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The genes are the master programmers, and they are programming for their lives.
— Richard Dawkins, The Selfish Gene (1976)





Abstract
Random Boolean Networks are a generalisation of binary Cellular Automata,
without a fixed topology. This thesis presents an RBN implementation using
an instruction-based approach, and compares this to a traditional table-based
approach. The implementations are used to evolve RBNs with maximum
attractor lengths, in order to investigate the evolvability and the usefulness
of an instruction-based implementation. The results show limited usefulness
for K = 2, but the instruction-based implementation performs significantly
better for K = 3. The instruction-based implementation is slower than the
table-based implementation by a factor of ∼ 10, but areas of improvement
have been identified and discussed.

Sammendrag
Tilfeldige Boolske Nettverk er en generalisering av binære Cellulære Auto-
mater, uten en fast topologi. Denne oppgaven presenterer en TBN-implementasjon
med en instruksjonsbasert tilnærming, og sammenlikner denne med en
tradisjonell tabellbasert tilnærming. Implementasjonene brukes til å evolvere
TBN-er med maksimale attraktorlengder, for å undersøke evolverbarheten
og nytteverdien av en instruksjonsbasert implementasjon. Resultatene viser
begrenset nytteverdi for K = 2, men den instruksjonsbaserte implementasjo-
nen yter vesentlig bedre for K = 3. Den instruksjonsbasete implementasjo-
nen er tregere enn den tabellbaserte implementasjonen med en faktor på
∼ 10, men forbedringsområder blir identifisert og diskutert.
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CHAPTER 1

Introduction

The natural world, with all its fascinating complexities, has, to the best of our knowl-
edge, made itself happen, through simple processes on simple building blocks. Evo-
lution is elegant in its simplicity — it has no end goal, no overarching plan, and
still it has resulted in creatures such as ourselves. To result in such complexity, these
methods must be very powerful in their simplicity, and evolutionary computation
seeks to harness this power.

Dawkins, in his book “The Blind Watchmaker”, counts computers as honorary biolog-
ical objects, because they derive their complexity and design from living objects[1,
pp. 1-2]. With this in mind, applying biological principles to electronic computing is
not quite so far-fetched.

A well-known example is the NASA evolved antenna project[2]. While traditionally
designed antennae typically require a fair amount of work and specialised knowledge,
evolved antennae do not. The design process is automated once the requirements
and design constraints have been set. Typically, evolved antennae have asymmetrical
designs that nonetheless conform very well to specification. This is particularly useful
for projects that have unusual requirements, where the design would require a lot
of specialised knowledge and take up a lot of time. Once the requirements have
been been described in sufficient detail, a fitness function to evaluate the candidates
according to the requirements must be made, and the simulation is run.

Random Boolean Networks were originally introduced as a method of modelling
genetic regulatory networks [3], but have also found use as models in a wide range of
areas, such as mathematics, music, sociology and evolutionary theory[4]. Improving
the methods for finding suitable RBNs may provide more and better solutions to
these problems.

1.1 Motivation

The goal of this thesis is to compare an instruction-based Random Boolean Net-
work (RBN) implementation to a traditional table-based implementation in order
to investigate whether the instruction-based implementation improves timing and
performance.

1
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RBN evaluation is costly if the entire state space for each network is evaluated.
Applying an evolutionary algorithm to finding a network that behaves in a certain

way involves a large search space,
(

22K × NK
)N

, where K is the number of input nodes

each node takes, and N is the number of nodes in a network. With instruction-based
RBN, the hope is to reduce the 22K

term without compromising performance. This
term represents the number of possible Boolean operators, and even a small reduction
would reduce the search space considerably.

Instruction-based methods have already been successfully applied to Cellular Au-
tomata [5], and the hope is that this may prove useful for RBN. In this thesis, this
principle is applied to RBN construction and evolution, with the goal of studying
whether this is an useful improvement over the traditional table-based implementa-
tion. The main difference between the two cases is that each node in an RBN uses a
randomly chosen Boolean function, and that the cell states are binary.

1.2 Terminology

1.2.1 Cellular Automata and Random Boolean Networks

State space is the finite set of all possible states an RBN or CA may have. The state
space of a CA is kn, where k is the number of cell states, and n is the size of the lattice.
The state space of an RBN consists of 2N states, where N is the number of nodes.

The neighbourhood of a cell in a CA consists of the set of cells whose states determine
its new state. Neighbourhoods are within a certain distance, or radius r, from the
central cell, and are identical in size for all cells in a CA. The set of input nodes in an
RBN serves the same purpose.

The transition rule of a cellular automaton is analogous to the Boolean operator of a
node in an RBN. It describes the new state of the cell or node as determined by the
states of the neighbourhood or the input nodes.

An attractor is reached when the network reaches a stable state, and no new states
are visited. A point attractor is a state that leads to itself, while a cycle attractor is a
repeating set of states. The set of all states leading to an attractor is called an attractor
basin. For a deterministic RBN, each state is in exactly one attractor basin.

A Garden of Eden state is a state that is not reachable by another state in the state
space.

1.2.2 Evolution and Evolutionary Algorithms

The set of genetic information belonging to an organism is called the genotype. The
genotype contains sufficient information to create the individual organism, and the
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next generation inherites the genotype of the previous generation. A genome is a
specific instance of a genotype.

The phenotype is the observable characteristics of an individual, and is a manifestation
of its genotype. Selection mechanisms in the natural world and in EAs operate on
the phenotype of an organism.

A mutation is a small random change in the genotype. It may or may not affect the
phenotype of an organism.

Fitness is a measure of how well an individual fits to the given specification. An
individual with a high fitness value is more likely to reproduce.



CHAPTER 2

Background

2.1 Random Boolean Networks

Random Boolean Networks (RBN), also known as N-K models or Kauffman networks,
were first proposed by Stuart Kauffman in 1969 as a tool for modelling genetic
regulatory networks[3]. An RBN is a randomly selected network of N nodes, with K
inputs from other nodes each (including the node itself). Each node has two states,
zero or one. New states at time t+ 1 are calculated with Boolean operator for that
node and the state of the K input nodes at time t. Thus, RBNs can be seen as a
generalisation of cellular automata (CA) [4]. As well as examining networks with
K = 2 and K = 3, as we will in this paper, Kauffman briefly discussed one connected
nets (RBNs with K = 1), and totally connected nets (K = N, also known as random
maps) both of which he considered unrealistic and biologically impossible.

There are several types of Random Boolean Networks. Most of the literature studying
RBNs deals with homogeneous RBNs, where K is constant for the network, all nodes
having the same number of inputs. Gershenson [6] classified various types of homoge-
neous RBNs. First, there are Classical Random Boolean Networks (CRBNs), which are
those described by Kauffman, where each node in the network updates synchronously
with all the other nodes. Gershenson mentions Asynchronous Random Boolean Net-
works (ARBN), where the updating of each node is random and asynchronous. These
networks are non-deterministic. Gershenson goes on to describe Deterministic ARBNs
(DARBN), an adaptation where node updates are not random, but still asynchronous,
Deterministic Generalised ARBNs, where all nodes that fulfil their updating condition
are updated synchronously, and then, for completeness Generalised ARBNs, where
these nodes are picked randomly instead of having a deterministic update condition.

Deterministic Random Boolean Networks have finite state spaces, and being deter-
ministic, will eventually reach a state that will be repeated. These are called attractors.
There are two types of attractors, point attractors, where a state leads to itself in
the next time step, and cyclic attractors, where a number of states are repeated in
sequence. Should a network be left to run once it has entered a cyclic attractor, it
will continue this cycle indefinitely. States that lead to a given attractor can be said
to be in that attractor basin.

4



2.2 Cellular Automata 5

RBNs may be used to model biological processes, even when these biological processes
are not fully understood, providing a mechanistic model of the “black box”[7]. Huang
[8] suggested that Boolean genetic networks may provide good models of “gene
function” and improve understanding on the origins of neoplasia (tumour growth).

2.2 Cellular Automata

The main difference between Cellular Automata (CA) and Random Boolean Networks
is that CAs have a fixed topology, and may have more than two cell states. Typically,
the CAs studied are also homogeneous, meaning that all cells have the same transition
rule. The transition rule is analogous to the Boolean operator in RBNs, and describes
the behaviour of the cell in relation to the states of the cell itself, and the cells in its
neighbourhood. When describing CAs, k is typically used to describe the number of
states a cell may have, and N describes the neighbourhood. This may be confusing
when discussing both RBNs and CAs.

The topology of a CA is determined by its dimension. In a 1D CA, each cell has
neighbours only in one direction, i.e. to its left and right. For a 2D CA, the cell
has neighbours in two directions. In this case, the neighbourhood may include
only the direct neighbours of a cell (a von Neumann neighbourhood), or the direct
neighbours as well as the diagonal neighbours (a Moore neighbourhood)- For all
types, a neighbourhood radius r, determines the number of cells included in the
neighbourhood as an expression of distance from the central cell.

The simplest type of cellular automata are called the elementary cellular automata, as
described by Wolfram in 1983 [9]. These are one-dimensional, binary, homogeneous,
and have the smallest type of neighbourhood, a nearest neighbourhood of N = 3
(the cell itself, and the cells adjacent to it). There are 256 such elementary cellular
automata, each with a different rule. These rules are numbered from 0 to 255,
interpreting the transition rule result table (in descending order) as a kN-digit binary
number, expressed in decimal. This is known as a Wolfram code[10]. For example,
the table for Rule 110 can be seen in Table 2.1, 011011102 = 11010. As a point of
interest, Rule 110 is notable for being Turing complete.[11]

111 110 101 100 011 010 001 000
0 1 1 0 1 1 1 0

Table 2.1: Transition table for Rule 110

A well-known example of a CA is known as Conway’s Game of Life, or simply, “Life”1.
“Life” is a two-dimensional (2D) binary CA with a set of rules that define whether a
cell is “dead” or “alive”, in order to simulate life[10]. “Life” can produce patterns that
self-replicate[13], and is Turing-complete[14].

1Early on, “Life” was considered an interesting mathematical solitaire game, and the suggested
playing method used a chequerboard or Go board and flat chips of two colours[12]
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2.3 Instruction-Based and Table-Based Development

The traditional way of implementing RBNs and CAs uses tables to specify the new
node or cell state for all possible combinations of neighbourhood or input node states.
By instead using an instruction-based method, as introduced by Bidlo and Vašíček[5]
for CAs, the hope is to produce better results in a shorter period of time.

By using evolutionary algorithms, the search space for all combinations of CAs and
RBNs with given specifications becomes a significant hurdle. Particularly large for non-
binary CAs, the transition function needs to be defined for kN different combinations
for k cell states with a neighbourhood of N. For the CA, there are kkN

possible transition
functions. It is clear that the search space becomes very large, and fast. Bidlo and
Vašíček showed that, particularly for non-binary complex CAs, an instruction-based
implementation allowed them to “design complex cellular automata with higher
success rate than the conventional table-based method”[5].

An instruction-based approach defines a set of instructions that are combined in
order to represent the transition function, rather than doing so by generating the
entire transition table for each function. It allows for a shorter genotype, since the
transition table does not need to be encoded directly, and the search space is reduced
considerably. There is still the problem of finding the right number of instructions
to describe the best transition function, but using evolutionary growth has been
proposed as a solution. [15]

2.4 Evolution and Evolutionary Algorithms

Evolutionary algorithms (EAs) are algorithms that are inspired by the principle of
evolution in the natural world. These are usually based on the key points of natural
evolution: Maintaining the population, creating diversity, having a selection mecha-
nism, and implementing genetic inheritance [10]. EAs thus attempt to exploit the
mechanism that caused the speciation of life on Earth.

To facilitate progressive development, an EA must implement a mechanism of change
to create diversity. Normally, this means implementing some form of mutation. A
mutation is a change in the genome, and it occurs randomly. Mutation is one of the
mechanisms of change in the natural world, and increases genetic diversity. However,
not all mutations are viable, nor are they necessarily useful, and mutation alone does
not account for progressive change.

The mutations in the genome are essentially random, but their survival to the next
generation is not. For this reason, EAs must implement a method to select a subset
of the population for reproduction or propagation. This is done by implementing a
fitness function, to select the members of the population that fit the requirements
and purpose best. The fitness function evaluates the individual phenotype of each
member of the population and compares it to the specified ideal, and this value is
then used by the reproduction or propagation
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The fact that the fitness function evaluates the phenotype rather than the genotype of
an individual means that it does not need to know exactly how a successful individual
is put together, only how it behaves. This is why evolutionary methods can be used to
find solutions even for complex requirements, as the methods only evaluate a “black
box”, rather than the inner workings. It then finds the inner workings that fit the
black box model best.

2.4.1 Natural and Artificial Evolution

Natural selection as a selection method favours the “fittest” members of a population,
but this fitness evaluation can not be said to be static. Rather, it is a product of
the environment around the individual, as this determines whether the individual
survives long enough to reproduce, and how frequently it does so.

Natural selection is neither tractable nor useful for evolutionary computation in
electronic media, and is much too complex to implement. An adaptive approximation
may be sought for purposes of biological study, but would be too resource-intensive
for general computational purposes.

Evolution in the natural world also has other mechanisms of change besides natural
selection and mutation; migration and genetic drift[16]. The closest example of the
implementation of migration is in so-called island models, where diverse populations
evolve in parallel, rather than in a single group [10]. Two groups of the same species
on two different islands with limited contact will eventually develop differently, as in
the famous example of the Galápagos finches2. Genetic drift is a random phenomenon
that does not lead to increased adaptation, and is of limited usefulness as it may
eliminate the individuals that are close to the desired end result.

Thus, a common solution is to implement a static fitness function as a selection
method. Unlike evolution through natural selection, this means that there is a fixed
end goal. This approach to evolutionary methods may less powerful than natural
evolution, as it limits us to what programmers can conceive as an ideal end result.
However, this does not mean that artificial evolutionary methods are not very useful.
Just because the goal must be formulated by a human, does not mean that the ideal
solution needs to conform to human constraints and pattern ideas.

2.4.2 Reproduction

There are several ways of maintaining a population for reproduction and evolution.
The EA must have a number of individual genomes to select from, and a sufficiently

2Also known as Darwin’s finches, which he wrote about in On the Origin of Species, in the chapter
on geographical distribution.
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large population is necessary to achieve this. A starting population may be randomly
generated, but the next generation must necessarily depend on the previous gen-
eration in order for evolution to take place. There are several ways of doing this.
A simple way is to replace the old generation entirely (generational replacement),
with mutated and/or crossed genomes from the old generation, making the new
generation inherit the abilities of the previous generation[10]. Another way is to
preserve a selected number of the individuals with the highest fitness value and
directly transfer them to the newest generation. This is called elitism, and may be
useful where good individuals are rare and might be lost to the next generation.

A new individual in the new generation may be generated through mutating the
genotypes of single parents, or through combining the genotypes of multiple parents.
Typically, two parents are used, but more may increase performance [17]. The parents
are then combined to create offspring. This is known as recombination or crossover,
and consists of swapping chunks of the genome between the parents to create a child.
A one-point crossover selects a single point in the genotype, and swaps the genomes
after this point, for example. There are a number of different crossover operators, but
they all work on the principle of the offspring receiving genes from multiple parents.

This alone is not enough to evolve the desirable characteristics. There must be
some form of selection pressure that gives preference to the desirable genes of the
parent generation, such that each successive generation improves. A high selection
pressure means that only the fittest individuals of the previous generation pass on
their genomes to the next generation, but this may quickly reduce diversity, and the
population may converge to a local maximum. Greater diversity means that fitness
will increase more slowly, but may result in a better result overall. In the natural
world, a so-called genetic bottleneck may lead to the demise of a species[16], and in
evolutionary computation it may leave us with a less than optimal solution.

In proportionate selection, also known as roulette wheel selection, the fitness values of
all members of the population are summed up[10]. Then, the ratio between the fitness
value of the individual to the total fitness value becomes the probability that that
individual is selected for reproduction. It has often been described using a roulette
wheel analogy, where the total fitness is the roulette wheel circumference, and each
individual makes up a sector of the circle proportionate to their fitness value. For
larger fitness values, the chance is higher that the roulette ball lands in that sector.

In rank-based selection, the population is ranked according to fitness value, and then
selected based on a probability proportional to that rank. This has two benefits over
proportionate selection: For many similar fitness values, the rank-based selection will
definitely favour the individuals with slightly higher fitness values, and for a situation
where a few individuals have very high fitness values, the individuals with very small
fitness values still have a chance of reproducing, maintaining higher genetic diversity.

Tournament selection uses a method of organising a tournament between groups
of individuals. For each offspring to be generated, a tournament of size k picks k
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randomly chosen individuals from the total population. Only the individual with the
best fitness value is chosen for reproduction. This is then repeated until the new
offspring has a sufficient number of parents. Each tournament selects participants
from the total population, meaning that each individual may be selected multiple
times.



CHAPTER 3

Methodology

The goal in this paper is to test the evolvability of Random Boolean Networks, and
compare an instruction-based RBN implementation to a traditional table-based im-
plementation in order to investigate whether the instruction-based implementation
improves timing and performance.

To do this, an Evolutionary Algorithm was implemented and run, evaluating simula-
tions of table-based and instruction-based RBNs. The running times and results were
then compared and analysed for K = 2 and K = 3 and N = 10, 12, 14, 16, 18.

As an objective measure of network fitness, attractor length was chosen. However, as
shown by Kauffman [3] these are difficult to achieve, and few randomly generated
networks have long cycles, though networks with K = 3 do have slightly longer
cycles than those with K = 2. A point attractor has fitness 1, while a cyclic attractor
has fitness equal to the number of states in the cycle. Evaluating the attractors of a
random Boolean network requires repeatedly running it until it reaches a stable state,
using every possible state combination as a start value. As the states are visited, they
are added to a history buffer. Once an attractor is found, the states from the history
buffer are then added to the list of visited states, and the attractor length is saved if
it is better than the previous best attractor length. The history buffer is then emptied,
and the computation starts from the next start state. If the computation for a network
reaches a state it has visited previously, all the states leading up to that state are in
the same attractor basin as the visited state, and these are added to the visited list.

3.1 Table-based RBN

The table-based Random Boolean Network implementation is quite straightforward
compared to the instruction-based implementation, and easily implemented for
variable K. The result column of the truth tables for all the possible Boolean functions
is self-indexing, comprising all numbers from 0 to 2K−1 in binary. It may be interesting
to note that this method of numbering was first used by Stephen Wolfram to name
cellular automaton rules[9], and is often called a Wolfram code[10]. Additionally, the
input columns are redundant and can be trimmed away. Thus, the result column can
be directly encoded in the genotype. The implementation then looks up the states of

10
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the current node’s input nodes, and combines these into a single binary number. It
then uses this to look up the result value at that index in the result column for the
current node.

Including the result column directly in the genotype means that most mutations
result in a fairly small Hamming distance between the original genotype and the
mutated one. In the implementation, there is a given small chance of flipping a single
arbitrarily chosen bit in the truth table for each node. The hope is that this will result
in a small, uniform change in behaviour.

In addition to mutating the truth table, there is also the possibility of mutating the
input nodes of each node. This resulting change may be large or small, but it is not
possible to tell which without actually evaluating each possible combination. This
may make guaranteeing a small change in the truth table redundant.

Networks are generated through randomly selecting K input indexes for each node,
as well as randomly generating an integer array of length 2K, representing the truth
table with a number between 0 and 2K − 1.

3.2 Instruction-based RBN

For an instruction-based RBN implementation, the K = 2 implementation is trivial,
achieved through directly implementing each of the 22K

Boolean functions. However,
for K = 3 a similar approach would mean directly implementing 256 different Boolean
functions, and for K = 4 this number rises to 65536. This is not practical, and it
defeats the purpose of using an instruction set rather than generating truth tables.

Thus, 2-input logic functions must be combined to make 3- and 4-input logic. It
remains to be seen what methods are practical and reasonably efficient, and whether
the result is representative of a roughly equal distribution of all possible Boolean
functions.

The distribution of resulting functions for K = 3 logic was tested using exactly
two 12-input logic gates in all possible combinations and permutations. Because
non-commutative functions were included, this means that there are four different
structural permutations, as shown in Figure 3.1, as well as 3! = 6 ways to combine
the three input values. Since, as mentioned in Section 3.1, the output column of all
the possible truth tables results in the numbers 0 to 255, the test function searches
through the 24 possible permutations of 162 combinations of two 2-input Boolean
logic functions, and uses the resulting number as an index in a result array. A histogram
of the result array is shown in Figure 3.3a. As can be seen in the figure, it is not
possible to generate all 256 Boolean functions using only two 2-input logic gates, and
the K > 2 instruction-based implementation will therefore be functionally different
from the table-based implementation.

Another, simpler option disregarded the multiple structural permutations and settled
on a single configuration as seen in Figure 3.2, using a single order of input. As can
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Figure 3.1: Structural permutation of two 2-input Boolean functions

A

B

i1 i2 i3

o
Figure 3.2: The implemented configuration

be seen in Figure 3.3b, the two results are not very different. Notably, both options
result in a large number of combinations resulting in either contradiction or tautology.
This was concerning, given Kauffman’s observation that the elimination of these two
Boolean functions results in longer cycle length, but initial testing runs showed that
the EA was able to find good solutions. Given the similar results, the simpler option
was chosen for the instruction-based implementation.

3.3 Evolutionary strategy

The implementation uses a fitness proportionate selection for population replacement,
combined with elitism of 5 genotypes. The inclusion of elitism is to improve maximum
fitness, because even small changes might eliminate an individual with good fitness,
and earlier testing runs without elitism gave disappointing results. For the remaining
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Figure 3.3: Distribution of 3-input Boolean functions through combinations of two
2-input Boolean functions
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genotypes, a new genome is created using a random one-point crossover from two
parents (not necessarily distinct). These are then mutated, node for node, with a
mutation rate of 0.05 for each node input, and 0.025 for each Boolean operator. In
the instruction-based implementation, a new Boolean operator is randomly selected
from all possible Boolean operators. In the table-based implementation, a randomly
chosen cell in the truth table is flipped. This means that while the truth table is only
changed minutely, there exists a possibility that the Boolean operator changes to the
opposite. For an implementation that uses multiple Boolean operators per node, all
of these may change, though the chance of this is quite small at 0.0252 for just two
operators.

3.4 Testing

Each version of the implementation was run for N = 10, 12, 14, 16, 18, with 20
individual runs each. Four threads were executed simultaneously. To ensure that all
runs ran with different seeds, /dev/urandom was used. While this does not strictly
guarantee random numbers generated with sufficient entropy for cryptographic
applications [18], it is suitable for RBN testing purposes. Unlike when using wall-
clock time as a seed for random number generation, the four threads executing
simultaneously do not end up using the same seed.

For accurate timing, the implementation uses a monotonic clock, rather than a clock
based on wall-clock time, and returns the total running time in nanoseconds for each
run.

At every generation, the maximum, minimum, and mean fitness, as well as the
standard deviation, is calculated, then printed. At the end of each run, the best
network configuration is printed in a format suitable for graphing. If there is more
than one configuration with the same fitness, only the first of these is printed.

3.5 Setup

The test runs were performed on a PC with a 4-core, 8-threaded 2.20GHz Intel Core
i7-2670QM processor and 8 GB of RAM, running 64-bit Debian Jessie (Linux 3.2).
The programs were compiled with Clang version 3.5.2, optimised with -Ofast, and
using the GNU99 standard.



CHAPTER 4

Results and Discussion

4.1 Table-based RBN

The table-based RBN implementation performs as expected, given the difficulty of
evolving RBNs, the large search space, and the fact that small changes in the genotype
may cause a large chance in the fitness. The average run gives a moderately good
result, but may find close to ideal results occasionally. Kauffman found that RBNs with
large cycle lengths are not common [3]. Occasionally exceptional results skew the
average, as can be seen in 4.1d, where the best run found a very good solution quite
early on, but on average the results are well under half of the theoretical maximum
fitness value. Finding exceptional solutions requires an element of chance when the
runs are small, but most runs find good results.

For K = 3, the table-based implementation finds on average significantly poorer
solutions than it does for K = 2 for networks of the same size, as can be seen in figure
4.2. One reason for this is the considerably larger search space. The size of the search
space is (22K × NK)N. For N = 10, K = 2 the search space is 160010 ∼ 1032, and for
K = 3 it is 25600010 ∼ 1054.

4.2 Instruction-based RBN

The instruction-based RBN implementation for K = 2 performs as well as the table-
based implementation. Since the two implementations are functionally identical apart
from the mutation, as specified in Section 3.3, this is as expected.

For K = 3, however, there is a significant difference between the table-based and
instruction-based implementation, where the instruction-based implementation out-
performs the table-based implementation by a large degree. For K = 3, the instruction-
based implementation finds results that are similar to but still smaller than the results
for K = 2 in fitness.

The difference in the size of the search space between the table-based and the
instruction-based implementation is large, and is likely to be a major cause of the big
difference in performance. The original search space of (22K × NK)N is significantly

15



4.2 Instruction-based RBN 16

reduced when the 22K
term is reduced. The K = 3 implementation uses 88 different

Boolean functions rather than the complete set of 256. For N = 10 this is the difference
between (256 × 103)10 ∼ 1054 and (88 × 103)10 ∼ 1049.

It is interesting to note that the different mutation schemes do not seem to impact the
results of the K = 2 run, where both implementations are otherwise identical. In the
table-based implementation, the mutation of the truth table guarantees a Hamming
distance of 1, while the instruction-based implementation replaces the instruction
entirely with a randomly selected instruction, potentially giving the maximum Ham-
ming distance of 4 (all bits flipped). Of course, the structural mutation (changing
input nodes) also impacts performance a great deal, and is performed identically
in both implementations. It is possible that this masks any difference caused by the
different the Boolean function mutation schemes, but it is also possible that this
difference does not impact performance overall.
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4.3 Running time

The running time of the instruction-based implementation is greater than the running
time of the table-based implementation by a factor of ∼ 10.

For K = 2, N = 10, the table-based and instruction-based implementation had an
average running time of 577ms and 3820ms respectively. For K = 2, N = 18, running
time can be measured in seconds, 208.1s and 1505.4s. For K = 3, the differences
are larger. For N = 10 the average running times are 256ms and 8687ms, and for
N = 18 they are 39.7s and 1701s. At first glance, it may seem odd that the table-based
implementation for K = 3 runs faster than that for K = 2, but this can be explained by
the poorer fitness values for the K = 3 runs. The worst-case running time complexity
for the fitness evaluation is O (n2), where n is the number of possible states. For large
cycles this means that the running time increases quadratically.

The K = 2 implementation shows large variation in running times for the table-based
implementation, as can be seen in Figure 4.3a, particularly for N = 16. As we saw in
4.1d, there is a run that found a very good solution, which explains the longer running
time. For K = 3 (Figure 4.3b), running times are considerably more homogeneous.

The fitness evaluation complexity being the same for both implementations, the other
major difference in time cost between the two comes down to the implementation of
the instructions compared to the tables. The instruction-based implementation uses a
switch statement to distinguish between instructions. This introduces branching, and
occasional mis-predicted branch adds up over time. Table look-up, on the other hand,
is a fairly low-cost operation, with no branching involved.
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CHAPTER 5

Conclusion

This thesis describes the implementation of an evolutionary algorithm applied to
instruction-based random Boolean networks, and compares them with the same
algorithm applied to traditionally implemented table-based RBNs. The goal was to
increase performance and timing in order to improve the chances of finding an ideal
RBN for a given problem. The limitations in this thesis include the simplified metric
for RBN performance, and the small set of different configurations.

For K = 2, the implementations are functionally identical, and the table-based im-
plementation is considerably faster. For K = 3, the table-based implementation is
still considerably faster, but the instruction-based implementation outperforms it
in finding RBNs with long attractor cycles. The probably cause for this is that the
instruction-based implementation reduces the search space for K = 3 considerably.
This is consistent with Bidlo and Vašíček’s finding that an instruction-based approach
gives higher performance for more complex, non-binary cellular automata [5]. Com-
pared to their results, it is clear that the instruction-based approach is more efficient
for homogeneous CAs, where there goal is to find only one transition function, than
for RBNs, where each node may have a different operator.

Unless a useful, significantly reduced instruction set is found, the instruction-based
approach has limited usefulness for RBNs with K < 3, as these networks have a small
set of Boolean operators already, and there is little room for pruning.

5.1 Further work

There are many ways to improve the implementation presented in this thesis. Primarily,
the fitness evaluation has a time complexity of O (n2), and reducing this to linear
time will improve running time considerably. Additionally, the implementation of
good heuristics for RBN behaviour may reduce this further. However, as RBNs are
quite complex, these heuristics will be difficult to find.

Another improvement could be made by finding better-performing reduced instruction
sets. One potentially useful reduction for K = 2 eliminates True and False as well as

23
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all the non-commutative Boolean operators, leaving a set of six instructions1. Earlier
work showed that RBNs generated with this limited set produced long cycles[19],
but there is no available information on timing, and combining multiple instructions
is not implemented.

For K > 3, a better method of combining instructions would prove useful, as this
implementation uses a single fixed configuration. In particular, the implementation of
variable genome length as described in [15] would allow for a greater set of Boolean
functions through combining a variable number of instructions for each node where
necessary.

Additionally, the information provided by this thesis is limited by the single metric
chosen. RBNs with long cyclic attractors are fairly rare, and the conclusion is not
generalisable for all purposes. As a result, the reduced instruction set may not perform
similarly for typical applications of RBNs. The application of other metrics to this
problem may prove interesting, e.g. generating networks with many cycles of the
same length, or finding networks that have an exact number of attractor basins.

1AND, NAND, OR, NOR, XOR, and XNOR
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