2.5 s, 12.7 mm
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4.3 Results: Ice Sheet Towards an Off-
shore Structure

This numerical model is developed by Hilding et al. (2012), and is
presented in Section 3.2.3. Further the results are presented for the
drifting ice sheet towards an offshore structure.

In Figure 4.15 gives a graphical view of the analyses for the material
models; the original model, Crushable Foam, Brittle Damage, HJC
and Lemaitre Damage model. The comparison within the material
models and the measurements from the the lighthouse Norströms-
grund in Figure 4.16 are further discussed in Chapter 5.

In the original paper the analyses were terminated after 20 seconds,
here they are ended after 5 seconds due to little representative results.

Table 4.6: Ice actions from the analyses with an ice sheet towards an
offshore structure

Material model Force [MN ] time [sec]
Original model 1.81 2.1
Crushable Foam 2.80 2.3
Brittle Damage 4.63 1.1
HJC 3.33 5.0
Lemaitre Damage model 7.56 4.1

The maximum values are listed in Table 4.6. All results from the
selected material models from LS-Dyna have higher values than the
original material model. The Lemaitre Damage model gives the high-
est action, while the Crushable Foam model is closest to original
model compared with the maximum values. For all material mod-
els the action from the interaction is in the right order of magni-
tude (MN). Compared with the average values from the lighthouse
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Norströmsgrund at 2.1 MN to 3.5 MN, the Crushable Foam and HJC
model give the nearest values.

In the original numerical simulation Young’s modulus were deter-
mined to 5 GPa. First the analyses were run with 8 GPa, as for
the numerical model with the ice specimen and the indenter. By a
higher modulus the numerical model got unsatisfactory behaviour, so
the modulus were assumed to 5 GPa. Those results have also some
misbehaviors, given in Figure 4.15.

The figures in Table 4.7 view the different behaviour each analyses
had at 5 seconds. The first figure view the original material model,
where the ice being crushed in a controlled manner. The Crushable
Foam and Lemaitre Damage model breaks the ice like a beam right in
the front of the offshore structure. The Brittle Damage model causes
that the element are blown up and fast erosion. The HJC model did
not go to failure. That was also the case at a termination time at 10
seconds, the same compressive behaviour occured.
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Figure 4.15: Comparison between the material models used in the
numerical model of drifting ice sheet towards a structure.

Figure 4.16: Measured total force applied on the lighthouse
Norströmsgrund during a continuous crushing event. (Hilding et al.,
2012)
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Table 4.7: A plot for each material model at termination time,
t=5sec, for the numerical model with the drifting ice sheet towards
a structure

(a) Original

(b) Crushable Foam (c) Brittle Damage

(d) HJC (e) Lemaitre Damage
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Discussion

In the introducing chapter, the main goal was introduced for this
Master’s thesis; to use existing material models from LS-Dyna to see
if they can recreate the brittle failure for S2 sea ice under compression.

This chapter will discuss relevant results from each material model,
and compared with each other. Further, some material models are
compared with the measurements from the laboratory test by Kim
et al. (2012). The numerical model developed by Hilding et al. (2012),
will be discussed briefly at the end.

The brittle behaviour is described in Section 2.3, with a graphical
view of an indentation test conducted by Kim et al. (2012). The same
measurements are used in comparison with the discussed material
models.

The force versus displacement curve for the material models, Crush-
able Foam, Brittle Damage, HJC and Lemaitre Damage model, have
the desired sawtooth pattern and are in the right order of magnitude
(kN). However, some models were better than others.
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5.1 The Material Models

The material models were introduced in Section 2.7, characterised in
Section 3.3 and the results from the analyses are presented in Chapter
4. They are further discussed individually, but mainly against each
other.

A number of graphs have the characterised brittle failure in the force
versus displacement figures. However, the desired behaviour was
sought and found by inverse modelling. It was, for instance, eas-
ier to get a ductile behaviour than a brittle with the HJC model.
Due to the sensitivity of the damage parameters.

The great advantage for the Crushable Foam, Brittle Damage and
Lemaitre Damage model are the requirement of few parameters, while
for HJC model has far more values to be characterised. There is
although several aspects, i.a., CPU time, requirements according to
the numerical input file and failure according to the elements.

In the litterature it is given the Brittle Damage model has its own
damage rule, which depends on the shear retention and the shear
strength. The model should also be suitable for compressive load-
ing. Still, the indenter did not erode through the surface of the ice
specimen. Therefore, the erosion criterion in LS-Dyna is used for the
Brittle Damage model.

In the analyses with Crushable Foam, the results did not reflect the
ice behaviour as good as desirable. Figure 4.3 view graphs that damp-
ens out after maximum force, while Gagnon (2011) got sufficient re-
sults with the same model. A reason for the unfortunate results may
be caused by disorderly indenter penetration, see the iso-plot in Table
4.2.
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Numerical model

The difference between the numerical model with the confined ice
specimen and the one Gagnon used with Crushable Foam model, is
the shape of the ice specimen. His model is shaped like a pyramide
and divided into several parts, where each part got their properties.
The high and low stress curve were used in the same analysis, while
in this context the curves are used separately.

It might be a problem that the ice specimen is confined when the
Crushable Foam is applied, since the volume of compressed foams
will naturally expand in any direction. Instead the elements expand
out of the plane under the indenter. The problem may be solved if
another numerical model is used, for instance an unconfined system
or a full-scale model like the ice sheet towards an offshore structure.

The mesh density, of the numerical ice specimen from the indenta-
tion simulation, decrease from the inside out both horizontally and
vertically. It was assumed that under the compressed area, the fi-
nite elements have approximately same size as the ice grains. Which
means, there is not performed an optimalisation of the mesh.

From the iso-plots it seems that several elements fail at the same
instance of time. Which causes a big drop in the force-displacment
curve, and the values becomes close to zero after the maximum is
reached. If an optimalisation of the mesh leads to increased density,
the results for the Brittle Damage model may be more sufficient.
The element erosion could potensially be more sufficient with a finer
mesh, which may lead to better results.

An important aspect regarding the increased mesh density, is the
duration of the analysis also increase. By explicit solution, the time
step is limited by the element size and the speed of sound, c =

√
E/ρ,

in the material. The smallest element in the mesh controls the time
step for the whole solution.
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As mentioned in the introduction to the result chapter, the CPU
time was different for each material model. By an increased mesh
density, HJC or Lemaitre Damage model would be preferred. If the
iso-plots are studied for the those material models the element erosion
by failure are sufficient.

The Force versus Displacement pattern

For the Crushable Foam the loading curve is essential as an input
value, while the Brittle Damage mainly depends on the tensile cut-
off of how the force-displacement curve develops. Failure in the HJC
model is determined by plastic strain before fracture εmin, the damage
constant D1 and the erosion criterion FS (failure strain) by calcula-
tion and inverse modelling. While, failure by the Lemaitre Damage
model are determined more easily with the damage constant Dc.

From the results in Chapter 4 it seems to be the material models
that include a damage constant that gives the best results. The
figures 4.10 and 4.13 view the final force pattern to HJC and Lemaitre
Damage model, respectively. Although the inception gives a ductile
behaviour, the first force drop develops when the first element goes
to failure. It would be preferred if the elements failed earlier, since
the penetration depth was at 12.7 mm and the termination time at
2.5 seconds.

How will the load pattern evolve if the termination time were 5 sec-
onds instead of the current 2.5 seconds? The corresponding graph
to Crushable Foam and Brittle Damage might view another loading
path, where the force increased due to more compressed material or
better contact between the indenter and the ice specimen.

If the simulation continued, hopefully, the loading pattern for HJC
and Lemaitre Damage model still had the sawtooth pattern and gave
sufficient results.
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von Mises and Hill’s yield criterion

The results from HJC is interesting regarding the isotropic and anisotropic
effect. Figure 4.9 compare the results from von Mises and Hill’s yield
criterion, i.e., isotropic and anisotropic consideration. Suprisingly the
action from the transversly isotropic sea ice is approxiamately 100 %
higher than for isotropic sea ice. If the actions are higher with an
anisotropic consideration, they can not be neglected.

It is an interesting discovery, since it can be essential to which mate-
rial models one chose in further studies. There are several material
models implemented in LS-Dyna that takes the anisotropic effect into
account. Note that those models can require parameters which is un-
known for ice.

5.2 Comparison with Laboratory Tests

Interaction Between Ice Specimen and Indenter

Brittle Damage, HJC and Lemaitre Damage model are taken into
further discussion, where the simulation results are compared with
the laboratory test by Kim et al. (2012). Of clearity, it is the same
experiment as the main numerical model with the indenter and the
confined ice specimen. The Crushable Foam model is disregarded due
to the results presented in Chapter 4. The elements under the inden-
ter blowed up and the force dampens out in the force-displacement
history, hence the results may be uncertain.

The comparison between the numerical simulation and laboratory
tests are not optimal, since the laboratory tests are with freshwater
ice. Sea ice is weaker than freshwater ice, which cause a lower loading
pattern for the curves. Anyway, all other conditions are equal. The
comparison is viewed in the figures 5.1a and 5.1b.
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Test number EK7 and EK8 show brittle fracture, and the ice fails
without previous plastic deformation. The three numerical results
have a ductile behaviour before fracture. It is the Lemaitre Damage
model that gives the best results. The material model shows good
correspondency with the test in Figure 5.1a.

Ice Sheet Towards a Offshore Structure

By a comparison between the numerical results and the lighthouse,
Figure 4.15 against Figure 4.16, it is seen that the numerical simu-
lations is in right order of magnitude (MN) compared to the average
force level from the lighthouse.

For the numerical model, there is room for improvement. In this
thesis, the cohesive elements were included. Although the failure
criterion for the cohesive elements were set above the continuum el-
ements, it is likely that they will affect the results.

The failure at the termination time is viewed in Table 4.7, for each
material model. The behaviour is quite different compared to the
original model. The Crushable Foam and Lemaitre Damage model
compress the ice like a beam, and the ice fails unlikely. While, the
Brittle Damage erode the elements fast, so the contact between the
ice sheet and the offshore structure is lost. The ice sheet being com-
pressed without failure in the case with HJC model.

The change in Young’s modulus, from 8 GPa to 5 GPa was more
important than first expected. There is known that the modulus for
sea ice is lower than for freshwater ice, and the value of 8 GPa can
also be used to freshwater ice. Since the modulus was important to
the development of interaction, the modulus might have to be lower
than 8 GPa.
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(a) Test no. EK7

(b) Test no. EK8

Figure 5.1: Comparison between Brittle Damage, HJC, Lemaitre
Damage model and experimental measurements test no. (a) EK7
and (b) EK8
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Chapter 6

Conclusion

The main purpose in this thesis was to see if already implemented
material models in LS-Dyna could recreate brittle failure of S2 sea ice
under interaction with an offshore structure. Three numerical models
were used; a single volume element, interaction between a confined
ice specimen and an indenter, and a drifting ice sheet towards an
offshore structure.

Four different material models were characterised and used in the nu-
merical simulations. The chosen were Crushable Foam, Brittle Dam-
age, Holmquist-Johnson-Cook (HJC) and Lemaitre Damage model.

The main part of the results consisted of the model based on the
laboratory test conducted by Kim et al. (2012). The numerical model
was an indenter penetrating a confined ice specimen, i.e. a triaxial
loading which compliance the behaviour of an ice floe.

The force versus displacement history from the numerical simulation
were compared with small and large scale tests.The material models
gave the desired sawtooth pattern and results in the right order of
magnitude. However, some results were more sufficient than others.

Material models with an already implemented damage constant, i.e.

95



Chapter 6. Conclusion

HJC and Lemaitre Damage model, are simpler to determine the de-
sired behaviour due to inverse modelling of the damage constant.
Even though the HJC model has several material parameters that
should be determined, it gives the desired brittle failure in the load-
ing curve.

If numerical simulations can replace some of the experimental tests,
the design of offshore structure against ice actions can be more cost
efficient and less time consuming.

By improvement, it seems possible to find an existing material model
that can give sufficient results regarding the desired brittle failure by
an ice-structure interaction. Further research is required, and in next
chapter there are some suggestions.
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Further Work

Suggestions according to improvement and further research are listed
below:

• The numerical model itself can be improved, e.g. another struc-
ture, an optimalisation of the mesh and liquid layer on top as
von Bock und Polach and Ehlers (2013). There is also of inter-
est to take the friction into consideration.

• In order to find a material model that corresponds to the brittle
behavior to ice, it may be advantageous to perform tests on
ice for further use in a numerical simulation. And at the end
compare the measurements from laboratory with those from
the analyses.

• Use of the Smooth Particle Hydrodynamics (SPH) in LS-Dyna
can be an efficient tool for penetration. It is a meshfree method
that can simulate solids and solve problem where finite element
method has difficulties.

• In this thesis the HJC material model was also implemented
in IMPETUS Afea Solver, a software for linear and non-linear
computational mechanics. The result was not sufficient at the
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first try, but with some more time according to the numerical
model set-up the results may be sufficient.

• There is also necessary to see if other material models can be
used instead of those who are presented in this Master’s thesis,
e.g. anisotropic material models.
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