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Abstract

Background: This study will seek to determine if the partial fail-
ure of a glulam roof in 2011 was only due to a measured accidental
overload of 1, 6kN/m2 more than planned for in the design, and also
whether the surviving roof structure received significant permanent
damage. Monte Carlo methods are used to calculate probabilities
of failure, and there is a heavy focus on the so-called ”duration of
load”-effect (DOL) in timber, first described by Wood (1947). Two
different models for the DOL-effect are used in parallel; the Foschi &
Yao method (Foschi et al. 1986), and the Gerhards method (Gerhards
1979), the results are compared to each other.
Results: The simulations show a low probability of failure of a single
beam overloaded for 10 years, for both models. pfail = 8, 94 · 10−4

and pfail = 3, 10 ·10−5 for the Foschi & Yao method and the Gerhards
method, respectively.
Conclusion: This study finds it unlikely that the failure was exclu-
sively due to the overload. It also finds that the structural integrity
of the remaining structure is not weakened by the overload.

Bakgrunn: Denne studien ønsker å bestemme om den delvise kol-
lapsen av en limtrekonstruksjon i 2011 var utelukkende p̊a grunn av
en m̊alt overbelastning p̊a 1, 6kN/m2 mer enn planlagt, og ogs̊a om
den resterende konstruksjonen ble p̊aført betydelig permanent skade.
Monte Carlo simuleringer blir brukt til å beregne sannsynligheter for
brudd og det er et stort fokus p̊a den s̊akalte ”duration of load”-
effekten (DOL) for treelementer, (Wood 1947). To forskjellige mod-
eller for bestemmelse av DOL-effekten blir brukt; Foschi & Yao’s
metode (Foschi et al. 1986), og Gerhards metode (Gerhards 1979),
resultatene fra disse to metodene blir sammenlignet.
Resultater: Simuleringene viser en lav sannsynlighet for brudd for
en enkel bjelke under overbelastning over 10 år, for begge modeller.
pfail = 8, 94 · 10−4 og pfail = 3, 10 · 10−5 for Foschi & Yao’s metode
og Gerhards’ metode, henholdsvis.
Konklusjon: Denne studien finner det usannsynlig at kollapsen var
utelukkende p̊a grunn av overbelastningen. Den finner ogs̊a at den
resterende konstruksjonens holdbarhet ikke burde være betydelig svekket
av overbelastningen.
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1 Introduction

1.1 Problem description

May 31st 2011 a glued laminated beam, that was part of the secondary load
bearing structure for the roof of Bauhaus Schlieren in Zurich, failed in bend-
ing (Fink et al. 20011). Investigations done on the roof showed that the load
from the soil on the green roof was up to 2.4kN/m2 in the area around the
failed beam, significantly more than the the 0.8kN/m2 that was used in the
design as a characteristic value. In this case characteristic load refers to a
mean value.

This study will seek to determine if this failure was to be expected given the
unplanned overloading, and the assumed material parameters. And whether
significant permanent damage has been done to the remaining structure,
based on the long-term overload.

The damage caused by increased loading in the time after the failure hap-
pened until temporary supports were installed, is not a part of this study.

Two different methods for calculating damage from the so-called ”duration
of load effect” (DOL) in timber will be used in parallel and will be compared
to each other.

1.2 Bending resistance in timber

In this study bending resistance in timber will be referred to as the maximum
stress value occurring in the upper and lower end of the member exposed to
bending, before failure happens. This is in accordance with the Eurocode,
and the general literature on timber engineering. In reality this representa-
tion is misleading since any timber member should be considered as a system
of many parts that work together, and failure happens when enough parts
of the system are stressed to their point of failure. i.e. failure does not nec-
essarily begin at the upper or lower edge. The maximum bending stress is
thus a representation of the moment load where the whole system is brought
to the point of failure.

”Bending strength” and ”bending resistance” both refer to this value and are
in this study used interchangeably.
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Name Definition area Scale Location Probability density function

Normal a < x < b σ µ 1
σ
√
2π
exp(− (x−µ)2

2σ2 )

Log-normal 0 ≤ a < x < b σlog µlog
1

x
√
2πσ

exp(− ln(x−µ)2√
2σ

)

Gumbel max. a < x < b Mo β 1
β
exp(−x−Mo

β
+ exp(−x−Mo

β
))

Exponential 0 ≤ a < x < b 1
λ

N/A λ · exp(−λ · x)

Table 1: Probability distributions and their parameters.

1.3 Distributions

The probability distributions used in this study are listed in table 1. The
normal distribution is used for values that were determined by using regres-
sion analysis of empirical data. The log-normal distribution is chosen for
variables where negative values are not applicable, e.g. bending resistance
or permanent loads. The Gumbel max. distribution is for variables were
extremely high values have to be taken into account, e.g. snow load. The
exponential distribution is used at points where the time between two events
is modelled.

2 Design according to the Eurocode

Since the building in question was designed according to the Swiss building
codes that were valid at the time of construction, 2001, it was necessary to
determine whether the design would have been appropriate with regards to
the Eurocode or not. In this section the Norwegian National Annex (NA)
has been used whenever values from an NA are required (EN-1990, EN-1991,
and EN-1995). Characteristic snow load is taken from the Swiss national
building code (SIA 216), since this is a parameter determined by local cli-
mate conditions.

2.1 Case outline

The design is for a single simply supported beam, glued laminated timber
with characteristic bending strength of 32N/mm2, with a span of 17.62m
and load width of 4.5m. Beam dimensions are rectangular 1120 · 179mm2

(Fink et al. 2011). Due to the nature of the connection between the roof and
beam, the beam is considered restrained against lateral torsional buckling.
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Considering the long span (17, 62m) it is likely that the limit for maximum
deflection would be the deciding factor in determining the dimensions of the
beam. This study however, will only consider the ultimate limit states, not
the serviceability- or any other limit states.

The moisture levels are in the Eurocode taken into account by selecting one
out of three service classes. The beam was chosen to be in service class 1, due
to being in a heated ventilated space, protected against precipitation. This
assumes a relative air moisture content of below 65%, and a corresponding
wood moisture content of 12% or lower.

To include the duration of load effect in the design calculations, the Eu-
rocode uses the resistance reduction factor kmod. kmod is chosen based on the
assumed cumulative duration of the load case that is being considered, and
the relative air moisture levels around the component in question (service
class). Type of timber material is also a factor in determining kmod, glued
laminated- and solid timber are considered by the code to be less weakened
by this effect than for instance particle boards. If there are multiple relevant
load cases, kmod has to be determined for each one. Values for kmod are de-
termined by table 3.1 in EN-1995-1-1.

Two load cases were considered to be relevant to the design: Case A, snow
load is dominant: Load is considered for a medium term, kmod = 0.8. Case
B, self-weight is dominant: Load is assumed to be permanent, kmod = 0.6.
Values for kmod are found in EN 1995-1-1 tab 3.1. A third load case where an
imposed load (maintenance work etc.) is dominant could also be considered,
but the imposed load has lower value (0.75kN/m2), and shorter duration
(short term) than the snow load, and is not to be combined with other
variable loads (EN-1991-1-1 3.3.1(1)). It will therefore not have an impact
on the design. Wind is excluded for a similar reason. The wind load would be
negative (suction), and would be mostly countered by the permanent loads,
which on green roofs tend to be considerably high.

2.2 Loads

There was no easily available data for the self-weight of the roof-structure.
Because of this, the load was chosen based on a standard table value for steel
roofs of 0, 3kN/m2 (Bautabellen fűr ingenieure). Self-weight of the beam was
determined using an apparent density of 4.0kN/m3, (tab A.3 EN 1991-1) .
Dimensions of the beam are 1.120m · 0.179m (Fink et al. 2011). Load from
the beam is then 1.120m · 0.179m · 4.0kN/m3 = 0.80192kN/m.
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Snow load QS = 0.9
Self-weight, roof GR = 0.3
Filling, green roof GF = 0.8
Self-weight, beam gB = 0.8019

Table 2: Loads. Capital letters signify load per unit area (kN/m2), lower
case is for load per unit length (kN/m)

Weight of the filling in a green roof is something that varies between different
green roof products, to such a degree that it should be determined on a per
project basis. The value that is used here is the same that was chosen for
the actual design of the building, 0.8kN/m2.

Characteristic snow load for this area of Switzerland, the canton of Zurich, is
determined by the national building code to be 0, 9kN/m2 (SIA 261). Since
the roof is flat, and in a relatively open space, there will be no further factors
modifying this value.

2.3 Bending

2.3.1 Bending resistance

Design resistance stress for a beam under bending is fmk/γM · kmod · ksys.
Where fmk is the characteristic bending stress (32N/mm2), kmod is the du-
ration/moisture reduction factor, and γM is the partial safety factor related
to the material. γM = 1.15 is used, taken from EN 1995-1-1 tab NA.2.3.
The system modification factor ksys is set to 1,1 after EN-1995-1-1 6.6. This
factor incorporates the positive effects due to load sharing.

For case A this leads to a design resistance stress of RA = 32 · 0, 8/1, 15 ·
1, 1 = 24, 48N/mm2. For case B this leads to a design resistance stress of
RB = 32 · 0, 6/1, 15 · 1, 1 = 18, 36N/mm2.

2.3.2 Bending stress

It is assumed that loads are evenly shared between the parallel beams. Loads
are therefore converted from area loads to line loads using the effective load
width of 4.5m, which is the center to center distance between the parallel
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Snow load qs = 4.05
Self-weight, roof gr = 1.35
Filling, green roof gf = 3.6
Self-weight, beam gb = 0.8019

Table 3: Line loads. All values are in kN/m

Snow load σs = 4.200
Self-weight, roof σr = 1.400
Filling, green roof σf = 3.733
Self-weight, beam σb = 0.8316

Table 4: Load effects. All values are in N/mm2

beams. Loads on the beam are then as in table 3.

Maximum moment will happen in the middle of the beams length. Because
it is simply supported the moment will be

M =
qL2

8

Where q is the load per unit length and L is the span length L = 17.62m.
The stress in the top and bottom of the cross-section will then be represented
by: σmax = M/W . Where M is the moment and W is the section modulus
which is determined by the beams cross-sectional geometry. The beam has
a rectangular cross-section, which leads to:

W =
h2 · b

6
= 0.03742m3

A factor that converts line loads to maximum stress in the beam can then
be written as:

cf =
L2

W · 8 · 1000
= 1.0370

Where the factor 1/1000 serves to convert from kN/m2 to N/mm2. Charac-
teristic stresses from the loads are then as shown in table 4.

2.3.3 Load combination

In case A, the snow load is dominant. It will then be given a load factor of
γQ,1 = 1, 5, while the permanent loads are assigned a factor of ξ · γG = 0, 89 ·
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1, 35 ≈ 1, 2 in accordance with table NA.A1.2(B) in EN-1990:2002/NA:2008.
Design stress is then:

SA = 4, 2 · 1, 5 + 1, 2 · (1, 4 + 3, 733 + 0, 8316) = 13, 46N/mm2

In case B, the permanent loads are dominant and are assigned the load factor
γG = 1, 35, while the snow load is factor is modified to be γQ,1 ·ψ0. ψ0 = 0, 7
for commercial buildings (table NA.A1.1) so the load factor is 1, 5·0, 7 = 1, 05.
Design stress is then:

SB = 4, 2 · 1, 05 + 1, 35 · (1, 4 + 3, 733 + 0, 8316) = 12, 46N/mm2

2.3.4 Ultimate limit state

The limit state equation can be written as:

Rd − Sd > 0

Case A: Design resistance is 22.26N/mm2, versus a design bending stress of
13.46N/mm2.

Case B: Design resistance is 16.69N/mm2, versus a design bending stress of
12.46N/mm2.

It is clear that the duration of load effect, through kmod, makes the permanent-
only load case for bending, the most significant one.

2.4 Shear forces

2.4.1 Shear resistance

Shear stress resistance for a glulam member can be expressed as

RV d = fvk · kmod/γM
Where fvk is the characteristic shear resistance, kmod is the duration/mois-
ture reduction factor, and γM is the partial safety factor for the material.
fvk for a GL32c beam is 3, 2N/mm2. γM is still 1.15.

We then have for case A and B:

RAV = 3.2 · 0.8/1.15 = 2.26N/mm2

RBV = 3.2 · 0.6/1.15 = 1.67N/mm2
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Snow load τs = 0, 3983
Self-weight, roof τr = 0, 1328
Filling, green roof τf = 0, 3540
Self-weight, beam τb = 0, 07886

Table 5: Shear stresses. All values are in N/mm2

2.4.2 Shear stress

The maximum shear force from a line load on a simply supported beam is.

V = qL/2

This occurs at the ends of the beam right next to both of the supports.
Maximum design shear stress in the cross-section for a given shear force is

τd = 1.5 · V/(0.67 · AS)

Where AS is the effective shear area. AS for a rectangular cross-section in a
glulam member, can be considered equal to the entirety of the cross-sectional
area.

AS = h · w = 1.12 · 0.179 = 0.2005m2

The conversion factor cf2 between line loads (kN/m) and maximum shear
stresses (N/mm2) can then be written as:

cf2 =
1.119 · L
AS · 1000

= 0.09834

The shear stresses from the different loads are then as shown in table 5

Shear stresses are combined using the same combination and load factors as
for bending.

Case A: Resistance is 2.44N/mm2, versus a design shear stress of 1.28N/mm2.

Case B: Resistance is 1.83N/mm2, versus a design shear stress of 1.19N/mm2.

We then see that shear is less of an issue than bending. B is still the most
significant case.
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2.5 Optimized dimensions

When comparing the different load cases, case B in bending has the highest
utilization of the resistance allowed by the Eurocode. At 13, 46/22, 26 =
0, 6047⇒ 60, 47%. Using the load case and kmod for case B in bending. The
minimum allowed height of the beam’s cross-section, when rounded up to
the nearest millimetre, was found to be 911mm, versus the actual height of
1120mm. This optimized height will be used later in the study.

It is likely that the significantly larger dimensions of the actual beam are to
avoid large deflections. The deflection in the middle of the beam w can for
a simply supported beam be expressed as:

w =
5

384
· q · L

4

E · I
(1)

Where q is the load per length unit, L is the span length, and E and I are
the beam’s modulus of elasticity and second moment of area, respectively.
Compare this with the equivalent equation for bending moment, M:

M =
q · L2

8
(2)

From the L4 part in equation (1) it is clear that the longer the span, the
more severe the deflection becomes compared to the bending moment.

Since this study does not consider the serviceability limit state, this will not
be investigated further.

2.6 Conclusion

This design would have been appropriate according to the Eurocode, for the
ultimate limit state when using the values from the Norwegian National An-
nex.

3 Probabilistic modelling of snow loads

3.1 Model

To properly perform the duration of load calculations, it is necessary to de-
termine, not only the maximum possible snow load, but also the magnitude
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and duration of every snow event, here referred to as ”snow packs”, in the
relevant time periods. The time periods to be considered are 1 year, 10 years
and 50 years. 10 years was the age of the structure at the time of failure. 50
years is the standard service lifetime the Eurocode assumes for most regular
buildings.

The model for the snow load’s time history is the one presented in Sørensen
et al. (2002). Snow loads are modeled as triangularly shaped ”packs” when
plotted over time.

3.2 Distribution parameters

The peak magnitude of the snow packs are modelled as a gumbel max dis-
tribution. The one year 98% fractile for maximum load is Qsk = 0, 9kN/m2,
this is the characteristic load used in the design. This means that there is a
98% probability that this value will not be exceeded in a single year. It is
assumed that the coefficient of variation (cov) for this load is 0,21.

The parameters of the gumbel distribution can be written as q = Mo +β · zp.
Where q is the snow load, the location parameter Mo is the mode, i.e. the
peak value of the probability density function, β is the scale factor which
can be written as β =

√
6 · σ/π, where σ is the standard deviation. zp is

the standard gumbel variate that corresponds to the probability that is be-
ing considered. zp is determined using the inverse of the standard gumbel
distribution where Mo = 0 and β = 1, and the probability is p. The inverse
gumbel max function can be written as:

q = Mo − βln(−ln(p))

zp is then found using the standard inverse gumbel distribution:

zp = ln(−ln(p))

The relation between Mo and the mean is Mo = µ − β · γ, where µ is the
mean and γ is the Euler Mascheroni-constant, γ ≈ 0, 5772. The one year
mean can then be calculated as:

µ1 =
Qsk

1 + cv ·
√

6/π · (z098 − γ)
= 0, 5828kN/m2
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Since the coefficient of variation is known for this time period, the standard
deviation is 0, 1224kN/m2. β is then 0, 0954kN/m2. The standard deviation
remains constant regardless of the duration of the time period that is being
considered.

Based on climate data from 1981 to 2010 (MeteoSwiss 2010) it was assumed
that the yearly expected number of snow packs in Zurich is λs = 10, 13, this
is the number of snowfall days divided by 1,5. i.e. the assumption we are
making is that two out of three snowfall days are connected to the same
snow pack. The probability that Qsk will not be exceeded in a single snow
pack is then psingle = 0, 981/λs ≈ 0, 9980. The mode for a single pack is then
Mo0 = Qsk−zp0998 ·β0 ≈ 0, 3067. The two parameters, β0 and Mo0, needed to
model a single snow packs’ maximum magnitude, called Pm, are now known.

3.3 Duration between packs

The time between the starting point of two packs is modelled as an expo-
nential distribution with the mean being the inverse of the expected number
of snow packs, i.e. 1/λs. The realizations of this distribution are called t1.
t1(1) is then the time from the starting point to when the first snow pack
occurs. t1(2) is the time between the start of the first pack to the start of the
second pack, as shown in figure 1. This means that snow packs are spread
evenly out over the course of a year. Since snowfall in Zurich occurs mainly
between November and April, this modelling is inaccurate, but should not
negatively impact the accuracy of the duration of load calculations since the
mean for the cumulative time with, and without snow is accurate.

3.4 Duration of the packs

The snow packs are modelled with triangularly shaped load histories with the
given maximum, Pm as shown in figure 1. The duration of each pack will be
modelled as an exponential distribution. The average number of snow cover
days is 33,2. The assumed number of snow packs is 10,13. Mean duration
is then mt = 33, 2/10, 13 ≈ 3, 28 days. Duration of a snow pack is closely
related to the magnitude, i.e. larger accumulations take longer time to form,
and thereby also to disperse. The duration will therefore be calculated as
Pm ·Xt where Pm is the realization of the aforementioned gumbel distribution
and Xt is an exponentially distributed factor with units d/(kN/m2). Mean
for Xt is mXt = mt/mPm = 9, 056 where mPm is mean snow magnitude.
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Figure 1: Example for a realization of a load history. Total load is the
permanent load plus the snow pack.
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mPm = Mo0 + β0 · γ.

3.5 Shape factor

The snow loads, and thereby also their duration, are modified by the Gum-
bel max. distributed shape factor sf. This factor indicates the difference
between snow load on the ground, and the roof. This factor has a mean of 1
and coefficient of variation of 0,35. As suggested by Kőhler (2007) table 4-19.

4 Duration of load damage modelling

4.1 Duration of load effect

Key to this study is the so-called ”duration of load” (DOL) effect. This
refers to timbers tendency to lose strength when heavily loaded over time,
even during static load conditions. This effect was first described by Wood
(1947) based on experiments performed on clear wood, and has since been
confirmed by multiple other experiments to be valid for structural timber as
well.

The effect was later also shown to be connected to the moisture contents of
the structural component (Hoffmeyer, 1978). Higher moisture levels leads to
greater strength reduction. The DOL-effect is then not just dependant on
the load and its duration, but also on the environment around the timber.

The physical reasons for this behaviour are not known exactly. Since this
effect has been clearly proven to take place during constant loads, it cannot
be exclusively due to fatigue, though fatigue is assumed to greatly enhance
this effect. The prevailing theory is that creep deformation cause local fibre
buckling, and this combined with propagation of cracks, that are almost al-
ways present in timber elements, will eventually cause failure.

There exists several different models designed with the intention of accurately
describing this effect as a function of time. In this study we will be using
two of them. They are referred to here as Foschi and Yao’s method (Foschi
et al. 1986) and Gerhards’ method (Gerhards 1979), both named after their
creators. They are both empirical models that represent the DOL-effect as
”damage” accumulated in the timber element. i.e. they are based on regres-
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sion of experiment data, and do not try to explain the reasons behind this
behaviour. They only try to predict its effects.

In this study damage is represented by the value α, where α = 0 indicates
no damage, and α = 1 indicates failure. The following expressions are based
on those found in Kőhler (2007).

The parameters used for both models assume an average timber moisture
content of 11%, which is in line with the design assumptions made in section
2.

4.2 Foschi & Yaos method

The expression for damage accumulation over time is:

dα

dt
= A(S(t)/R0 − η)B + C(S(t)/R0 − η)D · α(t) (3)

Where S(t) is the current bending stress, R0 is the short term bending re-
sistance (stress). η is the so-called damage threshold, which is the ratio
(S(t)/R0) below which damage does not accumulate, chosen to be 0,5. We
then have no accumulation if S(t) < R0 · η.

B, C, and D are normal distributed model parameters determined by regres-
sion analysis of empirical data, A is expressed as:

A = k
B + 1

R0(1− η)(B + 1)

Where k is the initial rate of loading. This is because the models are cali-
brated to laboratory tests where the rate of loading should be considered a
factor. In this study k is set to a nominal value of k = 1N/(mm2 · h) for
calculating damage from constant loading in both models. Details for the
parameters are found in table 6. For the snow packs:

k =
Pm · 2

∆t

where Pm is the snow load (stress), and ∆t is the duration of the pack. This
is the case for both models.

For a constant loading equation 3 is solved as:
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α(t) = κα0 + κλ− λ (4)

Where

κ = exp

(
C
(
Sc
R0
− η

)D
∆t

)

λ =
k(B + 1)

C ·R0(1− η)(B+1)

(
Sc
R0
− η

)B−D
∆t is here the duration of the period of constant loading. Sc is the magnitude
of the constant load (stress).

After the damage has been calculated the residual strength Rr can be calcu-
lated using the following expression:

Rr

R0

= η + (1− η)(1− α)1/(1+B) (5)

In this model, damage accumulation from the triangle loads is calculated
numerically based on equation (3) with 1000 steps per pack.

As can be seen in equation 3. The accumulated damage is dependant on the
current damage. Suggesting a non-linear relationship between duration of
load, and damage.

4.3 Gerhards method

The damage accumulation according to the Gerhards method is defined as:

dα

dt
= exp(−a+ b · S(t)/R0) (6)

Where b is a normal distributed model parameter and:

a = ln
(
R0

bk
(exp(b)− 1)

)
Where k is the rate of loading at k = 1N/(mm2 · h). Details for the model
parameters are found in table 6.

For a constant load equation 6 is solved as:
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α(t) =

(
bk · exp(b · Sc/R0)

R0 · (exp(b)− 1)

)
∆t+ α0 (7)

For the triangle loads equation 6 is solved as:

αtri =
R0 · t2
b · Sr

(
exp

(
b · Sr
R0 · t2

t1 + v

)
− exp

(
b · Sr
R0 · t2

t0 + v

))
· 2 + α0 (8)

Where:

v = −a− b

R0

(
Sr · t0
t2

+ Sc

)
t0 is the time from the start of the simulation to the start of the load pack.
t1 is the total time from the start of the simulation to the top of the triangle.
t2 = (t1 − t0)/2 = ∆t/2, i.e. half the duration of the pack, or the time from
the start of the pack to the top of the triangle. Sr is the total load at the
top of the triangle, Sr = Pm+ Sc.

This model also assumes that duration of load damage causes a permanent
reduction in short term strength. The residual strength can be expressed as:

Rr

R0

=
1

b
ln(1 + (1− α)(exp(b)− 1)) (9)

As opposed to Foschi & Yao’s method, this method has a linear relation-
ship between duration of load and accumulated damage. It should be noted
however, that both models treat the α-value as a theoretical size not corre-
sponding to any physical parameter. Considering this, the most important
aspect to these models is the point in time when failure happens. However,
there is also the assumed relationship between α-values and residual strength
which is expressed in equations [5] and [9].

Also unlike the Foschi & Yao method. There is no threshold value where
damage is not accumulated below. In practice this alone does not lead to
large differences in calculated damage. Since load levels of S(t)

R0
< 0.5 will

only lead to minuscule damage increases.
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Parameters Mean Standard deviation
Foschi & Yao
B 30,03 0.92
C 17,05 12,30
D 5,69 0,45
Gerhards
b 51,41 0,01

Table 6: Parameters for the different models, as found in Kőhler (2007). All
parameters are normal distributed.

5 Proof load effect

5.1 Proof Loading

Proof loading is a method used in structural engineering to improve the
known characteristics of the resistance of a set of load bearing members.
The method consists of a controlled loading of the set, e.g. glulam beams,
up to a certain fractile of the assumed probability distribution of the relevant
resistance, e.g. bending. At this point some members may fail. These are
the lower realizations of this sample.

It can then be safely assumed that none of the surviving members had a short
term resistance lower than the proof load level. Based on this information, a
new probability distribution for the resistance may be formulated as proposed
by Faber et al. (2005).

F ′′R(r) =
F ′R(r)− F ′R(σl)

1− F ′R(σl)
(10)

Where F ′R(r) is the prior distribution for the short term strength, FR(r)′′ is
the posterior distribution, and F ′R(σl) is the fractile of the resistance that the
proof load represents, i.e. the probability of failure at this load for any given
member pertaining to this distribution. An example of this udating is shown
in figure 2.

The reason this method is particularly useful in timber engineering is that the
variability of structural timber populations can be very high. This is due to
the natural variability of organic materials, combined with the uncertainties
in determining timber strength with non-destructive methods. Proof loading
does destroy some members, but in the process direct information is gained
about the survivors.
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Figure 2: Probability density function of bending strength, before and after
a proof load at the 10%-fractile.

Figure 3: Relationship between damage and residual short-term strength for
both methods. Equations [5] and [9] respectively.
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Estimating the strength of any material always has some amount of uncer-
tainty connected to the results, but with e.g. steel or concrete, one can do
destructive tests of some amount of the same lot, and obtain somewhat accu-
rate data from this. With timber, the individual variations are of a greater
degree. Even members made from the same specimen will have different
properties due to factors such as knot occurrences, grain direction, or local
variations in density. Proof loading sidesteps parts of this problem by defin-
ing an absolute minimum strength for the tested population.

It should be kept in mind that even though some members are expected to
be destroyed in, for example a bending proof load test, since most strength
parameters for timber are positively correlated with each other, these are
most likely the members of the lowest quality overall. Not just for bending
strength.

If the failure rate during testing is considerably higher than expected, this
may be a reason to believe that the initial strength grading is flawed, and
more investigations may be needed. A conclusion like this will obviously re-
quire a sufficiently large sample.

5.2 Using the overload as a proof load

It is interesting to note about equation [10] that the magnitude of the proof
load is irrelevant. What matters is the probability of failure at this magni-
tude. In this case it is not a single load at all, but the damage caused by the
combination of the loads and their duration.

This fact is exploited in this study. We are assuming that whether it is
a short term test, or a long term accidental overload, a members’ ”rank”
within a population remains the same. Both of the DOL-models have this
assumption as is indicated by the R0-terms in equations [3] and [6].

In this case study, the equivalent for the laboratory proof-loading is the load
history recieved during the 10-year period. Since the beams might receive
permanent damage from the overloading, the reduction of strength from this
damage has to be taken into account. The relationship between damage and
residual strength is shown in figure 4.

To obtain the probability distribution for the remaining resistances from a
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Monte Carlo simulation, one can simply plot an array of the remaining re-
sistances, sorted from lowest to highest.

A study by Lam et al. (2003) showed, by using Foschi & Yao’s method in
Monte Carlo simulations, that the negative influence on the assumed strength
distribution from of the reduction in strength due to short term proof load-
ing, was greatly outweighed by the positive effects of removing the weakest
members. The study also showed that this fact was even more pronounced
at a 15% fractile level than at 5% or 3%. This would indicate that larger
probabilities of failure will lead to better improvements in the reliability for
the survivors.

6 Monte Carlo simulation

6.1 Monte Carlo methods

Many of the probability calculations in this study are performed using Monte
Carlo simulations. This is a general term for any simulation where an experi-
ment with a random outcome is performed a large number of times, with the
intention of determining a probability distribution for the outcome. One of
the simplest examples of a Monte Carlo simulation is flipping a coin n times
and counting the number of heads that occurred. The calculated probability
of heads being the result for a single coin flip is then:

pheads =
nheads
n

If n⇒∞, pheads should be exact.

In this study Monte Carlo simulations will be performed by using MatLab’s
”rand()” function together with inverse versions of the relevant probability
distributions. An example of a simulation that will be performed often is
realizing a beam’s bending strength. In MatLab this may look like:

R0 = logninv(rand, µlog, σlog)

Where logninv() is the inverse lognormal distribution function, and µlog
and σlog are the logarithmic mean and standard deviations for the bend-
ing strength, respectively.
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The main advantage of using Monte Carlo methods to determine probabili-
ties, is that expressions which combine multiple probability distributions can
be very hard, and in many cases impossible, to solve analytically. The main
disadvantages are that, like with many numerical methods, they are never
exact, and higher accuracy comes at the cost of longer computation times.

6.2 Beam parameters

Short term bending resistance of the beam (R0) is modeled with characteristic
value (5% fractile) of Rk = 32N/mm2. The assumed coefficient of variation
is 0,25. This value assumes a large insecurity with regards to the quality of
the beams used for this structure. The arithmetic mean is calculated using
the same method as for the snow loads, but for a log-normal distribution.
The relationships between arithmetic and logarithmic means and standard
deviations are:

µlog = ln(
µ2

√
σ2 + µ2

)

σlog =

√
ln(1 +

σ2

µ2
)

Since σ = cov · µ, it can be derived from the above expression that the
lognormal standard deviation, σlog is independent of the mean when the
coefficient of variation, is known:

σlog =
√
ln(cov2 + 1) ≈ 0, 2462

From the expression:

X = exp(µlog + σlog · zp)

Which defines the log-normal distribution, the logarithmic mean is calculated
as:

µlog = ln(Rk)− σlog · z005 ≈ 3, 8707

Where z005 is the standard normal deviate for the 5%-fractile, z005 ≈ −1, 645.
From this the arithmetic mean is found to be:

µ = exp(µlog) ·
√
cov2 + 1 = 49, 4541N/mm2
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6.3 Permanent load parameters

In the simulation, none of the permanent loads will vary over time. They are
variables that will be realized once per realization. This includes the green
roof filling.

The weight of the green roof filling is considered to be lognormal distributed
with a mean of 0,8 kN/m2, for the ideal load case, and 2, 4kN/m2 for the
overload case. And an assumed coefficient of variation of 0,1 for both cases.

The weight of the green roof will fluctuate as rain falls, runs off, and evapo-
rates. Unlike ordinary roofs which usually only hold precipitation in the form
of snow, green roofs will also hold rain for some time after it falls. However,
the purpose of this study is to determine the probability of failure at these
specific weights for the filling, the first of which was assumed in the design
process, the second which was measured after the failure. The weight will
thus not vary over time.

It should be kept in mind that climate data shows that the monthly rainfall
in Zurich can be around 115mm in the summer season, which is when the
heaviest rain falls. This equates to a load of 1.17kN/m2. How much of this
water that is retained by the soil at the same time, and for how long, is a
hard question to answer without multiple on-site measurements over time,
and is not a part of this study.

The other two permanent loads; self-weight for the roof, and the beam it-
self, are assumed to be lognormal distributed, the design values mentioned
in section 2.2 are used as means, with coefficients of variation both assumed
to be 0,1. The means are 0, 3kN/m2 and 0, 8019kN/m for the rooftop and
glued laminated beam respectively.

All loads and their parameters are listed in table 7.

6.4 Methodology

For the calculations, only the snow loads vary over time. The permanent
loads are being realized once per realization. A set of snow loads will be real-
ized for the relevant duration, once per realization. As described in chapter 3.

The parameters for the DOL models are assumed to vary between different
members, but are constant when regarding a single member. They are thus
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Load Distribution Mean (kN/m2) cov
Snow Gumbel max. 0,9 0,21
Green roof filling (ideal) Log-normal 0,8 0,1
Green roof filling (overload) Log-normal 2,4 0,1
Roof Log-normal 0,3 0,1
Beam Log-normal 0,2 0,1

Table 7: Loads and distributions for the MC-simulation. The beams self-
weight is here converted to an area load, and approximated.

1: 1 year, ideal load, optimized height.
2: 10 years, ideal load, optimized height.
3: 50 years, ideal load, optimized height.
4: 10 years, ideal load.
5: 50 years, ideal load.
6: 10 years, overload.
7: 50 years, overload.

Table 8: List of the cases that are being considered.

realized before the MC simulation itself, and will not vary within a given
simulation.

For the DOL-damage calculations, snow packs are generated for the time pe-
riod corresponding to the case that is being calculated, one year, ten years,
and 50 years.

There are seven cases that are being considered, they are described in table 8.

Ideal load refers to the mean weight of the green roof being 0, 8kN/m2. Over-
load refers to the mean weight of the green roof being 2, 4kN/m2.

Case 6 is the closest case to the actual situation. The failed beam had been
holding for ten years, and was overloaded at the time of failure.

We are here assuming that the measured overloading of the green roof was
present from the moment the roof was constructed. This is based only on
the measurements performed after the failure.

The optimized cases are performed using the minimum allowed dimensions to
compare our probabilistic model to the required minimum reliabilities in the
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Eurocode. Optimized refers to a heigth of the beam of 911mm, as opposed
to the actual height of 1120mm, as mentioned in section 2.5. The building
is considered to be in consequence class 2 (CC2) after table B1 in EN-1990.
For the corresponding reliability class (RC2) in table B2, the one year and
50 year reliability indexes are 4,7 and 3,8 respectively.

6.5 Reliability

In reliability theory, the probability of failure is often represented as the
negative of the standard normal variate for that probability. This value is
referred to as the reliability index and is usually given the symbol β.

pfailure = Φ(−β) (11)

Where Φ() represents the standard normal distribution with µ = 0 and σ = 1.

β is a way of representing very low probabilities of failure by using a more
practical number. For example: pfailure = 5 · 10−6 has a reliability index of
β ≈ 4, 42.

6.6 Simulation

The simulation process is as follows:

1. Duration of load model parameters are realized.

2. n. snow load histories are realized for the period being simulated, this
entails duration of the periods between packs, duration of the packs,
magnitude of the packs, and the shape factor. n is the number of real-
izations. Permanent loads are realized once per realization.

3. Duration of load damage is calculated based on the snow load histories,
this entails simulating damage between snow packs using the constant
load equations [4] and [7], and simulating damage caused by the snow
packs using the triangle equation [8] for Gerhards’ method, and inte-
grating [3] step-by-step for Foschi & Yao’s method.
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Figure 4: β-values for a lower end of possible probabilities of failure.
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Figure 5: Program structure diagram of the Monte Carlo simulation.
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4. Both methods define failure as α-values of 1 or above. Failures are thus
counted, and probability of failure using each method is calculated as:

pfailure =
c

n

Where c is the number of failures, and n is the number of realizations.

5. Reduction in short term strength is calculated for the surviving real-
izations based on equations [5] and [9]. The surviving resistances are
the results of this.

This sequence is visualized in figure 5.

6.7 Results

6.7.1 Probabilities of failure

The results from the Monte Carlo simulation are found in table 9

As can be seen in table 9, in the time before the beam failed, the calculated
probability of failure for any beam exposed to the overload is 0, 0894% for
the Foschi & Yao method, and 0, 0031% for the Gerhards method.

Basic probability theory gives us the means to scale up these probabilities
of failure based on the number of beams, n, covered by the overload. The
likelihood that at least one beam will fail is one minus the probability that
a single beam will not fail, n. times in a row. The probability that a single
beam will not fail is 1− p1. We then have:

pfailure = 1− (1− p1)n (12)

Unfortunately data surrounding the propagation of the overload is insuffi-
cient. We only know that it covered a larger area than this one beam, but
not the exact number.

6.7.2 Updated reliability

As the results in table 9 show, the probability of failure for the 10 year over-
load case is too low for both methods to effectively use the method described
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Load situation n. realizations. pfailF&Y βF&Y pfailG βG
1 year ideal optimized 107 1, 48 · 10−5 4, 1765 3, 00 · 10−7 4, 9912
10 year ideal optimized 106 1, 45 · 10−4 6, 6241 3, 00 · 10−5 3, 9505
50 year ideal optimized 106 5, 98 · 10−4 3, 2398 8, 00 · 10−5 3, 7750
10 year ideal 107 2, 00 · 10−7 5,0690 1, 00 · 10−7 5,1993
50 year ideal 5 · 106 8, 00 · 10−7 4, 7983 4, 00 · 10−7 4, 9354
10 year overload 106 8, 94 · 10−4 3,1234 3, 10 · 10−5 4,0051
50 year overload 106 4, 60 · 10−3 2,6051 4, 00 · 10−5 3,9444

Table 9: Results from Monte Carlo simulation. Foschi & Yao (F&Y) and
Gerhards (G) methods. For different loads and durations.

in section 5.2 to update the reliability.

The new characteristic value is 32, 0733N/mm2 and 32, 0147N/mm2 for the
Foschi & Yao method and the Gerhards method, respectively. Compared to
the prior value of 32N/mm2. The change in resistances is shown in figure 6,
but as expected the change is barely visible.

While this points toward no beneficial effect of the overload, on the other
hand there is no negative effect either. The slight positive from the proof
load effect, i.e. removing the failed members, has negated the slight negative
effect from the DOL-damage. As is witnessed by the slightly increased char-
acteristic values.
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Figure 6: Plot of initial distribution for the assumed bending resistance versus
the updated distribution for both methods. As expected from the results,
there is almost no difference due to a low calculated probability of failure.
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7 Discussion

The results in table 9 show lower probabilities of failure than initially ex-
pected, and they point toward the overload not being the only reason for
the failure, though it is highly unlikely that the failure would have happened
without the overload. Any alternative reasons thus come in addition to the
overload.

7.1 Possible explanations for the results

• These results could be accurate and the failure is the result of an ex-
tremely low realization of the timbers’ resistance. This would explain
why the failure was limited to this one beam, even though the sur-
rounding beams received an increased load in the time directly after
the collapse. Since they would have to carry the load previously held
by the failed beam.

• The number of beams covered by the overload could have been high
enough to skew the probability of failure to a more likely value. As
shown by equation (12). Combined with the first point in this list, this
is a very likely reason for the low results. As mentioned earlier the
number of beams covered by the overload remains unknown.

• The failed beam could have been damaged prior to, or under con-
struction. Leading to a significantly lower bending resistance than our
assumed resistance distribution would indicate.

• The parameters used for the DOL models, may be poorly suited to
describe this lot of glulam timber. The parameters were taken from
Kőhler (2007), calibrated based on results from Hoffmeyer (1990). There
may be differences based on the origin of the timber that make the pa-
rameters less accurate, or our assumptions with regards to the moisture
content are wrong.

• Our assumptions about the variation of the loads may be inaccurate.
The variations of the load over time due to rain may be a critical factor.
This study only considered snow loads to vary over time.
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Load situation n. realizations. pfailF&Y /pfailG nfailF&Y nfailG
1 year ideal optimized 107 49,33 148 3
10 year ideal optimized 106 4,83 145 30
50 year ideal optimized 106 7,475 598 80
10 year ideal 107 2 1 2
50 year ideal 5 · 106 2 4 1
10 year overload 106 28,83 894 31
50 year overload 106 115,25 4581 40

Table 10: Comparing the results from the different methods.

• Our assumptions about the bending resistance of the timber members
could be inaccurate. Characteristic value, coefficient of variation, or
both could be more or less than the assumed values of 32N/mm2 and
0, 25, respectively.

7.2 Other observations

The Foschi & Yao method yields consistently higher probabilities of failure
than the Gerhards for all cases. This could be a consequence of the differ-
ences in the DOL-models, or due to an error in our programming. Table 10
shows the differences.

It should be noted that some cases in the simulation have low failure oc-
currences, i.e. nfail < 10, due to the low probabilities of failure combined
with an insufficiently high n, as shown in table 10. This is especially true
for the two unoptimized ideal cases, but also 1 year optimized for the Ger-
hards method. Redoing these simulations with a sufficiently high n. would
take prohibitive amounts of time with the resources available. These results
should be therefore be considered less reliable than the rest.

The results for optimized cases for the Gerhards method are very close to the
reliability indexes prescribed by EN-1990. 4,9912 for one year and 3,7750 for
50 years. EN-1990 requires 4,7 for one year and 3,8 for 50 years. Though as
mentioned in the previous paragraph, the one year case is somewhat unreli-
able.
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8 Conclusion

The calculated probability of failure for a single beam under our assumed
circumstances is 0, 0894% for the Foschi & Yao method and 0, 00310% for
the Gerhards method. Based on these results, it is unlikely, but not im-
possible, that the overload was the sole reason the beam failed. Additional
explanations are listed in section 7.

According to the models used to determine DOL-damage, the overload has
caused no significant permanent damage to the remaining roof structure.
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Appendices
MatLab code. The following scripts are also added as a digital attachment.

A Design Eurocode

1 clear all
2 close all
3

4 g=9.8; %Gravity acceleration
5

6 %Beam data
7 wb=0.179; %width
8 hb=1.120; %heigth
9 L=17.620; %Span length (m)

10 rho_b=4.0; %Apparent density of the beam kN/mˆ3 (tab A.3 EN
1991-1)

11 fmk=32; %Characteristic bending resistance (N/mmˆ2), (5%
fractile).

12 fvk=3.2; %Characteristic shear resistance. NS-EN 1194 (Obsolete
norwegian

13 %code, should check a more recent source, but the
number is

14 %probably identical.)
15

16 ls=4.5; %Load width (m). The beam in question is fairly close to
the middle of the roof structure which has a high number of
equally sized beams. We will therefore assume that the load
will be distributed evenly between this beam and the adjacent
ones.

17 gam0=1.15; %Partial safety factor for glued laminated timber
after

18 %EN 1995-1-1 tab NA.2.3 (norwegian national annex)
19

20

21 kmodA=0.8; %Modification factors for resistance after EN
1995-1-1 tab 3.1.

22 kmodB=0.6; %Takes into account load duration and relative
moisture levels.

23 %Assuming service class 1
24

25 RdA=fmk/gam0*kmodA; %Design resistance, bending.
26 RdB=fmk/gam0*kmodB;
27

28 RvdA=fvk*kmodA/gam0; %Design resistance, shear.
29 RvdB=fvk*kmodB/gam0;
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30

31

32 %Loads are assessed according to Eurocode (EN 1990 and EN 1991)
33 %Category 4, regular building, nominal service life: 50 years.
34

35 %Reliability class 2
36

37

38 %In this document capital letters signify characteristic load
per unit of

39 %area (kN/mˆ2), lower case is characteristic load per unit of
length

40 %(kN/m).
41

42 %%Variable actions (Q,q)%%
43

44 %Imposed load Ql (maintenance work etc.)
45 Qi=0.75; %Chosen from EN 1991 1-1 tab NA.6.10 (Norwegian

national annex),
46 qi=Qi*ls;
47

48 %Snow load Qs (Zurich)
49 Qs=0.9; %As per the swiss standard
50 qs=Qs*ls;
51 %Elevation in Zurich is about 400 m.o.h.
52

53

54 %%Permanent actions (G)%%
55

56 %Self weigth Gs (Roof)
57 Gr=0.3; %Guess
58 gr=Gr*ls;
59

60

61 gb=hb*wb*rho_b; %Self weight of the beam (kN/m).
62

63 %Dead load Gf (Filling, green roof)
64 Gf=0.8;
65 gf=Gf*ls;
66

67

68 %%Load combinations:
69

70 %Combination factors for variable loads:
71 %psi0, basic combination factor. psi1, often occuring. psi2,

approximately
72 %permanent.
73 psi0_s=0.7; %Snow load
74 psi0_i=0; %Imposed load
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75

76 CombA=1.5*(qs+psi0_i*qi)+1.2*(gr+gb+gf); %Combination A, snow is
dominant

77 CombB=1.5*(psi0_s*qs+psi0_i*qi)+1.35*(gr+gb+gf); %Combination B,
self weight is dominant

78

79 VmaxA=CombA*L/2; %Maximum design shear force (kN)
80 VmaxB=CombB*L/2;
81

82 TaudA=1.5/0.67*VmaxA/hb/wb/10ˆ3 %Design shear stress
83 TaudB=1.5/0.67*VmaxB/hb/wb/10ˆ3
84

85 RdVA=fvk/gam0*kmodA %Design shear resistance
86 RdVB=fvk/gam0*kmodB
87

88 MmaxA=CombA*Lˆ2/8; %Maximum design moment (kNm)
89 MmaxB=CombB*Lˆ2/8;
90

91 SdA=MmaxA/(wb*hbˆ2/6*10ˆ9)*10ˆ6 %Maximum design stress due to
bending (MPa)

92 SdB=MmaxB/(wb*hbˆ2/6*10ˆ9)*10ˆ6
93

94 RdA %Design bending resistance (MPa)
95 RdB
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B DOL, constant load, Foschi & Yao

1 function [alph]=DoL_damage1_C(B,C,D,t0,t,Sc,R0,alph0,k)
2

3 %Foschi & Yao model (1986), constant load between t0 and t.
4

5 eta=0.5;
6 alph=alph0;
7

8 if Sc>eta*min(R0)
9

10 kap=exp(C*(Sc./R0-eta).ˆD*(t-t0));
11 lam=k*(B+1)./(C*R0*(1-eta)ˆ(B+1)).*(Sc./R0-eta).ˆ(B-D);
12

13 alph=kap.*alph+kap.*lam-lam; %Equation solved for constant
load

14

15 end
16

17 if isnan(alph)==1 %causes failure if 0/0 happens
18 alph=1.1;
19 end
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C DOL, triangle load, Foschi & Yao

1 function [alph]=DoL_damage1_tri(B,C,D,t0,t,Sc,Sc_tri,R0,alph0)
2

3 %Foschi & Yao model (1986)
4

5 %Damage accumulation for load over time shaped as an isosceles
triangle

6 %Duration is t-t0, max stress is Sc_tri+Sc at time=(t-t0)/2
7

8 eta=0.5; %Damage threshold
9

10 k=Sc_tri/((t-t0)/2); %Rate of loading
11

12 A=(k*(B+1))/(R0*(1-eta)ˆ(B+1));
13

14 n_it=1000; %Number of iterations for numerical solution.
15 alph=alph0; %Initial damage
16 dt=(t-t0)/n_it; %Time segment
17

18 Sct=zeros(n_it,1);
19

20 if Sc+Sc_tri>eta*R0 %Skips iteration completely if max load is
below the threshold

21 if Sc+Sc_tri>R0 %Designates failure if load is above R0
22 alph=1.1;
23 else
24

25 %First half
26 for n=1:n_it/2
27 if alph>1
28 break
29 end
30 Sct(n)=Sc_tri*2*n/n_it+Sc; %Load is increasing up to the

half-way point
31 if Sct(n)>eta*R0 %No damage accumulation below the threshold
32 alph=alph+(A*(Sct(n)/R0-eta)ˆB+C*(Sct(n)/R0-eta)ˆD*alph)

*dt;
33 end
34 end
35

36 for n=n_it/2:n_it
37 %Second half
38 if alph>1
39 break
40 end
41 Sct(n)=Sc_tri*2*(1-n/n_it)+Sc; %Load is decreasing towards

zero at the end
42 if Sct(n)>eta*R0 %No damage accumulation below the threshold
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43 alph=alph+(A*(Sct(n)/R0-eta)ˆB+C*(Sct(n)/R0-eta)ˆD*alph)

*dt;
44 end
45 end
46 end
47

48 end

42



D DOL, constant load, Gerhards

1 function [alph]=DoL_damage2_C(b,t0,t,Sc,R0,alph0,k)
2

3 %Gerhards model (1987), constant load between t0 and t.
4

5 alph=alph0;
6

7 alph=(b*k./R0.*exp(b.*Sc./R0)./(exp(b)-1)).*(t-t0)+alph;
8

9 end
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E DOL, triangle load, Gerhards

1 function [alph]=DoL_damage2_tri(b,t0,t,Sc,Sc_tri,R0,alph0)
2

3 %Gerhards model (1987)
4

5 %Damage accumulation for load over time shaped as an isosceles
triangle

6 %Duration is t-t0, max stress is Sc_tri+Sc at time=(t-t0)/2
7

8 t2=(t-t0)./2; %Time to peak load
9 k=Sc_tri./t2; %Rate of loading

10

11 a=log(R0./b./k.*(exp(b)-1));
12

13 v=-a-b./R0.*Sc_tri./t2.*t0+b.*Sc./R0;
14

15 if Sc+Sc_tri>R0 %Designates failure if load is above R0
16 alph=1.1;
17 else
18

19 alph=R0.*t2./b./Sc_tri.*(exp(b.*Sc_tri./R0./t2.*t/2+v)...
20 -exp(b.*Sc_tri./R0./t2.*t0+v)).*2+alph0; %Solved for ramp

load,
21 %integrated from t0

to t/2.
22 %Doubled to account for the

way down.
23

24 end
25 end
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F Main Monte Carlo script

1 clear all
2 close all
3

4 %In this script the subscript "1" refers to Foschi & Yao’s
method,

5 %"2" refers to Gerhards method
6

7 %Depentant on special functions:
8 %DoL_damage1_C -> Foschi & Yao’s method for constant load
9 %DoL_damage2_C -> Gerhards’ method for constant load

10 %DoL_damage1_tri -> Foschi & Yao’s method for triangle load
11 %DoL_damage2_tri -> Gerhards’ method for triangle load
12

13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 %Variable parameters
15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16

17 k=1*365*24; %Rate of loading (MPa/year)
18 Gf=0.8; %Load from filling (kN/mˆ2). 0.8 for ideal, 2.4

for overload
19 t_sim=10; %Time to consider (years)
20 nb=10ˆ2; %Number of realizations
21 hb=1.12; %Cross-sectional heigth (m), 1.12m for actual,

0.911m for optimized
22

23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
25

26 %Calculating lognormal mean based on known 5% fractile and cov:
27 my=0; %Standard lognormal mean
28 sig=1; %Standard lognormal sd.
29 z005=norminv(0.05,my,sig); %normal variate for 5% fractile
30

31 Rk=32; %Characteristic bending resistance (N/mmˆ2), (5% fractile
).

32 covR=0.25; %Coefficient of variation for bending resistance
33 sig=sqrt(log(covRˆ2+1)); %lognormal sd, is independent of mean
34

35 myR0=log(Rk)-sig*z005; %Logarithmic mean for R0
36 mR0=exp(myR0)*sqrt(covRˆ2+1); %Arithmetic mean for R0
37

38 %Beam data
39 wb=0.179; %width (m)
40 %hb=1.12; %heigth (m), defined at the top
41 L=17.620; %Span length (m)
42 rho_b=4.0; %Apparent density of the beam kN/mˆ3 (tab A.3 EN

1991-1)
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43 W=hbˆ2*wb/6; %Section modulus (mˆ3)
44 sdR0=mR0*covR; %Standard deviation
45

46 myR=log(mR0ˆ2/sqrt(sdR0ˆ2+mR0ˆ2)); %Logarithmic mean
47 sigR=sqrt(log(1+sdR0ˆ2/mR0ˆ2)); %Logarithmic sd
48

49 ls=4.5; %Load width (m).
50

51 cf=Lˆ2/(W*8*1000); %Converts line loads to max. stress in the
beam.

52 cf2=W/ls*8/Lˆ2*1000; %Conversion factor, max. MPa in the beam to
kN/mˆ2

53

54

55 %%Variable action%%
56

57 %Snow load Qs (Zurich)
58 gam=0.5772; %Euler Mascheroni constant
59 SFD=15.2; %Snowfall days (yearly)
60 SCD=33.2; %Snow cover days (yearly)
61 Qsk=0.9; % 98% fractile for yearly ground snow load. Determined

by the Swiss standard
62

63 cvs=0.21; %Coefficient of variation (yearly)
64 lam_s=SFD/1.5; %Expected number of yearly snow packages.

Assumption is based on SFD.
65 mean_s=1/lam_s; %Mean for exponential dist. time between

packages
66

67 %One year parameters
68 p1=0.98; %p. for no exceedance of Qsk over 1 year.
69 zp1=-log(-log(p1)); %z value for p1
70 m1=Qsk/(1+cvs*sqrt(6)/pi*(-gam+zp1)); %1 year mean
71 sd=m1*cvs; %Standard deviation, constant
72 beta=sqrt(6)*sd/pi; %Beta, Gumbel value, constant
73 my1=m1-beta*gam; %One year mode
74

75 %Determining parameters for a single snow package:
76 p0=0.98ˆ(1/lam_s); %p. for no exceedance of Qsk in a single

package
77 zp0=-log(-log(p0)); %z value for p1
78 my0=Qsk-zp0*beta; %Mode for one package
79 m0=my0+beta*gam; %Mean
80 mSn=m0*cf2; %Mean stress on the beam, snow (MPa)
81

82 %Duration of snow pack is Pm*Xt
83 %Pm is the magnitude of a snow pack (kN/mˆ2)
84 %Xt is an exponentially distributed relation between tpack and

Pm
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85 mt=SCD/lam_s; %Mean pack duration (days)
86 mXt=mt/m0; %Mean for Xt (days/MPa)
87

88

89 %Roof shape factor: Determines the relation between load on the
ground, and the roof.

90 msf=1; %mean
91 cvsf=0.35; %coefficient of variation
92 sdsf=msf*cvsf;
93 betasf=sqrt(6)/pi*sdsf; %Beta
94 mysf=msf-betasf*gam; %mode
95

96

97 %%Permanent actions (G)%%
98

99 %Self weigth Gs (Roof)
100 Gr=0.3; %Assumed
101 gr=Gr*ls; %Beam load
102 cov_gr=0.1; %Assumed coefficient of

variation
103 sdrf=cov_gr*gr; %Standard deviation
104 siggr=sqrt(log(1+sdrfˆ2/grˆ2)); %Logarithmic sd
105 grl=log(grˆ2/sqrt(sdrfˆ2+grˆ2)); %Logarithmic mean
106

107 %Self weight of the beam
108 gb=hb*wb*rho_b; %Self weight of the beam (kN/m).
109 cov_gb=0.1; %PMC part II, tab 2.1.1, all regular species of

timber.
110 sdb=cov_gb*gb;
111 sigb=sqrt(log(1+sdbˆ2/gbˆ2)); %Logarithmic sd
112 gbl=log(gbˆ2/sqrt(sdbˆ2+gbˆ2)); %Logarithmic mean
113

114 %Dead load Gf, filling, green roof
115 %Gf=Gf; Mean load for the filling. Defined at the top.
116

117 gf=Gf*ls; %Beam load
118 cov_gf=0.1; %Assumed cov.
119 sdf=cov_gf*gf; %Standard deviation
120 sigf=sqrt(log(1+sdfˆ2/gfˆ2)); %Logarithmic sd
121 gfl=log(gfˆ2/sqrt(sdfˆ2+gfˆ2)); %Logarithmic mean
122

123 %Means for permanent stresses:
124 m_gr=grl*Lˆ2/8/W/1000; %Logarithmic mean stress roof
125 m_gb=gbl*Lˆ2/8/W/1000; %Logarithmic mean stress beam
126 m_gf=gfl*Lˆ2/8/W/1000; %Logarithmic mean stress filling
127

128 %Log. sd for permanent stresses
129 siggrs=siggr*cf; %Roof
130 sigbs=sigb*cf; %Beam

47



131 sigfs=sigf*cf; %Filling
132

133 %DoL parameters
134

135 alph0=0;%Initial damage
136 t0=0; %Starting time, (years)
137 %k=k; %Rate of loading up to Sc, (MPa/hour). Defined at the top
138

139 %1: Foschi & Yao’s model
140

141 eta=0.5; %Damage threshold. No damage is accumulated at loads
below eta*R0.

142

143 %Model parameters B, C and D:
144 mB=30.03; %Mean
145 sdB=0.92; %SD
146 B=norminv(rand,mB,sdB);
147

148 mC=17.05; %Mean
149 sdC=12.30; %SD
150 C=norminv(rand,mC,sdC)*365*24; %Unit is converted from 1/hour to

1/year (Kohler 2011)
151

152 mD=5.69; %Mean
153 sdD=0.45; %SD
154 D=norminv(rand,mD,sdD);
155

156 %2: Gerhards’ model
157

158 %Model parameter b:
159 mb=51.41;
160 sdb=0.01;
161 b=norminv(rand,mb,sdb)+log(365*24); %unit is converted from ln(h

ˆ-1) to ln(yˆ-1) (Kohler 2011)
162

163

164 %%Determining snow packages%%
165 %t_sim=t_sim; %Time to consider (years). Defined at the top
166 n_int=1000; %Number of intervals between packages. Size is

irrelevant as long as it is large enough to span more than 50
years.

167 t1=zeros(n_int,1); %Time between snow packages (years)
168 Pm=zeros(n_int,1);
169 Xt=zeros(n_int,1);
170

171

172 %%Monte Carlo simulation%%
173 %nb=nb; %Number of realizations. Defined at the top
174 c1=0; %Counter for failures
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175 c2=0;
176

177 R0v=zeros(nb,1); %Vector for short term strengths
178 alph1_vector=zeros(nb,1); %Vectors for alpha-values
179 alph2_vector=zeros(nb,1);
180 ML=zeros(nb,1); %Vector for maximum load
181

182

183

184 tic
185 for n2=1:nb
186 t=0; %Counter for time
187 %Generating snow packages:
188 sf=(mysf-betasf*log(-log(rand))); %Roof shape factor
189 n_sim=0; %Counter for snowfall
190 for n=1:n_int
191 t1(n)=-log(1-rand)*mean_s; %Time between starting time of the

packages (years), t1(1) is then the time before the first
package.

192 Pm(n)=my0-beta*log(-log(rand))*sf; %Max magnitude per package (
kN/mˆ2)

193 Xt(n)=-log(1-rand)*mXt/365; %Duration factor (y/kN*mˆ2)
194 t=t+t1(n); %Total time passed (y)
195 n_sim=n_sim+1;
196 if t>=t_sim
197 break %Stops iteration after the relevant amount of time

have passed n_sim is now the number of packages in the
relevant period. Xt(n).*Pm(n) is the duration of snow
package n.

198 end
199

200 end
201

202

203 R0=logninv(rand,myR,sigR); %Short term resistance
204 R0v(n2)=R0; %Storing R0
205 Sg=logninv(rand,m_gr,siggrs)+logninv(rand,m_gb,sigbs)+logninv(

rand,m_gf,sigfs);
206 %Permanent stress
207 ML(n2)=max(Pm)/cf2+Sg;
208

209 t0=0; %Starting time
210

211 %Calculating damage from DoL-effect:
212 alph0=0;
213 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
214 %1: Foschi & Yao
215 alph1=alph0; %Initial damage
216 check1=0; %Checks for failure
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217 t2=t0; %Starting time
218 for n=1:n_sim
219 alph1=DoL_damage1_C(B,C,D,t2,t1(n),Sg,R0,alph1,k); %Damage

accumulation
220 %between snow

packages
221

222 t2=t1(n)+Pm(n).*Xt(n); %End time for this cycle/starting time
for the next.

223

224 alph1=DoL_damage1_tri(B,C,D,t1(n),t2,Sg,Pm(n)/cf2,R0,alph1);
225 %Damage accumulation during snow package
226 if alph1>=1
227 break %Ends calculations if failure happens.
228 end
229 end
230

231 alph1_vector(n2)=alph1; %stores damage value
232 if alph1>=1
233 c1=c1+1; %Counts failure
234 end
235

236

237 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
238 %2: Gerhards
239 alph2=alph0; %Initial damage
240 check2=0; %Checks for failure
241 t2=t0; %Starting time
242 for n=1:n_sim
243 alph2=DoL_damage2_C(b,t2,t1(n),Sg,R0,alph2,k); %Damage

accumulation
244 %between snow

packages
245

246 t2=t1(n)+Pm(n).*Xt(n); %End time for this cycle/starting time
for the next.

247

248 alph2=DoL_damage2_tri(b,t1(n),t2,Sg,Pm(n)/cf2,R0,alph2);
249 %Damage accumulation during snow package
250

251 if alph2>1
252 break %Ends calculations if failure happens.
253 end
254 end
255

256 alph2_vector(n2)=alph2;
257 if alph2>=1
258 c2=c2+1; %Counts failure
259 end
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260

261

262 end
263

264 toc
265

266

267 pfailure1=c1/nb %p. failure for a beam using this method
268 beta1=-norminv(pfailure1,0,1); %Beta, z-value for pfailure (

standard normal distribution)
269 pfailure2=c2/nb %p. failure for a beam using this method
270 beta2=-norminv(pfailure2,0,1); %Beta, z-value for pfailure (

standard normal distribution)
271

272

273 save roof_sim_latest.mat %Safety copy of latest results
274 % save 10year_overload.mat
275

276

277 c19=0; %Counter for survivors
278 c29=0; %Counter for survivors
279

280 %Sorting surviving beams from the broken ones.
281 for n=1:nb
282 if alph1_vector(n)<1
283 c19=c19+1; %Counts number of survivors for Foschi & Yao
284 alph1_vectorb(c19,1)=alph1_vector(n); %Stores surviving

damage values
285 R0v1(c19,1)=R0v(n); %Stores surviving bending strengths
286 end
287

288 if alph2_vector(n)<1
289 c29=c29+1; %Counts number of survivors for Gerhards
290 alph2_vectorb(c29,1)=alph2_vector(n); %Stores surviving

damage values
291 R0v2(c29,1)=R0v(n); %Stores surviving bending strengths
292 end
293 end
294

295 if c1==0 %Prevents error if no failures
296 alph1_vectorb=alph1_vector*0;
297 end
298 if c2==0 %prevents error if no failures
299 alph2_vectorb=alph2_vector*0;
300 end
301

302 ep=60; %Endpoint for plots
303 r=0:0.01:ep; %Field variable for resistance
304
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305 %Strength reductions
306 red1=eta+(1-eta)*(1-alph1_vectorb).ˆ(1/(1+B));
307 red2=1/b*log(1+(1-alph2_vectorb)*(exp(b)-1));
308

309 %Residual strengths:
310 R0r1=R0v1.*red1; %Vectors for residual strength
311 R0r2=R0v2.*red2;
312

313 mR0r1=mean(R0r1); %Means for residual strengths
314 mR0r2=mean(R0r2);
315

316 sdR0r1=std(R0r1); %Sd for resiudal strengths
317 sdR0r2=std(R0r2);
318

319 myR1=log(mR0r1ˆ2/sqrt(sdR0r1ˆ2+mR0r1ˆ2)); %Reduced logarithmic
mean

320 myR2=log(mR0r2ˆ2/sqrt(sdR0r2ˆ2+mR0r2ˆ2)); %Reduced logarithmic
mean

321

322 sigR1=sqrt(log(1+sdR0r1ˆ2/mR0r1ˆ2)); %Reduced logarithmic sd
323 sigR2=sqrt(log(1+sdR0r2ˆ2/mR0r2ˆ2)); %Reduced logarithmic sd
324

325

326 %Updated cdfs for reduced resistances
327 cdfR0r1=(logncdf(r,myR1,sigR1)-pfailure1)/(1-pfailure1);
328 cdfR0r2=(logncdf(r,myR2,sigR2)-pfailure2)/(1-pfailure2);
329

330 % cdfR0=logncdf(r,myR,sigR); %Cdf for initial resistance
331 % cdfR01=(cdfR0-pfailure1)/(1-pfailure1); %Unreduced updated

resistances
332 % cdfR02=(cdfR0-pfailure2)/(1-pfailure2);
333

334

335 %Pdfs
336 r1=logninv(pfailure1,myR,sigR):0.01:ep; %Variables for pdfs,

starting point
337 r2=logninv(pfailure2,myR,sigR):0.01:ep; %is the zero point for

each plot.
338

339 lr=length(r); %Lengths of field variables
340 lr1=length(r1);
341 lr2=length(r2);
342

343 cdf1=cdfR0r1(lr-lr1+1:lr); %Cdfs cut at the zero point
344 cdf2=cdfR0r2(lr-lr2+1:lr);
345 PDF1=gradient(cdf1)/0.01; %Pdfs
346 PDF2=gradient(cdf2)/0.01;
347

348 %Variables for vertical lines
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349 r3=[logninv(pfailure1,myR,sigR)-0.01,logninv(pfailure1,myR,sigR)
];

350 r4=[logninv(pfailure2,myR,sigR)-0.01,logninv(pfailure2,myR,sigR)
];

351

352 %Draws vertical lines to the starting point of the pdfs
353 vl1=[0,PDF1(1,1)];
354 vl2=[0,PDF2(1,1)];
355

356 %Plots all three pdfs
357 figure
358 plot(sort(R0v),’r’)
359 hold on
360 plot(sort(R0v1),’g’)
361 plot(sort(R0v2),’b’)
362

363

364 time=toc; %Saves time to completion
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