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Abstract

In this thesis there is given an introduction to isogeometric finite element
method for uncoupled thermo elastic problems using non uniform rational
B-splines (NURBS) as basis functions. The numerical analysis of the
uncoupled thermo elastic problem is done with the new finite element
solver IFEM, which is a isogeometric solver under development at SINTEF.
The performance of IFEM is tested on a problem with a smooth solution,
as well as a singular problem. It is shown that while IFEM, at the current
state, achieves an optimal convergence rate for the smooth model; this is
not the case for the model containing the singularity.



Sammendrag

I denne oppgaven blir det gitt en introduksjon av isogeometrisk finite
element method, og hvordan man løser ukoblede termoelastiske problemer
isogeometrisk ved å benytte NURBS som basisfunksjoner. Det vil bli
gjort en numerisk analyse av det ukoblede termoelastiske problemet med
den nye isogeometriske løseren IFEM som for tiden er under utvikling
hos SINTEF. IFEM løseren blir testet på et problem med glatt løsning
og et singulært problem. Det viser seg at selv om IFEM oppnår god
konvergensrate for det glatte problemet gjør den ikke det for det singulære.



Preface

This Master thesis is my final work for the Master of Science program
called Applied Physics and Mathematics, with a specialization in Indus-
trial Mathematics at the Norwegian University of Science and Technology
(NTNU). The thesis was completed during the summer of 2015. The
reader is expected to have prior knowledge and experience with the finite
element method and numerical analysis, but some key concepts are still
reviewed.

I had the privilege to test and work with the new isogeometric finite
element solver IFEM currently under development at SINTEF in my
thesis work, which was both an interesting and challenging task. I would
like to thank Yared Worku Bekele, Knut Morten Okstad and Arne Morten
Kvarving at SINTEF for showing me the ropes and helping me understand
IFEM. I am also grateful to my supervisor Trond Kvamsdal for taking
time out of his busy schedule to share of his wast knowledge and help me
with my work. I have greatly enjoyed working with my thesis.

Lastly I would like to thank Olav Møyner for being my ”spirit guide”
during my years at the university.





Contents

1 Introduction 1
1.1 Computer-aided engineering . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Computer-aided design . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 New demands and isogeometry . . . . . . . . . . . . . . . . . . . . . 2
1.4 Thermoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Finite element theory 7
2.1 Sobolev and Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Finding the variational formulation . . . . . . . . . . . . . . . . . . . 9
2.3 Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 B-splines and NURBS 13
3.1 Knot vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Basis functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Derivative of basis functions . . . . . . . . . . . . . . . . . . . 14
3.3 B-splines geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 B-spline curves . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 B-spline surface . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4.1 Geometric perspective . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Algebraic perspective . . . . . . . . . . . . . . . . . . . . . . 16
3.4.3 Derivatives of NURBS basis functions . . . . . . . . . . . . . 17

3.5 Knot Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Refinement methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.6.1 h-refinement: knot insertion . . . . . . . . . . . . . . . . . . . 18
3.6.2 p-refinement: order elevation . . . . . . . . . . . . . . . . . . 19
3.6.3 k-refinement: higher order and higher continuity . . . . . . . 20

3.7 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Isogeometric analysis 23
4.1 Isogeometric concept . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



4.2 Spaces and mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Isogeometric finite element analysis . . . . . . . . . . . . . . . . . . . 26

5 Thermoelasticity 29
5.1 Heat transfer problem . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Basic equations of thermal heat transfer . . . . . . . . . . . . 30
5.1.2 The variational formulation . . . . . . . . . . . . . . . . . . . 30

5.2 Thermo elasticity problem . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 Basic equations of thermoelasticity . . . . . . . . . . . . . . . 33
5.2.2 The variational formulation . . . . . . . . . . . . . . . . . . . 34

5.3 Error estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Numerical examples 37
6.1 IFEM solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Model problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 The Annulus: a circular pipe . . . . . . . . . . . . . . . . . . . . . . 39

6.3.1 Analytical solution for the annulus . . . . . . . . . . . . . . . 40
6.3.2 Results for the annulus . . . . . . . . . . . . . . . . . . . . . 41

6.4 L-shape: the square pipe . . . . . . . . . . . . . . . . . . . . . . . . 43
6.4.1 Results for the L-shape . . . . . . . . . . . . . . . . . . . . . 44

7 Conclusion 61
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 63



Chapter1Introduction

In the modern world of computer-aided engineering (CAE); particularly finite element
analysis (FEA) and computer-aided design (CAD) are essential tools for solving a
variety of problems. They both play an important part in developing new technologies
and problem simulations. Isogeometric analysis is a computational method that
strives to combine both approaches by utilizing the same data set in both design and
analysis. The process of integrating these two approaches has, however, not been
uncomplicated. The main reason behind the difficulties stems from the fact that CAE
and CAD has evolved in two different communities, each with their own background
and focus. In this chapter there will be given a brief overview of the development of
the two technologies, the difficulties in combining these and the introduction of the
isogeometric method.

1.1 Computer-aided engineering

Computer-aided engineering is being applied everywhere engineers are at work. It
uses, amongst other things, computer software to perform analysis and simulations.
CAE is being used for mathematical computations and for solving a variety of
engineering problems. The finite element method (FEM) is very popular in this
regard, and it is applied to solve and analyze partial differential equations by utilizing
piecewise polynomials. When the finite element method was born in the 1950s [20]
calculations were still being done by hand, and because of this the method was
limited to solving small and easy systems. The dawn of computers opened doors for
a lager variety of problems as it was no longer limited by manpower. This made
it possible to analyze increasingly complex models. Today FEM is one of the most
popular methods and so well-established that you can find it in almost every aspect
of the industry.
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2 1. INTRODUCTION

1.2 Computer-aided design

Computer-aided design originates back to 1966 [20] and made it possible to utilize
computers in design and drawing. It is commonly agreed that it originates back
to the work of two French engineers, Pierre Bèzier and Paul de Faget de Casteljau,
working for Renault and Citroën respectively. CAD is now a very important tool in
industrial and architectural design, as well as other aspects of drawing and design
[31]. CAD has evolved much since its beginning, and experienced "a bloom" in the
1970’s when it became possible to make computers with a graphical interface. Linear
combinations of B-splines started being used to represent curves in 1972 [30], and
non-uniform rational B-splines (NURBS) have been popular since 1975 [34]. Today
NURBS is one of the most commonly used basis to represent geometries [15, 16, 10].
NURBS has the advantage of being able to represent conic sections like circles and
cylinders perfectly without the usual approximation error. This precise representation
makes the use of NURBS popular in CAD. While in the beginning NURBS was only
being used in packages developed for car companies, CAD tools today are used in all
standard CAD packages [31].

1.3 New demands and isogeometry

Since these two technologies have evolved separately in two different communities,
with different focus and goals in mind, combining them turned out to be no easy
task. The fact that a model has been created and meshed from CAD based geometry
does not automatically mean that it is suitable for analysis. As the technologies have
matured, the gap between the technologies have only widened. Designers have kept
their focus on systems that are easy to manipulate, visualize and construct. Analysts
on the other hand, have concentrated on developing systems which are accurate,
fast and easy to interpret. Both fields have relied on completely different geometric
constructs. However, it eventually became apparent that engineering design and
analysis are not separate endeavors. Design needs to be able to communicate with
the analysis and vice versa.

As we need to be able to handle increasingly complex constructions, our methods
for both design and analysis have to be more efficient and accurate. After designers
have generated CAD files for geometry, they need to be made suitable for analysis;
meaning that the designs need to be meshed properly in order to make it possible
to conduct a large-scale finite element analysis. Creating a model and converting a
geometric model from design to analysis is not an easy task. We require a geometry
that is suitable for analysis, as well as it sufficiently preserves the physical geometry
of the problem. The more complex the model is, the more of the time spent on
overall analysis must be devoted to converting the CAD geometry to a mesh that can
be used in the analysis. For complex engineering designs this is estimated to take as
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much as 80% of the overall time spent on the task. It has been found that just the
creation of an analysis suitable geometry uses about 60% of the total time, and mesh
construction takes about 20% of time. This leaves only 20% for the actual analysis.
In the process of integrating CAD and CAE, many of the difficulties stem from lack
of an effective way to create a geometry specific to simulation as well as automated
mesh generations. The 80/20 ratio of modeling/analysis is a common experience
in the industry according to [20] Thus the motivation for finding a way to combine
CAD and CAE has only increased with modern demands. There has been a lot of
effort put into combining these, however it has proven to be a large gap to bridge.

While previous attempts at combining these had focused on converting from one
system to another, Hughes at the University of Austin had the idea that the problem
might lie elsewhere. It became apparent to him that the best way to break down
the the barriers between CAD and CAE was not only to reconstitute the process,
but also to maintain the compatibility with existing practices. He meant it would
be a better idea to focus on the system itself, create and focus on one geometric
model. Instead of struggling with bad convergence rates and low precision due to the
lack of an accurate mesh when trying to connect the two systems, he thought the
focus should be on using the same system for both design and analysis. He believed
that the whole basis for the analysis should be the same as for the basis used in the
design process, and that the whole basis for analysis should be exchanged for the
basis from design. This is what we now refer to as isogeometric design and analysis.
It was first introduced in 2005 by Hughes [21]. Since then a number of papers have
been written on the isogeometric approach in a variety of fields such as analysis of
blood flow [3] and wind-turbines [5], turbulence modeling of incompressible flow [36]
and structural vibrations [12].

As previously mentioned, engineering design is dominated by NURBS. They are
often more suited to represent the geometry than other polynomials. NURBS are
convenient for surface modeling because of their ability to represent conic sections.
NURBS represent billions of dollars in development investments and their superiority
is undeniable. Working with NURBS as basis functions means that we no longer
have to make finite element meshes explicitly, but can use the meshes already made
to represent the geometry in the design. By using the same basis and mesh for both
the geometry and analysis we get the luxury of working on a precise geometric model.
This gives us both faster and more accurate results since we have eliminated the
approximations normal in the model, making the results much more precise. Hughes
also claimed that using the same system would give more accurate results.
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1.4 Thermoelasticity

The study of a solid body under temperature changes as been thoroughly studied
in many books and publications for a variety of different media and shapes, both
regarding heat conduction and thermo elasticity. Developments in both these fields
have resulted in a variety of techniques and solutions [24]. Particularly numerical
analysis has been studied and various approaches based on variational methods have
been developed for the thermoelastic problem and the methods have been utilized in
a variety of applications [25]. In this thesis we will focus on solving the thermoelastic
equation with a isogeometric finite element method.

The thermoelastic equation is among other things an important part of the
extrusion process of aluminum [26, 9]. Aluminum alloys are increasingly more
popular and have a variety of new application areas. It plays amongst other things an
important role in aerospace manufacturing, especially since the introduction of metal
skinned aircrafts. The extrusion of aluminum is thus an important problem to be
solved. Quantitative knowledge about this process is hard to come by (the extrusion
process being complicated), making accurate simulations especially important. Since
the model of the problem is complex; the process is often costly and cumbersome,
making the need for a good numerical simulator important. It both saves time and
money, and may give us more information than could be hoped for through physical
experiments.

Thermomechanical problems however do not only appear in relation to aluminum,
but in a variety of other engineering situations as well.

1.5 This thesis

In this thesis there will be given an introduction to isogeometric finite element
method for the thermoelastic problems. It is assumed that the reader is somewhat
familiar with classical numerical techniques and finite element analysis, a very short
introduction to some key concepts is given in chapter two. Chapter three contains a
more detailed introduction to the theory behind B-splines and NURBS, which will
form the basis for the isogeometric analysis.

In chapter four the core concepts of isogeometric analysis is introduced and
compared it to classical finite element methods. The major differences between
the two approaches will be highlighted here. We go on to present the uncoupled
thermoelastic problem and its basic equations. A numerical analysis of the uncoupled
thermoelastic problem with the new isogeometric finite element solver IFEM, currently
under development at SINTEF, will be done in chapter six. We wish to know more
about the robustness of the solver and its performance on thermoelastic problems.
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In chapter six we therefore define the model problems on which we will test the
numerical attributes of IFEM. We also present the results from our testing here. The
different model problems are tested with different regularities and polynomial orders.
We are interested to see if function spaces affect the performance of the solver, and
if the accuracy of the solution is sensitive to the multiplicities of knot lines in the
model.

We continue on to a conclusion and finish with a short discussion and suggestions
for future work.





Chapter2Finite element theory

In this chapter there is given a short summary of some key concepts in the theory
behind the finite element method. We assume that the reader is already somewhat
familiar with finite element analysis, if not, there is a variety of books that offer
deep insight into the method and a more thorough dissertation of the method, for
example[6, 7, 28].

2.1 Sobolev and Hilbert spaces

In this chapter there will be given a short introduction to Sobolev and Hilbert spaces,
which is the functional spaces that the trial and weighting basis functions, used to
find the variational formulations, belong to. A more detailed introduction can be
found in chapter 2 in [28].

First we need to remember some concepts from linear algebra.

Letting V be a linear space, then if L is linear and L : V → R it is a linear
functional on V such that

L(αv + βu) = αL(v) + βL(u) ∀α, β ∈ R

A bilinear functional, a(·, ·) on V ×V , is a : V ×V → R linear in both arguments.
A bilinear functional which is symmetric, i.e

a(u, v) = a(v, u) ∀u, v ∈ V

and has a bilinear symmetric form defines an inner product on V if

a(v, v) > 0 ∀v ∈ V , v 6= 0

The norm associated with an inner product is given by

‖v‖ = (a(v, v))
1
2 v ∈ V

7



8 2. FINITE ELEMENT THEORY

If the Cauchy- Schwartz Inequality holds

|a(u, v)| ≤ ‖u‖‖v‖ u, v ∈ V

then the space, V , is complete with respect to the norm if all Cauchy sequences in V
converges with respect to that norm.

If a normed linear space V , is also complete it is called a Hilbert space. The
Hilbert space H is a linear space with the inner product (·, ·)H and with the norm
‖f‖H ≡

√
(f, f).

Considering the space of square-integrable functions

L2(Ω) = {f : Ω→ R s.t
∫

Ω f
2 dΩ <∞}

The space L2 is a Hilbert space whose inner product is defined as

(f, g)L2(Ω) =
∫

Ω
fg dΩ

with the norm in L2 is induced by this inner product

‖f‖L2 =
(
(f, f)L2(Ω)

) 1
2 =

(∫
Ω
f2 dΩ

) 1
2

These results can be generalized for an arbitrary p by defining Lp(Ω) = {f : Ω→
R s.t

∫
Ω |f |

p dΩ <∞} with the induced norm

‖f‖Lp =
(∫

Ω
|f |p dΩ

) 1
p

In an L2(Ω) space we are not guaranteed that the derivatives (in the sense of
distribution) are still in L2(Ω). In a Sobolev space however, we have more knowledge
about the behavior of the derivatives. Introducing a multi-index notation for the
derivatives by defining the vector α = (α1...αn). It is an n-tuple of non-negative
integers and f : Ω→ R be a function defined in Ω ⊂ R. We can write derivatives as

Dαf(x) = ∂|α|f(x)
∂xα1

1 ...∂xαnn

Letting Ω be an open set of R, k a positive integer and 1 ≤ p ≤ ∞. We introduce
Sobolev space of order k on Ω on the space of functions v ∈ Lp(Ω) such that all their
(distributional) derivatives of v up to order k belong to Lp(Ω).

W k,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) ∀α : |α| ≤ k}
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For 1 ≤ p ≤ ∞ this is a Banach space with norm

(u, v)Wk,p =
∑
|α|≤k

∫
Ω

(Dαu)(Dαv) dΩ

and the norm

‖u‖Wk,p(Ω) =

∑
|α|≤k

∫
Ω
|(Dαu)|p dΩ

 1
p

Note that for k = 0, W k,p(Ω) = Lp(Ω) and that for p = 2, W k,2(Ω) = Hk(Ω)

2.2 Finding the variational formulation

In this section we give a short example of the finite element method applied on
the classic model problem of the Poisson equation with mixed boundary conditions,
in the example we find the variational formulation of a strong problem. A more
detailed example can be found in chapter 3 in [28]. Here ΓD is Dirichlet boundary
condition and ΓN are the Neumann boundary condition. The Dirichlet conditions are
what is called essential boundary conditions, they are imposed explicitly in the same
functional space as the problem. Neumann boundary conditions are called natural
and they are satisfied implicitly by the solution. Together they yield a partition of
∂Ω.

Given a domain Ω ⊂ R2 and continuous function f : Ω→ R, we want to find a
function u : Ω→ R such that satisfies equations below.

−∆u = f in Ω
u = g on ΓD

∂u

∂n
= φ on ΓN

This problem is known as a strong formulation on the Poisson problem. When
rewriting the problem to its weak formulation, or variational formulation, we start
by multiplying the equation with a test function v ∈ V0. Denoting the space V0 as
V = {v ∈ H1(Ω) : v|ΓD = 0} and then integrate over the domain∫

Ω
v · ∇2u dΩ +

∫
Ω
vf dΩ = 0

by utilize Green’s formula on the first integral, we end up with∫
Ω
∇u · ∇v dΩ−

∫
∂Ω
v · ∇u dγ =

∫
Ω
vf dΩ
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We recall that ∂u
∂n = φ on ΓN , and by exploiting the additivity of integrals we obtain∫
Ω
∇u · ∇v dΩ−

∫
ΓD

v · ∇u dγ −
∫

ΓN
φv dγ =

∫
Ω
vf dΩ

By imposing the fact that the test function we have selected vanishes on ΓD. The
weak formulation of the Poisson problem with mixed boundary conditions consist of
finding u ∈ Vg ∫

Ω
∇u · ∇v dΩ =

∫
Ω
vf dΩ +

∫
ΓN

φv dγ ∀v ∈ V

where Vg is a set Vg = {u ∈ H1(Ω) : u|ΓD = g}

However, in order to get a symmetric problem we need to introduce a lifting
of the boundary data so that the (new) unknown solution space coincides with
the test function. We suppose to know a continuous function Rg, such that Rg ∈
H1(Ω), Rg|ΓD = g. We define ů = u − Rg and ∇u = ∇ů + ∇Rg. The weak
formulation for the problem then consists of finding ů ∈ V0 such that∫

Ω
∇ů · ∇v dΩ =

∫
Ω
vf dΩ +

∫
ΓN

φv dγ −
∫

Ω
∇Rg · ∇v dΩ ∀v ∈ V

Remember that we have denoted the space V0 = H1
ΓD (Ω). The weak formulation can

be rewritten into a more compact way by introducing the following bilinear form

a(ů, u) =
∫

Ω
∇ů · ∇v dΩ

and the following linear functional

F (v) =
∫

Ω
vfdΩ +

∫
ΓN

φvdγ −
∫

Ω
∇Rg · ∇v dΩ

Giving us the variational formulation of the Poisson problem

find ů ∈ V : a(ů, u) = F (v) ∀v ∈ V

2.3 Galerkin method

To illustrate the Galerkin method we start with a somewhat simpler version of the
Poisson problem with Dirichlet boundary conditions, with the weak form is defined
as

find u ∈ V : a(u, v) = F (v) ∀v ∈ V

where V is an Hilbert space, subspace of H1(Ω)
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When preforming an approximation via Galerkin method we start by defining a
proper finite-dimensional subspace

Vh ⊂ V, dimVh <∞ ∀h > 0

The Galerkin problem takes the form

find uh ∈ Vh : a(uh, vh) = F (vh) ∀vh ∈ Vh

Letting the functions {N1 ... Nnh} form the basis of V, meaning that all the
functions in the space Vh are a linear combinations of N . It is required that

a(uh,Ni) = F (Ni) i = 1, 2, . . . nh

and since uh ∈ Vh

uh(x) =
nh∑
j=1

ujNj(x), where uj , j = 1, . . . , nh

giving us the equations
nh∑
j=1

uja(Nj ,Ni) = F (Ni), i = 1, . . . , nh

Defining a stiffness matrix, A, with the elements aij = a(Nj ,Ni). A vector f with
components fi = F (Ni). By letting u be a vector containing the unknown coefficients
uj . Combining these we get the linear system

Au = f

Not only does the Galerkin method guarantee a stable discrete solution uh, it can
also be proved that the solution of the Galerkin problem exists and is unique. The
weak solution of the problem, uh, also converges to the solution of u when h→ 0.





Chapter3B-splines and NURBS

B-splines are built from a set of polynomial functions defined on non-overlapping
connected intervals. They consist of n piecewise polynomial basis functions of degree
p. B-splines are smooth, differentiable and continuous functions within each of these
subintervals, although they have limited continuity and differentiability at the interval
boundaries. The information about how these subintervals are connected is given
in a knot vector. This chapter provide an introduction to B-splines and their non
uniform national form, NURBS.

3.1 Knot vectors

Each dimension has a knot vector which is a non-decreasing set of coordinates in the
parameter space defined by a set of knots (coordinates) that gives the information
of the location of the interval boundaries, written as Ξ = {ξ1, ξ2, ..., ξn+p+1}. Here
ξi ∈ R is the ith knot, p is the polynomial order, and n is the number of B-spline
basis functions constructed from the knot vector. Note that it is the relative difference
between the knots that determines the B-spline functions, not the location of the
knots themselves.

Knot values may be repeated, and a knot vector where the first and last knot
appear p+ 1 times is called an open knot vector. In an open knot vector the basis
functions interpolate the knots at the beginning and the end.

As mentioned above, the knots partition the parameter space into elements. The
knot spans will be the element domains and the basis functions will be C∞ within
an element. The basis functions have Cp−m continuity, where p is the degree of the
polynomial and m is the knot’s multiplicity, over the element domains. From this
we see that repeated knots reduce the continuity of the basis functions across than
particular knot. This can be seen in Figure 3.3

13
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3.2 Basis functions

The basis functions are created recursively with of Cox-de Boor formula, [20] , using
the knot spans from the knot vector.

For p = 0 we define the basis function has a

Ni,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1

0 otherwise
(3.1)

While for p = 1, 2, ...

Ni,p(ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1 + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (3.2)

If we have repeated knots in the knot vector the denominator of these coefficients
will be zero. This problem is solved by defining the whole term as the value zero
when the situation occurs.

Two important features of the B-spline basis functions are that they are non-
negative and sums to one everywhere, i.e

Ni,p(ξ) ≥ 0
n∑
i=1

Ni,p(ξ) = 1

and together they form a basis, which means they are linearly independent. It is
also important to note that B-splines have a local support and that this support is
always limited to p+ 1 knot spans for B-spline functions of order p. Thus B-spline
Ni,p only depends on the knots (ξi, ξi+p+1).

The notation Ni,p refers to the ith basis function of order p, with i ∈ [1, n].

3.2.1 Derivative of basis functions

In the analysis we also need the derivative of the basis function. For the polynomial
of order p the derivative of the ith basis function is given by

d

dξ
Ni,p(ξ) = p

ξi+p − ξi
Ni,p−1 −

p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (3.3)

3.3 B-splines geometry

In order to move the B-splines from the parameter space, where they are defined,
into the physical space we build B-spline curves or surfaces. These are made by linear
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combinations of the B-spline basis functions and the control points. The control
points themselves represent the geometry, and are points in the physical space. The
curve or surface will be the mapping from the parameter space to the physical space.
The notion of control points and spaces will be explained more thoroughly in the
next chapter.

3.3.1 B-spline curves

Given n basis functions, Ni,p, and corresponding control points Bi ∈ Rd with
i = 1, 2, ..., n, a piecewise-polynomial B-spline curve is given by

C(ξ) =
n∑
i=1

Ni,p(ξ)Bi (3.4)

The B-spline curve is not required to interpolate at the control points, but it may be
forced to by utilizing the fact that we can control the continuity of the basis function
(and by extension the B-spline curve) across a knot. Since the continuity across
the knot is determined by Cp−m, using a knot vector with the right multiplicity
(m = p) can ensure C0 continuity across a particular knot, which will make the curve
interpolate.

3.3.2 B-spline surface

The curve can be extended to a surface. With a given control net Bi,j , i = 1, 2, ..., n,
j = 1, 2, ...,m, polynomial orders p and q and two knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1}
and H = {η1, η2, ..., ηm+q+1}, we can create a tensor product B-spline surface with a
formula

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)M(η)j,qBi,j (3.5)

where Ni,p(ξ) Mj,q(η) are univariate B-spline basis functions of order p and q, that
corresponds to knot vectors Ξ and H respectively.

This tensor product is non-negative and forms a partition of unity as ∀(ξ, η) ∈
[ξ1, ξn+p+1]× [η1, ηm+q+1]

n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η) =
( n∑
i=1

Ni,p(ξ)
)( m∑

j=1
Mj,q(η)

)
= 1

3.4 NURBS

Non uniform rational B-splines, NURBS for short, are built from B-splines. They
are piecewise rational polynomials with non uniform knot vectors. They are rational
as a result of the basis functions being multiplied by a weighting factor and divided
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by the sum of the B-splines basis functions multiplied by the same weights. NURBS
retain all the properties of a B-spline. By using NURBS as basis we gain control of
the continuity across the element edges that we usually lack in classical FEA.

3.4.1 Geometric perspective

In a geometrical sense NURBS are regular B-spline curves projected to a space of
one order lower. If we assume that we have the B-spline curve Cw(ξ), the projective
curve, with the associated projective control points Bw

i ∈ Rd+1, then the control
points for the NURBS curve are given by

(Bi)j = (Bw
i )j
wi

j = 1,...,d

wi = (Bi)d+1)

Dividing the projective NURBS control points by the weights is the same as applying
a projective transformation on them. The transformation should be done to every
point in the curve. This is accomplished by defining a weighting function

W (ξ) =
n∑
i=1

Ni,p(ξ)wi

here Ni,p(ξ) is the B-spline basis functions. We can now define the NURBS curve as

(C(ξ)i)j = (Cw(ξ))j
W (ξ) j = 1,...,d

where C(ξ)w =
∑n
i=1Ni,p(ξ)Bw

i =
∑n
i=1Ni,p(ξ)Biwi

3.4.2 Algebraic perspective

In order to ensure that the properties of the B-spline functions will be retained in
the NURBS the basis for the NURBS space is constructed from the knot vectors,
and the curves or surfaces are built from linear combinations of basis functions and
control points.

With this in mind we can define the NURBS basis functions as

Rpi (ξ) = Ni,p(ξ)wi
W (ξ)

where W (ξ) is the weighting function defined in the previous section. NURBS curves
are given by

C(ξ) =
n∑
i=1

Rpi (ξ)Bi
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In 2D the NURBS basis functions will be given as a tensor product

Rp,qi,j (ξ, η) = Ni,p(ξ)Mj,q(η)wi,j
W (ξ, η)

where the weighting function is defined as

W (ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)wi,j

and the 2D surfaces will in turn be given by

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,qi,j (ξ, η)Bi,j

3.4.3 Derivatives of NURBS basis functions

In our finite element analysis we need the derivatives of the NURBS basis functions.
The derivatives are found by differentiating the basis functions using the quotient
rule.

d

dξ
Rpi (ξ) = wi

(
d
dξNi,p(ξ)

)
W (ξ)−Ni,p(ξ)

(
d
dξW (ξ)

)
(W (ξ)2)

where the derivative of the weighting function is

d

dξ
W (ξ) =

n∑
i=1

( d
dξ
Ni,p(ξ)

)
wi

In 2D we need to differentiate with respect to ξ and η respectively

d

dξ
Rp,qi,j (ξ, η) = wi

(
d
dξNi,p(ξ)

)
Mj,q(η)W (ξ, η)−Ni,p(ξ)Mj,q(η)

(
d
dξW (ξ, η)

)
(W (ξ, η)2)

d

dη
Rp,qi,j (ξ, η) = wi

Ni,p(ξ)
(
d
dηMj,q(η)

)
W (ξ, η)−Ni,p(ξ)Mj,q(η)

(
d
dηW (ξ, η)

)
(W (ξ, η)2)

with the derivatives of the weighting functions given as

d

dξ
W (ξ, η) =

n∑
i=1

m∑
j=1

( d
dξ
Ni,p(ξ)

)
Mj,q(η)wi,j

d

dη
W (ξ, η) =

n∑
i=1

m∑
j=1

Ni,p(ξ)
( d
dη
Mj,q(η)

)
wi,j
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3.5 Knot Insertion

A geometry based on NURBS can be refined while the geometry remains intact. This
is useful when faced with problems that require increased precision in certain points,
for example when working with singularities. Knot insertion is a way of enriching the
basis without changing or compromising the geometry. Additional knots are inserted
into the knot vector, thus making the knot spans smaller and shrinking the elements
without changing the curve geometrically or parametrically. With the original knot
vector as previously described as Ξ = ξ1, ..., ξn+p+1 the goal is to create an extended
knot vector Ξ = ξ1, ..., ξn+m+p+1=ξn+p+1 and use the extended knot vector to form
new n + m basis functions. We also get n + m new matching control points, B,
formed from linear combinations of original control points B.

B = TpB (3.6)

where

Ti,j =
{

1 ξi ∈ [ξj , ξi+1)
0 otherwise

(3.7)

and

T q+1
ij =

ξi+q − ξj
ξj+q − ξj

T qi,j +
ξj+q+1 − ξj+q
ξj+q+1 − ξj+1

Tij+1 q = 0, 1, 2, ..., p− 1 (3.8)

3.6 Refinement methods

As previously mentioned, the isometric mesh does not only represent the exact
geometry, but it also allows us to refine it to any level without ever altering the
geometry in any way [11]. The main strategies of refinement are presented below.
Both h-refinement and p-refinement may be familiar as it exists in classic FEA as well,
but k-refinement is a more efficient and higher order concept new for Isogeometric
analysis. In [21] k-refinement is described as a (potentially) superior approach to
high precision analysis.

3.6.1 h-refinement: knot insertion

h-refinement is a refinement method based on knot insertion. As mentioned in
chapter 3.5 knots can be inserted without changing the curve (not geometrically nor
parametrically). Inserting new knot values splits the existing elements into smaller
ones, while repeating knots reduces the continuity of the basis. One can retain the
continuity of the curve by selecting control points as described in equations 3.6, 3.7,
3.8. Note that if an (internal) knot appears more that p times it will cause the curve
to become discontinuous.
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Figure 3.1: This figure shows the an example of knot insertion. Here red knots are
the original knots, and the green knots represents the inserted knots.

The h-refinement strategy of inserting knots is a way to enrich the solution space
by adding additional basis functions of the same order, at the same time as leaving
the curve unchanged.

3.6.2 p-refinement: order elevation

The polynomial order, p, of the basis functions can also be raised without changing
the geometry or parameterization. The p-refinement method is based on order
elevation (in CAD community often called degree elevation). It entails raising the
polynomial order of the basis, and thus the solution space. As previously mentioned
the basis functions are p−m continuous across the element boundaries. It follows
that when the order, p, is increased we also need to change the multiplicity m in
order to retain the original continuity. When elevating the order the multiplicity of
each knot value is increased by one, no new knots are added. The multiplicities of
the knots is increased but no new elements are introduced.

The p-refinement process starts with replicating the knots until their multiplicity
is equal to the polynomial order, practically subdividing the curve. This process
effectively divides the curve into many Bézier curves by knot insertion (for more
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information of Bèzier curves see [31]). Then the order of the polynomial is elevated
on each of these individual segments and lastly we remove the unnecessary knots in
order to combine the segments into one. The result is one order elevated B-spline
curve. There has been done extensive research on different p-refinement methods
and there exists several different algorithms for this purpose. A deeper and more
thorough treatment of the subject can be found in [27].

3.6.3 k-refinement: higher order and higher continuity

With NURBS as basis functions we can define new elements by inserting new knot
values, for which the continuity across the boundary will be Cp−m. We can lower
the continuity of the basis across the element boundary by repeating existing knot
values.

Consider a unique knot value, ξ, inserted into a knot vector. It is inserted between
to knot values in a curve with order p, this means that the number of continuous
derivatives at the new knot is p− 1. Then the order is elevated to a higher order, q,
and the multiplicity of every knot is incremented (q− p) times which means that the
discontinuities are preserved in the pth derivative of the basis. The basis will still
have p− 1 continuous. In other words, even though the order of ξ is q, the basis only
has p− 1 continuous derivatives at the knot value. If the procedure is done the other
way around, i.e we started by elevating the order of the original knot vector to q and
then inserted the new knot ξ, the basis would have q − 1 continuous derivatives at
this knot. This last way of elevating the order and achieving higher continuity is
referred to as k-refinement. As we need quadratic level NURBS to represent conic
structures perfectly, one of the great strengths of the polynomial and key feature of
the isogeometric method, k-refinement is an important concept.

3.7 An example

Figure 3.2 depicts the B-splines created from the open knot vector Ξ = [0, 0, 0, 1
4 ,

1
2 ,

3
4 , 1, 1, 1]

of polynomial order 2. Since the knot vector contains 9 knots, we end up with
n = 9 − 2 − 1 = 6 basis functions to construct the B-spline curve. There are no
repeated interior knots so the basis functions are C1-continuous across these knot
spans.

This is not the case however in Figure 3.3 which depicts the basis functions
created from knot vector Ξ = [0, 0, 0, 1

4 ,
1
4 ,

1
2 ,

3
4 , 1, 1, 1], where knot 1

4 is repeated. In
this case the basis functions will be C0-continuous across the interior knot span,
since p−m = 2− 2 = 0. In both figures the basis is an interpolation at the boundary
of the domains this is a result of the knot vectors being open. With the basis
functions and knot vector as in figure 3.2 , control points Bx = [0, 6, 4, 4, 2, 1] and
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Figure 3.2: These are the B-splines created from the open uniform knot vector
Ξ = [0, 0, 0, 1

4 ,
1
2 ,

3
4 , 1, 1, 1] with p=2

Figure 3.3: These are the B-splines created from the open non-uniform knot vector
Ξ = [0, 0, 0, 1

4 ,
1
4 ,

1
2 ,

3
4 , 1, 1, 1] with p=2. Note the reduced continuity of the basis

functions across the repeated knot(dotted line)

By = [1, 2, 5, 3, 0] and weights equal to one we can create the first NURBS curve in
Figure 3.4, since the weights are one this is also a B-spline curve.

It can be seen how the choice of control points effects this curve in the second plot
in Figure 3.4, which shows the NURBS curve of the same knot vector as in Figure 3.2
but with different control points. Different control points means a different geometry.
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Figure 3.4: The NURBS curves for the same knot vectors, but different control
points.



Chapter4Isogeometric analysis

In this chapter we will present the isoparametric concept and its differences from the
classic finite element method.

While in classical finite element analysis the parameter space is local to individual
elements, the parameter space of the B-splines is defined to be local to a patch
rather than a single element. A patch can be viewed as a sub domain comprised
of multiple uniform elements, and the patch is partitioned into elements by a set
of internal knots. The elements will thus be equal to the spans of the knots in the
parameter space. A B-spline mapping takes the patch from the parameter space into
the physical space. In [20] each element in the physical space is described as the
image of a corresponding element in the parameter space, but that the mapping itself
is global to the whole patch, rather than the element themselves. These different
spaces and mappings will also be discussed later in this chapter.

4.1 Isogeometric concept

The isoparametric concept is well known in classic FEA. It consists of using the same
basis both to model the geometry as well as span out the solution space. The basis
is chosen to approximate the unknown solution field, and then this basis is used to
approximate the already known geometry. In isogeometric analysis however, the
focus lies on selecting a basis which is able to exactly represent the known geometry
and use this as a basis for our finite element analysis. Such that we can go directly
from design to analysis without compromising (the integrity of) the geometry. In
[20] Hughes describes it as reversing the isoparametric arrow. Classical FEA imposes
a chosen solution space onto the description of the geometry, while in isogeometric
analysis this is reversed. Here we begin with a basis chosen for its capability to
represent the exact geometry, and impose it on the solution fields.

Since spline basis functions are numerically superior when it comes to solving
problems on difficult geometries such as cones and circles, B-splines and NURBS is

23
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Figure 4.1: The figure illustrates the different spaces used in a NURBS single-patch
geometry for the open knot vectors Ξ = [0, 0, 0, 1

2 , 1, 1, 1] and H = [0, 0, 0, 1
2 , 1, 1, 1].

In the physical space the physical mesh is shown with the red lines, the control mesh
is the dotted line and the control points are shown as black dots. The quadratic basis
functions are defined in the parameter space. In the index space the zeros measure
knot spans are colored yellow, these are only visible in this space.

often used to express the geometry exactly and to span the solution space in the
finite method.

In this report NURBS are used as basis functions to represent the geometry as
well as the finite element analysis such that we can get a seamless transfer between
design and analysis.

4.2 Spaces and mapping

One of the differences between classical FEM and isogeometric analysis is the meshes
and spaces used. This chapter will try to make the distinction between the different
meshes, spaces and the mapping between them clear. There are two different meshes,
physical mesh and control mesh, where the geometry is determined. Even though
the basis functions have support over multiple elements and the solution vector u
contains contributions from different basis functions, this support is viewed as local.

As can be seen in figure 4.1 we are working in three different spaces. The physical
space, the parameter space (where the basis functions) are defined and the elements
are given and the index space of the patch (where each knot is uniquely defined).

During the calculation of the stiffness matrix the integrals are evaluated utilizing
Gaussian quadrature in the parent element. In order to do this we need to move
from the physical space to the unit square where the integration is preformed. This
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Figure 4.2: The figure illustrates the movement between the spaces.

Physical mesh A decomposition of the geometry, the
mesh is divided into non overlapping
physical elements. While in classic FEA
the domain is divided into elements by
nodal points, when we use NURBS the
domain is divided into elements by the
knot spans.

Control mesh The control mesh is defined and inter-
polated by the control points.

is done by "mapping through" the parameter space. See figure 4.2.

With the knot vectors Ξ = {ξ1, ξ2, ..., ξn+p+1} and H = {η1, η2, ..., ηm+q+1}, the
mapping from the parent element to parameter space is given by

ξ =
[
ξ(ξ̂)
η(η̂)

]
=
[

(ξi+1−ξi)ξ̂+(ξi+1+ξi)
2

(ηi+1−ηi)η̂+(ηi+1+ηi)
2

]
(4.1)

and the Jacobian matrix for this mapping is

Jξ,ξ̂(ξ̂, η̂) =

 ∂ξ∂ξ̂ ∂ξ
∂η̂

∂η

∂ξ̂

∂η
∂η̂

 =
[

(ξi+1−ξi)
2 0
0 (ηi+1−ηi)

2

]
(4.2)

The next step is to calculate the Jacobian to map from a point in the physical



26 4. ISOGEOMETRIC ANALYSIS

space to the parameter space

Jx,ξ =
[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

]
(4.3)

To map from Ω to Ω̂ two Jacobians is combined

Jx,ξ̂ =

∂x∂ξ̂ ∂x
∂η̂

∂y

∂ξ̂

∂y
∂η̂

 =
[
∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

] ∂ξ∂ξ̂ ∂ξ
∂η̂

∂η

∂ξ̂

∂η
∂η̂

 = Jx,ξJξ,ξ̂ (4.4)

It is a bit cumbersome to find the derivatives with regards to x and y since
the basis functions are defined in the parameter space. To find the expression for
∇Ni(x, y) start with the inverse and transpose of Jacobian of the mapping from the
physical space to the parameter space.

(Jx,ξ)−T =
[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

]
(4.5)

and we let

∇ =
[
∂
∂x
∂
∂y

]
∇̂ =

[
∂
∂ξ
∂
∂η

]
combining this we get

∇ =
[
∂
∂x
∂
∂y

]
=
[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

][
∂
∂ξ
∂
∂η

]
= (Jx,ξ)−T ∇̂

When calculating the derivatives of the basis functions with regards to the x
and y, G = (Jx,ξ)−T is used and gives the derivatives of the basis functions in the
physical space.

∇Ni(x, y) =
[
∂Ni
∂x
∂Ni
∂y

]
=
[
∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y

][
∂Ni(ξ,η)

∂ξ
∂Ni(ξ,η)

∂ξ

]
= G∇̂Ni(ξ, η) (4.6)

4.3 Isogeometric finite element analysis

In this paper we focus on an isogeometric approach to the finite element method and
in this chapter we will try to highlight the differences from the classical approach.

The finite elements are usually built by piecewise polynomials, as the reader
might know in classical FEM they are often Lagrange or Hermite polynomials [19].
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Lagrange elements, made from tensor products of Lagrange interpolation polynomials,
are very popular in FEA. However, when preforming a isogeometric analysis the
elements are usually built by splines, in our case NURBS. It is good to note that
when B-splines (more precisely Bernstein polynomials) form the basis for an element
with C0 continuity it spans the same space as Lagrange elements, even though the
basis functions are different. These elements are called Bézier elements and they
give the exact same results as classic Lagrange elements while still processing all
the properties of B-splines. It means that anything that can be done with Lagrange
elements in classic finite element analysis is also possible to do with B-splines and
isogeometry.

An analysis based on NURBS contains much of the same features as a classic
finite element approach.There is however some items and features that makes the
framework for a NURBS based analysis that differs somewhat from the traditional
approach. The biggest differences between the methods are summarized in table 4.3.
As previously mentioned the mesh for a NURBS patch is defined by the product
of knot vectors and the domain is subdivided by knot spans into elements. The
control points defines the geometry. Note also that the definition of a finite element
in an isogeometric setting the element domain refers to a patch and when it comes
to B-splines and NURBS an element is defined as each tensor product knot span.

There is also a practical difference in the architecture of the code when we use a
different basis for the analysis (we will not go through the differences in the code
architectures, but a detailed summary is presented in [20]).

The fact that the isogeometric analysis uses an exact geometry at all levels of
the discretization makes a big difference. It affects the accuracy of the analysis as
well as the process as a whole, because it means that refinement does not require
any external description of the geometry.

The finite element solution, regardless of the approach, of the variational formula-
tion will be a linear combination of the basis functions. While in FEA the coefficients
are the nodal variables, in isogeometric analysis they will be the same as control
variables. The nodal points and variables in classic FEM are usually interpolated,
this is however not the case with the isogeometric method. There are also many
similarities between the two methods. Nothing about the mathematical structure
differs, they are both isoparametric implementations of the Galerkin method, both
utilize bases that obey the partition of unity as well as affine transformations achieved
by applying them to the coefficients which define the geometry directly.

When preforming a Galerkin projection the exact solution is projected into a
finite subspace. This subspace is built up by the chosen basis functions, in the
isogeometric case the subspace will be built by NURBS mapping the surface to the
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Isogeometric analysis Classic finite element analysis
NURBS basis Polynomial basis
Exact geometry Approximate geometry
Knots Mesh
Control points Nodal points
Control variables Nodal variables
No interpolation of control points Interpolation of the nodal points
and variables in the basis and variables in the basis
Cp−m continuity across element edges C0 continuity over element edges
Subdomains Patches

Table 4.1: This table shows main differences between an isogeometric and classic
finite element approach.

physical domain Ω. The space of possible solutions, S, is limited to a subspace Sh
(still a Sobolev space as discussed in chapter 2.1) spanned by a finite number of
NURBS basis functions.

S ⊂ Sh

For the one dimensional case and two dimensional case respectively, the subspaces
are defined as

Sh = span
{
Ri(ξ) ∈ S

∣∣∣C(ξ) =
n∑
i=1

Rpi (ξ)Bi = Ω
}

Sh = span
{
Rp,qi,j (ξ, η) ∈ S

∣∣∣S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,qi,j (ξ, η)Bi,j = Ω
} (4.7)

A much more detailed discussion regarding these isogeometric spaces can be found
in [14].



Chapter5Thermoelasticity

In this chapter we will present the basic equations for the heat transfer problem and
thermoelasticity problem, and each of their variational formulations. We assume
that the deformations are limited, i.e that they are so small that they in turn do not
generate heat. This means that the thermoelasticity equation can be solved in an
uncoupled way. In practical terms this means that we can calculate the temperature
field independently from the elasticity problem. The temperature is solved separately,
as a thermal problem, and then the solution temperature is used to calculate thermal
stress and find the stresses and strains.

In both cases the problem is solved with a traditional Galerkin formulation, the
NURBS based elements are used to construct the finite element spaces and then
utilized in the approximation.

5.1 Heat transfer problem

In this chapter we look at the heat transfer problem and how we find the variational
formulation of the problem and estimate the temperature field inside a body.

Heat transfer is the transport of thermal energy due to a spatial temperature
difference. Heat transfer in static materials depends only on the spatial gradient
and material properties. When the spatial gradient is present in a body or between
systems in thermal contact heat transfer will occur. Common experience gives that
heat will flow from a region of high temperature to one with low temperature. This
flow is referred to as heat flux. One of the basic principles behind the equations
governing heat transfer is balance, for the system to satisfy conservation of energy.
This means that the heat inflow and heat generated must be equal to heat outflow
plus change in internal energy.

29
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5.1.1 Basic equations of thermal heat transfer

We are considering a solid through which heat is flowing, but no heat is generated,
the governing equation for conduction for heat transfer is given in [35] as:

ρc
∂T

∂t
= ∇ · (k∇T ) + f in Ω× (0, Tf ] (5.1)

which is applied and solved on the domain Ω × (0, Tf ] for Ω ⊂ R with specified
boundary conditions.

In equation 5.1 the thermal properties of ρ, c and k are constants. They are
independent of both position and temperature. They represent density, specific heat
and thermal conductivity. T is the unknown temperature field and f represents
the body sources of heat, in our case there will be no heat generation or change of
internal energy inside the body.

We can apply a number of boundary conditions on different portions of the
boundary. Boundary conditions are used to express, for instance, either a given
temperature, T , an applied heat flux, Q, or convection with the environment. The
different kinds of boundary conditions are defined in equations 5.2, 5.3 and 5.4 below.
They represent Dirichlet, Neumann and Robin boundary conditions respectively.

T = T on Γd (5.2)

−k∂T
∂n̂ = Q on Γq (5.3)

−k∂T
∂n̂ = h(T − T e) on Γc (5.4)

The over line means that the values are known for every time step. In the cases of
heat flux and convection n̂ refers to the unit normal vector. In equation 5.4 h refers
to the convection coefficient and Te.

5.1.2 The variational formulation

For the transient heat transfer problem given in the previous section we apply Rothe’s
method. The time semi-discretization is done with backward-difference first order
(BDF1) method for the first two initial time conditions and backward-difference
second order (BDF2) method for the later time steps. Rothe’s method was chosen
instead of the more common Method of line because it has various advantages over
the Method of line, especially with regards to adaptivity. With Rothe’s method we
first discretization in time direction, and then the time semi-discretized equations are
discretized in a spatial direction. Another advantage of the Rothe’s method approach
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with BDF1 and BDF2 discretization is that the scheme is unconditionally stable. An
unconditionally stable scheme means that there is no need to satisfy a restriction on
the time stepping.

We utilize the following time semi-discretizations for the time domain 0 = t0 <

t1 < ... < tm = Tf , with time step ∆t = tn − tn−1

ρc
Tn − Tn−1

∆t = ∇ · (k∇Tn) + fn for n = 1, 2, ...,m (5.5)

ρc
2
3T

n+1 − 2Tn + 1
2T

n−1

∆t = ∇ · (k∇Tn+1) + fn for n = 2, ...,m− 1 (5.6)

Equation 5.5 represent BDF1 method and equation 5.6 BDF2 method. Here super-
script n indicates the time step number.

After the semi-discretization in time the spatial discretization is done with
the Galerkin formulation. We multiply both sides with a test function v and
integrate over the domain. This test function will be (as previously mentioned)
a NURBS function that lives in the space Vh,0 ⊂ V0 where the space V0 denoted
V0 = {v ⊂ H1(Ω) : v|Γd = 0}

The finite dimensional function space Vh,d ⊂ Vd contains functions that satisfy
the Dirichlet boundary conditions a specified temprature on the edge, T = d on
Γd. Note that Vd = {v ⊂ H1(Ω) : v|Γd = d}. The goal is to find the temperature,
Tn ∈ Vh,d such that

∫
Ω

(
ρc
Tn − Tn−1

∆t · v
)
dΩ =

∫
Ω

((∇ · (k∇Tn) + fn) · v) dΩ ∀v ∈ Vh,0 (5.7)

Utilizing both the boundary condition 5.3 and the divergence theorem together with
partial integration

∫
Ω

(
ρc
Tn − Tn−1

∆t · v
)
dΩ +

∫
Ω
k∇Tn · ∇v dΩ =

∫
Ω
fnv dΩ +

∫
Γq
v

(
k
∂Tn

∂n

)
dΓq∫

Ω

ρc

∆tT
nv dΩ +

∫
Ω
k∇Tn · ∇v dΩ−

∫
Ω

ρc

∆tT
n−1v dΩ =

∫
Ω
fnv dΩ +

∫
Γq
Qv dΓq

(5.8)

By letting the approximated solution at time step n, Tnh be expressed in terms of the
basis functions, φ, Tnh =

∑n
i=1 T

n
h,iφ

n
i . With the matrix coefficient for i, j = 1, .., ndof ,
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the following is defined

Mn
ij =

∫
Ω
φni φ

n
j dΩ

Snij =
∫

Ω
k
(
∇φni · ∇φnj

)
dΩ

Mn,n−1
ij =

∫
Ω
φni φ

n−1
j dΩ

Fni =
∫

Ω
fnφni dΩ +

∫
Γq
Qφni dΓq

which means that we can write equation 5.8 as( ρc
∆tM

n + Sn
)
Tnh = ρc

∆tM
n,n−1Tn−1

h + Fn (5.9)

We do the same for for equation 5.6∫
Ω

(
ρc

2
3T

n+1 − 2Tn + 1
2T

n−1

∆t · v
)
dΩ =

∫
Ω

((
∇ · (k∇Tn+1) + fn

)
· v
)
dΩ ∀v ∈ Vh,0

(5.10)
and by following the same steps as before we get∫

Ω

2ρc
3∆tT

n+1v dΩ +
∫

Ω
k∇Tn+1 · ∇v dΩ−

∫
Ω

2ρc
∆t T

nv dΩ +
∫

Ω

ρc

2∆tT
n−1v dΩ

=∫
Ω
fnv dΩ +

∫
Γq
Qv dΓq

(5.11)

Mn,n+1
ij =

∫
Ω
φni φ

n+1
j dΩ

Mn
ij =

∫
Ω
φni φ

n
j dΩ

Sn,n+1
ij =

∫
Ω
k
(
∇φni · ∇φn+1

j

)
dΩ

Mn,n−1
ij =

∫
Ω
φni φ

n−1
j dΩ

Fni =
∫

Ω
fnφni dΩ +

∫
Γq
Qφni dΓq

which means that we can write equation 5.11 as(
2ρc
3∆tM

n,n+1 + Sn,n+1
)
Tn+1
h = ρc

2∆tM
n,nTnh −

ρc

2∆tM
n,n−1Tn−1

h + Fn (5.12)
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5.2 Thermo elasticity problem

It is a known fact that when a body experiences a change in temperature it may cause
the body to deform, and any body that undergoes a deformation may experience
strain. A thermoelastic problem essentially consists of two components, one relating
to the mechanical deformations and the other to the thermal expansion. If the
temperature variations due to mechanical deformations are negligibly small the
thermal strain is a linear function of the temperature change. When the deformations
are so small that they do cause heat production in the body, the problem can be
solved sequentially. This is referred to as an uncoupled thermoelastic problem.

5.2.1 Basic equations of thermoelasticity

The strain due to thermal expansion, called the thermal strain εth, is equal to

εthij = α(T )θδij (5.13)

Here θ = T − T0 is the temperature change, T0 is the initial temperature and T

is the applied temperature, α is the thermal expansion coefficient (which may be
dependent on temperature) and δij is the dirac-delta function.

Note that in this it is assumed that the initial temperature is equal to the reference
temperature where the body does not experience deformation. If this is not true,
and the reference temperature, Tref , is different from the initial temperature, T0, the
equation can be written as

εthij = α(T )(T − Tref )− α(T0)(T0 − Tref )δij (5.14)

The mechanical strain due to the elastic deformations is equal to the difference
between total and thermal strain.

εel = ε− εth (5.15)

Total deformations is given as

ε = 1
2(∇u +∇tu) (5.16)

where u is the displacement vector field.

When working with an uncoupled problem the thermoelasticity equation can be
solved sequentially, i.e the temperature can be evaluated independently from the
strain. If the temperature field is known at each time step, it is possible to find the
stress state from the induced deformations. Utilizing the linear relation between
stress, strain and elasticity modulus we can express the stress in the body as

σ = Dεel (5.17)
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Known as the generalized Hooke’s law, where the matrix D contains Young’s modulus
E and ν, which both are constant material properties.

Combining this fact with equations for strain, 5.13,5.15, 5.16, we can express the
stress in terms of the displacement vector field u as

σ = D
2 (∇u +∇tu)−Dα(T )θδij (5.18)

If we also imagine no dynamic effects from the loads on the body and neglect body
force contributions the equilibrium equations is reduced to

∇ · σ = 0 (5.19)

Inserting the stress for thermoelasticity found in 5.18 we end up with the equation

∇ ·
(

D
2 (∇u +∇tu)−Dα(T )θδij

)
= 0 (5.20)

Equation 5.20 can be solved with Dirichlet and/or Neumann boundary conditions
shown in 5.21 respectively.

u = g on Γd
σ · n = h on Γn

(5.21)

5.2.2 The variational formulation

We find the variational form of the problem stated above by multiplying each side by
a test function v ∈ V0 where V0 = {v ∈ H1(Ω) : v|ΓD = 0} and integrate over the
domain. Obviously the test function v we have chosen is a NURBS polynomial.

A Galerkin projection is used, we search for the approximated solution in the
finite dimensional subspace, and v ∈ Vh,0 ⊂ V0∫

Ω

(
∇ · D

2 (∇u +∇tu)
)

v dΩ =
∫

Ω
(∇Dα(T )θδij) v dΩ ∀v ∈ Vh,0 (5.22)

Greens formula together with the boundary conditions are used to obtain the vari-
ational formulation. It consists of finding the displacements, u ∈ Vh,d ⊂ Vg. Here
V = {u ∈ H1(Ω) : uΓD = g}, which contains the functions which satisfies the
Dirichlet boundary conditions on the boundary of Γd such that∫

Ω

D
2 ∇u · ∇vdΩ +

∫
Ω

Dα(T )θδij · ∇vdΩ =
∫

Γn
h · vdΓndΩ ∀v ∈ Vh,0 (5.23)

If we know the temperature, Tn , at a time, tn, the formulation for the displacement
at this moment in time, un ∈ Vh,g, is given by∫

Ω

D
2 ∇un · ∇vndΩ +

∫
Ω

Dα(Tn)(Tn − T0)δij · ∇vdΩ =
∫

Γn
h · vndΓn ∀vn ∈ Vh,0

(5.24)
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5.3 Error estimation

Several ways have been developed to estimate the discretization errors of finite
element solutions. We differentiate between a priori error estimators and a posteriori
error estimators. The first traditionally provide information on the asymptotic
behavior of discretization errors, while the second employs the finite element solution
to calculate error estimations of the analytical solution errors.

When we do the error estimation on our problem we wish to evaluate the error over
each element separately in some norm. Since the finite element method minimizes the
distance between the actual solution, u, and the approximated one, uh, the energy
norm is obviously a good choice of norm to use in the error analysis. The energy
norm is associated with the discretization error from the finite element solution. We
can work with the exact error if we have an analytical solution for our test problem.
The energy norm depends on the bilinear operator of the problem, a(·, ·).

The energy norm that evaluates the exact error is defined as

‖u− uh‖E =
√
a(u− uh, u− uh) (5.25)

In cases where the bilinear operator is self adjoint, the finite element solution, uh,
will be the optimal approximation to the analytical solution, u, as measured in the
energy norm (sometimes called a-norm).

It is shown in [4] that the a priori convergence rate of isogeometric analysis based
on NURBS is bounded in the same as classical FEA. Given that we are working on
a mesh,M, that is quasi-uniform and uniform if the analytical solution u ∈ Hp+1,
meaning that it is sufficiently smooth, and u is the solution of a variational problem
containing first order differentiation the error of the approximate finite element
solution is bounded as described in equation 5.26. C is some constant dependent
on the problem and h is the element size with p the highest polynomial order in
the basis. ‖u‖Hp+1 is the analytical solution in the Sobolev norm with order p+ 1.
Knowing this we can compare the convergence rates the numerical results with the
upper bound.

‖u− uh‖E ≤ Chp‖u‖Hp+1 (5.26)
In cases where we deal with singularities, the solution is not sufficiently smooth and
the error is not bounded in this way. In these instances the error bound depends on
a real non-negative parameter α which is connected with how the problem is meshed.
If we define λ as the strength of the singularity (limited to real numbers), we have
α = min{p, λ}. The errors convergence is then bounded by

‖u− uh‖E ≤ Chα‖u‖Hα+1 (5.27)

Note that when λ < p the convergence rate is limited not by the polynomial order,
but the strength of the singularity.
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These error bounds are proven and further discussed in [14] and [13]

Working with the uncoupled thermoelasticity simplifies the error analysis some-
what. It means that we can work with the two parts belonging to stress and heat of
the thermoelastic equation 5.24 independently from each other. We assume that the
temperature related error does not affect the stress and focus only on the thermal
stress, and separate the error analysis for the elasticity solver. This means that the
bilinear operator we use in the energy error is equal to

a(u, v) =
∫

Ω

D
2 ∇u · ∇vdΩ (5.28)

Keeping in mind the equations from chapter 5.1.1, this gives us an energy norm equal
to

‖u− uh‖E =

√∫
Ω

(σ − σh)T (ε− εh)dΩ (5.29)

which is the energy norm we base our later convergence plots on.



Chapter6Numerical examples

In this chapter we present the numerical models that will be tested with IFEM. In
order to analyze the robustness of the solver we chose to test it on one model problem
where we are in possession of the analytical solution as well as one where we are
presented with a singularity. These model problems are presented in chapter 6.3 and
6.4.

As we wish to test not only the correctness of the solver, but also the robustness
of the method we will build a numerical example of this geometry with different sets
of basis functions. This is done in order to see if (and how) the results are affected
by the function space.

In this chapter we will present the numerical results from the IFEM solver’s
performance on the different model problems. The convergence rates are plotted as
a function of the number of degrees of freedom for different function spaces. This is
done in order to assess the solver’s robustness. We will first and foremost focus on
comparing the convergence rates for the different function spaces, and investigate
how they affect the error (measured in the energy norm), and if the error behaves as
expected.

6.1 IFEM solver

We will use the IFEM solver for our numerical testing done in this chapter. It is a
fairly new finite element solver so it is not as polished as other solvers on market,
but it has the advantage of being a isogeometric solver. The thermoelastic solver
in IFEM has been written from scratch at SINTEF. SINTEF wished to create a
solver based on an isogeometric approach to the finite element method. The solver
has been developed with two goals in mind, firstly they wanted to address the basic
design needs and secondly they wanted to use the most effective possible solution
algorithms without any loss in accuracy. We will be testing different input files and
function spaces to see if it has any effect on our results. We also wish to see how

37
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Notation Parameter Value SI units
T Temprature Ti = 373, To = 293 K
ρ Mass density 7850 Kg

m3

ν Poisson ratio 0.3 no unit
α Thermal expansion 1.2× 10−5 1

K
E Young’s Modulus 2× 1011 Pa

Table 6.1: This table shows the material parameters used in the numerical models.

IFEM handles problems with singularities, and if double or multiple knot lines gives
a better result.

The thermal stress is analyzed with a sequential method, first solving for the
temperature and then finding the stress with an elasticity solver. We apply results
from the first analysis in order to proceed with the second analysis. In our case this
entails using the temperature results from the first analysis in our second analysis in
order to find the thermal stresses.

The IFEM solver utilizes Gauss integrals when finding the solution of the integrals
of the variational formulation and in our simulations the integrals is solved with four
Gauss points.

6.2 Model problems

The model problem used for our numerical analysis will be a steel pipe. We will
analyze a cross-section of the pipe using a plane strain model. Because the problem
is symmetric, we only need to look at a quarter segment of the pipe. We will focus
on the plane strain problem so the pipe will be with fixed in both ends, not allowing
any movement in z-direction.

The two geometries we will be looking at can be viewed as a circular pipe, called
annulus, and a square pipe, called L-shape. We have an analytical solution that
applies to the annulus only.

In order to avoid misunderstandings the table 6.2 shows the units and notations
used. The notation Sp,p−m refers to the function spaces spanned by the basis
functions. As previously the superscript p refers to the order of these basis functions.
We will refer to p−m as the regularity of the basis with m being the multiplicity of
the knots. The regularity gives the continuity of the basis across knot lines. When
we refine the mesh (by inserting knots) it is done uniformly by recursively halving the
interval between consecutive knots. Inserting knot lines with a higher multiplicity
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might be a good idea if we wish a lower continuity. A lower continuity might be a
beneficial if we are working on a geometry modeling or if we know something about
the underlying problem. In order to investigate how the multiplicity of knot lines
and the degrees of freedom affect the numerical results, we run the geometry of the
steel pipe with different sets of bases Sp,p−m with m = 1 . . . p− 1 and regularities.
We will also compare the error for different polynomial orders. Each of the function
spaces will be tested with different degrees of freedom, achieved by refining the knot
vectors with knot insertion.

The boundary conditions will be identical for each of the geometries. The
temperature on the inner and outer surfaces of the pipe will be imposed as Dirichlet
conditions and remain constant during the simulations. Since the deformations
causing stress in the body is only due to the temperature changes, there are no
additional forces causing stresses or strains in the body (apart from gravity of course).
The model is one quarter of a pipe so the edges will be restricted, only allowing the
cylinder to expand outward in the radial direction. These restrictions are imposed as
Dirichlet boundary conditions. In other words both problems will be a plane strain
problem.

6.3 The Annulus: a circular pipe

We wish to do a numerical analysis of a circular pipe model with inner radius
ri = 0.03 mm and outer radius ro = 0.04 mm. The choice of this geometry was
partially motivated by the fact that we are in possession of an analytical solution
for this problem, but also because this problem will showcase the advantages of the
exact geometry due to NURBS basis functions.

For the circular pipe problem we are considering, we assume that it is symmetrical
around the axis and independent of the axial coordinate z. Supposing that the
cylinder’s edges are fixed the axial displacement, w, is zero throughout. The cylinder
will only have three stress components σr, σθ and σz , as the shear strains and
stresses will be equal to zero due to symmetry and uniformity in the axial direction.

The relation between the thermal stresses and strains for the plane strain problem
is given below

εr − αT = 1
E

[σr − ν (σθ + σz)]

εθ − αT = 1
E

[σθ − ν (σr + σz)]

εz − αT = 1
E

[σz − ν (σr + σθ)]

(6.1)
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The analytical solution presented in the next chapter only applies if the heat transfer
has achieved a steady state, therefore we make sure that the numerical simulations
run long enough to reach steady state.

Figure 6.1: Annulus problem: This is an example of one of the meshes we are
working with. The figure shows the mesh for knot vectors with 16 individual unique
knots, i.e 16 elements in each direction.

6.3.1 Analytical solution for the annulus

For a cylinder with a circular hole experiencing steady state heat flow the plane strain
problem for the pipe has an analytical solution. Ti denotes the temperature on the
inner radius which is referred to as ra. The analytical solution for the temperature
at any distance r from the center of the cylinder and the thermal stresses caused is
given in [18].

T (r) = Ti + To − Ti
ln
(
rb
ra

) ln
(
r

ra

)
(6.2)
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Number of elements Number of degrees of freedom Relative error (%)
4 40 3.1595
9 60 1.41529
25 112 0.5498
81 264 0.2723
289 760 0.2282
1089 2520 0.2244

Table 6.2: Annulus problem: This table shows the number of elements, number
of degrees of freedom and the relative error for the annulus model with cubic NURBS
with regularity 2.

Defining the

C = −Eα(Ti − To)
2(1− ν) (6.3)

σr(r) = C

 ln
(
rb
r

)
ln
(
rb
ra

) −
(
r2
b

r2 − 1
)

(
r2
b

r2
a
− 1
)


σθ(r) = C

 ln
(
rb
r

)
− 1

ln
(
rb
ra

) +

(
r2
b

r2 + 1
)

(
r2
b

r2
a
− 1
)


σz(r) = ν (σr + σθ)− αT

(6.4)

In our error analysis, we want to focus on the error from the elasticity solver. Instead
of using the computed temperature field in our elasticity solver, we choose to input
the analytical temperature field (calculated from the analytical solution presented in
chapter 6.3.1) This is a way to make sure that we have the exact temperature field
in our later calculations. The error will then only depend on the elasticity solver,
thus ensuring that the error norm we describe in 5.29 holds.

6.3.2 Results for the annulus

In this chapter we will present the results from the testing done on our circular pipe,
the annulus problem. Figure 6.2 shows the temperature profile after it becomes
steady state and figures 6.3 and 6.4 shows stresses caused by this (steady state)
temperature field (in cylindric coordinates) as it was calculated by IFEM.

For the annulus problem with cubic NURBS the solver gives good results, the
relative error given in table 6.3.2.
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Figure 6.2: Annulus problem: This figure shows the IFEM temperature distri-
bution of the annulus after it has reached steady state.

During our testing we made different bases with different continuities, from
maximum Cp−1 to minimum C1. Using the notation we introduced in the previous
chapter, the function spaces will be S3,1 and S3,2 for polynomial order three. S4,1

and S4,2 and S4,3 for polynomial degree four. For polynomial degree 5 we look at
the function spaces S5,2, S5,3 and S5,4. The different convergence rates for these
different function spaces are presented in the figures 6.6, 6.7 and 6.8

In figure 6.5 we see that the convergence rates for the different polynomial degrees
behave as we might expect from classic FEA, namely that a higher polynomial order
gives a better convergence rate. It can be seen that a higher polynomial also gives a
lower error. The convergence rates are dependent on the polynomial order as well as
the size of the elements, h. The error is bounded as described in chapter 5.25.

When looking at the results presented in figure 6.6 we clearly see that the choice
of function space affects the error. A high regularity gives a lower error versus degrees
of freedom for the same polynomial order. The fact that the same number of elements
with a lower regularity gives better accuracy, makes sense since the function space
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Sp,p−1 is contained in Sp,0 and

Sp,p−1 ⊂ Sp,p−m ⊂ Sp,0 where m = 2 . . . p− 2

We get the same results for the other polynomial orders and their error plots can be
seen in 6.7 and 6.8. A low multiplicity is more accurate when the relative error is
evaluated with respect to the number of degrees of freedom. In the cases of p = 3 and
p = 4 the polynomial order has a bigger effect on the accuracy than the regularity,
as can be seen in figure 6.13. However, for p = 5 it can be seen that if we increase
the multiplicity of the knot lines we negate the effect of the higher polynomial with
regards to accuracy of solution.

It should also be noted that multiple knot line insertion gives a fast growth of
degrees of freedom, especially when refining the mesh, so increasing the multiplicity
should not be done without thought.

6.4 L-shape: the square pipe

An important difference between the circular and the square pipe is that the square
pipe, from now on called L-shape, has a singularity at the inner corner. This means
that the solution function has a sharp edge here and the derivative of the function is
not defined.

In chapter 5.25 we talked about how the error bound changes for a problem with
a singularity. Such a problem depends on the parameter α = min{p, λ}, and if λ < p

it will depend on the strength of the singularity rather than the polynomial degree
of the basis functions. In [32] the strength of a the singularity from an L-shape is
given as λ = 0.5444. This means that for L-shape problem α = λ = 0.5444 should
determine the convergence rate regardless for the polynomial order of the basis
functions.

Unfortunately we do not posses an analytical solution for this problem. In our
error analysis we will therefore use the solution of a very fine mesh and with small
time steps as a reference solution and compare it to the global energy error from our
different test cases. Denoting the fine meshed approximated solution as u and the
approximated solution as uh, the relative error is calculated as follows

Relative error =
√
a(u, u)− a(uh, uh)

‖u‖

The L-shape is not a particularly suited for splines, as it is perfectly possible to
describe it with other and more suited, basis functions. It is more common to use
LR-B-splines or T-splines instead of NURBS as basis functions, since the geometry
benefits from adaptive or locally refined meshes. However, we wanted to see how the
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IFEM solver handles the singular problem of the L-shape compared to the smooth
problem tested with the annulus, as well as how the approximated solution is affected
by the different function spaces. We tested the performance of NURBS on a uniform
and on a graded mesh. A graded mesh is meshed finer as we approach the problematic
area of the model, in our case in the L-shape’s inner corner.

Figure 6.10 shows an example of the meshes we are working with. This figure
shows the mesh with 17 elements in each direction for a cubic polynomial with
regularity 2. The reader might note that the two models do not have the exact same
geometric shape (one is slightly longer than the other) but the thickness of the walls
is the same, as well as the boundary conditions which is what is important for our
numerical test.

The geometry was constructed with a knot in the edge at the L-shape’s inner
corner with a high enough multiplicity to ensure that the problem is C0 continuous
across this element knot line regardless of the refinement or regularity.

6.4.1 Results for the L-shape

The tests for the L-shape gave results that were less the satisfactory both the uniform
and graded meshes. The convergence rate evens out too quickly, and is not as
sensitive to the number of degrees of freedoms as we would expect. Smaller elements
gives a minimal improvement. Even though we expect a reduced convergence rate
for a uniform refinement for a geometry with a singularity as the L-shape, it should
be better than the results we ended up with. It would seem that the IFEM solver
is not yet equipped to solve problems where the solution is u /∈ Hp+1. We see that
we do not achieve anything close to an optimal convergence, nor a convergence with
a upper bound such as described in 5.27. We also observe that the use of higher
polynomials are has a minimal improvement on the accuracy of the solver.

In an attempt to obtain where the IFEM solver faces difficulties we did an
independent study of the thermal problem, to see if the error lies in the thermal
solver or elasticity solver. The results from this analysis suggest that the problem
might lie in the thermal solver because the convergence rates were clearly wrong, as
can be seen from figure 6.18.
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Figure 6.3: Annulus problem: This figure shows the IFEM plots of the radial
stress and the hoop stress respectively.
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Figure 6.4: Annulus problem: This figure shows the IFEM plots of the axial
stress and the von Mises stress respectively.
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Figure 6.5: Annulus problem: This figure plots the relative error (%) of the
different polynomial degrees.
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Figure 6.6: Annulus problem: This figure shows the relative error(%) vs degrees
of freedom for different function spaces for polynomial order 3.
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Figure 6.7: Annulus problem: This figure shows the relative error(%) vs degrees
of freedom for different function spaces for polynomial order 4.
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Figure 6.8: Annulus problem: This figure shows the relative error(%) vs degrees
of freedom for different function spaces for polynomial order 5.
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Figure 6.9: Annulus problem: This figure shows the relative error(%) vs degrees
of freedom for different function spaces for polynomial orders 3, 4 and 5.



52 6. NUMERICAL EXAMPLES

Figure 6.10: L-shape problem: This figure shows the different meshes we use
when testing our L-shape. The last figure shows a zoom-in of the graded mesh.
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Figure 6.11: L-shape problem: This figure shows the IFEM temperature distri-
bution of the L-shape after it has reached steady state.
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Figure 6.12: L-shape problem: This figure shows the IFEM plots of the von
Mises stress.
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Figure 6.13: L-shape problem: This figure plots the relative error of the different
polynomial degrees.
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Figure 6.14: L-shape problem: This figure plots the relative error of the
polynomial order 3 for the uniform and graded mesh respectively.
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Figure 6.15: L-shape problem: This figure plots the relative error of the
polynomial order 4 for the uniform and graded mesh respectively.
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Figure 6.16: L-shape problem: This figure plots the relative error of the
polynomial order 3 for the uniform and graded mesh respectively. This figure shows
the same plots as figure 6.14, but is rescaled to highlight the differences
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Figure 6.17: L-shape problem: This figure plots the relative error of the
polynomial order 4 for the uniform and graded mesh respectively. This figure shows
the same plots as figure 6.15, but is rescaled to highlight the differences.
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Figure 6.18: L-shape problem: This figure plots the relative error of the heat
equation for the polynomial orders 1, 2, 3 and 4 for the uniform and graded mesh
respectively.



Chapter7Conclusion

In this report the basic theory for isogeometric analysis using finite elements was
introduced, with a special emphasis on B-splines and NURBS. The isogeometric solver
IFEM was tested on uncoupled thermoelastic problems. The thermoelastic equation
was solved on two different model problems, one where the solution was smooth and
one where it was not. IFEM was able to approximate a correct convergence rate for
the smooth problem, but unable to achieve a satisfactory convergence rate for the
problem with a singularity. When testing to see if IFEM was able to solve the heat
equation correctly for the singular problem the results were off as well.The fact that
we have it on good authority that IFEM has previously been able to achieve good
results for the heat equation suggests that we might have a bug in the solver, most
likely the thermal solver.

The convergence rates were measured in the energy norm.

The isogeometric thermoelasticity solver was tested on different function spaces, for
different polynomial orders and regularities. It was found that, for a given polynomial
order, high regularity gives lower error versus degrees of freedoms compared to low
regularity, without exceptions.

7.1 Future work

The next natural step for IFEM solver is to make sure the solver is able to handle
singular thermoelastic problem. A good place to start would be to make sure IFEM
is able to solve the heat problem correctly. Extending the solver to handle the
coupled version of the thermal elasticity equations, which are problems where the
deformations due to thermal expansion are big enough to cause heat, would also be
a good way for the solver to evolve.

There is a possibility that the elements close to the singularity in the graded
meshes are so small that the determinant of the Jacobi matrix is in fact smaller
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than the solvers zero-tolerance, we would recommend a more thorough testing with
different levels of refinement. It would also be interesting to see how the thermoelastic
IFEM solver preform on locally refined or adaptive meshes, with LR-Bsplines or
T-splines as basis functions.
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