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Figure 3.35: Three configurations of active sensors.

Section 3.2.3, see Fig. 3.21, but at 2400 Hz sampling only. The six force estimates is shown
alongside in Fig. 3.36 — 3.41. Moderate loss of amplitude is associated with removal of
strain gauges, especially collocated ones. More prominent is the force fluctuations, which
for all cases increases with when less strain data is present. The force-accelerometer
distance also positively correlates to greater fluctuations. An interesting result for five of
the six cases is the small difference between three and two strain gauges. The main loss
of accuracy comes moving from two to one strain gauges. Another phenomenon worth
noting with a single strain gauge is the spurious positive initial amplitude, peaking almost
simultaneous with the real impact, but incoherently with wrong sign. This result can also
be connected to the large force-sensor distance, with SG1 is located in the opposite beam
half, thus causing a sensor delay of a few steps. The force is strongly connected to
acceleration and furthermore, as explained in Section 3.2.2, the strain measurements has
poor quality. For this reason the acceleration data is the main contributor to a correct
identification, thereby giving middling estimates of the impact itself without numerous
strain readings. As a closing remark, some of these results must be interpreted with
caution because of the strain inaccuracies. Some deceptive results can rise from removing
or including flawed data. To validate the findings one must acquire better data, or

alternatively generate data through a simulation.
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Figure 3.36: Force estimation in node 17. Collocated with accelerometer and SG2.
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Figure 3.37: Force estimation in node 15.
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Figure 3.38: Force estimation in node 13. Collocated with SG3.
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Figure 3.39: Force estimation in node 11.
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Figure 3.40: Force estimation in node 08.
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Figure 3.41: Force estimation in node 02.
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3.3 Case study: simulation of Hanko channel marker

3.3.1 Model and description

The Hanko channel marker is located in the Gulf of Bothnia in shallow water (depth
approximate 14 m) and is fixed to the seabed. The marker is subjected to ice actions
in the winter season. A 3D visualization is shown in Fig. 3.42. The lowermost part
is concrete, while the conical and supersurface tube is steel with decreasing thickness
towards the top. An idealized 1200 kg mass is seated in the uppermost 2.7 m. A FE
model was created by C'-continuous beam elements. The structure was meshed into 58

elements ranging 0.3 — 0.5 m and limited to 2D due to axisymmetry.

+27.80 ;i #2790

+25.00 1 +25.00 )

+22.50 2. ]

+20.00 i | 2000 -\% ]

1750 +17.50 .
+15.00 o

Figure 3.42: Side view and isometric transparent view of Hanko rendering. Vertical scale in

meter, with origin at seabed and ice level at +14.50 m.

Boundary conditions were enforced as zero rotation and translation at seabed level.
Rayleigh damping was used to generate the damping matrix. Any fluid interaction
(e.g. aeroelasticity or inertia) was not included. The model mode shapes are shown
in Fig. 3.43, and the corresponding natural frequencies listed in Table 3.5. f; matches a
value attained in earlier studies [31], while the rest are slightly higher than anticipated.
For ice load identification, there is a desire to determine whether an instrumentation

configuration will be sufficient for analysis. The planned sensor locations are shown in
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Fig. 3.44. The point in question is specifically if the tiltmeter will contribute sufficiently.
The corresponding value of J (accelerometer influence) is shown in Fig. 3.45 with the ice
force assumed to work in a single node. Maximum is reached with collocation at ice level,
but this position is infeasible for practical reasons. The influence shows the same pattern

of exponential decay as observed in Section 2.5.1.

Hanko mode shapes

301
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0 ol A es

Figure 3.43: Mode shapes of FE model. Table 3.5: Natural frequencies of FE model.

3.3.2 Force identification and response

Ice load calculation in accordance with ISO19906 [32] is done in Appendix C. The design
load is a sawtooth wave with period corresponding to the first natural frequency. With
no real data available, all measurements were generated from a forward solution and
polluted with 5% noise. Sampling were done at 4000 Hz. The filter was supplied with
unbiased initial state estimates and the asymptotic Py, (see Appendix B) in calculations
to eliminate the stabilization phase of ~ 10? — 10? steps. Even though identification with
accelerometers only is stable in the sense that all transmission zeros are < 1, a satisfactory
convergence in the error (i.e. tr(Pyx)) is not attained. A tiltmeter is therefore necessary,
and particularly for detection of static components. R was fixed with diagonal elements
1 for acceleration and 107® for tilt. Model noise from the distribution N (0,107) was

added to the forward solution, so @ = I x 10~'. Comparing the two identifications
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Figure 3.44: Planned location of sensors. Figure 3.45: Accelerometer force influence.

with force rate levels § = 10% and S = 108 in Fig. 3.46 and 3.47, typical features of force
regularization is displayed. In the former, the lag is very persistent and the force minimum
is shifted almost half a period. The sawtooth load rate is very high (~ 1300 kN/s), and
the filter struggles to keep up with abrupt changes. An increase in S to 10% improves
this, e.g. the vertical descent in Fig. 3.47 is almost traced. As seen before, this results
in a consistent increase of intermediate fluctuations since the solution is less smoothed.
Ultimately, estimates do not judge the force character, but only considers statistical
likeliness of data. Repeatable patterns of errors also occur, which can originate from
the structural response itself, being first mode dominant. From the frequency content in
Fig. 3.48, the filter estimate (for S = 10%) agrees fairly with the exact force at frequencies
up to the third mode, mismatch is happens mostly above 40 Hz. This could be due to
the limited number of accelerometers, mostly recognizing the 3 lowermost modes. Some
challenges also arises from the fact that discontinuities in a theoretical sawtooth wave
are traced by high frequency components in a Fourier series sense. The system was also

observed to be highly sensitive to the level of model noise. With a decrease in model
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noise the estimated force almost traced the exact solution.

The state response at ice level and top is shown in Fig. 3.49, with the accompanying
spectrum in Fig. 3.50. The response at top is characterized by first and second mode
excitations, while the response at ice level is more directly influenced by the force itself,
and therefore has a wider force content. Larger errors in response are also found in nodes
close to ice level since the effect of the force is not easy to predict. These errors displays
as larger deviations in the spectrum. The movement at the top is less dominated by
the force and more by time propagation of dynamics, which is easier predicted. This
touches the core of the main drawback with the current force identification formulation:
Prjk—1 must always be taken as py_1x—1 because no knowledge on the force propagation
is provided in the formulation (i.e. E[ng] = 0). Any estimated change in the force giving
D therefore always relies only on measurement update. The predicted measurements
(Ga.’f:il 1) used in the measurement update step is generated under the assumption that
the force remains unchanged. The erroneousness is transferred further, thereby looping

the problem.

For a simple validation of the case and model, the structural velocity is inspected. The
velocity amplitude at ice level can be taken as 0.4 m/s (see DOF 32y in Fig. 3.49), corre-
sponding to an ice sheet velocity of approximately 0.3 m/s (see Appendix C). This agrees
well with previous observations at the channel marker and other locations along Finnish
coast [31]. The results strongly suggest identification with the presented sensor config-
uration is viable. The tiltmeter contributes sufficiently for a satisfactory identification
to be obtainable. Since the identification is sensitive to model noise, a FE model must
be designed and calibrated with attention to details. The fact that model noise is more
troublesome to quantify than sensor noise does not lessen this problem. Non-structural
mass must be included. Half the structure is also located subsurface, and fluid interfer-
ence is not covered by the model. Fortunately the lower part is stiffer and, as displayed

in the mode shapes, has smaller response.

An animation of the estimated structure response can be found as a digital attachment.
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Figure 3.48: Spectrum of force filter estimate vs exact force (S = 10%). Non-logarithmic detail

of low range frequencies right.
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Figure 3.49: State estimation (S = 10%) at ice level (DOF 32y) and structure top (DOF 59y).
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Figure 3.50: Spectrum of displacements at ice level (DOF 32y) and structure top (DOF 59y).
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Chapter 4

Conclusion

4.1 Main results and research findings

This thesis on structural dynamics set out to identify loads from structural response. The
main goal was to apply and validate the presented methods by numerical and laboratory
experiments, and perform simulations of state and force estimation on the Hanko channel
marker. The state-space representation of a linear structural dynamic system, modified
to an augmented form, has been derived. Classical dynamics have been combined with
stochastic considerations (noise), such that a Kalman filter can provide MVU estimates of
displacements, velocities and forces. A new discrete solution to the state-space problem
was presented, giving better accuracy in cases of high load rates. Requirements for
system stability and observability as well as steady convergence have been elaborated
upon. Moreover, force-accelerometer influence relations have been studied, in which
maximum influence was found with sensor-force collocation, decreasing exponentially in

non-collocation.

Laboratory tests on a simply supported beam were done with acceleration and strain
measurements. Single impact forces were successfully identified and in agreement with
forces measured by a load cell. The main weakness in the tests was high level correlated
non-white noise in strains, from which the results suffered considerably. Tests with collo-
cated force and accelerometer gave in general better identifications than non-collocated,

confirming the theory and results obtained in prior studies. The same trend was observed
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with strain gauges, where close proximity to the force improved results slightly. Further-
more, the influence of model errors was studied. The assignment found introduction of
random errors in mass and stiffness to decrease the impact identification moderately, be-
sides create spurious force fluctuations. Estimation of displacements and velocities was
more robust and virtually unaffected by a faulty model. Lastly, identification was at-
tempted with only two or one strain gauges in addition to the accelerometer. Although
these configurations had stable system reconstructability, the results were severely af-
fected. The main outcome on force identification were loss of impact amplitude, increased
time lag and spurious fluctuations. This was particularly the case with one strain gauge

only. The role of the high strain noise in these cases remains unclear.

Numerical simulations on the Hanko channel marker, instrumented with three accelerom-
eters and a tiltmeter, has demonstrated the feasibility of ice force identification. Moder-
ate errors were found in identification of a sawtooth wave load. The estimated response
agreed well with a forward solution. Simulations were performed on a 2D model, but
the problem formulation suggests a 3D model will yield results of similar character. The
analysis results emphasized the necessity of an accurate FE model to absolutely limit

model errors in order to obtain identifications with satisfactory precision.

The applied methods perform in general satisfactory if used with care, yet some drawbacks
have been noted. It is now possible to state the force identification consistently suffers
from the lack of sufficient prediction. This originates from the precept of the force as
a Gaussian random walk with zero mean. Specification of a cumbersome force rate
parameter S is required, controlling the force smoothness. This consequently indirectly
imposes a behavior which can be undesired or does not fit the true nature of the force.
Any assumptions on the force are problematic to justify since the force is, by problem
definition, unknown. This is the most severe shortcoming of the method, and a complete

reformulation on this point would certainly improve results.
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4.2 Remarks and recommendations for future research

In the experimental tests on the simply supported beam the time domain was roughly
separated into a short force application phase (with little response) and a free vibrations
phase (with zero force). Since the filter estimates jointly response and load, it would
be interesting to see an experiment with long duration force identification, where the
both force and response are nonzero for prolonged periods. This requires load cells
with ability of registering non-instantaneous loads, alternatively utilizing e.g. a rotational

device whose inertia force can be calculated.

Controllable laboratory tests are in general helpful to validate ideas before being applied
to real structures. The laboratory research in this assignment did not include systems
of intricate nature. A further step could be modification by introducing a geometric
stiffness, analogous to cable-stayed bridges. If a geometric stiffness matrix is included in
the model, would this suffice? Future work also needs to assess the effect of FE meshing

on the estimation results and the force-accelerometer influence.

It should also be mentioned the joint input-state estimator referred to in Section 2.6
estimates the force purely from measurements, thereby possibly avoiding the problematic
force assumptions stumbled upon here. A final remark concerns ideas emerged during
studies of the algorithm, and especially remedies for the weak point of force prediction.
As an expansion on the first order hold solution of the state-space equation, one could

rewrite Eq. (2.2.14) and (2.2.15) to:

Lr+1 A E Iy " Wy,
Y G J| |pw (o
where
. Di —~ -
Dr = B=|B-F/At F/At] J = [J 0]
Pi+1
such that
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- Lr41 —~ Wy, ~ _
$Z+1 = | _ i = Aawz + Y = Gawi + v
Dh+1 v,
where
_ A B . . _ _
A, = 7 G, = [G J] Prt1 = Pr + Wy
0

in other words a Kalman filter doubly augmented with force components. Supplying
all necessary matrices, could one perform an identification on the new augmented state
vector 7?7 Notably, this also involves an one step prediction of the force, giving two
estimates for a single time step. How would the prediction and filter estimate differ? One
can recognize the generality of the stability criteria in Section 2.5.2 still holds, but with
B and J modified to B and J. Can this type of formulation change the transmission
zero stability criteria? As a remark, this was tested at the beam in Section 3.2 with
accelerometer data only, interestingly adjusting the largest transmission zero from 1 — 103
to 1077 — 107%. Does this imply the system is unstable transformed into a stable one,
or does one meet other hinders later? Sadly, A and G remain unchanged, thereby not
affecting observability. Furthermore, the new force vector has dimension 2 x n,, requiring

a double amount of sensors. Time limitations left this further investigated.
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Appendix A

State-space ODE solution assuming

input first order hold

The load p is assumed to vary linearly in the time interval ¢, < 7 < tx,1. Interval length

is fixed to ¢34 — tx = At. Some notations are adopted from Lourens'. Useful properties:

(A.0.1)

iy [i &Zﬂ 5 i (12

k=0

k(Z)k—i-ltk _ [i (:tlit)k

k=0

] = ZeF2 (A0.2)

Z—le:tZtZ — Z—IZe:tZt — e:i:Zt

(A.0.3)
Z*leizt — ej:Zthl
d<€Zt) z

= Ze%t A04

7 e ( )

/ Pt = Z1ePt 4 O, (A.0.5)

'E.-M. Lourens. Force identification in structural dynamics. PhD thesis, Katholieke Universiteit

Leuven - Faculty of Engineering, Leuven (Belgium), 2012.
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State-space equation on continuous form and solution by integrating factor:

T — A.x = B.p
e Al — A.x] = e *'B.p
d( ;Ct ) —ACtBCp
(mk+17tk+1 oAty tet1 oA
/u-k,tk) / Bep dr (A.0.6)
tet1 . — 1
/t Ae B.[ps + At (pk+l pr)| dr
/ oA dt B.px
tr
bt T—1
+/t - 7k dr B.(Pr+1 — Pr)
k

First integral, right side of Eq. (A.0.6):

tk (A.0.7)
_ Ac—l[e—Ac(tk-&-At) _ 6—Actk]

— _ Ac_le_Actk [e—AcAt _ I]

Second integral, right side of Eq. (A.0.6):

bt 4 T — 1
e T —— dr
Lo g

:Alt {_ /t:H e ATAT dr— [T (T — 1) AT

= AT — 1) AT AT A A (A.08)
:;e—f‘ctk [e 4 (AtAT + ATTAT) — AT AT

:Ze"“ctk [Ate ™M AT 4 (e 4 —ATATY
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Integral left side of Eq. (A.0.6):

/($k+17tk+1) d(e_Actm)
(

"Bkatk)

:[e—Act ](mk+17tk+1)

(mk7tk) (A.O.g)

:efActkakJrl _ e*Actkwk

:e—Actk [G_ACAtZI}k+1 . wk]

All integrals in Eq. (A.0.6) assembled, forming a discretization:

e Actk [G_AcAtwm-l — x| = _G_ActkAc_l[e_ACAt — I|Bpy

_e_Actk

At

tmkH — X = —A_l[e_AcAt — I]Bcpk

—1
+ E[Ate_A“AtAc_l + (e — NATTATY B (pry1 — Dr)
Tpi1 = eAcAtwk . AcfleAcAt[efAcAt . I]Bcpk
oA

At

+ [Ate YA + (e — 1) A" AV Bo(prsr — Pr)

e—AcA

+ [Ate AT + (e — 1) A" AV Bo(prsr — Pr)

— GACAtwk . A;l[I . eACAt]Bcpk
—1

" [AtA]Y + (I — e AT AZY B (pryt — pr)

+

= ey 4+ [e — I|A'B.py

+ AZY-AIB, + (e -~ 1)A'B,] (Prs1 = Pr)

At
(A.0.10)
Final result:
Try1 = Az, + Bpy + F(pkHA;pk) (A.0.11)
A=e4  B=(A-1)A]'B, , F=A]'(B- B.At) (A.0.12)
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Appendix B

Kalman filter steady state covariance

and augmented system detectability

Covariance matrices R and Q, are taken as time-invariant. The assumed asymptotic

conditions are no change in covariance matrices over time steps, i.e. Pyr—1 = Py and

Pk|k = Pk+1|k+1 .

Covariance time update:

Py = AP AL + Q.
Py = A (Poppe — Qa) A, " (B.0.1)
Pup = A (Pogpo1 — Q) AT

Covariance measurement update:

Py = (I — LyGo) Py (B.0.2)

Kalman gain:

L, = Pk|k71G£[GaPk|k71G£ + R]™! (B.0.3)
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Setting Eq. (B.0.1) and (B.0.2) equal, inserting Eq. (B.0.3):

Agl(Pkqu — QA" =(I- Pk\quaT[GaPk\quaT + R]_lGa)PkucA
Pyio1 — Qu = Ay(I — Poj1 GL[GoPyi1 Gl + R 7' Go) Py AL
Py — Qu = APy 1Al — APy 1GL G, P11 GL + R 'GPy 1 AL
(B.0.4)

Arriving at the final result, the discrete-time algebraic Riccati equation (DARE):

0=Q,— Pyi—1+ AsPyj_1Al — APy 1GL[G . Py1 Gl + R 7' G, Py AL
(B.0.5)

which can be solved in MATLAB by the syntax

[Pp7 Zl7 Z2] - da’re(AZj7 GZ? Qa7 R)

where P, contains the steady state values of the covariance matrix Py;_;. The asymptotic
Py, (and the converging value of tr(Py)) can preferably be found from Eq. (B.0.2),
alternatively by Eq. (B.0.1) but avoiding explicit inversion, as this commonly shows to

give large numerical errors. The steady Kalman gain is given from Eq. (B.0.3).

The existence of a DARE solution requires the augmented pair (A,, G,) to be detectable.
This can be validated by the Popov-Belevitch-Hautus (PBH) rank test ':
A, — N

rank Appy = rank =ns+n, (B.0.6)
G,

or expanded and denoted with dimension for convenience:

Ansxns - >\Ins><ns anxnp
rank 0, %, (1= Noyxn, | =Ns T (B.0.7)

Gnd XMNg Jnd XMp

for all complex valued A. We argue that detectability for the augmented system is equiv-

alent to satisfaction of the following three criteria:

1J. P. Hespanha. Linear Systems Theory. Princeton University Press, Princeton, New Jersey, 2009.
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A—- I
1. The pair (A, G) must be detectable, i.e. rank = ns , where A is an
G

eigenvalue of A and |A\| > 1.
2. The system (A, B, G, J) must have no transmission zero equal to 1.

3. ng=>mn,

The argument, inspired by sensor fault detection in cybernetics 2, goes as follows:

For all \ ¢ eigenvalue of A,:

Ansxns - >\Ins><ns anxnp
rank =ns+n,

Oanns (1 - A)Inpxnp

it

Ans X Mg an XNy
rank =ns +n,

Onp XN Inp Xnp
which is true if rank A = n, or equivalently A has n, distinct eigenvalues, which is follows
from the last result in this appendix. For all A € eigenvalue of A,, rank [A, — \I| #
ns + n,. Specifically if A # 1, the submatrix [0 (1 — A\)I | has n, columns mutually

independent and independent of the first ng columns in Apgy. The first criterion implies:

Ansxns - )\Insxns
rank = n,

Gnd XNg

thus giving Appy rank ng + n,. In the case of A = 1, which can be shown to always be

an eigenvalue of A,, [0 (1 — A\)I'] vanishes. The PBH test is then only fulfilled if:

Ans Ns _Ins Ns an n
rank XN XN s XMp — n8+np (B08)

G?’LdXTLS J?’LdXTLp

2S. M. Joshi, O. R. Gonzélez, and J. M. Upchurch. Identifiability of additive actuator and sensor
faults by state augmentation. Journal of Guidance, Control, and Dynamics, 37(3):941-946, 2014.
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This is only true if 1 is not a transmission zero of the system (A, B, G, J). If it is not, the
matrix above will have full rank, i.e. ny + min(ng,n,) , necessitating the third criterion

Nng > Np.

Furthermore, we claim in the following that the first criterion always will be satisfied in an
ordinary structural dynamic system. Let a; = a + bt be an arbitrary eigenvalue of A, At
and \; = c+di be an arbitrary eigenvalue of A. Let D = diag(a; ... ay,,) advocating the
eigen decomposition e4<?* = PeP P~! with P composed of the eigenvectors of A At.

The eigenvalue problem for A is:

det(A — \I)

det(e?eAt —

0
0
0
0

M)
det(PeP P~ — \1)
A

det(eP —

which implies the intermediate result e® = A; for singularity. We further look into the

condition |\;| < 1:
Al <1
le+di] <1
et < 1
le®(cosb+isinb)| < 1
e™\/cos?b+sin®b < 1
e <1

a<0

meaning A.At must have strictly negative real part eigenvalues. We hereafter omit the

positive factor At and inspect the eigenvalues 3; of A.:
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det(AC — 6]I) =0
—B. T I
det & =0
~-M'K -M7'C -1
det(3;M~'C + I+ M 'K) =0

det(8:M + 3,C + K) =0

recognized in the frequency domain as the damped eigenvalue problem associated with

the complex solution of npor conjugate pairs 3:

Bj = —Gu; L iwj\/1 = ¢}

where w; and (; are the undamped natural frequency and critical damping ratio is mode
J, respectively. ¢; > 0 and w; > 0 for all j implies @ < 0, which was to be shown.
Therefore, all eigenvalues of A lie within the unit circle, automatically satisfying the first

criterion.

3G. Lallement and D. J. Inman. A tutorial on complex eigenvalues. In Proceedings - SPIE The
International Society For Optical Engineering, pages 490-490, 1995.

87



88



Appendix C

Calculation of ice load on Hanko

channel marker

ISO19906' provides guidance for determining ice loads. The static global ice load ex-
pressed in Eq. (C.0.1) is an empirical formula based on full scale measurements and gives

an upper bound.

Fo = CR(}?)"(Z;:)mhw (C.0.1)

1

where

Cr [MPa] is an ice strength coefficient

w [m] is the projected width of the structure
h [m] is ice sheet thickness

hy =1 [m] is the reference thickness

m = —0.16 is a coeflicient

—0.5+h/5 ifh<10m
n = is a thickness dependent coefficient

-0.3 if h>1.0m

The Hanko channel marker has diameter w = 0.8 m. For a winter of moderate severity,

the expected ice thickness is A = 0.15 m according to regional specific guidelines in

LISO/FDIS 19906:2010, Petroleum and natural gas industries - Arctic offshore structures, 2010.
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I[SO19906. C'y is taken as 2.8 MPa, a conservative estimate. This yields Fz = 626 kN.

The code stipulates a simplified method for determining dynamic response. A sawtooth
ice load function (see Fig. C.1) with frequency f, assumed equal to the natural frequency
fn < 10 Hz is applied. The amplitude of the fluctuating component, AF', is defined in
Eq. (C.0.2). The peak value F,,, can be set equal to global ice load Fg from equation
Eq. (C.0.1). g is here set to 0.5 for simplicity.

F(t)
Fmax ¥
'8
<
Fmin -
t
Key T
t time
F ice action
Frax maximum value of ice action
Froin minimum value of ice action
AF difference between maximum and minimum values of ice action
T period of ice action
Figure C.1: Load history given in ISO19906.
AF = qF 0 = qFa (C.0.2)

This resembles idealized load conditions during frequency lock-in, a dynamic phenomena
in ice-structure interaction. The corresponding ice sheet velocity v, can be approximated
as:

Ucq

v = 3 (C.0.3)

with ., as the structural velocity amplitude at ice level and f = 1.4 as a factor of

proportionality?.

2T. Kérni. Simplified modeling of ice-induced vibrations of offshore structures. In Proceedings of

16th International Symposium on Okhotsk Sea € Sea Ice, pages 114-122, 2001.
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