
Travel Time Prediction
A Comparison Study on a common Data Set

Emil Øien Lunde
Thomas Wolff

Master of Science in Computer Science

Supervisor: Anders Kofod-Petersen, IDI
Co-supervisor: Jo Skjermo, IDI

Department of Computer and Information Science

Submission date: May 2015

Norwegian University of Science and Technology



 



Emil Øien Lunde, Thomas Wolff

Travel Time Prediction
A Comparison Study on a common Data Set

Master’s thesis, spring 2015

Artificial Intelligence Group
Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical Engineering





i

Abstract

Intelligent transportation systems are information and communication technology
solutions in the transportation sector. Systems for predicting travel time are
examples of such systems. Intelligent transportation systems are becoming an
increasingly larger part of modern society and may contribute to improve traffic
efficiency and safety. Accurate and reliable information is crucial for these types
of systems, which is why conducting research in this area is important.

A great variety of approaches to travel time prediction are reported in the lit-
erature. Two categories of machine learning approaches that are employed in the
traffic domain are ensemble learning and online learning. These two approaches
are used in order to provide accurate and reliable information. Ensemble learning
approaches combine predictions from a set of baselines in order to achieve higher
prediction accuracy, whilst online learning methods are capable of adapting to
changes in the underlying data set. As the approaches reported in the litera-
ture are tested on different data sets, it is difficult to compare their prediction
accuracy. In order to do a fair comparison, this work investigates the methods’
performance using a common data set. Two experiments are conducted, one com-
paring state of the art ensemble learning approaches, and the other comparing
state of the art online learning approaches.

The ensemble learning approaches investigated in this study are bagging,
boosting, lasso, and a fuzzy rule based system. These ensemble learning meth-
ods are also compared to a simple average of the baselines’ predictions. The
online learning methods investigated are online-delayed extended Kalman filter
and local online kernel ridge regression.

The results indicate that there is no method that consistently outperforms the
other methods in either of the two experiments. Among the ensemble learning
methods, using lasso and fuzzy rule based system results in prediction errors with
the lowest deviation, whilst bagging is the method with least bias. Additionally,
bagging seems to follow the actual travel times better than the other methods.
As for the online learning methods, using online-delayed extended Kalman filter
results in prediction errors with the lowest deviation, whilst local online kernel
ridge regression has lowest bias.
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Sammendrag

Intelligente transportsystemer er løsninger som bruker informasjons- og kom-
munikasjonsteknologi i transportsektoren. Systemer som predikerer reisetid er
eksempler p̊a slike systemer. Intelligente transportsystemer blir en stadig større
del av det moderne samfunnet, og kan bidra til forbedret trafikkavvikling og -
sikkerhet. Nøyaktig og p̊alitelig informasjon er avgjørende for slike systemer, og
det er derfor viktig å drive forskning innenfor dette feltet.

Det er rapportert et stort utvalg av metoder for å predikere reisetid i litter-
aturen. To maskinlæringskategorier som er brukt i trafikkdomenet er ensemble
learning og online learning. Metoder innenfor disse to kategoriene er brukt for
å gi nøyaktig og p̊alitelig informasjon. Ensemble learning metoder kombinerer
prediksjoner fra et sett med modeller for å oppn̊a høyere prediksjonsnøyaktighet,
mens online learning metoder evner å tilpasse seg endringer i det underliggende
datasettet. Metodene som er beskrevet i litteraturen er testet p̊a ulike datasett.
Dette gjør det vanskelig å sammenlikne prediksjonsnøyaktigheten deres. For å
kunne gjøre en rettferdig sammenlikning, undersøker dette studiet ytelsen til
metodene p̊a et felles datasett. To eksperimenter er utført, hvor det ene sam-
menlikner ensemble learning metoder, og det andre sammenlikner online learning
metoder.

Ensemble learning metodene som undersøkes i dette studiet er bagging, boost-
ing, lasso og et fuzzy ruled based system. Disse ensemble learning metodene sam-
menliknes ogs̊a med et enkelt gjennomsnitt av prediksjonene fra de underliggende
modellene. Online learning metodene som undersøkes er online-delayed extended
Kalman filter og local online kernel ridge regression.

Resultatene tyder p̊a at ingen av metodene gjør det konsekvent bedre enn de
andre, i noen av eksperimentene. Blant ensemble learning metodene, har lasso
og fuzzy rule based system prediksjonsfeil med lavest avvik, mens bagging er
metoden med minst bias. Selv om ingen av ensemble learning metodene gjør det
best p̊a tvers av alle ytelsesm̊alene, ser bagging ut til å følge den faktiske reisetiden
bedre enn de andre metodene. N̊ar det gjelder online learning metodene, har
online-delayed extended Kalman filter prediksjonsfeil med lavest avvik, mens local
online kernel ridge regression har minst bias.
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Chapter 1

Introduction

Section 1.1 introduces the concept of intelligent transportation systems and con-
ceptual approaches to travel time prediction. Note that Section 1.1 is repeated
from Øien Lunde and Wolff [2014, p. 1-4]. Section 1.2 describes the goal of this
study, and states the research questions this work sets out to answer. Section 1.3
describes the research method employed and Section 1.4 summarizes this work’s
contributions. Finally, Section 1.5 describes the structure of the rest of the paper.

1.1 Background and Motivation

This section gives an overview of intelligent transportation systems, and intro-
duces conceptual approaches to estimating or predicting traffic variables.

1.1.1 Intelligent Transportation Systems

Intelligent transportation systems is a term describing systems and services in the
transportation sector using information and communication technology [Norwe-
gian Public Roads Administration, 2007]. Intelligent transportation systems are
often highly complex, consisting of multiple levels of hardware and software each
responsible for performing different tasks. To collect road data, multiple sources
such as cameras, loop detectors, and GPS devices are used. Since road networks
span thousands of square kilometers, the distributed systems responsible for col-
lecting and transmitting this data need to be capable of dealing with events such
as faulty detectors and lost connections between transmission devices. Addition-
ally, data is collected continuously, producing large amounts of raw data. The
systems responsible for processing this data need to be very efficient to keep up
with the incoming data streams whilst being able to extract useful information

1
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Figure 1.1: Screenshot from www.reisetider.no1

from big data sets. Finally, the extracted information needs to be distributed
to the end users, such as traffic control centers or website users, requiring good
quality of service in terms of availability.

The Norwegian Public Roads Administration’s system for providing drivers
with travel time information is an example of an intelligent transportation system.
The Norwegian Public Roads Administration collects travel times from automatic
vehicle identification systems on selected roads. This data is processed in order to
remove incorrect travel times, for example caused by vehicles stopping in between
two detectors. Then, based on the observed data, the system is able to compute
expected travel times. The procedure taken to compute these expected travel
times is described in more detail in Section 2.1.5. The travel time information
is finally made available to drivers through a website2, illustrated in Figure 1.1.
The roads illustrated on the website are colored in green, yellow or red indicating
whether there is no delay, some delay or a large delay on the corresponding road,
respectively. The map also displays notifications concerning special circumstances
that may affect the traffic, such as a traffic accident or road construction work.
The same type of information, e.g. delays and driving conditions, may also be
distributed through electronic road signs as illustrated in Figure 1.2.

Aside from the challenges involving a highly complex distributed system,
what makes intelligent transportation systems interesting are their environmen-

1http://www.reisetider.no/reisetid/omrade.html?omrade=1, May 22, 2015
2www.reisetider.no
3Source: Norwegian Public Roads Administration’s archive

www.reisetider.no
http://www.reisetider.no/reisetid/omrade.html?omrade=1
www.reisetider.no
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Figure 1.2: Example of an electronic road sign3

tal and economical benefits. Moreover, such systems can potentially increase
traffic safety. Commision of the European Communities [2001] stated that intel-
ligent transportation systems have the potential to reduce travel times by up to
20%, whilst network capacity can be increased by 5 − 10%. If this is achieved,
CO2 emissions and transportation costs can be significantly reduced. The impact
of intelligent transportation systems on traffic safety has been estimated to re-
duce rear-end collisions by 10−15% because of advanced information and control
strategies. Furthermore, automatic incident detection systems, making managing
emergency situations easier, have increased survival rates when accidents occur.

In terms of increasing traffic efficiency, providing drivers with expected travel
times is a common approach. Travel time is a variable most commuters can
relate to. Based on the travel time, it is easy to deduct what the current traffic
situation is. This makes it a suitable variable to use in traffic information systems.
A survey, reported in Chung et al. [2004], suggests that 78% of drivers are willing
to change their departure time or take a different route if they are informed
about delays. This indicates that providing commuters with traffic information
is a useful tool for efficiently distributing traffic in the road network. Another area
where travel time information is useful is trip planning, which requires predicting
what travel times will be in the future. Transportation companies rely on this
information to optimize their routes, potentially reducing costs and increasing
efficiency.
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1.1.2 Estimating or Predicting Traffic Variables

The traffic domain is highly complex as it is affected by a great variety of factors.
These include aspects such as human behaviour and interaction, how signalized
intersections are programmed, and weather conditions. Many of these factors are
non-deterministic, which makes them difficult to predict. Consider the example
of cars driving on a road section with a signalized intersection. The fact that
the amount of time spent waiting for a green light is different for individual
vehicles may lead to different travel times, even though the traffic density is
constant. Other factors like human interactions and traffic accidents are also
difficult to predict. The relationships between these factors and how they affect
traffic conditions are highly complex, making it difficult to incorporate all of them
into a single model. Analytical models, such as models based on macroscopic
traffic flow theory, are therefore limited in their capability of making accurate
predictions about traffic conditions.

Another approach to predicting traffic conditions is using data driven ap-
proaches. The benefit one can draw from these methods is that they do not focus
on using the semantics of the data to express relationships between the variables
in the data set. Instead, data driven methods attempt to discover patterns in
the data by looking at many examples. This makes them suitable for modelling
complex domains, such as the traffic domain.

Machine learning is an example of a data driven method which estimates the
true function that maps inputs to outputs in the underlying domain. In the case
of traffic, this can be to find a function that captures the relationship between
previous and future travel times.

Researchers are constantly attempting to find ways of improving the predic-
tion accuracy of machine learning models. Russell and Norvig [2010] state that
one possible approach is to use ensemble learning. In short, ensemble learn-
ing combines predictions from several models to make a single prediction. This
technique is described in more detail in Section 2.1.2.

Traditionally, machine learning techniques used to predict travel times have
been based on using historical data. Over time, as changes in the underlying data
set occur, their models may become outdated and their prediction accuracies
deteriorate. Online learning methods are able to incorporate the most recent
data in their models. This makes them very adaptable, a desirable property for
systems deployed in the real-world. Online learning is described in more detail
in Section 2.1.3.4

A structured literature review investigating in what degree ensemble learning
and online learning are employed in the traffic domain is presented in Øien Lunde

4Thus far, the text in this section is repeated from Øien Lunde and Wolff [2014, p. 1-4] with
some minor modifications. The text that follows in the rest of this section should be considered
new and not a part of Øien Lunde and Wolff [2014].
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and Wolff [2014]. The authors report that various studies investigating ensemble
learning and online learning in the traffic domain are conducted. The results
of these studies demonstrate that ensemble learning provides higher prediction
accuracy compared to its baseline methods. Additionally, online methods are
proven to be better at adapting to changes in the underlying data set. However,
the structured literature review does not reveal any studies that compare the
proposed techniques on a common data set. This makes it difficult to determine
which methods perform best.

In order to gain knowledge as to how the different techniques compare to
each other, this work sets out to conduct experiments that measure the meth-
ods’ performance on a common data set. Although this research is conducted in
collaboration with the Norwegian Public Roads Administration, the focus in this
work is on comparing the methods from an artificial intelligence research perspec-
tive. However, the results may also be used to to give guidelines to the Norwegian
Public Roads Administration as to which technique(s) may be integrated in their
own systems.

1.2 Goals and Research Questions

Goal To find the most accurate ensemble and online learning technique(s), among
the ones reported in Øien Lunde and Wolff [2014], for predicting travel times
for a given road section.

In order to achieve this goal, this work attempts to answer the two following
research questions:

Research Question 1 Given a set of baseline methods, which ensemble learn-
ing technique yields the best prediction accuracy?

Research Question 2 Which online learning technique yields the best predic-
tion accuracy?

1.3 Research Method

This work employs a comparison study methodology in an attempt to reach the
research goal described in Section 1.2. In a comparison study, the performance of
one or more methods is assessed through the means of some performance measure.
The performance measure is used as a basis for comparing the methods and may
also be used to compare the performance of the methods with an existing standard
that solves the same problem [Cohen and Howe, 1988]. This way, one can identify
whether or not the proposed methods provide any improvements to the existing
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solutions. In this comparison study, several experiments are designed, each suited
to produce results that may give answers to one or more of the research questions
stated in Section 1.2. By examining the results of the experiments, and evaluating
the performance of the different approaches, the authors hope to answer these
research questions.

1.4 Contributions

This work’s contribution is two-fold. First, this study compares state of the art
ensemble learning and online learning techniques on a common data set. Second,
local online kernel ridge regression is employed on a data set with individual
travel times, in contrast to the original approach where five minute aggregated
data is used.

1.5 Thesis Structure

Chapter 2 gives an introduction to important concepts used throughout this pa-
per and presents the motivation for selecting the methods investigated in this
study. Chapter 3 provides a more detailed description of the methods that are
investigated. Chapter 4 describes the experiments conducted in this study and
presents the experimental results. An evaluation and discussion of the results,
along with a conclusion and suggestions for future work, are presented in Chap-
ter 5.



Chapter 2

Background Theory and
Motivation

This chapter covers relevant background theory and presents the literature re-
view. In Section 2.1, key terminology used throughout this paper is described.
Section 2.2 describes how the literature review was conducted. Note that sec-
tions 2.1 and 2.2 are repeated from Øien Lunde and Wolff [2014, p. 7-10] and Øien
Lunde and Wolff [2014, p. 10-12], respectively, with some minor modifications.
Section 2.3 presents the findings of the literature review and motivates the use
of the techniques investigated in this research.

2.1 Background Theory

In this section, relevant concepts for predicting travel times are introduced. Ma-
chine learning is described in Section 2.1.1. Two important machine learning
concepts referred to in this study are then introduced. Section 2.1.2 describes
ensemble learning, whilst Section 2.1.3 presents online learning. Section 2.1.4
covers traffic data collection and describes some important variables used in traf-
fic modeling. The solution for travel time estimation in use at the Norwegian
Public Roads Administration as of 2015 is covered in Section 2.1.5.

2.1.1 Machine Learning

Machine learning is a term used in computer science covering methods for learning
computers different tasks by investigating data. Mitchell [1997] defines machine
learning as:

7
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A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experi-
ence E.

Given many data points of the form (x, y), where x is a input vector of
features and y is the corresponding output value, the goal of machine learning is
to estimate the true function F (x) that maps input vectors x to output values
y. This estimated function M(x) is called a model of the true function. Given a
new input vector xnew, whose output value is not known, this model can be used
to predict the output yxnew

.

2.1.2 Ensemble Learning

Basic machine learning methods, like Support Vector Machine (SVM) [Cortes and
Vapnik, 1995], k-Nearest Neighbors (k-NN) and Artificial Neural Network (ANN),
use a single model to make predictions. Single model learners have proven to
make accurate predictions, but even higher accuracy can still be achieved. The
idea behind ensemble learning is to combine several predictions in to a single
prediction. Consider an ensemble of five classification predictions, where majority
voting is used. For the ensemble’s prediction to be incorrect, at least three of
those five predictions have to be incorrect [Russell and Norvig, 2010]. This is the
motivation behind the approach. An ensemble of learners that collectively make
a prediction is more likely to be correct, especially if the learners in the ensemble
have different bias with regards to the training data. By having a low correlation
between the errors, it is less likely that all of the learners are mistaken at the
same time. The ensemble is able to mask the weakness of each individual learner,
thus increasing prediction accuracy.

2.1.3 Online Learning

Online learning is a machine learning approach where the underlying model is
trained incrementally on the most recent data. As soon as new data becomes
available, the error of the model is computed by comparing its output with the
actual value. Next, the model is adjusted in order to reduce this error. By
constantly adjusting the model it is able to adapt to changes in the data set that
happen over time. In the case of travel time prediction, the model is updated as
soon as new travel time information becomes available. This allows the model to
adapt to changes in traffic conditions such as new lanes being added to a road
section causing a decrease in congestion, or tolls on one road leading to a change
in traffic volume.
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2.1.4 Traffic Domain

This section introduces two common variables used to express the state of traffic,
travel time and traffic flow, and approaches used to measure traffic variables. In
addition to travel time and traffic flow, other commonly used traffic variables are
point speed, section speed and density. However, these variables are not used in
this study, and therefore not covered in this section. This section is based on
Haugen and Aakre [2014].

Travel Time

Travel time is defined as the time it takes to drive from point a to point b. It can
be expressed as:

t = tb − ta (2.1)

where t is travel time, ta is the point in time where the vehicle passed point a,
and tb is the point in time where the vehicle passed point b.

Traffic Flow

Traffic flow is defined as the number of cars passing through a certain point on
the road per unit time. It can be expressed as:

q =
n

T
(2.2)

where q is traffic flow, n is the number of cars, and T is time. Traffic flow is
commonly given in vehicles per hour.

Collecting Traffic Data

There are several approaches to collecting traffic data. This section covers the
most commonly used approaches.

Inductive loop detectors are loops of electrical wire integrated in the road.
Electrical current runs through the wire, creating a magnetic field. When a car
passes through the loop, a controller can register this because the car changes
the magnetic field. Inductive loop detectors can measure several variables such as
traffic flow and car length. Since inductive loop detectors are installed in pairs,
a few meters apart from each other, speed can also be measured.

Using piezoelectric wires is another approach to collecting traffic data. These
wires emit an electrical signal when compressed. This way a controller can register
when cars run over it. Piezoelectric wires can be used to measure variables such
as traffic flow, speed, the number of axles on a car and the weight per axle.
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Radars are also used to collect traffic data. They can measure traffic flow,
speed, and classify cars by their lengths.

Although their main task is to validate the payment of cars driving on toll
roads, AutoPASS tags can be used to collect travel time data as well. AutoPASS
tags are installed in many cars, and sits in the top of the windshield. These tags
enable identification of individual vehicles, such that travel times between two
measurement points can be registered.

2.1.5 Current Solution at the Norwegian Public Roads Ad-
ministration

The Norwegian Public Roads Administration (NPRA) are responsible for collect-
ing traffic data on roads in Norway. They use detectors in the road, such as loop
detectors and piezoelectric cables, to detect passing vehicles. Additionally, many
cars in Norway are equipped with electronic devices, called AutoPASS tags, used
for automatic toll payments. Measurements from AutoPASS tags are what the
NPRA use today to estimate the current travel times on road sections in Norway.
The current solution provides commuters with up-to-date travel time information
based on travel times collected from the last five minutes. These measurements
are used as input to the algorithm described in Wahl and Haugen [2005]. In this
algorithm, individual travel times are placed in groups of one-minute intervals,
e.g. the travel times 25:00 and 25:59 are placed in the 25 minute group. The
estimated travel time is computed based on the interval with the most registered
travel times and its neighboring intervals. A weighted average of the travel times
of these intervals is the final estimated travel time.

2.2 Structured Literature Review Protocol

This section gives an overview of the structured literature review process em-
ployed in this study. This process follows the guidelines reported in Kofod-
Petersen [2014]. A more extensive and detailed description of the process can be
found in Appendix A.

To find relevant literature, a search string that covers the main aspects of
this research is developed. This search string is used to retrieve articles from two
search engines: IEEEXplore1 and Engineering Village2. As most of the retrieved
literature is irrelevant to this study, a screening process to filter out this literature

1http://ieeexplore.ieee.org/search/advsearch.jsp?expression-builder, September
24, 2014

2http://www.engineeringvillage.com/search/expert.url?CID=expertsearch, September
24, 2014

http://ieeexplore.ieee.org/search/advsearch.jsp?expression-builder
http://www.engineeringvillage.com/search/expert.url?CID=expertsearch
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is employed. This is done in a top-down approach, first filtering the articles by
title, second by abstract, and finally by full text.

The first two filtering steps are used to ensure that the articles included
further in the screening process are in the right domain, and that the work
exhibits solutions that are relevant to this study. To decide which articles are
relevant, inclusion criteria regarding the contents of the titles and abstracts are
developed. An example of an inclusion criterion is: ”The title indicates that
the article predicts, estimates or models road traffic variables, e.g. traffic flow,
speed, congestion or travel time”. This criterion ensures that articles regarding
estimation or prediction of traffic variables are included, as they are of high
relevance to this study. Another example of an inclusion criterion is: ”The article
describes a solution that can easily be extended or adapted to fit our research”.
By employing this inclusion criterion, articles that present solutions that can be
adapted to our problem are included. After evaluating each article based on every
criteria for title and abstract, the most irrelevant literature is filtered out.

The last step in the screening process is to assess the quality of the work pre-
sented in the different articles. During the quality assessment, questions such as
”Is the method/algorithm thoroughly explained?” and ”Does the test evidence
support the findings presented?” have to be answered to identify the good re-
search. The articles are given a score in the range from 0 to 1 for each quality
assessment question. To ensure a certain quality, only articles with a total score
above a set threshold is included in the state of the art review.

2.3 Motivation

The structured literature review presented in Øien Lunde and Wolff [2014] reports
several ensemble learning techniques employed in the traffic domain, ranging
from simple linear combinations to more complicated non-linear schemes. It
also reports several online learning techniques used for making predictions in the
traffic domain. This section presents the key findings in the structured literature
review, and motivates using the methods investigated further in this research.

2.3.1 Inclusion Criteria

To ensure that there is enough time to thoroughly evaluate the methods, only a
small selection of the techniques described in Øien Lunde and Wolff [2014] can be
included in the experiments in this study. Therefore, a set of inclusion criteria are
developed to narrow down the number of methods being tested. These criteria
are:

Inclusion Criterion 1 The paper employs an ensemble learning technique or
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an online learning technique.

and

Inclusion Criterion 2 The technique described in the paper is available through
an open source implementation or is sufficiently explained in order to be
implemented.

and

Inclusion Criterion 3 The paper focuses on improving prediction accuracy.

Since this research sets out to compare ensemble learning techniques as well
as online learning techniques, it is essential that the proposed approach in a pa-
per falls into one of these two categories. This is reflected by Inclusion Criterion
1. Furthermore, it is an absolute necessity that the methods being tested do not
require much implementation, as the main focus in this work is on comparing
methods, not spending time implementing them. Inclusion Criterion 2 ensures
that only papers presenting methods requiring a minimum of implementation is
included. As several papers presented in Øien Lunde and Wolff [2014] focus on
other aspects of travel time prediction than prediction accuracy, like computa-
tional cost, Inclusion Criterion 3 is present to ensure that the main focus of the
proposed method is increasing prediction accuracy.

Of all the papers resulting from the structured literature review in Øien Lunde
and Wolff [2014], only those employing ensemble learning or online learning tech-
niques are candidates for the experiments in this study due to Inclusion Criterion
1. Four of these candidate techniques did not satisfy Inclustion Criterion 2 and
Inclusion Criterion 3. Zhu and Shen [2012] describes a technique that makes use
of the notion of traffic regimes. As the authors do not give an accurate defini-
tion of the different traffic regimes used in their work, the paper does not satisfy
Inclusion Criterion 2, and is therefore not included. The approach described in
van Hinsbergen et al. [2009] is not included as the paper focuses on reducing
computational cost, and thus does not satisfy Inclusion Criterion 3. Wu et al.
[2012] describes a solution consisting of two parts, one for predicting normal
traffic conditions, and another for handling abnormal traffic conditions. As the
approach for setting the thresholds for what is considered normal and abnormal
traffic conditions is not explained, the paper does not satisfy Inclusion Criterion
2, and is not further investigated in this work. Although Lu [2012] satisfies all the
inclusion criteria, it is not included in the experiments. The proposed method’s
results are compared to a primitive baseline, which makes it difficult to deter-
mine how it compares to established methods such as ANN. This uncertainty
about the proposed method’s performance makes it unjustifiable to spend time
implementing.
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2.3.2 Methods

The motivation for including the methods used in the experiments in this study
is explained in the following sections.

Bagging

Sun [2009] investigates whether or not using a multitask learner will improve
upon using a simple task learner when predicting traffic flow. Additionally, the
authors look at the effect of using an ensemble of multitask learners compared to
just a single multitask learner. In contrast to single task learners, which predict
one variable at a time, multitask learners make predictions for several variables
simultaneously. The motivation for using multitask learners is that they may
incorporate more information during training because the different learning tasks
share some common properties. The method they use for combining predictions
from their ensemble of multitask learners is called bagging, which is described
in more detail in Section 3.1.1. The results from the experiments conducted in
Sun [2009] illustrate that bagging may improve prediction accuracy compared to
using just one model to make predictions.

Boosting

All though not present in any of the papers reported in the structured literature
review in Øien Lunde and Wolff [2014], boosting is included in this study. Boost-
ing is one of the most common ensemble learning techniques [Russell and Norvig,
2010] and is hence included due to completeness. Section 3.1.2 explains boosting
in more detail.

Lasso

Bagging combines its baseline models by simply computing an average. This
means that the baselines are combined without regards to their performance.
Another approach is to assign a weight to each model in the ensemble, represent-
ing its contribution to the ensemble’s output. The idea behind using a weighted
average is that the weights can be computed based on each model’s prediction
error, thus allowing the ensemble to adjust for errors in each model. This can
help improve the overall performance of the ensemble, e.g. by making the best
performing models more prominent.

In Li et al. [2014] three different weighting schemes are explored, namely least
squares, ridge regression and lasso [Tibshirani, 1996; Efron et al., 2004; Hastie
et al., 2009]. Their results indicate that the weighting schemes increase prediction
accuracy compared to the best performing baseline model. The strength of lasso
compared to the other weighting schemes is that it can automatically perform
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model selection, by assigning zero weight to some models, thus outputting a
weighted average of only the best performing models. This feature, i.e. being
able to automatically select the appropriate baseline models, makes lasso an
interesting approach. The weighting schemes tested in Li et al. [2014] are not
compared to a simple average or to any other ensemble approaches. Although
demonstrating the effectiveness of combining predictions with a weighted average,
the research does not indicate whether this approach is preferable to any other
ensemble approach. The lasso technique is described in more detail i Section
3.1.3.

Fuzzy Rule Based System

Stathopoulos et al. [2008] argues that the optimal relationships between the base-
line models in an ensemble are not necessarily linear, which is why a Fuzzy Rule
Based System (FRBS) [Bellman and Zadeh, 1970] capable of representing non-
linear relationships between baseline models is proposed in Stathopoulos et al.
[2008].

In general, an FRBS works by explicitly defining a set of rules that convert
inputs to an output. Since these rules are explicitly defined, one is able to in-
corporate expert knowledge and represent relationships between models that are
impossible to represent by linearly combining them. FRBSs are explained in
more detail in Section 3.1.4.

The contribution of Stathopoulos et al. [2008] is somewhat similar to Li et al.
[2014]. The experimental results demonstrate that the FRBS ensemble outper-
forms the best performing baseline in terms of prediction accuracy, but none
of their experiments compare the proposed method to any other ensemble ap-
proaches. Because the FRBS approach exhibits some interesting features, more
specifically its ability to represent non-linear relationships and to incorporate
expert knowledge, it is included in this comparison study.

Online Extended Kalman Filter

So far, the methods described focus on how to combine predictions from an en-
semble of models into one, hopefully more accurate, prediction. The other branch
of methods that the structured literature review in Øien Lunde and Wolff [2014]
reports, are methods capable of updating its underlying model each time new
observations arrive. These methods are often called online methods or incremen-
tal methods because they learn from one observation at a time and continually
update their model during the prediction phase. In contrast, offline methods first
learn, then they predict.

Van Lint [2008] presents an online method for predicting travel time using the
Extended Kalman Filter (EKF) approach for training the weights of an ANN.
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Van Lint makes the assumption that the weights in the ANN perform a random
walk along some high-dimensional path, and that the ANN makes a non-linear
observation of those weights when making a prediction. The EKF works in an
iterative fashion, updating its state vector and variance estimate each time step.
This makes it suitable for online learning. A more detailed description of the
method can be found in Section 3.2.1.

The results reported in Van Lint [2008] demonstrate that the online EKF
algorithm does not perform as good as an offline trained model. However, it
has the benefit of being online, which makes it more attractive for use in a
real time system. Offline methods are limited to the data it is exposed to during
training. This makes it hard for offline methods to predict outcomes for situations
it has never seen before. Online methods, on the other hand, updates its model
continuously as new observations arrive. This way it is capable of adapting its
model to the changes in the underlying data that happen over time. This leads
to a more adaptive model that does not get outdated if there is a change in the
underlying data.

Local Online Kernel Ridge Regression

Haworth et al. [2014] presents a novel online learning approach for travel time
prediction called Local Online Kernel Ridge Regression (LOKRR). The approach
is based on creating multiple kernels, each corresponding to a specific time interval
of the day, using ridge regression to predict travel times based on historical data.
One of the most significant drawbacks with using a single kernel to represent the
entire data set is that the amount of information it can incorporate is limited due
to computational complexity. This makes it difficult to capture properties such as
seasonal variations in the traffic data. LOKRR aims to deal with this limitation.
Since each kernel in LOKRR only needs to incorporate data from a certain time of
day, more historical data can be used in each kernel. This makes it easier to detect
cyclic patterns, such as rush hours, in the data. Additionally, the parameters of
each kernel can be tuned individually. This enables each kernel to adapt to its
underlying data distribution more effectively, thus increasing prediction accuracy.
Another important feature in LOKRR is that it uses a sliding window approach
to update the kernels with the most recent data, enabling it to adapt to changes
in the data. A detailed description of LOKRR can be found in Section 3.2.2.

The advantages of LOKRR are demonstrated in the experiments presented
in Haworth et al. [2014]. LOKRR outperforms a support vector machine and an
artificial neural network for certain prediction horizons in addition to providing
better prediction accuracy during non-recurrent congestion scenarios.
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Chapter 3

Models and Architecture

To give a theoretical backdrop for the rest of this work, this chapter explains
the methods used in this comparison study in more detail. Section 3.1 explains
the ensemble learning techniques bagging, boosting, lasso, and fuzzy rule based
system. Section 3.2 explains the online extended Kalman filter, and local online
kernel ridge regression.

3.1 Ensemble Learning

This section describes the different ensemble learning approaches used in this
study. All these approaches have in common that they combine the predictions
of a set of baseline members. Figure 3.1 illustrates this process where the same
data set is available to all K baselines, and K individual predictions are generated
from these baselines. The ensemble learning method combines these predictions
in some way into a final prediction.

3.1.1 Bagging

Bagging is an ensemble learning technique introduced in Breiman [1996]. Al-
though the technique is actually more concerned with how the models in the
ensemble are trained than how the models are combined, it is considered an en-
semble learning algorithm. During the bagging training phase, the K different
models are trained on individual subsets of the original training data. The subsets
are sampled uniformly with replacement from the training data. When making
a prediction from the ensemble, the mean of the predictions from the individual
members of the ensemble is used for regression problems, and majority voting is
used for classification problems.

17
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Figure 3.1: Ensemble Learning Process

It is important to note that the members of a bagging ensemble are all of
the same type, e.g. all models are artificial neural networks, or all models are k-
nearest neighbors models. Bagging’s ability to improve the baselines’ performance
is affected by which machine learning approach is used as baseline. Machine
learning approaches can be divided into two groups, stable and unstable learners.
A machine learning method is referred to as stable if a change in the training
set makes little to no change in the learned model. However, a machine learning
method is referred to as unstable if a change in the training set makes large
changes in the learned model. Breiman [1996] explains that bagging may work
well for ensembles of machine learning methods that are unstable. However,
one has little to gain from using bagging when the ensemble consists of machine
learning methods that are stable. The motivation for using unstable learners in
bagging is due to the fact that using unstable learners increases the probability
of generating models having different bias. Recall from Section 2.1.2 that having
baselines with different bias increases the ensemble’s probability of making an
accurate prediction.
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3.1.2 Boosting

Boosting is one of the most common ensemble learning techniques [Russell and
Norvig, 2010]. Like bagging, boosting re-samples the training data to construct an
ensemble of models. However, the sampling technique in boosting is different from
the one used in bagging. In boosting, each training example is given a weight.
This weight corresponds to the importance of the example, and is initialized
to 1 for all examples, meaning that each example is equally important. The
training examples for the first model in the ensemble are drawn from this uniform
distribution of weights.

During training, the first model will correctly classify some examples, while
other examples will be misclassified. For regression problems, there will be a re-
sulting prediction error in contrast to the correct-incorrect case for classification.
Before constructing the next model in the ensemble, the weights for each exam-
ple in the training data are updated, increasing the weights of the misclassified
examples, and reducing the weights of the correctly classified examples. For re-
gression problems, the weights are updated according to how large the prediction
error is compared to the largest prediction error among all examples [Drucker,
1997]. This way, the misclassified examples are given higher importance, and
have a higher probability of being sampled by the next model in the ensemble.
The idea is that the models are getting better at classifying these examples, and
that the ensemble is collectively predicting more accurately.

This iterative process continues until K models are constructed, where K is
a parameter to the boosting algorithm. When making predictions, a weighted
majority vote from the models in the ensemble is used. The weight of each model
is proportional to the number of correctly classified examples it has predicted
during training, or how low the prediction error is for regression problems.

3.1.3 Lasso Ensemble

Both bagging and boosting include all models in the ensemble when making the
final collective prediction. The motivation behind using lasso is to only include
the best performing models. Lasso creates a prediction by computing a weighted
average of its baselines’ predictions. The baselines’ weights are set in an attempt
to minimize the difference between the predicted and actual travel times across
all training examples. Due to the approach taken to optimize these weights, lasso
has the property that it may exclude the worst performing baseline models.

The experiment described in Li et al. [2014] uses sensors along a road to
register traffic data at N locations for T time steps. This data forms a matrix
F ∈ RN×T of recent traffic observations. Consider an ensemble of K models,
whose task is to make predictions about traffic variables at these N locations for
each time step. Each model k makes its prediction gtn(k) for location n at time t.
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This forms a matrix of predictions Gk ∈ RN×T . The models’ predictions are put
together in a vector G = [G1,G2, . . . ,GK ]. The ensemble’s collective prediction
htn for location n at time t is a weighted average of the member’s predictions:

htn =

K∑
k=1

wkg
t
n(k) (3.1)

where wk is the weight corresponding to model k. The ensemble’s predictions for
all N locations for all T time steps forms a matrix H, and is given by H = GW,
where W = [w1, w2, . . . , wK ]. Different W will result in different predictions,
and in turn different prediction accuracies. How do we find the optimal set of
weights Ŵ?

One of the proposed solutions in Li et al. [2014] to this question is to use
lasso ensemble [Tibshirani, 1996; Efron et al., 2004; Hastie et al., 2009]. In this
approach, the optimal set of weights is given by solving the following equation:

Ŵ = arg min
W

‖F−GW‖22 + λ‖W‖1 (3.2)

where ‖F−GW‖22 is the l2 norm of the least squares solution, ‖W‖1 is the l1 norm
of the weights, and λ is a regularization term controlling the importance of the
l1 norm of the weights. Li et al. [2014] explains that having this l1 regularization
of the weights leads to a sparse solution, corresponding to many weights being
zero. This means that only some of the models are included when making the
final prediction. This is advantageous as the lasso ensemble technique selects
the best performing models in the ensemble, and accumulates their prediction
into the ensemble’s final prediction. Li et al. [2014] explains that having a broad
range of models in combination with the lasso ensemble approach may produce
good results as large parts of the parameter space is thus covered, and the best
performing of them is included in the final prediction.

The baseline models used in this work’s lasso ensemble are SVM, k-NN, ANN
and Kalman filter. These four methods are chosen as baselines as they are re-
ported in Sj̊afjell et al. [2013] as commonly used methods in the traffic literature.
Figure 3.2 demonstrates the architecture of the lasso ensemble.



3.1. ENSEMBLE LEARNING 21

Figure 3.2: Lasso ensemble process

3.1.4 Fuzzy Rule Based System

An FRBS is a machine learning approach where a set of rules define its behaviour.
These rules can either be manually created, thus enabling the ability to incorpo-
rate expert knowledge, or automatically created based on a data set. In terms of
using an FRBS to predict travel time, the rules can constitute a mapping from
a set of baselines’ predictions into a single prediction. Consequently, an FRBS
is capable of capturing non-linear relationships between the baselines’ predic-
tions and the ensemble’s output. An FRBS consists of a fuzzyfication stage, an
inference system, and a defuzzyfication stage.

The fuzzyfication stage assigns input values to fuzzy sets. Fuzzy sets are sets
whose elements have degrees of membership. What degree of membership an
input is given to a fuzzy set is defined by a membership function. Basically what
a membership function does is that it returns a probability that some value is
a member of a fuzzy set. Imagine a system predicting people’s weight based on
their height. Two possible fuzzy sets describing a persons height are short and
tall. E.g. the height 185 cm can be assigned the degrees 0.2 and 0.8 to short and
tall, respectively. This situation is illustrated in Figure 3.3.

The inference system is used to generate outputs based on the fuzzyfied input.
It consists of a number of if-then rules, referred to as the rule base, that define
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what to do when some condition is satisfied. The rule base basically constitutes
a complete mapping from all possible inputs to outputs. In the example FRBS
described above, a rule could be ”If a person is tall then that person is heavy”.
In contrast to typical black-box approaches such as artificial neural networks, the
behaviour of an FRBS can easily be interpreted because its behaviour is explicitly
described in the rule base.

The responsibility of the defuzzification stage is to convert the values rep-
resenting membership degrees returned by the inference system into one single
output. For example converting membership degrees of heavy and light into
kilograms.

Stathopoulos et al. [2008] employs an FRBS to combine forecasts from two
different models predicting traffic flow: ANN and Kalman filter. The traffic flows
are mapped to the fuzzy sets low, medium and high. The FRBS consists of two
different rule bases, each preferring one of the models over the other, as seen
in Table 3.1. When predicting traffic flow at time t + 1, the rule base giving
priority to the best performing model at time t is selected. The output from
the rule base is then converted back to a traffic flow value using the center of
gravity algorithm [Takagi and Sugeno, 1985]. The center of gravity defuzzification
rule works by first cutting the triangular membership functions at the computed
degree of membership. This forms a trapezoid for each function. Next, these
trapezoids are combined into one polygon. Then, the center of gravity of this
polygon is computed, and the first component of the center of gravity point is used
as the defuzzified value. An illustration of the center of gravity defuzzification
rule is presented in 3.4. The FRBS used in this study follows the same approach
as described in Stathopoulos et al. [2008], and the structure of the FRBS is
illustrated in Figure 3.5.

3.2 Online Learning

This section describes the two online learning approaches used in this study,
online EKF and LOKRR.

3.2.1 Online Extended Kalman Filter

The Kalman filter approach is used in signal processing to filter out noise in an
input signal, in order to reconstruct a smoothed estimate of the original signal.
The idea in Van Lint [2008] is to view the weights in an ANN as a signal, and
apply the Kalman filter to update its weights. As the weights in the ANN are
updated each time a new observation is available, the approach is considered
to be online. To explain the online EKF, this section starts by explaining the
Kalman filter and its extension, EKF. Next, this section explains how the EKF
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Figure 3.3: Example of membership functions

Figure 3.4: Center of gravity defuzzification rule
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Figure 3.5: FRBS ensemble process

IF predicted flow of model A is LOW AND predicted flow of model B is LOW,
THEN flow at time t+ 1 is LOW
IF predicted flow of model A is LOW AND predicted flow of model B is NOT
LOW, THEN flow at time t+ 1 is LOW
IF predicted flow of model A is MEDIUM AND predicted flow of model B is
MEDIUM, THEN flow at time t+ 1 is MEDIUM
IF predicted flow of model A is MEDIUM AND predicted flow of model B is
NOT MEDIUM, THEN flow at time t+ 1 is MEDIUM
IF predicted flow of model A is HIGH AND predicted flow of model B is HIGH,
THEN flow at time t+ 1 is HIGH
IF predicted flow of model A is HIGH AND predicted flow of model B is NOT
HIGH, THEN flow at time t+ 1 is HIGH

Table 3.1: Rule base used in Stathopoulos et al. [2008].
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can be used for training the weights of an ANN, and how the online-delayed EKF
and censored EKF conduct this training in an incremental fashion.

Kalman Filter

The Kalman filter is an approach for making estimations about some state vector
xt at time t from noisy observations [z0, z1, . . . , zt−1, zt] from time t = 0 to time
t. It is assumed that there is a linear relationship between the state vector xt at
time t and the state vector xt+1 at time t+1. Additionally, it is assumed that the
process evolves with some uncertainty, and that this uncertainty can be modelled
as a term following a zero mean Gaussian distribution. These assumptions yield
the basis for the transition model, describing the relationship between successive
states in the system, which can be expressed by the following equation:

xt+1 = Fxt + But + εprocess (3.3)

where xt+1 is the state vector at time t+1, xt is the state vector at time t, F is a
matrix that represents the relationship between the variables in the state vector
at time t and t + 1, B is a matrix that represents the effect that the input ut,
given to the system at time t, has on the state vector. εprocess is the error term
that represents the uncertainty with which the system evolves. εprocess follows a
zero mean Gaussian distribution which has covariance matrix Q.

It is further assumed in the Kalman filter that the state vector xt can not be
observed directly. One can only gain insight to the state vector through obser-
vations of related variables in observation vector zt. It is assumed that there is
a linear relationship between the unobservable state vector xt and the observa-
tion vector zt. It is also assumed that the observations are noisy, which means
that there is some uncertainty related to the observations. This uncertainty is
assumed to follow a zero mean Gaussian distribution. Putting this together, the
observation model, describing the relationship between observations and the state
vector, can be expressed by the following equation:

zt = Hxt + εobservation (3.4)

where zt is the observation at time t, xt is the state vector at time t, H is a matrix
that represents the relationship between the observations and the state vector.
εobservation represents the uncertainty related to the observation, following a zero
mean Gaussian distribution with covariance matrix R.

The Kalman filter approach provides the following equations for making pre-
dictions about the system in question:

x̂t|t−1 = Fx̂t−1|t−1 + But (3.5)



26 CHAPTER 3. MODELS AND ARCHITECTURE

Pt|t−1 = FPt−1|t−1F
T + Q (3.6)

where x̂t|t−1 is the prediction of the state vector at time t given observations
up to time t = t − 1, x̂t−1|t−1 is the estimate of the state vector at time t − 1
given observations up to time t = t − 1. Pt|t−1 is the covariance matrix of
x̂t|t−1, representing the uncertainty related to the prediction made, Pt−1|t−1 is
the covariance matrix representing the uncertainty from the previous iteration.

After making an observation zt at time t, the Kalman filter approach provides
the following equations for updating the estimation of the state vector and its
uncertainty:

x̂t|t = x̂t|t−1 + K(zt −Hx̂t|t−1) (3.7)

Pt|t = Pt|t−1 −KHPt|t−1 (3.8)

where x̂t|t is the updated estimate for the state vector, x̂t|t−1 is the predicted
state vector, K is the Kalman gain matrix which is given by the following ex-
pression:

K = Pt|t−1H
T (HPt|t−1H

T + R)−1 (3.9)

The Kalman filter operates in an iterative fashion, starting with an initial state
vector xt=0 and a corresponding covariance matrix Pt=0 at time t = 0. Then
it makes a prediction for the state vector x̂t=1|t=0 and its uncertainty Pt=1|t=0

for time t = 1. Next, it makes an observation zt=1 at time t = 1 providing the
basis for updating the state vector x̂t=1|t=1 and its uncertainty Pt=1|t=1 for time
t = 1. Now the process starts over again, making a prediction for the next time
step, doing an observation, updating the state vector etc.

Extended Kalman Filter

The Kalman filter approach described above assumes that the relationship be-
tween successive states, and the relationship between observations and state vec-
tor, are linear. However, this may not be sufficient to model all systems and
processes. The EKF generalizes the ideas from the Kalman filter and does not
assume that these relationships are linear. Allowing non-linear relationships in
the model yields the following transition and observation model equations:

xt+1 = f(xt,ut) + εprocess (3.10)
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zt = g(xt) + εobservation (3.11)

where f and g are arbitrary continuous, differentiable functions.
Since the transition and observation models are changed in the EKF, the

prediction and update equations have to be updated to reflect this non-linear
relationship. The prediction equations for the EKF can be expressed as:

xt|t−1 = f(xt−1|t−1,ut) (3.12)

Pt|t−1 = JfPt−1|t−1J
T
f + Q (3.13)

where Jf is the Jacobian of function f .
The update equations for the EKF can be expressed as:

x̂t|t = x̂t|t−1 + K(zt − g(x̂t|t−1)) (3.14)

Pt|t = Pt|t−1 −KJgPt|t−1 (3.15)

where the Kalman gain matrix is expressed as:

K = PJTg (JgPJTg + R)−1 (3.16)

and Jg is the Jacobian of function g.

Artificial Neural Network Weight Training

The above explanations of the Kalman filter and the EKF are general and not
written to be specific to any problem, process or system. This section explains
how the EKF can be applied for training the weights in an ANN.

An ANN consists of several layers of neurons. Each neuron outputs a signal
which is generated by applying a function, often a non-linear sigmoid shaped
function, to a weighted sum of its input signals. A common structure of an
ANN is having an input layer, one or more hidden layers, and an output layer.
The neurons are connected to each other with weighted edges, propagating signals
from inputs to outputs. During training, the network is exposed to a set of input-
output pairs. The network propagates the input signals through the network, and
the output signal from the output neuron is compared to the correct output in
the input-output pair. Then the weights are adjusted to make the difference
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between the network’s output and the correct output as small as possible across
all training examples.

The outputs of the network can be seen as a non-linear function of the input
signals to the network and the weights in the network. The idea presented in
Van Lint [2008] is that one can consider the weights in an artificial neural net-
work to perform a random walk along a high-dimensional path. These weights
constitute the state vector, and the artificial neural network is assumed to make
a non-linear observation of the weights through the network’s outputs. This state
space definition can be expressed as:{

θt = θt−1 + rt, rt ∼ N (0, Rt)

yt = G(xt, θt)
(3.17)

where θt represents the weights at time t, θt−1 represents the weights at time
t− 1, rt represents the uncertainty with which the weights evolve, and G(xt, θt)
represents the mapping from inputs to outputs in the ANN. Given this state-
space definition, one can apply the EKF equations explained in Section 3.2.1 to
update the weights in the artificial neural network in an incremental fashion.

Online-Delayed Extended Kalman Filter

A common setting for prediction tasks is to make a prediction ŷt based on an
input xt at time t, observe the correct output yt, and update the model given
the prediction error ε = ŷt − yt. This approach is applicable for many problems.
However, it assumes that at the time that the prediction ŷt is made, the correct
output yt is available. For many problems this is true, but this is not the case
for travel time prediction. Imagine predicting travel times for a road section
stretching from point A to point B. When a vehicle arrives at point A at time
tA, one wants to make a prediction ŷAB for how long it will take for that vehicle
to arrive at point B, given the current traffic flow, traffic density and vehicle
speeds xtA . Making the prediction is straight forward, the input values xtA are
fed into the model, and a prediction ŷAB is given as output. However, the model
cannot correct for the prediction error ε = ŷAB − yAB until the actual travel
time yAB spent driving from point A to point B is available. This travel time
is available at time t = tA + yAB . This is the approach taken in online-delayed
EKF, where a prediction is made when a vehicle enters the road section, and the
model is updated when the actual travel time for that vehicle is available. As the
name indicates, this approach yields a model that is delayed. The weights of the
artificial neural network is not updated until the realized travel time is available,
which may be an arbitrary long time, especially during congestion. This makes
the model lag behind the traffic situation.
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Censored Extended Kalman Filter

To reduce the delay of when the model is updated, Van Lint [2008] proposes an
approach that makes use of a censored observation of the realized travel time.
Imagine a vehicle when it has just passed point B, lets call this point in time
p. This vehicle entered the road section at some time m and spent dm seconds
driving from point A to point B, where m = p − dm. Consider all vehicles
starting at some time k where m < k < p for which no realized travel time is
available yet. Van Lint [2008] suggests that a censored observation of the travel
time dk is d∗k = p − k. This censored observation of the actual travel time can
be used as a lower bound estimate for the actual travel time during training,
and the model can be updated at an earlier time p instead of being updated at
time k + dk which is at a later point in time. This may lead to a model that
reflects the traffic situation better than online-delayed EKF. This effect is best
seen during the time when congestion is building up. In online-delayed EKF,
as the travel times increase, it takes increasingly longer time until the model is
updated. However, in censored EKF, the censored observations for these travel
times provide an increasingly more accurate estimate of the actual travel time,
and the model is updated incrementally as more censored observations become
available. This leads to a model that better reflects the current traffic situation,
and may lead to higher prediction accuracy.

3.2.2 Local Online Kernel Ridge Regression

In Haworth et al. [2014] a novel approach for travel time prediction is introduced,
namely LOKRR. The approach is based on dividing the day into five minute
intervals, and creating a travel time prediction model for each interval. This is
done in order to capture traffic conditions that are local to a specific time of
the day. As new observations become available, the travel time prediction model
responsible for that specific time of day is updated. Consequently, the approach
is considered online. The approach is based on using kernel ridge regression to
generate a prediction for a data point as follows:

g(x) = y′(K + λIn)−1k (3.18)

In Equation 3.18, x is a new observation, K is a kernelized version of matrix
X, which is a n × p matrix with n observations of p variables, y is a vector of
size n where element i corresponds to the true value for observation i in X, λ is
the regularization parameter, and k is a vector of size n where element i is the
value of a kernel function between the new observation x and row i in X.
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The kernel function used in Haworth et al. [2014] is the Gaussian radial basis
function kernel:

G(x, z) = exp (−‖x− z‖2

2σ2
) (3.19)

K is generated by computing the value of Equation 3.19 between every pair of
observations in X. ‖x− z‖2 is the squared Euclidean distance between vectors x
and z, whilst σ is the kernel bandwidth parameter controlling the smoothness of
the function.

The idea in LOKRR is to divide the day into five minute intervals. For each
interval, a data set containing observations of travel times during that specific
interval for the last N days is created. This data set is what is referred to as the
X matrix in Equation 3.18. A kernel is created for each interval by computing the
K matrix based on X. By creating a kernel for each interval, LOKRR is better
able to capture subtle differences in traffic patterns that are local to specific times
of the day. If one single big kernel was used for the entire data set, these local
differences would be a lot more difficult to detect.

Haworth et al. argue that recurring events such as congestion during rush
hours do not necessarily happen at exactly the same time every single day, which
is why each kernel also contains data from its neighboring intervals. For a kernel
responsible for interval t, its X matrix contains data from interval t−w to interval
t+w, where w is the window size. This is done to create a buffer for when events
can happen, whilst still being detectable by a single kernel.

To generate a travel time prediction for an observation x at time t, LOKRR
uses the kernel responsible for interval i containing time t to calculate Equation
3.18. As soon as the true travel time is observed, all the kernels responsible for
an interval in the range [i − w, i + w] update their X matrix. This means that
K and K−1 also need to be updated. Doing this every time a new travel time
is realized is computationally expensive. Therefore, a method that significantly
reduces the computation time by computing the inverse of K at time t+ 1 based
on the inverse at time t is used. The method is described in detail in Haworth
et al. [2014, p. 156].



Chapter 4

Experiments and Results

This chapter presents the experiments performed in this study along with their
results. Section 4.1 describes the intent of each experiment and how they are
conducted. Section 4.2 explains the experimental setup, describing the data
set, and model parameters. Section 4.3 describes the environment in which the
experiments are run. Section 4.4 presents the results of the experiments.

4.1 Experimental Plan

This section introduces the different measures that are used to evaluate the per-
formance of the approaches investigated in this study, in addition to describing
the two experiments that are conducted.

4.1.1 Performance Metrics

The two performance metrics presented below are chosen because they are exten-
sively used in the literature when comparing predicted values to observed values.
They are measures representing the performance of a model using a single num-
ber, making it easy to compare the models to each other.

The first performance metric used is Root Mean Squared Error (RMSE),
which is expressed as:

RMSE =

√∑t=N
t=1 (ŷt − yt)2

N
(4.1)

where ŷt is the predicted value, yt is the observed value and N is the number of
observations.

31
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Although RMSE is a commonly used error metric, it should be noted that
one of the most prominent drawbacks with the RMSE comes from the fact that
it squares the difference between predicted values and observed values. Large
errors are therefore weighted exponentially more than small errors, making the
RMSE sensitive to extreme values.

The other performance metric used is Mean Absolute Error (MAE), which is
expressed as:

MAE =
1

N

n∑
i=1

|ŷt − yt| (4.2)

where ŷt is the predicted value, yt is the observed value and N is the number of
observations.

As both RMSE and MAE are measures of the difference between the predicted
and actual values, accurate predictions will result in low RMSE and MAE values.
Therefore, minimizing RMSE and MAE is desirable.

4.1.2 Experiment 1 - Ensemble Learning

Experiment 1 is conducted in an attempt to answer Research Question 1, which
relates to the prediction accuracy of each ensemble learning method described
in Section 3.1. The outline of Experiment 1 is presented below, and Research
Question 1 is repeated for convenience.

Outline Use predictions from a set of baselines to construct the ensemble learn-
ing methods bagging, boosting, lasso, and FRBS. Compare the ensembles to
each other, and a simple average of the baselines’ predictions, with respect
to prediction accuracy.

Research Question 1 Given a set of baseline methods, which ensemble learn-
ing technique yields the best prediction accuracy?

Baseline Models

The first step in this experiment is to tune the parameters of the baseline meth-
ods SVM, k-NN, ANN and Kalman filter. This parameter tuning is performed
on a designated part of the data set. A grid of possible parameters for each
baseline is constructed, and a separate model for each combination of parameters
is trained using k-fold cross-validation. For each baseline, the set of parameters
that produce the lowest RMSE during the grid search is used in Experiment 1.

The baseline models are trained on a separate part of the data set with the
parameters obtained from the parameter tuning step, and are used to make pre-
dictions for the rest of the data set.
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Ensemble models

The next part of the experiment consists of training the ensemble learning models.
The predictions from the baselines are divided into a training and a testing set
for the ensemble learning techniques. Lasso and FRBS use the training set to
tune their parameters and then make predictions for the testing set. Bagging and
boosting differ from lasso and FRBS in terms of how they are constructed. Instead
of constructing a model based on predictions from the same set of baselines as
lasso and FRBS, they are concerned with constructing multiple versions of one
type of baseline model. In order to give bagging and boosting a fair basis for
comparison, their baselines are built on the same data set as the baselines used
in lasso and FRBS. In addition, a naive ensemble learning approach taking the
average of the baselines’ predictions is constructed. The simple average of the
baselines’ predictions is included to give a basis for comparison to the other
ensemble learning approaches.

In order to evaluate the performance of the ensemble methods in terms of
prediction accuracy, their performance metrics and the properties of their er-
ror distributions are inspected. Additionally, hypothesis testing is conducted
to investigate whether or not the potential differences between the methods are
significant.

4.1.3 Experiment 2 - Online Learning

Experiment 2 sets out to give an answer to Research Question 2, which is con-
cerned with finding the best performing online learning technique among the ones
described in Section 3.2. The outline of Experiment 2 is presented below, and
Research Question 2 is repeated for convenience.

Outline Train online-delayed EKF and LOKRR on a common data set and
compare the two approaches with respect to prediction accuracy.

Research Question 2 Which online learning technique yields the best predic-
tion accuracy?

Section 3.2.1 explains two ways of using the EKF to train an ANN in an
online fashion, namely online-delayed EKF and censored EKF. Implementing the
censored EKF approach is more time consuming than implementing the online-
delayed EKF. Van Lint [2008] reports that using the censored EKF in favor
of the online-delayed EKF only results in a slight improvement of prediction
accuracy. Because the censored EKF approach requires more time to implement,
and only offers a slight improvement over online-delayed EKF, it is decided to
only investigate the latter approach in this study.
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Parameters for the two online learning approaches online-delayed EKF and
LOKRR are tuned using a designated part of the data set. The approach taken
to tune the parameters of online-delayed EKF and LOKRR is similar to the one
taken to tune the parameters of the baselines in Experiment 1. A grid of possible
parameters is constructed, and a model for each combination of parameters is
trained. The performance of each model is assessed using RMSE, and the model
with best performance is chosen to be used in the next step of the experiment.
This model is then used to make predictions, and learn when observations become
available, for the rest of the data set.

In order to evaluate the performance of the online learning methods in terms
of prediction accuracy, their performance metrics and the properties their er-
ror distributions are inspected. Additionally, hypothesis testing is conducted
to investigate whether or not the potential differences between the methods are
significant.

4.2 Experimental Setup

This section describes how the experiments are set up, including the data set
and parameter tuning for the baselines, ensemble learning approaches and online
learning approaches.

4.2.1 Data Description

The data used in the experiments in this study is collected by the NPRA from
highway E39 between Dusavik and Bogafjell in Rogaland, Norway. The route
is illustrated in green in Figure 4.1. There are in total five measurement points
along this route, illustrated as black lines across the road in Figure 4.1. Data
from two consecutive points, Tjensvoll and Auglendshøyden, along this route is
used in the experiments. The stretch is 4.6 km long, and the data is collected
in the southbound direction between January 29, 2015 and March 31, 2015. The
road section is highlighted in red in Figure 4.1.

The data set consists of two input variables and one output variable. The two
input variables used are mean travel time the last five minutes, and traffic flow
at the entry point the last five minutes. The value of each variable is computed
at the time a vehicle enters the road section. The output variable in the data set
is the realized travel time for the vehicle. The data is collected by registering IDs
from AutoPASS tags in vehicles driving along this road section. Travel times are
derived by computing the time difference between the registration of the same
AutoPASS identification number at the two points. The mean travel times are

1http://www.reisetider.no/reisetid/omrade.html?omrade=4, April 19, 2015

http://www.reisetider.no/reisetid/omrade.html?omrade=4
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Figure 4.1: Map showing the route where the data is collected from.1

trivial to compute once the travel times are registered. Traffic flow is derived
from counting the number of vehicles passing the first registration point. The
data set consists of 247 074 observations, and the first ten rows of the data set
are shown in Table 4.1.

A plot of all individual travel times and five minute mean of all travel times
for January 29, 2015 can be seen in Figure 4.2 and Figure 4.3, respectively. A
plot of the traffic flow based on all vehicles for the same day is displayed in Figure
4.4. By inspecting the travel times plotted in Figure 4.2 it can be seen that a
considerable amount of outliers are present in the data set. These are seen as dots
lying far above the travel times representative for the current traffic situation.
The outliers may represent commuters stopping along the road section to fill gas
or to run other errands. In order to train models on observations in the data
set that are representative for the actual traffic situation, an attempt to remove
outliers is conducted. All rows in the data set having a travel time outside the
range [µ − 3σ, µ + 3σ] are removed, where µ is the mean of the travel times in
the data set and σ is the standard deviation of the travel times in the data set.
The data set where outliers are removed is used in Experiment 1.

In real time systems, where online approaches may be used, removing outliers
from the data set is not as straight forward as the approach described above.
A global threshold for removing outliers will not suffice, as changes to the data
set can happen over time, and the same threshold will not always lead to correct
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removals. One can imagine using a more local approach to remove outliers, where
travel times above some weighted sum of the x previous travel times are not fed
to the online learning method. However, such an attempt to remove outliers is
not performed in this work, and the online learning approaches in Experiment 2
are trained using the unprocessed data set.

Figure 4.2: Plot of all travel times from January 29, 2015

Figure 4.3: Plot of five minute mean of all travel times from January 29, 2015

Figure 4.4: Plot of traffic flow based on all vehicles from January 29, 2015
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Date and time Mean travel time Traffic Flow Travel Time
2015-01-29 00:01:25 298.67 4 242
2015-01-29 00:05:14 690 6 1111
2015-01-29 00:07:05 386.67 6 243
2015-01-29 00:11:55 243 4 241
2015-01-29 00:27:43 1111 2 639
2015-01-29 00:28:25 1111 3 223
2015-01-29 00:35:34 223 3 292
2015-01-29 00:37:27 300 3 249
2015-01-29 00:39:47 639 6 335
2015-01-29 00:40:11 639 8 302

Table 4.1: Example rows from the data set

4.2.2 Baselines

This section describes each baseline method used in Experiment 1. The process
applied to every baseline is presented in the first section below, whilst specific
details about each baseline is given in the following sections.

Overview

The baseline methods used in Experiment 1 are implemented in R [R Core Team,
2014]. Parameter tuning and training for SVM, k-NN and ANN is done through
the library caret [Kuhn et al., 2015], which is a library meant to make the
process of constructing predictive models in R easier. In this work, caret is used
as a layer between the authors code in R and the respective implementations of
the baseline methods. caret provides structures for setting the grid for which
parameters are to be searched among, and returns the model with parameters
providing the best performance in terms of RMSE. Tuning and training of the
Kalman filter is done with the R library dlm [Petris, 2010].

The baselines use the data set were outliers are removed. In order to find the
best set of parameters for each baseline, 10-fold cross-validation on data from
January 29, 2015 to February 1, 2015 is used. Each baseline is then trained with
the best set of parameters on data from February 5, 2015 to February 25, 2015.
The resulting models are then used to generate predictions from Febrary 26, 2015
to March 31, 2015.
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Support Vector Machine

The SVM implementation used in this work is from the R library kernlab [Karat-
zoglou et al., 2004]. When using SVMs one can choose among several kernel
functions. To determine which kernel to use in the SVM of Experiment 1, a
preliminary experiment comparing the RMSE of SVM models using linear, poly-
nomial and radial basis kernel functions is conducted. The training data for these
models are observations from January 29, 2015 to February 1, 2015. The testing
data, for which the RMSE is computed, is from February 2, 2015 to February 4,
2015. For each kernel, a grid of possible parameter values is searched in order
to find the best set of parameters. The SVM with a radial basis kernel function
produced the lowest RMSE, and is therefore selected to be used in Experiment
1. Among the parameter values tested in the grid search for the radial basis
function SVM models, the parameters σ = 4.1451 and C = 2−1 produced the
best performing model, and is the one used in Experiment 1. For a more detailed
description of the parameter search for SVM, please see Appendix B.1.

k-Nearest Neighbors

The k-NN implementation used in this work is from the R library kknn [Schliep
and Hechenbichler, 2014]. The parameters that are possible to tune in kknn are
k, distance measure and kernel. The k parameter controls how many neighbors
to extract from the instances present in the data set when making predictions.
The distance measure parameter controls how the distance between two points
in the data set is computed. The kernel parameter controls how to weight the
values of the k neighbors based on their distance. In order to find a good set of
parameters for the weighted k-NN algorithm a grid search is performed. Based
on the results from the grid search, the following parameters lead to the lowest
RMSE: k = 50, distance measure = 1 (Euclidean) and kernel = Rank. Please see
Appendix B.1 for a more comprehensive description of the grid search process.

Artificial Neural Network

The ANN implementation used in Experiment 1 is from the R library nnet [Ven-
ables and Ripley, 2002]. The nnet library provides functions for creating and
training feed forward ANNs with a single hidden layer. The parameters being
tuned for the ANN is the number of hidden nodes in the network and the weight
decay parameter. The parameters producing the lowest RMSE are: number of
hidden nodes = 16 and decay= 1× 10−4. Please see Appendix B.1 for a more
elaborate description of the parameters, and a table presenting the results for
each combination of parameters.
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Kalman Filter

dlm, which is an R library providing functions for defining dynamic linear models
of various types, is used to perform the Kalman filter predictions in Experiment
1. The actual travel times of the data set form a time series, and it is assumed
that this time series of travel times can be modelled using a first order linear
model with the following state space formulation:{

yt = θt + vt, vt ∼ N (0, Vt)

θt = θt−1 + wt, wt ∼ N (0,Wt)
(4.3)

where yt is the observed travel time at time t, θt is the actual travel time at
time t, which is assumed to be unobservable, vt is the observation noise and wt
is the process noise. Both vt and wt are assumed to follow a zero mean Gaussian
distribution with covariance matrices Vt and Wt, respectively.

The parameters that are tuned for this model are the covariance matrices Vt
and Wt. Since yt and θt are univariate, matrices Vt and Wt are 1 × 1 matrices,
and only one value per covariance matrix is tuned. Vt and Wt are set to 47 939
and 122, respectively. In order to give a complete definition of the dynamic linear
model, an initial estimate of yt=0 and its variance σt=0 has to be provided. This
is set to be the mean and standard deviation of the training observations, which
are 242 and 255, respectively. A detailed description of the parameter tuning
process can be found in Appendix B.1.

4.2.3 Ensemble Learning Methods

The setup of each ensemble method used in Experiment 1 is presented in this
section. The general procedure is described in the first section below, whilst
specific details concerning the setup of each ensemble method can be found in
the following sections.

Overview

Bagging and boosting train multiple SVMs on the same data set used to train
the baselines described in Section 4.2.2, which consists of data from February 5,
2015 to Febrary 25, 2015. These SVMs then generate predictions on data from
February 26, 2015 to March 31, 2015.

Lasso and FRBS use the predictions of the baselines described in Section 4.2.2
as input. Lasso is tuned and trained on predictions made by the four baselines
from February 26, 2015 to March 18, 2015. Lasso’s predictions are generated
based on the predictions of the four baselines from March 19, 2015 to March
31, 2015. Due to the computational complexity of FRBS, only one week of data
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from February 26, 2015 to March 4, 2015 is used to search for the best set of
parameters. As the rules in the FRBS are manually created, no training phase is
necessary. Predictions by FRBS are generated from March 5, 2015 to March 31,
2015.

Bagging

The bagging method is implemented in R. There are two parameters that must
be specified for bagging: the number of learners K to use in the ensemble, and
the number of observations N to sample for each learner. In Experiment 1, K
is set to 25, and N is set to the number of training examples in the training
set. An SVM model with the parameters of the best performing model from the
parameter tuning step for SVM reported in Section 4.2.2 is used, i.e. an SVM
model with a Gaussian radial basis function as kernel, σ = 4.1451 and C = 2−1.

Boosting

In order to investigate the effects of boosting, the AdaBoost algorithm [Freund
and Schapire, 1997] is used. An implementation of the AdaBoost.r2 algorithm
[Drucker, 1997], which is a version of the AdaBoost algorithm for regression prob-
lems, is found in the Python library scikit-learn [Pedregosa et al., 2011]. Of
the baseline methods used in this work, the only method that is both imple-
mented in scikit-learn and supports weighting of training examples is SVM.
It is therefore used as the baseline in the boosting ensemble in Experiment 1.
An SVM model with the same parameters as the one used in bagging is also
used for the boosting approach. The only parameter provided to the AdaBoost
algorithm is the number of learners K to use in the ensemble, which is set to 25
in Experiment 1.

Lasso Ensemble

The implementation of the lasso method from the R library elasticnet [Zou
and Hastie, 2012] is used in Experiment 1. The elasticnet library provides
functions for defining elastic nets, of which the lasso method is a special case.
Recall from Equation 3.2 in Section 3.1.3 that the optimal weights in lasso is
given by solving the following equation:

Ŵ = arg min
W

‖F−GW‖22 + λ‖W‖1

where λ is a parameter of the Lasso method. caret provides functionality for
optimizing this λ parameter through a grid search, where RMSE is used to assess
the performance of a given λ value. A λ value of 1 resulted in the lowest RMSE,
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IF ANN is low and KF is low THEN output is low
IF ANN is low and KF is not low THEN output is low
IF ANN is medium and KF is medium THEN output is medium
IF ANN is medium and KF is not medium THEN output is medium
IF ANN is high and KF is high THEN output is high
IF ANN is high and KF is not high THEN output is high

Table 4.2: Rule base preferring ANN over Kalman filter (KF)

IF KF is low and ANN is low THEN output is low
IF KF is low and ANN is not low THEN output is low
IF KF is medium and ANN is medium THEN output is medium
IF KF is medium and ANN is not medium THEN output is medium
IF KF is high and ANN is high THEN output is high
IF KF is high and ANN is not high THEN output is high

Table 4.3: Rule base preferring Kalman filter (KF) over ANN

and is the one used in Experiment 1. More details concerning the parameter
tuning of lasso can be found in Appendix B.2.

Fuzzy Rule Based System

The R library frbs [Riza et al., 2015] is used to generate an FRBS based on the
approach described in Stathopoulos et al. [2008]. The input to the FRBS is a
data set containing predictions from the ANN and the Kalman filter described
in Section 4.2.2. Following the approach described in Stathopoulos et al. [2008],
two different rule bases, each preferring one of the two baselines, are used. The
rule base preferring ANN is displayed in Table 4.2, whilst the rule base preferring
Kalman filter is illustrated in Table 4.3. The travel time predictions from the
baselines are mapped with triangular membership functions to three fuzzy sets:
low, medium, and high. Data from February 26, 2015 to March 4, 2015 is used to
optimize the membership function parameters. The final membership parameters
are presented in Table 4.4 and Table 4.5. The value b defines the peak of the
triangle, whilst the values a and c define the left and right boundary of the
triangle, respectively. Please refer to Appendix B.2 for more details with regards
to the FRBS setup.
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low medium high
a 204.5799 292.2150 298.0683
b 287.4319 313.9751 1111.8725
c 302.5835 404.7539 1448.2825

Table 4.4: Membership function parameters for FRBS preferring ANN

low medium high
a 164.3251 240.4815 272.8217
b 328.2455 344.3591 968.0878
c 332.7156 1039.4697 1700.2693

Table 4.5: Membership function parameters for FRBS preferring Kalman filter

4.2.4 Online Learning Methods

This section presents the setup of the online methods used in Experiment 2.
First, the general approach is described. Second, specific details for the individual
methods are presented in their respective sections.

Overview

The online learning methods are tuned and trained on two weeks of data from
January 29, 2015 to February 11, 2015. The first week is used to build the models
with a certain set of parameters, whilst the second week is used to calculate the
RMSE of the predictions done during that week. Since the methods are online,
the data in the second week is also used to update the models whilst making pre-
dictions. The parameters that lead to the lowest RMSE during parameter tuning
is used in the final model. Predictions are generated from February 12, 2015 to
March 31, 2015. No outliers are removed in the data set used in Experiment 2.

Online-Delayed Extended Kalman Filter

An implementation of the EKF [Cao, a] and using this EKF to train a feed-
forward ANN [Cao, b] is found in Matlab [MATLAB, 2014] on the Matlab Central
File Exchange2. Recall from Equation 3.17 in Section 3.2.1 that the state space
definition that is assumed for the EKF can be expressed as follows:{

θt = θt−1 + rt, rt ∼ N (0, Rt)

yt = G(xt, θt)

2http://www.mathworks.com/matlabcentral/fileexchange/, May 21, 2015

http://www.mathworks.com/matlabcentral/fileexchange/
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where θt represents the weights in the feed-forward ANN at time t, rt is the noise
with which the weights are assumed to evolve, and G represents the mapping
performed by the ANN from inputs xt to output yt given weights θt.

Recall from Section 3.2.1 that an initial estimate of the state vector xt=0,
its covariance matrix Pt=0, process noise covariance matrix Q, and observation
noise covariance matrix R has to be defined in order to run the EKF. Due to
the way EKF is used in the experiments in this study, an initial estimate of the
weights θinitial has to be provided. The approach described in Van Lint [2008] is
that the weights θinitial are initialized using the Nguyen-Widrow method [Nguyen
and Widrow, 1990]. In Van Lint [2008], the weights’ covariance matrix Pinitial

is initialized to a diagonal matrix with large values, reflecting that it is assumed
that the weights are independent, and that there is a large uncertainty regarding
the initial guess of the weights. These are also the approaches taken in this work,
and the value along the diagonal of θinitial is set to 10 000.

As Van Lint [2008] does not describe how the covariance matrices Q and R
are set, a parameter tuning step is performed to find reasonable values for Q and
R, in addition finding to the number of nodes in the hidden layer in the feed-
forward ANN. The covariance matrix Q is assumed to be a diagonal matrix, once
more reflecting that the weights are independent, such that the only value being
searched for regarding Q in the parameter tuning step, is the value q along the
diagonal of Q: Q = q× I. As the output yt consists of a single value, namely the
travel time, the covariance matrix R of the observation noise is a single element
r reflecting the noise related to the observations that the ANN makes of the
weights.

The parameters that produced the lowest RMSE during the tuning process
are: q = 0.1, r = 750, number of hidden nodes = 1. Please see Appendix B.3 for
more details on the parameter tuning process.

Local Online Kernel Ridge Regression

To the best of the authors knowledge, no open source implementation of LOKRR
exists. Therefore, an implementation of LOKRR is developed in Python [Rossum,
1995]. The parameters of LOKRR are tuned on the same data set as in online-
delayed EKF. For each pair of parameter values, the kernels are trained, i.e.
the inverse of the regularized kernel matrix is calculated, on the first week of
data. The predictions are made on the second week of data. The observations in
the test set are also used to update the kernels to simulate how LOKRR would
normally work. The X matrix is reset to contain only the training data before
every run with new parameters. This way the best pair of parameters are found
for each kernel.

The recommendations, presented in Haworth et al. [2014], for finding possible
parameter values for the kernel bandwidth σ and the regularization constant λ
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are followed. The approach recommended in the article for finding possible λ
values is based on Exterkate [2013]. First, the R2 of an ordinary least squares
fit of y on X is found. Then λ0 is determined as λ0 = 1/φ0, where φ0 =
R2/(1 − R2). The recommended values for λ are {1/8λ0, 1/4λ0, 1/2λ0, λ0, 2λ0}.
The recommended approach for finding possible σ parameters is based on the
observation that optimal values of σ lie in the range between the 0.1 and 0.9
quantiles of the pairwise euclidean distance between the points in the kernel
[Caputo et al., 2002]. The 0.25, 0.5 and 0.75 quantiles are used as possible values
for σ. Due to the amount of data being smaller during the night, the data set
used for LOKRR only contains observations from 06:00 to 21:00. Additionally,
the window size is set to 1. This is done to reduce the computational complexity.
A more detailed description of the LOKRR implementation can be found in
Appendix B.3.

4.3 Environment

The experiments described in Section 4.1 are run in two environments, an Ubuntu
14.04 server at Amazon Elastic Computing Cloud (EC2) 3 and a laptop computer.
The Ubuntu server is running on a EC2 instance of type m3.xlarge 4, which has
a Intel Xeon E5-2670 v2 (Ivy Bridge) processor 5 @ 2.5 GHz and 15 GiB of
RAM. The laptop computer is a Samsung ATIV Book 9 Plus NP940X3G running
Windows 8.1 with an Intel Core i7-4500U Processor @ 1.8 GHz6 and 8 GiB of
RAM. The Ubuntu server is used to run all experiments, with the exception of
the online-delayed EKF which is run in Matlab on the laptop computer.

4.4 Experimental Results

This section presents the results of Experiment 1 and Experiment 2 in the form
of tables showing RMSE and MAE across all examples in the testing set.

Table 4.6 displays the performance metrics for bagging, boosting, lasso, FRBS
and a simple average of the baselines’ predictions. The performance metrics in
Table 4.6 are computed based on predictions and actual travel times from March
19, 2015 to March 31, 2015 as this is the largest span of dates that all models
have made predictions for. This is done in order to give all methods an equal
basis for comparison.

3http://aws.amazon.com/ec2/, May 21, 2015
4http://aws.amazon.com/ec2/instance-types/, May 21, 2015
5http://ark.intel.com/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_

50-GHz, May 21, 2015
6http://ark.intel.com/products/75460/Intel-Core-i7-4500U-Processor-4M-Cache-up-to-3_

00-GHz, May 21, 2015

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/instance-types/
http://ark.intel.com/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-GHz
http://ark.intel.com/products/75275/Intel-Xeon-Processor-E5-2670-v2-25M-Cache-2_50-GHz
http://ark.intel.com/products/75460/Intel-Core-i7-4500U-Processor-4M-Cache-up-to-3_00-GHz
http://ark.intel.com/products/75460/Intel-Core-i7-4500U-Processor-4M-Cache-up-to-3_00-GHz
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Model RMSE MAE
Bagging 231.87 93.883
Boosting 233.36 165.57
Lasso 167.09 95.920
FRBS 167.71 94.003
Average 215.69 98.346

Table 4.6: Performance metrics for ensemble approaches

Table 4.7 shows performance metrics values computed from actual travel times
and predictions from online-delayed EKF and LOKRR. The performance metric
values are computed based on predictions and actual travel times from February
12, 2015 to March 31, 2015.

Model RMSE MAE
Online-delayed EKF 427.19 230.55
LOKRR 476.18 233.53

Table 4.7: Performance metrics for online-delayed EKF and LOKRR
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Chapter 5

Evaluation and Conclusion

Section 5.1 presents an evaluation of the results presented in Section 4.4. Section
5.2 offers a more detailed discussion, presenting possible explanations for the
results. Section 5.3 draws the final conclusions based on the evaluation and
discussion. Section 5.4 summarizes the contributions of this work, and Section
5.5 suggest possible directions for future work.

5.1 Evaluation

This section evaluates the experimental results presented in Section 4.4, and
forms the basis for the statistical inference employed in this evaluation.

5.1.1 Overview

Figure 5.1 and Figure 5.2 display plots and tables showing sample median, sam-
ple mean and sample deviation of the error distributions of the predictions from
the ensemble learning and online learning approaches, respectively. The error is
computed by subtracting the actual travel time from the predicted travel time.
Before performing any statistical inference regarding these distributions, it is im-
portant to know whether or not they can be assumed to be normally distributed.
The distribution of the error affects which properties of the distributions that
should be compared, and which hypothesis tests can be employed. Some of the
characteristics of the normal distribution are that it is symmetrical about its
mean µ; the first derivative is positive for all x < µ and negative for all x > µ;
and the mean, median and mode are the same value. By considering the density
plots, it can be seen that none of these properties are satisfied by the error dis-
tributions. This indicates that the errors of the different methods do not follow

47
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Model A p
Bagging 8945.0 3.7× 10−24

Boosting 8875.1 3.7× 10−24

Lasso 6413.8 3.7× 10−24

FRBS 5400.5 3.7× 10−24

Average ensemble 8124.1 3.7× 10−24

Online-delayed EKF 29300 3.7× 10−24

LOKRR 21771 3.7× 10−24

Table 5.1: Result of Anderson-Darling normality test

a normal distribution.
To further investigate this assumption, the Anderson-Darling test [Anderson

and Darling, 1952] is employed to check for normality. The Anderson-Darling
test investigates whether or not a given distribution follows a normal distribu-
tion. Its null hypothesis is that the distribution follows a normal distribution,
and the alternative hypothesis is that the given distribution is not normally dis-
tributed. The Anderson-Darling test statistic and the corresponding p-value for
each methods’ error distribution is displayed in Table 5.1. The Anderson-Darling
test is based on 50 381 samples for the ensemble learning approaches, and 176 953
samples for the online learning approaches. The results of the Anderson-Darling
test indicate, on a 0.05 significance level, that none of the error distributions
follow a normal distribution. Based on the inspection of the error distributions,
and the results of the Anderson-Darling test, it is assumed that none of the errors
are normally distributed.

5.1.2 Experiment 1 - Ensemble Learning

In order to investigate Research Question 1, which is repeated below for conve-
nience, a comparison between all the different ensemble methods is conducted.
First, this section compares the performance metrics of the different ensemble
learning approaches. Second, the plots of the error distributions are evaluated.
Finally, the results from the non-parametric significance tests are reported.

Research Question 1 Given a set of baseline methods, which ensemble learn-
ing technique yields the best prediction accuracy?

Performance metrics

The results from Experiment 1 indicate that lasso has the lowest RMSE of all the
ensemble learning approaches. However, it is only slightly lower than the RMSE
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of FRBS. Bagging, boosting and average have considerably higher RMSE values
than lasso and FRBS.

Comparing the MAE for the different models forms a slightly different picture.
The most noticeable difference comparing the MAE values in contrast to the
RMSE values, is that bagging has the lowest value among the ensemble learning
approaches. Lasso, FRBS and the average have MAE values close to that of
bagging. However, boosting’s MAE is considerably higher than the MAE values
of the other ensemble methods.

The results presented above do not agree upon which method is most accurate
in terms of both RMSE and MAE. Consequently, the performance metrics alone
may not be sufficient to support any conclusions as to which ensemble learning
approach provides the best prediction accuracy. The density plots presented in
Figure 5.1 contain a lot of information a single performance metric is unable to
represent. Therefore, a detailed examination of the error distributions follows.

Error distributions

Due to the non-normality assumption of the error distributions, the sample mean
of an error distribution is not a representative value for where the majority of
the mass of the distribution is located. Figure C.5 to Figure C.9 in Appendix
C illustrate the individual error distributions for the ensemble learning methods.
The sample means of the distributions are affected by the long tails present in
the error distributions, and are offset in the direction of the most prominent tail.
Two measures that are more capable of representing the location of the majority
of the error distributions’ mass are the sample median and sample mode, as these
are not as affected by the tails present in the error distributions as the sample
mean. The sample median is chosen as a basis for comparison here because it is
convenient to use in non-parametric significance tests.

From the error distributions, presented in Figure 5.1, it can be seen that
bagging has a sample median close to zero. This might indicate that bagging is
close to unbiased when predicting travel times. Based on the sample median of
the error distributions it appears as though average, FRBS, lasso and boosting
are biased towards overestimating travel times.

Furthermore, there are noticeable differences between the distributions’ sam-
ple deviation. Lasso and FRBS have sample deviations that are considerably
lower than the sample deviations of average, bagging and boosting. Bagging,
boosting and the average have long tails towards the left. This can be seen in
Figure C.5, Figure C.6 and Figure C.9 in Appendix C, respectively. This indi-
cates that in rare cases the models heavily underestimate the travel time. Both
lasso and FRBS have long tails on both sides, indicating that they occasionally
greatly overestimate or greatly underestimate the travel time.
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In order to investigate whether the observed differences between the sam-
ple medians of the different models are significant, statistical significance testing
should be employed. Usually, the alternative hypotheses in significance tests are
expressed as meanA < meanB . This poses a problem in this case, as the distribu-
tions contain negative errors, which leads to incorrect orderings. Comparing an
error of −100 to an error of +1 would prefer the error of −100. This is undesirable
because it is a larger error, only in the negative direction. For this reason, plots
of the distribution of absolute errors are used as basis for making the alternative
hypotheses.

Figure 5.3 displays plots and a table showing the sample medians of the
distributions of the absolute errors of the ensemble learning approaches. Table
5.2 ranks the ensemble learning approaches, from best to worst, based on how
close their sample medians are to zero, i.e. based on their bias. The closer the
sample median is to zero, the lower the bias. As bagging seems to have the lowest
bias of the ensemble learning approaches, it given the highest rank. This ranking
forms the basis for the hypotheses that a method has lower sample median than
all of the methods having a lower rank than itself. To further investigate whether
or not these hypotheses are supported by the data, statistical significance testing
is employed.

Method Rank
Bagging 1st
Average 2nd
FRBS 3rd
Lasso 4th
Boosting 5th

Table 5.2: Ranking based on the approaches’ bias. Lower bias results in lower
rank.

Hypothesis Testing

Based on the assumption that the errors do not follow a normal distribution, non-
parametric significance testing is used to test the hypotheses described above. In
non-parametric significance testing, the test variable used is the sample median.
This is in contrast to parametric significance testing, where the sample mean is
used.

When doing significance testing on a group of related hypotheses, the prob-
ability of making type 1 errors increases as the number of hypotheses increases.
This probability is referred to as the familywise error rate, and the concept of
increased probability of making type 1 errors when the number of hypotheses
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increases is known as the multiplicity effect [Salzberg, 1997]. Trawinski et al.
[2012] suggests using the approach described in Garćıa and Herrera [2008] to
control the familywise error rate, when comparing more than two machine learn-
ing regression models. The approach uses the Friedman test [Friedman, 1937],
which works by assigning a rank to each model. For every prediction made dur-
ing testing, the model with the lowest error is assigned the lowest rank and the
model with the highest error is assigned the highest rank. The average rank
is computed for each model across all predictions. The Friedman test indicates
whether any of the rankings are significantly different from each other. However,
it does not identify the specific pairs of models that differ. Consequently, one or
more post-hoc procedures are needed to determine which pairs of models that
are significantly different. Note that these procedures do not test whether or not
the differences in sample medians are significant. Rather, their test statistic is
based on the differences in Friedman rank.

The post-hoc procedures used in Garćıa and Herrera [2008] are Nemenyi [Ne-
menyi, 1962], Holm [Holm, 1979], Shaffer [Shaffer, 1986], and Bergmann-Hommel
[Bergmann and Hommel, 1988]. These procedures perform two-sided hypothesis
tests, and can therefore only establish whether or not there is a significant differ-
ence in Friedman rank between a pair of models. In the cases where a significant
difference can be established, the rank from the Friedman test indicates which of
the two models is considered best, where lower rank is better.

This study follows the approach recommended in Trawinski et al. [2012]. The
Friedman test and post-hoc procedures are conducted using an open source pro-
gram available on the web page1 for the research group Soft Computing and
Intelligent Information Systems at the University of Granada, Spain. The soft-
ware is written in Java [Gosling et al., 2013] and follows the procedure reported in
Garćıa and Herrera [2008]. It is important to note that the program assumes the
input to be prediction accuracies. Since the performance of the methods inves-
tigated in this study are assessed with error metrics, the inverse of the absolute
error is given as input to the program.

The Friedman test is run using 50 381 observations of inverse absolute errors
from the five ensemble learning approaches. The result of running the Friedman
test indicates, on a 0.05 significance level, that there is a significant difference in
performance between the ensemble learning approaches. The ranking resulting
from the Friedman test is displayed in Table 5.3. As the Friedman test indicates
a significant difference between the ensemble learning approaches, post-hoc pro-
cedures are employed to determine for which pairs of algorithms the difference is
significant. The adjusted p-values resulting from running the different post-hoc
procedures are illustrated in Table 5.4, where the approach highlighted with bold
font is the one with lowest rank in the Friedman test. The post-hoc procedures

1http://sci2s.ugr.es/sicidm/#ten, May 21, 2015

http://sci2s.ugr.es/sicidm/#ten
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are unanimous in their decisions to reject all the null hypotheses with a signif-
icance level of 0.05. The results indicate that bagging has a significantly lower
Friedman rank than all the other ensemble approaches in this study. Further-
more, the Friedman rank of average is significantly lower than that of boosting,
lasso and FRBS. The test also reveals that the Friedman rank of FRBS is signif-
icantly lower than the Friedman rank of lasso, whilst both lasso and FRBS have
a significantly lower Friedman rank than boosting.

Algorithm Friedman rank Rank position
Bagging 2.1884 1st
Average 2.4067 2nd
Lasso 2.9801 3rd
FRBS 3.0291 4th
Boosting 4.3957 5th

Table 5.3: Friedman ranking

5.1.3 Experiment 2 - Online Learning

In order to investigate Research Question 2, which is repeated below for conve-
nience, a comparison of the two online learning approaches is conducted. First,
the performance metrics of online-delayed EKF and LOKRR are compared. Sec-
ond, the error distributions of the two online methods are examined. Finally,
statistical significance testing is employed.

Research Question 2 Which online learning technique yields the best predic-
tion accuracy?

The results from Experiment 2 indicate that the online-delayed EKF has a
noticeably lower RMSE than LOKRR. Online-delayed EKF also has the lowest
MAE. In contrast to the RMSE values, the MAE values do not differ considerably
from each other.

Figure 5.2 displays plots and a table showing sample median, sample mean and
sample deviation of the error distributions of online-delayed EKF and LOKRR.
Online-delayed EKF has a sample median of 117.26, whilst LOKRR has a sam-
ple median of −69.816. This might indicate that the two methods have different
bias towards predicting travel time, where online-delayed EKF tends to over-
estimate the travel time and LOKRR tends to underestimate the travel time.
Figure C.10 and Figure C.11 in Appendix C illustrate the error distributions
individually for online-delayed EKF and LOKRR, respectively. Looking at the
tails of error distributions for the two methods, it can be seen that LOKRR’s
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Alternative hypothesis V p
LOKRR < Online-delayed EKF 632 913 330 2.2× 10−16

Table 5.5: Result of Wilcoxon sign-rank test

right tail is noticeably longer than that of online-delayed EKF. However, both
approaches have similarly long tails towards the left. This indicates that both
methods greatly underestimate the travel time in some cases, whilst LOKRR
also occasionally heavily overestimates the travel time. Online-delayed EKF has
a sample deviation of 427.17, and LOKRR has a sample deviation of 450.80. The
sample deviations do not differ to the same extent as the sample medians of the
two methods.

Following the same approach as with the ensemble learning techniques, the
sample medians of the absolute errors of online-delayed EKF and LOKRR are
compared. The distributions of the absolute errors and a table showing sample
medians for the two online learning approaches are displayed in Figure 5.4. This
plot suggest that the sample median of LOKRR is lower than the sample median
of online-delayed EKF. In order to investigate whether the differences between
the two sample medians are significant, a statistical significance test is employed.

Section 5.1.2 explains the multiplicity effect that arises when performing hy-
pothesis testing including more than two hypotheses. In Experiment 2, only two
models are tested for significant difference, and the multiplicity effect is therefore
not prominent. A paired non-parametric significance test is thus sufficient to
evaluate the results from Experiment 2. More specifically, the Wilcoxon signed
rank test [Wilcoxon, 1945] is employed. The null hypothesis is that the sample
medians of the two distributions of online-delayed EKF and LOKRR are equal.
The alternative hypothesis is that the sample median of LOKRR is lower than
the sample median of online-delayed EKF. The Wilcoxon signed rank test statis-
tic and corresponding p-value can be seen in Table 5.5. The result is based on
176 953 samples, and indicate, on a 0.05 significance level, that LOKRR’s sample
median is significantly lower than that of online-delayed EKF.
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5.2 Discussion

This section offers a discussion of the results from the experiments.

5.2.1 Error Distributions

Figures C.1 to C.11 in Appendix C illustrate the error distributions of the base-
lines, ensemble learning approaches and the online learning approaches. It can
be seen from these figures that the error distributions have long tails. These
tails may be explained by the presence of outliers in the data set. The traffic
flow and mean travel time during the last five minutes for those vehicles having
an abnormally large travel time might be the same as vehicles having a normal
travel time. When the methods make predictions for the vehicles having an ex-
treme travel time, they will have seen the normal case more times, and therefore
predict that the current vehicle will have a normal travel time. However, due
to this vehicle stopping along the road section, the resulting travel time is much
larger than normal, and an extreme error occurs. This will both affect the tails
of the error distributions, and the performance metrics, especially the RMSE.

5.2.2 Experiment 1 - Ensemble Learning

Figure 5.5 to Figure 5.9 illustrate the actual travel time and predicted travel
times for the ensemble learning approaches on March 19, 2015. This date is cho-
sen as it exemplifies and is representative for the methods’ performance on the
other days. Based on Figure 5.5, bagging seems to be able to accurately pre-
dict the peaks in travel time during the morning and afternoon. The figure also
indicates that bagging is unbiased in its predictions, because its predictions are
neither considerably above nor noticeably below the actual travel times. Lasso’s
predictions, which is displayed in Figure 5.6, performs similar to bagging dur-
ing the morning rush hour. However, lasso is unable to predict the afternoon
congestion as accurately as bagging. It is also interesting to note that lasso’s
predictions contain more noise than bagging’s predictions. During training, lasso
assigns weights to the baselines that minimize the expression in Equation 3.2. By
minimizing this expression, the resulting weights generate predictions that are as
close to the actual travel times as possible, across all observations. When outliers
are present in the data set, lasso will adapt to these observations as well. This
might explain why noise is present in lasso’s predictions. Figure 5.7 indicates that
FRBS is unable to predict the peaks in travel time. However, FRBS is able to
provide accurate predictions during normal traffic conditions. The predictions of
FRBS also contain some noise. However, the noise in FRBS’s predictions seems
to have an upper bound. If the inference stage in FRBS assigns a membership
degree of zero to the fuzzy sets low and medium, and a non-zero membership
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degree to high, the defuzzified output of the FRBS will be the b-parameter of the
membership function representing high. Because the membership degree of the
fuzzy set high is the only non-zero value, the membership function representing
high will be the only membership function considered in the center of gravity
algorithm. This will form a trapezoid, and the center of gravity of that trape-
zoid thus corresponds to the b-parameter of the high membership function. This
might explain why the predictions of FRBS have an upper bound. The average,
which is displayed in Figure 5.8, also performs similar to bagging. However, the
average is not capable of predicting the peak in travel time during the afternoon.
Figure 5.9 clearly illustrates that boosting tends to overestimate the travel time.
It also illustrates that boosting is unable to predict the morning and afternoon
rush hour.

Figure 5.5: Predictions from bagging and actual travel time on March 19, 2015

Figure 5.6: Predictions from lasso and actual travel time on March 19, 2015
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Figure 5.7: Predictions from FRBS and actual travel time on March 19, 2015

Figure 5.8: Predictions from average and actual travel time on March 19, 2015

Figure 5.9: Predictions from boosting and actual travel time on March 19, 2015

One thing that is noticeable from the results in Experiment 1, is that there
does not seem to be a strong positive correlation between which method is consid-
ered best in terms of sample median, RMSE and MAE. Bagging is the method
with the lowest MAE and has the sample median closest to zero, but has the
second highest RMSE. Lasso is the method with the lowest RMSE, whilst at the
same time having an MAE value close to that of bagging. FRBS has a RMSE
value close to that of lasso. The fact that bagging has the lowest MAE and lowest
sample median whilst also having the second highest RMSE, might indicate that
bagging makes predictions being closer to the actual travel time more often than
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lasso. This is also indicated by the result of the Friedman test where bagging has
the best Friedman rank. Even though bagging has lower MAE and sample me-
dian than lasso, lasso has considerably lower RMSE than bagging. Since RMSE
is sensitive to large errors, this might indicate that in those rare cases where their
errors are very large, bagging’s errors are larger than those of lasso.

Both lasso and FRBS are optimized in terms of RMSE, i.e. they combine the
predictions of their baselines in order to reduce the RMSE as much as possible.
This might explain why lasso and FRBS achieve lower RMSE than the other
approaches. When they optimize their performance in terms of RMSE during
training, they will most likely be the ones performing best in terms of RMSE
during testing as well, as long as they do not overfit the training data.

Bagging’s approach, on the other hand, is entirely different. It trains multiple
baselines on a random subset of the training data and then combines them by tak-
ing the average over all predictions. It makes no attempt to decrease the RMSE,
but instead achieves the lowest median of the ensemble approaches. In theory, the
strength of bagging is that it can even out the differences in bias between its un-
derlying baselines by averaging their predictions. However, in Experiment 1, this
does not seem to be the reason why bagging achieves a low sample median. All
the sample medians of the baselines used in bagging are centered around 3, which
can be seen in Table C.1 in Appendix C. Consequently, when bagging averages
the predictions from its baselines, bagging’s sample median is also approximately
three.

Recall from Section 4.2.3 that the implementation of boosting for regression
models provided in scikit-learn is used in Experiment 1. The only method of
the four baselines used in this study, that is both implemented in scikit-learn

and supports weighting of training examples is SVM. This puts a restriction on
the baseline being used in boosting, as SVM is the only baseline available. In
order to compare bagging and boosting on a fair basis, SVM is also chosen as
the baseline in bagging. The use of SVM as baseline may have lead to subop-
timal performance for bagging. Section 3.1.1 explains that bagging may work
well with unstable learners. However, there is little to gain from bagging when
using stable learners. SVMs are stable learners [Sammut and Webb, 2010] and
are therefore unlikely to get completely different bias when trained on slightly
different data. This might explain why all the underlying baselines in bagging
are very similar, even though they have been trained on different subsets of the
training set. Consequently, when using SVMs as baselines for bagging, this study
does not realize bagging’s full potential as an ensemble learner. This makes it
difficult to conclude whether any of the other ensemble learners are better than
bagging.

The fact that bagging may work well with unstable learners relates to the
fact that ensemble learners work best when its baselines have different bias. By
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inspecting figures C.1 to C.4 in Appendix C, it can be seen that k-NN, ANN and
Kalman filter have sample medians of 23.463, 26.541 and 49.394, respectively,
whilst SVM has a sample median of −31.633. This might indicate that k-NN
and ANN have similar bias towards slightly overestimating the travel time, whilst
Kalman filter overestimates the travel time even more. In contrast, SVM has a
bias towards underestimating the travel time. Including even more baselines, or
baselines with greater diversity in terms of bias could potentially lead to even
better performance for the ensemble learning approaches. This might also result
in a bigger difference in performance between lasso and the average. Imagine
having one baseline performing considerably worse than the other baselines in
the ensemble. In this situation, lasso may be able to exclude this baseline from
its ensemble and thus have better performance than the average, which includes
all baselines in the ensemble independent of their performance.

Boosting performs considerably worse than the other methods in terms of
sample median and MAE. Its sample median of 127.43 illustrates a considerable
bias towards overestimating the travel time. Additionally, boosting comes out
as the worst performing approach in terms of RMSE and Friedman ranking.
During training, boosting is set to use a maximum of 25 baselines in order to
form a fair basis for comparison with bagging. In scikit-learn the boosting
algorithm stops if it achieves perfect fit on the training data. In Experiment 1,
boosting ends up with five baselines. The fact that boosting has the opportunity
to use 25 baselines, but only use five, indicates that it achieves perfect fit on the
training data, and its poor performance might be due to overfitting the training
set. Although the results for boosting in this study are not promising, it does
not mean it is not a viable ensemble learning approach for travel time prediction.

The fact that the sample median of the average ensemble is farther away from
zero than bagging suggests that the average ensemble has a stronger bias towards
overestimating travel times than bagging. However, the average ensemble has a
sample median closer to zero than lasso, FRBS and boosting, which indicates
that the average ensemble has a weaker bias than the mentioned approaches.
The average ensemble’s MAE value is considerably lower than that of boosting,
and close to those of bagging, lasso and FRBS, albeit higher than the three
latter methods. The average ensemble’s RMSE and sample deviation illustrates
that its predictions might have larger deviations than those of lasso and FRBS.
These results illustrates that even a simple approach like taking the average of
the baselines’ predictions may be a viable approach to constructing an ensemble.

As the different performance metrics and other criteria for comparison do not
agree on which method is best, it is interesting to explore their interpretation
and importance. The RMSE is tightly coupled with the sample deviation, as
their computations are carried out in a similar fashion. Therefore, both RMSE
and sample deviation can be seen as measures of variation in the predictions
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of a method. The median, on the other hand, is more representative for the
model’s bias and is a good indicator for what an expected error is. Similarly, the
MAE is a measure indicating what a typical absolute error is. Therefore it is not
surprising that the approach with the lowest sample median also has the lowest
MAE. Additionally, it is also expected that the method with the lowest RMSE
also has the lowest sample deviation.

Since these measures represent different properties, what measure to con-
sider when deciding what model is best depends on what properties are most
important. Presented with two methods A and B, where method A has low
bias, but large deviation; and method B has larger bias, but smaller deviation,
which method is most desirable? Method B will in most cases either overesti-
mate or underestimate travel times, depending on the direction of the bias. This
is not the case for method A since it is unbiased, but its errors will fluctuate
more than method B because of its higher deviation. It is simpler to correct for
method B’s bias than it is to correct for method A’s varying errors. One can,
in theory, correct for method B’s bias by adding or subtracting a constant to its
prediction, depending on the direction of its bias. In terms of predicting travel
time, having consistent predictions is important. One can imagine commuters
having more confidence in a travel time prediction system if its predictions are
consistent. However, it is also important to have accurate predictions, meaning
that the travel time predictions are as close to the actual travel time as possi-
ble. If a bias is present in a prediction model, it may be better having a bias
towards overestimating travel time than underestimating it. Commuters might
be more pleased using less time than predicted in contrast to using longer time
than predicted. In total, both accurate predictions and consistent predictions are
desirable properties for a travel time prediction system.

To summarize the results, there is no ensemble approach among the ones
investigated in this study that clearly outperforms the other methods on all mea-
sures. This makes it difficult to conclude which ensemble learning technique has
the best prediction accuracy.

5.2.3 Experiment 2 - Online Learning

Based on the performance metrics alone, online-delayed EKF appear to be better
than LOKRR. However, based on the error distribution plots and the significance
tests regarding the sample medians, LOKRR’s sample median seem to be lower
than the sample median of online-delayed EKF. The fact that online-delayed
EKF has lower RMSE and MAE than LOKRR, might be explained by that
online-delayed EKF does not have as extreme errors as LOKRR, and in this way
does not get punished as much through the performance metrics. At the same
time, LOKRR has an absolute error distribution with lower sample median than
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Figure 5.10: Predictions from online-delayed EKF and actual travel time on
March 4, 2015

online-delayed EKF. A possible explanation for this is that in majority, LOKRR
makes predictions being closer to the actual travel time than online-delayed EKF,
and thus makes less biased predictions than online-delayed EKF.

Note that the performance metrics and sample deviations of the two on-
line learning approaches are considerably higher than those of the ensemble ap-
proaches. This relates to the fact that the online learning approaches have learned
from and made predictions for a data set where no attempt to remove outliers
is made. Having outliers in the data set leads to higher prediction errors, and
consequently the performance metrics of the online approaches have higher val-
ues. In contrast, the ensemble learning approaches have used a data set where
outliers have been removed to some degree. Additionally, the offline learners can
look at data more than once and therefore have a better chance of discovering
patterns in the data. However, the focus of this study is not to compare online
learners with offline learners. What is important is to assess the performance of
them as online learners and to compare them to each other.

In Figure 5.10 and Figure 5.11 the predictions from online-delayed EKF and
LOKRR on March 4, 2015 are plotted, respectively. Online-delayed EKF tends
to overestimate the travel times. This can be seen in Figure 5.10, where the
online-delayed EKF predictions tend to lie above the actual travel time during
normal traffic conditions. LOKRR, on the other hand, tends to underestimate
the travel times as its predictions tend to lie below the actual travel times. It can
be seen in Figure 5.11 that the predictions from LOKRR vary greatly from one
prediction to the next. In contrast to LOKRR, online-delayed EKF’s predictions
do not fluctuate a lot. Online-delayed EKF seems to be able to follow the curve
of the true travel time, albeit with a delay.

In theory, the strength of online learning approaches is their ability to adapt to
abnormal traffic scenarios, i.e. scenarios that are not present in the training set.
Figure 5.12 and Figure 5.13 illustrate actual travel times and predictions from
online-delayed EKF and LOKRR on March 13, 2015, respectively. The afternoon
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Figure 5.11: Predictions from LOKRR and actual travel time on March 4, 2015

peak on this date is considerably higher than usual. In order to investigate how
well the two online learning approaches predict this peak, their predictions are
inspected.

Interestingly, LOKRR is unable to detect the increase in travel time at all.
One possible explanation for LOKRR’s inability to detect this peak is that it
is an instance based approach. Each kernel contains data which approximately
covers the past week. If this data does not contain any abnormally high travel
times, the kernel is unable to predict that such travel times can happen. Figure
C.12 to Figure C.18 in Appendix C illustrate actual travel times and LOKRR’s
predictions in the week leading up to March 13, 2015. The travel times during this
week reveals that no similar peaks in travel times occurred. It is also interesting
to note that the abnormally high travel times observed during the afternoon on
March 13 do not seem to affect the predicted travel times the following day. This
can be seen in Figure C.19 and Figure C.20 in Appendix, which illustrate actual
travel times and LOKRR’s predictions during March 14, 2015 and March 15,
2015, respectively.

The online-delayed EKF is better able to detect that there is a peak in travel
times. However, there is a considerable latency between when the congestion
builds up and the online-delayed EKF is able to detect the increase. Similarly, the
online-delayed EKF is slow to detect the decrease in travel time. Consequently,
the online-delayed EKF predicts a peak in travel time when the traffic is almost
back to normal. Recall from Section 3.2.1 that this behaviour is due to the fact
that online-delayed EKF does not update its weights until the travel times are
realized. This is most noticeable when congestion is building up. As the travel
times increase, it takes increasingly longer time until the travel times are realized.

In the original paper [Haworth et al., 2014], LOKRR uses five minute aggre-
gated travel time data. However, in this study the kernels contain individual
observations. This leads to several challenges.

First of all, using individual travel times heavily limits how far back in time
one can keep data. In Haworth et al. [2014], the kernels consisted of observations
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Figure 5.12: Predictions from online-delayed EKF and actual travel time on
March 13, 2015

Figure 5.13: Predictions from LOKRR and actual travel time on March 13, 2015

from the 80 previous days. Including a window size of 3, this leads to each kernel
containing 560 observations. In this study, the biggest kernel contained 698
observations. However, this only comprised a week of data with a window size of
1. One week of data might not be enough to detect cyclic patterns. Additionally,
the limited window size further decreases the kernels’ ability to detect cyclic
patterns, since it is unlikely that events such as rush hours occurs at the same
exact five minute interval every day.

Secondly, the kernels end up with different amounts of data. The traffic flow
during the morning and afternoon rush hours far exceed the traffic flow at 8
PM. Kernels responsible for periods of the day with less traffic have less data to
base their predictions on, which is expected to lead to lower prediction accuracy.
This could be solved by setting a limit to how much data each kernel could
contain. However, that would mean that the kernels responsible for intervals
with less traffic would contain data further back in time than kernels responsible
for periods of the day with heavy traffic. Whether or not that is a desirable
property should be considered.

It may be unfair to employ LOKRR on a type of data set that it is not
designed for and the implications using individual travel times have for LOKRR
make it difficult to compare it to online-delyaed EKF or any other online learner.
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5.2.4 Limitations

Section 5.2.2 and Section 5.2.3 presents some limitations to this work. Additional
limitations are presented in this section.

The methods investigated in this study are data driven approaches. which
are inherently affected by the data they operate on. Consequently, the data pre-
processing step will affect the final results both in terms of the trained models
and the performance metrics. Figure 4.2 display all travel times registered for
January 29, 2015. The figure clearly illustrates the presence of vehicles with
abnormally high travel times, which is seen as dots high above the line illustrat-
ing the normal travel time. An attempt to remove such outliers is performed.
However, more sophisticated schemes may be employed. When the methods are
evaluated based on RMSE, the approaches that best adapt to the outliers may
appear better than those who are unable to adapt to outliers. This may suggest
the use of other performance metrics than RMSE when outliers are present in the
data set. However, it may also indicate that having a greater focus on removing
outliers from the data set is important in order to decrease the effect that outliers
have on the performance metrics.

Another aspect affecting the method’s performance is the amount of train-
ing data that they are provided with. Having more training data increases the
probability that the methods generalize better on the test set. In order for the
methods to perform well on the test set, their training set has to contain enough
data to include all the different scenarios in the test set. The data set used in
the experiments is collected from one specific road section within a limited range
of time. This makes it difficult to detect cyclic patterns with a frequency greater
than the data set’s range. Additionally, the data set does not contain a lot of
variations in travel time and noticeable congestion does not occur very often. Be-
cause the methods investigated in this study are based on this data, the degree of
differences between the methods one can observe may be limited. Using a larger
data set from a road section with greater variety in traffic conditions may reveal
greater and other differences between the methods.

The methods are also affected by their parameters. In this study relatively
small amounts of data is used for parameter tuning. Additionally, the parameter
search is fairly simple. Larger grids could have been employed to begin with, and
several steps of using finer grids could have been used to optimize the parameters
even further. Some methods are more sensitive to their parameters than others
and it is possible that placing more emphasis on the parameter tuning step could
have lead to different results.
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5.3 Conclusion

This study sets out to compare state of the art ensemble learning and online learn-
ing solutions in order to find the best performing methods in terms of prediction
accuracy. More specifically, the ensemble learning methods that are investigated
are bagging, boosting, lasso, FRBS and a simple average of the baselines’ pre-
dictions. The online learning methods that are investigated are online-delayed
extended Kalman filter and local online kernel ridge regression. The methods are
trained and tested on a common data set in an attempt to answer the following
research questions:

Research Question 1 Given a set of baseline methods, which ensemble learn-
ing technique yields the best prediction accuracy?

Research Question 2 Which online learning technique yields the best predic-
tion accuracy?

The results of the experiments indicate that lasso and fuzzy rule based system
are the best methods in terms of root mean squared error, whilst bagging is best
in terms of mean average error, and has least bias in its predictions. Boosting
performs consistently worse than all the other methods. However, no method per-
forms consistently better than all other methods across all performance metrics.
This makes it difficult to conclude which ensemble learning technique yields the
best prediction accuracy in terms of the performance metrics. However, based on
plots of the predicted and actual travel times, there is a difference in terms of how
well the approaches are able to follow the evolution of the travel times. Bagging
seems to do this more accurately than the other ensemble learning methods.

In regards to online learning, online-delayed extended Kalman filter is the best
performing method in terms of root mean squared error and mean absolute error.
However, local online kernel ridge regression has least bias in its predictions.
During an event with unexpectedly high travel times, online-delayed extended
Kalman filter is able to adapt to the changing traffic situation considerably better
than local online kernel ridge regression. However, the results make it difficult to
conclude which online learning technique yields the best prediction accuracy.

To summarize, this study compares state of the art ensemble learning and
online learning approaches on a common data set. Based on the experimental
results, a conclusion as to which approaches provide the most accurate predictions
can not be made.
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5.4 Contributions

This work’s contribution is two-fold. First, this study compares state of the art
ensemble learning and online learning techniques on a common data set. Second,
local online kernel ridge regression is employed on a data set with individual
travel times, in contrast to the original approach where five minute aggregated
data is used.

5.5 Future Work

As mentioned in Section 5.2.2, bagging is used with support vector machines as
baselines, which is considered a stable learner. As there is little to gain from using
bagging with a stable learner, a suggestion for future work is to repeat Experiment
1 where bagging is used with an unstable baseline, such as an artificial neural
network, in order to investigate whether or not this leads to better performance
for bagging.

In Experiment 1, the fuzzy rule based system ensemble uses two baselines,
artificial neural network and Kalman filter. In contrast, the lasso ensemble uses
four baselines, support vector machine, k-nearest neighbors, artificial neural net-
work and Kalman filter. It would be interesting to investigate how the fuzzy
rule based system ensemble performs using the same baselines as the lasso en-
semble, in order to compare the two ensemble learning approaches on an equal
basis. Furthermore, the fuzzy rule based system used in Experiment 1 uses man-
ually created rules. Investigating whether or not using automatically generated
rules will capture different relationships between the baselines in the ensemble is
another suggestion for future work.

In this work, only two online learning approaches are tested. In order to fur-
ther investigate which online learning method provides best prediction accuracy,
other approaches should be considered. The method described in Wu et al. [2012]
is based on handling abnormal traffic conditions by employing separate learners
for normal and abnormal traffic conditions. It would be interesting to further
investigate and compare the proposed method to the online-delayed extended
Kalman filter and local online kernel ridge regression.

There are more aspects to travel time prediction methods than their perfor-
mance relative to some performance metric. The overall RMSE of a method does
not necessarily represent its usefulness for to users, e.g. a traffic control center.
Being able to accurately predict the sudden increases and drops in travel time
might be a more desirable property than having a low overall RMSE. Being able
to predict these significant increases and decreases in travel times may be of large
benefit for traffic control centers. This may help them to detect congestion as it
starts to build up. This is beneficial as they can use this information to route
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traffic, and by doing so limit the degree of congestion. However, comparing such
a property among a set of methods is difficult. Inspecting predictions for spe-
cific scenarios leads to subjective opinions on what method is best. Future work
may be to create a numeric performance metric that represents this quality in a
method. Having a numerical measure means that this property can be compared
across different methods in an objective manner.

The goal of this study is to compare state of the art travel time prediction
approaches in order to find the best approach in terms of prediction accuracy.
In the future it might be beneficial to develop a set of benchmark data sets that
novel approaches can be tested on. This may make it easier to compare the
performance of different approaches on a fair basis as they are evaluated on the
same data set.

The methods investigated in this study are evaluated based on data that
are used in the current solution at the Norwegian Public Roads Administration.
Therefore, it is interesting to investigate whether or not the solutions employed
in this study offer any improvements to the current solution at Norwegian Public
Roads Administration’s solution. Comparing these methods is a possible direc-
tion for future work.
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A Structured Literature Review Protocol

This section describes in detail how the structured literature review was con-
ducted. Two search engines were used: IEEEXplore2 and Engineering Village3.

A.1 Specifying the Search Term

When doing a structured literature review, it is necessary to have a search string
that represents the subjects of interest. Having this search string serves two
purposes: it makes it possible to reproduce the search results given the archive(s)
used. In addition it captures the different aspects of the research, and therefore
yields a reduced number of results, hopefully with the relevant literature.

The search string is built up using three groups of terms. The different terms
contained in one group are synonyms, have the same semantics or cover similar
concepts. The terms in one group are joined using the logical OR operator, and
each group is joined using the logical AND operator. In this way the search string
is meant to yield the research that is the intersection of the different groups. The
search string used is:

(“prediction” OR “forecasting” OR “estimation”)

AND

(“travel time” OR “transit time” OR “driving time” OR “traffic flow” OR “congestion”)

AND

(“ensemble learning” OR “machine learning” OR “artificial intelligence”)

By examining this search string one can identify three aspects that this research
focuses on: prediction or estimation of traffic variables using ensemble learning
or machine learning in general.

A.2 Search Results

The search was conducted on the 24th of September, 2014. Engineering Village
returned 670 results and IEEE returned 477 results. Because many of the articles
are unlikely to be suitable for this research, a filtering process is employed to
narrow down the number of articles being read in its entirety.

The filtering process consists of three stages: filtering by title, filtering by
abstract and finally filtering by full text. In this way irrelevant literature is
filtered out as early in the process as possible. The next sections explains in
more detail how the filtering stages are executed.

2http://ieeexplore.ieee.org/search/advsearch.jsp?expression-builder
3http://www.engineeringvillage.com/search/expert.url?CID=expertsearch

http://ieeexplore.ieee.org/search/advsearch.jsp?expression-builder
http://www.engineeringvillage.com/search/expert.url?CID=expertsearch
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A.3 Filtering by Title

This stage filters the articles by looking at their title. In this way articles that
obviously do not concern the current research are excluded, and do not go further
in the filtering process. An article is included if its title indicate that it:

Inclusion Criterion 1 Is about Intelligent Transportation Systems

or

Inclusion Criterion 2 Is about ensemble learning

or

Inclusion Criterion 3 Predicts, estimates or models road traffic variables, e.g.
traffic flow, speed, congestion or travel time.

Inclusion criterion 1 ensures that articles in the ITS domain are included.
These articles are valuable to this research, as they can give insight to the domain
in general and contributes to the pool of knowledge in the area. By using inclusion
criterion 2 articles about ensemble learning are included. The reason that research
done on ensemble learning in the ITS domain is interesting, is that it that an
ad hoc search prior to this literature review showed that ensemble learning is
a possible direction to go in to achieve more accurate predictions [Russell and
Norvig, 2010]. Inclusion criterion 3 ensures that research done on predicting or
estimating traffic variables no matter what method that is employed is included.
After filtering the articles by these three criteria, 401 articles remained in total.

A.4 Filtering by Abstract

After filtering the articles by title, a more thorough approach has to be employed
to identify the valuable articles. For an article to be included in the last filtering
stage, its abstract has to indicate one or more of the following:

Inclusion Criterion 1 The main focus of the article is using AI method(s) to
predict travel time, traffic flow, speed or congestion.

Inclusion Criterion 2 That the article gives insight to which data sources that
are relevant in the ITS domain.

Inclusion Criterion 3 The article gives insight to how data aggregation or pre-
processing impacts prediction or estimation of travel time, traffic flow, speed
of congestion.

Inclusion Criterion 4 That the article solves a problem using ensemble learn-
ing.
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Inclusion Criterion 5 The article describe a solution that can easily be ex-
tended or adapted to fit our research.

Since investigating what machine learning techniques that have been used to
predict traffic variables is of interest, inclusion criterion 1 is employed to include
articles that would be relevant in that regard.

Preliminary discussions with the NPRA revealed that it would be interesting
to use several data sources in the prototype system to increase prediction accu-
racy. Inclusion criterion 2 ensures that articles that can give insight to what data
sources that are relevant to use is included.

There is an ongoing discussion at the NPRA about how to aggregate the
data, and how the aggregation method affects the estimation of traffic variables.
Currently, the most common technique used for travel times at the NPRA is to
use an average of the travel times the last five minutes. Inclusion criterion 3
ensures that any literature that touches upon this issue is included.

As stated in the previous section, ensemble learning is one of the main focuses
in this research and inclusion criterion 4 ensures that research that have employed
ensemble learning to solve a problem is included.

If there is work that is done in the ITS domain whose solution can be extended
or adapted to predicting travel time, we can draw knowledge from their findings.
Inclusion criterion 5 ensures that such research is included.

Employing these filtering criteria yielded 294 articles. Given that this work is
conducted by two students for a specialization project, it is infeasible due to time
limitations, to read 294 articles in the last stage of the process. In order to further
reduce the number of articles, a ranking system is developed. The ranking system
consists of ten criteria by which the articles are rated. Each criterion is given an
integer weight, and the total score of each article is the sum of all the weights
that article has received for each criterion. The criteria, with the corresponding
weights shown in parentheses, are as follows:

Ranking Criterion 1 The article is poorly written (−5)

Ranking Criterion 2 The article has empirical results (+3)

Ranking Criterion 3 The work concerns predicting travel time (+2)

Ranking Criterion 4 The models used are based on travel times for road sec-
tions, not GPS data etc. (+2)

Ranking Criterion 5 The work concerns short term prediction (+1)

Ranking Criterion 6 The work concerns urban/signalized roads (+1)

Ranking Criterion 7 The work employs online learning (+1)
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Ranking Criterion 8 The work predicts traffic variables for public transport
(−1)

Ranking Criterion 9 The work employs ensemble learning (+4)

Ranking Criterion 10 The work uses multiple data sources (+1)

Because of the previous stages of the filtering process, all the articles given
as input to this stage have a certain degree of relevance, and this stage is meant
to find the most relevant amongst them. As indicated by the weight of ranking
criterion 2, the fact that the articles base their findings on empirical results are
important, as this increases the credibility and reproducibility of their work.
Ranking criterion 9 shows that articles concerned with ensemble learning are
also favorable because they give insight to the one of the main topics in our
study. Articles that are poorly written are given a big penalty, as seen by ranking
criterion 1, as this makes them hard to read and time is wasted. The rest of the
criteria correspond to features that would be beneficial to this research, but not
essential.

After ranking all 294 articles using the aforementioned ten criteria, the total
scores were in the range [-5, 10]. A threshold of 6 was set, where articles with a
score of 6 or higher are included. This yielded 54 articles, a reasonable number
of articles to read for two people. The number of articles was further reduced
due to duplicates being removed and that some full texts were not available. The
final number of articles entering the full text filtering was 36, and can be found in
Table A.2 and Table A.3. It can be seen in from the tables that all articles with a
total score of 6 or better have empirical results, and most of them predict travel
time in addition to having other interesting features like using online learning or
employing short term prediction. From Table A.2 and Table A.3 we can also see
that articles that do not predict travel time can be included, as long as they have
enough other interesting features.

A.5 Filtering by Full Text

In this final filtering stage the goal is to assess the quality of the work done in
the remaining articles. In order to do this, another ranking system is developed
where each article is evaluated using the following seven quality criteria [Kofod-
Petersen, 2014]:

Quality Criterion 1 Are system or algorithmic design decisions justified?

Quality Criterion 2 Is the method/algorithm thoroughly explained?

Quality Criterion 3 Is the experimental procedure thoroughly explained and
reproducible?
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Quality Criterion 4 Is it clearly stated in the study which other algorithms
the study’s algorithm(s) have been compared with?

Quality Criterion 5 Are the performance metrics used in the study explained
and justified?

Quality Criterion 6 Are the test results thoroughly analysed?

Quality Criterion 7 Does the test evidence support the findings presented?

Six of the above quality criteria are taken directly from [Kofod-Petersen, 2014].
Question 2 is added because it is important that the methods described are
reproducible. Each question is given a weighted answer: yes (1), in some degree
(0.5) and no (0).

To ensure that the different questions were interpreted in the same way by
both students reading the articles, a calibration round was done on 8 of the
articles where both students read and evaluated all 8 of them. After agreeing on
how the questions should be interpreted, the remaining 30 articles were divided
equally and read separately.

After assessing all articles, their score were in the range [2.5, 7]. As this range
shows, not all articles had the same level of quality. To ensure a certain level
of quality for the articles that are going to be included as our final references,
a threshold of 5 is set, where articles with score higher than or equal to this
threshold is included as references in our state of the art review. The final articles
are shown in Table A.1.
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Final Articles

Ensemble

[Sun, 2009]
[Li et al., 2014]

[Zhu and Shen, 2012]
[Stathopoulos et al., 2008]

[van Hinsbergen et al., 2009]

Online

[Liu et al., 2006a]
[Liu et al., 2006b]
[Van Lint, 2008]

[Haworth et al., 2014]
[Lu, 2012]

[Wu et al., 2012]
Hybrid Approach [Hofleitner et al., 2012]

Vehicle Infrastructure Integration [Ma et al., 2012]

Other

[Park et al., 2014]
[Bouillet et al., 2013]

[Dharia and Adeli, 2003]
[Nikovski et al., 2005]
[Tam and Lam, 2007]

[Vanajakshi and Rilett, 2007]
[Mu et al., 2013]

Table A.1: Articles resulting from the structured literature review
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B Experimental Setup Protocol

B.1 Baselines

This section contains descriptions of each baseline method used in Experiment
1: Support Vector Machine (SVM), k-nearest neighbor (k-NN), Artificial Neural
Network (ANN) and Kalman filter. Information about the process applied to
every baseline is given in Overview, whilst specific details about each baseline is
given in their respective sections.

Overview

The implementation of the baseline methods used in Experiment 1 is done in R [R
Core Team, 2014]. Parameter tuning and training for support vector machine, k-
nearest neighbors and artificial neural network is done through the library caret

[Kuhn et al., 2015], which is a library meant to make the process of constructing
predictive models easier in R. In this work, caret is used as a layer between the
authors code in R and the respective implementations of the baseline methods.
caret provides structures for setting the grid for which parameters are to be
searched among, and returns the model with parameters resulting the best per-
formance in terms of RMSE. Tuning and training of the Kalman filter is done
with the R library dlm [Petris, 2010].

The baselines use the data set were outliers have been removed. In order to
find the best set of parameters for each baseline, 10-fold cross-validation on data
from January 29, 2015 to February 1, 2015 is used. Each baseline is then trained
with the best set of parameters on data from February 5, 2015 to Febrary 25,
2015. The resulting models are then used to generate predictions from Febrary
26, 2015 to March 31, 2015.

Support Vector Machine

The SVM implementation used in this work is from the R library kernlab [Karat-
zoglou et al., 2004]. When using SVMs there is a choice among several kernel
functions to use. To determine which kernel to use in the SVM of Experiment
1, a preliminary experiment comparing the RMSE of SVM models using a lin-
ear, polynomial and radial basis kernel functions was conducted. In addition to
experimenting with different kernel functions, a grid of parameters is searched
for each kernel function in order to find the parameters to be used for the best
performing kernel.

For the linear kernel the only parameter to optimize is the cost parameter
C. For the polynomial kernel there are three parameters to optimize: the degree
of the polynomial degree, the cost parameter C and the scale parameter scale.
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C RMSE
2−5 0.1594510
2−1 0.1594400
2 0.1594396
25 0.1594387
210 0.1604016
215 0.1843528

Table B.1: Parameter tuning for Linear SVM

For the radial basis function kernel there are two parameters to optimize: σ and
the cost parameter C. Tables B.1, B.2 and B.4 presents the range of parameters
used during the parameter tuning of the SVM models using a linear, polynomial
and radial basis function kernel functions, respectively. Table B.3 summarizes
the results from the different degrees used in polynomial kernel function.

Table B.5 summarizes the results of running the best performing models for
each kernel type on the test set. The SVM with a radial basis function kernel
function yielded the lowest RMSE of 243.3726 and was therefore selected to be
used in Experiment 1. Among the parameter values tested in the grid search
for the radial basis function SVM models, the parameters σ = 4.1451371 and
C = 2−1 yielded the best performing model, and is the one used in Experiment
1.

k-Nearest Neighbors

The k-NN implementation used in this work is from the R library kknn [Schliep
and Hechenbichler, 2014]. The parameters that are possible to tune in kknn are
k, distance measure and kernel. The k parameter controls how many neighbors
to extract from the instances present in the data set when making predictions.
The distance measure parameter controls how the distance between two points
in the data set is computed. The kernel parameter controls how to weight the
values of the k neighbors based on their distance. In order to find a good set of
parameters for the weighted k-NN algorithm a grid search was performed.

The distance parameter is more specifically the parameter used to calculate
the Minkowski distance between two points. In the grid search the values 1 and
2 were selected to use the Manhattan and Euclidean distance, respectively. The
kernel is a function representing the distribution of the underlying data set. Since
k-NN does not require any training, testing for a large number of combinations
is possible. Therefore all the available kernel functions in the kknn library were
tested. Small k values makes k-NN sensitive to noise in the data, but makes it
easier to distinguish different traffic scenarios from each other. Choosing large k
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C Scale RMSE
2−5 0.001 0.1678236
2−1 0.001 0.1603247
2 0.001 0.1596821
25 0.001 0.1594829
210 0.001 0.1594655
215 0.001 0.1602348
2−5 0.010 0.1607862
2−1 0.010 0.1595467
2 0.010 0.1594870
25 0.010 0.1594715
210 0.010 0.1594667
215 0.010 0.1590753
2−5 0.100 0.1596038
2−1 0.100 0.1594786
2 0.100 0.1594710
25 0.100 0.1594700
210 0.100 0.1594310
215 0.100 0.2060724

First degree polynomial

C Scale RMSE
2−5 0.001 0.1648976
2−1 0.001 0.1597790
2 0.001 0.1591884
25 0.001 0.1577153
210 0.001 0.1572685
215 0.001 0.1576086
2−5 0.010 0.1595339
2−1 0.010 0.1575453
2 0.010 0.1573096
25 0.010 0.1572620
210 0.010 0.1572505
215 0.010 0.1570599
2−5 0.100 0.1573271
2−1 0.100 0.1572610
2 0.100 0.1572575
25 0.100 0.1572554
210 0.100 0.1573637
215 0.100 0.1835173

Second degree polynomial

C Scale RMSE
2−5 0.001 0.1632949
2−1 0.001 0.1594510
2 0.001 0.1586526
25 0.001 0.1573733
210 0.001 0.1569685
215 0.001 0.1564797
2−5 0.010 0.1586273
2−1 0.010 0.1571663
2 0.010 0.1568624
25 0.010 0.1565607
210 0.010 0.1565122
215 0.010 0.1628453
2−5 0.100 0.1566293
2−1 0.100 0.1565251
2 0.100 0.1565129
25 0.100 0.1565076
210 0.100 0.1576626
215 0.100 0.1660079

Third degree polynomial

Table B.2: Parameter tuning for Polynomial SVM
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Degree C Scale RMSE
1 215 0.010 0.1590753
2 215 0.010 0.1570599
3 215 0.001 0.1564797

Table B.3: Summary of best performing parameters per degree for Polynomial
SVM

σ C RMSE
0.1005521 2−5 0.1560983
0.1005521 2−1 0.1558789
0.1005521 2 0.1558185
0.1005521 25 0.1556929
0.1005521 210 0.1557148
0.1005521 215 0.1565749
0.5023972 2−5 0.1558294
0.5023972 2−1 0.1556032
0.5023972 2 0.1555518
0.5023972 25 0.1554235
0.5023972 210 0.1554382
0.5023972 215 0.1575169
4.1451371 2−5 0.1560392
4.1451371 2−1 0.1549082
4.1451371 2 0.1549102
4.1451371 25 0.1552377
4.1451371 210 0.1564157
4.1451371 215 0.1647936

Table B.4: Parameter tuning for Radial SVM

Kernel Parameters RMSE
Linear C = 25 248.3869
Polynomial Degree = 3, C = 215, Scale = 0.001 243.3781
Radial Basis Function Sigma = 4.1451371, C = 2−1 243.3726

Table B.5: Summary of the best performing SVM models per kernel type
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values reduce the algorithms sensitivity to noise, but reduces its ability to detect
special cases. Tables B.6 and B.7 shows the parameters tested for each kernel
type. Notice that the best performing set of parameters per kernel is highlighted
with bold font. Table B.8 lists the best performing set of parameters for each
kernel, and enhances the best performing set of parameters across all parameters
with bold font. The following parameters yielded the lowest RMSE of 0.1501901:
k = 50, distance measure = 1 (Euclidean) and kernel = Rank.

Artificial Neural Network

The ANN implementation used in Experiment 1 is from the R library nnet [Ven-
ables and Ripley, 2002]. The nnet library provides functions for creating and
training feed forward ANNs with a single hidden layer. The parameters be-
ing tunes for the ANN is the number of hidden nodes in the network and the
weight decay parameter. Table B.9 presents the different values tested during
the parameter tuning for ANN, and the resulting RMSE for each combination of
parameters. The parameters yielding lowest RMSE of 0.1497285 was: number
of hidden nodes = 16 and decay= 1× 10−4, highlighted with bold font in Table
B.9.

Kalman Filter

dlm is a R library providing functions for defining dynamic linear models of vari-
ous types, which is used to perform the Kalman filter predictions in Experiment
1. The actual travel times of the data set forms a time series, and it is assumed
that this time series of travel times can be modelled using a first order linear
model with the following state space formulation:{

yt = θt + vt, vt ∼ N (0, Vt)

θt = θt−1 + wt, wt ∼ N (0,Wt)
(1)

where yt is the observed travel time at time t, θt is the actual travel time at
time t, which is assumed to be unobservable, vt is the observation noise and wt
is the process noise. Both vt and wt are assumed to follow a zero mean Gaussian
distribution with covariance matrices Vt and Wt, respectively.

The parameters that are tuned for this model are the covariance matrices Vt
and Wt. This is done through a grid search using maximum likelihood estimation.
The dlm library provides a function for finding the set of parameters α having the
highest probability given a set of observations x. The optimal set of parameters α̂
is found through searching through a grid of possible α values, and choosing the
one maximizing the log-likelihood of α given the observations x. The observations
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Kmax Distance RMSE
3 1 0.1703484
3 2 0.1701785
5 1 0.1610623
5 2 0.1613434
7 1 0.1575735
7 2 0.1577541
10 1 0.1546021
10 2 0.1547042
20 1 0.1517638
20 2 0.1517947
50 1 0.1502186
50 2 0.1502300

Rectangular

Kmax Distance RMSE
3 1 0.1761805
3 2 0.1761574
5 1 0.1653235
5 2 0.1654804
7 1 0.1603163
7 2 0.1603996
10 1 0.1566807
10 2 0.1567659
20 1 0.1525314
20 2 0.1525958
50 1 0.1502085
50 2 0.1502746

Optimal

Kmax Distance RMSE
3 1 0.1781971
3 2 0.1786599
5 1 0.1669801
5 2 0.1680861
7 1 0.1614506
7 2 0.1624606
10 1 0.1574673
10 2 0.1581775
20 1 0.1531711
20 2 0.1536536
50 1 0.1503567
50 2 0.1506450

Triangular

Kmax Distance RMSE
3 1 0.1764503
3 2 0.1769599
5 1 0.1651597
5 2 0.1663247
7 1 0.1600756
7 2 0.1610494
10 1 0.1564606
10 2 0.1571335
20 1 0.1527153
20 2 0.1531223
50 1 0.1502012
50 2 0.1504361

Epanechnikov

Kmax Distance RMSE
3 1 0.1837144
3 2 0.1842058
5 1 0.1728479
5 2 0.1739973
7 1 0.1660075
7 2 0.1675166
10 1 0.1608040
10 2 0.1620943
20 1 0.1549380
20 2 0.1558122
50 1 0.1512792
50 2 0.1519595

Triweight

Kmax Distance RMSE
3 1 0.1770035
3 2 0.1775128
5 1 0.1657162
5 2 0.1668814
7 1 0.1604792
7 2 0.1614875
10 1 0.1567521
10 2 0.1574551
20 1 0.1528490
20 2 0.1532873
50 1 0.1502529
50 2 0.1505107

Cos

Table B.6: k-NN Parameter Tuning Results pt. 1
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Kmax Distance RMSE
3 1 0.1837840
3 2 0.1836059
5 1 0.1781395
5 2 0.1781810
7 1 0.1755044
7 2 0.1754793
10 1 0.1733839
10 2 0.1732052
20 1 0.1703310
20 2 0.1700676
50 1 0.1675241
50 2 0.1671295

Inv

Kmax Distance RMSE
3 1 0.1709502
3 2 0.1708552
5 1 0.1620715
5 2 0.1624392
7 1 0.1583586
7 2 0.1587008
10 1 0.1555217
10 2 0.1557561
20 1 0.1524583
20 2 0.1526986
50 1 0.1504290
50 2 0.1506819

Gaussian

Kmax Distance RMSE
3 1 0.1734786
3 2 0.1733456
5 1 0.1640946
5 2 0.1642367
7 1 0.1596231
7 2 0.1597906
10 1 0.1562839
10 2 0.1563961
20 1 0.1524152
20 2 0.1524823
50 1 0.1501901
50 2 0.1502636

Rank

Table B.7: k-NN Parameter Tuning Results pt. 2
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Kmax Distance Kernel RMSE
50 1 Rectangular 0.1502186
50 1 Optimal 0.1502085
50 1 Triangular 0.1503567
50 1 Epanechnikov 0.1502012
50 1 Triweight 0.1512792
50 1 Cos 0.1502529
50 2 Inv 0.1671295
50 1 Gaussian 0.1504290
50 1 Rank 0.1501901

Table B.8: Summary of best performing parameters per kernel for k-NN

Number of hidden nodes Weight Decay RMSE
1 0 0.2270246
1 1× 10−4 0.1504067
1 1× 10−1 0.1513350
2 0 0.2270246
2 1× 10−4 0.1580870
2 1× 10−1 0.1509677
4 0 0.2192657
4 1× 10−4 0.1498524
4 1× 10−1 0.1509192
8 0 0.2111320
8 1× 10−4 0.1499537
8 1× 10−1 0.1510321
16 0 0.2195452
16 1× 10−4 0.1497285
16 1× 10−1 0.1510171

Table B.9: Parameter tuning for ANN
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that are given to find these parameters is the same set of training data that the
other baseline models are given.

α̂ = max
α
L(α|x)

Since yt and θt are univariate, matrices Vt and Wt are 1 × 1 matrices, and
only one value per covariance matrix is tuned. Vt and Wt are set to 47939 and
122, respectively. In order to give a complete definition of the dynamic linear
model, an initial estimate of yt=0 and its variance σt=0 has to be provided. This
is set to be the mean and standard deviation of the training observations, which
are 242 and 255, respectively.

B.2 Ensemble Learning Methods

The setup of each ensemble method used in Experiment 1 is presented in this
section. The general procedure is described in Overview, whilst specific details
concerning the setup of each ensemble method can be found in their respective
sections.

Overview

Bagging and boosting train multiple SVMs on the same data set as the baselines
described in Section 4.2.2. Data from February 5, 2015 to Febrary 25, 2015
and generate predictions on data from February 26, 2015 to March 31, 2015.
Due to the computational complexity of training SVMs, no parameter tuning is
conducted for bagging and boosting.

Lasso and Fuzzy Rule Based System (FRBS) use the predictions of the base-
lines described in Section 4.2.2 as input. Lasso is tuned and trained on data
from February 26, 2015 to March 18, 2015 and uses data from March 19, 2015 to
March 31, 2015 to generate predictions. Due to the computational complexity of
FRBS, only one week of data from February 26, 2015 to March 4, 2015 is used
to search for the best set of parameters. As the rules in the FRBS are manually
created, no training phase is necessary. Predictions are generated from March 5,
2015 to March 31, 2015.

Bagging

The bagging method is implemented in R. There are two parameters that must
be specified when doing bagging of a baseline learner: the number of learners K
to use in the ensemble, and the number of samples N to do for each learner. In
Experiment 1, K is set to 25, and N is set to the number of training examples
in the training set. A SVM model with the parameters of the best performing
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model from the parameter tuning step for SVM reported in Section B.1 is used,
i.e. a SVM model with a Gaussian radial basis function as kernel, σ = 4.1451371
and C = 2−1.

Boosting

In order to test the effects of boosting, the AdaBoost [Freund and Schapire, 1997]
algorithm is used. An implementation of the AdaBoost.r2 algorithm [Drucker,
1997], which is a version of the AdaBoost algorithm for regression problems, is
found in the Python library scikit-learn [Pedregosa et al., 2011]. Of the base-
line methods used in this work, the only one that is supported in scikit-learn is
SVM, and is therefore the baseline used for the boosting ensemble in Experiment
1. A SVM model with the same parameters as the one reported in Section B.2 is
used for the Boosting approach. The only parameter provided to the AdaBoost
algorithm is the number of learners K to use in the ensemble, which is set to 25
in Experiment 1.

Lasso Ensemble

The implementation of the lasso method is taken from the R library elasticnet

Zou and Hastie [2012]. The elasticnet library provides functions for for defining
elastic nets, of which the lasso method is a special case. Recall from Section 3.1.3
that the optimal weights in lasso is given by solving the following equation:

Ŵ = arg min
W

‖F−GW‖22 + λ‖W‖1

where λ is a parameter of the lasso method. caret provides functionality for
optimizing this λ parameter through a grid search, where RMSE is used to assess
the performance of a given λ value. elasticnet, which caret uses to perform
the lasso approach, requires that this λ value is controlled by specifying a fraction
f which represents how much the weight regularization term contributes to the
sum relative to the norm of the full least squares solution. A search grid of values
from 0.05 up to 1 in steps of 0.05 is used in the parameter tuning step for lasso.
Table B.10 summarizes the performance for the different fraction values tested
during the parameter tuning step. Having the fraction parameter set to 1 resulted
in the lowest RMSE of 169.4987, and is the parameter used in Experiment 1.
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Fraction RMSE
0.05 228.9219
0.10 220.7864
0.15 213.0905
0.20 205.8835
0.25 199.2188
0.30 193.1524
0.35 187.7423
0.40 183.0462
0.45 179.1200
0.50 176.0145
0.55 173.7729
0.60 172.4239
0.65 171.6533
0.70 170.9984
0.75 170.4612
0.80 170.0428
0.85 169.7440
0.90 169.5771
0.95 169.5259
1.00 169.4987

Table B.10: Parameter tuning for Lasso Ensemble

Fuzzy Rule Based System

The R library frbs [Riza et al., 2015] is used to generate a FRBS based on
Stathopoulos et al. [2008]. The input to the FRBS is a data set containing
predictions from the artificial neural network and the Kalman filter described
above. As in Stathopoulos et al. [2008], two different rule bases, each preferring
one of the two baselines, are used. The rule base preferring ANN is displayed in
Table B.11. The rule base preferring Kalman filter is similar, except that it gives
priority to the Kalman filter’s predictions. The travel time predictions from the
baselines are mapped with triangular membership functions to three fuzzy sets;
low, medium, and high. The values of the membership functions are optimized
with the constrOptim function in the stats library [R Core Team, 2015], in
which the Nelder-Mead [Nelder and Mead, 1965] algorithm is used to search for
an optimal set of parameters bounded by the constraints shown in Table B.12.
Data from February 26, 2015 to March 4, 2015 is used to tune the FRBS. The
final set of membership function parameters for each rule base can be found in
Table B.13 and Table B.14, and illustrations of the membership functions are
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Figure B.1: Illustration of membership functions for FRBS preferring ANN

given in Figure B.1 and Figure B.2.

B.3 Online Learning Methods

This section presents the setup of the online methods used in Experiment 2.
The general approach is described in Overview, whilst specific details for the
individual methods are presented in their respective sections.

IF ANN is low and KF is low THEN output is low
IF ANN is low and KF is not low THEN output is low
IF ANN is medium and KF is medium THEN output is medium
IF ANN is medium and KF is not medium THEN output is medium
IF ANN is high and KF is high THEN output is high
IF ANN is high and KF is not high THEN output is high

Table B.11: Rule base preferring ANN over Kalman filter (KF)
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Figure B.2: Illustration of membership functions for FRBS preferring Kalman
filter

lowa ≥ min
lowb ≥ lowa
lowc ≥ lowb
lowc ≥ mediuma

mediuma ≥ lowa
mediumb ≥ mediuma

mediumc ≥ mediumb

mediumc ≥ higha
higha ≥ mediuma

highb ≥ higha
highc ≥ highb
highc ≤ max

Table B.12: Constraints for the parameters of the membership functions
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low medium high
a 204.5799 292.2150 298.0683
b 287.4319 313.9751 1111.8725
c 302.5835 404.7539 1448.2825

Table B.13: Membership function parameters for FRBS preferring ANN

low medium high
a 164.3251 240.4815 272.8217
b 328.2455 344.3591 968.0878
c 332.7156 1039.4697 1700.2693

Table B.14: Membership function parameters for FRBS preferring Kalman Filter

Overview

The online learning methods are tuned and trained on two weeks of data from
January 29, 2015 to February 11, 2015. The first week is used to build the models
with a certain set of parameters, whilst the second week is used to calculate the
RMSE of the predictions done during that week. Since the methods are online,
the data in the second week is also used to update the models whilst making
predictions. The model built on the set of parameters that lead to the lowest
RMSE is used to generate predictions from February 12, 2015 to March 13, 2015.
The data set used is not preprocessed, i.e. no outliers are removed.

Online-Delayed Extended Kalman Filter

An implementation of the Extended Kalman Filter (EKF) [Cao, a] and using
this EKF to train a feed-forward ANN [Cao, b] is found in Matlab [MATLAB,
2014] on the Matlab Central File Exchange4. The state space definition that is
assumed can be expressed as follows:{

yt = G(xt, θt)

θt = θt−1 + rt, rt ∼ N (0, Rt)
(2)

where θt is the weights in the feed-forward ANN at time t, rt is the noise
with which the weights are assumed to evolve, and G represents the mapping
performed by the ANN from inputs xt to output yt given weights θt. That is,
the weights are assumed to follow a random walk, and the ANN does a noisy
observation of the weights through its outputs. In the experiments performed in

4http://www.mathworks.com/matlabcentral/fileexchange/

http://www.mathworks.com/matlabcentral/fileexchange/
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this study, the input vectors inputt consists of the mean travel time the previous
five minutes and traffic volume the previous five minutes. The target values
targett for the output of the ANN is the actual travel time for each vehicle.

inputt = [mean travel time, traffic volume]

targett = actual travel time

Recall from Section 3.2.1 that an initial estimate of the state vector xt=0,
its covariance matrix Pt=0, process noise covariance matrix Q, and observation
noise covariance matrix R has to be defined in order to run the EKF. For the way
EKF is used in the experiments in this study, this means that an initial estimate
of the weights θinitial has to be provided. The approach described in Van Lint
[2008] is that the weights θinitial are initialized using the Nguyen-Widrow method
[Nguyen and Widrow, 1990]. In Van Lint [2008], the weights’ covariance matrix
Pinitial is initialized to a diagonal matrix with large values, reflecting that it is
assumed that the weights are independent, and that there is a large uncertainty
connected to the initial guess of the weights. These are also the approaches taken
in this work, and the value along the diagonal of θinitial is set to 10 000.

As Van Lint [2008] does not describe how the covariance matrices Q and R
is set, a parameter tuning step is performed to find reasonable values for Q and
R, in addition to the number of nodes in the hidden layer in the feed-forward
ANN. The covariance matrix Q is assumed to be a diagonal matrix, once more
reflecting that the weights are independent, such that the only value being search
for regarding Q in the parameter tuning step, is the value q along the diagonal
of Q.

Q = q × I

As the output yt consists of a single value, namely the travel time, the covari-
ance matrix R of the observation noise is a single element r reflecting the noise
related to the observations that the ANN does of the weights.

The parameter tuning for online-delayed EKF is run on two weeks of data
from January 19, 2015 to February 11, 2015. Given a set of parameters the
online-delayed EKF is trained on the first week of data from January 19, 2015 to
February 4, 2015. Next, the model is used to train on the second week of data
from Februar 5, 2015 to February 11, 2015, and the predictions made during
this final training phase is used as a basis for computing the RMSE for that
combination of parameters. The parameters yielding the lowest RMSE on the
test set is the ones used for the online-delayed EKF model in Experiment 2.

Table B.15 illustrates the values for each parameter that is evaluated dur-
ing the parameter tuning. All combinations of the parameters is evaluated. As
this leads to 192 combinations, only the combination yielding lowest RMSE is
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q r Number of hidden nodes
0.1 10 1
0.01 25 2
0.001 50 4
0.0001 100 8

250 16
500 32
750
1000

Table B.15: Values tested during parameter tuning for Online-Delayed Extended
Kalman Filter

repeated here: q = 0.1, r = 750, number of hidden nodes = 1. This set of pa-
rameters yielded a RMSE = 406.42. The RMSEs during the parameter tuning
was in the range [406.42, 735.13]. Notice that the RMSE of this parameter tun-
ing step lies within another range than the ones resulting from the parameter
tuning for the baselines in Experiment 1. This is due to the fact that the RMSE
values reported from the parameter tuning for the baselines in Experiment 1 are
computed using normalized travel times. This is not the case for online-delayed
EKF, where the RMSE is computed on non-normalized values.

Local Online Kernel Ridge Regression

To find optimal parameters for each kernel two weeks of data from January 29,
2015 to February 11, 2015 was used. The first week was used to train the kernels
on different parameter values and the last week was used to make predictions.
For each pair of parameter values, the kernel was trained (i.e. the inverse of the
regularized kernel matrix mas calculated) on the first week of data and predictions
were made on the second week of data. The observations in the test set were also
used to update the kernel to simulate how Local Online Kernel Ridge Regression
(LOKRR) would normally work. The X matrix was reset to contain only the
training data before every run with new parameters. This way the best pair of
parameters could be found for each kernel. The recommendations for finding
possible parameter values for σ and λ presented in the article were followed.
The approach the authors recommend for finding possible λ values is based on
Exterkate [2013]. First, the R2 of an ordinary least squares fit of y on X is
found. Then λ0 is determined as λ0 = 1/φ0, where φ0 = R2/(1 − R2). The
recommended values for λ is {1/8λ0, 1/4λ0, 1/2λ0, λ0, 2λ0}. The recommended
approach for finding possible σ parameters is based on that optimal values of σ lie
in the range between the 0.1 and 0.9 quantiles of the pairwise euclidean distance
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between the points in the kernel [Caputo et al., 2002]. The 0.25, 0.5 and 0.75
quantiles were used as possible values for σ.

No open source implementation of LOKRR was found, so a n implementation
of LOKRR was developed in Python [Rossum, 1995] from scratch. Several issues
were encountered during this process.

Data Set 1 contains individual travel times as opposed to Haworth et al.’s
experiments with five minute aggregated data. Since the amount of traffic is
a lot bigger during the day than during the night, the kernels in our LOKRR
implementation ended up with different sizes. An upper bound on how much data
one kernel could contain was not set, but the method was slightly changed for
kernels with little data. In the article the kernel sizes are kept static, meaning a
data point is removed from the kernel as soon as a new point is added. For kernels
with number of observations below some threshold (200) a decision was made not
to remove the oldest observation. This way kernels responsible for intervals with
low traffic were aloud to grow also during the testing and verification stages.
Otherwise the kernels responsible for intervals with low traffic would be limited
by the amount of observations in the training set. By adding this functionality
kernels with less than 200 observations during the training period could keep data
further back in time than the other kernels when new observations were made.
This was done in hope of increasing prediction accuracy.

It was also discovered that the regularized kernel matrix sometimes ended up
with a determinant of zero, in which case an inverse can not be found. To avoid
getting an error during run time when attempting to calculate the inverse of a
singular matrix, a check was added to check if adding a new point would cause
a determinant of zero in the regularized kernel matrix. In those cases the point
was not added to the kernel. This means that some observations may have been
skipped by LOKRR during the testing and verification stage.

During parameter tuning two other issues were encountered. In cases where
a kernel only has two points in its X matrix, the R squared of an ordinary least
squares fit of y on X equals 1. This causes division by zero when calculating
φ. Kernels with a high percentage of similar observations also caused problems
when selecting parameter values for σ. Similar observations means that the
euclidean distance between them is zero. This led to one or more of the possible
σ values to become zero, which again caused division by zero when calculating
the kernel matrix. These two issues seemed to occur during intervals at night
with few observations in the kernels. Therefore a decision was made to only
consider intervals with a significant amount of traffic such that the probability of
these events happening was minimized. The data set used for LOKRR contained
observations from 06:00 to 21:00. Additionally, the window size is set to 1. This
is done to reduce the computational complexity.
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C Experimental Results

Baseline Sample median
1 3.3158
2 3.3944
3 3.2888
4 3.5681
5 3.409
6 3.3392
7 3.2783
8 3.2737
9 3.3757
10 3.3157
11 3.3435
12 3.3958
13 3.0521
14 3.0536
15 3.2123
16 3.0686
17 3.2234
18 3.2264
19 3.6155
20 3.2237
21 3.1358
22 3.3673
23 3.2151
24 2.998
25 3.5768

Table C.1: Sample medians of bagging baselines
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Figure C.1: Density of errors from SVM

Figure C.2: Density of errors from k-NN

Figure C.3: Density of errors from ANN
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Figure C.4: Density of errors from Kalman filter

Figure C.5: Density of errors from bagging

Figure C.6: Density of errors from boosting



112 APPENDIX

Figure C.7: Density of errors from lasso

Figure C.8: Density of errors from FRBS

Figure C.9: Density of errors from average
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Figure C.10: Density of errors from online-delayed EKF

Figure C.11: Density of errors from LOKRR
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Figure C.12: Predictions from LOKRR and actual travel time on March 6, 2015

Figure C.13: Predictions from LOKRR and actual travel time on March 7, 2015

Figure C.14: Predictions from LOKRR and actual travel time on March 8, 2015

Figure C.15: Predictions from LOKRR and actual travel time on March 9, 2015
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Figure C.16: Predictions from LOKRR and actual travel time on March 10, 2015

Figure C.17: Predictions from LOKRR and actual travel time on March 11, 2015

Figure C.18: Predictions from LOKRR and actual travel time on March 12, 2015

Figure C.19: Predictions from LOKRR and actual travel time on March 14, 2015
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Figure C.20: Predictions from LOKRR and actual travel time on March 15, 2015
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