


4 CASE STUDY

(a) Load step 15 (b) Load step 16 (c) Load step 20

Figure 4.30: Fixed crack - Compressive principal stress path and shear stress contour plots

τ [MPa]
−10 −8 −6 −4 −2 −1 −0.5 0

(a) Load step 15 (b) Load step 16 (c) Load step 20

Figure 4.31: Rotating crack - Compressive principal stress path and shear stress contour plots
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4.5 Results From NLFEA

4.5.3 Summary of Results

Characteristic load and deflection values are summarized in table 4.5. Fcr and FY

denotes the loading at which initiation of flexural cracking and yielding of the vertical

tension reinforcement was observed, respectively. FP(δP) denotes the load at the initial

load peak and the corresponding deflection of the wall. FU(δU) denotes the ultimate

load and the corresponding deflection. Load and deflection values are reported in kN

and mm, respectively. The percentage of the experimentally determined values are

given below the load values.

Table 4.5: Load and deflection values from analyses

Medium scale Large scale

Fixed crack Rotating crack Fixed crack Rotating crack

Fcr
12 12 17 17

92% 92% 131% 131%

FY
731 481 79 78

91% 60% 99% 98%

FP(δP)
80(6.2) 82(6.2) 106(9.8) 106(9.8)

63% 65% 83% 83%

FU(δU)
91(22.9) 82(6.2) 106(9.8) 106(9.8)

72% 65% 83% 83%

1Yield predicted after load peak
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5 Discussion

Before discussing the differences between the medium and large scale analyses, the

agreement between the indivudial analyses and the experimental results will be inves-

tigated. Suggestions to improve the analysis results are given, with special attention

directed at the volumetric expansion effect. Finally the effect of the element size on

the analysis result is discussed both with respect to the case study performed and with

respect to the proposed use in a design process as presented in chapter 3.

5.1 Medium Scale Analyses
As figure 4.10 clearly shows, the medium scale analyses poorly predict the ultimate

capacity of the structural wall. As reported in table 4.5, the first load peak after the drift-

off from the experimental result is only about 63% of the experimental load capacity.

After this point, the analyses behave very differently, and while the rotating crack model

never reaches a higher load, the fixed crack model predicts an ultimate load at 72%

of the experimental capacity at a displacement of 23 mm. However, the prediction

of the wall behavior before the initial load peak is very good in both crack models.

Both the load and deflection at initiation of flexural cracking is in good agreement

with the reported experimental results. And, as described by Lefas et al., the crack

pattern spreads out both vertically and horizontally from the bottom of the tensile zone,

gradually inclining towards the bottom left corner of the wall. The shear forces in

the wall also comply with the shear behavior described by Lefas et al., i.e. the shear

resistance contribution from the fully cracked zone of the wall is small, and the shear

forces are transferred to the wall base through the compressive zone. It is evident from

the analyses that the critical area that governs the failure of the wall is the bottom left

corner. The failure mode is the same as seen in the experimental results: splitting of

the compressive zone. This failure is seen before yielding of the reinforcement occurs,

the opposite of the behavior found in the experiment where the reinforcement shoved

significant plastic deformations before the capacity of the wall was reached. These

results indicate that the poorly predicted capacity of the wall is caused by the inability

of the finite element model to fully predict the stress state in the compressive zone and

thus the true capacity of this zone is not utilized.

A comment should be made on why the behavior of the two crack models is similar

until the shift of the compressive zone occurs. The initiation of the crack pattern is

handled in the same way by both models: the strains are evaluated in the principal

57



5 DISCUSSION

strain directions. The two models should predict the same behavior unless a significant

rotation of the stress field takes place after initiated cracking, or if the initial crack in

an integration point is not representative for the crack pattern in its corresponding

area. In the analyses presented, no significant rotation of the stress field is seen until

after the shift of the compressive zone, and the initial crack directions are more or less

correct. Thus, the models predict the same structural response until this stage. After

the shift of the compressive zone the stress field rotates towards the front of the new

compressive zone, and the differences in the two crack models become apparent. In

the rotating crack model, the rotation is allowed to occur and the capacity is quickly

reduced. In the fixed crack model on the other hand, the crack pattern is locked in the

initial configuration and the predicted response is stiffer than predicted by the rotating

crack model, causing the wall to regain capacity.

The regained capacity after the initial load peak will not be given much consideration

in the following discussion. The aim of this thesis is to investigate how NLFEA can be

utilized in a design process. In a design situation the drop in load capacity observed

after the initial peak would most likely be considered structural failure, and the load at

the initial load peak would be regarded as the ultimate load. Notice also how both the

compressive and the shear stress capacity of the initial compressive zone is negligible

after the initial load peak. Thus, the wall after the load peak can almost be considered a

narrower version of the wall before the load peak. The fact that an even higher capacity

is found after the load peak for the fixed crack model raises suspicion. However, based

on the argument stated above, this part of the wall deflection will not be discussed in

detail.

5.2 Large Scale Analyses
The predicted ultimate load of the large scale analyses is better than for the medium

scale analyses. The ultimate load of both the fixed and rotating crack models is 84%

of the experimental capacity of the wall. Despite the large element size, the analyses

are able to predict the initiation and propagation of the crack pattern rather well. As

seen in the medium scale analyses, the distribution of shear forces in both large scale

analyses also comply with the experimental result. Shear stresses are carried by a shear

band stretching from the top edge of the wall to the compressive zone in the bottom

left corner. Notice that the element size used in the large scale analyses cause shear

stresses to appear on the left edge of the wall, i.e. no pure compressive column is seen.

The analyses predict yielding of the vertical reinforcement at an external load of 78
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5.3 Volumetric Expansion Effect

and 79 kN for the fixed and rotating crack models, respectively. This load compares

well with the reported external load of 80 kN from the experiment. What is more

interesting is that yielding is predicted before the failure of the compressive zone, just

as reported from the experiment. The analyses fail to model the triaxial stress state

in the initial compressive zone, resulting in a premature failure. However, as for the

medium scale analyses both large scale analyses fail due to splitting of the compressive

zone, in agreement with the experimentally reported failure mode.

5.3 Volumetric Expansion Effect
The inability of all analyses to model the triaxial stress state in the compressive zone

is believed to be the most important factor of the poor prediction of the ultimate load

capacity. Lefas et al. discuss how the volume dilatation effect described in section 2.1.3

is the main cause of the triaxial conditions observed in the compressive zone in the

experiment [14]. When the expansion of the highly stressed concrete in this region is

restrained, a triaxial stress state is created which significantly increases the compressive

strength of the concrete. The restraint is caused by adjacent concrete regions or, as

pointed out by Lefas et al., mainly by the confining stirrup reinforcement in the wall

columns.

When the results of the medium and large scale analyses are examined closer an

interesting observation is done. It is found that the mean stress of the most critical

stirrup reinforcement bar in the compressive zone is increased from 60 to 320 MPa

between load steps 10 and 11 in the medium scale analyses, and from about -10 to

233 MPa between load steps 15 and 16 in the large scale analyses. These load steps

correspond to the last step before splitting and the first step after splitting, respectively.

Both the fixed and rotating crack model yield this result and similar behavior was

found for the main horizontal reinforcement in this region. The stress increase in the

reinforcement occurs after the concrete in this region has passed its most stressed state in

load step 8 in the medium scale analyses, and in load step 15 in the large scale analyses.

This indicates that significant lateral expansion of the elements in the compressive zone

does not occur until after failure of this region. The concrete stresses in both the global

x- and y-directions for the medium scale fixed crack analysis are plotted in figure 5.1

for integration points 1 and 2 (cf. figure 4.15), located at the front of the initial and

the shifted compressive zone, respectively. The figure clearly shows how a significant

biaxial stress state causes an increase of the concrete strength in integration point 2.

It is also evident that the confining stresses are small in integration point 1 before the

shift.
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Figure 5.1: Biaxial stress states in the fixed crack model

Judging by the results presented, it is believed that a finite element model that

is capable of producing a proper biaxial stress state in the initial compressive zone

probably will predict a more accurate capacity of the structural wall. It seems that

an implementation of the volumetric expansion effect described in section 2.1.3 could

help develop the full biaxial stress state in the compressive zone. Selby and Vecchio

state that the lateral expansion effects of concrete can not be neglected in problems

where triaxial stress conditions are central [25]. In figure 5.2(a) the volumetric strain

for the fixed crack model is presented for both the medium and large scale analyses.

The location of the integration points MA, MB and MC , representing values from the

medium scale analysis, is illustrated in figure 5.2(b). The integration point L from the

large scale analysis, is the point where splitting is observed in figure 4.28(e). The point

of minimum volume for each of the integration points in figure 5.2 is reached in the

last step before splitting is observed (cf. figure 4.17(d), 4.17(e) and 4.28(d)), i.e. after

the compression strength of the concrete is reached. As described in section 2.1.3, the

point of minimum volume should have occured at 80-95% of the compressive strength.

When a volumetric expansion is not present at an earlier stage, the capability of the

stirrup reinforcement to create a biaxial stress state is not utilized properly. If a proper

implementation of the volume dilatation effect was done, volumetric expansion would

have occurred in an earlier load step and probably allowed for a more correct biaxial

stress state and consequently an increased capacity of the structural wall. It should be
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5.3 Volumetric Expansion Effect

noted that the the course of the volumetric strain until the point of minimum volume is

not non-linear as can be perceived from figure 5.2(a). If the strain was plotted against

the principal stress it would be linear due to the constant Poisson’s ratio used in the

analysis.
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Figure 5.2: Predicted volumetric strain from the fixed crack model

Finite element analysis of the structural wall experiments reported by Lefas et al.

has previously been conducted by other researchers. Selby and Vecchio reports the re-

sult of such an analysis of structural wall SW16 [25]. The height-to-width ratio of this

structural wall is different from the wall analyzed in this thesis but the deformational

response is similar, and the failure of the wall is governed by the strength of the concrete

in the compressive zone. The wall was modeled in 3D as seen in figure 5.3(a) and a

rotating crack model with similar material models to the ones presented in section 2.2

was used. What makes this analysis interesting is the inclusion of the volumetric expan-

sion effect, achieved by increasing the Poisson’s ratio when the stress approaches the

ultimate strength of the concrete. The load-deflection curves of the analyses presented

in figure 5.3(b) clearly show how the prediction of the ultimate load is in good agree-

ment with the test results, if a lateral confinement model for the concrete is specified.

If no lateral confinement model is specified, premature failure of the wall is observed.

The writers report that the concrete stress at peak load is 1.52 fcm. The increase in

strength is attributed to the stirrup reinforcement and the concrete area of the bottom

beam surrounding the compressive zone of the wall. Both help create a triaxial stress

state by retaining the expanding concrete. At the peak load, the stirrup reinforcement

was approaching yield, thus a substantial contribution to the triaxial stress state from
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5 DISCUSSION

this reinforcement is present. The results from Selby and Vecchio clearly show the

importance of the volumetric expansion effect when triaxial stress states govern the

load capacity of a reinforced concrete member.

(a) Finite element model (b) Analysis result

Figure 5.3: SW16 analyzed by Selby and Vecchio [25]

5.4 Effect of Element Size
The use of large elements can cause inaccurate results in the analyses since large

elements means fewer integration points for describing the structural behavior. In

order to determine if the analysis result is sufficiently accurate, and if the result is

usable in a design process, the effects of the element size is investigated.

5.4.1 Effects Observed in the Case Study at Hand

The step from medium scale elements to large scale elements has some implications on

the behavior of the structural wall tested, and some immediate observations can be done

on basis of the presented results. First of all it is evident that the predicted capacity of

the wall is increased when modeled with larger elements. Secondly, the crack pattern

in the large scale analyses is comparable to the crack pattern seen in the medium

scale analyses and the failure mode is correct. Thirdly, yielding of the reinforcement

initiates before the load peak in the large scale analysis, while the opposite is observed

at medium scale. To help expose the general differences between the two element

sizes, the changes in the wall stiffness during each analysis can be compared. The

prediction of the wall stiffness is an important aspect of the analyses and can reveal

valuable information about the deformational response. The secant stiffness for the

medium and large scale fixed crack analyses, and the experimentally reported results

are plotted against the external load in figure 5.4. Note that the curves are cut off

at the peak load. The plot shows how the experimental stiffness is rapidly decreased
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5.4 Effect of Element Size

in the start of the wall deformation and how it stabilizes at about 40 kN. At 80 kN,

an inflection point is reached and the stiffness is decreasing more rapidly toward the

ultimate load. The inflection point corresponds to the observed yielding of the vertical

reinforcement in the experiment. Except from the too stiff prediction of the secant

stiffness until an external load of 40 kN, the plot shows a good correlation between

the experimental and the analysis stiffness. Note also that the secant stiffness of the

large scale analysis inflects at 80 kN, when yielding is initiated, thus the change in

stiffness associated with this point in the experiment is captured by the analysis. The

predicted secant stiffness indicates that both analyses approximate the behavior of the

wall quite well, despite the premature failures. The main difference observed between

the medium and large scale analyses in the plot, is the stiffer behavior exhibited by the

large scale analysis during the start of the deformational response. This difference is

probably caused by the development of the crack pattern on the tensile edge of the

wall. As reported in table 4.5, the medium and large scale analyses predict initiation of

flexural cracking at 13 kN in load step 2 and 17 kN in load step 3, respectively. The two

load steps without cracking in the large scale analysis is evident by the initial horizontal

course of the secant stiffness in figure 5.4. Before cracking is initiated, and at low levels

of compressive stress, the response of the wall is linear and thus the secant stiffness

remains unchanged.
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Figure 5.4: Secant stiffness from the fixed crack model

The softer behavior seen in the first phase of the secant stiffness plot for the medium

scale analysis, as compared to the large scale analysis, is believed to be caused by

localization of the crack pattern. When cracking is initiated in an integration point,
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unloading in the surrounding integration points is observed. An increase in the external

load on the structural wall causes the strains in the existing cracks to increase along

the tension softening path, and the strains in the neighboring areas to decrease due

to the elastic unloading. The result is a decrease in stresses in both areas and thus a

softer behavior of the structure. In the large scale analyses, the fracture process is non-

localized and each integration point represents a larger area, thus the localization and

unloading observed in the medium scale analyses is not present and the wall response is

stiffer. The difference between the localized and non-localized crack patterns is evident

in figure 5.5, showing the results of the medium and large scale analyses at an external

load of about 20 kN. When the crack pattern is progressed further, the differences in

the medium and large scale analyses are not so prominent and the initial difference in

the secant stiffness predicted by the two analyses, as seen in figure 5.4, is decreased. As

seen in figure 5.6, the predicted crack patterns in the two analyses are very similar at an

external load of about 40 kN. Note that the mesh of the large scale analyses is outlined

in the medium scale plots in figures 5.5 and 5.6 to allow for effective comparison of

the two analyses.

In both the medium and large scale analyses, splitting is not observed in the bottom

most integration points, probably due to the restraining of the nodes along the wall base.

The absence of splitting in these points is not believed to have much of an influence on

the medium scale analyses where the elements are rather small, and thus the bottom

elements alone do not govern the behavior of the compressive zone. However, in

the large scale analyses, the restrained nodes could cause a higher capacity in the

compressive zone. Here, the critical area of the compressive zone is covered by only

one element and the restraining of the nodes in that element therefore affects a rather

large area of the structural wall. Also, the width of the compressive zone found in the

medium scale analyses (cf. figure 4.11 and 4.11) is only about 1/3 of the side length of

the elements used in the large scale analyses. Thus, the area covered by the element in

the compressive zone in the large scale analyses experiences both compressive crushing

and tensile cracking, a large diversity in the material behavior represented by only four

integration points. The most extreme compressive stresses occurring in this area is not

picked up by the integration points in the element and the failure of the compressive

zone is delayed. It is believed that this is the main contribution to the higher capacity

predicted by the large scale analyses. However, despite this behavior, the large scale

analyses provide a conservative prediction of the load carrying capacity of the structural

wall, and the response is well predicted until failure.
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5.4 Effect of Element Size

(a) Medium scale crack pattern

at 20 kN

(b) Large scale crack pattern

at 19 kN

Figure 5.5: Localized (a) and non-localized (b) crack patterns

(a) Medium scale crack pattern

at 38 kN

(b) Large scale crack pattern

at 36 kN

Figure 5.6: Progressed crack patterns
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5.4.2 The use of Large Elements in a Design Process

When generalizing the effects of the element size, while keeping in mind the suggested

utilization of NLFEA in a design process, three main aspects are important. As discussed

in chapter 3, NLFEA should provide the analyst with information about the correct

distribution of forces in the structure, the correct load capacity and the cause and

progression of failure. The analyses conducted here have shown that the use of large

scale elements will accurately predict the stiffness of the structural wall, at least for

high load levels. Accurate prediction of the stiffness means accurate prediction of the

deformations, and this is essential for the utilization of NLFEA in a design process. If

the structural wall discussed here was part of a larger structure, the predicted stiffness

would have a large influence on the load distribution in the structure. If an accurate

distribution of forces in the structure is sought, the stiffness of each structural part must

be accurately predicted. The results of the analyses conducted here show that a well

predicted load distribution can be expected when large scale elements are used for

modeling of structural members.

When it comes to finding the ultimate load carrying capacity of the structure the

analyses have shown that the material models used here would probably not yield

a satisfactory degree of accuracy without including the volumetric expansion of the

concrete. This is true for both the medium and large scale analyses, and the effect of

the element size on the accuracy of the predicted load capacity can therefore not be

studied thoroughly. It might well be that the large scale analyses would predict a non-

conservative ultimate load if the material models in general performed more accurate,

due to the generally stiff nature of structures modeled with large elements.

The last sought after result is the cause and progression of failure in the structure.

The analyses have shown that the large scale model predicts the failure mode correctly,

despite the premature failure. After the initial peak load, the load capacity of the wall

is greatly reduced and the deflection similarly increased. If part of a larger structure,

the load carried by the structural wall would have to be redistributed to other parts of

the structure, and thus the progression of failure in the structure could be followed on

a global level.

It should be pointed out that the results found here are based on the analyses of

the structural wall alone. Analyses of a wide range of structural components must be

conducted to verify that the results obtained here are valid in general, before NLFEA

with large scale elements can be confidently utilized for large structures.
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6 Concluding Remarks

The results presented suffer from the lack of a well predicted ultimate load carrying

capacity of the structural wall, both in the medium and large scale analyses. The

premature failure seen in all analyses complicates the finding of effects caused by

the element size. If better results were obtained in the medium scale analyses, the

differences that occur in the transition to large scale elements would probably be more

noticeable and easier to single out. However, despite these difficulties, some concluding

remarks can still be done:

1. It is clearly evident that the predicted ultimate load carrying capacity of the

structural wall is highly affected by the triaxial stress state in the compressive

zone, and that the premature failure observed in all analyses are caused by the

inability of the finite element model to reproduce such a stress state. Based on

the discussion of the results presented here, and the results obtained by other

researchers, it is concluded that the volumetric expansion effect of the concrete

must be respected in order to accurately predict the ultimate load by use of NLFEA.

2. In the medium scale analyses, a significant difference between the fixed and

rotating crack models is found in the wall response after the failure of the initial

compressive zone. The increased capacity observed in the fixed crack model is

questioned. However, the subject has not been further investigated, due to the

fact that the response after the initial peak load is of little importance in a design

situation as the one presented here.

3. No significant difference is seen between the fixed and the rotating crack model

before the initial peak load. The small difference is attributed to the fact that the

first initiation of cracks are representative for the fully developed crack pattern,

and thus no significant rotation of the stress field is observed in the analyses when

the crack pattern progresses to its final state at the peak load.

4. Based on remarks 2 and 3, use of the rotating crack model is advised to allow for

a conservative analysis result. However, if a rotation of the stress field is expected,

the rotating crack model may yield a result that is too conservative and use of

the fixed crack model should be considered.

5. The predicted wall behavior is stiffer in the large than in the medium scale anal-

yses during the initiation of cracks. It is believed that the localization of the
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crack pattern in the medium scale analyses causes a softer behavior of the wall

during the crack initiation. On the contrary, the non-localized crack pattern in

the large scale analyses yields a stiffer result. When the crack pattern is further

developed, the representation of the pattern is very similar in the two models,

and the difference in the predicted stiffness is negligible.

6. The higher load carrying capacity obtained by the large scale analyses is mainly

believed to be caused by the inability of the large elements to pick up the most

extreme compressive stresses in the compressive zone. Thus, the failure of the

compressive zone is delayed and a higher load capacity is found.

7. The large elements used in the large scale analyses are able to predict the stiffness

of the structural wall accurately, and thus the deformational response of the wall

is equally well predicted. It is believed that the use of such elements in the analysis

of a large structure would allow for an accurate global load distribution to be

found.

8. The failure mode of the structural wall is predicted correctly by the large elements,

and the crack pattern is accurately reproduced. If part of a larger structure, the

accurate prediction of failure predicted by the large elements would allow for

finding the cause and progression of failure in the structure. However, is should

be reminded that structural members other than structural walls, have not been

accounted for in this thesis.

9. The large scale analyses fail to predict the correct ultimate load carrying capacity

of the structural wall analyzed, and a correct prediction of the load capacity of

a larger structure should therefore not be expected. However, as pointed out in

remark 1, the poor prediction of the ultimate load is attributed to the missing

volumetric expansion of the concrete. Thus, the effect of the large scale elements

on the load carrying capacity has not been singled out. If a proper implementation

of the volumetric expansion effect was done, it could very well be that the large

scale elements would yield a non-conservative prediction of the ultimate load,

due to the generally stiff nature of finite element models with large elements.

Apart from the poorly predicted load carrying capacity, the use of large scale ele-

ments in NLFEA of large structures has proven to be promising. However, a lot of work

still remains before analyses can be conducted with confidence. Suggestions for further

work within this subject is given in the next chapter.
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7 Suggestions for Further Work

1. Work needs to be done to find a suitable material model that respects the volumet-

ric expansion of concrete. Several such material models exist, but none of them

are implemented in DIANA. Whatever finite element program is to be used for

conducting the NLFEAs, the volumteric expansion effect must be implemented.

The model presented by Selby and Vecchio [25] can be used. Material models

proposed by Kotsovos et al. [26], that respect the volumetric expansion on a more

fundamental level, can also be used.

2. The difference in the fixed and rotating crack models should be investigated

further, such that analyses of structures that experience a rotation of the stress

field can be conducted with confidence.

3. Analyses must be conducted on a wide range of structural components to verify

the results obtained here in a more general sense. Components that display a

different crack pattern and a different failure mode, than seen in the structural

wall investigated here, should be investigated.

4. Only one element size was used for the large scale analyses in this thesis. The

element size was chosen as the maximum justifiable size based on the results

of preliminary linear analyses of the structural wall. If analyses are conducted

with several element sizes, the transition from medium to large scale can be

investigated in more detail.

5. In the design of a large structure, 3D analysis is most likely to be used. The

analyses presented here were only conducted using 2D models. The 3D behavior

of the material models used here, should be investigated before they are utilized

in a design process.
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A Model Generations

This appendix contains descriptions of the different finite element models created, from

the first to the last generation. For each model, the geometry, boundary conditions

and load application is specified, and problems encountered when using the model are

discussed.

A.1 First Generation Model
In the initial modeling of the structural wall, all geometric data reported from Lefas et

al. [14] was taken into account. Both the top and bottom beams, and all reinforcement

bars were included in the finite element model. It was reported from the experiment

that the bottom beam was clamped to the laboratory floor on either side of the wall

itself. Thus, certain nodes on the top side of the bottom beam, roughly corresponding

to the clamped area in the experiment, were fixed in both the x- and y-directions. All

nodes along the bottom edge of the bottom beam were also fixed in both of the global

directions. Loading was applied as evenly distributed along the right edge of the top

beam. Specified boundary conditions and applied loading is illustrated in figure A.1(a).

When investigating the results of the NLFEA, extensive cracking, illustrated in fig-

ure A.1(b), was discovered in the bottom beam. It was suspected that these cracks

caused a negative influence on the behavior of the structural wall. Measures were done

to eliminate this influence and the second generation model was made. The details of

the second generation model are described in appendix A.2.

(a) Element mesh (b) Crack pattern

Figure A.1: First generation model
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A.2 Second Generation Model
The second generation model was created due to the extensive cracking observed in the

bottom beam of the first generation model (cf. figure A.1(b)). It was decided to remove

the bottom beam completely and fix all the nodes along the bottom edge of the wall in

the x- and y-directions. The fixed wall base was justified by measurements performed

during the experiment, confirming a fixed wall base [14]. As in the first generation

model, loading was applied as evenly distributed along the right edge of the top beam.

Specified boundary conditions and applied loading is illustrated in figure A.2(a).

Problems with the second generation model were discovered when implementing

a bond slip relation. It was found that the bond slip was highly localized in the tensile

zone along the wall base, as shown in figure A.2(b). This localization caused the wall

to fail for extremely low values of externally applied loading. The behavior was thus

deemed unnatural and a last generation model was created to avoid the localized bond

slip. The details of the last generation model are described in appendix A.3.

(a) Element mesh (b) Bond slip localization

Figure A.2: Second generation model
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A.3 Last Generation Model

A.3 Last Generation Model
The last generation model was created to avoid the localized bond slip observed in the

NLFEA of the second generation model (cf. figure A.2(b)). It was suspected that the

localization was caused by the fixed ends of the reinforcement bars along the wall base.

An extended area of the concrete below the wall base was therefore modeled to allow

for proper anchoring of the reinforcement bars, and thus a gradually increasing transfer

of tractions between the concrete and reinforcement. The height of this extended area

was set equal to the height of the bottom beam as specified in the experiment by Lefas et

al. (cf. figure 4.1). The vertical reinforcement bars were extended below the wall base

and bent towards the outer edges of the wall (cf. figure 4.5(a)). All nodes along the

initial wall base were fixed in the x- and y-directions. In this way, the deformations of

the wall was not affected by the extended concrete area below the wall base. As in the

models of the previous generations, the loading was applied as evenly distributed along

the right edge of the top beam. Specified boundary conditions and applied loading is

illustrated in figure A.3(a).

The NLFEA result revealed a proper localization pattern of the bond slip, were the

effect of the bond slip was spread out vertically in the tensile zone of the wall. The

localized bond slip pattern is illustrated in figure A.3(b).

(a) Element mesh (b) Bond slip localization

Figure A.3: Last generation model
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B Problems Encountered in DIANA

This appendix contains documentation of the problems met when using the DIANA

finite element program. The background and solution for each problem is described.

This appendix will be of use for future analysts facing similar problems when using the

program.

B.1 Obtaining the Correct Reinforcement Stresses
The implementation of bond slip in DIANA utilizes the CQ22IF interface element (cf. sec-

tion 4.3.3) for handling the relative slip and the transfer of traction stresses between

the concrete and reinforcement elements. When the element is present, it is no longer

possible to obtain the stresses from the integration points of the reinforcement ele-

ments, and consequently these stresses must be sampled in the nodes. The nodes,

integration points, displacement field and stress field of the reinforcement element are

illustrated in figure B.1. According to finite element theory, stresses are most accurate

when sampled in the reduced Gaussian integration points [27]. In order to obtain the

reinforcement stresses with the highest accuracy, an interpolation of the stresses was

done. The stresses were first sampled at all the 3 nodes in each element. Secondly, a

control of these stresses was made, to check that an expected linear variation (due to

the differentiated interpolation functions used for calculation of stresses and strains)

between the 3 nodes was present. At last, the nodal values for the stresses were interpo-

lated to find the stress values at the position of the reduced Gaussian integration points.

With this approach it was possible to obtain accurate reinforcement stresses to which

post-processing could be applied. The approach is cumbersome, and direct export of

stress values from the integration points, when using interface elements, should be

implemented natively in DIANA.

Stress field

Displacement field

= nodes

= integration points

Figure B.1: Interpolation of stresses
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B.2 Obtaining Slip and Traction Values
To monitor that DIANA was indeed following the bond slip curve from fib Model Code

2010 (cf. section 2.2.7), it was necessary to export the traction and slip values from

each interface element. However, obtaining these values proved more challenging than

expected. DIANA does not allow the export of traction and slip values from the inte-

gration points of the CQ22IF interface element, used for implementation of bond slip.

Only values from the nodes are available. At first, the interpolation approach used for

obtaining the reinforcement stresses (cf. section B.1) was applied to interpolate the

values from the nodes back to the integration points. However, it turned out that the

CQ22IF interface element does not utilize a Gaussian integration scheme. The DIANA

manual does not specify the integration scheme, the position, or thr number of integra-

tion points used in the element. At last, the values were obtained by directly opening

the database created by the analyses in DIANA. The database can be read through the

DIANA Command Box as shown in figure B.2. The figure shows the commands needed

to access integration point 1 in element 9 of reinforcement bar 69. Values are printed

by calling the commands ”p TRA” and ”p U” which prints the traction and slip values

stored to the database at the end of the last load step, respectively. The values in the

database are overwritten at the end of each load step, and consequently only values

from the last load step is available. However, the commands ”p TRA.s” and ”p U.s” will

print the values from the start of the last load step, which are identical to the values

at the end of the preceeding load step. The wanted values are the first reported under

each command in figure B.2. Thus the traction and slip values at the end of the last load

step for the integration point in the figure are 9.43 MPa and 0.3097 mm, respectively.

Values obtained from a few chosen integration points proved that DIANA was follow-

ing the material curve specified. It was assumed, without further monitoring, that this

was the case for all other integration points in the finite element model. The approach

is not satisfying and does not allow the analyst to check the traction and slip values

in all integration points without repeating the process illustrated in figure B.2. It is

evident that almost any finite element model of a concrete structure will contain enough

integration points to safely regard this approach unusable. Thus, proper export of the

traction and slip values directly from the integration points should be implemented in

DIANA.
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B.2 Obtaining Slip and Traction Values

+-----------------------+

| Welcome to DIANA |

| Release 9.4.4 |

+-----------------------+

C:\User\username > cd C:\ database\directory

C:\ database\directory > START lq .diana/ff

lq > cd /REINFO (69)/ ELEMEN (9)/ INTPT (1)

lq > p TRA

9.430e+000 -1.210e-006

lq > p U

3.097e-001 -2.521e-010

lq > p TRA.s

9.130e+000 -1.209e-006

lq > p U.s

2.855e-001 -2.519e-010

Figure B.2: Command code for obtaining slip and traction values
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B.3 Trilinear Reinforcement Material Curve Convergence Problems
As described in section 2.2.7, a trilinear stress-strain relationship was used to avoid

numerical trouble when the stress exceeds the yield strength in a load step. The ma-

terial curve was successfully used in the medium scale analyses, but problems were

encountered in the large scale analyses. As illustrated in figure B.3, the stress values

reported immediately after yielding are far from the correct values, both in compression

and tension. Convergence immediately after yielding is not found. However, global

equilibrium was achieved and DIANA reported a converged load step. Thus, the severe

mis-calculation of stresses on the material level was never reported to the end-user. To

confirm that the stress values were indeed the values found in the integration points,

the values were extracted directly from the analysis database, using the same approach

as is illustrated in figure B.2, in addition to the usual approach of exporting them from

FEMVIEW in DIANA. It is believed that the differences in the tangential stiffness in

the material curve before and after yielding prevents the program from finding conver-

gence. It is also believed that the maximum number of iterations was used, and that

this forced the program to continue to the next load step although convergence was not

found. However, this was not confirmed. A solution of the convergence problem was

found by specifying the original bilinear stress-strain curve. As is evident in figure B.4,

all load steps are converged on the material level when using the bilinear curve.

It is worrying that DIANA will continue to the next load step when the stress in

the material is so far from the correct stress, without notifying the end user. It is also

peculiar that the program is unable to find convergence when met with such a soft

nonlinearity. It could be an indication that the iterative scheme used for finding the

material stresses is perhaps not optimal.
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B.3 Trilinear Reinforcement Material Curve Convergence Problems

(a) Reinforcement bar in compression (b) Reinforcement bar in tension

Figure B.3: Trilinear material curve
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(a) Reinforcement bar in compression
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(b) Reinforcement bar in tension

Figure B.4: Bilinear material curve
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