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DYNAMISK RESPONS AV LANGE SLANKE HENGEBRUER

Aerodynamic response of slender suspension bridges

I Norge er det for tiden under planlegging og bygging en rekke meget slanke
brukonstruksjoner, for eksempel Hardangerbroen som er en klassisk hengebro og
Halogalandsbroen. Begge har hovedspenn pa betydelig mer enn 1000 m. De er svart utsatt for
den dynamiske lastvirkningen fra vind. Det er ogsd under utredning en kryssing av
Sognefjorden som innebaerer en bro med spenn pa opp til tre kilometer, og i dette tilfellet er
det usikkert i hvilken grad man vil vere i stand til & oppna en konstruktiv utferelse med
tilfredsstillende aecrodynamisk egenskaper. Det har i den forbindelse blitt foreslatt &4 undersoke
muligheten for addere dempning til systemet ved hjelp av en eller flere massedempere (Tuned
Mass Dampers). Hensikten med denne oppgaven er nettopp 4 se pa mulige utferelser av
fjordkryssinger i denne spennvidden, hvor det legges spesiell vekt pa & underseke i hvilken
grad massedempere (TMD) kan bidra til & redusere faren for virvelavlesningssvingninger.
Arbeidet foreslas lagt opp etter folgende plan:

1. Studenten setter seg inn i teorien for hengebroens virkemate (se Strommen: Structural
dynamics, Springer 2013, kapittel 3.4 og 3.5).

2. Studenten setter seg inn i teorien for virvelavlgsningsinduserte svingninger (se Strommen:
Theory of bridge aerodynamics, Springer 2006, kapittel 6.4).

3. For en eller flere aktuelle utforelser utforelser (avtales med veileder og Sivilingenior K.
Berntsen i Vegdirektoratet) skal det foretas en utredning med sikte pa & kvantifisere faren
for virvelavlgsningssvingninger. (I den grad tiden tillater det skal disse beregningene
utferes i form av et parameterstudium.)

4. For tilfellene som er behandlet under punkt 3 skal det foretas en undersekelse i hvilken
grad en eller flere massedempere kan bidra til & redusere eller helt fjerne problemet med
virvelavlgsningsinduserte svingninger. Beregningen skal baseres pd en mest mulig
generell teori (se Strommen: Structural dynamics, Springer 2013, kapittel 9.4) og en
losning i Matlab (eller tilsvarende type program).

Studenten kan selv velge hvilke problemstillinger han ensker a legge vekt pa. Oppgaven skal
giennomferes i samarbeid med Siv.ing. Kristian Berntsen og Dr.ing. Bjern Isaksen i
Vegdirektoratet.

NTNU, 2014-01-14 PR

Einar Stremmen



Preface

This report is written as a result of the work done in the master-thesis Aerodynamic Response of
Slender Suspension Bridges, at Department of Structural Engineering at NTNU spring 2014. I
have chosen to focus on the 3 last problems given in the problem description. The purpose of the
thesis has been to study and learn theory of how to calculate the response from vortex induced
vibrations, and the response after the installation of mass dampers. For better understanding,
and to be able to use the theory, a several Matlab scripts has been developed or used along the
learning path. When getting results, and especially when having problem getting results, the
theory is better understood. A final Matlab script is developed, based on what is learned from
theory, and using and developing other Matlab scripts. The Matlab script is used on data from
the Hardanger Bridge, from which the results are obtained. Thus the purpose of the thesis is not
as much the results itself, as the way the results are obtained.

In chapter 1, a detailed summary from the theory study of the tuned mass damper, is given.
In chapter 2, some comments regarding the development of the Matlab script is done. Chapter 3
contain the results, among other the results from a parametric study, and analysis of the results.
Some comments are made in chapter 4.

This thesis has received founding from Norwegian Public Roads Administration (Statens
Vegvesen).
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Summary

During the design of long, slender suspension bridges, a lot of aerodynamics has to be taken into
account. This thesis focus on one phenomenon; vortex induced vibrations. The purpose of this
thesis has been to get insight in the theoretical background of how the response due to vortex
induced vibrations is obtained, and how tuned mass dampers can suppress these vibrations.
The theory is adopted for a real case, The Hardanger Bridge, to study the effect of tuned mass
dampers by the use of Matlab. The focus has been on the vertical modes, knowing that vortex
induced vibrations could happen for torsional and sometimes for horizontal modes as well.
Since eventually mistakes in the Matlab script is not easily found, and since the results is not
compared to the real case or earlier findings for the Hardanger Bridge, the results must be used
with care.

The analysis of the Hardanger bridge in this thesis indicate that the maximum displacement
response, without the use of tuned mass dampers, is in the order in the order of 0.1 meters. The
analysis indicate that one or several tuned mass dampers placed at locations where the eigen-
mode they are supposed to damp out has its maximum, or is close to its maximum, is an efficient
way to reduce the response. Different properties of the tuned mass dampers have been studied,
but in general frequency according to Den Hartog, and damping ratios according to Den Hartog
or slightly above, seems to give good effect of the tuned mass dampers.

A recommendation for further work is to investigate the consequences of neglecting the re-
sponse term in the expression of aerodynamic damping, for the cases with tuned mass dampers
installed. Another recommendation is to compare the results with other findings, or measure-
ments from similar cases.
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Chapter

Theory

1.1 Wind field - mean and fluctuating part

Measurement of wind speed in real life are done in time domain. At a certain point in space,
over a certain time window, measurement of the wind speed in one, two or three directions are
done. Typically the time window is 10 minutes. The recorded time series in the main flow
along- wind direction, could be divided into a constant mean wind part, and a fluctuating zero
mean turbulence part, according to equation 1.1, where the mean part are defined in equation
1.2. The mean part is created by the weather system itself, while the fluctuating turbulence part
is created by friction from the terrain. In the across-wind directions there are no flow other
than the turbulence components in horizontal and vertical direction, v and w respectively. The
turbulence components have zero mean value in every directions.

U=V +u (1.1)
where
. T
V== [Udt 1.2
T/ (1.2)
0

1.2 Statistical properties

1.2.1 Stochastic process

A process is called stochastic when the outcome at any time or space is random, and each
simulation or recording of the process, represent just one of infinitely many possible realizations
[Strgmmen, 2010]. The fluctuating part of the wind could be considered stochastic, with known
or unknown statistical properties. The mean value of the fluctuating part is assumed to always
be zero, but the distribution and standard deviation may vary. In most cases the distribution is
assumed to be Gaussian.

1.2.2 Sample size

A sample of a stochastic process, may have different statistical properties than the process itself.
Often the sample gives a better representation of the process as the sample size increases. The

1



sample size are dependent on the logging frequency and the sample duration. A sample with the
same duration, but a very high logging frequency may not represent the process better, as the
sample points then get dependent on each other. For wind measurements the process itself, or at
least its statistical properties, changes with changing weather conditions. The time window for
collecting measurements for one process could not be too big, as the weather conditions could
change, but it could not be too little either, as a small sample could give a bad representation of
the process. The usual sampling duration is 10 minutes.

1.2.3 Time domain and ensemble statistics

Statistics preformed on a single time series, of e.g. the fluctuating part of the wind in the
along wind direction, are called time domain statistics. While statistics preformed on extract
from many time series, e.g. the mean value of many different recordings, are called ensemble
statistics. The ensemble statistics could be preformed both on different recordings at the same
place at different time, or at different places at the same time.

1.2.4 Stationary process

If the statistical properties, like the mean value and the standard deviation, of the process does
not change with time, the process is said to be stationary [Strgmmen, 2010]. In wind engineer-
ing the wind are often assumed stationary, as it is a part of a bigger weather system that does
not change much in time. The weather system can last for quite a long time, typically a weather
system in Norway lasts for about 3 days ref[strmmen muntlig]. To measure every minute of
every weather system in every stations for wind measurements would be extremely demanding,
and not either is it necessary. The statistical properties of the weather system are found from
the 10 minutes measurement, often recorded in the middle of the weather system passing, when
the wind has “settled”.

1.2.5 Homogenous process

Analogous to a stationary process where the statistical properties does not change with time,
the statistical properties of a homogeneous process does not change in space [George, 2013]. In
wind engineering the wind are often assumed homogeneous, as it is a part of a weather system,
by far bigger than the bridge or construction itself. Local terrain may obstruct the wind field,
such that its statistical properties change along the span of a bridge. Prior to or during planning
of large bridges, wind measurements are often done at several places along where the span are
planned. However, the wind measurements are often done only at land-side, because of the
difficulties in mounting measure equipment at seaside. To get a good understanding of the local
wind field, the terrain may be modeled and wind tests preformed in wind tunnels. This is done
for the Hardangerfjord Bridge, where measure equipment also are mounted along the span of
the bridge after it is finished. When wind tests are done along the span of a finished bridge,
it is possible to see if the wind fields statistical properties is as predicted, and to learn about
differences between model tests and the reality.
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1.2.6 Phase

The phase of the measured wind are not of interest, since it is only dependent on when the
recording are done. If the exact wind-recordings are to be reproduced numerically, the phase
for each frequency is needed. Otherwise several different numerical simulation are done with
different random phase, to represent the randomness of the wind. Statistics may be preformed
on a set of simulation, to find for instance a representative peak value.

How the statistical properties of the weather system are extracted from the recorded time series
are shown in section 1.3, and how to produce simulations from the statistical properties are
shown in section 1.4.

1.3 From time domain to frequency domain - Auto Spectral
Density

Wind measurements are done in time domain. To be able to do a modal response analysis
of the construction, the wind load need to be transformed into frequency domain. The eigen-
frequencies and eigen-modes of the bridge are assumed easily found by for instances final ele-
ment methods. The transformation of the wind load are done with Fourier Transformation. The
procedure are according to Strgmmen [Strgmmen, 2010] as follows. A zero mean variable z(t)
with length 7" may be approximated by a sum of harmonic components X (wy, t), as shown in
equation 1.3.

= lim ZXk W, T where { Wk = k2~7rAw (1.3)

where X (wy, t) is given by:

_ /22
X (W, t) = cg - cos(wit + o) where { €= V0t b’? (1.4)

— bie
pr = arctan o

Where a;, and by, is given by

T
ar | _ 2 cos(wyt)
[ i, ] =2 [ [ ol ] i (15)
0
The single sided auto spectral density is defined by

T
_ B 11 >
S (wy) = A TlgroloE f/[ck cos(wit + @p)]” dt (1.6)
0

By introducing 7}, = i—’;, the period of the harmonic component, and replacing 7" with n - T}, the
following is obtained

T—n-T, 1 ’ 2 c?
—n-Ady - — k
Se(wg) — = nh_)ngO e Tk n- /k [ck cos( t—i—gok) dt AL (1.7)
0
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From which the amplitude ¢, can be obtained

ck = /25 (w) Aw (1.8)

Complex format:

Xe—d [ VRGP TP = b
_ ) t Lol t °
L deleostatradtrsmlatiall e e () = 1)

Thus the complex Fourier amplitude dj, that satisfy equation 1.9, must satisfy Im[dy]| = by,
Reldy] = ay, and thus

1
and its complex conjugate satisfy
et 1 [ cos(wt) 4 isin(wt)
[ et } N [ cos(wt) — i sin(wt) (1.11)

For the complex case the displacement x(¢) is obtained summing over the entire, both posi-
tive and negative, frequency range

= ZXk(wk, t) = de(wk) . ei'wkt Where { dk % Q. — 7 - bk) (112)

Thus |
Xi(wp, ) = di(wy) - e"r = 2(ak — 1 - bg)[cos wit + 7 - sin wyt] (1.13)

The double sided auto spectra is the variance of the Fourier components divided by Aw:

T
* —tw t wt *
Sy () = E[X X’“ = / i d’“e Vgt — dA’fd’“
0 . (1.14)
_ L(ap+i-by) - (a = +i-by) c
4 Aw - 4Aw

Which is the half of the single-sided spectra. Thus S, (w) = 2 - S, (fw).

1.4 From frequency domain to time domain - Time Domain
Simulations

If the spectral density and the wind field constants of a process is known, it is possible to sim-
ulate the process in time domain. This is done by reversing the process of auto spectral density
development. Now the auto spectral density is known, while the time series is unknown. The
displacement response x at time instance ¢ is given by equation 1.3, the harmonic components

4



Xy, by equation 1.4 and the amplitude c;, by equation 1.8. Underneath they are repeated, for
easier to understand the concept, assuming N — oo:

N
k=1
X = ¢, - cos(wit + ¢r)

k= /25 (wi) Aw

Combining these equations gives

N
z(t) = Z V25, (wr) Aw - cos(wit + ¢x) (1.15)

1

k=

Where the spectral density S, (w) is known from wind recordings Usually the phase angle
¢ 1s unknown since it is, as explained in subsection 1.2.6, it is only dependent on when the
time series are recorded, and do not give any interesting information about the wind field, and
thus it is not usual to store this information. By a time domain simulation, time series with the
statistical properties of a given weather system and different random phases could be produced.
Thus ensemble statistics could be preformed on the variety of time series inside a single weather
system, or at several weather systems relevant for the site which is of interest.




1.5 Stochastic Dynamic Response Calculations

The response spectrum for the displacement response at a given position z,. is given in equation
1.16.

2
S zrn) = L) ) 2 5, ) (1.16)

The variance, which is the integral of the response spectrum over the entire positive fre-
quency range, could be simplified and split into a sum of two integrals, shown in equation 1.17.

2 I
in (x,) = gb}éa;r) / | Hy(w) |2 .SQi(w)dw
S N . (1.17)
¢3 T 2 2
~ [E;; ). | H;(0) |? -O/SQi(w)dw + S5, (wi) -0/ | Hy(w) |* dw

Since the structure is at rest for w = 0, the value of the non-dimensional modal frequency-
response-function at w = 0 can be shown to be equal unity. The first expression inside the
brackets in equation 1.17 is therefore the variance of the loading. The second expression is
the value of the load response spectrum at the eigenfrequency w;, multiplied by the integral of
the frequency response function over the entire positive frequency range. Its value is given in
[Strgmmen, 2010], and shown in equation 1.18.

TTW;
(1 - /ﬁ;aei )5toti

Thus the simplified expression of the variance of the displacement response is given by

5 () 2 i
= f(f . O'Qi<:L‘T> + I = rae Vo (1.19)

The first term in the bracket in equation 1.19 is the variance of the loading, the second is
the value of the integrated frequency-response-function according to equation 1.18. Weighted
with the expression with the i-th modeshape and modal stiffness, it gives respectively the back-
ground, o p,, and the resonant part, or,, of the displacement variance.

The development of the displacement response spectra, as well as the variance which is the
area under the response spectra curve, is illustrated in figure 1.1, where ST (w), 6, and Gg,, are
the unweighted versions of S,,(w), o, and op, respectively.

As can be seen from equation 1.17 and figure 1.1, the amplitude of the resonant part as
compared to the background part depends on the value of the load response spectrum at the
eigenfrequency considered, Sj (w;). If S; (wi) happens to be equal unity, there will be no

amplification of the squared frequency resﬁonse function. If Sy, (w;) is not equal unity, the
amplification will displace the resonant curve parallel, without change the shape of it. Thus,
the resonant curve is mainly determined of the frequency response function which has a distinct
peak close to and at the eigenfrequency w;, i.e. it is so called narrow banded. In contrast
the background part of the variance are more widely spread in the frequency domain, and is

therefore not narrow banded.

/Ifli(w)2|dw= 7 (1.18)
0

Tw;Se, (wi)




Figure 1.1: Resonant and background part of the variance

If a process of displacement fluctuations in time domain are close to harmonic it contain
only a single frequency or a few very close frequencies, and is therefore narrow banded. Vortex
shedding response are usually considered narrow banded, thus it is sufficient to only consider
the resonant part of the variance in equation 1.19 [Strgmmen, 2010].




1.6 Tuned Mass Damper

1.6.1 Single degree of freedom

The development of the tuned mass damper equations used here are done by Einar Strgmmen
[Stremmen, 2013]. Since learning and using the theory of tuned mass damper has been a major
part of this thesis, it is found useful to be as complete as possible in summarizing this theory.
A tuned mass damper is shortly called TMD. A principle sketch of a TMD attached to the
bridge girder is shown to the right in figure 1.2. To understand the theory of finding the response
of the bridge girder and the tuned mass damper or dampers, it is useful to first find the response
of a single degree of freedom system with a single TMD, as sketched to the left in figure 1.2.

Single Degree of Freedom Continous System, single component

Lr | Vo

\U, Dynamic model

M - o AT ~
2 [ lrz(t) g /T\ 1 R0t > R,
FBD T

K;r, r
11 140 £
MiFy 4 Structural properties
R, E K. ¢
I ~
K(n-n) C2(ry-ry) : é <

z

M.
2I‘2

Figure 1.2: Tuned mass damper on a single degree of freedom and continuous single component system

The equilibrium condition of the two bodies illustrated to the left in figure 1.2 is:

M17.“'1 + 017;'1 — 02(7;'2 — 7"1) + Kﬂ“l — KQ(?"Q — 7”1) — Rl =0
M2f2+02(7;2_7;1>+K2(T2_7’1) =0

where the indexes 1 refer to the main system, i.e. the bridge, while the indexes 2 refer to the
mass damper. The equilibrium conditions could be written in matrix form

M, 0| |H 71 Ki+ Ky —Ks| | Ry
. |t = (1.21)
0 M2 T2 T2 —Kg KQ T9 0

8

Ch+Cy —C%
—Cy Cy




If we name the individual matrixes in the following way

M, 0 Ci+Cy —C K +K, —K
! =M, , ' 2 ? =Cpy and ' ? ? =Ko and

0 Mg —CQ Cz _KQ KQ

_7“1 Ry
=r9 and =Ry
(] 0
~ Equation 1.21 may than be written in a compact format
Moi:() + Cof'o + K()I'O = RO (122)

Since r9 = r{ + Ar, it is convenient to introduce r; = r and Ar = ry, — r, i.€.

1 r 10 r
rg = = = = Ur (1.23)
T9 r+ Ar 1 1 |Ar
10 T
where W = and r=
1 1 Ar

By introducing ro = ¥r into equation 1.22 and premultiplying by ¥7 a equation of motion
with diagonal stiffness and damping matrices are obtained

Mi + Ci + Kr = R (1.24)
where

M, + My, M (K, 0
M=0"MW®=| ' % , K=0TK,W=| '

M, M, 0 K,

C, 0 (R, (t

C=0TCoW = | ' - and R =9 R, = 10( )
2

A diagonal stiffness matrix may easily be inverted, and thus in the eigenvalue problem may
easily be solved. The eigenvalue problem is obtained by setting C = 0, R = 0 and r = ®e™?,
where ® = [¢;  ¢»]7, and premultiply by K—!, obtaining

I-w’K'M)®=0 (1.25)

1

0
Since K™! = [l(()l 1 ] the eigenvalue problem is

Ko

1 — W2 Mll—é—lMg _MQ% &
o My ] > My =0 (1.26)

Wik, —WEE] |92

which is fulfilled if, and only if
1— w2 Mi1+Ma _w2%

det o Kl =0 (1.27)

( [ —w? 2 1 —w?g?

1.e.




—l——] +1=0 (1.28)

from where the eigenfrequencies may be obtained, by the use of the quadratic formula, often
called abc-formula

K1 K1 K1 K»

w? = G (1.29)

K1 Ko

2
MJr%i\/(MjL@) _ 4 MMy
Ko Ko

The mass of a tuned mass damper is small as compared to the mass of the main system,
the moving part of the bridge. For this reason, approximate values of the eigenfrequencies can
be obtained by neglecting the additional mass of the tuned mass damper in the total mass, in
equation 1.29

Mo Mo (M M 5
2NK1+K21<K1 Kz) “UE N 1.30
W My My 5 (1.30)

K1 Ko Wy ~ m

From equation 1.24 the frequency response can be obtained. The first step is to pre-multiplicate
the equation by K, which is diagonal, and taking the Fourier transform of the entire equation.
Taking the Fourier transform is to let the displacement and load vectors be a sum of products of
Fourier coefficient vectors, a,(w) and ar(w) respectively, and a complex exponential, i.e.

r(t) = Zar(w) e and R = ZaR(w) - et (1.31)

where

a,(w) = lar aa,]"

(1.32)
ap(w) = lar, 0]
The velocity and acceleration is simply
F(t) =) ar(w)- e - (iw)
v (1.33)

F(t) =) a(w) e (—w?)

respectively.
Thus equation 1.72 turns into

10



[(—w)KT™M + (iw)K'C + K 'K] a,(w) - €*' = ag(w) - e (1.34)

The complex exponential part of equation 1.34 KK is equal the 2 by 2 identitymatrix I.
Thus

1 aRl/Kl i aRl/Kl
(W) = =H(w) - 1.35
B VT e () 0 (1.35)
Where H is the frequency response function.
H'=1+iwK"'-w’K'M
1 0 . /K, 0 C, 0 |1k 0 M + M, M,
= tw . —w .
01 0 1/K; 0 Cy 0 1/K; M, My
_1+iwlc<—11—w2—M1;1M2 0+iw-0—w?i2 . R
- 0+iw-0 2 Ms 1+ & 2 My s ustng K.
| Vtw-0-wig g -k wa & [ 37
iz - iEr e ][ D -u@y
—(2) L+26i2 = (2)*]  [-(£)°  De
(1.36)
where
w0\ 2
D) =1- (1w (2] +2i
w1 w1
w0\ 2
Do) =1 (£) +2iea
wWa Wa
p= M (1.37)
My
C
& = 2M1
1w
C
b=
2M2w2

Since a simply expression for the inverse of the frequency response function, H!, is given
in equation 1.36, a simplier expression for the frequency response function, H itself can be
found by inverting the expression in equation 1.36.

Thus

H=

1 [ D, M(ﬁ)QI
- 2 2 w \2
Do,-u(s) (8) & 7
(1.38)
Another, frequent used way to write the frequency response function, can be obtained by

some renaming and rewriting of the expression in equation 1.38.
Expanding the determinant expression in equation 1.38 gives

11



2 2
Det(I:I_l) = D1D2 v <w> <w>
w1 W2

[een () srez] [ (2 wrez] o (2) (3

2 2

=1+2z'£1”+2z'§2‘”—(“’) —(1+p) (“’) — 46—

w1 Wsy Wo w1 w1 Wy

w [(w)? w (w)? w\? [/ w)? w\?/w)?
wrome () 2o (2) o (3 (2 +(2) ()
Wy \ W1 W1 \Wa W1 Wo w1 W9

2 2
=142 [gl + 252] <z:jl> + 1+ <Z;> + 425@] <z;”1>

3 2 4
o] (2)'+ (2 (2)
W w1 Wa w1
(1.39)

)

The expression could be simplified by collecting terms in new variables as follows:

- (2)

(=)
o = R
%)
(1.40)

ar = 2(& + ad)
az =1+ p+ o + 406
az = 2alady + (1 + )&,

(142042

Thus

Det(H™) =1+ a1 (i) + as(id)? + a3 (id)? + aq(id)* (1.41)

In the same way expressions for the matrix could be developed:

12



2
Dy=1-— (i> +2ie, Y

W2 W2

2
W1 . W w w
= 142625 4 (—1) (— (—
Wy W1 %) w1

=1+ 25a(i0) + o (i0)?

2
w X W

- 14 251(1';:)) + (1 + p)(i)?
B

Collecting terms in new variables as follows:

b1 = 252@
b2 = OzQ
o1 =26
c2=(1+p)
w 2
(2
w2
€y = —lU

Equation 1.42 simplifies to

Thus
X 1 D w2 HiG
(2) = ] w22 N(wl) _ Au(w)
Det(H™1) |(Z) D, Hy (©)

where

))

(1.42)

(1.43)

(1.44)
Hip (@) (1.45)
Hoo()

13



1+ by (iw) 4 be(iw

4 n )
@) = i T w(0)? T a3 + aa(ia)
() — 1+ ¢ (iw) 4 e2(iw)?
2(@) =17 a1 (1) + ag(id)? + a3(i0)? + ay(id)? (1.46)
i () = (i) |
14 a1 (iw) + a2(iw)? + az(iw)? + a4 (iw)*
~ 62(i(j))2

1.6.2 Continuous system

In section 1.6.1 basic expressions for frequency response function and auto spectral density for
a system with a single tuned mass damper was developed for a main system of a single point
mass. Since a bridge is not a single point mass, but has distributed mass, as well as distributed
stiffness, damping and forces, the case might be different. Also it might be necessary to add
several TMDs to provide damping of several modes.

General equations for multi mode, multi component

In section 1.6.1 the first step in developing the equations was to draw a free body diagram
and write the equation of motion for each of the two bodies. A way to look at a continuous
system, is that it is a collection of infinitely many point masses, and thus the equation system
contains infinitely many equation. Approximate solutions of different quality can be obtained
by using different finite number of point masses. Another far more elegant way to solve the
continuous problem, is to first find the mode shapes from an eigenvalue solution, and than use
the eigenmodes in a modal approach.

The purpose of the tuned mass dampers is to artificially damp out the motions of one or
several eigenmodes. Since the shape of the eigenmodes are known, the relative displacement
in original coordinates of the bridge along its span are known for each mode. By the use of
d’ Alembert’s extended principle of virtual work the modal equation of motion can be found.

The d’ Alembert’s principle is to give both the bridge, which is assumed to have a beam type
of behavior, and the tuned mass dampers virtual displacements, and during this displacements
the total energy of the system is constant. If the total energy is constant during the virtual
displacements, the internal and external work must be equal.

The external work due to the bridge is

Wiidge = / (42 0) = @) 2.1) — @), 1) or. () (1.47)

L

The external work due to the forces on the bridge from the tuned mass damper is

14



WbridgefmmTMD - Z :F‘J <t>i| (5TZ($j)

= Oj?l”f,«el (t) + Kjrrel(t> 5TZ(ZEj)

= :Cj[f‘jz(t) — (@, )] + K[y (8) — ra(z;, t)]]&“z(%')

=2 |G (t) + Kjry.(t) — Cyra(xj,t) — Kjr.(w;, t)} o7 ()

The external work due to the forces on the the tuned mass damper is

Wrup = 3 | Myis (1) + Fy()] ors.

= ST Myi ) + Civa(t) + K jralt) |67

= :Mjfj () + Cj(75. () — 72 (,1) + K (ry. (8) — ra(ay, t))} orj.

=D | My7(8) + Cyry. () + Ky (8) — Ca(z, t) — Ko (xy, t)} 0rj.

The entire internal work are done by the bridge

Winternal ://Ux(x,z,t)5€x($,Z,t)dAdZL'

By Navier’s hypothesis
M, (x,t —ELr!(x,t
S M@t Bl
I, I,
de, = —0rl(z) - 2
Thus

'mterna

A

Erl(z,t) - orl(x )/z2dAdx
A

ELyr!(x,t) - orl(x)dx

Il
Tt T — T~

Using d’ Alembetr’s principle

,where

= —FErl(z,t) 2z

/ — Erl(xz,t) [ —orl(x) - z] dAdx

22dA =1
{[Faa=n

(1.48)

(1.49)

(1.50)

(1.51)

(1.52)

15



Wemternal = I/Vi’mfernal

(1.53)
Wbm’dge + WbridgefmmTMD - WTMD = I/Vinternal
Inserted equations 1.47 to 1.52:
/ [4:(.0) = mo(@)2.1) — (@), 1)] o ()
L
3 [ (8) + Ko (0) = Cotalws,t) = Ky, )| or- ()
! (1.54)
-> [Mjfj (t) + Cjry. (1) + Kjry, (t) — Cjra(a;, ) — Kjra(z;, t)} or;,
J
= /E]yrg(x,t) ol (x)dx
L
Rearranging
/mz(a:)i"'z(as, t)or,(x)dz + /cz(x)fz(x, t)or.(x)dx + /Elyr;'(a:, t) - ort(x)dx
L L L
-> [ij‘jz(t) + Kjrj, (t) — Cira(;, 1) — Kjra(zj, t)} or.(z;)
’ (1.55)

+> [Mjfj (t) + Cjrj. (8) + Ky, (t) — Cira(aj, 1) — Kjra(z;, t)} 0T,
j

— /qz(x,t)érz(x)d:c

L
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Equations for single mode, single component

Equation 1.55 is the general equation that is applicable both for multi mode, multi component,
and single mode, single component systems. It is more compact and easier to understand for
single mode, but the concept are the same. Therefore it is best to understand the single mode,
single component, before moving on to multi mode, multi component.

Displacement main system (bridge) | r,
Displacement mass damper I
Virtual displacement bridge or.(x,t) = ¢.(x) - In.(t)
Virtual displacement mass damper | 07 (

Table 1.1: Displacements and virtual displacements

Inserted into equation 1.55, this gives

= 3 6ula)[Cuia (1) + Kum (1) = Cuga(wa)ie(6) = Kago(an)n. (1) | .

+ Z [M1771(t) + Crin(t) + Kimi(t) — Cropx(w1)n.(t) — Kl@@l)ﬂz(t)} om

= / q- (x, t)¢z577z(95)d5”

L

(1.56)
Defining
M, :/gbZ(x) m,(z)dx
C, =25w, M, = /(bz(x) c.(x)dx
g (1.57)
K, = wiMz = /gzﬁ'f(x) El,(x)dx

Thus equation 1.81 simplifies to
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M.ii.(t)0n. + Ci.(£)0n. + K.n.(t)on.

- [Cléf)z(%)?'h(t) + K¢z (21)m(t) — Cr3 (21)1.(t) — chb,g(xl)ﬁz(t)] on.
+ [Mlﬁl(t) + Cim(t) + Kimi(t) — Crz(z1)n.(t) — Klﬁbz(xl)nz(t)} om
= Rz(gnz

(1.58)

Some rearranging gives

on. {Mzﬁz(t) +[C. 4 ¢2(21) Culia(t) — ¢o(21) Crin(t) + [K. + K12 (21)]n=(t) — ¢z($1)K1771(t)]
+om [M17'71(t) - C1¢z(931)772(t> + Clﬁl(t) - ¢z(3’31)K177z(t) + Klnl(t)]
e [R.] 4 m ]

(1.59)
Or
MT {Mzﬁxt)] o | (- + @) )i = o) Cum )| || (Rt 62 KaJne(t) = 0x(a) K (1)
om Myijy (t) —¢:(21)C1n:(t) + Crin(2) —¢=(21) K1n:(t) + K (1)
- {577,2 57)1} RZ
(1.60)
Or

T ~
51, M, 0
0 m 0 ]\71'1

i}z(t)} N !(o +6X@)C1)  —(21)Cy

wa} . [(fg + ) Ky) —¢z<xl>K1] [nza)D

’fh(t) —¢z(951)01 Cy le(t) —¢z(5131)K1 K, "ll(t)
~ o) mo] |
0
(1.61)
Or _ _ ~ ~
o | Moo t) + Cooo(t) + Kaomaot) | = m7 Reo(t) (1.62)
Thus _ _ _ _
MZOﬁzO(t) + CZOﬁzO@) + KZOnzO (t) = RZ()(t) (163)
where
on, - MZ 0 . 7,
6772 - [ ’ MZO - [ ] 7 nZO - [" ]
om 0 M M
~ C. + P2(x1)Cy —s(w1)Cy - K.+ 2 (1) K4 —¢z($1)K1] ~ R,
CZO = ) K.o= R R., =
—¢(21)Cy Gy — (1) Ky K 0
(1.64)

For the two degrees of freedom problem equation 1.22 was simplified into equation 1.72
where the stiffness matrix is diagonal, by difining the relative displacement of the damper in
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equation 1.23. The same thing is done for the single mode, single component case. It is im-
portant to remember the difference in the displacement components between equation 1.23 and
equation 1.100:

Displacement of ‘ 2 DOF system in equation 1.23 ‘ Single mode, single component in equation 1.100

Main system r1(t) r,(z,t)
Mass damper ro(t) r1(t)

Table 1.2: Displacements for 2 DOF system and continuous, single mode single component system

As described in equation 1.1, r,(x,t) = ¢.(x) - n,(t) and 71 () = 1 - n1(t), thus

Ari(t) =1-An(t) =ri(t) —ro(x1,t) = 1-m(t) — ¢.(1) - (%) (1.65)
From where we obtain
T = ¢.n:+1-Amp (1.66)
Thus
[rz(a:, t)] _ [@(x) 0] [nz(t)] _ [ r(zt) ] [aw) o701 (e
r1(t) 0 1] [m() r.(xy,t) + Ary ¢-(z1) 1| [An(?)

n0) [@(x) o] -

From the first part of equation 1.100 the following is obtained [ 0
m t 0 1

[rz(m, t)]
(&1 (t)

Combining this with the result from the last part of equation 1.100 gives

-1
n:(1) ¢-(z) 0 ¢-(z) O n:(1)
MN.0(t) = = : =W (x) -n(t (1.68)
o0 [Ul(t)] [ 0 1] [@(171) 1] [Am(t) @ g
where .
\I,Z:[@(x) 0] ‘[¢z<x> 0]:[ 1 0] (1:69)
0 1 ¢Z(I1) 1 (bz(xl) 1
and
7Nz
n, = (1.70)
Anl
Introducing this into equation 1.63
OIM. O, i, (t) + OTCo0. -1, (t) + UTK P, -, (t) = BTR.4(0) (1.71)
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Obtaining

MLij, (1) + C.1. (1) + Kom. (t) = R.(1) (1.72)
where
NI — WINL,W. — [1 Wl)] . [Mz 0] . [ ! 0] AL+ g2 - My qsz(xl)-Ml]
0 1 0 M1 sz(xl) 1 gbz(l'l)‘Ml M1
éz :‘I’ZCZO\I’Z - -1 ¢z(x1)_ . _OZ+¢§(m1)Cl _qbz(xl)Cl 1 0 _ éz 0
0 1 1 L —¢z(l’1)c1 Cy <f>z($1) 1 0 Gy
K. = ¥TK. 0, = 1 ()| [K:+oi@)E _‘bz("”l)Kl] . [ ! 0] _ [K 0]
_0 1 ] L —(Z)Z(le)Kl Kl (bz(l'l) 1 0 Kl
R. = UTR, - [1 d)z(xl)] |
0 1 _O 0

(1.73)

Since the equations 1.72 and 1.73 looks exactly like equation 1.24, the frequency response
function development will be almost the same for a continuous system with one component, as it
was for a single degree of freedom system also with one tuned mass damper. The only difference
is that the single degree of freedom quantities has to be changed with modal quantities. Also
it is important to remember the name-differences summarized in table 1.2. Thus, by taking the
Fourier transform and write the equation on a compact form as in equation 1.31 to 1.46, the
following frequency response function is obtained

Thus
H(@) = [ (A) X 1@] (1.74)
le(w) HH(CU)
where
~ 1+ by (i) + by(ic0)?
sz(w): ~ -~ ~ /39 ~ 33 = N4
1+ a1 (iw) + ag(iw)? + as(iw)3 + a4 (iw)
() 1+ & (id) + &(i)?
B = T80 (00) + ao(i)? + 3 (10)® + aa(ics)d (175)
A(6) dy (ih)? '
" 1+ a1 (i) + ao(i0)? + a5 (i3 + aq(id)*
~ . A 2
A ea(1w
(@) = ULy :

where the tilde symbol indicates that it now is modal quantities, and where
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&
|

o)
|
S~ N7 N7 N
(S E|g
N I83
~

SR L
~—

i = (1.76)
&1 - 2(§z + 6451)
Gy = 1+ i+ &* + 4466
as = 2afag. + (1 + )& ]
= 2
ay —
and
61 = 2615&
by = &>
5 — 2,
=2 (1.77)
&= (1+4)
dy = —a?
€y = —f

Equations for multi mode, multi component

System with N; dampers, with the properties for each of the ;' dampers, j= 1,2,...,N;, is col-
lected in the matrixes

M, = diag[M;]
Cy = diag|C}] (1.78)
K, = diag| K]

Since the procedure for single mode, single component, and multi mode multi component
are quite similar, some basic steps are taken in table form.
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Variable

Single mode,
single component

Multi mode,
multi component

r(z,t) =

Eigenmode(s)
Modal coordinate(s)

Damper displacement

08 (l‘) ’ nz(t)

Nimod

z_: ¢zn(x) ' 7727L<t) =

n=1

¢.(z) - n.(t)

o.(v) =[O, P2 Npmod)
7. (t) = [7721 w2y, ﬁsz,od]
ra(t)=1-[m ... nn;l = 1-m4(t)

Modal mass, M =

M.+ ¢iMup, o3M d}

¢= (1) - My M, ¢y M, M,
where M, = [ ¢*(z) - m,(z)dx M. = diag[M.,]
L
where M, = [ ¢ () m.(z)dz
L
. ¢ o C. o
Modal damping, C' =
0 Cl 0 Cd
where C. = [¢2(x) - c.(w)dw C. = diag|C.]
L
where  C,, = [¢2 (v)-c.(z)dx
L
_ K. 0 K. 0
Modal stiffness, K =
0 K 0 Ky
where K, = [¢(z) - El,(x)dx K. = diag[K.,]
L

where K, = [¢"%(z) EI,(z)dx
L

Modal load, R =

where

R, = f¢z(r) : QZ<xat)dx

L

]

where

R.=[R, .. R, .. R,

where Rzn = f@n(as)qz(x,f)dr
L

Table 1.3: Differences and similarities between single mode, single component and multi mode, multi

component
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Since the mode shapes is obtained from an eigenvalue solution they have to be orthogonal
[Strgmmen, 2013]. Therefore it is possible to make use of the orthogonality principle and thus

/%um-%mwMWszo,mrn%nz
() - op()pm(x)dr =0 ,for n#m (1.79)

El,(x) - ¢n(z)dn (x)de =0 ,for n#m

S N &

The displacement . (z,t) used in the expression for the virtual energy contains a sum of
all the mode shapes multiplied by the modal coordinate. By setting the virtual displacement
equal one of the modeshape multiplied by the corresponding modal coordinate,the integrals
in the virtual energy expression containing the both the displacement r,(z,t) and the virtual
displacement, the orthogonality cancel out every terms except the term containing the mode
shape of the virtual displacement. By setting the virtual displacement equal every mode shapes,
one at a time, N,,,q + IV; equations is obtained, which makes it possible to solve for the same
number of unknowns. L.e. by setting the virtual displacements equal all of the following N, .4
choices, one at a time

1 or, = ¢, 01, and  Org=[0ry ... Or; .. Ory]"
n) or, = ¢, 0m., and  Orq=[0ry ... Or; .. Ory]" (1.80)
Ninod) 012 = ¢y 02y and drg=[0ry .. Or; .. dry]"

Nioq + Nj virtual energy equations is obtained, where the n-th equation looks like

07z, |:/WLZ($)¢ZTL(x)ﬁzn(t)¢zn(x)dx+/Cz($)¢zn(x)ﬁzn(t)¢zn(x)d$+/E]y¢ﬁ (@), (8)¢L, (w)d-%"]

L L L

— 01z, |:Z ¢z (T; [ i3 (t) + Kyni(t) — Cjoz, ()12, (1) — KJ¢Zn(m])nzn(t):|]

+ Z on; [ i1 (8) + Ciny(8) + Ky (t) — Cjz, (212, (t) — K;02, (xj)nzn(t)]

—5nzn/qz(x,t)¢zndac

L

(1.81)
Using the deﬁnitions in table 1.3 3 3
[ 62, (@) me(a)dn = M, [ 62 (@) eslade = Cuy [ 62() B () = K-,
L L

and fqbz 2)q.(z, t)dx = R,,
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equation 1.81 turns into
577271 [Mznﬁzn (t) + CYZn/,:’Zn (t) + K—Z'nnzn (t)

= 07z, |:Z ¢, (7 [ i () + Kjni(t) — Cjo,, ()., () — Kj@n(%)nzn(t)}]

(1.82)
+ Z on; { i115(8) + Oy (t) + Kjm (t) — Cjo,, ()02, (8) — Kz, (25)ns,, (t)}
—577zn Zn(t)
Defining
Z¢zn 'CEJ ]77] ¢zn($1) Clﬁ1+...+¢zn(xj>'Ojﬁj+"'+¢zn(xNj)77Nj
¢, .. 0 .. o] [n]
= [0wle) o Gnly) o Gnlen)] |0 0 ||y | =@ Camy
(0 . 0 . COn| o]
(1.83)
and
N;
> @2 () O, (t) = [¢2 (1) - Cr 4 oo+ 02 (2)) - C + o+ &2, (a,)] 2,
j=1
C 0 0 ]
= [fanl@) o Gnle) o bnn)] 0 LG 0 | by |
(bzn(xNj)
0 0 C, |
=@, Cy®y, 1,
(1.84)
and

24



N
ZéanJT]](t) = 57]1 . M1 . 771 4+ ...+ 57]]' . Mj . 77] + ...+ 5T]Nj . MNj . ﬁNj
j=1

My .. 0 .. 0 i (t)
(1.85)
=[6m we Oy Oyl O o My 0| () | = dni Mgty
0 . 0 . My | |0

and

Nj
7j=1

Ci o 0 o 0] oo (e)]
= (om0t fo G0 || 6nay) | () = 1S Caa i, ()
L 0 0 CNj_ _¢Zn (CL'Nj)_
(1.86)
Thus
5 on] ([M 0 [ﬁzn(t)] . [C., + ®F C.®4,] ®L Cy [hzn(t)>
Nz d i B
0 My 7,4(t) CqiP,, Cy 74(t)
K., +®) K,®,) ® Kg| [1..(t) R.,
+ [0, &ﬁ]( ‘ N = [67., o]
qu)dn Kd nd<t)
(1.87)

is the n'" virtual energy equation on matrix form. As can be seen, the n'* equation contains
the information connected to the n*” mode shape and virtual displacement, and the n‘* modal
displacement can be solved from this equation. Also it contains the modal degrees of freedom
to the N; mass dampers. Since the n' equation only involves the n'" mode shape, the modal
displacement of the mass dampers is only based on this n‘* mode shape. With one dominating
mode, the answer obtained from a single n'" equation can be quite good, but in reality and in
most practical cases the mass damper displacement is based on two or more mode shapes.

The differences between the n'" equation and the reality with N,,,q equations, regarding
the modal solution and which mode shape the modal mass damper displacement is based on, is
illustrated in table 1.4.

25



Modal DOF solution 1, obtained from mode shape(s)
EN T
n'" equation = [nzn Moo Mo N, G2
L"d ]
. n. T .
Reality ] = {nzl e M e My T e T an] Q. =[d o ba o Pay ]
M4
Table 1.4: Differences between the n'* equation and the reality with N,,,,4 equations
To include all N,,,; mode shapes it is useful to make some definitions
T T
on, = [5772:1 ST/ B 577ZNmod] and N, =M - Nz - WZde]
M . = diag[M.] , C. = diag|C.,] and K. = diag|K.,]
(I’z(wl) ¢21($1) ¢2n($1) észod(xl)
Q= [®g ... Pg, i, = | R) | = | b)) o n(ry) o by (T))
_@z(xNj)_ (O (Tn;) o Du(Tny) o ey ()
(1.88)

To illustrate the difference between the n'" equation case with scalar 6n' and ¢., , and the
case that includes all N,,,; mode shapes, relevant matrix-expressions is written out underneath

The n'"* equation case:

5772(I)§n Cdnd =
T

577zn [¢zn(l‘1) G szn (:E]) ’ Oj gbzn ($Nj) ’ ONj] 77]' (1.89)

N,

=0n., - (¢Zn($1) O+t @, () - Gy + o+ ¢z, () - Cl, 'ﬁN]-)
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The case that includes all V,,,,; mode shapes:

on. ®;C.m, =
Go(r1)-Cr o Pu(xy)-C5 o ¢ (an;) - O, m
OMay e 0Ny, e 517ZNmOJ ¢z, (1) -C1 o @ (x)-C; . b, (2N,) - Ch, ur
_¢ZN77Lod (Il) ) Ol ¢ZNnLod (CCJ) ’ Oj ¢ZNWLO(1 (IN]) ) CNj_ _ﬁNj_

01z, - (Q%(xl) Cromt e+ 6y () - Gy + o+ @ () - O, '7'7Nj>

= 01z, - <¢zn(xl) Ot bz, () - C g+ 9z, (a) - Ol 'T'ZN]->

5Uszod ) <¢ZNmod (.131) Oy m+ ...+ szNmod (l‘]) . Cj . ’f]j —+ ...+ ¢ZNmad (ZL‘Nj) . CN]. . ’f]Nj>

(1.90)
Ny
where the n-th row can be found in equation 1.82, as 6n,,, | > ¢., (z;)C;n;(t)
j=1

Using the definitions in equation 1.88, an equation similar to 1.87 is obtained, with all the
Nynoq unknowns modal degree of freedom, 7)., ’s. Thus all the N; unknown mass damper modal
degree of freedom is based on all N,,,; mode shapes. The number N,,,4 is set by the user, since
a continuous system in theory have a infinite number of mode shapes, and since it often is the
first, lowest frequency modes that is most relevant for vortex shedding calculations.

Thus
M. 0] [# C.+®7Cc,®, dTc,] [7
ant o ([ 0] [10] .+ 2T e fnc)
0 Mg [7,4(t) Cqi®, C. 14(t) (191)
K.+®'K,®, ®'K R, '
+ [6n] 5ndT]( (et By Katba] Ko [m(t)D = [on] 5"75][ ]
Kq.®q Kg | [n4(t) 0

Omitting [6n]  dn’] gives

M. o ][i.0)]  [IC.+@]Ci®] ®iCy
AR

K.+ ®TK,®, ®'K,

[nz(t)] _ [R]
n,(t) 0

[m(t)] .
14(t)

qu)d Cd qu)d Kd
(1.92)
In short form
M i+ C.n+ K..n=R., (1.93)
where
(T
n= [77 ( )] (1.94)
nd(t)




As described in table 1.3, r,(x,t) = ®,(x) - n,(t) and r4(t) = 1 - n,(t), thus

Ary(t) = 1- Anj(t) = rj(t) — r(wj, ) = 1-15(t) — da(25) - 1:(t) (1.95)

and

Ary(t) = 1- Any(t) = ra(t) — vo(e;,8) = L-my(t) — Bo(0) -m.(0)  (196)

From where we obtain

nj = ¢.n, +1-An; (1.97)
and
n,=®.m,.+1-An, (1.98)
Letting
Tyg=1|r1 ... Ti .. IN. and
= o 7 v . (1.99)
r.(xg,t) = [r.(z1,t) ... r(zt) .. rz(afNj,t)] =®,(x) -n,(t)

The following is obtained

rq(t) 0 I |n, r.(x4,t) + Ary ®, I| |[Ant)
(1.100)
-1
n.(1) ®.(z) 0
From the first part of equation 1.100 the following is obtained =
n4(t) 0 I

[TZ<I, t)]
’I"d(t)

Combining this with the result from the last part of equation 1.100 gives

@] _[e@ 0] [ew) o] [n)]
"= [m(t)] Lo 1] D ,(x) I] [And(t)] =U(z) M) (1101)
where 1
() 0]’ ®.(z) 0] [I o
Y= = (1.102)
and
?72
rel (1.103)
! [A"?d]

Introducing n(t) = ¥(z) - ,,(t) and pre-multiply by ¥ in equation 1.92, gives the equi-
librium condition in relative degrees of freedom, shown in equation 1.104. The mass,damping
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apd st~iffness rpatrixes and the load vector in equation 1.104, is given in table 1.5, where M 0
Cy, Ky and R is extracted from equations 1.92 and 1.93.

- - 1 &, [M. o][I o (M, +®TM,®;, ®TM
M - UTNI Y — d _ + e, MLy P, My
0 I|[0 My |® I M,®, M,
- - 1 @, [C.+®)Cy®, —®C,|[I O [C. o
¢ =v'Cv = ‘ T PaCaa = RaCa _
I_ _qu)d Cd (Pd I 0 Cd
- - 1 &,| [K.+®'K,®, —-®'K,|[I o0 (K. o0
K —9R,0 - d + @, K Py afta _
I ] —Kd(I)d Kd @d 1 0 Kd
_ 8 1 @,] [R. R,
R =9"R, = ! - ]
I||o | O
Table 1.5: Table of mass, damping, stiffness and load matrices
Thus obtaining
Mﬁrel(t) + éﬁrel(t) + Knrel (t) = R(t) (1104)
By splitting the modal mass matrix
- [m. o M.D®, M.D
M = + (1.105)
0 M, M P, 0
where
D = M. '®" M, (1.106)
After pre-multiplying the entire equation by K _1, the Fourier transform is taken
; a, (w)| .
[ " ] =S [ 7 1 ¢t (1.107)
And w AAny
and R -
K R, K, a; (w)| .
: => 7.() et (1.108)
0 " 0
Which gives
- ~ 1
a z w ~ KZ aps (W
e >] =H(w)- [ o 1 (1.109)
_a'A”]d(w> 0
where
. I — %I+ D®y) + 2ic.¢ ~&’D
H ') = [( ( ) ) (1.110)

(I — &5+ 2i@4€,)
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where @, = diaglw/w,, |, @4 = diaglw/w;], €, = diagl¢,,] and &; = diag[;], I is the
identity-matrix with size according to the size of H

(1.111)

" NipodXNmod  NinoaX N
Size of lel ! ¢ ¢ ]]

NjXNmod NjXNj

To find the displacement response the modal coordinates must be multiplied by a ¥- matrix

[rz(xr,t) @ (,) 0] [ n.(t) ] () [ m:(*) ] (1.112)
) ridr ’

Ary(t) 0 I||An,t An,(t)
Thus
ar, (Tr,w) a,. (w)
_ W (x, (1.113)
[ an(w) ] o [aAnd(W)]

1.6.3 From Frequency Response Function and Fourier amplitude to Spec-
tral Density

The approach to go from frequency response function and Fourier amplitude to Spectral density
is similar for all 3 cases; single degree of freedom system with a TMD, continuous system with
a TMD (single component), and a continuous system with multi mode, multi components. In
general

1
Svariable = 1lim —a, a/T (1.114)

Tooo 7T variable““variable

where the a is the Fourier amplitude from the Fourier transform. The subscript variable can
be for instance displacement 7, or modal coordinate 7. The asterisk (*) means that it is the
complex conjugated. The 7" in the limit when 7" goes to infinity is the total length of the time
series, while it means transposed when it is in the power of 7T'.

Single degree of freedom

S, = lim —a*a’ = lim —
" T—o0 7TT rer T—00 7TT

aya,  araay ]

* *
AarQr  QpApQAr

o (g [ @ [am@/ ]
-y ([ ) (e [0

Jim Zrap, (@ar, (@) [ |Ha@)F  H (@) Ha (@)
K3 '[ﬁsa(w)ﬁfn(w) |ﬁ21<w>|2]

_SRl(W)'[ [ A (@) ﬁfl(@)ﬁm(@)]

KD @) Hu@)  [Ha(@)P

[ Srr S’I‘AT ]
SATT SATAT

(1.115)
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m LOL*R1 (w)ag, (w). is the spectral density of the load acting on the main

= i
system. The H matrix is for a single degree of freedom system with a TMD defined in equations
1.45 and 1.46.

where Sg, (w)

Continuous system with a TMD (single component)

a,, (z, w)] " [aw (x, w)] ’

anr (W) aar (W)

.1 Ay, (w) ' iy, (W) ' (110
= lim — | ¥, ¥o
I ( LAm (w)] > ( LAm (w)] )

- ‘IJOSWZ(W)‘IIOT
where
x) 0
Vo= ) (1.117)
0 1
and
1 | aa a‘a

Sy, (w) = lim a’al = lim — | " " n@An
T—o0 7 T—oo w1 a*AnaW a’*AnaAn

o1 (o Tap @R\ Jan@)/E]N
(1.118)

Snznz S”7z An

Sam. Sanan
Where the H for a continuous system with a single component is given in equations 1.74

and 1.75.
Thus S, is given by

Srzrz SrzArl

Tz

Séi(w)[ @2 ()| H.. ()] @(w)ﬁ;(@)ﬁu(w)]
K2 | ¢ (2) B (@) H.. (&) | Hy. (@)

] (1.119)

SAm'rz SArlAm

where Sp_is the spectral density of the modal load on the bridge girder.

Sp (w) = lim —a7 (w)agz(w) = //gbz(a:a) s (xp) - Sy, (w, Ax)dz,dxy (1.120)
L

L

where Az = |z, — x|, where x, and x; is arbitrary positions.
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Strgmmen has assumed that the coherence length AD of the vortexes is small compared to
the length of the bridge, and that the modal load can by sufficient accuracy be defined as

L

2 _ 2
Sp, (@) ~ 2ADS,. () [ GH(o)ds = e [— (M> ] (1.121)

0

where the cross spectral density is

s (5]

L
0% = 2\Do?. / ¢2 (x)dz (1.122)
0
.
Og. = §PV Ba,,

and where Ui is the variance of the cross sectional vortex shedding load,agz is the normalized

version of ogz, b is the band width, w; is the vortex shedding frequency (ws = 27V St/D), V
is the mean wind velocity, St the relevant Strouhal number, A is the non-dimensional coherence
length scale of vortices, D is the cross sectional depth, and L the length of the bridge.

Continuous system with multi mode, multi components

- * T
1 {an | |an
S (z,,w) = lim — ] [ ]

_afAr (£7:N2
N K_laR w " A K_laR W ’
—o0 T 0 0
= W,(z,) H () Sp(w) H (@) ¥ (z,)
(1.123)

where H for the multi mode, multi component case is defined in equation 1.110. and where

D, (x,) 0]

U, = (1.124)

0 I

where I is the N; by N; identity matrix, where N; is the number of tuned mass dampers.
®_(x,) is a vector of the mode shapes at the position of the tuned mass dampers.

(@) = [61(1) o Do) (1.125)
The spectral density of the modal load is defined as
~ —1 ~ —1
. K. S; (w(K,) o0
§alw) = | e ] (1.126)
0 0
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where

* T
aRzl a/Rzl
Sp (w) = lim La*ﬁé (W) ak (w) = lim L
z T—oo 1" z z T—oo 1"
ap ap
RN od BN pmod (1 1 27)
- - S~
Rlezl Rleszod
SészodRzl SRzN R.N

mod mod

where the on-diagonal terms would, when integrated, give the variance of the vortex shed-
ding forces at resonance of the given mode. The off-diagonal terms would give the covariance
of the vortex shedding forces at different resonance velocities. The covariance is often assumed
negligible, and the on-diagonal terms is given by

- 2
SRlezl L z1

= 2\DS,, / : dz (1.128)

~ ~ 0 2
RZNmodRZNmod ZNmod
where the cross spectral density S, is defined in equation 1.122.
Written out, for a system with 3 TMDs, (TMD A, TMD B and TMD C), the spectral density
is

ST’Z STZAT’A S?"ZATB STZAT‘C

S, r S, raArg S rA AT
S, (w,,w) = fra. Darafre Paradre (1.129)

SATB SATBATC

Sym SATC

1.7 Tuning of the TMD

In chapter 1 so far the tuned mass dampers (TMD’s) have had general characteristics; mass-ratio
144, damping &,and frequency wy. When tuning a mass damper, these characteristics is chosen
such that the damper is effective to damp displacement from a certain eigen-mode. The principle
of the TMD is Newtons second law, and the transformation between forces and acceleration.
The bridge girder and the TMD are interacting, as the bridge girder is accelerating the mass of
the TMD, and the TMD’s acceleration transfer forces to the bridge girder. The TMD therefore
need to be set in motion by the bridge girder as the girder start to move with the frequency of
the mode it should damp out. If the eigen-frequency to the TMD is equal or close to the eigen-
frequency of the mode under consideration, it will be excited when the bridge get excited, how
large forces to get transferred depends on the TMD’s mass-ratio and damping. The damping
must not be too big, such that the TMD’s acceleration disappear, neither to small such that small
forces is transferred. The effectiveness of the TMD is in general better, the higher mass- ratio.
It must however be inside a reasonable value regarding the practical placement on the bridge,
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the costs and the assumption made in the theory that the eigenvalue analysis is done without
considering the mass of the TMDs (M, >> Mpyp). Usually p is in the range 0.005 to 0.05
[Strgmmen, 2013].

Since the dampers are to be placed at or inside the bridge, and often have limited space
available, the motion of the dampers must not exceed the given space limitations. It is therefore
also important not only to estimate the effectiveness of the tuning of the damper on the bridge
girder motion, but also estimate the motion of the TMD itself.

Two models for optimum choice of damping and frequency of the TMD, after the mass-ratio
is decided is the models by Den Hartog and R. Luft [Strgmmen, 2013].

Den Hartog recommends:

Wy
wWag =
Ty ,LL
. 30 (1.130)
T8+ P
R. Luft recommends:
Wy
Wy =
1+ 3
(1.131)

4

g
1.00
0.99
0.98 — DenHartog

— ER.Luft
0.97
0.96
My

I 0.01 0.02 0.03 0.04 0.05 =

Figure 1.3: Frequency ratio plotted against mass ratio for Den Hartog and R. Luft recommendations
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Figure 1.4: Damping plotted against mass ratio for Den Hartog and R. Luft recommendations
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Chapter

Experiment

2.1 Developing a Matlab script

The theory presented in chapter 1 is used in developing a Matlab script for determine the re-
sponse of the main girder due to vertical mode shape induced vortex shedding of a suspension
bridge. The purpose of making the Matlab script has been to better understand the theory, by
using the theory and by giving some results that has practical and physical meaning. The pur-
pose has not been to make a perfect Matlab script for later use, nor to be able to give precise
recommendations regarding vortex induced vibrations in a particular case.

The principle in the Matlab script is the theory presented in chapter 1. However, the theory
is presented with use of continuous variables like the frequency w, while the Matlab script
operates in a numerical format. When making the numerical w- axis it is important to not only
make it fine enough, but to place the w-s wisely. The way this is done in the Matlab script
is, as illustrated in figure 2.1, to let every eigen-frequencies be represented in the numerical
w-vector, and divide the interval between the eigen-frequencies into narrow-spaced close to the
eigen-frequencies and more scattered frequencies elsewhere. If the eigen-frequencies is close
together, the narrow-spaced w-s will dominate.

Aw

I e
- ]
ot
‘
f G-range ﬂL

Figure 2.1: Prinsiple of omega-axis

When making a time simulation a phase (0 < ¢ < 2m) is added for each frequency w. Thus
one phase angle is needed for each w value. If the phase vector or diagram is known, time
series could be reproduced exactly similar to the original. Often the phase is unknown and of
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little interest since it is only dependent on when wind recordings are done, see section 1.2.6,
and when doing time series simulations random phase angles is often used. Time series with
different random phase angles is different, but their statistical properties is still the same. Since
the phase angles in principle make the response from one time series simulation different from
another, several time series simulations must be done to get an idea of both the maximum value
over several simulations and spreading of the response. The standard deviation of the process is
constant and could be found exactly from integrating the spectral density, however the standard
deviation from each simulation of the process does vary slightly. It is important to distinguish
between a process and the simulation of a process.

In the Matlab script the built in function "rand” is used to make a random number between
0 and 1, and the random number is multiplied by 27 to give a random phase. A limitation by the
built in function is that it is not completely random, it is just a large list of “random” numbers
that repeat itself when it is at the end. However for the purpose of making 10 minutes time
series it is in this case considered sufficient random to be used. To get the same load at the
bridge girder without TMD, and the girder with TMD the Matlab script make a random matrix
(number of simulations x number of frequencies), that is used for all time domain simulations.
The random vector plotted against w for simulation nr 1, is shown in figure 2.2. For low values
of w, there are few values of rand” because Aw is bigger.

Randorn vectar for ane simulation

1

T
09
o0&
07

06

rand

o0&

04

03

0z

01

Frequency [radés]

Figure 2.2: The random vector from one simulation

2.1.1 Developing a simplified expression for the bridge girder response

Usually when the response of the bridge girder is found by calculations based on the theory
presented in chapter 1, it is done where the maximum response is, i.e. at the mode-shapes
maximum. However, in the mission of understanding the theory, it has here been considered
useful to be able to visualize the bridge girder response for the entire span. Th single point
response could in principle be done everywhere along the bridge span, and it is done for the
original system without TMD in the Matlab script developed. The single point response at each
point is correct, but when the single point response in several points is combined it could give
wrong response along the span. That is because single point response at two points where the
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response is equal in magnitude, but has opposite sign, could be equal. The sign problem could
be easily avoided if only a single mode is considered, since the sign of the response at a point
relatively to the response at another point then is known. When several modes, with different
frequencies, is combined it is not an easy task to decide the sign of the combination of single
point response. Therefore the response along the span is found by first finding the response in
modal coordinates, and then multiply it by the mode shapes. That is:

ro(w,t) = ®(@)m(t) = > Puma @.1)

To see if the 7, is statistical independent processes that could be found individual and than
added together, the expression for the variance of the response is developed using an example
with 2 modes:

o7, = E[rf] = E[(¢1m + ¢2n2)’]
= E[(¢1m)? + 2(d1m) (d2n2) + (21m2)?]
= QTEN}] + 20102 E[mn] + 5 E 3]
~ 1oy, + d50n,

(2.2)

Thus if E[min2] = oy,y, is negligible, all the 7,,, n = 1,2, ..., N;,,oq could be treated inde-
pendently. The condition for E[n;7s] to be negligible is when the spectral densities of 7; and
12 does not overlap, i.e. when the eigen-frequencies is not too close. For the Hardanger bridge
some of the eigen-frequencies is quite close, especially for mode 3 and 4 where w,, is 1.27
rad/s, while w,, 1.36 rad/s. Also mode 1 and 2 is quite close in frequency, with w,, and w.,
equal 0.71 and 0.9 rad/s respectively.

However, it is for now assumed that the frequencies are spread enough that an approximate
solution of the bridge girder displacement along the span can be obtained. 7, is found by the
same principle as 7., by a time domain simulation:

Ny,
N (t) = Z [ 25, (wr) Aw; cos(w;t + wj):| (2.3)
k=1
where N, is the length of the w- vector, and where 1) is the random-vector. The response 7,
can be than be found by a summation according to equation 2.1. Since the random vector has
big influence on the time series produced, and since just a single random vector is used for for
the single point r, simulation, exactly the same random vector that is used for the r, simulation
must be used for all 7, to get the same time series. In the Matlab script the same ) is used for
all n,,, such that it is possible to compare the response with the one found by a single point r,
simulation. However, in general by the assumption that each 7,, is independent, it is possible to
use different random vectors for the different 7,,, getting a different time series than finding the
r, directly from a simulation with S,.(w), but still a correct time series.
To make a time domain simulation, as shown in equation 2.3, S, must be found. Recalling
the expression for S,

Ak ~ ~ T

Sy (2, w) =¥, (z,) H (w) - Sp(w) - H (w)- \Il,‘rr(x,,) 2.4)
The expression for S, is similar, but without the ¥, matrix
A % N ~ T
Syw)=H (w)  Sgw) - H (w) (2.5)
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Written out, for a system with 3 TMDs, (TMD A, TMD B and TMD C), the expression
for S, is given in equation 1.129, while the expression for S, is a Ny,,0q + Nj by Npoa + N
matrix, where N,,,4 is the number of eigen-modes considered, and NV; the number of tuned

mass dampers installed.

_Snznz SnzAn
Sn(w) =

_SAnnz SAnAn

. -ﬂll | 12 SRH O] [ﬂll Hm]
_I:I21 H), 0 0| |Hy Hay
[ A% ~ ~ T Ak A ~ T

. H115R11H11 H115R11H21

_ A% A ~ T A% A
_H21 R11H11 H215R11H2T1

where
ﬂ—ll = I mod d)z(INmod + b@d) + 2Z(I)Z£z

is a Npyoq by Npoq matrix, that is diagonal if ﬁ@d = 0.

If D®, is nonzero, the S,,_, matrix given in equation 2.8 is non-diagonal.

A Kk A ~ T
Snznz = H11SR11H11
Snlnl e S77177n ces SnlnNmod
=| Sy Sy Spw
_SUN'modnl o ST]N'mod " o SnN'mod "MNpod .

(2.6)

2.7)

(2.8)

Where the diagonal terms S, ,,, will produce the 7,, in a time domain simulation, while the
off-diagonal terms S, ,, . will produce the 7,7, that earlier is assumed zero. To be able to say
something about the consequences of assuming that 7,,7,, is zero when the eigen-frequencies is
close together, a further look at the D®, is done, since it is because of this term that S).n. 18

non-diagonal.

In the case with 3 TMDs tuned to mode 1, 2 and 1 respectively (2 modes considered), the

S,.n. looks like
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D®, = M. &' M,®,
M;ll 0 (bzl (.I'A
0 M| |¢.a(za

)

)
(1AM 0 0 ¢21(ra) G22(Ta
(2.9)

Mo (wa) W5 s () WIS o (20) paM a1 (xa) paMi¢.0(xa)

= M bn(za) M3 bm(rn) M3 ém(ze) MBf\Nfz2¢z1($B) MB]\f[z2¢z2(iUB)
oMot (o) poMaad.q(ze)

If ua = pup = pe = p and le = Mzz = Mzg =M, = MZ the equation simplifies to:

_ O (2a) + 02 (xB) + %1 (20) G21(xa)P22(2a) + G21(2B)22(7B) + P21 (T0)P22(20)
Go1(24)P22(7a) + @21 (28)22(28) + ¢a1(v0)P22(TC) ¢2(a) + 02 () + 2 (20)
(2.10)
The normalized mode shapes ¢,,, has maximum value of 1. The off- diagonal terms has
multiplication of mode 1 and 2, and its reasonable that not both of them has maximum value
in all TMD positions. However, if a conservative assumption is done that ¢, (z,,) = 1, the
following is obtained:

R 3 3
D®,=p-
33

] or more general D®, = e [1] N (2.11)
mod

where [1]n,, 04 1S @ Nyyoa by Npnog matrix with 1 in each cell.

The mass ratio p is usually expected in the range 0.005 to 0.05 ??. By setting these values
for 1 in the expression, gives the order of magnitude (assuming ¢, (z,,) = 1, n=1,2,..., Nyy04,
m = 1,2,...,N;) that is expected on the off-diagonal terms in D®,. 1t gives roughly off-diagonal
terms in the range 0.015 to 0.15, which is 1.5 to 15 % of the diagonal N,,,q; by N,,.q identity
matrix in equation 2.7. Thus if the eigen-frequencies of the main girder are close together
the consequences of neglecting the off-diagonal terms will be bigger for bigger mass ratios .
Since all modes is not equal 1 at every TMD position in reality, it is here assumed that the
consequences of neglecting the off-diagonal terms is not to big to get a reasonable estimate of
the bridge girder movement.
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Chapter

Results and Analysis

3.1 Spectral density used as a measure of response

In the following, plot of spectral density is used to show the response of the bridge girder and
TMD’s. The phrase “response” is used both for the physical displacement and the frequency
domain spectral density distribution. Another use of the phrase response, which is more fre-
quent used in literature as a measure of the response, is the standard deviation. The standard
deviation is the square root of the integral over the entire frequency range of the spectral den-
sity. Despite that the standard deviation and spectral density seems like two sides of the same
issue, they still gives different information regarding the response. The standard deviation is
somewhat more physical, as it gives information about a metric value of the deviation of the
displacement response from the mean value, while the spectral density does not give any di-
rectly value of the displacement. On the other hand, the standard deviation is just a number,
while the spectral density is a two dimensional function, thus information regarding the distri-
bution of the response in frequency domain is lost, if just the standard deviation is given as the
response. When comparing plots of different spectral densities it is also possible to roughly
estimate which of them who has biggest standard deviation, since the variance is the area under
the spectral density curve.

Since the purpose of the analysis in this case is mostly educational and an attempt to under-
stand the theory behind the results, both spectral density plot and some plot of the change in
standard deviation by changing the TMD’s properties is given as the response.

3.2 Testing the Matlab script on the Hardanger Bridge

The Matlab script is tested on data from a real suspension bridge, the Hardanger bridge. The
Hardanger bridge is 1310 m long and the data is given by Hjorth-Hansen and Strgmmen [Hjorth-
Hansen and Strgmmen, 2001] and Vegdirektoratet. Only vortex induced vibrations on the ver-
tical modes is considered.

As can be seen from figure 3.1, at position x = L /4 vertical mode 1 is at its maximum, while
vertical mode 2 is zero. Vertical modes 3, 5 and 6 are also close to its maximum at z = L/4.
In figure 3.2 the frequency domain response of the bridge girder at x = L /4 at different mean
wind velocities is shown. The velocities V,,; to V,,n, . is the velocities at resonance for each
of the N,,,q eigen-modes.
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Vertical mode shapes, ¢, (%)

o 200 400 (=) 800 1000 1200
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Figure 3.1: Vertical modes (normalized) of the Hardanger Bridge

V = V.1 gives the biggest response in terms of spectral density, .5,.. The biggest response is
for frequency equal the eigen-frequency of the first vertical mode, w,;, called the first resonance
frequency. The other peak in figure 3.2 worth mention is for the third mode, w.3, which also is
close to its maximum at the current x- position. The velocity which make biggest response is as
expected the critical velocity for the first vertical mode V,,.;. Since w,; and w, is quite close,
the corresponding V.1 and V.5 is close enough that V., also can activate the vertical mode 1.
For the same reason, both V.3 and V., activates vertical mode 3.

Response of original system without TMD at =, = 327.5 m
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0.4 —Ver1=2.3m/fs |
—Vcr2=2.91m/s
0.35( —Ver3=4.11m/s|
—Vcrd4=4.4m/s
0.3 —Ver5=5.69m/s||
Vcré=6.92m/s
0.25F 4
0
A
oy 02+ 4
015 B
01 B
0.05 B
0 JlL 1 . 1 1 | | A 1 | |

0.8 1 1.2 1.4 1.8 2 22 24

1.6
w (rad/s)

Figure 3.2: Original response of bridge girder at x = 327.5 m

From figure 3.2 it seems like V., gives more resonance of mode 3, than V.3, which is
not as expected. It is assumed that there is several reasons for this. Reasons which are to be
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discussed in next chapter. If the response of the bridge girder is considered to large, a TMD
might make the response manageable. The first vertical mode contributes most to the spectral
density, according to figure 3.2, and the first mode has its maximum value at x = % (and
x = %), according to figure 3.1. Thus it would be reasonable to place a TMD tuned to damp

out the first vertical mode at x = % = 327.5m (or/and x = %), as sketched in figure 3.3.

TMD

T e \],/ L/4 L L/4 [ La =~
i 7

71 A A

Vertical mode 1:

1 T T T i
1 I 1

| I 1
o 200 400 600 600 1000 1200

Figure 3.3: Sketch of the location of the TMD. (Not in scale)

The TMD is tuned to a frequency close to, but not equal the eigen-frequency of the first
mode. In this case the first eigen-frequency is 0.710 rad/s, and 5 cases of the TMD’s frequency
is tested, while keeping the damping ratio constant, {; = 0.0430. The frequency response func-
tion, FRF, when only the first mode is taken into consideration, is shown in figure 3.4. Keeping
in mind that the vertical axis is logarithmic, there is no doubt that the TMD reduce the frequency
response function H,.. Thus the response in terms of spectral density and displacement also
will be reduced.

= 0.005 ~~~ NoTMD
ol - e ,5: — o, =0.7043 |
- Eq = 00430 g = ]
S e o) " —— 0, =0.7065
X —— o, =0.7069|]
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05 D& 07 0. 09 1

w (rad;s)

Figure 3.4: Frequency response function of main system with TMD at different values of frequency
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To be able to see the difference between the different cases of frequency, a closer look at the
FRF is shown in figure 3.5. Since the damping ratio is kept constant and equal the Den Hartog
optimization, the R. Luft case shown is not truly an R. Luft optimization, but a combination
of Den Hartog and R. Luft. However, it could be seen that the frequency optimization of Den
Hartog and R.Luft is quite close, but Den Hartogs optimization give peaks that is more at the
same level than R. Luft. It is not a surprise that Den Hartogs optimization gives peaks at roughly
the same level, since this was the idea behind the Den Hartogs optimization [Strgmmen, 2010].
In general it looks like the area under the different curves is roughly the same, and that they all
cross each other at roughly the same point for frequency just below omega.;. It looks like the
frequency of the TMD decide the skewness or the relative level of the two peaks in the frequency
response function. Assuming that the modal load is at its maximum at w = w, and that it is
symmetric about w,, the optimal choice of frequency is the one that gives peaks mostly at level.
In this case, when only vertical mode 1 is considered, it is Den Hartogs choice of damping that
is closest to give leveled peaks. However a slightly lower frequency than Den Hartog could give
completely leveled peaks, as lowest case of frequency gives the highest peak on the opposite
side than the other cases.

Frequency response function for mode 1

TN

' ' i ‘ Y ‘ e No D
j=0.005 | e
10t : i y Den Hartog 0,=07065 |
. / \ ©,=0.7069
£d — O 0430 / i R. Luft =3 —0,=0.7074
(Den Hartog) ! y ——o0,=0.70%
10" /—,"\ “\ -
pa e AN _~" . Den Hartog

R. Luft
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w (rad/s)

Figure 3.5: A closer view of the frequency response function of main system with TMD at different

values of frequency

To see the effect different damping ratios has on the response when a single mode model
is used, five different cases of damping is considered, while the frequency is kept constant
according to the Den Hartog optimization. The response get reduced in all cases, roughly by
the same as in the case of different frequencies earlier shown in figure 3.4. A closer look at
the results, to see the differences between the different values of damping are shown in figure
3.6. While all the curves of different frequencies were crossing in a single point, the curves of
different damping ratios are crossing in two separate points; one at a lower frequecy than w,1,
the other at a higher frequency. That the point at a higher frequency than w.; is slightly lower
in response, is assumed to come from the frequency wy used, i.e. the Den Hartog optimization
of frequency. Thus it seems like the damping ratio has no affect on the skewness, i.e. relative
height of the peaks, but rather the height of the peaks and how much the response is reduced at
the eigen-frequency w,;. The tendency is that lower damping ratios gives most reduction of the
frequency response function at and close around w,;, while it gives higher response for lower
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and higher frequencies. For higher damping ratios the frequency response function is more
smooth with higher response at and around the eigen-frequency, but lower peaks than the more
light damped cases.

Frequency response function for mode 1
T 7T T T
/

/ “‘.‘ o TWD
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X
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Figure 3.6: A closer view of the frequency response function of main system with TMD at different
values of damping

A TMD is placed at x = % with mass ratio p = 0.01 and damping &; = 0.0603, tuned to
damp out vertical mode 1 by setting wy = 0.7030. The TMD will turn the original response of
the bridge shown in figure 3.2 into the response shown in figure 3.7, when 6 vertical modes is
considered. As can be seen the response of the first vertical mode is, after the installation of
the TMD, almost zero as compared to the original response. Mode 3 is also slightly damped,
but not significant. The “Case 1” reference in the title, is used in the parametric tests not yet
introduced, and have no meaning by now.

Response of main system for Case 1 , at . = 327.5 m
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Figure 3.7: Response of main system with TMD
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When the tuned mass damper damp out the response of the first mode, it means that the
damper itself are in relative motion compared to the bridge at this frequency. The motion of the
TMD is dependent not only on its eigen-frequency, but also on its damping- and mass-ratio and
on the movement of the bridge because of the sum of all eigen-modes. It is not correct that the
TMD’s motion is always in the opposite direction of the bridge girder, but at many point in time
it is. The TMD spectral density response for different modes critical wind velocities is shown
in figure 3.8.

The figure illustrates several concepts. Firstly the response of the TMD is as expected
biggest for the mode it is tuned to damp out. Because the first vertical mode also get excited by
the critical wind velocity of the second mode, the TMD have relatively large response for V..
The bridge also have some response for the third vertical mode, and the TMD does get some
response despite that its eigen-frequency is relatively far away.

Response of TMD for Case 1, at 2, = 327.5 m
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Figure 3.8: Response of TMD at x = 327 m for Case 1
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3.2.1 Parametric study

To find out where to place the TMDs and roughly which pu, ; and w,; values to be used, for
an effective response reduction, a parametric study is done. The purpose of the study is not to
decide optimal values of the parameters, and certainly not to the accurate optimum. However,
by testing several cases it is possible to discuss within which range each parameter should be
for best effect of damping out vortex shedding induced vibrations.

Firstly 10 cases are done with one TMD at different locations. In the first five of them the
TMD is tuned to damp out the first vertical mode, while it in the next five is tuned to damp out
the second vertical mode. The parameters used in the first 10 cases is summarized in table 3.1.

1 Tuned mass damper

Tuned to damp mode 1 Tuned to damp mode 2

taq = 0.01 tq =0.01

£q4=0.0603 &4 =0.0603

wqg =0.8911 wq = 0.7030

Case nr. Position of TMD x4 [m] || Case nr. Position of TMD x4 [m]

1 327.5 6 327.5
2 400 7 400
3 500 8 500
4 600 9 600
5 655 10 655

Table 3.1: Properties and placement of TMDs in case 1 to 10

The spectral density for x = % is already shown in figure 3.2, while the response with TMD
and the response of the TMD itself is shown in figure 3.7 and 5.21 respectively. The original
response at X = 655 m, is shown in figure 3.9. As can be seen the response of the second mode
dominate totally. Also, the second mode get very little excited by the critical wind velocity for
the firs mode, but it get excited by the critical wind velocities of mode 3 and 4.
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Response of original system without TMD at =, = 655 m
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Figure 3.9: Response of original system without TMD at x = 655 m

When the same TMD as in case 1, i.e. the TMD is tuned to damp out the first vertical mode
response, is moved to the mid-span at x = 655 m, the response in figure 3.10 is obtained. Since
the TMD is not tuned to damp the second mode, the response from the second mode does not
disappear completely. However, the peak of the spectral density is reduced from about 0.5 to
about 0.06. Despite that the peak is a bit wider, the area under the curve is also reduced. The
response of the second mode is biggest for resonance velocity for mode 2, the in descending
order; mode 3.4,1,5. Also mode 5, has some response at x = 655, and by looking at the mode
shapes in figure 3.1 this is not surprisingly, as it is the only two modes (of the first 6 vertical
modes), that is nonzero at mid-span.

Response of main system for Case b , at z, = 655 m
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Figure 3.10: Response after TMD installation at x = 655 m for Case 5

The relative response for the TMD for case 5 is shown in figure 3.11, and looks almost
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identical to the response of the main system. The difference is that the response for the TMD is
bigger than for the bridge girder.

Response of TMD for Case 5, at , = 655 m
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Figure 3.11: Response of TMD at x = 655 m for Case 5

For case 6 to 10 the TMD is tuned to damp out the second vertical mode. In case 6 it is
installed at x = L/4, where the second vertical mode is almost zero. Therefore it is expected
that the effect of the TMD is small. However the peak of the spectral density for the second
eigen-frequency is reduced from about 0.4, as given in figure 3.2 to about 0.1 as given in figure
3.12. Noticing that the width of the peak has increased, could mean that the standard deviation
has not changed that much. The other peak, for the third vertical mode, is also reduced, from
about 0.15 to about 0.05.

Response of main system for Case 6 , at =, = 327.5 m
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Figure 3.12: Response after TMD installation at x = 327.5 m for Case 6
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In figure 3.13 the response of the TMD is shown. The TMD does get some response at the
mode it is tuned to despite that the original system did not have any response for this mode. The
TMD also get response at mode 1 and 3.

Response of TMD for Case 6 , at 2. = 327.5 m
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Figure 3.13: Response of TMD at x = 327.5 m for Case 6

Because the response in cases 2-4 and 7-9 does not get calculated at x = L/4 or x = L/2,
it is chosen not to present the results from these cases as spectral density. The displacement
response of all cases based on the simplified method presented in section 2.1.1 is given at the
end of all cases.

In all the following cases, 3 TMDs is used. In the first cases the positions and which modes
they are tuned to damp is tested, according to table 3.2

3 TMDs (TMD A, TMD B and TMD C)

g = 0.01
&q = 0.0603
Positions of TMDs x4 [m] | Tuning to modes Frequency, wy
TMD name TMD name TMD name

Case A B C A B C A B C
11 327.5 655 982.5 1 2 1 0.7030 0.8911 0.7030
12 327.5 655 982.5 2 1 2 0.8911 0.7030 0.8911
13 327.5 655 982.5 1 2 3 0.7030 0.8911 1.2574
14 327.5 655 327.5 1 2 3 0.7030 0.8911 1.2574
15 200 400 500 1 2 4 0.7030 0.8911 1.3465

Table 3.2: Properties and placement of TMDs in case 11 to 15

The response of the main girder at mid-span for case 11 is shown in figure 3.14. It effectively
damp out the second vertical mode, while it still is some response for the fifth mode.
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Response of main system for Case 11 , at . = 655 m
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The response of the TMD at mid-span in case 11 is shown in figure 3.15. There are some
response at the fifth mode, but the biggest response in terms of area under the curve, i.e. the
variance, is for the second mode. For critical wind velocities for mode two and one the peak of
the response is highest to the left, i.e. for lower frequencies, while for higher resonance wind
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velocities the peaks to the peak to the right is highest.

Figure 3.14: Response of bridge girder at x = 655 m for Case 11

Response of TMD for Case 11 at z, = 655 m
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For case 14 one TMD is placed at midspan to damp out the second vertical mode, while two
TMDs is placed at z = L /4, one to damp out the first vertical mode, the other to damp out the
third mode. It is assumed that there is enough place available to place two TMDs at the same
x-location. Otherwise they have to be placed in front of each other, and it is assumed that a tiny
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Figure 3.15: Response of TMD at x = 655 m for Case 11
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dislocation in the x-direction does not affect the results in any significant way. The response
of the bridge girder at mid-span for case 14 is shown in figure 3.16. It seems like the second
mode still is damped out, while the fift mode also is slightly better damped than in case 11. The
response of the TMD at mid-span is shown in figure 3.16, and it looks like the same tendency
regarding the peaks a in case 11 is appearing in case 14 as well.

Response of main system for Case 14 , at 2, = 655 m
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Figure 3.16: Response of bridge girder at x = 655 m for Case 14
Response of TMD for Case 14 , at z. = 655 m
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Figure 3.17: Response of TMD at x = 655 m for Case 14
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Like for the single mode case, all parameters are now kept constant except mass ratio (i, to
see how it affect the response. The TMDs is placed on = = L/4, L /2 and 3L /4 respectively.
The TMD at mid-span is tuned to damp out the second vertical mode, while the other two is
tuned to damp the first vertical mode. The mass ratios, as well as other important data is shown
in table 3.3.

3 TMDs (TMD A, TMD B and TMD C)

&q = 0.0603
TMD positions [m]: TMD A: z, = 327.5, TMD B: x; = 655, TMD C: x4 = 982.5
wq [rad/s] hd
TMD name For all TMDs

Case A B C TMD A,B and C
16 0.7030 0.8911 0.7031 0.002
17 0.7030 0.8911 0.7031 0.005
18 0.7030 0.8911 0.7031 0.010
19 0.7030 0.8911 0.7031 0.025
20 0.7030 0.8911 0.7031 0.050

Table 3.3: Properties and placement of TMDs in case 16 to 20

The respons of the bridge girder at x = L/4 is shown in figure 3.18. The first and second
mode is damped out, while the third mode at w = 1.76 rad/s has the highest response. The
TMD is effective and get large response for w1, as shown in figure 3.19. For case 20, as shown
in figure 5.6, the peak of the spectral density is about one tenth of the peak for case 16. It looks
like the highest peak is either at w,3 or w,4 and the resonance velocities for vertical mode 4,3
and 5 lead to response of the mode, in decreasing order.

Response of main system for Case 16 , at 2, = 327.5 m
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Figure 3.18: Response of bridge girder at z = 327.5 m for Case 16

The response of the bridge girder and TMD at © = L/4 is shown in figures 3.20 and 3.21
respectively. The peak values of the spectral density is roughly one tenth of the values in case
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Response of TMD for Case 16 at 7 = 327.5m
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Figure 3.19: Response of TMD at x = 327.5 m for Case 16

16, while the peaks tend to be a bit wider such that the standard deviation does not have as big
reduction. For the TMD the peaks of the two lowest resonant velocities is more spread and the
peak of the lowest resonant velocity tend to move downwards on the frequency axis.

Response of main system for Case 19 , at =, = 327.5 m
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Figure 3.20: Response of bridge girder at « = 327.5 m for Case 19

A sketch of the change in computed standard deviation from the spectral density by the
changing mass ratios is shown in figure 3.22. The circles is the computed values, while the
lines is a manually added trend line for the purpose of easier see the trend of the data. The
trend-lines does not represent the reality, and far more data points is needed to say something
certain about the trend. The standard deviation of the original system without TMD is constant,
and added in the purpose of comparing the magnitude of the standard deviation with and without
TMD. The trend that increasing mass ratios makes the standard deviation less, does fit with the
trend found by Hjorth-Hansen and Strgmmen [Hjorth-Hansen and Strgmmen, 2001].
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Figure 3.21: Response of TMD at x = 327.5 m for Case 19
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Figure 3.22: Values of standard deviation with different mass ratios
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The next parameter to be tested is the damping ratio &,

3 TMDs (TMD A, TMD B and TMD C)

w=0.01
TMD positions x4 [m]: TMD A: z; = 327.5, TMD B: z; = 655, TMD C: 24 = 982.5
wq [rad/s] &a
TMD name For all TMDs

Case A B C TMD A,B and C
21 0.7030 0.8911 0.7031 0.0340
22 0.7030 0.8911 0.7031 0.0498
23 0.7030 0.8911 0.7031 0.0551
24 0.7030 0.8911 0.7031 0.0603
25 0.7030 0.8911 0.7031 0.0761

Table 3.4: Properties and placement of TMDs in case 21 to 25

The response of the bridge girder and TMD of case 21 at x = L/2 is shown in figure 3.23
and 3.24 respectively. It is only the fifth vertical mode that has response worth mention for the
bridge girder. The rests of the second mode is small and spread, leaving two peaks, one at each
side of w5, which is assumed to come from the single peak at w,,. The TMD response show the
same tendencies as in case 14, that the left peak is higher than the right for resonance velocity
of the second and first vertical mode, while at other resonance velocities the right one is highest.

Response of main system for Case 21 , at 2, = 655 m
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Figure 3.23: Response of bridge girder at x = 655 m for Case 21

The response from case 25 at x = 655m 1s shown in figure 3.25 and 3.26 for the bridge
girder and TMD respectively. The shape of the spectral densities for case 25, does not dif-
fer much from case 21. However, the response is lower, also for the TMD. In case 21 there
were high peaks for the spectral density at the first mode for the TMD, while it in case 25 is
considerably lower and also more smooth.
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Response of TMD for Case 21 , at =, = 655 m
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Figure 3.24: Response of TMD at x = 655 m
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Figure 3.25: Response of bridge girder at x = 655 m for Case 25

A sketch of the values of standard deviation, obtained from the computed spectral densities,
with different damping ratios is shown in figure 3.27. the circles indicates the computed values,
while the lines is only provided for easier reading. The bridge girder without TMD should have
constant standard deviation, and is plotted by the purpose of comparing its values with the other
curves. The standard deviation of the TMD has a tendency to decrease with increasing value
of damping, for the damping ratios considered. The standard deviation for the bridge girder is
also decreasing, but not much. By Hjorth-Hansen and Strgmmen, the standard deviation for
the bridge girder should eventually increase for higher values of damping [Hjorth-Hansen and
Strgmmen, 2001]. A reason why it does not in this case, might be that the Matlab script does
not iterate to find the response when the system has a TMD. That is for the sake of simplicity,
and since an effective mass damper will make the response negligible in the expression for the

aerodynamic damping.
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Response of TMD for Case 25 , at =, = 655 m
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Figure 3.26: Response of TMD at = 655 m for Case 25
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Figure 3.27: Values of standard deviation with different damping ratios
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The last parameter to be tested is the frequency w,. The different values of w, used is given
in table 3.5.

3 TMDs (TMD A, TMD B and TMD C)
p=0.01

&g = 0.0603

TMD positions [m]:

TMD A: x4 = 327.5

TMD B: x4 = 655

TMD C: x4 = 982.5

wq [rad/s]
Case | TMDA TMDB TMD C
26 0.6677 0.8464 0.6677
27 0.6853  0.8687 0.6853
28 0.7030 0.8911 0.7030
29 0.7206 0.9134 0.7206
30 0.7382  0.9358 0.7382

Table 3.5: Properties and placement of TMDs in case 26 to 30

The spectral densities of the bridge girder and the TMD at x = 655m is for case 26 shown
in figure 3.28 and 3.29 respectively. The response of the bridge girder is damped efficiently
away, other than the fifth vertical mode. The TMD at mid-span does have response for mode
5, but mostly for mode 2, which it is damping away. The relative peak high at left and right
side of w,5 is not following the trend from for instance case 21, where the peaks for resonant
velocity of second mode was higher on the left hand side. However, the response of the rest of
the resonance velocity seems to be according to the tendencies found for case 21.

Response of main system for Case 26 , at . = 655 m
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Figure 3.28: Response of bridge girder at x = 655 m for Case 26
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Response of TMD for Case 26 , at =z, = 655 m
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Figure 3.29: Response of TMD at = = 655 m for Case 26

The response for case 30, with higher values of wy, is shown in figure 3.30 and 3.31 for the
bridge girder and TMD at = = L/2 respectively. It is almost impossible to say from the spectral
density, how the standard deviation response is changed from case 26 to 30, as it looks like
they almost have the same area under their graph. However, there is difference in the frequency
distribution of the spectra. The spectral density peak from the resonant velocity of the second
vertical mode is, for a higher value of frequency ratio, highest on the left side of w.,».

Response of main system for Case 30 , at z, = 655 m
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Figure 3.30: Response of bridge girder at x = 655 m for Case 30

A sketch of the values of standard deviation, obtained from the computed spectral densities,
with different frequency ratios is shown in figure 3.32. the circles indicates the computed values,
while the lines is only provided for easier reading. The bridge girder without TMD should have
constant standard deviation, and is plotted by the purpose of comparing its values with the other
curves. The standard deviation of the TMD has a tendency to decrease with increasing value
of frequency ratio, for the values considered. The standard deviation for the bridge girder is
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Response of TMD for Case 30, at =, = 655 m
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Figure 3.31: Response of TMD at = = 655 m for Case 30
also decreasing, but not much. By Hjorth-Hansen and Strgmmen, the standard deviation for

the bridge girder should increase for higher and lower values of damping then the optimum
[Hjorth-Hansen and Strgmmen, 2001].
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Figure 3.32: Values of standard deviation with different frequency ratios
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Frequency Response Function for the different cases

The spectral density for a multi mode, multi component case is earlier given in equation 1.129.
By the idea that vortex shedding response usually are considered narrow banded, the resonant
part of the variance afqi, as given in equation 1.19, will dominate the response. Since the
resonant part mainly is determined by the frequency response function,FRF, the FRF will give
a good indication of the response. To easy see the difference between the cases, the frequency
response function for the cases that study the same variable is plotted together. In figure 3.33
the FRF for the first vertical mode is given.

As can be seen in the upper left plot, case 1 and 2 has the lowest response, while case 4 and
5 has nearly no reduction at all. This is not a surprise, since case 1 is to place a TMD tuned to
vertical mode 1 where it is at its maximum, while case 5 is to place the TMD tuned to mode 1,
where mode 1 is zero. The next plot is of cases 6 to 10, which is to place a TMD tuned to damp
vertical mode 2 at different locations. Clearly the TMD tuned to mode 2, does not damp much
of mode 1. Despite that it is as expected, and that the plot is not very interesting, it has been
included for the purpose of understanding, and as a check of whether or not the results produced
by the Matlab script is reliable. For case 11 to 15, it looks like case 11 reduce the response the
most. Case 11 is the case where a TMD tuned to vertical mode 2 is placed at its maximum at
mid-span, while 2 TMDs placed at z = L/4 and = 3L /4 respectively, is tuned to dam mode
1. For case 16 to 20 it is not easy to know from the FRF which mass ratio is best suited. It looks
like increasing mass ratios damp the response near the eigen-frequency most, while it make the
response at two other frequencies higher. For the damping ratios in case 21 to 25 there is an
opposite effect of increasing the value of the parameter. At low values of damping, the response
is redused the most around the eigen-frequency, while farter away from the eigen-frequency,
the peaks of the response is higher. For higher damping ratios, the curve is more smooth, which
is assumed to give the best effect of the damping. For the frequency ratio, it is case 27 that has
peaks at the most equal level, and thus has lowest peak. Case 27 is, not surprisingly according
to the results when a single mode was considered in figure 3.5.

Frequency response function for mode 1

=== No TMD
Casel1 |
Case12
Case13
Case14
Case15

-—- No TMD -—- No TMD i
i Casel [ i Caseb [ i :'
1
1
]

Case2 Case7
Cased Case8
Case9
Case10

- Case4
m Caseb

=== No TMD
Case2s6 [
Case27
Case28
Case29
Casel0

-=- No TMD i -=- No TMD

Case16 | 0 H Case21 | 0
Casel7 Case22
Case18 Case23
Case19 Case24
Case25

=
—

L[}

I

I

1]

[
[

0s 0.6 o7 0.8 09 1 0s 0.6 o7 08 09 1

w (rad/s) w (rad/s)

Figure 3.33: Frequency Response Function for the first vertical mode, without TMD and with different
cases. The definition of the cases can be found in tables 3.1, 3.2, 3.3, 3.4 and 3.5

64



In figure 3.34 the frequency response function for all cases for the second vertical mode
is given. Many of the results is the same as for mode 1, but the 3 upper plot shows some
differences. Since the TMD in the upper left figure is tuned to damp out mode 1, it does not
reduce the response at all. For cases 6 to 10, the TMD is tuned to damp out mode 2, and the
response is reduced. The most reduction is for case 10 where the TMD is placed at the second
modes maximum, at mid-span. Worth noticing is that case 9, where the TMD is placed 55 m
from the mode-shape maximum at the mid-span, the FRF is quite similar to case 10. It looks
like a small change in where the TMD is placed does not affect the efficiency that much.
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Figure 3.34: Frequency Response Function for the second vertical mode, without TMD and with differ-
ent cases. The definition of the cases can be found in tables 3.1, 3.2, 3.3, 3.4 and 3.5

3.2.2 Time Domain Simulations

From the spectral density time domain simulations can be produced. Results from 1000 time
domain simulations is shown in figure 3.35 for r,, and in figure 3.36 for r4. The upper left
plot in each of the figures show 999 simulations plotted on top of each other, and one single
simulation. As can be seen the single simulation have periods of large deflections, pulses,
and periods of almost no movement. This is typical for the most of the time series of from
vortex shedding induced vibrations [Strgmmen, 2010]. The 999 simulations on top of each
other done to visualize that the periods of maximum deflections is not at the same points in
each time-series. Keeping in mind that each graph of simulation have some thickness, it looks
like the sum of all 999 simulations fill the area between the maximum deflections at positive
and negative side. That is, at any point in time at least one of the time series have a maximum
value close to the maximum value of all the time series inside the time window considered, in
this case 10 minutes. Also at each point in time, any value of deflection less than the maximum
is represented by at least one of the time series.

Dividing the results from the 1000 simulations into 100 bars gives the results shown in
the other but the uppermost left sub-figure in figure 3.35 and 3.36. Shown is also a normal
distribution with mean and standard deviation values based on the simulations. The results
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indicate that the response is not normal distributed. It looks like there is a certain skewness,
especially for the peak factor k, and some large variations inside between neighbor bars. A
reason for why the response does not fit a normal distribution, is that the time series has pulses
with large deflections, thus the response is highly dependent on the time window considered.
Despite that the response is not normal distributed, it show some of the same tendencies as a
normal distribution or a distribution with skewness, like the Weibull distribution; the response
from most of the simulations is gathered around a response value. Because of the pulsating art
of the time series, it is assumed that the distribution of the simulations will vary, and no further
effort is made to try to fit the simulation data to a distribution.
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Figure 3.35: Results from 1000 simulations of bridge girder movement
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Figure 3.36: Results from 1000 simulations of TMD relative movement
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Making a movie of the brigde girder and TMD displacement

As explained in section 2.1.1, it is found useful for the learning process to visualize the dis-
placement response. In the Matlab script, a plot is made for each time instance, and they are
put together in Matlab to form a movie. A written report is not a good place to present a movie,
however some screen shots is made to illustrate the movie itself, but more importantly the limi-
tations of single point spectral density.

Figure 3.37 shows a screen shot of a movie from case 1, where the wind velocity is the
resonant velocity for the first vertical mode. Both sub-figures show the entire span of the bridge.
The upper one is of the bridge girder response before installing a TMD. The red circles is the
displacement found from time series made from single point calculations of the spectral density,
and by using a equal random-vector for each point. As can be seen, the circles have symmetric
displacement around the middle, whereas the bridge girder has anti-symmetric and follows the
first vertical mode shape. In this case, the circles and the bridge girder would almost coincide if
we reflect the right part around the neutral position of the bridge girder. However, the simplified
bridge girder displacement seems to give too stiff response in the middle of the span, as it does
not coincide with the circles in the middle. The lower sub- plot shows the displacement of
the bridge girder after the installation of a TMD, as well as the TMD itself. No single point
response is shown in the lower subplots, but in principle it is possible to calculate and show
single point response there as well.

In case 5, the TMD is placed at the zero point of the first vertical mode, as shown in figure
3.38, and the response is not reduced, in fact it is slightly increased because some small move-
ment of the TMD. Again the simplified method of finding the bridge girder gives worst results
for the middle area, where the bridge girder now is too little stiff.
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Figure 3.37: Screen-shot of movie of brigde displacement from Case 1

The movies gives a physical meaning of the results. From the “movie-calculations” the
maximum displacement response for the bridge girder and the TMDs could be estimated. The
best way to estimate the displacement response is directly from time domain simulations, as
shown in figure 3.36. However, to get a rough estimate of the response anywhere at the bridge,
not just only where the single point response is calculated, the method of using the movie
calculations is simple. The maximum response given in figure 5.21, is from just a single time
domain simulation, but it is the maximum values of the entire span, not just a chosen point, that
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Movie Window

Simulated main system response without TMD, Case 5 , V, = 2.295 m/s
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Figure 3.38: Screen-shot of movie of brigde displacement from Case 5
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is found. The cases which seems to give lowest response of the bridge girder, case 1, 11, 18, 20,
22 and 29. In the FREF, case 22 and 18 had low response, but the message from the figure must
be that if the displacement response should have been trustful, many time domain simulations
should have been made. No further effort is made in doing more simulations, since the response
is quite well known from frequency response function, spectral density and standard deviation.
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Figure 3.39: Estimated maximum displacement for different cases
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Chapter I

Comments

4.0.3 Why the response of some higher modes tend to be too big

Since the cross sectional load spectrum .S, is dependent on the variance of the vortex shedding
load, which again is dependent on the velocity squared 1.122. Thus the vortex shedding load
increases for increasing wind speed values. Another effect of changing the wind velocity, is the
effect on the aerodynamic damping. The aerodynamic damping is in itself negative, thus the
total damping of the system is reduced. In the equation of aerodynamic damping, equation ??,
the aerodynamic damping coefficient, K, _, could be dependent on the wind velocity. For the
Ostergy bridge, Hjorth-Hansen and Strgmmen, [Hjorth-Hansen and Strgmmen, 2001], chose to
use the following expression of the velocity variation of K, _:

K, 0.9 -1
Kamar {(V/VCT - 0.25)2] P [(V/vcr +0.02)

The variation is shown in a graphic format in figure 4.1. The expression is only valid for
positive values of K, thus it is limited roughly 0.9 < VLT < 2.5.

] —0.18 (4.1)

Figure 4.1: K, variation with different velocity

The velocity variation of K,. will reduce the (negative) aecrodynamic damping, hence in-
crease the total damping, of modes with critical velocity other than the velocity considered.

Since Vir1 < Virg < Vipa, the K, value will be reduced from mode 3 where /- = {1, to
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mode 4 where VL = “f“ using equation 4.1. Figure 3.2 is obtained using constant i, thus it
will show larger response than realistic for modes with V,,. not equal the velocity, V', considered.

The graph of the velocity variation of K, shown in figure 4.1 is steeper for V' < V., than for
V > V... Also, its maximum is not at velocity V' = V., but slightly over, about V' ~ 1.06 - V..
These two curve characteristics comes from two separate, but jet connected reasons. Firstly
the slope of the curve could reflect the physical phenomenon called lock-in. That is that the
structure and the flow will interact when resonance occurs, and for some range of velocities
above V. the vortex shedding frequency will stay constant equal the shedding frequency at V,
[Strgmmen, 2010]. Secondly the Strouhal number is here defined at onset of lock-in, such that
the maximum response occurs slightly above V..

The consequences of using a constant K, is that some modes other than the one at reso-
nance get higher response than in reality. Especially the response of the lower modes at res-
onance velocities of the higher modes is overestimated, due to the higher cross sectional load
Sq- with increased velocity, and that the physical considerable reduction of K, for V < V,,
is neglected. However, the maximum response for each mode n is for V' = V,, ,,,and thus the
overestimated other modes does not affect the maximum response that much, but rather the
frequency content of the response. A response spectra containing overestimated peaks other
than the peak for the resonance mode, would produce time series with overestimated frequen-
cies other than the resonance frequency, and make the response more broad banded. While
choosing a velocity variation of K, Hjorth-Hansen and Strgmmen make it clear that the K,
as well as the band-width parameter b, does not affect the prediction of the maximum RMS-
values much, but rather the broad- or narrow-bandedness of the response [Hjorth-Hansen and
Strgmmen, 2001].

4.0.4 Why the change in standard deviation does not follow the trend
found by Hjorth-Hansen and Stremmen

The expression for aerodynamic damping is dependent on the response o,._. Since the aerody-
namic damping is used to calculate the response, iterations is needed. Assuming that the tuned
mass dampers is effective, the response is small, and it could be neglected from the term of aero-
dynamic damping to avoid demanding iterations. For a system without tuned mass dampers,
or ineffective mass dampers, iterations is needed. In the Matlab script iterations are done for
the system without mass dampers, but it is not for the systems with mass dampers. However,
since different cases of placement and tuning of the mass dampers is tested, some of them is
not effective, and neglecting the response in the calculation of the aerodynamic damping might
give to small total damping in the system. Also, the trend presented by Hjorth-Hansen and
Strgmmen is found by iterating for all cases [Hjorth-Hansen and Strgmmen, 2001]. Thus, small
changes in the standard deviation might be missed if the response in the aerodynamic damping
is neglected.
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Chapter

Conclusion

In the analysis of the Hardanger Bridge, several concept has been learned. The difference of
response with and without one or several tuned mass dampers is clearly when working with the
analysis. Tuned mass dampers are very effective to tune out motion at a certain frequency.

The analysis of the Hardanger bridge indicate in the order of 0.1 meters maximum displace-
ment response without the use of tuned mass dampers. It is not certain that this is correct, but
assuming the maximum displacement is of that order of magnitude, it would probably not be
a problem for the bridge as a construction. However, at many locations wind velocities that
gives vortex shedding occurs frequently, and the vibration of the bridge can be a problem for
peoples well-feeling and trust of their safety. The purpose of this thesis was not to come up
with a conclusion whether or not one or several tuned mass dampers is necessary, but to look at
the effect of installing it. The analysis indicate that one or several tuned mass dampers placed
at locations where the eigen-mode they are supposed to damp out has its maximum, or is close
to its maximum, is an efficient way to reduce the response.

A damper is more effective when it has higher mass ratio, but the ratio of the increasing
effect seems to decay for higher mass ratios. The value of the damping seems to adjust the
difference between the value of the frequency response at the eigen-frequency, and the peaks
around. A higher damping ratio seems to give a smoother curve for the values consider in this
case. The value of the frequency seems to adjust the relative height between the two peaks at
each side of the eigen-frequency. Den Hartogs optimization gives peaks at almost the same
level. Frequency according to Den Hartog, and damping according to Den Hartog or slightly
above seems to give effect of the tuned mass dampers.

In the Matlab script, the iteration process to find the response, is done for the case with no
damper, but the response term in the aerodynamic damping is neglected for the case of tuned
mass dampers installed. That is because the response, if the damper is effective is negligible
when used in the expression for aerodynamic damping.

To find the approximate response along the span of the bridge, a simplified method that
could be used is to find the response in modal coordinates and multiply it by the mode-shapes.
The method does neglect the coupling between the modal degrees of freedom, thus it is best
suited for cases where the eigen- frequencies is well separated. Also the coupling is found to be
increased with increasing mass ratios.
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Appendix

5.0.5 Spectral Density Plot

Response of main system for Case 11 , at », = 327.5b m

T T T T T T T I I
0.08- —Veri=2.3m/s ||
—Vcr2=2.91m/s
0.071 —Ver3=4.11m/s||
—Vcerd=4.4m/s
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Figure 5.1: Response of bridge girder at x = 327.5 m for Case 11
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Response of TMD for Case 11 , at =, = 327.5m
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Figure 5.2: Response of TMD at x = 327.5 m for Case 11
Response of main system for Case 14 , at z, = 327.5 m
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Figure 5.3: Response of bridge girder at x = 327.5 m for Case 14
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Response of TMD for Case 14 , at . = 327.5 m
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Figure 5.4: Response of TMD at x = 327.5 m for Case 14

Response of main system for Case 16 , at =, = 655 m
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Figure 5.5: Response of bridge girder at = 655 m Case 16
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Response of main system for Case 20 , at 2, = 327.5 m
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Figure 5.6: Response of bridge girder at z = 327.5 m for Case 20

Response of TMD for Case 20, at z, = 327.5b m

. : :
0.03F —Ver1=23m/fs H
—Vcr2=2.91m/s
—Ver3=4.11m/s
0.0251 —Verd=4.4m/fs |
—Vcer5=5.69m/s
Vcré=6.92m/s
0.02f =
3
I
& 0.015¢ :
0.01F 4
0.005 4
0- . k s JA AN !
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
w (rad/s)

Figure 5.7: Response of TMD at x = 327.5 m for Case 20
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<10 Response of main system for Case 20 , at 2, = 655 m
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Figure 5.8: Response of bridge girder at x = 655 m

Response of main system for Case 21 , at 2, = 327.5 m
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Figure 5.9: Response of the bridge girder at x = 327.5 m
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Response of main system for Case 25
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Figure 5.10: Response of TMD at x = 327.5 m

Response of main system for Case 26 , at 2, = 327.5 m
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Figure 5.11: Response of the bridge girder at =
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5.0.6 Standard Deviation Plot

O [m] Standard deviation with different mass ratios at x =L/2
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Figure 5.13: Response of TMD

g [m] Standard deviation with different damping ratios atx = L/4
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o = Bridge girder with TMD, UTZ
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Figure 5.14: Values of standard deviation with different damping ratios at x = L/4
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Standard deviation with different frequency ratios at x = L/4
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Figure 5.15: Values of standard deviation with different frequency ratios at x = L/4
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5.0.7

Frequency response function (FRF) for vertical modes 3 - 6

Frequency response function for mode 3

1 ——— No TMD|| 1 ——— No TMD|| 1 ———= No TMD|]
Casel Caseb Casel1
Case2 Case7 Case12
Case3 Case8 Case13
= Case4 Case9 Case14
Caseb \ Case10 o Case15

1 1l
ot === No TMD|| 0 === No TMD|| 1t === No TMD||
Case16 Case21 Case26
Case17 Case22 Case27
Case18 Case23 Case28
= Case19 Case24 Case29
m ) Case20 ) Case25 ' Case30
i 4 10 4 10 4
10 10 1
08 1.4 16 18 08 1.2 1.4 16 18 08 1.2 1.4 16 18
w (rad/s) w (rad/s) w (rad/s)

Figure 5.16: FRF for the third vertical mode, without TMD and with different cases. The definition of
the cases can be found in tables 3.1, 3.2, 3.3, 3.4 and 3.5

Frequency response function for mode 4

10t === No TMD|| 10t ——— No TMD|| I === No TMD||
Case1 Caseb Casel1
Case2 Case7 Case12
Case3d Case8 Case13
= Cased4 Case9 Case14
m Caseb e Case10 e Casel15

0’ 10
1 —== No TMD|] 1 ——— No TMD|] 1 —== No TMD|]
Case16 Case21 Case26
Case17 Case22 Case27
Case18 Case23 Case28
= Case19 Case24 Case29
m \ Case20 \ Case25 , Case30
= 4 0 4 0 k|

14 16 18 2 1 12 1.4 16 18

1 12 14 16 18 2 1 12
w (rad/s) w (rad/s) w (rad/s)

Figure 5.17: FRF for the fourth vertical mode without TMD and with different cases. The definition of
the cases can be found in tables 3.1, 3.2, 3.3, 3.4 and 3.5
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ode 5

) Frequency response function for mos
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Figure 5.19: FRF vertical mode 5

Frequency response function for mode 6
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Figure 5.21: FRF vertical mode 6
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5.0.8 Copy of the main part of the Matlab Script
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% Matlab Script for Determine the Response of Vortex Induced Vibrations in Vertical
Modes at a Suspension Bridge

% Developed by Jens Einar Aaland during the master-thesis 2014

% All use at own risk.

clear all
close all

L = 1310;
nxval = 100; dxval = (L+1)/nxval;
xval = 0:dxval:L;

mz vec = [12937, 12937, 12937, 12937, 12937, 12937];

rho = 1.25; B = 18.3; bz = 0.2; St = 0.16; lambda = 3.5; D = 3.25; aL = 0.233;
sigma CL = 3.9234/(sqrt(lambda/bz)) ;
sigma gz hatt = sigma CL; %$*(D/B);
% Use constant Kaz ?
Kamax = 2.4112;
Constant Kaz = Kamax*4*(D/B)"2; % If Constant Kaz=0, it will compute Kaz for
every wind-speed setting
% based on Kamax. If constant Kaz should be used,

assign its value.

N mod = 6; % Number of eigenmodes
SN j = 3; % Number of tuned mass dampers (given in text-file)
% Eigenfrequencies [omega zl,omega z2,....,omega z(N mod)]:

omega z = [0.71,0.9,1.27,1.36,1.76,2.14];

% Damping [xi zl,xi z2,...,xi z(N mod)]:
xi z = [0.005,0.0051,0.0058,0.006,0.0077,0.01] ;

% Eigenmodes :
v =[3 46 7 10 12]; % Which of the eigenmodes is vertical
k pi = 1:1:16; % Value of sine wave

% Load text file with eigenmodes:
load -ascii MatLabInPutFiles\AA.txt
K=length (AA(1,:)) ;

N=length (AA(:,1)) ;

ak = zeros(length (v),K);

for k = 1:length(v)

ak(k,:) = DA (4*(v(k))-1,:);

end

% Eigenmodes [phi zl, phi z2, ...., phi z (N mod)]:

phi z = @(x)

[sum(ak (1, :) *sin(k pi(:)*pi*x/L)),sum(ak(2,:)*sin(k pi(:)*pi*x/L)),sum(ak(3, :)*sin(k pi
(:)*pi*x/L)),

sum(ak (4, :)*sin(k pi(:)*pi*x/L)),sum(ak(5,:)*sin(k pi(:) *pi*x/L)),sum(ak(6,:)*sin(k pi (
1) *pi*x /L)) ] ;

phi val = [];



xval';
1l:length(xval)

phi xval

for j

[phi val; phi z(xval(j))];

phi val
end

clear AA SS

[max val

= max (abs (phi val));

xval (first element nr max) ;

,first element nr max]

_phi

location first max

Input data which in this case is given in files:

oe

is tuned to damp

of TMD(s)

Which vertical mode the TMD (s)

Number of TMD's

Position(s)

.Jd
Z X B

MD mode damp

o° o o o

mass ratio

TMD (s)

T, T

>y

=

X

damping ratio

TMD (s)

eigen-frequency

TMD (s)

d

omega

o° o© oe

"output-part")

(The files is loaded in the

oe

Make movie?
make movie

°
]

=0 it will

if make movie

it will make movie,

=1,

0; % If make movie

not.

OUTPUT PART

°
]

$Plot of vertical eigenmodes:

7

length(v)
figure;

vm =

fig =
FigProperties(fig)
for n=

1:vm,
v (n) ;
str=['\phi {' num2str(j)

J

R

1,n)));

phi val(:,n)/max(abs(phi val(

Phizi

plot (xval,Phizi, '-');

pPlotProperties (p) ;

subplot (vm, 1, n);

p

(fo, n, -1.2, 1.21)

axis
grid

7

hY¥Label

ylabel (str)

set (hYLabel,
'FontSize',18);

= xlabel('x');
hXLabelProperties (hXLabel)

hXLabel

end

$3\phi {z}\left (\frac{x}{L}\right)s$');

title ('Vertical mode shapes,

hTitle

set (hTitle,
'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16) ;

end
hold on

screen2png ( [ '"MatLabOut PutFiles\VerticalModes'])

end

TMD mode damp and x d from text file:

3

Get N
One single TMD:

o
°

°
]

load -ascii MatLabInPutFiles\TMDnumberAndPositionsSingleMode. txt

;1)

TMDnumberAndPositionsSingleMode (:,2) ;

TMDnumberAndPositionsSingl eMode (

TMD mode damp vec single mode

N j vec single mode



3
°

Multi
lo

diff

x d vec single mode = TMDnumberAndPositionsSingleMode (:,3) ;

clear TMDnumberAndPositionsSingleMode

ple TMD's:

ad -ascii MatLabInPutFiles\TMDnumberAndPositionsMultiMode.txt

N j vec multi mode = TMDnumberAndPositionsMultiMode(:,1);

TMD mode damp vec multi mode = TMDnumberAndPositionsMultiMode(:,2:4) ;
x d vec multi mode = TMDnumberAndPositionsMultiMode(:,5:7) ;

clear TMDnumberAndPositionsMultiMode

5
king omega- axis

A SRS A A AR A R AR A A AR A R A AR R R R AL AR S A AR A AR R R R AR R A A R A A A AR AL AR AR AR AR A LR AR A
ga = 20;

~small large = 4; % Difference between small and large omega steps

step omega n = 0.25*((omega_z(1l)+omega z (N mod)) /2);

omeg
omeg

dome
dome
n st
omeg
for

om
end
Omeg

a min = omega z (1l)-step omega n;

a max = omega z (l)+step omega n;

ga large approx = 0.5*step omega n/(nomega); % Approximate domega large
ga small = 0.5*step omega n/(diff small large*nomega+0.5) ;

eps small = ceil((2*step omega n/domega small)+1) ;

a small = zeros (N mod,n steps small);

n = 1:N mod

ega small(n,:) = omega z (n)-step omega n:domega small:omega z(n)+step omega n;
a start = omega z (1) -

2*step omega n+0.5*domega large approx:domega large approx:omega z (1)-step omega n-
0.5*domega large approx;

Omega = Omega start;

omega small n = omega small(l, :);

m max = length(omega small(l,:))-1;
for n = 1:N mod-1

omega small n plus 1 = omega small (n+l, :);

for m = 1:m max

if omega small n(m)>omega small n plus 1(m max-m)
omega small n = omega small n(l:m-1);
omega small n plus 1 = omega small n plus 1(m max-

m+1:numel (omega small n plus 1)) ;

break
end
end

delta large = omega small n plus 1(1)-omega small n(end);
n steps large = ceil (delta large/domega large approx) ;
domega large = delta large/n steps large;

omega large =

omega small n(end)+0.5*domega large:domega large:omega small n plus 1(1)-domega large;

end
dOme
for

if n == N mod-1
omega large = [omega large, omega small n plus 1];
end
Omega =[Omega, omega small n, omega largel;
omega small n = omega small n plus 1;
m max = length(omega small n)-1;

ga = zeros (size (Omega)) ;
n = 2:length(Omega)-1
dOmega (n) = 0.5* (Omega (n+l)-Omega (n-1)) ;



% Running different cases

LocationModel = [1;0;0;0;0;0]; LocationMode2 = [0;1;0;0;0;0]; LocationSeveralModes =
[0;0;1;0;0;01;

MassRatio = [0;0;0;1;0;0]; DampingTMD = [0;0;0;0;1;0]; FrequencyTMD = [0;0;0;0;0;1];
CaseStudy = [LocationModel, LocationMode2, LocationSeveralModes, MassRatio, DampingTMD,
FrequencyTMD] ;

n parameters = length(CaseStudy (1,:));

TotCaseNr = 0;
number of cases = 5;

Information matrix = zeros(n parameters*number of cases,17);

Write information in the following format:

Case , N j , x d (1x(1->3)-vector) , TMD mode damp (1x(1->3)-vector) , my d
(1x(1->3) -vector) , xi d (1x(1->3)-vector) , omega d (1x(1l->3)-vector)

o°

o° oe

o°

Make the size of the critical-wind-speed for each mode (Vr),
and the omega s - vectors:

Vr = zeros(l,N mod);

Omega s = zeros(l,N mod);

o°

H rz = zeros (length(Omega), N mod, N mod, n parameters*number of cases) ;
H orig = zeros(length(Omega), N mod, N mod, n parameters*number of cases);

maxmaxrz orig = zeros(1l,number of cases*n parameters) ;
maxstdrz orig = zeros(1l,number of cases*n parameters);
maxkp orig = zeros(l,number of cases*n parameters) ;

maxmaxrz = zeros(l,number of cases*n parameters) ;
maxstdrz = zeros(1l,number of cases*n parameters) ;
maxkp = zeros(l,number of cases*n parameters) ;

maxmaxrd = zeros(1l,number of cases*n parameters);
maxstdrd zeros (1,number of cases*n parameters) ;
maxkp rd = zeros(1l,number of cases*n parameters);

max y orig = zeros (number of cases*n parameters,N mod) ;
maxy rz = zeros (number of cases*n parameters,N mod) ;
maxy damper = zeros (number of cases*n parameters,N mod) ;
j max rz = zeros(number of cases*n parameters,N mod) ;

SIGMAhalf rz = zeros(l,number of cases*n parameters) ;
SIGMAhalf rd = zeros(l,number of cases*n parameters) ;
SIGMAquart rz = zeros(l,number of cases*n parameters);
SIGMAquart rd = zeros(1l,number of cases*n parameters);

SIGMA ORIGhalf = zeros (1,number of cases*n parameters) ;

SIGMA ORIGquart = zeros(l,number of cases*n parameters);
for Parameter = 1:n parameters $%%%5%%%5%%%5 5555555555 %5855 5555555555 %%%%%%%%%%%%
CaseToStudy = CaseStudy(Parameter, :);

if CaseToStudy(l)==

% Get N _j, TMD mode damp and x d from text file:
N j vec = N j vec single mode (1l:number of cases, 1);
TMD mode damp vec = TMD mode damp vec single mode (1l:number of cases, :);
x d vec = x d vec single mode(l:number of cases, :);

elseif CaseToStudy (2)==
% Get N j, TMD mode damp and x d from text file:
N j vec = N j vec single mode (number of cases+l:2*number of cases,1);
TMD mode damp vec =
TMD mode damp vec single mode (number of cases+1l:2*number of cases, :);
x d vec = x d vec single mode (number of cases+l:2*number of cases,:);



elseif CaseToStudy (3)==
% Get N j, TMD mode damp and x d from text file:
N j vec = N j vec multi mode (1:number of cases,1);
TMD mode damp vec = TMD mode damp vec multi mode (1:number of cases,:);
x d vec = x d vec multi mode (1:number of cases,:);
else
N j vec = 3*ones (number of cases,1);
TMD_mode_damp_vec = repmat([1,2,1], [number of cases,1]);
x d vec = repmat([327.5, 655, 982.5], [number of cases,1]);
end
for Case = 1l:number of cases %%%%%%%
TotCaseNr = TotCaseNr + 1;
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if CaseToStudy(4)==
% Get weight between TMD's mass ratios from text file:
load -ascii MatLabInPutFiles\TMDmassRatioRUN2.txt
my d vec = TMDmassRatioRUN2;
clear TMDmassRatioRUN2
else
my d vec first row = zeros(l,N j vec(Case)) ;
for n = 1:N_j vec(Case)

my d vec first row(n) = 0.010;
end
my d vec = repmat(my d vec first row, [number of cases,1]);

end

my d = my d vec(Case,:) ;
if CaseToStudy(5)==
% Calculate TMD damping ratio(s) in a seperate Matlab script (Xis.m)
xl d vec = XisRUN2 (my d vec) ;
else
% Use Den Hartog for my = 0.01:
xi d vec first row = zeros(l,N j vec(Case)) ;

for n = 1:N j vec(Case)

xi d vec first row(n) = sgrt ((3*0.01)/(8*(1+0.01)"3)) ;
end
xl d vec = repmat(xi d vec first row, [number of cases,1]);

end
if CaseToStudy(6)==1
% Calculate TMD frequency in a seperate Matlab script (Omegas.m):
omega d vec = OmegasRUN2 (my d vec,TMD mode damp vec,omega z);
else
% Use Den Hartog for my = 0.01:
omega d vec = zeros (number of cases,N j vec (Case)) ;
for ncase = l:number of cases
for n = 1:N j vec(Case)
omega d vec(ncase,n) = omega z(TMD mode damp vec (ncase,n))/(1+0.01);
end
end
end
% All parameters to be used:
N j = N j vec (Case,:);
TMD mode damp = TMD mode damp vec(Case,:);
x d = x d vec(Case,:);
my d = my d vec(Case, :) ;
xi d = xi d vec(Case,:) ;
omega d = omega d vec(Case, :);
% Values of eigenmodes at damper positions:
phi d = zeros(N j,N mod);
for n = 1:N j
phi d(n,:)=phi z(x d(n));
end



% Integral of phi z”2
int phi z sq = zeros(1l,N mod);
dn = 0.01;
for n = 0:dn:L
int phi z sq = int phi z sg + (phi z(n)).”"2*dn;
end

% Modal mass matrix:
Mz = zeros (N _mod) ;
for n = 1:N mod

Mz (n,n) = mz vec(n)*int phi z sqg(n);
end
% TMD modal mass matrix:
Md = zeros (N j);
for m = 1:N j

Md(m,m) = my d(m)*Mz (TMD mode damp (m),TMD mode damp (m)) ;

end
o

% Some matrixes to be used later on:

SR original = zeros(N mod,N mod,length(Omega),N mod) ;

Hinv original = zeros (N mod,N mod, length (Omega) ,N mod) ;

H original = zeros(N mod,N mod,length(Omega) ,N mod) ;
Sr original = zeros(length(Omega),N j,N mod) ;

S eta original = zeros(N mod,N mod,length(Omega), N mod) ;

Psi original = zeros (1,N mod,N j);
sigma rz original = zeros (N j,N mod) ;

xi aez original = zeros(1l,N mod) ;

xiz original = zeros (N mod,N mod,N mod) ;
xl aez orig = zeros(N j,N mod,N mod) ;

Sgz = zeros (length(Omega) ,N mod) ;
SRzRz = zeros (N _mod, length(Omega) , N mod) ;
SR = zeros (N mod+N j,N mod+N j,length(Omega) ,N mod) ;

H1l = zeros(N mod,N mod, length (Omega),N mod) ;
H12 = zeros (N mod,N j,length(Omega),N mod) ;
H21 = zeros(N j,N mod,length(Omega),N mod) ;

H22 = zeros(N_j,N j, length(Omega), N mod) ;

Hinv = zeros (N mod+N j,N mod+N j,length (Omega),N mod) ;
H = zeros (N mod+N j,N mod+N j,length(Omega),N mod) ;

Sr = zeros (1+N j,1+N j,length (Omega),N mod,N j);

S eta = zeros (N mod+N j,N mod+N j, length(Omega),N mod) ;

xi aez = zeros (N mod,N mod) ;

Psi = zeros(N j+1,N mod+N j,N j);
% Make the bottom part of the Psi - matrix:
for n = 1:N j
Psi(1+n,N mod+n,:) = 1;
end

Kaz = zeros(N mod,N mod) ;

sigma rz guess original = 0;
n loops = zeros(N j,N mod) ;
Convergence sigma rz all =
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% For every wind-speed setting
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for v = 1:N mod
Vr(v) = (D*omega z(v))/ (2*pi*St);

if Constant Kaz == 0
for n = 1:N mod

if Vr(v) /Vr(n) < 0.9 || Vr(v)/Vr(n) > 2.45

Kaz(n,v) = 0;



else
Kaz(n,v) = (4% (D/B)*2)*Kamax*(0.9/(((Vr(v)/Vr(n))-0.25)"(2)))*exp (-
1/(((Vr(v)/Vr(n))+0.02)"(24)))-0.18;

end
end
else
for n = 1:N mod
Kaz (n,v) = Constant Kaz;
end
end
V = Vr (v);
Omega s(v) = (2*pi*V*St)/D;

omega s = Omega_ s (v) ;
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Kzinv zeros (N | B ;
for n = 1:N mod
Kzinv(n,n) = (1/(omega z(n) "2*Mz (n,n))) ;

error = 1;

Convergence sigma rz = [sigma rz guess originall ;
while error > 0.001
n loops(xr,v) = n loops (xr,v) + 1;
for n = 1:N mod
xi aez original(l,n) = ((rho*B*2)/(4*mz vec(v)))*Kaz (n,v) *(1-
(sigma_rz guess original/(aL*D))."2);
xiz original(n,n,v) = (xi z(n)-xi aez original(1l,n)) ;
end
omega z rel = zeros(N mod,N mod, length(Omega)) ;

)

% For every omega- setting:
for o = 1l:length(Omega)
omega = Omega (o) ;

for n = 1:N mod

omega z rel(n,n,o) = omega*(1l/(omega z(n))) ;
end
Sqgz(o,v) = (((0.5*rho*B*sigma gz hatt*V*2)”2)/(sqrt (pi)*omega s*bz)) *exp (- ((1-

omega/omega s)/bz) *2);
for m = 1:N mod

SRzRz (m,0,Vv) = 2*lambda*D*Sqgz(o,v)*int phi z sqg(m);
SR original (m,m,0,v) = (Kzinv(m,m)”2*SRzRz(m,0,Vv));
end
Hinv original(:,:,o0,v) = eye (N mod) -
omega z rel(:,:,0)" "2*eye(N mod) +2*1i*omega z rel(:,:,0)*xiz original(:, :,v);
H original(:,:,0,v) = inv(Hinv original(:,:,o,Vv));
Psi original(1l,1:N mod,xr) = phi z(x d(xr)) ;

Sr original (o, xr,v) =

Psi original (:,:,xr)*conj (H original (:,:,0,Vv)) *SR original(:, :,0,Vv)*
transpose (H original(:,:,0,Vv))*transpose(Psi original (:,:,xr));
S eta original(:,:,0,Vv) =

conj (H original(:,:,0,Vv))*SR original(:,:,0,Vv) *transpose (H original(:,:,0,Vv));
end

)

% Computing the standard deviation:



sigma rzrz original itt =
abs (sqgrt (trapz (transpose (Sr original (:,xr,v)).*dOmega))) ;

error = abs(sigma rzrz original itt - sigma rz guess original);

sigma rz guess original = sigma rzrz original itt;
Convergence sigma rz = [Convergence sigma rz, sigma rzrz original itt];
end
if xr ==
Convergence sigma rz all = [Convergence sigma rz all, Convergence sigma rz];
end
xi aez orig(xr,:,v) = xi aez original(l,:);
sigma rz original (xr,v) = sigma rzrz original itt;
if sigma rzrz original itt < O
return
end
end

% For every omega- setting:

omega z rel = zeros (N mod,N mod,length (Omega)) ;
omega d rel = zeros (N j,N j,length(Omega)) ;

for o = 1:1length (Omega)

omega = Omega (o) ;

xiz = zeros(N mod,N mod) ;
Kzinv = zeros (N mod,N mod) ;
for n = 1:N mod

omega z rel(n,n,o) = omega*(1l/(omega z(n))) ;

xi aez(n,v) = (rho*B*2/(4*mz vec(v)))*Kaz(n,v);
xiz(n,n) = (xi z(n)-xi aez(n,v));

Kzinv(n,n) = (1/(omega_z (n)*2*Mz(n,n)));

end

xid = zeros(N j,N j);
for n = 1:N j

omega _d rel(n,n,o) = omega*(l/omega d(n));
xid(n,n) = xi d(n);
end
Sqgz(o,v) = (((0.5*rho*B*sigma gz hatt*V*2)”2)/(sqrt (pi)*omega s*bz)) *exp (- ((1-

omega/omega s)/bz) *2);
for m = 1:N mod

SRzRz (m,0,v) = 2*lambda*D*Sqgz (o,v)*int phi z sqg(m);
SR(m,m,0,v) = (Kzinv(m,m)”*2*SRzRz (m,0,V));
end

Dhatt = inv(Mz)*transpose (phi d)*Md;

H11(:,:,0,v) = eye(N mod) -

omega z rel(:,:,0)"2*%(eye(N mod)+Dhatt*phi d)+2*li*omega z rel(:,:,0)*xiz;
H12(:,:,0,v) = -omega z rel(:,:,0) "2*Dhatt;
H21(:,:,0,v) = -omega d rel(:,:,0)” "2*phi d;
H22(:,:,0,v) = eye(N j)-omega d rel(:,:,0) " 2+2*1li*omega d rel(:,:,0) .*xid;
Hinv (:,:,0,v) = [H11(:,:,0,Vv),H12(:,:,0,Vv);H21(:,:,0,V),H22(:,:,0,V)];
H(:,:,0,v) = inv(Hinv(:, :,0,V));

for xr = 1:N j
Psi(1,1:N mod,xr) = phi z(x d(xr));

Sr(:,:,0,V,Xr) =
Psi(:,:,xxr)*conj (H(:,:,0,v))*SR(:,:,0,V)*transpose (H(:,:,0,V))*transpose (Psi (:,:,xr));



S eta(:,:,0,v) = conj(H(:,:,0,v))*SR(:,:,0,V)*transpose(H(:,:,0,V));
end

end
end

)

% Saving the standard deviation for later use:
for xr = 1:N j

if x d(xr) == L/2
SIGMA ORIGhalf (TotCaseNr) = max(abs(sigma rz original (xr,:)));
end
if x d(xr) == L/4
SIGMA ORIGquart (TotCaseNr) = max(abs(sigma rz original(xr, :)));
end
end
% End of "for all wind- speed setting"
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% Make a plot of convergence of original response:
if TotCaseNr ==
fig = figure;
start = 1;
for v. = 1:min(N mod,6)
subfig = subplot(3,2,v) ;
yplotval = Convergence sigma rz all(start:start+n loops(1l,v)) ;
xplotval = 0:1:n loops (1,V) ;
start = start + length (yplotval) ;
p = plot(xplotval,yplotval) ;
set (p, 'Linewidth',2.5) ;
if v == 1
hTitle = title('Convergence of $$\sigma {r {z}}$$ itterations of system without
TMD', 'HorizontalAlignment', 'left!');
set (hTitle,
'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 22);
end
hXLabel = xlabel ('Number of itterations') ;
hYLabel = ylabel('$$\sigma {r {z}}s$ [m]");
set ([hXLabel, hYLabell],
'interpreter', 'latex', 'FontName',b 'Times', 'FontSize', 16);
end
FigProperties(fig)

end
% Splitting Sr rz and Sr rd:
Sr rz = zeros(length (Omega),N j, N mod) ;
S eta rz = zeros(N mod, length (Omega), N mod) ;
S eta rd = zeros(N j,length(Omega), N mod);
Sr rd = zeros(length (Omega),N j, N mod) ;
for o 1:length (Omega)
for v. = 1:N mod
for xr = 1:N j
Sr rz(o,xr,v) = Sr(l,1,0,V,Xr);
Sr rd(o,xr,v) = Sr(l+xr,l+xXxr,o,Vv,Xr);
end
for n = 1:N_mod
S eta rz(n,o,v) = S eta(n,n,o,Vv);
end



for n = 1:N j
S eta rd(n,o,v) = S eta(N mod+n,N mod+n,o,v);
end

end

end

$clear Sr S eta

% Computing the standard deviation:

sigma rzrz = zeros(N j, N mod);

sigma rdrd = zeros(N_j, N mod) ;

for v.= 1:N mod

for xr = 1:N j
sigma rzrz(xr, v) abs(sqgrt (trapz (transpose(Sr rz (:,xr,v)).*dOmega))) ;
sigma rdrd(xr, v) = abs(sqgrt(trapz(transpose(Sr rd(:,xr,v)).*dOmega))) ;

end

end

% Store the standard deviations for x = L/4 and x = L/2:

for xr = 1:N j

if x d(xr)==L/2

SIGMAhalf rz(TotCaseNr) = max (abs(sigma rzrz (xr, :)));
SIGMAhalf rd(TotCaseNr) = max (abs(sigma rdrd (xr, :)));
end

if x d(xr)==L/4

SIGMAquart rz(TotCaseNr) = max(abs (sigma rzrz(xr, :)));
SIGMAquart rd(TotCaseNr) = max(abs (sigma rdrd(xr, :)));
end

end

% For every "mean wind speed at resonance"- setting:

% Compute:
% * Response spectral densities
% * Max/min values to be used in plotting
min x = 0.85*min(omega z(1)); max x = 1.15*min(omega z(N mod)) ;

x d legend line rd matr = zeros (length(Omega),N j,N mod) ;
x d legend line matr = zeros(length(Omega),N j,N mod) ;

S rzrz original matr = zeros(length(Omega),N j,N mod);

S rzrz line matr = zeros(length (Omega),N j,N mod) ;

S rdrd line matr = zeros(length (Omega),N j,N mod) ;
for v. = 1:N mod

% Store the computed S-specra in a matrix for each v- and xr- setting:

for xr = 1:N j

x d legend line rd matr(:,xr,v) = x d(xr);
x d legend line matr(:,xr,v) = x d(xr);
S rzrz line matr(:,xr,v) = Sr rz(:,xXr,Vv);

S rdrd line matr(:,xr,v) Sr rd(:,xr,v);

S rzrz original matr(:,xr,v) = Sr original(:,xr,v);
end
for n = 1:N mod
for o = 1:1length(Omega)
H rz(o,n,v,TotCaseNr) = H(n,n,o,Vv);
H orig(o,n,v, TotCaseNr) = H original(n,n,o,Vv);
end
end
end
clear S rzrz rel S rdrd rel
clear H H original

for xr = 1:N j



S rdrd line plot = [];
S rzrz original plot = [];

S rzrz line plot = [];
legend wind speedl [1;
legend wind speed2 [1;

for v = 1:N mod
S rdrd line plot = [S rdrd line plot, S rdrd line matr(:,xr,v)];
S rzrz line plot = [S rzrz line plot, S rzrz line matr(:,xr,v)];
S rzrz original plot = [S rzrz original plot, S rzrz original matr(:,xr,v)];
legend wind speedl = [legend wind speedl, v];
legend wind speed2 = [legend wind speed2, round(100*Vr(v))/100];
end
if x d(xr) == L/2 || x d(xr) == L/4
% Plotting of S rzrz:
titletextS = ['Response of main system for Case ' num2str(TotCaseNr) ' , at
$$x {r}s$s = ' num2str(x d(xr)) ''m'];
ylabeltextS = ['$$ Sr {z}s$'];
saveAsRz = ['MatLabOutPutFiles\VSTMDmmResponceMainSystemXr '
num2str (floor(x d(xr))) 'Case' num2str(TotCaseNr) ''];
fig =

PlotResponseSpectra(S rzrz line plot,Omega,legend wind speedl,legend wind speed2,min x,
max x,titletextS, ylabeltextS, saveAsRz) ;
close(fig)
% Plotting of S rdrd:

titletextS = ['Response of TMD for Case ' num2str(TotCaseNr) ' , at $$x {r}s$s =
" num2str(x d(xr)) ' m']l;
ylabeltextS = ['$$ Sr {d}ss'];

saveAsRd = ['MatLabOutPutFiles\VSTMDmmResponceTMDXr' num2str (floor (x d(xr)))

'Case' num2str(TotCaseNr) ''];

fig =
PlotResponseSpectra(S rdrd line plot,Omega,legend wind speedl,legend wind speed2,min x,
max x,titletextS, ylabeltextS, saveAsRd) ;

close(fig)
% Plotting of S rzrz original (without TMD) :

titletextS = ['Response of original system without TMD at $$x7{r}$$ = !

num2str (x d(xr)) ' m'];

ylabeltextS = ['$$ Sr {z}$5'];
saveAsRz orig = ['MatLabOutPutFiles\VSTMDmmOrigResponceMainSystemXr'
num2str (floor (x d(xr))) '']l;
fig =

PlotResponseSpectra(S rzrz original plot, Omega,legend wind speedl, legend wind speed2,mi
n x,max_x,titletextS,ylabeltextS,saveAsRz orig) ;
close(fig)

end

end
clear S rdrd line matr S rzrz line matr S rzrz original matr S rdrd line plot
S rzrz line plot S rzrz original plot
clear legend wind speedl legend wind speed2

% Time domain simulation

jn min = 12;
if TotCaseNr == 1 || TotCaseNr == 11 ||TotCaseNr == 20 || TotCaseNr == 25 ||TotCaseNr
== 26 || TotCaseNr == 27
|| TotCaseNr == 28 || TotCaseNr == 29 || TotCaseNr == 30
jn = 1000; % jn = number of time domain simulations
else
jn = jn min;
end

dt = 0.1;
time = 0:dt:600;



t sim = 0:dt:30;

tn = length(time) ;
t simn = length(t sim) ;

rz = zeros(jn,tn,N j,N mod) ; rd = zeros(jn, tn,N j,N mod);
k p = zeros(jn,N_j,N mod) ; k p rd = zeros (jn,N _j,N mod) ;
maxrz = zeros(jn,N j,N mod) ; maxrd = zeros(jn,N j,N mod) ;
meanrz = zeros(jn,N j,N mod) ; meanrd = zeros (jn,N j,N mod) ;
stdrz = zeros(jn,N j,N mod) ; stdrd = zeros(jn,N j,N mod) ;

rz orig = zeros(jn,tn,N j,N mod) ;
k p orig = zeros(jn,N j,N mod) ;

maxrz orig = zeros(jn,N j,N mod) ;
meanrz_ orig = zeros(jn,N j,N mod) ;
stdrz orig = zeros(jn,N j,N mod) ;

phi mode = phi val;
% Make the rand-matrix
rand matrix = zeros(jn,length(Omega)) ;
for j = 1:jn
for o = 1:1length(Omega)
rand matrix(j,o) = 2*pi*rand;
end
end

for v =1:N mod

for j = 1:jn
rz sum = zeros(l,tn);
rd sum = zeros(l,tn);
rz sum orig = zeros(l,tn);

for xr = 1:N j;

for k=1:1length (Omega)
omegak=0mega (k) ;
dOmegak = dOmega (k) ;
Srzk = Sr rz(k,xr,v);

rz sum = rz sum+sqrt (2*Srzk*dOmegak) *cos (omegak*time+rand matrix(j, k));

Srdk = Sr rd(k,xr,v);
rd sum = rd sum+sqgrt (2*Srdk*dOmegak) *cos (omegak*time+rand matrix(j, k));

Srzorigk = Sr original (k,xr,v);

rz_ sum orig =
rz sum orig+sqrt (2*Srzorigk*dOmegak) *cos (omegak*time+rand matrix(j, k)) ;
end

rz(j,:,xr,v) = rz_ sum;

maxrz(j,xr,v) = max(abs(rz(j,:,xr,v)));
meanrz (j,xr,v) = mean( (rz(j,:,xx,v)));
stdrz (j,xr,v) = std(rz(j,:,xr,v));

k p(j,xr,v) = max(abs(rz(j, :,xr,v))) /std(rz(j, :,xr,Vv));

rz sum = zeros(l, tn);

rd(j,:,xr,v) = rd sum;

maxrd (j,xr,v) = max(abs(rd(j,:,xr,v)));

meanrd(j,xr,v) = mean( (rd(j,:,xxr,v)));

stdrd(j,xr,v) = std(xd(j,:,xxr,Vv));

k p rd(j,xr,v) = max(abs(rd(j,:,xr,v)))/std(xd(j,:,xr,v));

rd sum = zeros(l, tn);



rz orig(j,:,xr,v) = rz sum orig;

maxrz orig(j,xr,v) = max(abs(rz orig(j,:,xr,v)));

meanrz_orig(j,xr,v) = mean( (rz orig(j,:,xr,v)));

stdrz orig(j,xr,v) = std(rz orig(j,:,xr,v));

k p orig(j,xr,v) = max (abs(rz orig(j,:,xr,v))) /std(rz orig(j, :,xr,Vv));

rz sum orig = zeros(l, tn);
end
end

for xr = 1:N j

if v == 1

if TotCaseNr == 1 || TotCaseNr == 20
©000000000000000000000000000000000000000000000000000000000
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titletext orig =
without TMD']

saveAsPsRzor = ['MatLabOutPutFiles\DistributionPeaksRzOrigAtXpos'
num2str (floor(x d(xxr))) ''];
fig =

PlotStatistics(maxrz orig,stdrz orig,k p orig,N j,v,jn,time,rz orig,titletext orig, save
AsPsRzor) ;
close(fig)

maxmaxrz orig(TotCaseNr) = max(maxrz orig(:,xr,v));

maxstdrz orig(TotCaseNr) = max(stdrz orig(:,xr,v));

maxkp orig(TotCaseNr) = max(k p orig(:,xr,v));
©990000000000000000000000090000900000000000090000000000000 00

CRCRCRCRC RG] V0000707007000 0P0000000000000 0000000000000 0002000° 00

% Statistics system with TMD

290000000000 000000900000000000000000000000000000000000000 0
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titletext rz = ['Statistics from " num2str(jn) ' simulations for Case ‘!
num2str (TotCaseNr) ''];

saveAsPsRz = ['MatLabOutPutFiles\DistributionPeaksRz Case' num2str (TotCaseNr) ' atXpos'

num2str (floor(x d(xr))) ''];
fig = PlotStatistics(maxrz, stdrz,k p,N j,v,jn, time, rz,titletext rz,saveAsPsRz) ;
close(fig)

maxmaxr z (Tot CaseNr) = max (maxrz (:,Xr,v));

maxstdrz (TotCaseNr) = max(stdrz (:,xr,v));

maxkp (TotCaseNr) = max(k p(:,xr,v));

titletext rd = ['Statistics from " num2str(jn) ' simulations for Case '
num2str (TotCaseNr) ''];

fig = PlotStatistics Rd(maxrz,stdrz,k p,N j,x d,v,jn,time,rz, titletext rd, TotCaseNr) ;
close(fig)

maxmaxrd (TotCaseNr) = max (maxrd (:,xr,v));

maxstdrd (Tot CaseNr) max (stdrd (:,xr,v)) ;

maxkp rd(TotCaseNr) = max(k p rd(:,xr,v));

if x d(xr) == L/2 || x d(xr) == L/4

% Plotting of r z with TMD installed (Done in a separate Matlab- script
(PlotTimeSeries.m)) :

titletextTS = ['Time domain simulation of $r {z}$ with TMD installed, Case'
num2str (TotCaseNr)

" at x = ' num2str(x d(xr)) ' m, $3V {cr}s$$ =' num2str (round (1000*Vr (v))/1000)

"l

fig =

PlotTimeSeries (time,real (rz) ,maxrz,stdrz, k p,TotCaseNr,jn,xr,x d,v,titletextTs);
close (fig)



% Plotting of r d with TMD installed (Done in a separate Matlab- script
(PlotTimeSeriesRd.m)) :

titletextTS RAd = ['Time domain simulation of $r {d}$ with TMD installed, Case'
num2str (TotCaseNr)

" at x = ' num2str(x d(xr)) ' m, $3V {cr}s$$ =' num2str (round (1000*Vr (v))/1000)

"l

fig =
PlotTimeSeriesRd(time, real (rd) , maxrd, stdrd,k p,TotCaseNr,jn,xr,x d,v,titletextTS Rd);

close (fig)

% Plotting of original r z without TMD installed (Done in a separate Matlab- script
(PlotTimeSeriesOrig.m) ) :

titletextTS orig = ['Time domain simulation of original $r {z}$ without TMD at x = '
num2str (x d(xr))
" m, $8V {cr}$s =' num2str(round(1000*Vr (v))/1000) ''];
fig =

PlotTimeSeriesOrig(time,real(rz orig),real (maxrz orig),stdrz orig,k p orig,TotCaseNr,jn
,Xr,x d,v,titletextTS orig) ;
close(fig)
end
end
end
end
end
clear titletext orig titletext rd
clear Sr rz Sr rd Sr original
clear rz maxrz stdrz k p titletextTS
clear rd maxrd stdrd k p titletextTS Rd

eta n = zeros(length (time),N mod,jn min) ;
eta rd n = zeros (length(time),N j,jn min);
eta orig n = zeros(length(time),N mod,jn min) ;

for v. = 1:N _mod

for j = 1:jn min
for n = 1:N mod
eta sum = zeros(l,tn);
eta sum original = zeros(1l,tn);

for k=1:1length (Omega)
omegak=0Omega (k) ;
domegak = dOmega (k) ;

Setak = S eta rz(n,k,v);
eta sum = eta sum + sqgrt(2*Setak*dOmegak) *cos (omegak*time+rand matrix(j, k));

Setak original = S eta original(n,n,k,v);
eta sum original = eta sum original +
sqgrt (2*Setak original*dOmegak) *cos (omegak*time+rand matrix(j, k));
end
eta n(:,n,j) = eta sum;
eta orig n(:,n,j) = eta sum original;
end
for m = 1:N j
eta sum rd = zeros(l, tn);
for k=1:length (Omega)
omegak=0Omega (k) ;



dOmegak = dOmega (k) ;
Setak rd = S eta rd(m,k,Vv);
eta_sum rd = eta sum rd +
sqgrt (2*Setak rd*dOmegak) *cos (omegak*time+rand matrix(j,k));

end

eta rd n(:,m,j) = eta sum rd;

end

r z sum of modes = zeros(length(xval),tn,jn min);

r z sum of modes original = zeros(length (xval),tn,jn min);

r d sum of modes = zeros(tn,N j,jn min);

for x = 1l:length (xval)
for n = 1:N mod

r z sum of modes(x,:,j) = r_z sum of modes(x,:,]) +
phi mode (x,n)*transpose(eta n(:,n,Jj));
r z sum of modes original(x,:,j) = r z sum of modes original(x,:,3j) +
phi mode (x,n) *transpose(eta orig n(:,n,j));
end
end
for m = 1:N j
r d sum of modes(:,m,j) = l*transpose(eta rd n(:,m,3J));
end

damper displacement x = zeros (N j) ;

for xr = 1:N j

damper displacement x(xr) = x d(xr);

end

end

rz orig plot = rz orig(:,1l:length(t sim), :,:);
[max y orig(TotCaseNr,v), j max rz(TotCaseNr,v)] =

max (max (max (abs(r z sum of modes original (:,:,1:jn min)))));
maxy rz (TotCaseNr,v) = max(max(max(abs(r z sum of modes(:,:,1:jn min)))));
maxy damper (TotCaseNr,v) = max(max(max(abs(r d sum of modes(:,:,1:jn min)))));

if make movie == 1;
if v==1]] v.==2
for j = j max rz(TotCaseNr, v)

% Original response, several points:

[rz orig for multiple xr,x points] =
OriginalResponseSeveralPoints(xval,N mod, Omega,dOmega,t sim,rho,B,mz vec,v,Kaz,j,xi z,a
L,D,omega z,sigma gz hatt,Omega s,bz,Vr,lambda,int phi z sq,phi z,Kzinv,rand matrix);

MakeMovie (max y orig(:,v),maxy rz(:,v),TotCaseNr,maxy damper(:,v),r z sum of modes orig
inal,r z sum of modes,r d sum of modes,v,xval,t sim,time,j,damper displacement x,rz ori
g plot,rz orig for multiple xr,x points,L,Vr,N j,x d);

end

end
end
end
clear S eta rz S eta rd r z sum of modes original r z sum of modes

clear rz orig for multiple xr x points

R Rt R R R R R R R e e R LR R R e e L L L T
Information matrix(TotCaseNr,1l) = TotCaseNr;

Information matrix(TotCaseNr,2) = N j;

Information matrix(TotCaseNr,3:2+N j) = x d;

Information matrix(TotCaseNr,6:5+N j) = TMD mode damp;

Information matrix(TotCaseNr,9:8+N j) = my d;

Information matrix(TotCaseNr,12:11+N j) = xi d;

Information matrix(TotCaseNr,15:14+N_j) = omega d;



s
for v = 1:N mod

Y1 = [];

Y2 = [];

Y3 = [1;

for casenr = 1:TotCaseNr

Y1l = [Y1l; maxy rz (casenr,v)];

Y2 = [Y2; max y orig(casenr,v)];
Y3 = [Y3; maxy damper (casenr,v)];
end

widthl = 0.5; width2 = widthl/2; width3 = width2/4;

fig = figure;

baryl = bar(Y1l,widthl) ;
hold on

bary2 = bar(Y2,width2) ;
bary3 = bar(Y3,width3) ;

hold of f

set (baryl, 'FaceColor', 'r', 'EdgeColor', 'r');
set (bary2, 'FaceColor', 'b', 'EdgeColor', 'b'") ;
set (bary3, 'FaceColor', 'g', "EdgeColor', 'g') ;

hLegend = legend('Main system', 'Without TMD' , 'TMDs');
hTitle = title('Maximum response for each case');
hYLabel = ylabel('Max response [m] ');

hXLabel = xlabel('Case');

BarPlotProperties (fig, hTitle, hXLabel, hYLabel) ;

screen2png ([ 'MatLabOut PutFiles\MaxResponseRzRdCasesVcr' num2str(v) '']) ;
close(fig)
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% Plotting of standard deviation:
SigmaPlot (SIGMAhalf rz, SIGMAhalf rd, SIGMAquart rz,SIGMAquart rd, SIGMA ORIGhalf,
SIGMA ORIGquart, Information matrix)

% Plotting the FRF at:
Hplot (H rz,TotCaseNr,H orig,Omega,omega z)



5.0.9 Copy of input-data and sub- Script used in the Matlab Script
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MatLabInPutFiles\AA.txt

-9.0021 @ 9.0004 @ -9.0001 @
6.0086 @

0.0048 @

8.8383 @

6.0001 @ -8.0001 @

-0.0003 @

-8.0016 @

-8.8287 @

8.8955 @

g.0001 @

-0.0002 @
0.0020 @

-8.0039 @ @.0008 @

8.0128 @

0.0402 @

-@.0e003

-8.e01e @ 8.e085 @

-0.ee48 @

-8.8555 @

8.4818 @

-8.0009 B -8.0002 0 -6.0001 @

-9.0058 @

8.9141 @ 8.0854 @ 8.0825 @ 9.e013 @ @.eee7 @

©.8521 @

-8.801e @

-8.0002 2
8.0021 @

-8.0026 @ 0.0886 @

8.e118 @

9.9198 ©

8.1416 @

8.0005 @

-8.0011 @

-0.8048 @

8.2171 @ -8.0444 @

8.4937 @

-9.2185 @ -9.0439 @ -8.8157 @ -8.0087 @ -9.0036 @ -9.002 @

8.8131 @

-8.0001 6

-6.0004 @

8.8858 @

-9.0001 @
0.0014 o

0.0003 @

-8.0012 @
8.e873 @

e

-9.2859 @ 0.806

0.1486 @

-8.1817 @

8.0804

-8.0007 @

-0.0028 @

-8.0206 @

-@.0001 @
2.0012 @

6.0083 @

-8.0015 @
8.8873 @

e

28.1161 @ 8.011

-9.2884 @
8.8232 @

a.eees o

-8.0005 @

-8.0824 @

-8.8239 @

-8.8057 @ -8.0024 @ -9.0012 @ -0.0006 @

-8.8194 @

08.8742 @

8.1572 @

6.0001 @

-8.0083 @
0.0041 @

8.0009 @

-8.8035 @
8.0225 @

(7]

@.212

-8.1016 @
8.386

@.0011

-9.0021 @

-8.0091 @

-8.8712 @

0.5646 @

e

0.0004 @

2.0009 @

-9.0056 @ -8.002 @ -9.0009 @ -8.0005 @ -g.0003 @ -2.0002 @

-9.0297 @

-9.0001 @

-8.0002 @

-8.0009 @ -0.0004 @

-9.0083 @

8.8297 @

-@.0003 @ -8.0001 B

-6.0ee8 @

0.0028 ©

@.ee57 @



MatLabInPutFiles\TMDnumberAndPositionsSingleMode. txt
1 327.5
488
588
688
655
327.5
488
588
S1515]
655

PR RRPRERREE R R
I T R R L

MatLabInPutFiles\TMDnumberAndPositionsMultiMode.txt
1,2,1 327.5,655,982.5

1,2 327.5,655,982.5

,2,3  327.5,655,982.5

,2,3  327.5,655,327.5

2,4 200,400,500

S

3
3
3
3
3

= R

=2

MatLabInPutFiles\TMDmassRatioRUN2.txt
8,882 8.882 8.e82

8.e85 ©.e85 ©.8a5
8.81 8.81 g.81
8.825 ©8.825 B.825
8.05 8.a85 8.a85



XisRUN2.m

function [xis] = XisRUN2 (my d vec)
my d = my d vec(l,:);
Xis = zeros(size(my d vec)) ;

for n = 1l:length(my d vec(1,:))
myd = my d(n);
% R. Luft:

xis(2,n) = sqrt((myd/4)*(1- ((3*myd)/4)));
% Den Hartog:
xis(4,n) = sqrt((3*myd)/(8* (1+myd) *3));

% Middle between R.Luft and Den Hartog:
xis(3,n) = xis(2,n)+(xis(4,n)-xis(2,n))/2;

% R. Luft - 10%
xis(l,n) = xis(2,n)-3* (xis(4,n) -xis(2,n)) /2;

% Den Hartog + 10%

xis(5,n) = xis(4,n) + 3*(xis(4,n)-xis(2,n))/2;
end

end

OmegasRUN2 .m

function [omegas] = OmegasRUN2 (my d vec,TMD mode damp vec,omega 2z)
omegas = zeros(size(my d vec));
my d = my d vec(l,:);
for n = 1:length(TMD mode damp vec(l,:))
omegaz = omega z(TMD mode damp vec(l,n));
myd = my d(n) ;

)

% Den Hartog:

omegas (3,n) = omegaz/ (l+myd) ;
omegasDH = omegaz/ (l+myd) ;
% R. Luft:

omegasL = omegaz/sqgrt (1+(3/2)*myd) ;

deltaDH L = omegasL - omegasDH;

% Den Hartog - 20*deltaDH L
omegas (1,n) = omegasDH - 20*deltaDH L;

% Den Hartog - 10*deltaDH L
omegas (2,n) = omegasDH - 10*deltaDH L;

% Den Hartog + 1l0*deltaDH L
omegas (4,n) = omegasDH + 10*deltaDH L;

% Den Hartog + 20*deltaDH L

omegas (5,n) = omegasDH + 20*deltaDH L;
end

end



PlotResponseSpectra.m

function fig =
PlotResponseSpectra (S, Omega,legend wind speedl,legend wind speed2,min x,max X,titletext
S,ylabeltextS, saveAs)

max y = 1.05*max(max(S));

fig = figure;

p = plot (Omega,real (S)) ;

str = strcat('Vcr', strtrim(cellstr (num2str (legend wind speedl.'))),
'=',strtrim(cellstr (num2str (legend wind speed2.'))), 'm/s');

axis ([min x max x 0 max y])

hTitle = title([titletextS]);

hXLabel = xlabel('S$s\omegass (rad/s)');

hYlLabel = ylabel (ylabeltextS);

hLegend = legend(str{:});

PlotProperties (fig, p, hTitle, hXLabel, hYLabel) ;

screen2png (saveAs) ;

end



PlotStatistics.m

function fig = PlotStatistics (maxrz, stdrz,k p,N j,v,Jjn,t,rz,titletext, saveAsPs)

for xr = 1:N j
$ r z Bar- Chart, making of vectors:
n bars = 100;
r z bar = sort(maxrz(:,xr,v));
r z bar min = r z bar(1l); r z bar max = r z bar(jn); delta r z bar = (r z bar max-
r z bar min) /n bars;
r z val = zeros(l,n bars);
r z count = zeros (l,n bars) ;

count = 1;

for k = 1:min(n bars,jn);
for js = 1l:length(r z bar)

if r z bar(js) > r z bar min + delta r z bar*(k-1) && r z bar(js) <= r z bar min +
delta r z bar* (k)

count = count + 1;

end
end
r z count (k) = count;
r z val(k) = (r z bar min+delta r z bar*(k-0.5)) ;
count = 0;
end

% \sigma Bar- Chart, making of vectors:

std bar = sort(stdrz(:,xr,v));

std bar min = std bar(1l); std bar max = std bar(jn); delta std bar = (std bar max-
std bar min) /n bars;

std val = zeros(l,n bars);

std count = zeros (1,n bars) ;

count = 1;
for k = 1l:min(n bars,jn);
for js = 1l:length (std bar)
if std bar(js) > std bar min + delta std bar*(k-1) && std bar(js) <= std bar min +
delta std bar* (k)
count = count + 1;

end
end
std count (k) = count;
std val(k) = (std bar min+delta std bar*(k-0.5)) ;
count = 0;
end
% k p Bar- Chart, making of vectors:

p
k p bar = sort(k p(:,xr,v));
k p bar min = k p bar(1l); k p bar max = k p bar(jn); delta k p bar = (k p bar max-
k p bar min) /n bars;

k p val = zeros(l,n bars);
k_p count = zeros (1l,n bars) ;
count = 1;

for k = 1:min(n bars,jn);
for j = 1l:length(k p bar)
if k p bar(j) > k p bar min + delta k p bar*(k-1) && k p bar(j) <= k p bar min +
delta k p bar* (k)
count = count + 1;
end
end
k p count (k) = count;
k p val(k) = (k p bar min+delta k p bar*(k-0.5)) ;
count = 0;



end

n norm = length(r z bar); norm x min = 0.75*r z bar(l) ; norm X max =
1.25*r z bar (end) ;
d norm x = (norm x max-norm X min)/(n norm-1); norm x =

norm X min:d norm x:norm X max;
norm rz = normpdf (norm x, mean(r z bar),std(r z bar));

n norm std = length(std bar) ; norm x min std = 0.75%*std bar (1) ; norm X max _std =
1.25*std bar (end) ;
d norm x std = (norm x max std-norm x min std)/(n norm std-1) ; norm x std =

normﬁxﬁminfstd:dﬁnorﬁixistd:normiximaxistd;
norm std = normpdf (norm x std, mean(std bar),std(std bar));

n norm kp = length(k p bar) ; norm x min kp = 0.75*k p bar(1l); norm x max kp =
1.25*k p bar (end) ;
d norm x kp = (norm x max kp-norm x min kp)/(n norm kp-1); norm x kp =

norm X min kp:d norm x kp:norm x max Kkp;
norm kp = normpdf (norm x kp, mean(k p bar),std(k p bar)) ;

minvalrz = -1.15*max (abs (maxrz(:,xr,v))); maxvalrz = 1.2*max (abs(maxrz (:,xxr,v))) ;
pm = [0.07, 0.55, 0.4, 0.35;

0.55, 0.55, 0.4, 0.35;

0.07, 0.10, 0.4, 0.35;

0.55, 0.10, 0.4, 0.35];

fig = figure;
FigProperties(fig)
subfig = subplot(2,2,1);
set (subfig, 'position', pm(1,:))
hold on;
for js = 2:jn
pl = plot(t,real(rz(js,:,xx,v)));
set (pl, 'Color', 'red', 'LineWwidth',0.2)
end
p = plot(t,real(rz(l,:,xxr,v)));
set (p, 'Color', 'blue', 'LineWwidth', 2)
axis ([0 600 minvalrz maxvalrz]) ;
hTitle = title(titletext, 'HorizontalAlignment',b 'left');
hXLabel = xlabel('Time [s]');
hYLabel = ylabel('$sr {z} $3 [m]");
SubPlotProperties (subfig, hXLabel, hYLabel) ;
SubPlotTitleProperties (subfig, hTitle);

hold off

strl=['"' num2str(jn) ' time domain simulations of $r {z}s 'l;

text (50,0.88*maxvalrz, strl, 'interpreter', 'latex', 'FontName', 'Times', 'FontSize',16) ;
hLegend = legend( [pl,p],'999 simulations', 'l simulation', 'Location', 'SouthEast') ;

r z count norm = r z count/ (delta r z bar*sum(r z count));
maxrzbar x = 1l.l*max(max(r z count norm),max(norm rz)); minrzbar y =
0.92*min (min(r z val), 0.91*min(r z bar)); maxrzbar y =
1.01*max(max (r z val),1.001l*max (r z bar)) ;

subfig = subplot(2,2,2);

set (subfig, 'position', pm(2,:))

hold on

barl = barh(r z val,r z count norm,1);

stpl = plot(norm rz,norm Xx) ;

set (stpl, 'Color', 'red', 'LineWidth', 2)

$fitl = histfit (norm rz,100, 'normal') ;

axis ([0 maxrzbar x minrzbar y maxrzbar yl);
hXLabel = xlabel ('Normalized probability of occurence') ;
h¥Label = ylabel('$$|r {z}]| { max} $3 [m] ') ;
SubPlot Properties (subfig, hXLabel, hYLabel) ;



SubPlotTitleProperties (subfig, hTitle);

hold off

str2=['Max value of $r {z}s$']l;

text (0.35*maxrzbar x,0.95*maxrzbar y,str2, 'interpreter', 'latex', 'FontName', 'Times', 'Fon
tSize', 16) ;

hLegend = legend( [barl,stpl], 'Data from simulations', 'Normal

distribution', 'Location', 'SouthEast') ;

std count norm = std count/ (delta std bar*sum(std count)) ;
maxstdbar x = 1.05*max (max(std count norm),max (norm std)); minstdbar y =
0.99*min (min (std val), 0.99*min(std bar)); maxstdbar y =
1.02*max(max (std val),1.02*max(std bar));

subfig = subplot(2,2,3);

set (subfig, 'position', pm(3,:))

hold on

bar2 = barh(std val,std count norm,1) ;

stp2 = plot(norm std,norm x std);

set (stp2, 'Color', 'red', 'Linewidth', 2)

axis ([0 maxstdbar x minstdbar y maxstdbar yl);

hXLabel = xlabel ('Normalized probability of occurence') ;
hYLabel = ylabel ('$s\sigma {r {z}} $3 [m] ") ;

SubPlot Properties (subfig, hXLabel, hYLabel) ;
SubPlotTitleProperties (subfig, hTitle);

hold off

str3=['Standard deviation of $r {z}s$'];

text (0.35*maxstdbar x,0.97*maxstdbar y,str3, 'interpreter', 'latex', 'FontName', 'Times','F
ontSize',16) ;

hLegend = legend( [bar2,stp2], 'Data from simulations', 'Normal
distribution', 'Location', 'SouthEast') ;

k p count norm = k p count/ (delta k p bar*sum(k p count)) ;
maxkpbar x = 1.05*max(max(k p count norm),max(norm kp)); minkpbar y =
0.82*min (min (k_p val), 0.99*min(k p bar)); maxkpbar y =
1.005*max (max(k p val),1.0l*max (k p bar)) ;

subfig = subplot(2,2,4);

set (subfig, 'position', pm(4,:))

hold on

bar3 = barh(k p val,k p count norm,1);

stp3 = plot(norm kp,norm x kp);

set (stp3, 'Color', 'red', 'LineWidth',2)

axis ([0 maxkpbar x minkpbar y maxkpbar yl);

hXLabel = xlabel('Normalized probability of occurence') ;
hYLabel = ylabel('$sk {p}s$s');
SubPlotProperties (subfig, hXLabel, hYLabel) ;
SubPlotTitleProperties (subfig, hTitle);

hold off

strd=['Peak factor of $r {z}$'];

text (0.35*maxkpbar x,0.95*maxkpbar y,str4, 'interpreter', 'latex', 'FontName', 'Times', 'Fon
tSize', 16) ;

hLegend = legend( [bar3,stp3], 'Data from simulations', 'Normal

distribution', 'Location', 'SouthEast') ;

screen2png (saveAsPs) ;

end

end



PlotTimeSeries.m

function fig = PlotTimeSeries(t,rz,maxrz, stdrz,k p, TotCaseNr, jn,xr,x d,v,titletextTS)

maxy = 1.25*max(max(maxrz(l:min (jn,12),xxr,v))) ;
fig = figure;
for j=1:min(jn,12)

hl = maxrz(j,xr,v) ;

h2 stdrz (j, xr,Vv) ;

h3 = k p(j,xr,v);

subfig = subplot(4,3,7);

plot(t,real(rz(j, :,xxr,Vv)))

SubfigProperties (subfig) ;

axis ([0 600 -maxy maxyl) ;

stri=['r {z, max} = {' num2str(round (1000*h1l)/1000) '} m'];
str2=['\sigma {rz} = {' num2str (round(1000*h2) /1000) '} m'];
str3=['k {p} = {' num2str(round (1000*h3)/1000) '}'];

if j<1o0

text (320,0.77*maxy,strl) ;

text (20, -1.25*maxy, str2) ;

text (320, -1.25*maxy, str3) ;
else

text (320,0.77*maxy, strl) ;

text (20, -0.77*maxy, str2) ;

text (320,-0.77*maxy,str3) ;
end

i 3==1 || §==4 || 3==7 || 3==10
hYLabel = ylabel ('$sr {z} (m/s)$$');
hYLabel Properties (hYLabel) ;
end
if j==
hTitle = title(titletextTs) ;
SubPlotTitleProperties (subfig, hTitle);
end
if j==10 || j==11 || j==12
hXLabel = xlabel('Time (s)');
hXLabelProperties (hXLabel) ;
else
set (gca, 'XTick', [1);

end

end

FigProperties (fig)

screen2png ([ '"MatLabOut PutFiles\TimeSerie rzCase' num2str (TotCaseNr) ' atXpos'
num2str (floor (x d(xr))) ''1);

end



MakeMovie.m

function MakeMovie(max y orig,maxy rz,

TotCaseNr,maxy damper,r z sum of modes original,r z sum of modes,r d sum of modes,v,xva
1,t sim,time,j,damper displacement x,rz orig plot,rz orig for multiple xr,x points,L,Vr
N_J,x d)

maxY¥ = 1.05*max(max(max y orig, maxy rz(TotCaseNr)+maxy damper (TotCaseNr))) ;
fig = figure;
writerObj = VideoWriter (['MatLabOutPutFiles\TMDmmResponceTimeSimulationMovieVR !
num2str (v) ' TotCaseNr ' num2str(TotCaseNr) '.avi'l);
open (writerObj)
for t = 1l:length(t sim)
max_y orig current = max(abs(r z sum of modes original(:,t,3j)));
max y rz current = max(abs(r z sum of modes(:,t,j)));

subplot(2,1,1)
p = plot(xval,real(r z sum of modes original(:,t,3j)));
axis ([0 L -maxY maxY])
strl=['Time:' num2str (round(10*t sim(t)) /10) 's'];
text (L/2,0.7*maxY,strl, 'Fontsize',14)

str2=['Max deflection in ' num2str (round(l0*time (end))/10) ' s time

window = ' num2str(round(1000*max y orig(TotCaseNr))/1000) ' m '];
text (L/20,-0.83*maxY, str2, 'Fontsize',b14)
str3=['Max current deflection = '

num2str (round (1000*max_y orig current)/1000) ' m '];
text (6*L/10,-0.83*maxY, str3, 'Fontsize',14)
set (gca, 'Fontsize',14, 'Linewidth', 1)
hTitle = title(['Simulated main system response without TMD, Case '

num2str (TotCaseNr) ' , $3V {cr}$s = ' num2str (round (1000*Vr(v))/1000) ' m/s 'l);
hYLabel = ylabel ('$s$r {z}$$ [m]');
hYLabelProperties (hYLabel) ;
FigAndTitleProperties (fig, hTitle)
pPlotProperties (p) ;
hold on

for xr = 1:N j
scatter (damper displacement x(xr),rz orig plot(j,t,xr,v));

end

for xr = 1l:length(x points)

scatter (x points(xr),rz orig for multiple xr(xr,t),'r');
end

hold off

subplot(2,1,2)
p = plot(xval,real(r z sum of modes(:,t,3j)));
hold on
axis ([0 L -maxY maxY])
str4=['Bridge girder = '

num2str (round (1000*maxy rz(TotCaseNr))/1000) ' m '];

text (L/30,-0.67*maxyY, str4, 'Fontsize',b 14)

str5=['Bridge girder = ' num2str(round(1000*max y rz current) /1000)
'm ']

text (6*L/10,-0.67*maxY, str5, 'Fontsize',14)

set (gca, 'Fontsize',14, 'LineWidth',1)

hTitle = title('Simulated main system and TMD response') ;
h¥Label = ylabel ('$$r {z}$$ and $$r {d}ss [m]l');

hXLabel = xlabel ('Spanwidth [m] ") ;

strl=['Time:' num2str (round(10*t sim(t)) /10) 's'];

text (L/2,0.7*maxY,strl, 'Fontsize',14)

PlotProperties(fig, p, hTitle, hXLabel, hYLabel) ;

max y damper current = zeros(1l,N j);



for xr = 1:N j
xpos = floor(x d(xr)/(xval(end)/length (xval))) ;
max y damper current (xr) =
max (abs (real (r d sum of modes(t,xr)+r z sum of modes (xpos,t,j))));

scatter (damper displacement x(xr),real(r d sum of modes(t,xr)+r z sum of modes (xpos,t, j
)),'filled") ;
axis ([0 L -maxY maxY])
end
current max y damp = max(max y damper current) ;
stré6=['Max deflection in ' num2str (round(l0*time (end))/10) ' s time
window of: '];
text (L/30,-0.5*maxY,stré6, 'Fontsize', 14)
str7=["'"TMD(s) (relative defl.) = '
num2str (round (1000*maxy damper (TotCaseNr))/1000) ' m '];
text (L/30,-0.85*maxyY, str7, 'Fontsize',b 14)
str8=['Max current deflection of: '];
text (6*L/10,-0.5*maxY,str8, 'Fontsize',6 14)
str9=['TMD(s) (relative defl.) = '
num2str (round (1000*current max y damp)/1000) ' m '];
text (6*L/10,-0.85*maxY,str9, 'Fontsize',14)
frame = getframe(fig) ;
hold off
writeVideo (writerObj, frame) ;
end
close (writerObj) ;
$movie (frame,1,1)
end



SigmaPlot.m

function [figl,fig2,fig3,fig4,fig5,fig6] = SigmaPlot (SIGMAhalf rz, SIGMAhalf rd,
SIGMAquart rz,SIGMAquart rd,SIGMA ORIGhalf, SIGMA ORIGquart,Information matrix)

% Different my d (Case 16-20)

figl = figure;

scatter (Information matrix(16:20,10) ,SIGMAhalf rz(16:20),'r")

hold on

scatter (Information matrix(16:20,10) ,SIGMAhalf rd(16:20),'g")

scatter (Information matrix(16:20,10) ,SIGMA ORIGhalf (16:20), 'b"')

hold off

x1lmin = min(Information matrix(16:20,10)) ;

xlmax = max(Information matrix(16:20,10)) ;

ylmin =

min (min (SIGMAhalf rz(16:20) ,min (min (SIGMAhalf rd(16:20)) ,min(SIGMA ORIGhalf (16:20))))) ;
ylmax =

max (max (SIGMAhalf rz(16:20) ,max (max (SIGMAhalf rd(16:20)) ,max(SIGMA ORIGhalf (16:20))))) ;
axis([x1lmin xlmax ylmin ylmax]) ;

set (figl, 'units', 'normalized', 'outerposition', [0 O 1 11) ;

screen2png ([ '"MatLabOut PutFiles\SigmaHalfMy']) ;

fig2 = figure;

scatter (Information matrix(21:25,13) ,SIGMAhalf rz(21:25),'r")

hold on

scatter (Information matrix(21:25,13) ,SIGMAhalf rd(21:25),'g")

scatter (Information matrix(21:25,13) ,SIGMA ORIGhalf (21:25), 'b")

hold off

x2min = min(Information matrix(21:25,13)) ;

x2max = max(Information matrix(21:25,13)) ;

y2min =

min(min (SIGMAhalf rz(21:25) ,min (min(SIGMAhalf rd(21:25)),min(SIGMA ORIGhalf (21:25))))) ;
ya2max =

max (max (SIGMAhalf rz(21:25) ,max (max (SIGMAhalf rd(21:25)) ,max(SIGMA ORIGhalf (21:25))))) ;
axis([x2min x2max y2min y2max]) ;

set (fig2, 'units', 'normalized', 'outerposition', [0 0 1 1]);

screen2png ([ 'MatLabOut PutFiles\SigmaHalfXi']) ;

fig3 = figure;

scatter (Information matrix(26:30,16) /0.9, SIGMAhalf rz(26:30), 'r')

hold on

scatter (Information matrix(26:30,16) /0.9, SIGMAhalf rd(26:30), 'g')

scatter (Information matrix(26:30,16) /0.9, SIGMA ORIGhalf (26:30), 'b')

hold off

x3min = min(Information matrix(26:30,16)/0.9);

x3max = max(Information matrix(26:30,16)/0.9);

y3min =

min (min (SIGMAhalf rz(26:30) ,min (min (SIGMAhalf rd(26:30)) ,min(SIGMA ORIGhalf (26:30))))) ;
y3max =

max (max (SIGMAhalf rz(26:30) ,max (max (SIGMAhalf rd(26:30)) ,max(SIGMA ORIGhalf (26:30))))) ;
axis ([x3min x3max y3min y3max]) ;

set (fig3, 'units', 'normalized', 'outerposition', [0 0 1 1]);

screen2png ([ 'MatLabOut PutFiles\SigmaHalfOmega']) ;

figs = figure;

scatter (Information matrix(16:20,9), SIGMAquart rz(16:20), 'r"')
hold on

scatter (Information matrix(16:20,9), SIGMAquart rd(16:20),'g")
scatter (Information matrix(16:20,9), SIGMA ORIGquart (16:20), 'b"')
hold off

x4min = min(Information matrix(16:20,9));

x4max = max(Information matrix(16:20,9));



y4min =

min (min (SIGMAquart rz(16:20),min (min (SIGMAquart rd(16:20)),min(SIGMA ORIGquart (16:20)))
))

y4max =

max (max (SIGMAquart rz(16:20),max (max (SIGMAquart rd(16:20)),max(SIGMA ORIGquart (16:20)))
))

axis ([x4min x4max y4min y4max]) ;

set (fig4, 'units', 'normalized', 'outerposition', [0 O 1 11);

screen2png ([ 'MatLabOut PutFiles\SigmaQuartMy']) ;

figs = figure;

scatter (Information matrix(21:25,12) ,SIGMAquart rz(21:25),'r")

hold on

scatter (Information matrix(21:25,12) ,SIGMAquart rd(21:25), 'g")

scatter (Information matrix(21:25,12) ,SIGMA ORIGquart (21:25), 'b')

hold off

x5min = min(Information matrix(21:25,12)) ;

x5max = max(Information matrix(21:25,12)) ;

y5min =

min (min (SIGMAquart rz(21:25),min (min (SIGMAquart rd(21:25)),min(SIGMA ORIGquart (21:25)))
)) i

ybSmax =

max (max (SIGMAquart rz(21:25),max (max (SIGMAquart rd(21:25)),max(SIGMA ORIGquart (21:25)))
)) i

axis ([x5min x5max y5min yS5max]) ;

set (fig5, 'units', 'normalized', 'outerposition', [0 O 1 1]) ;

screen2png ([ 'MatLabOut PutFiles\SigmaQuartXi']) ;

fige = figure;

scatter (Information matrix(26:30,15) /0.71,SIGMAquart rz(26:30), 'r')

hold on

scatter (Information matrix(26:30,15) /0.71,SIGMAquart rd(26:30), 'g')

scatter (Information matrix(26:30,15) /0.71,SIGMA ORIGquart (26:30),'b")

hold off

x6min = min(Information matrix(26:30,15)/0.71) ;

x6max = max(Information matrix(26:30,15)/0.71) ;

yémin =

min (min (SIGMAquart rz(26:30),min (min (SIGMAquart rd(26:30)),min(SIGMA ORIGquart (26:30)))
))

yémax =

max (max (SIGMAquart rz(26:30),max (max (SIGMAquart rd(26:30)),max(SIGMA ORIGquart (26:30)))
))

axis ([xémin x6max yémin yémax]) ;

set (figé, 'units', 'normalized', 'outerposition', [0 O 1 11) ;

screen2png ([ '"MatLabOut PutFiles\SigmaQuartOmega'l) ;

end



Hplot.m

function [figl, fig2,fig3,fig4,fig5,fige] = Hplot(H rz,TotCaseNr,H orig,Omega,omega z)
H plot model = []; H orig plot model = [];

H plot mode2 = []; H orig plot mode2 = [];

H plot mode3 = []; H orig plot mode3 = [];

H plot mode4 = []; H orig plot mode4 = [];

H plot mode5 = []; H orig plot mode5 = [];

H plot mode6 = []; H orig plot modeé6 = [];

Legend H plot = []; Legend H orig plot = [];

for m = 1:TotCaseNr

end

H orig plot model
H orig plot mode2
H orig plot mode3
H orig plot mode4
H orig plot mode5
H orig plot modeé6

H plot model = [H plot model, H r
H plot mode2 = [H plot mode2, H r
H plot mode3
H plot mode4
H plot mode5 = [H plot mode5, H r
H plot modeé6
Legend H plot

[H plot mode3, H r
[H plot mode4, H

[H plot mode6, H r
[Legend H plot, m

=
— N N N N N N

= H orig(:,1,1,1);
= H orig(:,2,2,1);
= H orig(:,3,3,1);
= H orig(:,4,4,1);
= H orig(:,5,5,1);
= H orig(:,6,6,1);

max y H real (1.2*max (max(abs(H orig plot model)))) ;
min y H 1;
min x H = 1.2*omega z(1) /2;

Il

max x H = 3*omega z(1)/2;
figl = figure;
grid

for j = 1:6
subfig = subplot(2,3,7);
set (subfig, 'units', 'normalized') ;
$p(j,:) = get (subfig, 'position');
p = [0.06,0.53,0.24, 0.425;
0.37,0.53, 0.24, 0.425;
0.68,0.53,0.24,0.425;
0.06,0.09 ,0.24,0.425;
0.37,0.09,0.24,0.425;
0.68,0.09,0.24,0.425];
set (subfig, 'position', p(j, :))
p _or = semilogy(Omega, abs(H orig plot model),'--');
set (p or, 'LineWidth',1.5, 'Color', 'black")
hold on
semilogy (Omega, abs (H plot model(:,j*5-4:j*5)), 'LineWidth',1.5) ;
p or = semilogy(Omega, abs(H orig plot model), '--");
set (p or, 'LineWidth',1.5, 'Color', 'black')

str2 = strcat('Case ',strtrim(cellstr(num2str(Legend H plot(j*5-4:3*5).'))));

str = [str2];

axis ([min x H max x H min y H max y H]);

if j ==

hTitle = title(['Frequency response function for mode 1']) ;
FigAndTit leProperties (figl,hTitle) ;

end

if J ==1 || ] ==14

h¥Label = ylabel('$s |[H {r {z}}|$s");

set ( [hYLabel], .

'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)

end



i3 ==4 || 3==5]]3==6¢6
hXLabel = xlabel ('sS$\omegass (rad/s)');
set ([hXLabel], .
'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)
end
hLegend = legend('No TMD', str{:});
set (hLegend, 'FontSize', 12)
$SubPlot Properties (subfig, hXLabel, hYLabel) ;
hold off
end
screen2png ([ 'MatLabOutPutFil es\TMDmmFRFWithAndWithout TMDModel'] )
close(figl)

max y H2 = 1.2*max(max(abs(H orig plot mode2))) ;
min y H2 = 1;
min x H2 = 1.2*omega z(2)/2;

max x H2 = 3*omega z(2)/2;
fig2 = figure;
grid

for j = 1:6

subfig = subplot(2,3,3) ;

set (subfig, 'units', 'normalized') ;

$p(j,:) = get(subfig, 'position');

p = [0.06,0.53,0.24, 0.425;
0.37,0.53, 0.24, 0.425;
0.68,0.53,0.24,0.425;
0.06,0.09 ,0.24,0.425;
0.37,0.09,0.24,0.425;
0.68,0.09,0.24,0.425];

set (subfig, 'position', p(j, :))

p or = semilogy(Omega, abs(H orig plot mode2),'--");

set (p or, 'LineWidth',1.5, 'Color', 'black")

hold on

semilogy (Omega, abs (H plot mode2(:,j*5-4:j*5)), 'LineWwidth',1.5) ;

p or = semilogy(Omega, abs(H orig plot mode2),'--");

set (p or, 'LineWidth',1.5, 'Color', 'black')

$strl = strcat ('Without TMD ') ;

str2 = strcat('Case ',strtrim(cellstr (num2str(Legend H plot(j*5-4:3*5)."'))));

str = [str2];

axis ([min x H2 max x H2 min y H2 max y H2]);

if j ==

hTitle = title(['Frequency response function for mode 2']) ;

FigAndTit leProperties (fig2,hTitle) ;

end

if Jo==1 ] 3 ==4

h¥Label = ylabel('$$ |H {r {z}}[s5");

set ( [hYLabel],

'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)

end

if j ==4 || 3 ==5[]
hXLabel = xlabel ('
set ( [hXLabel],

'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)

end

hLegend = legend('No TMD', str{:});

set (hLegend, 'FontSize', 12)

$SubPlot Properties (subfig,hXLabel, hYLabel) ;

hold off

end

screen2png ([ 'MatLabOutPutFil es\TMDmmFRFWithAndWithout TMDMode2'] )

close(fig2)

j==6
$s\omegass (rad/s)');

max_y H3 1.2*max (max (abs (H orig plot mode3)));
min y H3 1;
min x H3 = 1.2*omega z(3)/2;

1]



max x H3 = 3*omega z(3)/2;
% p = zeros (6,4) ;
fig3 = figure;
grid
for j = 1:6
subfig = subplot(2,3,73) ;
set (subfig, 'units', 'normalized') ;
$p(j,:) = get (subfig, 'position');
p = [0.06,0.53,0.24, 0.425;
0.37,0.53, 0.24, 0.425;
0.68,0.53,0.24,0.425;
0.06,0.09 ,0.24,0.425;
0.37,0.09,0.24,0.425;
0.68,0.09,0.24,0.425];
set (subfig, 'position', p(3j, :))
p or = semilogy(Omega, abs(H orig plot mode3),'--");
set (p or, 'LineWidth',1.5, 'Color', 'black')
hold on
semilogy (Omega, abs (H plot mode3(:,j*5-4:j*5)), 'LineWidth',1.5) ;
p or = semilogy (Omega, abs(H orig plot mode3), '--');
set (p or, 'LineWidth',1.5, 'Color', 'black")
$strl = strcat ('Without TMD ') ;
str2 = strcat('Case ',strtrim(cellstr (num2str(Legend H plot(j*5-4:3*5)."'))));
str = [str2];
axis ([min x H3 max x H3 min y H3 max y H3]);
if j ==2
hTitle = title(['Frequency response function for mode 3']) ;
FigAndTitleProperties (fig3,hTitle) ;
end
if 3 ==1 || 3 ==
hYLabel = ylabel ('$$ [H {r {z}}[$$");
set ( [hYLabell, ...
'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)
end
if 3 ==4 || J==51] 3J==2¢
hXLabel = xlabel ('sS$\omegass$ (rad/s)');
set ( [hXLabel],
'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)
end
hLegend = legend('No TMD', str{:});
set (hLegend, 'FontSize', 12)
$SubPlot Properties (subfig,hXLabel, hYLabel) ;
hold off
end
screen2png ([ 'MatLabOutPutFil es\TMDmmFRFWithAndWithout TMDMode3 '] )
close(fig3)

max y H4 = 1.2*max(max(abs(H orig plot mode4)));
min y H4 = 1;

min x H4 = 1.2*omega z(4)/2;
max x H4 = 3*omega z (4)/2;
$ p = zeros (6,4) ;

figs = figure;

grid

for j = 1:6

subfig = subplot(2,3,7);

set (subfig, 'units', 'normalized') ;

$p(j,:) = get (subfig, 'position');

p = [0.06,0.53,0.24, 0.425;
.37,0.53, 0.24, 0.425;
.68,0.53,0.24,0.425;
.06,0.09 ,0.24,0.425;
.37,0.09,0.24,0.425;
.68,0.09,0.24,0.425];
ubfig, 'position', p(j,:))

n OO o oo

set (



p or = semilogy(Omega, abs(H orig plot mode4), '--');
set (p_or, 'LineWidth',1.5, 'Color', 'black")
hold on
semilogy (Omega, abs (H plot mode4 (:,j*5-4:j*5)), 'LineWidth',1.5) ;
p or = semilogy(Omega, abs(H orig plot mode4),'--');
set (p or, 'LineWidth',1.5, 'Color', 'black")
$strl = strcat ('Without TMD ') ;
str2 = strcat('Case ',strtrim(cellstr (num2str(Legend H plot (j*5-4:j*5).
str = [str2];
axis ([min x H4 max x H4 min y H4 max y H4]) ;
if § ==
hTitle = title (['Frequency response function for mode 4']) ;
FigAndTitleProperties (fig4,hTitle) ;
end
£ 3 ==1 |3 ==
hYLabel = ylabel('s$ [H {r {z}}|s$");
set ( [hYLabell]l, ...
'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)
end
ifj==4|l3==51]3==2¢6
hXLabel = xlabel ('sS$\omegass (rad/s)');
set ([hXLabel], .
'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)
end
hLegend = legend('No TMD', str{:});
set (hLegend, 'FontSize', 12)
%$SubPlot Properties (subfig, hXLabel, hYLabel) ;
hold off
end
screen2png ([ 'MatLabOutPutFil es\TMDmmFRFWithAndWithout TMDMode4 '] )
close(fig4)

max y H5 = 1.2*max(max(abs (H orig plot mode5))) ;
min y H5 = 1;
min x H5 = 1.2*omega z(5)/2;
max x H5 = 3*omega z (5)/2;
% p = zeros (6,4) ;
figs = figure;
grid
for j = 1:6
subfig = subplot(2,3,7);
set (subfig, 'units', 'normalized') ;
$p(j,:) = get(subfig, 'position');
p = [0.06,0.53,0.24, 0.425;
0.37,0.53, 0.24, 0.425;
0.68,0.53,0.24,0.425;
0.06,0.09 ,0.24,0.425;
0.37,0.09,0.24,0.425;
0.68,0.09,0.24,0.425];
set (subfig, 'position', p(j, :))
p _or = semilogy(Omega, abs(H orig plot mode5),'--');
set (p or, 'LineWidth',1.5, 'Color', 'black")
hold on
semilogy (Omega, abs (H plot mode5(:,j*5-4:j*5)), 'LineWidth',1.5) ;
p or = semilogy(Omega, abs(H orig plot mode5), '--');
set (p or, 'LineWidth',1.5, 'Color', 'black")
$strl = strcat ('Without TMD ') ;
str2 = strcat('Case ',strtrim(cellstr (num2str(Legend H plot(j*5-4:j*5).
str = [str2];
axis ([min x H5 max x H5 min y H5 max y H5]);
if j ==
hTitle = title (['Frequency response function for mode 5']) ;
FigAndTitleProperties (fig5,hTitle) ;
end
ifj==11]]73==24



hYLabel = ylabel('ss$ |H {r {z}}[s$");
set ( [hYLabel],
'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)
end
if J ==4 || J ==5[]
hXLabel = xlabel ('
set ([hXLabel],
'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16)
end
hLegend = legend('No TMD', str{:});
set (hLegend, 'FontSize', 12)
$SubPlotProperties (subfig, hXLabel, hYLabel) ;
hold off
end
screen2png ([ 'MatLabOutPutFil es\TMDmmFRFWithAndWithout TMDMode5'] )
close(fig5s)

j==6
$s$\omegass (rad/s)');

max y H6 = 1.2*max(max(abs(H orig plot mode6))) ;
min y H6 = 1;

min x H6 = 1.2*omega z(6)/2;

max x H6 = 3*omega z (6)/2;
% p = zeros (6,4) ;

fige = figure;

grid

for j = 1:6

subfig = subplot(2,3,73);

set (subfig, 'units', 'normalized') ;

$p(j,:) = get(subfig, 'position');

p = [0.06,0.53,0.24, 0.425;
0.37,0.53, 0.24, 0.425;
0.68,0.53,0.24,0.425;
0.06,0.09 ,0.24,0.425;
0.37,0.09,0.24,0.425;
0.68,0.09,0.24,0.425] ;
set (subfig, 'position', p(j,:))
p_or = semilogy (Omega, abs(H orig plot mode6),'--');
set (p_or, 'LineWidth',1.5, 'Color', 'black')
hold on
semilogy (Omega, abs(H plot mode6 (:,j*5-4:j*5)), 'LineWidth',1.5);
p_or = semilogy (Omega, abs(H orig plot mode6),'--");
set (p_or, 'LineWidth',1.5, 'Color', 'black')
%$strl = strcat('Without TMD ') ;
str2 = strcat('Case ',strtrim(cellstr (num2str (Legend H plot(j*5-4:3*5).'))));

str = [str2];
axis([min_x H6 max_x_ H6 min_y H6 max y H6]);
if j ==2

hTitle = title(['Frequency response function for mode 6']);
FigAndTitleProperties(fig6,hTitle);
end
i3 ==1]]3 =4
h¥Label = ylabel('$s |H_ {r {z}}|$s');
set ([hYLabel] ,
'interpreter', 'latex', 'FontName', 'Times', 'FontSize',16)
end
i3 =4 |l 3==5]3-=
hXLabel = xlabel ('s$S$\omegass (rad/s)');
set ( [hXLabel], .
'interpreter', 'latex', 'FontName', 'Times', 'FontSize',16)
end
hLegend = legend('No TMD', str{:});
set (hLegend, ' FontSize', 12)
$SubPlotProperties(subfig, hXLabel, hYLabel) ;
hold off
end
screen2png (['MatLabOutPutFiles \TMDmmFRFWithAndWithoutTMDMode6' 1)
close (fig6)
end



PlotProperties.m

function PlotProperties(fig, p, hTitle, hXLabel, hYLabel)
set ( gca PR

'FontName' , 'Helvetica' );
set ([hTitle, hXLabel, hYLabell],

'interpreter', 'latex', 'FontName', 'Times', 'FontSize', 16) ;

%'FontName' , 'Helvetica') ;
% set (hLegend PR
% 'FontSize' , 12 ) ;
set (gca P
'FontSize' , 18 )i
set ( hYLabel ,
'FontSize' , 23 ) ;
%$set ([hXLabel, hYLabell] ,
B 'FontSize' , 13 )
set ( hTitle ,
'FontSize' , 22 PR
'FontWeight' , 'bold' ) ;

set (p, 'Linewidth',1.8)
set (fig, 'units', 'normalized', 'outerposition', [0 0 1 1]);
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