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this study, the input vectors input, consists of the mean travel time the previous
five minutes and traffic volume the previous five minutes. The target values
target, for the output of the ANN is the actual travel time for each vehicle.

input, = [mean travel time, traffic volume]
target, = actual travel time

Recall from Section 3.2.1 that an initial estimate of the state vector x;—gq,
its covariance matrix P;—g, process noise covariance matrix Q, and observation
noise covariance matrix R has to be defined in order to run the EKF. For the way
EKF is used in the experiments in this study, this means that an initial estimate
of the weights 6ipitia1 has to be provided. The approach described in Van Lint
[2008] is that the weights Oinitia) are initialized using the Nguyen-Widrow method
[Nguyen and Widrow, 1990]. In Van Lint [2008], the weights’ covariance matrix
Pinitial is initialized to a diagonal matrix with large values, reflecting that it is
assumed that the weights are independent, and that there is a large uncertainty
connected to the initial guess of the weights. These are also the approaches taken
in this work, and the value along the diagonal of @,itia is set to 10 000.

As Van Lint [2008] does not describe how the covariance matrices Q and R
is set, a parameter tuning step is performed to find reasonable values for Q and
R, in addition to the number of nodes in the hidden layer in the feed-forward
ANN. The covariance matrix Q is assumed to be a diagonal matrix, once more
reflecting that the weights are independent, such that the only value being search
for regarding Q in the parameter tuning step, is the value ¢ along the diagonal

of Q.

Q=¢gxI

As the output y; consists of a single value, namely the travel time, the covari-
ance matrix R of the observation noise is a single element r reflecting the noise
related to the observations that the ANN does of the weights.

The parameter tuning for online-delayed EKF is run on two weeks of data
from January 19, 2015 to February 11, 2015. Given a set of parameters the
online-delayed EKF is trained on the first week of data from January 19, 2015 to
February 4, 2015. Next, the model is used to train on the second week of data
from Februar 5, 2015 to February 11, 2015, and the predictions made during
this final training phase is used as a basis for computing the RMSE for that
combination of parameters. The parameters yielding the lowest RMSE on the
test set is the ones used for the online-delayed EKF model in Experiment 2.

Table B.15 illustrates the values for each parameter that is evaluated dur-
ing the parameter tuning. All combinations of the parameters is evaluated. As
this leads to 192 combinations, only the combination yielding lowest RMSE is
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q r Number of hidden nodes
0.1 10 1
0.01 25 2
0.001 50 4
0.0001 | 100 8
250 16
500 32
750
1000

Table B.15: Values tested during parameter tuning for Online-Delayed Extended
Kalman Filter

repeated here: ¢ = 0.1, 7 = 750, number of hidden nodes = 1. This set of pa-
rameters yielded a RMSE = 406.42. The RMSEs during the parameter tuning
was in the range [406.42,735.13]. Notice that the RMSE of this parameter tun-
ing step lies within another range than the ones resulting from the parameter
tuning for the baselines in Experiment 1. This is due to the fact that the RMSE
values reported from the parameter tuning for the baselines in Experiment 1 are
computed using normalized travel times. This is not the case for online-delayed
EKF, where the RMSE is computed on non-normalized values.

Local Online Kernel Ridge Regression

To find optimal parameters for each kernel two weeks of data from January 29,
2015 to February 11, 2015 was used. The first week was used to train the kernels
on different parameter values and the last week was used to make predictions.
For each pair of parameter values, the kernel was trained (i.e. the inverse of the
regularized kernel matrix mas calculated) on the first week of data and predictions
were made on the second week of data. The observations in the test set were also
used to update the kernel to simulate how Local Online Kernel Ridge Regression
(LOKRR) would normally work. The X matrix was reset to contain only the
training data before every run with new parameters. This way the best pair of
parameters could be found for each kernel. The recommendations for finding
possible parameter values for o and A\ presented in the article were followed.
The approach the authors recommend for finding possible A values is based on
Exterkate [2013]. First, the R? of an ordinary least squares fit of y on X is
found. Then g is determined as A\g = 1/¢g, where ¢9 = R?/(1 — R?). The
recommended values for A is {1/8\g,1/4Xg,1/2X0, Ao, 2X0}. The recommended
approach for finding possible o parameters is based on that optimal values of o lie
in the range between the 0.1 and 0.9 quantiles of the pairwise euclidean distance
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between the points in the kernel [Caputo et al., 2002]. The 0.25, 0.5 and 0.75
quantiles were used as possible values for o.

No open source implementation of LOKRR was found, so a n implementation
of LOKRR was developed in Python [Rossum, 1995] from scratch. Several issues
were encountered during this process.

Data Set 1 contains individual travel times as opposed to Haworth et al.’s
experiments with five minute aggregated data. Since the amount of traffic is
a lot bigger during the day than during the night, the kernels in our LOKRR
implementation ended up with different sizes. An upper bound on how much data
one kernel could contain was not set, but the method was slightly changed for
kernels with little data. In the article the kernel sizes are kept static, meaning a
data point is removed from the kernel as soon as a new point is added. For kernels
with number of observations below some threshold (200) a decision was made not
to remove the oldest observation. This way kernels responsible for intervals with
low traffic were aloud to grow also during the testing and verification stages.
Otherwise the kernels responsible for intervals with low traffic would be limited
by the amount of observations in the training set. By adding this functionality
kernels with less than 200 observations during the training period could keep data
further back in time than the other kernels when new observations were made.
This was done in hope of increasing prediction accuracy.

It was also discovered that the regularized kernel matrix sometimes ended up
with a determinant of zero, in which case an inverse can not be found. To avoid
getting an error during run time when attempting to calculate the inverse of a
singular matrix, a check was added to check if adding a new point would cause
a determinant of zero in the regularized kernel matrix. In those cases the point
was not added to the kernel. This means that some observations may have been
skipped by LOKRR during the testing and verification stage.

During parameter tuning two other issues were encountered. In cases where
a kernel only has two points in its X matrix, the R squared of an ordinary least
squares fit of y on X equals 1. This causes division by zero when calculating
¢. Kernels with a high percentage of similar observations also caused problems
when selecting parameter values for o. Similar observations means that the
euclidean distance between them is zero. This led to one or more of the possible
o values to become zero, which again caused division by zero when calculating
the kernel matrix. These two issues seemed to occur during intervals at night
with few observations in the kernels. Therefore a decision was made to only
consider intervals with a significant amount of traffic such that the probability of
these events happening was minimized. The data set used for LOKRR contained
observations from 06:00 to 21:00. Additionally, the window size is set to 1. This
is done to reduce the computational complexity.
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C Experimental Results

Baseline | Sample median
1 3.3158
2 3.3944
3 3.2888
4 3.5681
5 3.409
6 3.3392
7 3.2783
8 3.2737
9 3.3757
10 3.3157
11 3.3435
12 3.3958
13 3.0521
14 3.0536
15 3.2123
16 3.0686
17 3.2234
18 3.2264
19 3.6155
20 3.2237
21 3.1358
22 3.3673
23 3.2151
24 2.998
25 3.5768

Table C.1: Sample medians of bagging baselines
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Figure C.1: Density of errors from SVM
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Figure C.2: Density of errors from k-NN
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Figure C.3: Density of errors from ANN
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Figure C.4: Density of errors from Kalman filter
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Figure C.6: Density of errors from boosting
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Figure C.7: Density of errors from lasso
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Figure C.8: Density of errors from FRBS
X =-47.3143 s =210.44
Md =20.3134 Mo = 36.2406
g 87
< g
2 o -
2 i
@
QO o
S 4
S I | | | | |

-1500 -1000 -500 0 500 1000
Error (sec)

Figure C.9: Density of errors from average
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Figure C.10: Density of errors from online-delayed EKF
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Figure C.11: Density of errors from LOKRR
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Figure C.12: Predictions from LOKRR and actual travel time on March 6, 2015
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Figure C.13: Predictions from LOKRR and actual travel time on March 7, 2015
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Figure C.14: Predictions from LOKRR and actual travel time on March 8, 2015
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Figure C.15: Predictions from LOKRR and actual travel time on March 9, 2015
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Figure C.16: Predictions from LOKRR and actual travel time on March 10, 2015
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Figure C.17: Predictions from LOKRR and actual travel time on March 11, 2015
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Figure C.18: Predictions from LOKRR and actual travel time on March 12, 2015
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Figure C.19: Predictions from LOKRR and actual travel time on March 14, 2015
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Figure C.20: Predictions from LOKRR and actual travel time on March 15, 2015



	
	
	
	

	
	
	
	

	
	
	
	
	
	
	

	
	
	
	


	
	
	
	
	
	

	
	
	


	
	
	
	
	

	
	
	
	
	

	
	

	
	
	
	
	

	
	
	
	
	

	
	
	

	
	
	
	
	
	
	
	

	
	
	
	

	


