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Abstract 

Structures located in ice infested waters are subjected to actions from moving ice. Forces are 

generated when a drifting ice crushes against the structure. Under certain circumstances, crushing of 

an ice sheet can adapt to the frequency of the structure’s waterline displacement. This phenomenon is 

known as frequency lock-in crushing (FLC), and results in a resonant response of the structure.  

An 80 seconds long interval of particularly heavy vibrations was recorded at 12:25 the 30
th

 of March 

2003 on the Norströmsgrund lighthouse. Accelerometer and force measurements from this event 

have been evaluated. Analyzing the event verifies that it contains frequency lock-in like 

characteristics. The displacement is sinusoidal and the acceleration auto spectrum confirms that the 

response is dominated by the first natural mode of the structure at about 2.2Hz. Comparing the 

displacement and force auto spectrum shows that they have similar frequency content. This is 

reasonable, as the ice sheet is in contact with the structure.  

By integrating the acceleration signal it was made an estimate of the relative velocity between the ice 

and the structure. For each loading cycle it was observed that the relative velocity was low during the 

load build up for then to increase when the ice failed. Load measurements showed that the horizontal 

load distribution was concentrated to the middle of the structure when the vibrations were initiated. 

As the vibrations carried on, the forces in the middle gradually decreased while forces further out to 

each side increased slightly. For the average load, a cosine distribution is a reasonable assumption. 

It has been developed a finite element program for calculating the dynamic structural response when 

an ice sheet impinges a structure. The finite element program was employed to simulate the recorded 

vibration event from Norströmsgrund 30
th

 March 2003. First eigenfrequency of the finite element 

model was at 2.79Hz and the applied loading at 2.17Hz excited primarily the first mode of the 

structure. The numerical modelling resulted in force and acceleration signal similar to full-scale 

measurement, but the displacement signal was not as harmonic as in full-scale. 

A numerical modelling of self-exciting vibrations due to negative damping effects was attempted 

with the finite element program. By tuning the formulae for stress rate in the ice, increased negative 

damping contribution was achieved. The response showed growing amplitudes for a period, before 

stabilizing at a steady state.
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Sammendrag 

I kalde farvann hvor sjø-is inntreffer vil drivende is som knuses mot en fastholdt konstruksjon skape 

store krefter mellom konstruksjonen og isdekket. Under enkelte forhold kan knusingen av isdekket 

tilpasse seg frekvensen til konstruksjonens forskyvning. Dette fenomenet kalles frequency lock-in 

crushing (FLC) og resulterer i en resonante svingninger i konstruksjonen. 

Klokken 12:25 den 30. mars 2003 ble et 80 sekunder langt intervall med svært kraftige vibrasjoner 

målt på fyrtårnet Norströmsgrund. Aksellerometer- og kraft-målinger fra denne hendelsen har blitt 

evaluert. Analysen av intervallet bekrefter at var frecuency lock-in crushing som inntraff. 

Forskyvningssignalet var sinusformet og akselerasjons-signalets auto-spekter indikerer at 

svingningene primært besto av konstruksjonens første svingemode med en frekvens på ca. 2.2Hz. En 

sammenligning av auto-spektrene til forskyvning og kontaktkraft mellom is og konstruksjon viser at 

de to signalene har lignende frekvensinnhold.  

Ved å integrere akselerasjons-signalet har et estimat av den relative hastigheten mellom is og 

konstruksjon blitt laget. For hver svinge-syklus ble det observert at den relative hastigheten var lav 

under lastoppbyggingen, for så å øke når isen knuste. Lastmålinger viste at den horisontale 

kraftfordelingen over fyrtårnets omkrets var konsentrert mot midten av kontaktflaten i det 

vibrasjonene bli initiert. Etter hvert som vibrasjonene pågikk ble kreftene mot midten redusert imens 

kreftene lenger ut på hver side økte noe. I gjennomsnitt viste en cosinus-fordeling å være 

representabel for lastfordelingen. 

Det har blitt utviklet et elementmetodeprogram for å beregne den dynamiske responsen som oppstår 

når et is-dekke knuses mot en konstruksjon. Elementmetodeprogrammet ble benyttet til å simulere 

intervallet med vibrasjoner målt 30. mars 2003 på Norströmsgrund. Første egenfrekvens til 

elementmodellen var på 2.79Hz. Lasten hadde en frekvens på 2.17Hz og den eksiterte i hovedsak 

første svingemode. Elementanalysen resulterte i last- og aksellerasjons-signal som tilsvarte full-skala 

målingene. Forskyvningssignalet fra analysen var ikke fullt så harmonisk som forskyvningene i full-

skala.  

Det ble i tillegg utført en analyse, der dynamisk respons som et resultat av negativ demping ble 

forsøkt oppnådd med elementmetodeprogrammet. Ved å tilpasse formlene for spenningsrate ble 

effekten av negativ demping økt. Resultatet var en dynamisk respons som vise økende amplitude før 

den stabiliserte seg på et stabilt nivå 
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Notation 

Roman letters: 

 

Area of interaction zoneA   

0 Reference areaA   

[ ] Damping matrixC  

Damping constantC   

Ice crushing lengthc   

Width of contact aread   

Young's modulus E   

Force F   

Damping forceDF   

Externally applied forceextF   

Global ice loadGF    

Inertia forceIF   

Stiffness forceSF   

Tangential forceTF   

Frequency (Hz)f   

Frequency response functionH   

Ice thickness h   

Second moment of areaI   

Effective stiffess of ice sheeteffK   

Element lengthl   

[ ] Stiffness matrixK  

Stiffness constantK   

[ ] Mass matrixM  

Mass constantM   

Increment counterN   
Ratio between inner and outer radius n   

Pressurep   

Radius of gyrationq   

Radiusr   

Auto spectral density of variable xS x  

Timet   

Displacement of structureu    

[ ] Response vectoru  

Ice velocityicev   

Relative velocity between ice and structurerelv   

Fourier componentX   

Arbitrary signalx   

Loading lengthz   

Greek letters: 
 

0 Rayleigh damping coefficient   

1 Rayleigh damping coefficient   

Newmark method coefficient   

Deformation in ice sheet   

Strain    

Shear factor  

Scaling factor   

Newmark method coefficient   

Shear coefficient   

Friction coefficient   

Poisson's ratio   

Angle off ice drift direction    

Mass density    

Stress   

Ice crushig capacityC   

Frequency (rad/s)   

Damping coefficient   
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1 Introduction 
This work is aimed to contribute to knowledge on numerical modelling of dynamic response for 

fixed offshore structures subjected to ice loads. In the thesis, an event of severe vibrations on the 

Norströmsgrund lighthouse is evaluated. A finite element program, developed to simulate this event, 

will be presented. This introductory chapter presents the concepts of ice induces vibration and 

frequency lock-in crushing. A short recapitulation of previous research on the topic is given. The 

regarded structure, the Norströmsgrund lighthouse, and the vibration event are presented in detail. 

Finally, the scope of the work is addressed.   

  

1.1 Background 

For bottom fixed structures located in ice-infested waters, dynamic loading from drifting pack ice 

may lead to unwanted ice-induced vibrations (IIV). During crushing of ice against a compliant 

structure, the contact force will to begin with gradually increase when the structure resists movement 

of the ice sheet. At this point, both ice and structure are under elastic deformation, and strain energy 

is stored. At one point, the crushing capacity of the ice is reached, and it collapses. This results in a 

sudden decrease in contact force, and the structure swings back as strain energy is released. Ice 

velocity and crushing length will determine how soon a new loading sequence will commence. 

In general, crushing characteristics during IIV can be categorized into three regimes, as shown in 

Fig. 1.1. At low ice velocity, intermittent crushing of the ice occurs. The response is then quasi-static 

during the load build up, resulting in a saw tooth like force time history and response. At high ice 

velocity the crushing is continuous and occurs with a random stationary response. Within both 

intermittent crushing and continuous crushing, frequency lock-in crushing (FLC) may occur. 

Frequency lock-in means that the ice force frequency attains the natural frequency of the structure, 

even under variations in ice conditions (Yue et al., 2009). During FLC, the response reaches steady 

state. The accelerations during FLC are far greater than during intermittent and continuous crushing, 

because the vibrations become resonant. 

 

Figure 1.1 Ice crushing regimes (ISO, 2010).                                         
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The crushing capacity of ice
C is dependent on the strain rate  , shown in Fig. 1.2. At low ice 

velocity the failure of the ice is in the ductile domain, while during high ice velocity it is primarily in 

the brittle domain. Because frequency lock-in occurs at ice velocities higher than at intermittent 

crushing and lower than at continuous crushing, it is commonly believed that the ice behavior is in 

the transitional domain in this vibration mode (Kärnä and Turunen, 1989). 

 

 Figure 1.2 Strain rate dependency of crushing strength. 

Crushing of ice in front of a structure is not always simultaneous over the interaction area. Radial 

cracks, illustrated in Fig. 1.3, divide the ice sheet into separate contact zones (Palmer et al., 1983). 

Synchronization between crushing in the different contact zones is of significance for the magnitude 

of the global load. Both full-scale and laboratory tests indicate that the crushing has a tendency to 

synchronize during FLC, while it is non-synchronized during continuous brittle crushing (Bjerkås, 

2006, Kärnä et al., 1999). Naturally the peaks of the global load will be greater when failure in the 

crushing zones is synchronized.  

 

Figure 1.3 Contact zones in ice structure interaction. 

If the occurrence of IIV are frequent, they may lead to fatigue issues. In addition, vibrations of higher 

amplitude can produce accelerations affecting the serviceability of the structure. For flexible 

structures FLC can excite fluctuations in one or more of its natural modes (Sodhi, 1988). In the 

ultimate case resonant vibrations from FLC can lead to structural failure, as dynamic amplification 
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produces displacements several times larger than those from a static deformation (Kärnä, 1992). 

Lock-in like resonant vibrations caused by dynamic ice forces stem from a complicated ice structure 

interaction. Because the effect can cause harm to the structure, it is desirable to better understand the 

phenomenon. Even though FLC is a seldom occurrence instance it has led to collapse for several 

structures. It is therefore an important event to address.  

 

1.2 History of research on IIV 

A brief summary of some important publications regarding FLC is given.   

In a his doctoral thesis, Peyton (1968) documented field measurements of contact force between 

drifting sea ice and a vertical test pile erected on a temporary drilling platform in Cook Inlet, Alaska. 

These recordings were some of the first to document the phenomenon of lock-in like ice induced 

vibrations. Peyton observed that the ice force was greatest when the ice failure was of a slow 

ratcheting nature. He also noticed that the force magnitude fluctuated at a rate approximate to the 

structure’s resonant frequency, but attributed this to be a coincidence.  Peyton described the rate 

dependency of ice crushing strength, and presented a curve for the ice crushing strength as a function 

of stress rate.  

Matlock et al. (1969) presented a theoretical model for ice structure interaction. The model consists 

of a series of elastic-brittle element that impinge on a single degree of freedom system. Matlock’s 

model was able to describe low amplitude high frequency vibrations about a mean value at high ice 

velocity, as well as high amplitude vibrations at low ice velocities. However, the model did not 

incorporate any ice properties, but employed a loading believed to simulate that of true ice. 

Blenkarn (1970) presented  a paper on results from ice force recordings on offshore structures in 

Cook Inlet, Alaska. By the means of strain gauges, load cells and accelerometers, the force variations 

and structural vibrations could be documented. Just as Peyton, Blenkarn observed severe vibrations 

of the regarded structures. Ice was known to show decreasing strength at increasing stress rates. 

Blenkarn stated this would result in negative damping, leading to self-exciting vibrations. He 

attributed the self-exciting vibration mechanism to ”…almost certainly play an important part in 

much of the dynamic behavior observed in Cook Inlet structures”. 

Michel and Toussaint (1977) proposed a division of ice failure mode at different strain rates. They 

described the ice crushing behavior as being in either the ductile zone, transition zone or brittle zone. 
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Määttänen (1978) proposed a mathematical model for describing  self-exciting ice-induced 

vibrations.  By combining the equations of motion for the structure and the average rate dependent 

ice crushing strength, he established an autonomous set of equations. The equation set made the ice 

and the structure form a closed loop system, where each affected another. The model was used to 

predict the occurrence of self-excitation.  

Sodhi has in several publications stated that IIV is a form of forced vibrations and cannot be self-

exited due to negative damping (1988, 1991). The definition of self-excitation given by Den Hartog 

(1956), states that during pure self-excitation the excitation force should vanish when the system is 

prevented from moving. This would not be the case for an ice sheet crushing against a structure 

which is being held still. Forced vibrations indicate that the frequency of ice failure is due to ice 

properties, and not governed by the natural frequency of the structure.  

The frequency of vortex shedding from wind on a cylindrical object can be predicted by the Strouhal 

number. Sodhi suggested that analogue the Strouhal number describing the frequency of vortex 

induced vibrations, the frequency of ice force can be described by the relation / icefh v  , where f   

crushing frequency, h   ice thickness and icev   ice velocity. A characteristic crushing length will 

dictate the crushing frequency.   

Kärnä has presented several numerical models for ice structure interaction. His methods imply 

dividing the ice sheet, the structure and the soil into separate substructures (Kärnä, 1992). The ice 

sheet is divided into a body named far field and a body named near field. Ice mechanical crushing 

features are given to the near field zone. Both near field and far field are further divided into zones, 

giving possibility for non-simultaneous crushing over the contact surface. 

The International Organization for Standardization has produced a code that includes a procedure for 

determining the design load for structures subject to ice induced vibrations (ISO, 2010). The method 

consists of applying a saw-tooth shaped load, with prescribed period equal to the first natural period 

of the structure. The magnitude of the peak load is defined as a function of expected ice thickness, 

structure width and ice strength. The fact that the load is predefined makes the calculated response a 

form of forced vibration. 

 

1.3 The Norströmsgrund lighthouse 

Norströmsgrund lighthouse was deployed in 1971 in the gulf of Botnia, about 60km south east of 

Luleå (Bjerkås, 2006). In Fig. 1.4 the geometry is illustrated. The structure is a concrete tower fixed 

to a concrete caisson of 23m in diameter. The caisson is resting on dense sand at a water depth of 
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14.15m at mean water level. Sand is used as ballast in the caisson and the lower part of the tower. To 

ensure a stable foundation, the seabed under the caisson is leveled with crushed stone stabilized by 

cement grout (Björk, 1981). Total height of the structure is 42.35m above seabed.   

       

                                    (a)                                                                          (b) 

Figure 1.4 (a) Norströmsgrund lighthouse (Kärnä and Yan, 2003). (b) Structure geometry. 

Regarding IIV, Norströmsgrund is one of the most studied structures there is. As early as during the 

winter of 1971-72, service staff observed heavy oscillations as the tower cut through drifting ice. 

Maximum accelerations of 0.1g and vibrations at a frequency of about 2.8Hz were recorded in the 

end of this first winter in the structure’s lifetime. Since then, several research programs have evolved 

around the IIV of this particular structure. 

In 1999 an industry-EU collaboration research project called “LOw LEvel Ice Forces” (LOLEIF) 

began measurements on the structure. Nine load panels, shown in Fig.1.5, were mounted on the 

structure, covering almost half the waterline circumference. In the period from 2001 to 2003, 

inclinometers and accelerometers were included to the data collecting. Video recordings, a laser 

device, a sonar device and an electro-magnetic device recorded ice thickness and velocity. In 2001 

the project “Measurements on STRuctures in ICE” (STRICE) was started. STRICE continued the 

measurements done under LOLEIF for three more years (Bjerkås, 2006). 
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Figure 1.5 Force panels at Norströmsgrund (Bjerkås, 2014). 

 

1.4 The 30031225 FLC-event 

An event of exceptionally heavy vibrations occurred at Norströmsgrund 12:25 the 30
th

 March 2003. 

From now on this particular event will be referred to as the 30031225 FLC-event. Recordings made 

under the STRICE project captured details on forces and accelerations. A detailed description of the 

event is given in a publication by Bjerkås, Meese and  Alsos (2013). Ice velocity during the event 

was measured to 0.065m/s while ice thickness was 0.70m. The sampling frequency of the 

accelerometers were 84Hz. Video recordings reveal that during crushing of drifting ice against the 

lighthouse, ice rubble piled up in front of the structure. At one point the weight of the rubble, 

combined with the compressive forces on the ice edge, caused the ice sheet to collapse. This failure 

resulted in a circumferential crack in the ice sheet, some length in front of the structure. The failure 

was similar to what Kärnä and Jochmann (2003) denotes as a one-hinge bending failure. In Fig. 1.5 

snapshots from the video recordings illustrate the crack approaching the lighthouse. 
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Figure 1.5 Semicircular crack approaching lighthouse.  

After this bending failure, the ice sheet was weakened and ice forces on the structure were low. The 

FLC event is pointed out in Fig. 1.6. Fig. 1.7 shows how the ice force started to gradually increase as 

the intact ice sheet gained contact with the structure at 12:25:30. 

 

                                         (a)                                                                             (b) 

Figure 1.6 (a) Global load measured 30
th

 of March 2003. (b) Acceleration measured 30
th

 of March 

2003.   
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Figure 1.7. Onset of forces and accelerations during lock-in event the 30
th

 March 2003. 

 

1.5 Scope of work 

In this thesis a numerical calculation tool for determining the structural response during FLC is 

presented. The model includes the rate-dependent properties of ice and implements ice contact in 

several discrete contact points.  The tool will be benchmark tested against data from full-scale 

measurement made during the 30031225 FLC-event at the Norströmsgrund lighthouse.  
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2 Method 

This chapter will give insight into how data from force and accelerometer measurements is processed 

and utilized in order to assess the dynamic response of the lighthouse. The chapter also presents the 

theory behind the finite element program developed for simulating the vibration event on 

Norströmsgrund. Finally the structure of the finite element program itself is presented. 

2.1 Calculation of global load 

The ice loads working on the Norströmsgrund lighthouse were measured with nine load panels as 

presented in Fig 2.1(a). Each load panel measured the compressive force in the radial direction. 

However, the data from the load measurements are not sufficient to directly establish the global load 

affecting the lighthouse. First of all, the load panels do not measure contributions from tangential 

friction shear forces between the ice and the structure. Fig. 2.1(b) illustrates this. Secondly, the load 

panels extend over about 162˚ of the perimeter, so the load panels will never cover the entire 

interaction area. Due to these deficiencies, some assumptions have to be made in order to estimate 

the magnitude of the global load.   

                                 

                                (a)                                                                          (b) 

Figure 2.1(a) Load panel on Norströmsgrund. (b) Radial and tangential component of force on load 

panel. 

In the literature it is a bit unclear how much of the circumference the load panels cover. According to 

Kärnä and Yan (2003) the load panels cover 144˚, Jochmann (2003) says 162˚ while Bjerkås (2006) 

states 167˚. In this work it is assumed that each of the nine panels cover 18˚, making a total of 162˚. 

In addition it is assumed that the center of the first panel is oriented directly towards north. Each 

panel is named after their orientation, starting at panel P0 which is oriented at 0˚. This is illustrated in 

Fig. 2.2.  

2.1.1 Force direction 

The direction of the structural response gives an indication of the direction of the integrated global 

load acting on the structure. A scatterplot of the displacement peaks during the first minute of the 
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30031225 FLC-event is shown in Fig. 2.3. The displacements indicate that the average direction of 

the force is from 45˚. When calculating the global load based on the force panel measurements, each 

panel’s contribution will be the panel force’s component in this direction.  

The sign convention used in all calculation is based on that compressive ice forces are denoted 

positive and that a positive force results in a positive displacement. 

           

Figure 2.2 Force panel setup.                                         Figure 2.3 Direction of displacements during 

30031225 FLC-event.                           

2.1.2 Contribution from friction shear forces 

When measuring the contact force between ice and a structure, the measurements are normally 

limited to normal loads. Calculation of global load is also most often done by only including 

contribution from normal forces. This is a simplification, as friction shear forces acting tangential to 

the surface of the structure will contribute to deflecting it. In 1987, three biaxial load panels were 

installed on Norströmsgrund, by the Hamburg Ship Model Basin. These panels were able to measure 

both normal forces and tangential forces (Wessels et al., 1989). Fig. 2.4 shows the force panel setup. 

Results from these measurements give some indication on the magnitudes of shear forces present 

during IIV.  
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Figure 2.4 Force panel set up during biaxial force panel measurements (Wessels et al., 1989). 

Assuming Coulomb friction, the friction coefficient μ is defined as the ratio between tangential 

component and normal component from a force on a surface. An estimation to the friction coefficient 

during ice structure interaction is made by calculating the ratio between tangential and normal load 

measured by Wessels et al.(1989). The results are presented in Table 2.1. In average, the friction 

coefficient is about 0.2.  

Panel number Average tangential load (kN) Average normal load (kN) μ 

1 9.0 40.5 0.22 

2 9.5 45.1 0.21 

3 17.9 101.0 0.18 

Table 2.1 Friction coefficient during biaxial load measurement by Wessels et al. (1989) 

Frederking and Barker (2001) report an average friction coefficient between sea ice and painted steel 

of 0.05 for speeds greater than 0.05m/s. For corroded steel the coefficient was 0.1 for speeds greater 

than 0.1m/s increasing to 0.2 at 0.01m/s. The load panels mounted during LOLEIF and STRICE 

were of painted steel, but pictures indicate that some corrosion may have been present on these 

panels when the 30031225 FLC-event took place. The relative velocity between the lighthouse and 

the ice sheet during the event varied between 0.045 and 0.085m/s. According to Frederking and 

Barker the friction coefficient should hence be somewhere between 0.05 and 0.2. 

Based on the biaxial force measurements by Wessels et al., and the friction coefficient measurements 

by Frederking and Barker, a common ground is sought by choosing a friction coefficient of 0.20 in 

further calculations. 

Ice friction is very complex and depends on several factors such as normal force, surface roughness, 

temperature and relative velocity (Sukhorukov and Marchenko, 2014). By assuming a constant 

friction coefficient and Coulomb friction, one can, in an approximate manner, include friction shear 
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forces when calculating the global load. Based on the known normal forces, global load including 

shear force contribution can be calculated by Eq. (2.1). The formula is similar to what has been 

proposed by Kärnä and Yan (2003). 

 126

0

cos( ) sin( )T

G i i i i

i

F F F 


   (2.1) 

where iF  is the measured panel force, i = panel number 0, 18, 36, 54, 72, 90, 108, 126, and

T

i iF F  is the tangential friction force contribution . A principle sketch of T

iF and iF is illustrated in 

Fig. 2.5. 

 

Figure 2.5 Normal and tangential force component using Coulomb model. 

When calculating the global load, the friction coefficient has to be determined. Determining the 

friction coefficient does however come with uncertainty. By applying Eq. (2.1) on force 

measurements from the 30031225 FLC-event, it has been performed a parameter study that 

illustrates the calculated global loads sensibility to changes in friction coefficient. Fig. 2.6 shows 

how the calculated average global load increases with increasing friction coefficient. The relation is 

almost linear, and it displays that a deviation of 0.1 in friction coefficient leads to a 7% error in 

global load. Assuming that the friction coefficient is 0.2, neglecting friction forces gives a 14% error 

in calculated global load. It should be pointed out that the slope of the line in Fig. 2.6 is not general, 

but related to the horizontal force distribution during the particular event.   



13 
 

  

Figure 2.6 Relation between friction coefficient and increase in global load. 

2.1.3 Interaction area without force panels 

Because the load panels do not cover the entire perimeter of the structure, there will be areas of the 

interaction zone, where forces are not recorded. During the 30031225 FLC-event, the ice drift 

direction was from approximately 45˚. Assuming that the interaction extends in a sector of 90˚ to 

each side of the drift direction, it becomes clear that the load panels do not cover the entire 

interaction zone during this event. 

Fig 2.7 shows the horizontal force distribution in the interaction zone, for every 0.2 seconds during 

the first 25 seconds of the frequency lock-in. Panel P0 is showing small, but not negligible, forces. It 

is therefore reason to believe that there are some forces acting on the structure outside of panel P0. 

To include the forces acting outside of the measuring panels it has been established a virtual load 

panel, named panel VP-18 (virtual panel at -18˚). Fig. 2.8 shows the additional panel.  

Panel P0 is the third panel from the center at 45˚ and counting towards north. Looking at the relation 

between P108 and P126, which are the panels 3 and 4 from center counting towards south, forces on 

P126 is quite consistently about half of those on P108. The load on panel VP-18, is therefore at all 

times set to be 50% of the load on P0.  
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Figure 2.7 Force distributions.                                                 Figure 2.8 Virtual load panel.  

 

2.2 Numerical solution of equation of motion 

Numerical modelling of ice induced vibrations requires a procedure for calculating the dynamic 

response of a structure. The behavior of a system undergoing dynamic displacements is normally 

described by a differential equation, called the equation of motion, given in Eq. (2.2). 

 ( ) ( ) ( ) ( )I D S extF t F t F t F t    (2.2) 

where index I denotes inertia forces, D denotes damping forces, S denotes stiffness forces and ext 

denotes externally applied load on the system. For a multi degree of freedom system the forces can 

be calculated by the following expressions 

 
{ } [ ]{ }

{ } [ ]{ }

{ } [ ]{ }

I

D

S







F M u

F C u

F K u

 

(2.3) 

(2.4) 

(2.5) 

where [ ]K  , [ ]C  and [ ]M  is representing the global system stiffness, damping and mass matrix 

respectively. { }u is the structural response vector. The dot symbolizes time derivative, and hence 

give label to the structural velocity and acceleration.  

2.2.1 Direct integration   

During ice structure interaction, the contact force will depend on the structural response. By 

including ice failure in the description of contact force, a non-linearity is introduced to the system. 

Non-linear vibration problems can be solved by semi-analytical or numerical methods (Langen and 
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Sigbjörnsson, 1979).  When using numerical methods, the response is normally solved by direct 

integration. With direct integration, the response time history is calculated in small time steps, by 

integrating the acceleration during the time step to get the velocity and displacement. This is done 

directly, without transforming the differential equations to a modal form. Therefore, the eigenvalue 

problem does not need to be solved. Good accuracy when using direct integration demands the time 

step t  to be sufficiently small. Solution algorithms can be divided into implicit or explicit methods.  

Implicit methods imply that the displacement at step 1n  satisfies the equation of motion at this step, 

giving 

 
1 1 1{ } ({ } ,{ } ,{ } ,{ } ,{ } ,...)N N N N N Nf  u u u u u u  (2.6) 

 

Explicit methods use information at step n  to determine the response at step 1n  (Cook et al., 2002) 

 
1 1{ } ({ } ,{ } ,{ } ,{ } ,...)N N N N Nf u u u u u      (2.7) 

 

2.2.2 The Newmark method 

Two common implicit direct integration methods are the Constant Average Acceleration Method and 

Linear Acceleration Method. The names stem from the assumptions made for the acceleration during 

the forthcoming time step. The following expressions represent the methods, for a single degree of 

freedom system. 

Constant Average Acceleration Method: 

 
1 1

1
( )

2
N N N Nu u t u u      (2.8) 

 2
11

1
( )

4
N N NN Nu u t u t u u       

(2.9) 

Linear Acceleration Method: 

 
1 1

1
( )

2
N N N Nu u t u u      (2.10) 

 2
11

1 1
( )
6 3

N N NN Nu u t u t u u      (2.11) 
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The Newmark method generalizes these two solution algorithms by introducing two changeable 

parameters and . By varying the factors one can adjust numerical stability, accuracy and 

algorithmic damping. 

 
1 1[ (1 ) ]N N N Nu u t u u       (2.12) 

 2
11

1
[2 (1 2 ) ]

2
N N NN Nu u t u t u u         (2.13) 

Unconditional stability, regardless of size of time increment, is achieved if the  condition

2 0.5    is met (Cook et al., 2002).  

 

2.3 Calculation of dynamic response for cantilever 

Ice structure interaction for a line like vertical structure can be modeled as a cantilever beam 

subjected to a dynamic point load. The equation of motion for a multi degree of freedom system can 

be described as follows 

 
[ ]{ } [ ]{ } [ ]{ } { }ext  M u C u K u F  (2.14) 

A cantilever is easiest discretized by four degrees of freedom beam elements. Because the loading, 

generated from the ice, only works on a small area of the structure, it can be applied on one single 

degree of freedom i. The load vector will then consist of zeroes, except from the global ice load FG in 

row i, as illustrated in Fig. 2.9. 

                                   

0

{ }

0

ext GF

 
 
 
 
 
 
  

F  

 

                                                (a)                                     (b) 

Figure 2.9 (a) Load vector.(b) Loading in d.o.f. i.  

The external loading on the cantilever can be calculated as a function of the deformation in the ice. 

Once the external loading in the given time step is determined, the structural response for each 

degree of freedom can be solved. An iterative Newmark method routine for calculating the response 

is presented in Appendix A. 
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2.4 Rate dependency of ice crushing strength 

Ice is known for having varying compressive capacity, depending on the rate of loading. This section 

presents a brief introduction to the characteristics of ice crushing failure. Expressions for a 

mathematical description of the behavior are also introduced.  Finally, the effect that the rate 

dependency has on ice induced vibrations is addressed.  

2.4.1 Crushing modes  

The strain rate dependency of ice crushing strength has been evaluated in several publications e.g. 

(Peyton, 1968, Michel and Toussaint, 1977, Sodhi, 2001, Sodhi and Haehnel, 2003, Huang and Liu, 

2009, Yue et al., 2009, Timco and Weeks, 2009). There exists a general consensus that the failure of 

ice can be divided into three modes, namely ductile, transition and brittle, as proposed by Michel and 

Toussaint (1977) . The three domains are illustrated in Fig. 2.10. 

 

Figure 2.10 Ductile, transitional and brittle failure mode after Michel and Toussaint (1977). 

During low strain rates the material conducts ductile failure, meaning that large plastic creep strains 

and few cracks are observed prior to failure. At high strain rates, several large cracks and hardly any 

deformation is observed before crushing. The deformation during brittle behavior is primarily elastic 

as creep strains need more time to develop (Sodhi, 2001). Under medium strain rates the material is 

in the transition region between ductile and brittle behavior. In this region, small micro cracks 

propagate in the material. Failure occurs when the cracks connects and the material is saturated (Yue 
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et al., 2009). The typical time-history force plot during ductile behavior is smooth, whilst it shows 

abrupt drops during brittle behavior.  

2.4.2 Stress rate dependency 

The effect of varying crushing capacity at different strain rates can be described by the relation 

between crushing strength and stress rate. The definition of stress rate has been formulated slightly 

different by various authors. To define the stress rate in ice when it impinges a cylindrical structure, 

Blenkarn (1970) used the analogy to an example  from contact mechanics presented by Timoshenko 

and Goodier (1951). Timoshenko and Goodier described the radial stress in a unit thickness plate, 

loaded on a straight boundary, by the formula given in Eq. (2.15). A sketch of the loading is 

presented in Fig. 2.11. 

 2 cosP

r





   (2.15) 

 

Figure 2.11 Model for calculating radial stress, as described by Timoshenko and Goodier (1951). 

It can be shown that there are no shear stresses in the semicircular surface, shown with stapled lines. 

Blenkarn (1970) therefore suggested that a cylindrical structure could replace a semicircular part of 

the material.  The radial stress in the material at r = structure radius would then represent the contact 

pressure between ice and structure. Blenkarn modified the equation for radial stress to the following 

formula 

 4
cos

pz

r
 


  (2.16) 

The components in eq. 2.16 are illustrated in Fig. 2.12. p equals a loading pressure and z is half the 

loaded length. Blenkarn’s concept of replacing a piece of the material with a cylindrical structure 

yields that z equals the structure radius and r is the distance from the center of the structure. In the ice 

structure interface, r equals z.  
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Figure 2.12 Model for calculating radial stress, as described by Blenkarn (1970). 

Along the centerline, where equals zero, the ice stress rate was then given by 

 
2

4 icepzvd

dt r





   (2.17) 

where ice

dr
v

dt
 is the ice velocity.  

Määttänen (1998) established a stress rate dependent expression for ice crushing strength, given in 

Eq. (2.18). The formula employs a polynomial that is approximated to the stress rate dependency 

measured by Peyton(1968). 
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


    


 




 (2.18) 

In Eq. (2.18), A  is the contact area and 0A is a reference area. In this way, reduced crushing capacity 

for wide structures in accordance to area dependence, as defined by Sanderson (1988), is 

implemented. In Fig. 2.13, the crushing strength by Peyton is illustrated together with the polynomial 

by Määttänen. 
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Figure 2.13 Stress rate dependency after Peyton (1968) and Määttänen (1998). 

When developing the polynomial, Määttänen used the stress rate definition 

 
08

( )icev u
d





   (2.19) 

where icev is the ice velocity, u  structure velocity at the interaction point, 21oA m  and 0 2MPa  . 

Because the stress rate definition Blenkarn suggested (Eq. (2.17)) is based upon full contact between 

the ice and the structure, it is best suited for narrow structures where the contact area is similar to the 

diameter of the structure times the ice thickness. For wider structures, the contact area consists of 

several scattered contact points at protrusions on the ice edge. Määttänen therefore stated that for 

wider structures the stress rate could be modified by replacing the contact width d, with one to two 

times the ice thickness. When defining the approximated polynomial he employed d = diameter for 

narrow structures and d = 1m for wider structures.   

Timoshenko and Goodier (1951) showed that, according to elastic contact theory, the stress varies 

with the polar angle off the ice drift direction with a cosine distribution . This is illustrated in Fig. 

2.14. Due to the variation in stress, the stress rate will also vary over the interaction area. Määttänen 

(1978) gave the following expression for the stress rate 

 
2 8 ( )

( )cos ( ) C
icev u

d

 
 


   (2.20) 
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Even though it is not stated by Määttänen, the way that Eq. (2.20) is presented, it only gives the 

stress rate at ice failure, when the stress equals the crushing capacity. 

 

Figure 2.14 Stress distribution over the contact area.  

2.4.3 Negative damping 

During ice structure interaction, the equation of motion for a single degree of freedom system can be 

described as 

 
( )GM u Cu Ku F t    (2.21) 

where M,C and K are mass, damping and stiffness constants, respectively. The global load GF , is the 

contact force between the ice and the structure. Because the ice crushing strength is dependent on the 

loading rate, and the loading rate is dependent on the relative velocity between ice and structure, 

( )G G iceF F v u  . Assuming small motions, a first order Taylor series expansion of GF  gives 

 
( ) ( ) ( )G

G ice G ice

dF
F v u F v u

d u

     (2.22) 

 Inserting the expression from Eq. (2.22) into the equation of motion gives (Blenkarn, 1970) 

 
( ) ( )G

G ice

dF
M u C u Ku F v

d u
     (2.23) 

If the term GdF

d r
  attains a negative magnitude greater than the damping constantC , negative 

damping is achieved. Negative damping will lead to dynamic instability of the system, and growing 

fluctuation amplitudes (Määttänen, 1978). 
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2.5 Calculation of frequency content 

This section introduces methods for establishing the frequency content of a discrete signal, such as 

force or acceleration measured in full scale. 

2.5.1 Fourier Transformation  

A continuous signal can be transformed into a sum of harmonic components. This is known as a 

Fourier transformation. The Fourier transformation takes the signal from the time domain to the 

frequency domain. The following formulae describe the transformation (Strømmen, 2010); 

 

1

( ) lim ( , )
N

k k
N

k

x t X t




   (2.24) 

 ( , ) cos( )k k k k kX t c t     (2.25) 

where k is the angular frequency, t is the time, 
2 2

k k kc a b    and arctan k
k

k

b

a


 
  

 
 . The constants 

ka  and kb are given by 
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2
( )cos( )

T

k ka x t t dt
T

   (2.26) 

 

0

2
( )sin( )

T

k kb x t t dt
T

   (2.27) 

where k k   , 
2

T


   and T is the length of the time series.    

For a discrete signal, the Fourier transformation can be executed by an algorithm called the Fast 

Fourier Transform (FFT).  

2.5.2 Auto spectral density 

The auto spectral density of a signal gives insight into the variance distribution of the signal in the 

frequency domain. The single sided auto spectrum in a continuous format is given by  

 2( , )
( ) lim lim

a

x
T N

E X t
S




 

  


 (2.28) 

where ( , )X t  is a Fourier component of the signal ( )x t . The 
aE  stands for the average value of the 

content in the brackets (Strømmen, 2010).  

The auto spectral density can be obtained by employing Welch’s method. Welch’s method removes 

noise, by reducing the variance in the signal, and produces a smoother spectral density function. The 
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method implies dividing the signal into several overlapping segments, before performing a Fast 

Fourier Transform for each segment (Stranneby, 2001). 

 

2.6 Integration of acceleration signal 

When integrating a wide banded signal, amplitudes of the parts of the signal with lowest frequencies 

will increase more than those of higher frequency. If the integration constants are not known, low 

frequency content will cause drift in the integrated signal. By performing a Fast Fourier Transform 

(FFT) of an acceleration signal, one can observe the frequency contents. The parts of the signal with 

frequencies significantly lower than the first natural frequency of the structure can be considered 

non-relevant when the dynamics of the system is being evaluated. A high pass filter effect can be 

achieved by removing this unwanted low frequency content and then performing an inverse FFT. A 

cumulative trapezoidal numerical integration can then be applied to get the velocity ( )u t . The same 

procedure can be applied before integrating the velocity to find the structural response ( )u t . 

 

2.7 Estimation of damping 

During ice induced vibrations, both structural damping and damping contribution from the ice and 

water will affect the response of the structure. Due to the strain rate dependency of ice crushing 

strength, the effect the ice has on damping will depend on the relative velocity between the ice and 

the structure. This strain rate dependency of the ice crushing strength makes the damping properties 

of the system constantly change during each fluctuation cycle. 

The damping present during FLC is difficult, if not impossible, to quantify in an exact manner. 

Gravesen et al. (2005) calculated that during oscillations in ice covered waters, the ice contributes to 

a significantly increased damping. Sodhi (1991) described the energy exchanges between ice and 

structure during indentation tests. He clearly shows how energy is dissipated from the system when 

the indentor crushes the ice. Because the ice has an influence on the damping, damping during FLC 

is different from damping during free vibrations. If a response signal from a structure is available, 

modal damping can be estimated for vibrations under the governing conditions. This can be done 

with for instance the half power method. The half power method, presented in Eq. (2.29), uses the 

outline of the frequency response function to estimate the damping ratio n of a mode n (He and Fu, 

2001). This is illustrated in Fig. 2.15. 
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Figure 2.15 Half power method, where ( )H f  is the frequency response function. 

For a real life structure, where the frequency response function is unknown, the spectral density of 

the acceleration signal can be utilized. The acceleration- and response auto spectrums has the 

following relation (Strømmen, 2010) 

 

4

( )
( )

ku

u k

k

S
S





  (2.30) 

By taking the square root of the response auto spectrum, a function that represents the measured 

response amplitudes in the frequency domain is obtained (Rönnquist, 2005). The half power method 

can be applied on this function. This is possible because when calculating the modal damping ratio 

by the half power method, the actual amplitude of the frequency response function is irrelevant, as 

the damping is obtained as the ratio between values from the same function.   

2.7.1 Rayleigh damping 

Rayleigh damping can be used to establish a damping matrix. The Rayleigh damping matrix given by 

the expression 

 
0 1[ ] [ ] [ ]  C M K  (2.31) 

where [ ]M  is the mass matrix and [ ]K  is the stiffness matrix. The coefficients 
0  and 1  can be 

determined by specifying modal damping ratios i and j  for two arbitrary natural modes of the 

structure. Usually, the first damping ratio i is specified for the fundamental mode and j  for a 

mode close to the highest mode of significance. The modes in between the selected ones will then be 

slightly lower damped than j . Modes higher than the highest mode for which the damping is 
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specified will get higher damping than j . Formulas for 
0  and 1 are given in Eqs. (2.32) and 

(2.33)(Chopra, 2011). 
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 A modal analysis must be performed in order to determine 
i  and j , which are the natural 

frequencies in rad/s, for the selected modes. Estimates to damping ratios for the two selected modes 

have to be made.  

 

2.8 Description of finite element program 

The engineering company REINERTSEN AS has initiated a research program of which results are 

aimed to contribute during offshore and subsea structural design in ice infested waters. The program 

is named REice and covers among others, ice crushing loads and ice induced vibrations. As a part of 

the research program, development of a finite element procedure for calculating structural response 

during ice induced vibrations has been started. During the work on this thesis, the finite element 

program has been further developed. 

Development of the finite element program has been a significant part of the thesis process. The 

program is written in the programming language Python. Structural properties are discretized by the 

means of quite simple beam elements, while the complexity in the program lies in establishing a load 

implementation that recreates the behavior of true ice. An iterative Newmark method procedure is 

employed for solving the dynamic equilibrium equations.  

2.8.1 Program structure 

The program consists of an input file in text format (.txt ) and three python scripts (.py ). A flowchart 

illustrating the solving process is shown in Fig. 2.16. It should be mentioned that the program is not 

developed for general structures. The current version is specifically made for cantilever like 

structures in a 2D format. 
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Figure 2.16 Structure of finite element program. 

In the input file, the structural properties such as mass, stiffness and damping are given. In addition, 

the duration of the simulation time and the length of the time increments are defined here. 

IIV-main.py loads relevant data from the input file. This script is the hub for the analysis, and runs 

the functions described in other modules.  

In IIV-functions.py the differential equations of motion for the structure are solved for each time step. 

Because the ice force loading is highly non-linear and also dependent of the structural response, an 

iterative Newmark method scheme is employed.   

The contact force over the ice structure interaction area is calculated in loadmod.py. Structure 

geometry and the mechanical properties of ice are included to give the most accurate description 

possible. 

2.8.2 Structural discretization 

The tower like lighthouse has axisymmetric properties and is therefore simplified by a 2D 

representation. Due to varying mass- and stiffness properties over the height, the structure is divided 

into twenty sections. Each section is implemented by one or more four degrees of freedom 

Timoshenko beam elements. In total the structure is divided into 99 elements and consists of 200 

degrees of freedom, but the mesh density can easily be adjusted. The element distribution is 

presented in Table 2.2. The mass density of some of the sections is adjusted to compensate for 

ballast, bulkheads and interior. Calculation of compensating densities is presented in Appendix D. 

Hydrodynamic added mass and aerodynamic added mass are neglected. 
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Section Length (m) Elements Outer diam. (m) Wall thickn. (m) E (N/mm²) ρ (kg/m³) 

1 7.45 10 23.0 0.52 24000 24935 

2 9.05 10 7.2 0.5 24000 8520 

3 2.90 10 5.3 0.55 24000 2650 

4 0.20 1 4.2 2.1 24000 2500 

5 2.90 10 5.0 0.55 24000 2650 

6 0.20 1 4.2 2.1 24000 2500 

7 2.90 10 5.0 0.55 24000 2650 

8 0.20 1 7.7 3.85 24000 2500 

9 2.25 10 4.8 0.3 24000 2650 

10 0.20 1 4.2 2.1 24000 2500 

11 2.25 10 4.8 0.3 24000 2650 

12 0.20 1 4.8 2.4 24000 2500 

13 2.70 5 4.6 0.25 24000 2650 

14 0.20 1 4.2 2.1 24000 2500 

15 2.70 5 4.6 0.25 24000 2650 

16 0.20 1 4.2 2.1 24000 2500 

17 2.70 5 4.6 0.25 24000 2650 

18 0.20 1 6.8 3.4 24000 2500 

19 2.75 5 4.6 0.25 24000 2650 

20 0.20 1 8.5 4.25 24000 2500 

Sum 42.35 99 

   

  
 

Table 2.2 Element distribution and details. 

Timoshenko beam element differs from the more traditional Euler-Bernoulli element by including 

shear deformations (Cook et al., 2002). Shear deformations have a greater influence the larger the 

length to height ratio of the structure. For structures with ratio less than 5, shear deformations will 

have a significant influence, so for a partially wide structure like Norströmsgrund, shear 

deformations should be included. The element stiffness matrix is taken from Gavin (2014); 
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where E is Young’s modulus, I is the second moment of area, l is the element length,

2
24
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,   = Poisson’s ratio and 

I
q

A
    . For Hollow circular cross sections the shear 

coefficient   can be calculated by Eq. (2.35) (Cowper, 1966). 
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where 
b

n
a

  gives the relation between inner and outer radius, as shown in Fig. 2.17.  

 

Figure 2.17 Inner and outer radius. 

A consistent mass matrix is applied in the discretization. Consistent mass matrices over-estimate the 

natural frequencies. This partially compensates for the algorithmic error of period elongation that 

explicit direct integration cause (Cook et al., 2002).The shape functions used to calculate the element 

mass matrix includes the shear deformations. Eq. (2.36) gives the element mass matrix (Gavin, 

2014). 
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(2.36) 

where m is mass per length unit and l is the element length. 

Soil structure interaction is implemented by one rotational and one translational spring. Due to 

lacking data on soil characteristics from Norströmsgrund, the stiffness of the two springs must be 

considered approximate.  Values are taken from a numerical study by Popko (2014). 
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96.0 10 N/mlatK            

 
118.0 10 Nm/radrotK    

2.8.3 Load Module 

Response dependent loading on the structure is what separates the program from being an ordinary 

calculation of forced vibrations. The loading is response dependent because the contact force 

depends on the displacement in the ice and because the ice capacity is dependent on the relative 

velocity between ice and structure. 

The axisymmetric structure is utilized, as only one half of the interaction area is modelled. One half 

of the interaction area gives a sector of 90˚ or π/2 rad.  This sector is divided into segments of 

0.01rad. Each of these segments is discretized to a contact node. In total, the ice structure interaction 

consists of 158 discrete contact points. A principle sketch of the discretization is shown in Fig. 2.18. 

Ice stress and deformation is calculated separately for each point, in which the ice is represented by 

an elastic spring. This means that the model employs 158 separate elastic elements like the one used 

in the Matlock model (Matlock et al., 1969). The Matlock model is illustrated in Fig. 2.19. One of 

the strengths of this representation compared to many other ice structure interaction models is that it 

maintains kinematic compatibility and equilibrium between the ice and the structure (Sodhi, 1988). 

                                                                                    

Figure 2.18 Modeled contact points.                    Figure 2.19 The Matlock model on a SDOF system.       

By applying Eq. (2.37), the force acting on the structure is calculated for each time step N, by 

integrating the stress over the polar angle and multiplied by two, accounting for the symmetry 

utilization. The harmonic terms account for only including the component of the radial normal stress 

and the tangential shear stress that is working in the ice drift direction.   

 
2

0
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         (2.37) 

The Matlock model has proven able to produce structural response similar to what is measured in 

full-scale.  However it does not include any parameters describing the ice properties. In the finite 
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element model, the ice crushing capacity is calculated as a function of stress rate, by utilizing the 

description proposed by Määttänen (1998, 1978). A tuning factor , is used to control the level of the 

global load, instead of the scaling term 0 /A A used in Eq. (2.18). Note that the value d, which was 

used in Eqs. (2.19) and (2.20), is in Eq. (2.39) replaced with 1m, like Määttänen (1998) suggested for 

wide structures. 
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The crushing strength depends on the stress rate, and the stress rate depends on the acting stress. At 

failure, the stress is equal to the crushing strength as stated in Eq. (2.39). To decide whether the ice 

fails or not in the current time step N, a predictor-corrector procedure is employed. The stress rate in 

step N is calculated based on the known stress in step 1N  . Crushing strength in step N is then 

calculated from stress rate in step N . 
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In the predictor step, the stress in the ice is calculated based on the current ice displacement
N , by 

applying Eq. (2.44). 
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Eq. (2.44) is deducted in Appendix B. effK  is the effective stiffness of the ice giving the relation

G effF K  . 

If  
N N

C      the ice will fail and the displacement in the ice , is reduced, such that
N N c   , 

where c is a predefined crushing length. In the corrector step, an updated stress then has to be 

calculated based on the new displacement in the ice. The crushing length will influence the crushing 

frequency, because it affects how long time it will take before the stress reaches the crushing 

capacity again. A thorough description of the calculations in the load module is given in Appendix C.  
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3 Results 

In this chapter, features describing the characteristics of the dynamic response of Norströmsgrund 

lighthouse during the 30031225 FLC-event are presented. Results from two numerical simulations of 

the event are also given. In the first numerical simulation, the 30031225 FLC-event is recreated by 

performing a finite element analysis where the loading is tuned to be similar to the loading measured 

in full-scale. In the second numerical simulation, it is attempted to achieve dynamic response as a 

result of negative damping effects. Both analyses are performed with the same finite element 

program, but the equations describing ice properties are slightly different in the two analyses. 

 

3.1 Documentation of lock-in characteristics  

It should be verified that the event we are assessing is indeed a true frequency lock-in event. For a 

period of about 80 seconds the global load, presented in Fig. 3.1(a), reaches exceptionally high 

values. The structural acceleration, shown in Fig. 3.1(b), is significant during the same interval. This 

interval is what has been named FLC event. An interval prior to lock-in is denoted Pre event. 

  

                                          (a)                                                                             (b) 

Figure 3.1 (a) Global load before and during FLC event. (b) Acceleration before and during FLC 

event. 

An assessment of the frequency content of the acceleration signal during the FLC event, given in Fig. 

3.2(a), shows that the vibrations are dominated by the first eigenmode of the structure, at about 

2.2Hz. For comparison, the time period prior to the lock-in event is assessed in Fig. 3.2(b). During 

this period, named Pre event, the frequency content is more wide-banded than during the FLC event. 

In the pre event there is a dominating frequency at about 37Hz, which is just below the Nyquist 

frequency of 42Hz. It has not been succeeded to determine if the energy at 37Hz is due to noise or a 
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physical process. Because there is no energy at 37Hz during the FLC event, it is not regarded 

significant for this work to investigate this energy further. It should, however, be looked into what 

the energy at this frequency stems from. 

The loading during the Pre event can be characterized as intermittent crushing, due to the gradual 

load increases followed by sudden decreases to a load level that remains low for some time. The 

frequency of the first natural mode is at 2.7Hz in the Pre event and 2.2Hz during the FLC event. This 

indicates that the frequency during FLC is not equal to the natural frequency during free vibrations.    

  

                                               (a)                                                                             (b) 

Figure 3.2 (a) Acceleration auto spectrum of FLC event. (b) Acceleration auto spectrum of Pre event. 

Fig. 3.3 shows the auto spectrum of the global load during the FLC event. The dominating frequency 

is at about 2.2Hz. There is also some energy at 4.4Hz and 6.6Hz. The energy at 2.2Hz is deemed to 

come from the first vibration mode, while the energy at 4.4Hz and 6.6Hz possibly comes from higher 

order modes or from a superharmonic oscillation of the first mode. Local effects due to vibrations in 

the load panel itself can be another explanation to the energy at higher frequencies.  

The displacement signal in Fig 3.4 shows how the oscillations are very harmonic, and mainly 

consists of a single frequency. Steady-state response is an indicator of frequency lock-in and the 

relatively stable amplitudes of the displacements are in line with this.  
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Figure 3.3 Auto spectrum of global load signal     Figure 3.4 Steady state structural response. 

It should be mentioned that the frequency of the measured structural response varies over the event. 

During the first seconds of lock-in, the dominating frequency is about 2.17Hz, while when evaluating 

the entire event, a frequency of 2.23Hz is most dominant. Some deviating values will therefore 

appear in the report.  

By visually examining the force panel measurements it becomes clear that crushing is synchronized 

over the interaction area. This can be examined in Fig. 3.5.   

 

 

Figure 3.5 Synchronized panel forces. 
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It has been showed that the interval of vibrations, denoted as the 30031225 FLC-event, consisted of 

steady-state harmonic oscillations at a frequency of 2.2Hz. The ice failure was synchronized over the 

interaction area during the interval. 

  

3.2 Study of initiation of forces during the 30031225 FLC-event 

Recordings from the 30031225 FLC-event have been evaluated in order to assess how the shape and 

movement of the ice sheet influence the loading on the structure. Camera recordings reveal how a 

semicircular crack in the ice sheet was approaching the structure prior to the initiation of vibrations. 

The shape and movement of the crack is depicted on snapshots from the video recordings in Fig. 3.6. 

Each black line illustrates the shape and position of the crack for each point of time. Governing 

minute and second for each line is included in the figure. On figure 3.6(b) a secondary crack can be 

seen. It has not been discovered how this crack affects forces on the structure. 

      

                                (a)                                                                                (b) 

Figure 3.6 Ice edge time history 

From the video recordings one can make at least two relevant observations. 1) The radius of the 

crack is larger than the radius of the lighthouse. This indicates that the force build up most possibly 

should begin in the mid force panels before gradually spreading out along the perimeter.  2) The edge 

of intact ice gains contact with the lighthouse at about 12:25:32. Both of these observations are in 

accordance with what the force panel measurements show.  

A possible sequence of events has been established to recreate the load measurements. This is a 

potential shape of the ice edge, tuned to give a time history that corresponds to the force panel 

readings. In Fig. 3.7 the outline of the ice front has been sketched.  
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                                          (a)                                                                            (b)   

        

                                        (c)                                                                       (d) 

Figure 3.7 (a) Force panel time history. (b) Initial contact is made. (c) Contact is gained for panel 

P36 and rubble causes forces on P108. (d) Contact at a substantial part of the perimeter.     

It has been created an image of how the ice impingement of the structure led to development of 

contact forces. A course of events where contact between structure and ice, to begin with, is gained 

in front of the structure, before gradually spreading out to the sides, can explain the force 

measurements.                                                    

3.3 Correlation between load and response 

In this section the correlation between loading and structural response is assessed. 

In Figs. 3.8 and 3.9, global ice loads are plotted together with displacements and relative velocity, 

respectively. The amplitudes are scaled to give a perspective that enables comparison.  The 

displacement and velocity are obtained by integrating the acceleration measurements. Low frequency 
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content is lost during the integration, so the plots will only show the dynamic response. Hence, quasi 

static response due to increasing load is not captured in the displacement signal. 

  

Figure 3.8 Global load and displacement.             Figure 3.9 Global load and relative velocity.  

The force and displacement are in phase during the vibrations. The relative velocity, being the 

difference between ice velocity and structure velocity, behaves like the negative derivative of the 

displacement. Note that the relative velocity is fluctuating about a mean equal to the ice velocity at 

0.065m/s. For each cycle one can observe that while the force and displacement is increasing, the 

relative velocity is low. This is reasonable, because when the structure deforms, it moves together 

with the ice edge, reducing relative velocity. When the force reaches its maximum value, the 

displacement also tends to have reached its climax. At this point the derivative of the displacement is 

zero. The relative velocity therefore has a value about equal to the ice velocity, at ice failure. When 

the ice fails, the structure penetrates the ice sheet, and the relative velocity increases. 

The relationship between translation of the ice sheet, contact force and displacement of the structure 

has been investigated closer. Fig. 3.10 shows four specific points on the displacement signal, 

indicating zero, minimum and maximum displacement during one fluctuation cycle. 
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Figure 3.10 Specific points in displacement signal. 

For each of the four points, the movement of the ice sheet is, in Fig. 3.11, illustrated together with 

the displacement of the lighthouse. The movement of the ice sheet is calculated by multiplying the 

ice velocity with the elapsed time. For the purpose of illustrating the movement of the ice sheet, it 

has in the figure been divided into a rigid and a deformable part.  

 

Figure 3.11 Relation between movement of ice sheet and deformation of the lighthouse. 
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In point (a) the deformation in the structure is zero and the force is in the beginning of a load build 

up. From point (a) to (b), the ice moves 7.5mm and the structure moves 1.3mm against the direction 

of the ice. In point (c) the structure has moved back to its neutral position, and in point (d) the 

structure has reached its maximum displacement of 1.4mm in the direction of the ice. Point (d) also 

marks the end of the force build up. During the load build up, the relative movement between ice 

sheet and structure is approximately 22.5mm-1.4mm=21.1mm. Assuming entirely elastic behavior, 

this means that the ice undergoes a deformation of 21.1mm during this cycle. For the load to reduce 

to the level it had prior to the load build up, the crushing length of the ice has to be approximately 

equal to the deformation of 21.1mm.  

 

3.4 Development of force distribution during initiation 

It is of interest to assess how the force distribution in the ice structure interaction is developing, as 

the vibrations evolve. Therefore, eleven readings in the force panel measurements have been made at 

specific points of time. The horizontal force distribution at each force reading has then been plotted 

and compared with each other. Fig. 3.12(a) shows when the eleven force readings were made. Force 

distributions are presented in Figs. 3.12(b) to 3.12(d). 
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                                         (a)                                                                            (b)

 

                                          (c)                                                                              (d) 

Figure 3.12 (a) Time of force readings. (b) Distributions during quasi-static load increase. (c) 

Distributions before and after global load increase. (d) Distributions at force maxima. 

From readings 1, 2 and 3 one can see the force development prior to the start of the vibrations. The 

average rate of load increase is low in this period.  Between reading 1 and 3 the loading rate is about 

80kN/s for panel P54 and about 120kN/s for P36. The load is concentrated around the center of the 

structure, in addition to a smaller force on panel P108. 

Between reading 3 and 4, there is a significant increase in the global load. Fig. 3.12(c) shows how 

the main increase in load primarily occurs in the two mid panels. 

In Fig. 3.12(d) the distribution at the different force maxima during the first cycles of the vibrations 

are compared. The trend is that the distribution develops from being concentrated at the mid panels 
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to at more cosine like distribution. From reading 4 to reading 10, the force decreases in the mid 

panels P36 and P54, while it increases in panel P18, P72 and P90.  

Finally the development between force maxima and minima are assessed. In Figs. 3.13(a) and (b) it 

can be observed that the fluctuations in force are most prominent in the two mid panels P36, P54. 

The relative difference between maximum and minimum values is significant in these panels. In the 

panels P18 and P72 the fluctuations are smaller, while the fluctuations of the force in panels P0 and 

P18 are almost absent.  

  

                                        (a)                                                                              (b)  

Figure 3.13 (a) Comparison of force maxima and minima. (b) Mean of maxima and mean of minima.  

Earlier in this chapter it was pointed out how the loading rate was low in the two panels P36 and P54 

before the vibrations were initiated. After reading 4, one can observe that the slopes in the force 

panel time history are significantly steeper that it was between reading 1 and 3. Between reading 5 to 

6, the average loading rate for P54 and P36 is 1090kN/s.  

 

3.5 Numerical modelling of the 30031225 FLC-event  

This section presents the first of two numerical simulations of the 30031225 FLC-event. In this first 

simulation, the ice characteristics are tuned in order to achieve a global load that resembles the load 

calculated from full-scale measurements. Calculations of input values for the analysis are first given, 

before the actual results are presented.  

3.5.1 Modal analysis 

Eigenfrequencies of the structure has been reported in several publications, with quite varying 

values. Tugboat pull tests in open water have shown first eigenfrequency at 3.5Hz while reports from 

measurements of IIV indicate first eigenfrequency at 2.0-2.9Hz (Popko, 2014).  Fig. 3.14 shows the 
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first three modeshapes of the beam element model. For comparison, results from a modal analysis on 

a more refined finite element model (Popko, 2014) are presented in Fig. 3.15. As Fig. 3.14 indicates, 

deformation in the soil-structure interaction has a substantial contribution to the mode shapes.  

   

Figure 3.14 Beam element model modeshapes.           Figure 3.15 Shell element model modeshapes.    

The modeshapes in Fig. 3.15 are illustrated by both deformations and a contour plot. A contour plot 

shows the magnitude of a value by assigning a specific color. The color scale applied in this contour 

plot is shown in the upper left corner of Fig. 3.15. It must be verified that the modeshapes from the 

beam element model and the shell element model are the same, but that requires some interpretation 

of the contour plot. The following observations in the contour plot characterize the shape of the 

eigenmodes for the shell element model: 

1
st
 modeshape: 

- the dark blue color on the entire caisson means that there is no translation or rotation present in this 

position 

- the displacement gradually increases along the height of the structure 

2
nd

 modeshape: 

- the caisson is light blue, indicating a translation 

- slightly darker color on the bottom of the caisson indicate a minor rotation 

-the dark color above the lower balcony, at approximately 25m height, shows that the mode has no 

amplitude in that point 

3
rd

 modeshape: 

- green and dark blue color on the caisson indicate a rotation 
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- dark blue color above lower balcony indicate a second point of zero amplitude (the placement of 

this point deviates some from 3
rd

 modeshape in beam element model) 

The eigenfrequencies from the beam element model and the shell element model, given in Table 3.1, 

are similar for the first two modes, but deviates for the third mode.   

 1
st
 mode 2

nd
 mode 3

rd
 mode 

Beam element model 2.79Hz 4.23Hz 10.40Hz 

Shell element mode 2.83Hz 4.17Hz 5.62Hz 

Table 3.1. Natural frequencies of beam and shell element models. 

Based on the modeshapes and eigenfrequencies one can conclude that for the two modal analyses, 

the 1
st
 and 2

nd
 modeshapes are similar. For the 3

rd
 mode there is a difference. 

3.5.2 Determination of ice stiffness properties  

To be able to simulate the FLC-event in the most accurate manner, the ice properties in the finite 

element model should replicate those present during the real life event. Force measurements, together 

with an estimation of the structure’s displacement, have been utilized to estimate the stiffness of the 

ice during the elastic load build up prior to failure.  

The displacement signal has been found by integrating the acceleration signal twice. The 

accelerometers used during the measurements were located at 16.5m and 37.1m above sea bottom. 

To find the response in the waterline, the ratios between the response at sea level and at the point of 

the accelerometers had to be found. It was assumed that the response consisted primarily of the 

fundamental mode, something the displacement auto spectrum confirms. Results from the modal 

analysis gave the ratios presented in Table 3.2.  

Reference position Desired position Response ratio 1
st
 mode 

37.1m 14.15m 0.1639 

16.5m 14.15m 0.8090 

Table 3.2 Response ratios 1
st
 mode of beam element model. 

Because there were two acceleration signals at hand, two displacement signals for the structure were 

established at 14.15m. The signals were similar in amplitude, and in phase. This confirms that the 

modal analysis gave reasonable results. In the end, the displacement based on measurement from the 

accelerometer placed at 16.5m was used, because it was the one located closest to the ice. 
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An effective ice stiffness effK  has been calculated for each load buildup during the first nine cycles of 

the event, using Eq. (3.1). The average stiffness from these nine load buildups was then calculated to 

be 5.352E+07N/m. This stiffness has been employed in the numerical modelling of the event. 

 
G

eff

F
K







 (3.1) 

where  ,2 ,1G G GF F F    ,   icetv u    ,   2 1u u u    and 2 1t t t   .  

Time of the loading cycles are given in Fig. 3.16(a). Ice stiffness for each cycle is presented in Fig. 

3.17. 

   

                                        (a)                                                                                (b)  

Figure 3.16 (a) Global ice load and starting point of each cycle. (b) Structure displacement.  
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Figure 3.17 Calculated ice stiffness. 

For simplicity, the ice stiffness is in the numerical analysis modelled as linearly elastic. It should be 

noted that the deformations in the ice during the load build up are not entirely elastic. Creep, micro-

cracking and minor fractures are all non-conservative processes that soften the behavior of the ice. 

The real life elastic stiffness of the ice is therefore higher than what has been estimated in this 

calculation. However, the measured forces that work on the structure are real, and an average 

stiffness based on these should give reasonable results, even when it is linearized. A principle sketch 

of the difference between true elastic stiffness and average stiffness is illustrated in Fig. 3.18.  

 

Figure 3.18 Linearized average stiffness. 

3.5.3 Estimation of damping 

Damping ratio of the first mode has been calculated by the half power method. A damping ratio of 

3.7% was achieved. Fig. 3.19 shows the application of the half power method. Damping of the 

second mode was assumed to be equal to the first mode. Rayleigh damping coefficient was 

calculated based on these two damping ratios.  
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Figure 3.19 Estimation of damping.      

3.5.4 Comparison of loads 

The global load acting in the FE model was tuned to replicate the measured load in the full scale 

event. As Fig. 3.20 illustrates, the modeled load has a stable maximum level, while the magnitude of 

the maxima in the measured load varies. However, the objective of the analysis is the dynamic 

behavior of the structure. Hence, the frequency and the amplitude of the fluctuations are of greater 

influence than the average magnitude. Because the ice stiffness was determined, the modeled 

crushing length dictated the frequency of the load. A crushing length of 0.03m gave the desired 

crushing frequency.  

Load measurements indicated that the ice failure was synchronized in the full-scale event. In the FE 

model all contact points are calculated separately, and therefore behaves independent of each other. 

To achieve synchronized failure, all contact points were designed to fail if the ice crushing capacity 

was exceeded in one or more contact points. This resulted in synchronized failure in all contact 

nodes.  

While the measured load has slightly rounded change-overs at the local minima, the modeled load 

has a completely sharp transfer from force descend to load build up. For the inclination rate during 

load build up and the crushing frequency to be able to maintain the same for the two loads, the drop 

in load during crushing has to be slightly larger for the modeled load than the measured load.  
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In the plots where full-scale and finite element values are compared, the time axis shows the time for 

the finite element analysis. Time equal zero in the finite element analysis corresponds to 

approximately12:25:39.8 in the full-scale event. 

 

Figure 3.20 Global load. 

Fig. 3.21 and Fig. 3.22 show the modeled and measured compressive forces acting on the load 

panels. Due to symmetry, the calculated forces on some of the load panels are equal. 

 

 

Figure 3.21 Force panels FE model.                         Figure 3.22 Force panels full-scale. 

3.5.5 Comparison of structural response 

Fig. 3.23 shows the accelerations at 16.5m height. Both signals show amplitudes in the range from -

1.4m/s
2
 to 1m/s

2
. The peaks of negative acceleration are greater than the positive ones due to the 

sudden drops in both loads. On the displacement plots in Fig. 3.24, one can see that the response at 
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16.5m height in the FE model is lower than what is estimated from full-scale acceleration 

measurements. Note that low frequent content is lost when integrating the acceleration signal to 

establish the displacement. The presented full-scale displacement signal does therefore not include 

the quasistatic component 

 

  Figure 3.23 Accelerations at 16.5m.                         Figure 3.24 Displacements at 16.5m. 

Admittedly the accuracy of a displacement signal established from integrating an acceleration signal 

should not be fully trusted. Nevertheless, there is a plausible explanation to why the displacements 

from the FE model are lower than the dispacemets from full-scale measurements. The frequency of 

the first eigenmode in the FE model was calculated to 2.79Hz. The frequency of the load and 

response was about 2.17Hz. While the full-scale displacement signal is fully sinusoidal and consists 

of a single frequency, the signal from the FE model indicates that there are two frequencies being 

exited. In Fig. 3.25 one can see how the displacement auto spectrum of the two signals verifies that 

there is a substantial energy at 2.167Hz and 4.333Hz in the displacement signal from the FE model. 

This indicates that an oscillation is excited at two times the loading frequency. When the loading 

excites vibrations at several frequencies, it means that the vibrations are not fully resonant, and the 

amplitudes are hence reduced. Increasing the loading frequency to a level closer to the first natural 

frequency of 2.79Hz would have given a more resonant response and increased the displacement 

amplitudes in the FE model. 



49 
 

 

Figure 3.25 Normalized displacement auto spectrum. 

3.5.6 Evaluation of stress in ice sheet 

The stress and stress rates have been calculated by established expressions from theory of elasticity. 

In order to generate a global load similar to what was measured during the event, the crushing 

capacity of the ice had to be tuned. Eqs. (3.2), (3.3) and (3.4) shows the formulae that were employed 

in the calculations. A reduction factor of 0.24   has been included to the equation for crushing 

capacity, proposed Määttänen (1998). The calculation of stress rate was tuned accordingly with a 

factor of 1/  to account for the lowered crushing capacity. Fig. 3.26(a) shows the stress rates at the 

center of the interaction area, from the finite element analysis (FEA). In this area, the stress rates 

varied between 0.22 and 0.45MPa/s at. Based on the stress rates, one can by Fig. 3.26(b) tell that 

crushing capacity between 0.67 and 0.72MPa prevailed in front of the structure, during the finite 

element analysis. 
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                                          (a)                                                                            (b)                       

Figure 3.26 (a) Stress rates in the center of interaction area, during FEA. (b) Prevailing ice crushing 

strength in the center of interaction area, during FEA. 

3.5.7 Comparison of force distribution over interaction area 

To evaluate the accuracy of the formulas employed for calculating stresses over the structure, the 

force distribution should be evaluated. Force distributions from the FE model has therefore been 

compared against the full-scale measurements. The formulae for stress calculations are based on the 

assumption that the compressive stress takes on a cosine distribution. Figs. 3.27(a) and (b) shows that 

the calculated panel forces from the FE model also have a cosine like distribution. The distribution of 

the measured force varies with the load level. When the global load is high, as in reading 1 and 2, the 

measured force distribution is concentrated to the center of the interaction area.  In reading 3, where 

the measured global load is low, the distribution resembles something more like a cosine distribution.   

  

                                          (a)                                                                          (b) 

   Figure 3.27(a) Time of force readings. (b) Force distributions.                              
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3.6 Numerical modelling of self-exiting vibrations 

This section presents results from the second numerical simulation. First, the motivation for 

performing a second analysis is discussed. Then, the adaptions made for achieving self-excitation are 

given. Finally, results of the analysis are presented. The results from the analysis are compared with 

the full-scale measurements from the 30031225 FLC-event. This is done because it makes it possible 

to evaluate what the full-scale response looks like compared to a response that we know is due to 

negative damping effects.   

3.6.1 Motivation for analysis 

It was desirable to examine if the finite element model was able to simulate self-exciting vibrations. 

The results from the first simulation of the 30031225 FLC-event did not seem to be influenced by 

any negative damping effects, giving rise to self-excitation. Stress rate scatter plot in Fig. 3.26(a) 

illustrates how the stress rate operated between 0.22 and 0.45 MPa/s, which is primarily on the 

borderline between the ductile and the transitional domain. It is commonly believed that the stress 

rate operates in the transitional domain during lock-in (Yue et al., 2009). Stress rates in the 

transitional domain are necessary for the negative damping effect characteristic for self-exciting 

vibrations to be present (Blenkarn, 1970, Määttänen, 1978). In addition, the crushing process itself 

has to be included in the numerical integration of dynamic response. The way that the previous 

analysis was configured, the time between ice failure and the beginning of load build-up in the 

following cycle was covered in one time step. The crushing process was therefore lost. Performing a 

new analysis, where the crushing process is accommodated, has been attempted. The crushing 

process is implemented by setting the crushing length very short. During the load drop in each cycle, 

the modeled ice fails several times in a row. In these consecutive failures, the relative velocity 

increases because the structure is piercing through the ice. By representing this crushing process over 

several time steps, instead of including the entire ice fracture in one increment, negative damping 

effects has the possibility of influencing structural response.  

3.6.2 Adaption of calculations 

By tuning the crushing capacity, stress rate, damping and crushing length, a response indicating self-

excitation was achieved.  It has to be emphasized that the stress rate calculation in this analysis has 

been tuned to maximize negative damping effects. The applied formulae, given in Eqs. (3.5) and 

(3.6) are therefore not based on an analytical approach. A configuration that favored initiation of 

self-excited vibrations further was achieved by reducing the modal damping to 1 2.0%   and 

2 2.2%  . Rayleigh damping coefficient was calculated based on these damping ratios. 



52 
 

2 3 4
0.3(2.00 7.80 18.57 13.00 2.91 )   for 1.3

( )

0.3                                                                          for 1.3

C

MPa MPa

MPa MPa

    
 




    

 
 

 (3.5) 

2 8 ( )
8( 2 )cos ( )

1
C

icev r
m

 
 


   (3.6) 

3.6.3 Result of analysis 

In this analysis, the equations for stress rate were tuned to achieve stress rates that operated in the 

transitional domain. In Fig. 3.28(a) the resulting stress rates for each time increment in the analysis is 

presented. The stress rates presented are recorded for the contact node in the middle of the interaction 

area, where 0  . It can be seen that the stress rates varied between 0.2 and 0.95MPa/s. The 

corresponding ice crushing stress is given in 3.28(b).  

  

                                          (a)                                                                            (b)                       

Figure 3.28 (a) Stress rates in the center of interaction area, during FEA. (b) Prevailing ice crushing 

strength in the center of interaction area, during FEA. 

The global load from the analysis, shown in Fig. 3.29, has almost no fluctuations to begin with, but 

together with increasing structural response, the fluctuations in load also increase.  

Additional results from the analysis are presented in Figs. 3.30, 3.31 and 3.32. It is interesting to see 

how the displacement plot is entirely sinusoidal. The displacement auto spectrum shows how the 

vibrations only consist of a single frequency of 2.74Hz. This is very close to the first eigenfrequency 

at 2.79Hz, and a proof of the crushing locking in at the natural frequency of the structure. The saw 

tooth like load signal in the FE model confirms that failure in the ice was synchronized. In this 

analysis the contact nodes were not modeled to automatically fail simultaneously, so this means that 

crushing in all contact nodes self-synchronized after a few cycles of oscillations.   
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   Figure 3.29 Global load.                                           Figure 3.30 Displacement. 

    

   Figure 3.31 Acceleration signal.                        Figure 3.32 Normalized acceleration auto spectrum. 

  



54 
 

4 Discussion 

It has been shown that the vibrations at Norströmsgrund 12:25 the 30
th

 of March 2003 carry the 

characteristics of FLC. The relation between global load, displacements and relative velocity during 

the fluctuations was documented. Full-scale measurements showed that the loading and the 

displacements were in phase, and that the relative velocity increased rapidly after each failure of the 

ice. The FLC-event was simulated by two different finite element analyses. The first analysis 

implemented properties of the ice by analytically established expressions.  In the second analysis, the 

equations for describing behavior of the ice were tuned to achieve vibrations due to negative 

damping effects.  

The frequency content of the measured contact force is similar to the frequency content of the 

displacements, which is logical, since the ice edge and the structure are in contact and deflects 

together. During the lock-in event, the ice fails for each cycle of the structure’s oscillations. This 

results in a sinusoidal steady state response, rather than a saw tooth like response. Steady state 

response is typical for FLC (ISO, 2010). 

Even though the displacement plot shows a sinusoidal signal, the acceleration auto spectrum and the 

force auto spectrum indicate that higher frequencies at 4.4Hz and 6.6Hz are present in the vibrations. 

This can either be a superharmonic oscillation of the first mode, at two and three times the 

eigenfrequency, or it can be higher order modes being excited. Frequencies at multiples of the 

fundamental frequency have earlier been observed in force measurement on a jacket platform in the 

Bohai sea (Duan et al., 2002).  

Synchronization of ice failure over the interaction area has been discussed in many publications 

regarding FLC, e.g. (Bjerkås et al., 2013, Bjerkås, 2006, Sodhi, 2001, Sodhi and Haehnel, 2003, 

Määttänen, 1998, Kärnä, 1992). Simultaneous failure in the contact zones will give higher load peaks 

on the structure. Both full-scale and model indentation tests have shown that the total ice force is 

lower during continuous crushing where the ice failure is non-simultaneous, than during FLC where 

the contact forces tends to be synchronized. This fits well with measurements from the event, which 

shows how the global load is highest under synchronized failure during frequency lock-in. 

The failure of the ice prior to the event, resulting in a circumferential crack in front of the structure, 

resembles what Kärnä and Jochmann describes as a one hinge bending failure (2003). Video 

recordings showed that ice rubble had piled up in front of the lighthouse prior to the bending failure. 

It seems plausible that the weight of the rubble may have deflected the ice sheet downwards. In that 

case, the deformation would lead to eccentricity in the in applied in-plane force on the ice sheet. 

Weight of the rubble combined with eccentric load would then together cause the ice bending failure.    
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During the interval 12:25:30 to 12:25:39, there was contact between the ice and the centered panel 

P54. Given the ice velocity of 0.065m/s, the ice moved about 0.6m in 9 seconds. Due to the large 

relative movement, the ice must have failed several times over this period. In spite of this large 

relative movement between the ice and the structure, the contact force only shows minor variations. 

It is remarkable how the ice force increases gradually for such a long period, without any major 

decreases indicating ice failure.   

During the nine seconds, from 12:25:30 to 12:25:39, the force increased from 86 to 614kN in panel 

P54. Moments later, at 12:25:40.8, we can see that the force in panel P54 reached 1100kN. This 

indicates that the capacity of the ice on panel P54 almost doubled in a short period of time. Increase 

in ice strength due to increased strain rate, when the structure velocity is higher, may explain some of 

this. However, integrating the acceleration signal shows that the structural velocity is very small 

compared to the ice velocity at 12:25:40.8. Hence, the change in strain rate due to increasing 

structural response is minor.  

 A different explanation to the increase in capacity can be the increasing confinement as contact is 

made for a larger sector of the structure. Simultaneous to the sudden increase in load at the mid 

panels, P36 and P54, there is an increase in load on the surrounding panels P18, P72 and P90. This 

indicates that the ice edge has gained contact with a larger part of the structure. Increased lateral 

confining pressure to each side may contribute to a higher capacity in the middle of the contact 

surface. According to Kärnä et al. (1999) the highest global loads occurs under confined conditions.  

During force measurements the possibility of deficiencies in the measuring apparatus cannot be ruled 

out. For instance dynamic behavior of the load panel itself can disturb the recorded force. 

The estimated relative velocity fluctuates between approximately 0.045m/s and 0.085m/s. These are 

small variations, compared to what others have found. According to Kärnä and Turunen (1990),  full-

scale measurements on slender channel markers in the Baltic sea, showed that during lock-in, the 

maximum structural velocity is equal to or higher than the ice velocity. This would indicate relative 

velocity equal to zero or even negative during each cycle. 

Small fluctuations in relative velocity give small variations in stress rate during each loading cycle. 

This means that either the negative damping effect is very sensitive to changes in stress rate, or that 

the negative damping effect is not so decisive for frequency-lock in during the event.  

Measurements show that the force distribution over the structure varies during each cycle and 

develops during the vibration event. Earlier it has been mentioned how a cosine force distribution 

over the contact area is proposed for ice structure interactions (Blenkarn, 1970, Määttänen, 1978).  
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Figure 4.1 shows force distributions for every 0.2 seconds during the first 20 seconds of the event. 

As one can see in the figure, individually the force distributions from Norströmsgrund deviate from a 

cosine shape. However, the force distributions are very uneven and inconsistent.  Prescribing a 

certain load distribution is therefore a severe generalization. However, compared to the average load 

distribution, the cosine distribution is not so far off. It is when exceptionally high panel forces occur 

in the mid panels, that the cosine distribution is most wrong. 

 

Figure 4.1 Full-scale force distributions compared to a cosine distribution. 

Results from the first finite element analysis show that the model is able to reproduce structural 

response with fair accuracy. Because the stiffness of the ice and crushing length is predefined, the 

outline of the global load is more or less determined, and independent of the structural response. 

Even though the ice crushing strength is calculated as a function of the stress rate, the ice seems to 

fail at the same load level in the first failure as in the proceeding cycles. This indicates that the 

structure velocity has a minor influence on what force level the ice fails at. Comparing the structure 

velocity with the relative velocity, verifies that the variations in structure velocity are small. Because 

the loading pattern is close to predefined, the response is more similar to forced vibrations than self-

exciting vibrations. 

For the ice to fail without the global load reaching a too high level, the crushing capacity of the ice 

had to be set low. The rate dependent crushing capacity in the first analysis varied between 0.48 and 

0.72MPa directly in front of the structure. 0.72MPa is a low compressive stress for ice to fail at, but 

in the finite element model, the stress distribution is unnaturally even. In real life, the stress in the 

interaction area will be concentrated in stress hot spots. During crushing, stresses are also known to 

be highest in the middle of the ice thickness (Kärnä et al., 1999). Because the stress in the finite 
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element model is more evenly distributed than in real life, the finite element model does not give a 

correct presentation of stresses present in the ice sheet during FLC.  

Assuming that the modal analysis is correct, the first eigenfrequency of the structure is at about 

2.8Hz. When analyzing the Pre event interval in Fig. 3.2(b), a frequency of 2.7Hz was dominating. 

During the FLC-event, the fluctuations attained a lower frequency of 2.2Hz. For some reason the 

frequency of the ice induced vibrations are reduced when the crushing mode changes from 

intermittent crushing to FLC. Added mass from the ice sheet can possibly explain this decrease in 

frequency. By an iterative approach it has been tested, how large mass that has to merge with the 

structure, for the first eigenfrequency of the FE model to decrease from 2.79 to 2.20Hz. In the 

calculations it is assumed that a point mass is added to the node in the waterline. To reduce the first 

eigenfrequency sufficiently, a mass of 64 10 kg is required. This corresponds to an ice area of 75m 

by 75m with thickness 0.7m. For comparison, an area of 75m by 75m equals 127 times the area of 

the lighthouse’s waterline cross section. In real life, the ice sheet is not in rigid body motion, but 

under elastic deformation, so only the ice in the contact zone will move as much as the structure. 

Deformations will gradually decrease further away from the structure. It does, however, seem 

plausible that added mass from the ice could affect the natural frequency of the structure in a 

significant manner.  

Resonant response occurs when the frequency of a dynamic load is close to a natural frequency of 

the system. The displacement signal from the first FE simulation did not indicate that the loading 

created a response that was truly resonant. This could have been expected when the two first natural 

frequencies were at 2.79Hz and 4.23Hz and the loading at 2.17Hz.  

Most ice-structure interaction models that have previously been presented treat the structural 

behavior by means of equations of motion for either a single or multi degree of freedom system. 

However the various models differ in the representation of contact force. Contact force representing 

either forced vibrations (Matlock et al., 1969, Sodhi, 1988) or self-exited vibrations (Määttänen, 

1978, Määttänen, 1998, Blenkarn, 1970) have been the most common methods used in theoretical 

interaction models proposed. Forced vibrations imply that the nature of the loading is fixed, and that 

the structure will respond according to load. For a self-exiting system, the loading is not pre-

determined but dependent on the structural response in the waterline. Self-excited ice induced 

vibrations are associated with negative damping effects due to rate dependency in ice crushing 

strength. The two analyses that have been presented in this work show that it is possible to achieve 

approximately the same dynamic response from a predefined load and a load from self-excitation. 

However, the loading during self-excitation attained the natural frequency of the structure by itself. 
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With the second analysis it was proven that the finite element program presented is able to represent 

increasing dynamic response due to negative damping effects. If the phenomenon of FLC should be 

denoted as self-exciting has been a matter of much discussion within the field of IIV. According to 

Sodhi (1988) ice induced vibration do not comply to the definition of self-exciting vibrations, 

because the exciting force is not eliminated if the structure is prevented from moving. However, the 

result from the numerical modelling shows that the loading amplitudes increased together with 

increasing structural response. This means that at least the fluctuation in force would be removed if 

the system was being held still. In the numerical model it is possible to remove nearly all fluctuation 

in force because the crushing length is set to be very short. In real life the ice has a larger crushing 

length, which would lead to fluctuations in contact force even if the structure is held still.  

A weakness in the FE model is that the structural response is affected by changes in time increment 

length. When the ice reaches its capacity and is modeled to fail, the contact force is reduced from one 

time step to the next. The shorter the time step is, the more abrupt the drop in load gets. Abrupt drops 

in load lead to negative peaks in the acceleration signal. It should be looked more into how time steps 

affect the response. 

The damping properties have been calculated, but the accuracy that can be expected from the applied 

half power method is not great. The method is intended to be applied on the frequency response 

function of a single degree of freedom system, so using it on the response auto spectrum which was 

done here, will reduce the accuracy. During resonant vibrations, the magnitude of the amplitudes is 

governed by the level of damping, and for the rise of self-exciting vibrations, damping definitely 

plays a decisive role. More emphasis should therefore be put into determining structural damping in 

further analyses.  
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5 Conclusion 

The vibrations occurring at 12:25 the 30
th

 of March 2003 on the Norströmsgrund lighthouse has been 

evaluated. Based on the following observations it was confirmed that the vibrations were of 

frequency lock-in type: 

 The frequency of the crushing adapted to the frequency of the structure’s waterline 

displacement 

 The response reached a steady state  

 The displacement signal was sinusoidal 

 The crushing was synchronized over the interaction area 

It was observed that prior to the FLC-event a circumferential crack in the ice was approaching the 

lighthouse. The ice in front of the crack was weakened. As a result of the crack the global force on 

the lighthouse was low before it started to increase when the structure gained contact with intact ice. 

Soon after, the vibrations initiated. 

From full-scale measurements, the relation between variation in force and variation in structural 

response was established. It was confirmed that during the FLC-event: 

 The fluctuations in global load and displacements were in phase 

 The relative velocity decreased during load build up and increased when the ice failed  

 The frequency of the vibrations of the lighthouse was reduced from 2.7Hz during intermittent 

crushing to 2.2Hz during frequency lock-in crushing. 

The horizontal force distribution has been evaluated for several points of time during the onset of the 

vibrations. Force measurements showed that: 

 The fluctuations in force were most prominent in center of the interaction area 

 For the average load, a cosine distribution is a reasonable assumption 

A finite element program was developed to recreate the FLC-event. It was demonstrated that the 

finite element program is able to recreate the structural response of the Norströmsgrund lighthouse 

with fair accuracy. It was also tested if dynamic response due to negative damping effects from the 

rate dependency of ice crushing strength could be modelled with the finite element program. It 

became clear that the crushing process had to be modelled over several time steps for the negative 

damping to affect the structural response.  By tuning the equation for stress rate, vibrations due to 

negative damping effects was achieved.  
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Appendix A  

Iterative Newmark routine 

Iterative Newmark scheme as presented by Langen and Sigbjörnsson (1979) 

Symbols 

{ } Acceleration vector

{ } Velocity vector

{ } Displacement vector

[ ] Stiffness matrix

[ ] Damping matrix

{ }  Load vector

IK

IK

K













u

u

u

K

C

Q

 

 

A) Initial calculations 

1 Establish mass matrix [ ]M   

2 Establish initial response vectors{ }u , { }u and { }u   

3 Specify integration parameter   and    

4 Calculate the following constants 

 

1

2 2

3

4

1

1

1
( 1)
2

a
t

a
t

a
t

a




















 

 

5

8

9

6

7

( 1)

1

(1 )

2

a

a t

t

a

a

a

t





















  

 







   

 

5 Calculate mass contribution to effective stiffness  2[ ] [ ]a


M M  

B) For every time step: 

 1 If a new incremental stiffness or damping matrix is established, calculate [ ]K



K  



2 
 

 
1[ ] [ ] [ ] [ ]K IK IKa

 

  K K C M      

 2 Calculate effective load vector 

 
1{ } { } [ ]{ } [ ]{ } { } { }D S

K K IK K K K K



     Q Q C b M a F F   

  where   
3 4{ } { } { }K KK a a a u u   

  
5 5{ } { } { }K KK a a b u u  

             { } [ ]{ }D
KK IKF C u  

  { } [ ]{ }S

K IK KF K u  

 3 Solve for displacement increment 

 1ˆ{ } [ ] { }KK K


  r K Q   

 4 If necessary, solve for dynamic equilibrium 

a) Set 0{ } { }K K  u u  , 0i    

7 6{ } { } { }K KK a a d u u   

 

b) Calculate approximations to accelerations, velocities and displacements 

11

21 1
{ } { } { }

ii

KK K
a



 
  u u a    

11

11 1
{ } { } { }

ii

KK K
a



 
  u u d  

1 1
1 1{ } { } { }i i

K KK
 

   u u u  

c) Calculate effective residual forces 

11 1 1

1 1 11
{ } { } [ ]{ } { } { }

ii i D i S

K K K KK

  

  
    F Q M u F F  

d) Solve for correction of displacement increment 
1 1ˆ{ } [ ] { }i i

K K

   K F  

e) Calculate new displacement increment 

1{ } { } { }ii i
KK

    u u   

f) Convergence test 

2
.i

M
tol    

If the convergence test is passed, go to 5. 

If not and i MAXIT , set i=i+1 and go to b) 
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If i MAXIT stop analysis. 

 

5 Calculate acceleration, velocity and displacement at 
1Kt 
  

21
{ } { } { }K KK

a


  u u a    

11 8 9{ } { } a { } a { }KK K K    u u u u  

1 1{ } { } { }K K K   u u u  

 

References: 

Langen, I. and R. Sigbjörnsson (1979). Dynamisk analyse av konstruksjoner, Tapir. 
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Appendix B 

Deduction of equation for radial ice stress 

 

Global ice force is calculated by summing normal and tangential forces for all contact nodes 

(Eq. (B-1)). 

 
2 cos( ) sin( )T

G i i i i

i

F F F    (B-1) 

where  1 158i     is the contact nodes, and 
T

i iF F  is the tangential contact force  

 

Figure B-1. Contact node, δ and iceK . 

 

Normal force acting on a contact node is given by  

 cos( )i ice iF K    (B-2) 

where  is the deformation in the ice and iceK is the stiffness of an area of ice equal to 0.01rh

(one contact node).  

Inserting for iF in Eq. (B-2), gives the following expression for global force 

  2 cos( ) cos( ) sin( )G ice i i i

i

F K        (B-3) 

 

The effective stiffness of the ice is defined by the expression 

 
eff GK F   (B-4) 
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Combining Eqs. (B-3) and (B-4) and solving for iceK gives 

 

 2 cos( ) cos( ) sin( )

eff

ice

i i i

i

K
K

   



 (B-5) 

 

The radial stress acting over the area of one node can then be expressed as 

 cos( )cos( )

0.01 0.01 2 cos( )(cos( ) sin( ))

eff iice i
i

i i i

i

KK

rh rh

  


   
 


 (B-6) 

 

 On a continuous format Eq. (B-6) can be expressed as 

 

2

2

0

cos( )
( )

2 cos ( ) cos( )sin( )d

effK

rh



 
 

    





 
(B-7) 
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Appendix C 

Load module flow chart 

Flowchart of loadmod.py. Points 1 to 5 are calculated for each contact node. Point 6 sums up 

contribution for each contact node.  

Symbols 

time

structure displacement

structure  velocity

parameter reducing ice deformation after crushing

ice movement

ice  velocity

relative velocity between ice and structure

ice def

N

N

N

N

N

ice

ice

N

rel

N

t

u

u

x

u

v

v

















 ormation

ice crushing capacity

radial ice stress

ice stress rate

   = scaling factor

global ice load

   = crushing length

N

C

N

N

GF

c
















 

 

0 Input from previous time step is imported: 

,  ,  ,  
NN N Nt u u x  

1 Initial values are determined: 

,  ,   
NN N N N N N N

ice ice rel ice iceu t v v v u u x u        

2 Stress rate is calculated based on stress in previous time step: 

1
21 8

( )cos ( )
1

N
NN

icev u
m


 

 



   

3 Ice crushing capacity is calculated based on stress rate: 
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2 3 4(2.00 7.80 18.57( ) 13.00( ) 2.91( ) )   for 1.3

( )

                                                                                              for 1.3

N NNN

NN

C

MPa
MPa

s

MPa
MPa

s

     
 

 


    

 
 


 

4 Calculate ice stress (predictor step): 

2

2

0

cos( )
( )

2 cos ( ) cos( )sin( )d

N

effN
K

rh



 
 

    





 

5 Check if stress exceeds crushing capacity: 

If N N

C   go to 6 

If N N

C  , set ( c)N N N N

icex u u      and then recalculate (corrector step)  

N N N N

iceu x u     

1
21 8

( )cos ( )
1

N
NN

icev u
m


 

 



   

 

2 3 4(2.00 7.80 18.57( ) 13.00( ) 2.91( ) )   for 1.3

( )

                                                                                              for 1.3

N NNN

NN

C

MPa
MPa

s

MPa
MPa

s

     
 

 


    

 
 


 

2

2

0

cos( )
( )

2 cos ( ) cos( )sin( )d

N

effN
K

rh



 
 

    





 

6 Calculate global force (sums up contribution from all contact nodes): 

2

0

2 ( )cos( ) ( )sin( )N N N

GF hr d



         

The global force is then used to calculate the structural response in time step N+1. 
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Appendix D 

Calculation of compensating densities 

 

Caisson: 

Part Number 

Height 

(m) 

Width 

(m) 

Thickness 

(m) 

Ø outer 

(m) 

Ø inner 

(m) 

Volume 

(m³) 

Density 

(m³) 

Mass 

(kg) 

Bulkheads 8 5.25 7.38 0.40 - - 124.0 2400 297562 

Bottom plate 1 0.7 - - 23.0 - 290.8 2400 697998 

Top plate 1 1.50 - 1.50 23.0 7.2 562.1 2400 1349137 

Outer tube 1 5.25 - 0.50 23.0 21.96 192.8 2400 462722 

Inner tube 1 6.75 - 0.50 7.2 6.2 71.0 2400 170494 

Sand in 

compartments 
8 5.25 - - 22.0 7.2 1871.7 2000 3743422 

Sand in inner tube 1 6.75 - - 6.2 - 203.8 2000 407574 

Sum - - - - - - - - 7128909 

Modeled volume 1 7.45 - 0.52 23.0 21.96 273.6 26057 - 

          Lower tube:          

Part Number 

Height 

(m) 

Width 

(m) 

Thickness 

(m) 

Ø outer 

(m) 

Ø inner 

(m) 

Volume 

(m³) 

Density 

(m³) 

Mass 

(kg) 

Sand in tube 1 9.05 - - 6.2 - 273.2 2000 546451 

Tube 1 9.05 - 0.50 7.2 6.2 95.2 2400 228588 

Top plate 1 0.30 - - 7.2 - 12.2 2400 29315 

Sum - - - - - - - - 804354 

Modeled volume 1 9.05 - - 7.2 6.2 95.2 8445 - 

 

For the slabs in the lighthouse, the density is set to 2500kg/m
3
, while the hollow sections 

between the slabs are given the density of 2650kg/m
3
 to compensate for interior. 

 

 


