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Abstract

This thesis presents the research findings from three articles which have been
published or submitted for publication. In the first article, we study the mag-
netization dynamics and anomalous supercurrent that can arise in a textured
magnetic Josephson junction. We show that supercurrent-induced magnetiza-
tion switching is possible and that for special magnetic configurations, a super-
current can flow even at zero phase difference. In the second article, we study
domain wall motion induced by current and spin-waves in multiferroic systems.
We demonstrate that it is possible to exert electric control over domain-wall
motion in such systems and that one can create magnonic torques even on ho-
mogeneous magnetic order parameters. In the third article, we prove that it
is possible to obtain a long-ranged triplet supercurrent when using only one
single homogeneous magnetic layer, in contrast to previous works in the litera-
ture. This is made possible by depositing thin heavy normal metal layers at the
superconducting interfaces which induce Rashba spin-orbit coupling. We show
that the spin supercurrent arising in this way has several unusual properties,
including that it does not decay spatially even in the presence of magnetic impu-
rities and that its polarization direction can be tuned via the superconducting
phase difference.
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Chapter 1

Introduction

Scientific progress has moved with giant steps in the last century in all aspects
of human life, whether it is the automobile industry, cooking, or engineering.
Electronic technology is certainly not an exception. It is not that long ago that
the first computer, created in the middle of the 20th century, was so large that
it occupied an entire room. By now, the size of the parts that make up the
foundation for a computer are on the nanoscale. The volume of data that exists
today, stored on harddrives all over the world, surpasses human imagination.

One of the possible routes that may lead to further development in the compu-
tational industry is the field of spintronics [1]. The key idea in this field is to
use spin to complement the charge degree of freedom as an information carrier.
The spin does not have to be provided by an electron: collective excitations
such as spin waves can also transport spin, which has opened a subfield known
as magnon spintronics [2]. Another approach which has attracted attention re-
cently is to combine superconductors with magnetic materials and thus explore
the concept of superconducting spintronics [3].

The main focus of this thesis is to consider how spintronics phenomena such
as magnetization switching, domain wall motion, and spin currents can be en-

Spintronics
Utilize spin as 

information carrier

Superconductivity
Dissipationless

quantum transport

Superspintronics 
Enhanced spin flow with 

low dissipation

Electrical control of spin
Tuning spin-transport with

electric fields

Multiferroic materials
Coexistence of magnetic
and electric polarization

Figure 1.1: The motivation for looking at multiferroic and superconducting materials
in the context of spintronics.
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2 Chapter 1. Introduction

hanced by utilizing both multiferroic materials (chapter 3) and superconductors
(chapter 2 and 4). Each chapter starts with a motivation for studying the par-
ticular system under consideration and a brief introduction to some of the key
physical concepts and theoretical techniques that we have made use of. The
research results that have been obtained then follow.

It is safe to say that both the road to actual technological implementation us-
ing magnon or superconducting spintronics still lies in the future, although not
necessarily in the distant future. Nevertheless, history shows that fundamental
physics research often establishes the foundation for groundbreaking technolog-
ical applications. Famous examples of this includes laser technology and the
giant magnetoresistance effect: the impact of their application was completely
unanticipated at the time of their discovery and they were both born out of
fundamental research.



Chapter 2

Magnetization dynamics,
spin-supercurrent, and
φ-junction in textured SFS
junctions

2.1 Introduction

The synergistic effects of combining ferromagnetism and superconductivity, two
seemingly disparate phenomena, have garnered much attention in recent years
[3, 4, 5, 6]. Investigations regarding the mutual interplay between these con-
densed phases may be traced back to the early work of Ginzburg [7] and it is by
now established that ferromagnetic order not necessarily acts detrimentally to-
ward superconductivity - the two may even coexist in a series of uranium-based
heavy fermion compounds such as UGe2, UCoGe, and UIr [8, 9, 10]. Whereas
such systems pose several challenges with regard to experimental investigations
e.g. due to requirements of very high pressures in some cases, the combined
influence of FM and SC order can be studied in a more controllable fashion by
tailoring hybrid structures with the desired properties.

The physical mechanism behind the unlikely alliance of magnetic and supercon-
ducting order is symmetry breaking combined with the Pauli exclusion principle
[11]. As long as the Cooper pair wavefunction respects the correct antisymme-
try property under an exchange of the particle-coordinates for spin, space, and
time, the Cooper pairs can in fact become spin-polarized. Such an effect takes
place in F|S structures since both the explicit translation symmetry breaking
due to the interface and the presence of a band-splitting exchange field creates
Cooper pairs with different symmetry properties than in the bulk superconduc-
tor [12]. The consequence of same-spin electrons constituting a Cooper pair
is that they become insensitive to the paramagnetic limitation of internal or
external magnetic fields, allowing such correlations to survive distances up to
hundreds of nanometer inside a ferromagnet [13], even in extreme cases such as
half-metallic compounds [14, 15]. In such a scenario, the limiting factor of the

3
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penetration depth is not determined by the strength of the magnetic exchange
field, but by other pair-breaking events such as spin-flip and inelastic scattering
[16]. Experiments have unambiguously observed such long-ranged supercon-
ducting correlations arising in F|S structures that feature magnetic textures of
some sort: this includes multilayered magnetic structures [17, 18], domain wall
or intrinsically textured ferromagnets [19, 20], and interfaces with spin-active
scattering and/or disorder [21, 22]. A large amount of theoretical work has
recently been devoted to the topic of spin-triplet correlations arising in S/F
hybrid structures (see e.g. [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]).

The existence of long-ranged spin-polarized superconducting correlations raises
an interesting question: is it possible to utilize this to obtain a superconducting
analogue to central topics in spintronics such as domain wall motion and mag-
netization switching? It is well-known that resisitive (normal) spin-polarized
currents play a central part in terms of obtaining magnetization dynamics in
spintronics [1]. Spin-currents enable a transfer of angular momentum to the
magnetic order parameter of a material via the effect of spin-transfer torque
[48, 49]. Since spin-supercurrents also carry angular momentum, the same
effect is possible in this context and a few previous works have investigated
the possibility of magnetization dynamics in superconducting hybrid structures
[51, 52, 63, 54, 55, 57, 56]. However, it remains unclear how the supercon-
ducting phase difference affects the dynamics via the Andreev bound-state
spectrum. In this paper, we will consider three experimentally relevant types
of F|S weak-link structures that all have in common that the region separat-
ing the superconductors is spin-textured. We will compute the spin-polarized
supercurrent analytically, and demonstrate that its spin-torque can give rise
to magnetization switching by solving the non-linear Landau-Lifshitz-Gilbert
[58, 59] equation numerically. This constitutes a way to directly utilize the spin-
polarized nature of the recently observed long-range triplet currents in order to
dynamically alter magnetization textures. In addition to this, we will demon-
strate that the magnetic structure in such Josephson junctions has a profound
effect on the superconducting ground-state itself. Whereas it is known that
superconductor|ferromagnet|superconductor (S|F|S) junctions normally have a
ground-state phase difference of 0 or π, it was very recently demonstrated exper-
imentally that it is possible to construct a ϕ-state junction where the ground-
state phase takes on any value between 0 and π [60]. Such a ϕ-state was
originally proposed to occur in SFS junctions in [61] and subsequently studied
in several works [62, 63, 64, 65, 66, 67, 68, 69], offering the unique possibility
to design phase batteries [70, 71] with an arbitrary phase-shift rather than only
0 or π which could be used to bias both classical and quantum circuits. We
will compute the free-energy and belonging supercurrent-phase relation in in-
homogeneous magnetic Josephson junctions and show that anomalous behavior
arises in the form of a finite supercurrent even at zero phase difference. As will
be shown, this is intimately linked with a chiral spin symmetry breaking and
scattering at the interfaces of the structure and results in the possibility of a
controllable ϕ-state by adjusting the magnetization vectors in the system.
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Before presenting our research results, we will give a brief introduction to the
theoretical framework and key physical effects that are present in the system
under consideration.

2.2 Bogoliubov-de-Gennes equation

One way to treat heterostructures is by microscopic wavefunctions that are
obtained from an effective Hamiltonian. This method can be applied to the
equilibrium state in inhomogeneous systems for e.g. the ballistic regime (the
clean limit), where one obtains spatially varying fields used to describe quantum
transport in superconducting systems. Bogoliubov developed a mathematical
formulation for this based on BCS theory. To describe excitations in a super-
conductor, he introduced the concept of mixtures of the particles and holes.
Later these particle-hole excited states was called Bogoliubons. In this the-
ory the standard momentum operators (k-space) have been replaced by field
operators (real-space). The solutions are given by an electron-like part and a
hole-like part of the quasiparticles in combination with the gap equation.

The equation of motion in this technique is called the Bogoliubov-de-Gennes
equation [72], which is based on the reduced Hartree-Fock mean-field Hamilto-
nian

H =

∫
d3r
∑
σ

ψ̂†
σ(r)Ĥ0(r)ψ̂σ(r)+ (2.1)

∑
σ,σ′

∫
d3rd3r′

(
Δσσ′(r, r′)ψ̂†

σ(r)ψ̂
†
σ′(r

′) + h.c
)

where the integration is taken over the entire volume of the system r = (x, y, z)

and summation over spins σ, σ′ =↑, ↓. ψ̂†
σ(r) and ψ̂σ(r) are the fermionic cre-

ation and annihilation operator. The first term corresponds to the usual kinetic

energy Ĥ0(r) =
p̂2

2m−μ(r), where μ(r) = μ−eV (r) and μ is the electrochemical
potential, whereas the last two terms are responsible for pairing corresponding
to the existence of the superconducting complex order parameter.

The pairing field Δ is determined self-consistently:

Δσσ′(r, r′) = −1

2

∑
δ,δ′

Vσσ′δδ
〈
ψδ(r

′)ψδ′(r)
〉

(2.2)

The pairing exist only for Vσσ′δδ′ > 0 and at temperature below the tran-
sition temperature T < Tc. Otherwise, Δαβ = 0. The spin structure of
Δσσ′(r, r′) determines the type of the superconducting pairing. For singlet
Δαβ(r, r

′) = (iσy)αβΔ(r, r′). In a uniform superconductor, the interaction de-
pends only on the relative position of electrons and so V (r, r′) = V (ρ), where
ρ = r − r′. In order to transform quantities from coordinate space to momen-
tum space, we will use a Fourier transformation.
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The next important step in solving the Hamiltonian is diagonalization via the
Bogoliubov-Valatin transformation [74]. The canonical transformation is:

ψσ(r) =
∑
n

[unσ(r)γn − σv∗nσ(r)γ
∗
n] (2.3)

with the condition |unσ(r)|2+ |vnσ(r)|2 = 1, where γn and γ∗n are new fermionic
quasiparticle operators. The coefficients u and v can be found by solving the
Bogoliubov-de-Gennes equations:

εuσ(r) = H0(r)uσ(r) +

∫
d3r′Δσσ′(r, r′)vσ′(r′) (2.4)

εvσ(r) = −H∗
0 (r)vσ(r) +

∫
d3r′Δ∗

σσ′(r, r′)uσ′(r′) (2.5)

For simplicity, we suppressed here the label n. There are four unknown func-
tions {u↑(r), u↓(r), ν↑(r), ν↓(r)}. For a singlet superconductor u↑(u↓) couples
only to ν↓(ν↑), and only two equations are coupled. But in the general case,
e.g. for a triplet superconductor, all four functions may couple to each other.

This system of equation has to be complemented by the self-consistency equa-
tion for Δσσ′ which can be rewritten as follows:

Δσσ′(r, r′) =
1

2
Vσσ′δδ′(r, r

′)
∑
n

[δ′unδ(r′)v∗nδ′(r)f(−εn)− (2.6)

δv∗nδ(r
′)unδ′(r)f(En)]

where the Fermi distribution function is f(ε) = [exp(ε/kBT ) + 1]−1 with kB
being the Boltzmann constant.

After the Fourier transformation into momentum space the Bogoliubov-de-
Gennes equations take the form:

(ξk − εk)ukσ +Δσσ′(k)vkσ′ = 0 (2.7)

(ξk + εk)vkσ +Δ∗
σ′σ(−k)ukσ′ = 0 (2.8)

where ξk = ε(k) − μ is the quasiparticle energy measured with respect to the
chemical potential μ.

For a singlet superconductor

(ξk − εk)uk↑ +Δ(k)vk↓ = 0 (2.9)

(ξk + εk)vk↓ +Δ∗(−k)uk↑ = 0 (2.10)

and the energy spectrum εk =
√

ξ2k + |Δ(k)2|, and the coefficients u and v:

u2k =
εk + ξk
2εk

(2.11)

ν2k =
εk − ξk
2εk

(2.12)
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The solutions of the Bogoliubov-de-Gennes equations are interpreted as the ex-
citations from the superconducting ground state.

The model of Blonder-Tinkham-Klapwijk [73] is a famous example of the ap-
plication of the Bogoliubov-de Gennes equation. In this model, one solves the
equation for an S|N interface with arbitrary barrier potential. They consid-
ered all possible reflection and transmission processes at the interface (normal
reflection, Andreev reflection, normal transmission, branch-crossing transmis-
sion) and calculated the energy dependent transport probabilities and current-
voltage (I-V) characteristics.

In matrix form the Bogoliubov-de-Gennes Equations can be written as:(
Ĥ0(r) Δ̂(r)

−Δ̂†r) −Ĥ0
T
(r)

)
Ψ(r) = εΨ(r) (2.13)

where Δ̂(r) = iσ2Δ(r), ψ(r) = [u↑(r), u↓(r), v↑(r), v↓(r), ]T is a four-component
spinor with wave function uσ(r) for electron and vσ(r) for hole degree of free-
dom, while the single-particle Hamiltonian is:

Ĥ0(r) =

[
−∇2

2m
− μ(r)

]
1̂ (2.14)

To describe the proximity effect in S/F structure, one can also use the Bogoliubov-
de-Gennes equations. For such a system, the single-particle Hamiltonian in-
cludes the exchange field h:

Ĥ0(r) =

[
−∇2

2m
− μ(r)

]
1̂− hf(r) · σ (2.15)

where the vector f(r) is proportional to the magnetization vector.
The diagonal form of the Hamiltonian can be written as:

Heff = Eg +
∑
k,σ

εkγ
†
kσγkσ (2.16)

The first term corresponds the ground state and the second term describes sum
over excitations with momentak.
Using the framework sketched above, one may compute the allowed energy-
levels that exist in the Josephson junctions. These Andreev levels ε will depend
on the junction geometry, the U(1) superconducting phase gradient, and the
magnetization texture. With them in hand, the free energy of the all system F
is obtained via:

F(γ) = − 1

β

∑
j

ln(1 + e−βεj ) (2.17)

where f(ε) is Fermi-Dirac distribution function and β = 1/kBT .
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2.3 Supercurrent from free energy

The supercurrent is a thermodynamic quantity, so that its value can be obtained
by the variational derivative of the free energy F of a Josephson junction with
respect to the phase difference γ:

I =
2e

�

dF
dγ

(2.18)

This expression can be applied to any kind of Josephson junction.

Using the grand canonical partition function Z = Tr
(
e−Ĥβ

)
and the relation

between the partition function and the free energy F = − 1
β ln(Z), the explicit

dependence of the supercurrent on the Andreev bound state energy will look
like:

I =
2e

�

∑
j

f(εj)
∂εj
∂γ

= −2e

�

∑
i

tanh
βεi
2

∂εj
∂γ

(2.19)

In the last operation it was taken into account that εj = ±εi and f(−εj) =
1− f(εj) which is a property of the Fermi function. Only the discrete Andreev
levels contribute to the Josephson current in the short-junction limit and for
point-contacts [50].

The fact that the supercurrent can become spin-polarized due to the long-
ranged triplet proximity effect and that it flows under equilibrium conditions
directly implies that the exchange interaction between the ferromagnets should
be altered by the superconducting phase difference γ. In fact, there is an inter-
esting co-dependence between the phase difference γ and the non-collinearity
of the magnetization vectors regarding the supercurrent I and the equilibrium
magnetic torque τ as first noted by Waintal and Brouwer [51]. Considering for
simplicity two monodomain ferromagnets with a relative angle θ between the
magnetization vectors, it follows from I = 2e

�

∂F
∂γ and τ = ∂F

∂θ that:

∂I
∂θ

=
2e

�

∂τ

∂γ
. (2.20)

The above equation is simple, yet it conveys a powerful message: if the super-
current is sensitive to the magnetization orientation, then the torque exerted
on the magnetic order parameters is sensitive to the superconducting phase
difference. This is the core principle which enables the supercurrent-induced
magnetization dynamics in inhomogeneous S|F|S junctions.

2.4 Magnetization dynamics

2.4.1 Effective field

Having obtained the free energy of the system from the Andreev levels, one
may also compute the effective field Heff that couples to the magnetic order
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parameter by:

Heff = − 1

V

δF
∂M

(2.21)

2.4.2 LLG

The effective field is used to describe the supercurrent-induced magnetization
dynamics in the free layer (blue region in Fig. 2.1) by solving the Landau-
Lifshitz-Gilbert equation :

∂M

∂t
= −ζM ×Heff + αM × ∂M

∂t
, (2.22)

where ζ is the gyromagnetic ratio and α is the Gilbert damping constant. As
long as the effective field is not fully aligned with the magnetization, it will
exert a torque on it which induces magnetization dynamics. We are considering
a monodomain macrospin model for the soft ferromagnetic layer, such that there
is no contribution from the spin stiffness term ∼ ∂2M

∂y2
. However, we include the

influence of magnetic anisotropy with additional terms ±KjM
2
j , j ∈ {x, y, z} in

the free energy where Kj are the anistropy constants and the ± sign determines
the easy and hard axes of magnetization.

2.5 Spin-active interface

An electron that approaches a tunneling boundary between a superconductor
and a normal metal from the superconducting part can enter the normal metal
or reflect. The probability of tunneling is |t|2 and the probability of reflec-
tion is |r|2. These two probabilities have the property |r|2 + |t|2 = 1, and
are complex numbers such that r = |r|eiφ, t = |t|eiθ, where |r| and |t| are
the amplitudes of the probability, and φ and θ are the phases. If instead of
a normal metal we consider a ferromagnetic layer, the probabilities for elec-
tron with spin-up and spin-down will be different. This means that |t↑| �= |t↓|,
and |θ↑| �= |θ↓|. From a mathematical point of view, due to the difference be-
tween phase of the scattering coefficients in the presence of such an interface,
the triplet Cooper pairs with Sz = 0 are created in addition to the singlet
ones: (↑↓ − ↓↑) cos(φ↑−φ↓)+ i (↑↓ + ↓↑) sin(φ↑−φ↓). The generation of triplet
Cooper pairs in this way is known as spin-mixing [14].

We know that in a usual superconductor there are only singlet Cooper pairs
which consist of two electrons with opposite spins. But in a ferromagnet there
is an imbalance of the electrons with opposite spin. If the ferromagnet has 100%
polarization, singlet Cooper pairs can not exist in such a material. Moreover,
singlet Cooper pairs decay in a ferromagnetic layer because of the exchange field,
which tries to align the spins of the electrons along itself. On the other hand,
triplet Cooper pairs with parallel orientation of the spin, on the other hand, can
penetrate into a ferromagnetic layer a large distance unlike the singlet Cooper
pair. The decay of singlet Cooper pairs in a normal layer and triplet Cooper
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pairs with Sz = ±1 (assuming the magnetization to point in the z-direction)
in a ferromagnet is monotonic, whereas the decay of singlet Cooper pairs and
triplets with Sz = 0 in the ferromagnetic is oscillating. In a S|FI|N structure,
where FI is a thin ferromagnetic insulator, we can get both singlet and triplet
Cooper pairs due to spin-mixing and all of these Cooper pairs will penetrate in
the normal layer. They decay similarly since there is no exchange field in the
normal metal which causes one spin orientation to be beneficial with respect to
the opposite. If the layer of the ferromagnetic insulator is thin (order 1-2 nm),
this type of structure is called S|N with spin-active interface.
The boundary condition for the wave function at a spin-active interface with
spin-dependent potential is:

∂y [ΨF (y)−ΨSL
(y)] |y=0 = (2.23)

2mU0

[
1̂− ρ cos(φ) (τ0 ⊗ σ3)− ρ sin(φ)M̂ (ψ)

]
ΨSL

(0) (2.24)

where ⊗ is the Cartesian product, U0 is the nonmagnetic barrier potential
and ρ = |U |/U0 presents the ration between magnetic U = (Ux, Uy, Uz) and
nonmagnetic potential [41].

2.6 Conventional Josephson junction

In the case of a contact between a superconductor and a non-superconducting
material one observes the proximity effect. This leads to interesting phenom-
ena in Josephson junctions which are composed of two superconductors and
a weak link between them. The weak link may be represented by any non-
superconducting material, for example an insulator, a normal metal, a ferro-
magnet, or any combination of the materials.

The essence of the proximity effect lies in the fact that superconducting cor-
relations can penetrate into a normal metal a distance equal to the normal
coherence length, which in a ballistic metal is ξN ∼ �vF /kBT , where kBT is the
characteristic energy of the thermal fluctuation, which destroys the Cooper pair
coherence in the normal metal. In a dirty metal, we have [4] ξN ∼√�D/kBT ,
where D is the coefficient of diffusion. The induced superconducting order pa-
rameter in the normal metal near the SN -boundary can be described by the
wave function ΨN (x) = ΨN0e

−kNx, where kN = 1/ξN . This wave function is
damped monotonically to the distance of the coherence length ξN . Due to over-
lap of the wave functions of the two superconductors in the middle layer of a
Josephson junction, there is a mixing of the two condensates which establishes
the possibility to have a supercurrent transfer between superconductors. This
supercurrent typically depends on the phase difference φ = φL − φR of the two
superconductors as:

IS(φ) = IC sin(φ) (2.25)

where IC is the maximum current which called the critical current. This is
the Josephson effect. In general, higher harmonics of the type sin(2φ) can also
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contribute to the current-phase relation, although the magnitude of such terms
are typically much smaller than the first harmonic.

The physics of this effect in e.g. SNS junctions can be understood from the
phenomenon of Andreev reflection. Quasiparticles in the middle layer with en-
ergy smaller than energy gap (E < Δ) can not penetrate into superconductor
since there are no available states there. Let us consider this process in detail.
An incoming electron from a normal metal with E < Δ cannot enter the su-
perconductor by itself. However, if it teams up with an electron with energy
−E at momentum −k, they can create a Cooper pair inside the superconduc-
tor. A Cooper pair appears in the superconductor at the same time as a hole
is created in the normal metal, describing the missing electron at −k. The
hole then propagates with group velocity away from the interface, and the net
result of this process is a transfer of the charge from the normal metal to the
superconductor, i.e. the flow of an electrical current. The same process exist
for electrons with energy bigger than gap (E > Δ), but with a strongly reduced
probability for Andreev reflection since such electrons can also tunnel directly
into the superconductor as quasiparticles. It should be noted that the Andreev
reflected hole has oppositely directed group velocity and momentum.

A supercurrent can then appear in an SNS junction by transferring a Cooper
pair from one superconductor to another via Andreev reflection. The amplitude
of the Andreev reflection process depends on the phase difference, so that the
supercurrent also depends on this.

The supercurrent typically has some general properties [76] which does not
depend on the specific material used:

• 1) The supercurrent is a 2π periodic function. Any change of the phase
difference with 2π will not influence the supercurrent.

• 2) In system without explicitly broken time-reversal symmetry, changing
the direction of the supercurrent is equivalent to changing the sign of the
phase difference, i.e. I(φ) = −I(−φ).

• 3) In the case of zero phase difference, there is no supercurrent.

• 4) As consequence of the first and third properties, the supercurrent is
zero at phase differences equal πn, where n is any integer.

We underline that there are exceptions, and we will indeed see that property
3) does not always hold. The free energy of the junction can be obtained by
φ∫
0

IS(φ
′)dφ′, and has a standard form

E(φ) ∼ IC(1− cos(φ)) (2.26)

The Josephson junction with a normal metal has the minimum energy at φ = 0
when there is no supercurrent as IC > 0. Such a junction is known as a
0−junction.
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2.7 Josephson junction with ferromagnet

In the case of a ferromagnet as the weak link, the behaviour of the supercon-
ducting wave function in the middle layer has a different character. This is due
to the fact that besides thermal fluctuation there is also an exchange field that
tries to destroy the Cooper pairs by aligning the spin of the electrons along
the field. Singlet Cooper pairs consist of two electrons with opposite spins and
momentum. In a ferromagnet, the energy of the electron with spin along ex-
change field is smaller than energy of the electron with opposite spin by 2h
where h (sometimes denoted Eex) is the exchange field. To compensate for this
difference in energy, the electron with spin up increases its kinetic energy and
the electron with spin down decreases its kinetic energy so the difference in
exchange energy of two electrons will be compensated by adjusting the kinetic
energy, so that both electrons can reside at the same energy level. As a conse-
quence, the Cooper pair gains a non-zero total momentum q ∝ h, and causes
the superconducting proximity-induced order parameter to be proportional to
eiqx. Together with the usual damping of the order parameter, there now exists
an oscillation of the order parameter in the ferromagnet. The average exchange
energy in the ferromagnet is typically much bigger than the thermal energy, so
the decay length in the ferromagnet is governed by ξF1 =

√
�D/Eex.

Let the length-scale determining the oscillations of the order parameter be de-
noted ξF2. One can expect that for some thickness of ferromagnetic layer, for
example dF 
 πξF2 the sign of the order parameter will be different: the equi-
librium phase difference will equal π without external field and current. This
gives a phase shift in the ground state on π, as first observed in Ref. [75].
In summary, the wave function describing the leakage of superconducting cor-
relations into a ferromagnet reads:

ΨF (x) = ΨF0e
−kF x = ΨF0e

−kF1xe−ikF2x (2.27)

where kF = kF1 + ikF2. The imaginary part defines the length of oscillation
wave 2πξF2 of order parameter in ferromagnetic. In a π-junction, the critical
current Ic depends on length and temperature of the ferromagnet, and can
become negative. In this case, the minimum energy corresponds to the phase
difference φ = π.

2.8 φ-junction

Besides 0 and π junction there exists so-called φ− junctions, where the ground-
state occurs for an arbitrary phase difference φ ∈ [0, π]. One example of
this is Josephson junctions with three noncollinear ferromagnet layers between
superconductors. In particular, the spin chirality χ needs to be non-zero,
χ = M1 · (M2 ×M3). To understand the physics of this phenomena we con-
sider Andreev reflection in S|Fx|Fy|Fz|S junction, where the magnitude of the
magnetization of all three layers are equal. For simplicity, we will not con-
sider normal reflection at FS interface, because it influences only the amplitude
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of the supercurrent and does not affect our argument below. For the case
E � h � EF , we can use that the wavevectors for spin up and down can be
written k± 
 kF (1± h

2μ). Consider an electron in the first ferromagnetic layer
moving rightwards. At the second ferromagnetic layer the electron has a wave
function (1,−i, 0, 0)T . After moving through the second layer and reaching the
Fy|Fz interface, it acquires a phase eik±L2 . In the third layer the spin of the
electron rotates and in the end of this layer the wave function will look like
(eik+L3 , ieik−L3 , 0, 0)T eik±L2 . At the Fz|S interface, the electron reflects as hole
(Andreev reflection) with reversed spin. The wave function of the hole after
such an Andreev reflection is (0, 0, ieik−L3 , eik+L3)T eik+L2 v

ue
iφ/2 (we used ap-

proximation kS± 
 kF , where kS± is the wave vector of the electronlike/holelike
quasiparticle in superconductor). After that the hole moves left to the S|Fx

interface and in passing through each ferromagnet layer the spin of the hole
rotates according to the orientation of the magnetization in the layer. It also
acquires a corresponding phase eik±Li , where i = 1, 2, 3. At the S|Fx the hole
is again Andreev-reflected as electron and moves to the starting point. The
wave function after the complete cycle looks like (1,−i, 0, 0)T ( vu)

2eiφeiψ, where
ψ depends on e.g. the length of the system and the barrier strength. The total
superconducting phase difference φ between the superconductors has thus been
renormalized by φ → φ+ ψ.

2.9 Results

We will now proceed to present our research results from Paper I.

The ferromagnetic part of the junction depends on the specific model considered
as shown in Fig. 2.1. We will treat three experimentally relevant model sys-
tems in order to illustrate the rich physics that arises due to the spin-polarized
nature of the long-ranged superconducting correlations. In Fig. 2.1(a), we con-
sider a multilayered ferromagnetic junction. As predicted by Ref. [24], the
Josephson current in such a structure should have a long-ranged contribution
that depends on the relative orientation of the magnetization vectors in each
of the ferromagnetic layers. To treat a general scenario, we consider an arbi-
trary direction of the magnetization in the free layer and fix the orientation
in the two hard magnetic layers to the z- and x-axis, respectively. The three
layers j ∈ {1, 2, 3} are characterized by their thickness Lj and exchange field
hj , and we will also consider the influence of interface resistance captured by
an effective dimensionless parameter Z (see Appendix A). As we will calculate
below, the rich physics including supercurrent-induced magnetization reversal
and the appearance of a ϕ-ground state is intimately related to chiral symmetry
breaking by the magnetization vectors M j , characterized by a finite value of
the chirality vector:

χ = M1 · (M2 ×M3). (2.28)

Next, we consider in Fig. 2.1(b) a free magnetic layer with low anisotropy
where the interface region coupling to the superconductors is spin-active. Such
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Figure 2.1: The three setups considered in this paper for magnetization dynamics
induced by a spin-polarized supercurrent: (a) a trilayer S|F|S junction
with non-collinear magnetization, (b) S|F|S junction with spin-active in-
terfaces, and (c) S|DW|F|S junction where the supercurrent is polarized
by a domain-wall.

interfaces are known to give rise to spin filtering, spin mixing, and spin flip
scattering, all of which considerably alters the superconducting proximity effect.
We consider a situation where the barrier moments lie in the x−z-plane and are
parallel, perpendicular and antiparallel each other (φL = φR = 0; φL = 0 and
φR = π/2; φL = 0 and φR = π). The spin-active interfaces are characterised by
barriers

U = [1̂− ρ cos(φ)(τ0 ⊗ σ3)− ρ sin(φ)(τ0 ⊗ σ1)], (2.29)



2.9. Results 15

One of our main results is that breaking chiral spin symmetry is not a sufficient
condition to generate an anomalous zero-phase difference supercurrent. Instead,
the scattering taking place at the interfaces separating the various regions will
be shown to play a pivotal part in this. Finally, we include the effect of a
domain wall by considering in Fig. 2.1(c) a setup where the ferromagnetic
region consists of a domain wall and a free magnetic layer. The domain wall is
taken to be of Bloch-type, thus rotating around the y-axis with a characteristic
length scale of λ. This particular choice of domain wall is not essential to
the resulting physics, and the results we obtain are qualitatively unchanged
for other types of magnetization textures. The structure of the domain wall is
described by a vector f proportional to the magnetization vector:

f(y) =

{
[sin( πy

ldw
), 0, cos( πy

ldw
)], if 0 < y < ldw.

0, otherwise.
(2.30)

We start by considering the Andreev bound-state (ABS) spectrum, the system’s
free energy, the current-phase relation, and the ensuing magnetization dynamics
via spin-supercurrents. We treat each of the three proposed systems in Fig. 2.1
separately. In each subsection, we start by considering the analytical expression
for the ABS energy. Obtaining this quantity serves as the foundation for the
computation of both the total free energy of the system and the equilibrium
supercurrent, as given by Eq. (2.17) and Eq. (2.19). The technical procedure
for doing so consists of three steps. First, we obtain the eigenstate wavefunctions
that solve the BdG equations in each region. From these wavefunctions, the
appropriate scattering states involving particle- and hole-like excitations are
constructed with belonging probability coefficients. The energies ε that allow for
a non-trivial solution of the scattering coefficients are obtained by matching the
wavefunctions at each interface region using appropriate boundary conditions
and setting up a system of linear equations of the type Âx = b where x contains
the scattering coefficients. Solving the characteristic equation detÂ = 0 allows
one to identify the ABS solutions for ε. The boundary conditions require some
special care for the systems under consideration in the present paper, i.e. they
are modified from conventional boundary conditions both for setup (b) and (c)
in Fig. 2.1.

2.9.1 Trilayered S|F|F|F|S structure

The magnetizations in the first two layers F1 and F2 are assumed to be fixed via
strong anisotropy energies along the ẑ and x̂ directions, respectively. In F3, we
allow for an arbitrary magnetization direction in order to explore the effect of
spin-supercurrent induced magnetization dynamics. This material should then
consist of a much softer ferromagnet than F1 and F2. For a completely arbitrary
parameter set, the analytical expression for the ABS-energy is overwhelming.
However, physical insight can be obtained in experimentally relevant limiting
cases. In the quasiclassical regime of a rather weak ferromagnet h/μ � 1, one
finds that:

εj = Δ0

√
1−A cos γ + BZ3(hy/h) sin γ − C ±

√
D(γ) (2.31)
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where the coefficientsA,B, C are independent on the phase difference γ. Instead,
they are functions of the junction parameters such as length L, barrier Z, and
exchange field h. It should be noted that Eq. (2.31) is valid for arbitrary
interface transparency Z. We provide some additional details for the coefficients
in Eq. (2.31) in the Appendix A. The quantity D(γ) is a rather large expression
which depends on γ; the essential property of this quantity is nevertheless that

∂D(γ)

∂γ

∣∣∣∣∣
γ=0

∝ BZ3(hy/h). (2.32)

We prove now that it follows from the above properties of the Andreev-level
that there will be a finite supercurrent at zero phase difference. This finding is
then independent on the specific details of the coefficients introduced above.

The presence of an anomalous current is seen to be contigent on two factors:
1) the presence of scattering barriers and 2) hy �= 0 in the free F layer. The
absence of either of these causes the supercurrent to revert to conventional be-
havior. We comment first on the role of the scattering barriers. In Eq. (2.31),
it was assumed that the scattering barrier Z was the same for the interfaces
between the ferromagnetic regions whereas the S|F interface was taken to be
completely transparent. By allowing for different barrier values, which will
be the case in general since the value of Z depends on the specific materi-
als connected, one finds that the term providing the anomalous current reads
1
2BZ1Z2(Z1 + Z2)hy sin γ. Here, Z1 is the barrier between the F1|F2 interface
whereas Z2 is the barrier between the F2|F3 interface. This demonstrates that
in the short-junction regime where the Andreev bound-states carry the current,
barriers at both ferromagnetic interfaces are required in order to produce the
anomalous current: setting either Z1 or Z2 to zero cancels the sin γ term in Eq.
(2.31). We will later establish a connection between this observation and the
results for the domain wall junction to be considered in a section below.

Secondly, the fact that the anomalous supercurrent only appears when hy �= 0
means that the presence of an explicitly broken chiral spin symmetry the sys-
tem is a necessary criterium. Interestingly, we find that direction of the current
is actually controlled by the specific chirality, i.e. the sign of hy. A conse-
quence of this is that the magnetization direction then acts as a 0-π switch as it
controls the direction of the supercurrent, which offers a novel way of exerting
dynamical control over a superflow of spins. In a somewhat different multilayer
setup where the magnetization vectors were all in-plane (and thus without any
anomalous supercurrent), the direction of the magnetization rotation was also
found to influence the sign of the supercurrent in Ref. [77]. The precise quan-
titative behaviour of our system depends also on the following parameters: the
interface barrier, the magnetic anisotropy constant, and the length of ferromag-
netic layers. For convenience, we introduce the normalized and dimensionless
variables βi =

kFLih
2μ , where the index i denotes the ferromagnetic layer under

consideration. Throughout this work, we set kFL = 2πn, where n is integer.
The presence of ferromagnetism introduces additional phase-shifts for the An-
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dreev bound-states as they propagate through the system.

In Fig. 2.2, we plot the ABS-energy (a, d), the free energy (b, e) and the Joseph-
son current (c, f) as function of the phase difference. We fixed β1 = β2 = π/3
and considered several values for β3 and Z. The magnetization in the free layer
has been set to m ‖ ŷ in order to demonstrate the appearance and consequences
of the anomalous supercurrent. To give the reader a better idea about which
values these correspond to in an experimental setup, we note that for a weakly
polarized ferromagnet with h/μ = 0.02 (exchange field of around 30 meV),
β = π/3 corresponds to a length of 15 nm. In Fig. 2.2, we consider in (a-c)
the effect of varying the width or exchange field of the free ferromagnetic layer,
captured in the parameter β3. We consider here a weakly transparent interface
Z = 2. In (d-f), we instead fix β3 and consider the influence of having different
barrier potentials Z. The panels for the ABS-energies clearly display that the
current is spin-polarized as their spin-degeneracy is completely removed in the
present system. One important feature is that the effect of increasing Z on
the spectrum is that the maxima and minima are shifted away from a phase
difference γ = 0 and γ = π. The fact that the derivative of the ABS-energy
with respect to γ does not vanish at these points implies that there will be a
finite current even in the absence of any superconducting phase difference. This
will be referred to as an anomalous supercurrent. We observe that there is no
anomalous supercurrent when Z = 0, as seen also in Eq. (2.31).

The presence of an anomalous supercurrent is intimately related to an unusual
property for the quantum ground-state of the system, which is illustrated in
the plots for the free energy in Fig. 2.2 (b) and (e). The global minimum of
F is seen to not necessarily occur at the conventional 0 and π states for the
phase difference - in fact, for weakly transparent interfaces it deviates strongly
from these values and occurs at an intermediate phase ∈ [0, π]. This is a man-
ifestation of a so-called φ-junction. In the right column of Fig. 2.2, we plot
the supercurrent-phase relation for various choices of the length and exchange
field for the free ferromagnetic layer as well as different values of the interface
transparency. When a φ-junction is realized, we have I(γ = 0) �= 0 and an
anomalous current is present. Its magnitude is strongly dependent on β3 ∝ hL
and Z, and is seen to reach up to 50% of the critical Josephson current (for
β3 = π/4 in the figure under consideration).

Having considered the equilibrium properties of the magnetically textured trilayer-
Josephson junction, we now wish to address if magnetization dynamics will
be generated when a spin-polarized supercurrent flowing through the system.
In particular, we will consider if and how the presence of the aforementioned
anomalous supercurrent alters the dynamics of the free ferromagnetic layer.
To explore this, we solve the Landau-Lifshitz-Gilbert (LLG) equation numeri-
cally without any approximation for the ABS energies, i.e. valid for arbitrary
parameter values. The main ingredient which makes this possible is the effec-
tive field, which contains both the contribution from anisotropy terms and the
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Figure 2.2: (a,d): Andreev bound-state energies as a function of superconducting
phase difference γ. (b,e): free energy of the system as a function of γ and
(c,f) supercurrent-phase relation for our trilayered S|F|F|F|S structure.
In all plots, we have set β1 = β2 = π/3. In (a,b,c), we fix the barrier at
Z = 2 and investigate the effect of different values of β3 (proportional to
both exchange field h and width L of the free ferromagnetic layer): β3 = 0
(black), 15π/100 (blue), 25π/100 (red), 50π/100 (green). For (d,e,f), we
fix β3 = 15π/100 and investigate the effect of a varying barrier potential:
Z = 0 (black), 1 (blue), 1.5 (red), 2 (green).

.

ABS-energies. It may be written as:

Heff =
2

|M0|(Kemi −Khmj)− 1

V |M0|
∂F
∂m

(2.33)

where Ke(h) is the easy (hard) axis anisotropy constant while F is the contri-
bution to the free energy from the ABS-energies [see Eq. (2.17)] and i(j) can
be x or y or z in accordance with in which direction is easy (hard) axis. We
comment specifically on the regime of validity for our approach that consists of
combining a scattering matrix approach in equilibrium with the time-dependent
LLG-equation in Sec. 2.9.4. For now, we simply state that this framework is
justified when the magnetization dynamics is sufficiently slow compared to the
rate at which the system relaxes to an equilibrium state [79], and is commonly
used in the literature. In our numerical simulations, we will set β1 = β2 = π/3,
Δ = 10−22 J, μ0 = 10−6 H/m, and |M0| = 105 A/m. The Gilbert damping
parameter is set to α = 0.02.

Before discussing the obtained results, it should be noted that the time-dynamics
of the magnetic order parameter in the free F layer depends on the relative
magnitude of the anisotropy and ABS-energy terms in the effective field Heff.
Depending on the parameters of the system, one of these will dominate or they
will be of similar magnitude and compete. We will take the cross-sectional area
of the junction to be 1μm×1μm and consider a width of 10 nm for the free



2.9. Results 19

0.4

-0.4

0.4

-0.4

0

mzmx my

mzmx my

0.8

-0.8

0

0.8

-0.8

0

mzmx
my

0

0.8

0

-0.8

0.8

0

-0.8

0.6

0

-0.6

0.8

0

-0.8

0.6

0

-0.6

a
b c

d e
f

g

h i

Figure 2.3: Stable magnetization state as a function of superconducting phase dif-
ference γ for t → ∞ when m3(t = 0) ‖ ŷ initially. The components
of the magnetization are given in the left (mx), middle (my), and right
(mz) columns. For all panels, we fix β1 = β2 = π/3. (a,b,c): We set
β3 = 5π/100, Z = 0.5, and consider different values of the anisotropy
constant - K = 104 J/m3 (black line), 105 (blue line). (d,e,f): We set
Z = 0.5, K = 105, and consider different values of the β3 parameter
- β3 = π/100 (black), 5π/100 (blue), 25π/100 (red). (g,h,i): We set
β3 = 25π/100, K = 105, and consider different values of the barrier
transparency - Z = 0 (black), 1 (blue), 2 (red).

layer. With a lattice constant of a = 0.1 nm and estimating the number of
transverse modes to N/V = 1028 m−3, we find that for K ≤ 103 J/m3 the
ABS-term dominates whereas for K ≥ 105 J/m3 the anisotropy governs the
dynamics. In order to limit the parameter space, we will consider only a high
to moderate interface transparency (Z ≤ 2) and a junction length of the free
F layer satisfying β3 ≤ 25π/100. These values are representative for a set of
experimentally attainable interface transparencies ranging from high to low as
well as different values for the exchange field of the free ferromagnetic layer,
ranging from weakly to moderately polarized. In each case, we solve the LLG-
equation numerically and identify the stable state that arises when t → ∞ and
its dependence on the superconducting phase difference. The initial condition
for the magnetization of the free layer is taken to be along its easy anisotropy
axis. We discuss the experimental realization of this setup in more detail in
Sec. 2.9.4.

Firstly, consider the case with anisotropy along the ŷ direction shown in Fig.
2.3. We plot the stable state (t → ∞) for each of the magnetization components
and investigate the effect of varying the anisotropy strength K (top row), the
combined effect of exchange field and width of the ferromagnetic layer β3 ∝ hL
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(middle row), and the interface barrier transparency Z (bottom row). Sev-
eral observations can be made. Whereas the qualitative behavior of the mx

(left column) and mz (right column) components are equivalent, displaying a
symmetry around γ = π, the my (middle column) component displays differ-
ent behavior. For some parameter values, we observe very fast oscillations in
terms of the value of the stable state as a function of the superconducting phase
difference. Remarkably, this is a direct result of the presence of an anomalous
supercurrent in the system. To see this, consider the LLG-equation for a stable,
time-independent magnetization:

m×Heff = 0, (2.34)

where Heff contains a contribution from both the anisotropy and ABS-energies.
From the definition of the effective field, one can show that the components of
it satisfy: (

Heff

)i ∝∑
k

C(εk)
∂εk
∂hi

. (2.35)

Now, the partial derivative of the ABS-energy depends strongly on which com-
ponent of the field one considers. For instance, one finds ∂εk

∂hy
∝ sin γ (odd

function of the phase difference) whereas ∂εk
∂hz

is mainly determined by cos γ
(even function of the phase difference). In turn, these properties also determine

the symmetries of
(
Heff

)
i
with respect to γ. This observation is essential as

it explains the qualitative behavior of the magnetization dynamics in Fig. 2.3.
Let us write out the stable state condition componentwise where we explicitly
separate the contribution from anisotropy and ABS-energies:

myH
z
ABS −mzH

y
ABS −Kmymz = 0,

mxH
z
ABS −mzH

x
ABS = 0,

mxH
y
ABS −myH

x
ABS +Kmxmy = 0. (2.36)

There are now three possible scenarios: 1) the anisotropy term dominates, 2)
the ABS-energy term dominates, or 3) the contribution from both of these are
comparable. When the anisotropy term dominates the effective field, one would
expect that the magnetization does not deviate much from its original configu-
ration (along the easy axis). This is seen in panel (e) for the black line. When
the anisotropy term is small compared to HABS, we can neglect the terms ∝ K
in Eq. (2.36) which allows us to conclude the following: since Hy

ABS is close to
antisymmetric in γ whereas Hz

ABS is close to symmetric, the first and third line
dictate that my must be close to antisymmetric in γ whereas mx and mz must
be close to symmetric. This is again consistent with Fig. 2.3. Therefore, we
may conclude that it is the appearance of the anomalous supercurrent (which
is proportional to the sin γ term in the effective field) that is responsible for
the qualitatively different behavior of my compared to the other components.
Finally, the oscillatory behavior of my may be understood as a competition be-
tween the anisotropy and the ABS-contribution to the effective field. Whereas
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dominating K permits a symmetric my with respect to the phase difference γ
while dominating ABS-contribution gives an antisymmetric my, the two terms
compete when they are of comparable magnitude and give rise to a stable-state
for my which displays symmetry in a certain range of γ and otherwise antisym-
metry. Having established the influence of the superconducting phase difference
on the magnetization dynamics, the plots moreover show that magnetization
switching is possible. For instance, panel (l) shows that depending on the phase
difference γ, the stable magnetization state is almost fully aligned with either
the +ẑ or the −ẑ direction.

Consider next the case where we change the initial magnetization configuration
of the free ferromagnetic layer to be along the x̂ or ẑ directions. The results
are shown in Fig. 2.4. The corresponding equation governing the stable-state
now changes compared to Eq. (2.36) since the anisotropy contribution will now
always appear in the second line. As a result, one concludes that regardless of
the strength of the anisotropy and regardless of whether the initial configura-
tion is along x̂ or ẑ, the my component will always be close to antisymmetric
in γ, as seen in Fig. 2.4.

Let us also comment specifically on the role played by the interface barrier
potential Z and the parameter β3 ∝ hL in terms of how they influence the
magnetization dynamics. A common feature for both Fig. 2.3 and 2.4 is that
the my-component grows with increasing barrier Z. This should be seen in con-
junction with that the magnitude of the anomalous supercurrent also increases
with Z (up to Z 
 2), as shown in Fig. 2.2. In effect, the anomalous super-
current increases in magnitude with Z and is seen to have a feedback-effect on
the magnetization in terms of enhancing the magnitude of my. With regard to
the role of β3, its main role is seen to oppose the effect of the anisotropy. As β3
increases, the influence of the ABS-contribution to the effective field becomes
more dominant as evidenced by the emergent antisymmetric my dependence on
γ.

2.9.2 S|F|S junction with spin-active interface zones

We proceed to consider the structure shown in Fig. 2.1(b): an S|F|S junction
where the interface are spin-active. More specifically, we allow (as before) for
an arbitrary magnetization direction in the free ferromagnetic layer whereas the
interface regions are modeled via Eq. (2.29) in the perpendicular configuration
in order to allow for the possibility of spin chirality breaking with the inter-
face moments and the bulk moment all pointing along different axes. In the
quasiclassical regime of a sufficiently weak ferromagnet, we find the following
analytical expression for the ABS-energy:

εj = Δ0

√
1−A cos γ − B(hy/h)Z2ρ2mα sin γ − C ±

√
D(γ) (2.37)

where the coefficients A,B, C are independent on the phase difference γ. The
quantity D(γ) is a rather large expression which depends on γ; the essential
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Figure 2.4: Stable magnetization state as a function of superconducting phase dif-
ference γ for t → ∞ when m3 ‖ ŷ initially. The components of the
magnetization are given in the left (mx), middle (my), and right (mz)
columns. For all panels, we fix β1 = β2 = π/3. (a,b,c): m3(t = 0) ‖ x̂
as initial condition with β3 = π/100 and Z = 0.5. We consider several
values of the anisotropy constant K = 103J/m3 (black line), 104 (blue
line) 105 (red line). (d,e,f): m3(t = 0) ‖ ẑ as initial condition with
Z = 0.5 and K = 104J/m3. We here consider different values of the β3

parameter - β3 = π/100 (black), 15π/100 (blue), 25π/100 (red). (g,h,i):
m3(t = 0) ‖ ẑ as initial condition with β3 = 15π/100 and K = 104J/m3.
We consider several choices for the barrier transparency Z = 0 (black),
0.5 (blue), 1 (red), 1.5 (green), 3 (yellow).

property of this quantity is nevertheless that

∂D(γ)

∂γ

∣∣∣∣∣
γ=0

∝ B(hy/h)Z2ρ2mα. (2.38)

Similarly to the trilayer structure the sin(γ) contribution is only present when
hy �= 0 and is accompanied by an anomalous supercurrent. The effect increases
with the strength of the interface barrier Z and its existence is actually contigent
on a non-zero Z. Therefore, the same conclusion as for the trilayer structure
holds here: chiral spin-symmetry breaking is not a sufficient criterion for the
appearance of an anomalous supercurrent - it also requires scattering at the
interfaces.

In Fig. 2.5, we provide a plot for the ABS-spectrum, free energy, and supercurrent-
phase relation for the system with spin-active interfaces. In this structure, there
is a new parameter compared to the trilayer case, namely the ratio between the
magnetic and non-magnetic part of the barrier ρm. In what follows, we set
ρm = 0.5. Considering first the ABS-spectrum, we see that the shift of the
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Figure 2.5: (a,d): Andreev bound-state energies as a function of superconducting
phase difference γ. (b,e): free energy of the system as a function of γ and
(c,f) supercurrent-phase relation for our spin-active SFS structure. In
(a,b,c), we fix the barrier at Z = 2 and investigate the effect of different
values of β (proportional to both exchange field h and width L of the
free ferromagnetic layer): β = 0 (black), 15π/100 (blue), 25π/100 (red),
50π/100 (green). For (d,e,f), we fix β = 15π/100 and investigate the
effect of a varying barrier potential: Z = 0 (black), 1 (blue), 1.5 (red), 2
(green).

extremal values away from 0 and π are very small when the conditions for a
non-zero anomalous supercurrent are present (finite Z and hy). In fact, the free
energy plots are very close to describing usual 0-π transitions. However, the
zoom-in in the right column of Fig. 2.5 demonstrates that there is a small but
finite value of the supercurrent at γ = 0, which is equivalent to saying that the
junction is in a ϕ-state. Both the present and the trilayer system can then in
principle act as phase batteries supplying whichever phase difference that may
be desirable as its ground-state.

For the magnetization dynamics, we consider in this section only the case where
the initial configuration is along the ŷ-axis since this gives the qualitatively
most interesting behavior. Using the x̂ and ẑ directions as the free layer initial
state provides similar results as in the previous section. One key difference is
nevertheless that unlike the trilayer case, there is no magnetization dynamics
whatsoever in the present scenario when Z = 0. The reason is that for perfectly
transparent interfaces, the junction is equivalent to a homogeneous SFS junction
and there is no spin-transfer torque due to misaligned magnetic moments. More-
over, we see that for all parameter choices we have mx(t → ∞) = mz(t → ∞).
This stems from the fact that the influence of both spin-active interfaces is
equivalent in magnitude so that the induced x and z-components of the bulk
magnetization take the same values. The qualitative behavior of the stable-
state magnetization my(t → ∞) is determined by the relative contribution of
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Figure 2.6: Stable magnetization state as a function of superconducting phase differ-
ence γ for t → ∞ when m3(t = 0) ‖ ŷ initially. The components of the
magnetization are given in the left (mx), middle (my), and right (mz)
columns. In all panels, we fix ρm = 0.5. (a,b,c): We fix β = 15π/100,
Z = 0.5, and consider several values of the anisotropy constant - K = 104

J/m3 (black line), 105 (blue line). (d,e,f): We fix Z = 0.5, K = 105, and
consider several values of the β parameter - β = 5π/100 (black), 15π/100
(blue), 25π/100 (red). (g,h,i): we fix β = 25π/100, K = 105, and consider
several values of the interface transparency - Z = 0 (black), 0.5 (blue), 1
(red), 2 (green).

the anisotropy term and the ABS-energies, and a similar analysis as for the
trilayer case holds here as well. With increasing β ∝ hL, the influence of the
anisotropy term decreases.

2.9.3 Domain wall S|F|S junction

The final structure under consideration in this work is one where the magnetic
weak link connecting the superconductors consists of two layers: a magnetic
domain wall ferromagnet and, as before, a free ferromagnetic layer. The domain
wall is modeled via Eq. (2.30). In the quasiclassical regime h � μ, we obtain
the expression

εj = Δ0

√
1−A cos γ − B ±

√
(A cos γ)2 + C cos γ +D (2.39)

where all coefficients A, B, C and D are independent of γ and instead depend on
all the other parameters in the junction. In obtaining Eq. (2.39), we considered
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the limit η � 1 and αdw � η where

αdw = hdw/2μ,

η = a2/k2F , a = π/2ldw. (2.40)

To understand what this limit means physically, we note that it is equivalent
to stating that the domain wall width dw far exceeds a typical lattice spacing
constant as it should. From this expression, it is clear that the ground-state
energy will always occur at γ = 0 or γ = π, in contrast to the two previously
analyzed configurations. The sin γ term responsible for the anomalous super-
current and ϕ-junction is absent. For this reason, we do not include any results
for the magnetization dynamics of this system. We instead show graphically in
Fig. 2.7 the ABS-energies (a,d,g), the free energy of the system (b,e,h) and the
supercurrent-phase relation (c,f,j) are all shown for various parameter choices.
The fact that the anomalous supercurrent is absent is an important observation,
because it demonstrates that chiral spin-symmetry breaking (or alternatively,
non-coplanar magnetization vectors) alone is insufficient to induce such a term.
In fact, the finding that the term causing a ϕ-junction is absent in the present
case of a domain wall is consistent with our findings for the trilayer junction
above. There, it was shown that if either interface barrier between the fer-
romagnetic layers was absent, the anomalous supercurrent vanishes. Such a
scenario is similar to the present case, since two misaligned ferromagnetic re-
gions without any interface scattering barrier can be thought of as a simplified
domain wall.

2.9.4 Discussion

We discuss here some issues which are relevant for the approximations made in
our model as well as how to realize experimentally the proposed setups. First
of all, the variation of the magnetization dynamics on the superconducting
phase difference can be probed in several ways. In our treatment, we have con-
sidered a phase-biased Josephson junction with a fixed superconducting phase
rather than a fixed current bias. In the latter case, the superconducting phase
would vary together with the magnetization dynamics since the supercurrent-
phase relation is sensitive to the exact magnetization configuration. Instead,
by phase-biasing the junction via a loop-geometry and a minute external field
corresponding to a flux quantum (which has no effect on the magnetization
dynamics), the current is allowed to vary as the magnetization dynamics takes
place while the phase remains fixed. Another approach would be to study a
phase-driven junction with a voltage-bias as done in e.g. [53, 55].

For the computation of the magnetization dynamics, we used as initial condi-
tion that the magnetization of the free layer was along the easy axis anisotropy.
In general, however, the magnetization configuration that solves the static LLG
equation in equilibrium is not necessarily with the free layer along the easy axis.
This is due to the presence of the effective field stemming from the ABS-energies
that exist in the junction. We have attempted to find a general analytical so-
lution for the orientation of the free layer which solves m × Heff = 0 when



26
Chapter 2. Magnetization dynamics, spin-supercurrent, and φ-junction

in textured SFS junctions

ε
/Δ

ε
/Δ

F
/Δ

F
/Δ

Ι 
/(

2
e

Δ
/ħ

)
Ι 

/(
2

e
Δ

/ħ
)

0.1

0.5

1

0.1

0.5

1

0.1

0.4

0.8

ε
/Δ

-1

-1.3

-1.5

-1.1

-1

-1.5

F
/Δ

-0.3

0.3

-0.3

0.3

-0.6

0.6

0

0

0
Ι 

/(
2

e
Δ

/ħ
)

a

b c

d e f

g h i

Figure 2.7: (Color online) (a,d,g): Andreev bound-state energies as a function of su-
perconducting phase difference γ. (b,e,h): free energy of the system as a
function of γ and (c,f,j): supercurrent-phase relation for our S/DW/F/S
structure. In (a,b,c), we set Z = 2, η = 10−4 and investigate the ef-
fect of different values of the β2 parameter - β2 = 0 (black), 15π/100
(blue), 25π/100 (red), 50π/100 (green). In (d,e,f), we set β2 = 15π/100,
η = 10−4 and investigate the effect of the magnitude of the barrier trans-
parency - Z = 0 (black), 1 (blue), 1.5 (red), 2 (green). Finally, for (g,h,i)
we set Z = 2, β2 = 15π/100 and investigate the effect of the domain wall
width - η = 10−4 (black), 8× 10−3 (blue), 5× 10−3 (red)

including all terms in the free energy, but the resulting expressions were too
cumbersome to be of any use. The initial condition used in the numerical simu-
lations is nevertheless feasible to realize experimentally, simply by applying an
external field along the anisotropy axis to artificially enhance it so that the free
layer m is fixed along that direction. By then turning off the field, the resulting
magnetization due to the Andreev-bound states and the change in supercon-
ducting phase difference may then be observed. It is important to underline
that the supercurrent-induced magnetization dynamics studied in this paper
is a non-equilibrium effect even when the SC phase difference is kept constant.
The reason is that the system is initially prepared in a magnetization configura-
tion which is not the ground-state of the system so that there is a finite torque
acting on the free layer which eventually goes to zero as the system relaxes into
a stable state for t → ∞.
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In the situation considered in the majority of previous literature on magnetic
Josephson junctions, the magnetization is considered fixed and thus already be-
ing in its ground-state (e.g. due to strong anisotropy fixing). One then assumes
that there is no feedback on the magnetization from the Josephson current, and
so one only needs to minimize the superconducting part of the free energy with
respect to the phase difference: the magnetic part is already assumed to be
minimized. If one instead, as we have done, allows for the Andreev bound
states and (thus supercurrent) to have a considerable influence on the free en-
ergy on equal footing as the anisotropy, the superconducting correlations will
alter the favorable orientation of the magnetization. The free energy should
then be minimized both with respect to the magnetization orientation and the
superconducting phase difference.

Let us also comment specifically on our technical treatment of how the Andreev-
bound state contribution to the free energy gives rise to an effective field that
enters the LLG equation. By defining the effective field Heff as the functional
derivative of the magnetic order parameter evaluated at its instantaneous con-
figuration requires that the magnetization dynamics is slow compared to re-
laxation processes in the system. In other words, the derived free energy may
be treated as time-dependent if the system approximately equilibriates in pace
with the change in magnetization. A lag between the magnetization dynamics
m(t) and degrees of freedom that are coupled to it may be interpreted as a
dissipation of energy and in turn captured by the Gilbert-damping parameter
that we have accounted for [79]. For a driven superconducting phase where
the phase difference is γ(t) = ωJ t + γ0, the above criterium is satisfied when
ωJ � kBTc [53] so that the phase is treated as a time-dependent perturbation.

It is worthwhile to point out that the diffusive limit of transport is usually the
experimentally most relevant one. Our motivation for performing the calcula-
tions in the ballistic regime was primarily for the sake of analytical transparency:
using the BdG-equations, we have obtained analytical expression for the An-
dreev bound-state energies from which one could directly infer the required
conditions of the appearance of the anomalous supercurrent. In the diffusive
limit, one would have to use the quasiclassical Usadel equations. For the type
of structures that we have considered with multilayers, an analytical solution
might be possible but probably not in a particularly illuminating form. In fact,
a previous work [24] that considered a trilayer S|F |S junction using the quasi-
classical formalism was unable to identify the appearance of the φ-state using an
analytical approach, presumably due to all the simplifications that are required
for this purpose. This suggests that a calculation in the full proximity effect
regime, where only a numerical approach is viable, would be required in the
diffusive limit in order to correctly obtain the predicted effects. Whereas this is
certainly interesting, it lies outside the scope of our work. Having stated this,
we think it is reasonable to expect that our results will be qualitatively valid
for the diffusive limit as well for the following two reasons: i) the fundamental
mechanism for the generation of an anomalous supercurrent and φ-state rely on
the breaking of a chiral spin symmetry combined with the presence of interface
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scattering. None of these effects pertain uniquely to the ballistic limit of trans-
port, and hence one would expect that the same physics would transpire in the
diffusive limit given the same conditions as in our paper. ii) In the regime of
moderate to low interface transparency (Z ≥ 1 in our paper), the supercurrent-
phase relation is close to sinusoidal and the higher harmonics (which typically
are much more pronounced in the ballistic limit) are suppressed. In this way,
our system becomes more comparable to the diffusive case where it is known
that the first harmonic is by far the most important contribution. Quantita-
tively, there may certainly be some differences between the diffusive and ballistic
treatments, but we do not expect any dramatic alterations of the underlying
physics for the reasons mentioned above.

Finally, in order for the magnetization vectors to be misaligned as e.g. in the
trilayer case, it is necessary to reduce the exchange coupling between the lay-
ers. This can be achieved by inserting a normal metal spacer between the F
regions. We have omitted this layer in our calculations since it would merely
complicate the analytical expressions without introducing any new physics. It
should be noted that spacer thicknesses as small as 4 nm are sufficient to exper-
imentally allow for misaligned magnetization vectors in superconducting hybrid
structures, as very recently reported in [80].

2.9.5 Conclusion

In conclusion, we have investigated the spin- and charge-transport in several
models of magnetically textured Josephson junctions. We have made predic-
tions for the ABS-energy spectrum, the free energy and its phase dependence,
and the supercurrent-phase relation. Moreover, we have considered the mag-
netization dynamics induced by the presence of a triplet spin-supercurrent in
these systems and computed how the stable-state magnetization m(t → ∞)
is controlled by the superconducting phase difference. A key finding is that
the presence of an anomalous supercurrent ∝ cos γ, which results in a ϕ-state,
strongly influences the resulting magnetization dynamics and gives rise to sym-
metry properties of the stable-state which may be understood by analyzing
the resulting effective field Heff. Moreover, we demonstrated that chiral spin
symmetry breaking is insufficient to generate such an anomalous supercurrent:
the presence of scattering barriers separating different magnetic regions play
an instrumental role in creating this effect. Our results may provide a basis
for future investigations of how controllable magnetization dynamics can be
obtained with spin-supercurrents that are tuned via the superconducting phase
difference.



Chapter 3

Domain wall motion via
current and spin-waves in
multiferroics

Over the last decade, there has been a surge of interest in multiferroic materi-
als [82, 83, 84] which displays simultaneously ferromagnetic, antiferromagnetic,
ferroelectric, and/or ferroelastic order [85]. Besides the obvious allure of this
multifunctionality from a practical viewpoint, such as usage for the purpose of
magnetic random access memories [86, 87], the magnetoelectric cross-coupling
between these orders is interesting from a fundamental physics perspective
[58, 91, 92, 93, 94, 89, 88].

It is known that a wide variety of multiferroic materials host textured mag-
netic order parameter profiles [83] such as domain walls. Domain walls may be
thought of as topological defects which interface different regions of a material
and exhibit properties that differ from the ones in the homogeneous domains.
Controlling the transport of magnetic domain wall structures is currently an
active field of research [104] in spintronics as it offers an interesting way to
transfer information in a non-volatile manner. In the context of multiferroics,
inhomogeneous magnetic distributions M such as domain walls may induce an
electric polarization P which opens up the possibility to influence magnetic do-
main walls via electric fields E [92]. Indeed, it has been experimentally shown
that it is possible to manipulate magnetic domain wall structures via an ex-
ternal E field [95]. Magnetoelectric coupling has also been demonstrated to
provide strain-controlled domain wall motion [96].

However, an analytical framework and understanding of how domain wall mo-
tion takes place in multiferroics when exposed to central driving forces in spin-
tronics such as spin-polarized currents or spin-waves remains largely unexplored
[98, 99]. In this chapter, we answer the question: how does magnetic domain
walls in multiferroics respond to the spin-transfer torque induced by electric
currents and spin-waves?

29
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3.1 Ferromagnetism

3.1.1 Exchange interaction

The physical mechanism that is responsible for the alignment of electron spins
is the exchange interaction. It can arise in different forms: the direct exchange
interaction and superexchange where spins on a pair of magnetic ions interact
via a third mediating ion. In all of these cases, the Coulomb interaction and
Pauli principle are central. The Coulomb repulsion between two electrons can
be reduced by increasing the distance between them via their spins aligning,
since the Pauli principle then forbids the electrons to reside at the same posi-
tion. The magnitude of the exchange interaction thus depends on the distance
between the spins and their relative orientation of magnetic moments. We will
work in approach of a continuous medium, where for homogeneous or weakly
inhomogeneous (scale of inhomogeneity � interatomic distance) magnetization
can be considered as a continuous function of the spatial coordinates. For a
cubic crystal structure of the ferromagnet, the free energy resulting from the
exchange interaction is

Fexc =

∫
dr
{
− J0 ·m2 + J

[(dm
dx

)2
+
(dm
dy

)2
+
(dm
dz

)2]}
(3.1)

where J0 and J are the constants of homogeneous and inhomogeneous interac-
tion respectively, while m = M/M0, M0 is the saturation magnetization. In
the case of a ferromagnet, the exchange interaction favors a parallel alignment
of spins. It is seen that the free energy is invariant with respect to a rotation
of m.

3.1.2 Anisotropy

As was stated above, the exchange interaction contributes to determining the
dependence of the magnetic energy on the relative orientation of magnetic mo-
ments. At the same time there is also interaction between the magnetization
and crystal lattice, which is called magnetocrystalline anisotropy. The origin of
this interaction lies in the fact that orientations of the magnetization, which in-
fluences the atomic spin-orbit interaction, along different crystallographic axes
are energetically unequal. This means that the orientation of magnetization
M along one direction of crystal is energetically more profitable than along
another. In the case of uniaxial crystal, the energy is minimal when the ori-
entation of magnetization vector is along a symmetry axis of the crystal. The
energetically profitable direction is called the easy axis, and the material can
be magnetized in this direction to saturation at lower external magnetic fields.
The direction in which the anisotropy energy is maximum, is called the hard
axis.

But there are other sources of anisotropy besides magnetocrystalline anisotropy,
such as are the sample shape and micro-scale texture. Shape anisotropy derives
from the demagnetization field, which depends on the direction of magnetization
in the sample relative its geometry. This is not intrinsic property and changes
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when the geometry of the sample is changed. Induced anisotropy arises when
an easy direction of magnetization is created by applied stress, or by depositing
or annealing a disordered alloy in a magnetic field to create some atomic-scale
texture.

A general expression for the anisotropy energy, regardless of its specific source,
can be written as

Fan =

∫
dr(−K

2
m2

z +
K⊥
2

m2
x) (3.2)

where K > 0 and K⊥ > 0 are constants of anisotropy for easy and hard
axis correspondingly. Later, we will use this effective anisotropy to determine
magnetization dynamics.

3.1.3 Zeeman coupling

In the presence of the external magnetic field, the ferromagnet has also mag-
netostatic energy known as the Zeeman energy, which can be written in the
form:

FZ = −
∫

dr(M ·Bext) (3.3)

where Bext is the external magnetic field.

3.1.4 Effective magnetic field

As seen, the total free energy of the ferromagnetic has different terms Ftot =
Fexc+Fan+FZ , and so the ferromagnet is influenced by an effective field Heff

which can be defined by derivative of the total free energy with respect to
magnetization M . Since the magnetic state of a ferromagnet is characterized
not only by the magnetization M , but also depends on the gradient of the
magnetization, we must use the functional derivative. The effective field is
formally defined as

Heff = − 1

M0

δF

δm
(3.4)

3.2 Magnetization dynamics and LLG-equation

Magnetization dynamics describes the time evolution of the magnetization M
under the influence of external and internal torques. The first equation of
motion of magnetization was introduced by Landau and Lifshitz [58, 90]. By
this equation, one can describe the dynamical behavior of a magnetic order
parameter, for example motion of domain walls or the nonlinear dynamics of
various inhomogeneities. The Landau-Lifshitz equation is based on fundamental
mechanical laws - the conservation of total angular momentum J and the fact
that its time-derivative is equal to a torque:

dJ

dt
= T (3.5)
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The angular momentum of a volume unit of a ferromagnetic medium is propor-
tional to the spin of electrons in that unit of volume which differ from magne-
tization vector by the coefficient of proportionality γ, the gyromagnetic ratio.
A torque T acting on magnetic moment is caused by the effective field Heff,
T = [M × Heff]. One obtains the following equation of motion of for the
magnetization

∂M

∂t
= −γM ×Heff (3.6)

where γ = g(e/2me) > 0 is the gyromagnetic ratio which is proportional to ratio
between the charge e and the mass me of the electron. The dynamics described
by this equation is such that the magnitude of magnetization is conserved, as
can be seen by taking the scalar product between the entire equation and M .
Without an external field, the system is in equilibrium. But when we apply an
external force, such that M × Heff �= 0, the effective field Heff will induce a
precession of local magnetization around direction of effective magnetic field.
For the simplest models, this equation has an exact analytical solution.

In its present form, this equation cannot describe any relaxation of the system: a
precession will persist indefinitely. In order to account for dissipation of energy,
one instead describes the magnetization dynamics with the Landau-Lifshitz-
Gilbert equation that has been proposed by Gilbert [59]:

∂M

∂t
= −γM ×Heff +

α

Ms
M × ∂M

∂t
(3.7)

In this equation, a term α describes viscous damping which is proportional to
the magnetization velocity.

3.2.1 LLG with current

We will in this work consider both the influence of spin-waves induced torques
and current-induced torques, commencing with the latter. In this case, the stan-
dard phenomenological equation of motion used to describe the spin-transfer
torque effect of an electric current is (in normalized form):

∂m

∂t
= −m×Heff + αm× ∂m

∂t
− u

∂m

∂c
+ βum× ∂m

∂c
(3.8)

where α is the Gilbert damping constant, u is proportional to the current den-
sity, while β is the non-adiabatic term whose origin, although subject to some
controversy, mostly is believed to be spin-relaxation processes that cause the
itinerant electron spins constituting the current to not follow the domain wall
profile fully adiabatically [103]. Although the magnetization is allowed to take
any direction, we consider only variation along one spatial dimension (denoted
c above) in order to provide analytical results.

3.2.2 LLG in spherical system

To investigate the texture of a domain wall it is convenient to use equations in a
spherical system of coordinates. In the ferromagnet, the length of the magnetic
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vector M is constant, so that the orientation of M can be characterized only
by the azimuthal angle φ in the xy-plane and the polar vector θ. The vector
M can be written as M = M0(sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). The effective
field in the spherical coordinate system can be written

Heff = HMnr +Hθnθ +Hφnφ (3.9)

where nr, nθ and nφ are the unit vectors of spherical coordinate system, and

HM = − ∂F

∂M0
, Hθ = − 1

M0

∂F

∂θ
,Hφ = − 1

M0 sin(θ)

∂F

∂φ
, (3.10)

3.3 Domain walls

The total magnetic moment of a ferromagnetic sample without an external
magnetic field can become smaller when the magnetization distributes itself
inhomogeneously in order to reduce the demagnetization field. The presence
of a magnetic anisotropy leads to separation of magnetic domains which are
homogeneously magnetized along one of the direction of easy axis. The separa-
tion between these domains are known as domain walls, areas where magnetic
vector smoothly varies its orientation. Domain wall was investigated firstly by
Bloch. The upper limit of the wall thickness is determined by the anisotropy
energy. There is also a limit associated with the exchange interaction, which
counteracts a sharp transition as such a twist in the magnetization is costly
from an energetic point of view.

To obtain the equilibrium distribution of magnetization in a ferromagnet with
a domain wall, one can consider the static case in which the equation

m×Heff = 0 (3.11)

has to be satisfied. For the simplest case where we only take into account the
free energy of the exchange field and the effective anisotropy such that the z-
axis is the easy axis and the x-axis is the hard axis, with the assumption that
φ is a constant, these equations have exact analytical solution:

θ = 2arctan{± exp[(c− χ)/δ]} (3.12)

φ = ±π

2
(3.13)

where δ = (A/K)1/2 is the width of the domain wall while χ defines of the po-
sition of the center of domain wall. In accordance with the geometry of sample
and orientation of anisotropy, such a profile can describe three different types
of domain wall: Bloch, Neel or head-to-head.

In a bulk ferromagnetic sample with uniaxial anisotropy the typical domain
walls are Bloch walls, which are characterized by a rotation of the magnetiza-
tion parallel to the domain wall plane. The magnetization in the domains is
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parallel to the domain wall plane. In the case of a very large crystal, uncompen-
sated surface charges are negligible too. Therefore, only the interplay between
exchange interaction and magnetocrystalline anisotropy defines the domain wall
shape.

In the case of thin film there is different distribution of the magnetization vector.
In this case, the magnetocrystalline and shape anisotropy reorient the reoriente
the easy axis to lie in the plane of film while the hard axis is directed along
the normal to the surface. Neel derived in 1953 the domain wall transition in
thin films. He demonstrated that in such structure, a domain wall type with
an in-plane rotation of the magnetization has a lower energy than the Bloch
wall. The magnetization in the Neel domain lies in plane of film parallel to the
domain wall plane and rotation occurs in plane of film with output of magneti-
zation from the plane of the domain wall. The width of Neel domain walls are
typically bigger than Bloch domain wall.

In the description of Bloch and Neel walls one assumes infinitely extended struc-
tures. This allows one to neglect the contribution into free energy from the
demagnetizing field . But in real structures, such as cylindrical nanowires, such
approximations are not correct and the shape anisotropy contributes decisively
to the total energy that lead to the easy axis lies along structure. It deter-
mines the magnetization direction in the domains along the wire. The resulting
domain wall configurations are called head-to-head or tail-to-tail type. The
magnetization in domain walls separated by head-to-head or tail-to-tail walls
is perpendicular to the domain wall plane. In such structure the geometry pa-
rameters such as width and thickness of the wire also influence on the width of
the domain wall.

3.4 Motion of domain walls

Domain wall motion is an important basic magnetization process in multido-
main solids. Under the influence of an external input, such as an external
magnetic field, domain walls move in a direction that lead to an increase of
the volume of the domain oriented along the external field and, conversely,
decreasing the volume of other domain with opposite magnetization. During
this process the average magnetization increases. Another fundamental magne-
tization process is magnetization switching, where the magnetization changes
orientation in a domain under an external driving force. This type of magneti-
zation process was considered in chapter 2. Besides using magnetic fields, it is
also possible to move domain walls by currents as will be discussed below.

3.4.1 Motion by external magnetic field

The free energy changes when an external magnetic field is applied to the sys-
tem. The position of the domain wall, determined by the minimum of the free
energy, thus changes. For a clean system, without impurity pinning centres,
even small magnetic fields move the domain walls. The analytical model of
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field-induced propagation process for simple 1800 domain walls with easy axis
was studied firstly by Walker and Schryer [78]. They found that velocity of
the motion of the domain wall is proportional to the external magnetic field
as v = (γδ/α) · H, where γ is the gyromagnetic ratio, δ is the width of the
domain wall and α is the damping constant. The velocity depends linearly on
the external field until the field reaches a certain critical value: the so-called
Walker field HWalk = αK⊥

m . Upon further increasing the field, a deformation of
the domain wall takes place, and the domain wall does not move linearly more.
This is known as Walker breakdown.

3.4.2 Motion by spin-polarized current

The current-induced wall propagation is based on the spin-transfer torque effect.
As polarized itinerant electrons pass from one domain to another with opposite
polarization, they transfer spin angular momentum to the localized magnetic
moments. As the result, this torque rotates each of the localized moments
which lead to motion of the domain wall in accordance with the conservation of
angular momentum. In 2004, Zhang and Li [103] gave a comprehensive treat-
ment of spin-transfer torque and included in addition to the adiabatic torque
also the non-adiabatic torque. Adiabatic dynamics of the magnetization is slow
compared to the dynamics of the conduction electrons. scattering with impu-
rities and with electrons. While the non-adiabatic torque is solely responsible
for the terminal domain wall velocity in regime below Walker breakdown, the
adiabatic torque is the main contributor to the net wall velocity above Walker
breakdown.

3.4.3 Motion via spin-waves

There exists a third method available to move a domain wall, namely by spin
waves that pass through it. Interesting because of its potential applications to
low dissipation solid-state data-storage and data-processing devices, magnonic
domain wall motion is a relatively new field which has attracted increasing at-
tention recently [2].

The elementary excitation of spins above the magnetic ground-state has a wave
character and is called spin-waves. In the quasiclassical approximation, spin-
waves are small deviation of spin from the z-axis (axis of equilibrium direction
for the magnetization) arising due to the spin precession with a small ampli-
tude. If a spin-wave is causing precession with a small amplitude around the
equilibrium position, we can present the magnetization vector in the following
form:

m = er + [mθeθ +mφeφ]e
−iωt (3.14)

where er is unit vector along equilibrium direction, ω is the spin-wave frequency

and mθ and mφ are small,
√

m2
θ +m2

φ � 1. In order to obtain equations of

motion for mθ and mφ we substitute this representation into the LLG equation.
Taking into account that mθ and mφ are small, the equations of motion are
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[101]:

− iωmθ = −2γAm′′
φ − 2γKmφ(2 sin

2 θ − 1) + iωαmφ (3.15)

−iωmφ = 2γAm′′
θ + 2γKmθ(2 sin

2 θ − 1)− iωαmθ (3.16)

Upon defining φ = mθ − imφ, ξ = z
Δ , and q2 = ω

K − 1, these equations can be
rewritten as:

q2φ(ξ) =

[
− d2

dξ2
− 2sech2ξ

]
φ(ξ). (3.17)

Interestingly, this has the form of a Schrödinger equation with solutions of the
form of a propagating wave:

φ(ξ) = ρ
tanh ξ − iq

−iq − 1
eiqξ (3.18)

where ρ is the spin-wave amplitude. The asymptotic form of this solution
are φ(ξ → −∞) = ρeiqξ and φ(ξ → +∞) = −ρ1−iq

1+iqe
iqξ. We see that spin-

wave propagates through the domain wall without any reflection and retains its
amplitude. However, its phase (spin orientation) changes. A magnon, which
is the quasiparticle name for a spin-wave, thus flips its spin as it propagates
through the domain wall. According to conservation of angular momentum, the
missing spin angular momentum must have been transferred to the domain wall
and causes it to move. If the spin-wave propagates rightwards, the domain wall
will move left to conserve angular momentum. One of the main motivations
for considering magnon-induced domain wall motion is that unlike the current-
induced case, there is no need to incorporate moving electrons and one thus
avoids Joule heating. Magnon-induced domain wall motion therefore also works
in magnetic insulators.

3.5 Multiferroics

In the previous part of this chapter, we described magnetic materials that have
one order parameter - the magnetization M . But there exists some materials
which exhibit two or even three order parameters. These are so-called multifer-
roics. Besides magnetic order, it is also possible to obtain ferroelectricity where
a material displays a spontaneous electric polarization, and ferroelastics which
exhibit stress-switchable elastic strain. A multiferroic material is described by
a complicated tensor susceptibility with components related to both magnetic
and electric fields and can thus feature both a spontaneous magnetization and
electric polarization.

The influence of an electric field on micromagnetic structure was predicted
theoretically in a series of works [107, 108, 97]. These theoretical models took
into account the so-called inhomogeneous magnetoelectric interaction that gives
rise to electric polarization associated with magnetic inhomogeneities. The
inhomogeneous magnetoelectric contribution into thermodynamic potential for
the bulk crystal of ferrite garnets with cubic symmetry takes the following form:

fME = −γ0E[M · (∇ ·M)− (M · ∇) ·M ] (3.19)
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whereM is magnetization vector, fME is the free energy density,∇ is differential
operator vector, E is the electric field, and γ is inhomogeneous magnetoelectric
interaction constant. It is clear from this equation that fME respects both
inversion and time-reversal symmetry since E changes sign under inversion
r → −r whereas M remains invariant, while E remains constant under time
reversal t → −t and M changes sign. The electric polarization induced by the
magnetic inhomogeneity can be found in the following way for a cubic crystal
[97]:

P = γ[M(∇ ·M)− (M · ∇)M ]. (3.20)

When considering a multiferroic material, we must thus include this cross-
coupling term between the electrical and magnetic degrees of freedom in the
free energy: FP = − ∫ drE ·P . The magnitude of the magnetoelectric coupling
coefficient is denoted γ0.

3.6 Results

We now present the research results from Paper II.

Based on the above description of the theory, the total free energy is then
represented by F = Fexc + Fan + FZ + FP and we make use of the Landau-
Lifshitz-Gilbert equation (LLG) [58, 59] to investigate the dynamics of a domain
wall in this multiferroic system. We will in this work consider both the influence
of spin-waves induced torques and current-induced torques, commencing with
the latter. In this case, the standard phenomenological equation of motion used
to describe the spin-transfer torque effect of an electric current is (in normalized
form):

∂m

∂t
= −m×Heff + αm× ∂m

∂t
− u

∂m

∂c
+ βum× ∂m

∂c
(3.21)

where α is the Gilbert damping constant, u is proportional to the current den-
sity, while β is the non-adiabatic term whose origin, although subject to some
controversy, mostly is believed to be spin-relaxation processes that cause the
itinerant electron spins constituting the current to not follow the domain wall
profile fully adiabatically [103]. Although the magnetization is allowed to take
any direction, we consider only variation along one spatial dimension (denoted
c above) in order to provide analytical results. In what follows, we will con-
sider time t in the unit of (γμ0M0)

−1 where μ0 is the vacuum permeability, γ is
the gyromagnetic ratio, and use normalized length in the unit of (J/M2

0μ0)
1/2.

Finally, we express the current density parameter u in the unit of γ
√
Jμ0, the

free energy F and anisotropy constants K and K⊥in the unit of M2
0μ0, E in

unit of γM0μ0
√
Jμ0, and the magnetoelectric coupling constant γ0 in the unit

of (γM2
0μ0)

−1.

A key observation is that not all types of magnetic textures will provide a net
magnetoelectric polarization P : a net component of the magnetization along
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Figure 3.1: (Color online) Schematic setup considered in this work. We consider two
types of domain walls in multiferroics which give rise to a net electric
polarization due to the magnetoelectric effect: (a) Neel and (b) head-to-
head domain walls. An ac E or B field is applied transversely to the
structure in order to generate spin-waves locally, which then propagate
through the system and interact with the domain wall. We also allow
for the possibility of a dc E field (gate voltage) applied across the top
and bottom of the structure. In (c), we show how the maximum domain
wall velocity attainable before Walker breakdown VDW,c and the critical
current density uc scales with the applied normalized electric field ε. We
have chosen parameters α = 0.01 and β = 0.02.

the direction of spatial variation v is required, thus ruling out Bloch walls. For
this reason, we will focus here on Neel (NDW) and head-to-head domain walls
(HDW). To be concrete, we choose easy-axis of magnetic anisotropy along the
z direction and the hard axis along x direction (see Fig. 3.1 for the schematic
setup). Before we can explore the dynamics of multiferroic domain walls, one
has to check whether an applied electric field alters the static domain wall profile
itself. Some care must be exercised here, since we find that the validity of the
usual Walker solution [78] for the domain wall profile depends on the orientation
of the electric field relative the hard axis of anisotropy. For instance, the Walker
profile is not valid for the NDW and HDW when the E field is applied along the
hard-axis direction. Thus, we consider the electrical field as E = (0, 0, Ez) for
NDW andE = (0, Ey, 0) for HDW. Due to our chocie for the coordinate axes, we
can conventially write the normalized magnetization in the same way for both
types of domain walls: m = (sin(θ) cos(φ), sin(θ) sin(φ), σ cos(θ)), where θ(c) =
2 arctan[exp(c−χ)/λ] where c = y and c = z for NDW and HDW correspondingly,
λ is the DW width, χ is the position of the DW center, and the topological
charge of the domain wall is σ. The azimuthal angle for the static Walker
profile φ = ±π/2 for both our geometries and we assume that K � K⊥ to
justify the description of the domain wall as a solitonic object described only
by the degrees of freedom associated with its center position and tilt angle [104].
The equation of motion for the center-coordinate χ(t) and the angle φ(t) is for
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the NDW

ασχ̇+ λφ̇ = −σβu+ λBz and σχ̇− αλφ̇ = −σu

− 1

2
λK⊥ sin(2φ) + σλπγ0Ey cos(φ). (3.22)

For the HDW, we have

ασχ̇+ λφ̇ = −σβu, σχ̇− αλφ̇ = −σu− 1

2
λK⊥ sin(2φ)

− By

π
cos(φ) + 2σλπγ0Ez cos(φ). (3.23)

The behaviour of the domain wall is different in two regimes which separated
by the Walker breakdown, defined by ∂tφ �= 0. In the regime where there
is no Walker breakdown, the following equations must be satisfied for NDW
u
κ⊥ = sin(2φ)+ bNDW− ε cos(φ) and for HDW u

κ⊥ = sin(2φ)+(bHDW+ ε) cos(φ)

where κ⊥ = σαλK⊥
2(β−α) , b = B/B0 , ε = E/E0, E0 = σK⊥

4πγ0
, B0,HDW = πλK⊥

2 ,

B0,NDW = αK⊥
2 This allows us to determine a quantity of central practical

importance, namely the critical current density uc at which Walker breakdown
takes place. We find:

uHDW,c = κ⊥[b+
√
2f(ε)/32], uNDW,c =

√
2κ⊥f(ε′)/32,

f(x) = (3x+
√
x2 + 32)[16− x2 + x

√
x2 + 32]1/2 (3.24)

where ε
′
= b + ε. From this, the maximum domain wall velocity VDW,c that is

attainable before deformation sets in is computed via VDW,c = −βuc/α. The
corresponding angles φ corresponding to the constant tilt angle of the DW are
φWB = − arcsin(18(ε −

√
ε2 + 32)) and φWB = π − arcsin(18(ε

′ −
√

(ε′)2 + 32))
for NDW and HDW, respectively. We here included the presence of a magnetic
field for generality, and in the limit without any spin-transfer torque effect our
expressions are consistent with Ref. [99]. Setting B = 0 in order to focus on
the spin-transfer torque effect, it is seen from the above equations that the crit-
ical current in both the NDW and HDW case is the same and increases with
E. This could be of practical importance since it offers a way to delay Walker
breakdown induced by electric current, and increase the velocity of the domain
wall transport, via a gate voltage. In Fig. 3.1 c, we plot the maximum domain
wall velocity as a function of the applied electric field.

We now turn our attention to the question of how spin-waves interact dynam-
ically with both homogeneous magnetization textures and domain wall struc-
tures in multiferroic materials. As it turns out, these two situations are insep-
arable and must be considered together. The reason for this is that we find
that spin-waves induce a torque even on a homogeneous magnetization due to
the magnetoelectric coupling. To illustrate this effect analytically, consider a
thin-film ferromagnet with propagating magnons where the magnetization lies
in-plane (say, xz-plane). Writing out the effective field explicitly, we then have:

Heff = J∂2
zm+Kmxx̂+ 2γ0∂zmz(Exx̂+ Eyŷ)

− 2γ0ẑ(Ex∂zmx + Ey∂zmy). (3.25)
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To describe spin-wave propagation and its influence on the magnetic order
parameter, we write the total normalized magnetization as m = (σ0, δmy +
sy, δmz + sz) where σ0 = ±1 describes the equilibrium macrospin orientation,
taking into account the possibility of ordering along both ±x̂ for the sake of
generality. Moreover, δmj and sj describe the change in the magnetic order
parameter and the spin-wave excitations, respectively, and are assumed to be
small compared to σ0 which allows for a perturbation treatment. With the
above effective field, we insert m into the LLG equation and average over one
spin-wave oscillation period. Discarding higher order terms, we are left with
the following equations:

J∂2
zmz = Hkmz + γ0Ey∂zmy + γ0σ0Ex〈sz∂zsz〉,

J∂zmy = Hkmy + γ0Ey∂zmz + γ0σ0Ex〈sy∂zsz〉. (3.26)

We also obtain a set of equations for the spin-wave amplitudes sj to leading
order:

σ0∂tsy + α∂tsz = γJ∂2
zsz − γszHk + γγ0Ey∂zsy,

σ0∂tsz − α∂tsy = −γA∂2
zsy + γsyHk − γγ0Ey∂zsz. (3.27)

The underlying assumption here is that the spin waves vary on a much shorter
time scale than the magnetization texture, as is reasonable. Consider first the
case with an electric field only along the x̂-direction of the film, such that
Ey = 0. Remarkably, the above equations then become formally equivalent to
the equations of motion for spin-waves and subsequent change in magnetization
due to the torque from the spin-waves as occurring in both topological insulators
[100] and ferromagnets with Dzyaloshinskii-Moryia interaction [102]. We may
thus immediately conclude that there is a spin-wave induced magnetoelectric
torque acting even homogeneous magnetization textures in multiferroic mate-
rials. This effect vanishes completely if one sets the magnetoelectric coupling
γ0 to zero. What is more, however, the present case appears to offer additional
physics compared to the aforementioned scenarios: if we allow for an out-of-
plane component for the electric field, Ey �= 0, an extra term proportional to
∂zsj and ∂zδmj appear in Eqs. (3.26) and (3.27). This term influences the
magnonic torque and offers an additional way to control it which differs from
the influence of the in-plane electric field component. The influence of the new
term ∝ Ey complicates the analytical solution, and so we choose to proceed
via a numerical route in order to also investigate the influence of magnons on
inhomogeneous spin-textures in multiferroics.

We are now in a position to determine how spin-waves interact with a domain
wall texture, which thus also requires their interaction with the homogeneous
part of the domains to be taken into account according to the above results.
This is different from previous works on magnon-induced domain wall motion
in ferromagnets [101], where no such homogeneous torque is present. We have
thus solved the full LLG equation without any perturbative approximations
where the initial profile at t = 0 consists of a magnetic domain wall center
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Figure 3.2: (Color online) Plot of spin-wave induced domain wall motion via a
transverse AC electric field Eac. The normalized parameters used are
ω = 0.75,K = 0.2,K⊥ = 0.01, Eacγ0 = 5, α = 0.01. In (a), there
is no gate voltage field Edc and we present snapshots of the instanta-
neous domain wall profile at normalized times t = 0 (static profile, purple
line), t = 22, and t = 47. In (b), we set Edcγ0 = 2 and consider times
t = 0, 15, 21.

around z = 0. Anti-reflection boundary conditions were implemented near the
edges of the system in order to remove spin-wave backscattering, modelled by
allowing the Gilbert damping α to rise rapidly very close to the edges. As a
consistency check against previous works, we verified that spin-wave generation
via an ac external magnetic field B(t), applied locally in a small region of one
of the domains, induced motion in the opposite direction of the magnon flow.

Turning now to the present multiferroic system, we now demonstrate that the
presence of the magnetoelectric coupling in the effective field offers a new result
compared to previous work on spin-wave induced domain wall motion. Since a
gradient in the magnetization couples to the electric field, one could envision
that not only an ac magnetic field could drive spin-wave induced domain wall
motion, but that the same could take place via an ac electric field. An impor-
tant aspect of realizing such an effect is that the electric field would have to
be applied in a region where there was a magnetization gradient, in effect not
too deep inside the domains with fixed magnetization direction. To determine
if electric-field induced domain wall motion via magnons is possible, we applied
an ac electric field E(t) locally near the domain wall region and the result is
shown in Fig. 3.2(a) (see figure caption for parameters used). As seen, the spin-
waves emanating from this procedure indeed trigger domain wall motion and
thus demonstrates the possibility to achiev electric control over magnon-induced
magnetization texture transport. Remarkably, we find that even the direction of
motion of the domain wall can be controlled by applying an additional constant
gate-field: whereas the domain wall moves towards the spin-wave source with-
out any such dc field, it moves away from the domain wall in its presence. This
finding suggests that the magnetoelectric coupling alters the effective potential
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felt by the spin-waves as they propagate through the domain wall, causing it to
deviate from the reflectionless potential which is experienced by spin-waves in
conventional ferromagnets with a belonging phase shift after passing through
the wall [101]. In fact, the physical mechanism behind this effect is suggested
by closer inspection of the curves in Fig. 3.2. When Edc = 0, the spin-waves
pass through the domain wall and the wall moves toward the spin-wave source
due to conservation of angular momentum. However, when Edc �= 0, it is seen
that no spin-waves emanate on the other side of the domain wall: instead, they
are reflected and the domain wall moves away from the spin-wave source due
to a transfer of linear momentum p. In this way, the direction of the domain
wall motion is controllable by a gate voltage effect.

We have investigated the interaction between the spin-waves and the domain
wall over a range of magnitudes for Edc and find that it alters the amount of
spin-wave reflection: Fig. 3.2(b) shows a scenario where the reflection is al-
most complete. An analytical description of this effect has proven elusive to us
so far, due to the complicating factor of the spin-wave torque acting even on
the homogeneous domains of the magnetization profile, although this is work
in progress. We note that linear-momentum transfer of spin-waves to domain
walls in ferromagnets have also been investigated in Ref. [105], and been shown
to be possible at special resonance frequencies of the applied dc B field. In
our treatment of the current-induced case, the dominant effect of the applied
current is the spin-transfer torque effect described by the two last terms in the
LLG equation and not the associated electric field along the structure which ac-
companies such a current, an approximation which should be better the higher
conductivity the multiferroic is (in order to reduce the required voltage-drop,
and thus field E, that generates the current). Candidate materials for the
effects predicted in this work include epitaxial iron garnet films, which when
grown on (210) and (110) gadolinium-gallium garnet substrates generates a Neel
component of the domain wall structure due to anisotropy and hence activates
the magnetoelectric coupling [95]. We also note that very recently, domain
wall motion via electric field was observed in a hybrid multiferroic consisting of
ferromagnetic-ferroelectric heterostructure [106].

3.6.1 Conclusion

Concluding, we have here demonstrated that domain wall motion in multiferroic
materials hosts a wealth of interesting effects which are distinct from conven-
tional ferromagnets in terms of its response to spin-wave and current-induced
torques, including the possibility to control the direction of the domain wall
motion via a gate voltage, and hope that these findings may stimulate further
investigations.



Chapter 4

Spin and charge supercurrents
via spin-orbit coupling in S|F
hybrids

4.1 Introduction

Current research in spintronics is attracting much attention, in large part due
to the pivotal role that the quantum spin degree of freedom plays in an increas-
ingly wide class of physical systems, ranging from ultracold atoms at the micro-
Kelvin temperature scale to topological insulators at room-temperature. Spin
transport in superconductors [109, 110, 111], which historically predated spin
transport experiments in non-superconducting materials [112], have recently re-
emerged as a potential avenue for enhancing and discovering new phenomena
in spintronics. Recent results are encouraging, with experiments demonstrating
not only infinite magnetoresistance [113], but also strongly enhanced quasiparti-
cle spin lifetimes [114], spin relaxation lengths [115], spin Hall effects [116], and
thermoelectric currents [117] compared with non-superconducting structures.

Creating and manipulating spin-flow is the central feature of superconducting
spintronics [3, 6]. It is known that in the presence of magnetically inhomo-
geneous structures, such as multilayers or ferromagnets with intrinsic textures
such as domain walls, spin-polarized Cooper pairs can emerge [13] which thus
carry not only charge but also spin supercurrents [118, 28, 30, 119, 120]. Ex-
perimentally, it has been demonstrated [15, 21, 18, 17] that a dissipationless
charge-current can flow through strong ferromagnets over distances far exceed-
ing the penetration depth of conventional superconducting order into magnetic
materials. This occurs precisely due to the creation of triplet Cooper pairs which
are spin-polarized and thus insensitive to the pair-breaking effect of a magnetic
Zeeman-field. In fact, triplet Cooper pairs were newly experimentally observed
inside a conventional superconductor [121, 122]. In very recent developments,
it has been shown that intrinsic spin-orbit coupling offers an alternative av-
enue for generating the long-range (LR) triplet component [123, 124]. In that
case the appearance of the LR component depends on the relationship between

43
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the spin-orbit coupling and the exchange field, with the LR triplet defined as
having its spin aligned with the exchange field. This is in contrast to the short-
ranged (SR) triplet component which has its spin perpendicular to the field,
and is thus vulnerable to pair-breaking in the same way as conventional sin-
glet Cooper pairs. As we will show below, these recent developments will have
profound consequences for the generation of spin supercurrents in spintronics.

4.2 Quasiclassical theory

A powerful method to explore the physics of superconducting systems is to use
Green functions. In general, the Green function representation is used in many
areas of quantum mechanics. This method permits a formulation of the theory
in a convenient form that provides a powerful tool to solve various problems
in superconductivity. It can be used both for microscopic treatments and for
quasiclassical treatments. Importantly, the Green function method can be used
on systems with disorder and out-of-equilibrium. In its most general form,
the Nambu-Gor’kov matrix Green function obeys the Gor’kov equations and
is very complicated in general. Using the quasiclassical approximation leads
to the Eilenberger equation [125] which can also be used in non-equilibrium
situations. In the case where impurity scattering is the dominant energy scale
in the problem (besides the Fermi energy), the Eilenberger equation reduce
further to the Usadel equation [126]. Using the Keldysh technique, one can
also describe dynamical (time-dependent) phenomena in the superconducting
system.

4.2.1 Green function

In the theory of quantum many particle systems one uses the creation and
annihilation operators, which create and annihilate particles at a time t and
coordinate �r with spin σ. With these operators one may define Green functions
that are correlation functions playing the role of propagators. In the Keldysh
formalism, the Green function is matrix:

Ǧ =

(
ĜR ĜK

0 ĜA

)
(4.1)

and its elements are the retarded Green function:

ĜR
αβ = −iθ(t1 − t2)

〈[
ψ̂α(�r1, t1), ψ̂

†
β(�r2, t2)

]
+

〉
, (4.2)

advanced Green function:

ĜA
αβ = iθ(t2 − t1)

〈[
ψ̂α(�r1, t1), ψ̂

†
β(�r2, t2)

]
+

〉
, (4.3)

and Keldysh Green function:

ĜK
αβ = −i

〈[
ψ̂α(�r1, t1), ψ̂

†
β(�r2, t2)

]
−

〉
(4.4)
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where 〈...〉 denotes averaging with respect to quantum state of the system and
θ(t1−t2) is the Heaviside step function. By using these functions we can acquire
information about transport in the system. The retarded Green function is a
measure of the probability amplitude that an electron at a point r1 at time
t1 will exist at a position r2 at a later time t2, where t2 > t1. The advanced
Green function describes the opposite process. For a bulk homogeneous system,
the Green functions depend only on the relative differences t = t1 − t2 and
�r = �r1 − �r2. The anomalous Green functions are used to describe phenomena
originating from superconductivity as it describes pair correlations that exist in
the system. The expression for the anomalous Green functions read:

F̂R
αβ = −iθ(t1 − t2)

〈[
ψ̂α(�r1, t1), ψ̂β(�r2, t2)

]
+

〉
(4.5)

F̂A
αβ = iθ(t2 − t1)

〈[
ψ̂α(�r1, t1), ψ̂β(�r2, t2)

]
+

〉
(4.6)

F̂K
αβ = −i

〈[
ψ̂α(�r1, t1), ψ̂β(�r2, t2)

]
−

〉
(4.7)

4.2.2 Gorkov equation

The Green functions obey Gor’kovs equation of motion, which can be obtained
from Heisenberg equation of motion for the field operators. The Gor’kov equa-
tion looks like:{

iωτ̂ 3 +
�

2m

∂2

dr21
+ μ+ Δ̂ (r1)

}
Ĝ (r1, r2) = δ (r1 − r2) 1̂ (4.8)

This set of the equations must be completed with the self-consistency equation:

Δ = −λ

2
T
∑
ω

Tr (τ̂1 + iτ̂2) Ĝ (4.9)

where

Δ̂ =

(
0 Δ

−Δ∗ 0

)
(4.10)

Ĝ =

(
G F
F † −G

)
(4.11)

and the solution of these equations must satisfy of the normalization condition:

G2 + FF † = 1 (4.12)

Although generally applicable, it is difficult to solve this set of equations exactly.
For this reason, it is useful to make some simplifying assumptions which we
describe below.
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4.2.3 Eilenberger equation

The solution of the Gor’kov equation oscillates as a function of the relative
coordinate r1 − r2 on scale of the Fermi wavelength λF . The characteristic
lengths of a ballistic superconductor are ξ0 = �vF /Δ and ξT = �vF /2πT ,
which are much larger that the Fermi wavelength λF . Quasiclassical equations
can be obtained based on a gradient expansion of the Gor’kov equation using
this small parameter λF . Integrating out the fast oscillations of the Gor’kov
function, one obtains the quasiclassical Green function (see e.g. [127, 128, 6]
for a review). This satisfies the equation:

vF∂Rĝ + [ωτ̂3 + Δ̂− 1

τ
〈ĝ〉, ĝ] = 0 (4.13)

where τ is the impurity scattering time. The normalization conditions obeyed
by the functions f and g are:

g2(R,n) + f †(R,n)f(R,n) = 1 (4.14)

f †(R,n) = f(R,−n), (4.15)

where n is a unit vector in the direction of motion.

4.2.4 Usadel equation

In systems with strong elastic impurity scattering the motion of the quasipar-
ticles is diffusive, and as result the direction of the momentum of the quasipar-
ticles becomes random, but while retaining its magnitude pF . It then becomes
necessary to average the properties of the system over the direction of momen-
tum. The system with the strong impurity scattering is system in which the
impurity scattering rate 1/τ is larger than any energy of the system (E, h,Δ)
except the Fermi level. We may then expand the quasiclassical Green function
to first order in momentum in spherical harmonics

ĝ = ĝs + p̂ĝp (4.16)

where p̂ is the unit vector in the direction of p, and ĝs and ĝp are independent
of the direction of p Since the system properties should be close to isotropic in
the diffusive limit, we may safely assume that ĝp � ĝs. One then arrives at the
Usadel equation:

[τ̂3E + Δ̂, ĝs]− iD∂Rĝs∂Rĝs = 0 (4.17)

The Usadel equation is a suitable starting point for addressing dirty supercon-
ducting systems. We have

ĝs =

(
gRs gKs
0 gAs

)
(4.18)

The Usadel equation then gives separate equations for gRs and gAs , which describe
the equilibrium properties of the system, and one kinetic equation for gKs which
describes non-equilibrium properties (equation for the distribution function).
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4.3 Spin-orbit coupling

In some crystal structures, there is no inversion centre present. This leads to
a coupling between spin σ and momentum p of the electron known as anti-
symmetric spin-orbit coupling. The simplest way to consider it is linearized
interaction, that gives satisfactory results when comparing with the mesoscopic
behaviour of many materials of interest.

To understand how the broken inversion symmetry influences the Hamiltonian,
consider the electron which resides in an orbital around the nucleus. From the
electron’s viewpoint, it is the nucleus that moves around the electron, so the
electron will experience a net magnetic field generated by the charged, moving
nucleus. This occurs since a time-varying electric field induces a magnetic field
according to Maxwell’s equations. The net result is a coupling between the
electric field generated by the gradient of the electric potential, ∇V (r) = n̂E0,
where n̂ is the unit vector along the gradient and E0 is a constant, and the spin
and momentum of the electron. Taking into account all aforesaid the single-
particle Hamiltonian for this type of interaction in systems lacking inversion
symmetry can be written in the form:

H = −α′

m
· p ·A (4.19)

where p is momentum of the electron, α′ characterizes the strength of the SO
coupling, and A = n̂ × �σ is called spin-orbit field. A is an SU(2) vector field,
i.e. has vector form in real space and 2 × 2 matrix form in spin space. In the
general case, the spin-orbit coupling field A looks like:

A =i (αxσx + βxσy + γxσz)+ (4.20)

j (αyσx + βyσy + γyσz) + k (αzσx + βzσy + γzσz)

The α-coefficients are determined by the geometry of the system under con-
sideration, for instance along which direction inversion symmetry is broken.
Formally, we see that this type of spin-orbit (SO) coupling couples to momen-
tum just like a magnetic vector potential. Therefore, to use spin-orbit coupling
in equations and boundary conditions, we need only (to lowest order) replace
partial derivatives by their gauge covariant counterparts:

� (•) → �̃ ≡ � (•)− i
[
Â, •
]

(4.21)

where Â = diag (A,−A∗) is 4× 4 matrix in spin-Nambu space.

4.3.1 Rashba coupling

One example of this type of spin-orbit coupling is the so-called Rashba in-
teraction. Such a coupling is characteristic for samples with structural inver-
sion asymmetry which generally is present at interfaces, e.g. in thin-films or
nanowires. For example, consider a thin film in the yz-plane. The direction of
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broken inversion symmetry is then the x-axis. The Rashba coupling takes the
form:

HR = α (pzσy − pyσz) (4.22)

where α is the Rashba coefficient.

4.3.2 Dresselhaus coupling

Another example of antisymmetric (linear in momentum) spin-orbit coupling
is Dresselhaus coupling, which is present in system with a noncentrosymmetric
crystal structure such as GaAs. System with such crystal structure are charac-
terised by a bulk inversion asymmetry. The Hamiltonian for such a system can
take the form:

HD = β (−pyσy + pzσz) (4.23)

where β is Dresselhaus coefficient. We will in what follows mostly focus on
the pure Rashba case, which can be achieved by depositing heavy thin normal
metals near interfaces.

4.4 Boundary conditions

In order to obtain a solution for a partial differential equation we must use
boundary conditions or initial conditions. Initial conditions defines unknown
function at a given time. This type of condition is typically utilized when de-
scribing the behaviour of a non-stationary process. Boundary condition defines
the sought function on boundaries of the investigated area. Because we consider
only stationary processes in our system, we will use boundary conditions. We
consider a system consisting of two known Green functions at the outer left and
right layer (superconductors) and then seek the solution of the quasiclassical
Green function in the layers sandwiched in between the outer ones.

4.4.1 Continuous boundary condition

The simplest boundary condition is the continuous one, which is to say that the
interface is fully transparent so that the wave function and its derivatives are
continuous at interface between two layers. Because our unknown function is
a Green function, being the product of two field operators, the Green function
and its derivative must also be continuous across the interface.

4.4.2 Kuprianov-Lukichev boundary condition

When the transmission probability is not unity due to an effective barrier po-
tential in the region connecting two layers, as is certainly more realistic than
the case considered in the previous subsection, more complicated boundary con-
dition must be used. The most general boundary condition for systems with
arbitrary interface transparency is Nazarov boundary condition [129]:

γ1d1
2

g1∂zg1|z=z0 =
[g1, g2]

4 + T ({g1, g2} − 2)
|z=z0 (4.24)
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In tunneling limit T → 0, this boundary condition reduces to Kuprianov-
Lukichev boundary condition [130]

ĝ1∇z ĝ1 = 2ζL [ĝ1, ĝ2] |z=z0 (4.25)

where ζ is a measure of the ratio of barrier resistance and bulk resistance of the
material (see next subsection).

4.4.3 Spin-active interfaces

The boundary conditions used so far assume that there is no difference between
electrons with spin-up and spin-down. But magnetic interface boundary condi-
tion was also derived by Millis [131]. The boundary condition for a spin-active
interface in the tunnelling limit for a weakly polarized magnet takes the form:

2ζlLlǧl∂z ǧl|z=z0 = [ǧl, ǧr] +GMR

[
ǧl,
{
Â, ǧr

}]
+ iGl

φ

[
ǧl, Â

]
|z=z0 (4.26)

2ζrLrǧr∂z ǧr|z=z0 = [ǧl, ǧr] +GMR

[
ǧr,
{
Â, ǧl

}]
+ iGr

φ

[
ǧr, Â

]
|z=z0 (4.27)

Here, ǧl and ǧr are the Green functions on the left and right side spin-active
interface. We see that first terms of the boundary condition in right hand side
of equation are simply the Kuprianov-Lukichev boundary condition, which we
considered before. The last two terms represent the influence of the magnetic
interface on the spin-up and spin-down electrons: GMR is a magnetoresistance
term expressing that the transmission probability is different for the two spin
species, while Gφ represents so-called spin-dependent phase shifts (discussed in
chapter 2). The parameters in the boundary condition are: Ll/r is length of the

left/right layer, ζl/r =
RB
Rl/r

represents the resistance of the interface, Rl/r is the

bulk resistance of the left/right materials, RB is normal state resistance of the

interface. GMR =
∑
n
TnPn/

∑
2
2Tn and G

l/r
φ = −∑

n
dφ

l/r
n /
∑
n
Tn, where Tn is

transmission probability for channel n, Pn is spin polarization of transmission
probability. We assume that Pn ∼ P � 1, consequently GMR = P/2 � 0.5.

dφ
l/r
n is the spin-mixing angle and G

l/r
φ can take, in principle, arbitrary values.

Finally, A is the interface matrix

Â =

(
m · σ 0
0 m · σ∗

)
(4.28)

where m is unit vector along magnetization of the ferromagnetic layer, σ is
Pauli matrix vector in spin space [132, 133, 134].

4.5 Parametrization of the Green function

In order to facilitate the calculation, the Greeen function may be appropriately
parametrized. Using the internal symmetries between elements of the Green
function matrix in addition to its normalization property, we can strongly re-
duce the amount of independent variables. In quasiclassical theory of the su-
perconductivity, the two most used parametrizations are the θ-parametrization
and the Ricatti parametrization.
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4.5.1 θ-parametrization

This parametrization is particularly suitable for e.g. a bulk superconductor.
Restricting our attention for now to equilibrium, it is sufficient to consider the
retarded Green function ĝR. In this particular case of a BCS superconductor,
one has:

ĝR =

⎛⎜⎜⎝
g(X,E) 0 0 f(x,E)

0 g(x,E) −f(x,E) 0
0 −f∗(X,−E) −g∗(X,−E) 0

f∗(X,−E) 0 0 −g∗(X,−E)

⎞⎟⎟⎠ . (4.29)

The normalization condition then gives, for instance:

g(X,E) · g(X,E) + f(X,E) · f∗(X,−E) = 1 (4.30)

One can introduce following parametrization:

gR(X,E) = cosh θ(X,E) (4.31)

fR(X,E) = sinh θ(X,E)eiχ(X,E) (4.32)

where the functions θ(X,E) and χ(X,E) are complex and have these symmetry
properties:

θ∗(X,−E) = −θ(X,E) (4.33)

χ∗(X,−E) = χ(X,E) (4.34)

By substituting this parametrization into the equation for a bulk Green func-
tion, one finds

θBCS = arctan
( |Δ|

ε

)
(4.35)

where Δ is gap of the superconductor. Moreover, χ is superconducting phase.

4.5.2 Ricatti parametrization

The θ-parametrization has several-disadvantages: it becomes quite cumbersome
in the presence of equal spin pairing correlations and it is numerically unstable
in some parameter regimes. Instead, one may utilize the Ricatti parametrization
[135] where one writes the Green function in the form:

ĝR =

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)
(4.36)

where normalization is guaranteed via the 2×2 normalization matrices: N =
(1− γγ̃)−1 and Ñ = (1− γ̃γ)−1 and γ̃ - tilde conjugation means complex con-
jugation i → −i and a sign change of the quasiparticle energy ε → −ε.

The new unknown function γ is a 2×2 matrix and is single-valued and bounded,
making it much more numerically attractive than the θ-parametrization.
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4.6 Ricatti-parametrized Usadel equation with spin-
orbit coupling

We commented previously that the Usadel equation for a layer including spin-
orbit coupling can be obtained by substituting:

∇ (•) → ∇̃(•) ≡ ∇(•)− i
[
Ǎ, •] . (4.37)

Inserting the Ricatti parametrization, one obtains the following equation of
motion:

DF (∂
2
kγ+2 (∂kγ) Ñ γ̃ (∂kγ)) = −2iεγ

+DF

[
AAγ − γA∗A∗ + 2 (Aγ + γA∗) Ñ (A∗ + γ̃Aγ)

]
+ 2iDF

[
(∂kγ) Ñ

(
A∗

k + γ̃Akγ
)
+
(
Ak + γA∗

kγ̃
)
N (∂kγ)

]
(4.38)

where k is direction in Cartesian coordinates along structure andA = (Ax, Ay, Az).
In a ferromagnetic layer, the Usadel equation in Ricatti parametrized form
reads:

DF

(
∂2
kγ + 2 (∂kγ) Ñ γ̃ (∂kγ)

)
= −2iεγ (4.39)

−ih (σγ − γσ∗) (4.40)

where h = (hx, hy, hz) is the ferromagnetic exchange field along an arbitrary
direction. σ = (σx, σy, σz) is the Pauli vector of the usual Pauli matrices.

The Kupriyanov-Lukichev boundary condition expressed via the Ricatti-matrices
{γ, γ̃} at an interface between a superconductor on the left side and a SO cou-
pled layer on the right side becomes:

∂kγSO =
1

LSOζSO
(1− γSOγ̃SL

)NSL
(γSO − γSL

) (4.41)

+oAkγSO + iγSOA
∗
k (4.42)

where γSL
is the Green function of the bulk left superconductor in Ricatti

parametrization

γSL
=

iσy sinh (θ)

1 + cosh (θ)
eiχL (4.43)

with θ = arctanh (|Δ|/ε) and

γ̃SL
= − iσy sinh (θ)

1 + cosh (θ)
e−iχL . (4.44)

A boundary between a ferromagnet on the left side and a superconductor on the
right side, taking into account the spin-dependent properties of the interface,
has the form:
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∂kγF =
1

LF ζF
[(1− γF ˜γSR

)NSR
(γSR

− γF )+ (4.45)(
−GMRγF c (mσ∗ +mσ) +

1

2
iGφγF (mσ∗ −mσ)

)
]

where c = cosh (θ). The Usadel equation and the boundary condition for γ̃ can
be written easily by changing i → −i and ε → −ε, and also γ → γ̃, γ̃ → γ in
the equations above.

4.7 Weak proximity effect

The normal Green function is related to the propagation of single electrons in
space and time. The anomalous Green function describes the propagation of
the Cooper pairs, so in non-superconducting isolated material this anomalous
Green function is equal to zero. If, however, the non-superconducting material
is connected to a superconductor the proximity effect ensures that Cooper pairs
will penetrate into the non-superconducting material, inducing a non-zero value
of the anomalous Green function. Its magnitude depends upon, among other
things, the strength of the barrier potential between the superconductor and
the normal layer.

It is easier to make analytical progress with the Usadel equation if one assumes
that the proximity effect is weak, which amounts to stating that the value of the
anomalous Green function components are small, |f | � 1. This occurs for in-
stance if the transmission probability between the layers is very low. Moreover,
the inverse proximity effect (the weakening of the superconducting correlations
inside the superconductor) can be neglected in this case, so that we can use the
bulk Green function in the S layer.

In the weak proximity effect regime, one thus assumes that |γ|ij � 1 and the
Green function in the non-superconducting region takes the much simplified
form:

ĝR 

(

1 f

−f̃ −1

)
(4.46)

We have in effect neglected all terms of second order in γ and γ̃ in the Usadel
equation.

4.8 Charge current

One of the interesting physical quantities in superconducting proximity struc-
tures is the presence of the supercurrent in the junction without voltage drop,
thus an equilibrium effect. In the representation of the quasiclassical Green
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functions, the charge-supercurrent is given by the general expression:

IQ =
N0eDA

4

∞∫
−∞

dεTr
{
ρ̂3 [ǧ (∂kǧ)]

K
}

(4.47)

where N0 is the density of states at the Fermi level in the normal state, A is

the cross section area, Tr
{
B̂
}

is the trace of the matrix B̂, and K means the

Keldysh part of the matrix. We know that in equilibrium the Keldysh Green
function can be represented by the retarded and advanced Green function:

ĝK =
(
ĝR − ĝA

)
tanh

(
βε

2

)
(4.48)

There also exists a relation between the advanced and retarded Green function:

ĝA = − (ρ̂3ĝRρ̂3)† (4.49)

One then obtains the following form of the supercurrent

I ∼
∞∫

−∞
dε[2 tanh(

βε

2
){fs(ε)∂f∗

s (−ε)− fs(−ε)∂f∗
s (ε) (4.50)

−f(ε)∂f∗(−ε) + f(−ε)∂f∗(ε) + h.c.}].
Taking into account symmetry properties of the Green function and Ricatti
parametrization:

I ∼
∞∫
0

dε[tanh

(
βε

2

)
�{fs(ε)∂f∗

s (−ε)− fs(−ε)∂f∗
s (ε)− (4.51)

f(ε)∂f∗(−ε) + f(−ε)∂f∗(ε)}]
where fs is the singlet anomalous Green function:

fs =
f↑↓ − f↓↑

2
(4.52)

and f is the vector of the triplet anomalous Green function:

f =

(
f↓↓ − f↑↑

2
,−i

f↓↓ + f↑↑
2

,
f↑↓ − f↓↑

2

)
(4.53)

4.8.1 Long-range and short-range current

The penetration depth of superconducting correlations in a ferromagnetic layer

is typically ∼ ξ =
√

D
ε+|h| , where h is exchange field of the layer. For a normal

metal h = 0, and for small ε the anomalous Green function will penetrate a
long distance, limited in practice by inelastic scattering. It is actually possible
for superconducting correlations to extend an equally long distant as in the S|N
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case in a ferromagnet. This happens if one creates triplet correlations where
both electrons have their spins aligned with the magnetization direction. If
the magnetization points along the z-axis, the f↑↑ and f↓↓ pairs are then long-
ranged.

Generalizing, the components of f parallel with the exchange field are short-
ranged, and components that are perpendicular to the exchange field are called
long-range components. As for the supercurrent, we know that charge current
has a contribution from all the anomalous Green function components, both
singlet and triplets, and so the supercurrent can also become long-ranged if
components f ⊥ h exist.

4.9 Spin-current

If triplet Cooper pairs, carrying spin, are present there can also exist a net su-
perflow of spin besides the charge current. Singlet Cooper pairs have zero total
spin and cannot contribute to spin transport. One may derive an expression
for the spin supercurrent in quasiclassical theory. The polarization component
of the spin supercurrent along the unit vector n reads:

Is(n) =

∞∫
−∞

dεTr
{
ρ̂3R̂(n) (ǧ∂ǧ)K

}
(4.54)

where matrix R̂ defines the direction of the polarization current:

R̂ = nx

(
σx 0
0 σx

)
+ ny

(
σy 0
0 σ∗

y

)
+ nz

(
σz 0
0 σz

)
. (4.55)

One can also write out explicitly the polarization components of the spin su-
percurrent in the weak proximity effect [136]:

Ixs ∝
∞∫
0

dε tanh(
βε

2
)2�[{−(f↑↑ + f↓↓)∂(f̃↑↓ + f̃↓↑)− (4.56)

(f↑↓ + f↓↑)∂(f̃↑↑ + f̃↓↓)} − {.̃..}]

Iys ∝
∞∫
0

dε tanh(
βε

2
)2�[{(f↑↑ − f↓↓)∂(f̃↑↓ + f̃↓↑)− (4.57)

(f↑↓ + f↓↑)∂(f̃↑↑ − f̃↓↓)}+ {.̃..}]

Izs ∝
∞∫
0

dε tanh(
βε

2
)4�[{−f↑↑∂f̃↑↑ + f↓↓∂f̃↓↓)− {.̃..}] (4.58)

It is seen that all of these equations are independent on the singlet anomalous
Green function fs, as is physically reasonable.
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4.10 Results

We now present the research results from Paper III.

To date, structures with magnetic inhomogeneities such as multiple magnetic
layers have been required to create long-ranged spin-supercurrents [15, 21, 18,
17]. This can be experimentally challenging for several reasons, primarily be-
cause it is far from trivial to exert control over the individual layers of mag-
netically inhomogeneous structures, and can be complicated yet further if the
magnetic layer has intrinsic texture (such as the spiral order in Ho). Here we
will show that it is possible to create a spin-polarized supercurrent using just
one single homogeneous magnetic element, which eliminates the experimental
complexities and heralds a new era for harnessing the dissipationless spin-flow
of superconductors in spintronics. In addition to this reduction of complexity
in producing a spin supercurrent, we show that this spin supercurrent does
not decay even in the presence of spin-flip processes, e.g. via magnetic impuri-
ties or spin-orbit impurity scattering. This spin-flip immunity is fundamentally
different from spin currents in non-superconducting structures which remain
polarized for the duration of the spin relaxation time. Finally, we show that
the spin polarization components of the supercurrent respond qualitatively dif-
ferently to a change in the superconducting phase difference φ. The surprising
consequence of this is that the dissipationless charge flow and spin flow can
be tuned separately. In particular, both the magnitude and the polarization
direction of the spin flow is controlled via the superconducting phase, offering
an entirely new way to control spin transport.

Consider the thin-film heterostructure depicted in Fig. 4.1, which shows a
Josephson junction of conventional s-wave superconductive sources with normal
and ferromagnetic elements typically utilized in proximity effect experiments.

We will now show that a long-ranged spin supercurrent is sustained in the junc-
tion even when only a single homogeneous ferromagnet is used. The key to
achieving this is to deposit a very thin layer of a heavy normal metal such as
gold or platinum at the superconducting interfaces. Recent experiments in the
context of magnetization switching have shown that such interfaces will pro-
duce strong Rashba spin-orbit coupling due to the high atomic number of the
metal and the interfacially broken inversion symmetry [139]. The magnetic el-
ement consists of a ferromagnetic alloy which has both an in- and out-of-plane
component, achievable by using e.g. PdNi or CuNi, which can both feature
out-of-plane magnetocrystalline anisotropy in thin-films [137, 138]. It is clear,
therefore, that no magnetic inhomogeneities are required, and the ferromagnet
does not need to feature any intrinsic spin-orbit coupling. This is in contrast
to previous works that have considered long-ranged currents in either magneti-
cally textured junctions (see e.g. Refs. [24, 118, 140]) or intrinsically spin-orbit
coupled ferromagnets [123, 141, 142], where spin is not a conserved quantity,
with several magnetic layers [124]. In our setup, only a single homogeneous



56
Chapter 4. Spin and charge supercurrents via spin-orbit coupling in S|F

hybrids

Providing magnetization 
exchange field (e.g. PdNi or CuNi)

Conventional superconducting
source (e.g. Al or Nb)

Homogeneous
ferromagnet

s-wave 
superconductor

Layer function:

S
Heavy normal metal

Source of broken inversion
symmetry, providing spin-orbit
coupling  (e.g. Au or Pt)

S

F
Heavy normal metal

s-wave 
superconductor

Conventional superconducting
source (e.g. Al or Nb)

Source of broken inversion
symmetry, providing spin-orbit
coupling  (e.g. Au or Pt)

N

N
h

Current
flow

S
LR

|| h

SS exexx
SSS mixmix

LR

SR

Interfeterference

SSS
LRLRLL

Interference between superconductive species:
Superconductivity-induced spin mixing and exchange torque

Figure 4.1: Schematic illustration of the thin-film superconducting junction within
which a spin supercurrent is generated, which does not decay even in the
presence of spin-flip scattering. There are two experimentally feasible
ways to construct the thin-film such that the spin supercurrent appears.
In the case where only Rashba spin-orbit coupling is present in the heavy-
metal layers, the homogeneous ferromagnet is chosen to have out-of-plane
magnetocrystalline anisotropy, such as the commonly available PdNi or
CuNi [137, 138]. In combination with the shape-anisotropy of the thin-
film geometry, the exchange field within the ferromagnet will then have
both an in-plane and out-of-plane component. If both Rashba and Dres-
selhaus spin-orbit coupling is present in the normal layers, e.g. by using
a two-dimensional electron gas such as GaAs, the ferromagnet only needs
an in-plane component. In both cases, this induces an interference effect
between the long-ranged and short-ranged Cooper pairs, which results in
a spin mixing term and an exchange torque, which acts on the magneti-
zation and is present even in the absence of a charge current.
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ferromagnet is required because the heavy normal metals supply the spin-orbit
coupling, significantly reducing the previously required level of junction com-
plexity in order to host a spin supercurrent. Furthermore, as an alternative
experimental scenario, it is possible to use a ferromagnet with a purely in-plane
exchange field by employing normal layers that contain both Rashba and Dres-
selhaus coupling. Examples include crystals that lack an inversion structure
and two-dimensional electron gases such as gallium arsenide. In this case, the
singlet-triplet conversion is greatly enhanced [143, 144], resulting in stronger
supercurrents (see Fig. 4.2).

The spin-supercurrent IS may be computed via the quasiclassical Green func-
tion ǧ according to the formula [28]:

IS = IS0

∫ ∞

−∞
dεTr{ρ̂3τ̂ (ǧ∂z ǧ)K}. (4.59)

Here, we have defined τ̂ = diag(m·σ,m·σ∗), wherem is the desired polarization-
direction of the spin supercurrent and σ is the vector of Pauli matrices, ε denotes
the quasiparticle energy and K the Keldysh component of the Green function.
IS0 = N0�DAΔ/8LF , where N0 is the normal-state density of states at the
Fermi level, D the diffusion constant and A the interfacial contact area. The
integral in Eq. (4.59) is dimensionless since the energies have been normalized
to the bulk superconducting gap Δ and lengths normalized to the ferromagnet
length LF . The matrix ρ̂3 = diag(1, 1,−1,−1). To find the Keldysh component
we use the equilibrium relation

(ǧ∂z ǧ)
K = [ĝR∂z ĝ

R + (ρ̂3ĝ
R∂z ĝ

Rρ̂3)
†] tanh(βε/2), (4.60)

where R and A denote the retarded and advanced components of ǧ respec-
tively and β = 1/kBT is the inverse temperature with kB being the Boltzmann
constant. We find ĝR by solving the Usadel equation for the system shown in
Fig. 4.1 both analytically in the weak proximity effect and numerically in the
full proximity effect regime using the NOTUR supercomputer cluster (Kongull);
see Appendix B for further details. We can then compute the spin supercurrent
from Eq. (4.59), and the charge supercurrent IQ can be obtained from the same
formula by removing τ̂ from the trace and taking IS0 → 2IS0e/� = IQ0 , where
e is the electronic charge.

The critical charge supercurrent IC
Q, obtained at a phase-difference[150] φ =

π/2, is shown in Fig. 4.2a, demonstrating that it becomes long-ranged even if
there is no magnetic inhomogeneity and only a single ferromagnet is used. The
physical mechanism behind this effect is that the spin-orbit coupling present
in the thin, heavy normal metal layers rotates the triplet Cooper pairs due to
an anisotropic spin relaxation [124]. The spin-orbit coupling is described by α
and β, being respectively the Rashba and Dresselhaus coefficients. These are
normalised to the superconducting gap Δ and length of normal metal LN in
such a way that with a niobium superconductor of gap Δ ≈ 3 meV, α = 0.5/LN
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Figure 4.2: The magnitude of the critical charge current IC
Q (a) and the components

of the critical spin current IC
S (b) in the ferromagnet as a function of the

length of the layer LF is shown on a logarithmic scale. In the presence
of spin-orbit coupling, the current becomes long-ranged as it makes a
transition from an exponential decay with superimposed oscillations to a
much slower decay with respect to LF . For long ferromagnetic junctions,
it is clear that the charge current is almost entirely due to the long-range
component. Including both Rashba and Dresselhaus coupling results in
a substantial enhancement of the critical charge currents compared with
pure Rashba coupling. We assume bulk superconductivity in the super-
conductors, an exchange field h = 50Δ(0, cos θ, sin θ) with θ = 0.3π, and
a normal metal layer length of LN/ξS = 0.08. The spin-orbit coupling
parameters are normalised to the superconducting gap and length of nor-
mal metal in such a way that with a niobium superconductor with gap
Δ ≈ 3 meV and coherence length ξS = 25 nm, α = 0.5/LN corresponds
to Rashba coupling of the order 3× 10−12 eV m.

corresponds to a Rashba parameter of the order 3 × 10−12 eV m. It is clear
from Fig. 4.2a that the critical current decays rapidly in the absence of spin-
orbit coupling (α = β = 0), and that this decay is strongly suppressed by the
inclusion of spin-orbit coupling (note the log scale).

To model the ferromagnet, we assumed an exchange field h = h(0, cos θ, sin θ),
with a strength h/Δ = 50 and a canting of θ = 0.3π between the in- and out-of-
plane components. The supercurrent exists for any orientation of the exchange
field θ ∈ (0, π/2) and we will later discuss the precise dependence on the canting
angle θ. We choose G̃MR = 0.2 for the normalized interfacial magnetoresistance
term and G̃θ = 1 for the interfacial scattering phase shift on both sides [134].
In this case, and with a typical superconducting coherence length of ξS = 25
nm, the LR component dominates for ferromagnets of length LF greater than
∼ 10 nm, causing the critical current IC

Q to decay slowly despite the presence
of an exchange field h � Δ, remaining orders of magnitude larger than the
SR component for increasingly long ferromagnets. In this scheme, the associ-
ated current densities for a sample length LF ∼ 10 nm will be of the order
|jCQ| ∼ 103 A/cm2 without spin-orbit coupling, and 1-2 orders higher with its
inclusion (see Appendix B for details). This corresponds well with charge cur-
rent densities measured in the experiment of Ref. [145], which also used a CuNi
alloy as the ferromagnet. For stronger exchange fields, the LR component will



4.10. Results 59

dominate for even shorter junctions, but the overall current magnitude will be
suppressed. The supercurrent carried by the LR Cooper pairs can be signif-
icantly enhanced by including Dresselhaus coupling, as can be seen from the
dotted line in Fig. 4.2a, in which case the achievable critical charge current is
much greater than with Rashba coupling alone.

We now turn to the spin supercurrent. Without spin-orbit coupling, no spin-
current flows in the junction since there exists no mechanism for converting
from the SR to the LR component. In order to demonstrate the physical origin
of the dissipationless spin current and its different polarization components,
it is useful to first decompose the triplet correlations in the system into their
long-ranged and short-ranged contribution: f = fLR+fSR. To take an explicit
example, consider the case with pure Rashba coupling and an exchange field
h = (0, hy, hz). In that case, we may write the general expressions:

fLR = (fx,−fhz/h, fhy/h),

fSR = (0, f ′hy, f ′hz)/h, (4.61)

so that fLR ·h = 0 when fSR ‖ h. Now, the spin expectation vector of a triplet
Cooper pair is obtained by 〈S〉 = if ×f∗. Inserting the long-ranged state fLR,
one obtains 〈S〉LR = 2Im{f∗fx}(hyŷ + hzẑ)/h. This means that the spin of
the LR Cooper pairs points along the exchange field, as expected. Similarly,
one finds that 〈S〉SR = 0 for the SR Cooper pairs. However, there exists an
additional contribution. The spin expectation vector of the total proximity-
induced superconducting state may be written

〈S〉tot = ß(fLR + fSR)× (f∗
LR + f∗

SR)

= 〈S〉LR + 〈S〉SR + (ßfLR × f∗
SR + h.c.). (4.62)

It follows that there exists a novel interference term 〈S〉int = ßfLR×f∗
SR+h.c.

between the LR and SR Cooper pairs, which upon insertion of fLR and fSR is
found to contain two terms, 〈S〉int = 〈S〉ex + 〈S〉mix, where

〈S〉ex = 2Im{(f ′)∗f}x̂, (4.63)

〈S〉mix = 2Im{(f ′)∗fx}(ŷhz − ẑhy)/h. (4.64)

The exchange term 〈S〉ex of Eq. (4.63) is independent of the direction of the
field h. In contrast, the second term changes its spin-polarization direction as
h is altered. We will explain the physical meaning of each of these terms in the
section below. Before doing so, we briefly discuss how the spin-polarization of
the critical current depends on the length of the ferromagnet. This is shown
for the critical spin supercurrent in Fig. 4.2b, displaying both the component
parallel with the exchange field IC

S,‖ ‖ h and the magnitude of the perpendic-

ular components, |IC
S,⊥| = (I2

S,ex + I2
S,mix)

1/2. It is clear that the polarization
of the spin supercurrent along the magnetization direction has a qualitatively
different behavior with the length of the system compared with the polarization
perpendicular to the exchange field, which oscillates within its typical exponen-
tial decay. The reason for this is that the perpendicular component appears due
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Figure 4.3: The dependence of the spin supercurrent on the phase difference φ be-
tween the superconductors of the junction illustrated in Fig. 4.1 is shown.
The component parallel to the exchange field h = h(0, cos θ, sin θ) is given
in a, the component perpendicular to the field polarized in the x-direction
in b and the perpendicular component along (0, sin(θ),− cos(θ)) in c. The
spin-orbit coupling is chosen to be of pure Rashba type with α = 0.5/LN ,
and the parameters used are otherwise the same as in Fig. 4.2. Results
with both Rashba and Dresselhaus coupling are qualitatively similar, with
consistently higher current magnitudes.

to the interference between the LR and SR Cooper pairs, and thus is limited by
the penetration depth of the short-ranged superconducting correlations. Note
that there is a non-monotonic relationship between the maximal supercurrents
and the magnitude of the spin-orbit coupling, in the same way as there exists
a non-monotonic relation between the density of states and spin-orbit coupling
in a ferromagnet [143].

By analyzing the dependence of the spin supercurrent on the phase difference
between the superconductors, it becomes clear that there is another fundamen-
tal difference between the parallel and perpendicular components. We will prove
that (i) there exists a superconductivity-mediated exchange interaction in the
system, even in the absence of any charge supercurrent and magnetic inhomo-
geneities, which acts with a torque on the magnetic order parameter and that
(ii) both the magnitude and polarization direction of the spin supercurrent can
be tuned via the superconducting phase difference.

The phase-dependence of the component of the spin supercurrent parallel to the
exchange field, IS,‖, is plotted in Fig. 4.3a, and shows the expected first-order
sinusoidal dependence on the phase difference φ. This is physically reasonable
since this component of the spin supercurrent is carried exclusively by the LR
Cooper pairs which are polarized along the exchange field. When considering
the perpendicular components of the spin supercurrent, however, the analysis
in the preceding section showed that there exists two contributions IS,ex and
IS,mix that originate from a novel interference between the LR and SR Cooper
pairs. In order to unveil the physical meaning of these terms, we plot the
variation of these with φ in Figs. 4.3b and c. It is seen that these polarization
components exhibit a fundamentally different response to the superconducting
phase difference: IS,ex is invariant under time-reversal φ → (−φ) and finite even
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in the absence of any phase difference φ = 0 where no net charge current flows,
whereas IS,mix is antisymmetric under time-reversal. In effect, there exists a
pure spin supercurrent flow without any charge current contamination in the
system, even in the absence of any magnetic inhomogeneities or half-metallicity.
Based on these observations, we offer the following interpretation of our find-
ings. The polarization component of the spin supercurrent ‖ h is understood
simply as the polarization of the LR Cooper pairs that carry the long-ranged
charge current and thus obeys the same type of current-phase relation as the
charge current itself, vanishing both at φ = 0 and φ = π. The interference
between the SR and LR Cooper pairs now provides the spin supercurrent com-
ponents with distinct physical origins. The term IS,mix represents the spin
polarization that arises due to interference between LR and SR pairs carrying
charge current, and is thus qualitatively similar to the charge current itself, with
a sinφ profile. In contrast, the term IS,ex represents something more exotic:
it is a superconductivity-induced exchange torque acting on the magnetization,
which is present even in the absence of any charge current. From its numerical
evaluation, we find that it may be written as |IS,ex| = J1 + J2 cosφ, with the
constants {J1,J2} depending on system-specific details such as the strength of
the exchange field h, the length of the ferromagnet LF and the strength of spin-
orbit coupling α. This means that the exchange spin supercurrent is invariant
under φ → (−φ) and that it has a term that is independent of the superconduct-
ing phase difference. The physical origin of this term is the following. Due to
the proximity effect, both LR and SR superconducting correlations are induced
in the ferromagnet in the presence of the inversion-symmetry breaking normal
metal layers. The interference between these correlations create, according to
Eq. (4.63), a net spin moment. Since this moment is misaligned with h, it acts
with a torque on the magnetic order parameter h, attempting to rotate it so
that the net torque vanishes. The presence of magnetic anisotropy in the sys-
tem could be expected to attempt to counteract this torque. Importantly, this
effect is present even without any net charge flow (φ = 0) and exists with just
a single, homogeneous ferromagnet. This is evident by comparing Figs. 4.3b
and c, where the different polarization components of the spin supercurrent are
plotted against the superconducting phase difference. This result shows that
the magnitude and polarization direction of a dissipationless spin current can
both be tuned exclusively via the superconducting phase difference, which is a
surprising finding that offers a new way to control spin flow. The superconduct-
ing phase difference may itself be set in the conventional way via current-bias,
or by applying an external magnetic flux in a loop-geometry[146]. We underline
that this superconductivity-mediated exchange interaction is very different from
exchange interactions in e.g. conventional spin-valves with two ferromagnets,
where a deviation from the parallel or antiparallel configuration produces a net
equilibrium spin current that tries to align the magnetizations via a spin-torque
[147, 148, 149]. In contrast, here such a torque exists even with a single, ho-
mogeneous ferromagnet due to a unique interference effect between long-ranged
and short-ranged triplet Cooper pairs.

It is clear from Fig. 4.3 that the maximal spin-current polarized along the ex-
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Figure 4.4: The effect of the canting angle θ between the in- and out-of-plane com-
ponents of the exchange field h = 50Δ(0, cos θ, sin θ) is shown for the
charge current in a, and for the spin-current components in b and c.
Without spin-orbit coupling, the charge current does not depend on the
magnetization orientation, and there is zero spin-current. With Rashba
spin-orbit coupling we see a significant enhancement in the charge cur-
rent, with a canting profile stabilising towards a sinusoidal maximum
at θ = π/4 for increasingly large ferromagnets as the long-ranged triplet
component become dominant. The parallel component of the spin-current
monotonically decreases with ferromagnet length, while the perpendicular
components are sensitive to the 0-π transition in the ground state. The
inclusion of Dresselhaus spin-orbit coupling yields a dramatic increase
in both charge- and spin-current, and it is evident that purely in-plane
magnetization (θ = 0) is sufficient to generate the long-range component.
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change field is achieved around φ = π/2, corresponding well with the definition
of the critical spin current[150], taken to be the spin polarization of the critical
charge current. These simulations were run for a canting angle of θ = 0.3π,
and since this angle is in large part determined by material and geometry con-
straints it is instructive to consider the effect of the canting angle on the results.
This is shown in Fig. 4.4, and demonstrates that the long-ranged component
of the charge current favours a canting angle of θ = π/4, visible at longer sam-
ple lengths. It is also clear that the inclusion of both Rashba and Dresselhaus
spin-orbit coupling allows the long-ranged component to be generated with a
purely in-plane exchange field [123, 124].

Upon analysing the spin supercurrent in the above structure, one discovers
an additional feature which pertains uniquely to currents generated by super-
conductors. Unlike conventional spin-polarized currents, we find that a spin
supercurrent does not decay due to either spin-orbit impurity scattering or
spin-flip scattering caused by magnetic impurities. This result has immediate
implications for the usage of superconductors in spintronics, since it means that
spin-flow created in this way is preserved even in regions with strong spin-flip
scattering. We emphasize that this stands in complete contrast to conventional
spin-currents, which have a decay length dictated by the amount of spin-flip
scattering present.

Here we provide a general proof that the spin supercurrent is conserved both
in normal metal and ferromagnetic systems, even in the presence of spin-orbit
impurity scattering and isotropic spin-flip scattering from magnetic impurities.
Using the relation between the Keldysh, retarded and advanced components of
the Green function which holds at equilibrium (Eq. (4.60)), the Usadel equation
may be written

D∂zTr{ρ̂3τ̂j ĝR∂z ĝR}+ ßTr{ρ̂3τ̂j [Σ̂, ĝR]} = 0, (4.65)

where we have defined Σ̂ = ερ̂3+M̂− σ̂so− σ̂sf, and τ̂j denotes the polarization-
direction of interest. M̂ = diag(h ·σ, (h ·σ)∗), where h is the magnetization ex-
change field, whereas the spin-orbit and magnetic impurity spin-flip self-energies
have been included via the terms σ̂so and σ̂sf (see Appendix B for details).
For any matrix X̂ one has Tr{X̂†} = (Tr{X̂})∗, from which it follows that if
Tr{ρ̂3τ̂j [Σ̂, ĝR]} = 0, then the spin supercurrent will be conserved. By inserting
the most general expression for the quasiclassical retarded Green function ĝR,
direct evaluation shows that the above trace is always zero in the absence of
an exchange field despite the presence of spin-flip scattering. In the presence
of an exchange field, the same holds for the spin supercurrent IS,‖ polarized
along the magnetization and remains true even if the exchange field is spatially
inhomogeneous. It is remarkable that a spin supercurrent, controllable via the
superconducting phase difference, has no decay even if both spin-orbit and mag-
netic impurities are present in the sample.
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4.10.1 Conclusions

In conclusion, we have shown three major results: (i) a long-ranged spin su-
percurrent can be created without any magnetic inhomogeneities, (ii) the spin
polarization components of the current can be tuned separately via the super-
conducting phase difference, and (iii) spin supercurrents created in this way do
not decay even in the presence of spin-flip scattering, i.e. they display spin-flip
immunity. We have proposed that this may be observed experimentally in a
Josephson junction consisting of conventional s-wave superconductors (e.g. Al
or Nb) with very thin layers of a heavy normal metal (e.g. Pt or Au) and a sin-
gle homogeneous ferromagnet with magnetocrystalline out-of-plane anisotropy
(e.g. PdNi or CuNi). We would like to note that no ”exotic” materials, such as
unconventional superconductors or noncentrosymmetric ferromagnets, are re-
quired – the effects predicted in this work appear by combining conventional
superconductors and metals, which should make experimental verification of
our results readily achievable. Our results confirm the significant and immedi-
ate advantage that superconductors offer spintronics.
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Appendix A

Calculation of Andreev levels

In order to solve the Bogoliubov-de Gennes equations we write the wavefunction
in plane-wave form Ψ(y) = eikyψ. The wave vectors of electron- and hole-like
quasiparticles inside the superconductor are:

kS =

√
2m(μ±

√
E2 −Δ2) (A.1)

while for the homogeneous ferromagnets we have:

kσf =
√

2m(μ± E + σh). (A.2)

Finally, in the domain wall case we find:

kσDW =

√
2m(μ± E) + a2 + σ2

√
2ma2(μ± E) +m2h2 (A.3)

where a = π
2lDW

. Defining α = h
2μ and η = a2

2m(μ±E) , we find in the limit E � μ

that η = a2

k2F
and the wave vector for the domain wall becomes:

kσDW =

√
2m(μ± E) + η2 + σ2

√
η2 + α2 (A.4)

During our calculation we use the approximation that E � μ and that α and η
are small. For α � η, the wavevector for the quasiparticles in the domain wall
ferromagnet can be simplified further:

kσDW = 2mμ(1 + σα) (A.5)

while for for α � η
kσDW = 2mμ(1 + ση) (A.6)

For a ferromagnetic layer with arbitrary orientation of magnetization, we have:

ΨF (y) =
∑
p=±

(
t±e,↑

⎛⎜⎜⎝
cos( θ2)

sin( θ2)e
iχ

0
0

⎞⎟⎟⎠ e±ik↑F y + t±e,↓

⎛⎜⎜⎝
− sin( θ2)e

−iχ

cos( θ2)
0
0

⎞⎟⎟⎠ e±ik↓F y+ (A.7)

t±h,↑

⎛⎜⎜⎝
0
0

cos( θ2)

sin( θ2)e
−iχ

⎞⎟⎟⎠ e±(−ik↑F y) + t±h,↓

⎛⎜⎜⎝
0
0

− sin( θ2)e
iχ

cos( θ2)

⎞⎟⎟⎠ e±(−ik↓F y)

)
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where θ is the angle between the magnetization and the z-axis, χ is the angle
between the magnetization and the x-axis in the x − y-plane, ± corresponds
to the direction of the moving particles. For the domain wall layer, we first
perform a unitary transformation Û of the Hamiltonian to remove the explicit
spatial dependence of the exchange field due to the domain wall texture. This
is achieved by rotating the system so that the local spin quantization axis is
aligned with the local magnetization direction. Starting out with Ĥψ = εψ,
we rewrite it to ĤrotΨ = εΨ where Ĥrot = ÛĤÛ−1 and Ψ = Ûψ. The new
wavefunction Ψ may then be expressed as follows:

ΨDW (y) =
∑
p=±

(
t±e,↑

⎛⎜⎜⎝
φ↑
1

±φ↑
2

0
0

⎞⎟⎟⎠ e±ik↑DW y + t±e,↓

⎛⎜⎜⎝
±φ↓

2

φ↓
1

0
0

⎞⎟⎟⎠ e±ik↓DW y+ (A.8)

t±h,↑

⎛⎜⎜⎝
0
0

φ↑
1

±φ↑
2

⎞⎟⎟⎠ e±(−ik↑DW y) + t±h,↓

⎛⎜⎜⎝
0
0

±φ↓
2

φ↓
1

⎞⎟⎟⎠ e±(−ik↓DW y)

)

where

φσ
1 = σ(α+ η2

√
α2 + ση2), φσ

2 = σiη

√
1 + η2 + 2

√
α2 + η2 (A.9)

We may then revert to the original wavefunction ψ, which enters the boundary
conditions, by doing the inverse transformation ψ = Û−1Ψ. The coefficients
t±e(h),σ are associated with right- left-going (±) ELQ and HLQ propagating
throught the ferromagnetic layers. The spin index σ =↑ or ↓.
The wave functions must satisfy the boundary conditions of 1) continuity of the
wave function at the boundary:

(Ψk −Ψl)|y=Li = 0 (A.10)

and 2) discontinuity of the first derivative at the boundary:

∂(Ψk −Ψl)|y=Li =
2m

�
UΨ|y=Li (A.11)

where Li = 0, L1, L2, L3, indexes k and l are associated with corresponding
index of the wave functions. We have defined the normalized barrier strength
Z = 2mU/(�kF ). Note that in the domain wall case, extra terms ∂yÛ arise in
the boundary conditions due to the unitary transformation of the wavefunction.
From the boundary conditions, we can obtain all the scattering coefficients and
set up a homogeneous system of linear equations, demanding that the deter-
minant is equal to zero in order to have a non-trivial solution. The resulting
characteristic equation is then solved for the energy which represents the An-
dreev Bound State (ABS). In the ABS-energy for the trilayered structure, the
coefficient B before the anomalous sin γ term satisfies

B ∝ sin 2β1 sin 2β2 sin 2β3 (A.12)
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whereas for the structure with spin-active interfaces

B ∝ sin2 β. (A.13)

In the scenario with a domain wall ferromagnet, there exists is no managable
expression for B in the general case.
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Appendix B

Methods for quasiclassical
theory

We solved the Riccati parameterised Usadel equation with spin-orbit coupling
[144] iteratively between the layers, using the NOTUR supercomputer facilities
(Kongull). In the normal metal, spin-orbit coupling is included in the Usadel
equation Eq. (4.65) by replacing the derivative with its covariant equivalent.
We describe the normal-metal-ferromagnet interfaces via the spin-dependent
boundary conditions

2Ljζj ĝj∂z ĝj = [ĝj , ĝk] + 2Ljζj ĝjß
[
Âz, ĝj

]
+ σjG̃MR

[
ĝj ,
{
M̂, ĝk

}]
+ σjßG̃θ

[
ĝj , M̂

]
, (B.1)

where j, k = {left, right}, j �= k denotes the two sides of the interface and the
orientation determines the sign σright = 1, σleft = −1. The thin-film layering
direction is taken to be in the z-direction, and G̃MR and G̃θ denote the interfacial
magnetoresistance and scattering phase shifts respectively. We chose ζj = 3
for the transparency parameter of all interfaces. The spin-orbit coupling field
Â = diag(A,−A∗), and we have considered the case A = (βσx − ασy, ασx −
βσy, 0), where α, β are the Rashba and Dresselhaus coefficients respectively.
The extrinsic spin-orbit scattering and spin-flip terms are given by

σ̂so = − 1

8τso

∑
i

α̂iρ̂3ĝ
Rρ̂3α̂i,

σ̂sf = − 1

8τsf

∑
i

α̂iĝ
Rα̂iSi, (B.2)

where τso and τsf are the mean scattering times, Si is the spin expectation
value and we have defined the matrix α̂i = diag(σi, σ

T
i ). The general form of

the retarded Green function is

ĝR =

(
N(I+ γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(I+ γ̃γ)

)
, (B.3)

with normalization matrices N = (I− γγ̃)−1 and Ñ = (I− γ̃γ)−1 and identity
matrix I. The ·̃ operation denotes complex conjugation and ε → (−ε). Regard-
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ing the choice of junction parameter, one may consider a reasonable approxi-
mation of the normal-state density of states to be of the order N0 ∼ 1022/(eV
cm3), and the diffusion constant of CuNi to be[145] D ∼ 5 cm2/s.
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The prospect of combining the dissipationless nature of superconducting currents with the spin polarization
of magnetic materials is interesting with respect to exploring superconducting analogs of topics in spintronics.
In order to accomplish this aim, it is pivotal to understand not only how such spin supercurrents can be created,
but also how they interact dynamically with magnetization textures. In this paper, we investigate the appearance
of a spin supercurrent and the resulting magnetization dynamics in a textured magnetic Josephson current by
using three experimentally relevant models: (i) a superconductor|ferromagnet|superconductor (S|F|S) junction
with spin-active interfaces, (ii) a S|F1|F2|F3|S Josephson junction with a ferromagnetic trilayer, and (iii) a
Josephson junction containing a domain wall. In all of these cases, the supercurrent is spin polarized and exerts
a spin-transfer torque on the ferromagnetic interlayers which causes magnetization dynamics. Using a scattering
matrix formalism in the clean limit, we compute the Andreev bound states and resulting free energy of the system
which in turn is used to solve the Landau-Lifshiftz-Gilbert equation. We compute both how the inhomogeneous
magnetism influences the phase dependence of the charge supercurrent and the magnetization dynamics caused
by the spin polarization of the supercurrent. Using a realistic experimental parameter set, we find that the spin
supercurrent can induce magnetization switching that is controlled by the superconducting phase difference.
Moreover, we demonstrate that the combined effect of chiral spin symmetry breaking of the system as a whole
with interface scattering causes the systems above to act as phase batteries that may supply any superconducting
phase difference ϕ in the ground state. Such a ϕ-junction is accompanied by an anomalous supercurrent appearing
even at zero phase difference, and we demonstrate that the flow direction of this current is controlled by the
chirality of the magnetization configuration.

DOI: 10.1103/PhysRevB.90.054504 PACS number(s): 74.50.+r, 74.45.+c, 74.78.Fk, 76.50.+g

I. INTRODUCTION

The synergistic effects of combining ferromagnetism and
superconductivity, two seemingly disparate phenomena, have
garnered much attention in recent years [1,2]. Investigations
regarding the mutual interplay between these condensed
phases may be traced back to the early work of Ginzburg [3]
and it is by now established that ferromagnetic order not
necessarily acts detrimentally toward superconductivity; the
two may even coexist in a series of uranium-based heavy-
fermion compounds such as UGe2, UCoGe, and UIr [4–6].
Whereas such systems pose several challenges with regard to
experimental investigations, e.g., due to requirements of very
high pressures in some cases, the combined influence of FM
and SC order can be studied in a more controllable fashion by
tailoring hybrid structures with the desired properties.
The physical mechanism behind the unlikely alliance of

magnetic and superconducting order is symmetry breaking
combined with the Pauli exclusion principle [7]. As long as the
Cooper pair wave function respects the correct antisymmetry
property under an exchange of the particle coordinates for
spin, space, and time, the Cooper pairs can in fact become
spin polarized. Such an effect takes place in FM/SC structures
since both the explicit translation symmetry breaking due to the
interface and the presence of a band-splitting exchange field
creates Cooper pairs with different symmetry properties than
in the bulk superconductor [8]. The consequence of same-spin
electrons constituting a Cooper pair is that they become in-
sensitive to the paramagnetic limitation of internal or external
magnetic fields, allowing such correlations to survive distances
up to hundreds of nanometers inside a ferromagnet [9], even
in extreme cases such as half-metallic compounds [10,11]. In

such a scenario, the limiting factor of the penetration depth is
not determined by the strength of the magnetic exchange field,
but by other pair-breaking events such as spin-flip and inelastic
scattering [12]. Experiments have unambiguously observed
such long-ranged superconducting correlations arising in
FM/SC structures that feature magnetic textures of some
sort: this includes multilayered magnetic structures [13,14],
domainwall or intrinsically textured ferromagnets [15,16], and
interfaces with spin-active scattering and/or disorder [17,18].
A large amount of theoretical work has recently been devoted
to the topic of spin-triplet correlations arising in S/F hybrid
structures (see, e.g., [19–41]).
The existence of long-ranged spin-polarized superconduct-

ing correlations raises an interesting question: is it possible to
utilize this to obtain a superconducting analog to central topics
in spintronics such as domain wall motion and magnetization
switching? It is well known that resistive (normal) spin-
polarized currents play a central part in terms of obtaining
magnetization dynamics in spintronics [42]. Spin-currents
enable a transfer of angular momentum to the magnetic
order parameter of a material via the effect of spin-transfer
torque [43,44]. Since spin supercurrents also carry angular
momentum, the same effect is possible in this context and
a few previous works have investigated the possibility of
magnetization dynamics in superconducting hybrid structures
[45,46,48–51,56]. However, it remains unclear how the su-
perconducting phase difference affects the dynamics via the
Andreev bound-state spectrum. In this paper, we will consider
three experimentally relevant types of FM/SC weak-link
structures that all have in common that the region separating
the superconductors is spin-textured. We will compute the
spin-polarized supercurrent analytically, and demonstrate that
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its spin torque can give rise to magnetization switching by
solving the nonlinear Landau-Lifshitz-Gilbert [52] equation
numerically. This constitutes a way to directly utilize the
spin-polarized nature of the recently observed long-range
triplet currents in order to dynamically alter magnetization
textures. In addition to this, we will demonstrate that the
magnetic structure in such Josephson junctions has a profound
effect on the superconducting ground state itself. Whereas
it is known that superconductor|ferromagnet|superconductor
(S|F|S) junctions normally have a ground-state phase differ-
ence of 0 or π , it was very recently demonstrated experi-
mentally that it is possible to construct a ϕ-state junction
where the ground-state phase takes on any value between
0 and π [53]. Such a ϕ-state was originally proposed to
occur in SFS junctions in [54] and subsequently studied in
severalworks [55–62], offering the unique possibility to design
phase batteries [63,65] with an arbitrary phase shift rather

FIG. 1. (Color online) The three setups considered in this paper
for magnetization dynamics induced by a spin-polarized supercur-
rent: (a) a trilayer S|F|S junction with noncollinear magnetization,
(b) S|F|S junction with spin-active interfaces, and (c) S|DW|F|S
junction where the supercurrent is polarized by a domain wall.

than only 0 or π which could be used to bias both classical
and quantum circuits. We will compute the free-energy and
belonging supercurrent-phase relation in inhomogeneousmag-
netic Josephson junctions and show that anomalous behavior
arises in the form of a finite supercurrent even at zero
phase difference. As will be shown, this is intimately linked
with a chiral spin symmetry breaking and scattering at the
interfaces of the structure and results in the possibility of a
controllable ϕ-state by adjusting the magnetization vectors in
the system.
This paper is organized as follows. In Sec. II, we outline

the theoretical framework used in our calculations of the
spin supercurrent, Andreev levels, the magnetization dy-
namics, and the ground-state energy of the system under
consideration (see Fig. 1). In essence, we are combining the
mean-field Bogoliubov–de Gennes equations in a scattering
state framework to compute the free energy from which all
thermodynamic quantities may be obtained, and then extract
the effective magnetic field in our theory which is used
as input in the Landau-Lifshitz-Gilbert equation in order to
obtain the magnetization dynamics. Additional details of the
calculations are found in the Appendix. In Sec. III, we give
a comprehensive treatment of the Andreev levels that arise
and compute the spin-polarized supercurrent flowing in the
system. We provide results for the current-phase relation and
magnetization dynamics, and show how a ϕ-state may arise
in noncollinear arrangements in addition to magnetization
switching. We give a detailed discussion of our results
in Sec. IV, in particular with regard to the experimental
feasibility of our proposed setup and the regime of validity
for the approximations made in our calculations. Finally, we
summarize our findings in Sec. V.

II. THEORY

We consider a ballistic Josephson junction composed of
one or more ferromagnetic layers sandwiched between two
conventional s-wave superconducting electrodes. The entire
structures is positioned along the y axis such that the interfaces
lie in the x-z plane. We choose the origin y = 0 to be at
the interface between the left superconducting layer and its
proximate ferromagnetic. Assuming large superconducting
banks with size d � ξS , these layers are characterized by
their bulk superconducting gap � and the macroscopic phase
difference across the junction, γ = γR − γL.
The ferromagnetic part of the junction depends on the

specific model considered as shown in Fig. 1. We will treat
three experimentally relevant model systems in order to
illustrate the rich physics that arises due to the spin-polarized
nature of the long-ranged superconducting correlations. In
Fig. 1(a), we consider a multilayered ferromagnetic junction,
similar to a recent experiment [14]. As predicted by Ref. [20],
the Josephson current in such a structure should have a long-
ranged contribution that depends on the relative orientation
of the magnetization vectors in each of the ferromagnetic
layers. To treat a general scenario, we consider an arbitrary
direction of the magnetization in the free layer and fix the
orientation in the two hard magnetic layers to the z and x axis,
respectively. The three layers j ∈ {1,2,3} are characterized by
their thickness Lj and exchange field hj , and we will also
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consider the influence of interface resistance captured by an
effective dimensionless parameter Z (see Appendix). As we
will calculate below, the rich physics including supercurrent-
induced magnetization reversal and the appearance of a ϕ

ground state is intimately related to chiral symmetry breaking
by the magnetization vectors Mj [35,39], characterized by a
finite value of the chirality vector:

χ = M1 · (M2 × M3). (1)

Next, we consider in Fig. 1(b) a free magnetic layer with
low anisotropy where the interface region coupling to the
superconductors is spin active. Such interfaces are known
to give rise to spin mixing and spin rotation [22], which
considerably alters the superconducting proximity effect. We
consider a situation where the barrier moments lie in the
x-z plane with the parallel, perpendicular, and antiparallel
alignments given byφL = φR = 0;φL = 0 andφR = π/2; and
φL = 0 and φR = π , respectively. The spin-active interfaces
are characterized by barriers [37]

U = [1̂− ρm cos(φ)(τ0 ⊗ σ3)− ρm sin(φ)(τ0 ⊗ σ1)]. (2)

One of our results is that breaking chiral spin symmetry is
not a sufficient condition to generate an anomalous zero-phase
difference supercurrent. Instead, the scattering taking place at
the interfaces separating the various regions will be shown to
play a pivotal part in this. Finally, we include the effect of
a domain wall by considering in Fig. 1(c) a setup where the
ferromagnetic region consists of a domain wall and a free
magnetic layer. The domain wall is taken to be of Bloch
type, thus rotating around the y axis with a characteristic
length scale of λ. This particular choice of domain wall is
not essential to the resulting physics, and the results we obtain
are qualitatively unchanged for other types of magnetization
textures. The structure of the domain wall is described by
a vector f proportional to the magnetization vector [66]. In
order to obtain analytical results, we use the following form:

f (y) =
{
[ sin

(
πy

ldw

)
,0, cos

(
πy

ldw

)
], if 0 < y < ldw,

0, otherwise.
(3)

The starting point for all scenarios described above is the
mean-field Bogoliubov–de Gennes equations [68] describing
quasiparticle propagation in these structures. Due to the
noncollinear magnetization textures, one must consider the
full spin⊗particle-hole space and use a four-component wave
function � = (u↑,u↓,v↑,v↓)T :(

Ĥ0(y) �̂(y)

−�̂†(y) −Ĥ0
T
(y)

)
�(y) = E�(y), (4)

where �̂(y) = iσ2�(y) and the single-particle Hamiltonian is

Ĥ0(x) =
[
− ∇
2m

− μ(y)

]
1̂− h f (y) · σ , (5)

where m is effective mass of quasiparticles, μ is chemical
potential, and σ is the Pauli matrix spin vector. The quasi-
particle energy E is measured relative the chemical potential
which in the low-temperature limit considered here equals the
Fermi energy. The eigenstates � may be constructed once the
magnetization texture f (y) is specified (see Fig. 1). In each

case, the free layer magnetization is allowed to take arbitrary
directions. This enables a study of the supercurrent-induced
magnetization dynamics on the magnetic order parameter of
this layer. We also mention that the scattering states in the
domain wall region treated in case (c) may be obtained by
employing a unitary transformation of the Hamiltonian which
rotates the spin basis to follow the magnetization texture. This
also alters the boundary conditions to the superconducting
regions. All of these calculational details are left for the
Appendix.
Using the framework sketched above, one may compute

the allowed energy levels that exist in the Josephson junctions.
These Andreev levels ε will depend on the junction geometry,
the U (1) superconducting phase gradient, and the magnetiza-
tion texture. With them in hand, both the free energy F and
the charge supercurrent I are obtained via [67]

F(γ ) = − 1
β

∑
j

ln(1+ e−βεj ), I (γ ) = 2e

�

∑
i

f (εi)
∂εi

∂γ
,

(6)

where f (ε) is Fermi-Dirac distribution function and β =
1/kBT . The fact that the supercurrent is spin polarized due
to the long-range triplet proximity effect and flows under
equilibrium conditions directly implies that the exchange
interaction between the ferromagnets will be altered by the
superconducting phase difference γ . In fact, there is an
interesting codependence between the phase difference γ and
the noncollinearity of the magnetization vectors regarding
the supercurrent I and the equilibrium magnetic torque τ

as first noted by Waintal and Brouwer [45]. Considering for
simplicity twomonodomain ferromagnets with a relative angle
θ between themagnetization vectors, it follows from I = 2e

�

∂F
∂γ

and τ = ∂F
∂θ
that

∂I

∂θ
= 2e

�

∂τ

∂γ
. (7)

The above equation is simple, yet it conveys a powerful
message: if the supercurrent is sensitive to the magnetization
orientation, then the torque exerted on the magnetic order pa-
rameters is sensitive to the superconducting phase difference.
This is the core principle which enables the supercurrent-
induced magnetization dynamics in inhomogeneous S|F|S
junctions. The induced superconducting correlations are long-
ranged since they become spin-polarized and thus avoid
picking up a finite center-of-mass momentum which acts
pair-breaking. In turn, their spin-polarized nature makes them
sensitive to the magnetization texture in the junction such that
a mutual interplay is enabled between the supercurrent and the
magnetization.
Having obtained the free energy of the system from the

Andreev levels, one may also compute the effective field Heff

that couples to the magnetic order parameter:

Heff = − 1

V

∂F
∂ M

. (8)

The effective field is used to describe the supercurrent-induced
magnetization dynamics in the free layer (purple region in
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Fig. 1) by solving the Landau-Lifshitz-Gilbert equation [52]:

∂ M
∂t

= −ζ M × Heff + αM × ∂ M
∂t

, (9)

where ζ is the gyromagnetic ratio and α is the Gilbert damping
constant. As long as the effective field is not fully aligned with
the magnetization, it will exert a torque on it which induces
magnetization dynamics. We are considering a monodomain
macrospin model for the soft ferromagnetic layer, such that
there is no contribution from the spin stiffness term ∼ ∂2M

∂y2
.

However, we include the influence ofmagnetic anisotropywith
additional terms±KjM

2
j , j ∈ {x,y,z} in the free energywhere

Kj are the anisotropy constants and the± sign determines the
hard and easy axes of magnetization.

III. RESULTS

We will now proceed to present our results for the Andreev
bound-state (ABS) spectrum, the system’s free energy, the
current-phase relation, and the ensuing magnetization dy-
namics via spin supercurrents. We treat each of the three
proposed systems in Fig. 1 separately. In each subsection,
we start by considering the analytical expression for the ABS
energy. Obtaining this quantity serves as the foundation for
the computation of both the total free energy of the system
and the equilibrium supercurrent, as given by Eq. (6). The
technical procedure for doing so consists of three steps.
First, we obtain the eigenstate wave functions that solve the
BdG equations in each region (see Appendix for details).
From these wave functions, the appropriate scattering states
involving particle- and hole-like excitations are constructed
with belonging probability coefficients. The energies ε that
allow for a nontrivial solution of the scattering coefficients
are obtained by matching the wave functions at each interface
region using appropriate boundary conditions and setting up a
system of linear equations of the type Âx = bwhere x contains
the scattering coefficients. Solving the characteristic equation
detÂ = 0 allows one to identify the ABS solutions for ε. The
boundary conditions require some special care for the systems
under consideration in the present paper; i.e., they aremodified
from conventional boundary conditions both for setup (b) and
(c) in Fig. 1.

A. Trilayered S|F|F|F|S structure

The magnetizations in the first two layers F1 and F2 are
assumed to be fixed via strong anisotropy energies along the ẑ

and x̂ directions, respectively. In F3, we allow for an arbitrary
magnetization direction in order to explore the effect of spin-
supercurrent-induced magnetization dynamics. This material
should then consist of a much softer ferromagnet than F1 and
F2. For a completely arbitrary parameter set, the analytical
expression for the ABS energy is overwhelming. However,
physical insight can be obtained in experimentally relevant
limiting cases. In the quasiclassical regime of a rather weak
ferromagnet h/μ � 1, one finds that

εj = �0

√
1− A cos γ + BZ3(hy/h) sin γ − C ±

√
D(γ ),
(10)

where the coefficients A,B,C are independent of the phase
difference γ . Instead, they are functions of the junction
parameters such as length L, barrier Z, and exchange field h.
It should be noted that Eq. (10) is valid for arbitrary interface
transparency Z. We provide some additional details for the
coefficients in Eq. (10) in the Appendix. The quantity D (γ )
is a rather large expression which depends on γ ; the essential
property of this quantity is nevertheless that

∂D (γ )
∂γ

∣∣∣∣
γ=0

∝ BZ3(hy/h). (11)

We prove now that it follows from the above properties of
the Andreev level that there will be a finite supercurrent at
zero phase difference. This finding is then independent of the
specific details of the coefficients introduced above.
The presence of an anomalous current is seen to be

contingent on two factors: (1) the presence of scattering
barriers and (2) hy 
= 0 in the free F layer. The absence of
either of these causes the supercurrent to revert to conventional
behavior. We comment first on the role of the scattering
barriers. In Eq. (10), it was assumed that the scattering barrier
Z was the same for the interfaces between the ferromagnetic
regions whereas the S/F interface was taken to be completely
transparent. By allowing for different barrier values, which
will be the case in general since the value of Z depends on the
specific materials connected, one finds that the term providing
the anomalous current reads 12BZ1Z2(Z1 + Z2)hy sin γ . Here,
Z1 is the barrier between the F1/F2 interface whereas Z2 is
the barrier between the F2/F3 interface. This demonstrates that
in the short-junction regime where the Andreev bound states
carry the current, barriers at both ferromagnetic interfaces are
required in order to produce the anomalous current: setting
either Z1 or Z2 to zero cancels the sin γ term in Eq. (10). We
will later establish a connection between this observation and
the results for the domain wall junction to be considered in a
section below.
Second, the fact that the anomalous supercurrent only

appears when hy 
= 0 means that the presence of an explicitly
broken chiral spin symmetry the system is a necessary
criterium. Interestingly, we find that direction of the current
is actually controlled by the specific chirality, i.e., the sign of
hy . A consequence of this is that the magnetization direction
then acts as a 0-π switch as it controls the direction of the
supercurrent, which offers a way of exerting dynamical control
over a superflow of spins. In a somewhat different multilayer
setup where the magnetization vectors were all in-plane (and
thus without any anomalous supercurrent), the direction of the
magnetization rotation was also found to influence the sign of
the supercurrent in Ref. [64]. The precise quantitative behavior
of our system depends also on the following parameters:
the interface barrier, the magnetic anisotropy constant, and the
length of ferromagnetic layers. For convenience, we introduce
the normalized and dimensionless variables βi = kF Lih

2μ , where
the index i denotes the ferromagnetic layer under considera-
tion. Throughout this work, we set kF L = 2πn, where n is an
integer. The presence of ferromagnetism introduces additional
phase shifts for the Andreev bound states as they propagate
through the system.
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FIG. 2. (Color online) (a), (d) Andreev bound-state energies as a function of superconducting phase difference γ . (b), (e) Free energy of the
system as a function of γ and (c), (f) supercurrent-phase relation for our trilayered S|F|F|F|S structure. In all plots, we have set β1 = β2 = π/3.
In (a), (b), (c), we fix the barrier at Z = 2 and investigate the effect of different values of β3 (proportional to both exchange field h and width L

of the free ferromagnetic layer): β3 = 0 (black), 15π/100 (blue), 25π/100 (red), 50π/100 (green). For (d), (e), (f), we fix β3 = 15π/100 and
investigate the effect of a varying barrier potential: Z = 0 (black), 1 (blue), 1.5 (red), 2 (green).

In Fig. 2, we plot the ABS energy [(a), (d)], the free energy
[(b), (e)], and the Josephson current [(c), (f)] as function of
the phase difference. We fixed β1 = β2 = π/3 and considered
several values for β3 andZ. Themagnetization in the free layer
has been set to m ‖ ŷ in order to demonstrate the appearance
and consequences of the anomalous supercurrent. To give
the reader a better idea about which values these correspond
to in an experimental setup, we note that for a weakly
polarized ferromagnet with h/μ = 0.02 (exchange field of
around 30 meV), β = π/3 corresponds to a length of 15 nm.
In Fig. 2, we consider in (a)–(c) the effect of varying the width
or exchange field of the free ferromagnetic layer, captured
in the parameter β3. We consider here a weakly transparent
interface Z = 2. In (d)–(f), we instead fix β3 and consider
the influence of having different barrier potentials Z. The
panels for the ABS energies clearly display that the current is
spin-polarized as their spin-degeneracy is completely removed
in the present system. One important feature is that the effect
of increasing Z on the spectrum is that the maxima and
minima are shifted away from a phase difference γ = 0 and
γ = π . The fact that the derivative of the ABS energy with
respect to γ does not vanish at these points implies that
there will be a finite current even in the absence of any
superconducting phase difference. This will be referred to
as an anomalous supercurrent. We observe that there is no
anomalous supercurrent when Z = 0, as seen also in Eq. (10).
The presence of an anomalous supercurrent is intimately

related to an unusual property for the quantum ground state
of the system, which is illustrated in the plots for the free
energy in Figs. 2(b) and 2(e). The global minimum of F is
seen to not necessarily occur at the conventional 0 and π

states for the phase difference; in fact, for weakly transparent

interfaces it deviates strongly from these values and occurs
at an intermediate phase ∈ [0,π ]. This is a manifestation
of a so-called ϕ-junction. In the right column of Fig. 2,
we plot the supercurrent-phase relation for various choices
of the length and exchange field for the free ferromagnetic
layer as well as different values of the interface transparency.
When a ϕ-junction is realized, we have I (γ = 0) 
= 0 and
an anomalous current is present. Its magnitude is strongly
dependent on β3 ∝ hL and Z, and is seen to reach up to 50%
of the critical Josephson current (for β3 = π/4 in the figure
under consideration).
Having considered the equilibrium properties of the mag-

netically textured trilayer-Josephson junction, we now wish
to address whether magnetization dynamics will be gener-
ated when a spin-polarized supercurrent flowing through the
system. In particular, we will consider whether and how the
presence of the aforementioned anomalous supercurrent alters
the dynamics of the free ferromagnetic layer. To explore
this, we solve the Landau-Lifshitz-Gilbert (LLG) equation
numerically without any approximation for the ABS energies,
i.e., valid for arbitrary parameter values. The main ingredient
which makes this possible is the effective field, which contains
both the contribution from anisotropy terms and the ABS
energies. It may be written as

Heff = 2

|M0| (Kemi − Khmj )− 1

V |M0|
∂F
∂m

, (12)

where Ke(h) is the easy (hard) axis anisotropy constant while
F is the contribution to the free energy from the ABS energies
[see Eq. (6)] and i(j ) can be x or y or z in accordance with in
which direction is easy (hard) axis. We comment specifically
on the regime of validity for our approach that consists of
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FIG. 3. (Color online) Stable magnetization state as a function of superconducting phase difference γ for t → ∞ when m3(t = 0) ‖ ŷ

initially. The components of the magnetization are given in the left (mx), middle (my), and right (mz) columns. For all panels, we fix
β1 = β2 = π/3. (a)–(c) We set β3 = 5π/100, Z = 0.5, and consider different values of the anisotropy constant: K = 104 J/m3 (black line),
105 (blue line). (d)–(f) We set Z = 0.5, K = 105, and consider different values of the β3 parameter: β3 = π/100 (black), 5π/100 (blue),
25π/100 (red). (g)–(i) We set β3 = 25π/100, K = 105, and consider different values of the barrier transparency: Z = 0 (black), 1 (blue),
2 (red).

combining a scatteringmatrix approach in equilibriumwith the
time-dependent LLG equation in Sec. IV. For now, we simply
state that this framework is justified when the magnetization
dynamics is sufficiently slow compared to the rate at which
the system relaxes to an equilibrium state [69], and is
commonly used in the literature. In our numerical simulations,
we will set β1 = β2 = π/3, � = 10−22 J, μ0 = 10−6 H/m,
and |M0| = 105 A/m. The Gilbert damping parameter is set
to α = 0.02.
Before discussing the obtained results, it should be noted

that the time dynamics of the magnetic order parameter in the
free F layer depends on the relativemagnitude of the anisotropy
and ABS energy terms in the effective field Heff . Depending
on the parameters of the system, one of these will dominate or
theywill be of similarmagnitude and compete.Wewill take the
cross-sectional area of the junction to be 1μm× 1μmand con-
sider a width of 10 nm for the free layer. With a lattice constant
of a = 0.1 nm and estimating the number of transverse modes
as N/V = 1028 m−3, we find that forK � 103 J/m3 the ABS
term dominates whereas for K � 105 J/m3 the anisotropy
governs the dynamics. In order to limit the parameter space, we
will consider only a high to moderate interface transparency
(Z � 2) and a junction length of the free F layer satisfying
β3 � 25π/100. These values are representative for a set of ex-
perimentally attainable interface transparencies ranging from
high to low as well as different values for the exchange field
of the free ferromagnetic layer, ranging from weakly to mod-

erately polarized. In each case, we solve the LLG equation nu-
merically and identify the stable state that arises when t → ∞
and its dependence on the superconducting phase difference.
The initial condition for the magnetization of the free layer
is taken to be along its easy anisotropy axis. We discuss the
experimental realization of this setup in more detail in Sec. IV.
First, consider the casewith anisotropy along the ŷ direction

shown in Fig. 3. We plot the stable state (t → ∞) for each of
the magnetization components and investigate the effect of
varying the anisotropy strength K (top row), the combined
effect of exchange field and width of the ferromagnetic layer
β3 ∝ hL (middle row), and the interface barrier transparency
Z (bottom row). Several observations can be made. Whereas
the qualitative behavior of the mx (left column) and mz (right
column) components are equivalent, displaying a symmetry
around γ = π , the my (middle column) component displays
different behavior. For some parameter values, we observe
very fast oscillations in terms of the value of the stable
state as a function of the superconducting phase difference.
Remarkably, this is a direct result of the presence of an
anomalous supercurrent in the system. To see this, consider the
LLG equation for a stable, time-independent magnetization:

m × Heff = 0, (13)

where Heff contains a contribution from both the anisotropy
and ABS energies. From the definition of the effective field,
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one can show that the components of it satisfy

(Heff)
i ∝

∑
k

C(εk)
∂εk

∂hi

. (14)

Now, the partial derivative of theABS energy depends strongly
on which component of the field one considers. For instance,
one finds ∂εk

∂hy
∝ sin γ (odd function of the phase difference)

whereas ∂εk

∂hz
is mainly determined by cos γ (even function of

the phase difference). In turn, these properties also determine
the symmetries of (Heff)i with respect to γ . This observation
is essential as it explains the qualitative behavior of the
magnetization dynamics in Fig. 3. Let us write out the stable
state condition componentwise where we explicitly separate
the contribution from anisotropy and ABS energies:

myH
z
ABS − mzH

y

ABS − Kmymz = 0,

mxH
z
ABS − mzH

x
ABS = 0, (15)

mxH
y

ABS − myH
x
ABS + Kmxmy = 0.

There are now three possible scenarios: (1) the anisotropy term
dominates, (2) the ABS energy term dominates, or (3) the
contribution from both of these are comparable. When the
anisotropy term dominates the effective field, one would
expect that the magnetization does not deviate much from
its original configuration (along the easy axis). This is seen
in panel (e) for the black line. When the anisotropy term is

small compared to HABS, we can neglect the terms ∝K in
Eq. (15) which allows us to conclude the following: since
H

y

ABS is close to antisymmetric in γ whereas Hz
ABS is close

to symmetric, the first and third line dictate that my must
be close to antisymmetric in γ whereas mx and mz must
be close to symmetric. This is again consistent with Fig. 3.
Therefore, we may conclude that it is the appearance of
the anomalous supercurrent (which is proportional to the
sin γ term in the effective field) that is responsible for the
qualitatively different behavior of my compared to the other
components. Finally, the oscillatory behavior of my may be
understood as a competition between the anisotropy and the
ABS contribution to the effective field.Whereas dominatingK

permits a symmetricmy with respect to the phase difference γ

while dominating ABS contribution gives an antisymmetric
my , the two terms compete when they are of comparable
magnitude and give rise to a stable state formy which displays
symmetry in a certain range of γ and otherwise antisymmetry.
Having established the influence of the superconducting phase
difference on the magnetization dynamics, the plots moreover
show that magnetization switching is possible. For instance,
panel (l) shows that depending on the phase difference γ , the
stable magnetization state is almost fully aligned with either
the +ẑ or the −ẑ direction.
Consider next the case where we change the initial

magnetization configuration of the free ferromagnetic layer to
be along the x̂ or ẑ direction. The results are shown in Fig. 4.
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(c)(b)(a)
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FIG. 4. (Color online) Stable magnetization state as a function of superconducting phase difference γ for t → ∞ when m3 ‖ ŷ initially.
The components of the magnetization are given in the left (mx), middle (my), and right (mz) columns. For all panels, we fix β1 = β2 = π/3.
(a)–(c)m3(t = 0) ‖ x̂ as initial condition with β3 = π/100 and Z = 0.5. We consider several values of the anisotropy constant:K = 103 J/m3

(black line), 104 (blue line), 105 (red line). (d)–(f)m3(t = 0) ‖ ẑ as initial condition withZ = 0.5 andK = 104 J/m3.We here consider different
values of the β3 parameter: β3 = π/100 (black), 15π/100 (blue), 25π/100 (red). (g)–(i)m3(t = 0) ‖ ẑ as initial condition with β3 = 15π/100
and K = 104 J/m3. We consider several choices for the barrier transparency: Z = 0 (black), 0.5 (blue), 1 (red), 1.5 (green), 3 (yellow).
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The corresponding equation governing the stable state now
changes compared to Eq. (15) since the anisotropy contribution
will now always appear in the second line. As a result, one
concludes that regardless of the strength of the anisotropy and
regardless of whether the initial configuration is along x̂ or ẑ,
themy component will always be close to antisymmetric in γ ,
as seen in Fig. 4.
Let us also comment specifically on the role played by

the interface barrier potential Z and the parameter β3 ∝ hL

in terms of how they influence the magnetization dynamics.
A common feature for both Figs. 3 and 4 is that the my

component grows with increasing barrier Z. This should be
seen in conjunction with that the magnitude of the anomalous
supercurrent also increases with Z (up to Z � 2), as shown
in Fig. 2. In effect, the anomalous supercurrent increases in
magnitude with Z and is seen to have a feedback effect on
the magnetization in terms of enhancing the magnitude ofmy .
With regard to the role of β3, its main role is seen to oppose the
effect of the anisotropy. As β3 increases, the influence of the
ABS contribution to the effective field becomesmore dominant
as evidenced by the emergent antisymmetric my dependence
on γ .

B. S|F|S junction with spin-active interface zones

We proceed to consider the structure shown in Fig. 1(b):
an SFS junction where the interfaces are spin-active. More
specifically,we allow (as before) for an arbitrarymagnetization
direction in the free ferromagnetic layer whereas the interface
regions are modeled via Eq. (2) in the perpendicular config-
uration in order to allow for the possibility of spin chirality
breaking with the interface moments and the bulk moment all

pointing along different axes. In the quasiclassical regime of a
sufficiently weak ferromagnet, we find the following analytical
expression for the ABS energy:

εj = �0

√
1− A cos γ − B(hy/h)Z2ρ2mα sin γ − C ±

√
D(γ ),
(16)

where the coefficients A,B,C are independent of the phase
difference γ . The quantity D (γ ) is a rather large expression
which depends on γ ; the essential property of this quantity is
nevertheless that

∂D (γ )
∂γ

∣∣∣∣
γ=0

∝ B (hy/h)Z2ρ2mα. (17)

Similarly to the trilayer structure the sin(γ ) contribution is only
present when hy 
= 0 and is accompanied by an anomalous
supercurrent. The effect increases with the strength of the
interface barrier Z and its existence is actually contingent
on a nonzero Z. Therefore, the same conclusion as for the
trilayer structure holds here: chiral spin-symmetry breaking is
not a sufficient criterion for the appearance of an anomalous
supercurrent; it also requires scattering at the interfaces.
In Fig. 5, we provide a plot for the ABS spectrum,

free energy, and supercurrent-phase relation for the system
with spin-active interfaces. In this structure, there is a new
parameter compared to the trilayer case, namely the ratio
between the magnetic and nonmagnetic part of the barrier ρm.
In what follows, we set ρm = 0.5. Considering first the ABS
spectrum, we see that the shift of the extremal values away
from 0 and π are very small when the conditions for a nonzero
anomalous supercurrent are present (finite Z and hy). In fact,
the free energy plots are very close to describing the usual
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FIG. 5. (Color online) (a), (d) Andreev bound-state energies as a function of superconducting phase difference γ . (b), (e) Free energy of
the system as a function of γ and (c), (f) supercurrent-phase relation for our spin-active SFS structure. In (a), (b), (c), we fix the barrier at
Z = 2 and investigate the effect of different values of β (proportional to both exchange field h and width L of the free ferromagnetic layer):
β = 0 (black), 15π/100 (blue), 25π/100 (red), 50π/100 (green). For (d), (e), (f), we fix β = 15π/100 and investigate the effect of a varying
barrier potential: Z = 0 (black), 1 (blue), 1.5 (red), 2 (green).
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FIG. 6. (Color online) Stable magnetization state as a function of superconducting phase difference γ for t → ∞ when m3(t = 0) ‖ ŷ

initially. The components of the magnetization are given in the left (mx), middle (my), and right (mz) columns. In all panels, we fix ρm = 0.5.
(a)–(c) We fix β = 15π/100, Z = 0.5, and consider several values of the anisotropy constant: K = 104 J/m3 (black line), 105 (blue line).
(d)–(f) We fix Z = 0.5, K = 105, and consider several values of the β parameter: β = 5π/100 (black), 15π/100 (blue), 25π/100 (red).
(g)–(i) We fix β = 25π/100, K = 105, and consider several values of the interface transparency: Z = 0 (black), 0.5 (blue), 1 (red), 2 (green).

0-π transitions. However, the zoom-in in the right column of
Fig. 5 demonstrates that there is a small but finite value of the
supercurrent at γ = 0, which is equivalent to saying that the
junction is in a ϕ-state. Both the present and the trilayer system
can then in principle act as phase batteries supplyingwhichever
phase difference that may be desirable as its ground state.
For themagnetization dynamics, we consider in this section

only the case where the initial configuration is along the ŷ axis
since this gives the qualitatively most interesting behavior
(see Fig. 6). Using the x̂ and ẑ directions as the free layer
initial state provides similar results to those in the previous
section. One key difference is nevertheless that unlike the
trilayer case, there is no magnetization dynamics whatsoever
in the present scenario when Z = 0. The reason is that for
perfectly transparent interfaces, the junction is equivalent to a
homogeneous SFS junction and there is no spin-transfer torque
due to misaligned magnetic moments. Moreover, we see that
for all parameter choices we havemx(t → ∞) = mz(t → ∞).
This stems from the fact that the influence of both spin-active
interfaces is equivalent in magnitude so that the induced x and
z components of the bulk magnetization take the same values.
The qualitative behavior of the stable-state magnetization
my(t → ∞) is determined by the relative contribution of the
anisotropy term and the ABS energies, and a similar analysis
to that for the trilayer case holds here as well. With increasing
β ∝ hL, the influence of the anisotropy term decreases.

C. Domain wall S|F|S junction

The final structure under consideration in this work is one
where the magnetic weak link connecting the superconductors
consists of two layers: a magnetic domain wall ferromagnet
and, as before, a free ferromagnetic layer. The domain wall is
modeled via Eq. (3). In the quasiclassical regime h � μ, we
obtain the expression

εj = �0

√
1− A cos γ − B ±

√
(A cos γ )2 + C cos γ + D,

(18)

where all coefficients A,B,C, and D are independent of γ and
instead depend on all the other parameters in the junction. In
obtainingEq. (18),we considered the limitη � 1 andαdw � η

where

αdw = hdw/2μ, η = a2/k2F , a = π/2ldw. (19)

To understand what this limit means physically, we note
that it is equivalent to stating that the domain wall width ldw
far exceeds a typical lattice spacing constant as it should.
From this expression, it is clear that the ground-state energy
will always occur at γ = 0 or γ = π , in contrast to the two
previously analyzed configurations. The sin γ term responsible
for the anomalous supercurrent and ϕ-junction is absent. For
this reason, we do not include any results for the magnetization
dynamics of this system.We instead show graphically in Fig. 7
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FIG. 7. (Color online) (a), (d), (g) Andreev bound-state energies as a function of superconducting phase difference γ . (b), (e), (h) Free
energy of the system as a function of γ and (c), (f), (j) supercurrent-phase relation for our S/DW/F/S structure. In (a), (b), (c), we set Z = 2,
η = 10−4 and investigate the effect of different values of the β2 parameter: β2 = 0 (black), 15π/100 (blue), 25π/100 (red), 50π/100 (green).
In (d), (e), (f), we set β2 = 15π/100, η = 10−4 and investigate the effect of the magnitude of the barrier transparency: Z = 0 (black), 1 (blue),
1.5 (red), 2 (green). Finally, for (g), (h), (i), we set Z = 2, β2 = 15π/100 and investigate the effect of the domain wall width: η = 10−4 (black),
8× 10−3 (blue), 5× 10−3 (red).

the ABS energies [(a), (d), (g)], the free energy of the system
[(b), (e), (h)], and the supercurrent-phase relation [(c), (f), (j)];
all are shown for various parameter choices. The fact that the
anomalous supercurrent is absent is an important observation,
because it demonstrates that chiral spin-symmetry breaking
(or alternatively, non-coplanar magnetization vectors) alone
is insufficient to induce such a term. In fact, the finding that
the term causing a ϕ-junction is absent in the present case of
a domain wall is consistent with our findings for the trilayer
junction above. There, it was shown that if either interface
barrier between the ferromagnetic layers was absent, the
anomalous supercurrent vanishes. Such a scenario is similar to
the present case, since two misaligned ferromagnetic regions
without any interface scattering barrier can be thought of as a
simplified domain wall.

IV. DISCUSSION

We discuss here some issues which are relevant for the
approximations made in our model as well as how to realize

experimentally the proposed setups. First of all, the variation
of the magnetization dynamics on the superconducting phase
difference can be probed in several ways. In our treatment,
we have considered a phase-biased Josephson junction with a
fixed superconducting phase rather than a fixed current bias. In
the latter case, the superconducting phase would vary together
with the magnetization dynamics since the supercurrent-phase
relation is sensitive to the exact magnetization configuration.
Instead, by phase-biasing the junction via a loop geometry and
aminute external field corresponding to a flux quantum (which
has no effect on the magnetization dynamics), the current is
allowed to vary as the magnetization dynamics takes place
while the phase remains fixed. Another approach would be to
study a phase-driven junction with a voltage bias as done, e.g.,
in [47,49].
For the computation of the magnetization dynamics, we

used as initial condition that the magnetization of the free
layer was along the easy axis anisotropy. In general, however,
the magnetization configuration that solves the static LLG
equation in equilibrium is not necessarily with the free layer
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along the easy axis. This is due to the presence of the effective
field stemming from theABSenergies that exist in the junction.
We have attempted to find a general analytical solution for
the orientation of the free layer which solves m × Heff = 0
when including all terms in the free energy, but the resulting
expressions were too cumbersome to be of any use. The initial
condition used in the numerical simulations is nevertheless
feasible to realize experimentally, simply by applying an
external field along the anisotropy axis to artificially enhance
it so that the free layerm is fixed along that direction. By then
turning off the field, the resulting magnetization due to the
Andreev bound states and the change in superconducting phase
difference may then be observed. It is important to underline
that the supercurrent-induced magnetization dynamics studied
in this paper is a nonequilibrium effect even when the SC
phase difference is kept constant. The reason is that the system
is initially prepared in a magnetization configuration which is
not the ground state of the system so that there is a finite torque
acting on the free layer which eventually goes to zero as the
system relaxes into a stable state for t → ∞.
In the situation considered in the majority of previous

literature on magnetic Josephson junctions, the magnetization
is considered fixed and thus already being in its ground state
(e.g., due to strong anisotropy fixing). One then assumes that
there is no feedback on the magnetization from the Josephson
current, and so one only needs to minimize the super-
conducting part of the free energy with respect to the
phase difference: the magnetic part is already assumed to
be minimized. If one instead, as we have done, allows
for the Andreev bound states and (thus supercurrent) to
have a considerable influence on the free energy on equal
footing as the anisotropy, the superconducting correlations
will alter the favorable orientation of the magnetization. The
free energy should then be minimized both with respect to
the magnetization orientation and the superconducting phase
difference.
Let us also comment specifically on our technical treatment

of how the Andreev-bound state contribution to the free
energy gives rise to an effective field that enters the LLG
equation. Defining the effective field Heff as the functional
derivative of the magnetic order parameter evaluated at its
instantaneous configuration requires that the magnetization
dynamics be slow compared to relaxation processes in the
system. In other words, the derived free energy may be treated
as time-dependent if the system approximately equilibriates
in pace with the change in magnetization. A lag between the
magnetization dynamicsm(t) and degrees of freedom that are
coupled to it may be interpreted as a dissipation of energy and
in turn captured by theGilbert-damping parameter thatwe have
accounted for [69]. For a driven superconducting phase where
the phase difference is γ (t) = ωJ t + γ0, the above criterium
is satisfied when ωJ � kBTc [47] so that the phase is treated
as a time-dependent perturbation.
It is worthwhile to point out that the diffusive limit of

transport is usually the experimentally most relevant one.
Our motivation for performing the calculations in the ballistic
regime was primarily for the sake of analytical transparency:
using the BdG equations, we have obtained an analytical
expression for the Andreev bound-state energies from which
one can directly infer the required conditions of the appearance

of the anomalous supercurrent. In the diffusive limit, one
would have to use the quasiclassical Usadel equations. For the
types of structures that we have considered with multilayers,
an analytical solution might be possible but probably not in
a particularly illuminating form. In fact, a previous work [20]
that considered a trilayer SFS junction using the quasiclassical
formalism was unable to identify the appearance of the ϕ-state
using an analytical approach, presumably due to all the
simplifications that are required for this purpose. This suggests
that a calculation in the full proximity effect regime, where
only a numerical approach is viable, would be required in the
diffusive limit in order to correctly obtain the predicted effects.
Whereas this is certainly interesting, it lies outside the scope
of our work. Having stated this, we think it is reasonable
to expect that our results will be qualitatively valid for the
diffusive limit as well for the following two reasons: (i) The
fundamental mechanism for the generation of an anomalous
supercurrent and ϕ-state relies on the breaking of a chiral spin
symmetry combined with the presence of interface scattering.
None of these effects pertain uniquely to the ballistic limit
of transport, and hence one would expect that the same
physics would transpire in the diffusive limit given the same
conditions as in our paper. (ii) In the regime of moderate to low
interface transparency, the supercurrent-phase relation is close
to sinusoidal and the higher harmonics (which typically are
muchmore pronounced in the ballistic limit) are suppressed. In
this way, our system becomesmore comparable to the diffusive
case where it is known that the first harmonic is the most
important contribution. Quantitatively, there may certainly
be some differences between the diffusive and ballistic
treatments, but we do not expect any dramatic alterations of
the underlying physics for the reasons mentioned above.
Finally, in order for the magnetization vectors to be

misaligned as in, e.g., the trilayer case, it is necessary to
reduce the exchange coupling between the layers. This can
be achieved by inserting a normal metal spacer between the F
regions. We have omitted this layer in our calculations since
it would merely complicate the analytical expressions without
introducing any new physics. It should be noted that spacer
thicknesses as small as 4 nm are sufficient to experimentally
allow formisalignedmagnetization vectors in superconducting
hybrid structures, as very recently reported in [70].

V. CONCLUSION

In conclusion, we have investigated the spin and charge
transport in several models ofmagnetically textured Josephson
junctions. We have made predictions for the ABS energy
spectrum, the free energy and its phase dependence, and the
supercurrent-phase relation. Moreover, we have considered
the magnetization dynamics induced by the presence of a
triplet spin supercurrent in these systems and computed how
the stable-state magnetizationm(t → ∞) is controlled by the
superconducting phase difference. A key finding is that the
presence of an anomalous supercurrent ∝ cos γ , which results
in a ϕ-state, strongly influences the resulting magnetization
dynamics and gives rise to symmetry properties of the stable
state which may be understood by analyzing the resulting
effective field Heff . Moreover, we demonstrated that chiral
spin symmetry breaking is insufficient to generate such an
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anomalous supercurrent: the presence of scattering barriers
separating different magnetic regions plays an instrumental
role in creating this effect. Our results may provide a basis
for future investigations of how controllable magnetization
dynamics can be obtained with spin supercurrents that are
tuned via the superconducting phase difference.
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APPENDIX: CALCULATION OF ANDREEV LEVELS

In order to solve the Bogoliubov–de Gennes equations we write the wave function in plane-wave form �(y) = eikyψ . The
wave vectors of electron- and hole-like quasiparticles (ELQs and HLQs, respectively) inside the superconductor are

kS =
√
2m(μ ±

√
E2 − �2), (A1)

while for the homogeneous ferromagnets we have

kσ
f =

√
2m(μ ± E + σh). (A2)

Finally, in the domain wall case we find

kσ
DW =

√
2m(μ ± E)+ a2 + σ2

√
2ma2(μ ± E)+ m2h2, (A3)

where a = π
2lDW

. Defining α = h
2μ and η = a2

2m(μ±E) , we find in the limit E � μ that η = a2

k2F
and the wave vector for the domain

wall becomes

kσ
DW =

√
2m(μ ± E)+ η2 + σ2

√
η2 + α2. (A4)

During our calculation we use the approximation that E � μ and that α and η are small. For α � η, the wave vector for the
quasiparticles in the domain wall ferromagnet can be simplified further:

kσ
DW = 2mμ(1+ σα) (A5)

while for for α � η

kσ
DW = 2mμ(1+ ση). (A6)

For a ferromagnetic layer with arbitrary orientation of magnetization, we have

�F (y) =
∑
p=±

⎡
⎢⎢⎢⎣t±e,↑

⎛
⎜⎜⎜⎝
cos

(
θ
2

)
sin

(
θ
2

)
eiχ

0
0

⎞
⎟⎟⎟⎠e±ik

↑
F y + t±e,↓

⎛
⎜⎜⎜⎝

−sin (
θ
2

)
e−iχ

cos
(

θ
2

)
0
0

⎞
⎟⎟⎟⎠e±ik

↓
F y

+ t±h,↑

⎛
⎜⎜⎜⎝

0
0

cos
(

θ
2

)
sin

(
θ
2

)
e−iχ

⎞
⎟⎟⎟⎠e±(−ik

↑
F y) + t±h,↓

⎛
⎜⎜⎜⎝

0
0

−sin (
θ
2

)
eiχ

cos
(

θ
2

)

⎞
⎟⎟⎟⎠e±(−ik

↓
F y)

⎤
⎥⎥⎥⎦ , (A7)

where θ is the angle between the magnetization and the z axis, χ is the angle between the magnetization and the x axis in the
x-y plane, and ± corresponds to the direction of the moving particles. For the domain wall layer, we first perform a unitary
transformation Û of the Hamiltonian to remove the explicit spatial dependence of the exchange field due to the domain wall
texture. This is achieved by rotating the system so that the local spin quantization axis is aligned with the local magnetization
direction. Starting out with Ĥψ = εψ , we rewrite it to Ĥrot� = ε� where Ĥrot = ÛĤ Û

−1
and� = Ûψ . The newwave function

� may then be expressed as follows:

�DW(y) =
∑
p=±

⎡
⎢⎢⎢⎣t±e,↑

⎛
⎜⎜⎜⎝

φ
↑
1

±φ
↑
2

0
0

⎞
⎟⎟⎟⎠e±ik

↑
DWy + t±e,↓

⎛
⎜⎜⎜⎝

±φ
↓
2

φ
↓
1

0
0

⎞
⎟⎟⎟⎠e±ik

↓
DWy + t±h,↑

⎛
⎜⎜⎜⎝
0
0

φ
↑
1

±φ
↑
2

⎞
⎟⎟⎟⎠e±(−ik

↑
DWy) + t±h,↓

⎛
⎜⎜⎜⎝
0
0

±φ
↓
2

φ
↓
1

⎞
⎟⎟⎟⎠e±(−ik

↓
DWy)

⎤
⎥⎥⎥⎦ , (A8)

where

φσ
1 = σ (α + η2

√
α2 + ση2), φσ

2 = σ iη

√
1+ η2 + 2

√
α2 + η2. (A9)

054504-12



SPIN SUPERCURRENT, MAGNETIZATION DYNAMICS, . . . PHYSICAL REVIEW B 90, 054504 (2014)

Wemay then revert to the original wave functionψ , which enters the boundary conditions, by doing the inverse transformation
ψ = Û−1�. The coefficients t±e(h),σ are associated with right-going or left-going (±) ELQs and HLQs propagating through the
ferromagnetic layers. The spin index σ =↑ or ↓.
The wave functions must satisfy the boundary conditions of (1) continuity of the wave function at the boundary,

(�k − �l)|y=Li
= 0, (A10)

and (2) discontinuity of the first derivative at the boundary,

∂(�k − �l)|y=Li
= 2m

�
U�|y=Li

, (A11)

where Li = 0, L1, L2, L3, and indexes k and l are associated with corresponding index of the wave functions. We have defined
the normalized barrier strength Z = 2mU/(�kF ). Note that in the domain wall case, extra terms ∂yÛ arise in the boundary
conditions due to the unitary transformation of the wave function. From the boundary conditions, we can obtain all the scattering
coefficients and set up a homogeneous system of linear equations, demanding that the determinant be equal to zero in order to
have a nontrivial solution. The resulting characteristic equation is then solved for the energy which represents the Andreev bound
state (ABS). In the ABS energy for the trilayered structure, the coefficient B before the anomalous sin γ term satisfies

B ∝ sin 2β1 sin 2β2 sin 2β3, (A12)

whereas for the structure with spin-active interfaces

B ∝ sin2 β. (A13)

In the scenario with a domain wall ferromagnet, there exists no manageable expression for B in the general case.
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We discover that the way spin-waves exert magnetic torques in multiferroic materials can cause not only
domain wall motion, but also magnetization dynamics for homogeneous magnetization textures. Interestingly,
the domain wall motion can be controlled via purely electrical means with the spin-waves being generated by
an ac electric field E while the direction of the wall motion also is sensitive to an applied dc E field. Moreover,
we determine the interaction between spin-transfer torque from an electric current and a magnetic domain wall
in multiferroics and show that the Walker breakdown threshold scales with the magnitude of a perpendicular
electric field, offering a way to control the properties of domain wall propagation via electric gating.

Over the last decade, there has been a surge of interest

in multiferroic materials [1–3] which displays simultaneously

ferromagnetic/antiferromagnetic, ferroelectric, and/or ferroe-

lastic order [4]. Besides the obvious allure of this multifunc-

tionality from a practical viewpoint, such as usage for the pur-

pose of magnetic random access memories [5, 6], the magne-

toelectric cross-coupling between these orders is interesting

from a fundamental physics perspective [7–13].

It is known that a wide variety of multiferroic materials host

textured magnetic order parameter profiles [2] such as domain

walls. Domain walls may be thought of as topological de-

fects which interface different regions of a material and ex-

hibit properties that differ from the ones in the homogeneous

domains. Controlling the transport of magnetic domain wall

structures is currently an active field of research [25] in spin-

tronics as it offers an interesting way to transfer information

in a non-volatile manner. In the context of multiferroics, in-

homogeneous magnetic distributions M such as domain walls

may induce an electric polarizationP which opens up the pos-

sibility to influence magnetic domain walls via electric fields

E [11]. Indeed, it has been experimentally shown that it is

possible to manipulate magnetic domain wall structures via

an external E field [14]. Magnetoelectric coupling has also

been demonstrated to provide strain-controlled domain wall

motion [15].

However, an analytical framework and understanding of

how domain wall motion takes place in multiferroics when

exposed to central driving forces in spintronics such as spin-

polarized currents or spin-waves remains largely unexplored

[17, 18]. In this paper, we answer the question: how does

magnetic domain walls in multiferroics respond to the spin-

transfer torque induced by electric currents and spin-waves?

We find that spin-waves generated in multiferroic materi-

als are capable not only of causing domain wall motion, but

even inducing torques on homogeneous magnetization tex-

tures. This is different from conventional homogeneous fer-

romagnets where no such spin-wave torque exists. Moreover,

we find that the domain wall motion can be controlled fully

electrically since the spin-waves may be generated by an ac

E field while the velocity of the wall also is found to depend

on the application of a constant dc E field. Again, this is

different compared to the magnonic torque induced by spin-

waves on domain walls in conventional ferromagnets where

the wall moves toward the spin-wave source [20]. Finally,

we show that the effect of a domain wall becoming distorted

once exceeding a critical velocity, known as Walker break-

down, can be delayed by electric gating on magnetic domain

walls in multiferroics under the influence of a current-induced

spin-transfer torque.

Let us start by establishing the theoretical framework to

be used in this work. To account for inhomogeneous mag-

netic textures the free energy under consideration includes the

exchange interaction Fexc =
∫

dr J
2 (∇m)2 and anisotropy

energy Fan =
∫

dr(−K
2 m

2
z + K⊥

2 m2
x), where the Zeeman-

coupling due to an external magnetic field may also be in-

cluded via FZ = − ∫ dr(M · Bext). Above, J is the ex-

change coefficient while M = M0m is the magnetization

with M0 as its magnitude, K > 0 and K⊥ > 0 are constant

of anisotropy for the easy and hard axis, while Bext is the ex-

ternal magnetic field. Since the system under consideration is

not a conventional ferromagnet, but rather a multiferroic, we

must include the cross-coupling term between the electrical

and magnetic degrees of freedom FP = − ∫ drE · P where

the polarization induced by the magnetic texture is given by

[16] (considering a cubic lattice symmetry for concreteness)

P = γ0[M(∇ · M) − (M · ∇)M ]. The magnitude of the

magnetoelectric coupling coefficient is denoted γ0.

The total free energy is then represented by F = Fexc +
Fan + FZ + FP and we make use of the Landau-Lifshitz-

Gilbert equation (LLG) [23] to investigate the dynamics of a

domain wall in this multiferroic system. We will in this work

consider both the influence of spin-waves induced torques and

current-induced torques, commencing with the latter. In this

case, the standard phenomenological equation of motion used

to describe the spin-transfer torque effect of an electric current

is (in normalized form):

∂m

∂t
= −m×Heff+αm× ∂m

∂t
−u

∂m

∂c
+βum× ∂m

∂c
(1)

where α is the Gilbert damping constant, u is proportional to

the current density, while β is the non-adiabatic term whose

origin, although subject to some controversy, mostly is be-

lieved to be spin-relaxation processes that cause the itinerant

electron spins constituting the current to not follow the do-



2

main wall profile fully adiabatically [22]. Although the mag-

netization is allowed to take any direction, we consider only

variation along one spatial dimension (denoted c above) in or-

der to provide analytical results. In what follows, we will con-

sider time t in the unit of (γμ0M0)
−1 where μ0 is the vacuum

permeability, γ is the gyromagnetic ratio, and use normalized

length in the unit of (J/M2
0μ0)

1/2. Finally, we express the

current density parameter u in the unit of γ
√
Jμ0, the free

energy F and anisotropy constants K and K⊥in the unit of

M2
0μ0, E in unit of γM0μ0

√
Jμ0, and the magnetoelectric

coupling constant γ0 in the unit of (γM2
0μ0)

−1.

A key observation is that not all types of magnetic textures

will provide a net magnetoelectric polarization P : a net com-

ponent of the magnetization along the direction of spatial vari-

ation v is required, thus ruling out Bloch walls. For this rea-

son, we will focus here on Neel (NDW) and head-to-head do-

main walls (HDW). To be concrete, we choose easy-axis of

magnetic anisotropy along the z direction and the hard axis

along x direction (see Fig. for the schematic setup). Before

we can explore the dynamics of multiferroic domain walls,

one has to check whether an applied electric field alters the

static domain wall profile itself. Some care must be exercised

here, since we find that the validity of the usual Walker solu-

tion [24] for the domain wall profile depends on the orienta-

tion of the electric field relative the hard axis of anisotropy.

For instance, the Walker profile is not valid for the NDW and

HDW when the E field is applied along the hard-axis direc-

tion. Thus, we consider the electrical field as E = (0, 0, Ez)
for NDW and E = (0, Ey, 0) for HDW. Due to our chocie

for the coordinate axes, we can conventially write the normal-

ized magnetization in the same way for both types of domain

walls: m = (sin(θ) cos(φ), sin(θ) sin(φ), σ cos(θ)), where

θ(c) = 2 arctan[exp(c−χ)/λ] where c = y and c = z for

NDW and HDW correspondingly, λ is the DW width, χ is the

position of the DW center, and the topological charge of the

domain wall is σ. The azimuthal angle for the static Walker

profile φ = ±π/2 for both our geometries and we assume

that K � K⊥ to justify the description of the domain wall

as a solitonic object described only by the degrees of freedom

associated with its center position and tilt angle [25].

The equation of motion for the center-coordinate χ(t) and

the angle φ(t) is for the NDW

ασχ̇+ λφ̇ = −σβu+ λBz and σχ̇− αλφ̇ = −σu

− 1

2
λK⊥ sin(2φ) + σλπγ0Ey cos(φ). (2)

For the HDW, we have

ασχ̇+ λφ̇ = −σβu, σχ̇− αλφ̇ = −σu− 1

2
λK⊥ sin(2φ)

− By

π
cos(φ) + 2σλπγ0Ez cos(φ). (3)

The behaviour of the domain wall is different in two regimes

which separated by the Walker breakdown, defined by ∂tφ �=
0. In the regime where there is no Walker breakdown, the fol-

lowing equations must be satisfied for NDW u
κ⊥

= sin(2φ)+

Oscillating E or B field:
 spin-wave generation

dc E field / gate voltage

(a) Neel wall

(b) Head-to-head wall
u  /c

|V      /DW,c

(c) Max DW velocity and 
      critical current density 

 |

 

FIG. 1: (Color online) Schematic setup considered in this work. We
consider two types of domain walls in multiferroics which give rise to
a net electric polarization due to the magnetoelectric effect: (a) Neel
and (b) head-to-head domain walls. An ac E or B field is applied
transversely to the structure in order to generate spin-waves locally,
which then propagate through the system and interact with the do-
main wall. We also allow for the possibility of a dc E field (gate
voltage) applied across the top and bottom of the structure. In (c),
we show how the maximum domain wall velocity attainable before
Walker breakdown VDW,c and the critical current density uc scales
with the applied normalized electric field ε. We have chosen param-
eters α = 0.01 and β = 0.02.

bNDW − ε cos(φ) and for HDW u
κ⊥

= sin(2φ) + (bHDW +

ε) cos(φ) where κ⊥ = σαλK⊥
2(β−α) , b = B/B0 , ε = E/E0,

E0 = σK⊥
4πγ0

, B0,HDW = πλK⊥
2 , B0,NDW = αK⊥

2 This al-

lows us to determine a quantity of central practical impor-

tance, namely the critical current density uc at which Walker

breakdown takes place. We find:

uHDW,c = κ⊥[b+
√
2f(ε)/32], uNDW,c =

√
2κ⊥f(ε′)/32,

f(x) = (3x+
√
x2 + 32)[16− x2 + x

√
x2 + 32]1/2

(4)

where ε
′
= b + ε. From this, the maximum domain wall

velocity VDW,c that is attainable before deformation sets in

is computed via VDW,c = −βuc/α. The corresponding an-

gles φ corresponding to the constant tilt angle of the DW

are φWB = − arcsin( 18 (ε −
√
ε2 + 32)) and φWB = π −

arcsin( 18 (ε
′ − √(ε′)2 + 32)) for NDW and HDW, respec-

tively. We here included the presence of a magnetic field for

generality, and in the limit without any spin-transfer torque

effect our expressions are consistent with Ref. [18]. Setting

B = 0 in order to focus on the spin-transfer torque effect, it

is seen from the above equations that the critical current in

both the NDW and HDW case is the same and increases with

E. This could be of practical importance since it offers a way

to delay Walker breakdown induced by electric current, and

increase the velocity of the domain wall transport, via a gate

voltage. In Fig. 2, we plot the maximum domain wall velocity

as a function of the applied electric field.

We now turn our attention to the question of how spin-

waves interact dynamically with both homogeneous magne-
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tization textures and domain wall structures in multiferroic

materials. As it turns out, these two situations are insepara-

ble and must be considered together. The reason for this is

that we find that spin-waves induce a torque even on a homo-
geneous magnetization due to the magnetoelectric coupling.

To illustrate this effect analytically, consider a thin-film fer-

romagnet with propagating magnons where the magnetization

lies in-plane (say, xz-plane). Writing out the effective field

explicitly, we then have:

Heff = J∂2
zm+Kmxx̂+ 2γ0∂zmz(Exx̂+ Eyŷ)

− 2γ0ẑ(Ex∂zmx + Ey∂zmy). (5)

To describe spin-wave propagation and its influence on the

magnetic order parameter, we write the total normalized mag-

netization as m = (σ0, δmy + sy, δmz + sz) where σ0 = ±1
describes the equilibrium macrospin orientation, taking into

account the possibility of ordering along both ±x̂ for the sake

of generality. Moreover, δmj and sj describe the change in

the magnetic order parameter and the spin-wave excitations,

respectively, and are assumed to be small compared to σ0

which allows for a perturbation treatment. With the above

effective field, we insert m into the LLG equation and aver-

age over one spin-wave oscillation period. Discarding higher

order terms, we are left with the following equations:

J∂2
zmz = Hkmz + γ0Ey∂zmy + γ0σ0Ex〈sz∂zsz〉,

J∂zmy = Hkmy + γ0Ey∂zmz + γ0σ0Ex〈sy∂zsz〉. (6)

We also obtain a set of equations for the spin-wave amplitudes

sj to leading order:

σ0∂tsy + α∂tsz = γJ∂2
zsz − γszHk + γγ0Ey∂zsy,

σ0∂tsz − α∂tsy = −γA∂2
zsy + γsyHk − γγ0Ey∂zsz. (7)

The underlying assumption here is that the spin waves vary on

a much shorter time scale than the magnetization texture, as is

reasonable. Consider first the case with an electric field only

along the x̂-direction of the film, such that Ey = 0. Remark-

ably, the above equations then become formally equivalent to

the equations of motion for spin-waves and subsequent change

in magnetization due to the torque from the spin-waves as oc-

curring in both topological insulators [19] and ferromagnets

with Dzyaloshinskii-Moryia interaction [21]. We may thus

immediately conclude that there is a spin-wave induced mag-
netoelectric torque acting even homogeneous magnetization

textures in multiferroic materials. This effect vanishes com-

pletely if one sets the magnetoelectric coupling γ0 to zero.

What is more, however, the present case appears to offer ad-

ditional physics compared to the aforementioned scenarios: if

we allow for an out-of-plane component for the electric field,

Ey �= 0, an extra term proportional to ∂zsj and ∂zδmj ap-

pear in Eqs. (6) and (7). This term influences the magnonic

torque and offers an additional way to control it which differs

from the influence of the in-plane electric field component.

The influence of the new term ∝ Ey complicates the analyt-

ical solution, and so we choose to proceed via a numerical

(a) E = 0
dc

(b) E = 0
dc

m 
z

m 
z

y y

Incident spin-wave 

Transmitted spin-wave

Domain wall motion

Reflected spin-wave

Suppressed transmission

Domain wall motion

FIG. 2: (Color online) Plot of spin-wave induced domain wall motion
via a transverse AC electric field Eac. The normalized parameters
used are ω = 0.75,K = 0.2,K⊥ = 0.01, Eacγ0 = 5, α = 0.01. In
(a), there is no gate voltage field Edc and we present snapshots of the
instantaneous domain wall profile at normalized times t = 0 (static
profile, purple line), t = 22, and t = 47. In (b), we set Edcγ0 = 2
and consider times t = 0, 15, 21.

route in order to also investigate the influence of magnons on

inhomogeneous spin-textures in multiferroics.

We are now in a position to determine how spin-waves in-

teract with a domain wall texture, which thus also requires

their interaction with the homogeneous part of the domains

to be taken into account according to the above results. This

is different from previous works on magnon-induced domain

wall motion in ferromagnets [20], where no such homoge-

neous torque is present. We have thus solved the full LLG

equation without any perturbative approximations where the

initial profile at t = 0 consists of a magnetic domain wall

center around z = 0. Anti-reflection boundary conditions

were implemented near the edges of the system in order to

remove spin-wave backscattering, modelled by allowing the

Gilbert damping α to rise rapidly very close to the edges. As

a consistency check against previous works, we verified that

spin-wave generation via an ac external magnetic field B(t),
applied locally in a small region of one of the domains, in-

duced motion in the opposite direction of the magnon flow.

Turning now to the present multiferroic system, we now

demonstrate that the presence of the magnetoelectric coupling

in the effective field offers a new result compared to previ-

ous work on spin-wave induced domain wall motion. Since a

gradient in the magnetization couples to the electric field, one

could envision that not only an ac magnetic field could drive

spin-wave induced domain wall motion, but that the same

could take place via an ac electric field. An important as-

pect of realizing such an effect is that the electric field would

have to be applied in a region where there was a magnetization

gradient, in effect not too deep inside the domains with fixed

magnetization direction. To determine if electric-field induced

domain wall motion via magnons is possible, we applied an ac

electric field E(t) locally near the domain wall region and the

result is shown in Fig. 2(a) (see figure caption for parameters

used). As seen, the spin-waves emanating from this proce-

dure indeed trigger domain wall motion and thus demonstrates

the possibility to achiev electric control over magnon-induced
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magnetization texture transport. Remarkably, we find that

even the direction of motion of the domain wall can be con-

trolled by applying an additional constant gate-field: whereas

the domain wall moves towards the spin-wave source without

any such dc field, it moves away from the domain wall in its

presence. This finding suggests that the magnetoelectric cou-

pling alters the effective potential felt by the spin-waves as

they propagate through the domain wall, causing it to deviate

from the reflectionless potential which is experienced by spin-

waves in conventional ferromagnets with a belonging phase

shift after passing through the wall [20]. In fact, the physical

mechanism behind this effect is suggested by closer inspec-

tion of the curves in Fig. 2. When Edc = 0, the spin-waves

pass through the domain wall and the wall moves toward the

spin-wave source due to conservation of angular momentum.

However, when Edc �= 0, it is seen that no spin-waves em-

anate on the other side of the domain wall: instead, they are

reflected and the domain wall moves away from the spin-wave

source due to a transfer of linear momentum p. In this way,

the direction of the domain wall motion is controllable by a

gate voltage effect.

We have investigated the interaction between the spin-

waves and the domain wall over a range of magnitudes for Edc

and find that it alters the amount of spin-wave reflection: Fig.

2(b) shows a scenario where the reflection is almost complete.

An analytical description of this effect has proven elusive to us

so far, due to the complicating factor of the spin-wave torque

acting even on the homogeneous domains of the magnetiza-

tion profile, although this is work in progress. We note that

linear-momentum transfer of spin-waves to domain walls in

ferromagnets have also been investigated in Ref. [26], and

been shown to be possible at special resonance frequencies of

the applied dc B field. In our treatment of the current-induced

case, the dominant effect of the applied current is the spin-

transfer torque effect described by the two last terms in Eq. (1)

and not the associated electric field along the structure which

accompanies such a current, an approximation which should

be better the higher conductivity the multiferroic is (in order to

reduce the required voltage-drop, and thus field E, that gen-

erates the current). Candidate materials for the effects pre-

dicted in this work include epitaxial iron garnet films, which

when grown on (210) and (110) gadolinium-gallium garnet

substrates generates a Neel component of the domain wall

structure due to anisotropy and hence activates the magneto-

electric coupling [14]. We also note that very recently, domain

wall motion via electric field was observed in a hybrid multi-

ferroic consisting of ferromagnetic-ferroelectric heterostruc-

ture [27].

Concluding, we have here demonstrated that domain wall

motion in multiferroic materials hosts a wealth of interest-

ing effects which are distinct from conventional ferromag-

nets in terms of its response to spin-wave and current-induced

torques, including the possibility to control the direction of

the domain wall motion via a gate voltage, and hope that these

findings may stimulate further investigations.
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Controlling superconducting spin flow with spin-flip immunity using a single
homogeneous ferromagnet
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Spin transport via electrons is typically plagued by Joule heating and short decay lengths due to spin-flip scattering. It is known that
dissipationless spin currents can arise when using conventional superconducting contacts, yet this has only been experimentally
demonstrated when using intricate magnetically inhomogeneous multilayers, or in extreme cases such as half-metals with interfacial
magnetic disorder. Moreover, it is unknown how such spin supercurrents decay in the presence of spin-flip scattering. Here, we
present a method for generating a spin supercurrent by using only a single homogeneous magnetic element. Remarkably, the spin
supercurrent generated in this way does not decay spatially, in stark contrast to normal spin currents that remain polarized only up
to the spin relaxation length. We also expose the existence of a superconductivity-mediated torque even without magnetic inhomo-
geneities, showing that the different components of the spin supercurrent polarization respond fundamentally differently to a change
in the superconducting phase difference. This establishes a mechanism for tuning dissipationless spin and charge flow separately, and
confirms the advantage that superconductors can offer in spintronics.

Current research in spintronics is attracting much attention, in
large part due to the pivotal role that the quantum spin degree
of freedom plays in an increasingly wide class of physical sys-
tems, ranging from ultracold atoms at the micro-Kelvin tempera-
ture scale to topological insulators at room-temperature. Spin trans-
port in superconductors1–3, which historically predated spin trans-
port experiments in non-superconducting materials4, have recently
re-emerged as a potential avenue for enhancing and discovering new
phenomena in spintronics. Recent results are encouraging, with ex-
periments demonstrating not only infinite magnetoresistance5, but
also strongly enhanced quasiparticle spin lifetimes6, spin relaxation
lengths7, spin Hall effects8, and thermoelectric currents9 compared
with non-superconducting structures.

Creating and manipulating spin-flow is the central feature of
superconducting spintronics10,11. It is known that in the pres-
ence of magnetically inhomogeneous structures, such as multilay-
ers or ferromagnets with intrinsic textures such as domain walls,
spin-polarized Cooper pairs can emerge12 which thus carry not
only charge but also spin supercurrents13–17. Experimentally, it
has been demonstrated18–21 that a dissipationless charge-current can
flow through strong ferromagnets over distances far exceeding the
penetration depth of conventional superconducting order into mag-
netic materials. This occurs precisely due to the creation of triplet
Cooper pairs which are spin-polarized and thus insensitive to the
pair-breaking effect of a magnetic Zeeman-field. In fact, triplet
Cooper pairs were newly experimentally observed inside a conven-
tional superconductor22,23. In very recent developments, it has been
shown that intrinsic spin-orbit coupling offers an alternative avenue
for generating the long-range (LR) triplet component24,25. In that
case the appearance of the LR component depends on the relation-
ship between the spin-orbit coupling and the exchange field, with the
LR triplet defined as having its spin aligned with the exchange field.
This is in contrast to the short-ranged (SR) triplet component which
has its spin perpendicular to the field, and is thus vulnerable to pair-
breaking in the same way as conventional singlet Cooper pairs. As
we will show below, these recent developments will have profound
consequences for the generation of spin supercurrents in spintronics.

To date, structures with magnetic inhomogeneities such as
multiple magnetic layers have been required to create long-ranged
spin-supercurrents18–21. This can be experimentally challenging
for several reasons, primarily because it is far from trivial to exert
control over the individual layers of magnetically inhomogeneous
structures, and can be complicated yet further if the magnetic layer

has intrinsic texture (such as the spiral order in Ho). Here we will
show that it is possible to create a spin-polarized supercurrent using
just one single homogeneous magnetic element, which eliminates
the experimental complexities and heralds a new era for harnessing
the dissipationless spin-flow of superconductors in spintronics. In
addition to this reduction of complexity in producing a spin super-
current, we show that this spin supercurrent does not decay even in
the presence of spin-flip processes, e.g. via magnetic impurities or
spin-orbit impurity scattering. This spin-flip immunity is fundamen-
tally different from spin currents in non-superconducting structures
which remain polarized for the duration of the spin relaxation
time. Finally, we show that the spin polarization components of
the supercurrent respond qualitatively differently to a change in the
superconducting phase difference φ. The surprising consequence of
this is that the dissipationless charge flow and spin flow can be tuned
separately. In particular, both the magnitude and the polarization
direction of the spin flow is controlled via the superconducting
phase, offering an entirely new way to control spin transport.

Spin supercurrent with a single homogeneous ferromagnet
Consider the thin-film heterostructure depicted in Fig. 1, which
shows a Josephson junction of conventional s-wave superconductive
sources with normal and ferromagnetic elements typically utilized in
proximity effect experiments. We will now show that a long-ranged
spin supercurrent is sustained in the junction even when only a sin-
gle homogeneous ferromagnet is used. The key to achieving this is
to deposit a very thin layer of a heavy normal metal such as gold or
platinum at the superconducting interfaces. Recent experiments in
the context of magnetization switching have shown that such inter-
faces will produce strong Rashba spin-orbit coupling due to the high
atomic number of the metal and the interfacially broken inversion
symmetry26. The magnetic element consists of a ferromagnetic alloy
which has both an in- and out-of-plane component, achievable by us-
ing e.g. PdNi or CuNi, which can both feature out-of-plane magne-
tocrystalline anisotropy in thin-films27,28. It is clear, therefore, that no
magnetic inhomogeneities are required, and the ferromagnet does not
need to feature any intrinsic spin-orbit coupling. This is in contrast
to previous works that have considered long-ranged currents in either
magnetically textured junctions (see e.g. Refs. 13,29,30) or intrinsi-
cally spin-orbit coupled ferromagnets24,31,32, where spin is not a con-
served quantity, with several magnetic layers25. In our setup, only a
single homogeneous ferromagnet is required because the heavy nor-
mal metals supply the spin-orbit coupling, significantly reducing the
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FIG. 1: Proposed experimental setup and interference mechanism. Schematic illustration of the thin-film superconducting junction within
which a spin supercurrent is generated, which does not decay even in the presence of spin-flip scattering. There are two experimentally
feasible ways to construct the thin-film such that the spin supercurrent appears. In the case where only Rashba spin-orbit coupling is present
in the heavy-metal layers, the homogeneous ferromagnet is chosen to have out-of-plane magnetocrystalline anisotropy, such as the commonly
available PdNi or CuNi27,28. In combination with the shape-anisotropy of the thin-film geometry, the exchange field within the ferromagnet
will then have both an in-plane and out-of-plane component. If both Rashba and Dresselhaus spin-orbit coupling is present in the normal
layers, e.g. by using a two-dimensional electron gas such as GaAs, the ferromagnet only needs an in-plane component. In both cases, this
induces an interference effect between the long-ranged and short-ranged Cooper pairs, which results in a spin mixing term and an exchange
torque, which acts on the magnetization and is present even in the absence of a charge current.

previously required level of junction complexity in order to host a
spin supercurrent. Furthermore, as an alternative experimental sce-
nario, it is possible to use a ferromagnet with a purely in-plane ex-
change field by employing normal layers that contain both Rashba
and Dresselhaus coupling. Examples include crystals that lack an
inversion structure and two-dimensional electron gases such as gal-
lium arsenide. In this case, the singlet-triplet conversion is greatly
enhanced33,34, resulting in stronger supercurrents (see Fig. 2).

The spin-supercurrent IS may be computed via the quasiclassical
Green function ǧ according to the formula14:

IS = IS0

∫ ∞

−∞
dεTr{ρ̂3τ̂ (ǧ∂z ǧ)

K}. (1)

Here, we have defined τ̂ = diag(m · σ,m · σ∗), where m is the
desired polarization-direction of the spin supercurrent and σ is the
vector of Pauli matrices, ε denotes the quasiparticle energy and K the
Keldysh component of the Green function. IS0 = N0�DAΔ/8LF ,
where N0 is the normal-state density of states at the Fermi level, D
the diffusion constant and A the interfacial contact area. The integral
in Eq. (1) is dimensionless since the energies have been normalized
to the bulk superconducting gap Δ and lengths normalized to the
ferromagnet length LF . The matrix ρ̂3 = diag(1, 1,−1,−1). To
find the Keldysh component we use the equilibrium relation

(ǧ∂z ǧ)
K = [ĝR∂z ĝ

R + (ρ̂3ĝ
R∂z ĝ

Rρ̂3)
†] tanh(βε/2), (2)

where R and A denote the retarded and advanced components of ǧ
respectively and β = 1/kBT is the inverse temperature with kB
being the Boltzmann constant. We find ĝR by solving the Usadel
equation for the system shown in Fig. 1 both analytically in the weak
proximity effect and numerically in the full proximity effect regime

using the NOTUR supercomputer cluster (Kongull); see Methods for
further details. We can then compute the spin supercurrent from Eq.
(1), and the charge supercurrent IQ can be obtained from the same
formula by removing τ̂ from the trace and taking IS0 → 2IS0e/� =
IQ0 , where e is the electronic charge.

The critical charge supercurrent IC
Q, obtained at a phase-

difference41 φ = π/2, is shown in Fig. 2a, demonstrating that it
becomes long-ranged even if there is no magnetic inhomogeneity
and only a single ferromagnet is used. The physical mechanism be-
hind this effect is that the spin-orbit coupling present in the thin,
heavy normal metal layers rotates the triplet Cooper pairs due to an
anisotropic spin relaxation25. The spin-orbit coupling is described by
α and β, being respectively the Rashba and Dresselhaus coefficients.
These are normalised to the superconducting gap Δ and length of
normal metal LN in such a way that with a niobium superconductor
of gap Δ ≈ 3 meV, α = 0.5/LN corresponds to a Rashba param-
eter of the order 3 × 10−12 eV m. It is clear from Fig. 2a that the
critical current decays rapidly in the absence of spin-orbit coupling
(α = β = 0), and that this decay is strongly suppressed by the in-
clusion of spin-orbit coupling (note the log scale).

To model the ferromagnet, we assumed an exchange field h =
h(0, cos θ, sin θ), with a strength h/Δ = 50 and a canting of
θ = 0.3π between the in- and out-of-plane components. The super-
current exists for any orientation of the exchange field θ ∈ (0, π/2)
and we will later discuss the precise dependence on the canting an-
gle θ. We choose G̃MR = 0.2 for the normalized interfacial mag-
netoresistance term and G̃θ = 1 for the interfacial scattering phase
shift on both sides35. In this case, and with a typical superconduct-
ing coherence length of ξS = 25 nm, the LR component dominates
for ferromagnets of length LF greater than ∼ 10 nm, causing the
critical current IC

Q to decay slowly despite the presence of an ex-
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FIG. 2: Charge and spin supercurrent vs. length. The magnitude of the critical charge current IC
Q (a) and the components of the critical

spin current IC
S (b) in the ferromagnet as a function of the length of the layer LF is shown on a logarithmic scale. In the presence of spin-

orbit coupling, the current becomes long-ranged as it makes a transition from an exponential decay with superimposed oscillations to a much
slower decay with respect to LF . For long ferromagnetic junctions, it is clear that the charge current is almost entirely due to the long-range
component. Including both Rashba and Dresselhaus coupling results in a substantial enhancement of the critical charge currents compared with
pure Rashba coupling. We assume bulk superconductivity in the superconductors, an exchange field h = 50Δ(0, cos θ, sin θ) with θ = 0.3π,
and a normal metal layer length of LN/ξS = 0.08. The spin-orbit coupling parameters are normalised to the superconducting gap and length
of normal metal in such a way that with a niobium superconductor with gap Δ ≈ 3 meV and coherence length ξS = 25 nm, α = 0.5/LN

corresponds to Rashba coupling of the order 3× 10−12 eV m.

change field h � Δ, remaining orders of magnitude larger than the
SR component for increasingly long ferromagnets. In this scheme,
the associated current densities for a sample length LF ∼ 10 nm
will be of the order |jC

Q| ∼ 103 A/cm2 without spin-orbit coupling,
and 1-2 orders higher with its inclusion (see Methods for details).
This corresponds well with charge current densities measured in the
experiment of Ref. 36, which also used a CuNi alloy as the ferromag-
net. For stronger exchange fields, the LR component will dominate
for even shorter junctions, but the overall current magnitude will be
suppressed. The supercurrent carried by the LR Cooper pairs can be
significantly enhanced by including Dresselhaus coupling, as can be
seen from the dotted line in Fig. 2a, in which case the achievable crit-
ical charge current is much greater than with Rashba coupling alone.

We now turn to the spin supercurrent. Without spin-orbit coupling,
no spin-current flows in the junction since there exists no mechanism
for converting from the SR to the LR component. In order to demon-
strate the physical origin of the dissipationless spin current and its
different polarization components, it is useful to first decompose the
triplet correlations in the system into their long-ranged and short-
ranged contribution: f = fLR + f SR. To take an explicit example,
consider the case with pure Rashba coupling and an exchange field
h = (0, hy, hz). In that case, we may write the general expressions:

fLR = (fx,−fhz/h, fhy/h),

f SR = (0, f ′hy, f
′hz)/h, (3)

so that fLR ·h = 0 when f SR ‖ h. Now, the spin expectation vector
of a triplet Cooper pair is obtained by 〈S〉 = if × f∗. Inserting
the long-ranged state fLR, one obtains 〈S〉LR = 2Im{f∗fx}(hyŷ +
hzẑ)/h. This means that the spin of the LR Cooper pairs points
along the exchange field, as expected. Similarly, one finds that
〈S〉SR = 0 for the SR Cooper pairs. However, there exists an
additional contribution. The spin expectation vector of the total

proximity-induced superconducting state may be written

〈S〉tot = i(fLR + f SR)× (f∗
LR + f∗

SR)

= 〈S〉LR + 〈S〉SR + (ifLR × f∗
SR + h.c.). (4)

It follows that there exists a novel interference term 〈S〉int = ifLR ×
f∗

SR+h.c. between the LR and SR Cooper pairs, which upon insertion
of fLR and f SR is found to contain two terms, 〈S〉int = 〈S〉ex +
〈S〉mix, where

〈S〉ex = 2Im{(f ′)∗f}x̂, (5)

〈S〉mix = 2Im{(f ′)∗fx}(ŷhz − ẑhy)/h. (6)

The exchange term 〈S〉ex of Eq. (5) is independent of the direction of
the field h. In contrast, the second term changes its spin-polarization
direction as h is altered. We will explain the physical meaning
of each of these terms in the section below. Before doing so, we
briefly discuss how the spin-polarization of the critical current
depends on the length of the ferromagnet. This is shown for the
critical spin supercurrent in Fig. 2b, displaying both the component
parallel with the exchange field IC

S,‖ ‖ h and the magnitude of the

perpendicular components, |IC
S,⊥| = (I2

S,ex + I2
S,mix)

1/2. It is clear
that the polarization of the spin supercurrent along the magnetization
direction has a qualitatively different behavior with the length of
the system compared with the polarization perpendicular to the
exchange field, which oscillates within its typical exponential decay.
The reason for this is that the perpendicular component appears due
to the interference between the LR and SR Cooper pairs, and thus is
limited by the penetration depth of the short-ranged superconducting
correlations. Note that there is a non-monotonic relationship
between the maximal supercurrents and the magnitude of the
spin-orbit coupling, in the same way as there exists a non-monotonic
relation between the density of states and spin-orbit coupling in a
ferromagnet33.
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Controlling spin polarization with the superconducting phase
By analyzing the dependence of the spin supercurrent on the phase
difference between the superconductors, it becomes clear that there
is another fundamental difference between the parallel and per-
pendicular components. We will prove that (i) there exists a
superconductivity-mediated exchange interaction in the system, even
in the absence of any charge supercurrent and magnetic inhomo-
geneities, which acts with a torque on the magnetic order parameter
and that (ii) both the magnitude and polarization direction of the spin
supercurrent can be tuned via the superconducting phase difference.

The phase-dependence of the component of the spin supercur-
rent parallel to the exchange field, IS,‖, is plotted in Fig. 3a, and
shows the expected first-order sinusoidal dependence on the phase
difference φ. This is physically reasonable since this component of
the spin supercurrent is carried exclusively by the LR Cooper pairs
which are polarized along the exchange field. When considering
the perpendicular components of the spin supercurrent, however, the
analysis in the preceding section showed that there exists two con-
tributions IS,ex and IS,mix that originate from a novel interference
between the LR and SR Cooper pairs. In order to unveil the physi-
cal meaning of these terms, we plot the variation of these with φ in
Figs. 3b and c. It is seen that these polarization components exhibit
a fundamentally different response to the superconducting phase dif-
ference: IS,ex is invariant under time-reversal φ → (−φ) and finite
even in the absence of any phase difference φ = 0 where no net
charge current flows, whereas IS,mix is antisymmetric under time-
reversal. In effect, there exists a pure spin supercurrent flow without
any charge current contamination in the system, even in the absence
of any magnetic inhomogeneities or half-metallicity.

Based on these observations, we offer the following interpretation
of our findings. The polarization component of the spin supercur-
rent ‖ h is understood simply as the polarization of the LR Cooper
pairs that carry the long-ranged charge current and thus obeys the
same type of current-phase relation as the charge current itself, van-
ishing both at φ = 0 and φ = π. The interference between the
SR and LR Cooper pairs now provides the spin supercurrent compo-
nents with distinct physical origins. The term IS,mix represents the
spin polarization that arises due to interference between LR and SR
pairs carrying charge current, and is thus qualitatively similar to the
charge current itself, with a sinφ profile. In contrast, the term IS,ex

represents something more exotic: it is a superconductivity-induced

exchange torque acting on the magnetization, which is present even
in the absence of any charge current. From its numerical evaluation,
we find that it may be written as |IS,ex| = J1 + J2 cosφ, with the
constants {J1,J2} depending on system-specific details such as the
strength of the exchange field h, the length of the ferromagnet LF

and the strength of spin-orbit coupling α. This means that the ex-
change spin supercurrent is invariant under φ → (−φ) and that it
has a term that is independent of the superconducting phase differ-
ence. The physical origin of this term is the following. Due to the
proximity effect, both LR and SR superconducting correlations are
induced in the ferromagnet in the presence of the inversion-symmetry
breaking normal metal layers. The interference between these corre-
lations create, according to Eq. (5), a net spin moment. Since this
moment is misaligned with h, it acts with a torque on the magnetic
order parameter h, attempting to rotate it so that the net torque van-
ishes. The presence of magnetic anisotropy in the system could be
expected to attempt to counteract this torque. Importantly, this effect
is present even without any net charge flow (φ = 0) and exists with
just a single, homogeneous ferromagnet. This is evident by compar-
ing Figs. 3b and c, where the different polarization components of
the spin supercurrent are plotted against the superconducting phase
difference. This result shows that the magnitude and polarization di-
rection of a dissipationless spin current can both be tuned exclusively
via the superconducting phase difference, which is a surprising find-
ing that offers a new way to control spin flow. The superconducting
phase difference may itself be set in the conventional way via current-
bias, or by applying an external magnetic flux in a loop-geometry37.
We underline that this superconductivity-mediated exchange interac-
tion is very different from exchange interactions in e.g. conventional
spin-valves with two ferromagnets, where a deviation from the paral-
lel or antiparallel configuration produces a net equilibrium spin cur-
rent that tries to align the magnetizations via a spin-torque38–40. In
contrast, here such a torque exists even with a single, homogeneous
ferromagnet due to a unique interference effect between long-ranged
and short-ranged triplet Cooper pairs.

It is clear from Fig. 3 that the maximal spin-current polarized
along the exchange field is achieved around φ = π/2, corresponding
well with the definition of the critical spin current41, taken to be the
spin polarization of the critical charge current. These simulations
were run for a canting angle of θ = 0.3π, and since this angle is
in large part determined by material and geometry constraints it is



5

0.105

0.1

0.095

1.8
x 10

1.6

1.4

-2

x 10-3 x 10-4
3
2

1
0

0 0/4 /4/2 /2
/2

0.16
0.20
0.24
0.32
0.40
0.60
0.80
1.00
1.20

LF/ S

0/20 0 /4 /2 0

4.5
4

3.5
3

0.04

0.08

0.12

0

1

2

3

4

0
1
2
3
4
5

0
1
2
3
4
5
6

0

2

4

6

x 10

0

1

2

3

0

0.5

1

1.5
|IS,ex|C |IS,mix|C

2IS0

/4 /20 0 /4 /4/2 /20

|IQ |C

2IQ

|IS,|||C

2IS

  ,  (#/LN) 0,0 0.5,0 0.5,0.5

10

/4

, (#/L// N)N 0,0 0.5,0 0.5,0.5

a

0.5,0.5

0.5,0b

c |IS,|||C |IS,ex|C |IS,mix|C

 ,
(#/LN) 8

x 10 2 x 10 3

x 10
4

4 4 x 10 4

x 10 4

2

6 7

1

10 2

10 3

10 4

10 5

10 6

0.5,0

0

2IS0 2IS0

2IS0

2IS0

0

FIG. 4: Charge- and spin-current vs. canting angle. The effect of the canting angle θ between the in- and out-of-plane components of
the exchange field h = 50Δ(0, cos θ, sin θ) is shown for the charge current in a, and for the spin-current components in b and c. Without
spin-orbit coupling, the charge current does not depend on the magnetization orientation, and there is zero spin-current. With Rashba spin-
orbit coupling we see a significant enhancement in the charge current, with a canting profile stabilising towards a sinusoidal maximum at
θ = π/4 for increasingly large ferromagnets as the long-ranged triplet component become dominant. The parallel component of the spin-
current monotonically decreases with ferromagnet length, while the perpendicular components are sensitive to the 0-π transition in the ground
state. The inclusion of Dresselhaus spin-orbit coupling yields a dramatic increase in both charge- and spin-current, and it is evident that purely
in-plane magnetization (θ = 0) is sufficient to generate the long-range component.

instructive to consider the effect of the canting angle on the results.
This is shown in Fig. 4, and demonstrates that the long-ranged
component of the charge current favours a canting angle of θ = π/4,
visible at longer sample lengths. It is also clear that the inclusion
of both Rashba and Dresselhaus spin-orbit coupling allows the
long-ranged component to be generated with a purely in-plane
exchange field24,25.

Spin-flip immunity
Upon analysing the spin supercurrent in the above structure, one dis-
covers an additional feature which pertains uniquely to currents gen-
erated by superconductors. Unlike conventional spin-polarized cur-
rents, we find that a spin supercurrent does not decay due to either
spin-orbit impurity scattering or spin-flip scattering caused by mag-
netic impurities. This result has immediate implications for the usage
of superconductors in spintronics, since it means that spin-flow cre-
ated in this way is preserved even in regions with strong spin-flip
scattering. We emphasize that this stands in complete contrast to
conventional spin-currents, which have a decay length dictated by
the amount of spin-flip scattering present.

Here we provide a general proof that the spin supercurrent is con-

served both in normal metal and ferromagnetic systems, even in the
presence of spin-orbit impurity scattering and isotropic spin-flip scat-
tering from magnetic impurities. Using the relation between the
Keldysh, retarded and advanced components of the Green function
which holds at equilibrium (Eq. (2)), the Usadel equation may be
written

D∂zTr{ρ̂3τ̂j ĝR∂z ĝ
R}+ iTr{ρ̂3τ̂j [Σ̂, ĝR]} = 0, (7)

where we have defined Σ̂ = ερ̂3 + M̂ − σ̂so − σ̂sf, and τ̂j denotes

the polarization-direction of interest. M̂ = diag(h · σ, (h · σ)∗),
where h is the magnetization exchange field, whereas the spin-orbit
and magnetic impurity spin-flip self-energies have been included via
the terms σ̂so and σ̂sf (see Methods for details). For any matrix
X̂ one has Tr{X̂†} = (Tr{X̂})∗, from which it follows that if

Tr{ρ̂3τ̂j [Σ̂, ĝR]} = 0, then the spin supercurrent will be conserved.
By inserting the most general expression for the quasiclassical re-
tarded Green function ĝR [given in Eq. (10)], direct evaluation shows
that the above trace is always zero in the absence of an exchange field
despite the presence of spin-flip scattering. In the presence of an ex-
change field, the same holds for the spin supercurrent IS,‖ polarized
along the magnetization and remains true even if the exchange field
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is spatially inhomogeneous. It is remarkable that a spin supercur-
rent, controllable via the superconducting phase difference, has no
decay even if both spin-orbit and magnetic impurities are present in
the sample.

In conclusion, we have shown three major results: (i) a long-
ranged spin supercurrent can be created without any magnetic
inhomogeneities, (ii) the spin polarization components of the
current can be tuned separately via the superconducting phase
difference, and (iii) spin supercurrents created in this way do not
decay even in the presence of spin-flip scattering, i.e. they display
spin-flip immunity. We have proposed that this may be observed
experimentally in a Josephson junction consisting of conventional
s-wave superconductors (e.g. Al or Nb) with very thin layers of
a heavy normal metal (e.g. Pt or Au) and a single homogeneous
ferromagnet with magnetocrystalline out-of-plane anisotropy (e.g.
PdNi or CuNi). We would like to note that no “exotic” materials,
such as unconventional superconductors or noncentrosymmetric
ferromagnets, are required – the effects predicted in this work
appear by combining conventional superconductors and metals,
which should make experimental verification of our results readily
achievable. Our results confirm the significant and immediate
advantage that superconductors offer spintronics.

Methods
We solved the Riccati parameterised Usadel equation with spin-orbit
coupling34 iteratively between the layers, using the NOTUR super-
computer facilities (Kongull). In the normal metal, spin-orbit cou-
pling is included in the Usadel equation Eq. (7) by replacing the
derivative with its covariant equivalent. We describe the normal-
metal-ferromagnet interfaces via the spin-dependent boundary con-
ditions

2Ljζj ĝj∂z ĝj = [ĝj , ĝk] + 2Ljζj ĝj i
[
Âz, ĝj

]

+ σjG̃MR

[
ĝj ,

{
M̂, ĝk

}]
+ σj iG̃θ

[
ĝj , M̂

]
,

(8)

where j, k = {left, right}, j 
= k denotes the two sides of the inter-
face and the orientation determines the sign σright = 1, σleft = −1.
The thin-film layering direction is taken to be in the z-direction,
and G̃MR and G̃θ denote the interfacial magnetoresistance and scat-
tering phase shifts respectively. We chose ζj = 3 for the trans-
parency parameter of all interfaces. The spin-orbit coupling field
Â = diag(A,−A∗), and we have considered the case A = (βσx−
ασy, ασx−βσy, 0), where α, β are the Rashba and Dresselhaus co-
efficients respectively. The extrinsic spin-orbit scattering and spin-
flip terms are given by

σ̂so = − 1

8τso

∑
i

α̂iρ̂3ĝ
Rρ̂3α̂i,

σ̂sf = − 1

8τsf

∑
i

α̂iĝ
Rα̂iSi, (9)

where τso and τsf are the mean scattering times, Si is the spin ex-
pectation value and we have defined the matrix α̂i = diag(σi, σ

T
i ).

The general form of the retarded Green function is

ĝR =

(
N(I + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(I + γ̃γ)

)
, (10)

with normalization matrices N = (I− γγ̃)−1 and Ñ = (I− γ̃γ)−1

and identity matrix I . The ·̃ operation denotes complex conjugation
and ε→ (−ε). Regarding the choice of junction parameter, one may
consider a reasonable approximation of the normal-state density of
states to be of the order N0 ∼ 1022/(eV cm3), and the diffusion
constant of CuNi to be36 D ∼ 5 cm2/s.
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